]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
Linux 4.17-rc7
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info,
c682f9b3 56 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
c682f9b3 59 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 64 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 69 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
70 u64 parent, u64 root_objectid,
71 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 72 int level, struct btrfs_key *ins);
6a63209f 73static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 74 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 75 int force);
11833d66
YZ
76static int find_next_key(struct btrfs_path *path, int level,
77 struct btrfs_key *key);
ab8d0fc4
JM
78static void dump_space_info(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 80 int dump_block_groups);
5d80366e
JB
81static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 u64 num_bytes);
957780eb
JB
83static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 struct btrfs_space_info *space_info,
85 u64 num_bytes);
86static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 struct btrfs_space_info *space_info,
88 u64 num_bytes);
6a63209f 89
817d52f8
JB
90static noinline int
91block_group_cache_done(struct btrfs_block_group_cache *cache)
92{
93 smp_mb();
36cce922
JB
94 return cache->cached == BTRFS_CACHE_FINISHED ||
95 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
96}
97
0f9dd46c
JB
98static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99{
100 return (cache->flags & bits) == bits;
101}
102
758f2dfc 103void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
104{
105 atomic_inc(&cache->count);
106}
107
108void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109{
f0486c68
YZ
110 if (atomic_dec_and_test(&cache->count)) {
111 WARN_ON(cache->pinned > 0);
112 WARN_ON(cache->reserved > 0);
0966a7b1
QW
113
114 /*
115 * If not empty, someone is still holding mutex of
116 * full_stripe_lock, which can only be released by caller.
117 * And it will definitely cause use-after-free when caller
118 * tries to release full stripe lock.
119 *
120 * No better way to resolve, but only to warn.
121 */
122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 123 kfree(cache->free_space_ctl);
11dfe35a 124 kfree(cache);
f0486c68 125 }
11dfe35a
JB
126}
127
0f9dd46c
JB
128/*
129 * this adds the block group to the fs_info rb tree for the block group
130 * cache
131 */
b2950863 132static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
133 struct btrfs_block_group_cache *block_group)
134{
135 struct rb_node **p;
136 struct rb_node *parent = NULL;
137 struct btrfs_block_group_cache *cache;
138
139 spin_lock(&info->block_group_cache_lock);
140 p = &info->block_group_cache_tree.rb_node;
141
142 while (*p) {
143 parent = *p;
144 cache = rb_entry(parent, struct btrfs_block_group_cache,
145 cache_node);
146 if (block_group->key.objectid < cache->key.objectid) {
147 p = &(*p)->rb_left;
148 } else if (block_group->key.objectid > cache->key.objectid) {
149 p = &(*p)->rb_right;
150 } else {
151 spin_unlock(&info->block_group_cache_lock);
152 return -EEXIST;
153 }
154 }
155
156 rb_link_node(&block_group->cache_node, parent, p);
157 rb_insert_color(&block_group->cache_node,
158 &info->block_group_cache_tree);
a1897fdd
LB
159
160 if (info->first_logical_byte > block_group->key.objectid)
161 info->first_logical_byte = block_group->key.objectid;
162
0f9dd46c
JB
163 spin_unlock(&info->block_group_cache_lock);
164
165 return 0;
166}
167
168/*
169 * This will return the block group at or after bytenr if contains is 0, else
170 * it will return the block group that contains the bytenr
171 */
172static struct btrfs_block_group_cache *
173block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 int contains)
175{
176 struct btrfs_block_group_cache *cache, *ret = NULL;
177 struct rb_node *n;
178 u64 end, start;
179
180 spin_lock(&info->block_group_cache_lock);
181 n = info->block_group_cache_tree.rb_node;
182
183 while (n) {
184 cache = rb_entry(n, struct btrfs_block_group_cache,
185 cache_node);
186 end = cache->key.objectid + cache->key.offset - 1;
187 start = cache->key.objectid;
188
189 if (bytenr < start) {
190 if (!contains && (!ret || start < ret->key.objectid))
191 ret = cache;
192 n = n->rb_left;
193 } else if (bytenr > start) {
194 if (contains && bytenr <= end) {
195 ret = cache;
196 break;
197 }
198 n = n->rb_right;
199 } else {
200 ret = cache;
201 break;
202 }
203 }
a1897fdd 204 if (ret) {
11dfe35a 205 btrfs_get_block_group(ret);
a1897fdd
LB
206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 info->first_logical_byte = ret->key.objectid;
208 }
0f9dd46c
JB
209 spin_unlock(&info->block_group_cache_lock);
210
211 return ret;
212}
213
2ff7e61e 214static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 215 u64 start, u64 num_bytes)
817d52f8 216{
11833d66 217 u64 end = start + num_bytes - 1;
0b246afa 218 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 219 start, end, EXTENT_UPTODATE);
0b246afa 220 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 221 start, end, EXTENT_UPTODATE);
11833d66
YZ
222 return 0;
223}
817d52f8 224
2ff7e61e 225static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
226 struct btrfs_block_group_cache *cache)
227{
228 u64 start, end;
817d52f8 229
11833d66
YZ
230 start = cache->key.objectid;
231 end = start + cache->key.offset - 1;
232
0b246afa 233 clear_extent_bits(&fs_info->freed_extents[0],
91166212 234 start, end, EXTENT_UPTODATE);
0b246afa 235 clear_extent_bits(&fs_info->freed_extents[1],
91166212 236 start, end, EXTENT_UPTODATE);
817d52f8
JB
237}
238
2ff7e61e 239static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 240 struct btrfs_block_group_cache *cache)
817d52f8 241{
817d52f8
JB
242 u64 bytenr;
243 u64 *logical;
244 int stripe_len;
245 int i, nr, ret;
246
06b2331f
YZ
247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 cache->bytes_super += stripe_len;
2ff7e61e 250 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 251 stripe_len);
835d974f
JB
252 if (ret)
253 return ret;
06b2331f
YZ
254 }
255
817d52f8
JB
256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 bytenr = btrfs_sb_offset(i);
0b246afa 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 259 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
260 if (ret)
261 return ret;
11833d66 262
817d52f8 263 while (nr--) {
51bf5f0b
JB
264 u64 start, len;
265
266 if (logical[nr] > cache->key.objectid +
267 cache->key.offset)
268 continue;
269
270 if (logical[nr] + stripe_len <= cache->key.objectid)
271 continue;
272
273 start = logical[nr];
274 if (start < cache->key.objectid) {
275 start = cache->key.objectid;
276 len = (logical[nr] + stripe_len) - start;
277 } else {
278 len = min_t(u64, stripe_len,
279 cache->key.objectid +
280 cache->key.offset - start);
281 }
282
283 cache->bytes_super += len;
2ff7e61e 284 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
285 if (ret) {
286 kfree(logical);
287 return ret;
288 }
817d52f8 289 }
11833d66 290
817d52f8
JB
291 kfree(logical);
292 }
817d52f8
JB
293 return 0;
294}
295
11833d66
YZ
296static struct btrfs_caching_control *
297get_caching_control(struct btrfs_block_group_cache *cache)
298{
299 struct btrfs_caching_control *ctl;
300
301 spin_lock(&cache->lock);
dde5abee
JB
302 if (!cache->caching_ctl) {
303 spin_unlock(&cache->lock);
11833d66
YZ
304 return NULL;
305 }
306
307 ctl = cache->caching_ctl;
1e4f4714 308 refcount_inc(&ctl->count);
11833d66
YZ
309 spin_unlock(&cache->lock);
310 return ctl;
311}
312
313static void put_caching_control(struct btrfs_caching_control *ctl)
314{
1e4f4714 315 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
316 kfree(ctl);
317}
318
d0bd4560 319#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 320static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 321{
2ff7e61e 322 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
323 u64 start = block_group->key.objectid;
324 u64 len = block_group->key.offset;
325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 326 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
327 u64 step = chunk << 1;
328
329 while (len > chunk) {
330 btrfs_remove_free_space(block_group, start, chunk);
331 start += step;
332 if (len < step)
333 len = 0;
334 else
335 len -= step;
336 }
337}
338#endif
339
0f9dd46c
JB
340/*
341 * this is only called by cache_block_group, since we could have freed extents
342 * we need to check the pinned_extents for any extents that can't be used yet
343 * since their free space will be released as soon as the transaction commits.
344 */
a5ed9182
OS
345u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 347{
817d52f8 348 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
349 int ret;
350
351 while (start < end) {
11833d66 352 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 353 &extent_start, &extent_end,
e6138876
JB
354 EXTENT_DIRTY | EXTENT_UPTODATE,
355 NULL);
0f9dd46c
JB
356 if (ret)
357 break;
358
06b2331f 359 if (extent_start <= start) {
0f9dd46c
JB
360 start = extent_end + 1;
361 } else if (extent_start > start && extent_start < end) {
362 size = extent_start - start;
817d52f8 363 total_added += size;
ea6a478e
JB
364 ret = btrfs_add_free_space(block_group, start,
365 size);
79787eaa 366 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
367 start = extent_end + 1;
368 } else {
369 break;
370 }
371 }
372
373 if (start < end) {
374 size = end - start;
817d52f8 375 total_added += size;
ea6a478e 376 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 377 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
378 }
379
817d52f8 380 return total_added;
0f9dd46c
JB
381}
382
73fa48b6 383static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 384{
0b246afa
JM
385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 struct btrfs_fs_info *fs_info = block_group->fs_info;
387 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 388 struct btrfs_path *path;
5f39d397 389 struct extent_buffer *leaf;
11833d66 390 struct btrfs_key key;
817d52f8 391 u64 total_found = 0;
11833d66
YZ
392 u64 last = 0;
393 u32 nritems;
73fa48b6 394 int ret;
d0bd4560 395 bool wakeup = true;
f510cfec 396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
73fa48b6 399 return -ENOMEM;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
d0bd4560
JB
403#ifdef CONFIG_BTRFS_DEBUG
404 /*
405 * If we're fragmenting we don't want to make anybody think we can
406 * allocate from this block group until we've had a chance to fragment
407 * the free space.
408 */
2ff7e61e 409 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
410 wakeup = false;
411#endif
5cd57b2c 412 /*
817d52f8
JB
413 * We don't want to deadlock with somebody trying to allocate a new
414 * extent for the extent root while also trying to search the extent
415 * root to add free space. So we skip locking and search the commit
416 * root, since its read-only
5cd57b2c
CM
417 */
418 path->skip_locking = 1;
817d52f8 419 path->search_commit_root = 1;
e4058b54 420 path->reada = READA_FORWARD;
817d52f8 421
e4404d6e 422 key.objectid = last;
e37c9e69 423 key.offset = 0;
11833d66 424 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 425
52ee28d2 426next:
11833d66 427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 428 if (ret < 0)
73fa48b6 429 goto out;
a512bbf8 430
11833d66
YZ
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
433
d397712b 434 while (1) {
7841cb28 435 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 436 last = (u64)-1;
817d52f8 437 break;
f25784b3 438 }
817d52f8 439
11833d66
YZ
440 if (path->slots[0] < nritems) {
441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 } else {
443 ret = find_next_key(path, 0, &key);
444 if (ret)
e37c9e69 445 break;
817d52f8 446
c9ea7b24 447 if (need_resched() ||
9e351cc8 448 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
449 if (wakeup)
450 caching_ctl->progress = last;
ff5714cc 451 btrfs_release_path(path);
9e351cc8 452 up_read(&fs_info->commit_root_sem);
589d8ade 453 mutex_unlock(&caching_ctl->mutex);
11833d66 454 cond_resched();
73fa48b6
OS
455 mutex_lock(&caching_ctl->mutex);
456 down_read(&fs_info->commit_root_sem);
457 goto next;
589d8ade 458 }
0a3896d0
JB
459
460 ret = btrfs_next_leaf(extent_root, path);
461 if (ret < 0)
73fa48b6 462 goto out;
0a3896d0
JB
463 if (ret)
464 break;
589d8ade
JB
465 leaf = path->nodes[0];
466 nritems = btrfs_header_nritems(leaf);
467 continue;
11833d66 468 }
817d52f8 469
52ee28d2
LB
470 if (key.objectid < last) {
471 key.objectid = last;
472 key.offset = 0;
473 key.type = BTRFS_EXTENT_ITEM_KEY;
474
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
52ee28d2
LB
477 btrfs_release_path(path);
478 goto next;
479 }
480
11833d66
YZ
481 if (key.objectid < block_group->key.objectid) {
482 path->slots[0]++;
817d52f8 483 continue;
e37c9e69 484 }
0f9dd46c 485
e37c9e69 486 if (key.objectid >= block_group->key.objectid +
0f9dd46c 487 block_group->key.offset)
e37c9e69 488 break;
7d7d6068 489
3173a18f
JB
490 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
492 total_found += add_new_free_space(block_group,
493 fs_info, last,
494 key.objectid);
3173a18f
JB
495 if (key.type == BTRFS_METADATA_ITEM_KEY)
496 last = key.objectid +
da17066c 497 fs_info->nodesize;
3173a18f
JB
498 else
499 last = key.objectid + key.offset;
817d52f8 500
73fa48b6 501 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 502 total_found = 0;
d0bd4560
JB
503 if (wakeup)
504 wake_up(&caching_ctl->wait);
11833d66 505 }
817d52f8 506 }
e37c9e69
CM
507 path->slots[0]++;
508 }
817d52f8 509 ret = 0;
e37c9e69 510
817d52f8
JB
511 total_found += add_new_free_space(block_group, fs_info, last,
512 block_group->key.objectid +
513 block_group->key.offset);
11833d66 514 caching_ctl->progress = (u64)-1;
817d52f8 515
73fa48b6
OS
516out:
517 btrfs_free_path(path);
518 return ret;
519}
520
521static noinline void caching_thread(struct btrfs_work *work)
522{
523 struct btrfs_block_group_cache *block_group;
524 struct btrfs_fs_info *fs_info;
525 struct btrfs_caching_control *caching_ctl;
526 int ret;
527
528 caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 block_group = caching_ctl->block_group;
530 fs_info = block_group->fs_info;
531
532 mutex_lock(&caching_ctl->mutex);
533 down_read(&fs_info->commit_root_sem);
534
1e144fb8
OS
535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 ret = load_free_space_tree(caching_ctl);
537 else
538 ret = load_extent_tree_free(caching_ctl);
73fa48b6 539
817d52f8 540 spin_lock(&block_group->lock);
11833d66 541 block_group->caching_ctl = NULL;
73fa48b6 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 543 spin_unlock(&block_group->lock);
0f9dd46c 544
d0bd4560 545#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 546 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
547 u64 bytes_used;
548
549 spin_lock(&block_group->space_info->lock);
550 spin_lock(&block_group->lock);
551 bytes_used = block_group->key.offset -
552 btrfs_block_group_used(&block_group->item);
553 block_group->space_info->bytes_used += bytes_used >> 1;
554 spin_unlock(&block_group->lock);
555 spin_unlock(&block_group->space_info->lock);
2ff7e61e 556 fragment_free_space(block_group);
d0bd4560
JB
557 }
558#endif
559
560 caching_ctl->progress = (u64)-1;
11833d66 561
9e351cc8 562 up_read(&fs_info->commit_root_sem);
2ff7e61e 563 free_excluded_extents(fs_info, block_group);
11833d66 564 mutex_unlock(&caching_ctl->mutex);
73fa48b6 565
11833d66
YZ
566 wake_up(&caching_ctl->wait);
567
568 put_caching_control(caching_ctl);
11dfe35a 569 btrfs_put_block_group(block_group);
817d52f8
JB
570}
571
9d66e233 572static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 573 int load_cache_only)
817d52f8 574{
291c7d2f 575 DEFINE_WAIT(wait);
11833d66
YZ
576 struct btrfs_fs_info *fs_info = cache->fs_info;
577 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
578 int ret = 0;
579
291c7d2f 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
581 if (!caching_ctl)
582 return -ENOMEM;
291c7d2f
JB
583
584 INIT_LIST_HEAD(&caching_ctl->list);
585 mutex_init(&caching_ctl->mutex);
586 init_waitqueue_head(&caching_ctl->wait);
587 caching_ctl->block_group = cache;
588 caching_ctl->progress = cache->key.objectid;
1e4f4714 589 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 caching_thread, NULL, NULL);
291c7d2f
JB
592
593 spin_lock(&cache->lock);
594 /*
595 * This should be a rare occasion, but this could happen I think in the
596 * case where one thread starts to load the space cache info, and then
597 * some other thread starts a transaction commit which tries to do an
598 * allocation while the other thread is still loading the space cache
599 * info. The previous loop should have kept us from choosing this block
600 * group, but if we've moved to the state where we will wait on caching
601 * block groups we need to first check if we're doing a fast load here,
602 * so we can wait for it to finish, otherwise we could end up allocating
603 * from a block group who's cache gets evicted for one reason or
604 * another.
605 */
606 while (cache->cached == BTRFS_CACHE_FAST) {
607 struct btrfs_caching_control *ctl;
608
609 ctl = cache->caching_ctl;
1e4f4714 610 refcount_inc(&ctl->count);
291c7d2f
JB
611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 spin_unlock(&cache->lock);
613
614 schedule();
615
616 finish_wait(&ctl->wait, &wait);
617 put_caching_control(ctl);
618 spin_lock(&cache->lock);
619 }
620
621 if (cache->cached != BTRFS_CACHE_NO) {
622 spin_unlock(&cache->lock);
623 kfree(caching_ctl);
11833d66 624 return 0;
291c7d2f
JB
625 }
626 WARN_ON(cache->caching_ctl);
627 cache->caching_ctl = caching_ctl;
628 cache->cached = BTRFS_CACHE_FAST;
629 spin_unlock(&cache->lock);
11833d66 630
d8953d69 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 632 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
633 ret = load_free_space_cache(fs_info, cache);
634
635 spin_lock(&cache->lock);
636 if (ret == 1) {
291c7d2f 637 cache->caching_ctl = NULL;
9d66e233
JB
638 cache->cached = BTRFS_CACHE_FINISHED;
639 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 640 caching_ctl->progress = (u64)-1;
9d66e233 641 } else {
291c7d2f
JB
642 if (load_cache_only) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_NO;
645 } else {
646 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 647 cache->has_caching_ctl = 1;
291c7d2f 648 }
9d66e233
JB
649 }
650 spin_unlock(&cache->lock);
d0bd4560
JB
651#ifdef CONFIG_BTRFS_DEBUG
652 if (ret == 1 &&
2ff7e61e 653 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
654 u64 bytes_used;
655
656 spin_lock(&cache->space_info->lock);
657 spin_lock(&cache->lock);
658 bytes_used = cache->key.offset -
659 btrfs_block_group_used(&cache->item);
660 cache->space_info->bytes_used += bytes_used >> 1;
661 spin_unlock(&cache->lock);
662 spin_unlock(&cache->space_info->lock);
2ff7e61e 663 fragment_free_space(cache);
d0bd4560
JB
664 }
665#endif
cb83b7b8
JB
666 mutex_unlock(&caching_ctl->mutex);
667
291c7d2f 668 wake_up(&caching_ctl->wait);
3c14874a 669 if (ret == 1) {
291c7d2f 670 put_caching_control(caching_ctl);
2ff7e61e 671 free_excluded_extents(fs_info, cache);
9d66e233 672 return 0;
3c14874a 673 }
291c7d2f
JB
674 } else {
675 /*
1e144fb8
OS
676 * We're either using the free space tree or no caching at all.
677 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
678 */
679 spin_lock(&cache->lock);
680 if (load_cache_only) {
681 cache->caching_ctl = NULL;
682 cache->cached = BTRFS_CACHE_NO;
683 } else {
684 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 685 cache->has_caching_ctl = 1;
291c7d2f
JB
686 }
687 spin_unlock(&cache->lock);
688 wake_up(&caching_ctl->wait);
9d66e233
JB
689 }
690
291c7d2f
JB
691 if (load_cache_only) {
692 put_caching_control(caching_ctl);
11833d66 693 return 0;
817d52f8 694 }
817d52f8 695
9e351cc8 696 down_write(&fs_info->commit_root_sem);
1e4f4714 697 refcount_inc(&caching_ctl->count);
11833d66 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 699 up_write(&fs_info->commit_root_sem);
11833d66 700
11dfe35a 701 btrfs_get_block_group(cache);
11833d66 702
e66f0bb1 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 704
ef8bbdfe 705 return ret;
e37c9e69
CM
706}
707
0f9dd46c
JB
708/*
709 * return the block group that starts at or after bytenr
710 */
d397712b
CM
711static struct btrfs_block_group_cache *
712btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 713{
e2c89907 714 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
715}
716
0f9dd46c 717/*
9f55684c 718 * return the block group that contains the given bytenr
0f9dd46c 719 */
d397712b
CM
720struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 struct btrfs_fs_info *info,
722 u64 bytenr)
be744175 723{
e2c89907 724 return block_group_cache_tree_search(info, bytenr, 1);
be744175 725}
0b86a832 726
0f9dd46c
JB
727static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 u64 flags)
6324fbf3 729{
0f9dd46c 730 struct list_head *head = &info->space_info;
0f9dd46c 731 struct btrfs_space_info *found;
4184ea7f 732
52ba6929 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 734
4184ea7f
CM
735 rcu_read_lock();
736 list_for_each_entry_rcu(found, head, list) {
67377734 737 if (found->flags & flags) {
4184ea7f 738 rcu_read_unlock();
0f9dd46c 739 return found;
4184ea7f 740 }
0f9dd46c 741 }
4184ea7f 742 rcu_read_unlock();
0f9dd46c 743 return NULL;
6324fbf3
CM
744}
745
0d9f824d
OS
746static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
747 u64 owner, u64 root_objectid)
748{
749 struct btrfs_space_info *space_info;
750 u64 flags;
751
752 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 else
756 flags = BTRFS_BLOCK_GROUP_METADATA;
757 } else {
758 flags = BTRFS_BLOCK_GROUP_DATA;
759 }
760
761 space_info = __find_space_info(fs_info, flags);
55e8196a 762 ASSERT(space_info);
0d9f824d
OS
763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764}
765
4184ea7f
CM
766/*
767 * after adding space to the filesystem, we need to clear the full flags
768 * on all the space infos.
769 */
770void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771{
772 struct list_head *head = &info->space_info;
773 struct btrfs_space_info *found;
774
775 rcu_read_lock();
776 list_for_each_entry_rcu(found, head, list)
777 found->full = 0;
778 rcu_read_unlock();
779}
780
1a4ed8fd 781/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 782int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
783{
784 int ret;
785 struct btrfs_key key;
31840ae1 786 struct btrfs_path *path;
e02119d5 787
31840ae1 788 path = btrfs_alloc_path();
d8926bb3
MF
789 if (!path)
790 return -ENOMEM;
791
e02119d5
CM
792 key.objectid = start;
793 key.offset = len;
3173a18f 794 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 796 btrfs_free_path(path);
7bb86316
CM
797 return ret;
798}
799
a22285a6 800/*
3173a18f 801 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
809int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 810 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 811 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
812{
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
3173a18f
JB
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
0b246afa
JM
828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 offset = fs_info->nodesize;
3173a18f
JB
830 metadata = 0;
831 }
832
a22285a6
YZ
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
a22285a6
YZ
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
639eefc8
FDBM
841
842search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
0b246afa 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
851 if (ret < 0)
852 goto out_free;
853
3173a18f 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
855 if (path->slots[0]) {
856 path->slots[0]--;
857 btrfs_item_key_to_cpu(path->nodes[0], &key,
858 path->slots[0]);
859 if (key.objectid == bytenr &&
860 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 861 key.offset == fs_info->nodesize)
74be9510
FDBM
862 ret = 0;
863 }
3173a18f
JB
864 }
865
a22285a6
YZ
866 if (ret == 0) {
867 leaf = path->nodes[0];
868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 if (item_size >= sizeof(*ei)) {
870 ei = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item);
872 num_refs = btrfs_extent_refs(leaf, ei);
873 extent_flags = btrfs_extent_flags(leaf, ei);
874 } else {
875#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 struct btrfs_extent_item_v0 *ei0;
877 BUG_ON(item_size != sizeof(*ei0));
878 ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 struct btrfs_extent_item_v0);
880 num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 /* FIXME: this isn't correct for data */
882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883#else
884 BUG();
885#endif
886 }
887 BUG_ON(num_refs == 0);
888 } else {
889 num_refs = 0;
890 extent_flags = 0;
891 ret = 0;
892 }
893
894 if (!trans)
895 goto out;
896
897 delayed_refs = &trans->transaction->delayed_refs;
898 spin_lock(&delayed_refs->lock);
f72ad18e 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
900 if (head) {
901 if (!mutex_trylock(&head->mutex)) {
d278850e 902 refcount_inc(&head->refs);
a22285a6
YZ
903 spin_unlock(&delayed_refs->lock);
904
b3b4aa74 905 btrfs_release_path(path);
a22285a6 906
8cc33e5c
DS
907 /*
908 * Mutex was contended, block until it's released and try
909 * again
910 */
a22285a6
YZ
911 mutex_lock(&head->mutex);
912 mutex_unlock(&head->mutex);
d278850e 913 btrfs_put_delayed_ref_head(head);
639eefc8 914 goto search_again;
a22285a6 915 }
d7df2c79 916 spin_lock(&head->lock);
a22285a6
YZ
917 if (head->extent_op && head->extent_op->update_flags)
918 extent_flags |= head->extent_op->flags_to_set;
919 else
920 BUG_ON(num_refs == 0);
921
d278850e 922 num_refs += head->ref_mod;
d7df2c79 923 spin_unlock(&head->lock);
a22285a6
YZ
924 mutex_unlock(&head->mutex);
925 }
926 spin_unlock(&delayed_refs->lock);
927out:
928 WARN_ON(num_refs == 0);
929 if (refs)
930 *refs = num_refs;
931 if (flags)
932 *flags = extent_flags;
933out_free:
934 btrfs_free_path(path);
935 return ret;
936}
937
d8d5f3e1
CM
938/*
939 * Back reference rules. Back refs have three main goals:
940 *
941 * 1) differentiate between all holders of references to an extent so that
942 * when a reference is dropped we can make sure it was a valid reference
943 * before freeing the extent.
944 *
945 * 2) Provide enough information to quickly find the holders of an extent
946 * if we notice a given block is corrupted or bad.
947 *
948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949 * maintenance. This is actually the same as #2, but with a slightly
950 * different use case.
951 *
5d4f98a2
YZ
952 * There are two kinds of back refs. The implicit back refs is optimized
953 * for pointers in non-shared tree blocks. For a given pointer in a block,
954 * back refs of this kind provide information about the block's owner tree
955 * and the pointer's key. These information allow us to find the block by
956 * b-tree searching. The full back refs is for pointers in tree blocks not
957 * referenced by their owner trees. The location of tree block is recorded
958 * in the back refs. Actually the full back refs is generic, and can be
959 * used in all cases the implicit back refs is used. The major shortcoming
960 * of the full back refs is its overhead. Every time a tree block gets
961 * COWed, we have to update back refs entry for all pointers in it.
962 *
963 * For a newly allocated tree block, we use implicit back refs for
964 * pointers in it. This means most tree related operations only involve
965 * implicit back refs. For a tree block created in old transaction, the
966 * only way to drop a reference to it is COW it. So we can detect the
967 * event that tree block loses its owner tree's reference and do the
968 * back refs conversion.
969 *
01327610 970 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
971 *
972 * The reference count of the block is one and the tree is the block's
973 * owner tree. Nothing to do in this case.
974 *
975 * The reference count of the block is one and the tree is not the
976 * block's owner tree. In this case, full back refs is used for pointers
977 * in the block. Remove these full back refs, add implicit back refs for
978 * every pointers in the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * the block's owner tree. In this case, implicit back refs is used for
982 * pointers in the block. Add full back refs for every pointers in the
983 * block, increase lower level extents' reference counts. The original
984 * implicit back refs are entailed to the new block.
985 *
986 * The reference count of the block is greater than one and the tree is
987 * not the block's owner tree. Add implicit back refs for every pointer in
988 * the new block, increase lower level extents' reference count.
989 *
990 * Back Reference Key composing:
991 *
992 * The key objectid corresponds to the first byte in the extent,
993 * The key type is used to differentiate between types of back refs.
994 * There are different meanings of the key offset for different types
995 * of back refs.
996 *
d8d5f3e1
CM
997 * File extents can be referenced by:
998 *
999 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1000 * - different files inside a single subvolume
d8d5f3e1
CM
1001 * - different offsets inside a file (bookend extents in file.c)
1002 *
5d4f98a2 1003 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1004 *
1005 * - Objectid of the subvolume root
d8d5f3e1 1006 * - objectid of the file holding the reference
5d4f98a2
YZ
1007 * - original offset in the file
1008 * - how many bookend extents
d8d5f3e1 1009 *
5d4f98a2
YZ
1010 * The key offset for the implicit back refs is hash of the first
1011 * three fields.
d8d5f3e1 1012 *
5d4f98a2 1013 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1014 *
5d4f98a2 1015 * - number of pointers in the tree leaf
d8d5f3e1 1016 *
5d4f98a2
YZ
1017 * The key offset for the implicit back refs is the first byte of
1018 * the tree leaf
d8d5f3e1 1019 *
5d4f98a2
YZ
1020 * When a file extent is allocated, The implicit back refs is used.
1021 * the fields are filled in:
d8d5f3e1 1022 *
5d4f98a2 1023 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1024 *
5d4f98a2
YZ
1025 * When a file extent is removed file truncation, we find the
1026 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1027 *
5d4f98a2 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1029 *
5d4f98a2 1030 * Btree extents can be referenced by:
d8d5f3e1 1031 *
5d4f98a2 1032 * - Different subvolumes
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * Both the implicit back refs and the full back refs for tree blocks
1035 * only consist of key. The key offset for the implicit back refs is
1036 * objectid of block's owner tree. The key offset for the full back refs
1037 * is the first byte of parent block.
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When implicit back refs is used, information about the lowest key and
1040 * level of the tree block are required. These information are stored in
1041 * tree block info structure.
d8d5f3e1 1042 */
31840ae1 1043
5d4f98a2
YZ
1044#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1046 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1047 struct btrfs_path *path,
1048 u64 owner, u32 extra_size)
7bb86316 1049{
87bde3cd 1050 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
7bb86316 1056 struct btrfs_key key;
5d4f98a2
YZ
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
79787eaa 1076 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
b3b4aa74 1092 btrfs_release_path(path);
5d4f98a2
YZ
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
79787eaa 1102 BUG_ON(ret); /* Corruption */
5d4f98a2 1103
87bde3cd 1104 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
b159fa28 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124}
1125#endif
1126
167ce953
LB
1127/*
1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131 */
1132int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 struct btrfs_extent_inline_ref *iref,
1134 enum btrfs_inline_ref_type is_data)
1135{
1136 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1138
1139 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 type == BTRFS_SHARED_DATA_REF_KEY ||
1142 type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1145 return type;
64ecdb64
LB
1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 ASSERT(eb->fs_info);
1148 /*
1149 * Every shared one has parent tree
1150 * block, which must be aligned to
1151 * nodesize.
1152 */
1153 if (offset &&
1154 IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 return type;
1156 }
167ce953 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953
LB
1171 } else {
1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 return type;
1174 }
1175 }
1176
1177 btrfs_print_leaf((struct extent_buffer *)eb);
1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 eb->start, type);
1180 WARN_ON(1);
1181
1182 return BTRFS_REF_TYPE_INVALID;
1183}
1184
5d4f98a2
YZ
1185static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186{
1187 u32 high_crc = ~(u32)0;
1188 u32 low_crc = ~(u32)0;
1189 __le64 lenum;
1190
1191 lenum = cpu_to_le64(root_objectid);
9678c543 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1193 lenum = cpu_to_le64(owner);
9678c543 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1195 lenum = cpu_to_le64(offset);
9678c543 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1197
1198 return ((u64)high_crc << 31) ^ (u64)low_crc;
1199}
1200
1201static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 struct btrfs_extent_data_ref *ref)
1203{
1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 btrfs_extent_data_ref_objectid(leaf, ref),
1206 btrfs_extent_data_ref_offset(leaf, ref));
1207}
1208
1209static int match_extent_data_ref(struct extent_buffer *leaf,
1210 struct btrfs_extent_data_ref *ref,
1211 u64 root_objectid, u64 owner, u64 offset)
1212{
1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 return 0;
1217 return 1;
1218}
1219
1220static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1221 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1222 struct btrfs_path *path,
1223 u64 bytenr, u64 parent,
1224 u64 root_objectid,
1225 u64 owner, u64 offset)
1226{
87bde3cd 1227 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref;
31840ae1 1230 struct extent_buffer *leaf;
5d4f98a2 1231 u32 nritems;
74493f7a 1232 int ret;
5d4f98a2
YZ
1233 int recow;
1234 int err = -ENOENT;
74493f7a 1235
31840ae1 1236 key.objectid = bytenr;
5d4f98a2
YZ
1237 if (parent) {
1238 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 key.offset = parent;
1240 } else {
1241 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 key.offset = hash_extent_data_ref(root_objectid,
1243 owner, offset);
1244 }
1245again:
1246 recow = 0;
1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 if (ret < 0) {
1249 err = ret;
1250 goto fail;
1251 }
31840ae1 1252
5d4f98a2
YZ
1253 if (parent) {
1254 if (!ret)
1255 return 0;
1256#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1258 btrfs_release_path(path);
5d4f98a2
YZ
1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 if (ret < 0) {
1261 err = ret;
1262 goto fail;
1263 }
1264 if (!ret)
1265 return 0;
1266#endif
1267 goto fail;
31840ae1
ZY
1268 }
1269
1270 leaf = path->nodes[0];
5d4f98a2
YZ
1271 nritems = btrfs_header_nritems(leaf);
1272 while (1) {
1273 if (path->slots[0] >= nritems) {
1274 ret = btrfs_next_leaf(root, path);
1275 if (ret < 0)
1276 err = ret;
1277 if (ret)
1278 goto fail;
1279
1280 leaf = path->nodes[0];
1281 nritems = btrfs_header_nritems(leaf);
1282 recow = 1;
1283 }
1284
1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 if (key.objectid != bytenr ||
1287 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 goto fail;
1289
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292
1293 if (match_extent_data_ref(leaf, ref, root_objectid,
1294 owner, offset)) {
1295 if (recow) {
b3b4aa74 1296 btrfs_release_path(path);
5d4f98a2
YZ
1297 goto again;
1298 }
1299 err = 0;
1300 break;
1301 }
1302 path->slots[0]++;
31840ae1 1303 }
5d4f98a2
YZ
1304fail:
1305 return err;
31840ae1
ZY
1306}
1307
5d4f98a2 1308static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1309 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1310 struct btrfs_path *path,
1311 u64 bytenr, u64 parent,
1312 u64 root_objectid, u64 owner,
1313 u64 offset, int refs_to_add)
31840ae1 1314{
87bde3cd 1315 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1316 struct btrfs_key key;
1317 struct extent_buffer *leaf;
5d4f98a2 1318 u32 size;
31840ae1
ZY
1319 u32 num_refs;
1320 int ret;
74493f7a 1321
74493f7a 1322 key.objectid = bytenr;
5d4f98a2
YZ
1323 if (parent) {
1324 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 key.offset = parent;
1326 size = sizeof(struct btrfs_shared_data_ref);
1327 } else {
1328 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 key.offset = hash_extent_data_ref(root_objectid,
1330 owner, offset);
1331 size = sizeof(struct btrfs_extent_data_ref);
1332 }
74493f7a 1333
5d4f98a2
YZ
1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 if (ret && ret != -EEXIST)
1336 goto fail;
1337
1338 leaf = path->nodes[0];
1339 if (parent) {
1340 struct btrfs_shared_data_ref *ref;
31840ae1 1341 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1342 struct btrfs_shared_data_ref);
1343 if (ret == 0) {
1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 } else {
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 num_refs += refs_to_add;
1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1349 }
5d4f98a2
YZ
1350 } else {
1351 struct btrfs_extent_data_ref *ref;
1352 while (ret == -EEXIST) {
1353 ref = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_extent_data_ref);
1355 if (match_extent_data_ref(leaf, ref, root_objectid,
1356 owner, offset))
1357 break;
b3b4aa74 1358 btrfs_release_path(path);
5d4f98a2
YZ
1359 key.offset++;
1360 ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 size);
1362 if (ret && ret != -EEXIST)
1363 goto fail;
31840ae1 1364
5d4f98a2
YZ
1365 leaf = path->nodes[0];
1366 }
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (ret == 0) {
1370 btrfs_set_extent_data_ref_root(leaf, ref,
1371 root_objectid);
1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 } else {
1376 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 num_refs += refs_to_add;
1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1379 }
31840ae1 1380 }
5d4f98a2
YZ
1381 btrfs_mark_buffer_dirty(leaf);
1382 ret = 0;
1383fail:
b3b4aa74 1384 btrfs_release_path(path);
7bb86316 1385 return ret;
74493f7a
CM
1386}
1387
5d4f98a2 1388static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1389 struct btrfs_fs_info *fs_info,
5d4f98a2 1390 struct btrfs_path *path,
fcebe456 1391 int refs_to_drop, int *last_ref)
31840ae1 1392{
5d4f98a2
YZ
1393 struct btrfs_key key;
1394 struct btrfs_extent_data_ref *ref1 = NULL;
1395 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1396 struct extent_buffer *leaf;
5d4f98a2 1397 u32 num_refs = 0;
31840ae1
ZY
1398 int ret = 0;
1399
1400 leaf = path->nodes[0];
5d4f98a2
YZ
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402
1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417#endif
1418 } else {
1419 BUG();
1420 }
1421
56bec294
CM
1422 BUG_ON(num_refs < refs_to_drop);
1423 num_refs -= refs_to_drop;
5d4f98a2 1424
31840ae1 1425 if (num_refs == 0) {
87bde3cd 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1427 *last_ref = 1;
31840ae1 1428 } else {
5d4f98a2
YZ
1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 else {
1435 struct btrfs_extent_ref_v0 *ref0;
1436 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_extent_ref_v0);
1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 }
1440#endif
31840ae1
ZY
1441 btrfs_mark_buffer_dirty(leaf);
1442 }
31840ae1
ZY
1443 return ret;
1444}
1445
9ed0dea0 1446static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1447 struct btrfs_extent_inline_ref *iref)
15916de8 1448{
5d4f98a2
YZ
1449 struct btrfs_key key;
1450 struct extent_buffer *leaf;
1451 struct btrfs_extent_data_ref *ref1;
1452 struct btrfs_shared_data_ref *ref2;
1453 u32 num_refs = 0;
3de28d57 1454 int type;
5d4f98a2
YZ
1455
1456 leaf = path->nodes[0];
1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 if (iref) {
3de28d57
LB
1459 /*
1460 * If type is invalid, we should have bailed out earlier than
1461 * this call.
1462 */
1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 } else {
1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 }
1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 struct btrfs_extent_data_ref);
1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 struct btrfs_shared_data_ref);
1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 struct btrfs_extent_ref_v0 *ref0;
1483 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 struct btrfs_extent_ref_v0);
1485 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1486#endif
5d4f98a2
YZ
1487 } else {
1488 WARN_ON(1);
1489 }
1490 return num_refs;
1491}
15916de8 1492
5d4f98a2 1493static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1494 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1495 struct btrfs_path *path,
1496 u64 bytenr, u64 parent,
1497 u64 root_objectid)
1f3c79a2 1498{
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1500 struct btrfs_key key;
1f3c79a2 1501 int ret;
1f3c79a2 1502
5d4f98a2
YZ
1503 key.objectid = bytenr;
1504 if (parent) {
1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 key.offset = parent;
1507 } else {
1508 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 key.offset = root_objectid;
1f3c79a2
LH
1510 }
1511
5d4f98a2
YZ
1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 if (ret > 0)
1514 ret = -ENOENT;
1515#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 if (ret == -ENOENT && parent) {
b3b4aa74 1517 btrfs_release_path(path);
5d4f98a2
YZ
1518 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 if (ret > 0)
1521 ret = -ENOENT;
1522 }
1f3c79a2 1523#endif
5d4f98a2 1524 return ret;
1f3c79a2
LH
1525}
1526
5d4f98a2 1527static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1528 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1529 struct btrfs_path *path,
1530 u64 bytenr, u64 parent,
1531 u64 root_objectid)
31840ae1 1532{
5d4f98a2 1533 struct btrfs_key key;
31840ae1 1534 int ret;
31840ae1 1535
5d4f98a2
YZ
1536 key.objectid = bytenr;
1537 if (parent) {
1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 key.offset = parent;
1540 } else {
1541 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 key.offset = root_objectid;
1543 }
1544
87bde3cd
JM
1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 path, &key, 0);
b3b4aa74 1547 btrfs_release_path(path);
31840ae1
ZY
1548 return ret;
1549}
1550
5d4f98a2 1551static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1552{
5d4f98a2
YZ
1553 int type;
1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 if (parent > 0)
1556 type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 else
1558 type = BTRFS_TREE_BLOCK_REF_KEY;
1559 } else {
1560 if (parent > 0)
1561 type = BTRFS_SHARED_DATA_REF_KEY;
1562 else
1563 type = BTRFS_EXTENT_DATA_REF_KEY;
1564 }
1565 return type;
31840ae1 1566}
56bec294 1567
2c47e605
YZ
1568static int find_next_key(struct btrfs_path *path, int level,
1569 struct btrfs_key *key)
56bec294 1570
02217ed2 1571{
2c47e605 1572 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1573 if (!path->nodes[level])
1574 break;
5d4f98a2
YZ
1575 if (path->slots[level] + 1 >=
1576 btrfs_header_nritems(path->nodes[level]))
1577 continue;
1578 if (level == 0)
1579 btrfs_item_key_to_cpu(path->nodes[level], key,
1580 path->slots[level] + 1);
1581 else
1582 btrfs_node_key_to_cpu(path->nodes[level], key,
1583 path->slots[level] + 1);
1584 return 0;
1585 }
1586 return 1;
1587}
037e6390 1588
5d4f98a2
YZ
1589/*
1590 * look for inline back ref. if back ref is found, *ref_ret is set
1591 * to the address of inline back ref, and 0 is returned.
1592 *
1593 * if back ref isn't found, *ref_ret is set to the address where it
1594 * should be inserted, and -ENOENT is returned.
1595 *
1596 * if insert is true and there are too many inline back refs, the path
1597 * points to the extent item, and -EAGAIN is returned.
1598 *
1599 * NOTE: inline back refs are ordered in the same way that back ref
1600 * items in the tree are ordered.
1601 */
1602static noinline_for_stack
1603int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1604 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes,
1608 u64 parent, u64 root_objectid,
1609 u64 owner, u64 offset, int insert)
1610{
87bde3cd 1611 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1612 struct btrfs_key key;
1613 struct extent_buffer *leaf;
1614 struct btrfs_extent_item *ei;
1615 struct btrfs_extent_inline_ref *iref;
1616 u64 flags;
1617 u64 item_size;
1618 unsigned long ptr;
1619 unsigned long end;
1620 int extra_size;
1621 int type;
1622 int want;
1623 int ret;
1624 int err = 0;
0b246afa 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1626 int needed;
26b8003f 1627
db94535d 1628 key.objectid = bytenr;
31840ae1 1629 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1630 key.offset = num_bytes;
31840ae1 1631
5d4f98a2
YZ
1632 want = extent_ref_type(parent, owner);
1633 if (insert) {
1634 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1635 path->keep_locks = 1;
5d4f98a2
YZ
1636 } else
1637 extra_size = -1;
3173a18f
JB
1638
1639 /*
1640 * Owner is our parent level, so we can just add one to get the level
1641 * for the block we are interested in.
