]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: change how we calculate the global block rsv
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
1e144fb8 36#include "free-space-tree.h"
3fed40cc 37#include "math.h"
6ab0a202 38#include "sysfs.h"
fcebe456 39#include "qgroup.h"
fec577fb 40
709c0486
AJ
41#undef SCRAMBLE_DELAYED_REFS
42
9e622d6b
MX
43/*
44 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
45 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
46 * if we really need one.
47 *
0e4f8f88
CM
48 * CHUNK_ALLOC_LIMITED means to only try and allocate one
49 * if we have very few chunks already allocated. This is
50 * used as part of the clustering code to help make sure
51 * we have a good pool of storage to cluster in, without
52 * filling the FS with empty chunks
53 *
9e622d6b
MX
54 * CHUNK_ALLOC_FORCE means it must try to allocate one
55 *
0e4f8f88
CM
56 */
57enum {
58 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
59 CHUNK_ALLOC_LIMITED = 1,
60 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
61};
62
fb25e914
JB
63/*
64 * Control how reservations are dealt with.
65 *
66 * RESERVE_FREE - freeing a reservation.
67 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
68 * ENOSPC accounting
69 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
70 * bytes_may_use as the ENOSPC accounting is done elsewhere
71 */
72enum {
73 RESERVE_FREE = 0,
74 RESERVE_ALLOC = 1,
75 RESERVE_ALLOC_NO_ACCOUNT = 2,
76};
77
ce93ec54
JB
78static int update_block_group(struct btrfs_trans_handle *trans,
79 struct btrfs_root *root, u64 bytenr,
80 u64 num_bytes, int alloc);
5d4f98a2
YZ
81static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
82 struct btrfs_root *root,
c682f9b3 83 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
84 u64 root_objectid, u64 owner_objectid,
85 u64 owner_offset, int refs_to_drop,
c682f9b3 86 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 99 int level, struct btrfs_key *ins);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
957780eb
JB
114static int __reserve_metadata_bytes(struct btrfs_root *root,
115 struct btrfs_space_info *space_info,
116 u64 orig_bytes,
117 enum btrfs_reserve_flush_enum flush);
118static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
119 struct btrfs_space_info *space_info,
120 u64 num_bytes);
121static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
122 struct btrfs_space_info *space_info,
123 u64 num_bytes);
6a63209f 124
817d52f8
JB
125static noinline int
126block_group_cache_done(struct btrfs_block_group_cache *cache)
127{
128 smp_mb();
36cce922
JB
129 return cache->cached == BTRFS_CACHE_FINISHED ||
130 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
131}
132
0f9dd46c
JB
133static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
134{
135 return (cache->flags & bits) == bits;
136}
137
758f2dfc 138void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
139{
140 atomic_inc(&cache->count);
141}
142
143void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
144{
f0486c68
YZ
145 if (atomic_dec_and_test(&cache->count)) {
146 WARN_ON(cache->pinned > 0);
147 WARN_ON(cache->reserved > 0);
34d52cb6 148 kfree(cache->free_space_ctl);
11dfe35a 149 kfree(cache);
f0486c68 150 }
11dfe35a
JB
151}
152
0f9dd46c
JB
153/*
154 * this adds the block group to the fs_info rb tree for the block group
155 * cache
156 */
b2950863 157static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
158 struct btrfs_block_group_cache *block_group)
159{
160 struct rb_node **p;
161 struct rb_node *parent = NULL;
162 struct btrfs_block_group_cache *cache;
163
164 spin_lock(&info->block_group_cache_lock);
165 p = &info->block_group_cache_tree.rb_node;
166
167 while (*p) {
168 parent = *p;
169 cache = rb_entry(parent, struct btrfs_block_group_cache,
170 cache_node);
171 if (block_group->key.objectid < cache->key.objectid) {
172 p = &(*p)->rb_left;
173 } else if (block_group->key.objectid > cache->key.objectid) {
174 p = &(*p)->rb_right;
175 } else {
176 spin_unlock(&info->block_group_cache_lock);
177 return -EEXIST;
178 }
179 }
180
181 rb_link_node(&block_group->cache_node, parent, p);
182 rb_insert_color(&block_group->cache_node,
183 &info->block_group_cache_tree);
a1897fdd
LB
184
185 if (info->first_logical_byte > block_group->key.objectid)
186 info->first_logical_byte = block_group->key.objectid;
187
0f9dd46c
JB
188 spin_unlock(&info->block_group_cache_lock);
189
190 return 0;
191}
192
193/*
194 * This will return the block group at or after bytenr if contains is 0, else
195 * it will return the block group that contains the bytenr
196 */
197static struct btrfs_block_group_cache *
198block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
199 int contains)
200{
201 struct btrfs_block_group_cache *cache, *ret = NULL;
202 struct rb_node *n;
203 u64 end, start;
204
205 spin_lock(&info->block_group_cache_lock);
206 n = info->block_group_cache_tree.rb_node;
207
208 while (n) {
209 cache = rb_entry(n, struct btrfs_block_group_cache,
210 cache_node);
211 end = cache->key.objectid + cache->key.offset - 1;
212 start = cache->key.objectid;
213
214 if (bytenr < start) {
215 if (!contains && (!ret || start < ret->key.objectid))
216 ret = cache;
217 n = n->rb_left;
218 } else if (bytenr > start) {
219 if (contains && bytenr <= end) {
220 ret = cache;
221 break;
222 }
223 n = n->rb_right;
224 } else {
225 ret = cache;
226 break;
227 }
228 }
a1897fdd 229 if (ret) {
11dfe35a 230 btrfs_get_block_group(ret);
a1897fdd
LB
231 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
232 info->first_logical_byte = ret->key.objectid;
233 }
0f9dd46c
JB
234 spin_unlock(&info->block_group_cache_lock);
235
236 return ret;
237}
238
11833d66
YZ
239static int add_excluded_extent(struct btrfs_root *root,
240 u64 start, u64 num_bytes)
817d52f8 241{
11833d66
YZ
242 u64 end = start + num_bytes - 1;
243 set_extent_bits(&root->fs_info->freed_extents[0],
ceeb0ae7 244 start, end, EXTENT_UPTODATE);
11833d66 245 set_extent_bits(&root->fs_info->freed_extents[1],
ceeb0ae7 246 start, end, EXTENT_UPTODATE);
11833d66
YZ
247 return 0;
248}
817d52f8 249
11833d66
YZ
250static void free_excluded_extents(struct btrfs_root *root,
251 struct btrfs_block_group_cache *cache)
252{
253 u64 start, end;
817d52f8 254
11833d66
YZ
255 start = cache->key.objectid;
256 end = start + cache->key.offset - 1;
257
258 clear_extent_bits(&root->fs_info->freed_extents[0],
91166212 259 start, end, EXTENT_UPTODATE);
11833d66 260 clear_extent_bits(&root->fs_info->freed_extents[1],
91166212 261 start, end, EXTENT_UPTODATE);
817d52f8
JB
262}
263
11833d66
YZ
264static int exclude_super_stripes(struct btrfs_root *root,
265 struct btrfs_block_group_cache *cache)
817d52f8 266{
817d52f8
JB
267 u64 bytenr;
268 u64 *logical;
269 int stripe_len;
270 int i, nr, ret;
271
06b2331f
YZ
272 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
273 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
274 cache->bytes_super += stripe_len;
275 ret = add_excluded_extent(root, cache->key.objectid,
276 stripe_len);
835d974f
JB
277 if (ret)
278 return ret;
06b2331f
YZ
279 }
280
817d52f8
JB
281 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
282 bytenr = btrfs_sb_offset(i);
283 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
284 cache->key.objectid, bytenr,
285 0, &logical, &nr, &stripe_len);
835d974f
JB
286 if (ret)
287 return ret;
11833d66 288
817d52f8 289 while (nr--) {
51bf5f0b
JB
290 u64 start, len;
291
292 if (logical[nr] > cache->key.objectid +
293 cache->key.offset)
294 continue;
295
296 if (logical[nr] + stripe_len <= cache->key.objectid)
297 continue;
298
299 start = logical[nr];
300 if (start < cache->key.objectid) {
301 start = cache->key.objectid;
302 len = (logical[nr] + stripe_len) - start;
303 } else {
304 len = min_t(u64, stripe_len,
305 cache->key.objectid +
306 cache->key.offset - start);
307 }
308
309 cache->bytes_super += len;
310 ret = add_excluded_extent(root, start, len);
835d974f
JB
311 if (ret) {
312 kfree(logical);
313 return ret;
314 }
817d52f8 315 }
11833d66 316
817d52f8
JB
317 kfree(logical);
318 }
817d52f8
JB
319 return 0;
320}
321
11833d66
YZ
322static struct btrfs_caching_control *
323get_caching_control(struct btrfs_block_group_cache *cache)
324{
325 struct btrfs_caching_control *ctl;
326
327 spin_lock(&cache->lock);
dde5abee
JB
328 if (!cache->caching_ctl) {
329 spin_unlock(&cache->lock);
11833d66
YZ
330 return NULL;
331 }
332
333 ctl = cache->caching_ctl;
334 atomic_inc(&ctl->count);
335 spin_unlock(&cache->lock);
336 return ctl;
337}
338
339static void put_caching_control(struct btrfs_caching_control *ctl)
340{
341 if (atomic_dec_and_test(&ctl->count))
342 kfree(ctl);
343}
344
d0bd4560
JB
345#ifdef CONFIG_BTRFS_DEBUG
346static void fragment_free_space(struct btrfs_root *root,
347 struct btrfs_block_group_cache *block_group)
348{
349 u64 start = block_group->key.objectid;
350 u64 len = block_group->key.offset;
351 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
352 root->nodesize : root->sectorsize;
353 u64 step = chunk << 1;
354
355 while (len > chunk) {
356 btrfs_remove_free_space(block_group, start, chunk);
357 start += step;
358 if (len < step)
359 len = 0;
360 else
361 len -= step;
362 }
363}
364#endif
365
0f9dd46c
JB
366/*
367 * this is only called by cache_block_group, since we could have freed extents
368 * we need to check the pinned_extents for any extents that can't be used yet
369 * since their free space will be released as soon as the transaction commits.
370 */
a5ed9182
OS
371u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
372 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 373{
817d52f8 374 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
375 int ret;
376
377 while (start < end) {
11833d66 378 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 379 &extent_start, &extent_end,
e6138876
JB
380 EXTENT_DIRTY | EXTENT_UPTODATE,
381 NULL);
0f9dd46c
JB
382 if (ret)
383 break;
384
06b2331f 385 if (extent_start <= start) {
0f9dd46c
JB
386 start = extent_end + 1;
387 } else if (extent_start > start && extent_start < end) {
388 size = extent_start - start;
817d52f8 389 total_added += size;
ea6a478e
JB
390 ret = btrfs_add_free_space(block_group, start,
391 size);
79787eaa 392 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
393 start = extent_end + 1;
394 } else {
395 break;
396 }
397 }
398
399 if (start < end) {
400 size = end - start;
817d52f8 401 total_added += size;
ea6a478e 402 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 403 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
404 }
405
817d52f8 406 return total_added;
0f9dd46c
JB
407}
408
73fa48b6 409static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 410{
bab39bf9
JB
411 struct btrfs_block_group_cache *block_group;
412 struct btrfs_fs_info *fs_info;
bab39bf9 413 struct btrfs_root *extent_root;
e37c9e69 414 struct btrfs_path *path;
5f39d397 415 struct extent_buffer *leaf;
11833d66 416 struct btrfs_key key;
817d52f8 417 u64 total_found = 0;
11833d66
YZ
418 u64 last = 0;
419 u32 nritems;
73fa48b6 420 int ret;
d0bd4560 421 bool wakeup = true;
f510cfec 422
bab39bf9
JB
423 block_group = caching_ctl->block_group;
424 fs_info = block_group->fs_info;
425 extent_root = fs_info->extent_root;
426
e37c9e69
CM
427 path = btrfs_alloc_path();
428 if (!path)
73fa48b6 429 return -ENOMEM;
7d7d6068 430
817d52f8 431 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 432
d0bd4560
JB
433#ifdef CONFIG_BTRFS_DEBUG
434 /*
435 * If we're fragmenting we don't want to make anybody think we can
436 * allocate from this block group until we've had a chance to fragment
437 * the free space.
438 */
439 if (btrfs_should_fragment_free_space(extent_root, block_group))
440 wakeup = false;
441#endif
5cd57b2c 442 /*
817d52f8
JB
443 * We don't want to deadlock with somebody trying to allocate a new
444 * extent for the extent root while also trying to search the extent
445 * root to add free space. So we skip locking and search the commit
446 * root, since its read-only
5cd57b2c
CM
447 */
448 path->skip_locking = 1;
817d52f8 449 path->search_commit_root = 1;
e4058b54 450 path->reada = READA_FORWARD;
817d52f8 451
e4404d6e 452 key.objectid = last;
e37c9e69 453 key.offset = 0;
11833d66 454 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 455
52ee28d2 456next:
11833d66 457 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 458 if (ret < 0)
73fa48b6 459 goto out;
a512bbf8 460
11833d66
YZ
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463
d397712b 464 while (1) {
7841cb28 465 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 466 last = (u64)-1;
817d52f8 467 break;
f25784b3 468 }
817d52f8 469
11833d66
YZ
470 if (path->slots[0] < nritems) {
471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
472 } else {
473 ret = find_next_key(path, 0, &key);
474 if (ret)
e37c9e69 475 break;
817d52f8 476
c9ea7b24 477 if (need_resched() ||
9e351cc8 478 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
479 if (wakeup)
480 caching_ctl->progress = last;
ff5714cc 481 btrfs_release_path(path);
9e351cc8 482 up_read(&fs_info->commit_root_sem);
589d8ade 483 mutex_unlock(&caching_ctl->mutex);
11833d66 484 cond_resched();
73fa48b6
OS
485 mutex_lock(&caching_ctl->mutex);
486 down_read(&fs_info->commit_root_sem);
487 goto next;
589d8ade 488 }
0a3896d0
JB
489
490 ret = btrfs_next_leaf(extent_root, path);
491 if (ret < 0)
73fa48b6 492 goto out;
0a3896d0
JB
493 if (ret)
494 break;
589d8ade
JB
495 leaf = path->nodes[0];
496 nritems = btrfs_header_nritems(leaf);
497 continue;
11833d66 498 }
817d52f8 499
52ee28d2
LB
500 if (key.objectid < last) {
501 key.objectid = last;
502 key.offset = 0;
503 key.type = BTRFS_EXTENT_ITEM_KEY;
504
d0bd4560
JB
505 if (wakeup)
506 caching_ctl->progress = last;
52ee28d2
LB
507 btrfs_release_path(path);
508 goto next;
509 }
510
11833d66
YZ
511 if (key.objectid < block_group->key.objectid) {
512 path->slots[0]++;
817d52f8 513 continue;
e37c9e69 514 }
0f9dd46c 515
e37c9e69 516 if (key.objectid >= block_group->key.objectid +
0f9dd46c 517 block_group->key.offset)
e37c9e69 518 break;
7d7d6068 519
3173a18f
JB
520 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
521 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
522 total_found += add_new_free_space(block_group,
523 fs_info, last,
524 key.objectid);
3173a18f
JB
525 if (key.type == BTRFS_METADATA_ITEM_KEY)
526 last = key.objectid +
707e8a07 527 fs_info->tree_root->nodesize;
3173a18f
JB
528 else
529 last = key.objectid + key.offset;
817d52f8 530
73fa48b6 531 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 532 total_found = 0;
d0bd4560
JB
533 if (wakeup)
534 wake_up(&caching_ctl->wait);
11833d66 535 }
817d52f8 536 }
e37c9e69
CM
537 path->slots[0]++;
538 }
817d52f8 539 ret = 0;
e37c9e69 540
817d52f8
JB
541 total_found += add_new_free_space(block_group, fs_info, last,
542 block_group->key.objectid +
543 block_group->key.offset);
11833d66 544 caching_ctl->progress = (u64)-1;
817d52f8 545
73fa48b6
OS
546out:
547 btrfs_free_path(path);
548 return ret;
549}
550
551static noinline void caching_thread(struct btrfs_work *work)
552{
553 struct btrfs_block_group_cache *block_group;
554 struct btrfs_fs_info *fs_info;
555 struct btrfs_caching_control *caching_ctl;
b4570aa9 556 struct btrfs_root *extent_root;
73fa48b6
OS
557 int ret;
558
559 caching_ctl = container_of(work, struct btrfs_caching_control, work);
560 block_group = caching_ctl->block_group;
561 fs_info = block_group->fs_info;
b4570aa9 562 extent_root = fs_info->extent_root;
73fa48b6
OS
563
564 mutex_lock(&caching_ctl->mutex);
565 down_read(&fs_info->commit_root_sem);
566
1e144fb8
OS
567 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
568 ret = load_free_space_tree(caching_ctl);
569 else
570 ret = load_extent_tree_free(caching_ctl);
73fa48b6 571
817d52f8 572 spin_lock(&block_group->lock);
11833d66 573 block_group->caching_ctl = NULL;
73fa48b6 574 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 575 spin_unlock(&block_group->lock);
0f9dd46c 576
d0bd4560
JB
577#ifdef CONFIG_BTRFS_DEBUG
578 if (btrfs_should_fragment_free_space(extent_root, block_group)) {
579 u64 bytes_used;
580
581 spin_lock(&block_group->space_info->lock);
582 spin_lock(&block_group->lock);
583 bytes_used = block_group->key.offset -
584 btrfs_block_group_used(&block_group->item);
585 block_group->space_info->bytes_used += bytes_used >> 1;
586 spin_unlock(&block_group->lock);
587 spin_unlock(&block_group->space_info->lock);
588 fragment_free_space(extent_root, block_group);
589 }
590#endif
591
592 caching_ctl->progress = (u64)-1;
11833d66 593
9e351cc8 594 up_read(&fs_info->commit_root_sem);
73fa48b6 595 free_excluded_extents(fs_info->extent_root, block_group);
11833d66 596 mutex_unlock(&caching_ctl->mutex);
73fa48b6 597
11833d66
YZ
598 wake_up(&caching_ctl->wait);
599
600 put_caching_control(caching_ctl);
11dfe35a 601 btrfs_put_block_group(block_group);
817d52f8
JB
602}
603
9d66e233 604static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 605 int load_cache_only)
817d52f8 606{
291c7d2f 607 DEFINE_WAIT(wait);
11833d66
YZ
608 struct btrfs_fs_info *fs_info = cache->fs_info;
609 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
610 int ret = 0;
611
291c7d2f 612 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
613 if (!caching_ctl)
614 return -ENOMEM;
291c7d2f
JB
615
616 INIT_LIST_HEAD(&caching_ctl->list);
617 mutex_init(&caching_ctl->mutex);
618 init_waitqueue_head(&caching_ctl->wait);
619 caching_ctl->block_group = cache;
620 caching_ctl->progress = cache->key.objectid;
621 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
622 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
623 caching_thread, NULL, NULL);
291c7d2f
JB
624
625 spin_lock(&cache->lock);
626 /*
627 * This should be a rare occasion, but this could happen I think in the
628 * case where one thread starts to load the space cache info, and then
629 * some other thread starts a transaction commit which tries to do an
630 * allocation while the other thread is still loading the space cache
631 * info. The previous loop should have kept us from choosing this block
632 * group, but if we've moved to the state where we will wait on caching
633 * block groups we need to first check if we're doing a fast load here,
634 * so we can wait for it to finish, otherwise we could end up allocating
635 * from a block group who's cache gets evicted for one reason or
636 * another.
637 */
638 while (cache->cached == BTRFS_CACHE_FAST) {
639 struct btrfs_caching_control *ctl;
640
641 ctl = cache->caching_ctl;
642 atomic_inc(&ctl->count);
643 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
644 spin_unlock(&cache->lock);
645
646 schedule();
647
648 finish_wait(&ctl->wait, &wait);
649 put_caching_control(ctl);
650 spin_lock(&cache->lock);
651 }
652
653 if (cache->cached != BTRFS_CACHE_NO) {
654 spin_unlock(&cache->lock);
655 kfree(caching_ctl);
11833d66 656 return 0;
291c7d2f
JB
657 }
658 WARN_ON(cache->caching_ctl);
659 cache->caching_ctl = caching_ctl;
660 cache->cached = BTRFS_CACHE_FAST;
661 spin_unlock(&cache->lock);
11833d66 662
d53ba474 663 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 664 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
665 ret = load_free_space_cache(fs_info, cache);
666
667 spin_lock(&cache->lock);
668 if (ret == 1) {
291c7d2f 669 cache->caching_ctl = NULL;
9d66e233
JB
670 cache->cached = BTRFS_CACHE_FINISHED;
671 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 672 caching_ctl->progress = (u64)-1;
9d66e233 673 } else {
291c7d2f
JB
674 if (load_cache_only) {
675 cache->caching_ctl = NULL;
676 cache->cached = BTRFS_CACHE_NO;
677 } else {
678 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 679 cache->has_caching_ctl = 1;
291c7d2f 680 }
9d66e233
JB
681 }
682 spin_unlock(&cache->lock);
d0bd4560
JB
683#ifdef CONFIG_BTRFS_DEBUG
684 if (ret == 1 &&
685 btrfs_should_fragment_free_space(fs_info->extent_root,
686 cache)) {
687 u64 bytes_used;
688
689 spin_lock(&cache->space_info->lock);
690 spin_lock(&cache->lock);
691 bytes_used = cache->key.offset -
692 btrfs_block_group_used(&cache->item);
693 cache->space_info->bytes_used += bytes_used >> 1;
694 spin_unlock(&cache->lock);
695 spin_unlock(&cache->space_info->lock);
696 fragment_free_space(fs_info->extent_root, cache);
697 }
698#endif
cb83b7b8
JB
699 mutex_unlock(&caching_ctl->mutex);
700
291c7d2f 701 wake_up(&caching_ctl->wait);
3c14874a 702 if (ret == 1) {
291c7d2f 703 put_caching_control(caching_ctl);
3c14874a 704 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 705 return 0;
3c14874a 706 }
291c7d2f
JB
707 } else {
708 /*
1e144fb8
OS
709 * We're either using the free space tree or no caching at all.
710 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
711 */
712 spin_lock(&cache->lock);
713 if (load_cache_only) {
714 cache->caching_ctl = NULL;
715 cache->cached = BTRFS_CACHE_NO;
716 } else {
717 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 718 cache->has_caching_ctl = 1;
291c7d2f
JB
719 }
720 spin_unlock(&cache->lock);
721 wake_up(&caching_ctl->wait);
9d66e233
JB
722 }
723
291c7d2f
JB
724 if (load_cache_only) {
725 put_caching_control(caching_ctl);
11833d66 726 return 0;
817d52f8 727 }
817d52f8 728
9e351cc8 729 down_write(&fs_info->commit_root_sem);
291c7d2f 730 atomic_inc(&caching_ctl->count);
11833d66 731 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 732 up_write(&fs_info->commit_root_sem);
11833d66 733
11dfe35a 734 btrfs_get_block_group(cache);
11833d66 735
e66f0bb1 736 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 737
ef8bbdfe 738 return ret;
e37c9e69
CM
739}
740
0f9dd46c
JB
741/*
742 * return the block group that starts at or after bytenr
743 */
d397712b
CM
744static struct btrfs_block_group_cache *
745btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 746{
0f9dd46c 747 struct btrfs_block_group_cache *cache;
0ef3e66b 748
0f9dd46c 749 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 750
0f9dd46c 751 return cache;
0ef3e66b
CM
752}
753
0f9dd46c 754/*
9f55684c 755 * return the block group that contains the given bytenr
0f9dd46c 756 */
d397712b
CM
757struct btrfs_block_group_cache *btrfs_lookup_block_group(
758 struct btrfs_fs_info *info,
759 u64 bytenr)
be744175 760{
0f9dd46c 761 struct btrfs_block_group_cache *cache;
be744175 762
0f9dd46c 763 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 764
0f9dd46c 765 return cache;
be744175 766}
0b86a832 767
0f9dd46c
JB
768static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
769 u64 flags)
6324fbf3 770{
0f9dd46c 771 struct list_head *head = &info->space_info;
0f9dd46c 772 struct btrfs_space_info *found;
4184ea7f 773
52ba6929 774 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 775
4184ea7f
CM
776 rcu_read_lock();
777 list_for_each_entry_rcu(found, head, list) {
67377734 778 if (found->flags & flags) {
4184ea7f 779 rcu_read_unlock();
0f9dd46c 780 return found;
4184ea7f 781 }
0f9dd46c 782 }
4184ea7f 783 rcu_read_unlock();
0f9dd46c 784 return NULL;
6324fbf3
CM
785}
786
4184ea7f
CM
787/*
788 * after adding space to the filesystem, we need to clear the full flags
789 * on all the space infos.
790 */
791void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
792{
793 struct list_head *head = &info->space_info;
794 struct btrfs_space_info *found;
795
796 rcu_read_lock();
797 list_for_each_entry_rcu(found, head, list)
798 found->full = 0;
799 rcu_read_unlock();
800}
801
1a4ed8fd
FM
802/* simple helper to search for an existing data extent at a given offset */
803int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
804{
805 int ret;
806 struct btrfs_key key;
31840ae1 807 struct btrfs_path *path;
e02119d5 808
31840ae1 809 path = btrfs_alloc_path();
d8926bb3
MF
810 if (!path)
811 return -ENOMEM;
812
e02119d5
CM
813 key.objectid = start;
814 key.offset = len;
3173a18f 815 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
816 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
817 0, 0);
31840ae1 818 btrfs_free_path(path);
7bb86316
CM
819 return ret;
820}
821
a22285a6 822/*
3173a18f 823 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
824 *
825 * the head node for delayed ref is used to store the sum of all the
826 * reference count modifications queued up in the rbtree. the head
827 * node may also store the extent flags to set. This way you can check
828 * to see what the reference count and extent flags would be if all of
829 * the delayed refs are not processed.
830 */
831int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
832 struct btrfs_root *root, u64 bytenr,
3173a18f 833 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
834{
835 struct btrfs_delayed_ref_head *head;
836 struct btrfs_delayed_ref_root *delayed_refs;
837 struct btrfs_path *path;
838 struct btrfs_extent_item *ei;
839 struct extent_buffer *leaf;
840 struct btrfs_key key;
841 u32 item_size;
842 u64 num_refs;
843 u64 extent_flags;
844 int ret;
845
3173a18f
JB
846 /*
847 * If we don't have skinny metadata, don't bother doing anything
848 * different
849 */
850 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 851 offset = root->nodesize;
3173a18f
JB
852 metadata = 0;
853 }
854
a22285a6
YZ
855 path = btrfs_alloc_path();
856 if (!path)
857 return -ENOMEM;
858
a22285a6
YZ
859 if (!trans) {
860 path->skip_locking = 1;
861 path->search_commit_root = 1;
862 }
639eefc8
FDBM
863
864search_again:
865 key.objectid = bytenr;
866 key.offset = offset;
867 if (metadata)
868 key.type = BTRFS_METADATA_ITEM_KEY;
869 else
870 key.type = BTRFS_EXTENT_ITEM_KEY;
871
a22285a6
YZ
872 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
873 &key, path, 0, 0);
874 if (ret < 0)
875 goto out_free;
876
3173a18f 877 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
878 if (path->slots[0]) {
879 path->slots[0]--;
880 btrfs_item_key_to_cpu(path->nodes[0], &key,
881 path->slots[0]);
882 if (key.objectid == bytenr &&
883 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 884 key.offset == root->nodesize)
74be9510
FDBM
885 ret = 0;
886 }
3173a18f
JB
887 }
888
a22285a6
YZ
889 if (ret == 0) {
890 leaf = path->nodes[0];
891 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
892 if (item_size >= sizeof(*ei)) {
893 ei = btrfs_item_ptr(leaf, path->slots[0],
894 struct btrfs_extent_item);
895 num_refs = btrfs_extent_refs(leaf, ei);
896 extent_flags = btrfs_extent_flags(leaf, ei);
897 } else {
898#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
899 struct btrfs_extent_item_v0 *ei0;
900 BUG_ON(item_size != sizeof(*ei0));
901 ei0 = btrfs_item_ptr(leaf, path->slots[0],
902 struct btrfs_extent_item_v0);
903 num_refs = btrfs_extent_refs_v0(leaf, ei0);
904 /* FIXME: this isn't correct for data */
905 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
906#else
907 BUG();
908#endif
909 }
910 BUG_ON(num_refs == 0);
911 } else {
912 num_refs = 0;
913 extent_flags = 0;
914 ret = 0;
915 }
916
917 if (!trans)
918 goto out;
919
920 delayed_refs = &trans->transaction->delayed_refs;
921 spin_lock(&delayed_refs->lock);
922 head = btrfs_find_delayed_ref_head(trans, bytenr);
923 if (head) {
924 if (!mutex_trylock(&head->mutex)) {
925 atomic_inc(&head->node.refs);
926 spin_unlock(&delayed_refs->lock);
927
b3b4aa74 928 btrfs_release_path(path);
a22285a6 929
8cc33e5c
DS
930 /*
931 * Mutex was contended, block until it's released and try
932 * again
933 */
a22285a6
YZ
934 mutex_lock(&head->mutex);
935 mutex_unlock(&head->mutex);
936 btrfs_put_delayed_ref(&head->node);
639eefc8 937 goto search_again;
a22285a6 938 }
d7df2c79 939 spin_lock(&head->lock);
a22285a6
YZ
940 if (head->extent_op && head->extent_op->update_flags)
941 extent_flags |= head->extent_op->flags_to_set;
942 else
943 BUG_ON(num_refs == 0);
944
945 num_refs += head->node.ref_mod;
d7df2c79 946 spin_unlock(&head->lock);
a22285a6
YZ
947 mutex_unlock(&head->mutex);
948 }
949 spin_unlock(&delayed_refs->lock);
950out:
951 WARN_ON(num_refs == 0);
952 if (refs)
953 *refs = num_refs;
954 if (flags)
955 *flags = extent_flags;
956out_free:
957 btrfs_free_path(path);
958 return ret;
959}
960
d8d5f3e1
CM
961/*
962 * Back reference rules. Back refs have three main goals:
963 *
964 * 1) differentiate between all holders of references to an extent so that
965 * when a reference is dropped we can make sure it was a valid reference
966 * before freeing the extent.
967 *
968 * 2) Provide enough information to quickly find the holders of an extent
969 * if we notice a given block is corrupted or bad.
970 *
971 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
972 * maintenance. This is actually the same as #2, but with a slightly
973 * different use case.
974 *
5d4f98a2
YZ
975 * There are two kinds of back refs. The implicit back refs is optimized
976 * for pointers in non-shared tree blocks. For a given pointer in a block,
977 * back refs of this kind provide information about the block's owner tree
978 * and the pointer's key. These information allow us to find the block by
979 * b-tree searching. The full back refs is for pointers in tree blocks not
980 * referenced by their owner trees. The location of tree block is recorded
981 * in the back refs. Actually the full back refs is generic, and can be
982 * used in all cases the implicit back refs is used. The major shortcoming
983 * of the full back refs is its overhead. Every time a tree block gets
984 * COWed, we have to update back refs entry for all pointers in it.
985 *
986 * For a newly allocated tree block, we use implicit back refs for
987 * pointers in it. This means most tree related operations only involve
988 * implicit back refs. For a tree block created in old transaction, the
989 * only way to drop a reference to it is COW it. So we can detect the
990 * event that tree block loses its owner tree's reference and do the
991 * back refs conversion.
992 *
01327610 993 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
994 *
995 * The reference count of the block is one and the tree is the block's
996 * owner tree. Nothing to do in this case.
997 *
998 * The reference count of the block is one and the tree is not the
999 * block's owner tree. In this case, full back refs is used for pointers
1000 * in the block. Remove these full back refs, add implicit back refs for
1001 * every pointers in the new block.
1002 *
1003 * The reference count of the block is greater than one and the tree is
1004 * the block's owner tree. In this case, implicit back refs is used for
1005 * pointers in the block. Add full back refs for every pointers in the
1006 * block, increase lower level extents' reference counts. The original
1007 * implicit back refs are entailed to the new block.
1008 *
1009 * The reference count of the block is greater than one and the tree is
1010 * not the block's owner tree. Add implicit back refs for every pointer in
1011 * the new block, increase lower level extents' reference count.
1012 *
1013 * Back Reference Key composing:
1014 *
1015 * The key objectid corresponds to the first byte in the extent,
1016 * The key type is used to differentiate between types of back refs.
1017 * There are different meanings of the key offset for different types
1018 * of back refs.
1019 *
d8d5f3e1
CM
1020 * File extents can be referenced by:
1021 *
1022 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1023 * - different files inside a single subvolume
d8d5f3e1
CM
1024 * - different offsets inside a file (bookend extents in file.c)
1025 *
5d4f98a2 1026 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1027 *
1028 * - Objectid of the subvolume root
d8d5f3e1 1029 * - objectid of the file holding the reference
5d4f98a2
YZ
1030 * - original offset in the file
1031 * - how many bookend extents
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * The key offset for the implicit back refs is hash of the first
1034 * three fields.
d8d5f3e1 1035 *
5d4f98a2 1036 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1037 *
5d4f98a2 1038 * - number of pointers in the tree leaf
d8d5f3e1 1039 *
5d4f98a2
YZ
1040 * The key offset for the implicit back refs is the first byte of
1041 * the tree leaf
d8d5f3e1 1042 *
5d4f98a2
YZ
1043 * When a file extent is allocated, The implicit back refs is used.
1044 * the fields are filled in:
d8d5f3e1 1045 *
5d4f98a2 1046 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * When a file extent is removed file truncation, we find the
1049 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1050 *
5d4f98a2 1051 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1052 *
5d4f98a2 1053 * Btree extents can be referenced by:
d8d5f3e1 1054 *
5d4f98a2 1055 * - Different subvolumes
d8d5f3e1 1056 *
5d4f98a2
YZ
1057 * Both the implicit back refs and the full back refs for tree blocks
1058 * only consist of key. The key offset for the implicit back refs is
1059 * objectid of block's owner tree. The key offset for the full back refs
1060 * is the first byte of parent block.
d8d5f3e1 1061 *
5d4f98a2
YZ
1062 * When implicit back refs is used, information about the lowest key and
1063 * level of the tree block are required. These information are stored in
1064 * tree block info structure.
d8d5f3e1 1065 */
31840ae1 1066
5d4f98a2
YZ
1067#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1068static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1069 struct btrfs_root *root,
1070 struct btrfs_path *path,
1071 u64 owner, u32 extra_size)
7bb86316 1072{
5d4f98a2
YZ
1073 struct btrfs_extent_item *item;
1074 struct btrfs_extent_item_v0 *ei0;
1075 struct btrfs_extent_ref_v0 *ref0;
1076 struct btrfs_tree_block_info *bi;
1077 struct extent_buffer *leaf;
7bb86316 1078 struct btrfs_key key;
5d4f98a2
YZ
1079 struct btrfs_key found_key;
1080 u32 new_size = sizeof(*item);
1081 u64 refs;
1082 int ret;
1083
1084 leaf = path->nodes[0];
1085 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1086
1087 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1088 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1089 struct btrfs_extent_item_v0);
1090 refs = btrfs_extent_refs_v0(leaf, ei0);
1091
1092 if (owner == (u64)-1) {
1093 while (1) {
1094 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1095 ret = btrfs_next_leaf(root, path);
1096 if (ret < 0)
1097 return ret;
79787eaa 1098 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1099 leaf = path->nodes[0];
1100 }
1101 btrfs_item_key_to_cpu(leaf, &found_key,
1102 path->slots[0]);
1103 BUG_ON(key.objectid != found_key.objectid);
1104 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1105 path->slots[0]++;
1106 continue;
1107 }
1108 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1109 struct btrfs_extent_ref_v0);
1110 owner = btrfs_ref_objectid_v0(leaf, ref0);
1111 break;
1112 }
1113 }
b3b4aa74 1114 btrfs_release_path(path);
5d4f98a2
YZ
1115
1116 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1117 new_size += sizeof(*bi);
1118
1119 new_size -= sizeof(*ei0);
1120 ret = btrfs_search_slot(trans, root, &key, path,
1121 new_size + extra_size, 1);
1122 if (ret < 0)
1123 return ret;
79787eaa 1124 BUG_ON(ret); /* Corruption */
5d4f98a2 1125
4b90c680 1126 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1127
1128 leaf = path->nodes[0];
1129 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1130 btrfs_set_extent_refs(leaf, item, refs);
1131 /* FIXME: get real generation */
1132 btrfs_set_extent_generation(leaf, item, 0);
1133 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1134 btrfs_set_extent_flags(leaf, item,
1135 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1136 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1137 bi = (struct btrfs_tree_block_info *)(item + 1);
1138 /* FIXME: get first key of the block */
1139 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1140 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1141 } else {
1142 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1143 }
1144 btrfs_mark_buffer_dirty(leaf);
1145 return 0;
1146}
1147#endif
1148
1149static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1150{
1151 u32 high_crc = ~(u32)0;
1152 u32 low_crc = ~(u32)0;
1153 __le64 lenum;
1154
1155 lenum = cpu_to_le64(root_objectid);
14a958e6 1156 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1157 lenum = cpu_to_le64(owner);
14a958e6 1158 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1159 lenum = cpu_to_le64(offset);
14a958e6 1160 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1161
1162 return ((u64)high_crc << 31) ^ (u64)low_crc;
1163}
1164
1165static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1166 struct btrfs_extent_data_ref *ref)
1167{
1168 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1169 btrfs_extent_data_ref_objectid(leaf, ref),
1170 btrfs_extent_data_ref_offset(leaf, ref));
1171}
1172
1173static int match_extent_data_ref(struct extent_buffer *leaf,
1174 struct btrfs_extent_data_ref *ref,
1175 u64 root_objectid, u64 owner, u64 offset)
1176{
1177 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1178 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1179 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1180 return 0;
1181 return 1;
1182}
1183
1184static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1185 struct btrfs_root *root,
1186 struct btrfs_path *path,
1187 u64 bytenr, u64 parent,
1188 u64 root_objectid,
1189 u64 owner, u64 offset)
1190{
1191 struct btrfs_key key;
1192 struct btrfs_extent_data_ref *ref;
31840ae1 1193 struct extent_buffer *leaf;
5d4f98a2 1194 u32 nritems;
74493f7a 1195 int ret;
5d4f98a2
YZ
1196 int recow;
1197 int err = -ENOENT;
74493f7a 1198
31840ae1 1199 key.objectid = bytenr;
5d4f98a2
YZ
1200 if (parent) {
1201 key.type = BTRFS_SHARED_DATA_REF_KEY;
1202 key.offset = parent;
1203 } else {
1204 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1205 key.offset = hash_extent_data_ref(root_objectid,
1206 owner, offset);
1207 }
1208again:
1209 recow = 0;
1210 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1211 if (ret < 0) {
1212 err = ret;
1213 goto fail;
1214 }
31840ae1 1215
5d4f98a2
YZ
1216 if (parent) {
1217 if (!ret)
1218 return 0;
1219#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1220 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1221 btrfs_release_path(path);
5d4f98a2
YZ
1222 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1223 if (ret < 0) {
1224 err = ret;
1225 goto fail;
1226 }
1227 if (!ret)
1228 return 0;
1229#endif
1230 goto fail;
31840ae1
ZY
1231 }
1232
1233 leaf = path->nodes[0];
5d4f98a2
YZ
1234 nritems = btrfs_header_nritems(leaf);
1235 while (1) {
1236 if (path->slots[0] >= nritems) {
1237 ret = btrfs_next_leaf(root, path);
1238 if (ret < 0)
1239 err = ret;
1240 if (ret)
1241 goto fail;
1242
1243 leaf = path->nodes[0];
1244 nritems = btrfs_header_nritems(leaf);
1245 recow = 1;
1246 }
1247
1248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 if (key.objectid != bytenr ||
1250 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1251 goto fail;
1252
1253 ref = btrfs_item_ptr(leaf, path->slots[0],
1254 struct btrfs_extent_data_ref);
1255
1256 if (match_extent_data_ref(leaf, ref, root_objectid,
1257 owner, offset)) {
1258 if (recow) {
b3b4aa74 1259 btrfs_release_path(path);
5d4f98a2
YZ
1260 goto again;
1261 }
1262 err = 0;
1263 break;
1264 }
1265 path->slots[0]++;
31840ae1 1266 }
5d4f98a2
YZ
1267fail:
1268 return err;
31840ae1
ZY
1269}
1270
5d4f98a2
YZ
1271static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1272 struct btrfs_root *root,
1273 struct btrfs_path *path,
1274 u64 bytenr, u64 parent,
1275 u64 root_objectid, u64 owner,
1276 u64 offset, int refs_to_add)
31840ae1
ZY
1277{
1278 struct btrfs_key key;
1279 struct extent_buffer *leaf;
5d4f98a2 1280 u32 size;
31840ae1
ZY
1281 u32 num_refs;
1282 int ret;
74493f7a 1283
74493f7a 1284 key.objectid = bytenr;
5d4f98a2
YZ
1285 if (parent) {
1286 key.type = BTRFS_SHARED_DATA_REF_KEY;
1287 key.offset = parent;
1288 size = sizeof(struct btrfs_shared_data_ref);
1289 } else {
1290 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1291 key.offset = hash_extent_data_ref(root_objectid,
1292 owner, offset);
1293 size = sizeof(struct btrfs_extent_data_ref);
1294 }
74493f7a 1295
5d4f98a2
YZ
1296 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1297 if (ret && ret != -EEXIST)
1298 goto fail;
1299
1300 leaf = path->nodes[0];
1301 if (parent) {
1302 struct btrfs_shared_data_ref *ref;
31840ae1 1303 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1304 struct btrfs_shared_data_ref);
1305 if (ret == 0) {
1306 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1307 } else {
1308 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1309 num_refs += refs_to_add;
1310 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1311 }
5d4f98a2
YZ
1312 } else {
1313 struct btrfs_extent_data_ref *ref;
1314 while (ret == -EEXIST) {
1315 ref = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 if (match_extent_data_ref(leaf, ref, root_objectid,
1318 owner, offset))
1319 break;
b3b4aa74 1320 btrfs_release_path(path);
5d4f98a2
YZ
1321 key.offset++;
1322 ret = btrfs_insert_empty_item(trans, root, path, &key,
1323 size);
1324 if (ret && ret != -EEXIST)
1325 goto fail;
31840ae1 1326
5d4f98a2
YZ
1327 leaf = path->nodes[0];
1328 }
1329 ref = btrfs_item_ptr(leaf, path->slots[0],
1330 struct btrfs_extent_data_ref);
1331 if (ret == 0) {
1332 btrfs_set_extent_data_ref_root(leaf, ref,
1333 root_objectid);
1334 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1335 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1336 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1337 } else {
1338 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1339 num_refs += refs_to_add;
1340 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1341 }
31840ae1 1342 }
5d4f98a2
YZ
1343 btrfs_mark_buffer_dirty(leaf);
1344 ret = 0;
1345fail:
b3b4aa74 1346 btrfs_release_path(path);
7bb86316 1347 return ret;
74493f7a
CM
1348}
1349
5d4f98a2
YZ
1350static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1351 struct btrfs_root *root,
1352 struct btrfs_path *path,
fcebe456 1353 int refs_to_drop, int *last_ref)
31840ae1 1354{
5d4f98a2
YZ
1355 struct btrfs_key key;
1356 struct btrfs_extent_data_ref *ref1 = NULL;
1357 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1358 struct extent_buffer *leaf;
5d4f98a2 1359 u32 num_refs = 0;
31840ae1
ZY
1360 int ret = 0;
1361
1362 leaf = path->nodes[0];
5d4f98a2
YZ
1363 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1364
1365 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1366 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1367 struct btrfs_extent_data_ref);
1368 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1369 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1370 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1371 struct btrfs_shared_data_ref);
1372 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1373#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1374 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1375 struct btrfs_extent_ref_v0 *ref0;
1376 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1377 struct btrfs_extent_ref_v0);
1378 num_refs = btrfs_ref_count_v0(leaf, ref0);
1379#endif
1380 } else {
1381 BUG();
1382 }
1383
56bec294
CM
1384 BUG_ON(num_refs < refs_to_drop);
1385 num_refs -= refs_to_drop;
5d4f98a2 1386
31840ae1
ZY
1387 if (num_refs == 0) {
1388 ret = btrfs_del_item(trans, root, path);
fcebe456 1389 *last_ref = 1;
31840ae1 1390 } else {
5d4f98a2
YZ
1391 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1392 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1393 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1394 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1395#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1396 else {
1397 struct btrfs_extent_ref_v0 *ref0;
1398 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1399 struct btrfs_extent_ref_v0);
1400 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1401 }
1402#endif
31840ae1
ZY
1403 btrfs_mark_buffer_dirty(leaf);
1404 }
31840ae1
ZY
1405 return ret;
1406}
1407
9ed0dea0 1408static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1409 struct btrfs_extent_inline_ref *iref)
15916de8 1410{
5d4f98a2
YZ
1411 struct btrfs_key key;
1412 struct extent_buffer *leaf;
1413 struct btrfs_extent_data_ref *ref1;
1414 struct btrfs_shared_data_ref *ref2;
1415 u32 num_refs = 0;
1416
1417 leaf = path->nodes[0];
1418 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1419 if (iref) {
1420 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1421 BTRFS_EXTENT_DATA_REF_KEY) {
1422 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1423 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1424 } else {
1425 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1426 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1427 }
1428 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1429 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1430 struct btrfs_extent_data_ref);
1431 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1432 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1433 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1434 struct btrfs_shared_data_ref);
1435 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1436#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1437 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1438 struct btrfs_extent_ref_v0 *ref0;
1439 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1440 struct btrfs_extent_ref_v0);
1441 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1442#endif
5d4f98a2
YZ
1443 } else {
1444 WARN_ON(1);
1445 }
1446 return num_refs;
1447}
15916de8 1448
5d4f98a2
YZ
1449static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root,
1451 struct btrfs_path *path,
1452 u64 bytenr, u64 parent,
1453 u64 root_objectid)
1f3c79a2 1454{
5d4f98a2 1455 struct btrfs_key key;
1f3c79a2 1456 int ret;
1f3c79a2 1457
5d4f98a2
YZ
1458 key.objectid = bytenr;
1459 if (parent) {
1460 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1461 key.offset = parent;
1462 } else {
1463 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1464 key.offset = root_objectid;
1f3c79a2
LH
1465 }
1466
5d4f98a2
YZ
1467 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1468 if (ret > 0)
1469 ret = -ENOENT;
1470#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1471 if (ret == -ENOENT && parent) {
b3b4aa74 1472 btrfs_release_path(path);
5d4f98a2
YZ
1473 key.type = BTRFS_EXTENT_REF_V0_KEY;
1474 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1475 if (ret > 0)
1476 ret = -ENOENT;
1477 }
1f3c79a2 1478#endif
5d4f98a2 1479 return ret;
1f3c79a2
LH
1480}
1481
5d4f98a2
YZ
1482static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1483 struct btrfs_root *root,
1484 struct btrfs_path *path,
1485 u64 bytenr, u64 parent,
1486 u64 root_objectid)
31840ae1 1487{
5d4f98a2 1488 struct btrfs_key key;
31840ae1 1489 int ret;
31840ae1 1490
5d4f98a2
YZ
1491 key.objectid = bytenr;
1492 if (parent) {
1493 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1494 key.offset = parent;
1495 } else {
1496 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1497 key.offset = root_objectid;
1498 }
1499
1500 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1501 btrfs_release_path(path);
31840ae1
ZY
1502 return ret;
1503}
1504
5d4f98a2 1505static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1506{
5d4f98a2
YZ
1507 int type;
1508 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 if (parent > 0)
1510 type = BTRFS_SHARED_BLOCK_REF_KEY;
1511 else
1512 type = BTRFS_TREE_BLOCK_REF_KEY;
1513 } else {
1514 if (parent > 0)
1515 type = BTRFS_SHARED_DATA_REF_KEY;
1516 else
1517 type = BTRFS_EXTENT_DATA_REF_KEY;
1518 }
1519 return type;
31840ae1 1520}
56bec294 1521
2c47e605
YZ
1522static int find_next_key(struct btrfs_path *path, int level,
1523 struct btrfs_key *key)
56bec294 1524
02217ed2 1525{
2c47e605 1526 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1527 if (!path->nodes[level])
1528 break;
5d4f98a2
YZ
1529 if (path->slots[level] + 1 >=
1530 btrfs_header_nritems(path->nodes[level]))
1531 continue;
1532 if (level == 0)
1533 btrfs_item_key_to_cpu(path->nodes[level], key,
1534 path->slots[level] + 1);
1535 else
1536 btrfs_node_key_to_cpu(path->nodes[level], key,
1537 path->slots[level] + 1);
1538 return 0;
1539 }
1540 return 1;
1541}
037e6390 1542
5d4f98a2
YZ
1543/*
1544 * look for inline back ref. if back ref is found, *ref_ret is set
1545 * to the address of inline back ref, and 0 is returned.
