]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
Btrfs: fix race between start dirty bg cache writeout and bg deletion
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
fcebe456
JB
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
99 int level, struct btrfs_key *ins,
100 int no_quota);
6a63209f 101static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
11833d66
YZ
104static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
9ed74f2d
JB
106static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
fb25e914 108static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
109 u64 num_bytes, int reserve,
110 int delalloc);
5d80366e
JB
111static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
48a3b636
ES
113int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 115
817d52f8
JB
116static noinline int
117block_group_cache_done(struct btrfs_block_group_cache *cache)
118{
119 smp_mb();
36cce922
JB
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
122}
123
0f9dd46c
JB
124static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125{
126 return (cache->flags & bits) == bits;
127}
128
62a45b60 129static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
130{
131 atomic_inc(&cache->count);
132}
133
134void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135{
f0486c68
YZ
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
34d52cb6 139 kfree(cache->free_space_ctl);
11dfe35a 140 kfree(cache);
f0486c68 141 }
11dfe35a
JB
142}
143
0f9dd46c
JB
144/*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
b2950863 148static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
149 struct btrfs_block_group_cache *block_group)
150{
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
a1897fdd
LB
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
0f9dd46c
JB
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182}
183
184/*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188static struct btrfs_block_group_cache *
189block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191{
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
a1897fdd 220 if (ret) {
11dfe35a 221 btrfs_get_block_group(ret);
a1897fdd
LB
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
0f9dd46c
JB
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228}
229
11833d66
YZ
230static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
817d52f8 232{
11833d66
YZ
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239}
817d52f8 240
11833d66
YZ
241static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243{
244 u64 start, end;
817d52f8 245
11833d66
YZ
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
253}
254
11833d66
YZ
255static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
817d52f8 257{
817d52f8
JB
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
06b2331f
YZ
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
835d974f
JB
268 if (ret)
269 return ret;
06b2331f
YZ
270 }
271
817d52f8
JB
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
835d974f
JB
277 if (ret)
278 return ret;
11833d66 279
817d52f8 280 while (nr--) {
51bf5f0b
JB
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
835d974f
JB
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
817d52f8 306 }
11833d66 307
817d52f8
JB
308 kfree(logical);
309 }
817d52f8
JB
310 return 0;
311}
312
11833d66
YZ
313static struct btrfs_caching_control *
314get_caching_control(struct btrfs_block_group_cache *cache)
315{
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
dde5abee
JB
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
11833d66
YZ
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328}
329
330static void put_caching_control(struct btrfs_caching_control *ctl)
331{
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334}
335
0f9dd46c
JB
336/*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
817d52f8 341static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
342 struct btrfs_fs_info *info, u64 start, u64 end)
343{
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
d458b054 379static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 380{
bab39bf9
JB
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
e37c9e69 385 struct btrfs_path *path;
5f39d397 386 struct extent_buffer *leaf;
11833d66 387 struct btrfs_key key;
817d52f8 388 u64 total_found = 0;
11833d66
YZ
389 u64 last = 0;
390 u32 nritems;
36cce922 391 int ret = -ENOMEM;
f510cfec 392
bab39bf9
JB
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
e37c9e69
CM
398 path = btrfs_alloc_path();
399 if (!path)
bab39bf9 400 goto out;
7d7d6068 401
817d52f8 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 403
5cd57b2c 404 /*
817d52f8
JB
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
5cd57b2c
CM
409 */
410 path->skip_locking = 1;
817d52f8 411 path->search_commit_root = 1;
026fd317 412 path->reada = 1;
817d52f8 413
e4404d6e 414 key.objectid = last;
e37c9e69 415 key.offset = 0;
11833d66 416 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 417again:
11833d66 418 mutex_lock(&caching_ctl->mutex);
013f1b12 419 /* need to make sure the commit_root doesn't disappear */
9e351cc8 420 down_read(&fs_info->commit_root_sem);
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