1642 */
1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 key.type = BTRFS_METADATA_ITEM_KEY;
1645 key.offset = owner;
1646 }
1647
1648again:
5d4f98a2 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1650 if (ret < 0) {
5d4f98a2
YZ
1651 err = ret;
1652 goto out;
1653 }
3173a18f
JB
1654
1655 /*
1656 * We may be a newly converted file system which still has the old fat
1657 * extent entries for metadata, so try and see if we have one of those.
1658 */
1659 if (ret > 0 && skinny_metadata) {
1660 skinny_metadata = false;
1661 if (path->slots[0]) {
1662 path->slots[0]--;
1663 btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 path->slots[0]);
1665 if (key.objectid == bytenr &&
1666 key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 key.offset == num_bytes)
1668 ret = 0;
1669 }
1670 if (ret) {
9ce49a0b 1671 key.objectid = bytenr;
3173a18f
JB
1672 key.type = BTRFS_EXTENT_ITEM_KEY;
1673 key.offset = num_bytes;
1674 btrfs_release_path(path);
1675 goto again;
1676 }
1677 }
1678
79787eaa
JM
1679 if (ret && !insert) {
1680 err = -ENOENT;
1681 goto out;
fae7f21c 1682 } else if (WARN_ON(ret)) {
492104c8 1683 err = -EIO;
492104c8 1684 goto out;
79787eaa 1685 }
5d4f98a2
YZ
1686
1687 leaf = path->nodes[0];
1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 if (item_size < sizeof(*ei)) {
1691 if (!insert) {
1692 err = -ENOENT;
1693 goto out;
1694 }
87bde3cd 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1696 extra_size);
1697 if (ret < 0) {
1698 err = ret;
1699 goto out;
1700 }
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 }
1704#endif
1705 BUG_ON(item_size < sizeof(*ei));
1706
5d4f98a2
YZ
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 flags = btrfs_extent_flags(leaf, ei);
1709
1710 ptr = (unsigned long)(ei + 1);
1711 end = (unsigned long)ei + item_size;
1712
3173a18f 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1714 ptr += sizeof(struct btrfs_tree_block_info);
1715 BUG_ON(ptr > end);
5d4f98a2
YZ
1716 }
1717
3de28d57
LB
1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 needed = BTRFS_REF_TYPE_DATA;
1720 else
1721 needed = BTRFS_REF_TYPE_BLOCK;
1722
5d4f98a2
YZ
1723 err = -ENOENT;
1724 while (1) {
1725 if (ptr >= end) {
1726 WARN_ON(ptr > end);
1727 break;
1728 }
1729 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 if (type == BTRFS_REF_TYPE_INVALID) {
1732 err = -EINVAL;
1733 goto out;
1734 }
1735
5d4f98a2
YZ
1736 if (want < type)
1737 break;
1738 if (want > type) {
1739 ptr += btrfs_extent_inline_ref_size(type);
1740 continue;
1741 }
1742
1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 struct btrfs_extent_data_ref *dref;
1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 if (match_extent_data_ref(leaf, dref, root_objectid,
1747 owner, offset)) {
1748 err = 0;
1749 break;
1750 }
1751 if (hash_extent_data_ref_item(leaf, dref) <
1752 hash_extent_data_ref(root_objectid, owner, offset))
1753 break;
1754 } else {
1755 u64 ref_offset;
1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 if (parent > 0) {
1758 if (parent == ref_offset) {
1759 err = 0;
1760 break;
1761 }
1762 if (ref_offset < parent)
1763 break;
1764 } else {
1765 if (root_objectid == ref_offset) {
1766 err = 0;
1767 break;
1768 }
1769 if (ref_offset < root_objectid)
1770 break;
1771 }
1772 }
1773 ptr += btrfs_extent_inline_ref_size(type);
1774 }
1775 if (err == -ENOENT && insert) {
1776 if (item_size + extra_size >=
1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 err = -EAGAIN;
1779 goto out;
1780 }
1781 /*
1782 * To add new inline back ref, we have to make sure
1783 * there is no corresponding back ref item.
1784 * For simplicity, we just do not add new inline back
1785 * ref if there is any kind of item for this block
1786 */
2c47e605
YZ
1787 if (find_next_key(path, 0, &key) == 0 &&
1788 key.objectid == bytenr &&
85d4198e 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1790 err = -EAGAIN;
1791 goto out;
1792 }
1793 }
1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795out:
85d4198e 1796 if (insert) {
5d4f98a2
YZ
1797 path->keep_locks = 0;
1798 btrfs_unlock_up_safe(path, 1);
1799 }
1800 return err;
1801}
1802
1803/*
1804 * helper to add new inline back ref
1805 */
1806static noinline_for_stack
87bde3cd 1807void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1808 struct btrfs_path *path,
1809 struct btrfs_extent_inline_ref *iref,
1810 u64 parent, u64 root_objectid,
1811 u64 owner, u64 offset, int refs_to_add,
1812 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1813{
1814 struct extent_buffer *leaf;
1815 struct btrfs_extent_item *ei;
1816 unsigned long ptr;
1817 unsigned long end;
1818 unsigned long item_offset;
1819 u64 refs;
1820 int size;
1821 int type;
5d4f98a2
YZ
1822
1823 leaf = path->nodes[0];
1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 item_offset = (unsigned long)iref - (unsigned long)ei;
1826
1827 type = extent_ref_type(parent, owner);
1828 size = btrfs_extent_inline_ref_size(type);
1829
87bde3cd 1830 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1831
1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 refs = btrfs_extent_refs(leaf, ei);
1834 refs += refs_to_add;
1835 btrfs_set_extent_refs(leaf, ei, refs);
1836 if (extent_op)
1837 __run_delayed_extent_op(extent_op, leaf, ei);
1838
1839 ptr = (unsigned long)ei + item_offset;
1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 if (ptr < end - size)
1842 memmove_extent_buffer(leaf, ptr + size, ptr,
1843 end - size - ptr);
1844
1845 iref = (struct btrfs_extent_inline_ref *)ptr;
1846 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 struct btrfs_extent_data_ref *dref;
1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 struct btrfs_shared_data_ref *sref;
1856 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 } else {
1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 }
1864 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1865}
1866
1867static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1868 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref **ref_ret,
1871 u64 bytenr, u64 num_bytes, u64 parent,
1872 u64 root_objectid, u64 owner, u64 offset)
1873{
1874 int ret;
1875
87bde3cd 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1877 bytenr, num_bytes, parent,
1878 root_objectid, owner, offset, 0);
1879 if (ret != -ENOENT)
54aa1f4d 1880 return ret;
5d4f98a2 1881
b3b4aa74 1882 btrfs_release_path(path);
5d4f98a2
YZ
1883 *ref_ret = NULL;
1884
1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 parent, root_objectid);
5d4f98a2 1888 } else {
87bde3cd
JM
1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 parent, root_objectid, owner,
1891 offset);
b9473439 1892 }
5d4f98a2
YZ
1893 return ret;
1894}
31840ae1 1895
5d4f98a2
YZ
1896/*
1897 * helper to update/remove inline back ref
1898 */
1899static noinline_for_stack
87bde3cd 1900void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1901 struct btrfs_path *path,
1902 struct btrfs_extent_inline_ref *iref,
1903 int refs_to_mod,
fcebe456
JB
1904 struct btrfs_delayed_extent_op *extent_op,
1905 int *last_ref)
5d4f98a2
YZ
1906{
1907 struct extent_buffer *leaf;
1908 struct btrfs_extent_item *ei;
1909 struct btrfs_extent_data_ref *dref = NULL;
1910 struct btrfs_shared_data_ref *sref = NULL;
1911 unsigned long ptr;
1912 unsigned long end;
1913 u32 item_size;
1914 int size;
1915 int type;
5d4f98a2
YZ
1916 u64 refs;
1917
1918 leaf = path->nodes[0];
1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 refs = btrfs_extent_refs(leaf, ei);
1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 refs += refs_to_mod;
1923 btrfs_set_extent_refs(leaf, ei, refs);
1924 if (extent_op)
1925 __run_delayed_extent_op(extent_op, leaf, ei);
1926
3de28d57
LB
1927 /*
1928 * If type is invalid, we should have bailed out after
1929 * lookup_inline_extent_backref().
1930 */
1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1933
1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 refs = btrfs_extent_data_ref_count(leaf, dref);
1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 refs = btrfs_shared_data_ref_count(leaf, sref);
1940 } else {
1941 refs = 1;
1942 BUG_ON(refs_to_mod != -1);
56bec294 1943 }
31840ae1 1944
5d4f98a2
YZ
1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 refs += refs_to_mod;
1947
1948 if (refs > 0) {
1949 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 else
1952 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 } else {
fcebe456 1954 *last_ref = 1;
5d4f98a2
YZ
1955 size = btrfs_extent_inline_ref_size(type);
1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 ptr = (unsigned long)iref;
1958 end = (unsigned long)ei + item_size;
1959 if (ptr + size < end)
1960 memmove_extent_buffer(leaf, ptr, ptr + size,
1961 end - ptr - size);
1962 item_size -= size;
87bde3cd 1963 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1964 }
1965 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1966}
1967
1968static noinline_for_stack
1969int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1970 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1971 struct btrfs_path *path,
1972 u64 bytenr, u64 num_bytes, u64 parent,
1973 u64 root_objectid, u64 owner,
1974 u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976{
1977 struct btrfs_extent_inline_ref *iref;
1978 int ret;
1979
87bde3cd 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1981 bytenr, num_bytes, parent,
1982 root_objectid, owner, offset, 1);
1983 if (ret == 0) {
1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1985 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1986 refs_to_add, extent_op, NULL);
5d4f98a2 1987 } else if (ret == -ENOENT) {
87bde3cd 1988 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1989 root_objectid, owner, offset,
1990 refs_to_add, extent_op);
1991 ret = 0;
771ed689 1992 }
5d4f98a2
YZ
1993 return ret;
1994}
31840ae1 1995
5d4f98a2 1996static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1997 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1998 struct btrfs_path *path,
1999 u64 bytenr, u64 parent, u64 root_objectid,
2000 u64 owner, u64 offset, int refs_to_add)
2001{
2002 int ret;
2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 BUG_ON(refs_to_add != 1);
87bde3cd 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2006 parent, root_objectid);
2007 } else {
87bde3cd 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2009 parent, root_objectid,
2010 owner, offset, refs_to_add);
2011 }
2012 return ret;
2013}
56bec294 2014
5d4f98a2 2015static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2016 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2017 struct btrfs_path *path,
2018 struct btrfs_extent_inline_ref *iref,
fcebe456 2019 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2020{
143bede5 2021 int ret = 0;
b9473439 2022
5d4f98a2
YZ
2023 BUG_ON(!is_data && refs_to_drop != 1);
2024 if (iref) {
87bde3cd 2025 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2026 -refs_to_drop, NULL, last_ref);
5d4f98a2 2027 } else if (is_data) {
87bde3cd 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2029 last_ref);
5d4f98a2 2030 } else {
fcebe456 2031 *last_ref = 1;
87bde3cd 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2033 }
2034 return ret;
2035}
2036
86557861 2037#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2038static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 u64 *discarded_bytes)
5d4f98a2 2040{
86557861
JM
2041 int j, ret = 0;
2042 u64 bytes_left, end;
4d89d377 2043 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2044
4d89d377
JM
2045 if (WARN_ON(start != aligned_start)) {
2046 len -= aligned_start - start;
2047 len = round_down(len, 1 << 9);
2048 start = aligned_start;
2049 }
d04c6b88 2050
4d89d377 2051 *discarded_bytes = 0;
86557861
JM
2052
2053 if (!len)
2054 return 0;
2055
2056 end = start + len;
2057 bytes_left = len;
2058
2059 /* Skip any superblocks on this device. */
2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 u64 sb_start = btrfs_sb_offset(j);
2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 u64 size = sb_start - start;
2064
2065 if (!in_range(sb_start, start, bytes_left) &&
2066 !in_range(sb_end, start, bytes_left) &&
2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 continue;
2069
2070 /*
2071 * Superblock spans beginning of range. Adjust start and
2072 * try again.
2073 */
2074 if (sb_start <= start) {
2075 start += sb_end - start;
2076 if (start > end) {
2077 bytes_left = 0;
2078 break;
2079 }
2080 bytes_left = end - start;
2081 continue;
2082 }
2083
2084 if (size) {
2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 GFP_NOFS, 0);
2087 if (!ret)
2088 *discarded_bytes += size;
2089 else if (ret != -EOPNOTSUPP)
2090 return ret;
2091 }
2092
2093 start = sb_end;
2094 if (start > end) {
2095 bytes_left = 0;
2096 break;
2097 }
2098 bytes_left = end - start;
2099 }
2100
2101 if (bytes_left) {
2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2103 GFP_NOFS, 0);
2104 if (!ret)
86557861 2105 *discarded_bytes += bytes_left;
4d89d377 2106 }
d04c6b88 2107 return ret;
5d4f98a2 2108}
5d4f98a2 2109
2ff7e61e 2110int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2111 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2112{
5d4f98a2 2113 int ret;
5378e607 2114 u64 discarded_bytes = 0;
a1d3c478 2115 struct btrfs_bio *bbio = NULL;
5d4f98a2 2116
e244a0ae 2117
2999241d
FM
2118 /*
2119 * Avoid races with device replace and make sure our bbio has devices
2120 * associated to its stripes that don't go away while we are discarding.
2121 */
0b246afa 2122 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2123 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 &bbio, 0);
79787eaa 2126 /* Error condition is -ENOMEM */
5d4f98a2 2127 if (!ret) {
a1d3c478 2128 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2129 int i;
2130
5d4f98a2 2131
a1d3c478 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2133 u64 bytes;
38b5f68e
AJ
2134 struct request_queue *req_q;
2135
627e0873
FM
2136 if (!stripe->dev->bdev) {
2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 continue;
2139 }
38b5f68e
AJ
2140 req_q = bdev_get_queue(stripe->dev->bdev);
2141 if (!blk_queue_discard(req_q))
d5e2003c
JB
2142 continue;
2143
5378e607
LD
2144 ret = btrfs_issue_discard(stripe->dev->bdev,
2145 stripe->physical,
d04c6b88
JM
2146 stripe->length,
2147 &bytes);
5378e607 2148 if (!ret)
d04c6b88 2149 discarded_bytes += bytes;
5378e607 2150 else if (ret != -EOPNOTSUPP)
79787eaa 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2152
2153 /*
2154 * Just in case we get back EOPNOTSUPP for some reason,
2155 * just ignore the return value so we don't screw up
2156 * people calling discard_extent.
2157 */
2158 ret = 0;
5d4f98a2 2159 }
6e9606d2 2160 btrfs_put_bbio(bbio);
5d4f98a2 2161 }
0b246afa 2162 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2163
2164 if (actual_bytes)
2165 *actual_bytes = discarded_bytes;
2166
5d4f98a2 2167
53b381b3
DW
2168 if (ret == -EOPNOTSUPP)
2169 ret = 0;
5d4f98a2 2170 return ret;
5d4f98a2
YZ
2171}
2172
79787eaa 2173/* Can return -ENOMEM */
5d4f98a2 2174int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2175 struct btrfs_root *root,
5d4f98a2 2176 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2177 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2178{
84f7d8e6 2179 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2180 int old_ref_mod, new_ref_mod;
5d4f98a2 2181 int ret;
66d7e7f0 2182
5d4f98a2
YZ
2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185
fd708b81
JB
2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 owner, offset, BTRFS_ADD_DELAYED_REF);
2188
5d4f98a2 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2191 num_bytes, parent,
2192 root_objectid, (int)owner,
2193 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2194 &old_ref_mod, &new_ref_mod);
5d4f98a2 2195 } else {
66d7e7f0 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2197 num_bytes, parent,
2198 root_objectid, owner, offset,
d7eae340
OS
2199 0, BTRFS_ADD_DELAYED_REF,
2200 &old_ref_mod, &new_ref_mod);
5d4f98a2 2201 }
d7eae340
OS
2202
2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2204 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2205
5d4f98a2
YZ
2206 return ret;
2207}
2208
2209static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2210 struct btrfs_fs_info *fs_info,
c682f9b3 2211 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2212 u64 parent, u64 root_objectid,
2213 u64 owner, u64 offset, int refs_to_add,
2214 struct btrfs_delayed_extent_op *extent_op)
2215{
2216 struct btrfs_path *path;
2217 struct extent_buffer *leaf;
2218 struct btrfs_extent_item *item;
fcebe456 2219 struct btrfs_key key;
c682f9b3
QW
2220 u64 bytenr = node->bytenr;
2221 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2222 u64 refs;
2223 int ret;
5d4f98a2
YZ
2224
2225 path = btrfs_alloc_path();
2226 if (!path)
2227 return -ENOMEM;
2228
e4058b54 2229 path->reada = READA_FORWARD;
5d4f98a2
YZ
2230 path->leave_spinning = 1;
2231 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2232 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2233 num_bytes, parent, root_objectid,
2234 owner, offset,
5d4f98a2 2235 refs_to_add, extent_op);
0ed4792a 2236 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2237 goto out;
fcebe456
JB
2238
2239 /*
2240 * Ok we had -EAGAIN which means we didn't have space to insert and
2241 * inline extent ref, so just update the reference count and add a
2242 * normal backref.
2243 */
5d4f98a2 2244 leaf = path->nodes[0];
fcebe456 2245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2246 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2247 refs = btrfs_extent_refs(leaf, item);
2248 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2249 if (extent_op)
2250 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2251
5d4f98a2 2252 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2253 btrfs_release_path(path);
56bec294 2254
e4058b54 2255 path->reada = READA_FORWARD;
b9473439 2256 path->leave_spinning = 1;
56bec294 2257 /* now insert the actual backref */
87bde3cd
JM
2258 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2259 root_objectid, owner, offset, refs_to_add);
79787eaa 2260 if (ret)
66642832 2261 btrfs_abort_transaction(trans, ret);
5d4f98a2 2262out:
56bec294 2263 btrfs_free_path(path);
30d133fc 2264 return ret;
56bec294
CM
2265}
2266
5d4f98a2 2267static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2268 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2269 struct btrfs_delayed_ref_node *node,
2270 struct btrfs_delayed_extent_op *extent_op,
2271 int insert_reserved)
56bec294 2272{
5d4f98a2
YZ
2273 int ret = 0;
2274 struct btrfs_delayed_data_ref *ref;
2275 struct btrfs_key ins;
2276 u64 parent = 0;
2277 u64 ref_root = 0;
2278 u64 flags = 0;
2279
2280 ins.objectid = node->bytenr;
2281 ins.offset = node->num_bytes;
2282 ins.type = BTRFS_EXTENT_ITEM_KEY;
2283
2284 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2285 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2286
5d4f98a2
YZ
2287 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2288 parent = ref->parent;
fcebe456 2289 ref_root = ref->root;
5d4f98a2
YZ
2290
2291 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2292 if (extent_op)
5d4f98a2 2293 flags |= extent_op->flags_to_set;
2ff7e61e 2294 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2295 parent, ref_root, flags,
2296 ref->objectid, ref->offset,
2297 &ins, node->ref_mod);
5d4f98a2 2298 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2299 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2300 ref_root, ref->objectid,
2301 ref->offset, node->ref_mod,
c682f9b3 2302 extent_op);
5d4f98a2 2303 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2304 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2305 ref_root, ref->objectid,
2306 ref->offset, node->ref_mod,
c682f9b3 2307 extent_op);
5d4f98a2
YZ
2308 } else {
2309 BUG();
2310 }
2311 return ret;
2312}
2313
2314static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2315 struct extent_buffer *leaf,
2316 struct btrfs_extent_item *ei)
2317{
2318 u64 flags = btrfs_extent_flags(leaf, ei);
2319 if (extent_op->update_flags) {
2320 flags |= extent_op->flags_to_set;
2321 btrfs_set_extent_flags(leaf, ei, flags);
2322 }
2323
2324 if (extent_op->update_key) {
2325 struct btrfs_tree_block_info *bi;
2326 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2327 bi = (struct btrfs_tree_block_info *)(ei + 1);
2328 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2329 }
2330}
2331
2332static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2333 struct btrfs_fs_info *fs_info,
d278850e 2334 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2335 struct btrfs_delayed_extent_op *extent_op)
2336{
2337 struct btrfs_key key;
2338 struct btrfs_path *path;
2339 struct btrfs_extent_item *ei;
2340 struct extent_buffer *leaf;
2341 u32 item_size;
56bec294 2342 int ret;
5d4f98a2 2343 int err = 0;
b1c79e09 2344 int metadata = !extent_op->is_data;
5d4f98a2 2345
79787eaa
JM
2346 if (trans->aborted)
2347 return 0;
2348
0b246afa 2349 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2350 metadata = 0;
2351
5d4f98a2
YZ
2352 path = btrfs_alloc_path();
2353 if (!path)
2354 return -ENOMEM;
2355
d278850e 2356 key.objectid = head->bytenr;
5d4f98a2 2357
3173a18f 2358 if (metadata) {
3173a18f 2359 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2360 key.offset = extent_op->level;
3173a18f
JB
2361 } else {
2362 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2363 key.offset = head->num_bytes;
3173a18f
JB
2364 }
2365
2366again:
e4058b54 2367 path->reada = READA_FORWARD;
5d4f98a2 2368 path->leave_spinning = 1;
0b246afa 2369 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2370 if (ret < 0) {
2371 err = ret;
2372 goto out;
2373 }
2374 if (ret > 0) {
3173a18f 2375 if (metadata) {
55994887
FDBM
2376 if (path->slots[0] > 0) {
2377 path->slots[0]--;
2378 btrfs_item_key_to_cpu(path->nodes[0], &key,
2379 path->slots[0]);
d278850e 2380 if (key.objectid == head->bytenr &&
55994887 2381 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2382 key.offset == head->num_bytes)
55994887
FDBM
2383 ret = 0;
2384 }
2385 if (ret > 0) {
2386 btrfs_release_path(path);
2387 metadata = 0;
3173a18f 2388
d278850e
JB
2389 key.objectid = head->bytenr;
2390 key.offset = head->num_bytes;
55994887
FDBM
2391 key.type = BTRFS_EXTENT_ITEM_KEY;
2392 goto again;
2393 }
2394 } else {
2395 err = -EIO;
2396 goto out;
3173a18f 2397 }
5d4f98a2
YZ
2398 }
2399
2400 leaf = path->nodes[0];
2401 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2402#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2403 if (item_size < sizeof(*ei)) {
87bde3cd 2404 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2405 if (ret < 0) {
2406 err = ret;
2407 goto out;
2408 }
2409 leaf = path->nodes[0];
2410 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2411 }
2412#endif
2413 BUG_ON(item_size < sizeof(*ei));
2414 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2415 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2416
5d4f98a2
YZ
2417 btrfs_mark_buffer_dirty(leaf);
2418out:
2419 btrfs_free_path(path);
2420 return err;
56bec294
CM
2421}
2422
5d4f98a2 2423static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2424 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2425 struct btrfs_delayed_ref_node *node,
2426 struct btrfs_delayed_extent_op *extent_op,
2427 int insert_reserved)
56bec294
CM
2428{
2429 int ret = 0;
5d4f98a2
YZ
2430 struct btrfs_delayed_tree_ref *ref;
2431 struct btrfs_key ins;
2432 u64 parent = 0;
2433 u64 ref_root = 0;
0b246afa 2434 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2435
5d4f98a2 2436 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2437 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2438
5d4f98a2
YZ
2439 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2440 parent = ref->parent;
fcebe456 2441 ref_root = ref->root;
5d4f98a2 2442
3173a18f
JB
2443 ins.objectid = node->bytenr;
2444 if (skinny_metadata) {
2445 ins.offset = ref->level;
2446 ins.type = BTRFS_METADATA_ITEM_KEY;
2447 } else {
2448 ins.offset = node->num_bytes;
2449 ins.type = BTRFS_EXTENT_ITEM_KEY;
2450 }
2451
02794222 2452 if (node->ref_mod != 1) {
2ff7e61e 2453 btrfs_err(fs_info,
02794222
LB
2454 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2455 node->bytenr, node->ref_mod, node->action, ref_root,
2456 parent);
2457 return -EIO;
2458 }
5d4f98a2 2459 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2460 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2461 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2462 parent, ref_root,
2463 extent_op->flags_to_set,
2464 &extent_op->key,
b06c4bf5 2465 ref->level, &ins);
5d4f98a2 2466 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2467 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2468 parent, ref_root,
2469 ref->level, 0, 1,
fcebe456 2470 extent_op);
5d4f98a2 2471 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2472 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2473 parent, ref_root,
2474 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2475 } else {
2476 BUG();
2477 }
56bec294
CM
2478 return ret;
2479}
2480
2481/* helper function to actually process a single delayed ref entry */
5d4f98a2 2482static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2483 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2484 struct btrfs_delayed_ref_node *node,
2485 struct btrfs_delayed_extent_op *extent_op,
2486 int insert_reserved)
56bec294 2487{
79787eaa
JM
2488 int ret = 0;
2489
857cc2fc
JB
2490 if (trans->aborted) {
2491 if (insert_reserved)
2ff7e61e 2492 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2493 node->num_bytes, 1);
79787eaa 2494 return 0;
857cc2fc 2495 }
79787eaa 2496
5d4f98a2
YZ
2497 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2498 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2499 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2500 insert_reserved);
2501 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2502 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2503 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2504 insert_reserved);
2505 else
2506 BUG();
2507 return ret;
56bec294
CM
2508}
2509
c6fc2454 2510static inline struct btrfs_delayed_ref_node *
56bec294
CM
2511select_delayed_ref(struct btrfs_delayed_ref_head *head)
2512{
cffc3374
FM
2513 struct btrfs_delayed_ref_node *ref;
2514
0e0adbcf 2515 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2516 return NULL;
d7df2c79 2517
cffc3374
FM
2518 /*
2519 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2520 * This is to prevent a ref count from going down to zero, which deletes
2521 * the extent item from the extent tree, when there still are references
2522 * to add, which would fail because they would not find the extent item.
2523 */
1d57ee94
WX
2524 if (!list_empty(&head->ref_add_list))
2525 return list_first_entry(&head->ref_add_list,
2526 struct btrfs_delayed_ref_node, add_list);
2527
0e0adbcf
JB
2528 ref = rb_entry(rb_first(&head->ref_tree),
2529 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2530 ASSERT(list_empty(&ref->add_list));
2531 return ref;
56bec294
CM
2532}
2533
2eadaa22
JB
2534static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2535 struct btrfs_delayed_ref_head *head)
2536{
2537 spin_lock(&delayed_refs->lock);
2538 head->processing = 0;
2539 delayed_refs->num_heads_ready++;
2540 spin_unlock(&delayed_refs->lock);
2541 btrfs_delayed_ref_unlock(head);
2542}
2543
b00e6250
JB
2544static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2545 struct btrfs_fs_info *fs_info,
2546 struct btrfs_delayed_ref_head *head)
2547{
2548 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2549 int ret;
2550
2551 if (!extent_op)
2552 return 0;
2553 head->extent_op = NULL;
2554 if (head->must_insert_reserved) {
2555 btrfs_free_delayed_extent_op(extent_op);
2556 return 0;
2557 }
2558 spin_unlock(&head->lock);
d278850e 2559 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2560 btrfs_free_delayed_extent_op(extent_op);
2561 return ret ? ret : 1;
2562}
2563
194ab0bc
JB
2564static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2565 struct btrfs_fs_info *fs_info,
2566 struct btrfs_delayed_ref_head *head)
2567{
2568 struct btrfs_delayed_ref_root *delayed_refs;
2569 int ret;
2570
2571 delayed_refs = &trans->transaction->delayed_refs;
2572
2573 ret = cleanup_extent_op(trans, fs_info, head);
2574 if (ret < 0) {
2575 unselect_delayed_ref_head(delayed_refs, head);
2576 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2577 return ret;
2578 } else if (ret) {
2579 return ret;
2580 }
2581
2582 /*
2583 * Need to drop our head ref lock and re-acquire the delayed ref lock
2584 * and then re-check to make sure nobody got added.
2585 */
2586 spin_unlock(&head->lock);
2587 spin_lock(&delayed_refs->lock);
2588 spin_lock(&head->lock);
0e0adbcf 2589 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2590 spin_unlock(&head->lock);
2591 spin_unlock(&delayed_refs->lock);
2592 return 1;
2593 }
194ab0bc
JB
2594 delayed_refs->num_heads--;
2595 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2596 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2597 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2598 spin_unlock(&head->lock);
2599 atomic_dec(&delayed_refs->num_entries);
2600
d278850e 2601 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2602
2603 if (head->total_ref_mod < 0) {
5e388e95
NB
2604 struct btrfs_space_info *space_info;
2605 u64 flags;
c1103f7a 2606
5e388e95
NB
2607 if (head->is_data)
2608 flags = BTRFS_BLOCK_GROUP_DATA;
2609 else if (head->is_system)
2610 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2611 else
2612 flags = BTRFS_BLOCK_GROUP_METADATA;
2613 space_info = __find_space_info(fs_info, flags);
2614 ASSERT(space_info);
2615 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2616 -head->num_bytes);
c1103f7a
JB
2617
2618 if (head->is_data) {
2619 spin_lock(&delayed_refs->lock);
d278850e 2620 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2621 spin_unlock(&delayed_refs->lock);
2622 }
2623 }
2624
2625 if (head->must_insert_reserved) {
d278850e
JB
2626 btrfs_pin_extent(fs_info, head->bytenr,
2627 head->num_bytes, 1);
c1103f7a 2628 if (head->is_data) {
d278850e
JB
2629 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2630 head->num_bytes);
c1103f7a
JB
2631 }
2632 }
2633
2634 /* Also free its reserved qgroup space */
2635 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2636 head->qgroup_reserved);
2637 btrfs_delayed_ref_unlock(head);
d278850e 2638 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2639 return 0;
2640}
2641
79787eaa
JM
2642/*
2643 * Returns 0 on success or if called with an already aborted transaction.
2644 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2645 */
d7df2c79 2646static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2647 unsigned long nr)
56bec294 2648{
0a1e458a 2649 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2650 struct btrfs_delayed_ref_root *delayed_refs;
2651 struct btrfs_delayed_ref_node *ref;
2652 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2653 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2654 ktime_t start = ktime_get();
56bec294 2655 int ret;
d7df2c79 2656 unsigned long count = 0;
0a2b2a84 2657 unsigned long actual_count = 0;
56bec294 2658 int must_insert_reserved = 0;
56bec294
CM
2659
2660 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2661 while (1) {
2662 if (!locked_ref) {
d7df2c79 2663 if (count >= nr)
56bec294 2664 break;
56bec294 2665
d7df2c79
JB
2666 spin_lock(&delayed_refs->lock);
2667 locked_ref = btrfs_select_ref_head(trans);
2668 if (!locked_ref) {
2669 spin_unlock(&delayed_refs->lock);
2670 break;
2671 }
c3e69d58
CM
2672
2673 /* grab the lock that says we are going to process
2674 * all the refs for this head */
2675 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2676 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2677 /*
2678 * we may have dropped the spin lock to get the head
2679 * mutex lock, and that might have given someone else
2680 * time to free the head. If that's true, it has been
2681 * removed from our list and we can move on.
2682 */
2683 if (ret == -EAGAIN) {
2684 locked_ref = NULL;
2685 count++;
2686 continue;
56bec294
CM
2687 }
2688 }
a28ec197 2689
2c3cf7d5
FM
2690 /*
2691 * We need to try and merge add/drops of the same ref since we
2692 * can run into issues with relocate dropping the implicit ref
2693 * and then it being added back again before the drop can
2694 * finish. If we merged anything we need to re-loop so we can
2695 * get a good ref.
2696 * Or we can get node references of the same type that weren't
2697 * merged when created due to bumps in the tree mod seq, and
2698 * we need to merge them to prevent adding an inline extent
2699 * backref before dropping it (triggering a BUG_ON at
2700 * insert_inline_extent_backref()).
2701 */
d7df2c79 2702 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2703 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2704 locked_ref);
ae1e206b 2705
d1270cd9
AJ
2706 /*
2707 * locked_ref is the head node, so we have to go one
2708 * node back for any delayed ref updates
2709 */
2710 ref = select_delayed_ref(locked_ref);
2711
2712 if (ref && ref->seq &&
097b8a7c 2713 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2714 spin_unlock(&locked_ref->lock);
2eadaa22 2715 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2716 locked_ref = NULL;
d1270cd9 2717 cond_resched();
27a377db 2718 count++;
d1270cd9
AJ
2719 continue;
2720 }
2721
c1103f7a
JB
2722 /*
2723 * We're done processing refs in this ref_head, clean everything
2724 * up and move on to the next ref_head.
2725 */
56bec294 2726 if (!ref) {
194ab0bc
JB
2727 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2728 if (ret > 0 ) {
b00e6250
JB
2729 /* We dropped our lock, we need to loop. */
2730 ret = 0;
d7df2c79 2731 continue;
194ab0bc
JB
2732 } else if (ret) {
2733 return ret;
5d4f98a2 2734 }
c1103f7a
JB
2735 locked_ref = NULL;
2736 count++;
2737 continue;
2738 }
02217ed2 2739
c1103f7a
JB
2740 actual_count++;
2741 ref->in_tree = 0;
0e0adbcf
JB
2742 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2743 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2744 if (!list_empty(&ref->add_list))
2745 list_del(&ref->add_list);
2746 /*
2747 * When we play the delayed ref, also correct the ref_mod on
2748 * head
2749 */
2750 switch (ref->action) {
2751 case BTRFS_ADD_DELAYED_REF:
2752 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2753 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2754 break;
2755 case BTRFS_DROP_DELAYED_REF:
d278850e 2756 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2757 break;
2758 default:
2759 WARN_ON(1);
22cd2e7d 2760 }
1ce7a5ec
JB
2761 atomic_dec(&delayed_refs->num_entries);
2762
b00e6250
JB
2763 /*
2764 * Record the must-insert_reserved flag before we drop the spin
2765 * lock.
2766 */
2767 must_insert_reserved = locked_ref->must_insert_reserved;
2768 locked_ref->must_insert_reserved = 0;
2769
2770 extent_op = locked_ref->extent_op;
2771 locked_ref->extent_op = NULL;
d7df2c79 2772 spin_unlock(&locked_ref->lock);
925baedd 2773
2ff7e61e 2774 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2775 must_insert_reserved);
eb099670 2776
78a6184a 2777 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2778 if (ret) {
2eadaa22 2779 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2780 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2781 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2782 ret);
79787eaa
JM
2783 return ret;
2784 }
2785
093486c4
MX
2786 btrfs_put_delayed_ref(ref);
2787 count++;
c3e69d58 2788 cond_resched();
c3e69d58 2789 }
0a2b2a84
JB
2790
2791 /*
2792 * We don't want to include ref heads since we can have empty ref heads
2793 * and those will drastically skew our runtime down since we just do
2794 * accounting, no actual extent tree updates.
2795 */
2796 if (actual_count > 0) {
2797 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2798 u64 avg;
2799
2800 /*
2801 * We weigh the current average higher than our current runtime
2802 * to avoid large swings in the average.
2803 */
2804 spin_lock(&delayed_refs->lock);
2805 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2806 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2807 spin_unlock(&delayed_refs->lock);
2808 }
d7df2c79 2809 return 0;
c3e69d58
CM
2810}
2811
709c0486
AJ
2812#ifdef SCRAMBLE_DELAYED_REFS
2813/*
2814 * Normally delayed refs get processed in ascending bytenr order. This
2815 * correlates in most cases to the order added. To expose dependencies on this
2816 * order, we start to process the tree in the middle instead of the beginning
2817 */
2818static u64 find_middle(struct rb_root *root)
2819{
2820 struct rb_node *n = root->rb_node;
2821 struct btrfs_delayed_ref_node *entry;
2822 int alt = 1;
2823 u64 middle;
2824 u64 first = 0, last = 0;
2825
2826 n = rb_first(root);
2827 if (n) {
2828 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2829 first = entry->bytenr;
2830 }
2831 n = rb_last(root);
2832 if (n) {
2833 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2834 last = entry->bytenr;
2835 }
2836 n = root->rb_node;
2837
2838 while (n) {
2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 WARN_ON(!entry->in_tree);
2841
2842 middle = entry->bytenr;
2843
2844 if (alt)
2845 n = n->rb_left;
2846 else
2847 n = n->rb_right;
2848
2849 alt = 1 - alt;
2850 }
2851 return middle;
2852}
2853#endif
2854
2ff7e61e 2855static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2856{
2857 u64 num_bytes;
2858
2859 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2860 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2861 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2862 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2863
2864 /*
2865 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2866 * closer to what we're really going to want to use.
1be41b78 2867 */
0b246afa 2868 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2869}
2870
1262133b
JB
2871/*
2872 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2873 * would require to store the csums for that many bytes.
2874 */
2ff7e61e 2875u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2876{
2877 u64 csum_size;
2878 u64 num_csums_per_leaf;
2879 u64 num_csums;
2880
0b246afa 2881 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2882 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2883 (u64)btrfs_super_csum_size(fs_info->super_copy));
2884 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2885 num_csums += num_csums_per_leaf - 1;
2886 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2887 return num_csums;
2888}
2889
0a2b2a84 2890int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2891 struct btrfs_fs_info *fs_info)
1be41b78
JB
2892{
2893 struct btrfs_block_rsv *global_rsv;
2894 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2895 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2896 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2897 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2898 int ret = 0;
2899
0b246afa 2900 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2901 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2902 if (num_heads > 1)
0b246afa 2903 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2904 num_bytes <<= 1;
2ff7e61e
JM
2905 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2906 fs_info->nodesize;
0b246afa 2907 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2908 num_dirty_bgs);
0b246afa 2909 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2910
2911 /*
2912 * If we can't allocate any more chunks lets make sure we have _lots_ of
2913 * wiggle room since running delayed refs can create more delayed refs.
2914 */
cb723e49
JB
2915 if (global_rsv->space_info->full) {
2916 num_dirty_bgs_bytes <<= 1;
1be41b78 2917 num_bytes <<= 1;
cb723e49 2918 }
1be41b78
JB
2919
2920 spin_lock(&global_rsv->lock);
cb723e49 2921 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2922 ret = 1;
2923 spin_unlock(&global_rsv->lock);
2924 return ret;
2925}
2926
0a2b2a84 2927int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2928 struct btrfs_fs_info *fs_info)
0a2b2a84 2929{
0a2b2a84
JB
2930 u64 num_entries =
2931 atomic_read(&trans->transaction->delayed_refs.num_entries);
2932 u64 avg_runtime;
a79b7d4b 2933 u64 val;
0a2b2a84
JB
2934
2935 smp_mb();
2936 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2937 val = num_entries * avg_runtime;
dc1a90c6 2938 if (val >= NSEC_PER_SEC)
0a2b2a84 2939 return 1;
a79b7d4b
CM
2940 if (val >= NSEC_PER_SEC / 2)
2941 return 2;
0a2b2a84 2942
2ff7e61e 2943 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2944}
2945
a79b7d4b
CM
2946struct async_delayed_refs {
2947 struct btrfs_root *root;
31b9655f 2948 u64 transid;
a79b7d4b
CM
2949 int count;
2950 int error;
2951 int sync;
2952 struct completion wait;
2953 struct btrfs_work work;
2954};
2955
2ff7e61e
JM
2956static inline struct async_delayed_refs *
2957to_async_delayed_refs(struct btrfs_work *work)
2958{
2959 return container_of(work, struct async_delayed_refs, work);
2960}
2961
a79b7d4b
CM
2962static void delayed_ref_async_start(struct btrfs_work *work)
2963{
2ff7e61e 2964 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2965 struct btrfs_trans_handle *trans;
2ff7e61e 2966 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2967 int ret;
2968
0f873eca 2969 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2970 if (btrfs_transaction_blocked(fs_info))
31b9655f 2971 goto done;
31b9655f 2972
0f873eca
CM
2973 trans = btrfs_join_transaction(async->root);
2974 if (IS_ERR(trans)) {
2975 async->error = PTR_ERR(trans);
a79b7d4b
CM
2976 goto done;
2977 }
2978
2979 /*
01327610 2980 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2981 * wait on delayed refs
2982 */
2983 trans->sync = true;
0f873eca
CM
2984
2985 /* Don't bother flushing if we got into a different transaction */
2986 if (trans->transid > async->transid)
2987 goto end;
2988
c79a70b1 2989 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2990 if (ret)
2991 async->error = ret;
0f873eca 2992end:
3a45bb20 2993 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2994 if (ret && !async->error)
2995 async->error = ret;
2996done:
2997 if (async->sync)
2998 complete(&async->wait);
2999 else
3000 kfree(async);
3001}
3002
2ff7e61e 3003int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3004 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3005{
3006 struct async_delayed_refs *async;
3007 int ret;
3008
3009 async = kmalloc(sizeof(*async), GFP_NOFS);
3010 if (!async)
3011 return -ENOMEM;
3012
0b246afa 3013 async->root = fs_info->tree_root;
a79b7d4b
CM
3014 async->count = count;
3015 async->error = 0;
31b9655f 3016 async->transid = transid;
a79b7d4b
CM
3017 if (wait)
3018 async->sync = 1;
3019 else
3020 async->sync = 0;
3021 init_completion(&async->wait);
3022
9e0af237
LB
3023 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3024 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3025
0b246afa 3026 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3027
3028 if (wait) {
3029 wait_for_completion(&async->wait);
3030 ret = async->error;
3031 kfree(async);
3032 return ret;
3033 }
3034 return 0;
3035}
3036
c3e69d58
CM
3037/*
3038 * this starts processing the delayed reference count updates and
3039 * extent insertions we have queued up so far. count can be
3040 * 0, which means to process everything in the tree at the start
3041 * of the run (but not newly added entries), or it can be some target
3042 * number you'd like to process.