1546 *
1547 * if back ref isn't found, *ref_ret is set to the address where it
1548 * should be inserted, and -ENOENT is returned.
1549 *
1550 * if insert is true and there are too many inline back refs, the path
1551 * points to the extent item, and -EAGAIN is returned.
1552 *
1553 * NOTE: inline back refs are ordered in the same way that back ref
1554 * items in the tree are ordered.
1555 */
1556static noinline_for_stack
1557int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1558 struct btrfs_root *root,
1559 struct btrfs_path *path,
1560 struct btrfs_extent_inline_ref **ref_ret,
1561 u64 bytenr, u64 num_bytes,
1562 u64 parent, u64 root_objectid,
1563 u64 owner, u64 offset, int insert)
1564{
1565 struct btrfs_key key;
1566 struct extent_buffer *leaf;
1567 struct btrfs_extent_item *ei;
1568 struct btrfs_extent_inline_ref *iref;
1569 u64 flags;
1570 u64 item_size;
1571 unsigned long ptr;
1572 unsigned long end;
1573 int extra_size;
1574 int type;
1575 int want;
1576 int ret;
1577 int err = 0;
3173a18f
JB
1578 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1579 SKINNY_METADATA);
26b8003f 1580
db94535d 1581 key.objectid = bytenr;
31840ae1 1582 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1583 key.offset = num_bytes;
31840ae1 1584
5d4f98a2
YZ
1585 want = extent_ref_type(parent, owner);
1586 if (insert) {
1587 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1588 path->keep_locks = 1;
5d4f98a2
YZ
1589 } else
1590 extra_size = -1;
3173a18f
JB
1591
1592 /*
1593 * Owner is our parent level, so we can just add one to get the level
1594 * for the block we are interested in.
1595 */
1596 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1597 key.type = BTRFS_METADATA_ITEM_KEY;
1598 key.offset = owner;
1599 }
1600
1601again:
5d4f98a2 1602 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1603 if (ret < 0) {
5d4f98a2
YZ
1604 err = ret;
1605 goto out;
1606 }
3173a18f
JB
1607
1608 /*
1609 * We may be a newly converted file system which still has the old fat
1610 * extent entries for metadata, so try and see if we have one of those.
1611 */
1612 if (ret > 0 && skinny_metadata) {
1613 skinny_metadata = false;
1614 if (path->slots[0]) {
1615 path->slots[0]--;
1616 btrfs_item_key_to_cpu(path->nodes[0], &key,
1617 path->slots[0]);
1618 if (key.objectid == bytenr &&
1619 key.type == BTRFS_EXTENT_ITEM_KEY &&
1620 key.offset == num_bytes)
1621 ret = 0;
1622 }
1623 if (ret) {
9ce49a0b 1624 key.objectid = bytenr;
3173a18f
JB
1625 key.type = BTRFS_EXTENT_ITEM_KEY;
1626 key.offset = num_bytes;
1627 btrfs_release_path(path);
1628 goto again;
1629 }
1630 }
1631
79787eaa
JM
1632 if (ret && !insert) {
1633 err = -ENOENT;
1634 goto out;
fae7f21c 1635 } else if (WARN_ON(ret)) {
492104c8 1636 err = -EIO;
492104c8 1637 goto out;
79787eaa 1638 }
5d4f98a2
YZ
1639
1640 leaf = path->nodes[0];
1641 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1642#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1643 if (item_size < sizeof(*ei)) {
1644 if (!insert) {
1645 err = -ENOENT;
1646 goto out;
1647 }
1648 ret = convert_extent_item_v0(trans, root, path, owner,
1649 extra_size);
1650 if (ret < 0) {
1651 err = ret;
1652 goto out;
1653 }
1654 leaf = path->nodes[0];
1655 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1656 }
1657#endif
1658 BUG_ON(item_size < sizeof(*ei));
1659
5d4f98a2
YZ
1660 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1661 flags = btrfs_extent_flags(leaf, ei);
1662
1663 ptr = (unsigned long)(ei + 1);
1664 end = (unsigned long)ei + item_size;
1665
3173a18f 1666 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1667 ptr += sizeof(struct btrfs_tree_block_info);
1668 BUG_ON(ptr > end);
5d4f98a2
YZ
1669 }
1670
1671 err = -ENOENT;
1672 while (1) {
1673 if (ptr >= end) {
1674 WARN_ON(ptr > end);
1675 break;
1676 }
1677 iref = (struct btrfs_extent_inline_ref *)ptr;
1678 type = btrfs_extent_inline_ref_type(leaf, iref);
1679 if (want < type)
1680 break;
1681 if (want > type) {
1682 ptr += btrfs_extent_inline_ref_size(type);
1683 continue;
1684 }
1685
1686 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1687 struct btrfs_extent_data_ref *dref;
1688 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1689 if (match_extent_data_ref(leaf, dref, root_objectid,
1690 owner, offset)) {
1691 err = 0;
1692 break;
1693 }
1694 if (hash_extent_data_ref_item(leaf, dref) <
1695 hash_extent_data_ref(root_objectid, owner, offset))
1696 break;
1697 } else {
1698 u64 ref_offset;
1699 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1700 if (parent > 0) {
1701 if (parent == ref_offset) {
1702 err = 0;
1703 break;
1704 }
1705 if (ref_offset < parent)
1706 break;
1707 } else {
1708 if (root_objectid == ref_offset) {
1709 err = 0;
1710 break;
1711 }
1712 if (ref_offset < root_objectid)
1713 break;
1714 }
1715 }
1716 ptr += btrfs_extent_inline_ref_size(type);
1717 }
1718 if (err == -ENOENT && insert) {
1719 if (item_size + extra_size >=
1720 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1721 err = -EAGAIN;
1722 goto out;
1723 }
1724 /*
1725 * To add new inline back ref, we have to make sure
1726 * there is no corresponding back ref item.
1727 * For simplicity, we just do not add new inline back
1728 * ref if there is any kind of item for this block
1729 */
2c47e605
YZ
1730 if (find_next_key(path, 0, &key) == 0 &&
1731 key.objectid == bytenr &&
85d4198e 1732 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1733 err = -EAGAIN;
1734 goto out;
1735 }
1736 }
1737 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1738out:
85d4198e 1739 if (insert) {
5d4f98a2
YZ
1740 path->keep_locks = 0;
1741 btrfs_unlock_up_safe(path, 1);
1742 }
1743 return err;
1744}
1745
1746/*
1747 * helper to add new inline back ref
1748 */
1749static noinline_for_stack
fd279fae 1750void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1751 struct btrfs_path *path,
1752 struct btrfs_extent_inline_ref *iref,
1753 u64 parent, u64 root_objectid,
1754 u64 owner, u64 offset, int refs_to_add,
1755 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1756{
1757 struct extent_buffer *leaf;
1758 struct btrfs_extent_item *ei;
1759 unsigned long ptr;
1760 unsigned long end;
1761 unsigned long item_offset;
1762 u64 refs;
1763 int size;
1764 int type;
5d4f98a2
YZ
1765
1766 leaf = path->nodes[0];
1767 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1768 item_offset = (unsigned long)iref - (unsigned long)ei;
1769
1770 type = extent_ref_type(parent, owner);
1771 size = btrfs_extent_inline_ref_size(type);
1772
4b90c680 1773 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1774
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 refs += refs_to_add;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 ptr = (unsigned long)ei + item_offset;
1783 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1784 if (ptr < end - size)
1785 memmove_extent_buffer(leaf, ptr + size, ptr,
1786 end - size - ptr);
1787
1788 iref = (struct btrfs_extent_inline_ref *)ptr;
1789 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 struct btrfs_extent_data_ref *dref;
1792 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1793 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1794 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1795 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1796 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1797 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1798 struct btrfs_shared_data_ref *sref;
1799 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1800 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1801 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1802 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1803 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1804 } else {
1805 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1806 }
1807 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1808}
1809
1810static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1811 struct btrfs_root *root,
1812 struct btrfs_path *path,
1813 struct btrfs_extent_inline_ref **ref_ret,
1814 u64 bytenr, u64 num_bytes, u64 parent,
1815 u64 root_objectid, u64 owner, u64 offset)
1816{
1817 int ret;
1818
1819 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1820 bytenr, num_bytes, parent,
1821 root_objectid, owner, offset, 0);
1822 if (ret != -ENOENT)
54aa1f4d 1823 return ret;
5d4f98a2 1824
b3b4aa74 1825 btrfs_release_path(path);
5d4f98a2
YZ
1826 *ref_ret = NULL;
1827
1828 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1829 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1830 root_objectid);
1831 } else {
1832 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1833 root_objectid, owner, offset);
b9473439 1834 }
5d4f98a2
YZ
1835 return ret;
1836}
31840ae1 1837
5d4f98a2
YZ
1838/*
1839 * helper to update/remove inline back ref
1840 */
1841static noinline_for_stack
afe5fea7 1842void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1843 struct btrfs_path *path,
1844 struct btrfs_extent_inline_ref *iref,
1845 int refs_to_mod,
fcebe456
JB
1846 struct btrfs_delayed_extent_op *extent_op,
1847 int *last_ref)
5d4f98a2
YZ
1848{
1849 struct extent_buffer *leaf;
1850 struct btrfs_extent_item *ei;
1851 struct btrfs_extent_data_ref *dref = NULL;
1852 struct btrfs_shared_data_ref *sref = NULL;
1853 unsigned long ptr;
1854 unsigned long end;
1855 u32 item_size;
1856 int size;
1857 int type;
5d4f98a2
YZ
1858 u64 refs;
1859
1860 leaf = path->nodes[0];
1861 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1862 refs = btrfs_extent_refs(leaf, ei);
1863 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1864 refs += refs_to_mod;
1865 btrfs_set_extent_refs(leaf, ei, refs);
1866 if (extent_op)
1867 __run_delayed_extent_op(extent_op, leaf, ei);
1868
1869 type = btrfs_extent_inline_ref_type(leaf, iref);
1870
1871 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1872 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1873 refs = btrfs_extent_data_ref_count(leaf, dref);
1874 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1875 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1876 refs = btrfs_shared_data_ref_count(leaf, sref);
1877 } else {
1878 refs = 1;
1879 BUG_ON(refs_to_mod != -1);
56bec294 1880 }
31840ae1 1881
5d4f98a2
YZ
1882 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1883 refs += refs_to_mod;
1884
1885 if (refs > 0) {
1886 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1887 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1888 else
1889 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1890 } else {
fcebe456 1891 *last_ref = 1;
5d4f98a2
YZ
1892 size = btrfs_extent_inline_ref_size(type);
1893 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1894 ptr = (unsigned long)iref;
1895 end = (unsigned long)ei + item_size;
1896 if (ptr + size < end)
1897 memmove_extent_buffer(leaf, ptr, ptr + size,
1898 end - ptr - size);
1899 item_size -= size;
afe5fea7 1900 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1901 }
1902 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1903}
1904
1905static noinline_for_stack
1906int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1907 struct btrfs_root *root,
1908 struct btrfs_path *path,
1909 u64 bytenr, u64 num_bytes, u64 parent,
1910 u64 root_objectid, u64 owner,
1911 u64 offset, int refs_to_add,
1912 struct btrfs_delayed_extent_op *extent_op)
1913{
1914 struct btrfs_extent_inline_ref *iref;
1915 int ret;
1916
1917 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1918 bytenr, num_bytes, parent,
1919 root_objectid, owner, offset, 1);
1920 if (ret == 0) {
1921 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1922 update_inline_extent_backref(root, path, iref,
fcebe456 1923 refs_to_add, extent_op, NULL);
5d4f98a2 1924 } else if (ret == -ENOENT) {
fd279fae 1925 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1926 root_objectid, owner, offset,
1927 refs_to_add, extent_op);
1928 ret = 0;
771ed689 1929 }
5d4f98a2
YZ
1930 return ret;
1931}
31840ae1 1932
5d4f98a2
YZ
1933static int insert_extent_backref(struct btrfs_trans_handle *trans,
1934 struct btrfs_root *root,
1935 struct btrfs_path *path,
1936 u64 bytenr, u64 parent, u64 root_objectid,
1937 u64 owner, u64 offset, int refs_to_add)
1938{
1939 int ret;
1940 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1941 BUG_ON(refs_to_add != 1);
1942 ret = insert_tree_block_ref(trans, root, path, bytenr,
1943 parent, root_objectid);
1944 } else {
1945 ret = insert_extent_data_ref(trans, root, path, bytenr,
1946 parent, root_objectid,
1947 owner, offset, refs_to_add);
1948 }
1949 return ret;
1950}
56bec294 1951
5d4f98a2
YZ
1952static int remove_extent_backref(struct btrfs_trans_handle *trans,
1953 struct btrfs_root *root,
1954 struct btrfs_path *path,
1955 struct btrfs_extent_inline_ref *iref,
fcebe456 1956 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1957{
143bede5 1958 int ret = 0;
b9473439 1959
5d4f98a2
YZ
1960 BUG_ON(!is_data && refs_to_drop != 1);
1961 if (iref) {
afe5fea7 1962 update_inline_extent_backref(root, path, iref,
fcebe456 1963 -refs_to_drop, NULL, last_ref);
5d4f98a2 1964 } else if (is_data) {
fcebe456
JB
1965 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1966 last_ref);
5d4f98a2 1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 ret = btrfs_del_item(trans, root, path);
1970 }
1971 return ret;
1972}
1973
86557861 1974#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1975static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1976 u64 *discarded_bytes)
5d4f98a2 1977{
86557861
JM
1978 int j, ret = 0;
1979 u64 bytes_left, end;
4d89d377 1980 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1981
4d89d377
JM
1982 if (WARN_ON(start != aligned_start)) {
1983 len -= aligned_start - start;
1984 len = round_down(len, 1 << 9);
1985 start = aligned_start;
1986 }
d04c6b88 1987
4d89d377 1988 *discarded_bytes = 0;
86557861
JM
1989
1990 if (!len)
1991 return 0;
1992
1993 end = start + len;
1994 bytes_left = len;
1995
1996 /* Skip any superblocks on this device. */
1997 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1998 u64 sb_start = btrfs_sb_offset(j);
1999 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2000 u64 size = sb_start - start;
2001
2002 if (!in_range(sb_start, start, bytes_left) &&
2003 !in_range(sb_end, start, bytes_left) &&
2004 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2005 continue;
2006
2007 /*
2008 * Superblock spans beginning of range. Adjust start and
2009 * try again.
2010 */
2011 if (sb_start <= start) {
2012 start += sb_end - start;
2013 if (start > end) {
2014 bytes_left = 0;
2015 break;
2016 }
2017 bytes_left = end - start;
2018 continue;
2019 }
2020
2021 if (size) {
2022 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2023 GFP_NOFS, 0);
2024 if (!ret)
2025 *discarded_bytes += size;
2026 else if (ret != -EOPNOTSUPP)
2027 return ret;
2028 }
2029
2030 start = sb_end;
2031 if (start > end) {
2032 bytes_left = 0;
2033 break;
2034 }
2035 bytes_left = end - start;
2036 }
2037
2038 if (bytes_left) {
2039 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2040 GFP_NOFS, 0);
2041 if (!ret)
86557861 2042 *discarded_bytes += bytes_left;
4d89d377 2043 }
d04c6b88 2044 return ret;
5d4f98a2 2045}
5d4f98a2 2046
1edb647b
FM
2047int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
2048 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2049{
5d4f98a2 2050 int ret;
5378e607 2051 u64 discarded_bytes = 0;
a1d3c478 2052 struct btrfs_bio *bbio = NULL;
5d4f98a2 2053
e244a0ae 2054
2999241d
FM
2055 /*
2056 * Avoid races with device replace and make sure our bbio has devices
2057 * associated to its stripes that don't go away while we are discarding.
2058 */
2059 btrfs_bio_counter_inc_blocked(root->fs_info);
5d4f98a2 2060 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 2061 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 2062 bytenr, &num_bytes, &bbio, 0);
79787eaa 2063 /* Error condition is -ENOMEM */
5d4f98a2 2064 if (!ret) {
a1d3c478 2065 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2066 int i;
2067
5d4f98a2 2068
a1d3c478 2069 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2070 u64 bytes;
d5e2003c
JB
2071 if (!stripe->dev->can_discard)
2072 continue;
2073
5378e607
LD
2074 ret = btrfs_issue_discard(stripe->dev->bdev,
2075 stripe->physical,
d04c6b88
JM
2076 stripe->length,
2077 &bytes);
5378e607 2078 if (!ret)
d04c6b88 2079 discarded_bytes += bytes;
5378e607 2080 else if (ret != -EOPNOTSUPP)
79787eaa 2081 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2082
2083 /*
2084 * Just in case we get back EOPNOTSUPP for some reason,
2085 * just ignore the return value so we don't screw up
2086 * people calling discard_extent.
2087 */
2088 ret = 0;
5d4f98a2 2089 }
6e9606d2 2090 btrfs_put_bbio(bbio);
5d4f98a2 2091 }
2999241d 2092 btrfs_bio_counter_dec(root->fs_info);
5378e607
LD
2093
2094 if (actual_bytes)
2095 *actual_bytes = discarded_bytes;
2096
5d4f98a2 2097
53b381b3
DW
2098 if (ret == -EOPNOTSUPP)
2099 ret = 0;
5d4f98a2 2100 return ret;
5d4f98a2
YZ
2101}
2102
79787eaa 2103/* Can return -ENOMEM */
5d4f98a2
YZ
2104int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2105 struct btrfs_root *root,
2106 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2107 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2
YZ
2108{
2109 int ret;
66d7e7f0
AJ
2110 struct btrfs_fs_info *fs_info = root->fs_info;
2111
5d4f98a2
YZ
2112 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2113 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2114
2115 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2116 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2117 num_bytes,
5d4f98a2 2118 parent, root_objectid, (int)owner,
b06c4bf5 2119 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2 2120 } else {
66d7e7f0 2121 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5846a3c2
QW
2122 num_bytes, parent, root_objectid,
2123 owner, offset, 0,
b06c4bf5 2124 BTRFS_ADD_DELAYED_REF, NULL);
5d4f98a2
YZ
2125 }
2126 return ret;
2127}
2128
2129static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2130 struct btrfs_root *root,
c682f9b3 2131 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2132 u64 parent, u64 root_objectid,
2133 u64 owner, u64 offset, int refs_to_add,
2134 struct btrfs_delayed_extent_op *extent_op)
2135{
fcebe456 2136 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2137 struct btrfs_path *path;
2138 struct extent_buffer *leaf;
2139 struct btrfs_extent_item *item;
fcebe456 2140 struct btrfs_key key;
c682f9b3
QW
2141 u64 bytenr = node->bytenr;
2142 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2143 u64 refs;
2144 int ret;
5d4f98a2
YZ
2145
2146 path = btrfs_alloc_path();
2147 if (!path)
2148 return -ENOMEM;
2149
e4058b54 2150 path->reada = READA_FORWARD;
5d4f98a2
YZ
2151 path->leave_spinning = 1;
2152 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2153 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2154 bytenr, num_bytes, parent,
5d4f98a2
YZ
2155 root_objectid, owner, offset,
2156 refs_to_add, extent_op);
0ed4792a 2157 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2158 goto out;
fcebe456
JB
2159
2160 /*
2161 * Ok we had -EAGAIN which means we didn't have space to insert and
2162 * inline extent ref, so just update the reference count and add a
2163 * normal backref.
2164 */
5d4f98a2 2165 leaf = path->nodes[0];
fcebe456 2166 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2167 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2168 refs = btrfs_extent_refs(leaf, item);
2169 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2170 if (extent_op)
2171 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2172
5d4f98a2 2173 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2174 btrfs_release_path(path);
56bec294 2175
e4058b54 2176 path->reada = READA_FORWARD;
b9473439 2177 path->leave_spinning = 1;
56bec294
CM
2178 /* now insert the actual backref */
2179 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2180 path, bytenr, parent, root_objectid,
2181 owner, offset, refs_to_add);
79787eaa
JM
2182 if (ret)
2183 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2184out:
56bec294 2185 btrfs_free_path(path);
30d133fc 2186 return ret;
56bec294
CM
2187}
2188
5d4f98a2
YZ
2189static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2190 struct btrfs_root *root,
2191 struct btrfs_delayed_ref_node *node,
2192 struct btrfs_delayed_extent_op *extent_op,
2193 int insert_reserved)
56bec294 2194{
5d4f98a2
YZ
2195 int ret = 0;
2196 struct btrfs_delayed_data_ref *ref;
2197 struct btrfs_key ins;
2198 u64 parent = 0;
2199 u64 ref_root = 0;
2200 u64 flags = 0;
2201
2202 ins.objectid = node->bytenr;
2203 ins.offset = node->num_bytes;
2204 ins.type = BTRFS_EXTENT_ITEM_KEY;
2205
2206 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2207 trace_run_delayed_data_ref(node, ref, node->action);
2208
5d4f98a2
YZ
2209 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2210 parent = ref->parent;
fcebe456 2211 ref_root = ref->root;
5d4f98a2
YZ
2212
2213 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2214 if (extent_op)
5d4f98a2 2215 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2216 ret = alloc_reserved_file_extent(trans, root,
2217 parent, ref_root, flags,
2218 ref->objectid, ref->offset,
2219 &ins, node->ref_mod);
5d4f98a2 2220 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2221 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2222 ref_root, ref->objectid,
2223 ref->offset, node->ref_mod,
c682f9b3 2224 extent_op);
5d4f98a2 2225 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2226 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2227 ref_root, ref->objectid,
2228 ref->offset, node->ref_mod,
c682f9b3 2229 extent_op);
5d4f98a2
YZ
2230 } else {
2231 BUG();
2232 }
2233 return ret;
2234}
2235
2236static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2237 struct extent_buffer *leaf,
2238 struct btrfs_extent_item *ei)
2239{
2240 u64 flags = btrfs_extent_flags(leaf, ei);
2241 if (extent_op->update_flags) {
2242 flags |= extent_op->flags_to_set;
2243 btrfs_set_extent_flags(leaf, ei, flags);
2244 }
2245
2246 if (extent_op->update_key) {
2247 struct btrfs_tree_block_info *bi;
2248 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2249 bi = (struct btrfs_tree_block_info *)(ei + 1);
2250 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2251 }
2252}
2253
2254static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2255 struct btrfs_root *root,
2256 struct btrfs_delayed_ref_node *node,
2257 struct btrfs_delayed_extent_op *extent_op)
2258{
2259 struct btrfs_key key;
2260 struct btrfs_path *path;
2261 struct btrfs_extent_item *ei;
2262 struct extent_buffer *leaf;
2263 u32 item_size;
56bec294 2264 int ret;
5d4f98a2 2265 int err = 0;
b1c79e09 2266 int metadata = !extent_op->is_data;
5d4f98a2 2267
79787eaa
JM
2268 if (trans->aborted)
2269 return 0;
2270
3173a18f
JB
2271 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2272 metadata = 0;
2273
5d4f98a2
YZ
2274 path = btrfs_alloc_path();
2275 if (!path)
2276 return -ENOMEM;
2277
2278 key.objectid = node->bytenr;
5d4f98a2 2279
3173a18f 2280 if (metadata) {
3173a18f 2281 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2282 key.offset = extent_op->level;
3173a18f
JB
2283 } else {
2284 key.type = BTRFS_EXTENT_ITEM_KEY;
2285 key.offset = node->num_bytes;
2286 }
2287
2288again:
e4058b54 2289 path->reada = READA_FORWARD;
5d4f98a2
YZ
2290 path->leave_spinning = 1;
2291 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2292 path, 0, 1);
2293 if (ret < 0) {
2294 err = ret;
2295 goto out;
2296 }
2297 if (ret > 0) {
3173a18f 2298 if (metadata) {
55994887
FDBM
2299 if (path->slots[0] > 0) {
2300 path->slots[0]--;
2301 btrfs_item_key_to_cpu(path->nodes[0], &key,
2302 path->slots[0]);
2303 if (key.objectid == node->bytenr &&
2304 key.type == BTRFS_EXTENT_ITEM_KEY &&
2305 key.offset == node->num_bytes)
2306 ret = 0;
2307 }
2308 if (ret > 0) {
2309 btrfs_release_path(path);
2310 metadata = 0;
3173a18f 2311
55994887
FDBM
2312 key.objectid = node->bytenr;
2313 key.offset = node->num_bytes;
2314 key.type = BTRFS_EXTENT_ITEM_KEY;
2315 goto again;
2316 }
2317 } else {
2318 err = -EIO;
2319 goto out;
3173a18f 2320 }
5d4f98a2
YZ
2321 }
2322
2323 leaf = path->nodes[0];
2324 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2325#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2326 if (item_size < sizeof(*ei)) {
2327 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2328 path, (u64)-1, 0);
2329 if (ret < 0) {
2330 err = ret;
2331 goto out;
2332 }
2333 leaf = path->nodes[0];
2334 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2335 }
2336#endif
2337 BUG_ON(item_size < sizeof(*ei));
2338 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2339 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2340
5d4f98a2
YZ
2341 btrfs_mark_buffer_dirty(leaf);
2342out:
2343 btrfs_free_path(path);
2344 return err;
56bec294
CM
2345}
2346
5d4f98a2
YZ
2347static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2348 struct btrfs_root *root,
2349 struct btrfs_delayed_ref_node *node,
2350 struct btrfs_delayed_extent_op *extent_op,
2351 int insert_reserved)
56bec294
CM
2352{
2353 int ret = 0;
5d4f98a2
YZ
2354 struct btrfs_delayed_tree_ref *ref;
2355 struct btrfs_key ins;
2356 u64 parent = 0;
2357 u64 ref_root = 0;
3173a18f
JB
2358 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2359 SKINNY_METADATA);
56bec294 2360
5d4f98a2 2361 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2362 trace_run_delayed_tree_ref(node, ref, node->action);
2363
5d4f98a2
YZ
2364 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2365 parent = ref->parent;
fcebe456 2366 ref_root = ref->root;
5d4f98a2 2367
3173a18f
JB
2368 ins.objectid = node->bytenr;
2369 if (skinny_metadata) {
2370 ins.offset = ref->level;
2371 ins.type = BTRFS_METADATA_ITEM_KEY;
2372 } else {
2373 ins.offset = node->num_bytes;
2374 ins.type = BTRFS_EXTENT_ITEM_KEY;
2375 }
2376
5d4f98a2
YZ
2377 BUG_ON(node->ref_mod != 1);
2378 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2379 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2380 ret = alloc_reserved_tree_block(trans, root,
2381 parent, ref_root,
2382 extent_op->flags_to_set,
2383 &extent_op->key,
b06c4bf5 2384 ref->level, &ins);
5d4f98a2 2385 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2386 ret = __btrfs_inc_extent_ref(trans, root, node,
2387 parent, ref_root,
2388 ref->level, 0, 1,
fcebe456 2389 extent_op);
5d4f98a2 2390 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2391 ret = __btrfs_free_extent(trans, root, node,
2392 parent, ref_root,
2393 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2394 } else {
2395 BUG();
2396 }
56bec294
CM
2397 return ret;
2398}
2399
2400/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2401static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2402 struct btrfs_root *root,
2403 struct btrfs_delayed_ref_node *node,
2404 struct btrfs_delayed_extent_op *extent_op,
2405 int insert_reserved)
56bec294 2406{
79787eaa
JM
2407 int ret = 0;
2408
857cc2fc
JB
2409 if (trans->aborted) {
2410 if (insert_reserved)
2411 btrfs_pin_extent(root, node->bytenr,
2412 node->num_bytes, 1);
79787eaa 2413 return 0;
857cc2fc 2414 }
79787eaa 2415
5d4f98a2 2416 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2417 struct btrfs_delayed_ref_head *head;
2418 /*
2419 * we've hit the end of the chain and we were supposed
2420 * to insert this extent into the tree. But, it got
2421 * deleted before we ever needed to insert it, so all
2422 * we have to do is clean up the accounting
2423 */
5d4f98a2
YZ
2424 BUG_ON(extent_op);
2425 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2426 trace_run_delayed_ref_head(node, head, node->action);
2427
56bec294 2428 if (insert_reserved) {
f0486c68
YZ
2429 btrfs_pin_extent(root, node->bytenr,
2430 node->num_bytes, 1);
5d4f98a2
YZ
2431 if (head->is_data) {
2432 ret = btrfs_del_csums(trans, root,
2433 node->bytenr,
2434 node->num_bytes);
5d4f98a2 2435 }
56bec294 2436 }
297d750b
QW
2437
2438 /* Also free its reserved qgroup space */
2439 btrfs_qgroup_free_delayed_ref(root->fs_info,
2440 head->qgroup_ref_root,
2441 head->qgroup_reserved);
79787eaa 2442 return ret;
56bec294
CM
2443 }
2444
5d4f98a2
YZ
2445 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2446 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2447 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2448 insert_reserved);
2449 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2450 node->type == BTRFS_SHARED_DATA_REF_KEY)
2451 ret = run_delayed_data_ref(trans, root, node, extent_op,
2452 insert_reserved);
2453 else
2454 BUG();
2455 return ret;
56bec294
CM
2456}
2457
c6fc2454 2458static inline struct btrfs_delayed_ref_node *
56bec294
CM
2459select_delayed_ref(struct btrfs_delayed_ref_head *head)
2460{
cffc3374
FM
2461 struct btrfs_delayed_ref_node *ref;
2462
c6fc2454
QW
2463 if (list_empty(&head->ref_list))
2464 return NULL;
d7df2c79 2465
cffc3374
FM
2466 /*
2467 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2468 * This is to prevent a ref count from going down to zero, which deletes
2469 * the extent item from the extent tree, when there still are references
2470 * to add, which would fail because they would not find the extent item.
2471 */
2472 list_for_each_entry(ref, &head->ref_list, list) {
2473 if (ref->action == BTRFS_ADD_DELAYED_REF)
2474 return ref;
2475 }
2476
c6fc2454
QW
2477 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2478 list);
56bec294
CM
2479}
2480
79787eaa
JM
2481/*
2482 * Returns 0 on success or if called with an already aborted transaction.
2483 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2484 */
d7df2c79
JB
2485static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2486 struct btrfs_root *root,
2487 unsigned long nr)
56bec294 2488{
56bec294
CM
2489 struct btrfs_delayed_ref_root *delayed_refs;
2490 struct btrfs_delayed_ref_node *ref;
2491 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2492 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2493 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2494 ktime_t start = ktime_get();
56bec294 2495 int ret;
d7df2c79 2496 unsigned long count = 0;
0a2b2a84 2497 unsigned long actual_count = 0;
56bec294 2498 int must_insert_reserved = 0;
56bec294
CM
2499
2500 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2501 while (1) {
2502 if (!locked_ref) {
d7df2c79 2503 if (count >= nr)
56bec294 2504 break;
56bec294 2505
d7df2c79
JB
2506 spin_lock(&delayed_refs->lock);
2507 locked_ref = btrfs_select_ref_head(trans);
2508 if (!locked_ref) {
2509 spin_unlock(&delayed_refs->lock);
2510 break;
2511 }
c3e69d58
CM
2512
2513 /* grab the lock that says we are going to process
2514 * all the refs for this head */
2515 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2516 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2517 /*
2518 * we may have dropped the spin lock to get the head
2519 * mutex lock, and that might have given someone else
2520 * time to free the head. If that's true, it has been
2521 * removed from our list and we can move on.
2522 */
2523 if (ret == -EAGAIN) {
2524 locked_ref = NULL;
2525 count++;
2526 continue;
56bec294
CM
2527 }
2528 }
a28ec197 2529
2c3cf7d5
FM
2530 /*
2531 * We need to try and merge add/drops of the same ref since we
2532 * can run into issues with relocate dropping the implicit ref
2533 * and then it being added back again before the drop can
2534 * finish. If we merged anything we need to re-loop so we can
2535 * get a good ref.
2536 * Or we can get node references of the same type that weren't
2537 * merged when created due to bumps in the tree mod seq, and
2538 * we need to merge them to prevent adding an inline extent
2539 * backref before dropping it (triggering a BUG_ON at
2540 * insert_inline_extent_backref()).
2541 */
d7df2c79 2542 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2543 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2544 locked_ref);
ae1e206b 2545
d1270cd9
AJ
2546 /*
2547 * locked_ref is the head node, so we have to go one
2548 * node back for any delayed ref updates
2549 */
2550 ref = select_delayed_ref(locked_ref);
2551
2552 if (ref && ref->seq &&
097b8a7c 2553 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2554 spin_unlock(&locked_ref->lock);
093486c4 2555 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2556 spin_lock(&delayed_refs->lock);
2557 locked_ref->processing = 0;
d1270cd9
AJ
2558 delayed_refs->num_heads_ready++;
2559 spin_unlock(&delayed_refs->lock);
d7df2c79 2560 locked_ref = NULL;
d1270cd9 2561 cond_resched();
27a377db 2562 count++;
d1270cd9
AJ
2563 continue;
2564 }
2565
56bec294
CM
2566 /*
2567 * record the must insert reserved flag before we
2568 * drop the spin lock.
2569 */
2570 must_insert_reserved = locked_ref->must_insert_reserved;
2571 locked_ref->must_insert_reserved = 0;
7bb86316 2572
5d4f98a2
YZ
2573 extent_op = locked_ref->extent_op;
2574 locked_ref->extent_op = NULL;
2575
56bec294 2576 if (!ref) {
d7df2c79
JB
2577
2578
56bec294
CM
2579 /* All delayed refs have been processed, Go ahead
2580 * and send the head node to run_one_delayed_ref,
2581 * so that any accounting fixes can happen
2582 */
2583 ref = &locked_ref->node;
5d4f98a2
YZ
2584
2585 if (extent_op && must_insert_reserved) {
78a6184a 2586 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2587 extent_op = NULL;
2588 }
2589
2590 if (extent_op) {
d7df2c79 2591 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2592 ret = run_delayed_extent_op(trans, root,
2593 ref, extent_op);
78a6184a 2594 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2595
79787eaa 2596 if (ret) {
857cc2fc
JB
2597 /*
2598 * Need to reset must_insert_reserved if
2599 * there was an error so the abort stuff
2600 * can cleanup the reserved space
2601 * properly.
2602 */
2603 if (must_insert_reserved)
2604 locked_ref->must_insert_reserved = 1;
d7df2c79 2605 locked_ref->processing = 0;
c2cf52eb 2606 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2607 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2608 return ret;
2609 }
d7df2c79 2610 continue;
5d4f98a2 2611 }
02217ed2 2612
d7df2c79 2613 /*
01327610 2614 * Need to drop our head ref lock and re-acquire the
d7df2c79
JB
2615 * delayed ref lock and then re-check to make sure
2616 * nobody got added.
2617 */
2618 spin_unlock(&locked_ref->lock);
2619 spin_lock(&delayed_refs->lock);
2620 spin_lock(&locked_ref->lock);
c6fc2454 2621 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2622 locked_ref->extent_op) {
d7df2c79
JB
2623 spin_unlock(&locked_ref->lock);
2624 spin_unlock(&delayed_refs->lock);
2625 continue;
2626 }
2627 ref->in_tree = 0;
2628 delayed_refs->num_heads--;
c46effa6
LB
2629 rb_erase(&locked_ref->href_node,
2630 &delayed_refs->href_root);
d7df2c79
JB
2631 spin_unlock(&delayed_refs->lock);
2632 } else {
0a2b2a84 2633 actual_count++;
d7df2c79 2634 ref->in_tree = 0;
c6fc2454 2635 list_del(&ref->list);
c46effa6 2636 }
d7df2c79
JB
2637 atomic_dec(&delayed_refs->num_entries);
2638
093486c4 2639 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2640 /*
2641 * when we play the delayed ref, also correct the
2642 * ref_mod on head
2643 */
2644 switch (ref->action) {
2645 case BTRFS_ADD_DELAYED_REF:
2646 case BTRFS_ADD_DELAYED_EXTENT:
2647 locked_ref->node.ref_mod -= ref->ref_mod;
2648 break;
2649 case BTRFS_DROP_DELAYED_REF:
2650 locked_ref->node.ref_mod += ref->ref_mod;
2651 break;
2652 default:
2653 WARN_ON(1);
2654 }
2655 }
d7df2c79 2656 spin_unlock(&locked_ref->lock);
925baedd 2657
5d4f98a2 2658 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2659 must_insert_reserved);
eb099670 2660
78a6184a 2661 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2662 if (ret) {
d7df2c79 2663 locked_ref->processing = 0;
093486c4
MX
2664 btrfs_delayed_ref_unlock(locked_ref);
2665 btrfs_put_delayed_ref(ref);
c2cf52eb 2666 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2667 return ret;
2668 }
2669
093486c4
MX
2670 /*
2671 * If this node is a head, that means all the refs in this head
2672 * have been dealt with, and we will pick the next head to deal
2673 * with, so we must unlock the head and drop it from the cluster
2674 * list before we release it.
2675 */
2676 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2677 if (locked_ref->is_data &&
2678 locked_ref->total_ref_mod < 0) {
2679 spin_lock(&delayed_refs->lock);
2680 delayed_refs->pending_csums -= ref->num_bytes;
2681 spin_unlock(&delayed_refs->lock);
2682 }
093486c4
MX
2683 btrfs_delayed_ref_unlock(locked_ref);
2684 locked_ref = NULL;
2685 }
2686 btrfs_put_delayed_ref(ref);
2687 count++;
c3e69d58 2688 cond_resched();
c3e69d58 2689 }
0a2b2a84
JB
2690
2691 /*
2692 * We don't want to include ref heads since we can have empty ref heads
2693 * and those will drastically skew our runtime down since we just do
2694 * accounting, no actual extent tree updates.
2695 */
2696 if (actual_count > 0) {
2697 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2698 u64 avg;
2699
2700 /*
2701 * We weigh the current average higher than our current runtime
2702 * to avoid large swings in the average.
2703 */
2704 spin_lock(&delayed_refs->lock);
2705 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2706 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2707 spin_unlock(&delayed_refs->lock);
2708 }
d7df2c79 2709 return 0;
c3e69d58
CM
2710}
2711
709c0486
AJ
2712#ifdef SCRAMBLE_DELAYED_REFS
2713/*
2714 * Normally delayed refs get processed in ascending bytenr order. This
2715 * correlates in most cases to the order added. To expose dependencies on this
2716 * order, we start to process the tree in the middle instead of the beginning
2717 */
2718static u64 find_middle(struct rb_root *root)
2719{
2720 struct rb_node *n = root->rb_node;
2721 struct btrfs_delayed_ref_node *entry;
2722 int alt = 1;
2723 u64 middle;
2724 u64 first = 0, last = 0;
2725
2726 n = rb_first(root);
2727 if (n) {
2728 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2729 first = entry->bytenr;
2730 }
2731 n = rb_last(root);
2732 if (n) {
2733 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2734 last = entry->bytenr;
2735 }
2736 n = root->rb_node;
2737
2738 while (n) {
2739 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2740 WARN_ON(!entry->in_tree);
2741
2742 middle = entry->bytenr;
2743
2744 if (alt)
2745 n = n->rb_left;
2746 else
2747 n = n->rb_right;
2748
2749 alt = 1 - alt;
2750 }
2751 return middle;
2752}
2753#endif
2754
1be41b78
JB
2755static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2756{
2757 u64 num_bytes;
2758
2759 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2760 sizeof(struct btrfs_extent_inline_ref));
2761 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2762 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2763
2764 /*
2765 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2766 * closer to what we're really going to want to use.
1be41b78 2767 */
f8c269d7 2768 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2769}
2770
1262133b
JB
2771/*
2772 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2773 * would require to store the csums for that many bytes.
2774 */
28f75a0e 2775u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2776{
2777 u64 csum_size;
2778 u64 num_csums_per_leaf;
2779 u64 num_csums;
2780
2781 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2782 num_csums_per_leaf = div64_u64(csum_size,
2783 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2784 num_csums = div64_u64(csum_bytes, root->sectorsize);
2785 num_csums += num_csums_per_leaf - 1;
2786 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2787 return num_csums;
2788}
2789
0a2b2a84 2790int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2791 struct btrfs_root *root)
2792{
2793 struct btrfs_block_rsv *global_rsv;
2794 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2795 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2796 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2797 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2798 int ret = 0;
2799
2800 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2801 num_heads = heads_to_leaves(root, num_heads);
2802 if (num_heads > 1)
707e8a07 2803 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2804 num_bytes <<= 1;
28f75a0e 2805 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2806 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2807 num_dirty_bgs);
1be41b78
JB
2808 global_rsv = &root->fs_info->global_block_rsv;
2809
2810 /*
2811 * If we can't allocate any more chunks lets make sure we have _lots_ of
2812 * wiggle room since running delayed refs can create more delayed refs.
2813 */
cb723e49
JB
2814 if (global_rsv->space_info->full) {
2815 num_dirty_bgs_bytes <<= 1;
1be41b78 2816 num_bytes <<= 1;
cb723e49 2817 }
1be41b78
JB
2818
2819 spin_lock(&global_rsv->lock);
cb723e49 2820 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2821 ret = 1;
2822 spin_unlock(&global_rsv->lock);
2823 return ret;
2824}
2825
0a2b2a84
JB
2826int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2827 struct btrfs_root *root)
2828{
2829 struct btrfs_fs_info *fs_info = root->fs_info;
2830 u64 num_entries =
2831 atomic_read(&trans->transaction->delayed_refs.num_entries);
2832 u64 avg_runtime;
a79b7d4b 2833 u64 val;
0a2b2a84
JB
2834
2835 smp_mb();
2836 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2837 val = num_entries * avg_runtime;
0a2b2a84
JB
2838 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2839 return 1;
a79b7d4b
CM
2840 if (val >= NSEC_PER_SEC / 2)
2841 return 2;
0a2b2a84
JB
2842
2843 return btrfs_check_space_for_delayed_refs(trans, root);
2844}
2845
a79b7d4b
CM
2846struct async_delayed_refs {
2847 struct btrfs_root *root;
31b9655f 2848 u64 transid;
a79b7d4b
CM
2849 int count;
2850 int error;
2851 int sync;
2852 struct completion wait;
2853 struct btrfs_work work;
2854};
2855
2856static void delayed_ref_async_start(struct btrfs_work *work)
2857{
2858 struct async_delayed_refs *async;
2859 struct btrfs_trans_handle *trans;
2860 int ret;
2861
2862 async = container_of(work, struct async_delayed_refs, work);
2863
0f873eca
CM
2864 /* if the commit is already started, we don't need to wait here */
2865 if (btrfs_transaction_blocked(async->root->fs_info))
31b9655f 2866 goto done;
31b9655f 2867
0f873eca
CM
2868 trans = btrfs_join_transaction(async->root);
2869 if (IS_ERR(trans)) {
2870 async->error = PTR_ERR(trans);
a79b7d4b
CM
2871 goto done;
2872 }
2873
2874 /*
01327610 2875 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2876 * wait on delayed refs
2877 */
2878 trans->sync = true;
0f873eca
CM
2879
2880 /* Don't bother flushing if we got into a different transaction */
2881 if (trans->transid > async->transid)
2882 goto end;
2883
a79b7d4b
CM
2884 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2885 if (ret)
2886 async->error = ret;
0f873eca 2887end:
a79b7d4b
CM
2888 ret = btrfs_end_transaction(trans, async->root);
2889 if (ret && !async->error)
2890 async->error = ret;
2891done:
2892 if (async->sync)
2893 complete(&async->wait);
2894 else
2895 kfree(async);
2896}
2897
2898int btrfs_async_run_delayed_refs(struct btrfs_root *root,
31b9655f 2899 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2900{
2901 struct async_delayed_refs *async;
2902 int ret;
2903
2904 async = kmalloc(sizeof(*async), GFP_NOFS);
2905 if (!async)
2906 return -ENOMEM;
2907
2908 async->root = root->fs_info->tree_root;
2909 async->count = count;
2910 async->error = 0;
31b9655f 2911 async->transid = transid;
a79b7d4b
CM
2912 if (wait)
2913 async->sync = 1;
2914 else
2915 async->sync = 0;
2916 init_completion(&async->wait);
2917
9e0af237
LB
2918 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2919 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2920
2921 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2922
2923 if (wait) {
2924 wait_for_completion(&async->wait);
2925 ret = async->error;
2926 kfree(async);
2927 return ret;
2928 }
2929 return 0;
2930}
2931
c3e69d58
CM
2932/*
2933 * this starts processing the delayed reference count updates and
2934 * extent insertions we have queued up so far. count can be
2935 * 0, which means to process everything in the tree at the start
2936 * of the run (but not newly added entries), or it can be some target
2937 * number you'd like to process.