ef8bbdfe 425 goto err;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 445 caching_ctl->progress = last;
ff5714cc 446 btrfs_release_path(path);
9e351cc8 447 up_read(&fs_info->commit_root_sem);
589d8ade 448 mutex_unlock(&caching_ctl->mutex);
11833d66 449 cond_resched();
589d8ade
JB
450 goto again;
451 }
0a3896d0
JB
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
589d8ade
JB
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
11833d66 461 }
817d52f8 462
52ee28d2
LB
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
11833d66
YZ
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
817d52f8 475 continue;
e37c9e69 476 }
0f9dd46c 477
e37c9e69 478 if (key.objectid >= block_group->key.objectid +
0f9dd46c 479 block_group->key.offset)
e37c9e69 480 break;
7d7d6068 481
3173a18f
JB
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
3173a18f
JB
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
707e8a07 489 fs_info->tree_root->nodesize;
3173a18f
JB
490 else
491 last = key.objectid + key.offset;
817d52f8 492
11833d66
YZ
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
817d52f8 497 }
e37c9e69
CM
498 path->slots[0]++;
499 }
817d52f8 500 ret = 0;
e37c9e69 501
817d52f8
JB
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
11833d66 505 caching_ctl->progress = (u64)-1;
817d52f8
JB
506
507 spin_lock(&block_group->lock);
11833d66 508 block_group->caching_ctl = NULL;
817d52f8
JB
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
0f9dd46c 511
54aa1f4d 512err:
e37c9e69 513 btrfs_free_path(path);
9e351cc8 514 up_read(&fs_info->commit_root_sem);
817d52f8 515
11833d66
YZ
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
bab39bf9 519out:
36cce922
JB
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
11833d66
YZ
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
11dfe35a 529 btrfs_put_block_group(block_group);
817d52f8
JB
530}
531
9d66e233 532static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 533 int load_cache_only)
817d52f8 534{
291c7d2f 535 DEFINE_WAIT(wait);
11833d66
YZ
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
538 int ret = 0;
539
291c7d2f 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
541 if (!caching_ctl)
542 return -ENOMEM;
291c7d2f
JB
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
291c7d2f
JB
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
11833d66 584 return 0;
291c7d2f
JB
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
11833d66 590
d53ba474 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 592 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
291c7d2f 597 cache->caching_ctl = NULL;
9d66e233
JB
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 600 caching_ctl->progress = (u64)-1;
9d66e233 601 } else {
291c7d2f
JB
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 607 cache->has_caching_ctl = 1;
291c7d2f 608 }
9d66e233
JB
609 }
610 spin_unlock(&cache->lock);
cb83b7b8
JB
611 mutex_unlock(&caching_ctl->mutex);
612
291c7d2f 613 wake_up(&caching_ctl->wait);
3c14874a 614 if (ret == 1) {
291c7d2f 615 put_caching_control(caching_ctl);
3c14874a 616 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 617 return 0;
3c14874a 618 }
291c7d2f
JB
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 630 cache->has_caching_ctl = 1;
291c7d2f
JB
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
9d66e233
JB
634 }
635
291c7d2f
JB
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
11833d66 638 return 0;
817d52f8 639 }
817d52f8 640
9e351cc8 641 down_write(&fs_info->commit_root_sem);
291c7d2f 642 atomic_inc(&caching_ctl->count);
11833d66 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 644 up_write(&fs_info->commit_root_sem);
11833d66 645
11dfe35a 646 btrfs_get_block_group(cache);
11833d66 647
e66f0bb1 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 649
ef8bbdfe 650 return ret;
e37c9e69
CM
651}
652
0f9dd46c
JB
653/*
654 * return the block group that starts at or after bytenr
655 */
d397712b
CM
656static struct btrfs_block_group_cache *
657btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 658{
0f9dd46c 659 struct btrfs_block_group_cache *cache;
0ef3e66b 660
0f9dd46c 661 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 662
0f9dd46c 663 return cache;
0ef3e66b
CM
664}
665
0f9dd46c 666/*
9f55684c 667 * return the block group that contains the given bytenr
0f9dd46c 668 */
d397712b
CM
669struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
be744175 672{
0f9dd46c 673 struct btrfs_block_group_cache *cache;
be744175 674
0f9dd46c 675 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 676
0f9dd46c 677 return cache;
be744175 678}
0b86a832 679
0f9dd46c
JB
680static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
6324fbf3 682{
0f9dd46c 683 struct list_head *head = &info->space_info;
0f9dd46c 684 struct btrfs_space_info *found;
4184ea7f 685
52ba6929 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 687
4184ea7f
CM
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
67377734 690 if (found->flags & flags) {
4184ea7f 691 rcu_read_unlock();
0f9dd46c 692 return found;
4184ea7f 693 }
0f9dd46c 694 }
4184ea7f 695 rcu_read_unlock();
0f9dd46c 696 return NULL;
6324fbf3
CM
697}
698
4184ea7f
CM