79787eaa
JM
3043 *
3044 * Returns 0 on success or if called with an aborted transaction
3045 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3046 */
3047int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3048 unsigned long count)
c3e69d58 3049{
c79a70b1 3050 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3051 struct rb_node *node;
3052 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3053 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3054 int ret;
3055 int run_all = count == (unsigned long)-1;
d9a0540a 3056 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3057
79787eaa
JM
3058 /* We'll clean this up in btrfs_cleanup_transaction */
3059 if (trans->aborted)
3060 return 0;
3061
0b246afa 3062 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3063 return 0;
3064
c3e69d58 3065 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3066 if (count == 0)
d7df2c79 3067 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3068
c3e69d58 3069again:
709c0486
AJ
3070#ifdef SCRAMBLE_DELAYED_REFS
3071 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3072#endif
d9a0540a 3073 trans->can_flush_pending_bgs = false;
0a1e458a 3074 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3075 if (ret < 0) {
66642832 3076 btrfs_abort_transaction(trans, ret);
d7df2c79 3077 return ret;
eb099670 3078 }
c3e69d58 3079
56bec294 3080 if (run_all) {
d7df2c79 3081 if (!list_empty(&trans->new_bgs))
6c686b35 3082 btrfs_create_pending_block_groups(trans);
ea658bad 3083
d7df2c79 3084 spin_lock(&delayed_refs->lock);
c46effa6 3085 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3086 if (!node) {
3087 spin_unlock(&delayed_refs->lock);
56bec294 3088 goto out;
d7df2c79 3089 }
d278850e
JB
3090 head = rb_entry(node, struct btrfs_delayed_ref_head,
3091 href_node);
3092 refcount_inc(&head->refs);
3093 spin_unlock(&delayed_refs->lock);
e9d0b13b 3094
d278850e
JB
3095 /* Mutex was contended, block until it's released and retry. */
3096 mutex_lock(&head->mutex);
3097 mutex_unlock(&head->mutex);
56bec294 3098
d278850e 3099 btrfs_put_delayed_ref_head(head);
d7df2c79 3100 cond_resched();
56bec294 3101 goto again;
5f39d397 3102 }
54aa1f4d 3103out:
d9a0540a 3104 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3105 return 0;
3106}
3107
5d4f98a2 3108int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3109 struct btrfs_fs_info *fs_info,
5d4f98a2 3110 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3111 int level, int is_data)
5d4f98a2
YZ
3112{
3113 struct btrfs_delayed_extent_op *extent_op;
3114 int ret;
3115
78a6184a 3116 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3117 if (!extent_op)
3118 return -ENOMEM;
3119
3120 extent_op->flags_to_set = flags;
35b3ad50
DS
3121 extent_op->update_flags = true;
3122 extent_op->update_key = false;
3123 extent_op->is_data = is_data ? true : false;
b1c79e09 3124 extent_op->level = level;
5d4f98a2 3125
0b246afa 3126 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3127 num_bytes, extent_op);
5d4f98a2 3128 if (ret)
78a6184a 3129 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3130 return ret;
3131}
3132
e4c3b2dc 3133static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3134 struct btrfs_path *path,
3135 u64 objectid, u64 offset, u64 bytenr)
3136{
3137 struct btrfs_delayed_ref_head *head;
3138 struct btrfs_delayed_ref_node *ref;
3139 struct btrfs_delayed_data_ref *data_ref;
3140 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3141 struct btrfs_transaction *cur_trans;
0e0adbcf 3142 struct rb_node *node;
5d4f98a2
YZ
3143 int ret = 0;
3144
998ac6d2 3145 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3146 cur_trans = root->fs_info->running_transaction;
998ac6d2 3147 if (cur_trans)
3148 refcount_inc(&cur_trans->use_count);
3149 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3150 if (!cur_trans)
3151 return 0;
3152
3153 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3154 spin_lock(&delayed_refs->lock);
f72ad18e 3155 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3156 if (!head) {
3157 spin_unlock(&delayed_refs->lock);
998ac6d2 3158 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3159 return 0;
3160 }
5d4f98a2
YZ
3161
3162 if (!mutex_trylock(&head->mutex)) {
d278850e 3163 refcount_inc(&head->refs);
5d4f98a2
YZ
3164 spin_unlock(&delayed_refs->lock);
3165
b3b4aa74 3166 btrfs_release_path(path);
5d4f98a2 3167
8cc33e5c
DS
3168 /*
3169 * Mutex was contended, block until it's released and let
3170 * caller try again
3171 */
5d4f98a2
YZ
3172 mutex_lock(&head->mutex);
3173 mutex_unlock(&head->mutex);
d278850e 3174 btrfs_put_delayed_ref_head(head);
998ac6d2 3175 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3176 return -EAGAIN;
3177 }
d7df2c79 3178 spin_unlock(&delayed_refs->lock);
5d4f98a2 3179
d7df2c79 3180 spin_lock(&head->lock);
0e0adbcf
JB
3181 /*
3182 * XXX: We should replace this with a proper search function in the
3183 * future.
3184 */
3185 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3186 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3187 /* If it's a shared ref we know a cross reference exists */
3188 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3189 ret = 1;
3190 break;
3191 }
5d4f98a2 3192
d7df2c79 3193 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3194
d7df2c79
JB
3195 /*
3196 * If our ref doesn't match the one we're currently looking at
3197 * then we have a cross reference.
3198 */
3199 if (data_ref->root != root->root_key.objectid ||
3200 data_ref->objectid != objectid ||
3201 data_ref->offset != offset) {
3202 ret = 1;
3203 break;
3204 }
5d4f98a2 3205 }
d7df2c79 3206 spin_unlock(&head->lock);
5d4f98a2 3207 mutex_unlock(&head->mutex);
998ac6d2 3208 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3209 return ret;
3210}
3211
e4c3b2dc 3212static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3213 struct btrfs_path *path,
3214 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3215{
0b246afa
JM
3216 struct btrfs_fs_info *fs_info = root->fs_info;
3217 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3218 struct extent_buffer *leaf;
5d4f98a2
YZ
3219 struct btrfs_extent_data_ref *ref;
3220 struct btrfs_extent_inline_ref *iref;
3221 struct btrfs_extent_item *ei;
f321e491 3222 struct btrfs_key key;
5d4f98a2 3223 u32 item_size;
3de28d57 3224 int type;
be20aa9d 3225 int ret;
925baedd 3226
be20aa9d 3227 key.objectid = bytenr;
31840ae1 3228 key.offset = (u64)-1;
f321e491 3229 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3230
be20aa9d
CM
3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 if (ret < 0)
3233 goto out;
79787eaa 3234 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3235
3236 ret = -ENOENT;
3237 if (path->slots[0] == 0)
31840ae1 3238 goto out;
be20aa9d 3239
31840ae1 3240 path->slots[0]--;
f321e491 3241 leaf = path->nodes[0];
5d4f98a2 3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3243
5d4f98a2 3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3245 goto out;
f321e491 3246
5d4f98a2
YZ
3247 ret = 1;
3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 if (item_size < sizeof(*ei)) {
3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 goto out;
3253 }
3254#endif
3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3256
5d4f98a2
YZ
3257 if (item_size != sizeof(*ei) +
3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 goto out;
be20aa9d 3260
5d4f98a2
YZ
3261 if (btrfs_extent_generation(leaf, ei) <=
3262 btrfs_root_last_snapshot(&root->root_item))
3263 goto out;
3264
3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3266
3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3269 goto out;
3270
3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 if (btrfs_extent_refs(leaf, ei) !=
3273 btrfs_extent_data_ref_count(leaf, ref) ||
3274 btrfs_extent_data_ref_root(leaf, ref) !=
3275 root->root_key.objectid ||
3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 goto out;
3279
3280 ret = 0;
3281out:
3282 return ret;
3283}
3284
e4c3b2dc
LB
3285int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 u64 bytenr)
5d4f98a2
YZ
3287{
3288 struct btrfs_path *path;
3289 int ret;
3290 int ret2;
3291
3292 path = btrfs_alloc_path();
3293 if (!path)
3294 return -ENOENT;
3295
3296 do {
e4c3b2dc 3297 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3298 offset, bytenr);
3299 if (ret && ret != -ENOENT)
f321e491 3300 goto out;
80ff3856 3301
e4c3b2dc 3302 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3303 offset, bytenr);
3304 } while (ret2 == -EAGAIN);
3305
3306 if (ret2 && ret2 != -ENOENT) {
3307 ret = ret2;
3308 goto out;
f321e491 3309 }
5d4f98a2
YZ
3310
3311 if (ret != -ENOENT || ret2 != -ENOENT)
3312 ret = 0;
be20aa9d 3313out:
80ff3856 3314 btrfs_free_path(path);
f0486c68
YZ
3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 WARN_ON(ret > 0);
f321e491 3317 return ret;
be20aa9d 3318}
c5739bba 3319
5d4f98a2 3320static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3321 struct btrfs_root *root,
5d4f98a2 3322 struct extent_buffer *buf,
e339a6b0 3323 int full_backref, int inc)
31840ae1 3324{
0b246afa 3325 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3326 u64 bytenr;
5d4f98a2
YZ
3327 u64 num_bytes;
3328 u64 parent;
31840ae1 3329 u64 ref_root;
31840ae1 3330 u32 nritems;
31840ae1
ZY
3331 struct btrfs_key key;
3332 struct btrfs_file_extent_item *fi;
3333 int i;
3334 int level;
3335 int ret = 0;
2ff7e61e 3336 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3337 struct btrfs_root *,
b06c4bf5 3338 u64, u64, u64, u64, u64, u64);
31840ae1 3339
fccb84c9 3340
0b246afa 3341 if (btrfs_is_testing(fs_info))
faa2dbf0 3342 return 0;
fccb84c9 3343
31840ae1 3344 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3345 nritems = btrfs_header_nritems(buf);
3346 level = btrfs_header_level(buf);
3347
27cdeb70 3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3349 return 0;
31840ae1 3350
5d4f98a2
YZ
3351 if (inc)
3352 process_func = btrfs_inc_extent_ref;
3353 else
3354 process_func = btrfs_free_extent;
31840ae1 3355
5d4f98a2
YZ
3356 if (full_backref)
3357 parent = buf->start;
3358 else
3359 parent = 0;
3360
3361 for (i = 0; i < nritems; i++) {
31840ae1 3362 if (level == 0) {
5d4f98a2 3363 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3364 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3365 continue;
5d4f98a2 3366 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(buf, fi) ==
3369 BTRFS_FILE_EXTENT_INLINE)
3370 continue;
3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 if (bytenr == 0)
3373 continue;
5d4f98a2
YZ
3374
3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3377 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3378 parent, ref_root, key.objectid,
b06c4bf5 3379 key.offset);
31840ae1
ZY
3380 if (ret)
3381 goto fail;
3382 } else {
5d4f98a2 3383 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3384 num_bytes = fs_info->nodesize;
84f7d8e6 3385 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3386 parent, ref_root, level - 1, 0);
31840ae1
ZY
3387 if (ret)
3388 goto fail;
3389 }
3390 }
3391 return 0;
3392fail:
5d4f98a2
YZ
3393 return ret;
3394}
3395
3396int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3397 struct extent_buffer *buf, int full_backref)
5d4f98a2 3398{
e339a6b0 3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3400}
3401
3402int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3403 struct extent_buffer *buf, int full_backref)
5d4f98a2 3404{
e339a6b0 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3406}
3407
9078a3e1 3408static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3409 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3410 struct btrfs_path *path,
3411 struct btrfs_block_group_cache *cache)
3412{
3413 int ret;
0b246afa 3414 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3415 unsigned long bi;
3416 struct extent_buffer *leaf;
9078a3e1 3417
9078a3e1 3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3419 if (ret) {
3420 if (ret > 0)
3421 ret = -ENOENT;
54aa1f4d 3422 goto fail;
df95e7f0 3423 }
5f39d397
CM
3424
3425 leaf = path->nodes[0];
3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3429fail:
24b89d08 3430 btrfs_release_path(path);
df95e7f0 3431 return ret;
9078a3e1
CM
3432
3433}
3434
4a8c9a62 3435static struct btrfs_block_group_cache *
2ff7e61e 3436next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3437 struct btrfs_block_group_cache *cache)
3438{
3439 struct rb_node *node;
292cbd51 3440
0b246afa 3441 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3442
3443 /* If our block group was removed, we need a full search. */
3444 if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
0b246afa 3447 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3448 btrfs_put_block_group(cache);
0b246afa 3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3450 }
4a8c9a62
YZ
3451 node = rb_next(&cache->cache_node);
3452 btrfs_put_block_group(cache);
3453 if (node) {
3454 cache = rb_entry(node, struct btrfs_block_group_cache,
3455 cache_node);
11dfe35a 3456 btrfs_get_block_group(cache);
4a8c9a62
YZ
3457 } else
3458 cache = NULL;
0b246afa 3459 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3460 return cache;
3461}
3462
0af3d00b
JB
3463static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 struct btrfs_trans_handle *trans,
3465 struct btrfs_path *path)
3466{
0b246afa
JM
3467 struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3469 struct inode *inode = NULL;
364ecf36 3470 struct extent_changeset *data_reserved = NULL;
0af3d00b 3471 u64 alloc_hint = 0;
2b20982e 3472 int dcs = BTRFS_DC_ERROR;
f8c269d7 3473 u64 num_pages = 0;
0af3d00b
JB
3474 int retries = 0;
3475 int ret = 0;
3476
3477 /*
3478 * If this block group is smaller than 100 megs don't bother caching the
3479 * block group.
3480 */
ee22184b 3481 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3482 spin_lock(&block_group->lock);
3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 spin_unlock(&block_group->lock);
3485 return 0;
3486 }
3487
0c0ef4bc
JB
3488 if (trans->aborted)
3489 return 0;
0af3d00b 3490again:
77ab86bf 3491 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 ret = PTR_ERR(inode);
b3b4aa74 3494 btrfs_release_path(path);
0af3d00b
JB
3495 goto out;
3496 }
3497
3498 if (IS_ERR(inode)) {
3499 BUG_ON(retries);
3500 retries++;
3501
3502 if (block_group->ro)
3503 goto out_free;
3504
77ab86bf
JM
3505 ret = create_free_space_inode(fs_info, trans, block_group,
3506 path);
0af3d00b
JB
3507 if (ret)
3508 goto out_free;
3509 goto again;
3510 }
3511
3512 /*
3513 * We want to set the generation to 0, that way if anything goes wrong
3514 * from here on out we know not to trust this cache when we load up next
3515 * time.
3516 */
3517 BTRFS_I(inode)->generation = 0;
3518 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3519 if (ret) {
3520 /*
3521 * So theoretically we could recover from this, simply set the
3522 * super cache generation to 0 so we know to invalidate the
3523 * cache, but then we'd have to keep track of the block groups
3524 * that fail this way so we know we _have_ to reset this cache
3525 * before the next commit or risk reading stale cache. So to
3526 * limit our exposure to horrible edge cases lets just abort the
3527 * transaction, this only happens in really bad situations
3528 * anyway.
3529 */
66642832 3530 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3531 goto out_put;
3532 }
0af3d00b
JB
3533 WARN_ON(ret);
3534
8e138e0d
JB
3535 /* We've already setup this transaction, go ahead and exit */
3536 if (block_group->cache_generation == trans->transid &&
3537 i_size_read(inode)) {
3538 dcs = BTRFS_DC_SETUP;
3539 goto out_put;
3540 }
3541
0af3d00b 3542 if (i_size_read(inode) > 0) {
2ff7e61e 3543 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3544 &fs_info->global_block_rsv);
7b61cd92
MX
3545 if (ret)
3546 goto out_put;
3547
77ab86bf 3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3549 if (ret)
3550 goto out_put;
3551 }
3552
3553 spin_lock(&block_group->lock);
cf7c1ef6 3554 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3556 /*
3557 * don't bother trying to write stuff out _if_
3558 * a) we're not cached,
1a79c1f2
LB
3559 * b) we're with nospace_cache mount option,
3560 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3561 */
2b20982e 3562 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3563 spin_unlock(&block_group->lock);
3564 goto out_put;
3565 }
3566 spin_unlock(&block_group->lock);
3567
2968b1f4
JB
3568 /*
3569 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 * skip doing the setup, we've already cleared the cache so we're safe.
3571 */
3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 ret = -ENOSPC;
3574 goto out_put;
3575 }
3576
6fc823b1
JB
3577 /*
3578 * Try to preallocate enough space based on how big the block group is.
3579 * Keep in mind this has to include any pinned space which could end up
3580 * taking up quite a bit since it's not folded into the other space
3581 * cache.
3582 */
ee22184b 3583 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3584 if (!num_pages)
3585 num_pages = 1;
3586
0af3d00b 3587 num_pages *= 16;
09cbfeaf 3588 num_pages *= PAGE_SIZE;
0af3d00b 3589
364ecf36 3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3591 if (ret)
3592 goto out_put;
3593
3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 num_pages, num_pages,
3596 &alloc_hint);
2968b1f4
JB
3597 /*
3598 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 * of metadata or split extents when writing the cache out, which means
3600 * we can enospc if we are heavily fragmented in addition to just normal
3601 * out of space conditions. So if we hit this just skip setting up any
3602 * other block groups for this transaction, maybe we'll unpin enough
3603 * space the next time around.
3604 */
2b20982e
JB
3605 if (!ret)
3606 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3607 else if (ret == -ENOSPC)
3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3609
0af3d00b
JB
3610out_put:
3611 iput(inode);
3612out_free:
b3b4aa74 3613 btrfs_release_path(path);
0af3d00b
JB
3614out:
3615 spin_lock(&block_group->lock);
e65cbb94 3616 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3617 block_group->cache_generation = trans->transid;
2b20982e 3618 block_group->disk_cache_state = dcs;
0af3d00b
JB
3619 spin_unlock(&block_group->lock);
3620
364ecf36 3621 extent_changeset_free(data_reserved);
0af3d00b
JB
3622 return ret;
3623}
3624
dcdf7f6d 3625int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3626 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3627{
3628 struct btrfs_block_group_cache *cache, *tmp;
3629 struct btrfs_transaction *cur_trans = trans->transaction;
3630 struct btrfs_path *path;
3631
3632 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3633 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3634 return 0;
3635
3636 path = btrfs_alloc_path();
3637 if (!path)
3638 return -ENOMEM;
3639
3640 /* Could add new block groups, use _safe just in case */
3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 dirty_list) {
3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 cache_save_setup(cache, trans, path);
3645 }
3646
3647 btrfs_free_path(path);
3648 return 0;
3649}
3650
1bbc621e
CM
3651/*
3652 * transaction commit does final block group cache writeback during a
3653 * critical section where nothing is allowed to change the FS. This is
3654 * required in order for the cache to actually match the block group,
3655 * but can introduce a lot of latency into the commit.
3656 *
3657 * So, btrfs_start_dirty_block_groups is here to kick off block group
3658 * cache IO. There's a chance we'll have to redo some of it if the
3659 * block group changes again during the commit, but it greatly reduces
3660 * the commit latency by getting rid of the easy block groups while
3661 * we're still allowing others to join the commit.
3662 */
21217054 3663int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3664{
21217054 3665 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3666 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3667 struct btrfs_transaction *cur_trans = trans->transaction;
3668 int ret = 0;
c9dc4c65 3669 int should_put;
1bbc621e
CM
3670 struct btrfs_path *path = NULL;
3671 LIST_HEAD(dirty);
3672 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3673 int num_started = 0;
1bbc621e
CM
3674 int loops = 0;
3675
3676 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3677 if (list_empty(&cur_trans->dirty_bgs)) {
3678 spin_unlock(&cur_trans->dirty_bgs_lock);
3679 return 0;
1bbc621e 3680 }
b58d1a9e 3681 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3682 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3683
1bbc621e 3684again:
1bbc621e
CM
3685 /*
3686 * make sure all the block groups on our dirty list actually
3687 * exist
3688 */
6c686b35 3689 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3690
3691 if (!path) {
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3695 }
3696
b58d1a9e
FM
3697 /*
3698 * cache_write_mutex is here only to save us from balance or automatic
3699 * removal of empty block groups deleting this block group while we are
3700 * writing out the cache
3701 */
3702 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3703 while (!list_empty(&dirty)) {
3704 cache = list_first_entry(&dirty,
3705 struct btrfs_block_group_cache,
3706 dirty_list);
1bbc621e
CM
3707 /*
3708 * this can happen if something re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3711 */
3712 if (!list_empty(&cache->io_list)) {
3713 list_del_init(&cache->io_list);
afdb5718 3714 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3715 btrfs_put_block_group(cache);
3716 }
3717
3718
3719 /*
3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 * if it should update the cache_state. Don't delete
3722 * until after we wait.
3723 *
3724 * Since we're not running in the commit critical section
3725 * we need the dirty_bgs_lock to protect from update_block_group
3726 */
3727 spin_lock(&cur_trans->dirty_bgs_lock);
3728 list_del_init(&cache->dirty_list);
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731 should_put = 1;
3732
3733 cache_save_setup(cache, trans, path);
3734
3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 cache->io_ctl.inode = NULL;
0b246afa 3737 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3738 cache, path);
1bbc621e
CM
3739 if (ret == 0 && cache->io_ctl.inode) {
3740 num_started++;
3741 should_put = 0;
3742
3743 /*
45ae2c18
NB
3744 * The cache_write_mutex is protecting the
3745 * io_list, also refer to the definition of
3746 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3747 */
3748 list_add_tail(&cache->io_list, io);
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
ff1f8250 3757 if (!ret) {
2ff7e61e
JM
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
ff1f8250
FM
3760 /*
3761 * Our block group might still be attached to the list
3762 * of new block groups in the transaction handle of some
3763 * other task (struct btrfs_trans_handle->new_bgs). This
3764 * means its block group item isn't yet in the extent
3765 * tree. If this happens ignore the error, as we will
3766 * try again later in the critical section of the
3767 * transaction commit.
3768 */
3769 if (ret == -ENOENT) {
3770 ret = 0;
3771 spin_lock(&cur_trans->dirty_bgs_lock);
3772 if (list_empty(&cache->dirty_list)) {
3773 list_add_tail(&cache->dirty_list,
3774 &cur_trans->dirty_bgs);
3775 btrfs_get_block_group(cache);
3776 }
3777 spin_unlock(&cur_trans->dirty_bgs_lock);
3778 } else if (ret) {
66642832 3779 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3780 }
3781 }
1bbc621e
CM
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
3786
3787 if (ret)
3788 break;
b58d1a9e
FM
3789
3790 /*
3791 * Avoid blocking other tasks for too long. It might even save
3792 * us from writing caches for block groups that are going to be
3793 * removed.
3794 */
3795 mutex_unlock(&trans->transaction->cache_write_mutex);
3796 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3797 }
b58d1a9e 3798 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3799
3800 /*
3801 * go through delayed refs for all the stuff we've just kicked off
3802 * and then loop back (just once)
3803 */
c79a70b1 3804 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3805 if (!ret && loops == 0) {
3806 loops++;
3807 spin_lock(&cur_trans->dirty_bgs_lock);
3808 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3809 /*
3810 * dirty_bgs_lock protects us from concurrent block group
3811 * deletes too (not just cache_write_mutex).
3812 */
3813 if (!list_empty(&dirty)) {
3814 spin_unlock(&cur_trans->dirty_bgs_lock);
3815 goto again;
3816 }
1bbc621e 3817 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3818 } else if (ret < 0) {
2ff7e61e 3819 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3820 }
3821
3822 btrfs_free_path(path);
3823 return ret;
3824}
3825
3826int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3827 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3828{
3829 struct btrfs_block_group_cache *cache;
3830 struct btrfs_transaction *cur_trans = trans->transaction;
3831 int ret = 0;
3832 int should_put;
3833 struct btrfs_path *path;
3834 struct list_head *io = &cur_trans->io_bgs;
3835 int num_started = 0;
9078a3e1
CM
3836
3837 path = btrfs_alloc_path();
3838 if (!path)
3839 return -ENOMEM;
3840
ce93ec54 3841 /*
e44081ef
FM
3842 * Even though we are in the critical section of the transaction commit,
3843 * we can still have concurrent tasks adding elements to this
3844 * transaction's list of dirty block groups. These tasks correspond to
3845 * endio free space workers started when writeback finishes for a
3846 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3847 * allocate new block groups as a result of COWing nodes of the root
3848 * tree when updating the free space inode. The writeback for the space
3849 * caches is triggered by an earlier call to
3850 * btrfs_start_dirty_block_groups() and iterations of the following
3851 * loop.
3852 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3853 * delayed refs to make sure we have the best chance at doing this all
3854 * in one shot.
3855 */
e44081ef 3856 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3857 while (!list_empty(&cur_trans->dirty_bgs)) {
3858 cache = list_first_entry(&cur_trans->dirty_bgs,
3859 struct btrfs_block_group_cache,
3860 dirty_list);
c9dc4c65
CM
3861
3862 /*
3863 * this can happen if cache_save_setup re-dirties a block
3864 * group that is already under IO. Just wait for it to
3865 * finish and then do it all again
3866 */
3867 if (!list_empty(&cache->io_list)) {
e44081ef 3868 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3869 list_del_init(&cache->io_list);
afdb5718 3870 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3871 btrfs_put_block_group(cache);
e44081ef 3872 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3873 }
3874
1bbc621e
CM
3875 /*
3876 * don't remove from the dirty list until after we've waited
3877 * on any pending IO
3878 */
ce93ec54 3879 list_del_init(&cache->dirty_list);
e44081ef 3880 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3881 should_put = 1;
3882
1bbc621e 3883 cache_save_setup(cache, trans, path);
c9dc4c65 3884
ce93ec54 3885 if (!ret)
c79a70b1 3886 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3887 (unsigned long) -1);
c9dc4c65
CM
3888
3889 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3890 cache->io_ctl.inode = NULL;
0b246afa 3891 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3892 cache, path);
c9dc4c65
CM
3893 if (ret == 0 && cache->io_ctl.inode) {
3894 num_started++;
3895 should_put = 0;
1bbc621e 3896 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3897 } else {
3898 /*
3899 * if we failed to write the cache, the
3900 * generation will be bad and life goes on
3901 */
3902 ret = 0;
3903 }
3904 }
ff1f8250 3905 if (!ret) {
2ff7e61e
JM
3906 ret = write_one_cache_group(trans, fs_info,
3907 path, cache);
2bc0bb5f
FM
3908 /*
3909 * One of the free space endio workers might have
3910 * created a new block group while updating a free space
3911 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3912 * and hasn't released its transaction handle yet, in
3913 * which case the new block group is still attached to
3914 * its transaction handle and its creation has not
3915 * finished yet (no block group item in the extent tree
3916 * yet, etc). If this is the case, wait for all free
3917 * space endio workers to finish and retry. This is a
3918 * a very rare case so no need for a more efficient and
3919 * complex approach.
3920 */
3921 if (ret == -ENOENT) {
3922 wait_event(cur_trans->writer_wait,
3923 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3924 ret = write_one_cache_group(trans, fs_info,
3925 path, cache);
2bc0bb5f 3926 }
ff1f8250 3927 if (ret)
66642832 3928 btrfs_abort_transaction(trans, ret);
ff1f8250 3929 }
c9dc4c65
CM
3930
3931 /* if its not on the io list, we need to put the block group */
3932 if (should_put)
3933 btrfs_put_block_group(cache);
e44081ef 3934 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3935 }
e44081ef 3936 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3937
45ae2c18
NB
3938 /*
3939 * Refer to the definition of io_bgs member for details why it's safe
3940 * to use it without any locking
3941 */
1bbc621e
CM
3942 while (!list_empty(io)) {
3943 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3944 io_list);
3945 list_del_init(&cache->io_list);
afdb5718 3946 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3947 btrfs_put_block_group(cache);
3948 }
3949
9078a3e1 3950 btrfs_free_path(path);
ce93ec54 3951 return ret;
9078a3e1
CM
3952}
3953
2ff7e61e 3954int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3955{
3956 struct btrfs_block_group_cache *block_group;
3957 int readonly = 0;
3958
0b246afa 3959 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3960 if (!block_group || block_group->ro)
3961 readonly = 1;
3962 if (block_group)
fa9c0d79 3963 btrfs_put_block_group(block_group);
d2fb3437
YZ
3964 return readonly;
3965}
3966
f78c436c
FM
3967bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3968{
3969 struct btrfs_block_group_cache *bg;
3970 bool ret = true;
3971
3972 bg = btrfs_lookup_block_group(fs_info, bytenr);
3973 if (!bg)
3974 return false;
3975
3976 spin_lock(&bg->lock);
3977 if (bg->ro)
3978 ret = false;
3979 else
3980 atomic_inc(&bg->nocow_writers);
3981 spin_unlock(&bg->lock);
3982
3983 /* no put on block group, done by btrfs_dec_nocow_writers */
3984 if (!ret)
3985 btrfs_put_block_group(bg);
3986
3987 return ret;
3988
3989}
3990
3991void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3992{
3993 struct btrfs_block_group_cache *bg;
3994
3995 bg = btrfs_lookup_block_group(fs_info, bytenr);
3996 ASSERT(bg);
3997 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3998 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3999 /*
4000 * Once for our lookup and once for the lookup done by a previous call
4001 * to btrfs_inc_nocow_writers()
4002 */
4003 btrfs_put_block_group(bg);
4004 btrfs_put_block_group(bg);
4005}
4006
f78c436c
FM
4007void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4008{
4625956a 4009 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
4010}
4011
6ab0a202
JM
4012static const char *alloc_name(u64 flags)
4013{
4014 switch (flags) {
4015 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4016 return "mixed";
4017 case BTRFS_BLOCK_GROUP_METADATA:
4018 return "metadata";
4019 case BTRFS_BLOCK_GROUP_DATA:
4020 return "data";
4021 case BTRFS_BLOCK_GROUP_SYSTEM:
4022 return "system";
4023 default:
4024 WARN_ON(1);
4025 return "invalid-combination";
4026 };
4027}
4028
2be12ef7
NB
4029static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4030 struct btrfs_space_info **new)
4031{
4032
4033 struct btrfs_space_info *space_info;
4034 int i;
4035 int ret;
4036
4037 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4038 if (!space_info)
4039 return -ENOMEM;
4040
4041 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4042 GFP_KERNEL);
4043 if (ret) {
4044 kfree(space_info);
4045 return ret;
4046 }
4047
4048 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4049 INIT_LIST_HEAD(&space_info->block_groups[i]);
4050 init_rwsem(&space_info->groups_sem);
4051 spin_lock_init(&space_info->lock);
4052 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4053 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4054 init_waitqueue_head(&space_info->wait);
4055 INIT_LIST_HEAD(&space_info->ro_bgs);
4056 INIT_LIST_HEAD(&space_info->tickets);
4057 INIT_LIST_HEAD(&space_info->priority_tickets);
4058
4059 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4060 info->space_info_kobj, "%s",
4061 alloc_name(space_info->flags));
4062 if (ret) {
4063 percpu_counter_destroy(&space_info->total_bytes_pinned);
4064 kfree(space_info);
4065 return ret;
4066 }
4067
4068 *new = space_info;
4069 list_add_rcu(&space_info->list, &info->space_info);
4070 if (flags & BTRFS_BLOCK_GROUP_DATA)
4071 info->data_sinfo = space_info;
4072
4073 return ret;
4074}
4075
d2006e6d 4076static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4077 u64 total_bytes, u64 bytes_used,
e40edf2d 4078 u64 bytes_readonly,
593060d7
CM
4079 struct btrfs_space_info **space_info)
4080{
4081 struct btrfs_space_info *found;
b742bb82
YZ
4082 int factor;
4083
4084 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4085 BTRFS_BLOCK_GROUP_RAID10))
4086 factor = 2;
4087 else
4088 factor = 1;
593060d7
CM
4089
4090 found = __find_space_info(info, flags);
d2006e6d
NB
4091 ASSERT(found);
4092 spin_lock(&found->lock);
4093 found->total_bytes += total_bytes;
4094 found->disk_total += total_bytes * factor;
4095 found->bytes_used += bytes_used;
4096 found->disk_used += bytes_used * factor;
4097 found->bytes_readonly += bytes_readonly;
4098 if (total_bytes > 0)
4099 found->full = 0;
4100 space_info_add_new_bytes(info, found, total_bytes -
4101 bytes_used - bytes_readonly);
4102 spin_unlock(&found->lock);
4103 *space_info = found;
593060d7
CM
4104}
4105
8790d502
CM
4106static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4107{
899c81ea
ID
4108 u64 extra_flags = chunk_to_extended(flags) &
4109 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4110
de98ced9 4111 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4112 if (flags & BTRFS_BLOCK_GROUP_DATA)
4113 fs_info->avail_data_alloc_bits |= extra_flags;
4114 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4115 fs_info->avail_metadata_alloc_bits |= extra_flags;
4116 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4117 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4118 write_sequnlock(&fs_info->profiles_lock);
8790d502 4119}
593060d7 4120
fc67c450
ID
4121/*
4122 * returns target flags in extended format or 0 if restripe for this
4123 * chunk_type is not in progress
c6664b42
ID
4124 *
4125 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4126 */
4127static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4128{
4129 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4130 u64 target = 0;
4131
fc67c450
ID
4132 if (!bctl)
4133 return 0;
4134
4135 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4136 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4137 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4138 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4139 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4141 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4142 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4143 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4144 }
4145
4146 return target;
4147}
4148
a46d11a8
ID
4149/*
4150 * @flags: available profiles in extended format (see ctree.h)
4151 *
e4d8ec0f
ID
4152 * Returns reduced profile in chunk format. If profile changing is in
4153 * progress (either running or paused) picks the target profile (if it's
4154 * already available), otherwise falls back to plain reducing.
a46d11a8 4155 */
2ff7e61e 4156static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4157{
0b246afa 4158 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4159 u64 target;
9c170b26
ZL
4160 u64 raid_type;
4161 u64 allowed = 0;
a061fc8d 4162
fc67c450
ID
4163 /*
4164 * see if restripe for this chunk_type is in progress, if so
4165 * try to reduce to the target profile
4166 */
0b246afa
JM
4167 spin_lock(&fs_info->balance_lock);
4168 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4169 if (target) {
4170 /* pick target profile only if it's already available */
4171 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4172 spin_unlock(&fs_info->balance_lock);
fc67c450 4173 return extended_to_chunk(target);
e4d8ec0f
ID
4174 }
4175 }
0b246afa 4176 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4177
53b381b3 4178 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4179 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4180 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4181 allowed |= btrfs_raid_group[raid_type];
4182 }
4183 allowed &= flags;
4184
4185 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4186 allowed = BTRFS_BLOCK_GROUP_RAID6;
4187 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4188 allowed = BTRFS_BLOCK_GROUP_RAID5;
4189 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4190 allowed = BTRFS_BLOCK_GROUP_RAID10;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4192 allowed = BTRFS_BLOCK_GROUP_RAID1;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4194 allowed = BTRFS_BLOCK_GROUP_RAID0;
4195
4196 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4197
4198 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4199}
4200
2ff7e61e 4201static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4202{
de98ced9 4203 unsigned seq;
f8213bdc 4204 u64 flags;
de98ced9
MX
4205
4206 do {
f8213bdc 4207 flags = orig_flags;
0b246afa 4208 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4209
4210 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4211 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4212 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4213 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4214 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4215 flags |= fs_info->avail_metadata_alloc_bits;
4216 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4217
2ff7e61e 4218 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4219}
4220
1b86826d 4221static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4222{
0b246afa 4223 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4224 u64 flags;
53b381b3 4225 u64 ret;
9ed74f2d 4226
b742bb82
YZ
4227 if (data)
4228 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4229 else if (root == fs_info->chunk_root)
b742bb82 4230 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4231 else
b742bb82 4232 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4233
2ff7e61e 4234 ret = get_alloc_profile(fs_info, flags);
53b381b3 4235 return ret;
6a63209f 4236}
9ed74f2d 4237
1b86826d
JM
4238u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4239{
4240 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4241}
4242
4243u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4244{
4245 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4246}
4247
4248u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4249{
4250 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4251}
4252
4136135b
LB
4253static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4254 bool may_use_included)
4255{
4256 ASSERT(s_info);
4257 return s_info->bytes_used + s_info->bytes_reserved +
4258 s_info->bytes_pinned + s_info->bytes_readonly +
4259 (may_use_included ? s_info->bytes_may_use : 0);
4260}
4261
04f4f916 4262int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4263{
04f4f916 4264 struct btrfs_root *root = inode->root;
b4d7c3c9 4265 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4266 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4267 u64 used;
94b947b2 4268 int ret = 0;
c99f1b0c
ZL
4269 int need_commit = 2;
4270 int have_pinned_space;
6a63209f 4271
6a63209f 4272 /* make sure bytes are sectorsize aligned */
0b246afa 4273 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4274
9dced186 4275 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4276 need_commit = 0;
9dced186 4277 ASSERT(current->journal_info);
0af3d00b
JB
4278 }
4279
6a63209f
JB
4280again:
4281 /* make sure we have enough space to handle the data first */
4282 spin_lock(&data_sinfo->lock);
4136135b 4283 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4284
4285 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4286 struct btrfs_trans_handle *trans;
9ed74f2d 4287
6a63209f
JB
4288 /*
4289 * if we don't have enough free bytes in this space then we need
4290 * to alloc a new chunk.
4291 */
b9fd47cd 4292 if (!data_sinfo->full) {
6a63209f 4293 u64 alloc_target;
9ed74f2d 4294
0e4f8f88 4295 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4296 spin_unlock(&data_sinfo->lock);
1174cade 4297
1b86826d 4298 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4299 /*
4300 * It is ugly that we don't call nolock join
4301 * transaction for the free space inode case here.
4302 * But it is safe because we only do the data space
4303 * reservation for the free space cache in the
4304 * transaction context, the common join transaction
4305 * just increase the counter of the current transaction
4306 * handler, doesn't try to acquire the trans_lock of
4307 * the fs.
4308 */
7a7eaa40 4309 trans = btrfs_join_transaction(root);
a22285a6
YZ
4310 if (IS_ERR(trans))
4311 return PTR_ERR(trans);
9ed74f2d 4312
2ff7e61e 4313 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4314 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4315 btrfs_end_transaction(trans);
d52a5b5f
MX
4316 if (ret < 0) {
4317 if (ret != -ENOSPC)
4318 return ret;
c99f1b0c
ZL
4319 else {
4320 have_pinned_space = 1;
d52a5b5f 4321 goto commit_trans;
c99f1b0c 4322 }
d52a5b5f 4323 }
9ed74f2d 4324
6a63209f
JB
4325 goto again;
4326 }
f2bb8f5c
JB
4327
4328 /*
b150a4f1 4329 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4330 * allocation, and no removed chunk in current transaction,
4331 * don't bother committing the transaction.
f2bb8f5c 4332 */
c99f1b0c
ZL
4333 have_pinned_space = percpu_counter_compare(
4334 &data_sinfo->total_bytes_pinned,
4335 used + bytes - data_sinfo->total_bytes);
6a63209f 4336 spin_unlock(&data_sinfo->lock);
6a63209f 4337
4e06bdd6 4338 /* commit the current transaction and try again */
d52a5b5f 4339commit_trans:
92e2f7e3 4340 if (need_commit) {
c99f1b0c 4341 need_commit--;
b150a4f1 4342
e1746e83
ZL
4343 if (need_commit > 0) {
4344 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4345 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4346 (u64)-1);
e1746e83 4347 }
9a4e7276 4348
7a7eaa40 4349 trans = btrfs_join_transaction(root);
a22285a6
YZ
4350 if (IS_ERR(trans))
4351 return PTR_ERR(trans);
c99f1b0c 4352 if (have_pinned_space >= 0 ||
3204d33c
JB
4353 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4354 &trans->transaction->flags) ||
c99f1b0c 4355 need_commit > 0) {
3a45bb20 4356 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4357 if (ret)
4358 return ret;
d7c15171 4359 /*
c2d6cb16
FM
4360 * The cleaner kthread might still be doing iput
4361 * operations. Wait for it to finish so that
4362 * more space is released.
d7c15171 4363 */
0b246afa
JM
4364 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4365 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4366 goto again;
4367 } else {
3a45bb20 4368 btrfs_end_transaction(trans);
94b947b2 4369 }
4e06bdd6 4370 }
9ed74f2d 4371
0b246afa 4372 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4373 "space_info:enospc",
4374 data_sinfo->flags, bytes, 1);
6a63209f
JB
4375 return -ENOSPC;
4376 }
4377 data_sinfo->bytes_may_use += bytes;
0b246afa 4378 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4379 data_sinfo->flags, bytes, 1);
6a63209f 4380 spin_unlock(&data_sinfo->lock);
6a63209f 4381
237c0e9f 4382 return ret;
9ed74f2d 4383}
6a63209f 4384
364ecf36
QW
4385int btrfs_check_data_free_space(struct inode *inode,
4386 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4387{
0b246afa 4388 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4389 int ret;
4390
4391 /* align the range */
0b246afa
JM
4392 len = round_up(start + len, fs_info->sectorsize) -
4393 round_down(start, fs_info->sectorsize);
4394 start = round_down(start, fs_info->sectorsize);
4ceff079 4395
04f4f916 4396 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4397 if (ret < 0)
4398 return ret;
4399
1e5ec2e7 4400 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4401 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4402 if (ret < 0)
1e5ec2e7 4403 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4404 else
4405 ret = 0;
4ceff079
QW
4406 return ret;
4407}
4408
4ceff079
QW
4409/*
4410 * Called if we need to clear a data reservation for this inode
4411 * Normally in a error case.
4412 *
51773bec
QW
4413 * This one will *NOT* use accurate qgroup reserved space API, just for case
4414 * which we can't sleep and is sure it won't affect qgroup reserved space.
4415 * Like clear_bit_hook().
4ceff079 4416 */
51773bec
QW
4417void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4418 u64 len)
4ceff079 4419{
0b246afa 4420 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4421 struct btrfs_space_info *data_sinfo;
4422
4423 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4424 len = round_up(start + len, fs_info->sectorsize) -
4425 round_down(start, fs_info->sectorsize);
4426 start = round_down(start, fs_info->sectorsize);
4ceff079 4427
0b246afa 4428 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4429 spin_lock(&data_sinfo->lock);
4430 if (WARN_ON(data_sinfo->bytes_may_use < len))
4431 data_sinfo->bytes_may_use = 0;
4432 else
4433 data_sinfo->bytes_may_use -= len;
0b246afa 4434 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4435 data_sinfo->flags, len, 0);
4436 spin_unlock(&data_sinfo->lock);
4437}
4438
51773bec
QW
4439/*
4440 * Called if we need to clear a data reservation for this inode
4441 * Normally in a error case.
4442 *
01327610 4443 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4444 * space framework.
4445 */
bc42bda2
QW
4446void btrfs_free_reserved_data_space(struct inode *inode,
4447 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4448{
0c476a5d
JM
4449 struct btrfs_root *root = BTRFS_I(inode)->root;
4450
4451 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4452 len = round_up(start + len, root->fs_info->sectorsize) -
4453 round_down(start, root->fs_info->sectorsize);
4454 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4455
51773bec 4456 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4457 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4458}
4459
97e728d4 4460static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4461{
97e728d4
JB
4462 struct list_head *head = &info->space_info;
4463 struct btrfs_space_info *found;
e3ccfa98 4464
97e728d4
JB
4465 rcu_read_lock();
4466 list_for_each_entry_rcu(found, head, list) {
4467 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4468 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4469 }
97e728d4 4470 rcu_read_unlock();
e3ccfa98
JB
4471}
4472
3c76cd84
MX
4473static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4474{
4475 return (global->size << 1);
4476}
4477
2ff7e61e 4478static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4479 struct btrfs_space_info *sinfo, int force)
32c00aff 4480{
0b246afa 4481 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4482 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4483 u64 thresh;
e3ccfa98 4484
0e4f8f88
CM
4485 if (force == CHUNK_ALLOC_FORCE)
4486 return 1;
4487
fb25e914
JB
4488 /*
4489 * We need to take into account the global rsv because for all intents
4490 * and purposes it's used space. Don't worry about locking the
4491 * global_rsv, it doesn't change except when the transaction commits.
4492 */
54338b5c 4493 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4494 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4495
0e4f8f88
CM
4496 /*
4497 * in limited mode, we want to have some free space up to
4498 * about 1% of the FS size.
4499 */
4500 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4501 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4502 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4503
8d8aafee 4504 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4505 return 1;
4506 }
0e4f8f88 4507
8d8aafee 4508 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4509 return 0;
424499db 4510 return 1;
32c00aff
JB
4511}
4512
2ff7e61e 4513static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4514{
4515 u64 num_dev;
4516
53b381b3
DW
4517 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4518 BTRFS_BLOCK_GROUP_RAID0 |
4519 BTRFS_BLOCK_GROUP_RAID5 |
4520 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4521 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4522 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4523 num_dev = 2;
4524 else
4525 num_dev = 1; /* DUP or single */
4526
39c2d7fa 4527 return num_dev;
15d1ff81
LB
4528}
4529
39c2d7fa
FM
4530/*
4531 * If @is_allocation is true, reserve space in the system space info necessary
4532 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4533 * removing a chunk.
4534 */
4535void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4536 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4537{
4538 struct btrfs_space_info *info;
4539 u64 left;
4540 u64 thresh;
4fbcdf66 4541 int ret = 0;
39c2d7fa 4542 u64 num_devs;
4fbcdf66
FM
4543
4544 /*
4545 * Needed because we can end up allocating a system chunk and for an
4546 * atomic and race free space reservation in the chunk block reserve.