79787eaa
JM
2938 *
2939 * Returns 0 on success or if called with an aborted transaction
2940 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2941 */
2942int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2943 struct btrfs_root *root, unsigned long count)
2944{
2945 struct rb_node *node;
2946 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2947 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2948 int ret;
2949 int run_all = count == (unsigned long)-1;
d9a0540a 2950 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2951
79787eaa
JM
2952 /* We'll clean this up in btrfs_cleanup_transaction */
2953 if (trans->aborted)
2954 return 0;
2955
511711af
CM
2956 if (root->fs_info->creating_free_space_tree)
2957 return 0;
2958
c3e69d58
CM
2959 if (root == root->fs_info->extent_root)
2960 root = root->fs_info->tree_root;
2961
2962 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2963 if (count == 0)
d7df2c79 2964 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2965
c3e69d58 2966again:
709c0486
AJ
2967#ifdef SCRAMBLE_DELAYED_REFS
2968 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2969#endif
d9a0540a 2970 trans->can_flush_pending_bgs = false;
d7df2c79
JB
2971 ret = __btrfs_run_delayed_refs(trans, root, count);
2972 if (ret < 0) {
2973 btrfs_abort_transaction(trans, root, ret);
2974 return ret;
eb099670 2975 }
c3e69d58 2976
56bec294 2977 if (run_all) {
d7df2c79 2978 if (!list_empty(&trans->new_bgs))
ea658bad 2979 btrfs_create_pending_block_groups(trans, root);
ea658bad 2980
d7df2c79 2981 spin_lock(&delayed_refs->lock);
c46effa6 2982 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2983 if (!node) {
2984 spin_unlock(&delayed_refs->lock);
56bec294 2985 goto out;
d7df2c79 2986 }
c3e69d58 2987 count = (unsigned long)-1;
e9d0b13b 2988
56bec294 2989 while (node) {
c46effa6
LB
2990 head = rb_entry(node, struct btrfs_delayed_ref_head,
2991 href_node);
2992 if (btrfs_delayed_ref_is_head(&head->node)) {
2993 struct btrfs_delayed_ref_node *ref;
5caf2a00 2994
c46effa6 2995 ref = &head->node;
56bec294
CM
2996 atomic_inc(&ref->refs);
2997
2998 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2999 /*
3000 * Mutex was contended, block until it's
3001 * released and try again
3002 */
56bec294
CM
3003 mutex_lock(&head->mutex);
3004 mutex_unlock(&head->mutex);
3005
3006 btrfs_put_delayed_ref(ref);
1887be66 3007 cond_resched();
56bec294 3008 goto again;
c46effa6
LB
3009 } else {
3010 WARN_ON(1);
56bec294
CM
3011 }
3012 node = rb_next(node);
3013 }
3014 spin_unlock(&delayed_refs->lock);
d7df2c79 3015 cond_resched();
56bec294 3016 goto again;
5f39d397 3017 }
54aa1f4d 3018out:
edf39272 3019 assert_qgroups_uptodate(trans);
d9a0540a 3020 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3021 return 0;
3022}
3023
5d4f98a2
YZ
3024int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3025 struct btrfs_root *root,
3026 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3027 int level, int is_data)
5d4f98a2
YZ
3028{
3029 struct btrfs_delayed_extent_op *extent_op;
3030 int ret;
3031
78a6184a 3032 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3033 if (!extent_op)
3034 return -ENOMEM;
3035
3036 extent_op->flags_to_set = flags;
35b3ad50
DS
3037 extent_op->update_flags = true;
3038 extent_op->update_key = false;
3039 extent_op->is_data = is_data ? true : false;
b1c79e09 3040 extent_op->level = level;
5d4f98a2 3041
66d7e7f0
AJ
3042 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
3043 num_bytes, extent_op);
5d4f98a2 3044 if (ret)
78a6184a 3045 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3046 return ret;
3047}
3048
3049static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
3050 struct btrfs_root *root,
3051 struct btrfs_path *path,
3052 u64 objectid, u64 offset, u64 bytenr)
3053{
3054 struct btrfs_delayed_ref_head *head;
3055 struct btrfs_delayed_ref_node *ref;
3056 struct btrfs_delayed_data_ref *data_ref;
3057 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
3058 int ret = 0;
3059
5d4f98a2
YZ
3060 delayed_refs = &trans->transaction->delayed_refs;
3061 spin_lock(&delayed_refs->lock);
3062 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
3063 if (!head) {
3064 spin_unlock(&delayed_refs->lock);
3065 return 0;
3066 }
5d4f98a2
YZ
3067
3068 if (!mutex_trylock(&head->mutex)) {
3069 atomic_inc(&head->node.refs);
3070 spin_unlock(&delayed_refs->lock);
3071
b3b4aa74 3072 btrfs_release_path(path);
5d4f98a2 3073
8cc33e5c
DS
3074 /*
3075 * Mutex was contended, block until it's released and let
3076 * caller try again
3077 */
5d4f98a2
YZ
3078 mutex_lock(&head->mutex);
3079 mutex_unlock(&head->mutex);
3080 btrfs_put_delayed_ref(&head->node);
3081 return -EAGAIN;
3082 }
d7df2c79 3083 spin_unlock(&delayed_refs->lock);
5d4f98a2 3084
d7df2c79 3085 spin_lock(&head->lock);
c6fc2454 3086 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
3087 /* If it's a shared ref we know a cross reference exists */
3088 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3089 ret = 1;
3090 break;
3091 }
5d4f98a2 3092
d7df2c79 3093 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3094
d7df2c79
JB
3095 /*
3096 * If our ref doesn't match the one we're currently looking at
3097 * then we have a cross reference.
3098 */
3099 if (data_ref->root != root->root_key.objectid ||
3100 data_ref->objectid != objectid ||
3101 data_ref->offset != offset) {
3102 ret = 1;
3103 break;
3104 }
5d4f98a2 3105 }
d7df2c79 3106 spin_unlock(&head->lock);
5d4f98a2 3107 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3108 return ret;
3109}
3110
3111static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
3112 struct btrfs_root *root,
3113 struct btrfs_path *path,
3114 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
3115{
3116 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 3117 struct extent_buffer *leaf;
5d4f98a2
YZ
3118 struct btrfs_extent_data_ref *ref;
3119 struct btrfs_extent_inline_ref *iref;
3120 struct btrfs_extent_item *ei;
f321e491 3121 struct btrfs_key key;
5d4f98a2 3122 u32 item_size;
be20aa9d 3123 int ret;
925baedd 3124
be20aa9d 3125 key.objectid = bytenr;
31840ae1 3126 key.offset = (u64)-1;
f321e491 3127 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3128
be20aa9d
CM
3129 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3130 if (ret < 0)
3131 goto out;
79787eaa 3132 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3133
3134 ret = -ENOENT;
3135 if (path->slots[0] == 0)
31840ae1 3136 goto out;
be20aa9d 3137
31840ae1 3138 path->slots[0]--;
f321e491 3139 leaf = path->nodes[0];
5d4f98a2 3140 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3141
5d4f98a2 3142 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3143 goto out;
f321e491 3144
5d4f98a2
YZ
3145 ret = 1;
3146 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3147#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3148 if (item_size < sizeof(*ei)) {
3149 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3150 goto out;
3151 }
3152#endif
3153 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3154
5d4f98a2
YZ
3155 if (item_size != sizeof(*ei) +
3156 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3157 goto out;
be20aa9d 3158
5d4f98a2
YZ
3159 if (btrfs_extent_generation(leaf, ei) <=
3160 btrfs_root_last_snapshot(&root->root_item))
3161 goto out;
3162
3163 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3164 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3165 BTRFS_EXTENT_DATA_REF_KEY)
3166 goto out;
3167
3168 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3169 if (btrfs_extent_refs(leaf, ei) !=
3170 btrfs_extent_data_ref_count(leaf, ref) ||
3171 btrfs_extent_data_ref_root(leaf, ref) !=
3172 root->root_key.objectid ||
3173 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3174 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3175 goto out;
3176
3177 ret = 0;
3178out:
3179 return ret;
3180}
3181
3182int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3183 struct btrfs_root *root,
3184 u64 objectid, u64 offset, u64 bytenr)
3185{
3186 struct btrfs_path *path;
3187 int ret;
3188 int ret2;
3189
3190 path = btrfs_alloc_path();
3191 if (!path)
3192 return -ENOENT;
3193
3194 do {
3195 ret = check_committed_ref(trans, root, path, objectid,
3196 offset, bytenr);
3197 if (ret && ret != -ENOENT)
f321e491 3198 goto out;
80ff3856 3199
5d4f98a2
YZ
3200 ret2 = check_delayed_ref(trans, root, path, objectid,
3201 offset, bytenr);
3202 } while (ret2 == -EAGAIN);
3203
3204 if (ret2 && ret2 != -ENOENT) {
3205 ret = ret2;
3206 goto out;
f321e491 3207 }
5d4f98a2
YZ
3208
3209 if (ret != -ENOENT || ret2 != -ENOENT)
3210 ret = 0;
be20aa9d 3211out:
80ff3856 3212 btrfs_free_path(path);
f0486c68
YZ
3213 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3214 WARN_ON(ret > 0);
f321e491 3215 return ret;
be20aa9d 3216}
c5739bba 3217
5d4f98a2 3218static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3219 struct btrfs_root *root,
5d4f98a2 3220 struct extent_buffer *buf,
e339a6b0 3221 int full_backref, int inc)
31840ae1
ZY
3222{
3223 u64 bytenr;
5d4f98a2
YZ
3224 u64 num_bytes;
3225 u64 parent;
31840ae1 3226 u64 ref_root;
31840ae1 3227 u32 nritems;
31840ae1
ZY
3228 struct btrfs_key key;
3229 struct btrfs_file_extent_item *fi;
3230 int i;
3231 int level;
3232 int ret = 0;
31840ae1 3233 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
b06c4bf5 3234 u64, u64, u64, u64, u64, u64);
31840ae1 3235
fccb84c9
DS
3236
3237 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3238 return 0;
fccb84c9 3239
31840ae1 3240 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3241 nritems = btrfs_header_nritems(buf);
3242 level = btrfs_header_level(buf);
3243
27cdeb70 3244 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3245 return 0;
31840ae1 3246
5d4f98a2
YZ
3247 if (inc)
3248 process_func = btrfs_inc_extent_ref;
3249 else
3250 process_func = btrfs_free_extent;
31840ae1 3251
5d4f98a2
YZ
3252 if (full_backref)
3253 parent = buf->start;
3254 else
3255 parent = 0;
3256
3257 for (i = 0; i < nritems; i++) {
31840ae1 3258 if (level == 0) {
5d4f98a2 3259 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3260 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3261 continue;
5d4f98a2 3262 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3263 struct btrfs_file_extent_item);
3264 if (btrfs_file_extent_type(buf, fi) ==
3265 BTRFS_FILE_EXTENT_INLINE)
3266 continue;
3267 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3268 if (bytenr == 0)
3269 continue;
5d4f98a2
YZ
3270
3271 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3272 key.offset -= btrfs_file_extent_offset(buf, fi);
3273 ret = process_func(trans, root, bytenr, num_bytes,
3274 parent, ref_root, key.objectid,
b06c4bf5 3275 key.offset);
31840ae1
ZY
3276 if (ret)
3277 goto fail;
3278 } else {
5d4f98a2 3279 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3280 num_bytes = root->nodesize;
5d4f98a2 3281 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3282 parent, ref_root, level - 1, 0);
31840ae1
ZY
3283 if (ret)
3284 goto fail;
3285 }
3286 }
3287 return 0;
3288fail:
5d4f98a2
YZ
3289 return ret;
3290}
3291
3292int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3293 struct extent_buffer *buf, int full_backref)
5d4f98a2 3294{
e339a6b0 3295 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3296}
3297
3298int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3299 struct extent_buffer *buf, int full_backref)
5d4f98a2 3300{
e339a6b0 3301 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3302}
3303
9078a3e1
CM
3304static int write_one_cache_group(struct btrfs_trans_handle *trans,
3305 struct btrfs_root *root,
3306 struct btrfs_path *path,
3307 struct btrfs_block_group_cache *cache)
3308{
3309 int ret;
9078a3e1 3310 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3311 unsigned long bi;
3312 struct extent_buffer *leaf;
9078a3e1 3313
9078a3e1 3314 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3315 if (ret) {
3316 if (ret > 0)
3317 ret = -ENOENT;
54aa1f4d 3318 goto fail;
df95e7f0 3319 }
5f39d397
CM
3320
3321 leaf = path->nodes[0];
3322 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3323 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3324 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3325fail:
24b89d08 3326 btrfs_release_path(path);
df95e7f0 3327 return ret;
9078a3e1
CM
3328
3329}
3330
4a8c9a62
YZ
3331static struct btrfs_block_group_cache *
3332next_block_group(struct btrfs_root *root,
3333 struct btrfs_block_group_cache *cache)
3334{
3335 struct rb_node *node;
292cbd51 3336
4a8c9a62 3337 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3338
3339 /* If our block group was removed, we need a full search. */
3340 if (RB_EMPTY_NODE(&cache->cache_node)) {
3341 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3342
3343 spin_unlock(&root->fs_info->block_group_cache_lock);
3344 btrfs_put_block_group(cache);
3345 cache = btrfs_lookup_first_block_group(root->fs_info,
3346 next_bytenr);
3347 return cache;
3348 }
4a8c9a62
YZ
3349 node = rb_next(&cache->cache_node);
3350 btrfs_put_block_group(cache);
3351 if (node) {
3352 cache = rb_entry(node, struct btrfs_block_group_cache,
3353 cache_node);
11dfe35a 3354 btrfs_get_block_group(cache);
4a8c9a62
YZ
3355 } else
3356 cache = NULL;
3357 spin_unlock(&root->fs_info->block_group_cache_lock);
3358 return cache;
3359}
3360
0af3d00b
JB
3361static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3362 struct btrfs_trans_handle *trans,
3363 struct btrfs_path *path)
3364{
3365 struct btrfs_root *root = block_group->fs_info->tree_root;
3366 struct inode *inode = NULL;
3367 u64 alloc_hint = 0;
2b20982e 3368 int dcs = BTRFS_DC_ERROR;
f8c269d7 3369 u64 num_pages = 0;
0af3d00b
JB
3370 int retries = 0;
3371 int ret = 0;
3372
3373 /*
3374 * If this block group is smaller than 100 megs don't bother caching the
3375 * block group.
3376 */
ee22184b 3377 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3378 spin_lock(&block_group->lock);
3379 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3380 spin_unlock(&block_group->lock);
3381 return 0;
3382 }
3383
0c0ef4bc
JB
3384 if (trans->aborted)
3385 return 0;
0af3d00b
JB
3386again:
3387 inode = lookup_free_space_inode(root, block_group, path);
3388 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3389 ret = PTR_ERR(inode);
b3b4aa74 3390 btrfs_release_path(path);
0af3d00b
JB
3391 goto out;
3392 }
3393
3394 if (IS_ERR(inode)) {
3395 BUG_ON(retries);
3396 retries++;
3397
3398 if (block_group->ro)
3399 goto out_free;
3400
3401 ret = create_free_space_inode(root, trans, block_group, path);
3402 if (ret)
3403 goto out_free;
3404 goto again;
3405 }
3406
5b0e95bf
JB
3407 /* We've already setup this transaction, go ahead and exit */
3408 if (block_group->cache_generation == trans->transid &&
3409 i_size_read(inode)) {
3410 dcs = BTRFS_DC_SETUP;
3411 goto out_put;
3412 }
3413
0af3d00b
JB
3414 /*
3415 * We want to set the generation to 0, that way if anything goes wrong
3416 * from here on out we know not to trust this cache when we load up next
3417 * time.
3418 */
3419 BTRFS_I(inode)->generation = 0;
3420 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3421 if (ret) {
3422 /*
3423 * So theoretically we could recover from this, simply set the
3424 * super cache generation to 0 so we know to invalidate the
3425 * cache, but then we'd have to keep track of the block groups
3426 * that fail this way so we know we _have_ to reset this cache
3427 * before the next commit or risk reading stale cache. So to
3428 * limit our exposure to horrible edge cases lets just abort the
3429 * transaction, this only happens in really bad situations
3430 * anyway.
3431 */
3432 btrfs_abort_transaction(trans, root, ret);
3433 goto out_put;
3434 }
0af3d00b
JB
3435 WARN_ON(ret);
3436
3437 if (i_size_read(inode) > 0) {
7b61cd92
MX
3438 ret = btrfs_check_trunc_cache_free_space(root,
3439 &root->fs_info->global_block_rsv);
3440 if (ret)
3441 goto out_put;
3442
1bbc621e 3443 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3444 if (ret)
3445 goto out_put;
3446 }
3447
3448 spin_lock(&block_group->lock);
cf7c1ef6 3449 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3450 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3451 /*
3452 * don't bother trying to write stuff out _if_
3453 * a) we're not cached,
3454 * b) we're with nospace_cache mount option.
3455 */
2b20982e 3456 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3457 spin_unlock(&block_group->lock);
3458 goto out_put;
3459 }
3460 spin_unlock(&block_group->lock);
3461
2968b1f4
JB
3462 /*
3463 * We hit an ENOSPC when setting up the cache in this transaction, just
3464 * skip doing the setup, we've already cleared the cache so we're safe.
3465 */
3466 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3467 ret = -ENOSPC;
3468 goto out_put;
3469 }
3470
6fc823b1
JB
3471 /*
3472 * Try to preallocate enough space based on how big the block group is.
3473 * Keep in mind this has to include any pinned space which could end up
3474 * taking up quite a bit since it's not folded into the other space
3475 * cache.
3476 */
ee22184b 3477 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3478 if (!num_pages)
3479 num_pages = 1;
3480
0af3d00b 3481 num_pages *= 16;
09cbfeaf 3482 num_pages *= PAGE_SIZE;
0af3d00b 3483
7cf5b976 3484 ret = btrfs_check_data_free_space(inode, 0, num_pages);
0af3d00b
JB
3485 if (ret)
3486 goto out_put;
3487
3488 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3489 num_pages, num_pages,
3490 &alloc_hint);
2968b1f4
JB
3491 /*
3492 * Our cache requires contiguous chunks so that we don't modify a bunch
3493 * of metadata or split extents when writing the cache out, which means
3494 * we can enospc if we are heavily fragmented in addition to just normal
3495 * out of space conditions. So if we hit this just skip setting up any
3496 * other block groups for this transaction, maybe we'll unpin enough
3497 * space the next time around.
3498 */
2b20982e
JB
3499 if (!ret)
3500 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3501 else if (ret == -ENOSPC)
3502 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
7cf5b976 3503 btrfs_free_reserved_data_space(inode, 0, num_pages);
c09544e0 3504
0af3d00b
JB
3505out_put:
3506 iput(inode);
3507out_free:
b3b4aa74 3508 btrfs_release_path(path);
0af3d00b
JB
3509out:
3510 spin_lock(&block_group->lock);
e65cbb94 3511 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3512 block_group->cache_generation = trans->transid;
2b20982e 3513 block_group->disk_cache_state = dcs;
0af3d00b
JB
3514 spin_unlock(&block_group->lock);
3515
3516 return ret;
3517}
3518
dcdf7f6d
JB
3519int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3520 struct btrfs_root *root)
3521{
3522 struct btrfs_block_group_cache *cache, *tmp;
3523 struct btrfs_transaction *cur_trans = trans->transaction;
3524 struct btrfs_path *path;
3525
3526 if (list_empty(&cur_trans->dirty_bgs) ||
3527 !btrfs_test_opt(root, SPACE_CACHE))
3528 return 0;
3529
3530 path = btrfs_alloc_path();
3531 if (!path)
3532 return -ENOMEM;
3533
3534 /* Could add new block groups, use _safe just in case */
3535 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3536 dirty_list) {
3537 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3538 cache_save_setup(cache, trans, path);
3539 }
3540
3541 btrfs_free_path(path);
3542 return 0;
3543}
3544
1bbc621e
CM
3545/*
3546 * transaction commit does final block group cache writeback during a
3547 * critical section where nothing is allowed to change the FS. This is
3548 * required in order for the cache to actually match the block group,
3549 * but can introduce a lot of latency into the commit.
3550 *
3551 * So, btrfs_start_dirty_block_groups is here to kick off block group
3552 * cache IO. There's a chance we'll have to redo some of it if the
3553 * block group changes again during the commit, but it greatly reduces
3554 * the commit latency by getting rid of the easy block groups while
3555 * we're still allowing others to join the commit.
3556 */
3557int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3558 struct btrfs_root *root)
9078a3e1 3559{
4a8c9a62 3560 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3561 struct btrfs_transaction *cur_trans = trans->transaction;
3562 int ret = 0;
c9dc4c65 3563 int should_put;
1bbc621e
CM
3564 struct btrfs_path *path = NULL;
3565 LIST_HEAD(dirty);
3566 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3567 int num_started = 0;
1bbc621e
CM
3568 int loops = 0;
3569
3570 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3571 if (list_empty(&cur_trans->dirty_bgs)) {
3572 spin_unlock(&cur_trans->dirty_bgs_lock);
3573 return 0;
1bbc621e 3574 }
b58d1a9e 3575 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3576 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3577
1bbc621e 3578again:
1bbc621e
CM
3579 /*
3580 * make sure all the block groups on our dirty list actually
3581 * exist
3582 */
3583 btrfs_create_pending_block_groups(trans, root);
3584
3585 if (!path) {
3586 path = btrfs_alloc_path();
3587 if (!path)
3588 return -ENOMEM;
3589 }
3590
b58d1a9e
FM
3591 /*
3592 * cache_write_mutex is here only to save us from balance or automatic
3593 * removal of empty block groups deleting this block group while we are
3594 * writing out the cache
3595 */
3596 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3597 while (!list_empty(&dirty)) {
3598 cache = list_first_entry(&dirty,
3599 struct btrfs_block_group_cache,
3600 dirty_list);
1bbc621e
CM
3601 /*
3602 * this can happen if something re-dirties a block
3603 * group that is already under IO. Just wait for it to
3604 * finish and then do it all again
3605 */
3606 if (!list_empty(&cache->io_list)) {
3607 list_del_init(&cache->io_list);
3608 btrfs_wait_cache_io(root, trans, cache,
3609 &cache->io_ctl, path,
3610 cache->key.objectid);
3611 btrfs_put_block_group(cache);
3612 }
3613
3614
3615 /*
3616 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3617 * if it should update the cache_state. Don't delete
3618 * until after we wait.
3619 *
3620 * Since we're not running in the commit critical section
3621 * we need the dirty_bgs_lock to protect from update_block_group
3622 */
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 list_del_init(&cache->dirty_list);
3625 spin_unlock(&cur_trans->dirty_bgs_lock);
3626
3627 should_put = 1;
3628
3629 cache_save_setup(cache, trans, path);
3630
3631 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3632 cache->io_ctl.inode = NULL;
3633 ret = btrfs_write_out_cache(root, trans, cache, path);
3634 if (ret == 0 && cache->io_ctl.inode) {
3635 num_started++;
3636 should_put = 0;
3637
3638 /*
3639 * the cache_write_mutex is protecting
3640 * the io_list
3641 */
3642 list_add_tail(&cache->io_list, io);
3643 } else {
3644 /*
3645 * if we failed to write the cache, the
3646 * generation will be bad and life goes on
3647 */
3648 ret = 0;
3649 }
3650 }
ff1f8250 3651 if (!ret) {
1bbc621e 3652 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3653 /*
3654 * Our block group might still be attached to the list
3655 * of new block groups in the transaction handle of some
3656 * other task (struct btrfs_trans_handle->new_bgs). This
3657 * means its block group item isn't yet in the extent
3658 * tree. If this happens ignore the error, as we will
3659 * try again later in the critical section of the
3660 * transaction commit.
3661 */
3662 if (ret == -ENOENT) {
3663 ret = 0;
3664 spin_lock(&cur_trans->dirty_bgs_lock);
3665 if (list_empty(&cache->dirty_list)) {
3666 list_add_tail(&cache->dirty_list,
3667 &cur_trans->dirty_bgs);
3668 btrfs_get_block_group(cache);
3669 }
3670 spin_unlock(&cur_trans->dirty_bgs_lock);
3671 } else if (ret) {
3672 btrfs_abort_transaction(trans, root, ret);
3673 }
3674 }
1bbc621e
CM
3675
3676 /* if its not on the io list, we need to put the block group */
3677 if (should_put)
3678 btrfs_put_block_group(cache);
3679
3680 if (ret)
3681 break;
b58d1a9e
FM
3682
3683 /*
3684 * Avoid blocking other tasks for too long. It might even save
3685 * us from writing caches for block groups that are going to be
3686 * removed.
3687 */
3688 mutex_unlock(&trans->transaction->cache_write_mutex);
3689 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3690 }
b58d1a9e 3691 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3692
3693 /*
3694 * go through delayed refs for all the stuff we've just kicked off
3695 * and then loop back (just once)
3696 */
3697 ret = btrfs_run_delayed_refs(trans, root, 0);
3698 if (!ret && loops == 0) {
3699 loops++;
3700 spin_lock(&cur_trans->dirty_bgs_lock);
3701 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3702 /*
3703 * dirty_bgs_lock protects us from concurrent block group
3704 * deletes too (not just cache_write_mutex).
3705 */
3706 if (!list_empty(&dirty)) {
3707 spin_unlock(&cur_trans->dirty_bgs_lock);
3708 goto again;
3709 }
1bbc621e 3710 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3711 }
3712
3713 btrfs_free_path(path);
3714 return ret;
3715}
3716
3717int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3718 struct btrfs_root *root)
3719{
3720 struct btrfs_block_group_cache *cache;
3721 struct btrfs_transaction *cur_trans = trans->transaction;
3722 int ret = 0;
3723 int should_put;
3724 struct btrfs_path *path;
3725 struct list_head *io = &cur_trans->io_bgs;
3726 int num_started = 0;
9078a3e1
CM
3727
3728 path = btrfs_alloc_path();
3729 if (!path)
3730 return -ENOMEM;
3731
ce93ec54 3732 /*
e44081ef
FM
3733 * Even though we are in the critical section of the transaction commit,
3734 * we can still have concurrent tasks adding elements to this
3735 * transaction's list of dirty block groups. These tasks correspond to
3736 * endio free space workers started when writeback finishes for a
3737 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3738 * allocate new block groups as a result of COWing nodes of the root
3739 * tree when updating the free space inode. The writeback for the space
3740 * caches is triggered by an earlier call to
3741 * btrfs_start_dirty_block_groups() and iterations of the following
3742 * loop.
3743 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3744 * delayed refs to make sure we have the best chance at doing this all
3745 * in one shot.
3746 */
e44081ef 3747 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3748 while (!list_empty(&cur_trans->dirty_bgs)) {
3749 cache = list_first_entry(&cur_trans->dirty_bgs,
3750 struct btrfs_block_group_cache,
3751 dirty_list);
c9dc4c65
CM
3752
3753 /*
3754 * this can happen if cache_save_setup re-dirties a block
3755 * group that is already under IO. Just wait for it to
3756 * finish and then do it all again
3757 */
3758 if (!list_empty(&cache->io_list)) {
e44081ef 3759 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3760 list_del_init(&cache->io_list);
3761 btrfs_wait_cache_io(root, trans, cache,
3762 &cache->io_ctl, path,
3763 cache->key.objectid);
3764 btrfs_put_block_group(cache);
e44081ef 3765 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3766 }
3767
1bbc621e
CM
3768 /*
3769 * don't remove from the dirty list until after we've waited
3770 * on any pending IO
3771 */
ce93ec54 3772 list_del_init(&cache->dirty_list);
e44081ef 3773 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3774 should_put = 1;
3775
1bbc621e 3776 cache_save_setup(cache, trans, path);
c9dc4c65 3777
ce93ec54 3778 if (!ret)
c9dc4c65
CM
3779 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3780
3781 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3782 cache->io_ctl.inode = NULL;
3783 ret = btrfs_write_out_cache(root, trans, cache, path);
3784 if (ret == 0 && cache->io_ctl.inode) {
3785 num_started++;
3786 should_put = 0;
1bbc621e 3787 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3788 } else {
3789 /*
3790 * if we failed to write the cache, the
3791 * generation will be bad and life goes on
3792 */
3793 ret = 0;
3794 }
3795 }
ff1f8250 3796 if (!ret) {
ce93ec54 3797 ret = write_one_cache_group(trans, root, path, cache);
2bc0bb5f
FM
3798 /*
3799 * One of the free space endio workers might have
3800 * created a new block group while updating a free space
3801 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3802 * and hasn't released its transaction handle yet, in
3803 * which case the new block group is still attached to
3804 * its transaction handle and its creation has not
3805 * finished yet (no block group item in the extent tree
3806 * yet, etc). If this is the case, wait for all free
3807 * space endio workers to finish and retry. This is a
3808 * a very rare case so no need for a more efficient and
3809 * complex approach.
3810 */
3811 if (ret == -ENOENT) {
3812 wait_event(cur_trans->writer_wait,
3813 atomic_read(&cur_trans->num_writers) == 1);
3814 ret = write_one_cache_group(trans, root, path,
3815 cache);
3816 }
ff1f8250
FM
3817 if (ret)
3818 btrfs_abort_transaction(trans, root, ret);
3819 }
c9dc4c65
CM
3820
3821 /* if its not on the io list, we need to put the block group */
3822 if (should_put)
3823 btrfs_put_block_group(cache);
e44081ef 3824 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3825 }
e44081ef 3826 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3827
1bbc621e
CM
3828 while (!list_empty(io)) {
3829 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3830 io_list);
3831 list_del_init(&cache->io_list);
c9dc4c65
CM
3832 btrfs_wait_cache_io(root, trans, cache,
3833 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3834 btrfs_put_block_group(cache);
3835 }
3836
9078a3e1 3837 btrfs_free_path(path);
ce93ec54 3838 return ret;
9078a3e1
CM
3839}
3840
d2fb3437
YZ
3841int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3842{
3843 struct btrfs_block_group_cache *block_group;
3844 int readonly = 0;
3845
3846 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3847 if (!block_group || block_group->ro)
3848 readonly = 1;
3849 if (block_group)
fa9c0d79 3850 btrfs_put_block_group(block_group);
d2fb3437
YZ
3851 return readonly;
3852}
3853
f78c436c
FM
3854bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3855{
3856 struct btrfs_block_group_cache *bg;
3857 bool ret = true;
3858
3859 bg = btrfs_lookup_block_group(fs_info, bytenr);
3860 if (!bg)
3861 return false;
3862
3863 spin_lock(&bg->lock);
3864 if (bg->ro)
3865 ret = false;
3866 else
3867 atomic_inc(&bg->nocow_writers);
3868 spin_unlock(&bg->lock);
3869
3870 /* no put on block group, done by btrfs_dec_nocow_writers */
3871 if (!ret)
3872 btrfs_put_block_group(bg);
3873
3874 return ret;
3875
3876}
3877
3878void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3879{
3880 struct btrfs_block_group_cache *bg;
3881
3882 bg = btrfs_lookup_block_group(fs_info, bytenr);
3883 ASSERT(bg);
3884 if (atomic_dec_and_test(&bg->nocow_writers))
3885 wake_up_atomic_t(&bg->nocow_writers);
3886 /*
3887 * Once for our lookup and once for the lookup done by a previous call
3888 * to btrfs_inc_nocow_writers()
3889 */
3890 btrfs_put_block_group(bg);
3891 btrfs_put_block_group(bg);
3892}
3893
3894static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
3895{
3896 schedule();
3897 return 0;
3898}
3899
3900void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3901{
3902 wait_on_atomic_t(&bg->nocow_writers,
3903 btrfs_wait_nocow_writers_atomic_t,
3904 TASK_UNINTERRUPTIBLE);
3905}
3906
6ab0a202
JM
3907static const char *alloc_name(u64 flags)
3908{
3909 switch (flags) {
3910 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3911 return "mixed";
3912 case BTRFS_BLOCK_GROUP_METADATA:
3913 return "metadata";
3914 case BTRFS_BLOCK_GROUP_DATA:
3915 return "data";
3916 case BTRFS_BLOCK_GROUP_SYSTEM:
3917 return "system";
3918 default:
3919 WARN_ON(1);
3920 return "invalid-combination";
3921 };
3922}
3923
593060d7
CM
3924static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3925 u64 total_bytes, u64 bytes_used,
e40edf2d 3926 u64 bytes_readonly,
593060d7
CM
3927 struct btrfs_space_info **space_info)
3928{
3929 struct btrfs_space_info *found;
b742bb82
YZ
3930 int i;
3931 int factor;
b150a4f1 3932 int ret;
b742bb82
YZ
3933
3934 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3935 BTRFS_BLOCK_GROUP_RAID10))
3936 factor = 2;
3937 else
3938 factor = 1;
593060d7
CM
3939
3940 found = __find_space_info(info, flags);
3941 if (found) {
25179201 3942 spin_lock(&found->lock);
593060d7 3943 found->total_bytes += total_bytes;
89a55897 3944 found->disk_total += total_bytes * factor;
593060d7 3945 found->bytes_used += bytes_used;
b742bb82 3946 found->disk_used += bytes_used * factor;
e40edf2d 3947 found->bytes_readonly += bytes_readonly;
2e6e5183
FM
3948 if (total_bytes > 0)
3949 found->full = 0;
957780eb
JB
3950 space_info_add_new_bytes(info, found, total_bytes -
3951 bytes_used - bytes_readonly);
25179201 3952 spin_unlock(&found->lock);
593060d7
CM
3953 *space_info = found;
3954 return 0;
3955 }
c146afad 3956 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3957 if (!found)
3958 return -ENOMEM;
3959
908c7f19 3960 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3961 if (ret) {
3962 kfree(found);
3963 return ret;
3964 }
3965
c1895442 3966 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3967 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3968 init_rwsem(&found->groups_sem);
0f9dd46c 3969 spin_lock_init(&found->lock);
52ba6929 3970 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3971 found->total_bytes = total_bytes;
89a55897 3972 found->disk_total = total_bytes * factor;
593060d7 3973 found->bytes_used = bytes_used;
b742bb82 3974 found->disk_used = bytes_used * factor;
593060d7 3975 found->bytes_pinned = 0;
e8569813 3976 found->bytes_reserved = 0;
e40edf2d 3977 found->bytes_readonly = bytes_readonly;
f0486c68 3978 found->bytes_may_use = 0;
6af3e3ad 3979 found->full = 0;
4f4db217 3980 found->max_extent_size = 0;
0e4f8f88 3981 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3982 found->chunk_alloc = 0;
fdb5effd
JB
3983 found->flush = 0;
3984 init_waitqueue_head(&found->wait);
633c0aad 3985 INIT_LIST_HEAD(&found->ro_bgs);
957780eb
JB
3986 INIT_LIST_HEAD(&found->tickets);
3987 INIT_LIST_HEAD(&found->priority_tickets);
6ab0a202
JM
3988
3989 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3990 info->space_info_kobj, "%s",
3991 alloc_name(found->flags));
3992 if (ret) {
3993 kfree(found);
3994 return ret;
3995 }
3996
593060d7 3997 *space_info = found;
4184ea7f 3998 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3999 if (flags & BTRFS_BLOCK_GROUP_DATA)
4000 info->data_sinfo = found;
6ab0a202
JM
4001
4002 return ret;
593060d7
CM
4003}
4004
8790d502
CM
4005static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4006{
899c81ea
ID
4007 u64 extra_flags = chunk_to_extended(flags) &
4008 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4009
de98ced9 4010 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4011 if (flags & BTRFS_BLOCK_GROUP_DATA)
4012 fs_info->avail_data_alloc_bits |= extra_flags;
4013 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4014 fs_info->avail_metadata_alloc_bits |= extra_flags;
4015 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4016 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4017 write_sequnlock(&fs_info->profiles_lock);
8790d502 4018}
593060d7 4019
fc67c450
ID
4020/*
4021 * returns target flags in extended format or 0 if restripe for this
4022 * chunk_type is not in progress
c6664b42
ID
4023 *
4024 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4025 */
4026static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4027{
4028 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4029 u64 target = 0;
4030
fc67c450
ID
4031 if (!bctl)
4032 return 0;
4033
4034 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4035 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4036 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4037 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4038 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4039 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4040 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4041 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4042 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4043 }
4044
4045 return target;
4046}
4047
a46d11a8
ID
4048/*
4049 * @flags: available profiles in extended format (see ctree.h)
4050 *
e4d8ec0f
ID
4051 * Returns reduced profile in chunk format. If profile changing is in
4052 * progress (either running or paused) picks the target profile (if it's
4053 * already available), otherwise falls back to plain reducing.
a46d11a8 4054 */
48a3b636 4055static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 4056{
95669976 4057 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 4058 u64 target;
9c170b26
ZL
4059 u64 raid_type;
4060 u64 allowed = 0;
a061fc8d 4061
fc67c450
ID
4062 /*
4063 * see if restripe for this chunk_type is in progress, if so
4064 * try to reduce to the target profile
4065 */
e4d8ec0f 4066 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
4067 target = get_restripe_target(root->fs_info, flags);
4068 if (target) {
4069 /* pick target profile only if it's already available */
4070 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 4071 spin_unlock(&root->fs_info->balance_lock);
fc67c450 4072 return extended_to_chunk(target);
e4d8ec0f
ID
4073 }
4074 }
4075 spin_unlock(&root->fs_info->balance_lock);
4076
53b381b3 4077 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4078 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4079 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4080 allowed |= btrfs_raid_group[raid_type];
4081 }
4082 allowed &= flags;
4083
4084 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4085 allowed = BTRFS_BLOCK_GROUP_RAID6;
4086 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4087 allowed = BTRFS_BLOCK_GROUP_RAID5;
4088 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4089 allowed = BTRFS_BLOCK_GROUP_RAID10;
4090 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4091 allowed = BTRFS_BLOCK_GROUP_RAID1;
4092 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4093 allowed = BTRFS_BLOCK_GROUP_RAID0;
4094
4095 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4096
4097 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4098}
4099
f8213bdc 4100static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 4101{
de98ced9 4102 unsigned seq;
f8213bdc 4103 u64 flags;
de98ced9
MX
4104
4105 do {
f8213bdc 4106 flags = orig_flags;
de98ced9
MX
4107 seq = read_seqbegin(&root->fs_info->profiles_lock);
4108
4109 if (flags & BTRFS_BLOCK_GROUP_DATA)
4110 flags |= root->fs_info->avail_data_alloc_bits;
4111 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4112 flags |= root->fs_info->avail_system_alloc_bits;
4113 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4114 flags |= root->fs_info->avail_metadata_alloc_bits;
4115 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 4116
b742bb82 4117 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
4118}
4119
6d07bcec 4120u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 4121{
b742bb82 4122 u64 flags;
53b381b3 4123 u64 ret;
9ed74f2d 4124
b742bb82
YZ
4125 if (data)
4126 flags = BTRFS_BLOCK_GROUP_DATA;
4127 else if (root == root->fs_info->chunk_root)
4128 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4129 else
b742bb82 4130 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4131
53b381b3
DW
4132 ret = get_alloc_profile(root, flags);
4133 return ret;
6a63209f 4134}
9ed74f2d 4135
4ceff079 4136int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes)
6a63209f 4137{
6a63209f 4138 struct btrfs_space_info *data_sinfo;
0ca1f7ce 4139 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 4140 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 4141 u64 used;
94b947b2 4142 int ret = 0;
c99f1b0c
ZL
4143 int need_commit = 2;
4144 int have_pinned_space;
6a63209f 4145
6a63209f 4146 /* make sure bytes are sectorsize aligned */
fda2832f 4147 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 4148
9dced186 4149 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4150 need_commit = 0;
9dced186 4151 ASSERT(current->journal_info);
0af3d00b
JB
4152 }
4153
b4d7c3c9 4154 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
4155 if (!data_sinfo)
4156 goto alloc;
9ed74f2d 4157
6a63209f
JB
4158again:
4159 /* make sure we have enough space to handle the data first */
4160 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
4161 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
4162 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
4163 data_sinfo->bytes_may_use;
ab6e2410
JB
4164
4165 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4166 struct btrfs_trans_handle *trans;
9ed74f2d 4167
6a63209f
JB
4168 /*
4169 * if we don't have enough free bytes in this space then we need
4170 * to alloc a new chunk.
4171 */
b9fd47cd 4172 if (!data_sinfo->full) {
6a63209f 4173 u64 alloc_target;
9ed74f2d 4174
0e4f8f88 4175 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4176 spin_unlock(&data_sinfo->lock);
33b4d47f 4177alloc:
6a63209f 4178 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
4179 /*
4180 * It is ugly that we don't call nolock join
4181 * transaction for the free space inode case here.
4182 * But it is safe because we only do the data space
4183 * reservation for the free space cache in the
4184 * transaction context, the common join transaction
4185 * just increase the counter of the current transaction
4186 * handler, doesn't try to acquire the trans_lock of
4187 * the fs.
4188 */
7a7eaa40 4189 trans = btrfs_join_transaction(root);
a22285a6
YZ
4190 if (IS_ERR(trans))
4191 return PTR_ERR(trans);
9ed74f2d 4192
6a63209f 4193 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
4194 alloc_target,
4195 CHUNK_ALLOC_NO_FORCE);
6a63209f 4196 btrfs_end_transaction(trans, root);
d52a5b5f
MX
4197 if (ret < 0) {
4198 if (ret != -ENOSPC)
4199 return ret;
c99f1b0c
ZL
4200 else {
4201 have_pinned_space = 1;
d52a5b5f 4202 goto commit_trans;
c99f1b0c 4203 }
d52a5b5f 4204 }
9ed74f2d 4205
b4d7c3c9
LZ
4206 if (!data_sinfo)
4207 data_sinfo = fs_info->data_sinfo;
4208
6a63209f
JB
4209 goto again;
4210 }
f2bb8f5c
JB
4211
4212 /*
b150a4f1 4213 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4214 * allocation, and no removed chunk in current transaction,
4215 * don't bother committing the transaction.
f2bb8f5c 4216 */
c99f1b0c
ZL
4217 have_pinned_space = percpu_counter_compare(
4218 &data_sinfo->total_bytes_pinned,
4219 used + bytes - data_sinfo->total_bytes);
6a63209f 4220 spin_unlock(&data_sinfo->lock);
6a63209f 4221
4e06bdd6 4222 /* commit the current transaction and try again */
d52a5b5f 4223commit_trans:
c99f1b0c 4224 if (need_commit &&
a4abeea4 4225 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4226 need_commit--;
b150a4f1 4227
e1746e83
ZL
4228 if (need_commit > 0) {
4229 btrfs_start_delalloc_roots(fs_info, 0, -1);
578def7c 4230 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
e1746e83 4231 }
9a4e7276 4232
7a7eaa40 4233 trans = btrfs_join_transaction(root);
a22285a6
YZ
4234 if (IS_ERR(trans))
4235 return PTR_ERR(trans);
c99f1b0c 4236 if (have_pinned_space >= 0 ||
3204d33c
JB
4237 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4238 &trans->transaction->flags) ||
c99f1b0c 4239 need_commit > 0) {
94b947b2
ZL
4240 ret = btrfs_commit_transaction(trans, root);
4241 if (ret)
4242 return ret;
d7c15171 4243 /*
c2d6cb16
FM
4244 * The cleaner kthread might still be doing iput
4245 * operations. Wait for it to finish so that
4246 * more space is released.
d7c15171 4247 */
c2d6cb16
FM
4248 mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
4249 mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4250 goto again;
4251 } else {
4252 btrfs_end_transaction(trans, root);
4253 }
4e06bdd6 4254 }
9ed74f2d 4255
cab45e22
JM
4256 trace_btrfs_space_reservation(root->fs_info,
4257 "space_info:enospc",
4258 data_sinfo->flags, bytes, 1);
6a63209f
JB
4259 return -ENOSPC;
4260 }
4261 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4262 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4263 data_sinfo->flags, bytes, 1);
6a63209f 4264 spin_unlock(&data_sinfo->lock);
6a63209f 4265
237c0e9f 4266 return ret;
9ed74f2d 4267}
6a63209f 4268
4ceff079
QW
4269/*
4270 * New check_data_free_space() with ability for precious data reservation
4271 * Will replace old btrfs_check_data_free_space(), but for patch split,
4272 * add a new function first and then replace it.
4273 */
7cf5b976 4274int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len)
4ceff079
QW
4275{
4276 struct btrfs_root *root = BTRFS_I(inode)->root;
4277 int ret;
4278
4279 /* align the range */
4280 len = round_up(start + len, root->sectorsize) -
4281 round_down(start, root->sectorsize);
4282 start = round_down(start, root->sectorsize);
4283
4284 ret = btrfs_alloc_data_chunk_ondemand(inode, len);
4285 if (ret < 0)
4286 return ret;
4287
94ed938a
QW
4288 /*
4289 * Use new btrfs_qgroup_reserve_data to reserve precious data space
4290 *
4291 * TODO: Find a good method to avoid reserve data space for NOCOW
4292 * range, but don't impact performance on quota disable case.
4293 */
4ceff079
QW
4294 ret = btrfs_qgroup_reserve_data(inode, start, len);
4295 return ret;
4296}
4297
4ceff079
QW
4298/*
4299 * Called if we need to clear a data reservation for this inode
4300 * Normally in a error case.
4301 *
51773bec
QW
4302 * This one will *NOT* use accurate qgroup reserved space API, just for case
4303 * which we can't sleep and is sure it won't affect qgroup reserved space.
4304 * Like clear_bit_hook().
4ceff079 4305 */
51773bec
QW
4306void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4307 u64 len)
4ceff079
QW
4308{
4309 struct btrfs_root *root = BTRFS_I(inode)->root;
4310 struct btrfs_space_info *data_sinfo;
4311
4312 /* Make sure the range is aligned to sectorsize */
4313 len = round_up(start + len, root->sectorsize) -
4314 round_down(start, root->sectorsize);
4315 start = round_down(start, root->sectorsize);
4316
4ceff079
QW
4317 data_sinfo = root->fs_info->data_sinfo;
4318 spin_lock(&data_sinfo->lock);
4319 if (WARN_ON(data_sinfo->bytes_may_use < len))
4320 data_sinfo->bytes_may_use = 0;
4321 else
4322 data_sinfo->bytes_may_use -= len;
4323 trace_btrfs_space_reservation(root->fs_info, "space_info",
4324 data_sinfo->flags, len, 0);
4325 spin_unlock(&data_sinfo->lock);
4326}
4327
51773bec
QW
4328/*
4329 * Called if we need to clear a data reservation for this inode
4330 * Normally in a error case.
4331 *
01327610 4332 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4333 * space framework.
4334 */
4335void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len)
4336{
4337 btrfs_free_reserved_data_space_noquota(inode, start, len);
4338 btrfs_qgroup_free_data(inode, start, len);
4339}
4340
97e728d4 4341static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4342{
97e728d4
JB
4343 struct list_head *head = &info->space_info;
4344 struct btrfs_space_info *found;
e3ccfa98 4345
97e728d4
JB
4346 rcu_read_lock();
4347 list_for_each_entry_rcu(found, head, list) {
4348 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4349 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4350 }
97e728d4 4351 rcu_read_unlock();
e3ccfa98
JB
4352}
4353
3c76cd84
MX
4354static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4355{
4356 return (global->size << 1);
4357}
4358
e5bc2458 4359static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4360 struct btrfs_space_info *sinfo, int force)
32c00aff 4361{
fb25e914 4362 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4363 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4364 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4365 u64 thresh;
e3ccfa98 4366
0e4f8f88
CM
4367 if (force == CHUNK_ALLOC_FORCE)
4368 return 1;
4369
fb25e914
JB
4370 /*
4371 * We need to take into account the global rsv because for all intents
4372 * and purposes it's used space. Don't worry about locking the
4373 * global_rsv, it doesn't change except when the transaction commits.
4374 */
54338b5c 4375 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4376 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4377
0e4f8f88
CM
4378 /*
4379 * in limited mode, we want to have some free space up to
4380 * about 1% of the FS size.
4381 */
4382 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4383 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
ee22184b 4384 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88
CM
4385
4386 if (num_bytes - num_allocated < thresh)
4387 return 1;
4388 }
0e4f8f88 4389
ee22184b 4390 if (num_allocated + SZ_2M < div_factor(num_bytes, 8))
14ed0ca6 4391 return 0;
424499db 4392 return 1;
32c00aff
JB
4393}
4394
39c2d7fa 4395static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4396{
4397 u64 num_dev;
4398
53b381b3
DW
4399 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4400 BTRFS_BLOCK_GROUP_RAID0 |
4401 BTRFS_BLOCK_GROUP_RAID5 |
4402 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4403 num_dev = root->fs_info->fs_devices->rw_devices;
4404 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4405 num_dev = 2;
4406 else
4407 num_dev = 1; /* DUP or single */
4408
39c2d7fa 4409 return num_dev;
15d1ff81
LB
4410}
4411
39c2d7fa
FM
4412/*
4413 * If @is_allocation is true, reserve space in the system space info necessary
4414 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4415 * removing a chunk.
4416 */
4417void check_system_chunk(struct btrfs_trans_handle *trans,
4418 struct btrfs_root *root,
4617ea3a 4419 u64 type)
15d1ff81
LB
4420{
4421 struct btrfs_space_info *info;
4422 u64 left;
4423 u64 thresh;
4fbcdf66 4424 int ret = 0;
39c2d7fa 4425 u64 num_devs;
4fbcdf66
FM
4426
4427 /*
4428 * Needed because we can end up allocating a system chunk and for an
4429 * atomic and race free space reservation in the chunk block reserve.
4430 */
4431 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4432
4433 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4434 spin_lock(&info->lock);
4435 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4436 info->bytes_reserved - info->bytes_readonly -
4437 info->bytes_may_use;
15d1ff81
LB
4438 spin_unlock(&info->lock);
4439
39c2d7fa
FM
4440 num_devs = get_profile_num_devs(root, type);
4441
4442 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4443 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4444 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4445
15d1ff81 4446 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4447 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4448 left, thresh, type);
15d1ff81
LB
4449 dump_space_info(info, 0, 0);
4450 }
4451
4452 if (left < thresh) {
4453 u64 flags;
4454
4455 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4456 /*
4457 * Ignore failure to create system chunk. We might end up not
4458 * needing it, as we might not need to COW all nodes/leafs from
4459 * the paths we visit in the chunk tree (they were already COWed
4460 * or created in the current transaction for example).
4461 */
4462 ret = btrfs_alloc_chunk(trans, root, flags);
4463 }
4464
4465 if (!ret) {
4466 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4467 &root->fs_info->chunk_block_rsv,
4468 thresh, BTRFS_RESERVE_NO_FLUSH);
4469 if (!ret)
4470 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4471 }
4472}
4473
6324fbf3 4474static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4475 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4476{
6324fbf3 4477 struct btrfs_space_info *space_info;
97e728d4 4478 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4479 int wait_for_alloc = 0;
9ed74f2d 4480 int ret = 0;
9ed74f2d 4481
c6b305a8
JB
4482 /* Don't re-enter if we're already allocating a chunk */
4483 if (trans->allocating_chunk)
4484 return -ENOSPC;
4485
6324fbf3 4486 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4487 if (!space_info) {
4488 ret = update_space_info(extent_root->fs_info, flags,
e40edf2d 4489 0, 0, 0, &space_info);
79787eaa 4490 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4491 }
79787eaa 4492 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4493
6d74119f 4494again:
25179201 4495 spin_lock(&space_info->lock);
9e622d6b 4496 if (force < space_info->force_alloc)
0e4f8f88 4497 force = space_info->force_alloc;
25179201 4498 if (space_info->full) {
09fb99a6
FDBM
4499 if (should_alloc_chunk(extent_root, space_info, force))
4500 ret = -ENOSPC;
4501 else
4502 ret = 0;
25179201 4503 spin_unlock(&space_info->lock);
09fb99a6 4504 return ret;
9ed74f2d
JB
4505 }
4506
698d0082 4507 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4508 spin_unlock(&space_info->lock);
6d74119f
JB
4509 return 0;
4510 } else if (space_info->chunk_alloc) {
4511 wait_for_alloc = 1;
4512 } else {
4513 space_info->chunk_alloc = 1;
9ed74f2d 4514 }
0e4f8f88 4515
25179201 4516 spin_unlock(&space_info->lock);
9ed74f2d 4517
6d74119f
JB
4518 mutex_lock(&fs_info->chunk_mutex);
4519
4520 /*
4521 * The chunk_mutex is held throughout the entirety of a chunk
4522 * allocation, so once we've acquired the chunk_mutex we know that the
4523 * other guy is done and we need to recheck and see if we should
4524 * allocate.
4525 */
4526 if (wait_for_alloc) {
4527 mutex_unlock(&fs_info->chunk_mutex);
4528 wait_for_alloc = 0;
4529 goto again;
4530 }
4531
c6b305a8
JB
4532 trans->allocating_chunk = true;
4533
67377734
JB
4534 /*
4535 * If we have mixed data/metadata chunks we want to make sure we keep
4536 * allocating mixed chunks instead of individual chunks.
4537 */
4538 if (btrfs_mixed_space_info(space_info))
4539 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4540
97e728d4
JB
4541 /*
4542 * if we're doing a data chunk, go ahead and make sure that
4543 * we keep a reasonable number of metadata chunks allocated in the
4544 * FS as well.
4545 */
9ed74f2d 4546 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4547 fs_info->data_chunk_allocations++;
4548 if (!(fs_info->data_chunk_allocations %
4549 fs_info->metadata_ratio))
4550 force_metadata_allocation(fs_info);
9ed74f2d
JB
4551 }
4552
15d1ff81
LB
4553 /*
4554 * Check if we have enough space in SYSTEM chunk because we may need
4555 * to update devices.
4556 */
4617ea3a 4557 check_system_chunk(trans, extent_root, flags);
15d1ff81 4558
2b82032c 4559 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4560 trans->allocating_chunk = false;
92b8e897 4561
9ed74f2d 4562 spin_lock(&space_info->lock);
a81cb9a2
AO
4563 if (ret < 0 && ret != -ENOSPC)
4564 goto out;
9ed74f2d 4565 if (ret)
6324fbf3 4566 space_info->full = 1;
424499db
YZ
4567 else
4568 ret = 1;
6d74119f 4569
0e4f8f88 4570 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4571out:
6d74119f 4572 space_info->chunk_alloc = 0;
9ed74f2d 4573 spin_unlock(&space_info->lock);
a25c75d5 4574 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4575 /*
4576 * When we allocate a new chunk we reserve space in the chunk block
4577 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4578 * add new nodes/leafs to it if we end up needing to do it when
4579 * inserting the chunk item and updating device items as part of the
4580 * second phase of chunk allocation, performed by
4581 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4582 * large number of new block groups to create in our transaction
4583 * handle's new_bgs list to avoid exhausting the chunk block reserve
4584 * in extreme cases - like having a single transaction create many new
4585 * block groups when starting to write out the free space caches of all
4586 * the block groups that were made dirty during the lifetime of the
4587 * transaction.
4588 */
d9a0540a 4589 if (trans->can_flush_pending_bgs &&
ee22184b 4590 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
00d80e34
FM
4591 btrfs_create_pending_block_groups(trans, trans->root);
4592 btrfs_trans_release_chunk_metadata(trans);
4593 }
0f9dd46c 4594 return ret;
6324fbf3 4595}
9ed74f2d 4596
a80c8dcf
JB
4597static int can_overcommit(struct btrfs_root *root,
4598 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4599 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4600{
957780eb
JB
4601 struct btrfs_block_rsv *global_rsv;
4602 u64 profile;
3c76cd84 4603 u64 space_size;
a80c8dcf
JB
4604 u64 avail;
4605 u64 used;
4606
957780eb
JB
4607 /* Don't overcommit when in mixed mode. */
4608 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4609 return 0;
4610
4611 BUG_ON(root->fs_info == NULL);
4612 global_rsv = &root->fs_info->global_block_rsv;
4613 profile = btrfs_get_alloc_profile(root, 0);
a80c8dcf 4614 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4615 space_info->bytes_pinned + space_info->bytes_readonly;
4616
96f1bb57
JB
4617 /*
4618 * We only want to allow over committing if we have lots of actual space
4619 * free, but if we don't have enough space to handle the global reserve
4620 * space then we could end up having a real enospc problem when trying
4621 * to allocate a chunk or some other such important allocation.
4622 */
3c76cd84
MX
4623 spin_lock(&global_rsv->lock);
4624 space_size = calc_global_rsv_need_space(global_rsv);
4625 spin_unlock(&global_rsv->lock);
4626 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4627 return 0;
4628
4629 used += space_info->bytes_may_use;
a80c8dcf
JB
4630
4631 spin_lock(&root->fs_info->free_chunk_lock);
4632 avail = root->fs_info->free_chunk_space;
4633 spin_unlock(&root->fs_info->free_chunk_lock);
4634
4635 /*
4636 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4637 * space is actually useable. For raid56, the space info used
4638 * doesn't include the parity drive, so we don't have to
4639 * change the math
a80c8dcf
JB
4640 */
4641 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4642 BTRFS_BLOCK_GROUP_RAID1 |
4643 BTRFS_BLOCK_GROUP_RAID10))
4644 avail >>= 1;
4645
4646 /*
561c294d
MX
4647 * If we aren't flushing all things, let us overcommit up to
4648 * 1/2th of the space. If we can flush, don't let us overcommit
4649 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4650 */
08e007d2 4651 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4652 avail >>= 3;
a80c8dcf 4653 else
14575aef 4654 avail >>= 1;
a80c8dcf 4655
14575aef 4656 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4657 return 1;
4658 return 0;
4659}
4660
48a3b636 4661static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4662 unsigned long nr_pages, int nr_items)
da633a42
MX
4663{
4664 struct super_block *sb = root->fs_info->sb;
da633a42 4665
925a6efb
JB
4666 if (down_read_trylock(&sb->s_umount)) {
4667 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4668 up_read(&sb->s_umount);
4669 } else {
da633a42
MX
4670 /*
4671 * We needn't worry the filesystem going from r/w to r/o though
4672 * we don't acquire ->s_umount mutex, because the filesystem
4673 * should guarantee the delalloc inodes list be empty after
4674 * the filesystem is readonly(all dirty pages are written to
4675 * the disk).
4676 */
6c255e67 4677 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4678 if (!current->journal_info)
578def7c
FM
4679 btrfs_wait_ordered_roots(root->fs_info, nr_items,
4680 0, (u64)-1);
da633a42
MX
4681 }
4682}
4683
18cd8ea6
MX
4684static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4685{
4686 u64 bytes;
4687 int nr;
4688
4689 bytes = btrfs_calc_trans_metadata_size(root, 1);
4690 nr = (int)div64_u64(to_reclaim, bytes);
4691 if (!nr)
4692 nr = 1;
4693 return nr;
4694}
4695
ee22184b 4696#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4697
9ed74f2d 4698/*
5da9d01b 4699 * shrink metadata reservation for delalloc
9ed74f2d 4700 */
f4c738c2
JB
4701static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4702 bool wait_ordered)
5da9d01b 4703{
0ca1f7ce 4704 struct btrfs_block_rsv *block_rsv;
0019f10d 4705 struct btrfs_space_info *space_info;
663350ac 4706 struct btrfs_trans_handle *trans;
f4c738c2 4707 u64 delalloc_bytes;
5da9d01b 4708 u64 max_reclaim;
b1953bce 4709 long time_left;
d3ee29e3
MX
4710 unsigned long nr_pages;
4711 int loops;
b0244199 4712 int items;
08e007d2 4713 enum btrfs_reserve_flush_enum flush;
5da9d01b 4714
c61a16a7 4715 /* Calc the number of the pages we need flush for space reservation */
b0244199 4716 items = calc_reclaim_items_nr(root, to_reclaim);
8eb0dfdb 4717 to_reclaim = (u64)items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4718
663350ac 4719 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4720 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4721 space_info = block_rsv->space_info;
bf9022e0 4722
963d678b
MX
4723 delalloc_bytes = percpu_counter_sum_positive(
4724 &root->fs_info->delalloc_bytes);
f4c738c2 4725 if (delalloc_bytes == 0) {
fdb5effd 4726 if (trans)
f4c738c2 4727 return;
38c135af 4728 if (wait_ordered)
578def7c
FM
4729 btrfs_wait_ordered_roots(root->fs_info, items,
4730 0, (u64)-1);
f4c738c2 4731 return;
fdb5effd
JB
4732 }
4733
d3ee29e3 4734 loops = 0;
f4c738c2
JB
4735 while (delalloc_bytes && loops < 3) {
4736 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4737 nr_pages = max_reclaim >> PAGE_SHIFT;
6c255e67 4738 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4739 /*
4740 * We need to wait for the async pages to actually start before
4741 * we do anything.
4742 */
9f3a074d
MX
4743 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4744 if (!max_reclaim)
4745 goto skip_async;
4746
4747 if (max_reclaim <= nr_pages)
4748 max_reclaim = 0;
4749 else
4750 max_reclaim -= nr_pages;
dea31f52 4751
9f3a074d
MX
4752 wait_event(root->fs_info->async_submit_wait,
4753 atomic_read(&root->fs_info->async_delalloc_pages) <=
4754 (int)max_reclaim);
4755skip_async:
08e007d2
MX
4756 if (!trans)
4757 flush = BTRFS_RESERVE_FLUSH_ALL;
4758 else
4759 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4760 spin_lock(&space_info->lock);
08e007d2 4761 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4762 spin_unlock(&space_info->lock);
4763 break;
4764 }
957780eb
JB
4765 if (list_empty(&space_info->tickets) &&
4766 list_empty(&space_info->priority_tickets)) {
4767 spin_unlock(&space_info->lock);
4768 break;
4769 }
0019f10d 4770 spin_unlock(&space_info->lock);
5da9d01b 4771
36e39c40 4772 loops++;
f104d044 4773 if (wait_ordered && !trans) {
578def7c
FM
4774 btrfs_wait_ordered_roots(root->fs_info, items,
4775 0, (u64)-1);
f104d044 4776 } else {
f4c738c2 4777 time_left = schedule_timeout_killable(1);
f104d044
JB
4778 if (time_left)
4779 break;
4780 }
963d678b
MX
4781 delalloc_bytes = percpu_counter_sum_positive(
4782 &root->fs_info->delalloc_bytes);
5da9d01b 4783 }
5da9d01b
YZ
4784}
4785
663350ac
JB
4786/**
4787 * maybe_commit_transaction - possibly commit the transaction if its ok to
4788 * @root - the root we're allocating for
4789 * @bytes - the number of bytes we want to reserve
4790 * @force - force the commit
8bb8ab2e 4791 *
663350ac
JB
4792 * This will check to make sure that committing the transaction will actually
4793 * get us somewhere and then commit the transaction if it does. Otherwise it
4794 * will return -ENOSPC.
8bb8ab2e 4795 */
663350ac
JB
4796static int may_commit_transaction(struct btrfs_root *root,
4797 struct btrfs_space_info *space_info,
4798 u64 bytes, int force)
4799{
4800 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4801 struct btrfs_trans_handle *trans;
4802
4803 trans = (struct btrfs_trans_handle *)current->journal_info;
4804 if (trans)
4805 return -EAGAIN;
4806
4807 if (force)
4808 goto commit;
4809
4810 /* See if there is enough pinned space to make this reservation */
b150a4f1 4811 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4812 bytes) >= 0)
663350ac 4813 goto commit;
663350ac
JB
4814
4815 /*
4816 * See if there is some space in the delayed insertion reservation for
4817 * this reservation.
4818 */
4819 if (space_info != delayed_rsv->space_info)
4820 return -ENOSPC;
4821
4822 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4823 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4824 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4825 spin_unlock(&delayed_rsv->lock);
4826 return -ENOSPC;
4827 }
4828 spin_unlock(&delayed_rsv->lock);
4829
4830commit:
4831 trans = btrfs_join_transaction(root);
4832 if (IS_ERR(trans))
4833 return -ENOSPC;
4834
4835 return btrfs_commit_transaction(trans, root);
4836}
4837
957780eb
JB
4838struct reserve_ticket {
4839 u64 bytes;
4840 int error;
4841 struct list_head list;
4842 wait_queue_head_t wait;
4843};
4844
96c3f433
JB
4845static int flush_space(struct btrfs_root *root,
4846 struct btrfs_space_info *space_info, u64 num_bytes,
4847 u64 orig_bytes, int state)
4848{
4849 struct btrfs_trans_handle *trans;
4850 int nr;
f4c738c2 4851 int ret = 0;
96c3f433
JB
4852
4853 switch (state) {
96c3f433
JB
4854 case FLUSH_DELAYED_ITEMS_NR:
4855 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4856 if (state == FLUSH_DELAYED_ITEMS_NR)
4857 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4858 else
96c3f433 4859 nr = -1;
18cd8ea6 4860
96c3f433
JB
4861 trans = btrfs_join_transaction(root);
4862 if (IS_ERR(trans)) {
4863 ret = PTR_ERR(trans);
4864 break;
4865 }
4866 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4867 btrfs_end_transaction(trans, root);
4868 break;
67b0fd63
JB
4869 case FLUSH_DELALLOC:
4870 case FLUSH_DELALLOC_WAIT:
24af7dd1 4871 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4872 state == FLUSH_DELALLOC_WAIT);
4873 break;
ea658bad
JB
4874 case ALLOC_CHUNK:
4875 trans = btrfs_join_transaction(root);
4876 if (IS_ERR(trans)) {
4877 ret = PTR_ERR(trans);
4878 break;
4879 }
4880 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4881 btrfs_get_alloc_profile(root, 0),
4882 CHUNK_ALLOC_NO_FORCE);
4883 btrfs_end_transaction(trans, root);
4884 if (ret == -ENOSPC)
4885 ret = 0;
4886 break;
96c3f433
JB
4887 case COMMIT_TRANS:
4888 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4889 break;
4890 default:
4891 ret = -ENOSPC;
4892 break;
4893 }
4894
f376df2b
JB
4895 trace_btrfs_flush_space(root->fs_info, space_info->flags, num_bytes,
4896 orig_bytes, state, ret);
96c3f433
JB
4897 return ret;
4898}
21c7e756
MX
4899
4900static inline u64
4901btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4902 struct btrfs_space_info *space_info)
4903{
957780eb 4904 struct reserve_ticket *ticket;
21c7e756
MX
4905 u64 used;
4906 u64 expected;
957780eb 4907 u64 to_reclaim = 0;
21c7e756 4908
ee22184b 4909 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
21c7e756 4910 if (can_overcommit(root, space_info, to_reclaim,
957780eb
JB
4911 BTRFS_RESERVE_FLUSH_ALL))
4912 return 0;
4913
4914 list_for_each_entry(ticket, &space_info->tickets, list)
4915 to_reclaim += ticket->bytes;
4916 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4917 to_reclaim += ticket->bytes;
4918 if (to_reclaim)
4919 return to_reclaim;
21c7e756
MX
4920
4921 used = space_info->bytes_used + space_info->bytes_reserved +
4922 space_info->bytes_pinned + space_info->bytes_readonly +
4923 space_info->bytes_may_use;
ee22184b 4924 if (can_overcommit(root, space_info, SZ_1M, BTRFS_RESERVE_FLUSH_ALL))
21c7e756
MX
4925 expected = div_factor_fine(space_info->total_bytes, 95);
4926 else
4927 expected = div_factor_fine(space_info->total_bytes, 90);
4928
4929 if (used > expected)
4930 to_reclaim = used - expected;
4931 else
4932 to_reclaim = 0;
4933 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4934 space_info->bytes_reserved);
21c7e756
MX
4935 return to_reclaim;
4936}
4937
4938static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
87241c2e 4939 struct btrfs_root *root, u64 used)
21c7e756 4940{
365c5313
JB
4941 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4942
4943 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4944 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4945 return 0;
4946
87241c2e 4947 if (!btrfs_calc_reclaim_metadata_size(root, space_info))
d38b349c
JB
4948 return 0;
4949
87241c2e
JB
4950 return (used >= thresh && !btrfs_fs_closing(root->fs_info) &&
4951 !test_bit(BTRFS_FS_STATE_REMOUNTING,
4952 &root->fs_info->fs_state));
21c7e756
MX
4953}
4954
957780eb 4955static void wake_all_tickets(struct list_head *head)
21c7e756 4956{
957780eb 4957 struct reserve_ticket *ticket;
21c7e756 4958
957780eb
JB
4959 while (!list_empty(head)) {
4960 ticket = list_first_entry(head, struct reserve_ticket, list);
4961 list_del_init(&ticket->list);
4962 ticket->error = -ENOSPC;
4963 wake_up(&ticket->wait);
25ce459c 4964 }
21c7e756
MX
4965}
4966
957780eb
JB
4967/*
4968 * This is for normal flushers, we can wait all goddamned day if we want to. We
4969 * will loop and continuously try to flush as long as we are making progress.
4970 * We count progress as clearing off tickets each time we have to loop.
4971 */
21c7e756
MX
4972static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4973{
957780eb 4974 struct reserve_ticket *last_ticket = NULL;
21c7e756
MX
4975 struct btrfs_fs_info *fs_info;
4976 struct btrfs_space_info *space_info;
4977 u64 to_reclaim;
4978 int flush_state;
957780eb 4979 int commit_cycles = 0;
21c7e756
MX
4980
4981 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4982 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4983
957780eb 4984 spin_lock(&space_info->lock);
21c7e756
MX
4985 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4986 space_info);
957780eb
JB
4987 if (!to_reclaim) {
4988 space_info->flush = 0;
4989 spin_unlock(&space_info->lock);
21c7e756 4990 return;
957780eb
JB
4991 }
4992 last_ticket = list_first_entry(&space_info->tickets,
4993 struct reserve_ticket, list);
4994 spin_unlock(&space_info->lock);
21c7e756
MX
4995
4996 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb
JB
4997 do {
4998 struct reserve_ticket *ticket;
4999 int ret;
5000
5001 ret = flush_space(fs_info->fs_root, space_info, to_reclaim,
5002 to_reclaim, flush_state);
5003 spin_lock(&space_info->lock);
5004 if (list_empty(&space_info->tickets)) {
5005 space_info->flush = 0;
5006 spin_unlock(&space_info->lock);
5007 return;
5008 }
5009 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5010 space_info);
5011 ticket = list_first_entry(&space_info->tickets,
5012 struct reserve_ticket, list);
5013 if (last_ticket == ticket) {
5014 flush_state++;
5015 } else {
5016 last_ticket = ticket;
5017 flush_state = FLUSH_DELAYED_ITEMS_NR;
5018 if (commit_cycles)
5019 commit_cycles--;
5020 }
5021
5022 if (flush_state > COMMIT_TRANS) {
5023 commit_cycles++;
5024 if (commit_cycles > 2) {
5025 wake_all_tickets(&space_info->tickets);
5026 space_info->flush = 0;
5027 } else {
5028 flush_state = FLUSH_DELAYED_ITEMS_NR;
5029 }
5030 }
5031 spin_unlock(&space_info->lock);
5032 } while (flush_state <= COMMIT_TRANS);
5033}
5034
5035void btrfs_init_async_reclaim_work(struct work_struct *work)
5036{
5037 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5038}
5039
5040static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5041 struct btrfs_space_info *space_info,
5042 struct reserve_ticket *ticket)
5043{
5044 u64 to_reclaim;
5045 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5046
5047 spin_lock(&space_info->lock);
5048 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
5049 space_info);
5050 if (!to_reclaim) {
5051 spin_unlock(&space_info->lock);
5052 return;
5053 }
5054 spin_unlock(&space_info->lock);
5055
21c7e756
MX
5056 do {
5057 flush_space(fs_info->fs_root, space_info, to_reclaim,
5058 to_reclaim, flush_state);
5059 flush_state++;
957780eb
JB
5060 spin_lock(&space_info->lock);
5061 if (ticket->bytes == 0) {
5062 spin_unlock(&space_info->lock);
21c7e756 5063 return;
957780eb
JB
5064 }
5065 spin_unlock(&space_info->lock);
5066
5067 /*
5068 * Priority flushers can't wait on delalloc without
5069 * deadlocking.
5070 */
5071 if (flush_state == FLUSH_DELALLOC ||
5072 flush_state == FLUSH_DELALLOC_WAIT)
5073 flush_state = ALLOC_CHUNK;
365c5313 5074 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5075}
5076
957780eb
JB
5077static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5078 struct btrfs_space_info *space_info,
5079 struct reserve_ticket *ticket, u64 orig_bytes)
5080
21c7e756 5081{
957780eb
JB
5082 DEFINE_WAIT(wait);
5083 int ret = 0;
5084
5085 spin_lock(&space_info->lock);
5086 while (ticket->bytes > 0 && ticket->error == 0) {
5087 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5088 if (ret) {
5089 ret = -EINTR;
5090 break;
5091 }
5092 spin_unlock(&space_info->lock);
5093
5094 schedule();
5095
5096 finish_wait(&ticket->wait, &wait);
5097 spin_lock(&space_info->lock);
5098 }
5099 if (!ret)
5100 ret = ticket->error;
5101 if (!list_empty(&ticket->list))
5102 list_del_init(&ticket->list);
5103 if (ticket->bytes && ticket->bytes < orig_bytes) {
5104 u64 num_bytes = orig_bytes - ticket->bytes;
5105 space_info->bytes_may_use -= num_bytes;
5106 trace_btrfs_space_reservation(fs_info, "space_info",
5107 space_info->flags, num_bytes, 0);
5108 }
5109 spin_unlock(&space_info->lock);
5110
5111 return ret;
21c7e756
MX
5112}
5113
4a92b1b8
JB
5114/**
5115 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5116 * @root - the root we're allocating for
957780eb 5117 * @space_info - the space info we want to allocate from
4a92b1b8 5118 * @orig_bytes - the number of bytes we want
48fc7f7e 5119 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5120 *
01327610 5121 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5122 * with the block_rsv. If there is not enough space it will make an attempt to
5123 * flush out space to make room. It will do this by flushing delalloc if
5124 * possible or committing the transaction. If flush is 0 then no attempts to
5125 * regain reservations will be made and this will fail if there is not enough
5126 * space already.
8bb8ab2e 5127 */
957780eb
JB
5128static int __reserve_metadata_bytes(struct btrfs_root *root,
5129 struct btrfs_space_info *space_info,
5130 u64 orig_bytes,
5131 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5132{
957780eb 5133 struct reserve_ticket ticket;
2bf64758 5134 u64 used;
8bb8ab2e 5135 int ret = 0;
9ed74f2d 5136
957780eb 5137 ASSERT(orig_bytes);
8bb8ab2e 5138 spin_lock(&space_info->lock);
fdb5effd 5139 ret = -ENOSPC;
2bf64758
JB
5140 used = space_info->bytes_used + space_info->bytes_reserved +
5141 space_info->bytes_pinned + space_info->bytes_readonly +
5142 space_info->bytes_may_use;
9ed74f2d 5143
8bb8ab2e 5144 /*
957780eb
JB
5145 * If we have enough space then hooray, make our reservation and carry
5146 * on. If not see if we can overcommit, and if we can, hooray carry on.
5147 * If not things get more complicated.
8bb8ab2e 5148 */
957780eb
JB
5149 if (used + orig_bytes <= space_info->total_bytes) {
5150 space_info->bytes_may_use += orig_bytes;
5151 trace_btrfs_space_reservation(root->fs_info, "space_info",
5152 space_info->flags, orig_bytes,
5153 1);
5154 ret = 0;
5155 } else if (can_overcommit(root, space_info, orig_bytes, flush)) {
44734ed1
JB
5156 space_info->bytes_may_use += orig_bytes;
5157 trace_btrfs_space_reservation(root->fs_info, "space_info",
5158 space_info->flags, orig_bytes,
5159 1);
5160 ret = 0;
2bf64758
JB
5161 }
5162
8bb8ab2e 5163 /*
957780eb
JB
5164 * If we couldn't make a reservation then setup our reservation ticket
5165 * and kick the async worker if it's not already running.
08e007d2 5166 *
957780eb
JB
5167 * If we are a priority flusher then we just need to add our ticket to
5168 * the list and we will do our own flushing further down.
8bb8ab2e 5169 */
72bcd99d 5170 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5171 ticket.bytes = orig_bytes;
5172 ticket.error = 0;
5173 init_waitqueue_head(&ticket.wait);
5174 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5175 list_add_tail(&ticket.list, &space_info->tickets);
5176 if (!space_info->flush) {
5177 space_info->flush = 1;
f376df2b
JB
5178 trace_btrfs_trigger_flush(root->fs_info,
5179 space_info->flags,
5180 orig_bytes, flush,
5181 "enospc");
957780eb
JB
5182 queue_work(system_unbound_wq,
5183 &root->fs_info->async_reclaim_work);
5184 }
5185 } else {
5186 list_add_tail(&ticket.list,
5187 &space_info->priority_tickets);
5188 }
21c7e756
MX
5189 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5190 used += orig_bytes;
f6acfd50
JB
5191 /*
5192 * We will do the space reservation dance during log replay,
5193 * which means we won't have fs_info->fs_root set, so don't do
5194 * the async reclaim as we will panic.
5195 */
5196 if (!root->fs_info->log_root_recovering &&
87241c2e 5197 need_do_async_reclaim(space_info, root, used) &&
f376df2b
JB
5198 !work_busy(&root->fs_info->async_reclaim_work)) {
5199 trace_btrfs_trigger_flush(root->fs_info,
5200 space_info->flags,
5201 orig_bytes, flush,
5202 "preempt");
21c7e756
MX
5203 queue_work(system_unbound_wq,
5204 &root->fs_info->async_reclaim_work);
f376df2b 5205 }
8bb8ab2e 5206 }
f0486c68 5207 spin_unlock(&space_info->lock);
08e007d2 5208 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5209 return ret;
f0486c68 5210
957780eb
JB
5211 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5212 return wait_reserve_ticket(root->fs_info, space_info, &ticket,
5213 orig_bytes);
08e007d2 5214
957780eb
JB
5215 ret = 0;
5216 priority_reclaim_metadata_space(root->fs_info, space_info, &ticket);
5217 spin_lock(&space_info->lock);
5218 if (ticket.bytes) {
5219 if (ticket.bytes < orig_bytes) {
5220 u64 num_bytes = orig_bytes - ticket.bytes;
5221 space_info->bytes_may_use -= num_bytes;
5222 trace_btrfs_space_reservation(root->fs_info,
5223 "space_info", space_info->flags,
5224 num_bytes, 0);
08e007d2 5225
957780eb
JB
5226 }
5227 list_del_init(&ticket.list);
5228 ret = -ENOSPC;
5229 }
5230 spin_unlock(&space_info->lock);
5231 ASSERT(list_empty(&ticket.list));
5232 return ret;
5233}
8bb8ab2e 5234
957780eb
JB
5235/**
5236 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5237 * @root - the root we're allocating for
5238 * @block_rsv - the block_rsv we're allocating for
5239 * @orig_bytes - the number of bytes we want
5240 * @flush - whether or not we can flush to make our reservation
5241 *
5242 * This will reserve orgi_bytes number of bytes from the space info associated
5243 * with the block_rsv. If there is not enough space it will make an attempt to
5244 * flush out space to make room. It will do this by flushing delalloc if
5245 * possible or committing the transaction. If flush is 0 then no attempts to
5246 * regain reservations will be made and this will fail if there is not enough
5247 * space already.
5248 */
5249static int reserve_metadata_bytes(struct btrfs_root *root,
5250 struct btrfs_block_rsv *block_rsv,
5251 u64 orig_bytes,
5252 enum btrfs_reserve_flush_enum flush)
5253{
5254 int ret;
5255
5256 ret = __reserve_metadata_bytes(root, block_rsv->space_info, orig_bytes,
5257 flush);
5d80366e
JB
5258 if (ret == -ENOSPC &&
5259 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5260 struct btrfs_block_rsv *global_rsv =
5261 &root->fs_info->global_block_rsv;
5262
5263 if (block_rsv != global_rsv &&
5264 !block_rsv_use_bytes(global_rsv, orig_bytes))
5265 ret = 0;
5266 }
cab45e22
JM
5267 if (ret == -ENOSPC)
5268 trace_btrfs_space_reservation(root->fs_info,
5269 "space_info:enospc",
957780eb
JB
5270 block_rsv->space_info->flags,
5271 orig_bytes, 1);
f0486c68
YZ
5272 return ret;
5273}
5274
79787eaa
JM
5275static struct btrfs_block_rsv *get_block_rsv(
5276 const struct btrfs_trans_handle *trans,
5277 const struct btrfs_root *root)
f0486c68 5278{
4c13d758
JB
5279 struct btrfs_block_rsv *block_rsv = NULL;
5280
e9cf439f
AM
5281 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5282 (root == root->fs_info->csum_root && trans->adding_csums) ||
5283 (root == root->fs_info->uuid_root))
f7a81ea4
SB
5284 block_rsv = trans->block_rsv;
5285
4c13d758 5286 if (!block_rsv)
f0486c68
YZ
5287 block_rsv = root->block_rsv;
5288
5289 if (!block_rsv)
5290 block_rsv = &root->fs_info->empty_block_rsv;
5291
5292 return block_rsv;
5293}
5294
5295static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5296 u64 num_bytes)
5297{
5298 int ret = -ENOSPC;
5299 spin_lock(&block_rsv->lock);
5300 if (block_rsv->reserved >= num_bytes) {
5301 block_rsv->reserved -= num_bytes;
5302 if (block_rsv->reserved < block_rsv->size)
5303 block_rsv->full = 0;
5304 ret = 0;
5305 }
5306 spin_unlock(&block_rsv->lock);
5307 return ret;
5308}
5309
5310static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5311 u64 num_bytes, int update_size)
5312{
5313 spin_lock(&block_rsv->lock);
5314 block_rsv->reserved += num_bytes;
5315 if (update_size)
5316 block_rsv->size += num_bytes;
5317 else if (block_rsv->reserved >= block_rsv->size)
5318 block_rsv->full = 1;
5319 spin_unlock(&block_rsv->lock);
5320}
5321
d52be818
JB
5322int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5323 struct btrfs_block_rsv *dest, u64 num_bytes,
5324 int min_factor)
5325{
5326 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5327 u64 min_bytes;
5328
5329 if (global_rsv->space_info != dest->space_info)
5330 return -ENOSPC;
5331
5332 spin_lock(&global_rsv->lock);
5333 min_bytes = div_factor(global_rsv->size, min_factor);
5334 if (global_rsv->reserved < min_bytes + num_bytes) {
5335 spin_unlock(&global_rsv->lock);
5336 return -ENOSPC;
5337 }
5338 global_rsv->reserved -= num_bytes;
5339 if (global_rsv->reserved < global_rsv->size)
5340 global_rsv->full = 0;
5341 spin_unlock(&global_rsv->lock);
5342
5343 block_rsv_add_bytes(dest, num_bytes, 1);
5344 return 0;
5345}
5346
957780eb
JB
5347/*
5348 * This is for space we already have accounted in space_info->bytes_may_use, so
5349 * basically when we're returning space from block_rsv's.
5350 */
5351static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5352 struct btrfs_space_info *space_info,
5353 u64 num_bytes)
5354{
5355 struct reserve_ticket *ticket;
5356 struct list_head *head;
5357 u64 used;
5358 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5359 bool check_overcommit = false;
5360
5361 spin_lock(&space_info->lock);
5362 head = &space_info->priority_tickets;
5363
5364 /*
5365 * If we are over our limit then we need to check and see if we can
5366 * overcommit, and if we can't then we just need to free up our space
5367 * and not satisfy any requests.
5368 */
5369 used = space_info->bytes_used + space_info->bytes_reserved +
5370 space_info->bytes_pinned + space_info->bytes_readonly +
5371 space_info->bytes_may_use;
5372 if (used - num_bytes >= space_info->total_bytes)
5373 check_overcommit = true;
5374again:
5375 while (!list_empty(head) && num_bytes) {
5376 ticket = list_first_entry(head, struct reserve_ticket,
5377 list);
5378 /*
5379 * We use 0 bytes because this space is already reserved, so
5380 * adding the ticket space would be a double count.
5381 */
5382 if (check_overcommit &&
5383 !can_overcommit(fs_info->extent_root, space_info, 0,
5384 flush))
5385 break;
5386 if (num_bytes >= ticket->bytes) {
5387 list_del_init(&ticket->list);
5388 num_bytes -= ticket->bytes;
5389 ticket->bytes = 0;
5390 wake_up(&ticket->wait);
5391 } else {
5392 ticket->bytes -= num_bytes;
5393 num_bytes = 0;
5394 }
5395 }
5396
5397 if (num_bytes && head == &space_info->priority_tickets) {
5398 head = &space_info->tickets;
5399 flush = BTRFS_RESERVE_FLUSH_ALL;
5400 goto again;
5401 }
5402 space_info->bytes_may_use -= num_bytes;
5403 trace_btrfs_space_reservation(fs_info, "space_info",
5404 space_info->flags, num_bytes, 0);
5405 spin_unlock(&space_info->lock);
5406}
5407
5408/*
5409 * This is for newly allocated space that isn't accounted in
5410 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5411 * we use this helper.
5412 */
5413static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5414 struct btrfs_space_info *space_info,
5415 u64 num_bytes)
5416{
5417 struct reserve_ticket *ticket;
5418 struct list_head *head = &space_info->priority_tickets;
5419
5420again:
5421 while (!list_empty(head) && num_bytes) {
5422 ticket = list_first_entry(head, struct reserve_ticket,
5423 list);
5424 if (num_bytes >= ticket->bytes) {
5425 trace_btrfs_space_reservation(fs_info, "space_info",
5426 space_info->flags,
5427 ticket->bytes, 1);
5428 list_del_init(&ticket->list);
5429 num_bytes -= ticket->bytes;
5430 space_info->bytes_may_use += ticket->bytes;
5431 ticket->bytes = 0;
5432 wake_up(&ticket->wait);
5433 } else {
5434 trace_btrfs_space_reservation(fs_info, "space_info",
5435 space_info->flags,
5436 num_bytes, 1);
5437 space_info->bytes_may_use += num_bytes;
5438 ticket->bytes -= num_bytes;
5439 num_bytes = 0;
5440 }
5441 }
5442
5443 if (num_bytes && head == &space_info->priority_tickets) {
5444 head = &space_info->tickets;
5445 goto again;
5446 }
5447}
5448
8c2a3ca2
JB
5449static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5450 struct btrfs_block_rsv *block_rsv,
62a45b60 5451 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5452{
5453 struct btrfs_space_info *space_info = block_rsv->space_info;
5454
5455 spin_lock(&block_rsv->lock);
5456 if (num_bytes == (u64)-1)
5457 num_bytes = block_rsv->size;
5458 block_rsv->size -= num_bytes;
5459 if (block_rsv->reserved >= block_rsv->size) {
5460 num_bytes = block_rsv->reserved - block_rsv->size;
5461 block_rsv->reserved = block_rsv->size;
5462 block_rsv->full = 1;
5463 } else {
5464 num_bytes = 0;
5465 }
5466 spin_unlock(&block_rsv->lock);
5467
5468 if (num_bytes > 0) {
5469 if (dest) {
e9e22899
JB
5470 spin_lock(&dest->lock);
5471 if (!dest->full) {
5472 u64 bytes_to_add;
5473
5474 bytes_to_add = dest->size - dest->reserved;
5475 bytes_to_add = min(num_bytes, bytes_to_add);
5476 dest->reserved += bytes_to_add;
5477 if (dest->reserved >= dest->size)
5478 dest->full = 1;
5479 num_bytes -= bytes_to_add;
5480 }
5481 spin_unlock(&dest->lock);
5482 }
957780eb
JB
5483 if (num_bytes)
5484 space_info_add_old_bytes(fs_info, space_info,
5485 num_bytes);
9ed74f2d 5486 }
f0486c68 5487}
4e06bdd6 5488
25d609f8
JB
5489int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5490 struct btrfs_block_rsv *dst, u64 num_bytes,
5491 int update_size)
f0486c68
YZ
5492{
5493 int ret;
9ed74f2d 5494
f0486c68
YZ
5495 ret = block_rsv_use_bytes(src, num_bytes);
5496 if (ret)
5497 return ret;
9ed74f2d 5498
25d609f8 5499 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5500 return 0;
5501}
5502
66d8f3dd 5503void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5504{
f0486c68
YZ
5505 memset(rsv, 0, sizeof(*rsv));
5506 spin_lock_init(&rsv->lock);
66d8f3dd 5507 rsv->type = type;
f0486c68
YZ
5508}
5509
66d8f3dd
MX
5510struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5511 unsigned short type)
f0486c68
YZ
5512{
5513 struct btrfs_block_rsv *block_rsv;
5514 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5515
f0486c68
YZ
5516 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5517 if (!block_rsv)
5518 return NULL;
9ed74f2d 5519
66d8f3dd 5520 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5521 block_rsv->space_info = __find_space_info(fs_info,
5522 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5523 return block_rsv;
5524}
9ed74f2d 5525
f0486c68
YZ
5526void btrfs_free_block_rsv(struct btrfs_root *root,
5527 struct btrfs_block_rsv *rsv)
5528{
2aaa6655
JB
5529 if (!rsv)
5530 return;
dabdb640
JB
5531 btrfs_block_rsv_release(root, rsv, (u64)-1);
5532 kfree(rsv);
9ed74f2d
JB
5533}
5534
cdfb080e
CM
5535void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5536{
5537 kfree(rsv);
5538}
5539
08e007d2
MX
5540int btrfs_block_rsv_add(struct btrfs_root *root,
5541 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5542 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5543{
f0486c68 5544 int ret;
9ed74f2d 5545
f0486c68
YZ
5546 if (num_bytes == 0)
5547 return 0;
8bb8ab2e 5548
61b520a9 5549 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5550 if (!ret) {
5551 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5552 return 0;
5553 }
9ed74f2d 5554
f0486c68 5555 return ret;
f0486c68 5556}
9ed74f2d 5557
4a92b1b8 5558int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5559 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5560{
5561 u64 num_bytes = 0;
f0486c68 5562 int ret = -ENOSPC;
9ed74f2d 5563
f0486c68
YZ
5564 if (!block_rsv)
5565 return 0;
9ed74f2d 5566
f0486c68 5567 spin_lock(&block_rsv->lock);
36ba022a
JB
5568 num_bytes = div_factor(block_rsv->size, min_factor);
5569 if (block_rsv->reserved >= num_bytes)
5570 ret = 0;
5571 spin_unlock(&block_rsv->lock);
9ed74f2d 5572
36ba022a
JB
5573 return ret;
5574}
5575
08e007d2
MX
5576int btrfs_block_rsv_refill(struct btrfs_root *root,
5577 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5578 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5579{
5580 u64 num_bytes = 0;
5581 int ret = -ENOSPC;
5582
5583 if (!block_rsv)
5584 return 0;
5585
5586 spin_lock(&block_rsv->lock);
5587 num_bytes = min_reserved;
13553e52 5588 if (block_rsv->reserved >= num_bytes)
f0486c68 5589 ret = 0;
13553e52 5590 else
f0486c68 5591 num_bytes -= block_rsv->reserved;
f0486c68 5592 spin_unlock(&block_rsv->lock);
13553e52 5593
f0486c68
YZ
5594 if (!ret)
5595 return 0;
5596
aa38a711 5597 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5598 if (!ret) {
5599 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5600 return 0;
6a63209f 5601 }
9ed74f2d 5602
13553e52 5603 return ret;
f0486c68
YZ
5604}
5605
f0486c68
YZ
5606void btrfs_block_rsv_release(struct btrfs_root *root,
5607 struct btrfs_block_rsv *block_rsv,
5608 u64 num_bytes)
5609{
5610 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5611 if (global_rsv == block_rsv ||
f0486c68
YZ
5612 block_rsv->space_info != global_rsv->space_info)
5613 global_rsv = NULL;
8c2a3ca2
JB
5614 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5615 num_bytes);
6a63209f
JB
5616}
5617
8929ecfa
YZ
5618static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5619{
5620 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5621 struct btrfs_space_info *sinfo = block_rsv->space_info;
5622 u64 num_bytes;
6a63209f 5623
ae2e4728
JB
5624 /*
5625 * The global block rsv is based on the size of the extent tree, the
5626 * checksum tree and the root tree. If the fs is empty we want to set
5627 * it to a minimal amount for safety.
5628 */
5629 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5630 btrfs_root_used(&fs_info->csum_root->root_item) +
5631 btrfs_root_used(&fs_info->tree_root->root_item);
5632 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5633
8929ecfa 5634 spin_lock(&sinfo->lock);
1f699d38 5635 spin_lock(&block_rsv->lock);
4e06bdd6 5636
ee22184b 5637 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5638
fb4b10e5
JB
5639 if (block_rsv->reserved < block_rsv->size) {
5640 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
5641 sinfo->bytes_reserved + sinfo->bytes_readonly +
5642 sinfo->bytes_may_use;
5643 if (sinfo->total_bytes > num_bytes) {
5644 num_bytes = sinfo->total_bytes - num_bytes;
5645 num_bytes = min(num_bytes,
5646 block_rsv->size - block_rsv->reserved);
5647 block_rsv->reserved += num_bytes;
5648 sinfo->bytes_may_use += num_bytes;
5649 trace_btrfs_space_reservation(fs_info, "space_info",
5650 sinfo->flags, num_bytes,
5651 1);
5652 }
5653 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5654 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5655 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5656 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5657 sinfo->flags, num_bytes, 0);
8929ecfa 5658 block_rsv->reserved = block_rsv->size;
8929ecfa 5659 }
182608c8 5660
fb4b10e5
JB
5661 if (block_rsv->reserved == block_rsv->size)
5662 block_rsv->full = 1;
5663 else
5664 block_rsv->full = 0;
5665
8929ecfa 5666 spin_unlock(&block_rsv->lock);
1f699d38 5667 spin_unlock(&sinfo->lock);
6a63209f
JB
5668}
5669
f0486c68 5670static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5671{
f0486c68 5672 struct btrfs_space_info *space_info;
6a63209f 5673
f0486c68
YZ
5674 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5675 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5676
f0486c68 5677 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5678 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5679 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5680 fs_info->trans_block_rsv.space_info = space_info;
5681 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5682 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5683
8929ecfa
YZ
5684 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5685 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5686 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5687 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5688 if (fs_info->quota_root)
5689 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5690 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5691
8929ecfa 5692 update_global_block_rsv(fs_info);
6a63209f
JB
5693}
5694
8929ecfa 5695static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5696{
8c2a3ca2
JB
5697 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5698 (u64)-1);
8929ecfa
YZ
5699 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5700 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5701 WARN_ON(fs_info->trans_block_rsv.size > 0);
5702 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5703 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5704 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5705 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5706 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5707}
5708
a22285a6
YZ
5709void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5710 struct btrfs_root *root)
6a63209f 5711{
0e721106
JB
5712 if (!trans->block_rsv)
5713 return;
5714
a22285a6
YZ
5715 if (!trans->bytes_reserved)
5716 return;
6a63209f 5717
e77266e4 5718 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5719 trans->transid, trans->bytes_reserved, 0);
b24e03db 5720 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5721 trans->bytes_reserved = 0;
5722}
6a63209f 5723
4fbcdf66
FM
5724/*
5725 * To be called after all the new block groups attached to the transaction
5726 * handle have been created (btrfs_create_pending_block_groups()).