4547 */
a32bf9a3 4548 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4549
0b246afa 4550 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4551 spin_lock(&info->lock);
4136135b 4552 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4553 spin_unlock(&info->lock);
4554
2ff7e61e 4555 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4556
4557 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4558 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4559 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4560
0b246afa
JM
4561 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4562 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4563 left, thresh, type);
4564 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4565 }
4566
4567 if (left < thresh) {
1b86826d 4568 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4569
4fbcdf66
FM
4570 /*
4571 * Ignore failure to create system chunk. We might end up not
4572 * needing it, as we might not need to COW all nodes/leafs from
4573 * the paths we visit in the chunk tree (they were already COWed
4574 * or created in the current transaction for example).
4575 */
2ff7e61e 4576 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4577 }
4578
4579 if (!ret) {
0b246afa
JM
4580 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4581 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4582 thresh, BTRFS_RESERVE_NO_FLUSH);
4583 if (!ret)
4584 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4585 }
4586}
4587
28b737f6
LB
4588/*
4589 * If force is CHUNK_ALLOC_FORCE:
4590 * - return 1 if it successfully allocates a chunk,
4591 * - return errors including -ENOSPC otherwise.
4592 * If force is NOT CHUNK_ALLOC_FORCE:
4593 * - return 0 if it doesn't need to allocate a new chunk,
4594 * - return 1 if it successfully allocates a chunk,
4595 * - return errors including -ENOSPC otherwise.
4596 */
6324fbf3 4597static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4598 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4599{
6324fbf3 4600 struct btrfs_space_info *space_info;
6d74119f 4601 int wait_for_alloc = 0;
9ed74f2d 4602 int ret = 0;
9ed74f2d 4603
c6b305a8
JB
4604 /* Don't re-enter if we're already allocating a chunk */
4605 if (trans->allocating_chunk)
4606 return -ENOSPC;
4607
0b246afa 4608 space_info = __find_space_info(fs_info, flags);
dc2d3005 4609 ASSERT(space_info);
9ed74f2d 4610
6d74119f 4611again:
25179201 4612 spin_lock(&space_info->lock);
9e622d6b 4613 if (force < space_info->force_alloc)
0e4f8f88 4614 force = space_info->force_alloc;
25179201 4615 if (space_info->full) {
2ff7e61e 4616 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4617 ret = -ENOSPC;
4618 else
4619 ret = 0;
25179201 4620 spin_unlock(&space_info->lock);
09fb99a6 4621 return ret;
9ed74f2d
JB
4622 }
4623
2ff7e61e 4624 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4625 spin_unlock(&space_info->lock);
6d74119f
JB
4626 return 0;
4627 } else if (space_info->chunk_alloc) {
4628 wait_for_alloc = 1;
4629 } else {
4630 space_info->chunk_alloc = 1;
9ed74f2d 4631 }
0e4f8f88 4632
25179201 4633 spin_unlock(&space_info->lock);
9ed74f2d 4634
6d74119f
JB
4635 mutex_lock(&fs_info->chunk_mutex);
4636
4637 /*
4638 * The chunk_mutex is held throughout the entirety of a chunk
4639 * allocation, so once we've acquired the chunk_mutex we know that the
4640 * other guy is done and we need to recheck and see if we should
4641 * allocate.
4642 */
4643 if (wait_for_alloc) {
4644 mutex_unlock(&fs_info->chunk_mutex);
4645 wait_for_alloc = 0;
1e1c50a9 4646 cond_resched();
6d74119f
JB
4647 goto again;
4648 }
4649
c6b305a8
JB
4650 trans->allocating_chunk = true;
4651
67377734
JB
4652 /*
4653 * If we have mixed data/metadata chunks we want to make sure we keep
4654 * allocating mixed chunks instead of individual chunks.
4655 */
4656 if (btrfs_mixed_space_info(space_info))
4657 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4658
97e728d4
JB
4659 /*
4660 * if we're doing a data chunk, go ahead and make sure that
4661 * we keep a reasonable number of metadata chunks allocated in the
4662 * FS as well.
4663 */
9ed74f2d 4664 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4665 fs_info->data_chunk_allocations++;
4666 if (!(fs_info->data_chunk_allocations %
4667 fs_info->metadata_ratio))
4668 force_metadata_allocation(fs_info);
9ed74f2d
JB
4669 }
4670
15d1ff81
LB
4671 /*
4672 * Check if we have enough space in SYSTEM chunk because we may need
4673 * to update devices.
4674 */
2ff7e61e 4675 check_system_chunk(trans, fs_info, flags);
15d1ff81 4676
2ff7e61e 4677 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4678 trans->allocating_chunk = false;
92b8e897 4679
9ed74f2d 4680 spin_lock(&space_info->lock);
a81cb9a2
AO
4681 if (ret < 0 && ret != -ENOSPC)
4682 goto out;
9ed74f2d 4683 if (ret)
6324fbf3 4684 space_info->full = 1;
424499db
YZ
4685 else
4686 ret = 1;
6d74119f 4687
0e4f8f88 4688 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4689out:
6d74119f 4690 space_info->chunk_alloc = 0;
9ed74f2d 4691 spin_unlock(&space_info->lock);
a25c75d5 4692 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4693 /*
4694 * When we allocate a new chunk we reserve space in the chunk block
4695 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4696 * add new nodes/leafs to it if we end up needing to do it when
4697 * inserting the chunk item and updating device items as part of the
4698 * second phase of chunk allocation, performed by
4699 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4700 * large number of new block groups to create in our transaction
4701 * handle's new_bgs list to avoid exhausting the chunk block reserve
4702 * in extreme cases - like having a single transaction create many new
4703 * block groups when starting to write out the free space caches of all
4704 * the block groups that were made dirty during the lifetime of the
4705 * transaction.
4706 */
d9a0540a 4707 if (trans->can_flush_pending_bgs &&
ee22184b 4708 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4709 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4710 btrfs_trans_release_chunk_metadata(trans);
4711 }
0f9dd46c 4712 return ret;
6324fbf3 4713}
9ed74f2d 4714
c1c4919b 4715static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4716 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4717 enum btrfs_reserve_flush_enum flush,
4718 bool system_chunk)
a80c8dcf 4719{
0b246afa 4720 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4721 u64 profile;
3c76cd84 4722 u64 space_size;
a80c8dcf
JB
4723 u64 avail;
4724 u64 used;
4725
957780eb
JB
4726 /* Don't overcommit when in mixed mode. */
4727 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4728 return 0;
4729
c1c4919b
JM
4730 if (system_chunk)
4731 profile = btrfs_system_alloc_profile(fs_info);
4732 else
4733 profile = btrfs_metadata_alloc_profile(fs_info);
4734
4136135b 4735 used = btrfs_space_info_used(space_info, false);
96f1bb57 4736
96f1bb57
JB
4737 /*
4738 * We only want to allow over committing if we have lots of actual space
4739 * free, but if we don't have enough space to handle the global reserve
4740 * space then we could end up having a real enospc problem when trying
4741 * to allocate a chunk or some other such important allocation.
4742 */
3c76cd84
MX
4743 spin_lock(&global_rsv->lock);
4744 space_size = calc_global_rsv_need_space(global_rsv);
4745 spin_unlock(&global_rsv->lock);
4746 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4747 return 0;
4748
4749 used += space_info->bytes_may_use;
a80c8dcf 4750
a5ed45f8 4751 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4752
4753 /*
4754 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4755 * space is actually useable. For raid56, the space info used
4756 * doesn't include the parity drive, so we don't have to
4757 * change the math
a80c8dcf
JB
4758 */
4759 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4760 BTRFS_BLOCK_GROUP_RAID1 |
4761 BTRFS_BLOCK_GROUP_RAID10))
4762 avail >>= 1;
4763
4764 /*
561c294d
MX
4765 * If we aren't flushing all things, let us overcommit up to
4766 * 1/2th of the space. If we can flush, don't let us overcommit
4767 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4768 */
08e007d2 4769 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4770 avail >>= 3;
a80c8dcf 4771 else
14575aef 4772 avail >>= 1;
a80c8dcf 4773
14575aef 4774 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4775 return 1;
4776 return 0;
4777}
4778
2ff7e61e 4779static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4780 unsigned long nr_pages, int nr_items)
da633a42 4781{
0b246afa 4782 struct super_block *sb = fs_info->sb;
da633a42 4783
925a6efb
JB
4784 if (down_read_trylock(&sb->s_umount)) {
4785 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4786 up_read(&sb->s_umount);
4787 } else {
da633a42
MX
4788 /*
4789 * We needn't worry the filesystem going from r/w to r/o though
4790 * we don't acquire ->s_umount mutex, because the filesystem
4791 * should guarantee the delalloc inodes list be empty after
4792 * the filesystem is readonly(all dirty pages are written to
4793 * the disk).
4794 */
0b246afa 4795 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4796 if (!current->journal_info)
0b246afa 4797 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4798 }
4799}
4800
6374e57a 4801static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4802 u64 to_reclaim)
18cd8ea6
MX
4803{
4804 u64 bytes;
6374e57a 4805 u64 nr;
18cd8ea6 4806
2ff7e61e 4807 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4808 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4809 if (!nr)
4810 nr = 1;
4811 return nr;
4812}
4813
ee22184b 4814#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4815
9ed74f2d 4816/*
5da9d01b 4817 * shrink metadata reservation for delalloc
9ed74f2d 4818 */
c1c4919b
JM
4819static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4820 u64 orig, bool wait_ordered)
5da9d01b 4821{
0019f10d 4822 struct btrfs_space_info *space_info;
663350ac 4823 struct btrfs_trans_handle *trans;
f4c738c2 4824 u64 delalloc_bytes;
5da9d01b 4825 u64 max_reclaim;
6374e57a 4826 u64 items;
b1953bce 4827 long time_left;
d3ee29e3
MX
4828 unsigned long nr_pages;
4829 int loops;
5da9d01b 4830
c61a16a7 4831 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4832 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4833 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4834
663350ac 4835 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4836 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4837
963d678b 4838 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4839 &fs_info->delalloc_bytes);
f4c738c2 4840 if (delalloc_bytes == 0) {
fdb5effd 4841 if (trans)
f4c738c2 4842 return;
38c135af 4843 if (wait_ordered)
0b246afa 4844 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4845 return;
fdb5effd
JB
4846 }
4847
d3ee29e3 4848 loops = 0;
f4c738c2
JB
4849 while (delalloc_bytes && loops < 3) {
4850 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4851 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4852 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4853 /*
4854 * We need to wait for the async pages to actually start before
4855 * we do anything.
4856 */
0b246afa 4857 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4858 if (!max_reclaim)
4859 goto skip_async;
4860
4861 if (max_reclaim <= nr_pages)
4862 max_reclaim = 0;
4863 else
4864 max_reclaim -= nr_pages;
dea31f52 4865
0b246afa
JM
4866 wait_event(fs_info->async_submit_wait,
4867 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4868 (int)max_reclaim);
4869skip_async:
0019f10d 4870 spin_lock(&space_info->lock);
957780eb
JB
4871 if (list_empty(&space_info->tickets) &&
4872 list_empty(&space_info->priority_tickets)) {
4873 spin_unlock(&space_info->lock);
4874 break;
4875 }
0019f10d 4876 spin_unlock(&space_info->lock);
5da9d01b 4877
36e39c40 4878 loops++;
f104d044 4879 if (wait_ordered && !trans) {
0b246afa 4880 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4881 } else {
f4c738c2 4882 time_left = schedule_timeout_killable(1);
f104d044
JB
4883 if (time_left)
4884 break;
4885 }
963d678b 4886 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4887 &fs_info->delalloc_bytes);
5da9d01b 4888 }
5da9d01b
YZ
4889}
4890
996478ca
JB
4891struct reserve_ticket {
4892 u64 bytes;
4893 int error;
4894 struct list_head list;
4895 wait_queue_head_t wait;
4896};
4897
663350ac
JB
4898/**
4899 * maybe_commit_transaction - possibly commit the transaction if its ok to
4900 * @root - the root we're allocating for
4901 * @bytes - the number of bytes we want to reserve
4902 * @force - force the commit
8bb8ab2e 4903 *
663350ac
JB
4904 * This will check to make sure that committing the transaction will actually
4905 * get us somewhere and then commit the transaction if it does. Otherwise it
4906 * will return -ENOSPC.
8bb8ab2e 4907 */
0c9ab349 4908static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4909 struct btrfs_space_info *space_info)
663350ac 4910{
996478ca 4911 struct reserve_ticket *ticket = NULL;
0b246afa 4912 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4913 struct btrfs_trans_handle *trans;
996478ca 4914 u64 bytes;
663350ac
JB
4915
4916 trans = (struct btrfs_trans_handle *)current->journal_info;
4917 if (trans)
4918 return -EAGAIN;
4919
996478ca
JB
4920 spin_lock(&space_info->lock);
4921 if (!list_empty(&space_info->priority_tickets))
4922 ticket = list_first_entry(&space_info->priority_tickets,
4923 struct reserve_ticket, list);
4924 else if (!list_empty(&space_info->tickets))
4925 ticket = list_first_entry(&space_info->tickets,
4926 struct reserve_ticket, list);
4927 bytes = (ticket) ? ticket->bytes : 0;
4928 spin_unlock(&space_info->lock);
4929
4930 if (!bytes)
4931 return 0;
663350ac
JB
4932
4933 /* See if there is enough pinned space to make this reservation */
b150a4f1 4934 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4935 bytes) >= 0)
663350ac 4936 goto commit;
663350ac
JB
4937
4938 /*
4939 * See if there is some space in the delayed insertion reservation for
4940 * this reservation.
4941 */
4942 if (space_info != delayed_rsv->space_info)
4943 return -ENOSPC;
4944
4945 spin_lock(&delayed_rsv->lock);
996478ca
JB
4946 if (delayed_rsv->size > bytes)
4947 bytes = 0;
4948 else
4949 bytes -= delayed_rsv->size;
057aac3e
NB
4950 spin_unlock(&delayed_rsv->lock);
4951
b150a4f1 4952 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4953 bytes) < 0) {
663350ac
JB
4954 return -ENOSPC;
4955 }
663350ac
JB
4956
4957commit:
a9b3311e 4958 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4959 if (IS_ERR(trans))
4960 return -ENOSPC;
4961
3a45bb20 4962 return btrfs_commit_transaction(trans);
663350ac
JB
4963}
4964
e38ae7a0
NB
4965/*
4966 * Try to flush some data based on policy set by @state. This is only advisory
4967 * and may fail for various reasons. The caller is supposed to examine the
4968 * state of @space_info to detect the outcome.
4969 */
4970static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4971 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4972 int state)
96c3f433 4973{
a9b3311e 4974 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4975 struct btrfs_trans_handle *trans;
4976 int nr;
f4c738c2 4977 int ret = 0;
96c3f433
JB
4978
4979 switch (state) {
96c3f433
JB
4980 case FLUSH_DELAYED_ITEMS_NR:
4981 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4982 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4983 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4984 else
96c3f433 4985 nr = -1;
18cd8ea6 4986
96c3f433
JB
4987 trans = btrfs_join_transaction(root);
4988 if (IS_ERR(trans)) {
4989 ret = PTR_ERR(trans);
4990 break;
4991 }
e5c304e6 4992 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4993 btrfs_end_transaction(trans);
96c3f433 4994 break;
67b0fd63
JB
4995 case FLUSH_DELALLOC:
4996 case FLUSH_DELALLOC_WAIT:
7bdd6277 4997 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4998 state == FLUSH_DELALLOC_WAIT);
4999 break;
ea658bad
JB
5000 case ALLOC_CHUNK:
5001 trans = btrfs_join_transaction(root);
5002 if (IS_ERR(trans)) {
5003 ret = PTR_ERR(trans);
5004 break;
5005 }
2ff7e61e 5006 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5007 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5008 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5009 btrfs_end_transaction(trans);
eecba891 5010 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5011 ret = 0;
5012 break;
96c3f433 5013 case COMMIT_TRANS:
996478ca 5014 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5015 break;
5016 default:
5017 ret = -ENOSPC;
5018 break;
5019 }
5020
7bdd6277
NB
5021 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5022 ret);
e38ae7a0 5023 return;
96c3f433 5024}
21c7e756
MX
5025
5026static inline u64
c1c4919b
JM
5027btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5028 struct btrfs_space_info *space_info,
5029 bool system_chunk)
21c7e756 5030{
957780eb 5031 struct reserve_ticket *ticket;
21c7e756
MX
5032 u64 used;
5033 u64 expected;
957780eb 5034 u64 to_reclaim = 0;
21c7e756 5035
957780eb
JB
5036 list_for_each_entry(ticket, &space_info->tickets, list)
5037 to_reclaim += ticket->bytes;
5038 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5039 to_reclaim += ticket->bytes;
5040 if (to_reclaim)
5041 return to_reclaim;
21c7e756 5042
e0af2484 5043 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5044 if (can_overcommit(fs_info, space_info, to_reclaim,
5045 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5046 return 0;
5047
0eee8a49
NB
5048 used = btrfs_space_info_used(space_info, true);
5049
c1c4919b
JM
5050 if (can_overcommit(fs_info, space_info, SZ_1M,
5051 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5052 expected = div_factor_fine(space_info->total_bytes, 95);
5053 else
5054 expected = div_factor_fine(space_info->total_bytes, 90);
5055
5056 if (used > expected)
5057 to_reclaim = used - expected;
5058 else
5059 to_reclaim = 0;
5060 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5061 space_info->bytes_reserved);
21c7e756
MX
5062 return to_reclaim;
5063}
5064
c1c4919b
JM
5065static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5066 struct btrfs_space_info *space_info,
5067 u64 used, bool system_chunk)
21c7e756 5068{
365c5313
JB
5069 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5070
5071 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5072 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5073 return 0;
5074
c1c4919b
JM
5075 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5076 system_chunk))
d38b349c
JB
5077 return 0;
5078
0b246afa
JM
5079 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5080 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5081}
5082
957780eb 5083static void wake_all_tickets(struct list_head *head)
21c7e756 5084{
957780eb 5085 struct reserve_ticket *ticket;
25ce459c 5086
957780eb
JB
5087 while (!list_empty(head)) {
5088 ticket = list_first_entry(head, struct reserve_ticket, list);
5089 list_del_init(&ticket->list);
5090 ticket->error = -ENOSPC;
5091 wake_up(&ticket->wait);
21c7e756 5092 }
21c7e756
MX
5093}
5094
957780eb
JB
5095/*
5096 * This is for normal flushers, we can wait all goddamned day if we want to. We
5097 * will loop and continuously try to flush as long as we are making progress.
5098 * We count progress as clearing off tickets each time we have to loop.
5099 */
21c7e756
MX
5100static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5101{
5102 struct btrfs_fs_info *fs_info;
5103 struct btrfs_space_info *space_info;
5104 u64 to_reclaim;
5105 int flush_state;
957780eb 5106 int commit_cycles = 0;
ce129655 5107 u64 last_tickets_id;
21c7e756
MX
5108
5109 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5110 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5111
957780eb 5112 spin_lock(&space_info->lock);
c1c4919b
JM
5113 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5114 false);
957780eb
JB
5115 if (!to_reclaim) {
5116 space_info->flush = 0;
5117 spin_unlock(&space_info->lock);
21c7e756 5118 return;
957780eb 5119 }
ce129655 5120 last_tickets_id = space_info->tickets_id;
957780eb 5121 spin_unlock(&space_info->lock);
21c7e756
MX
5122
5123 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5124 do {
e38ae7a0 5125 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5126 spin_lock(&space_info->lock);
5127 if (list_empty(&space_info->tickets)) {
5128 space_info->flush = 0;
5129 spin_unlock(&space_info->lock);
5130 return;
5131 }
c1c4919b
JM
5132 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5133 space_info,
5134 false);
ce129655 5135 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5136 flush_state++;
5137 } else {
ce129655 5138 last_tickets_id = space_info->tickets_id;
957780eb
JB
5139 flush_state = FLUSH_DELAYED_ITEMS_NR;
5140 if (commit_cycles)
5141 commit_cycles--;
5142 }
5143
5144 if (flush_state > COMMIT_TRANS) {
5145 commit_cycles++;
5146 if (commit_cycles > 2) {
5147 wake_all_tickets(&space_info->tickets);
5148 space_info->flush = 0;
5149 } else {
5150 flush_state = FLUSH_DELAYED_ITEMS_NR;
5151 }
5152 }
5153 spin_unlock(&space_info->lock);
5154 } while (flush_state <= COMMIT_TRANS);
5155}
5156
5157void btrfs_init_async_reclaim_work(struct work_struct *work)
5158{
5159 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5160}
5161
5162static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5163 struct btrfs_space_info *space_info,
5164 struct reserve_ticket *ticket)
5165{
5166 u64 to_reclaim;
5167 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5168
5169 spin_lock(&space_info->lock);
c1c4919b
JM
5170 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5171 false);
957780eb
JB
5172 if (!to_reclaim) {
5173 spin_unlock(&space_info->lock);
5174 return;
5175 }
5176 spin_unlock(&space_info->lock);
5177
21c7e756 5178 do {
7bdd6277 5179 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5180 flush_state++;
957780eb
JB
5181 spin_lock(&space_info->lock);
5182 if (ticket->bytes == 0) {
5183 spin_unlock(&space_info->lock);
21c7e756 5184 return;
957780eb
JB
5185 }
5186 spin_unlock(&space_info->lock);
5187
5188 /*
5189 * Priority flushers can't wait on delalloc without
5190 * deadlocking.
5191 */
5192 if (flush_state == FLUSH_DELALLOC ||
5193 flush_state == FLUSH_DELALLOC_WAIT)
5194 flush_state = ALLOC_CHUNK;
365c5313 5195 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5196}
5197
957780eb
JB
5198static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5199 struct btrfs_space_info *space_info,
5200 struct reserve_ticket *ticket, u64 orig_bytes)
5201
21c7e756 5202{
957780eb
JB
5203 DEFINE_WAIT(wait);
5204 int ret = 0;
5205
5206 spin_lock(&space_info->lock);
5207 while (ticket->bytes > 0 && ticket->error == 0) {
5208 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5209 if (ret) {
5210 ret = -EINTR;
5211 break;
5212 }
5213 spin_unlock(&space_info->lock);
5214
5215 schedule();
5216
5217 finish_wait(&ticket->wait, &wait);
5218 spin_lock(&space_info->lock);
5219 }
5220 if (!ret)
5221 ret = ticket->error;
5222 if (!list_empty(&ticket->list))
5223 list_del_init(&ticket->list);
5224 if (ticket->bytes && ticket->bytes < orig_bytes) {
5225 u64 num_bytes = orig_bytes - ticket->bytes;
5226 space_info->bytes_may_use -= num_bytes;
5227 trace_btrfs_space_reservation(fs_info, "space_info",
5228 space_info->flags, num_bytes, 0);
5229 }
5230 spin_unlock(&space_info->lock);
5231
5232 return ret;
21c7e756
MX
5233}
5234
4a92b1b8
JB
5235/**
5236 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5237 * @root - the root we're allocating for
957780eb 5238 * @space_info - the space info we want to allocate from
4a92b1b8 5239 * @orig_bytes - the number of bytes we want
48fc7f7e 5240 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5241 *
01327610 5242 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5243 * with the block_rsv. If there is not enough space it will make an attempt to
5244 * flush out space to make room. It will do this by flushing delalloc if
5245 * possible or committing the transaction. If flush is 0 then no attempts to
5246 * regain reservations will be made and this will fail if there is not enough
5247 * space already.
8bb8ab2e 5248 */
c1c4919b 5249static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5250 struct btrfs_space_info *space_info,
5251 u64 orig_bytes,
c1c4919b
JM
5252 enum btrfs_reserve_flush_enum flush,
5253 bool system_chunk)
9ed74f2d 5254{
957780eb 5255 struct reserve_ticket ticket;
2bf64758 5256 u64 used;
8bb8ab2e 5257 int ret = 0;
9ed74f2d 5258
957780eb 5259 ASSERT(orig_bytes);
8ca17f0f 5260 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5261
8bb8ab2e 5262 spin_lock(&space_info->lock);
fdb5effd 5263 ret = -ENOSPC;
4136135b 5264 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5265
8bb8ab2e 5266 /*
957780eb
JB
5267 * If we have enough space then hooray, make our reservation and carry
5268 * on. If not see if we can overcommit, and if we can, hooray carry on.
5269 * If not things get more complicated.
8bb8ab2e 5270 */
957780eb
JB
5271 if (used + orig_bytes <= space_info->total_bytes) {
5272 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5273 trace_btrfs_space_reservation(fs_info, "space_info",
5274 space_info->flags, orig_bytes, 1);
957780eb 5275 ret = 0;
c1c4919b
JM
5276 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5277 system_chunk)) {
44734ed1 5278 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5279 trace_btrfs_space_reservation(fs_info, "space_info",
5280 space_info->flags, orig_bytes, 1);
44734ed1 5281 ret = 0;
2bf64758
JB
5282 }
5283
8bb8ab2e 5284 /*
957780eb
JB
5285 * If we couldn't make a reservation then setup our reservation ticket
5286 * and kick the async worker if it's not already running.
08e007d2 5287 *
957780eb
JB
5288 * If we are a priority flusher then we just need to add our ticket to
5289 * the list and we will do our own flushing further down.
8bb8ab2e 5290 */
72bcd99d 5291 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5292 ticket.bytes = orig_bytes;
5293 ticket.error = 0;
5294 init_waitqueue_head(&ticket.wait);
5295 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5296 list_add_tail(&ticket.list, &space_info->tickets);
5297 if (!space_info->flush) {
5298 space_info->flush = 1;
0b246afa 5299 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5300 space_info->flags,
5301 orig_bytes, flush,
5302 "enospc");
957780eb 5303 queue_work(system_unbound_wq,
c1c4919b 5304 &fs_info->async_reclaim_work);
957780eb
JB
5305 }
5306 } else {
5307 list_add_tail(&ticket.list,
5308 &space_info->priority_tickets);
5309 }
21c7e756
MX
5310 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5311 used += orig_bytes;
f6acfd50
JB
5312 /*
5313 * We will do the space reservation dance during log replay,
5314 * which means we won't have fs_info->fs_root set, so don't do
5315 * the async reclaim as we will panic.
5316 */
0b246afa 5317 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5318 need_do_async_reclaim(fs_info, space_info,
5319 used, system_chunk) &&
0b246afa
JM
5320 !work_busy(&fs_info->async_reclaim_work)) {
5321 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5322 orig_bytes, flush, "preempt");
21c7e756 5323 queue_work(system_unbound_wq,
0b246afa 5324 &fs_info->async_reclaim_work);
f376df2b 5325 }
8bb8ab2e 5326 }
f0486c68 5327 spin_unlock(&space_info->lock);
08e007d2 5328 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5329 return ret;
f0486c68 5330
957780eb 5331 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5332 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5333 orig_bytes);
08e007d2 5334
957780eb 5335 ret = 0;
0b246afa 5336 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5337 spin_lock(&space_info->lock);
5338 if (ticket.bytes) {
5339 if (ticket.bytes < orig_bytes) {
5340 u64 num_bytes = orig_bytes - ticket.bytes;
5341 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5342 trace_btrfs_space_reservation(fs_info, "space_info",
5343 space_info->flags,
5344 num_bytes, 0);
08e007d2 5345
957780eb
JB
5346 }
5347 list_del_init(&ticket.list);
5348 ret = -ENOSPC;
5349 }
5350 spin_unlock(&space_info->lock);
5351 ASSERT(list_empty(&ticket.list));
5352 return ret;
5353}
8bb8ab2e 5354
957780eb
JB
5355/**
5356 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5357 * @root - the root we're allocating for
5358 * @block_rsv - the block_rsv we're allocating for
5359 * @orig_bytes - the number of bytes we want
5360 * @flush - whether or not we can flush to make our reservation
5361 *
5362 * This will reserve orgi_bytes number of bytes from the space info associated
5363 * with the block_rsv. If there is not enough space it will make an attempt to
5364 * flush out space to make room. It will do this by flushing delalloc if
5365 * possible or committing the transaction. If flush is 0 then no attempts to
5366 * regain reservations will be made and this will fail if there is not enough
5367 * space already.
5368 */
5369static int reserve_metadata_bytes(struct btrfs_root *root,
5370 struct btrfs_block_rsv *block_rsv,
5371 u64 orig_bytes,
5372 enum btrfs_reserve_flush_enum flush)
5373{
0b246afa
JM
5374 struct btrfs_fs_info *fs_info = root->fs_info;
5375 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5376 int ret;
c1c4919b 5377 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5378
c1c4919b
JM
5379 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5380 orig_bytes, flush, system_chunk);
5d80366e
JB
5381 if (ret == -ENOSPC &&
5382 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5383 if (block_rsv != global_rsv &&
5384 !block_rsv_use_bytes(global_rsv, orig_bytes))
5385 ret = 0;
5386 }
9a3daff3 5387 if (ret == -ENOSPC) {
0b246afa 5388 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5389 block_rsv->space_info->flags,
5390 orig_bytes, 1);
9a3daff3
NB
5391
5392 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5393 dump_space_info(fs_info, block_rsv->space_info,
5394 orig_bytes, 0);
5395 }
f0486c68
YZ
5396 return ret;
5397}
5398
79787eaa
JM
5399static struct btrfs_block_rsv *get_block_rsv(
5400 const struct btrfs_trans_handle *trans,
5401 const struct btrfs_root *root)
f0486c68 5402{
0b246afa 5403 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5404 struct btrfs_block_rsv *block_rsv = NULL;
5405
e9cf439f 5406 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5407 (root == fs_info->csum_root && trans->adding_csums) ||
5408 (root == fs_info->uuid_root))
f7a81ea4
SB
5409 block_rsv = trans->block_rsv;
5410
4c13d758 5411 if (!block_rsv)
f0486c68
YZ
5412 block_rsv = root->block_rsv;
5413
5414 if (!block_rsv)
0b246afa 5415 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5416
5417 return block_rsv;
5418}
5419
5420static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5421 u64 num_bytes)
5422{
5423 int ret = -ENOSPC;
5424 spin_lock(&block_rsv->lock);
5425 if (block_rsv->reserved >= num_bytes) {
5426 block_rsv->reserved -= num_bytes;
5427 if (block_rsv->reserved < block_rsv->size)
5428 block_rsv->full = 0;
5429 ret = 0;
5430 }
5431 spin_unlock(&block_rsv->lock);
5432 return ret;
5433}
5434
5435static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5436 u64 num_bytes, int update_size)
5437{
5438 spin_lock(&block_rsv->lock);
5439 block_rsv->reserved += num_bytes;
5440 if (update_size)
5441 block_rsv->size += num_bytes;
5442 else if (block_rsv->reserved >= block_rsv->size)
5443 block_rsv->full = 1;
5444 spin_unlock(&block_rsv->lock);
5445}
5446
d52be818
JB
5447int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5448 struct btrfs_block_rsv *dest, u64 num_bytes,
5449 int min_factor)
5450{
5451 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5452 u64 min_bytes;
5453
5454 if (global_rsv->space_info != dest->space_info)
5455 return -ENOSPC;
5456
5457 spin_lock(&global_rsv->lock);
5458 min_bytes = div_factor(global_rsv->size, min_factor);
5459 if (global_rsv->reserved < min_bytes + num_bytes) {
5460 spin_unlock(&global_rsv->lock);
5461 return -ENOSPC;
5462 }
5463 global_rsv->reserved -= num_bytes;
5464 if (global_rsv->reserved < global_rsv->size)
5465 global_rsv->full = 0;
5466 spin_unlock(&global_rsv->lock);
5467
5468 block_rsv_add_bytes(dest, num_bytes, 1);
5469 return 0;
5470}
5471
957780eb
JB
5472/*
5473 * This is for space we already have accounted in space_info->bytes_may_use, so
5474 * basically when we're returning space from block_rsv's.
5475 */
5476static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5477 struct btrfs_space_info *space_info,
5478 u64 num_bytes)
5479{
5480 struct reserve_ticket *ticket;
5481 struct list_head *head;
5482 u64 used;
5483 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5484 bool check_overcommit = false;
5485
5486 spin_lock(&space_info->lock);
5487 head = &space_info->priority_tickets;
5488
5489 /*
5490 * If we are over our limit then we need to check and see if we can
5491 * overcommit, and if we can't then we just need to free up our space
5492 * and not satisfy any requests.
5493 */
0eee8a49 5494 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5495 if (used - num_bytes >= space_info->total_bytes)
5496 check_overcommit = true;
5497again:
5498 while (!list_empty(head) && num_bytes) {
5499 ticket = list_first_entry(head, struct reserve_ticket,
5500 list);
5501 /*
5502 * We use 0 bytes because this space is already reserved, so
5503 * adding the ticket space would be a double count.
5504 */
5505 if (check_overcommit &&
c1c4919b 5506 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5507 break;
5508 if (num_bytes >= ticket->bytes) {
5509 list_del_init(&ticket->list);
5510 num_bytes -= ticket->bytes;
5511 ticket->bytes = 0;
ce129655 5512 space_info->tickets_id++;
957780eb
JB
5513 wake_up(&ticket->wait);
5514 } else {
5515 ticket->bytes -= num_bytes;
5516 num_bytes = 0;
5517 }
5518 }
5519
5520 if (num_bytes && head == &space_info->priority_tickets) {
5521 head = &space_info->tickets;
5522 flush = BTRFS_RESERVE_FLUSH_ALL;
5523 goto again;
5524 }
5525 space_info->bytes_may_use -= num_bytes;
5526 trace_btrfs_space_reservation(fs_info, "space_info",
5527 space_info->flags, num_bytes, 0);
5528 spin_unlock(&space_info->lock);
5529}
5530
5531/*
5532 * This is for newly allocated space that isn't accounted in
5533 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5534 * we use this helper.
5535 */
5536static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5537 struct btrfs_space_info *space_info,
5538 u64 num_bytes)
5539{
5540 struct reserve_ticket *ticket;
5541 struct list_head *head = &space_info->priority_tickets;
5542
5543again:
5544 while (!list_empty(head) && num_bytes) {
5545 ticket = list_first_entry(head, struct reserve_ticket,
5546 list);
5547 if (num_bytes >= ticket->bytes) {
5548 trace_btrfs_space_reservation(fs_info, "space_info",
5549 space_info->flags,
5550 ticket->bytes, 1);
5551 list_del_init(&ticket->list);
5552 num_bytes -= ticket->bytes;
5553 space_info->bytes_may_use += ticket->bytes;
5554 ticket->bytes = 0;
ce129655 5555 space_info->tickets_id++;
957780eb
JB
5556 wake_up(&ticket->wait);
5557 } else {
5558 trace_btrfs_space_reservation(fs_info, "space_info",
5559 space_info->flags,
5560 num_bytes, 1);
5561 space_info->bytes_may_use += num_bytes;
5562 ticket->bytes -= num_bytes;
5563 num_bytes = 0;
5564 }
5565 }
5566
5567 if (num_bytes && head == &space_info->priority_tickets) {
5568 head = &space_info->tickets;
5569 goto again;
5570 }
5571}
5572
69fe2d75 5573static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5574 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5575 struct btrfs_block_rsv *dest, u64 num_bytes,
5576 u64 *qgroup_to_release_ret)
f0486c68
YZ
5577{
5578 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5579 u64 qgroup_to_release = 0;
69fe2d75 5580 u64 ret;
f0486c68
YZ
5581
5582 spin_lock(&block_rsv->lock);
ff6bc37e 5583 if (num_bytes == (u64)-1) {
f0486c68 5584 num_bytes = block_rsv->size;
ff6bc37e
QW
5585 qgroup_to_release = block_rsv->qgroup_rsv_size;
5586 }
f0486c68
YZ
5587 block_rsv->size -= num_bytes;
5588 if (block_rsv->reserved >= block_rsv->size) {
5589 num_bytes = block_rsv->reserved - block_rsv->size;
5590 block_rsv->reserved = block_rsv->size;
5591 block_rsv->full = 1;
5592 } else {
5593 num_bytes = 0;
5594 }
ff6bc37e
QW
5595 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5596 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5597 block_rsv->qgroup_rsv_size;
5598 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5599 } else {
5600 qgroup_to_release = 0;
5601 }
f0486c68
YZ
5602 spin_unlock(&block_rsv->lock);
5603
69fe2d75 5604 ret = num_bytes;
f0486c68
YZ
5605 if (num_bytes > 0) {
5606 if (dest) {
e9e22899
JB
5607 spin_lock(&dest->lock);
5608 if (!dest->full) {
5609 u64 bytes_to_add;
5610
5611 bytes_to_add = dest->size - dest->reserved;
5612 bytes_to_add = min(num_bytes, bytes_to_add);
5613 dest->reserved += bytes_to_add;
5614 if (dest->reserved >= dest->size)
5615 dest->full = 1;
5616 num_bytes -= bytes_to_add;
5617 }
5618 spin_unlock(&dest->lock);
5619 }
957780eb
JB
5620 if (num_bytes)
5621 space_info_add_old_bytes(fs_info, space_info,
5622 num_bytes);
9ed74f2d 5623 }
ff6bc37e
QW
5624 if (qgroup_to_release_ret)
5625 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5626 return ret;
f0486c68 5627}
4e06bdd6 5628
25d609f8
JB
5629int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5630 struct btrfs_block_rsv *dst, u64 num_bytes,
5631 int update_size)
f0486c68
YZ
5632{
5633 int ret;
9ed74f2d 5634
f0486c68
YZ
5635 ret = block_rsv_use_bytes(src, num_bytes);
5636 if (ret)
5637 return ret;
9ed74f2d 5638
25d609f8 5639 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5640 return 0;
5641}
5642
66d8f3dd 5643void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5644{
f0486c68
YZ
5645 memset(rsv, 0, sizeof(*rsv));
5646 spin_lock_init(&rsv->lock);
66d8f3dd 5647 rsv->type = type;
f0486c68
YZ
5648}
5649
69fe2d75
JB
5650void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5651 struct btrfs_block_rsv *rsv,
5652 unsigned short type)
5653{
5654 btrfs_init_block_rsv(rsv, type);
5655 rsv->space_info = __find_space_info(fs_info,
5656 BTRFS_BLOCK_GROUP_METADATA);
5657}
5658
2ff7e61e 5659struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5660 unsigned short type)
f0486c68
YZ
5661{
5662 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5663
f0486c68
YZ
5664 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5665 if (!block_rsv)
5666 return NULL;
9ed74f2d 5667
69fe2d75 5668 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5669 return block_rsv;
5670}
9ed74f2d 5671
2ff7e61e 5672void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5673 struct btrfs_block_rsv *rsv)
5674{
2aaa6655
JB
5675 if (!rsv)
5676 return;
2ff7e61e 5677 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5678 kfree(rsv);
9ed74f2d
JB
5679}
5680
cdfb080e
CM
5681void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5682{
5683 kfree(rsv);
5684}
5685
08e007d2
MX
5686int btrfs_block_rsv_add(struct btrfs_root *root,
5687 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5688 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5689{
f0486c68 5690 int ret;
9ed74f2d 5691
f0486c68
YZ
5692 if (num_bytes == 0)
5693 return 0;
8bb8ab2e 5694
61b520a9 5695 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5696 if (!ret) {
5697 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5698 return 0;
5699 }
9ed74f2d 5700
f0486c68 5701 return ret;
f0486c68 5702}
9ed74f2d 5703
2ff7e61e 5704int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5705{
5706 u64 num_bytes = 0;
f0486c68 5707 int ret = -ENOSPC;
9ed74f2d 5708
f0486c68
YZ
5709 if (!block_rsv)
5710 return 0;
9ed74f2d 5711
f0486c68 5712 spin_lock(&block_rsv->lock);
36ba022a
JB
5713 num_bytes = div_factor(block_rsv->size, min_factor);
5714 if (block_rsv->reserved >= num_bytes)
5715 ret = 0;
5716 spin_unlock(&block_rsv->lock);
9ed74f2d 5717
36ba022a
JB
5718 return ret;
5719}
5720
08e007d2
MX
5721int btrfs_block_rsv_refill(struct btrfs_root *root,
5722 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5723 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5724{
5725 u64 num_bytes = 0;
5726 int ret = -ENOSPC;
5727
5728 if (!block_rsv)
5729 return 0;
5730
5731 spin_lock(&block_rsv->lock);
5732 num_bytes = min_reserved;
13553e52 5733 if (block_rsv->reserved >= num_bytes)
f0486c68 5734 ret = 0;
13553e52 5735 else
f0486c68 5736 num_bytes -= block_rsv->reserved;
f0486c68 5737 spin_unlock(&block_rsv->lock);
13553e52 5738
f0486c68
YZ
5739 if (!ret)
5740 return 0;
5741
aa38a711 5742 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5743 if (!ret) {
5744 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5745 return 0;
6a63209f 5746 }
9ed74f2d 5747
13553e52 5748 return ret;
f0486c68
YZ
5749}
5750
69fe2d75
JB
5751/**
5752 * btrfs_inode_rsv_refill - refill the inode block rsv.
5753 * @inode - the inode we are refilling.
5754 * @flush - the flusing restriction.
5755 *
5756 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5757 * block_rsv->size as the minimum size. We'll either refill the missing amount
5758 * or return if we already have enough space. This will also handle the resreve
5759 * tracepoint for the reserved amount.
5760 */
3f2dd7a0
QW
5761static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5762 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5763{
5764 struct btrfs_root *root = inode->root;
5765 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5766 u64 num_bytes = 0;
ff6bc37e 5767 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5768 int ret = -ENOSPC;
5769
5770 spin_lock(&block_rsv->lock);
5771 if (block_rsv->reserved < block_rsv->size)
5772 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5773 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5774 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5775 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5776 spin_unlock(&block_rsv->lock);
5777
5778 if (num_bytes == 0)
5779 return 0;
5780
ff6bc37e 5781 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5782 if (ret)
5783 return ret;
69fe2d75
JB
5784 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5785 if (!ret) {
5786 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5787 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5788 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5789
5790 /* Don't forget to increase qgroup_rsv_reserved */
5791 spin_lock(&block_rsv->lock);
5792 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5793 spin_unlock(&block_rsv->lock);
5794 } else
5795 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5796 return ret;
5797}
5798
5799/**
5800 * btrfs_inode_rsv_release - release any excessive reservation.
5801 * @inode - the inode we need to release from.
43b18595
QW
5802 * @qgroup_free - free or convert qgroup meta.
5803 * Unlike normal operation, qgroup meta reservation needs to know if we are
5804 * freeing qgroup reservation or just converting it into per-trans. Normally
5805 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5806 *
5807 * This is the same as btrfs_block_rsv_release, except that it handles the
5808 * tracepoint for the reservation.
5809 */
43b18595 5810static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5811{
5812 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5813 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5814 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5815 u64 released = 0;
ff6bc37e 5816 u64 qgroup_to_release = 0;
69fe2d75
JB
5817
5818 /*
5819 * Since we statically set the block_rsv->size we just want to say we
5820 * are releasing 0 bytes, and then we'll just get the reservation over
5821 * the size free'd.
5822 */
ff6bc37e
QW
5823 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5824 &qgroup_to_release);
69fe2d75
JB
5825 if (released > 0)
5826 trace_btrfs_space_reservation(fs_info, "delalloc",
5827 btrfs_ino(inode), released, 0);
43b18595 5828 if (qgroup_free)
ff6bc37e 5829 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5830 else
ff6bc37e
QW
5831 btrfs_qgroup_convert_reserved_meta(inode->root,
5832 qgroup_to_release);
69fe2d75
JB
5833}
5834
2ff7e61e 5835void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5836 struct btrfs_block_rsv *block_rsv,
5837 u64 num_bytes)
5838{
0b246afa
JM
5839 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5840
17504584 5841 if (global_rsv == block_rsv ||
f0486c68
YZ
5842 block_rsv->space_info != global_rsv->space_info)
5843 global_rsv = NULL;
ff6bc37e 5844 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5845}
5846
8929ecfa
YZ
5847static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5848{
5849 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5850 struct btrfs_space_info *sinfo = block_rsv->space_info;
5851 u64 num_bytes;
6a63209f 5852
ae2e4728
JB
5853 /*
5854 * The global block rsv is based on the size of the extent tree, the
5855 * checksum tree and the root tree. If the fs is empty we want to set
5856 * it to a minimal amount for safety.