5727 */
5728void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5729{
5730 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5731
5732 if (!trans->chunk_bytes_reserved)
5733 return;
5734
5735 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5736
5737 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5738 trans->chunk_bytes_reserved);
5739 trans->chunk_bytes_reserved = 0;
5740}
5741
79787eaa 5742/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5743int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5744 struct inode *inode)
5745{
5746 struct btrfs_root *root = BTRFS_I(inode)->root;
5747 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5748 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5749
5750 /*
fcb80c2a
JB
5751 * We need to hold space in order to delete our orphan item once we've
5752 * added it, so this takes the reservation so we can release it later
5753 * when we are truly done with the orphan item.
d68fc57b 5754 */
ff5714cc 5755 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5756 trace_btrfs_space_reservation(root->fs_info, "orphan",
5757 btrfs_ino(inode), num_bytes, 1);
25d609f8 5758 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5759}
5760
d68fc57b 5761void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5762{
d68fc57b 5763 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5764 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5765 trace_btrfs_space_reservation(root->fs_info, "orphan",
5766 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5767 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5768}
97e728d4 5769
d5c12070
MX
5770/*
5771 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5772 * root: the root of the parent directory
5773 * rsv: block reservation
5774 * items: the number of items that we need do reservation
5775 * qgroup_reserved: used to return the reserved size in qgroup
5776 *
5777 * This function is used to reserve the space for snapshot/subvolume
5778 * creation and deletion. Those operations are different with the
5779 * common file/directory operations, they change two fs/file trees
5780 * and root tree, the number of items that the qgroup reserves is
5781 * different with the free space reservation. So we can not use
01327610 5782 * the space reservation mechanism in start_transaction().
d5c12070
MX
5783 */
5784int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5785 struct btrfs_block_rsv *rsv,
5786 int items,
ee3441b4
JM
5787 u64 *qgroup_reserved,
5788 bool use_global_rsv)
a22285a6 5789{
d5c12070
MX
5790 u64 num_bytes;
5791 int ret;
ee3441b4 5792 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5793
5794 if (root->fs_info->quota_enabled) {
5795 /* One for parent inode, two for dir entries */
707e8a07 5796 num_bytes = 3 * root->nodesize;
7174109c 5797 ret = btrfs_qgroup_reserve_meta(root, num_bytes);
d5c12070
MX
5798 if (ret)
5799 return ret;
5800 } else {
5801 num_bytes = 0;
5802 }
5803
5804 *qgroup_reserved = num_bytes;
5805
5806 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5807 rsv->space_info = __find_space_info(root->fs_info,
5808 BTRFS_BLOCK_GROUP_METADATA);
5809 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5810 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5811
5812 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5813 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5814
7174109c
QW
5815 if (ret && *qgroup_reserved)
5816 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
5817
5818 return ret;
5819}
5820
5821void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5822 struct btrfs_block_rsv *rsv,
5823 u64 qgroup_reserved)
5824{
5825 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5826}
5827
7709cde3
JB
5828/**
5829 * drop_outstanding_extent - drop an outstanding extent
5830 * @inode: the inode we're dropping the extent for
01327610 5831 * @num_bytes: the number of bytes we're releasing.
7709cde3
JB
5832 *
5833 * This is called when we are freeing up an outstanding extent, either called
5834 * after an error or after an extent is written. This will return the number of
5835 * reserved extents that need to be freed. This must be called with
5836 * BTRFS_I(inode)->lock held.
5837 */
dcab6a3b 5838static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5839{
7fd2ae21 5840 unsigned drop_inode_space = 0;
9e0baf60 5841 unsigned dropped_extents = 0;
dcab6a3b 5842 unsigned num_extents = 0;
9e0baf60 5843
dcab6a3b
JB
5844 num_extents = (unsigned)div64_u64(num_bytes +
5845 BTRFS_MAX_EXTENT_SIZE - 1,
5846 BTRFS_MAX_EXTENT_SIZE);
5847 ASSERT(num_extents);
5848 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5849 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5850
7fd2ae21 5851 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5852 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5853 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5854 drop_inode_space = 1;
7fd2ae21 5855
9e0baf60 5856 /*
01327610 5857 * If we have more or the same amount of outstanding extents than we have
9e0baf60
JB
5858 * reserved then we need to leave the reserved extents count alone.
5859 */
5860 if (BTRFS_I(inode)->outstanding_extents >=
5861 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5862 return drop_inode_space;
9e0baf60
JB
5863
5864 dropped_extents = BTRFS_I(inode)->reserved_extents -
5865 BTRFS_I(inode)->outstanding_extents;
5866 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5867 return dropped_extents + drop_inode_space;
9e0baf60
JB
5868}
5869
7709cde3 5870/**
01327610
NS
5871 * calc_csum_metadata_size - return the amount of metadata space that must be
5872 * reserved/freed for the given bytes.
7709cde3
JB
5873 * @inode: the inode we're manipulating
5874 * @num_bytes: the number of bytes in question
5875 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5876 *
5877 * This adjusts the number of csum_bytes in the inode and then returns the
5878 * correct amount of metadata that must either be reserved or freed. We
5879 * calculate how many checksums we can fit into one leaf and then divide the
5880 * number of bytes that will need to be checksumed by this value to figure out
5881 * how many checksums will be required. If we are adding bytes then the number
5882 * may go up and we will return the number of additional bytes that must be
5883 * reserved. If it is going down we will return the number of bytes that must
5884 * be freed.
5885 *
5886 * This must be called with BTRFS_I(inode)->lock held.
5887 */
5888static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5889 int reserve)
6324fbf3 5890{
7709cde3 5891 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5892 u64 old_csums, num_csums;
7709cde3
JB
5893
5894 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5895 BTRFS_I(inode)->csum_bytes == 0)
5896 return 0;
5897
28f75a0e 5898 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5899 if (reserve)
5900 BTRFS_I(inode)->csum_bytes += num_bytes;
5901 else
5902 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5903 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5904
5905 /* No change, no need to reserve more */
5906 if (old_csums == num_csums)
5907 return 0;
5908
5909 if (reserve)
5910 return btrfs_calc_trans_metadata_size(root,
5911 num_csums - old_csums);
5912
5913 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5914}
c146afad 5915
0ca1f7ce
YZ
5916int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5917{
5918 struct btrfs_root *root = BTRFS_I(inode)->root;
5919 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5920 u64 to_reserve = 0;
660d3f6c 5921 u64 csum_bytes;
9e0baf60 5922 unsigned nr_extents = 0;
08e007d2 5923 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5924 int ret = 0;
c64c2bd8 5925 bool delalloc_lock = true;
88e081bf
WS
5926 u64 to_free = 0;
5927 unsigned dropped;
48c3d480 5928 bool release_extra = false;
6324fbf3 5929
c64c2bd8
JB
5930 /* If we are a free space inode we need to not flush since we will be in
5931 * the middle of a transaction commit. We also don't need the delalloc
5932 * mutex since we won't race with anybody. We need this mostly to make
5933 * lockdep shut its filthy mouth.
5934 */
5935 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5936 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5937 delalloc_lock = false;
5938 }
c09544e0 5939
08e007d2
MX
5940 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5941 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5942 schedule_timeout(1);
ec44a35c 5943
c64c2bd8
JB
5944 if (delalloc_lock)
5945 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5946
0ca1f7ce 5947 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5948
9e0baf60 5949 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5950 nr_extents = (unsigned)div64_u64(num_bytes +
5951 BTRFS_MAX_EXTENT_SIZE - 1,
5952 BTRFS_MAX_EXTENT_SIZE);
5953 BTRFS_I(inode)->outstanding_extents += nr_extents;
9e0baf60 5954
48c3d480 5955 nr_extents = 0;
9e0baf60 5956 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5957 BTRFS_I(inode)->reserved_extents)
48c3d480 5958 nr_extents += BTRFS_I(inode)->outstanding_extents -
9e0baf60 5959 BTRFS_I(inode)->reserved_extents;
57a45ced 5960
48c3d480
JB
5961 /* We always want to reserve a slot for updating the inode. */
5962 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents + 1);
7709cde3 5963 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5964 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5965 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5966
88e081bf 5967 if (root->fs_info->quota_enabled) {
7174109c
QW
5968 ret = btrfs_qgroup_reserve_meta(root,
5969 nr_extents * root->nodesize);
88e081bf
WS
5970 if (ret)
5971 goto out_fail;
5972 }
c5567237 5973
48c3d480 5974 ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
88e081bf 5975 if (unlikely(ret)) {
7174109c 5976 btrfs_qgroup_free_meta(root, nr_extents * root->nodesize);
88e081bf 5977 goto out_fail;
9e0baf60 5978 }
25179201 5979
660d3f6c 5980 spin_lock(&BTRFS_I(inode)->lock);
48c3d480 5981 if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
f485c9ee
JB
5982 &BTRFS_I(inode)->runtime_flags)) {
5983 to_reserve -= btrfs_calc_trans_metadata_size(root, 1);
48c3d480 5984 release_extra = true;
f485c9ee 5985 }
660d3f6c
JB
5986 BTRFS_I(inode)->reserved_extents += nr_extents;
5987 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5988
5989 if (delalloc_lock)
5990 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5991
8c2a3ca2 5992 if (to_reserve)
67871254 5993 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5994 btrfs_ino(inode), to_reserve, 1);
48c3d480
JB
5995 if (release_extra)
5996 btrfs_block_rsv_release(root, block_rsv,
5997 btrfs_calc_trans_metadata_size(root,
5998 1));
0ca1f7ce 5999 return 0;
88e081bf
WS
6000
6001out_fail:
6002 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6003 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
6004 /*
6005 * If the inodes csum_bytes is the same as the original
6006 * csum_bytes then we know we haven't raced with any free()ers
6007 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 6008 */
f4881bc7 6009 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 6010 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
6011 } else {
6012 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
6013 u64 bytes;
6014
6015 /*
6016 * This is tricky, but first we need to figure out how much we
01327610 6017 * freed from any free-ers that occurred during this
f4881bc7
JB
6018 * reservation, so we reset ->csum_bytes to the csum_bytes
6019 * before we dropped our lock, and then call the free for the
6020 * number of bytes that were freed while we were trying our
6021 * reservation.
6022 */
6023 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
6024 BTRFS_I(inode)->csum_bytes = csum_bytes;
6025 to_free = calc_csum_metadata_size(inode, bytes, 0);
6026
6027
6028 /*
6029 * Now we need to see how much we would have freed had we not
6030 * been making this reservation and our ->csum_bytes were not
6031 * artificially inflated.
6032 */
6033 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
6034 bytes = csum_bytes - orig_csum_bytes;
6035 bytes = calc_csum_metadata_size(inode, bytes, 0);
6036
6037 /*
6038 * Now reset ->csum_bytes to what it should be. If bytes is
01327610 6039 * more than to_free then we would have freed more space had we
f4881bc7
JB
6040 * not had an artificially high ->csum_bytes, so we need to free
6041 * the remainder. If bytes is the same or less then we don't
6042 * need to do anything, the other free-ers did the correct
6043 * thing.
6044 */
6045 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
6046 if (bytes > to_free)
6047 to_free = bytes - to_free;
6048 else
6049 to_free = 0;
6050 }
88e081bf 6051 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 6052 if (dropped)
88e081bf
WS
6053 to_free += btrfs_calc_trans_metadata_size(root, dropped);
6054
6055 if (to_free) {
6056 btrfs_block_rsv_release(root, block_rsv, to_free);
6057 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6058 btrfs_ino(inode), to_free, 0);
6059 }
6060 if (delalloc_lock)
6061 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
6062 return ret;
0ca1f7ce
YZ
6063}
6064
7709cde3
JB
6065/**
6066 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6067 * @inode: the inode to release the reservation for
6068 * @num_bytes: the number of bytes we're releasing
6069 *
6070 * This will release the metadata reservation for an inode. This can be called
6071 * once we complete IO for a given set of bytes to release their metadata
6072 * reservations.
6073 */
0ca1f7ce
YZ
6074void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
6075{
6076 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
6077 u64 to_free = 0;
6078 unsigned dropped;
0ca1f7ce
YZ
6079
6080 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 6081 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 6082 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 6083
0934856d
MX
6084 if (num_bytes)
6085 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 6086 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
6087 if (dropped > 0)
6088 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 6089
6a3891c5
JB
6090 if (btrfs_test_is_dummy_root(root))
6091 return;
6092
8c2a3ca2
JB
6093 trace_btrfs_space_reservation(root->fs_info, "delalloc",
6094 btrfs_ino(inode), to_free, 0);
c5567237 6095
0ca1f7ce
YZ
6096 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
6097 to_free);
6098}
6099
1ada3a62 6100/**
7cf5b976 6101 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6102 * delalloc
6103 * @inode: inode we're writing to
6104 * @start: start range we are writing to
6105 * @len: how long the range we are writing to
6106 *
6107 * TODO: This function will finally replace old btrfs_delalloc_reserve_space()
6108 *
6109 * This will do the following things
6110 *
6111 * o reserve space in data space info for num bytes
6112 * and reserve precious corresponding qgroup space
6113 * (Done in check_data_free_space)
6114 *
6115 * o reserve space for metadata space, based on the number of outstanding
6116 * extents and how much csums will be needed
6117 * also reserve metadata space in a per root over-reserve method.
6118 * o add to the inodes->delalloc_bytes
6119 * o add it to the fs_info's delalloc inodes list.
6120 * (Above 3 all done in delalloc_reserve_metadata)
6121 *
6122 * Return 0 for success
6123 * Return <0 for error(-ENOSPC or -EQUOT)
6124 */
7cf5b976 6125int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6126{
6127 int ret;
6128
7cf5b976 6129 ret = btrfs_check_data_free_space(inode, start, len);
1ada3a62
QW
6130 if (ret < 0)
6131 return ret;
6132 ret = btrfs_delalloc_reserve_metadata(inode, len);
6133 if (ret < 0)
7cf5b976 6134 btrfs_free_reserved_data_space(inode, start, len);
1ada3a62
QW
6135 return ret;
6136}
6137
7709cde3 6138/**
7cf5b976 6139 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6140 * @inode: inode we're releasing space for
6141 * @start: start position of the space already reserved
6142 * @len: the len of the space already reserved
6143 *
6144 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
6145 * called in the case that we don't need the metadata AND data reservations
6146 * anymore. So if there is an error or we insert an inline extent.
6147 *
6148 * This function will release the metadata space that was not used and will
6149 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6150 * list if there are no delalloc bytes left.
6151 * Also it will handle the qgroup reserved space.
6152 */
7cf5b976 6153void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len)
1ada3a62
QW
6154{
6155 btrfs_delalloc_release_metadata(inode, len);
7cf5b976 6156 btrfs_free_reserved_data_space(inode, start, len);
6324fbf3
CM
6157}
6158
ce93ec54
JB
6159static int update_block_group(struct btrfs_trans_handle *trans,
6160 struct btrfs_root *root, u64 bytenr,
6161 u64 num_bytes, int alloc)
9078a3e1 6162{
0af3d00b 6163 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 6164 struct btrfs_fs_info *info = root->fs_info;
db94535d 6165 u64 total = num_bytes;
9078a3e1 6166 u64 old_val;
db94535d 6167 u64 byte_in_group;
0af3d00b 6168 int factor;
3e1ad54f 6169
5d4f98a2 6170 /* block accounting for super block */
eb73c1b7 6171 spin_lock(&info->delalloc_root_lock);
6c41761f 6172 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6173 if (alloc)
6174 old_val += num_bytes;
6175 else
6176 old_val -= num_bytes;
6c41761f 6177 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6178 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6179
d397712b 6180 while (total) {
db94535d 6181 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6182 if (!cache)
79787eaa 6183 return -ENOENT;
b742bb82
YZ
6184 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6185 BTRFS_BLOCK_GROUP_RAID1 |
6186 BTRFS_BLOCK_GROUP_RAID10))
6187 factor = 2;
6188 else
6189 factor = 1;
9d66e233
JB
6190 /*
6191 * If this block group has free space cache written out, we
6192 * need to make sure to load it if we are removing space. This
6193 * is because we need the unpinning stage to actually add the
6194 * space back to the block group, otherwise we will leak space.
6195 */
6196 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6197 cache_block_group(cache, 1);
0af3d00b 6198
db94535d
CM
6199 byte_in_group = bytenr - cache->key.objectid;
6200 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6201
25179201 6202 spin_lock(&cache->space_info->lock);
c286ac48 6203 spin_lock(&cache->lock);
0af3d00b 6204
73bc1876 6205 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
6206 cache->disk_cache_state < BTRFS_DC_CLEAR)
6207 cache->disk_cache_state = BTRFS_DC_CLEAR;
6208
9078a3e1 6209 old_val = btrfs_block_group_used(&cache->item);
db94535d 6210 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6211 if (alloc) {
db94535d 6212 old_val += num_bytes;
11833d66
YZ
6213 btrfs_set_block_group_used(&cache->item, old_val);
6214 cache->reserved -= num_bytes;
11833d66 6215 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6216 cache->space_info->bytes_used += num_bytes;
6217 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6218 spin_unlock(&cache->lock);
25179201 6219 spin_unlock(&cache->space_info->lock);
cd1bc465 6220 } else {
db94535d 6221 old_val -= num_bytes;
ae0ab003
FM
6222 btrfs_set_block_group_used(&cache->item, old_val);
6223 cache->pinned += num_bytes;
6224 cache->space_info->bytes_pinned += num_bytes;
6225 cache->space_info->bytes_used -= num_bytes;
6226 cache->space_info->disk_used -= num_bytes * factor;
6227 spin_unlock(&cache->lock);
6228 spin_unlock(&cache->space_info->lock);
47ab2a6c 6229
c51e7bb1
JB
6230 trace_btrfs_space_reservation(root->fs_info, "pinned",
6231 cache->space_info->flags,
6232 num_bytes, 1);
ae0ab003
FM
6233 set_extent_dirty(info->pinned_extents,
6234 bytenr, bytenr + num_bytes - 1,
6235 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6236 }
1bbc621e
CM
6237
6238 spin_lock(&trans->transaction->dirty_bgs_lock);
6239 if (list_empty(&cache->dirty_list)) {
6240 list_add_tail(&cache->dirty_list,
6241 &trans->transaction->dirty_bgs);
6242 trans->transaction->num_dirty_bgs++;
6243 btrfs_get_block_group(cache);
6244 }
6245 spin_unlock(&trans->transaction->dirty_bgs_lock);
6246
036a9348
FM
6247 /*
6248 * No longer have used bytes in this block group, queue it for
6249 * deletion. We do this after adding the block group to the
6250 * dirty list to avoid races between cleaner kthread and space
6251 * cache writeout.
6252 */
6253 if (!alloc && old_val == 0) {
6254 spin_lock(&info->unused_bgs_lock);
6255 if (list_empty(&cache->bg_list)) {
6256 btrfs_get_block_group(cache);
6257 list_add_tail(&cache->bg_list,
6258 &info->unused_bgs);
6259 }
6260 spin_unlock(&info->unused_bgs_lock);
6261 }
6262
fa9c0d79 6263 btrfs_put_block_group(cache);
db94535d
CM
6264 total -= num_bytes;
6265 bytenr += num_bytes;
9078a3e1
CM
6266 }
6267 return 0;
6268}
6324fbf3 6269
a061fc8d
CM
6270static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
6271{
0f9dd46c 6272 struct btrfs_block_group_cache *cache;
d2fb3437 6273 u64 bytenr;
0f9dd46c 6274
a1897fdd
LB
6275 spin_lock(&root->fs_info->block_group_cache_lock);
6276 bytenr = root->fs_info->first_logical_byte;
6277 spin_unlock(&root->fs_info->block_group_cache_lock);
6278
6279 if (bytenr < (u64)-1)
6280 return bytenr;
6281
0f9dd46c
JB
6282 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
6283 if (!cache)
a061fc8d 6284 return 0;
0f9dd46c 6285
d2fb3437 6286 bytenr = cache->key.objectid;
fa9c0d79 6287 btrfs_put_block_group(cache);
d2fb3437
YZ
6288
6289 return bytenr;
a061fc8d
CM
6290}
6291
f0486c68
YZ
6292static int pin_down_extent(struct btrfs_root *root,
6293 struct btrfs_block_group_cache *cache,
6294 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6295{
11833d66
YZ
6296 spin_lock(&cache->space_info->lock);
6297 spin_lock(&cache->lock);
6298 cache->pinned += num_bytes;
6299 cache->space_info->bytes_pinned += num_bytes;
6300 if (reserved) {
6301 cache->reserved -= num_bytes;
6302 cache->space_info->bytes_reserved -= num_bytes;
6303 }
6304 spin_unlock(&cache->lock);
6305 spin_unlock(&cache->space_info->lock);
68b38550 6306
c51e7bb1
JB
6307 trace_btrfs_space_reservation(root->fs_info, "pinned",
6308 cache->space_info->flags, num_bytes, 1);
f0486c68
YZ
6309 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
6310 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6311 return 0;
6312}
68b38550 6313
f0486c68
YZ
6314/*
6315 * this function must be called within transaction
6316 */
6317int btrfs_pin_extent(struct btrfs_root *root,
6318 u64 bytenr, u64 num_bytes, int reserved)
6319{
6320 struct btrfs_block_group_cache *cache;
68b38550 6321
f0486c68 6322 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 6323 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
6324
6325 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
6326
6327 btrfs_put_block_group(cache);
11833d66
YZ
6328 return 0;
6329}
6330
f0486c68 6331/*
e688b725
CM
6332 * this function must be called within transaction
6333 */
dcfac415 6334int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
6335 u64 bytenr, u64 num_bytes)
6336{
6337 struct btrfs_block_group_cache *cache;
b50c6e25 6338 int ret;
e688b725
CM
6339
6340 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
6341 if (!cache)
6342 return -EINVAL;
e688b725
CM
6343
6344 /*
6345 * pull in the free space cache (if any) so that our pin
6346 * removes the free space from the cache. We have load_only set
6347 * to one because the slow code to read in the free extents does check
6348 * the pinned extents.
6349 */
f6373bf3 6350 cache_block_group(cache, 1);
e688b725
CM
6351
6352 pin_down_extent(root, cache, bytenr, num_bytes, 0);
6353
6354 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6355 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6356 btrfs_put_block_group(cache);
b50c6e25 6357 return ret;
e688b725
CM
6358}
6359
8c2a1a30
JB
6360static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
6361{
6362 int ret;
6363 struct btrfs_block_group_cache *block_group;
6364 struct btrfs_caching_control *caching_ctl;
6365
6366 block_group = btrfs_lookup_block_group(root->fs_info, start);
6367 if (!block_group)
6368 return -EINVAL;
6369
6370 cache_block_group(block_group, 0);
6371 caching_ctl = get_caching_control(block_group);
6372
6373 if (!caching_ctl) {
6374 /* Logic error */
6375 BUG_ON(!block_group_cache_done(block_group));
6376 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6377 } else {
6378 mutex_lock(&caching_ctl->mutex);
6379
6380 if (start >= caching_ctl->progress) {
6381 ret = add_excluded_extent(root, start, num_bytes);
6382 } else if (start + num_bytes <= caching_ctl->progress) {
6383 ret = btrfs_remove_free_space(block_group,
6384 start, num_bytes);
6385 } else {
6386 num_bytes = caching_ctl->progress - start;
6387 ret = btrfs_remove_free_space(block_group,
6388 start, num_bytes);
6389 if (ret)
6390 goto out_lock;
6391
6392 num_bytes = (start + num_bytes) -
6393 caching_ctl->progress;
6394 start = caching_ctl->progress;
6395 ret = add_excluded_extent(root, start, num_bytes);
6396 }
6397out_lock:
6398 mutex_unlock(&caching_ctl->mutex);
6399 put_caching_control(caching_ctl);
6400 }
6401 btrfs_put_block_group(block_group);
6402 return ret;
6403}
6404
6405int btrfs_exclude_logged_extents(struct btrfs_root *log,
6406 struct extent_buffer *eb)
6407{
6408 struct btrfs_file_extent_item *item;
6409 struct btrfs_key key;
6410 int found_type;
6411 int i;
6412
6413 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
6414 return 0;
6415
6416 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6417 btrfs_item_key_to_cpu(eb, &key, i);
6418 if (key.type != BTRFS_EXTENT_DATA_KEY)
6419 continue;
6420 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6421 found_type = btrfs_file_extent_type(eb, item);
6422 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6423 continue;
6424 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6425 continue;
6426 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6427 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6428 __exclude_logged_extent(log, key.objectid, key.offset);
6429 }
6430
6431 return 0;
6432}
6433
9cfa3e34
FM
6434static void
6435btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6436{
6437 atomic_inc(&bg->reservations);
6438}
6439
6440void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6441 const u64 start)
6442{
6443 struct btrfs_block_group_cache *bg;
6444
6445 bg = btrfs_lookup_block_group(fs_info, start);
6446 ASSERT(bg);
6447 if (atomic_dec_and_test(&bg->reservations))
6448 wake_up_atomic_t(&bg->reservations);
6449 btrfs_put_block_group(bg);
6450}
6451
6452static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6453{
6454 schedule();
6455 return 0;
6456}
6457
6458void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6459{
6460 struct btrfs_space_info *space_info = bg->space_info;
6461
6462 ASSERT(bg->ro);
6463
6464 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6465 return;
6466
6467 /*
6468 * Our block group is read only but before we set it to read only,
6469 * some task might have had allocated an extent from it already, but it
6470 * has not yet created a respective ordered extent (and added it to a
6471 * root's list of ordered extents).
6472 * Therefore wait for any task currently allocating extents, since the
6473 * block group's reservations counter is incremented while a read lock
6474 * on the groups' semaphore is held and decremented after releasing
6475 * the read access on that semaphore and creating the ordered extent.
6476 */
6477 down_write(&space_info->groups_sem);
6478 up_write(&space_info->groups_sem);
6479
6480 wait_on_atomic_t(&bg->reservations,
6481 btrfs_wait_bg_reservations_atomic_t,
6482 TASK_UNINTERRUPTIBLE);
6483}
6484
fb25e914
JB
6485/**
6486 * btrfs_update_reserved_bytes - update the block_group and space info counters
6487 * @cache: The cache we are manipulating
6488 * @num_bytes: The number of bytes in question
6489 * @reserve: One of the reservation enums
e570fd27 6490 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
6491 *
6492 * This is called by the allocator when it reserves space, or by somebody who is
6493 * freeing space that was never actually used on disk. For example if you
6494 * reserve some space for a new leaf in transaction A and before transaction A
6495 * commits you free that leaf, you call this with reserve set to 0 in order to
6496 * clear the reservation.
6497 *
6498 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
6499 * ENOSPC accounting. For data we handle the reservation through clearing the
6500 * delalloc bits in the io_tree. We have to do this since we could end up
6501 * allocating less disk space for the amount of data we have reserved in the
6502 * case of compression.
6503 *
6504 * If this is a reservation and the block group has become read only we cannot
6505 * make the reservation and return -EAGAIN, otherwise this function always
6506 * succeeds.
f0486c68 6507 */
fb25e914 6508static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 6509 u64 num_bytes, int reserve, int delalloc)
11833d66 6510{
fb25e914 6511 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6512 int ret = 0;
79787eaa 6513
fb25e914
JB
6514 spin_lock(&space_info->lock);
6515 spin_lock(&cache->lock);
6516 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6517 if (cache->ro) {
6518 ret = -EAGAIN;
6519 } else {
fb25e914
JB
6520 cache->reserved += num_bytes;
6521 space_info->bytes_reserved += num_bytes;
6522 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6523 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6524 "space_info", space_info->flags,
6525 num_bytes, 0);
fb25e914
JB
6526 space_info->bytes_may_use -= num_bytes;
6527 }
e570fd27
MX
6528
6529 if (delalloc)
6530 cache->delalloc_bytes += num_bytes;
f0486c68 6531 }
fb25e914
JB
6532 } else {
6533 if (cache->ro)
6534 space_info->bytes_readonly += num_bytes;
6535 cache->reserved -= num_bytes;
6536 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6537
6538 if (delalloc)
6539 cache->delalloc_bytes -= num_bytes;
324ae4df 6540 }
fb25e914
JB
6541 spin_unlock(&cache->lock);
6542 spin_unlock(&space_info->lock);
f0486c68 6543 return ret;
324ae4df 6544}
9078a3e1 6545
143bede5 6546void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6547 struct btrfs_root *root)
e8569813 6548{
e8569813 6549 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6550 struct btrfs_caching_control *next;
6551 struct btrfs_caching_control *caching_ctl;
6552 struct btrfs_block_group_cache *cache;
e8569813 6553
9e351cc8 6554 down_write(&fs_info->commit_root_sem);
25179201 6555
11833d66
YZ
6556 list_for_each_entry_safe(caching_ctl, next,
6557 &fs_info->caching_block_groups, list) {
6558 cache = caching_ctl->block_group;
6559 if (block_group_cache_done(cache)) {
6560 cache->last_byte_to_unpin = (u64)-1;
6561 list_del_init(&caching_ctl->list);
6562 put_caching_control(caching_ctl);
e8569813 6563 } else {
11833d66 6564 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6565 }
e8569813 6566 }
11833d66
YZ
6567
6568 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6569 fs_info->pinned_extents = &fs_info->freed_extents[1];
6570 else
6571 fs_info->pinned_extents = &fs_info->freed_extents[0];
6572
9e351cc8 6573 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6574
6575 update_global_block_rsv(fs_info);
e8569813
ZY
6576}
6577
c759c4e1
JB
6578/*
6579 * Returns the free cluster for the given space info and sets empty_cluster to
6580 * what it should be based on the mount options.
6581 */
6582static struct btrfs_free_cluster *
6583fetch_cluster_info(struct btrfs_root *root, struct btrfs_space_info *space_info,
6584 u64 *empty_cluster)
6585{
6586 struct btrfs_free_cluster *ret = NULL;
6587 bool ssd = btrfs_test_opt(root, SSD);
6588
6589 *empty_cluster = 0;
6590 if (btrfs_mixed_space_info(space_info))
6591 return ret;
6592
6593 if (ssd)
ee22184b 6594 *empty_cluster = SZ_2M;
c759c4e1
JB
6595 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6596 ret = &root->fs_info->meta_alloc_cluster;
6597 if (!ssd)
ee22184b 6598 *empty_cluster = SZ_64K;
c759c4e1
JB
6599 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) && ssd) {
6600 ret = &root->fs_info->data_alloc_cluster;
6601 }
6602
6603 return ret;
6604}
6605
678886bd
FM
6606static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6607 const bool return_free_space)
ccd467d6 6608{
11833d66
YZ
6609 struct btrfs_fs_info *fs_info = root->fs_info;
6610 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6611 struct btrfs_space_info *space_info;
6612 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6613 struct btrfs_free_cluster *cluster = NULL;
11833d66 6614 u64 len;
c759c4e1
JB
6615 u64 total_unpinned = 0;
6616 u64 empty_cluster = 0;
7b398f8e 6617 bool readonly;
ccd467d6 6618
11833d66 6619 while (start <= end) {
7b398f8e 6620 readonly = false;
11833d66
YZ
6621 if (!cache ||
6622 start >= cache->key.objectid + cache->key.offset) {
6623 if (cache)
6624 btrfs_put_block_group(cache);
c759c4e1 6625 total_unpinned = 0;
11833d66 6626 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6627 BUG_ON(!cache); /* Logic error */
c759c4e1
JB
6628
6629 cluster = fetch_cluster_info(root,
6630 cache->space_info,
6631 &empty_cluster);
6632 empty_cluster <<= 1;
11833d66
YZ
6633 }
6634
6635 len = cache->key.objectid + cache->key.offset - start;
6636 len = min(len, end + 1 - start);
6637
6638 if (start < cache->last_byte_to_unpin) {
6639 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6640 if (return_free_space)
6641 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6642 }
6643
f0486c68 6644 start += len;
c759c4e1 6645 total_unpinned += len;
7b398f8e 6646 space_info = cache->space_info;
f0486c68 6647
c759c4e1
JB
6648 /*
6649 * If this space cluster has been marked as fragmented and we've
6650 * unpinned enough in this block group to potentially allow a
6651 * cluster to be created inside of it go ahead and clear the
6652 * fragmented check.
6653 */
6654 if (cluster && cluster->fragmented &&
6655 total_unpinned > empty_cluster) {
6656 spin_lock(&cluster->lock);
6657 cluster->fragmented = 0;
6658 spin_unlock(&cluster->lock);
6659 }
6660
7b398f8e 6661 spin_lock(&space_info->lock);
11833d66
YZ
6662 spin_lock(&cache->lock);
6663 cache->pinned -= len;
7b398f8e 6664 space_info->bytes_pinned -= len;
c51e7bb1
JB
6665
6666 trace_btrfs_space_reservation(fs_info, "pinned",
6667 space_info->flags, len, 0);
4f4db217 6668 space_info->max_extent_size = 0;
d288db5d 6669 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6670 if (cache->ro) {
6671 space_info->bytes_readonly += len;
6672 readonly = true;
6673 }
11833d66 6674 spin_unlock(&cache->lock);
957780eb
JB
6675 if (!readonly && return_free_space &&
6676 global_rsv->space_info == space_info) {
6677 u64 to_add = len;
6678 WARN_ON(!return_free_space);
7b398f8e
JB
6679 spin_lock(&global_rsv->lock);
6680 if (!global_rsv->full) {
957780eb
JB
6681 to_add = min(len, global_rsv->size -
6682 global_rsv->reserved);
6683 global_rsv->reserved += to_add;
6684 space_info->bytes_may_use += to_add;
7b398f8e
JB
6685 if (global_rsv->reserved >= global_rsv->size)
6686 global_rsv->full = 1;
957780eb
JB
6687 trace_btrfs_space_reservation(fs_info,
6688 "space_info",
6689 space_info->flags,
6690 to_add, 1);
6691 len -= to_add;
7b398f8e
JB
6692 }
6693 spin_unlock(&global_rsv->lock);
957780eb
JB
6694 /* Add to any tickets we may have */
6695 if (len)
6696 space_info_add_new_bytes(fs_info, space_info,
6697 len);
7b398f8e
JB
6698 }
6699 spin_unlock(&space_info->lock);
ccd467d6 6700 }
11833d66
YZ
6701
6702 if (cache)
6703 btrfs_put_block_group(cache);
ccd467d6
CM
6704 return 0;
6705}
6706
6707int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6708 struct btrfs_root *root)
a28ec197 6709{
11833d66 6710 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6711 struct btrfs_block_group_cache *block_group, *tmp;
6712 struct list_head *deleted_bgs;
11833d66 6713 struct extent_io_tree *unpin;
1a5bc167
CM
6714 u64 start;
6715 u64 end;
a28ec197 6716 int ret;
a28ec197 6717
11833d66
YZ
6718 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6719 unpin = &fs_info->freed_extents[1];
6720 else
6721 unpin = &fs_info->freed_extents[0];
6722
e33e17ee 6723 while (!trans->aborted) {
d4b450cd 6724 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6725 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6726 EXTENT_DIRTY, NULL);
d4b450cd
FM
6727 if (ret) {
6728 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6729 break;
d4b450cd 6730 }
1f3c79a2 6731
5378e607
LD
6732 if (btrfs_test_opt(root, DISCARD))
6733 ret = btrfs_discard_extent(root, start,
6734 end + 1 - start, NULL);
1f3c79a2 6735
af6f8f60 6736 clear_extent_dirty(unpin, start, end);
678886bd 6737 unpin_extent_range(root, start, end, true);
d4b450cd 6738 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6739 cond_resched();
a28ec197 6740 }
817d52f8 6741
e33e17ee
JM
6742 /*
6743 * Transaction is finished. We don't need the lock anymore. We
6744 * do need to clean up the block groups in case of a transaction
6745 * abort.
6746 */
6747 deleted_bgs = &trans->transaction->deleted_bgs;
6748 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6749 u64 trimmed = 0;
6750
6751 ret = -EROFS;
6752 if (!trans->aborted)
6753 ret = btrfs_discard_extent(root,
6754 block_group->key.objectid,
6755 block_group->key.offset,
6756 &trimmed);
6757
6758 list_del_init(&block_group->bg_list);
6759 btrfs_put_block_group_trimming(block_group);
6760 btrfs_put_block_group(block_group);
6761
6762 if (ret) {
6763 const char *errstr = btrfs_decode_error(ret);
6764 btrfs_warn(fs_info,
6765 "Discard failed while removing blockgroup: errno=%d %s\n",
6766 ret, errstr);
6767 }
6768 }
6769
e20d96d6
CM
6770 return 0;
6771}
6772
b150a4f1
JB
6773static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6774 u64 owner, u64 root_objectid)
6775{
6776 struct btrfs_space_info *space_info;
6777 u64 flags;
6778
6779 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6780 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6781 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6782 else
6783 flags = BTRFS_BLOCK_GROUP_METADATA;
6784 } else {
6785 flags = BTRFS_BLOCK_GROUP_DATA;
6786 }
6787
6788 space_info = __find_space_info(fs_info, flags);
6789 BUG_ON(!space_info); /* Logic bug */
6790 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6791}
6792
6793
5d4f98a2
YZ
6794static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6795 struct btrfs_root *root,
c682f9b3 6796 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6797 u64 root_objectid, u64 owner_objectid,
6798 u64 owner_offset, int refs_to_drop,
c682f9b3 6799 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6800{
e2fa7227 6801 struct btrfs_key key;
5d4f98a2 6802 struct btrfs_path *path;
1261ec42
CM
6803 struct btrfs_fs_info *info = root->fs_info;
6804 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6805 struct extent_buffer *leaf;
5d4f98a2
YZ
6806 struct btrfs_extent_item *ei;
6807 struct btrfs_extent_inline_ref *iref;
a28ec197 6808 int ret;
5d4f98a2 6809 int is_data;
952fccac
CM
6810 int extent_slot = 0;
6811 int found_extent = 0;
6812 int num_to_del = 1;
5d4f98a2
YZ
6813 u32 item_size;
6814 u64 refs;
c682f9b3
QW
6815 u64 bytenr = node->bytenr;
6816 u64 num_bytes = node->num_bytes;
fcebe456 6817 int last_ref = 0;
3173a18f
JB
6818 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6819 SKINNY_METADATA);
037e6390 6820
5caf2a00 6821 path = btrfs_alloc_path();
54aa1f4d
CM
6822 if (!path)
6823 return -ENOMEM;
5f26f772 6824
e4058b54 6825 path->reada = READA_FORWARD;
b9473439 6826 path->leave_spinning = 1;
5d4f98a2
YZ
6827
6828 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6829 BUG_ON(!is_data && refs_to_drop != 1);
6830
3173a18f
JB
6831 if (is_data)
6832 skinny_metadata = 0;
6833
5d4f98a2
YZ
6834 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6835 bytenr, num_bytes, parent,
6836 root_objectid, owner_objectid,
6837 owner_offset);
7bb86316 6838 if (ret == 0) {
952fccac 6839 extent_slot = path->slots[0];
5d4f98a2
YZ
6840 while (extent_slot >= 0) {
6841 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6842 extent_slot);
5d4f98a2 6843 if (key.objectid != bytenr)
952fccac 6844 break;
5d4f98a2
YZ
6845 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6846 key.offset == num_bytes) {
952fccac
CM
6847 found_extent = 1;
6848 break;
6849 }
3173a18f
JB
6850 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6851 key.offset == owner_objectid) {
6852 found_extent = 1;
6853 break;
6854 }
952fccac
CM
6855 if (path->slots[0] - extent_slot > 5)
6856 break;
5d4f98a2 6857 extent_slot--;
952fccac 6858 }
5d4f98a2
YZ
6859#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6860 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6861 if (found_extent && item_size < sizeof(*ei))
6862 found_extent = 0;
6863#endif
31840ae1 6864 if (!found_extent) {
5d4f98a2 6865 BUG_ON(iref);
56bec294 6866 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6867 NULL, refs_to_drop,
fcebe456 6868 is_data, &last_ref);
005d6427
DS
6869 if (ret) {
6870 btrfs_abort_transaction(trans, extent_root, ret);
6871 goto out;
6872 }
b3b4aa74 6873 btrfs_release_path(path);
b9473439 6874 path->leave_spinning = 1;
5d4f98a2
YZ
6875
6876 key.objectid = bytenr;
6877 key.type = BTRFS_EXTENT_ITEM_KEY;
6878 key.offset = num_bytes;
6879
3173a18f
JB
6880 if (!is_data && skinny_metadata) {
6881 key.type = BTRFS_METADATA_ITEM_KEY;
6882 key.offset = owner_objectid;
6883 }
6884
31840ae1
ZY
6885 ret = btrfs_search_slot(trans, extent_root,
6886 &key, path, -1, 1);
3173a18f
JB
6887 if (ret > 0 && skinny_metadata && path->slots[0]) {
6888 /*
6889 * Couldn't find our skinny metadata item,
6890 * see if we have ye olde extent item.
6891 */
6892 path->slots[0]--;
6893 btrfs_item_key_to_cpu(path->nodes[0], &key,
6894 path->slots[0]);
6895 if (key.objectid == bytenr &&
6896 key.type == BTRFS_EXTENT_ITEM_KEY &&
6897 key.offset == num_bytes)
6898 ret = 0;
6899 }
6900
6901 if (ret > 0 && skinny_metadata) {
6902 skinny_metadata = false;
9ce49a0b 6903 key.objectid = bytenr;
3173a18f
JB
6904 key.type = BTRFS_EXTENT_ITEM_KEY;
6905 key.offset = num_bytes;
6906 btrfs_release_path(path);
6907 ret = btrfs_search_slot(trans, extent_root,
6908 &key, path, -1, 1);
6909 }
6910
f3465ca4 6911 if (ret) {
c2cf52eb 6912 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6913 ret, bytenr);
b783e62d
JB
6914 if (ret > 0)
6915 btrfs_print_leaf(extent_root,
6916 path->nodes[0]);
f3465ca4 6917 }
005d6427
DS
6918 if (ret < 0) {
6919 btrfs_abort_transaction(trans, extent_root, ret);
6920 goto out;
6921 }
31840ae1
ZY
6922 extent_slot = path->slots[0];
6923 }
fae7f21c 6924 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6925 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6926 btrfs_err(info,
6927 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6928 bytenr, parent, root_objectid, owner_objectid,
6929 owner_offset);
c4a050bb
JB
6930 btrfs_abort_transaction(trans, extent_root, ret);
6931 goto out;
79787eaa 6932 } else {
005d6427
DS
6933 btrfs_abort_transaction(trans, extent_root, ret);
6934 goto out;
7bb86316 6935 }
5f39d397
CM
6936
6937 leaf = path->nodes[0];
5d4f98a2
YZ
6938 item_size = btrfs_item_size_nr(leaf, extent_slot);
6939#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6940 if (item_size < sizeof(*ei)) {
6941 BUG_ON(found_extent || extent_slot != path->slots[0]);
6942 ret = convert_extent_item_v0(trans, extent_root, path,
6943 owner_objectid, 0);
005d6427
DS
6944 if (ret < 0) {
6945 btrfs_abort_transaction(trans, extent_root, ret);
6946 goto out;
6947 }
5d4f98a2 6948
b3b4aa74 6949 btrfs_release_path(path);
5d4f98a2
YZ
6950 path->leave_spinning = 1;
6951
6952 key.objectid = bytenr;
6953 key.type = BTRFS_EXTENT_ITEM_KEY;
6954 key.offset = num_bytes;
6955
6956 ret = btrfs_search_slot(trans, extent_root, &key, path,
6957 -1, 1);
6958 if (ret) {
c2cf52eb 6959 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6960 ret, bytenr);
5d4f98a2
YZ
6961 btrfs_print_leaf(extent_root, path->nodes[0]);
6962 }
005d6427
DS
6963 if (ret < 0) {
6964 btrfs_abort_transaction(trans, extent_root, ret);
6965 goto out;
6966 }
6967
5d4f98a2
YZ
6968 extent_slot = path->slots[0];
6969 leaf = path->nodes[0];
6970 item_size = btrfs_item_size_nr(leaf, extent_slot);
6971 }
6972#endif
6973 BUG_ON(item_size < sizeof(*ei));
952fccac 6974 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6975 struct btrfs_extent_item);
3173a18f
JB
6976 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6977 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6978 struct btrfs_tree_block_info *bi;
6979 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6980 bi = (struct btrfs_tree_block_info *)(ei + 1);
6981 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6982 }
56bec294 6983
5d4f98a2 6984 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6985 if (refs < refs_to_drop) {
6986 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6987 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6988 ret = -EINVAL;
6989 btrfs_abort_transaction(trans, extent_root, ret);
6990 goto out;
6991 }
56bec294 6992 refs -= refs_to_drop;
5f39d397 6993
5d4f98a2
YZ
6994 if (refs > 0) {
6995 if (extent_op)
6996 __run_delayed_extent_op(extent_op, leaf, ei);
6997 /*
6998 * In the case of inline back ref, reference count will
6999 * be updated by remove_extent_backref
952fccac 7000 */
5d4f98a2
YZ
7001 if (iref) {
7002 BUG_ON(!found_extent);
7003 } else {
7004 btrfs_set_extent_refs(leaf, ei, refs);
7005 btrfs_mark_buffer_dirty(leaf);
7006 }
7007 if (found_extent) {
7008 ret = remove_extent_backref(trans, extent_root, path,
7009 iref, refs_to_drop,
fcebe456 7010 is_data, &last_ref);
005d6427
DS
7011 if (ret) {
7012 btrfs_abort_transaction(trans, extent_root, ret);
7013 goto out;
7014 }
952fccac 7015 }
b150a4f1
JB
7016 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
7017 root_objectid);
5d4f98a2 7018 } else {
5d4f98a2
YZ
7019 if (found_extent) {
7020 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7021 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7022 if (iref) {
7023 BUG_ON(path->slots[0] != extent_slot);
7024 } else {
7025 BUG_ON(path->slots[0] != extent_slot + 1);
7026 path->slots[0] = extent_slot;
7027 num_to_del = 2;
7028 }
78fae27e 7029 }
b9473439 7030
fcebe456 7031 last_ref = 1;
952fccac
CM
7032 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7033 num_to_del);
005d6427
DS
7034 if (ret) {
7035 btrfs_abort_transaction(trans, extent_root, ret);
7036 goto out;
7037 }
b3b4aa74 7038 btrfs_release_path(path);
21af804c 7039
5d4f98a2 7040 if (is_data) {
459931ec 7041 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
7042 if (ret) {
7043 btrfs_abort_transaction(trans, extent_root, ret);
7044 goto out;
7045 }
459931ec
CM
7046 }
7047
1e144fb8
OS
7048 ret = add_to_free_space_tree(trans, root->fs_info, bytenr,
7049 num_bytes);
7050 if (ret) {
7051 btrfs_abort_transaction(trans, extent_root, ret);
7052 goto out;
7053 }
7054
ce93ec54 7055 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
7056 if (ret) {
7057 btrfs_abort_transaction(trans, extent_root, ret);
7058 goto out;
7059 }
a28ec197 7060 }
fcebe456
JB
7061 btrfs_release_path(path);
7062
79787eaa 7063out:
5caf2a00 7064 btrfs_free_path(path);
a28ec197
CM
7065 return ret;
7066}
7067
1887be66 7068/*
f0486c68 7069 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7070 * delayed ref for that extent as well. This searches the delayed ref tree for
7071 * a given extent, and if there are no other delayed refs to be processed, it
7072 * removes it from the tree.
7073 */
7074static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7075 struct btrfs_root *root, u64 bytenr)
7076{
7077 struct btrfs_delayed_ref_head *head;
7078 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7079 int ret = 0;
1887be66
CM
7080
7081 delayed_refs = &trans->transaction->delayed_refs;
7082 spin_lock(&delayed_refs->lock);
7083 head = btrfs_find_delayed_ref_head(trans, bytenr);
7084 if (!head)
cf93da7b 7085 goto out_delayed_unlock;
1887be66 7086
d7df2c79 7087 spin_lock(&head->lock);
c6fc2454 7088 if (!list_empty(&head->ref_list))
1887be66
CM
7089 goto out;
7090
5d4f98a2
YZ
7091 if (head->extent_op) {
7092 if (!head->must_insert_reserved)
7093 goto out;
78a6184a 7094 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7095 head->extent_op = NULL;
7096 }
7097
1887be66
CM
7098 /*
7099 * waiting for the lock here would deadlock. If someone else has it
7100 * locked they are already in the process of dropping it anyway
7101 */
7102 if (!mutex_trylock(&head->mutex))
7103 goto out;
7104
7105 /*
7106 * at this point we have a head with no other entries. Go
7107 * ahead and process it.
7108 */
7109 head->node.in_tree = 0;
c46effa6 7110 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 7111
d7df2c79 7112 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7113
7114 /*
7115 * we don't take a ref on the node because we're removing it from the
7116 * tree, so we just steal the ref the tree was holding.
7117 */
c3e69d58 7118 delayed_refs->num_heads--;
d7df2c79 7119 if (head->processing == 0)
c3e69d58 7120 delayed_refs->num_heads_ready--;
d7df2c79
JB
7121 head->processing = 0;
7122 spin_unlock(&head->lock);
1887be66
CM
7123 spin_unlock(&delayed_refs->lock);
7124
f0486c68
YZ
7125 BUG_ON(head->extent_op);
7126 if (head->must_insert_reserved)
7127 ret = 1;
7128
7129 mutex_unlock(&head->mutex);
1887be66 7130 btrfs_put_delayed_ref(&head->node);
f0486c68 7131 return ret;
1887be66 7132out:
d7df2c79 7133 spin_unlock(&head->lock);
cf93da7b
CM
7134
7135out_delayed_unlock:
1887be66
CM
7136 spin_unlock(&delayed_refs->lock);
7137 return 0;
7138}
7139
f0486c68
YZ
7140void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7141 struct btrfs_root *root,
7142 struct extent_buffer *buf,
5581a51a 7143 u64 parent, int last_ref)
f0486c68 7144{
b150a4f1 7145 int pin = 1;
f0486c68
YZ
7146 int ret;
7147
7148 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
7149 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7150 buf->start, buf->len,
7151 parent, root->root_key.objectid,
7152 btrfs_header_level(buf),
b06c4bf5 7153 BTRFS_DROP_DELAYED_REF, NULL);
79787eaa 7154 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
7155 }
7156
7157 if (!last_ref)
7158 return;
7159
f0486c68 7160 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7161 struct btrfs_block_group_cache *cache;
7162
f0486c68
YZ
7163 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7164 ret = check_ref_cleanup(trans, root, buf->start);
7165 if (!ret)
37be25bc 7166 goto out;
f0486c68
YZ
7167 }
7168
6219872d
FM
7169 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
7170
f0486c68
YZ
7171 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7172 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 7173 btrfs_put_block_group(cache);
37be25bc 7174 goto out;
f0486c68
YZ
7175 }
7176
7177 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7178
7179 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 7180 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 7181 btrfs_put_block_group(cache);
0be5dc67 7182 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 7183 pin = 0;
f0486c68
YZ
7184 }
7185out:
b150a4f1
JB
7186 if (pin)
7187 add_pinned_bytes(root->fs_info, buf->len,
7188 btrfs_header_level(buf),
7189 root->root_key.objectid);
7190
a826d6dc
JB
7191 /*
7192 * Deleting the buffer, clear the corrupt flag since it doesn't matter
7193 * anymore.
7194 */
7195 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
7196}
7197
79787eaa 7198/* Can return -ENOMEM */
66d7e7f0
AJ
7199int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
7200 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7201 u64 owner, u64 offset)
925baedd
CM
7202{
7203 int ret;
66d7e7f0 7204 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 7205
fccb84c9 7206 if (btrfs_test_is_dummy_root(root))
faa2dbf0 7207 return 0;
fccb84c9 7208
b150a4f1
JB
7209 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
7210
56bec294
CM
7211 /*
7212 * tree log blocks never actually go into the extent allocation
7213 * tree, just update pinning info and exit early.
56bec294 7214 */
5d4f98a2
YZ
7215 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7216 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7217 /* unlocks the pinned mutex */
11833d66 7218 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 7219 ret = 0;
5d4f98a2 7220 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
7221 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7222 num_bytes,
5d4f98a2 7223 parent, root_objectid, (int)owner,
b06c4bf5 7224 BTRFS_DROP_DELAYED_REF, NULL);
5d4f98a2 7225 } else {
66d7e7f0
AJ
7226 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7227 num_bytes,
7228 parent, root_objectid, owner,
5846a3c2
QW
7229 offset, 0,
7230 BTRFS_DROP_DELAYED_REF, NULL);
56bec294 7231 }
925baedd
CM
7232 return ret;
7233}
7234
817d52f8
JB
7235/*
7236 * when we wait for progress in the block group caching, its because
7237 * our allocation attempt failed at least once. So, we must sleep
7238 * and let some progress happen before we try again.
7239 *
7240 * This function will sleep at least once waiting for new free space to
7241 * show up, and then it will check the block group free space numbers
7242 * for our min num_bytes. Another option is to have it go ahead
7243 * and look in the rbtree for a free extent of a given size, but this
7244 * is a good start.
36cce922
JB
7245 *
7246 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7247 * any of the information in this block group.
817d52f8 7248 */
36cce922 7249static noinline void
817d52f8
JB
7250wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7251 u64 num_bytes)
7252{
11833d66 7253 struct btrfs_caching_control *caching_ctl;
817d52f8 7254
11833d66
YZ
7255 caching_ctl = get_caching_control(cache);
7256 if (!caching_ctl)
36cce922 7257 return;
817d52f8 7258
11833d66 7259 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7260 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7261
7262 put_caching_control(caching_ctl);
11833d66
YZ
7263}
7264
7265static noinline int
7266wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7267{
7268 struct btrfs_caching_control *caching_ctl;
36cce922 7269 int ret = 0;
11833d66
YZ
7270
7271 caching_ctl = get_caching_control(cache);
7272 if (!caching_ctl)
36cce922 7273 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7274
7275 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7276 if (cache->cached == BTRFS_CACHE_ERROR)
7277 ret = -EIO;
11833d66 7278 put_caching_control(caching_ctl);
36cce922 7279 return ret;
817d52f8
JB
7280}
7281
31e50229 7282int __get_raid_index(u64 flags)
b742bb82 7283{
7738a53a 7284 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 7285 return BTRFS_RAID_RAID10;
7738a53a 7286 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 7287 return BTRFS_RAID_RAID1;
7738a53a 7288 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 7289 return BTRFS_RAID_DUP;
7738a53a 7290 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 7291 return BTRFS_RAID_RAID0;
53b381b3 7292 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 7293 return BTRFS_RAID_RAID5;
53b381b3 7294 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 7295 return BTRFS_RAID_RAID6;
7738a53a 7296
e942f883 7297 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
7298}
7299
6ab0a202 7300int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 7301{
31e50229 7302 return __get_raid_index(cache->flags);
7738a53a
ID
7303}
7304
6ab0a202
JM
7305static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7306 [BTRFS_RAID_RAID10] = "raid10",
7307 [BTRFS_RAID_RAID1] = "raid1",
7308 [BTRFS_RAID_DUP] = "dup",
7309 [BTRFS_RAID_RAID0] = "raid0",
7310 [BTRFS_RAID_SINGLE] = "single",
7311 [BTRFS_RAID_RAID5] = "raid5",
7312 [BTRFS_RAID_RAID6] = "raid6",
7313};
7314
1b8e5df6 7315static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7316{
7317 if (type >= BTRFS_NR_RAID_TYPES)
7318 return NULL;
7319
7320 return btrfs_raid_type_names[type];
7321}
7322
817d52f8 7323enum btrfs_loop_type {
285ff5af
JB
7324 LOOP_CACHING_NOWAIT = 0,
7325 LOOP_CACHING_WAIT = 1,
7326 LOOP_ALLOC_CHUNK = 2,
7327 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7328};
7329
e570fd27
MX
7330static inline void
7331btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7332 int delalloc)
7333{
7334 if (delalloc)
7335 down_read(&cache->data_rwsem);
7336}
7337
7338static inline void
7339btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7340 int delalloc)
7341{
7342 btrfs_get_block_group(cache);
7343 if (delalloc)
7344 down_read(&cache->data_rwsem);
7345}
7346
7347static struct btrfs_block_group_cache *
7348btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7349 struct btrfs_free_cluster *cluster,
7350 int delalloc)
7351{
89771cc9 7352 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7353
e570fd27 7354 spin_lock(&cluster->refill_lock);
6719afdc
GU
7355 while (1) {
7356 used_bg = cluster->block_group;
7357 if (!used_bg)
7358 return NULL;
7359
7360 if (used_bg == block_group)
e570fd27
MX
7361 return used_bg;
7362
6719afdc 7363 btrfs_get_block_group(used_bg);
e570fd27 7364
6719afdc
GU
7365 if (!delalloc)
7366 return used_bg;
e570fd27 7367
6719afdc
GU
7368 if (down_read_trylock(&used_bg->data_rwsem))
7369 return used_bg;
e570fd27 7370
6719afdc 7371 spin_unlock(&cluster->refill_lock);
e570fd27 7372
6719afdc 7373 down_read(&used_bg->data_rwsem);
e570fd27 7374
6719afdc
GU
7375 spin_lock(&cluster->refill_lock);
7376 if (used_bg == cluster->block_group)
7377 return used_bg;
e570fd27 7378
6719afdc
GU
7379 up_read(&used_bg->data_rwsem);
7380 btrfs_put_block_group(used_bg);
7381 }
e570fd27
MX
7382}
7383
7384static inline void
7385btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7386 int delalloc)
7387{
7388 if (delalloc)
7389 up_read(&cache->data_rwsem);
7390 btrfs_put_block_group(cache);
7391}
7392
fec577fb
CM
7393/*
7394 * walks the btree of allocated extents and find a hole of a given size.
7395 * The key ins is changed to record the hole:
a4820398 7396 * ins->objectid == start position
62e2749e 7397 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7398 * ins->offset == the size of the hole.
fec577fb 7399 * Any available blocks before search_start are skipped.
a4820398
MX
7400 *
7401 * If there is no suitable free space, we will record the max size of
7402 * the free space extent currently.
fec577fb 7403 */
00361589 7404static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 7405 u64 num_bytes, u64 empty_size,
98ed5174 7406 u64 hint_byte, struct btrfs_key *ins,
e570fd27 7407 u64 flags, int delalloc)
fec577fb 7408{
80eb234a 7409 int ret = 0;
d397712b 7410 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 7411 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7412 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7413 u64 search_start = 0;
a4820398 7414 u64 max_extent_size = 0;
c759c4e1 7415 u64 empty_cluster = 0;
80eb234a 7416 struct btrfs_space_info *space_info;
fa9c0d79 7417 int loop = 0;
b6919a58
DS
7418 int index = __get_raid_index(flags);
7419 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 7420 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 7421 bool failed_cluster_refill = false;
1cdda9b8 7422 bool failed_alloc = false;
67377734 7423 bool use_cluster = true;
60d2adbb 7424 bool have_caching_bg = false;
13a0db5a 7425 bool orig_have_caching_bg = false;
a5e681d9 7426 bool full_search = false;
fec577fb 7427
db94535d 7428 WARN_ON(num_bytes < root->sectorsize);
962a298f 7429 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7430 ins->objectid = 0;
7431 ins->offset = 0;
b1a4d965 7432
b6919a58 7433 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 7434
b6919a58 7435 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 7436 if (!space_info) {
b6919a58 7437 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7438 return -ENOSPC;
7439 }
2552d17e 7440
67377734 7441 /*
4f4db217
JB
7442 * If our free space is heavily fragmented we may not be able to make
7443 * big contiguous allocations, so instead of doing the expensive search
7444 * for free space, simply return ENOSPC with our max_extent_size so we
7445 * can go ahead and search for a more manageable chunk.
7446 *
7447 * If our max_extent_size is large enough for our allocation simply
7448 * disable clustering since we will likely not be able to find enough
7449 * space to create a cluster and induce latency trying.
67377734 7450 */
4f4db217
JB
7451 if (unlikely(space_info->max_extent_size)) {
7452 spin_lock(&space_info->lock);
7453 if (space_info->max_extent_size &&
7454 num_bytes > space_info->max_extent_size) {
7455 ins->offset = space_info->max_extent_size;
7456 spin_unlock(&space_info->lock);
7457 return -ENOSPC;
7458 } else if (space_info->max_extent_size) {
7459 use_cluster = false;
7460 }
7461 spin_unlock(&space_info->lock);
fa9c0d79 7462 }
0f9dd46c 7463
c759c4e1 7464 last_ptr = fetch_cluster_info(orig_root, space_info, &empty_cluster);
239b14b3 7465 if (last_ptr) {
fa9c0d79
CM
7466 spin_lock(&last_ptr->lock);
7467 if (last_ptr->block_group)
7468 hint_byte = last_ptr->window_start;
c759c4e1
JB
7469 if (last_ptr->fragmented) {
7470 /*
7471 * We still set window_start so we can keep track of the
7472 * last place we found an allocation to try and save
7473 * some time.
7474 */
7475 hint_byte = last_ptr->window_start;
7476 use_cluster = false;
7477 }
fa9c0d79 7478 spin_unlock(&last_ptr->lock);
239b14b3 7479 }
fa9c0d79 7480
a061fc8d 7481 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 7482 search_start = max(search_start, hint_byte);
2552d17e 7483 if (search_start == hint_byte) {
2552d17e
JB
7484 block_group = btrfs_lookup_block_group(root->fs_info,
7485 search_start);
817d52f8
JB
7486 /*
7487 * we don't want to use the block group if it doesn't match our
7488 * allocation bits, or if its not cached.
ccf0e725
JB
7489 *
7490 * However if we are re-searching with an ideal block group
7491 * picked out then we don't care that the block group is cached.
817d52f8 7492 */
b6919a58 7493 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7494 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7495 down_read(&space_info->groups_sem);
44fb5511
CM
7496 if (list_empty(&block_group->list) ||
7497 block_group->ro) {
7498 /*
7499 * someone is removing this block group,
7500 * we can't jump into the have_block_group
7501 * target because our list pointers are not
7502 * valid
7503 */
7504 btrfs_put_block_group(block_group);
7505 up_read(&space_info->groups_sem);
ccf0e725 7506 } else {
b742bb82 7507 index = get_block_group_index(block_group);
e570fd27 7508 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7509 goto have_block_group;
ccf0e725 7510 }
2552d17e 7511 } else if (block_group) {
fa9c0d79 7512 btrfs_put_block_group(block_group);
2552d17e 7513 }
42e70e7a 7514 }
2552d17e 7515search:
60d2adbb 7516 have_caching_bg = false;
a5e681d9
JB
7517 if (index == 0 || index == __get_raid_index(flags))
7518 full_search = true;
80eb234a 7519 down_read(&space_info->groups_sem);
b742bb82
YZ
7520 list_for_each_entry(block_group, &space_info->block_groups[index],
7521 list) {
6226cb0a 7522 u64 offset;
817d52f8 7523 int cached;
8a1413a2 7524
e570fd27 7525 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7526 search_start = block_group->key.objectid;
42e70e7a 7527
83a50de9
CM
7528 /*
7529 * this can happen if we end up cycling through all the
7530 * raid types, but we want to make sure we only allocate
7531 * for the proper type.
7532 */
b6919a58 7533 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7534 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7535 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7536 BTRFS_BLOCK_GROUP_RAID5 |
7537 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7538 BTRFS_BLOCK_GROUP_RAID10;
7539
7540 /*
7541 * if they asked for extra copies and this block group
7542 * doesn't provide them, bail. This does allow us to
7543 * fill raid0 from raid1.
7544 */
b6919a58 7545 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7546 goto loop;
7547 }
7548
2552d17e 7549have_block_group:
291c7d2f
JB
7550 cached = block_group_cache_done(block_group);
7551 if (unlikely(!cached)) {
a5e681d9 7552 have_caching_bg = true;
f6373bf3 7553 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7554 BUG_ON(ret < 0);
7555 ret = 0;
817d52f8
JB
7556 }
7557
36cce922
JB
7558 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7559 goto loop;
ea6a478e 7560 if (unlikely(block_group->ro))
2552d17e 7561 goto loop;
0f9dd46c 7562
0a24325e 7563 /*
062c05c4
AO
7564 * Ok we want to try and use the cluster allocator, so
7565 * lets look there
0a24325e 7566 */
c759c4e1 7567 if (last_ptr && use_cluster) {
215a63d1 7568 struct btrfs_block_group_cache *used_block_group;
8de972b4 7569 unsigned long aligned_cluster;
fa9c0d79
CM
7570 /*
7571 * the refill lock keeps out other
7572 * people trying to start a new cluster
7573 */
e570fd27
MX
7574 used_block_group = btrfs_lock_cluster(block_group,
7575 last_ptr,
7576 delalloc);
7577 if (!used_block_group)
44fb5511 7578 goto refill_cluster;
274bd4fb 7579
e570fd27
MX
7580 if (used_block_group != block_group &&
7581 (used_block_group->ro ||
7582 !block_group_bits(used_block_group, flags)))
7583 goto release_cluster;
44fb5511 7584
274bd4fb 7585 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7586 last_ptr,
7587 num_bytes,
7588 used_block_group->key.objectid,
7589 &max_extent_size);
fa9c0d79
CM
7590 if (offset) {
7591 /* we have a block, we're done */
7592 spin_unlock(&last_ptr->refill_lock);
3f7de037 7593 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
7594 used_block_group,
7595 search_start, num_bytes);
215a63d1 7596 if (used_block_group != block_group) {
e570fd27
MX
7597 btrfs_release_block_group(block_group,
7598 delalloc);
215a63d1
MX
7599 block_group = used_block_group;
7600 }
fa9c0d79
CM
7601 goto checks;
7602 }
7603
274bd4fb 7604 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7605release_cluster:
062c05c4
AO
7606 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7607 * set up a new clusters, so lets just skip it
7608 * and let the allocator find whatever block
7609 * it can find. If we reach this point, we
7610 * will have tried the cluster allocator
7611 * plenty of times and not have found
7612 * anything, so we are likely way too
7613 * fragmented for the clustering stuff to find
a5f6f719
AO
7614 * anything.
7615 *
7616 * However, if the cluster is taken from the
7617 * current block group, release the cluster
7618 * first, so that we stand a better chance of
7619 * succeeding in the unclustered
7620 * allocation. */
7621 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7622 used_block_group != block_group) {
062c05c4 7623 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7624 btrfs_release_block_group(used_block_group,
7625 delalloc);
062c05c4
AO
7626 goto unclustered_alloc;
7627 }
7628
fa9c0d79
CM
7629 /*
7630 * this cluster didn't work out, free it and
7631 * start over
7632 */
7633 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7634
e570fd27
MX
7635 if (used_block_group != block_group)
7636 btrfs_release_block_group(used_block_group,
7637 delalloc);
7638refill_cluster:
a5f6f719
AO
7639 if (loop >= LOOP_NO_EMPTY_SIZE) {
7640 spin_unlock(&last_ptr->refill_lock);
7641 goto unclustered_alloc;
7642 }
7643
8de972b4
CM
7644 aligned_cluster = max_t(unsigned long,
7645 empty_cluster + empty_size,
7646 block_group->full_stripe_len);
7647
fa9c0d79 7648 /* allocate a cluster in this block group */
00361589
JB
7649 ret = btrfs_find_space_cluster(root, block_group,
7650 last_ptr, search_start,
7651 num_bytes,
7652 aligned_cluster);
fa9c0d79
CM
7653 if (ret == 0) {
7654 /*
7655 * now pull our allocation out of this
7656 * cluster
7657 */
7658 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7659 last_ptr,
7660 num_bytes,
7661 search_start,
7662 &max_extent_size);
fa9c0d79
CM
7663 if (offset) {
7664 /* we found one, proceed */
7665 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7666 trace_btrfs_reserve_extent_cluster(root,
7667 block_group, search_start,
7668 num_bytes);
fa9c0d79
CM
7669 goto checks;
7670 }
0a24325e
JB
7671 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7672 && !failed_cluster_refill) {
817d52f8
JB
7673 spin_unlock(&last_ptr->refill_lock);
7674
0a24325e 7675 failed_cluster_refill = true;
817d52f8
JB
7676 wait_block_group_cache_progress(block_group,
7677 num_bytes + empty_cluster + empty_size);
7678 goto have_block_group;
fa9c0d79 7679 }
817d52f8 7680
fa9c0d79
CM
7681 /*
7682 * at this point we either didn't find a cluster
7683 * or we weren't able to allocate a block from our
7684 * cluster. Free the cluster we've been trying
7685 * to use, and go to the next block group
7686 */
0a24325e 7687 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7688 spin_unlock(&last_ptr->refill_lock);
0a24325e 7689 goto loop;
fa9c0d79
CM
7690 }
7691
062c05c4 7692unclustered_alloc:
c759c4e1
JB
7693 /*
7694 * We are doing an unclustered alloc, set the fragmented flag so
7695 * we don't bother trying to setup a cluster again until we get
7696 * more space.
7697 */
7698 if (unlikely(last_ptr)) {
7699 spin_lock(&last_ptr->lock);
7700 last_ptr->fragmented = 1;
7701 spin_unlock(&last_ptr->lock);
7702 }
a5f6f719
AO
7703 spin_lock(&block_group->free_space_ctl->tree_lock);
7704 if (cached &&
7705 block_group->free_space_ctl->free_space <
7706 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7707 if (block_group->free_space_ctl->free_space >
7708 max_extent_size)
7709 max_extent_size =
7710 block_group->free_space_ctl->free_space;
a5f6f719
AO
7711 spin_unlock(&block_group->free_space_ctl->tree_lock);
7712 goto loop;
7713 }
7714 spin_unlock(&block_group->free_space_ctl->tree_lock);
7715
6226cb0a 7716 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7717 num_bytes, empty_size,
7718 &max_extent_size);
1cdda9b8
JB
7719 /*
7720 * If we didn't find a chunk, and we haven't failed on this
7721 * block group before, and this block group is in the middle of
7722 * caching and we are ok with waiting, then go ahead and wait
7723 * for progress to be made, and set failed_alloc to true.
7724 *
7725 * If failed_alloc is true then we've already waited on this
7726 * block group once and should move on to the next block group.
7727 */
7728 if (!offset && !failed_alloc && !cached &&
7729 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7730 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7731 num_bytes + empty_size);
7732 failed_alloc = true;
817d52f8 7733 goto have_block_group;
1cdda9b8
JB
7734 } else if (!offset) {
7735 goto loop;
817d52f8 7736 }
fa9c0d79 7737checks:
4e54b17a 7738 search_start = ALIGN(offset, root->stripesize);
25179201 7739
2552d17e
JB
7740 /* move on to the next group */
7741 if (search_start + num_bytes >
215a63d1
MX
7742 block_group->key.objectid + block_group->key.offset) {
7743 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7744 goto loop;
6226cb0a 7745 }
f5a31e16 7746
f0486c68 7747 if (offset < search_start)
215a63d1 7748 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7749 search_start - offset);
7750 BUG_ON(offset > search_start);
2552d17e 7751
215a63d1 7752 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7753 alloc_type, delalloc);
f0486c68 7754 if (ret == -EAGAIN) {
215a63d1 7755 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7756 goto loop;
0f9dd46c 7757 }
9cfa3e34 7758 btrfs_inc_block_group_reservations(block_group);
0b86a832 7759
f0486c68 7760 /* we are all good, lets return */
2552d17e
JB
7761 ins->objectid = search_start;
7762 ins->offset = num_bytes;
d2fb3437 7763
3f7de037
JB
7764 trace_btrfs_reserve_extent(orig_root, block_group,
7765 search_start, num_bytes);
e570fd27 7766 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7767 break;
7768loop:
0a24325e 7769 failed_cluster_refill = false;
1cdda9b8 7770 failed_alloc = false;
b742bb82 7771 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7772 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7773 }
7774 up_read(&space_info->groups_sem);
7775
13a0db5a 7776 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7777 && !orig_have_caching_bg)
7778 orig_have_caching_bg = true;
7779
60d2adbb
MX
7780 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7781 goto search;
7782
b742bb82
YZ
7783 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7784 goto search;
7785
285ff5af 7786 /*
ccf0e725
JB
7787 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7788 * caching kthreads as we move along
817d52f8
JB
7789 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7790 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7791 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7792 * again
fa9c0d79 7793 */
723bda20 7794 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7795 index = 0;
a5e681d9
JB
7796 if (loop == LOOP_CACHING_NOWAIT) {
7797 /*
7798 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7799 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7800 * full search through.
7801 */
13a0db5a 7802 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7803 loop = LOOP_CACHING_WAIT;
7804 else
7805 loop = LOOP_ALLOC_CHUNK;
7806 } else {
7807 loop++;
7808 }
7809
817d52f8 7810 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7811 struct btrfs_trans_handle *trans;
f017f15f
WS
7812 int exist = 0;
7813
7814 trans = current->journal_info;
7815 if (trans)
7816 exist = 1;
7817 else
7818 trans = btrfs_join_transaction(root);
00361589 7819
00361589
JB
7820 if (IS_ERR(trans)) {
7821 ret = PTR_ERR(trans);
7822 goto out;
7823 }
7824
b6919a58 7825 ret = do_chunk_alloc(trans, root, flags,
ea658bad 7826 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7827
7828 /*
7829 * If we can't allocate a new chunk we've already looped
7830 * through at least once, move on to the NO_EMPTY_SIZE
7831 * case.
7832 */
7833 if (ret == -ENOSPC)
7834 loop = LOOP_NO_EMPTY_SIZE;
7835
ea658bad
JB
7836 /*
7837 * Do not bail out on ENOSPC since we
7838 * can do more things.
7839 */
00361589 7840 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7841 btrfs_abort_transaction(trans,
7842 root, ret);
00361589
JB
7843 else
7844 ret = 0;
f017f15f
WS
7845 if (!exist)
7846 btrfs_end_transaction(trans, root);
00361589 7847 if (ret)
ea658bad 7848 goto out;
2552d17e
JB
7849 }
7850
723bda20 7851 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7852 /*
7853 * Don't loop again if we already have no empty_size and
7854 * no empty_cluster.
7855 */
7856 if (empty_size == 0 &&
7857 empty_cluster == 0) {
7858 ret = -ENOSPC;
7859 goto out;
7860 }
723bda20
JB
7861 empty_size = 0;
7862 empty_cluster = 0;
fa9c0d79 7863 }
723bda20
JB
7864
7865 goto search;
2552d17e
JB
7866 } else if (!ins->objectid) {
7867 ret = -ENOSPC;
d82a6f1d 7868 } else if (ins->objectid) {
c759c4e1
JB
7869 if (!use_cluster && last_ptr) {
7870 spin_lock(&last_ptr->lock);
7871 last_ptr->window_start = ins->objectid;
7872 spin_unlock(&last_ptr->lock);
7873 }
80eb234a 7874 ret = 0;
be744175 7875 }
79787eaa 7876out:
4f4db217
JB
7877 if (ret == -ENOSPC) {
7878 spin_lock(&space_info->lock);
7879 space_info->max_extent_size = max_extent_size;
7880 spin_unlock(&space_info->lock);
a4820398 7881 ins->offset = max_extent_size;
4f4db217 7882 }
0f70abe2 7883 return ret;
fec577fb 7884}
ec44a35c 7885
9ed74f2d
JB
7886static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7887 int dump_block_groups)
0f9dd46c
JB
7888{
7889 struct btrfs_block_group_cache *cache;
b742bb82 7890 int index = 0;
0f9dd46c 7891
9ed74f2d 7892 spin_lock(&info->lock);
efe120a0 7893 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7894 info->flags,
7895 info->total_bytes - info->bytes_used - info->bytes_pinned -
7896 info->bytes_reserved - info->bytes_readonly,
d397712b 7897 (info->full) ? "" : "not ");
efe120a0 7898 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7899 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7900 info->total_bytes, info->bytes_used, info->bytes_pinned,
7901 info->bytes_reserved, info->bytes_may_use,
7902 info->bytes_readonly);
9ed74f2d
JB
7903 spin_unlock(&info->lock);
7904
7905 if (!dump_block_groups)
7906 return;
0f9dd46c 7907
80eb234a 7908 down_read(&info->groups_sem);
b742bb82
YZ
7909again:
7910 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7911 spin_lock(&cache->lock);
efe120a0
FH
7912 printk(KERN_INFO "BTRFS: "
7913 "block group %llu has %llu bytes, "
7914 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7915 cache->key.objectid, cache->key.offset,
7916 btrfs_block_group_used(&cache->item), cache->pinned,
7917 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7918 btrfs_dump_free_space(cache, bytes);
7919 spin_unlock(&cache->lock);
7920 }
b742bb82
YZ
7921 if (++index < BTRFS_NR_RAID_TYPES)
7922 goto again;
80eb234a 7923 up_read(&info->groups_sem);
0f9dd46c 7924}
e8569813 7925
00361589 7926int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7927 u64 num_bytes, u64 min_alloc_size,
7928 u64 empty_size, u64 hint_byte,
e570fd27 7929 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7930{
36af4e07 7931 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7932 u64 flags;
fec577fb 7933 int ret;
925baedd 7934
b6919a58 7935 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7936again:
db94535d 7937 WARN_ON(num_bytes < root->sectorsize);
00361589 7938 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7939 flags, delalloc);
9cfa3e34
FM
7940 if (!ret && !is_data) {
7941 btrfs_dec_block_group_reservations(root->fs_info,
7942 ins->objectid);
7943 } else if (ret == -ENOSPC) {
a4820398
MX
7944 if (!final_tried && ins->offset) {
7945 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7946 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7947 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7948 if (num_bytes == min_alloc_size)
7949 final_tried = true;
7950 goto again;
7951 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7952 struct btrfs_space_info *sinfo;
7953
b6919a58 7954 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7955 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7956 flags, num_bytes);
53804280
JM
7957 if (sinfo)
7958 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7959 }
925baedd 7960 }
0f9dd46c
JB
7961
7962 return ret;
e6dcd2dc
CM
7963}
7964
e688b725 7965static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7966 u64 start, u64 len,
7967 int pin, int delalloc)
65b51a00 7968{
0f9dd46c 7969 struct btrfs_block_group_cache *cache;
1f3c79a2 7970 int ret = 0;
0f9dd46c 7971
0f9dd46c
JB
7972 cache = btrfs_lookup_block_group(root->fs_info, start);
7973 if (!cache) {
c2cf52eb 7974 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7975 start);
0f9dd46c
JB
7976 return -ENOSPC;
7977 }
1f3c79a2 7978
e688b725
CM
7979 if (pin)
7980 pin_down_extent(root, cache, start, len, 1);
7981 else {
dcc82f47
FM
7982 if (btrfs_test_opt(root, DISCARD))
7983 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7984 btrfs_add_free_space(cache, start, len);
e570fd27 7985 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
31bada7c 7986 trace_btrfs_reserved_extent_free(root, start, len);
e688b725 7987 }
31193213 7988
fa9c0d79 7989 btrfs_put_block_group(cache);
e6dcd2dc
CM
7990 return ret;
7991}
7992
e688b725 7993int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7994 u64 start, u64 len, int delalloc)
e688b725 7995{
e570fd27 7996 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7997}
7998
7999int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
8000 u64 start, u64 len)
8001{
e570fd27 8002 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
8003}
8004
5d4f98a2
YZ
8005static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8006 struct btrfs_root *root,
8007 u64 parent, u64 root_objectid,
8008 u64 flags, u64 owner, u64 offset,
8009 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8010{
8011 int ret;
5d4f98a2 8012 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 8013 struct btrfs_extent_item *extent_item;
5d4f98a2 8014 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8015 struct btrfs_path *path;
5d4f98a2
YZ
8016 struct extent_buffer *leaf;
8017 int type;
8018 u32 size;
26b8003f 8019
5d4f98a2
YZ
8020 if (parent > 0)
8021 type = BTRFS_SHARED_DATA_REF_KEY;
8022 else
8023 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8024
5d4f98a2 8025 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8026
8027 path = btrfs_alloc_path();
db5b493a
TI
8028 if (!path)
8029 return -ENOMEM;
47e4bb98 8030
b9473439 8031 path->leave_spinning = 1;
5d4f98a2
YZ
8032 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8033 ins, size);
79787eaa
JM
8034 if (ret) {
8035 btrfs_free_path(path);
8036 return ret;
8037 }
0f9dd46c 8038
5d4f98a2
YZ
8039 leaf = path->nodes[0];
8040 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8041 struct btrfs_extent_item);
5d4f98a2
YZ
8042 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8043 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8044 btrfs_set_extent_flags(leaf, extent_item,
8045 flags | BTRFS_EXTENT_FLAG_DATA);
8046
8047 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8048 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8049 if (parent > 0) {
8050 struct btrfs_shared_data_ref *ref;
8051 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8052 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8053 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8054 } else {
8055 struct btrfs_extent_data_ref *ref;
8056 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8057 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8058 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8059 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8060 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8061 }
47e4bb98
CM
8062
8063 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8064 btrfs_free_path(path);
f510cfec 8065
1e144fb8
OS
8066 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8067 ins->offset);
8068 if (ret)
8069 return ret;
8070
ce93ec54 8071 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 8072 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8073 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8074 ins->objectid, ins->offset);
f5947066
CM
8075 BUG();
8076 }
0be5dc67 8077 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
8078 return ret;
8079}
8080
5d4f98a2
YZ
8081static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8082 struct btrfs_root *root,
8083 u64 parent, u64 root_objectid,
8084 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8085 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8086{
8087 int ret;
5d4f98a2
YZ
8088 struct btrfs_fs_info *fs_info = root->fs_info;
8089 struct btrfs_extent_item *extent_item;
8090 struct btrfs_tree_block_info *block_info;
8091 struct btrfs_extent_inline_ref *iref;
8092 struct btrfs_path *path;
8093 struct extent_buffer *leaf;
3173a18f 8094 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8095 u64 num_bytes = ins->offset;
3173a18f
JB
8096 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8097 SKINNY_METADATA);
8098
8099 if (!skinny_metadata)
8100 size += sizeof(*block_info);
1c2308f8 8101
5d4f98a2 8102 path = btrfs_alloc_path();
857cc2fc
JB
8103 if (!path) {
8104 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8105 root->nodesize);
d8926bb3 8106 return -ENOMEM;
857cc2fc 8107 }
56bec294 8108
5d4f98a2
YZ
8109 path->leave_spinning = 1;
8110 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8111 ins, size);
79787eaa 8112 if (ret) {
dd825259 8113 btrfs_free_path(path);
857cc2fc 8114 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 8115 root->nodesize);
79787eaa
JM
8116 return ret;
8117 }
5d4f98a2
YZ
8118
8119 leaf = path->nodes[0];
8120 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8121 struct btrfs_extent_item);
8122 btrfs_set_extent_refs(leaf, extent_item, 1);
8123 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8124 btrfs_set_extent_flags(leaf, extent_item,
8125 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8126
3173a18f
JB
8127 if (skinny_metadata) {
8128 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 8129 num_bytes = root->nodesize;
3173a18f
JB
8130 } else {
8131 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8132 btrfs_set_tree_block_key(leaf, block_info, key);
8133 btrfs_set_tree_block_level(leaf, block_info, level);
8134 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8135 }
5d4f98a2 8136
5d4f98a2
YZ
8137 if (parent > 0) {
8138 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8139 btrfs_set_extent_inline_ref_type(leaf, iref,
8140 BTRFS_SHARED_BLOCK_REF_KEY);
8141 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8142 } else {
8143 btrfs_set_extent_inline_ref_type(leaf, iref,
8144 BTRFS_TREE_BLOCK_REF_KEY);
8145 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8146 }
8147
8148 btrfs_mark_buffer_dirty(leaf);
8149 btrfs_free_path(path);
8150
1e144fb8
OS
8151 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8152 num_bytes);
8153 if (ret)
8154 return ret;
8155
ce93ec54
JB
8156 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
8157 1);
79787eaa 8158 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8159 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8160 ins->objectid, ins->offset);
5d4f98a2
YZ
8161 BUG();
8162 }
0be5dc67 8163
707e8a07 8164 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
8165 return ret;
8166}
8167
8168int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8169 struct btrfs_root *root,
8170 u64 root_objectid, u64 owner,
5846a3c2
QW
8171 u64 offset, u64 ram_bytes,
8172 struct btrfs_key *ins)
5d4f98a2
YZ
8173{
8174 int ret;
8175
8176 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8177
66d7e7f0
AJ
8178 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
8179 ins->offset, 0,
8180 root_objectid, owner, offset,
5846a3c2
QW
8181 ram_bytes, BTRFS_ADD_DELAYED_EXTENT,
8182 NULL);
e6dcd2dc
CM
8183 return ret;
8184}
e02119d5
CM
8185
8186/*
8187 * this is used by the tree logging recovery code. It records that
8188 * an extent has been allocated and makes sure to clear the free
8189 * space cache bits as well
8190 */
5d4f98a2
YZ
8191int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8192 struct btrfs_root *root,
8193 u64 root_objectid, u64 owner, u64 offset,
8194 struct btrfs_key *ins)
e02119d5
CM
8195{
8196 int ret;
8197 struct btrfs_block_group_cache *block_group;
11833d66 8198
8c2a1a30
JB
8199 /*
8200 * Mixed block groups will exclude before processing the log so we only
01327610 8201 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30
JB
8202 */
8203 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
8204 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 8205 if (ret)
8c2a1a30 8206 return ret;
11833d66
YZ
8207 }
8208
8c2a1a30
JB
8209 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
8210 if (!block_group)
8211 return -EINVAL;
8212
fb25e914 8213 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 8214 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 8215 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
8216 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
8217 0, owner, offset, ins, 1);
b50c6e25 8218 btrfs_put_block_group(block_group);
e02119d5
CM
8219 return ret;
8220}
8221
48a3b636
ES
8222static struct extent_buffer *
8223btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8224 u64 bytenr, int level)
65b51a00
CM
8225{
8226 struct extent_buffer *buf;
8227
a83fffb7 8228 buf = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8229 if (IS_ERR(buf))
8230 return buf;
8231
65b51a00 8232 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8233 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8234 btrfs_tree_lock(buf);
01d58472 8235 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 8236 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8237
8238 btrfs_set_lock_blocking(buf);
4db8c528 8239 set_extent_buffer_uptodate(buf);
b4ce94de 8240
d0c803c4 8241 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8242 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8243 /*
8244 * we allow two log transactions at a time, use different
8245 * EXENT bit to differentiate dirty pages.
8246 */
656f30db 8247 if (buf->log_index == 0)
8cef4e16
YZ
8248 set_extent_dirty(&root->dirty_log_pages, buf->start,
8249 buf->start + buf->len - 1, GFP_NOFS);
8250 else
8251 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8252 buf->start + buf->len - 1);
d0c803c4 8253 } else {
656f30db 8254 buf->log_index = -1;
d0c803c4 8255 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8256 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8257 }
64c12921 8258 trans->dirty = true;
b4ce94de 8259 /* this returns a buffer locked for blocking */
65b51a00
CM
8260 return buf;
8261}
8262
f0486c68
YZ
8263static struct btrfs_block_rsv *
8264use_block_rsv(struct btrfs_trans_handle *trans,
8265 struct btrfs_root *root, u32 blocksize)
8266{
8267 struct btrfs_block_rsv *block_rsv;
68a82277 8268 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 8269 int ret;
d88033db 8270 bool global_updated = false;
f0486c68
YZ
8271
8272 block_rsv = get_block_rsv(trans, root);
8273
b586b323
MX
8274 if (unlikely(block_rsv->size == 0))
8275 goto try_reserve;
d88033db 8276again:
f0486c68
YZ
8277 ret = block_rsv_use_bytes(block_rsv, blocksize);
8278 if (!ret)
8279 return block_rsv;
8280
b586b323
MX
8281 if (block_rsv->failfast)
8282 return ERR_PTR(ret);
8283
d88033db
MX
8284 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8285 global_updated = true;
8286 update_global_block_rsv(root->fs_info);
8287 goto again;
8288 }
8289
b586b323
MX
8290 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
8291 static DEFINE_RATELIMIT_STATE(_rs,
8292 DEFAULT_RATELIMIT_INTERVAL * 10,
8293 /*DEFAULT_RATELIMIT_BURST*/ 1);
8294 if (__ratelimit(&_rs))
8295 WARN(1, KERN_DEBUG
efe120a0 8296 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8297 }
8298try_reserve:
8299 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8300 BTRFS_RESERVE_NO_FLUSH);
8301 if (!ret)
8302 return block_rsv;
8303 /*
8304 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8305 * the global reserve if its space type is the same as the global
8306 * reservation.
b586b323 8307 */
5881cfc9
MX
8308 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8309 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8310 ret = block_rsv_use_bytes(global_rsv, blocksize);
8311 if (!ret)
8312 return global_rsv;
8313 }
8314 return ERR_PTR(ret);
f0486c68
YZ
8315}
8316
8c2a3ca2
JB
8317static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8318 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8319{
8320 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8321 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8322}
8323
fec577fb 8324/*
f0486c68 8325 * finds a free extent and does all the dirty work required for allocation
67b7859e 8326 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8327 */
4d75f8a9
DS
8328struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8329 struct btrfs_root *root,
5d4f98a2
YZ
8330 u64 parent, u64 root_objectid,
8331 struct btrfs_disk_key *key, int level,
5581a51a 8332 u64 hint, u64 empty_size)
fec577fb 8333{
e2fa7227 8334 struct btrfs_key ins;
f0486c68 8335 struct btrfs_block_rsv *block_rsv;
5f39d397 8336 struct extent_buffer *buf;
67b7859e 8337 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8338 u64 flags = 0;
8339 int ret;
4d75f8a9 8340 u32 blocksize = root->nodesize;
3173a18f
JB
8341 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
8342 SKINNY_METADATA);
fec577fb 8343
fccb84c9 8344 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 8345 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8346 level);
faa2dbf0
JB
8347 if (!IS_ERR(buf))
8348 root->alloc_bytenr += blocksize;
8349 return buf;
8350 }
fccb84c9 8351
f0486c68
YZ
8352 block_rsv = use_block_rsv(trans, root, blocksize);
8353 if (IS_ERR(block_rsv))
8354 return ERR_CAST(block_rsv);
8355
00361589 8356 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 8357 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8358 if (ret)
8359 goto out_unuse;
55c69072 8360
fe864576 8361 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8362 if (IS_ERR(buf)) {
8363 ret = PTR_ERR(buf);
8364 goto out_free_reserved;
8365 }
f0486c68
YZ
8366
8367 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8368 if (parent == 0)
8369 parent = ins.objectid;
8370 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8371 } else
8372 BUG_ON(parent > 0);
8373
8374 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8375 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8376 if (!extent_op) {
8377 ret = -ENOMEM;
8378 goto out_free_buf;
8379 }
f0486c68
YZ
8380 if (key)
8381 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8382 else
8383 memset(&extent_op->key, 0, sizeof(extent_op->key));
8384 extent_op->flags_to_set = flags;
35b3ad50
DS
8385 extent_op->update_key = skinny_metadata ? false : true;
8386 extent_op->update_flags = true;
8387 extent_op->is_data = false;
b1c79e09 8388 extent_op->level = level;
f0486c68 8389
66d7e7f0 8390 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
8391 ins.objectid, ins.offset,
8392 parent, root_objectid, level,
8393 BTRFS_ADD_DELAYED_EXTENT,
b06c4bf5 8394 extent_op);
67b7859e
OS
8395 if (ret)
8396 goto out_free_delayed;
f0486c68 8397 }
fec577fb 8398 return buf;
67b7859e
OS
8399
8400out_free_delayed:
8401 btrfs_free_delayed_extent_op(extent_op);
8402out_free_buf:
8403 free_extent_buffer(buf);
8404out_free_reserved:
8405 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
8406out_unuse:
8407 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
8408 return ERR_PTR(ret);
fec577fb 8409}
a28ec197 8410
2c47e605
YZ
8411struct walk_control {
8412 u64 refs[BTRFS_MAX_LEVEL];
8413 u64 flags[BTRFS_MAX_LEVEL];
8414 struct btrfs_key update_progress;
8415 int stage;
8416 int level;
8417 int shared_level;
8418 int update_ref;
8419 int keep_locks;
1c4850e2
YZ
8420 int reada_slot;
8421 int reada_count;
66d7e7f0 8422 int for_reloc;
2c47e605
YZ
8423};
8424
8425#define DROP_REFERENCE 1
8426#define UPDATE_BACKREF 2
8427
1c4850e2
YZ
8428static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8429 struct btrfs_root *root,
8430 struct walk_control *wc,
8431 struct btrfs_path *path)
6407bf6d 8432{
1c4850e2
YZ
8433 u64 bytenr;
8434 u64 generation;
8435 u64 refs;
94fcca9f 8436 u64 flags;
5d4f98a2 8437 u32 nritems;
1c4850e2
YZ
8438 u32 blocksize;
8439 struct btrfs_key key;
8440 struct extent_buffer *eb;
6407bf6d 8441 int ret;
1c4850e2
YZ
8442 int slot;
8443 int nread = 0;
6407bf6d 8444
1c4850e2
YZ
8445 if (path->slots[wc->level] < wc->reada_slot) {
8446 wc->reada_count = wc->reada_count * 2 / 3;
8447 wc->reada_count = max(wc->reada_count, 2);
8448 } else {
8449 wc->reada_count = wc->reada_count * 3 / 2;
8450 wc->reada_count = min_t(int, wc->reada_count,
8451 BTRFS_NODEPTRS_PER_BLOCK(root));
8452 }
7bb86316 8453
1c4850e2
YZ
8454 eb = path->nodes[wc->level];
8455 nritems = btrfs_header_nritems(eb);
707e8a07 8456 blocksize = root->nodesize;
bd56b302 8457
1c4850e2
YZ
8458 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8459 if (nread >= wc->reada_count)
8460 break;
bd56b302 8461
2dd3e67b 8462 cond_resched();
1c4850e2
YZ
8463 bytenr = btrfs_node_blockptr(eb, slot);
8464 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8465
1c4850e2
YZ
8466 if (slot == path->slots[wc->level])
8467 goto reada;
5d4f98a2 8468
1c4850e2
YZ
8469 if (wc->stage == UPDATE_BACKREF &&
8470 generation <= root->root_key.offset)
bd56b302
CM
8471 continue;
8472
94fcca9f 8473 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
8474 ret = btrfs_lookup_extent_info(trans, root, bytenr,
8475 wc->level - 1, 1, &refs,
8476 &flags);
79787eaa
JM
8477 /* We don't care about errors in readahead. */
8478 if (ret < 0)
8479 continue;
94fcca9f
YZ
8480 BUG_ON(refs == 0);
8481
1c4850e2 8482 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8483 if (refs == 1)
8484 goto reada;
bd56b302 8485
94fcca9f
YZ
8486 if (wc->level == 1 &&
8487 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8488 continue;
1c4850e2
YZ
8489 if (!wc->update_ref ||
8490 generation <= root->root_key.offset)
8491 continue;
8492 btrfs_node_key_to_cpu(eb, &key, slot);
8493 ret = btrfs_comp_cpu_keys(&key,
8494 &wc->update_progress);
8495 if (ret < 0)
8496 continue;
94fcca9f
YZ
8497 } else {
8498 if (wc->level == 1 &&
8499 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8500 continue;
6407bf6d 8501 }
1c4850e2 8502reada:
d3e46fea 8503 readahead_tree_block(root, bytenr);
1c4850e2 8504 nread++;
20524f02 8505 }
1c4850e2 8506 wc->reada_slot = slot;
20524f02 8507}
2c47e605 8508
0ed4792a 8509/*
82bd101b
MF
8510 * These may not be seen by the usual inc/dec ref code so we have to
8511 * add them here.