5857 */
5858 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5859 btrfs_root_used(&fs_info->csum_root->root_item) +
5860 btrfs_root_used(&fs_info->tree_root->root_item);
5861 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5862
8929ecfa 5863 spin_lock(&sinfo->lock);
1f699d38 5864 spin_lock(&block_rsv->lock);
4e06bdd6 5865
ee22184b 5866 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5867
fb4b10e5 5868 if (block_rsv->reserved < block_rsv->size) {
4136135b 5869 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5870 if (sinfo->total_bytes > num_bytes) {
5871 num_bytes = sinfo->total_bytes - num_bytes;
5872 num_bytes = min(num_bytes,
5873 block_rsv->size - block_rsv->reserved);
5874 block_rsv->reserved += num_bytes;
5875 sinfo->bytes_may_use += num_bytes;
5876 trace_btrfs_space_reservation(fs_info, "space_info",
5877 sinfo->flags, num_bytes,
5878 1);
5879 }
5880 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5881 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5882 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5883 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5884 sinfo->flags, num_bytes, 0);
8929ecfa 5885 block_rsv->reserved = block_rsv->size;
8929ecfa 5886 }
182608c8 5887
fb4b10e5
JB
5888 if (block_rsv->reserved == block_rsv->size)
5889 block_rsv->full = 1;
5890 else
5891 block_rsv->full = 0;
5892
8929ecfa 5893 spin_unlock(&block_rsv->lock);
1f699d38 5894 spin_unlock(&sinfo->lock);
6a63209f
JB
5895}
5896
f0486c68 5897static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5898{
f0486c68 5899 struct btrfs_space_info *space_info;
6a63209f 5900
f0486c68
YZ
5901 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5902 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5903
f0486c68 5904 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5905 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5906 fs_info->trans_block_rsv.space_info = space_info;
5907 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5908 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5909
8929ecfa
YZ
5910 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5911 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5912 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5913 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5914 if (fs_info->quota_root)
5915 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5916 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5917
8929ecfa 5918 update_global_block_rsv(fs_info);
6a63209f
JB
5919}
5920
8929ecfa 5921static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5922{
8c2a3ca2 5923 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5924 (u64)-1, NULL);
8929ecfa
YZ
5925 WARN_ON(fs_info->trans_block_rsv.size > 0);
5926 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5927 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5928 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5929 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5930 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5931}
5932
6a63209f 5933
4fbcdf66
FM
5934/*
5935 * To be called after all the new block groups attached to the transaction
5936 * handle have been created (btrfs_create_pending_block_groups()).
5937 */
5938void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5939{
64b63580 5940 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5941
5942 if (!trans->chunk_bytes_reserved)
5943 return;
5944
5945 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5946
5947 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5948 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5949 trans->chunk_bytes_reserved = 0;
5950}
5951
79787eaa 5952/* Can only return 0 or -ENOSPC */
d68fc57b 5953int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5954 struct btrfs_inode *inode)
d68fc57b 5955{
8ed7a2a0
NB
5956 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5957 struct btrfs_root *root = inode->root;
40acc3ee
JB
5958 /*
5959 * We always use trans->block_rsv here as we will have reserved space
5960 * for our orphan when starting the transaction, using get_block_rsv()
5961 * here will sometimes make us choose the wrong block rsv as we could be
5962 * doing a reloc inode for a non refcounted root.
5963 */
5964 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5965 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5966
5967 /*
fcb80c2a
JB
5968 * We need to hold space in order to delete our orphan item once we've
5969 * added it, so this takes the reservation so we can release it later
5970 * when we are truly done with the orphan item.
d68fc57b 5971 */
0b246afa
JM
5972 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5973
9678c543 5974 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
8ed7a2a0 5975 num_bytes, 1);
25d609f8 5976 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5977}
5978
703b391a 5979void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5980{
703b391a
NB
5981 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5982 struct btrfs_root *root = inode->root;
0b246afa
JM
5983 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5984
703b391a
NB
5985 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5986 num_bytes, 0);
2ff7e61e 5987 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5988}
97e728d4 5989
d5c12070
MX
5990/*
5991 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5992 * root: the root of the parent directory
5993 * rsv: block reservation
5994 * items: the number of items that we need do reservation
5995 * qgroup_reserved: used to return the reserved size in qgroup
5996 *
5997 * This function is used to reserve the space for snapshot/subvolume
5998 * creation and deletion. Those operations are different with the
5999 * common file/directory operations, they change two fs/file trees
6000 * and root tree, the number of items that the qgroup reserves is
6001 * different with the free space reservation. So we can not use
01327610 6002 * the space reservation mechanism in start_transaction().
d5c12070
MX
6003 */
6004int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6005 struct btrfs_block_rsv *rsv,
6006 int items,
ee3441b4
JM
6007 u64 *qgroup_reserved,
6008 bool use_global_rsv)
a22285a6 6009{
d5c12070
MX
6010 u64 num_bytes;
6011 int ret;
0b246afa
JM
6012 struct btrfs_fs_info *fs_info = root->fs_info;
6013 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6014
0b246afa 6015 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6016 /* One for parent inode, two for dir entries */
0b246afa 6017 num_bytes = 3 * fs_info->nodesize;
733e03a0 6018 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
6019 if (ret)
6020 return ret;
6021 } else {
6022 num_bytes = 0;
6023 }
6024
6025 *qgroup_reserved = num_bytes;
6026
0b246afa
JM
6027 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6028 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6029 BTRFS_BLOCK_GROUP_METADATA);
6030 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6031 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6032
6033 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6034 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6035
7174109c 6036 if (ret && *qgroup_reserved)
733e03a0 6037 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
d5c12070
MX
6038
6039 return ret;
6040}
6041
2ff7e61e 6042void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6043 struct btrfs_block_rsv *rsv)
d5c12070 6044{
2ff7e61e 6045 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6046}
6047
69fe2d75
JB
6048static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6049 struct btrfs_inode *inode)
9e0baf60 6050{
69fe2d75
JB
6051 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6052 u64 reserve_size = 0;
ff6bc37e 6053 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6054 u64 csum_leaves;
6055 unsigned outstanding_extents;
9e0baf60 6056
69fe2d75
JB
6057 lockdep_assert_held(&inode->lock);
6058 outstanding_extents = inode->outstanding_extents;
6059 if (outstanding_extents)
6060 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6061 outstanding_extents + 1);
6062 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6063 inode->csum_bytes);
6064 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6065 csum_leaves);
ff6bc37e
QW
6066 /*
6067 * For qgroup rsv, the calculation is very simple:
6068 * account one nodesize for each outstanding extent
6069 *
6070 * This is overestimating in most cases.
6071 */
6072 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6073
69fe2d75
JB
6074 spin_lock(&block_rsv->lock);
6075 block_rsv->size = reserve_size;
ff6bc37e 6076 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6077 spin_unlock(&block_rsv->lock);
0ca1f7ce 6078}
c146afad 6079
9f3db423 6080int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6081{
9f3db423 6082 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6083 unsigned nr_extents;
08e007d2 6084 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6085 int ret = 0;
c64c2bd8 6086 bool delalloc_lock = true;
6324fbf3 6087
c64c2bd8
JB
6088 /* If we are a free space inode we need to not flush since we will be in
6089 * the middle of a transaction commit. We also don't need the delalloc
6090 * mutex since we won't race with anybody. We need this mostly to make
6091 * lockdep shut its filthy mouth.
bac357dc
JB
6092 *
6093 * If we have a transaction open (can happen if we call truncate_block
6094 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6095 */
6096 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6097 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6098 delalloc_lock = false;
da07d4ab
NB
6099 } else {
6100 if (current->journal_info)
6101 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6102
da07d4ab
NB
6103 if (btrfs_transaction_in_commit(fs_info))
6104 schedule_timeout(1);
6105 }
ec44a35c 6106
c64c2bd8 6107 if (delalloc_lock)
9f3db423 6108 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6109
0b246afa 6110 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6111
6112 /* Add our new extents and calculate the new rsv size. */
9f3db423 6113 spin_lock(&inode->lock);
69fe2d75 6114 nr_extents = count_max_extents(num_bytes);
8b62f87b 6115 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6116 inode->csum_bytes += num_bytes;
6117 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6118 spin_unlock(&inode->lock);
57a45ced 6119
69fe2d75 6120 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6121 if (unlikely(ret))
88e081bf 6122 goto out_fail;
25179201 6123
c64c2bd8 6124 if (delalloc_lock)
9f3db423 6125 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6126 return 0;
88e081bf
WS
6127
6128out_fail:
9f3db423 6129 spin_lock(&inode->lock);
8b62f87b
JB
6130 nr_extents = count_max_extents(num_bytes);
6131 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6132 inode->csum_bytes -= num_bytes;
6133 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6134 spin_unlock(&inode->lock);
88e081bf 6135
43b18595 6136 btrfs_inode_rsv_release(inode, true);
88e081bf 6137 if (delalloc_lock)
9f3db423 6138 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6139 return ret;
0ca1f7ce
YZ
6140}
6141
7709cde3
JB
6142/**
6143 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6144 * @inode: the inode to release the reservation for.
6145 * @num_bytes: the number of bytes we are releasing.
43b18595 6146 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6147 *
6148 * This will release the metadata reservation for an inode. This can be called
6149 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6150 * reservations, or on error for the same reason.
7709cde3 6151 */
43b18595
QW
6152void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6153 bool qgroup_free)
0ca1f7ce 6154{
691fa059 6155 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6156
0b246afa 6157 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6158 spin_lock(&inode->lock);
69fe2d75
JB
6159 inode->csum_bytes -= num_bytes;
6160 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6161 spin_unlock(&inode->lock);
0ca1f7ce 6162
0b246afa 6163 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6164 return;
6165
43b18595 6166 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6167}
6168
8b62f87b
JB
6169/**
6170 * btrfs_delalloc_release_extents - release our outstanding_extents
6171 * @inode: the inode to balance the reservation for.
6172 * @num_bytes: the number of bytes we originally reserved with
43b18595 6173 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6174 *
6175 * When we reserve space we increase outstanding_extents for the extents we may
6176 * add. Once we've set the range as delalloc or created our ordered extents we
6177 * have outstanding_extents to track the real usage, so we use this to free our
6178 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6179 * with btrfs_delalloc_reserve_metadata.
6180 */
43b18595
QW
6181void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6182 bool qgroup_free)
8b62f87b
JB
6183{
6184 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6185 unsigned num_extents;
8b62f87b
JB
6186
6187 spin_lock(&inode->lock);
6188 num_extents = count_max_extents(num_bytes);
6189 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6190 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6191 spin_unlock(&inode->lock);
6192
8b62f87b
JB
6193 if (btrfs_is_testing(fs_info))
6194 return;
6195
43b18595 6196 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6197}
6198
1ada3a62 6199/**
7cf5b976 6200 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6201 * delalloc
6202 * @inode: inode we're writing to
6203 * @start: start range we are writing to
6204 * @len: how long the range we are writing to
364ecf36
QW
6205 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6206 * current reservation.
1ada3a62 6207 *
1ada3a62
QW
6208 * This will do the following things
6209 *
6210 * o reserve space in data space info for num bytes
6211 * and reserve precious corresponding qgroup space
6212 * (Done in check_data_free_space)
6213 *
6214 * o reserve space for metadata space, based on the number of outstanding
6215 * extents and how much csums will be needed
6216 * also reserve metadata space in a per root over-reserve method.
6217 * o add to the inodes->delalloc_bytes
6218 * o add it to the fs_info's delalloc inodes list.
6219 * (Above 3 all done in delalloc_reserve_metadata)
6220 *
6221 * Return 0 for success
6222 * Return <0 for error(-ENOSPC or -EQUOT)
6223 */
364ecf36
QW
6224int btrfs_delalloc_reserve_space(struct inode *inode,
6225 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6226{
6227 int ret;
6228
364ecf36 6229 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6230 if (ret < 0)
6231 return ret;
9f3db423 6232 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6233 if (ret < 0)
bc42bda2 6234 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6235 return ret;
6236}
6237
7709cde3 6238/**
7cf5b976 6239 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6240 * @inode: inode we're releasing space for
6241 * @start: start position of the space already reserved
6242 * @len: the len of the space already reserved
8b62f87b 6243 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6244 *
6245 * This function will release the metadata space that was not used and will
6246 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6247 * list if there are no delalloc bytes left.
6248 * Also it will handle the qgroup reserved space.
6249 */
bc42bda2 6250void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6251 struct extent_changeset *reserved,
43b18595 6252 u64 start, u64 len, bool qgroup_free)
1ada3a62 6253{
43b18595 6254 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6255 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6256}
6257
ce93ec54 6258static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6259 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6260 u64 num_bytes, int alloc)
9078a3e1 6261{
0af3d00b 6262 struct btrfs_block_group_cache *cache = NULL;
db94535d 6263 u64 total = num_bytes;
9078a3e1 6264 u64 old_val;
db94535d 6265 u64 byte_in_group;
0af3d00b 6266 int factor;
3e1ad54f 6267
5d4f98a2 6268 /* block accounting for super block */
eb73c1b7 6269 spin_lock(&info->delalloc_root_lock);
6c41761f 6270 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6271 if (alloc)
6272 old_val += num_bytes;
6273 else
6274 old_val -= num_bytes;
6c41761f 6275 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6276 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6277
d397712b 6278 while (total) {
db94535d 6279 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6280 if (!cache)
79787eaa 6281 return -ENOENT;
b742bb82
YZ
6282 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6283 BTRFS_BLOCK_GROUP_RAID1 |
6284 BTRFS_BLOCK_GROUP_RAID10))
6285 factor = 2;
6286 else
6287 factor = 1;
9d66e233
JB
6288 /*
6289 * If this block group has free space cache written out, we
6290 * need to make sure to load it if we are removing space. This
6291 * is because we need the unpinning stage to actually add the
6292 * space back to the block group, otherwise we will leak space.
6293 */
6294 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6295 cache_block_group(cache, 1);
0af3d00b 6296
db94535d
CM
6297 byte_in_group = bytenr - cache->key.objectid;
6298 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6299
25179201 6300 spin_lock(&cache->space_info->lock);
c286ac48 6301 spin_lock(&cache->lock);
0af3d00b 6302
6202df69 6303 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6304 cache->disk_cache_state < BTRFS_DC_CLEAR)
6305 cache->disk_cache_state = BTRFS_DC_CLEAR;
6306
9078a3e1 6307 old_val = btrfs_block_group_used(&cache->item);
db94535d 6308 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6309 if (alloc) {
db94535d 6310 old_val += num_bytes;
11833d66
YZ
6311 btrfs_set_block_group_used(&cache->item, old_val);
6312 cache->reserved -= num_bytes;
11833d66 6313 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6314 cache->space_info->bytes_used += num_bytes;
6315 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6316 spin_unlock(&cache->lock);
25179201 6317 spin_unlock(&cache->space_info->lock);
cd1bc465 6318 } else {
db94535d 6319 old_val -= num_bytes;
ae0ab003
FM
6320 btrfs_set_block_group_used(&cache->item, old_val);
6321 cache->pinned += num_bytes;
6322 cache->space_info->bytes_pinned += num_bytes;
6323 cache->space_info->bytes_used -= num_bytes;
6324 cache->space_info->disk_used -= num_bytes * factor;
6325 spin_unlock(&cache->lock);
6326 spin_unlock(&cache->space_info->lock);
47ab2a6c 6327
0b246afa 6328 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6329 cache->space_info->flags,
6330 num_bytes, 1);
d7eae340
OS
6331 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6332 num_bytes);
ae0ab003
FM
6333 set_extent_dirty(info->pinned_extents,
6334 bytenr, bytenr + num_bytes - 1,
6335 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6336 }
1bbc621e
CM
6337
6338 spin_lock(&trans->transaction->dirty_bgs_lock);
6339 if (list_empty(&cache->dirty_list)) {
6340 list_add_tail(&cache->dirty_list,
6341 &trans->transaction->dirty_bgs);
6342 trans->transaction->num_dirty_bgs++;
6343 btrfs_get_block_group(cache);
6344 }
6345 spin_unlock(&trans->transaction->dirty_bgs_lock);
6346
036a9348
FM
6347 /*
6348 * No longer have used bytes in this block group, queue it for
6349 * deletion. We do this after adding the block group to the
6350 * dirty list to avoid races between cleaner kthread and space
6351 * cache writeout.
6352 */
6353 if (!alloc && old_val == 0) {
6354 spin_lock(&info->unused_bgs_lock);
6355 if (list_empty(&cache->bg_list)) {
6356 btrfs_get_block_group(cache);
6357 list_add_tail(&cache->bg_list,
6358 &info->unused_bgs);
6359 }
6360 spin_unlock(&info->unused_bgs_lock);
6361 }
6362
fa9c0d79 6363 btrfs_put_block_group(cache);
db94535d
CM
6364 total -= num_bytes;
6365 bytenr += num_bytes;
9078a3e1
CM
6366 }
6367 return 0;
6368}
6324fbf3 6369
2ff7e61e 6370static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6371{
0f9dd46c 6372 struct btrfs_block_group_cache *cache;
d2fb3437 6373 u64 bytenr;
0f9dd46c 6374
0b246afa
JM
6375 spin_lock(&fs_info->block_group_cache_lock);
6376 bytenr = fs_info->first_logical_byte;
6377 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6378
6379 if (bytenr < (u64)-1)
6380 return bytenr;
6381
0b246afa 6382 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6383 if (!cache)
a061fc8d 6384 return 0;
0f9dd46c 6385
d2fb3437 6386 bytenr = cache->key.objectid;
fa9c0d79 6387 btrfs_put_block_group(cache);
d2fb3437
YZ
6388
6389 return bytenr;
a061fc8d
CM
6390}
6391
2ff7e61e 6392static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6393 struct btrfs_block_group_cache *cache,
6394 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6395{
11833d66
YZ
6396 spin_lock(&cache->space_info->lock);
6397 spin_lock(&cache->lock);
6398 cache->pinned += num_bytes;
6399 cache->space_info->bytes_pinned += num_bytes;
6400 if (reserved) {
6401 cache->reserved -= num_bytes;
6402 cache->space_info->bytes_reserved -= num_bytes;
6403 }
6404 spin_unlock(&cache->lock);
6405 spin_unlock(&cache->space_info->lock);
68b38550 6406
0b246afa 6407 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6408 cache->space_info->flags, num_bytes, 1);
4da8b76d 6409 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6410 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6411 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6412 return 0;
6413}
68b38550 6414
f0486c68
YZ
6415/*
6416 * this function must be called within transaction
6417 */
2ff7e61e 6418int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6419 u64 bytenr, u64 num_bytes, int reserved)
6420{
6421 struct btrfs_block_group_cache *cache;
68b38550 6422
0b246afa 6423 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6424 BUG_ON(!cache); /* Logic error */
f0486c68 6425
2ff7e61e 6426 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6427
6428 btrfs_put_block_group(cache);
11833d66
YZ
6429 return 0;
6430}
6431
f0486c68 6432/*
e688b725
CM
6433 * this function must be called within transaction
6434 */
2ff7e61e 6435int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6436 u64 bytenr, u64 num_bytes)
6437{
6438 struct btrfs_block_group_cache *cache;
b50c6e25 6439 int ret;
e688b725 6440
0b246afa 6441 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6442 if (!cache)
6443 return -EINVAL;
e688b725
CM
6444
6445 /*
6446 * pull in the free space cache (if any) so that our pin
6447 * removes the free space from the cache. We have load_only set
6448 * to one because the slow code to read in the free extents does check
6449 * the pinned extents.
6450 */
f6373bf3 6451 cache_block_group(cache, 1);
e688b725 6452
2ff7e61e 6453 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6454
6455 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6456 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6457 btrfs_put_block_group(cache);
b50c6e25 6458 return ret;
e688b725
CM
6459}
6460
2ff7e61e
JM
6461static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6462 u64 start, u64 num_bytes)
8c2a1a30
JB
6463{
6464 int ret;
6465 struct btrfs_block_group_cache *block_group;
6466 struct btrfs_caching_control *caching_ctl;
6467
0b246afa 6468 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6469 if (!block_group)
6470 return -EINVAL;
6471
6472 cache_block_group(block_group, 0);
6473 caching_ctl = get_caching_control(block_group);
6474
6475 if (!caching_ctl) {
6476 /* Logic error */
6477 BUG_ON(!block_group_cache_done(block_group));
6478 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6479 } else {
6480 mutex_lock(&caching_ctl->mutex);
6481
6482 if (start >= caching_ctl->progress) {
2ff7e61e 6483 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6484 } else if (start + num_bytes <= caching_ctl->progress) {
6485 ret = btrfs_remove_free_space(block_group,
6486 start, num_bytes);
6487 } else {
6488 num_bytes = caching_ctl->progress - start;
6489 ret = btrfs_remove_free_space(block_group,
6490 start, num_bytes);
6491 if (ret)
6492 goto out_lock;
6493
6494 num_bytes = (start + num_bytes) -
6495 caching_ctl->progress;
6496 start = caching_ctl->progress;
2ff7e61e 6497 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6498 }
6499out_lock:
6500 mutex_unlock(&caching_ctl->mutex);
6501 put_caching_control(caching_ctl);
6502 }
6503 btrfs_put_block_group(block_group);
6504 return ret;
6505}
6506
2ff7e61e 6507int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6508 struct extent_buffer *eb)
6509{
6510 struct btrfs_file_extent_item *item;
6511 struct btrfs_key key;
6512 int found_type;
6513 int i;
6514
2ff7e61e 6515 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6516 return 0;
6517
6518 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6519 btrfs_item_key_to_cpu(eb, &key, i);
6520 if (key.type != BTRFS_EXTENT_DATA_KEY)
6521 continue;
6522 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6523 found_type = btrfs_file_extent_type(eb, item);
6524 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6525 continue;
6526 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6527 continue;
6528 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6529 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6530 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6531 }
6532
6533 return 0;
6534}
6535
9cfa3e34
FM
6536static void
6537btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6538{
6539 atomic_inc(&bg->reservations);
6540}
6541
6542void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6543 const u64 start)
6544{
6545 struct btrfs_block_group_cache *bg;
6546
6547 bg = btrfs_lookup_block_group(fs_info, start);
6548 ASSERT(bg);
6549 if (atomic_dec_and_test(&bg->reservations))
4625956a 6550 wake_up_var(&bg->reservations);
9cfa3e34
FM
6551 btrfs_put_block_group(bg);
6552}
6553
9cfa3e34
FM
6554void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6555{
6556 struct btrfs_space_info *space_info = bg->space_info;
6557
6558 ASSERT(bg->ro);
6559
6560 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6561 return;
6562
6563 /*
6564 * Our block group is read only but before we set it to read only,
6565 * some task might have had allocated an extent from it already, but it
6566 * has not yet created a respective ordered extent (and added it to a
6567 * root's list of ordered extents).
6568 * Therefore wait for any task currently allocating extents, since the
6569 * block group's reservations counter is incremented while a read lock
6570 * on the groups' semaphore is held and decremented after releasing
6571 * the read access on that semaphore and creating the ordered extent.
6572 */
6573 down_write(&space_info->groups_sem);
6574 up_write(&space_info->groups_sem);
6575
4625956a 6576 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6577}
6578
fb25e914 6579/**
4824f1f4 6580 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6581 * @cache: The cache we are manipulating
18513091
WX
6582 * @ram_bytes: The number of bytes of file content, and will be same to
6583 * @num_bytes except for the compress path.
fb25e914 6584 * @num_bytes: The number of bytes in question
e570fd27 6585 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6586 *
745699ef
XW
6587 * This is called by the allocator when it reserves space. If this is a
6588 * reservation and the block group has become read only we cannot make the
6589 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6590 */
4824f1f4 6591static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6592 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6593{
fb25e914 6594 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6595 int ret = 0;
79787eaa 6596
fb25e914
JB
6597 spin_lock(&space_info->lock);
6598 spin_lock(&cache->lock);
4824f1f4
WX
6599 if (cache->ro) {
6600 ret = -EAGAIN;
fb25e914 6601 } else {
4824f1f4
WX
6602 cache->reserved += num_bytes;
6603 space_info->bytes_reserved += num_bytes;
e570fd27 6604
18513091
WX
6605 trace_btrfs_space_reservation(cache->fs_info,
6606 "space_info", space_info->flags,
6607 ram_bytes, 0);
6608 space_info->bytes_may_use -= ram_bytes;
e570fd27 6609 if (delalloc)
4824f1f4 6610 cache->delalloc_bytes += num_bytes;
324ae4df 6611 }
fb25e914
JB
6612 spin_unlock(&cache->lock);
6613 spin_unlock(&space_info->lock);
f0486c68 6614 return ret;
324ae4df 6615}
9078a3e1 6616
4824f1f4
WX
6617/**
6618 * btrfs_free_reserved_bytes - update the block_group and space info counters
6619 * @cache: The cache we are manipulating
6620 * @num_bytes: The number of bytes in question
6621 * @delalloc: The blocks are allocated for the delalloc write
6622 *
6623 * This is called by somebody who is freeing space that was never actually used
6624 * on disk. For example if you reserve some space for a new leaf in transaction
6625 * A and before transaction A commits you free that leaf, you call this with
6626 * reserve set to 0 in order to clear the reservation.
6627 */
6628
6629static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6630 u64 num_bytes, int delalloc)
6631{
6632 struct btrfs_space_info *space_info = cache->space_info;
6633 int ret = 0;
6634
6635 spin_lock(&space_info->lock);
6636 spin_lock(&cache->lock);
6637 if (cache->ro)
6638 space_info->bytes_readonly += num_bytes;
6639 cache->reserved -= num_bytes;
6640 space_info->bytes_reserved -= num_bytes;
6641
6642 if (delalloc)
6643 cache->delalloc_bytes -= num_bytes;
6644 spin_unlock(&cache->lock);
6645 spin_unlock(&space_info->lock);
6646 return ret;
6647}
8b74c03e 6648void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6649{
11833d66
YZ
6650 struct btrfs_caching_control *next;
6651 struct btrfs_caching_control *caching_ctl;
6652 struct btrfs_block_group_cache *cache;
e8569813 6653
9e351cc8 6654 down_write(&fs_info->commit_root_sem);
25179201 6655
11833d66
YZ
6656 list_for_each_entry_safe(caching_ctl, next,
6657 &fs_info->caching_block_groups, list) {
6658 cache = caching_ctl->block_group;
6659 if (block_group_cache_done(cache)) {
6660 cache->last_byte_to_unpin = (u64)-1;
6661 list_del_init(&caching_ctl->list);
6662 put_caching_control(caching_ctl);
e8569813 6663 } else {
11833d66 6664 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6665 }
e8569813 6666 }
11833d66
YZ
6667
6668 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6669 fs_info->pinned_extents = &fs_info->freed_extents[1];
6670 else
6671 fs_info->pinned_extents = &fs_info->freed_extents[0];
6672
9e351cc8 6673 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6674
6675 update_global_block_rsv(fs_info);
e8569813
ZY
6676}
6677
c759c4e1
JB
6678/*
6679 * Returns the free cluster for the given space info and sets empty_cluster to
6680 * what it should be based on the mount options.
6681 */
6682static struct btrfs_free_cluster *
2ff7e61e
JM
6683fetch_cluster_info(struct btrfs_fs_info *fs_info,
6684 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6685{
6686 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6687
6688 *empty_cluster = 0;
6689 if (btrfs_mixed_space_info(space_info))
6690 return ret;
6691
c759c4e1 6692 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6693 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6694 if (btrfs_test_opt(fs_info, SSD))
6695 *empty_cluster = SZ_2M;
6696 else
ee22184b 6697 *empty_cluster = SZ_64K;
583b7231
HK
6698 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6699 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6700 *empty_cluster = SZ_2M;
0b246afa 6701 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6702 }
6703
6704 return ret;
6705}
6706
2ff7e61e
JM
6707static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6708 u64 start, u64 end,
678886bd 6709 const bool return_free_space)
ccd467d6 6710{
11833d66 6711 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6712 struct btrfs_space_info *space_info;
6713 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6714 struct btrfs_free_cluster *cluster = NULL;
11833d66 6715 u64 len;
c759c4e1
JB
6716 u64 total_unpinned = 0;
6717 u64 empty_cluster = 0;
7b398f8e 6718 bool readonly;
ccd467d6 6719
11833d66 6720 while (start <= end) {
7b398f8e 6721 readonly = false;
11833d66
YZ
6722 if (!cache ||
6723 start >= cache->key.objectid + cache->key.offset) {
6724 if (cache)
6725 btrfs_put_block_group(cache);
c759c4e1 6726 total_unpinned = 0;
11833d66 6727 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6728 BUG_ON(!cache); /* Logic error */
c759c4e1 6729
2ff7e61e 6730 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6731 cache->space_info,
6732 &empty_cluster);
6733 empty_cluster <<= 1;
11833d66
YZ
6734 }
6735
6736 len = cache->key.objectid + cache->key.offset - start;
6737 len = min(len, end + 1 - start);
6738
6739 if (start < cache->last_byte_to_unpin) {
6740 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6741 if (return_free_space)
6742 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6743 }
6744
f0486c68 6745 start += len;
c759c4e1 6746 total_unpinned += len;
7b398f8e 6747 space_info = cache->space_info;
f0486c68 6748
c759c4e1
JB
6749 /*
6750 * If this space cluster has been marked as fragmented and we've
6751 * unpinned enough in this block group to potentially allow a
6752 * cluster to be created inside of it go ahead and clear the
6753 * fragmented check.
6754 */
6755 if (cluster && cluster->fragmented &&
6756 total_unpinned > empty_cluster) {
6757 spin_lock(&cluster->lock);
6758 cluster->fragmented = 0;
6759 spin_unlock(&cluster->lock);
6760 }
6761
7b398f8e 6762 spin_lock(&space_info->lock);
11833d66
YZ
6763 spin_lock(&cache->lock);
6764 cache->pinned -= len;
7b398f8e 6765 space_info->bytes_pinned -= len;
c51e7bb1
JB
6766
6767 trace_btrfs_space_reservation(fs_info, "pinned",
6768 space_info->flags, len, 0);
4f4db217 6769 space_info->max_extent_size = 0;
d288db5d 6770 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6771 if (cache->ro) {
6772 space_info->bytes_readonly += len;
6773 readonly = true;
6774 }
11833d66 6775 spin_unlock(&cache->lock);
957780eb
JB
6776 if (!readonly && return_free_space &&
6777 global_rsv->space_info == space_info) {
6778 u64 to_add = len;
92ac58ec 6779
7b398f8e
JB
6780 spin_lock(&global_rsv->lock);
6781 if (!global_rsv->full) {
957780eb
JB
6782 to_add = min(len, global_rsv->size -
6783 global_rsv->reserved);
6784 global_rsv->reserved += to_add;
6785 space_info->bytes_may_use += to_add;
7b398f8e
JB
6786 if (global_rsv->reserved >= global_rsv->size)
6787 global_rsv->full = 1;
957780eb
JB
6788 trace_btrfs_space_reservation(fs_info,
6789 "space_info",
6790 space_info->flags,
6791 to_add, 1);
6792 len -= to_add;
7b398f8e
JB
6793 }
6794 spin_unlock(&global_rsv->lock);
957780eb
JB
6795 /* Add to any tickets we may have */
6796 if (len)
6797 space_info_add_new_bytes(fs_info, space_info,
6798 len);
7b398f8e
JB
6799 }
6800 spin_unlock(&space_info->lock);
ccd467d6 6801 }
11833d66
YZ
6802
6803 if (cache)
6804 btrfs_put_block_group(cache);
ccd467d6
CM
6805 return 0;
6806}
6807
5ead2dd0 6808int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6809{
5ead2dd0 6810 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6811 struct btrfs_block_group_cache *block_group, *tmp;
6812 struct list_head *deleted_bgs;
11833d66 6813 struct extent_io_tree *unpin;
1a5bc167
CM
6814 u64 start;
6815 u64 end;
a28ec197 6816 int ret;
a28ec197 6817
11833d66
YZ
6818 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6819 unpin = &fs_info->freed_extents[1];
6820 else
6821 unpin = &fs_info->freed_extents[0];
6822
e33e17ee 6823 while (!trans->aborted) {
d4b450cd 6824 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6825 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6826 EXTENT_DIRTY, NULL);
d4b450cd
FM
6827 if (ret) {
6828 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6829 break;
d4b450cd 6830 }
1f3c79a2 6831
0b246afa 6832 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6833 ret = btrfs_discard_extent(fs_info, start,
5378e607 6834 end + 1 - start, NULL);
1f3c79a2 6835
af6f8f60 6836 clear_extent_dirty(unpin, start, end);
2ff7e61e 6837 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6838 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6839 cond_resched();
a28ec197 6840 }
817d52f8 6841
e33e17ee
JM
6842 /*
6843 * Transaction is finished. We don't need the lock anymore. We
6844 * do need to clean up the block groups in case of a transaction
6845 * abort.
6846 */
6847 deleted_bgs = &trans->transaction->deleted_bgs;
6848 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6849 u64 trimmed = 0;
6850
6851 ret = -EROFS;
6852 if (!trans->aborted)
2ff7e61e 6853 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6854 block_group->key.objectid,
6855 block_group->key.offset,
6856 &trimmed);
6857
6858 list_del_init(&block_group->bg_list);
6859 btrfs_put_block_group_trimming(block_group);
6860 btrfs_put_block_group(block_group);
6861
6862 if (ret) {
6863 const char *errstr = btrfs_decode_error(ret);
6864 btrfs_warn(fs_info,
913e1535 6865 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6866 ret, errstr);
6867 }
6868 }
6869
e20d96d6
CM
6870 return 0;
6871}
6872
5d4f98a2 6873static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6874 struct btrfs_fs_info *info,
c682f9b3 6875 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6876 u64 root_objectid, u64 owner_objectid,
6877 u64 owner_offset, int refs_to_drop,
c682f9b3 6878 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6879{
e2fa7227 6880 struct btrfs_key key;
5d4f98a2 6881 struct btrfs_path *path;
1261ec42 6882 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6883 struct extent_buffer *leaf;
5d4f98a2
YZ
6884 struct btrfs_extent_item *ei;
6885 struct btrfs_extent_inline_ref *iref;
a28ec197 6886 int ret;
5d4f98a2 6887 int is_data;
952fccac
CM
6888 int extent_slot = 0;
6889 int found_extent = 0;
6890 int num_to_del = 1;
5d4f98a2
YZ
6891 u32 item_size;
6892 u64 refs;
c682f9b3
QW
6893 u64 bytenr = node->bytenr;
6894 u64 num_bytes = node->num_bytes;
fcebe456 6895 int last_ref = 0;
0b246afa 6896 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6897
5caf2a00 6898 path = btrfs_alloc_path();
54aa1f4d
CM
6899 if (!path)
6900 return -ENOMEM;
5f26f772 6901
e4058b54 6902 path->reada = READA_FORWARD;
b9473439 6903 path->leave_spinning = 1;
5d4f98a2
YZ
6904
6905 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6906 BUG_ON(!is_data && refs_to_drop != 1);
6907
3173a18f 6908 if (is_data)
897ca819 6909 skinny_metadata = false;
3173a18f 6910
87bde3cd 6911 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6912 bytenr, num_bytes, parent,
6913 root_objectid, owner_objectid,
6914 owner_offset);
7bb86316 6915 if (ret == 0) {
952fccac 6916 extent_slot = path->slots[0];
5d4f98a2
YZ
6917 while (extent_slot >= 0) {
6918 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6919 extent_slot);
5d4f98a2 6920 if (key.objectid != bytenr)
952fccac 6921 break;
5d4f98a2
YZ
6922 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6923 key.offset == num_bytes) {
952fccac
CM
6924 found_extent = 1;
6925 break;
6926 }
3173a18f
JB
6927 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6928 key.offset == owner_objectid) {
6929 found_extent = 1;
6930 break;
6931 }
952fccac
CM
6932 if (path->slots[0] - extent_slot > 5)
6933 break;
5d4f98a2 6934 extent_slot--;
952fccac 6935 }
5d4f98a2
YZ
6936#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6937 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6938 if (found_extent && item_size < sizeof(*ei))
6939 found_extent = 0;
6940#endif
31840ae1 6941 if (!found_extent) {
5d4f98a2 6942 BUG_ON(iref);
87bde3cd
JM
6943 ret = remove_extent_backref(trans, info, path, NULL,
6944 refs_to_drop,
fcebe456 6945 is_data, &last_ref);
005d6427 6946 if (ret) {
66642832 6947 btrfs_abort_transaction(trans, ret);
005d6427
DS
6948 goto out;
6949 }
b3b4aa74 6950 btrfs_release_path(path);
b9473439 6951 path->leave_spinning = 1;
5d4f98a2
YZ
6952
6953 key.objectid = bytenr;
6954 key.type = BTRFS_EXTENT_ITEM_KEY;
6955 key.offset = num_bytes;
6956
3173a18f
JB
6957 if (!is_data && skinny_metadata) {
6958 key.type = BTRFS_METADATA_ITEM_KEY;
6959 key.offset = owner_objectid;
6960 }
6961
31840ae1
ZY
6962 ret = btrfs_search_slot(trans, extent_root,
6963 &key, path, -1, 1);
3173a18f
JB
6964 if (ret > 0 && skinny_metadata && path->slots[0]) {
6965 /*
6966 * Couldn't find our skinny metadata item,
6967 * see if we have ye olde extent item.
6968 */
6969 path->slots[0]--;
6970 btrfs_item_key_to_cpu(path->nodes[0], &key,
6971 path->slots[0]);
6972 if (key.objectid == bytenr &&
6973 key.type == BTRFS_EXTENT_ITEM_KEY &&
6974 key.offset == num_bytes)
6975 ret = 0;
6976 }
6977
6978 if (ret > 0 && skinny_metadata) {
6979 skinny_metadata = false;
9ce49a0b 6980 key.objectid = bytenr;
3173a18f
JB
6981 key.type = BTRFS_EXTENT_ITEM_KEY;
6982 key.offset = num_bytes;
6983 btrfs_release_path(path);
6984 ret = btrfs_search_slot(trans, extent_root,
6985 &key, path, -1, 1);
6986 }
6987
f3465ca4 6988 if (ret) {
5d163e0e
JM
6989 btrfs_err(info,
6990 "umm, got %d back from search, was looking for %llu",
6991 ret, bytenr);
b783e62d 6992 if (ret > 0)
a4f78750 6993 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6994 }
005d6427 6995 if (ret < 0) {
66642832 6996 btrfs_abort_transaction(trans, ret);
005d6427
DS
6997 goto out;
6998 }
31840ae1
ZY
6999 extent_slot = path->slots[0];
7000 }
fae7f21c 7001 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7002 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7003 btrfs_err(info,
7004 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7005 bytenr, parent, root_objectid, owner_objectid,
7006 owner_offset);
66642832 7007 btrfs_abort_transaction(trans, ret);
c4a050bb 7008 goto out;
79787eaa 7009 } else {
66642832 7010 btrfs_abort_transaction(trans, ret);
005d6427 7011 goto out;
7bb86316 7012 }
5f39d397
CM
7013
7014 leaf = path->nodes[0];
5d4f98a2
YZ
7015 item_size = btrfs_item_size_nr(leaf, extent_slot);
7016#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7017 if (item_size < sizeof(*ei)) {
7018 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
7019 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7020 0);
005d6427 7021 if (ret < 0) {
66642832 7022 btrfs_abort_transaction(trans, ret);
005d6427
DS
7023 goto out;
7024 }
5d4f98a2 7025
b3b4aa74 7026 btrfs_release_path(path);
5d4f98a2
YZ
7027 path->leave_spinning = 1;
7028
7029 key.objectid = bytenr;
7030 key.type = BTRFS_EXTENT_ITEM_KEY;
7031 key.offset = num_bytes;
7032
7033 ret = btrfs_search_slot(trans, extent_root, &key, path,
7034 -1, 1);
7035 if (ret) {
5d163e0e
JM
7036 btrfs_err(info,
7037 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7038 ret, bytenr);
a4f78750 7039 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7040 }
005d6427 7041 if (ret < 0) {
66642832 7042 btrfs_abort_transaction(trans, ret);
005d6427
DS
7043 goto out;
7044 }
7045
5d4f98a2
YZ
7046 extent_slot = path->slots[0];
7047 leaf = path->nodes[0];
7048 item_size = btrfs_item_size_nr(leaf, extent_slot);
7049 }
7050#endif
7051 BUG_ON(item_size < sizeof(*ei));
952fccac 7052 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7053 struct btrfs_extent_item);
3173a18f
JB
7054 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7055 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7056 struct btrfs_tree_block_info *bi;
7057 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7058 bi = (struct btrfs_tree_block_info *)(ei + 1);
7059 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7060 }
56bec294 7061
5d4f98a2 7062 refs = btrfs_extent_refs(leaf, ei);
32b02538 7063 if (refs < refs_to_drop) {
5d163e0e
JM
7064 btrfs_err(info,
7065 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7066 refs_to_drop, refs, bytenr);
32b02538 7067 ret = -EINVAL;
66642832 7068 btrfs_abort_transaction(trans, ret);
32b02538
JB
7069 goto out;
7070 }
56bec294 7071 refs -= refs_to_drop;
5f39d397 7072
5d4f98a2
YZ
7073 if (refs > 0) {
7074 if (extent_op)
7075 __run_delayed_extent_op(extent_op, leaf, ei);
7076 /*
7077 * In the case of inline back ref, reference count will
7078 * be updated by remove_extent_backref
952fccac 7079 */
5d4f98a2
YZ
7080 if (iref) {
7081 BUG_ON(!found_extent);
7082 } else {
7083 btrfs_set_extent_refs(leaf, ei, refs);
7084 btrfs_mark_buffer_dirty(leaf);
7085 }
7086 if (found_extent) {
87bde3cd 7087 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7088 iref, refs_to_drop,
fcebe456 7089 is_data, &last_ref);
005d6427 7090 if (ret) {
66642832 7091 btrfs_abort_transaction(trans, ret);
005d6427
DS
7092 goto out;
7093 }
952fccac 7094 }
5d4f98a2 7095 } else {
5d4f98a2
YZ
7096 if (found_extent) {
7097 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7098 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7099 if (iref) {
7100 BUG_ON(path->slots[0] != extent_slot);
7101 } else {
7102 BUG_ON(path->slots[0] != extent_slot + 1);
7103 path->slots[0] = extent_slot;
7104 num_to_del = 2;
7105 }
78fae27e 7106 }
b9473439 7107
fcebe456 7108 last_ref = 1;
952fccac
CM
7109 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7110 num_to_del);
005d6427 7111 if (ret) {
66642832 7112 btrfs_abort_transaction(trans, ret);
005d6427
DS
7113 goto out;
7114 }
b3b4aa74 7115 btrfs_release_path(path);
21af804c 7116
5d4f98a2 7117 if (is_data) {
5b4aacef 7118 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7119 if (ret) {
66642832 7120 btrfs_abort_transaction(trans, ret);
005d6427
DS
7121 goto out;
7122 }
459931ec
CM
7123 }
7124
0b246afa 7125 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7126 if (ret) {
66642832 7127 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7128 goto out;
7129 }
7130
0b246afa 7131 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7132 if (ret) {
66642832 7133 btrfs_abort_transaction(trans, ret);
005d6427
DS
7134 goto out;
7135 }
a28ec197 7136 }
fcebe456
JB
7137 btrfs_release_path(path);
7138
79787eaa 7139out:
5caf2a00 7140 btrfs_free_path(path);
a28ec197
CM
7141 return ret;
7142}
7143
1887be66 7144/*
f0486c68 7145 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7146 * delayed ref for that extent as well. This searches the delayed ref tree for
7147 * a given extent, and if there are no other delayed refs to be processed, it
7148 * removes it from the tree.