0ed4792a 8512 */
82bd101b
MF
8513static int record_one_subtree_extent(struct btrfs_trans_handle *trans,
8514 struct btrfs_root *root, u64 bytenr,
8515 u64 num_bytes)
8516{
8517 struct btrfs_qgroup_extent_record *qrecord;
8518 struct btrfs_delayed_ref_root *delayed_refs;
8519
8520 qrecord = kmalloc(sizeof(*qrecord), GFP_NOFS);
8521 if (!qrecord)
8522 return -ENOMEM;
8523
8524 qrecord->bytenr = bytenr;
8525 qrecord->num_bytes = num_bytes;
8526 qrecord->old_roots = NULL;
8527
8528 delayed_refs = &trans->transaction->delayed_refs;
8529 spin_lock(&delayed_refs->lock);
8530 if (btrfs_qgroup_insert_dirty_extent(delayed_refs, qrecord))
8531 kfree(qrecord);
8532 spin_unlock(&delayed_refs->lock);
8533
8534 return 0;
8535}
8536
1152651a
MF
8537static int account_leaf_items(struct btrfs_trans_handle *trans,
8538 struct btrfs_root *root,
8539 struct extent_buffer *eb)
8540{
8541 int nr = btrfs_header_nritems(eb);
82bd101b 8542 int i, extent_type, ret;
1152651a
MF
8543 struct btrfs_key key;
8544 struct btrfs_file_extent_item *fi;
8545 u64 bytenr, num_bytes;
8546
82bd101b
MF
8547 /* We can be called directly from walk_up_proc() */
8548 if (!root->fs_info->quota_enabled)
8549 return 0;
8550
1152651a
MF
8551 for (i = 0; i < nr; i++) {
8552 btrfs_item_key_to_cpu(eb, &key, i);
8553
8554 if (key.type != BTRFS_EXTENT_DATA_KEY)
8555 continue;
8556
8557 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
8558 /* filter out non qgroup-accountable extents */
8559 extent_type = btrfs_file_extent_type(eb, fi);
8560
8561 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
8562 continue;
8563
8564 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
8565 if (!bytenr)
8566 continue;
8567
8568 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
82bd101b
MF
8569
8570 ret = record_one_subtree_extent(trans, root, bytenr, num_bytes);
8571 if (ret)
8572 return ret;
1152651a
MF
8573 }
8574 return 0;
8575}
8576
8577/*
8578 * Walk up the tree from the bottom, freeing leaves and any interior
8579 * nodes which have had all slots visited. If a node (leaf or
8580 * interior) is freed, the node above it will have it's slot
8581 * incremented. The root node will never be freed.
8582 *
8583 * At the end of this function, we should have a path which has all
8584 * slots incremented to the next position for a search. If we need to
8585 * read a new node it will be NULL and the node above it will have the
8586 * correct slot selected for a later read.
8587 *
8588 * If we increment the root nodes slot counter past the number of
8589 * elements, 1 is returned to signal completion of the search.
8590 */
8591static int adjust_slots_upwards(struct btrfs_root *root,
8592 struct btrfs_path *path, int root_level)
8593{
8594 int level = 0;
8595 int nr, slot;
8596 struct extent_buffer *eb;
8597
8598 if (root_level == 0)
8599 return 1;
8600
8601 while (level <= root_level) {
8602 eb = path->nodes[level];
8603 nr = btrfs_header_nritems(eb);
8604 path->slots[level]++;
8605 slot = path->slots[level];
8606 if (slot >= nr || level == 0) {
8607 /*
8608 * Don't free the root - we will detect this
8609 * condition after our loop and return a
8610 * positive value for caller to stop walking the tree.
8611 */
8612 if (level != root_level) {
8613 btrfs_tree_unlock_rw(eb, path->locks[level]);
8614 path->locks[level] = 0;
8615
8616 free_extent_buffer(eb);
8617 path->nodes[level] = NULL;
8618 path->slots[level] = 0;
8619 }
8620 } else {
8621 /*
8622 * We have a valid slot to walk back down
8623 * from. Stop here so caller can process these
8624 * new nodes.
8625 */
8626 break;
8627 }
8628
8629 level++;
8630 }
8631
8632 eb = path->nodes[root_level];
8633 if (path->slots[root_level] >= btrfs_header_nritems(eb))
8634 return 1;
8635
8636 return 0;
8637}
8638
8639/*
8640 * root_eb is the subtree root and is locked before this function is called.
8641 */
8642static int account_shared_subtree(struct btrfs_trans_handle *trans,
8643 struct btrfs_root *root,
8644 struct extent_buffer *root_eb,
8645 u64 root_gen,
8646 int root_level)
8647{
8648 int ret = 0;
8649 int level;
8650 struct extent_buffer *eb = root_eb;
8651 struct btrfs_path *path = NULL;
8652
8653 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
8654 BUG_ON(root_eb == NULL);
8655
8656 if (!root->fs_info->quota_enabled)
8657 return 0;
8658
8659 if (!extent_buffer_uptodate(root_eb)) {
8660 ret = btrfs_read_buffer(root_eb, root_gen);
8661 if (ret)
8662 goto out;
8663 }
8664
8665 if (root_level == 0) {
8666 ret = account_leaf_items(trans, root, root_eb);
8667 goto out;
8668 }
8669
8670 path = btrfs_alloc_path();
8671 if (!path)
8672 return -ENOMEM;
8673
8674 /*
8675 * Walk down the tree. Missing extent blocks are filled in as
8676 * we go. Metadata is accounted every time we read a new
8677 * extent block.
8678 *
8679 * When we reach a leaf, we account for file extent items in it,
8680 * walk back up the tree (adjusting slot pointers as we go)
8681 * and restart the search process.
8682 */
8683 extent_buffer_get(root_eb); /* For path */
8684 path->nodes[root_level] = root_eb;
8685 path->slots[root_level] = 0;
8686 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8687walk_down:
8688 level = root_level;
8689 while (level >= 0) {
8690 if (path->nodes[level] == NULL) {
1152651a
MF
8691 int parent_slot;
8692 u64 child_gen;
8693 u64 child_bytenr;
8694
8695 /* We need to get child blockptr/gen from
8696 * parent before we can read it. */
8697 eb = path->nodes[level + 1];
8698 parent_slot = path->slots[level + 1];
8699 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8700 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8701
ce86cd59 8702 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8703 if (IS_ERR(eb)) {
8704 ret = PTR_ERR(eb);
8705 goto out;
8706 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8707 free_extent_buffer(eb);
64c043de 8708 ret = -EIO;
1152651a
MF
8709 goto out;
8710 }
8711
8712 path->nodes[level] = eb;
8713 path->slots[level] = 0;
8714
8715 btrfs_tree_read_lock(eb);
8716 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8717 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
82bd101b
MF
8718
8719 ret = record_one_subtree_extent(trans, root, child_bytenr,
8720 root->nodesize);
8721 if (ret)
8722 goto out;
1152651a
MF
8723 }
8724
8725 if (level == 0) {
8726 ret = account_leaf_items(trans, root, path->nodes[level]);
8727 if (ret)
8728 goto out;
8729
8730 /* Nonzero return here means we completed our search */
8731 ret = adjust_slots_upwards(root, path, root_level);
8732 if (ret)
8733 break;
8734
8735 /* Restart search with new slots */
8736 goto walk_down;
8737 }
8738
8739 level--;
8740 }
8741
8742 ret = 0;
8743out:
8744 btrfs_free_path(path);
8745
8746 return ret;
8747}
8748
f82d02d9 8749/*
2c016dc2 8750 * helper to process tree block while walking down the tree.
2c47e605 8751 *
2c47e605
YZ
8752 * when wc->stage == UPDATE_BACKREF, this function updates
8753 * back refs for pointers in the block.
8754 *
8755 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8756 */
2c47e605 8757static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8758 struct btrfs_root *root,
2c47e605 8759 struct btrfs_path *path,
94fcca9f 8760 struct walk_control *wc, int lookup_info)
f82d02d9 8761{
2c47e605
YZ
8762 int level = wc->level;
8763 struct extent_buffer *eb = path->nodes[level];
2c47e605 8764 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8765 int ret;
8766
2c47e605
YZ
8767 if (wc->stage == UPDATE_BACKREF &&
8768 btrfs_header_owner(eb) != root->root_key.objectid)
8769 return 1;
f82d02d9 8770
2c47e605
YZ
8771 /*
8772 * when reference count of tree block is 1, it won't increase
8773 * again. once full backref flag is set, we never clear it.
8774 */
94fcca9f
YZ
8775 if (lookup_info &&
8776 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8777 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8778 BUG_ON(!path->locks[level]);
8779 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8780 eb->start, level, 1,
2c47e605
YZ
8781 &wc->refs[level],
8782 &wc->flags[level]);
79787eaa
JM
8783 BUG_ON(ret == -ENOMEM);
8784 if (ret)
8785 return ret;
2c47e605
YZ
8786 BUG_ON(wc->refs[level] == 0);
8787 }
5d4f98a2 8788
2c47e605
YZ
8789 if (wc->stage == DROP_REFERENCE) {
8790 if (wc->refs[level] > 1)
8791 return 1;
f82d02d9 8792
2c47e605 8793 if (path->locks[level] && !wc->keep_locks) {
bd681513 8794 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8795 path->locks[level] = 0;
8796 }
8797 return 0;
8798 }
f82d02d9 8799
2c47e605
YZ
8800 /* wc->stage == UPDATE_BACKREF */
8801 if (!(wc->flags[level] & flag)) {
8802 BUG_ON(!path->locks[level]);
e339a6b0 8803 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8804 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8805 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8806 BUG_ON(ret); /* -ENOMEM */
2c47e605 8807 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8808 eb->len, flag,
8809 btrfs_header_level(eb), 0);
79787eaa 8810 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8811 wc->flags[level] |= flag;
8812 }
8813
8814 /*
8815 * the block is shared by multiple trees, so it's not good to
8816 * keep the tree lock
8817 */
8818 if (path->locks[level] && level > 0) {
bd681513 8819 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8820 path->locks[level] = 0;
8821 }
8822 return 0;
8823}
8824
1c4850e2 8825/*
2c016dc2 8826 * helper to process tree block pointer.
1c4850e2
YZ
8827 *
8828 * when wc->stage == DROP_REFERENCE, this function checks
8829 * reference count of the block pointed to. if the block
8830 * is shared and we need update back refs for the subtree
8831 * rooted at the block, this function changes wc->stage to
8832 * UPDATE_BACKREF. if the block is shared and there is no
8833 * need to update back, this function drops the reference
8834 * to the block.
8835 *
8836 * NOTE: return value 1 means we should stop walking down.
8837 */
8838static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8839 struct btrfs_root *root,
8840 struct btrfs_path *path,
94fcca9f 8841 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8842{
8843 u64 bytenr;
8844 u64 generation;
8845 u64 parent;
8846 u32 blocksize;
8847 struct btrfs_key key;
8848 struct extent_buffer *next;
8849 int level = wc->level;
8850 int reada = 0;
8851 int ret = 0;
1152651a 8852 bool need_account = false;
1c4850e2
YZ
8853
8854 generation = btrfs_node_ptr_generation(path->nodes[level],
8855 path->slots[level]);
8856 /*
8857 * if the lower level block was created before the snapshot
8858 * was created, we know there is no need to update back refs
8859 * for the subtree
8860 */
8861 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8862 generation <= root->root_key.offset) {
8863 *lookup_info = 1;
1c4850e2 8864 return 1;
94fcca9f 8865 }
1c4850e2
YZ
8866
8867 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8868 blocksize = root->nodesize;
1c4850e2 8869
01d58472 8870 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8871 if (!next) {
a83fffb7 8872 next = btrfs_find_create_tree_block(root, bytenr);
c871b0f2
LB
8873 if (IS_ERR(next))
8874 return PTR_ERR(next);
8875
b2aaaa3b
JB
8876 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8877 level - 1);
1c4850e2
YZ
8878 reada = 1;
8879 }
8880 btrfs_tree_lock(next);
8881 btrfs_set_lock_blocking(next);
8882
3173a18f 8883 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8884 &wc->refs[level - 1],
8885 &wc->flags[level - 1]);
79787eaa
JM
8886 if (ret < 0) {
8887 btrfs_tree_unlock(next);
8888 return ret;
8889 }
8890
c2cf52eb
SK
8891 if (unlikely(wc->refs[level - 1] == 0)) {
8892 btrfs_err(root->fs_info, "Missing references.");
8893 BUG();
8894 }
94fcca9f 8895 *lookup_info = 0;
1c4850e2 8896
94fcca9f 8897 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8898 if (wc->refs[level - 1] > 1) {
1152651a 8899 need_account = true;
94fcca9f
YZ
8900 if (level == 1 &&
8901 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8902 goto skip;
8903
1c4850e2
YZ
8904 if (!wc->update_ref ||
8905 generation <= root->root_key.offset)
8906 goto skip;
8907
8908 btrfs_node_key_to_cpu(path->nodes[level], &key,
8909 path->slots[level]);
8910 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8911 if (ret < 0)
8912 goto skip;
8913
8914 wc->stage = UPDATE_BACKREF;
8915 wc->shared_level = level - 1;
8916 }
94fcca9f
YZ
8917 } else {
8918 if (level == 1 &&
8919 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8920 goto skip;
1c4850e2
YZ
8921 }
8922
b9fab919 8923 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8924 btrfs_tree_unlock(next);
8925 free_extent_buffer(next);
8926 next = NULL;
94fcca9f 8927 *lookup_info = 1;
1c4850e2
YZ
8928 }
8929
8930 if (!next) {
8931 if (reada && level == 1)
8932 reada_walk_down(trans, root, wc, path);
ce86cd59 8933 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8934 if (IS_ERR(next)) {
8935 return PTR_ERR(next);
8936 } else if (!extent_buffer_uptodate(next)) {
416bc658 8937 free_extent_buffer(next);
97d9a8a4 8938 return -EIO;
416bc658 8939 }
1c4850e2
YZ
8940 btrfs_tree_lock(next);
8941 btrfs_set_lock_blocking(next);
8942 }
8943
8944 level--;
8945 BUG_ON(level != btrfs_header_level(next));
8946 path->nodes[level] = next;
8947 path->slots[level] = 0;
bd681513 8948 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8949 wc->level = level;
8950 if (wc->level == 1)
8951 wc->reada_slot = 0;
8952 return 0;
8953skip:
8954 wc->refs[level - 1] = 0;
8955 wc->flags[level - 1] = 0;
94fcca9f
YZ
8956 if (wc->stage == DROP_REFERENCE) {
8957 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8958 parent = path->nodes[level]->start;
8959 } else {
8960 BUG_ON(root->root_key.objectid !=
8961 btrfs_header_owner(path->nodes[level]));
8962 parent = 0;
8963 }
1c4850e2 8964
1152651a
MF
8965 if (need_account) {
8966 ret = account_shared_subtree(trans, root, next,
8967 generation, level - 1);
8968 if (ret) {
94647322
DS
8969 btrfs_err_rl(root->fs_info,
8970 "Error "
1152651a 8971 "%d accounting shared subtree. Quota "
94647322
DS
8972 "is out of sync, rescan required.",
8973 ret);
1152651a
MF
8974 }
8975 }
94fcca9f 8976 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
b06c4bf5 8977 root->root_key.objectid, level - 1, 0);
79787eaa 8978 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8979 }
1c4850e2
YZ
8980 btrfs_tree_unlock(next);
8981 free_extent_buffer(next);
94fcca9f 8982 *lookup_info = 1;
1c4850e2
YZ
8983 return 1;
8984}
8985
2c47e605 8986/*
2c016dc2 8987 * helper to process tree block while walking up the tree.
2c47e605
YZ
8988 *
8989 * when wc->stage == DROP_REFERENCE, this function drops
8990 * reference count on the block.
8991 *
8992 * when wc->stage == UPDATE_BACKREF, this function changes
8993 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8994 * to UPDATE_BACKREF previously while processing the block.
8995 *
8996 * NOTE: return value 1 means we should stop walking up.
8997 */
8998static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8999 struct btrfs_root *root,
9000 struct btrfs_path *path,
9001 struct walk_control *wc)
9002{
f0486c68 9003 int ret;
2c47e605
YZ
9004 int level = wc->level;
9005 struct extent_buffer *eb = path->nodes[level];
9006 u64 parent = 0;
9007
9008 if (wc->stage == UPDATE_BACKREF) {
9009 BUG_ON(wc->shared_level < level);
9010 if (level < wc->shared_level)
9011 goto out;
9012
2c47e605
YZ
9013 ret = find_next_key(path, level + 1, &wc->update_progress);
9014 if (ret > 0)
9015 wc->update_ref = 0;
9016
9017 wc->stage = DROP_REFERENCE;
9018 wc->shared_level = -1;
9019 path->slots[level] = 0;
9020
9021 /*
9022 * check reference count again if the block isn't locked.
9023 * we should start walking down the tree again if reference
9024 * count is one.
9025 */
9026 if (!path->locks[level]) {
9027 BUG_ON(level == 0);
9028 btrfs_tree_lock(eb);
9029 btrfs_set_lock_blocking(eb);
bd681513 9030 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9031
9032 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 9033 eb->start, level, 1,
2c47e605
YZ
9034 &wc->refs[level],
9035 &wc->flags[level]);
79787eaa
JM
9036 if (ret < 0) {
9037 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9038 path->locks[level] = 0;
79787eaa
JM
9039 return ret;
9040 }
2c47e605
YZ
9041 BUG_ON(wc->refs[level] == 0);
9042 if (wc->refs[level] == 1) {
bd681513 9043 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9044 path->locks[level] = 0;
2c47e605
YZ
9045 return 1;
9046 }
f82d02d9 9047 }
2c47e605 9048 }
f82d02d9 9049
2c47e605
YZ
9050 /* wc->stage == DROP_REFERENCE */
9051 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9052
2c47e605
YZ
9053 if (wc->refs[level] == 1) {
9054 if (level == 0) {
9055 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9056 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9057 else
e339a6b0 9058 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9059 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
9060 ret = account_leaf_items(trans, root, eb);
9061 if (ret) {
94647322
DS
9062 btrfs_err_rl(root->fs_info,
9063 "error "
1152651a 9064 "%d accounting leaf items. Quota "
94647322
DS
9065 "is out of sync, rescan required.",
9066 ret);
1152651a 9067 }
2c47e605
YZ
9068 }
9069 /* make block locked assertion in clean_tree_block happy */
9070 if (!path->locks[level] &&
9071 btrfs_header_generation(eb) == trans->transid) {
9072 btrfs_tree_lock(eb);
9073 btrfs_set_lock_blocking(eb);
bd681513 9074 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9075 }
01d58472 9076 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
9077 }
9078
9079 if (eb == root->node) {
9080 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9081 parent = eb->start;
9082 else
9083 BUG_ON(root->root_key.objectid !=
9084 btrfs_header_owner(eb));
9085 } else {
9086 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9087 parent = path->nodes[level + 1]->start;
9088 else
9089 BUG_ON(root->root_key.objectid !=
9090 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 9091 }
f82d02d9 9092
5581a51a 9093 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9094out:
9095 wc->refs[level] = 0;
9096 wc->flags[level] = 0;
f0486c68 9097 return 0;
2c47e605
YZ
9098}
9099
9100static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9101 struct btrfs_root *root,
9102 struct btrfs_path *path,
9103 struct walk_control *wc)
9104{
2c47e605 9105 int level = wc->level;
94fcca9f 9106 int lookup_info = 1;
2c47e605
YZ
9107 int ret;
9108
9109 while (level >= 0) {
94fcca9f 9110 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9111 if (ret > 0)
9112 break;
9113
9114 if (level == 0)
9115 break;
9116
7a7965f8
YZ
9117 if (path->slots[level] >=
9118 btrfs_header_nritems(path->nodes[level]))
9119 break;
9120
94fcca9f 9121 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9122 if (ret > 0) {
9123 path->slots[level]++;
9124 continue;
90d2c51d
MX
9125 } else if (ret < 0)
9126 return ret;
1c4850e2 9127 level = wc->level;
f82d02d9 9128 }
f82d02d9
YZ
9129 return 0;
9130}
9131
d397712b 9132static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9133 struct btrfs_root *root,
f82d02d9 9134 struct btrfs_path *path,
2c47e605 9135 struct walk_control *wc, int max_level)
20524f02 9136{
2c47e605 9137 int level = wc->level;
20524f02 9138 int ret;
9f3a7427 9139
2c47e605
YZ
9140 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9141 while (level < max_level && path->nodes[level]) {
9142 wc->level = level;
9143 if (path->slots[level] + 1 <
9144 btrfs_header_nritems(path->nodes[level])) {
9145 path->slots[level]++;
20524f02
CM
9146 return 0;
9147 } else {
2c47e605
YZ
9148 ret = walk_up_proc(trans, root, path, wc);
9149 if (ret > 0)
9150 return 0;
bd56b302 9151
2c47e605 9152 if (path->locks[level]) {
bd681513
CM
9153 btrfs_tree_unlock_rw(path->nodes[level],
9154 path->locks[level]);
2c47e605 9155 path->locks[level] = 0;
f82d02d9 9156 }
2c47e605
YZ
9157 free_extent_buffer(path->nodes[level]);
9158 path->nodes[level] = NULL;
9159 level++;
20524f02
CM
9160 }
9161 }
9162 return 1;
9163}
9164
9aca1d51 9165/*
2c47e605
YZ
9166 * drop a subvolume tree.
9167 *
9168 * this function traverses the tree freeing any blocks that only
9169 * referenced by the tree.
9170 *
9171 * when a shared tree block is found. this function decreases its
9172 * reference count by one. if update_ref is true, this function
9173 * also make sure backrefs for the shared block and all lower level
9174 * blocks are properly updated.
9d1a2a3a
DS
9175 *
9176 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9177 */
2c536799 9178int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9179 struct btrfs_block_rsv *block_rsv, int update_ref,
9180 int for_reloc)
20524f02 9181{
5caf2a00 9182 struct btrfs_path *path;
2c47e605
YZ
9183 struct btrfs_trans_handle *trans;
9184 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 9185 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9186 struct walk_control *wc;
9187 struct btrfs_key key;
9188 int err = 0;
9189 int ret;
9190 int level;
d29a9f62 9191 bool root_dropped = false;
20524f02 9192
1152651a
MF
9193 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
9194
5caf2a00 9195 path = btrfs_alloc_path();
cb1b69f4
TI
9196 if (!path) {
9197 err = -ENOMEM;
9198 goto out;
9199 }
20524f02 9200
2c47e605 9201 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9202 if (!wc) {
9203 btrfs_free_path(path);
cb1b69f4
TI
9204 err = -ENOMEM;
9205 goto out;
38a1a919 9206 }
2c47e605 9207
a22285a6 9208 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9209 if (IS_ERR(trans)) {
9210 err = PTR_ERR(trans);
9211 goto out_free;
9212 }
98d5dc13 9213
3fd0a558
YZ
9214 if (block_rsv)
9215 trans->block_rsv = block_rsv;
2c47e605 9216
9f3a7427 9217 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9218 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9219 path->nodes[level] = btrfs_lock_root_node(root);
9220 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9221 path->slots[level] = 0;
bd681513 9222 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9223 memset(&wc->update_progress, 0,
9224 sizeof(wc->update_progress));
9f3a7427 9225 } else {
9f3a7427 9226 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9227 memcpy(&wc->update_progress, &key,
9228 sizeof(wc->update_progress));
9229
6702ed49 9230 level = root_item->drop_level;
2c47e605 9231 BUG_ON(level == 0);
6702ed49 9232 path->lowest_level = level;
2c47e605
YZ
9233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9234 path->lowest_level = 0;
9235 if (ret < 0) {
9236 err = ret;
79787eaa 9237 goto out_end_trans;
9f3a7427 9238 }
1c4850e2 9239 WARN_ON(ret > 0);
2c47e605 9240
7d9eb12c
CM
9241 /*
9242 * unlock our path, this is safe because only this
9243 * function is allowed to delete this snapshot
9244 */
5d4f98a2 9245 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9246
9247 level = btrfs_header_level(root->node);
9248 while (1) {
9249 btrfs_tree_lock(path->nodes[level]);
9250 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9251 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9252
9253 ret = btrfs_lookup_extent_info(trans, root,
9254 path->nodes[level]->start,
3173a18f 9255 level, 1, &wc->refs[level],
2c47e605 9256 &wc->flags[level]);
79787eaa
JM
9257 if (ret < 0) {
9258 err = ret;
9259 goto out_end_trans;
9260 }
2c47e605
YZ
9261 BUG_ON(wc->refs[level] == 0);
9262
9263 if (level == root_item->drop_level)
9264 break;
9265
9266 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9267 path->locks[level] = 0;
2c47e605
YZ
9268 WARN_ON(wc->refs[level] != 1);
9269 level--;
9270 }
9f3a7427 9271 }
2c47e605
YZ
9272
9273 wc->level = level;
9274 wc->shared_level = -1;
9275 wc->stage = DROP_REFERENCE;
9276 wc->update_ref = update_ref;
9277 wc->keep_locks = 0;
66d7e7f0 9278 wc->for_reloc = for_reloc;
1c4850e2 9279 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 9280
d397712b 9281 while (1) {
9d1a2a3a 9282
2c47e605
YZ
9283 ret = walk_down_tree(trans, root, path, wc);
9284 if (ret < 0) {
9285 err = ret;
20524f02 9286 break;
2c47e605 9287 }
9aca1d51 9288
2c47e605
YZ
9289 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9290 if (ret < 0) {
9291 err = ret;
20524f02 9292 break;
2c47e605
YZ
9293 }
9294
9295 if (ret > 0) {
9296 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9297 break;
9298 }
2c47e605
YZ
9299
9300 if (wc->stage == DROP_REFERENCE) {
9301 level = wc->level;
9302 btrfs_node_key(path->nodes[level],
9303 &root_item->drop_progress,
9304 path->slots[level]);
9305 root_item->drop_level = level;
9306 }
9307
9308 BUG_ON(wc->level == 0);
3c8f2422
JB
9309 if (btrfs_should_end_transaction(trans, tree_root) ||
9310 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
9311 ret = btrfs_update_root(trans, tree_root,
9312 &root->root_key,
9313 root_item);
79787eaa
JM
9314 if (ret) {
9315 btrfs_abort_transaction(trans, tree_root, ret);
9316 err = ret;
9317 goto out_end_trans;
9318 }
2c47e605 9319
3fd0a558 9320 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 9321 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 9322 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
9323 err = -EAGAIN;
9324 goto out_free;
9325 }
9326
a22285a6 9327 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9328 if (IS_ERR(trans)) {
9329 err = PTR_ERR(trans);
9330 goto out_free;
9331 }
3fd0a558
YZ
9332 if (block_rsv)
9333 trans->block_rsv = block_rsv;
c3e69d58 9334 }
20524f02 9335 }
b3b4aa74 9336 btrfs_release_path(path);
79787eaa
JM
9337 if (err)
9338 goto out_end_trans;
2c47e605
YZ
9339
9340 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
9341 if (ret) {
9342 btrfs_abort_transaction(trans, tree_root, ret);
9343 goto out_end_trans;
9344 }
2c47e605 9345
76dda93c 9346 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9347 ret = btrfs_find_root(tree_root, &root->root_key, path,
9348 NULL, NULL);
79787eaa
JM
9349 if (ret < 0) {
9350 btrfs_abort_transaction(trans, tree_root, ret);
9351 err = ret;
9352 goto out_end_trans;
9353 } else if (ret > 0) {
84cd948c
JB
9354 /* if we fail to delete the orphan item this time
9355 * around, it'll get picked up the next time.
9356 *
9357 * The most common failure here is just -ENOENT.
9358 */
9359 btrfs_del_orphan_item(trans, tree_root,
9360 root->root_key.objectid);
76dda93c
YZ
9361 }
9362 }
9363
27cdeb70 9364 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9365 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9366 } else {
9367 free_extent_buffer(root->node);
9368 free_extent_buffer(root->commit_root);
b0feb9d9 9369 btrfs_put_fs_root(root);
76dda93c 9370 }
d29a9f62 9371 root_dropped = true;
79787eaa 9372out_end_trans:
3fd0a558 9373 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 9374out_free:
2c47e605 9375 kfree(wc);
5caf2a00 9376 btrfs_free_path(path);
cb1b69f4 9377out:
d29a9f62
JB
9378 /*
9379 * So if we need to stop dropping the snapshot for whatever reason we
9380 * need to make sure to add it back to the dead root list so that we
9381 * keep trying to do the work later. This also cleans up roots if we
9382 * don't have it in the radix (like when we recover after a power fail
9383 * or unmount) so we don't leak memory.
9384 */
b37b39cd 9385 if (!for_reloc && root_dropped == false)
d29a9f62 9386 btrfs_add_dead_root(root);
90515e7f 9387 if (err && err != -EAGAIN)
34d97007 9388 btrfs_handle_fs_error(root->fs_info, err, NULL);
2c536799 9389 return err;
20524f02 9390}
9078a3e1 9391
2c47e605
YZ
9392/*
9393 * drop subtree rooted at tree block 'node'.
9394 *
9395 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9396 * only used by relocation code
2c47e605 9397 */
f82d02d9
YZ
9398int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9399 struct btrfs_root *root,
9400 struct extent_buffer *node,
9401 struct extent_buffer *parent)
9402{
9403 struct btrfs_path *path;
2c47e605 9404 struct walk_control *wc;
f82d02d9
YZ
9405 int level;
9406 int parent_level;
9407 int ret = 0;
9408 int wret;
9409
2c47e605
YZ
9410 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9411
f82d02d9 9412 path = btrfs_alloc_path();
db5b493a
TI
9413 if (!path)
9414 return -ENOMEM;
f82d02d9 9415
2c47e605 9416 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9417 if (!wc) {
9418 btrfs_free_path(path);
9419 return -ENOMEM;
9420 }
2c47e605 9421
b9447ef8 9422 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9423 parent_level = btrfs_header_level(parent);
9424 extent_buffer_get(parent);
9425 path->nodes[parent_level] = parent;
9426 path->slots[parent_level] = btrfs_header_nritems(parent);
9427
b9447ef8 9428 btrfs_assert_tree_locked(node);
f82d02d9 9429 level = btrfs_header_level(node);
f82d02d9
YZ
9430 path->nodes[level] = node;
9431 path->slots[level] = 0;
bd681513 9432 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9433
9434 wc->refs[parent_level] = 1;
9435 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9436 wc->level = level;
9437 wc->shared_level = -1;
9438 wc->stage = DROP_REFERENCE;
9439 wc->update_ref = 0;
9440 wc->keep_locks = 1;
66d7e7f0 9441 wc->for_reloc = 1;
1c4850e2 9442 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
9443
9444 while (1) {
2c47e605
YZ
9445 wret = walk_down_tree(trans, root, path, wc);
9446 if (wret < 0) {
f82d02d9 9447 ret = wret;
f82d02d9 9448 break;
2c47e605 9449 }
f82d02d9 9450
2c47e605 9451 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9452 if (wret < 0)
9453 ret = wret;
9454 if (wret != 0)
9455 break;
9456 }
9457
2c47e605 9458 kfree(wc);
f82d02d9
YZ
9459 btrfs_free_path(path);
9460 return ret;
9461}
9462
ec44a35c
CM
9463static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
9464{
9465 u64 num_devices;
fc67c450 9466 u64 stripped;
e4d8ec0f 9467
fc67c450
ID
9468 /*
9469 * if restripe for this chunk_type is on pick target profile and
9470 * return, otherwise do the usual balance
9471 */
9472 stripped = get_restripe_target(root->fs_info, flags);
9473 if (stripped)
9474 return extended_to_chunk(stripped);
e4d8ec0f 9475
95669976 9476 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 9477
fc67c450 9478 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9479 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9480 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9481
ec44a35c
CM
9482 if (num_devices == 1) {
9483 stripped |= BTRFS_BLOCK_GROUP_DUP;
9484 stripped = flags & ~stripped;
9485
9486 /* turn raid0 into single device chunks */
9487 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9488 return stripped;
9489
9490 /* turn mirroring into duplication */
9491 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9492 BTRFS_BLOCK_GROUP_RAID10))
9493 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9494 } else {
9495 /* they already had raid on here, just return */
ec44a35c
CM
9496 if (flags & stripped)
9497 return flags;
9498
9499 stripped |= BTRFS_BLOCK_GROUP_DUP;
9500 stripped = flags & ~stripped;
9501
9502 /* switch duplicated blocks with raid1 */
9503 if (flags & BTRFS_BLOCK_GROUP_DUP)
9504 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9505
e3176ca2 9506 /* this is drive concat, leave it alone */
ec44a35c 9507 }
e3176ca2 9508
ec44a35c
CM
9509 return flags;
9510}
9511
868f401a 9512static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9513{
f0486c68
YZ
9514 struct btrfs_space_info *sinfo = cache->space_info;
9515 u64 num_bytes;
199c36ea 9516 u64 min_allocable_bytes;
f0486c68 9517 int ret = -ENOSPC;
0ef3e66b 9518
199c36ea
MX
9519 /*
9520 * We need some metadata space and system metadata space for
9521 * allocating chunks in some corner cases until we force to set
9522 * it to be readonly.
9523 */
9524 if ((sinfo->flags &
9525 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9526 !force)
ee22184b 9527 min_allocable_bytes = SZ_1M;
199c36ea
MX
9528 else
9529 min_allocable_bytes = 0;
9530
f0486c68
YZ
9531 spin_lock(&sinfo->lock);
9532 spin_lock(&cache->lock);
61cfea9b
W
9533
9534 if (cache->ro) {
868f401a 9535 cache->ro++;
61cfea9b
W
9536 ret = 0;
9537 goto out;
9538 }
9539
f0486c68
YZ
9540 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9541 cache->bytes_super - btrfs_block_group_used(&cache->item);
9542
9543 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
9544 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
9545 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9546 sinfo->bytes_readonly += num_bytes;
868f401a 9547 cache->ro++;
633c0aad 9548 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9549 ret = 0;
9550 }
61cfea9b 9551out:
f0486c68
YZ
9552 spin_unlock(&cache->lock);
9553 spin_unlock(&sinfo->lock);
9554 return ret;
9555}
7d9eb12c 9556
868f401a 9557int btrfs_inc_block_group_ro(struct btrfs_root *root,
f0486c68 9558 struct btrfs_block_group_cache *cache)
c286ac48 9559
f0486c68
YZ
9560{
9561 struct btrfs_trans_handle *trans;
9562 u64 alloc_flags;
9563 int ret;
7d9eb12c 9564
1bbc621e 9565again:
ff5714cc 9566 trans = btrfs_join_transaction(root);
79787eaa
JM
9567 if (IS_ERR(trans))
9568 return PTR_ERR(trans);
5d4f98a2 9569
1bbc621e
CM
9570 /*
9571 * we're not allowed to set block groups readonly after the dirty
9572 * block groups cache has started writing. If it already started,
9573 * back off and let this transaction commit
9574 */
9575 mutex_lock(&root->fs_info->ro_block_group_mutex);
3204d33c 9576 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9577 u64 transid = trans->transid;
9578
9579 mutex_unlock(&root->fs_info->ro_block_group_mutex);
9580 btrfs_end_transaction(trans, root);
9581
9582 ret = btrfs_wait_for_commit(root, transid);
9583 if (ret)
9584 return ret;
9585 goto again;
9586 }
9587
153c35b6
CM
9588 /*
9589 * if we are changing raid levels, try to allocate a corresponding
9590 * block group with the new raid level.
9591 */
9592 alloc_flags = update_block_group_flags(root, cache->flags);
9593 if (alloc_flags != cache->flags) {
9594 ret = do_chunk_alloc(trans, root, alloc_flags,
9595 CHUNK_ALLOC_FORCE);
9596 /*
9597 * ENOSPC is allowed here, we may have enough space
9598 * already allocated at the new raid level to
9599 * carry on
9600 */
9601 if (ret == -ENOSPC)
9602 ret = 0;
9603 if (ret < 0)
9604 goto out;
9605 }
1bbc621e 9606
868f401a 9607 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9608 if (!ret)
9609 goto out;
9610 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 9611 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9612 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9613 if (ret < 0)
9614 goto out;
868f401a 9615 ret = inc_block_group_ro(cache, 0);
f0486c68 9616out:
2f081088
SL
9617 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9618 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 9619 lock_chunks(root->fs_info->chunk_root);
4617ea3a 9620 check_system_chunk(trans, root, alloc_flags);
a9629596 9621 unlock_chunks(root->fs_info->chunk_root);
2f081088 9622 }
1bbc621e 9623 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 9624
f0486c68
YZ
9625 btrfs_end_transaction(trans, root);
9626 return ret;
9627}
5d4f98a2 9628
c87f08ca
CM
9629int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9630 struct btrfs_root *root, u64 type)
9631{
9632 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 9633 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 9634 CHUNK_ALLOC_FORCE);
c87f08ca
CM
9635}
9636
6d07bcec
MX
9637/*
9638 * helper to account the unused space of all the readonly block group in the
633c0aad 9639 * space_info. takes mirrors into account.
6d07bcec 9640 */
633c0aad 9641u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9642{
9643 struct btrfs_block_group_cache *block_group;
9644 u64 free_bytes = 0;
9645 int factor;
9646
01327610 9647 /* It's df, we don't care if it's racy */
633c0aad
JB
9648 if (list_empty(&sinfo->ro_bgs))
9649 return 0;
9650
9651 spin_lock(&sinfo->lock);
9652 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9653 spin_lock(&block_group->lock);
9654
9655 if (!block_group->ro) {
9656 spin_unlock(&block_group->lock);
9657 continue;
9658 }
9659
9660 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9661 BTRFS_BLOCK_GROUP_RAID10 |
9662 BTRFS_BLOCK_GROUP_DUP))
9663 factor = 2;
9664 else
9665 factor = 1;
9666
9667 free_bytes += (block_group->key.offset -
9668 btrfs_block_group_used(&block_group->item)) *
9669 factor;
9670
9671 spin_unlock(&block_group->lock);
9672 }
6d07bcec
MX
9673 spin_unlock(&sinfo->lock);
9674
9675 return free_bytes;
9676}
9677
868f401a 9678void btrfs_dec_block_group_ro(struct btrfs_root *root,
f0486c68 9679 struct btrfs_block_group_cache *cache)
5d4f98a2 9680{
f0486c68
YZ
9681 struct btrfs_space_info *sinfo = cache->space_info;
9682 u64 num_bytes;
9683
9684 BUG_ON(!cache->ro);
9685
9686 spin_lock(&sinfo->lock);
9687 spin_lock(&cache->lock);
868f401a
Z
9688 if (!--cache->ro) {
9689 num_bytes = cache->key.offset - cache->reserved -
9690 cache->pinned - cache->bytes_super -
9691 btrfs_block_group_used(&cache->item);
9692 sinfo->bytes_readonly -= num_bytes;
9693 list_del_init(&cache->ro_list);
9694 }
f0486c68
YZ
9695 spin_unlock(&cache->lock);
9696 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9697}
9698
ba1bf481
JB
9699/*
9700 * checks to see if its even possible to relocate this block group.
9701 *
9702 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9703 * ok to go ahead and try.
9704 */
9705int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9706{
ba1bf481
JB
9707 struct btrfs_block_group_cache *block_group;
9708 struct btrfs_space_info *space_info;
9709 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9710 struct btrfs_device *device;
6df9a95e 9711 struct btrfs_trans_handle *trans;
cdcb725c 9712 u64 min_free;
6719db6a
JB
9713 u64 dev_min = 1;
9714 u64 dev_nr = 0;
4a5e98f5 9715 u64 target;
0305bc27 9716 int debug;
cdcb725c 9717 int index;
ba1bf481
JB
9718 int full = 0;
9719 int ret = 0;
1a40e23b 9720
0305bc27
QW
9721 debug = btrfs_test_opt(root, ENOSPC_DEBUG);
9722
ba1bf481 9723 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9724
ba1bf481 9725 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9726 if (!block_group) {
9727 if (debug)
9728 btrfs_warn(root->fs_info,
9729 "can't find block group for bytenr %llu",
9730 bytenr);
ba1bf481 9731 return -1;
0305bc27 9732 }
1a40e23b 9733
cdcb725c 9734 min_free = btrfs_block_group_used(&block_group->item);
9735
ba1bf481 9736 /* no bytes used, we're good */
cdcb725c 9737 if (!min_free)
1a40e23b
ZY
9738 goto out;
9739
ba1bf481
JB
9740 space_info = block_group->space_info;
9741 spin_lock(&space_info->lock);
17d217fe 9742
ba1bf481 9743 full = space_info->full;
17d217fe 9744
ba1bf481
JB
9745 /*
9746 * if this is the last block group we have in this space, we can't
7ce618db
CM
9747 * relocate it unless we're able to allocate a new chunk below.
9748 *
9749 * Otherwise, we need to make sure we have room in the space to handle
9750 * all of the extents from this block group. If we can, we're good
ba1bf481 9751 */
7ce618db 9752 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9753 (space_info->bytes_used + space_info->bytes_reserved +
9754 space_info->bytes_pinned + space_info->bytes_readonly +
9755 min_free < space_info->total_bytes)) {
ba1bf481
JB
9756 spin_unlock(&space_info->lock);
9757 goto out;
17d217fe 9758 }
ba1bf481 9759 spin_unlock(&space_info->lock);
ea8c2819 9760
ba1bf481
JB
9761 /*
9762 * ok we don't have enough space, but maybe we have free space on our
9763 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9764 * alloc devices and guess if we have enough space. if this block
9765 * group is going to be restriped, run checks against the target
9766 * profile instead of the current one.
ba1bf481
JB
9767 */
9768 ret = -1;
ea8c2819 9769
cdcb725c 9770 /*
9771 * index:
9772 * 0: raid10
9773 * 1: raid1
9774 * 2: dup
9775 * 3: raid0
9776 * 4: single
9777 */
4a5e98f5
ID
9778 target = get_restripe_target(root->fs_info, block_group->flags);
9779 if (target) {
31e50229 9780 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9781 } else {
9782 /*
9783 * this is just a balance, so if we were marked as full
9784 * we know there is no space for a new chunk
9785 */
0305bc27
QW
9786 if (full) {
9787 if (debug)
9788 btrfs_warn(root->fs_info,
9789 "no space to alloc new chunk for block group %llu",
9790 block_group->key.objectid);
4a5e98f5 9791 goto out;
0305bc27 9792 }
4a5e98f5
ID
9793
9794 index = get_block_group_index(block_group);
9795 }
9796
e6ec716f 9797 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9798 dev_min = 4;
6719db6a
JB
9799 /* Divide by 2 */
9800 min_free >>= 1;
e6ec716f 9801 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9802 dev_min = 2;
e6ec716f 9803 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9804 /* Multiply by 2 */
9805 min_free <<= 1;
e6ec716f 9806 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9807 dev_min = fs_devices->rw_devices;
47c5713f 9808 min_free = div64_u64(min_free, dev_min);
cdcb725c 9809 }
9810
6df9a95e
JB
9811 /* We need to do this so that we can look at pending chunks */
9812 trans = btrfs_join_transaction(root);
9813 if (IS_ERR(trans)) {
9814 ret = PTR_ERR(trans);
9815 goto out;
9816 }
9817
ba1bf481
JB
9818 mutex_lock(&root->fs_info->chunk_mutex);
9819 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9820 u64 dev_offset;
56bec294 9821
ba1bf481
JB
9822 /*
9823 * check to make sure we can actually find a chunk with enough
9824 * space to fit our block group in.
9825 */
63a212ab
SB
9826 if (device->total_bytes > device->bytes_used + min_free &&
9827 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9828 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9829 &dev_offset, NULL);
ba1bf481 9830 if (!ret)
cdcb725c 9831 dev_nr++;
9832
9833 if (dev_nr >= dev_min)
73e48b27 9834 break;
cdcb725c 9835
ba1bf481 9836 ret = -1;
725c8463 9837 }
edbd8d4e 9838 }
0305bc27
QW
9839 if (debug && ret == -1)
9840 btrfs_warn(root->fs_info,
9841 "no space to allocate a new chunk for block group %llu",
9842 block_group->key.objectid);
ba1bf481 9843 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9844 btrfs_end_transaction(trans, root);
edbd8d4e 9845out:
ba1bf481 9846 btrfs_put_block_group(block_group);
edbd8d4e
CM
9847 return ret;
9848}
9849
b2950863
CH
9850static int find_first_block_group(struct btrfs_root *root,
9851 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9852{
925baedd 9853 int ret = 0;
0b86a832
CM
9854 struct btrfs_key found_key;
9855 struct extent_buffer *leaf;
9856 int slot;
edbd8d4e 9857
0b86a832
CM
9858 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9859 if (ret < 0)
925baedd
CM
9860 goto out;
9861
d397712b 9862 while (1) {
0b86a832 9863 slot = path->slots[0];
edbd8d4e 9864 leaf = path->nodes[0];
0b86a832
CM
9865 if (slot >= btrfs_header_nritems(leaf)) {
9866 ret = btrfs_next_leaf(root, path);
9867 if (ret == 0)
9868 continue;
9869 if (ret < 0)
925baedd 9870 goto out;
0b86a832 9871 break;
edbd8d4e 9872 }
0b86a832 9873 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9874
0b86a832 9875 if (found_key.objectid >= key->objectid &&
925baedd
CM
9876 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9877 ret = 0;
9878 goto out;
9879 }
0b86a832 9880 path->slots[0]++;
edbd8d4e 9881 }
925baedd 9882out:
0b86a832 9883 return ret;
edbd8d4e
CM
9884}
9885
0af3d00b
JB
9886void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9887{
9888 struct btrfs_block_group_cache *block_group;
9889 u64 last = 0;
9890
9891 while (1) {
9892 struct inode *inode;
9893
9894 block_group = btrfs_lookup_first_block_group(info, last);
9895 while (block_group) {
9896 spin_lock(&block_group->lock);
9897 if (block_group->iref)
9898 break;
9899 spin_unlock(&block_group->lock);
9900 block_group = next_block_group(info->tree_root,
9901 block_group);
9902 }
9903 if (!block_group) {
9904 if (last == 0)
9905 break;
9906 last = 0;
9907 continue;
9908 }
9909
9910 inode = block_group->inode;
9911 block_group->iref = 0;
9912 block_group->inode = NULL;
9913 spin_unlock(&block_group->lock);
9914 iput(inode);
9915 last = block_group->key.objectid + block_group->key.offset;
9916 btrfs_put_block_group(block_group);
9917 }
9918}
9919
1a40e23b
ZY
9920int btrfs_free_block_groups(struct btrfs_fs_info *info)
9921{
9922 struct btrfs_block_group_cache *block_group;
4184ea7f 9923 struct btrfs_space_info *space_info;
11833d66 9924 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9925 struct rb_node *n;
9926
9e351cc8 9927 down_write(&info->commit_root_sem);
11833d66
YZ
9928 while (!list_empty(&info->caching_block_groups)) {
9929 caching_ctl = list_entry(info->caching_block_groups.next,
9930 struct btrfs_caching_control, list);
9931 list_del(&caching_ctl->list);
9932 put_caching_control(caching_ctl);
9933 }
9e351cc8 9934 up_write(&info->commit_root_sem);
11833d66 9935
47ab2a6c
JB
9936 spin_lock(&info->unused_bgs_lock);
9937 while (!list_empty(&info->unused_bgs)) {
9938 block_group = list_first_entry(&info->unused_bgs,
9939 struct btrfs_block_group_cache,
9940 bg_list);
9941 list_del_init(&block_group->bg_list);
9942 btrfs_put_block_group(block_group);
9943 }
9944 spin_unlock(&info->unused_bgs_lock);
9945
1a40e23b
ZY
9946 spin_lock(&info->block_group_cache_lock);
9947 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9948 block_group = rb_entry(n, struct btrfs_block_group_cache,
9949 cache_node);
1a40e23b
ZY
9950 rb_erase(&block_group->cache_node,
9951 &info->block_group_cache_tree);
01eacb27 9952 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9953 spin_unlock(&info->block_group_cache_lock);
9954
80eb234a 9955 down_write(&block_group->space_info->groups_sem);
1a40e23b 9956 list_del(&block_group->list);
80eb234a 9957 up_write(&block_group->space_info->groups_sem);
d2fb3437 9958
817d52f8 9959 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9960 wait_block_group_cache_done(block_group);
817d52f8 9961
3c14874a
JB
9962 /*
9963 * We haven't cached this block group, which means we could
9964 * possibly have excluded extents on this block group.
9965 */
36cce922
JB
9966 if (block_group->cached == BTRFS_CACHE_NO ||
9967 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9968 free_excluded_extents(info->extent_root, block_group);
9969
817d52f8 9970 btrfs_remove_free_space_cache(block_group);
11dfe35a 9971 btrfs_put_block_group(block_group);
d899e052
YZ
9972
9973 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9974 }
9975 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9976
9977 /* now that all the block groups are freed, go through and
9978 * free all the space_info structs. This is only called during
9979 * the final stages of unmount, and so we know nobody is
9980 * using them. We call synchronize_rcu() once before we start,
9981 * just to be on the safe side.
9982 */
9983 synchronize_rcu();
9984
8929ecfa
YZ
9985 release_global_block_rsv(info);
9986
67871254 9987 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9988 int i;
9989
4184ea7f
CM
9990 space_info = list_entry(info->space_info.next,
9991 struct btrfs_space_info,
9992 list);
d555b6c3
JB
9993
9994 /*
9995 * Do not hide this behind enospc_debug, this is actually
9996 * important and indicates a real bug if this happens.
9997 */
9998 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9999 space_info->bytes_reserved > 0 ||
d555b6c3
JB
10000 space_info->bytes_may_use > 0))
10001 dump_space_info(space_info, 0, 0);
4184ea7f 10002 list_del(&space_info->list);
6ab0a202
JM
10003 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10004 struct kobject *kobj;
c1895442
JM
10005 kobj = space_info->block_group_kobjs[i];
10006 space_info->block_group_kobjs[i] = NULL;
10007 if (kobj) {
6ab0a202
JM
10008 kobject_del(kobj);
10009 kobject_put(kobj);
10010 }
10011 }
10012 kobject_del(&space_info->kobj);
10013 kobject_put(&space_info->kobj);
4184ea7f 10014 }
1a40e23b
ZY
10015 return 0;
10016}
10017
b742bb82
YZ
10018static void __link_block_group(struct btrfs_space_info *space_info,
10019 struct btrfs_block_group_cache *cache)
10020{
10021 int index = get_block_group_index(cache);
ed55b6ac 10022 bool first = false;
b742bb82
YZ
10023
10024 down_write(&space_info->groups_sem);
ed55b6ac
JM
10025 if (list_empty(&space_info->block_groups[index]))
10026 first = true;
10027 list_add_tail(&cache->list, &space_info->block_groups[index]);
10028 up_write(&space_info->groups_sem);
10029
10030 if (first) {
c1895442 10031 struct raid_kobject *rkobj;
6ab0a202
JM
10032 int ret;
10033
c1895442
JM
10034 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10035 if (!rkobj)
10036 goto out_err;
10037 rkobj->raid_type = index;
10038 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10039 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10040 "%s", get_raid_name(index));
6ab0a202 10041 if (ret) {
c1895442
JM
10042 kobject_put(&rkobj->kobj);
10043 goto out_err;
6ab0a202 10044 }
c1895442 10045 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10046 }
c1895442
JM
10047
10048 return;
10049out_err:
10050 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
10051}
10052
920e4a58
MX
10053static struct btrfs_block_group_cache *
10054btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
10055{
10056 struct btrfs_block_group_cache *cache;
10057
10058 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10059 if (!cache)
10060 return NULL;
10061
10062 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10063 GFP_NOFS);
10064 if (!cache->free_space_ctl) {
10065 kfree(cache);
10066 return NULL;
10067 }
10068
10069 cache->key.objectid = start;
10070 cache->key.offset = size;
10071 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10072
10073 cache->sectorsize = root->sectorsize;
10074 cache->fs_info = root->fs_info;
10075 cache->full_stripe_len = btrfs_full_stripe_len(root,
10076 &root->fs_info->mapping_tree,
10077 start);
1e144fb8
OS
10078 set_free_space_tree_thresholds(cache);
10079
920e4a58
MX
10080 atomic_set(&cache->count, 1);
10081 spin_lock_init(&cache->lock);
e570fd27 10082 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10083 INIT_LIST_HEAD(&cache->list);
10084 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10085 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10086 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10087 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10088 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10089 btrfs_init_free_space_ctl(cache);
04216820 10090 atomic_set(&cache->trimming, 0);
a5ed9182 10091 mutex_init(&cache->free_space_lock);
920e4a58
MX
10092
10093 return cache;
10094}
10095
9078a3e1
CM
10096int btrfs_read_block_groups(struct btrfs_root *root)
10097{
10098 struct btrfs_path *path;
10099 int ret;
9078a3e1 10100 struct btrfs_block_group_cache *cache;
be744175 10101 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 10102 struct btrfs_space_info *space_info;
9078a3e1
CM
10103 struct btrfs_key key;
10104 struct btrfs_key found_key;
5f39d397 10105 struct extent_buffer *leaf;
0af3d00b
JB
10106 int need_clear = 0;
10107 u64 cache_gen;
96b5179d 10108
be744175 10109 root = info->extent_root;
9078a3e1 10110 key.objectid = 0;
0b86a832 10111 key.offset = 0;
962a298f 10112 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10113 path = btrfs_alloc_path();
10114 if (!path)
10115 return -ENOMEM;
e4058b54 10116 path->reada = READA_FORWARD;
9078a3e1 10117
6c41761f 10118 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 10119 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 10120 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 10121 need_clear = 1;
88c2ba3b
JB
10122 if (btrfs_test_opt(root, CLEAR_CACHE))
10123 need_clear = 1;
0af3d00b 10124
d397712b 10125 while (1) {
0b86a832 10126 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
10127 if (ret > 0)
10128 break;
0b86a832
CM
10129 if (ret != 0)
10130 goto error;
920e4a58 10131
5f39d397
CM
10132 leaf = path->nodes[0];
10133 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
10134
10135 cache = btrfs_create_block_group_cache(root, found_key.objectid,
10136 found_key.offset);
9078a3e1 10137 if (!cache) {
0b86a832 10138 ret = -ENOMEM;
f0486c68 10139 goto error;
9078a3e1 10140 }
96303081 10141
cf7c1ef6
LB
10142 if (need_clear) {
10143 /*
10144 * When we mount with old space cache, we need to
10145 * set BTRFS_DC_CLEAR and set dirty flag.
10146 *
10147 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10148 * truncate the old free space cache inode and
10149 * setup a new one.
10150 * b) Setting 'dirty flag' makes sure that we flush
10151 * the new space cache info onto disk.
10152 */
cf7c1ef6 10153 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 10154 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10155 }
0af3d00b 10156
5f39d397
CM
10157 read_extent_buffer(leaf, &cache->item,
10158 btrfs_item_ptr_offset(leaf, path->slots[0]),
10159 sizeof(cache->item));
920e4a58 10160 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 10161
9078a3e1 10162 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10163 btrfs_release_path(path);
34d52cb6 10164
3c14874a
JB
10165 /*
10166 * We need to exclude the super stripes now so that the space
10167 * info has super bytes accounted for, otherwise we'll think
10168 * we have more space than we actually do.
10169 */
835d974f
JB
10170 ret = exclude_super_stripes(root, cache);
10171 if (ret) {
10172 /*
10173 * We may have excluded something, so call this just in
10174 * case.
10175 */
10176 free_excluded_extents(root, cache);
920e4a58 10177 btrfs_put_block_group(cache);
835d974f
JB
10178 goto error;
10179 }
3c14874a 10180
817d52f8
JB
10181 /*
10182 * check for two cases, either we are full, and therefore
10183 * don't need to bother with the caching work since we won't
10184 * find any space, or we are empty, and we can just add all
10185 * the space in and be done with it. This saves us _alot_ of
10186 * time, particularly in the full case.
10187 */
10188 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10189 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10190 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 10191 free_excluded_extents(root, cache);
817d52f8 10192 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10193 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
10194 cache->cached = BTRFS_CACHE_FINISHED;
10195 add_new_free_space(cache, root->fs_info,
10196 found_key.objectid,
10197 found_key.objectid +
10198 found_key.offset);
11833d66 10199 free_excluded_extents(root, cache);
817d52f8 10200 }
96b5179d 10201
8c579fe7
JB
10202 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10203 if (ret) {
10204 btrfs_remove_free_space_cache(cache);
10205 btrfs_put_block_group(cache);
10206 goto error;
10207 }
10208
c83f8eff 10209 trace_btrfs_add_block_group(root->fs_info, cache, 0);
6324fbf3
CM
10210 ret = update_space_info(info, cache->flags, found_key.offset,
10211 btrfs_block_group_used(&cache->item),
e40edf2d 10212 cache->bytes_super, &space_info);
8c579fe7
JB
10213 if (ret) {
10214 btrfs_remove_free_space_cache(cache);
10215 spin_lock(&info->block_group_cache_lock);
10216 rb_erase(&cache->cache_node,
10217 &info->block_group_cache_tree);
01eacb27 10218 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10219 spin_unlock(&info->block_group_cache_lock);
10220 btrfs_put_block_group(cache);
10221 goto error;
10222 }
10223
6324fbf3 10224 cache->space_info = space_info;
1b2da372 10225
b742bb82 10226 __link_block_group(space_info, cache);
0f9dd46c 10227
75ccf47d 10228 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 10229 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
868f401a 10230 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10231 } else if (btrfs_block_group_used(&cache->item) == 0) {
10232 spin_lock(&info->unused_bgs_lock);
10233 /* Should always be true but just in case. */
10234 if (list_empty(&cache->bg_list)) {
10235 btrfs_get_block_group(cache);
10236 list_add_tail(&cache->bg_list,
10237 &info->unused_bgs);
10238 }
10239 spin_unlock(&info->unused_bgs_lock);
10240 }
9078a3e1 10241 }
b742bb82
YZ
10242
10243 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
10244 if (!(get_alloc_profile(root, space_info->flags) &
10245 (BTRFS_BLOCK_GROUP_RAID10 |
10246 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10247 BTRFS_BLOCK_GROUP_RAID5 |
10248 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10249 BTRFS_BLOCK_GROUP_DUP)))
10250 continue;
10251 /*
10252 * avoid allocating from un-mirrored block group if there are
10253 * mirrored block groups.
10254 */
1095cc0d 10255 list_for_each_entry(cache,
10256 &space_info->block_groups[BTRFS_RAID_RAID0],
10257 list)
868f401a 10258 inc_block_group_ro(cache, 1);
1095cc0d 10259 list_for_each_entry(cache,
10260 &space_info->block_groups[BTRFS_RAID_SINGLE],
10261 list)
868f401a 10262 inc_block_group_ro(cache, 1);
9078a3e1 10263 }
f0486c68
YZ
10264
10265 init_global_block_rsv(info);
0b86a832
CM
10266 ret = 0;
10267error:
9078a3e1 10268 btrfs_free_path(path);
0b86a832 10269 return ret;
9078a3e1 10270}
6324fbf3 10271
ea658bad
JB
10272void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10273 struct btrfs_root *root)
10274{
10275 struct btrfs_block_group_cache *block_group, *tmp;
10276 struct btrfs_root *extent_root = root->fs_info->extent_root;
10277 struct btrfs_block_group_item item;
10278 struct btrfs_key key;
10279 int ret = 0;
d9a0540a 10280 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10281
d9a0540a 10282 trans->can_flush_pending_bgs = false;
47ab2a6c 10283 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10284 if (ret)
c92f6be3 10285 goto next;
ea658bad
JB
10286
10287 spin_lock(&block_group->lock);
10288 memcpy(&item, &block_group->item, sizeof(item));
10289 memcpy(&key, &block_group->key, sizeof(key));
10290 spin_unlock(&block_group->lock);
10291
10292 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10293 sizeof(item));
10294 if (ret)
10295 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
10296 ret = btrfs_finish_chunk_alloc(trans, extent_root,
10297 key.objectid, key.offset);
10298 if (ret)
10299 btrfs_abort_transaction(trans, extent_root, ret);
1e144fb8
OS
10300 add_block_group_free_space(trans, root->fs_info, block_group);
10301 /* already aborted the transaction if it failed. */
c92f6be3
FM
10302next:
10303 list_del_init(&block_group->bg_list);
ea658bad 10304 }
d9a0540a 10305 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10306}
10307
6324fbf3
CM
10308int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10309 struct btrfs_root *root, u64 bytes_used,
e17cade2 10310 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
10311 u64 size)
10312{
10313 int ret;
6324fbf3
CM
10314 struct btrfs_root *extent_root;
10315 struct btrfs_block_group_cache *cache;
6324fbf3 10316 extent_root = root->fs_info->extent_root;
6324fbf3 10317
995946dd 10318 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 10319
920e4a58 10320 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
10321 if (!cache)
10322 return -ENOMEM;
34d52cb6 10323
6324fbf3 10324 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 10325 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
10326 btrfs_set_block_group_flags(&cache->item, type);
10327
920e4a58 10328 cache->flags = type;
11833d66 10329 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10330 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10331 cache->needs_free_space = 1;
835d974f
JB
10332 ret = exclude_super_stripes(root, cache);
10333 if (ret) {
10334 /*
10335 * We may have excluded something, so call this just in
10336 * case.
10337 */
10338 free_excluded_extents(root, cache);
920e4a58 10339 btrfs_put_block_group(cache);
835d974f
JB
10340 return ret;
10341 }
96303081 10342
817d52f8
JB
10343 add_new_free_space(cache, root->fs_info, chunk_offset,
10344 chunk_offset + size);
10345
11833d66
YZ
10346 free_excluded_extents(root, cache);
10347
d0bd4560
JB
10348#ifdef CONFIG_BTRFS_DEBUG
10349 if (btrfs_should_fragment_free_space(root, cache)) {
10350 u64 new_bytes_used = size - bytes_used;
10351
10352 bytes_used += new_bytes_used >> 1;
10353 fragment_free_space(root, cache);
10354 }
10355#endif
2e6e5183
FM
10356 /*
10357 * Call to ensure the corresponding space_info object is created and
10358 * assigned to our block group, but don't update its counters just yet.
10359 * We want our bg to be added to the rbtree with its ->space_info set.
10360 */
e40edf2d 10361 ret = update_space_info(root->fs_info, cache->flags, 0, 0, 0,
2e6e5183
FM
10362 &cache->space_info);
10363 if (ret) {
10364 btrfs_remove_free_space_cache(cache);
10365 btrfs_put_block_group(cache);
10366 return ret;
10367 }
10368
8c579fe7
JB
10369 ret = btrfs_add_block_group_cache(root->fs_info, cache);
10370 if (ret) {
10371 btrfs_remove_free_space_cache(cache);
10372 btrfs_put_block_group(cache);
10373 return ret;
10374 }
10375
2e6e5183
FM
10376 /*
10377 * Now that our block group has its ->space_info set and is inserted in
10378 * the rbtree, update the space info's counters.
10379 */
c83f8eff 10380 trace_btrfs_add_block_group(root->fs_info, cache, 1);
6324fbf3 10381 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
e40edf2d 10382 cache->bytes_super, &cache->space_info);
8c579fe7
JB
10383 if (ret) {
10384 btrfs_remove_free_space_cache(cache);
10385 spin_lock(&root->fs_info->block_group_cache_lock);
10386 rb_erase(&cache->cache_node,
10387 &root->fs_info->block_group_cache_tree);
01eacb27 10388 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
10389 spin_unlock(&root->fs_info->block_group_cache_lock);
10390 btrfs_put_block_group(cache);
10391 return ret;
10392 }
c7c144db 10393 update_global_block_rsv(root->fs_info);
1b2da372 10394
b742bb82 10395 __link_block_group(cache->space_info, cache);
6324fbf3 10396
47ab2a6c 10397 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10398
d18a2c44 10399 set_avail_alloc_bits(extent_root->fs_info, type);
6324fbf3
CM
10400 return 0;
10401}
1a40e23b 10402
10ea00f5
ID
10403static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10404{
899c81ea
ID
10405 u64 extra_flags = chunk_to_extended(flags) &
10406 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10407
de98ced9 10408 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10409 if (flags & BTRFS_BLOCK_GROUP_DATA)
10410 fs_info->avail_data_alloc_bits &= ~extra_flags;
10411 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10412 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10413 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10414 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10415 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10416}
10417
1a40e23b 10418int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
10419 struct btrfs_root *root, u64 group_start,
10420 struct extent_map *em)
1a40e23b
ZY
10421{
10422 struct btrfs_path *path;
10423 struct btrfs_block_group_cache *block_group;
44fb5511 10424 struct btrfs_free_cluster *cluster;
0af3d00b 10425 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 10426 struct btrfs_key key;
0af3d00b 10427 struct inode *inode;
c1895442 10428 struct kobject *kobj = NULL;
1a40e23b 10429 int ret;
10ea00f5 10430 int index;
89a55897 10431 int factor;
4f69cb98 10432 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10433 bool remove_em;
1a40e23b 10434
1a40e23b
ZY
10435 root = root->fs_info->extent_root;
10436
10437 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
10438 BUG_ON(!block_group);
c146afad 10439 BUG_ON(!block_group->ro);
1a40e23b 10440
9f7c43c9 10441 /*
10442 * Free the reserved super bytes from this block group before
10443 * remove it.
10444 */
10445 free_excluded_extents(root, block_group);
10446
1a40e23b 10447 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 10448 index = get_block_group_index(block_group);
89a55897
JB
10449 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10450 BTRFS_BLOCK_GROUP_RAID1 |
10451 BTRFS_BLOCK_GROUP_RAID10))
10452 factor = 2;
10453 else
10454 factor = 1;
1a40e23b 10455
44fb5511
CM
10456 /* make sure this block group isn't part of an allocation cluster */
10457 cluster = &root->fs_info->data_alloc_cluster;
10458 spin_lock(&cluster->refill_lock);
10459 btrfs_return_cluster_to_free_space(block_group, cluster);
10460 spin_unlock(&cluster->refill_lock);
10461
10462 /*
10463 * make sure this block group isn't part of a metadata
10464 * allocation cluster
10465 */
10466 cluster = &root->fs_info->meta_alloc_cluster;
10467 spin_lock(&cluster->refill_lock);
10468 btrfs_return_cluster_to_free_space(block_group, cluster);
10469 spin_unlock(&cluster->refill_lock);
10470
1a40e23b 10471 path = btrfs_alloc_path();
d8926bb3
MF
10472 if (!path) {
10473 ret = -ENOMEM;
10474 goto out;
10475 }
1a40e23b 10476
1bbc621e
CM
10477 /*
10478 * get the inode first so any iput calls done for the io_list
10479 * aren't the final iput (no unlinks allowed now)
10480 */
10b2f34d 10481 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
10482
10483 mutex_lock(&trans->transaction->cache_write_mutex);
10484 /*
10485 * make sure our free spache cache IO is done before remove the
10486 * free space inode
10487 */
10488 spin_lock(&trans->transaction->dirty_bgs_lock);
10489 if (!list_empty(&block_group->io_list)) {
10490 list_del_init(&block_group->io_list);
10491
10492 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10493
10494 spin_unlock(&trans->transaction->dirty_bgs_lock);
10495 btrfs_wait_cache_io(root, trans, block_group,
10496 &block_group->io_ctl, path,
10497 block_group->key.objectid);
10498 btrfs_put_block_group(block_group);
10499 spin_lock(&trans->transaction->dirty_bgs_lock);
10500 }
10501
10502 if (!list_empty(&block_group->dirty_list)) {
10503 list_del_init(&block_group->dirty_list);
10504 btrfs_put_block_group(block_group);
10505 }
10506 spin_unlock(&trans->transaction->dirty_bgs_lock);
10507 mutex_unlock(&trans->transaction->cache_write_mutex);
10508
0af3d00b 10509 if (!IS_ERR(inode)) {
b532402e 10510 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
10511 if (ret) {
10512 btrfs_add_delayed_iput(inode);
10513 goto out;
10514 }
0af3d00b
JB
10515 clear_nlink(inode);
10516 /* One for the block groups ref */
10517 spin_lock(&block_group->lock);
10518 if (block_group->iref) {
10519 block_group->iref = 0;
10520 block_group->inode = NULL;
10521 spin_unlock(&block_group->lock);
10522 iput(inode);
10523 } else {
10524 spin_unlock(&block_group->lock);
10525 }
10526 /* One for our lookup ref */
455757c3 10527 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10528 }
10529
10530 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10531 key.offset = block_group->key.objectid;
10532 key.type = 0;
10533
10534 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10535 if (ret < 0)
10536 goto out;
10537 if (ret > 0)
b3b4aa74 10538 btrfs_release_path(path);
0af3d00b
JB
10539 if (ret == 0) {
10540 ret = btrfs_del_item(trans, tree_root, path);
10541 if (ret)
10542 goto out;
b3b4aa74 10543 btrfs_release_path(path);
0af3d00b
JB
10544 }
10545
3dfdb934 10546 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
10547 rb_erase(&block_group->cache_node,
10548 &root->fs_info->block_group_cache_tree);
292cbd51 10549 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
10550
10551 if (root->fs_info->first_logical_byte == block_group->key.objectid)
10552 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 10553 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 10554
80eb234a 10555 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10556 /*
10557 * we must use list_del_init so people can check to see if they
10558 * are still on the list after taking the semaphore
10559 */
10560 list_del_init(&block_group->list);
6ab0a202 10561 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10562 kobj = block_group->space_info->block_group_kobjs[index];
10563 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 10564 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 10565 }
80eb234a 10566 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10567 if (kobj) {
10568 kobject_del(kobj);
10569 kobject_put(kobj);
10570 }
1a40e23b 10571
4f69cb98
FM
10572 if (block_group->has_caching_ctl)
10573 caching_ctl = get_caching_control(block_group);
817d52f8 10574 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10575 wait_block_group_cache_done(block_group);
4f69cb98
FM
10576 if (block_group->has_caching_ctl) {
10577 down_write(&root->fs_info->commit_root_sem);
10578 if (!caching_ctl) {
10579 struct btrfs_caching_control *ctl;
10580
10581 list_for_each_entry(ctl,
10582 &root->fs_info->caching_block_groups, list)
10583 if (ctl->block_group == block_group) {
10584 caching_ctl = ctl;
10585 atomic_inc(&caching_ctl->count);
10586 break;
10587 }
10588 }
10589 if (caching_ctl)
10590 list_del_init(&caching_ctl->list);
10591 up_write(&root->fs_info->commit_root_sem);
10592 if (caching_ctl) {
10593 /* Once for the caching bgs list and once for us. */
10594 put_caching_control(caching_ctl);
10595 put_caching_control(caching_ctl);
10596 }
10597 }
817d52f8 10598
ce93ec54
JB
10599 spin_lock(&trans->transaction->dirty_bgs_lock);
10600 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10601 WARN_ON(1);
10602 }
10603 if (!list_empty(&block_group->io_list)) {
10604 WARN_ON(1);
ce93ec54
JB
10605 }
10606 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10607 btrfs_remove_free_space_cache(block_group);
10608
c146afad 10609 spin_lock(&block_group->space_info->lock);
75c68e9f 10610 list_del_init(&block_group->ro_list);
18d018ad
ZL
10611
10612 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
10613 WARN_ON(block_group->space_info->total_bytes
10614 < block_group->key.offset);
10615 WARN_ON(block_group->space_info->bytes_readonly
10616 < block_group->key.offset);
10617 WARN_ON(block_group->space_info->disk_total
10618 < block_group->key.offset * factor);
10619 }
c146afad
YZ
10620 block_group->space_info->total_bytes -= block_group->key.offset;
10621 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10622 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10623
c146afad 10624 spin_unlock(&block_group->space_info->lock);
283bb197 10625
0af3d00b
JB
10626 memcpy(&key, &block_group->key, sizeof(key));
10627
04216820 10628 lock_chunks(root);
495e64f4
FM
10629 if (!list_empty(&em->list)) {
10630 /* We're in the transaction->pending_chunks list. */
10631 free_extent_map(em);
10632 }
04216820
FM
10633 spin_lock(&block_group->lock);
10634 block_group->removed = 1;
10635 /*
10636 * At this point trimming can't start on this block group, because we
10637 * removed the block group from the tree fs_info->block_group_cache_tree
10638 * so no one can't find it anymore and even if someone already got this
10639 * block group before we removed it from the rbtree, they have already
10640 * incremented block_group->trimming - if they didn't, they won't find
10641 * any free space entries because we already removed them all when we
10642 * called btrfs_remove_free_space_cache().
10643 *
10644 * And we must not remove the extent map from the fs_info->mapping_tree
10645 * to prevent the same logical address range and physical device space
10646 * ranges from being reused for a new block group. This is because our
10647 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10648 * completely transactionless, so while it is trimming a range the
10649 * currently running transaction might finish and a new one start,
10650 * allowing for new block groups to be created that can reuse the same
10651 * physical device locations unless we take this special care.
e33e17ee
JM
10652 *
10653 * There may also be an implicit trim operation if the file system
10654 * is mounted with -odiscard. The same protections must remain
10655 * in place until the extents have been discarded completely when
10656 * the transaction commit has completed.
04216820
FM
10657 */
10658 remove_em = (atomic_read(&block_group->trimming) == 0);
10659 /*
10660 * Make sure a trimmer task always sees the em in the pinned_chunks list
10661 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10662 * before checking block_group->removed).
10663 */
10664 if (!remove_em) {
10665 /*
10666 * Our em might be in trans->transaction->pending_chunks which
10667 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10668 * and so is the fs_info->pinned_chunks list.
10669 *
10670 * So at this point we must be holding the chunk_mutex to avoid
10671 * any races with chunk allocation (more specifically at
10672 * volumes.c:contains_pending_extent()), to ensure it always
10673 * sees the em, either in the pending_chunks list or in the
10674 * pinned_chunks list.
10675 */
10676 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
10677 }
10678 spin_unlock(&block_group->lock);
04216820
FM
10679
10680 if (remove_em) {
10681 struct extent_map_tree *em_tree;
10682
10683 em_tree = &root->fs_info->mapping_tree.map_tree;
10684 write_lock(&em_tree->lock);
8dbcd10f
FM
10685 /*
10686 * The em might be in the pending_chunks list, so make sure the
10687 * chunk mutex is locked, since remove_extent_mapping() will
10688 * delete us from that list.
10689 */
04216820
FM
10690 remove_extent_mapping(em_tree, em);
10691 write_unlock(&em_tree->lock);
10692 /* once for the tree */
10693 free_extent_map(em);
10694 }
10695
8dbcd10f
FM
10696 unlock_chunks(root);
10697
1e144fb8
OS
10698 ret = remove_block_group_free_space(trans, root->fs_info, block_group);
10699 if (ret)
10700 goto out;
10701
fa9c0d79
CM
10702 btrfs_put_block_group(block_group);
10703 btrfs_put_block_group(block_group);
1a40e23b
ZY
10704
10705 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10706 if (ret > 0)
10707 ret = -EIO;
10708 if (ret < 0)
10709 goto out;
10710
10711 ret = btrfs_del_item(trans, root, path);
10712out:
10713 btrfs_free_path(path);
10714 return ret;
10715}
acce952b 10716
8eab77ff 10717struct btrfs_trans_handle *
7fd01182
FM
10718btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10719 const u64 chunk_offset)
8eab77ff 10720{
7fd01182
FM
10721 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10722 struct extent_map *em;
10723 struct map_lookup *map;
10724 unsigned int num_items;
10725
10726 read_lock(&em_tree->lock);
10727 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10728 read_unlock(&em_tree->lock);
10729 ASSERT(em && em->start == chunk_offset);
10730
8eab77ff 10731 /*
7fd01182
FM
10732 * We need to reserve 3 + N units from the metadata space info in order
10733 * to remove a block group (done at btrfs_remove_chunk() and at
10734 * btrfs_remove_block_group()), which are used for:
10735 *
8eab77ff
FM
10736 * 1 unit for adding the free space inode's orphan (located in the tree
10737 * of tree roots).
7fd01182
FM
10738 * 1 unit for deleting the block group item (located in the extent
10739 * tree).
10740 * 1 unit for deleting the free space item (located in tree of tree
10741 * roots).
10742 * N units for deleting N device extent items corresponding to each
10743 * stripe (located in the device tree).
10744 *
10745 * In order to remove a block group we also need to reserve units in the
10746 * system space info in order to update the chunk tree (update one or
10747 * more device items and remove one chunk item), but this is done at
10748 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10749 */
95617d69 10750 map = em->map_lookup;
7fd01182
FM
10751 num_items = 3 + map->num_stripes;
10752 free_extent_map(em);
10753
8eab77ff 10754 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10755 num_items, 1);
8eab77ff
FM
10756}
10757
47ab2a6c
JB
10758/*
10759 * Process the unused_bgs list and remove any that don't have any allocated
10760 * space inside of them.
10761 */
10762void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10763{
10764 struct btrfs_block_group_cache *block_group;
10765 struct btrfs_space_info *space_info;
10766 struct btrfs_root *root = fs_info->extent_root;
10767 struct btrfs_trans_handle *trans;
10768 int ret = 0;
10769
10770 if (!fs_info->open)
10771 return;
10772
10773 spin_lock(&fs_info->unused_bgs_lock);
10774 while (!list_empty(&fs_info->unused_bgs)) {
10775 u64 start, end;
e33e17ee 10776 int trimming;
47ab2a6c
JB
10777
10778 block_group = list_first_entry(&fs_info->unused_bgs,
10779 struct btrfs_block_group_cache,
10780 bg_list);
47ab2a6c 10781 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10782
10783 space_info = block_group->space_info;
10784
47ab2a6c
JB
10785 if (ret || btrfs_mixed_space_info(space_info)) {
10786 btrfs_put_block_group(block_group);
10787 continue;
10788 }
10789 spin_unlock(&fs_info->unused_bgs_lock);
10790
d5f2e33b 10791 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10792
47ab2a6c
JB
10793 /* Don't want to race with allocators so take the groups_sem */
10794 down_write(&space_info->groups_sem);
10795 spin_lock(&block_group->lock);
10796 if (block_group->reserved ||
10797 btrfs_block_group_used(&block_group->item) ||
aefbe9a6
ZL
10798 block_group->ro ||
10799 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10800 /*
10801 * We want to bail if we made new allocations or have
10802 * outstanding allocations in this block group. We do
10803 * the ro check in case balance is currently acting on
10804 * this block group.
10805 */
10806 spin_unlock(&block_group->lock);
10807 up_write(&space_info->groups_sem);
10808 goto next;
10809 }
10810 spin_unlock(&block_group->lock);
10811
10812 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10813 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10814 up_write(&space_info->groups_sem);
10815 if (ret < 0) {
10816 ret = 0;
10817 goto next;
10818 }
10819
10820 /*
10821 * Want to do this before we do anything else so we can recover
10822 * properly if we fail to join the transaction.
10823 */
7fd01182
FM
10824 trans = btrfs_start_trans_remove_block_group(fs_info,
10825 block_group->key.objectid);
47ab2a6c 10826 if (IS_ERR(trans)) {
868f401a 10827 btrfs_dec_block_group_ro(root, block_group);
47ab2a6c
JB
10828 ret = PTR_ERR(trans);
10829 goto next;
10830 }
10831
10832 /*
10833 * We could have pending pinned extents for this block group,
10834 * just delete them, we don't care about them anymore.
10835 */
10836 start = block_group->key.objectid;
10837 end = start + block_group->key.offset - 1;
d4b450cd
FM
10838 /*
10839 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10840 * btrfs_finish_extent_commit(). If we are at transaction N,
10841 * another task might be running finish_extent_commit() for the
10842 * previous transaction N - 1, and have seen a range belonging
10843 * to the block group in freed_extents[] before we were able to
10844 * clear the whole block group range from freed_extents[]. This
10845 * means that task can lookup for the block group after we
10846 * unpinned it from freed_extents[] and removed it, leading to
10847 * a BUG_ON() at btrfs_unpin_extent_range().
10848 */
10849 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10850 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10851 EXTENT_DIRTY);
758eb51e 10852 if (ret) {
d4b450cd 10853 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10854 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10855 goto end_trans;
10856 }
10857 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10858 EXTENT_DIRTY);
758eb51e 10859 if (ret) {
d4b450cd 10860 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
868f401a 10861 btrfs_dec_block_group_ro(root, block_group);
758eb51e
FM
10862 goto end_trans;
10863 }
d4b450cd 10864 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10865
10866 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10867 spin_lock(&space_info->lock);
10868 spin_lock(&block_group->lock);
10869
10870 space_info->bytes_pinned -= block_group->pinned;
10871 space_info->bytes_readonly += block_group->pinned;
10872 percpu_counter_add(&space_info->total_bytes_pinned,
10873 -block_group->pinned);
47ab2a6c
JB
10874 block_group->pinned = 0;
10875
c30666d4
ZL
10876 spin_unlock(&block_group->lock);
10877 spin_unlock(&space_info->lock);
10878
e33e17ee
JM
10879 /* DISCARD can flip during remount */
10880 trimming = btrfs_test_opt(root, DISCARD);
10881
10882 /* Implicit trim during transaction commit. */
10883 if (trimming)
10884 btrfs_get_block_group_trimming(block_group);
10885
47ab2a6c
JB
10886 /*
10887 * Btrfs_remove_chunk will abort the transaction if things go
10888 * horribly wrong.
10889 */
10890 ret = btrfs_remove_chunk(trans, root,
10891 block_group->key.objectid);
e33e17ee
JM
10892
10893 if (ret) {
10894 if (trimming)
10895 btrfs_put_block_group_trimming(block_group);
10896 goto end_trans;
10897 }
10898
10899 /*
10900 * If we're not mounted with -odiscard, we can just forget
10901 * about this block group. Otherwise we'll need to wait
10902 * until transaction commit to do the actual discard.
10903 */
10904 if (trimming) {
348a0013
FM
10905 spin_lock(&fs_info->unused_bgs_lock);
10906 /*
10907 * A concurrent scrub might have added us to the list
10908 * fs_info->unused_bgs, so use a list_move operation
10909 * to add the block group to the deleted_bgs list.
10910 */
e33e17ee
JM
10911 list_move(&block_group->bg_list,
10912 &trans->transaction->deleted_bgs);
348a0013 10913 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10914 btrfs_get_block_group(block_group);
10915 }
758eb51e 10916end_trans:
47ab2a6c
JB
10917 btrfs_end_transaction(trans, root);
10918next:
d5f2e33b 10919 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10920 btrfs_put_block_group(block_group);
10921 spin_lock(&fs_info->unused_bgs_lock);
10922 }
10923 spin_unlock(&fs_info->unused_bgs_lock);
10924}
10925
c59021f8 10926int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10927{
10928 struct btrfs_space_info *space_info;
1aba86d6 10929 struct btrfs_super_block *disk_super;
10930 u64 features;
10931 u64 flags;
10932 int mixed = 0;
c59021f8 10933 int ret;
10934
6c41761f 10935 disk_super = fs_info->super_copy;
1aba86d6 10936 if (!btrfs_super_root(disk_super))
0dc924c5 10937 return -EINVAL;
c59021f8 10938
1aba86d6 10939 features = btrfs_super_incompat_flags(disk_super);
10940 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10941 mixed = 1;
c59021f8 10942
1aba86d6 10943 flags = BTRFS_BLOCK_GROUP_SYSTEM;
e40edf2d 10944 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
c59021f8 10945 if (ret)
1aba86d6 10946 goto out;
c59021f8 10947
1aba86d6 10948 if (mixed) {
10949 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10950 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10951 } else {
10952 flags = BTRFS_BLOCK_GROUP_METADATA;
e40edf2d 10953 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10954 if (ret)
10955 goto out;
10956
10957 flags = BTRFS_BLOCK_GROUP_DATA;
e40edf2d 10958 ret = update_space_info(fs_info, flags, 0, 0, 0, &space_info);
1aba86d6 10959 }
10960out:
c59021f8 10961 return ret;
10962}
10963
acce952b 10964int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10965{
678886bd 10966 return unpin_extent_range(root, start, end, false);
acce952b 10967}
10968
499f377f
JM
10969/*
10970 * It used to be that old block groups would be left around forever.
10971 * Iterating over them would be enough to trim unused space. Since we
10972 * now automatically remove them, we also need to iterate over unallocated
10973 * space.
10974 *
10975 * We don't want a transaction for this since the discard may take a
10976 * substantial amount of time. We don't require that a transaction be
10977 * running, but we do need to take a running transaction into account
10978 * to ensure that we're not discarding chunks that were released in
10979 * the current transaction.
10980 *
10981 * Holding the chunks lock will prevent other threads from allocating
10982 * or releasing chunks, but it won't prevent a running transaction
10983 * from committing and releasing the memory that the pending chunks
10984 * list head uses. For that, we need to take a reference to the
10985 * transaction.
10986 */
10987static int btrfs_trim_free_extents(struct btrfs_device *device,
10988 u64 minlen, u64 *trimmed)
10989{
10990 u64 start = 0, len = 0;
10991 int ret;
10992
10993 *trimmed = 0;
10994
10995 /* Not writeable = nothing to do. */
10996 if (!device->writeable)
10997 return 0;
10998
10999 /* No free space = nothing to do. */
11000 if (device->total_bytes <= device->bytes_used)
11001 return 0;
11002
11003 ret = 0;
11004
11005 while (1) {
11006 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
11007 struct btrfs_transaction *trans;
11008 u64 bytes;
11009
11010 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11011 if (ret)
11012 return ret;
11013
11014 down_read(&fs_info->commit_root_sem);
11015
11016 spin_lock(&fs_info->trans_lock);
11017 trans = fs_info->running_transaction;
11018 if (trans)
11019 atomic_inc(&trans->use_count);
11020 spin_unlock(&fs_info->trans_lock);
11021
11022 ret = find_free_dev_extent_start(trans, device, minlen, start,
11023 &start, &len);
11024 if (trans)
11025 btrfs_put_transaction(trans);
11026
11027 if (ret) {
11028 up_read(&fs_info->commit_root_sem);
11029 mutex_unlock(&fs_info->chunk_mutex);
11030 if (ret == -ENOSPC)
11031 ret = 0;
11032 break;
11033 }
11034
11035 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11036 up_read(&fs_info->commit_root_sem);
11037 mutex_unlock(&fs_info->chunk_mutex);
11038
11039 if (ret)
11040 break;
11041
11042 start += len;
11043 *trimmed += bytes;
11044
11045 if (fatal_signal_pending(current)) {
11046 ret = -ERESTARTSYS;
11047 break;
11048 }
11049
11050 cond_resched();
11051 }
11052
11053 return ret;
11054}
11055
f7039b1d
LD
11056int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
11057{
11058 struct btrfs_fs_info *fs_info = root->fs_info;
11059 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11060 struct btrfs_device *device;
11061 struct list_head *devices;
f7039b1d
LD
11062 u64 group_trimmed;
11063 u64 start;
11064 u64 end;
11065 u64 trimmed = 0;
2cac13e4 11066 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11067 int ret = 0;
11068
2cac13e4
LB
11069 /*
11070 * try to trim all FS space, our block group may start from non-zero.
11071 */
11072 if (range->len == total_bytes)
11073 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11074 else
11075 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11076
11077 while (cache) {
11078 if (cache->key.objectid >= (range->start + range->len)) {
11079 btrfs_put_block_group(cache);
11080 break;
11081 }
11082
11083 start = max(range->start, cache->key.objectid);
11084 end = min(range->start + range->len,
11085 cache->key.objectid + cache->key.offset);
11086
11087 if (end - start >= range->minlen) {
11088 if (!block_group_cache_done(cache)) {
f6373bf3 11089 ret = cache_block_group(cache, 0);
1be41b78
JB
11090 if (ret) {
11091 btrfs_put_block_group(cache);
11092 break;
11093 }
11094 ret = wait_block_group_cache_done(cache);
11095 if (ret) {
11096 btrfs_put_block_group(cache);
11097 break;
11098 }
f7039b1d
LD
11099 }
11100 ret = btrfs_trim_block_group(cache,
11101 &group_trimmed,
11102 start,
11103 end,
11104 range->minlen);
11105
11106 trimmed += group_trimmed;
11107 if (ret) {
11108 btrfs_put_block_group(cache);
11109 break;
11110 }
11111 }
11112
11113 cache = next_block_group(fs_info->tree_root, cache);
11114 }
11115
499f377f
JM
11116 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
11117 devices = &root->fs_info->fs_devices->alloc_list;
11118 list_for_each_entry(device, devices, dev_alloc_list) {
11119 ret = btrfs_trim_free_extents(device, range->minlen,
11120 &group_trimmed);
11121 if (ret)
11122 break;
11123
11124 trimmed += group_trimmed;
11125 }
11126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
11127
f7039b1d
LD
11128 range->len = trimmed;
11129 return ret;
11130}
8257b2dc
MX
11131
11132/*
9ea24bbe
FM
11133 * btrfs_{start,end}_write_no_snapshoting() are similar to
11134 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11135 * data into the page cache through nocow before the subvolume is snapshoted,
11136 * but flush the data into disk after the snapshot creation, or to prevent
11137 * operations while snapshoting is ongoing and that cause the snapshot to be
11138 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11139 */
9ea24bbe 11140void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
11141{
11142 percpu_counter_dec(&root->subv_writers->counter);
11143 /*
a83342aa 11144 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11145 */
11146 smp_mb();
11147 if (waitqueue_active(&root->subv_writers->wait))
11148 wake_up(&root->subv_writers->wait);
11149}
11150
9ea24bbe 11151int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 11152{
ee39b432 11153 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
11154 return 0;
11155
11156 percpu_counter_inc(&root->subv_writers->counter);
11157 /*
11158 * Make sure counter is updated before we check for snapshot creation.
11159 */
11160 smp_mb();
ee39b432 11161 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 11162 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
11163 return 0;
11164 }
11165 return 1;
11166}
0bc19f90
ZL
11167
11168static int wait_snapshoting_atomic_t(atomic_t *a)
11169{
11170 schedule();
11171 return 0;
11172}
11173
11174void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11175{
11176 while (true) {
11177 int ret;
11178
11179 ret = btrfs_start_write_no_snapshoting(root);
11180 if (ret)
11181 break;
11182 wait_on_atomic_t(&root->will_be_snapshoted,
11183 wait_snapshoting_atomic_t,
11184 TASK_UNINTERRUPTIBLE);
11185 }
11186}