7149 */
7150static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7151 u64 bytenr)
1887be66
CM
7152{
7153 struct btrfs_delayed_ref_head *head;
7154 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7155 int ret = 0;
1887be66
CM
7156
7157 delayed_refs = &trans->transaction->delayed_refs;
7158 spin_lock(&delayed_refs->lock);
f72ad18e 7159 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7160 if (!head)
cf93da7b 7161 goto out_delayed_unlock;
1887be66 7162
d7df2c79 7163 spin_lock(&head->lock);
0e0adbcf 7164 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7165 goto out;
7166
5d4f98a2
YZ
7167 if (head->extent_op) {
7168 if (!head->must_insert_reserved)
7169 goto out;
78a6184a 7170 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7171 head->extent_op = NULL;
7172 }
7173
1887be66
CM
7174 /*
7175 * waiting for the lock here would deadlock. If someone else has it
7176 * locked they are already in the process of dropping it anyway
7177 */
7178 if (!mutex_trylock(&head->mutex))
7179 goto out;
7180
7181 /*
7182 * at this point we have a head with no other entries. Go
7183 * ahead and process it.
7184 */
c46effa6 7185 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7186 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7187 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7188
7189 /*
7190 * we don't take a ref on the node because we're removing it from the
7191 * tree, so we just steal the ref the tree was holding.
7192 */
c3e69d58 7193 delayed_refs->num_heads--;
d7df2c79 7194 if (head->processing == 0)
c3e69d58 7195 delayed_refs->num_heads_ready--;
d7df2c79
JB
7196 head->processing = 0;
7197 spin_unlock(&head->lock);
1887be66
CM
7198 spin_unlock(&delayed_refs->lock);
7199
f0486c68
YZ
7200 BUG_ON(head->extent_op);
7201 if (head->must_insert_reserved)
7202 ret = 1;
7203
7204 mutex_unlock(&head->mutex);
d278850e 7205 btrfs_put_delayed_ref_head(head);
f0486c68 7206 return ret;
1887be66 7207out:
d7df2c79 7208 spin_unlock(&head->lock);
cf93da7b
CM
7209
7210out_delayed_unlock:
1887be66
CM
7211 spin_unlock(&delayed_refs->lock);
7212 return 0;
7213}
7214
f0486c68
YZ
7215void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7216 struct btrfs_root *root,
7217 struct extent_buffer *buf,
5581a51a 7218 u64 parent, int last_ref)
f0486c68 7219{
0b246afa 7220 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7221 int pin = 1;
f0486c68
YZ
7222 int ret;
7223
7224 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7225 int old_ref_mod, new_ref_mod;
7226
fd708b81
JB
7227 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7228 root->root_key.objectid,
7229 btrfs_header_level(buf), 0,
7230 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7231 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7232 buf->len, parent,
0b246afa
JM
7233 root->root_key.objectid,
7234 btrfs_header_level(buf),
7be07912 7235 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7236 &old_ref_mod, &new_ref_mod);
79787eaa 7237 BUG_ON(ret); /* -ENOMEM */
d7eae340 7238 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7239 }
7240
0a16c7d7 7241 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7242 struct btrfs_block_group_cache *cache;
7243
f0486c68 7244 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7245 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7246 if (!ret)
37be25bc 7247 goto out;
f0486c68
YZ
7248 }
7249
4da8b76d 7250 pin = 0;
0b246afa 7251 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7252
f0486c68 7253 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7254 pin_down_extent(fs_info, cache, buf->start,
7255 buf->len, 1);
6219872d 7256 btrfs_put_block_group(cache);
37be25bc 7257 goto out;
f0486c68
YZ
7258 }
7259
7260 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7261
7262 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7263 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7264 btrfs_put_block_group(cache);
71ff6437 7265 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7266 }
7267out:
b150a4f1 7268 if (pin)
0b246afa 7269 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7270 root->root_key.objectid);
7271
0a16c7d7
OS
7272 if (last_ref) {
7273 /*
7274 * Deleting the buffer, clear the corrupt flag since it doesn't
7275 * matter anymore.
7276 */
7277 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7278 }
f0486c68
YZ
7279}
7280
79787eaa 7281/* Can return -ENOMEM */
2ff7e61e 7282int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7283 struct btrfs_root *root,
66d7e7f0 7284 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7285 u64 owner, u64 offset)
925baedd 7286{
84f7d8e6 7287 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7288 int old_ref_mod, new_ref_mod;
925baedd
CM
7289 int ret;
7290
f5ee5c9a 7291 if (btrfs_is_testing(fs_info))
faa2dbf0 7292 return 0;
fccb84c9 7293
fd708b81
JB
7294 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7295 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7296 root_objectid, owner, offset,
7297 BTRFS_DROP_DELAYED_REF);
7298
56bec294
CM
7299 /*
7300 * tree log blocks never actually go into the extent allocation
7301 * tree, just update pinning info and exit early.
56bec294 7302 */
5d4f98a2
YZ
7303 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7304 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7305 /* unlocks the pinned mutex */
2ff7e61e 7306 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7307 old_ref_mod = new_ref_mod = 0;
56bec294 7308 ret = 0;
5d4f98a2 7309 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7310 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7311 num_bytes, parent,
7312 root_objectid, (int)owner,
7313 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7314 &old_ref_mod, &new_ref_mod);
5d4f98a2 7315 } else {
66d7e7f0 7316 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7317 num_bytes, parent,
7318 root_objectid, owner, offset,
7319 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7320 &old_ref_mod, &new_ref_mod);
56bec294 7321 }
d7eae340
OS
7322
7323 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7324 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7325
925baedd
CM
7326 return ret;
7327}
7328
817d52f8
JB
7329/*
7330 * when we wait for progress in the block group caching, its because
7331 * our allocation attempt failed at least once. So, we must sleep
7332 * and let some progress happen before we try again.
7333 *
7334 * This function will sleep at least once waiting for new free space to
7335 * show up, and then it will check the block group free space numbers
7336 * for our min num_bytes. Another option is to have it go ahead
7337 * and look in the rbtree for a free extent of a given size, but this
7338 * is a good start.
36cce922
JB
7339 *
7340 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7341 * any of the information in this block group.
817d52f8 7342 */
36cce922 7343static noinline void
817d52f8
JB
7344wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7345 u64 num_bytes)
7346{
11833d66 7347 struct btrfs_caching_control *caching_ctl;
817d52f8 7348
11833d66
YZ
7349 caching_ctl = get_caching_control(cache);
7350 if (!caching_ctl)
36cce922 7351 return;
817d52f8 7352
11833d66 7353 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7354 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7355
7356 put_caching_control(caching_ctl);
11833d66
YZ
7357}
7358
7359static noinline int
7360wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7361{
7362 struct btrfs_caching_control *caching_ctl;
36cce922 7363 int ret = 0;
11833d66
YZ
7364
7365 caching_ctl = get_caching_control(cache);
7366 if (!caching_ctl)
36cce922 7367 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7368
7369 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7370 if (cache->cached == BTRFS_CACHE_ERROR)
7371 ret = -EIO;
11833d66 7372 put_caching_control(caching_ctl);
36cce922 7373 return ret;
817d52f8
JB
7374}
7375
6ab0a202
JM
7376static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7377 [BTRFS_RAID_RAID10] = "raid10",
7378 [BTRFS_RAID_RAID1] = "raid1",
7379 [BTRFS_RAID_DUP] = "dup",
7380 [BTRFS_RAID_RAID0] = "raid0",
7381 [BTRFS_RAID_SINGLE] = "single",
7382 [BTRFS_RAID_RAID5] = "raid5",
7383 [BTRFS_RAID_RAID6] = "raid6",
7384};
7385
1b8e5df6 7386static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7387{
7388 if (type >= BTRFS_NR_RAID_TYPES)
7389 return NULL;
7390
7391 return btrfs_raid_type_names[type];
7392}
7393
817d52f8 7394enum btrfs_loop_type {
285ff5af
JB
7395 LOOP_CACHING_NOWAIT = 0,
7396 LOOP_CACHING_WAIT = 1,
7397 LOOP_ALLOC_CHUNK = 2,
7398 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7399};
7400
e570fd27
MX
7401static inline void
7402btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7403 int delalloc)
7404{
7405 if (delalloc)
7406 down_read(&cache->data_rwsem);
7407}
7408
7409static inline void
7410btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7411 int delalloc)
7412{
7413 btrfs_get_block_group(cache);
7414 if (delalloc)
7415 down_read(&cache->data_rwsem);
7416}
7417
7418static struct btrfs_block_group_cache *
7419btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7420 struct btrfs_free_cluster *cluster,
7421 int delalloc)
7422{
89771cc9 7423 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7424
e570fd27 7425 spin_lock(&cluster->refill_lock);
6719afdc
GU
7426 while (1) {
7427 used_bg = cluster->block_group;
7428 if (!used_bg)
7429 return NULL;
7430
7431 if (used_bg == block_group)
e570fd27
MX
7432 return used_bg;
7433
6719afdc 7434 btrfs_get_block_group(used_bg);
e570fd27 7435
6719afdc
GU
7436 if (!delalloc)
7437 return used_bg;
e570fd27 7438
6719afdc
GU
7439 if (down_read_trylock(&used_bg->data_rwsem))
7440 return used_bg;
e570fd27 7441
6719afdc 7442 spin_unlock(&cluster->refill_lock);
e570fd27 7443
e321f8a8
LB
7444 /* We should only have one-level nested. */
7445 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7446
6719afdc
GU
7447 spin_lock(&cluster->refill_lock);
7448 if (used_bg == cluster->block_group)
7449 return used_bg;
e570fd27 7450
6719afdc
GU
7451 up_read(&used_bg->data_rwsem);
7452 btrfs_put_block_group(used_bg);
7453 }
e570fd27
MX
7454}
7455
7456static inline void
7457btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7458 int delalloc)
7459{
7460 if (delalloc)
7461 up_read(&cache->data_rwsem);
7462 btrfs_put_block_group(cache);
7463}
7464
fec577fb
CM
7465/*
7466 * walks the btree of allocated extents and find a hole of a given size.
7467 * The key ins is changed to record the hole:
a4820398 7468 * ins->objectid == start position
62e2749e 7469 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7470 * ins->offset == the size of the hole.
fec577fb 7471 * Any available blocks before search_start are skipped.
a4820398
MX
7472 *
7473 * If there is no suitable free space, we will record the max size of
7474 * the free space extent currently.
fec577fb 7475 */
87bde3cd 7476static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7477 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7478 u64 hint_byte, struct btrfs_key *ins,
7479 u64 flags, int delalloc)
fec577fb 7480{
80eb234a 7481 int ret = 0;
0b246afa 7482 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7483 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7484 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7485 u64 search_start = 0;
a4820398 7486 u64 max_extent_size = 0;
c759c4e1 7487 u64 empty_cluster = 0;
80eb234a 7488 struct btrfs_space_info *space_info;
fa9c0d79 7489 int loop = 0;
3e72ee88 7490 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7491 bool failed_cluster_refill = false;
1cdda9b8 7492 bool failed_alloc = false;
67377734 7493 bool use_cluster = true;
60d2adbb 7494 bool have_caching_bg = false;
13a0db5a 7495 bool orig_have_caching_bg = false;
a5e681d9 7496 bool full_search = false;
fec577fb 7497
0b246afa 7498 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7499 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7500 ins->objectid = 0;
7501 ins->offset = 0;
b1a4d965 7502
71ff6437 7503 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7504
0b246afa 7505 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7506 if (!space_info) {
0b246afa 7507 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7508 return -ENOSPC;
7509 }
2552d17e 7510
67377734 7511 /*
4f4db217
JB
7512 * If our free space is heavily fragmented we may not be able to make
7513 * big contiguous allocations, so instead of doing the expensive search
7514 * for free space, simply return ENOSPC with our max_extent_size so we
7515 * can go ahead and search for a more manageable chunk.
7516 *
7517 * If our max_extent_size is large enough for our allocation simply
7518 * disable clustering since we will likely not be able to find enough
7519 * space to create a cluster and induce latency trying.
67377734 7520 */
4f4db217
JB
7521 if (unlikely(space_info->max_extent_size)) {
7522 spin_lock(&space_info->lock);
7523 if (space_info->max_extent_size &&
7524 num_bytes > space_info->max_extent_size) {
7525 ins->offset = space_info->max_extent_size;
7526 spin_unlock(&space_info->lock);
7527 return -ENOSPC;
7528 } else if (space_info->max_extent_size) {
7529 use_cluster = false;
7530 }
7531 spin_unlock(&space_info->lock);
fa9c0d79 7532 }
0f9dd46c 7533
2ff7e61e 7534 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7535 if (last_ptr) {
fa9c0d79
CM
7536 spin_lock(&last_ptr->lock);
7537 if (last_ptr->block_group)
7538 hint_byte = last_ptr->window_start;
c759c4e1
JB
7539 if (last_ptr->fragmented) {
7540 /*
7541 * We still set window_start so we can keep track of the
7542 * last place we found an allocation to try and save
7543 * some time.
7544 */
7545 hint_byte = last_ptr->window_start;
7546 use_cluster = false;
7547 }
fa9c0d79 7548 spin_unlock(&last_ptr->lock);
239b14b3 7549 }
fa9c0d79 7550
2ff7e61e 7551 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7552 search_start = max(search_start, hint_byte);
2552d17e 7553 if (search_start == hint_byte) {
0b246afa 7554 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7555 /*
7556 * we don't want to use the block group if it doesn't match our
7557 * allocation bits, or if its not cached.
ccf0e725
JB
7558 *
7559 * However if we are re-searching with an ideal block group
7560 * picked out then we don't care that the block group is cached.
817d52f8 7561 */
b6919a58 7562 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7563 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7564 down_read(&space_info->groups_sem);
44fb5511
CM
7565 if (list_empty(&block_group->list) ||
7566 block_group->ro) {
7567 /*
7568 * someone is removing this block group,
7569 * we can't jump into the have_block_group
7570 * target because our list pointers are not
7571 * valid
7572 */
7573 btrfs_put_block_group(block_group);
7574 up_read(&space_info->groups_sem);
ccf0e725 7575 } else {
3e72ee88
QW
7576 index = btrfs_bg_flags_to_raid_index(
7577 block_group->flags);
e570fd27 7578 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7579 goto have_block_group;
ccf0e725 7580 }
2552d17e 7581 } else if (block_group) {
fa9c0d79 7582 btrfs_put_block_group(block_group);
2552d17e 7583 }
42e70e7a 7584 }
2552d17e 7585search:
60d2adbb 7586 have_caching_bg = false;
3e72ee88 7587 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7588 full_search = true;
80eb234a 7589 down_read(&space_info->groups_sem);
b742bb82
YZ
7590 list_for_each_entry(block_group, &space_info->block_groups[index],
7591 list) {
6226cb0a 7592 u64 offset;
817d52f8 7593 int cached;
8a1413a2 7594
14443937
JM
7595 /* If the block group is read-only, we can skip it entirely. */
7596 if (unlikely(block_group->ro))
7597 continue;
7598
e570fd27 7599 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7600 search_start = block_group->key.objectid;
42e70e7a 7601
83a50de9
CM
7602 /*
7603 * this can happen if we end up cycling through all the
7604 * raid types, but we want to make sure we only allocate
7605 * for the proper type.
7606 */
b6919a58 7607 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7608 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7609 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7610 BTRFS_BLOCK_GROUP_RAID5 |
7611 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7612 BTRFS_BLOCK_GROUP_RAID10;
7613
7614 /*
7615 * if they asked for extra copies and this block group
7616 * doesn't provide them, bail. This does allow us to
7617 * fill raid0 from raid1.
7618 */
b6919a58 7619 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7620 goto loop;
7621 }
7622
2552d17e 7623have_block_group:
291c7d2f
JB
7624 cached = block_group_cache_done(block_group);
7625 if (unlikely(!cached)) {
a5e681d9 7626 have_caching_bg = true;
f6373bf3 7627 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7628 BUG_ON(ret < 0);
7629 ret = 0;
817d52f8
JB
7630 }
7631
36cce922
JB
7632 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7633 goto loop;
0f9dd46c 7634
0a24325e 7635 /*
062c05c4
AO
7636 * Ok we want to try and use the cluster allocator, so
7637 * lets look there
0a24325e 7638 */
c759c4e1 7639 if (last_ptr && use_cluster) {
215a63d1 7640 struct btrfs_block_group_cache *used_block_group;
8de972b4 7641 unsigned long aligned_cluster;
fa9c0d79
CM
7642 /*
7643 * the refill lock keeps out other
7644 * people trying to start a new cluster
7645 */
e570fd27
MX
7646 used_block_group = btrfs_lock_cluster(block_group,
7647 last_ptr,
7648 delalloc);
7649 if (!used_block_group)
44fb5511 7650 goto refill_cluster;
274bd4fb 7651
e570fd27
MX
7652 if (used_block_group != block_group &&
7653 (used_block_group->ro ||
7654 !block_group_bits(used_block_group, flags)))
7655 goto release_cluster;
44fb5511 7656
274bd4fb 7657 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7658 last_ptr,
7659 num_bytes,
7660 used_block_group->key.objectid,
7661 &max_extent_size);
fa9c0d79
CM
7662 if (offset) {
7663 /* we have a block, we're done */
7664 spin_unlock(&last_ptr->refill_lock);
71ff6437 7665 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7666 used_block_group,
7667 search_start, num_bytes);
215a63d1 7668 if (used_block_group != block_group) {
e570fd27
MX
7669 btrfs_release_block_group(block_group,
7670 delalloc);
215a63d1
MX
7671 block_group = used_block_group;
7672 }
fa9c0d79
CM
7673 goto checks;
7674 }
7675
274bd4fb 7676 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7677release_cluster:
062c05c4
AO
7678 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7679 * set up a new clusters, so lets just skip it
7680 * and let the allocator find whatever block
7681 * it can find. If we reach this point, we
7682 * will have tried the cluster allocator
7683 * plenty of times and not have found
7684 * anything, so we are likely way too
7685 * fragmented for the clustering stuff to find
a5f6f719
AO
7686 * anything.
7687 *
7688 * However, if the cluster is taken from the
7689 * current block group, release the cluster
7690 * first, so that we stand a better chance of
7691 * succeeding in the unclustered
7692 * allocation. */
7693 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7694 used_block_group != block_group) {
062c05c4 7695 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7696 btrfs_release_block_group(used_block_group,
7697 delalloc);
062c05c4
AO
7698 goto unclustered_alloc;
7699 }
7700
fa9c0d79
CM
7701 /*
7702 * this cluster didn't work out, free it and
7703 * start over
7704 */
7705 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7706
e570fd27
MX
7707 if (used_block_group != block_group)
7708 btrfs_release_block_group(used_block_group,
7709 delalloc);
7710refill_cluster:
a5f6f719
AO
7711 if (loop >= LOOP_NO_EMPTY_SIZE) {
7712 spin_unlock(&last_ptr->refill_lock);
7713 goto unclustered_alloc;
7714 }
7715
8de972b4
CM
7716 aligned_cluster = max_t(unsigned long,
7717 empty_cluster + empty_size,
7718 block_group->full_stripe_len);
7719
fa9c0d79 7720 /* allocate a cluster in this block group */
2ff7e61e 7721 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7722 last_ptr, search_start,
7723 num_bytes,
7724 aligned_cluster);
fa9c0d79
CM
7725 if (ret == 0) {
7726 /*
7727 * now pull our allocation out of this
7728 * cluster
7729 */
7730 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7731 last_ptr,
7732 num_bytes,
7733 search_start,
7734 &max_extent_size);
fa9c0d79
CM
7735 if (offset) {
7736 /* we found one, proceed */
7737 spin_unlock(&last_ptr->refill_lock);
71ff6437 7738 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7739 block_group, search_start,
7740 num_bytes);
fa9c0d79
CM
7741 goto checks;
7742 }
0a24325e
JB
7743 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7744 && !failed_cluster_refill) {
817d52f8
JB
7745 spin_unlock(&last_ptr->refill_lock);
7746
0a24325e 7747 failed_cluster_refill = true;
817d52f8
JB
7748 wait_block_group_cache_progress(block_group,
7749 num_bytes + empty_cluster + empty_size);
7750 goto have_block_group;
fa9c0d79 7751 }
817d52f8 7752
fa9c0d79
CM
7753 /*
7754 * at this point we either didn't find a cluster
7755 * or we weren't able to allocate a block from our
7756 * cluster. Free the cluster we've been trying
7757 * to use, and go to the next block group
7758 */
0a24325e 7759 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7760 spin_unlock(&last_ptr->refill_lock);
0a24325e 7761 goto loop;
fa9c0d79
CM
7762 }
7763
062c05c4 7764unclustered_alloc:
c759c4e1
JB
7765 /*
7766 * We are doing an unclustered alloc, set the fragmented flag so
7767 * we don't bother trying to setup a cluster again until we get
7768 * more space.
7769 */
7770 if (unlikely(last_ptr)) {
7771 spin_lock(&last_ptr->lock);
7772 last_ptr->fragmented = 1;
7773 spin_unlock(&last_ptr->lock);
7774 }
0c9b36e0
LB
7775 if (cached) {
7776 struct btrfs_free_space_ctl *ctl =
7777 block_group->free_space_ctl;
7778
7779 spin_lock(&ctl->tree_lock);
7780 if (ctl->free_space <
7781 num_bytes + empty_cluster + empty_size) {
7782 if (ctl->free_space > max_extent_size)
7783 max_extent_size = ctl->free_space;
7784 spin_unlock(&ctl->tree_lock);
7785 goto loop;
7786 }
7787 spin_unlock(&ctl->tree_lock);
a5f6f719 7788 }
a5f6f719 7789
6226cb0a 7790 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7791 num_bytes, empty_size,
7792 &max_extent_size);
1cdda9b8
JB
7793 /*
7794 * If we didn't find a chunk, and we haven't failed on this
7795 * block group before, and this block group is in the middle of
7796 * caching and we are ok with waiting, then go ahead and wait
7797 * for progress to be made, and set failed_alloc to true.
7798 *
7799 * If failed_alloc is true then we've already waited on this
7800 * block group once and should move on to the next block group.
7801 */
7802 if (!offset && !failed_alloc && !cached &&
7803 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7804 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7805 num_bytes + empty_size);
7806 failed_alloc = true;
817d52f8 7807 goto have_block_group;
1cdda9b8
JB
7808 } else if (!offset) {
7809 goto loop;
817d52f8 7810 }
fa9c0d79 7811checks:
0b246afa 7812 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7813
2552d17e
JB
7814 /* move on to the next group */
7815 if (search_start + num_bytes >
215a63d1
MX
7816 block_group->key.objectid + block_group->key.offset) {
7817 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7818 goto loop;
6226cb0a 7819 }
f5a31e16 7820
f0486c68 7821 if (offset < search_start)
215a63d1 7822 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7823 search_start - offset);
7824 BUG_ON(offset > search_start);
2552d17e 7825
18513091
WX
7826 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7827 num_bytes, delalloc);
f0486c68 7828 if (ret == -EAGAIN) {
215a63d1 7829 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7830 goto loop;
0f9dd46c 7831 }
9cfa3e34 7832 btrfs_inc_block_group_reservations(block_group);
0b86a832 7833
f0486c68 7834 /* we are all good, lets return */
2552d17e
JB
7835 ins->objectid = search_start;
7836 ins->offset = num_bytes;
d2fb3437 7837
71ff6437 7838 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7839 search_start, num_bytes);
e570fd27 7840 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7841 break;
7842loop:
0a24325e 7843 failed_cluster_refill = false;
1cdda9b8 7844 failed_alloc = false;
3e72ee88
QW
7845 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7846 index);
e570fd27 7847 btrfs_release_block_group(block_group, delalloc);
14443937 7848 cond_resched();
2552d17e
JB
7849 }
7850 up_read(&space_info->groups_sem);
7851
13a0db5a 7852 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7853 && !orig_have_caching_bg)
7854 orig_have_caching_bg = true;
7855
60d2adbb
MX
7856 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7857 goto search;
7858
b742bb82
YZ
7859 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7860 goto search;
7861
285ff5af 7862 /*
ccf0e725
JB
7863 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7864 * caching kthreads as we move along
817d52f8
JB
7865 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7866 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7867 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7868 * again
fa9c0d79 7869 */
723bda20 7870 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7871 index = 0;
a5e681d9
JB
7872 if (loop == LOOP_CACHING_NOWAIT) {
7873 /*
7874 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7875 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7876 * full search through.
7877 */
13a0db5a 7878 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7879 loop = LOOP_CACHING_WAIT;
7880 else
7881 loop = LOOP_ALLOC_CHUNK;
7882 } else {
7883 loop++;
7884 }
7885
817d52f8 7886 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7887 struct btrfs_trans_handle *trans;
f017f15f
WS
7888 int exist = 0;
7889
7890 trans = current->journal_info;
7891 if (trans)
7892 exist = 1;
7893 else
7894 trans = btrfs_join_transaction(root);
00361589 7895
00361589
JB
7896 if (IS_ERR(trans)) {
7897 ret = PTR_ERR(trans);
7898 goto out;
7899 }
7900
2ff7e61e 7901 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7902 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7903
7904 /*
7905 * If we can't allocate a new chunk we've already looped
7906 * through at least once, move on to the NO_EMPTY_SIZE
7907 * case.
7908 */
7909 if (ret == -ENOSPC)
7910 loop = LOOP_NO_EMPTY_SIZE;
7911
ea658bad
JB
7912 /*
7913 * Do not bail out on ENOSPC since we
7914 * can do more things.
7915 */
00361589 7916 if (ret < 0 && ret != -ENOSPC)
66642832 7917 btrfs_abort_transaction(trans, ret);
00361589
JB
7918 else
7919 ret = 0;
f017f15f 7920 if (!exist)
3a45bb20 7921 btrfs_end_transaction(trans);
00361589 7922 if (ret)
ea658bad 7923 goto out;
2552d17e
JB
7924 }
7925
723bda20 7926 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7927 /*
7928 * Don't loop again if we already have no empty_size and
7929 * no empty_cluster.
7930 */
7931 if (empty_size == 0 &&
7932 empty_cluster == 0) {
7933 ret = -ENOSPC;
7934 goto out;
7935 }
723bda20
JB
7936 empty_size = 0;
7937 empty_cluster = 0;
fa9c0d79 7938 }
723bda20
JB
7939
7940 goto search;
2552d17e
JB
7941 } else if (!ins->objectid) {
7942 ret = -ENOSPC;
d82a6f1d 7943 } else if (ins->objectid) {
c759c4e1
JB
7944 if (!use_cluster && last_ptr) {
7945 spin_lock(&last_ptr->lock);
7946 last_ptr->window_start = ins->objectid;
7947 spin_unlock(&last_ptr->lock);
7948 }
80eb234a 7949 ret = 0;
be744175 7950 }
79787eaa 7951out:
4f4db217
JB
7952 if (ret == -ENOSPC) {
7953 spin_lock(&space_info->lock);
7954 space_info->max_extent_size = max_extent_size;
7955 spin_unlock(&space_info->lock);
a4820398 7956 ins->offset = max_extent_size;
4f4db217 7957 }
0f70abe2 7958 return ret;
fec577fb 7959}
ec44a35c 7960
ab8d0fc4
JM
7961static void dump_space_info(struct btrfs_fs_info *fs_info,
7962 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7963 int dump_block_groups)
0f9dd46c
JB
7964{
7965 struct btrfs_block_group_cache *cache;
b742bb82 7966 int index = 0;
0f9dd46c 7967
9ed74f2d 7968 spin_lock(&info->lock);
ab8d0fc4
JM
7969 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7970 info->flags,
4136135b
LB
7971 info->total_bytes - btrfs_space_info_used(info, true),
7972 info->full ? "" : "not ");
ab8d0fc4
JM
7973 btrfs_info(fs_info,
7974 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7975 info->total_bytes, info->bytes_used, info->bytes_pinned,
7976 info->bytes_reserved, info->bytes_may_use,
7977 info->bytes_readonly);
9ed74f2d
JB
7978 spin_unlock(&info->lock);
7979
7980 if (!dump_block_groups)
7981 return;
0f9dd46c 7982
80eb234a 7983 down_read(&info->groups_sem);
b742bb82
YZ
7984again:
7985 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7986 spin_lock(&cache->lock);
ab8d0fc4
JM
7987 btrfs_info(fs_info,
7988 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7989 cache->key.objectid, cache->key.offset,
7990 btrfs_block_group_used(&cache->item), cache->pinned,
7991 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7992 btrfs_dump_free_space(cache, bytes);
7993 spin_unlock(&cache->lock);
7994 }
b742bb82
YZ
7995 if (++index < BTRFS_NR_RAID_TYPES)
7996 goto again;
80eb234a 7997 up_read(&info->groups_sem);
0f9dd46c 7998}
e8569813 7999
6f47c706
NB
8000/*
8001 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8002 * hole that is at least as big as @num_bytes.
8003 *
8004 * @root - The root that will contain this extent
8005 *
8006 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8007 * is used for accounting purposes. This value differs
8008 * from @num_bytes only in the case of compressed extents.
8009 *
8010 * @num_bytes - Number of bytes to allocate on-disk.
8011 *
8012 * @min_alloc_size - Indicates the minimum amount of space that the
8013 * allocator should try to satisfy. In some cases
8014 * @num_bytes may be larger than what is required and if
8015 * the filesystem is fragmented then allocation fails.
8016 * However, the presence of @min_alloc_size gives a
8017 * chance to try and satisfy the smaller allocation.
8018 *
8019 * @empty_size - A hint that you plan on doing more COW. This is the
8020 * size in bytes the allocator should try to find free
8021 * next to the block it returns. This is just a hint and
8022 * may be ignored by the allocator.
8023 *
8024 * @hint_byte - Hint to the allocator to start searching above the byte
8025 * address passed. It might be ignored.
8026 *
8027 * @ins - This key is modified to record the found hole. It will
8028 * have the following values:
8029 * ins->objectid == start position
8030 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8031 * ins->offset == the size of the hole.
8032 *
8033 * @is_data - Boolean flag indicating whether an extent is
8034 * allocated for data (true) or metadata (false)
8035 *
8036 * @delalloc - Boolean flag indicating whether this allocation is for
8037 * delalloc or not. If 'true' data_rwsem of block groups
8038 * is going to be acquired.
8039 *
8040 *
8041 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8042 * case -ENOSPC is returned then @ins->offset will contain the size of the
8043 * largest available hole the allocator managed to find.
8044 */
18513091 8045int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8046 u64 num_bytes, u64 min_alloc_size,
8047 u64 empty_size, u64 hint_byte,
e570fd27 8048 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8049{
ab8d0fc4 8050 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8051 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8052 u64 flags;
fec577fb 8053 int ret;
925baedd 8054
1b86826d 8055 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8056again:
0b246afa 8057 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8058 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8059 hint_byte, ins, flags, delalloc);
9cfa3e34 8060 if (!ret && !is_data) {
ab8d0fc4 8061 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8062 } else if (ret == -ENOSPC) {
a4820398
MX
8063 if (!final_tried && ins->offset) {
8064 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8065 num_bytes = round_down(num_bytes,
0b246afa 8066 fs_info->sectorsize);
9e622d6b 8067 num_bytes = max(num_bytes, min_alloc_size);
18513091 8068 ram_bytes = num_bytes;
9e622d6b
MX
8069 if (num_bytes == min_alloc_size)
8070 final_tried = true;
8071 goto again;
ab8d0fc4 8072 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8073 struct btrfs_space_info *sinfo;
8074
ab8d0fc4 8075 sinfo = __find_space_info(fs_info, flags);
0b246afa 8076 btrfs_err(fs_info,
5d163e0e
JM
8077 "allocation failed flags %llu, wanted %llu",
8078 flags, num_bytes);
53804280 8079 if (sinfo)
ab8d0fc4 8080 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8081 }
925baedd 8082 }
0f9dd46c
JB
8083
8084 return ret;
e6dcd2dc
CM
8085}
8086
2ff7e61e 8087static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8088 u64 start, u64 len,
8089 int pin, int delalloc)
65b51a00 8090{
0f9dd46c 8091 struct btrfs_block_group_cache *cache;
1f3c79a2 8092 int ret = 0;
0f9dd46c 8093
0b246afa 8094 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8095 if (!cache) {
0b246afa
JM
8096 btrfs_err(fs_info, "Unable to find block group for %llu",
8097 start);
0f9dd46c
JB
8098 return -ENOSPC;
8099 }
1f3c79a2 8100
e688b725 8101 if (pin)
2ff7e61e 8102 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8103 else {
0b246afa 8104 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8105 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8106 btrfs_add_free_space(cache, start, len);
4824f1f4 8107 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8108 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8109 }
31193213 8110
fa9c0d79 8111 btrfs_put_block_group(cache);
e6dcd2dc
CM
8112 return ret;
8113}
8114
2ff7e61e 8115int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8116 u64 start, u64 len, int delalloc)
e688b725 8117{
2ff7e61e 8118 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8119}
8120
2ff7e61e 8121int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8122 u64 start, u64 len)
8123{
2ff7e61e 8124 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8125}
8126
5d4f98a2 8127static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8128 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8129 u64 parent, u64 root_objectid,
8130 u64 flags, u64 owner, u64 offset,
8131 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8132{
8133 int ret;
e6dcd2dc 8134 struct btrfs_extent_item *extent_item;
5d4f98a2 8135 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8136 struct btrfs_path *path;
5d4f98a2
YZ
8137 struct extent_buffer *leaf;
8138 int type;
8139 u32 size;
26b8003f 8140
5d4f98a2
YZ
8141 if (parent > 0)
8142 type = BTRFS_SHARED_DATA_REF_KEY;
8143 else
8144 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8145
5d4f98a2 8146 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8147
8148 path = btrfs_alloc_path();
db5b493a
TI
8149 if (!path)
8150 return -ENOMEM;
47e4bb98 8151
b9473439 8152 path->leave_spinning = 1;
5d4f98a2
YZ
8153 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8154 ins, size);
79787eaa
JM
8155 if (ret) {
8156 btrfs_free_path(path);
8157 return ret;
8158 }
0f9dd46c 8159
5d4f98a2
YZ
8160 leaf = path->nodes[0];
8161 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8162 struct btrfs_extent_item);
5d4f98a2
YZ
8163 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8164 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8165 btrfs_set_extent_flags(leaf, extent_item,
8166 flags | BTRFS_EXTENT_FLAG_DATA);
8167
8168 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8169 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8170 if (parent > 0) {
8171 struct btrfs_shared_data_ref *ref;
8172 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8173 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8174 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8175 } else {
8176 struct btrfs_extent_data_ref *ref;
8177 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8178 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8179 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8180 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8181 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8182 }
47e4bb98
CM
8183
8184 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8185 btrfs_free_path(path);
f510cfec 8186
1e144fb8
OS
8187 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8188 ins->offset);
8189 if (ret)
8190 return ret;
8191
6202df69 8192 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8193 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8194 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8195 ins->objectid, ins->offset);
f5947066
CM
8196 BUG();
8197 }
71ff6437 8198 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8199 return ret;
8200}
8201
5d4f98a2 8202static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8203 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8204 u64 parent, u64 root_objectid,
8205 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8206 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8207{
8208 int ret;
5d4f98a2
YZ
8209 struct btrfs_extent_item *extent_item;
8210 struct btrfs_tree_block_info *block_info;
8211 struct btrfs_extent_inline_ref *iref;
8212 struct btrfs_path *path;
8213 struct extent_buffer *leaf;
3173a18f 8214 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8215 u64 num_bytes = ins->offset;
0b246afa 8216 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8217
8218 if (!skinny_metadata)
8219 size += sizeof(*block_info);
1c2308f8 8220
5d4f98a2 8221 path = btrfs_alloc_path();
857cc2fc 8222 if (!path) {
2ff7e61e 8223 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8224 fs_info->nodesize);
d8926bb3 8225 return -ENOMEM;
857cc2fc 8226 }
56bec294 8227
5d4f98a2
YZ
8228 path->leave_spinning = 1;
8229 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8230 ins, size);
79787eaa 8231 if (ret) {
dd825259 8232 btrfs_free_path(path);
2ff7e61e 8233 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8234 fs_info->nodesize);
79787eaa
JM
8235 return ret;
8236 }
5d4f98a2
YZ
8237
8238 leaf = path->nodes[0];
8239 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8240 struct btrfs_extent_item);
8241 btrfs_set_extent_refs(leaf, extent_item, 1);
8242 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8243 btrfs_set_extent_flags(leaf, extent_item,
8244 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8245
3173a18f
JB
8246 if (skinny_metadata) {
8247 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8248 num_bytes = fs_info->nodesize;
3173a18f
JB
8249 } else {
8250 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8251 btrfs_set_tree_block_key(leaf, block_info, key);
8252 btrfs_set_tree_block_level(leaf, block_info, level);
8253 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8254 }
5d4f98a2 8255
5d4f98a2
YZ
8256 if (parent > 0) {
8257 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8258 btrfs_set_extent_inline_ref_type(leaf, iref,
8259 BTRFS_SHARED_BLOCK_REF_KEY);
8260 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8261 } else {
8262 btrfs_set_extent_inline_ref_type(leaf, iref,
8263 BTRFS_TREE_BLOCK_REF_KEY);
8264 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8265 }
8266
8267 btrfs_mark_buffer_dirty(leaf);
8268 btrfs_free_path(path);
8269
1e144fb8
OS
8270 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8271 num_bytes);
8272 if (ret)
8273 return ret;
8274
6202df69
JM
8275 ret = update_block_group(trans, fs_info, ins->objectid,
8276 fs_info->nodesize, 1);
79787eaa 8277 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8278 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8279 ins->objectid, ins->offset);
5d4f98a2
YZ
8280 BUG();
8281 }
0be5dc67 8282
71ff6437 8283 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8284 fs_info->nodesize);
5d4f98a2
YZ
8285 return ret;
8286}
8287
8288int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8289 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8290 u64 offset, u64 ram_bytes,
8291 struct btrfs_key *ins)
5d4f98a2 8292{
84f7d8e6 8293 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8294 int ret;
8295
84f7d8e6 8296 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8297
fd708b81
JB
8298 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8299 root->root_key.objectid, owner, offset,
8300 BTRFS_ADD_DELAYED_EXTENT);
8301
0b246afa 8302 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8303 ins->offset, 0,
8304 root->root_key.objectid, owner,
7be07912
OS
8305 offset, ram_bytes,
8306 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8307 return ret;
8308}
e02119d5
CM
8309
8310/*
8311 * this is used by the tree logging recovery code. It records that
8312 * an extent has been allocated and makes sure to clear the free
8313 * space cache bits as well
8314 */
5d4f98a2 8315int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8316 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8317 u64 root_objectid, u64 owner, u64 offset,
8318 struct btrfs_key *ins)
e02119d5
CM
8319{
8320 int ret;
8321 struct btrfs_block_group_cache *block_group;
ed7a6948 8322 struct btrfs_space_info *space_info;
11833d66 8323
8c2a1a30
JB
8324 /*
8325 * Mixed block groups will exclude before processing the log so we only
01327610 8326 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8327 */
0b246afa 8328 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8329 ret = __exclude_logged_extent(fs_info, ins->objectid,
8330 ins->offset);
b50c6e25 8331 if (ret)
8c2a1a30 8332 return ret;
11833d66
YZ
8333 }
8334
0b246afa 8335 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8336 if (!block_group)
8337 return -EINVAL;
8338
ed7a6948
WX
8339 space_info = block_group->space_info;
8340 spin_lock(&space_info->lock);
8341 spin_lock(&block_group->lock);
8342 space_info->bytes_reserved += ins->offset;
8343 block_group->reserved += ins->offset;
8344 spin_unlock(&block_group->lock);
8345 spin_unlock(&space_info->lock);
8346
2ff7e61e 8347 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8348 0, owner, offset, ins, 1);
b50c6e25 8349 btrfs_put_block_group(block_group);
e02119d5
CM
8350 return ret;
8351}
8352
48a3b636
ES
8353static struct extent_buffer *
8354btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8355 u64 bytenr, int level)
65b51a00 8356{
0b246afa 8357 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8358 struct extent_buffer *buf;
8359
2ff7e61e 8360 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8361 if (IS_ERR(buf))
8362 return buf;
8363
65b51a00 8364 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8365 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8366 btrfs_tree_lock(buf);
7c302b49 8367 clean_tree_block(fs_info, buf);
3083ee2e 8368 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8369
8370 btrfs_set_lock_blocking(buf);
4db8c528 8371 set_extent_buffer_uptodate(buf);
b4ce94de 8372
d0c803c4 8373 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8374 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8375 /*
8376 * we allow two log transactions at a time, use different
8377 * EXENT bit to differentiate dirty pages.
8378 */
656f30db 8379 if (buf->log_index == 0)
8cef4e16
YZ
8380 set_extent_dirty(&root->dirty_log_pages, buf->start,
8381 buf->start + buf->len - 1, GFP_NOFS);
8382 else
8383 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8384 buf->start + buf->len - 1);
d0c803c4 8385 } else {
656f30db 8386 buf->log_index = -1;
d0c803c4 8387 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8388 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8389 }
64c12921 8390 trans->dirty = true;
b4ce94de 8391 /* this returns a buffer locked for blocking */
65b51a00
CM
8392 return buf;
8393}
8394
f0486c68
YZ
8395static struct btrfs_block_rsv *
8396use_block_rsv(struct btrfs_trans_handle *trans,
8397 struct btrfs_root *root, u32 blocksize)
8398{
0b246afa 8399 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8400 struct btrfs_block_rsv *block_rsv;
0b246afa 8401 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8402 int ret;
d88033db 8403 bool global_updated = false;
f0486c68
YZ
8404
8405 block_rsv = get_block_rsv(trans, root);
8406
b586b323
MX
8407 if (unlikely(block_rsv->size == 0))
8408 goto try_reserve;
d88033db 8409again:
f0486c68
YZ
8410 ret = block_rsv_use_bytes(block_rsv, blocksize);
8411 if (!ret)
8412 return block_rsv;
8413
b586b323
MX
8414 if (block_rsv->failfast)
8415 return ERR_PTR(ret);
8416
d88033db
MX
8417 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8418 global_updated = true;
0b246afa 8419 update_global_block_rsv(fs_info);
d88033db
MX
8420 goto again;
8421 }
8422
0b246afa 8423 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8424 static DEFINE_RATELIMIT_STATE(_rs,
8425 DEFAULT_RATELIMIT_INTERVAL * 10,
8426 /*DEFAULT_RATELIMIT_BURST*/ 1);
8427 if (__ratelimit(&_rs))
8428 WARN(1, KERN_DEBUG
efe120a0 8429 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8430 }
8431try_reserve:
8432 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8433 BTRFS_RESERVE_NO_FLUSH);
8434 if (!ret)
8435 return block_rsv;
8436 /*
8437 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8438 * the global reserve if its space type is the same as the global
8439 * reservation.
b586b323 8440 */
5881cfc9
MX
8441 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8442 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8443 ret = block_rsv_use_bytes(global_rsv, blocksize);
8444 if (!ret)
8445 return global_rsv;
8446 }
8447 return ERR_PTR(ret);
f0486c68
YZ
8448}
8449
8c2a3ca2
JB
8450static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8451 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8452{
8453 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8454 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8455}
8456
fec577fb 8457/*
f0486c68 8458 * finds a free extent and does all the dirty work required for allocation
67b7859e 8459 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8460 */
4d75f8a9 8461struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8462 struct btrfs_root *root,
8463 u64 parent, u64 root_objectid,
8464 const struct btrfs_disk_key *key,
8465 int level, u64 hint,
8466 u64 empty_size)
fec577fb 8467{
0b246afa 8468 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8469 struct btrfs_key ins;
f0486c68 8470 struct btrfs_block_rsv *block_rsv;
5f39d397 8471 struct extent_buffer *buf;
67b7859e 8472 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8473 u64 flags = 0;
8474 int ret;
0b246afa
JM
8475 u32 blocksize = fs_info->nodesize;
8476 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8477
05653ef3 8478#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8479 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8480 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8481 level);
faa2dbf0
JB
8482 if (!IS_ERR(buf))
8483 root->alloc_bytenr += blocksize;
8484 return buf;
8485 }
05653ef3 8486#endif
fccb84c9 8487
f0486c68
YZ
8488 block_rsv = use_block_rsv(trans, root, blocksize);
8489 if (IS_ERR(block_rsv))
8490 return ERR_CAST(block_rsv);
8491
18513091 8492 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8493 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8494 if (ret)
8495 goto out_unuse;
55c69072 8496
fe864576 8497 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8498 if (IS_ERR(buf)) {
8499 ret = PTR_ERR(buf);
8500 goto out_free_reserved;
8501 }
f0486c68
YZ
8502
8503 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8504 if (parent == 0)
8505 parent = ins.objectid;
8506 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8507 } else
8508 BUG_ON(parent > 0);
8509
8510 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8511 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8512 if (!extent_op) {
8513 ret = -ENOMEM;
8514 goto out_free_buf;
8515 }
f0486c68
YZ
8516 if (key)
8517 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8518 else
8519 memset(&extent_op->key, 0, sizeof(extent_op->key));
8520 extent_op->flags_to_set = flags;
35b3ad50
DS
8521 extent_op->update_key = skinny_metadata ? false : true;
8522 extent_op->update_flags = true;
8523 extent_op->is_data = false;
b1c79e09 8524 extent_op->level = level;
f0486c68 8525
fd708b81
JB
8526 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8527 root_objectid, level, 0,
8528 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8529 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8530 ins.offset, parent,
8531 root_objectid, level,
67b7859e 8532 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8533 extent_op, NULL, NULL);
67b7859e
OS
8534 if (ret)
8535 goto out_free_delayed;
f0486c68 8536 }
fec577fb 8537 return buf;
67b7859e
OS
8538
8539out_free_delayed:
8540 btrfs_free_delayed_extent_op(extent_op);
8541out_free_buf:
8542 free_extent_buffer(buf);
8543out_free_reserved:
2ff7e61e 8544 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8545out_unuse:
0b246afa 8546 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8547 return ERR_PTR(ret);
fec577fb 8548}
a28ec197 8549
2c47e605
YZ
8550struct walk_control {
8551 u64 refs[BTRFS_MAX_LEVEL];
8552 u64 flags[BTRFS_MAX_LEVEL];
8553 struct btrfs_key update_progress;
8554 int stage;
8555 int level;
8556 int shared_level;
8557 int update_ref;
8558 int keep_locks;
1c4850e2
YZ
8559 int reada_slot;
8560 int reada_count;
66d7e7f0 8561 int for_reloc;
2c47e605
YZ
8562};
8563
8564#define DROP_REFERENCE 1
8565#define UPDATE_BACKREF 2
8566
1c4850e2
YZ
8567static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8568 struct btrfs_root *root,
8569 struct walk_control *wc,
8570 struct btrfs_path *path)
6407bf6d 8571{
0b246afa 8572 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8573 u64 bytenr;
8574 u64 generation;
8575 u64 refs;
94fcca9f 8576 u64 flags;
5d4f98a2 8577 u32 nritems;
1c4850e2
YZ
8578 struct btrfs_key key;
8579 struct extent_buffer *eb;
6407bf6d 8580 int ret;
1c4850e2
YZ
8581 int slot;
8582 int nread = 0;
6407bf6d 8583
1c4850e2
YZ
8584 if (path->slots[wc->level] < wc->reada_slot) {
8585 wc->reada_count = wc->reada_count * 2 / 3;
8586 wc->reada_count = max(wc->reada_count, 2);
8587 } else {
8588 wc->reada_count = wc->reada_count * 3 / 2;
8589 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8590 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8591 }
7bb86316 8592
1c4850e2
YZ
8593 eb = path->nodes[wc->level];
8594 nritems = btrfs_header_nritems(eb);
bd56b302 8595
1c4850e2
YZ
8596 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8597 if (nread >= wc->reada_count)
8598 break;
bd56b302 8599
2dd3e67b 8600 cond_resched();
1c4850e2
YZ
8601 bytenr = btrfs_node_blockptr(eb, slot);
8602 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8603
1c4850e2
YZ
8604 if (slot == path->slots[wc->level])
8605 goto reada;
5d4f98a2 8606
1c4850e2
YZ
8607 if (wc->stage == UPDATE_BACKREF &&
8608 generation <= root->root_key.offset)
bd56b302
CM
8609 continue;
8610
94fcca9f 8611 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8612 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8613 wc->level - 1, 1, &refs,
8614 &flags);
79787eaa
JM
8615 /* We don't care about errors in readahead. */
8616 if (ret < 0)
8617 continue;
94fcca9f
YZ
8618 BUG_ON(refs == 0);
8619
1c4850e2 8620 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8621 if (refs == 1)
8622 goto reada;
bd56b302 8623
94fcca9f
YZ
8624 if (wc->level == 1 &&
8625 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8626 continue;
1c4850e2
YZ
8627 if (!wc->update_ref ||
8628 generation <= root->root_key.offset)
8629 continue;
8630 btrfs_node_key_to_cpu(eb, &key, slot);
8631 ret = btrfs_comp_cpu_keys(&key,
8632 &wc->update_progress);
8633 if (ret < 0)
8634 continue;
94fcca9f
YZ
8635 } else {
8636 if (wc->level == 1 &&
8637 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8638 continue;
6407bf6d 8639 }
1c4850e2 8640reada:
2ff7e61e 8641 readahead_tree_block(fs_info, bytenr);
1c4850e2 8642 nread++;
20524f02 8643 }
1c4850e2 8644 wc->reada_slot = slot;
20524f02 8645}
2c47e605 8646
f82d02d9 8647/*
2c016dc2 8648 * helper to process tree block while walking down the tree.
2c47e605 8649 *
2c47e605
YZ
8650 * when wc->stage == UPDATE_BACKREF, this function updates
8651 * back refs for pointers in the block.
8652 *
8653 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8654 */
2c47e605 8655static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8656 struct btrfs_root *root,
2c47e605 8657 struct btrfs_path *path,
94fcca9f 8658 struct walk_control *wc, int lookup_info)
f82d02d9 8659{
2ff7e61e 8660 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8661 int level = wc->level;
8662 struct extent_buffer *eb = path->nodes[level];
2c47e605 8663 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8664 int ret;
8665
2c47e605
YZ
8666 if (wc->stage == UPDATE_BACKREF &&
8667 btrfs_header_owner(eb) != root->root_key.objectid)
8668 return 1;
f82d02d9 8669
2c47e605
YZ
8670 /*
8671 * when reference count of tree block is 1, it won't increase
8672 * again. once full backref flag is set, we never clear it.
8673 */
94fcca9f
YZ
8674 if (lookup_info &&
8675 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8676 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8677 BUG_ON(!path->locks[level]);
2ff7e61e 8678 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8679 eb->start, level, 1,
2c47e605
YZ
8680 &wc->refs[level],
8681 &wc->flags[level]);
79787eaa
JM
8682 BUG_ON(ret == -ENOMEM);
8683 if (ret)
8684 return ret;
2c47e605
YZ
8685 BUG_ON(wc->refs[level] == 0);
8686 }
5d4f98a2 8687
2c47e605
YZ
8688 if (wc->stage == DROP_REFERENCE) {
8689 if (wc->refs[level] > 1)
8690 return 1;
f82d02d9 8691
2c47e605 8692 if (path->locks[level] && !wc->keep_locks) {
bd681513 8693 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8694 path->locks[level] = 0;
8695 }
8696 return 0;
8697 }
f82d02d9 8698
2c47e605
YZ
8699 /* wc->stage == UPDATE_BACKREF */
8700 if (!(wc->flags[level] & flag)) {
8701 BUG_ON(!path->locks[level]);
e339a6b0 8702 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8703 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8704 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8705 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8706 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8707 eb->len, flag,
8708 btrfs_header_level(eb), 0);
79787eaa 8709 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8710 wc->flags[level] |= flag;
8711 }
8712
8713 /*
8714 * the block is shared by multiple trees, so it's not good to
8715 * keep the tree lock
8716 */
8717 if (path->locks[level] && level > 0) {
bd681513 8718 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8719 path->locks[level] = 0;
8720 }
8721 return 0;
8722}
8723
1c4850e2 8724/*
2c016dc2 8725 * helper to process tree block pointer.
1c4850e2
YZ
8726 *
8727 * when wc->stage == DROP_REFERENCE, this function checks
8728 * reference count of the block pointed to. if the block
8729 * is shared and we need update back refs for the subtree
8730 * rooted at the block, this function changes wc->stage to
8731 * UPDATE_BACKREF. if the block is shared and there is no
8732 * need to update back, this function drops the reference
8733 * to the block.
8734 *
8735 * NOTE: return value 1 means we should stop walking down.
8736 */
8737static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8738 struct btrfs_root *root,
8739 struct btrfs_path *path,
94fcca9f 8740 struct walk_control *wc, int *lookup_info)
1c4850e2 8741{
0b246afa 8742 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8743 u64 bytenr;
8744 u64 generation;
8745 u64 parent;
8746 u32 blocksize;
8747 struct btrfs_key key;
581c1760 8748 struct btrfs_key first_key;
1c4850e2
YZ
8749 struct extent_buffer *next;
8750 int level = wc->level;
8751 int reada = 0;
8752 int ret = 0;
1152651a 8753 bool need_account = false;
1c4850e2
YZ
8754
8755 generation = btrfs_node_ptr_generation(path->nodes[level],
8756 path->slots[level]);
8757 /*
8758 * if the lower level block was created before the snapshot
8759 * was created, we know there is no need to update back refs
8760 * for the subtree
8761 */
8762 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8763 generation <= root->root_key.offset) {
8764 *lookup_info = 1;
1c4850e2 8765 return 1;
94fcca9f 8766 }
1c4850e2
YZ
8767
8768 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8769 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8770 path->slots[level]);
0b246afa 8771 blocksize = fs_info->nodesize;
1c4850e2 8772
0b246afa 8773 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8774 if (!next) {
2ff7e61e 8775 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8776 if (IS_ERR(next))
8777 return PTR_ERR(next);
8778
b2aaaa3b
JB
8779 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8780 level - 1);
1c4850e2
YZ
8781 reada = 1;
8782 }
8783 btrfs_tree_lock(next);
8784 btrfs_set_lock_blocking(next);
8785
2ff7e61e 8786 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8787 &wc->refs[level - 1],
8788 &wc->flags[level - 1]);
4867268c
JB
8789 if (ret < 0)
8790 goto out_unlock;
79787eaa 8791
c2cf52eb 8792 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8793 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8794 ret = -EIO;
8795 goto out_unlock;
c2cf52eb 8796 }
94fcca9f 8797 *lookup_info = 0;
1c4850e2 8798
94fcca9f 8799 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8800 if (wc->refs[level - 1] > 1) {
1152651a 8801 need_account = true;
94fcca9f
YZ
8802 if (level == 1 &&
8803 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8804 goto skip;
8805
1c4850e2
YZ
8806 if (!wc->update_ref ||
8807 generation <= root->root_key.offset)
8808 goto skip;
8809
8810 btrfs_node_key_to_cpu(path->nodes[level], &key,
8811 path->slots[level]);
8812 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8813 if (ret < 0)
8814 goto skip;
8815
8816 wc->stage = UPDATE_BACKREF;
8817 wc->shared_level = level - 1;
8818 }
94fcca9f
YZ
8819 } else {
8820 if (level == 1 &&
8821 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8822 goto skip;
1c4850e2
YZ
8823 }
8824
b9fab919 8825 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8826 btrfs_tree_unlock(next);
8827 free_extent_buffer(next);
8828 next = NULL;
94fcca9f 8829 *lookup_info = 1;
1c4850e2
YZ
8830 }
8831
8832 if (!next) {
8833 if (reada && level == 1)
8834 reada_walk_down(trans, root, wc, path);
581c1760
QW
8835 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8836 &first_key);
64c043de
LB
8837 if (IS_ERR(next)) {
8838 return PTR_ERR(next);
8839 } else if (!extent_buffer_uptodate(next)) {
416bc658 8840 free_extent_buffer(next);
97d9a8a4 8841 return -EIO;
416bc658 8842 }
1c4850e2
YZ
8843 btrfs_tree_lock(next);
8844 btrfs_set_lock_blocking(next);
8845 }
8846
8847 level--;
4867268c
JB
8848 ASSERT(level == btrfs_header_level(next));
8849 if (level != btrfs_header_level(next)) {
8850 btrfs_err(root->fs_info, "mismatched level");
8851 ret = -EIO;
8852 goto out_unlock;
8853 }
1c4850e2
YZ
8854 path->nodes[level] = next;
8855 path->slots[level] = 0;
bd681513 8856 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8857 wc->level = level;
8858 if (wc->level == 1)
8859 wc->reada_slot = 0;
8860 return 0;
8861skip:
8862 wc->refs[level - 1] = 0;
8863 wc->flags[level - 1] = 0;
94fcca9f
YZ
8864 if (wc->stage == DROP_REFERENCE) {
8865 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8866 parent = path->nodes[level]->start;
8867 } else {
4867268c 8868 ASSERT(root->root_key.objectid ==
94fcca9f 8869 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8870 if (root->root_key.objectid !=
8871 btrfs_header_owner(path->nodes[level])) {
8872 btrfs_err(root->fs_info,
8873 "mismatched block owner");
8874 ret = -EIO;
8875 goto out_unlock;
8876 }
94fcca9f
YZ
8877 parent = 0;
8878 }
1c4850e2 8879
1152651a 8880 if (need_account) {
33d1f05c
QW
8881 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8882 generation, level - 1);
1152651a 8883 if (ret) {
0b246afa 8884 btrfs_err_rl(fs_info,
5d163e0e
JM
8885 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8886 ret);
1152651a
MF
8887 }
8888 }
84f7d8e6 8889 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8890 parent, root->root_key.objectid,
8891 level - 1, 0);
4867268c
JB
8892 if (ret)
8893 goto out_unlock;
1c4850e2 8894 }
4867268c
JB
8895
8896 *lookup_info = 1;
8897 ret = 1;
8898
8899out_unlock:
1c4850e2
YZ
8900 btrfs_tree_unlock(next);
8901 free_extent_buffer(next);
4867268c
JB
8902
8903 return ret;
1c4850e2
YZ
8904}
8905
2c47e605 8906/*
2c016dc2 8907 * helper to process tree block while walking up the tree.
2c47e605
YZ
8908 *
8909 * when wc->stage == DROP_REFERENCE, this function drops
8910 * reference count on the block.
8911 *
8912 * when wc->stage == UPDATE_BACKREF, this function changes
8913 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8914 * to UPDATE_BACKREF previously while processing the block.
8915 *
8916 * NOTE: return value 1 means we should stop walking up.
8917 */
8918static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8919 struct btrfs_root *root,
8920 struct btrfs_path *path,
8921 struct walk_control *wc)
8922{
0b246afa 8923 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8924 int ret;
2c47e605
YZ
8925 int level = wc->level;
8926 struct extent_buffer *eb = path->nodes[level];
8927 u64 parent = 0;
8928
8929 if (wc->stage == UPDATE_BACKREF) {
8930 BUG_ON(wc->shared_level < level);
8931 if (level < wc->shared_level)
8932 goto out;
8933
2c47e605
YZ
8934 ret = find_next_key(path, level + 1, &wc->update_progress);
8935 if (ret > 0)
8936 wc->update_ref = 0;
8937
8938 wc->stage = DROP_REFERENCE;
8939 wc->shared_level = -1;
8940 path->slots[level] = 0;
8941
8942 /*
8943 * check reference count again if the block isn't locked.
8944 * we should start walking down the tree again if reference
8945 * count is one.
8946 */
8947 if (!path->locks[level]) {
8948 BUG_ON(level == 0);
8949 btrfs_tree_lock(eb);
8950 btrfs_set_lock_blocking(eb);
bd681513 8951 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8952
2ff7e61e 8953 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8954 eb->start, level, 1,
2c47e605
YZ
8955 &wc->refs[level],
8956 &wc->flags[level]);
79787eaa
JM
8957 if (ret < 0) {
8958 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8959 path->locks[level] = 0;
79787eaa
JM
8960 return ret;
8961 }
2c47e605
YZ
8962 BUG_ON(wc->refs[level] == 0);
8963 if (wc->refs[level] == 1) {
bd681513 8964 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8965 path->locks[level] = 0;
2c47e605
YZ
8966 return 1;
8967 }
f82d02d9 8968 }
2c47e605 8969 }
f82d02d9 8970
2c47e605
YZ
8971 /* wc->stage == DROP_REFERENCE */
8972 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8973
2c47e605
YZ
8974 if (wc->refs[level] == 1) {
8975 if (level == 0) {
8976 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8977 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8978 else
e339a6b0 8979 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8980 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8981 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8982 if (ret) {
0b246afa 8983 btrfs_err_rl(fs_info,
5d163e0e
JM
8984 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8985 ret);
1152651a 8986 }
2c47e605
YZ
8987 }
8988 /* make block locked assertion in clean_tree_block happy */
8989 if (!path->locks[level] &&
8990 btrfs_header_generation(eb) == trans->transid) {
8991 btrfs_tree_lock(eb);
8992 btrfs_set_lock_blocking(eb);
bd681513 8993 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8994 }
7c302b49 8995 clean_tree_block(fs_info, eb);
2c47e605
YZ
8996 }
8997
8998 if (eb == root->node) {
8999 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9000 parent = eb->start;
9001 else
9002 BUG_ON(root->root_key.objectid !=
9003 btrfs_header_owner(eb));
9004 } else {
9005 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9006 parent = path->nodes[level + 1]->start;
9007 else
9008 BUG_ON(root->root_key.objectid !=
9009 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 9010 }
f82d02d9 9011
5581a51a 9012 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9013out:
9014 wc->refs[level] = 0;
9015 wc->flags[level] = 0;
f0486c68 9016 return 0;
2c47e605
YZ
9017}
9018
9019static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9020 struct btrfs_root *root,
9021 struct btrfs_path *path,
9022 struct walk_control *wc)
9023{
2c47e605 9024 int level = wc->level;
94fcca9f 9025 int lookup_info = 1;
2c47e605
YZ
9026 int ret;
9027
9028 while (level >= 0) {
94fcca9f 9029 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9030 if (ret > 0)
9031 break;
9032
9033 if (level == 0)
9034 break;
9035
7a7965f8
YZ
9036 if (path->slots[level] >=
9037 btrfs_header_nritems(path->nodes[level]))
9038 break;
9039
94fcca9f 9040 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9041 if (ret > 0) {
9042 path->slots[level]++;
9043 continue;
90d2c51d
MX
9044 } else if (ret < 0)
9045 return ret;
1c4850e2 9046 level = wc->level;
f82d02d9 9047 }
f82d02d9
YZ
9048 return 0;
9049}
9050
d397712b 9051static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9052 struct btrfs_root *root,
f82d02d9 9053 struct btrfs_path *path,
2c47e605 9054 struct walk_control *wc, int max_level)
20524f02 9055{
2c47e605 9056 int level = wc->level;
20524f02 9057 int ret;
9f3a7427 9058
2c47e605
YZ
9059 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9060 while (level < max_level && path->nodes[level]) {
9061 wc->level = level;
9062 if (path->slots[level] + 1 <
9063 btrfs_header_nritems(path->nodes[level])) {
9064 path->slots[level]++;
20524f02
CM
9065 return 0;
9066 } else {
2c47e605
YZ
9067 ret = walk_up_proc(trans, root, path, wc);
9068 if (ret > 0)
9069 return 0;
bd56b302 9070
2c47e605 9071 if (path->locks[level]) {
bd681513
CM
9072 btrfs_tree_unlock_rw(path->nodes[level],
9073 path->locks[level]);
2c47e605 9074 path->locks[level] = 0;
f82d02d9 9075 }
2c47e605
YZ
9076 free_extent_buffer(path->nodes[level]);
9077 path->nodes[level] = NULL;
9078 level++;
20524f02
CM
9079 }
9080 }
9081 return 1;
9082}
9083
9aca1d51 9084/*
2c47e605
YZ
9085 * drop a subvolume tree.
9086 *
9087 * this function traverses the tree freeing any blocks that only
9088 * referenced by the tree.
9089 *
9090 * when a shared tree block is found. this function decreases its
9091 * reference count by one. if update_ref is true, this function
9092 * also make sure backrefs for the shared block and all lower level
9093 * blocks are properly updated.
9d1a2a3a
DS
9094 *
9095 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9096 */
2c536799 9097int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9098 struct btrfs_block_rsv *block_rsv, int update_ref,
9099 int for_reloc)
20524f02 9100{
ab8d0fc4 9101 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9102 struct btrfs_path *path;
2c47e605 9103 struct btrfs_trans_handle *trans;
ab8d0fc4 9104 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9105 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9106 struct walk_control *wc;
9107 struct btrfs_key key;
9108 int err = 0;
9109 int ret;
9110 int level;
d29a9f62 9111 bool root_dropped = false;
20524f02 9112
ab8d0fc4 9113 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9114
5caf2a00 9115 path = btrfs_alloc_path();
cb1b69f4
TI
9116 if (!path) {
9117 err = -ENOMEM;
9118 goto out;
9119 }
20524f02 9120
2c47e605 9121 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9122 if (!wc) {
9123 btrfs_free_path(path);
cb1b69f4
TI
9124 err = -ENOMEM;
9125 goto out;
38a1a919 9126 }
2c47e605 9127
a22285a6 9128 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9129 if (IS_ERR(trans)) {
9130 err = PTR_ERR(trans);
9131 goto out_free;
9132 }
98d5dc13 9133
3fd0a558
YZ
9134 if (block_rsv)
9135 trans->block_rsv = block_rsv;
2c47e605 9136
9f3a7427 9137 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9138 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9139 path->nodes[level] = btrfs_lock_root_node(root);
9140 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9141 path->slots[level] = 0;
bd681513 9142 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9143 memset(&wc->update_progress, 0,
9144 sizeof(wc->update_progress));
9f3a7427 9145 } else {
9f3a7427 9146 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9147 memcpy(&wc->update_progress, &key,
9148 sizeof(wc->update_progress));
9149
6702ed49 9150 level = root_item->drop_level;
2c47e605 9151 BUG_ON(level == 0);
6702ed49 9152 path->lowest_level = level;
2c47e605
YZ
9153 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9154 path->lowest_level = 0;
9155 if (ret < 0) {
9156 err = ret;
79787eaa 9157 goto out_end_trans;
9f3a7427 9158 }
1c4850e2 9159 WARN_ON(ret > 0);
2c47e605 9160
7d9eb12c
CM
9161 /*
9162 * unlock our path, this is safe because only this
9163 * function is allowed to delete this snapshot
9164 */
5d4f98a2 9165 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9166
9167 level = btrfs_header_level(root->node);
9168 while (1) {
9169 btrfs_tree_lock(path->nodes[level]);
9170 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9171 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9172
2ff7e61e 9173 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9174 path->nodes[level]->start,
3173a18f 9175 level, 1, &wc->refs[level],
2c47e605 9176 &wc->flags[level]);
79787eaa
JM
9177 if (ret < 0) {
9178 err = ret;
9179 goto out_end_trans;
9180 }
2c47e605
YZ
9181 BUG_ON(wc->refs[level] == 0);
9182
9183 if (level == root_item->drop_level)
9184 break;
9185
9186 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9187 path->locks[level] = 0;
2c47e605
YZ
9188 WARN_ON(wc->refs[level] != 1);
9189 level--;
9190 }
9f3a7427 9191 }
2c47e605
YZ
9192
9193 wc->level = level;
9194 wc->shared_level = -1;
9195 wc->stage = DROP_REFERENCE;
9196 wc->update_ref = update_ref;
9197 wc->keep_locks = 0;
66d7e7f0 9198 wc->for_reloc = for_reloc;
0b246afa 9199 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9200
d397712b 9201 while (1) {
9d1a2a3a 9202
2c47e605
YZ
9203 ret = walk_down_tree(trans, root, path, wc);
9204 if (ret < 0) {
9205 err = ret;
20524f02 9206 break;
2c47e605 9207 }
9aca1d51 9208
2c47e605
YZ
9209 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9210 if (ret < 0) {
9211 err = ret;
20524f02 9212 break;
2c47e605
YZ
9213 }
9214
9215 if (ret > 0) {
9216 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9217 break;
9218 }
2c47e605
YZ
9219
9220 if (wc->stage == DROP_REFERENCE) {
9221 level = wc->level;
9222 btrfs_node_key(path->nodes[level],
9223 &root_item->drop_progress,
9224 path->slots[level]);
9225 root_item->drop_level = level;
9226 }
9227
9228 BUG_ON(wc->level == 0);
3a45bb20 9229 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9230 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9231 ret = btrfs_update_root(trans, tree_root,
9232 &root->root_key,
9233 root_item);
79787eaa 9234 if (ret) {
66642832 9235 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9236 err = ret;
9237 goto out_end_trans;
9238 }
2c47e605 9239
3a45bb20 9240 btrfs_end_transaction_throttle(trans);
2ff7e61e 9241 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9242 btrfs_debug(fs_info,
9243 "drop snapshot early exit");
3c8f2422
JB
9244 err = -EAGAIN;
9245 goto out_free;
9246 }
9247
a22285a6 9248 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9249 if (IS_ERR(trans)) {
9250 err = PTR_ERR(trans);
9251 goto out_free;
9252 }
3fd0a558
YZ
9253 if (block_rsv)
9254 trans->block_rsv = block_rsv;
c3e69d58 9255 }
20524f02 9256 }
b3b4aa74 9257 btrfs_release_path(path);
79787eaa
JM
9258 if (err)
9259 goto out_end_trans;
2c47e605 9260
1cd5447e 9261 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9262 if (ret) {
66642832 9263 btrfs_abort_transaction(trans, ret);
e19182c0 9264 err = ret;
79787eaa
JM
9265 goto out_end_trans;
9266 }
2c47e605 9267
76dda93c 9268 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9269 ret = btrfs_find_root(tree_root, &root->root_key, path,
9270 NULL, NULL);
79787eaa 9271 if (ret < 0) {
66642832 9272 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9273 err = ret;
9274 goto out_end_trans;
9275 } else if (ret > 0) {
84cd948c
JB
9276 /* if we fail to delete the orphan item this time
9277 * around, it'll get picked up the next time.
9278 *
9279 * The most common failure here is just -ENOENT.
9280 */
9281 btrfs_del_orphan_item(trans, tree_root,
9282 root->root_key.objectid);
76dda93c
YZ
9283 }
9284 }
9285
27cdeb70 9286 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9287 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9288 } else {
9289 free_extent_buffer(root->node);
9290 free_extent_buffer(root->commit_root);
b0feb9d9 9291 btrfs_put_fs_root(root);
76dda93c 9292 }
d29a9f62 9293 root_dropped = true;
79787eaa 9294out_end_trans:
3a45bb20 9295 btrfs_end_transaction_throttle(trans);
79787eaa 9296out_free:
2c47e605 9297 kfree(wc);
5caf2a00 9298 btrfs_free_path(path);
cb1b69f4 9299out:
d29a9f62
JB
9300 /*
9301 * So if we need to stop dropping the snapshot for whatever reason we
9302 * need to make sure to add it back to the dead root list so that we
9303 * keep trying to do the work later. This also cleans up roots if we
9304 * don't have it in the radix (like when we recover after a power fail
9305 * or unmount) so we don't leak memory.
9306 */
897ca819 9307 if (!for_reloc && !root_dropped)
d29a9f62 9308 btrfs_add_dead_root(root);
90515e7f 9309 if (err && err != -EAGAIN)
ab8d0fc4 9310 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9311 return err;
20524f02 9312}
9078a3e1 9313
2c47e605
YZ
9314/*
9315 * drop subtree rooted at tree block 'node'.
9316 *
9317 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9318 * only used by relocation code
2c47e605 9319 */
f82d02d9
YZ
9320int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9321 struct btrfs_root *root,
9322 struct extent_buffer *node,
9323 struct extent_buffer *parent)
9324{
0b246afa 9325 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9326 struct btrfs_path *path;
2c47e605 9327 struct walk_control *wc;
f82d02d9
YZ
9328 int level;
9329 int parent_level;
9330 int ret = 0;
9331 int wret;
9332
2c47e605
YZ
9333 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9334
f82d02d9 9335 path = btrfs_alloc_path();
db5b493a
TI
9336 if (!path)
9337 return -ENOMEM;
f82d02d9 9338
2c47e605 9339 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9340 if (!wc) {
9341 btrfs_free_path(path);
9342 return -ENOMEM;
9343 }
2c47e605 9344
b9447ef8 9345 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9346 parent_level = btrfs_header_level(parent);
9347 extent_buffer_get(parent);
9348 path->nodes[parent_level] = parent;
9349 path->slots[parent_level] = btrfs_header_nritems(parent);
9350
b9447ef8 9351 btrfs_assert_tree_locked(node);
f82d02d9 9352 level = btrfs_header_level(node);
f82d02d9
YZ
9353 path->nodes[level] = node;
9354 path->slots[level] = 0;
bd681513 9355 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9356
9357 wc->refs[parent_level] = 1;
9358 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9359 wc->level = level;
9360 wc->shared_level = -1;
9361 wc->stage = DROP_REFERENCE;
9362 wc->update_ref = 0;
9363 wc->keep_locks = 1;
66d7e7f0 9364 wc->for_reloc = 1;
0b246afa 9365 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9366
9367 while (1) {
2c47e605
YZ
9368 wret = walk_down_tree(trans, root, path, wc);
9369 if (wret < 0) {
f82d02d9 9370 ret = wret;
f82d02d9 9371 break;
2c47e605 9372 }
f82d02d9 9373
2c47e605 9374 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9375 if (wret < 0)
9376 ret = wret;
9377 if (wret != 0)
9378 break;
9379 }
9380
2c47e605 9381 kfree(wc);
f82d02d9
YZ
9382 btrfs_free_path(path);
9383 return ret;
9384}
9385
6202df69 9386static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9387{
9388 u64 num_devices;
fc67c450 9389 u64 stripped;
e4d8ec0f 9390
fc67c450
ID
9391 /*
9392 * if restripe for this chunk_type is on pick target profile and
9393 * return, otherwise do the usual balance
9394 */
6202df69 9395 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9396 if (stripped)
9397 return extended_to_chunk(stripped);
e4d8ec0f 9398
6202df69 9399 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9400
fc67c450 9401 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9402 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9403 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9404
ec44a35c
CM
9405 if (num_devices == 1) {
9406 stripped |= BTRFS_BLOCK_GROUP_DUP;
9407 stripped = flags & ~stripped;
9408
9409 /* turn raid0 into single device chunks */
9410 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9411 return stripped;
9412
9413 /* turn mirroring into duplication */
9414 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9415 BTRFS_BLOCK_GROUP_RAID10))
9416 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9417 } else {
9418 /* they already had raid on here, just return */
ec44a35c
CM
9419 if (flags & stripped)
9420 return flags;
9421
9422 stripped |= BTRFS_BLOCK_GROUP_DUP;
9423 stripped = flags & ~stripped;
9424
9425 /* switch duplicated blocks with raid1 */
9426 if (flags & BTRFS_BLOCK_GROUP_DUP)
9427 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9428
e3176ca2 9429 /* this is drive concat, leave it alone */
ec44a35c 9430 }
e3176ca2 9431
ec44a35c
CM
9432 return flags;
9433}
9434
868f401a 9435static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9436{
f0486c68
YZ
9437 struct btrfs_space_info *sinfo = cache->space_info;
9438 u64 num_bytes;
199c36ea 9439 u64 min_allocable_bytes;
f0486c68 9440 int ret = -ENOSPC;
0ef3e66b 9441
199c36ea
MX
9442 /*
9443 * We need some metadata space and system metadata space for
9444 * allocating chunks in some corner cases until we force to set
9445 * it to be readonly.
9446 */
9447 if ((sinfo->flags &
9448 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9449 !force)
ee22184b 9450 min_allocable_bytes = SZ_1M;
199c36ea
MX
9451 else
9452 min_allocable_bytes = 0;
9453
f0486c68
YZ
9454 spin_lock(&sinfo->lock);
9455 spin_lock(&cache->lock);
61cfea9b
W
9456
9457 if (cache->ro) {
868f401a 9458 cache->ro++;
61cfea9b
W
9459 ret = 0;
9460 goto out;
9461 }
9462
f0486c68
YZ
9463 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9464 cache->bytes_super - btrfs_block_group_used(&cache->item);
9465
4136135b 9466 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9467 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9468 sinfo->bytes_readonly += num_bytes;
868f401a 9469 cache->ro++;
633c0aad 9470 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9471 ret = 0;
9472 }
61cfea9b 9473out:
f0486c68
YZ
9474 spin_unlock(&cache->lock);
9475 spin_unlock(&sinfo->lock);
9476 return ret;
9477}
7d9eb12c 9478
5e00f193 9479int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9480 struct btrfs_block_group_cache *cache)
c286ac48 9481
f0486c68
YZ
9482{
9483 struct btrfs_trans_handle *trans;
9484 u64 alloc_flags;
9485 int ret;
7d9eb12c 9486
1bbc621e 9487again:
5e00f193 9488 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9489 if (IS_ERR(trans))
9490 return PTR_ERR(trans);
5d4f98a2 9491
1bbc621e
CM
9492 /*
9493 * we're not allowed to set block groups readonly after the dirty
9494 * block groups cache has started writing. If it already started,
9495 * back off and let this transaction commit
9496 */
0b246afa 9497 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9498 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9499 u64 transid = trans->transid;
9500
0b246afa 9501 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9502 btrfs_end_transaction(trans);
1bbc621e 9503
2ff7e61e 9504 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9505 if (ret)
9506 return ret;
9507 goto again;
9508 }
9509
153c35b6
CM
9510 /*
9511 * if we are changing raid levels, try to allocate a corresponding
9512 * block group with the new raid level.
9513 */
0b246afa 9514 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9515 if (alloc_flags != cache->flags) {
2ff7e61e 9516 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9517 CHUNK_ALLOC_FORCE);
9518 /*
9519 * ENOSPC is allowed here, we may have enough space
9520 * already allocated at the new raid level to
9521 * carry on
9522 */
9523 if (ret == -ENOSPC)
9524 ret = 0;
9525 if (ret < 0)
9526 goto out;
9527 }
1bbc621e 9528
868f401a 9529 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9530 if (!ret)
9531 goto out;
2ff7e61e
JM
9532 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9533 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9534 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9535 if (ret < 0)
9536 goto out;
868f401a 9537 ret = inc_block_group_ro(cache, 0);
f0486c68 9538out:
2f081088 9539 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9540 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9541 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9542 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9543 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9544 }
0b246afa 9545 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9546
3a45bb20 9547 btrfs_end_transaction(trans);
f0486c68
YZ
9548 return ret;
9549}
5d4f98a2 9550
c87f08ca 9551int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9552 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9553{
2ff7e61e
JM
9554 u64 alloc_flags = get_alloc_profile(fs_info, type);
9555
9556 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9557}
9558
6d07bcec
MX
9559/*
9560 * helper to account the unused space of all the readonly block group in the
633c0aad 9561 * space_info. takes mirrors into account.
6d07bcec 9562 */
633c0aad 9563u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9564{
9565 struct btrfs_block_group_cache *block_group;
9566 u64 free_bytes = 0;
9567 int factor;
9568
01327610 9569 /* It's df, we don't care if it's racy */
633c0aad
JB
9570 if (list_empty(&sinfo->ro_bgs))
9571 return 0;
9572
9573 spin_lock(&sinfo->lock);
9574 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9575 spin_lock(&block_group->lock);
9576
9577 if (!block_group->ro) {
9578 spin_unlock(&block_group->lock);
9579 continue;
9580 }
9581
9582 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9583 BTRFS_BLOCK_GROUP_RAID10 |
9584 BTRFS_BLOCK_GROUP_DUP))
9585 factor = 2;
9586 else
9587 factor = 1;
9588
9589 free_bytes += (block_group->key.offset -
9590 btrfs_block_group_used(&block_group->item)) *
9591 factor;
9592
9593 spin_unlock(&block_group->lock);
9594 }
6d07bcec
MX
9595 spin_unlock(&sinfo->lock);
9596
9597 return free_bytes;
9598}
9599
2ff7e61e 9600void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9601{
f0486c68
YZ
9602 struct btrfs_space_info *sinfo = cache->space_info;
9603 u64 num_bytes;
9604
9605 BUG_ON(!cache->ro);
9606
9607 spin_lock(&sinfo->lock);
9608 spin_lock(&cache->lock);
868f401a
Z
9609 if (!--cache->ro) {
9610 num_bytes = cache->key.offset - cache->reserved -
9611 cache->pinned - cache->bytes_super -
9612 btrfs_block_group_used(&cache->item);
9613 sinfo->bytes_readonly -= num_bytes;
9614 list_del_init(&cache->ro_list);
9615 }
f0486c68
YZ
9616 spin_unlock(&cache->lock);
9617 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9618}
9619
ba1bf481
JB
9620/*
9621 * checks to see if its even possible to relocate this block group.
9622 *
9623 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9624 * ok to go ahead and try.
9625 */
6bccf3ab 9626int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9627{
6bccf3ab 9628 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9629 struct btrfs_block_group_cache *block_group;
9630 struct btrfs_space_info *space_info;
0b246afa 9631 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9632 struct btrfs_device *device;
6df9a95e 9633 struct btrfs_trans_handle *trans;
cdcb725c 9634 u64 min_free;
6719db6a
JB
9635 u64 dev_min = 1;
9636 u64 dev_nr = 0;
4a5e98f5 9637 u64 target;
0305bc27 9638 int debug;
cdcb725c 9639 int index;
ba1bf481
JB
9640 int full = 0;
9641 int ret = 0;
1a40e23b 9642
0b246afa 9643 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9644
0b246afa 9645 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9646
ba1bf481 9647 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9648 if (!block_group) {
9649 if (debug)
0b246afa 9650 btrfs_warn(fs_info,
0305bc27
QW
9651 "can't find block group for bytenr %llu",
9652 bytenr);
ba1bf481 9653 return -1;
0305bc27 9654 }
1a40e23b 9655
cdcb725c 9656 min_free = btrfs_block_group_used(&block_group->item);
9657
ba1bf481 9658 /* no bytes used, we're good */
cdcb725c 9659 if (!min_free)
1a40e23b
ZY
9660 goto out;
9661
ba1bf481
JB
9662 space_info = block_group->space_info;
9663 spin_lock(&space_info->lock);
17d217fe 9664
ba1bf481 9665 full = space_info->full;
17d217fe 9666
ba1bf481
JB
9667 /*
9668 * if this is the last block group we have in this space, we can't
7ce618db
CM
9669 * relocate it unless we're able to allocate a new chunk below.
9670 *
9671 * Otherwise, we need to make sure we have room in the space to handle
9672 * all of the extents from this block group. If we can, we're good
ba1bf481 9673 */
7ce618db 9674 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9675 (btrfs_space_info_used(space_info, false) + min_free <
9676 space_info->total_bytes)) {
ba1bf481
JB
9677 spin_unlock(&space_info->lock);
9678 goto out;
17d217fe 9679 }
ba1bf481 9680 spin_unlock(&space_info->lock);
ea8c2819 9681
ba1bf481
JB
9682 /*
9683 * ok we don't have enough space, but maybe we have free space on our
9684 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9685 * alloc devices and guess if we have enough space. if this block
9686 * group is going to be restriped, run checks against the target
9687 * profile instead of the current one.
ba1bf481
JB
9688 */
9689 ret = -1;
ea8c2819 9690
cdcb725c 9691 /*
9692 * index:
9693 * 0: raid10
9694 * 1: raid1
9695 * 2: dup
9696 * 3: raid0
9697 * 4: single
9698 */
0b246afa 9699 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9700 if (target) {
3e72ee88 9701 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9702 } else {
9703 /*
9704 * this is just a balance, so if we were marked as full
9705 * we know there is no space for a new chunk
9706 */
0305bc27
QW
9707 if (full) {
9708 if (debug)
0b246afa
JM
9709 btrfs_warn(fs_info,
9710 "no space to alloc new chunk for block group %llu",
9711 block_group->key.objectid);
4a5e98f5 9712 goto out;
0305bc27 9713 }
4a5e98f5 9714
3e72ee88 9715 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9716 }
9717
e6ec716f 9718 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9719 dev_min = 4;
6719db6a
JB
9720 /* Divide by 2 */
9721 min_free >>= 1;
e6ec716f 9722 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9723 dev_min = 2;
e6ec716f 9724 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9725 /* Multiply by 2 */
9726 min_free <<= 1;
e6ec716f 9727 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9728 dev_min = fs_devices->rw_devices;
47c5713f 9729 min_free = div64_u64(min_free, dev_min);
cdcb725c 9730 }
9731
6df9a95e
JB
9732 /* We need to do this so that we can look at pending chunks */
9733 trans = btrfs_join_transaction(root);
9734 if (IS_ERR(trans)) {
9735 ret = PTR_ERR(trans);
9736 goto out;
9737 }
9738
0b246afa 9739 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9740 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9741 u64 dev_offset;
56bec294 9742
ba1bf481
JB
9743 /*
9744 * check to make sure we can actually find a chunk with enough
9745 * space to fit our block group in.
9746 */
63a212ab 9747 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9748 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9749 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9750 &dev_offset, NULL);
ba1bf481 9751 if (!ret)
cdcb725c 9752 dev_nr++;
9753
9754 if (dev_nr >= dev_min)
73e48b27 9755 break;
cdcb725c 9756
ba1bf481 9757 ret = -1;
725c8463 9758 }
edbd8d4e 9759 }
0305bc27 9760 if (debug && ret == -1)
0b246afa
JM
9761 btrfs_warn(fs_info,
9762 "no space to allocate a new chunk for block group %llu",
9763 block_group->key.objectid);
9764 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9765 btrfs_end_transaction(trans);
edbd8d4e 9766out:
ba1bf481 9767 btrfs_put_block_group(block_group);
edbd8d4e
CM
9768 return ret;
9769}
9770
6bccf3ab
JM
9771static int find_first_block_group(struct btrfs_fs_info *fs_info,
9772 struct btrfs_path *path,
9773 struct btrfs_key *key)
0b86a832 9774{
6bccf3ab 9775 struct btrfs_root *root = fs_info->extent_root;
925baedd 9776 int ret = 0;
0b86a832
CM
9777 struct btrfs_key found_key;
9778 struct extent_buffer *leaf;
9779 int slot;
edbd8d4e 9780
0b86a832
CM
9781 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9782 if (ret < 0)
925baedd
CM
9783 goto out;
9784
d397712b 9785 while (1) {
0b86a832 9786 slot = path->slots[0];
edbd8d4e 9787 leaf = path->nodes[0];
0b86a832
CM
9788 if (slot >= btrfs_header_nritems(leaf)) {
9789 ret = btrfs_next_leaf(root, path);
9790 if (ret == 0)
9791 continue;
9792 if (ret < 0)
925baedd 9793 goto out;
0b86a832 9794 break;
edbd8d4e 9795 }
0b86a832 9796 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9797
0b86a832 9798 if (found_key.objectid >= key->objectid &&
925baedd 9799 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9800 struct extent_map_tree *em_tree;
9801 struct extent_map *em;
9802
9803 em_tree = &root->fs_info->mapping_tree.map_tree;
9804 read_lock(&em_tree->lock);
9805 em = lookup_extent_mapping(em_tree, found_key.objectid,
9806 found_key.offset);
9807 read_unlock(&em_tree->lock);
9808 if (!em) {
0b246afa 9809 btrfs_err(fs_info,
6fb37b75
LB
9810 "logical %llu len %llu found bg but no related chunk",
9811 found_key.objectid, found_key.offset);
9812 ret = -ENOENT;
9813 } else {
9814 ret = 0;
9815 }
187ee58c 9816 free_extent_map(em);
925baedd
CM
9817 goto out;
9818 }
0b86a832 9819 path->slots[0]++;
edbd8d4e 9820 }
925baedd 9821out:
0b86a832 9822 return ret;
edbd8d4e
CM
9823}
9824
0af3d00b
JB
9825void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9826{
9827 struct btrfs_block_group_cache *block_group;
9828 u64 last = 0;
9829
9830 while (1) {
9831 struct inode *inode;
9832
9833 block_group = btrfs_lookup_first_block_group(info, last);
9834 while (block_group) {
9835 spin_lock(&block_group->lock);
9836 if (block_group->iref)
9837 break;
9838 spin_unlock(&block_group->lock);
2ff7e61e 9839 block_group = next_block_group(info, block_group);
0af3d00b
JB
9840 }
9841 if (!block_group) {
9842 if (last == 0)
9843 break;
9844 last = 0;
9845 continue;
9846 }
9847
9848 inode = block_group->inode;
9849 block_group->iref = 0;
9850 block_group->inode = NULL;
9851 spin_unlock(&block_group->lock);
f3bca802 9852 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9853 iput(inode);
9854 last = block_group->key.objectid + block_group->key.offset;
9855 btrfs_put_block_group(block_group);
9856 }
9857}
9858
5cdd7db6
FM
9859/*
9860 * Must be called only after stopping all workers, since we could have block
9861 * group caching kthreads running, and therefore they could race with us if we
9862 * freed the block groups before stopping them.
9863 */
1a40e23b
ZY
9864int btrfs_free_block_groups(struct btrfs_fs_info *info)
9865{
9866 struct btrfs_block_group_cache *block_group;
4184ea7f 9867 struct btrfs_space_info *space_info;
11833d66 9868 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9869 struct rb_node *n;
9870
9e351cc8 9871 down_write(&info->commit_root_sem);
11833d66
YZ
9872 while (!list_empty(&info->caching_block_groups)) {
9873 caching_ctl = list_entry(info->caching_block_groups.next,
9874 struct btrfs_caching_control, list);
9875 list_del(&caching_ctl->list);
9876 put_caching_control(caching_ctl);
9877 }
9e351cc8 9878 up_write(&info->commit_root_sem);
11833d66 9879
47ab2a6c
JB
9880 spin_lock(&info->unused_bgs_lock);
9881 while (!list_empty(&info->unused_bgs)) {
9882 block_group = list_first_entry(&info->unused_bgs,
9883 struct btrfs_block_group_cache,
9884 bg_list);
9885 list_del_init(&block_group->bg_list);
9886 btrfs_put_block_group(block_group);
9887 }
9888 spin_unlock(&info->unused_bgs_lock);
9889
1a40e23b
ZY
9890 spin_lock(&info->block_group_cache_lock);
9891 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9892 block_group = rb_entry(n, struct btrfs_block_group_cache,
9893 cache_node);
1a40e23b
ZY
9894 rb_erase(&block_group->cache_node,
9895 &info->block_group_cache_tree);
01eacb27 9896 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9897 spin_unlock(&info->block_group_cache_lock);
9898
80eb234a 9899 down_write(&block_group->space_info->groups_sem);
1a40e23b 9900 list_del(&block_group->list);
80eb234a 9901 up_write(&block_group->space_info->groups_sem);
d2fb3437 9902
3c14874a
JB
9903 /*
9904 * We haven't cached this block group, which means we could
9905 * possibly have excluded extents on this block group.
9906 */
36cce922
JB
9907 if (block_group->cached == BTRFS_CACHE_NO ||
9908 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9909 free_excluded_extents(info, block_group);
3c14874a 9910
817d52f8 9911 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9912 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9913 ASSERT(list_empty(&block_group->dirty_list));
9914 ASSERT(list_empty(&block_group->io_list));
9915 ASSERT(list_empty(&block_group->bg_list));
9916 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9917 btrfs_put_block_group(block_group);
d899e052
YZ
9918
9919 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9920 }
9921 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9922
9923 /* now that all the block groups are freed, go through and
9924 * free all the space_info structs. This is only called during
9925 * the final stages of unmount, and so we know nobody is
9926 * using them. We call synchronize_rcu() once before we start,
9927 * just to be on the safe side.
9928 */
9929 synchronize_rcu();
9930
8929ecfa
YZ
9931 release_global_block_rsv(info);
9932
67871254 9933 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9934 int i;
9935
4184ea7f
CM
9936 space_info = list_entry(info->space_info.next,
9937 struct btrfs_space_info,
9938 list);
d555b6c3
JB
9939
9940 /*
9941 * Do not hide this behind enospc_debug, this is actually
9942 * important and indicates a real bug if this happens.
9943 */
9944 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9945 space_info->bytes_reserved > 0 ||
d555b6c3 9946 space_info->bytes_may_use > 0))
ab8d0fc4 9947 dump_space_info(info, space_info, 0, 0);
4184ea7f 9948 list_del(&space_info->list);
6ab0a202
JM
9949 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9950 struct kobject *kobj;
c1895442
JM
9951 kobj = space_info->block_group_kobjs[i];
9952 space_info->block_group_kobjs[i] = NULL;
9953 if (kobj) {
6ab0a202
JM
9954 kobject_del(kobj);
9955 kobject_put(kobj);
9956 }
9957 }
9958 kobject_del(&space_info->kobj);
9959 kobject_put(&space_info->kobj);
4184ea7f 9960 }
1a40e23b
ZY
9961 return 0;
9962}
9963
75cb379d
JM
9964/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9965void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9966{
9967 struct btrfs_space_info *space_info;
9968 struct raid_kobject *rkobj;
9969 LIST_HEAD(list);
9970 int index;
9971 int ret = 0;
9972
9973 spin_lock(&fs_info->pending_raid_kobjs_lock);
9974 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9975 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9976
9977 list_for_each_entry(rkobj, &list, list) {
9978 space_info = __find_space_info(fs_info, rkobj->flags);
9979 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9980
9981 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9982 "%s", get_raid_name(index));
9983 if (ret) {
9984 kobject_put(&rkobj->kobj);
9985 break;
9986 }
9987 }
9988 if (ret)
9989 btrfs_warn(fs_info,
9990 "failed to add kobject for block cache, ignoring");
9991}
9992
c434d21c 9993static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9994{
c434d21c 9995 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9996 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9997 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9998 bool first = false;
b742bb82
YZ
9999
10000 down_write(&space_info->groups_sem);
ed55b6ac
JM
10001 if (list_empty(&space_info->block_groups[index]))
10002 first = true;
10003 list_add_tail(&cache->list, &space_info->block_groups[index]);
10004 up_write(&space_info->groups_sem);
10005
10006 if (first) {
75cb379d
JM
10007 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10008 if (!rkobj) {
10009 btrfs_warn(cache->fs_info,
10010 "couldn't alloc memory for raid level kobject");
10011 return;
6ab0a202 10012 }
75cb379d
JM
10013 rkobj->flags = cache->flags;
10014 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10015
10016 spin_lock(&fs_info->pending_raid_kobjs_lock);
10017 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10018 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10019 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10020 }
b742bb82
YZ
10021}
10022
920e4a58 10023static struct btrfs_block_group_cache *
2ff7e61e
JM
10024btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10025 u64 start, u64 size)
920e4a58
MX
10026{
10027 struct btrfs_block_group_cache *cache;
10028
10029 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10030 if (!cache)
10031 return NULL;
10032
10033 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10034 GFP_NOFS);
10035 if (!cache->free_space_ctl) {
10036 kfree(cache);
10037 return NULL;
10038 }
10039
10040 cache->key.objectid = start;
10041 cache->key.offset = size;
10042 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10043
0b246afa 10044 cache->fs_info = fs_info;
e4ff5fb5 10045 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10046 set_free_space_tree_thresholds(cache);
10047
920e4a58
MX
10048 atomic_set(&cache->count, 1);
10049 spin_lock_init(&cache->lock);
e570fd27 10050 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10051 INIT_LIST_HEAD(&cache->list);
10052 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10053 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10054 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10055 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10056 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10057 btrfs_init_free_space_ctl(cache);
04216820 10058 atomic_set(&cache->trimming, 0);
a5ed9182 10059 mutex_init(&cache->free_space_lock);
0966a7b1 10060 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10061
10062 return cache;
10063}
10064
5b4aacef 10065int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10066{
10067 struct btrfs_path *path;
10068 int ret;
9078a3e1 10069 struct btrfs_block_group_cache *cache;
6324fbf3 10070 struct btrfs_space_info *space_info;
9078a3e1
CM
10071 struct btrfs_key key;
10072 struct btrfs_key found_key;
5f39d397 10073 struct extent_buffer *leaf;
0af3d00b
JB
10074 int need_clear = 0;
10075 u64 cache_gen;
49303381
LB
10076 u64 feature;
10077 int mixed;
10078
10079 feature = btrfs_super_incompat_flags(info->super_copy);
10080 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10081
9078a3e1 10082 key.objectid = 0;
0b86a832 10083 key.offset = 0;
962a298f 10084 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10085 path = btrfs_alloc_path();
10086 if (!path)
10087 return -ENOMEM;
e4058b54 10088 path->reada = READA_FORWARD;
9078a3e1 10089
0b246afa
JM
10090 cache_gen = btrfs_super_cache_generation(info->super_copy);
10091 if (btrfs_test_opt(info, SPACE_CACHE) &&
10092 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10093 need_clear = 1;
0b246afa 10094 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10095 need_clear = 1;
0af3d00b 10096
d397712b 10097 while (1) {
6bccf3ab 10098 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10099 if (ret > 0)
10100 break;
0b86a832
CM
10101 if (ret != 0)
10102 goto error;
920e4a58 10103
5f39d397
CM
10104 leaf = path->nodes[0];
10105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10106
2ff7e61e 10107 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10108 found_key.offset);
9078a3e1 10109 if (!cache) {
0b86a832 10110 ret = -ENOMEM;
f0486c68 10111 goto error;
9078a3e1 10112 }
96303081 10113
cf7c1ef6
LB
10114 if (need_clear) {
10115 /*
10116 * When we mount with old space cache, we need to
10117 * set BTRFS_DC_CLEAR and set dirty flag.
10118 *
10119 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10120 * truncate the old free space cache inode and
10121 * setup a new one.
10122 * b) Setting 'dirty flag' makes sure that we flush
10123 * the new space cache info onto disk.
10124 */
0b246afa 10125 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10126 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10127 }
0af3d00b 10128
5f39d397
CM
10129 read_extent_buffer(leaf, &cache->item,
10130 btrfs_item_ptr_offset(leaf, path->slots[0]),
10131 sizeof(cache->item));
920e4a58 10132 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10133 if (!mixed &&
10134 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10135 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10136 btrfs_err(info,
10137"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10138 cache->key.objectid);
10139 ret = -EINVAL;
10140 goto error;
10141 }
0b86a832 10142
9078a3e1 10143 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10144 btrfs_release_path(path);
34d52cb6 10145
3c14874a
JB
10146 /*
10147 * We need to exclude the super stripes now so that the space
10148 * info has super bytes accounted for, otherwise we'll think
10149 * we have more space than we actually do.
10150 */
2ff7e61e 10151 ret = exclude_super_stripes(info, cache);
835d974f
JB
10152 if (ret) {
10153 /*
10154 * We may have excluded something, so call this just in
10155 * case.
10156 */
2ff7e61e 10157 free_excluded_extents(info, cache);
920e4a58 10158 btrfs_put_block_group(cache);
835d974f
JB
10159 goto error;
10160 }
3c14874a 10161
817d52f8
JB
10162 /*
10163 * check for two cases, either we are full, and therefore
10164 * don't need to bother with the caching work since we won't
10165 * find any space, or we are empty, and we can just add all
10166 * the space in and be done with it. This saves us _alot_ of
10167 * time, particularly in the full case.
10168 */
10169 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10170 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10171 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10172 free_excluded_extents(info, cache);
817d52f8 10173 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10174 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10175 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10176 add_new_free_space(cache, info,
817d52f8
JB
10177 found_key.objectid,
10178 found_key.objectid +
10179 found_key.offset);
2ff7e61e 10180 free_excluded_extents(info, cache);
817d52f8 10181 }
96b5179d 10182
0b246afa 10183 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10184 if (ret) {
10185 btrfs_remove_free_space_cache(cache);
10186 btrfs_put_block_group(cache);
10187 goto error;
10188 }
10189
0b246afa 10190 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10191 update_space_info(info, cache->flags, found_key.offset,
10192 btrfs_block_group_used(&cache->item),
10193 cache->bytes_super, &space_info);
8c579fe7 10194
6324fbf3 10195 cache->space_info = space_info;
1b2da372 10196
c434d21c 10197 link_block_group(cache);
0f9dd46c 10198
0b246afa 10199 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10200 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10201 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10202 } else if (btrfs_block_group_used(&cache->item) == 0) {
10203 spin_lock(&info->unused_bgs_lock);
10204 /* Should always be true but just in case. */
10205 if (list_empty(&cache->bg_list)) {
10206 btrfs_get_block_group(cache);
10207 list_add_tail(&cache->bg_list,
10208 &info->unused_bgs);
10209 }
10210 spin_unlock(&info->unused_bgs_lock);
10211 }
9078a3e1 10212 }
b742bb82 10213
0b246afa 10214 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10215 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10216 (BTRFS_BLOCK_GROUP_RAID10 |
10217 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10218 BTRFS_BLOCK_GROUP_RAID5 |
10219 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10220 BTRFS_BLOCK_GROUP_DUP)))
10221 continue;
10222 /*
10223 * avoid allocating from un-mirrored block group if there are
10224 * mirrored block groups.
10225 */
1095cc0d 10226 list_for_each_entry(cache,
10227 &space_info->block_groups[BTRFS_RAID_RAID0],
10228 list)
868f401a 10229 inc_block_group_ro(cache, 1);
1095cc0d 10230 list_for_each_entry(cache,
10231 &space_info->block_groups[BTRFS_RAID_SINGLE],
10232 list)
868f401a 10233 inc_block_group_ro(cache, 1);
9078a3e1 10234 }
f0486c68 10235
75cb379d 10236 btrfs_add_raid_kobjects(info);
f0486c68 10237 init_global_block_rsv(info);
0b86a832
CM
10238 ret = 0;
10239error:
9078a3e1 10240 btrfs_free_path(path);
0b86a832 10241 return ret;
9078a3e1 10242}
6324fbf3 10243
6c686b35 10244void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10245{
6c686b35 10246 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10247 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10248 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10249 struct btrfs_block_group_item item;
10250 struct btrfs_key key;
10251 int ret = 0;
d9a0540a 10252 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10253
d9a0540a 10254 trans->can_flush_pending_bgs = false;
47ab2a6c 10255 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10256 if (ret)
c92f6be3 10257 goto next;
ea658bad
JB
10258
10259 spin_lock(&block_group->lock);
10260 memcpy(&item, &block_group->item, sizeof(item));
10261 memcpy(&key, &block_group->key, sizeof(key));
10262 spin_unlock(&block_group->lock);
10263
10264 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10265 sizeof(item));
10266 if (ret)
66642832 10267 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10268 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10269 key.offset);
6df9a95e 10270 if (ret)
66642832 10271 btrfs_abort_transaction(trans, ret);
0b246afa 10272 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10273 /* already aborted the transaction if it failed. */
c92f6be3
FM
10274next:
10275 list_del_init(&block_group->bg_list);
ea658bad 10276 }
d9a0540a 10277 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10278}
10279
6324fbf3 10280int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10281 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10282 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10283{
6324fbf3 10284 struct btrfs_block_group_cache *cache;
0b246afa 10285 int ret;
6324fbf3 10286
0b246afa 10287 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10288
2ff7e61e 10289 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10290 if (!cache)
10291 return -ENOMEM;
34d52cb6 10292
6324fbf3 10293 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10294 btrfs_set_block_group_chunk_objectid(&cache->item,
10295 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10296 btrfs_set_block_group_flags(&cache->item, type);
10297
920e4a58 10298 cache->flags = type;
11833d66 10299 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10300 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10301 cache->needs_free_space = 1;
2ff7e61e 10302 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10303 if (ret) {
10304 /*
10305 * We may have excluded something, so call this just in
10306 * case.
10307 */
2ff7e61e 10308 free_excluded_extents(fs_info, cache);
920e4a58 10309 btrfs_put_block_group(cache);
835d974f
JB
10310 return ret;
10311 }
96303081 10312
0b246afa 10313 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10314
2ff7e61e 10315 free_excluded_extents(fs_info, cache);
11833d66 10316
d0bd4560 10317#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10318 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10319 u64 new_bytes_used = size - bytes_used;
10320
10321 bytes_used += new_bytes_used >> 1;
2ff7e61e 10322 fragment_free_space(cache);
d0bd4560
JB
10323 }
10324#endif
2e6e5183 10325 /*
2be12ef7
NB
10326 * Ensure the corresponding space_info object is created and
10327 * assigned to our block group. We want our bg to be added to the rbtree
10328 * with its ->space_info set.
2e6e5183 10329 */
2be12ef7 10330 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10331 ASSERT(cache->space_info);
2e6e5183 10332
0b246afa 10333 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10334 if (ret) {
10335 btrfs_remove_free_space_cache(cache);
10336 btrfs_put_block_group(cache);
10337 return ret;
10338 }
10339
2e6e5183
FM
10340 /*
10341 * Now that our block group has its ->space_info set and is inserted in
10342 * the rbtree, update the space info's counters.
10343 */
0b246afa 10344 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10345 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10346 cache->bytes_super, &cache->space_info);
0b246afa 10347 update_global_block_rsv(fs_info);
1b2da372 10348
c434d21c 10349 link_block_group(cache);
6324fbf3 10350
47ab2a6c 10351 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10352
0b246afa 10353 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10354 return 0;
10355}
1a40e23b 10356
10ea00f5
ID
10357static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10358{
899c81ea
ID
10359 u64 extra_flags = chunk_to_extended(flags) &
10360 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10361
de98ced9 10362 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10363 if (flags & BTRFS_BLOCK_GROUP_DATA)
10364 fs_info->avail_data_alloc_bits &= ~extra_flags;
10365 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10366 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10367 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10368 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10369 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10370}
10371
1a40e23b 10372int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10373 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10374 struct extent_map *em)
1a40e23b 10375{
6bccf3ab 10376 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10377 struct btrfs_path *path;
10378 struct btrfs_block_group_cache *block_group;
44fb5511 10379 struct btrfs_free_cluster *cluster;
0b246afa 10380 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10381 struct btrfs_key key;
0af3d00b 10382 struct inode *inode;
c1895442 10383 struct kobject *kobj = NULL;
1a40e23b 10384 int ret;
10ea00f5 10385 int index;
89a55897 10386 int factor;
4f69cb98 10387 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10388 bool remove_em;
1a40e23b 10389
6bccf3ab 10390 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10391 BUG_ON(!block_group);
c146afad 10392 BUG_ON(!block_group->ro);
1a40e23b 10393
9f7c43c9 10394 /*
10395 * Free the reserved super bytes from this block group before
10396 * remove it.
10397 */
2ff7e61e 10398 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10399 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10400 block_group->key.offset);
9f7c43c9 10401
1a40e23b 10402 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10403 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10404 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10405 BTRFS_BLOCK_GROUP_RAID1 |
10406 BTRFS_BLOCK_GROUP_RAID10))
10407 factor = 2;
10408 else
10409 factor = 1;
1a40e23b 10410
44fb5511 10411 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10412 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10413 spin_lock(&cluster->refill_lock);
10414 btrfs_return_cluster_to_free_space(block_group, cluster);
10415 spin_unlock(&cluster->refill_lock);
10416
10417 /*
10418 * make sure this block group isn't part of a metadata
10419 * allocation cluster
10420 */
0b246afa 10421 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10422 spin_lock(&cluster->refill_lock);
10423 btrfs_return_cluster_to_free_space(block_group, cluster);
10424 spin_unlock(&cluster->refill_lock);
10425
1a40e23b 10426 path = btrfs_alloc_path();
d8926bb3
MF
10427 if (!path) {
10428 ret = -ENOMEM;
10429 goto out;
10430 }
1a40e23b 10431
1bbc621e
CM
10432 /*
10433 * get the inode first so any iput calls done for the io_list
10434 * aren't the final iput (no unlinks allowed now)
10435 */
77ab86bf 10436 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10437
10438 mutex_lock(&trans->transaction->cache_write_mutex);
10439 /*
10440 * make sure our free spache cache IO is done before remove the
10441 * free space inode
10442 */
10443 spin_lock(&trans->transaction->dirty_bgs_lock);
10444 if (!list_empty(&block_group->io_list)) {
10445 list_del_init(&block_group->io_list);
10446
10447 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10448
10449 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10450 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10451 btrfs_put_block_group(block_group);
10452 spin_lock(&trans->transaction->dirty_bgs_lock);
10453 }
10454
10455 if (!list_empty(&block_group->dirty_list)) {
10456 list_del_init(&block_group->dirty_list);
10457 btrfs_put_block_group(block_group);
10458 }
10459 spin_unlock(&trans->transaction->dirty_bgs_lock);
10460 mutex_unlock(&trans->transaction->cache_write_mutex);
10461
0af3d00b 10462 if (!IS_ERR(inode)) {
73f2e545 10463 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10464 if (ret) {
10465 btrfs_add_delayed_iput(inode);
10466 goto out;
10467 }
0af3d00b
JB
10468 clear_nlink(inode);
10469 /* One for the block groups ref */
10470 spin_lock(&block_group->lock);
10471 if (block_group->iref) {
10472 block_group->iref = 0;
10473 block_group->inode = NULL;
10474 spin_unlock(&block_group->lock);
10475 iput(inode);
10476 } else {
10477 spin_unlock(&block_group->lock);
10478 }
10479 /* One for our lookup ref */
455757c3 10480 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10481 }
10482
10483 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10484 key.offset = block_group->key.objectid;
10485 key.type = 0;
10486
10487 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10488 if (ret < 0)
10489 goto out;
10490 if (ret > 0)
b3b4aa74 10491 btrfs_release_path(path);
0af3d00b
JB
10492 if (ret == 0) {
10493 ret = btrfs_del_item(trans, tree_root, path);
10494 if (ret)
10495 goto out;
b3b4aa74 10496 btrfs_release_path(path);
0af3d00b
JB
10497 }
10498
0b246afa 10499 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10500 rb_erase(&block_group->cache_node,
0b246afa 10501 &fs_info->block_group_cache_tree);
292cbd51 10502 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10503
0b246afa
JM
10504 if (fs_info->first_logical_byte == block_group->key.objectid)
10505 fs_info->first_logical_byte = (u64)-1;
10506 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10507
80eb234a 10508 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10509 /*
10510 * we must use list_del_init so people can check to see if they
10511 * are still on the list after taking the semaphore
10512 */
10513 list_del_init(&block_group->list);
6ab0a202 10514 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10515 kobj = block_group->space_info->block_group_kobjs[index];
10516 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10517 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10518 }
80eb234a 10519 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10520 if (kobj) {
10521 kobject_del(kobj);
10522 kobject_put(kobj);
10523 }
1a40e23b 10524
4f69cb98
FM
10525 if (block_group->has_caching_ctl)
10526 caching_ctl = get_caching_control(block_group);
817d52f8 10527 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10528 wait_block_group_cache_done(block_group);
4f69cb98 10529 if (block_group->has_caching_ctl) {
0b246afa 10530 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10531 if (!caching_ctl) {
10532 struct btrfs_caching_control *ctl;
10533
10534 list_for_each_entry(ctl,
0b246afa 10535 &fs_info->caching_block_groups, list)
4f69cb98
FM
10536 if (ctl->block_group == block_group) {
10537 caching_ctl = ctl;
1e4f4714 10538 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10539 break;
10540 }
10541 }
10542 if (caching_ctl)
10543 list_del_init(&caching_ctl->list);
0b246afa 10544 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10545 if (caching_ctl) {
10546 /* Once for the caching bgs list and once for us. */
10547 put_caching_control(caching_ctl);
10548 put_caching_control(caching_ctl);
10549 }
10550 }
817d52f8 10551
ce93ec54
JB
10552 spin_lock(&trans->transaction->dirty_bgs_lock);
10553 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10554 WARN_ON(1);
10555 }
10556 if (!list_empty(&block_group->io_list)) {
10557 WARN_ON(1);
ce93ec54
JB
10558 }
10559 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10560 btrfs_remove_free_space_cache(block_group);
10561
c146afad 10562 spin_lock(&block_group->space_info->lock);
75c68e9f 10563 list_del_init(&block_group->ro_list);
18d018ad 10564
0b246afa 10565 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10566 WARN_ON(block_group->space_info->total_bytes
10567 < block_group->key.offset);
10568 WARN_ON(block_group->space_info->bytes_readonly
10569 < block_group->key.offset);
10570 WARN_ON(block_group->space_info->disk_total
10571 < block_group->key.offset * factor);
10572 }
c146afad
YZ
10573 block_group->space_info->total_bytes -= block_group->key.offset;
10574 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10575 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10576
c146afad 10577 spin_unlock(&block_group->space_info->lock);
283bb197 10578
0af3d00b
JB
10579 memcpy(&key, &block_group->key, sizeof(key));
10580
34441361 10581 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10582 if (!list_empty(&em->list)) {
10583 /* We're in the transaction->pending_chunks list. */
10584 free_extent_map(em);
10585 }
04216820
FM
10586 spin_lock(&block_group->lock);
10587 block_group->removed = 1;
10588 /*
10589 * At this point trimming can't start on this block group, because we
10590 * removed the block group from the tree fs_info->block_group_cache_tree
10591 * so no one can't find it anymore and even if someone already got this
10592 * block group before we removed it from the rbtree, they have already
10593 * incremented block_group->trimming - if they didn't, they won't find
10594 * any free space entries because we already removed them all when we
10595 * called btrfs_remove_free_space_cache().
10596 *
10597 * And we must not remove the extent map from the fs_info->mapping_tree
10598 * to prevent the same logical address range and physical device space
10599 * ranges from being reused for a new block group. This is because our
10600 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10601 * completely transactionless, so while it is trimming a range the
10602 * currently running transaction might finish and a new one start,
10603 * allowing for new block groups to be created that can reuse the same
10604 * physical device locations unless we take this special care.
e33e17ee
JM
10605 *
10606 * There may also be an implicit trim operation if the file system
10607 * is mounted with -odiscard. The same protections must remain
10608 * in place until the extents have been discarded completely when
10609 * the transaction commit has completed.
04216820
FM
10610 */
10611 remove_em = (atomic_read(&block_group->trimming) == 0);
10612 /*
10613 * Make sure a trimmer task always sees the em in the pinned_chunks list
10614 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10615 * before checking block_group->removed).
10616 */
10617 if (!remove_em) {
10618 /*
10619 * Our em might be in trans->transaction->pending_chunks which
10620 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10621 * and so is the fs_info->pinned_chunks list.
10622 *
10623 * So at this point we must be holding the chunk_mutex to avoid
10624 * any races with chunk allocation (more specifically at
10625 * volumes.c:contains_pending_extent()), to ensure it always
10626 * sees the em, either in the pending_chunks list or in the
10627 * pinned_chunks list.
10628 */
0b246afa 10629 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10630 }
10631 spin_unlock(&block_group->lock);
04216820
FM
10632
10633 if (remove_em) {
10634 struct extent_map_tree *em_tree;
10635
0b246afa 10636 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10637 write_lock(&em_tree->lock);
8dbcd10f
FM
10638 /*
10639 * The em might be in the pending_chunks list, so make sure the
10640 * chunk mutex is locked, since remove_extent_mapping() will
10641 * delete us from that list.
10642 */
04216820
FM
10643 remove_extent_mapping(em_tree, em);
10644 write_unlock(&em_tree->lock);
10645 /* once for the tree */
10646 free_extent_map(em);
10647 }
10648
34441361 10649 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10650
0b246afa 10651 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10652 if (ret)
10653 goto out;
10654
fa9c0d79
CM
10655 btrfs_put_block_group(block_group);
10656 btrfs_put_block_group(block_group);
1a40e23b
ZY
10657
10658 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10659 if (ret > 0)
10660 ret = -EIO;
10661 if (ret < 0)
10662 goto out;
10663
10664 ret = btrfs_del_item(trans, root, path);
10665out:
10666 btrfs_free_path(path);
10667 return ret;
10668}
acce952b 10669
8eab77ff 10670struct btrfs_trans_handle *
7fd01182
FM
10671btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10672 const u64 chunk_offset)
8eab77ff 10673{
7fd01182
FM
10674 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10675 struct extent_map *em;
10676 struct map_lookup *map;
10677 unsigned int num_items;
10678
10679 read_lock(&em_tree->lock);
10680 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10681 read_unlock(&em_tree->lock);
10682 ASSERT(em && em->start == chunk_offset);
10683
8eab77ff 10684 /*
7fd01182
FM
10685 * We need to reserve 3 + N units from the metadata space info in order
10686 * to remove a block group (done at btrfs_remove_chunk() and at
10687 * btrfs_remove_block_group()), which are used for:
10688 *
8eab77ff
FM
10689 * 1 unit for adding the free space inode's orphan (located in the tree
10690 * of tree roots).
7fd01182
FM
10691 * 1 unit for deleting the block group item (located in the extent
10692 * tree).
10693 * 1 unit for deleting the free space item (located in tree of tree
10694 * roots).
10695 * N units for deleting N device extent items corresponding to each
10696 * stripe (located in the device tree).
10697 *
10698 * In order to remove a block group we also need to reserve units in the
10699 * system space info in order to update the chunk tree (update one or
10700 * more device items and remove one chunk item), but this is done at
10701 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10702 */
95617d69 10703 map = em->map_lookup;
7fd01182
FM
10704 num_items = 3 + map->num_stripes;
10705 free_extent_map(em);
10706
8eab77ff 10707 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10708 num_items, 1);
8eab77ff
FM
10709}
10710
47ab2a6c
JB
10711/*
10712 * Process the unused_bgs list and remove any that don't have any allocated
10713 * space inside of them.
10714 */
10715void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10716{
10717 struct btrfs_block_group_cache *block_group;
10718 struct btrfs_space_info *space_info;
47ab2a6c
JB
10719 struct btrfs_trans_handle *trans;
10720 int ret = 0;
10721
afcdd129 10722 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10723 return;
10724
10725 spin_lock(&fs_info->unused_bgs_lock);
10726 while (!list_empty(&fs_info->unused_bgs)) {
10727 u64 start, end;
e33e17ee 10728 int trimming;
47ab2a6c
JB
10729
10730 block_group = list_first_entry(&fs_info->unused_bgs,
10731 struct btrfs_block_group_cache,
10732 bg_list);
47ab2a6c 10733 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10734
10735 space_info = block_group->space_info;
10736
47ab2a6c
JB
10737 if (ret || btrfs_mixed_space_info(space_info)) {
10738 btrfs_put_block_group(block_group);
10739 continue;
10740 }
10741 spin_unlock(&fs_info->unused_bgs_lock);
10742
d5f2e33b 10743 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10744
47ab2a6c
JB
10745 /* Don't want to race with allocators so take the groups_sem */
10746 down_write(&space_info->groups_sem);
10747 spin_lock(&block_group->lock);
10748 if (block_group->reserved ||
10749 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10750 block_group->ro ||
aefbe9a6 10751 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10752 /*
10753 * We want to bail if we made new allocations or have
10754 * outstanding allocations in this block group. We do
10755 * the ro check in case balance is currently acting on
10756 * this block group.
10757 */
10758 spin_unlock(&block_group->lock);
10759 up_write(&space_info->groups_sem);
10760 goto next;
10761 }
10762 spin_unlock(&block_group->lock);
10763
10764 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10765 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10766 up_write(&space_info->groups_sem);
10767 if (ret < 0) {
10768 ret = 0;
10769 goto next;
10770 }
10771
10772 /*
10773 * Want to do this before we do anything else so we can recover
10774 * properly if we fail to join the transaction.
10775 */
7fd01182
FM
10776 trans = btrfs_start_trans_remove_block_group(fs_info,
10777 block_group->key.objectid);
47ab2a6c 10778 if (IS_ERR(trans)) {
2ff7e61e 10779 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10780 ret = PTR_ERR(trans);
10781 goto next;
10782 }
10783
10784 /*
10785 * We could have pending pinned extents for this block group,
10786 * just delete them, we don't care about them anymore.
10787 */
10788 start = block_group->key.objectid;
10789 end = start + block_group->key.offset - 1;
d4b450cd
FM
10790 /*
10791 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10792 * btrfs_finish_extent_commit(). If we are at transaction N,
10793 * another task might be running finish_extent_commit() for the
10794 * previous transaction N - 1, and have seen a range belonging
10795 * to the block group in freed_extents[] before we were able to
10796 * clear the whole block group range from freed_extents[]. This
10797 * means that task can lookup for the block group after we
10798 * unpinned it from freed_extents[] and removed it, leading to
10799 * a BUG_ON() at btrfs_unpin_extent_range().
10800 */
10801 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10802 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10803 EXTENT_DIRTY);
758eb51e 10804 if (ret) {
d4b450cd 10805 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10806 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10807 goto end_trans;
10808 }
10809 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10810 EXTENT_DIRTY);
758eb51e 10811 if (ret) {
d4b450cd 10812 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10813 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10814 goto end_trans;
10815 }
d4b450cd 10816 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10817
10818 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10819 spin_lock(&space_info->lock);
10820 spin_lock(&block_group->lock);
10821
10822 space_info->bytes_pinned -= block_group->pinned;
10823 space_info->bytes_readonly += block_group->pinned;
10824 percpu_counter_add(&space_info->total_bytes_pinned,
10825 -block_group->pinned);
47ab2a6c
JB
10826 block_group->pinned = 0;
10827
c30666d4
ZL
10828 spin_unlock(&block_group->lock);
10829 spin_unlock(&space_info->lock);
10830
e33e17ee 10831 /* DISCARD can flip during remount */
0b246afa 10832 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10833
10834 /* Implicit trim during transaction commit. */
10835 if (trimming)
10836 btrfs_get_block_group_trimming(block_group);
10837
47ab2a6c
JB
10838 /*
10839 * Btrfs_remove_chunk will abort the transaction if things go
10840 * horribly wrong.
10841 */
5b4aacef 10842 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10843 block_group->key.objectid);
e33e17ee
JM
10844
10845 if (ret) {
10846 if (trimming)
10847 btrfs_put_block_group_trimming(block_group);
10848 goto end_trans;
10849 }
10850
10851 /*
10852 * If we're not mounted with -odiscard, we can just forget
10853 * about this block group. Otherwise we'll need to wait
10854 * until transaction commit to do the actual discard.
10855 */
10856 if (trimming) {
348a0013
FM
10857 spin_lock(&fs_info->unused_bgs_lock);
10858 /*
10859 * A concurrent scrub might have added us to the list
10860 * fs_info->unused_bgs, so use a list_move operation
10861 * to add the block group to the deleted_bgs list.
10862 */
e33e17ee
JM
10863 list_move(&block_group->bg_list,
10864 &trans->transaction->deleted_bgs);
348a0013 10865 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10866 btrfs_get_block_group(block_group);
10867 }
758eb51e 10868end_trans:
3a45bb20 10869 btrfs_end_transaction(trans);
47ab2a6c 10870next:
d5f2e33b 10871 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10872 btrfs_put_block_group(block_group);
10873 spin_lock(&fs_info->unused_bgs_lock);
10874 }
10875 spin_unlock(&fs_info->unused_bgs_lock);
10876}
10877
c59021f8 10878int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10879{
10880 struct btrfs_space_info *space_info;
1aba86d6 10881 struct btrfs_super_block *disk_super;
10882 u64 features;
10883 u64 flags;
10884 int mixed = 0;
c59021f8 10885 int ret;
10886
6c41761f 10887 disk_super = fs_info->super_copy;
1aba86d6 10888 if (!btrfs_super_root(disk_super))
0dc924c5 10889 return -EINVAL;
c59021f8 10890
1aba86d6 10891 features = btrfs_super_incompat_flags(disk_super);
10892 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10893 mixed = 1;
c59021f8 10894
1aba86d6 10895 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10896 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10897 if (ret)
1aba86d6 10898 goto out;
c59021f8 10899
1aba86d6 10900 if (mixed) {
10901 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10902 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10903 } else {
10904 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10905 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10906 if (ret)
10907 goto out;
10908
10909 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10910 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10911 }
10912out:
c59021f8 10913 return ret;
10914}
10915
2ff7e61e
JM
10916int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10917 u64 start, u64 end)
acce952b 10918{
2ff7e61e 10919 return unpin_extent_range(fs_info, start, end, false);
acce952b 10920}
10921
499f377f
JM
10922/*
10923 * It used to be that old block groups would be left around forever.
10924 * Iterating over them would be enough to trim unused space. Since we
10925 * now automatically remove them, we also need to iterate over unallocated
10926 * space.
10927 *
10928 * We don't want a transaction for this since the discard may take a
10929 * substantial amount of time. We don't require that a transaction be
10930 * running, but we do need to take a running transaction into account
10931 * to ensure that we're not discarding chunks that were released in
10932 * the current transaction.
10933 *
10934 * Holding the chunks lock will prevent other threads from allocating
10935 * or releasing chunks, but it won't prevent a running transaction
10936 * from committing and releasing the memory that the pending chunks
10937 * list head uses. For that, we need to take a reference to the
10938 * transaction.
10939 */
10940static int btrfs_trim_free_extents(struct btrfs_device *device,
10941 u64 minlen, u64 *trimmed)
10942{
10943 u64 start = 0, len = 0;
10944 int ret;
10945
10946 *trimmed = 0;
10947
10948 /* Not writeable = nothing to do. */
ebbede42 10949 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10950 return 0;
10951
10952 /* No free space = nothing to do. */
10953 if (device->total_bytes <= device->bytes_used)
10954 return 0;
10955
10956 ret = 0;
10957
10958 while (1) {
fb456252 10959 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10960 struct btrfs_transaction *trans;
10961 u64 bytes;
10962
10963 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10964 if (ret)
10965 return ret;
10966
10967 down_read(&fs_info->commit_root_sem);
10968
10969 spin_lock(&fs_info->trans_lock);
10970 trans = fs_info->running_transaction;
10971 if (trans)
9b64f57d 10972 refcount_inc(&trans->use_count);
499f377f
JM
10973 spin_unlock(&fs_info->trans_lock);
10974
10975 ret = find_free_dev_extent_start(trans, device, minlen, start,
10976 &start, &len);
10977 if (trans)
10978 btrfs_put_transaction(trans);
10979
10980 if (ret) {
10981 up_read(&fs_info->commit_root_sem);
10982 mutex_unlock(&fs_info->chunk_mutex);
10983 if (ret == -ENOSPC)
10984 ret = 0;
10985 break;
10986 }
10987
10988 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10989 up_read(&fs_info->commit_root_sem);
10990 mutex_unlock(&fs_info->chunk_mutex);
10991
10992 if (ret)
10993 break;
10994
10995 start += len;
10996 *trimmed += bytes;
10997
10998 if (fatal_signal_pending(current)) {
10999 ret = -ERESTARTSYS;
11000 break;
11001 }
11002
11003 cond_resched();
11004 }
11005
11006 return ret;
11007}
11008
2ff7e61e 11009int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11010{
f7039b1d 11011 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11012 struct btrfs_device *device;
11013 struct list_head *devices;
f7039b1d
LD
11014 u64 group_trimmed;
11015 u64 start;
11016 u64 end;
11017 u64 trimmed = 0;
2cac13e4 11018 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11019 int ret = 0;
11020
2cac13e4
LB
11021 /*
11022 * try to trim all FS space, our block group may start from non-zero.
11023 */
11024 if (range->len == total_bytes)
11025 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11026 else
11027 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11028
11029 while (cache) {
11030 if (cache->key.objectid >= (range->start + range->len)) {
11031 btrfs_put_block_group(cache);
11032 break;
11033 }
11034
11035 start = max(range->start, cache->key.objectid);
11036 end = min(range->start + range->len,
11037 cache->key.objectid + cache->key.offset);
11038
11039 if (end - start >= range->minlen) {
11040 if (!block_group_cache_done(cache)) {
f6373bf3 11041 ret = cache_block_group(cache, 0);
1be41b78
JB
11042 if (ret) {
11043 btrfs_put_block_group(cache);
11044 break;
11045 }
11046 ret = wait_block_group_cache_done(cache);
11047 if (ret) {
11048 btrfs_put_block_group(cache);
11049 break;
11050 }
f7039b1d
LD
11051 }
11052 ret = btrfs_trim_block_group(cache,
11053 &group_trimmed,
11054 start,
11055 end,
11056 range->minlen);
11057
11058 trimmed += group_trimmed;
11059 if (ret) {
11060 btrfs_put_block_group(cache);
11061 break;
11062 }
11063 }
11064
2ff7e61e 11065 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11066 }
11067
0b246afa
JM
11068 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11069 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11070 list_for_each_entry(device, devices, dev_alloc_list) {
11071 ret = btrfs_trim_free_extents(device, range->minlen,
11072 &group_trimmed);
11073 if (ret)
11074 break;
11075
11076 trimmed += group_trimmed;
11077 }
0b246afa 11078 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11079
f7039b1d
LD
11080 range->len = trimmed;
11081 return ret;
11082}
8257b2dc
MX
11083
11084/*
ea14b57f 11085 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11086 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11087 * data into the page cache through nocow before the subvolume is snapshoted,
11088 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11089 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11090 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11091 */
ea14b57f 11092void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11093{
11094 percpu_counter_dec(&root->subv_writers->counter);
11095 /*
a83342aa 11096 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11097 */
11098 smp_mb();
11099 if (waitqueue_active(&root->subv_writers->wait))
11100 wake_up(&root->subv_writers->wait);
11101}
11102
ea14b57f 11103int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11104{
ea14b57f 11105 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11106 return 0;
11107
11108 percpu_counter_inc(&root->subv_writers->counter);
11109 /*
11110 * Make sure counter is updated before we check for snapshot creation.
11111 */
11112 smp_mb();
ea14b57f
DS
11113 if (atomic_read(&root->will_be_snapshotted)) {
11114 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11115 return 0;
11116 }
11117 return 1;
11118}
0bc19f90 11119
0bc19f90
ZL
11120void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11121{
11122 while (true) {
11123 int ret;
11124
ea14b57f 11125 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11126 if (ret)
11127 break;
4625956a
PZ
11128 wait_var_event(&root->will_be_snapshotted,
11129 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11130 }
11131}