699/*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704{
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712}
713
1a4ed8fd
FM
714/* simple helper to search for an existing data extent at a given offset */
715int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
716{
717 int ret;
718 struct btrfs_key key;
31840ae1 719 struct btrfs_path *path;
e02119d5 720
31840ae1 721 path = btrfs_alloc_path();
d8926bb3
MF
722 if (!path)
723 return -ENOMEM;
724
e02119d5
CM
725 key.objectid = start;
726 key.offset = len;
3173a18f 727 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
31840ae1 730 btrfs_free_path(path);
7bb86316
CM
731 return ret;
732}
733
a22285a6 734/*
3173a18f 735 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
3173a18f 745 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
746{
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
3173a18f
JB
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 763 offset = root->nodesize;
3173a18f
JB
764 metadata = 0;
765 }
766
a22285a6
YZ
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
a22285a6
YZ
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
639eefc8
FDBM
775
776search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
a22285a6
YZ
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
3173a18f 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 796 key.offset == root->nodesize)
74be9510
FDBM
797 ret = 0;
798 }
3173a18f
JB
799 }
800
a22285a6
YZ
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818#else
819 BUG();
820#endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
b3b4aa74 840 btrfs_release_path(path);
a22285a6 841
8cc33e5c
DS
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
a22285a6
YZ
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
639eefc8 849 goto search_again;
a22285a6 850 }
d7df2c79 851 spin_lock(&head->lock);
a22285a6
YZ
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
d7df2c79 858 spin_unlock(&head->lock);
a22285a6
YZ
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868out_free:
869 btrfs_free_path(path);
870 return ret;
871}
872
d8d5f3e1
CM
873/*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
5d4f98a2
YZ
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
d8d5f3e1
CM
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 935 * - different files inside a single subvolume
d8d5f3e1
CM
936 * - different offsets inside a file (bookend extents in file.c)
937 *
5d4f98a2 938 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
939 *
940 * - Objectid of the subvolume root
d8d5f3e1 941 * - objectid of the file holding the reference
5d4f98a2
YZ
942 * - original offset in the file
943 * - how many bookend extents
d8d5f3e1 944 *
5d4f98a2
YZ
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
d8d5f3e1 947 *
5d4f98a2 948 * The extent ref structure for the full back refs has field for:
d8d5f3e1 949 *
5d4f98a2 950 * - number of pointers in the tree leaf
d8d5f3e1 951 *
5d4f98a2
YZ
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
d8d5f3e1 954 *
5d4f98a2
YZ
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
d8d5f3e1 957 *
5d4f98a2 958 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 959 *
5d4f98a2
YZ
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
d8d5f3e1 962 *
5d4f98a2 963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 964 *
5d4f98a2 965 * Btree extents can be referenced by:
d8d5f3e1 966 *
5d4f98a2 967 * - Different subvolumes
d8d5f3e1 968 *
5d4f98a2
YZ
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
d8d5f3e1 973 *
5d4f98a2
YZ
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
d8d5f3e1 977 */
31840ae1 978
5d4f98a2
YZ
979#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
7bb86316 984{
5d4f98a2
YZ
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
7bb86316 990 struct btrfs_key key;
5d4f98a2
YZ
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
79787eaa 1010 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
b3b4aa74 1026 btrfs_release_path(path);
5d4f98a2
YZ
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
79787eaa 1036 BUG_ON(ret); /* Corruption */
5d4f98a2 1037
4b90c680 1038 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058}
1059#endif
1060
1061static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062{
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
14a958e6 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1069 lenum = cpu_to_le64(owner);
14a958e6 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1071 lenum = cpu_to_le64(offset);
14a958e6 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075}
1076
1077static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079{
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083}
1084
1085static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088{
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094}
1095
1096static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102{
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
31840ae1 1105 struct extent_buffer *leaf;
5d4f98a2 1106 u32 nritems;
74493f7a 1107 int ret;
5d4f98a2
YZ
1108 int recow;
1109 int err = -ENOENT;
74493f7a 1110
31840ae1 1111 key.objectid = bytenr;
5d4f98a2
YZ
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
31840ae1 1127
5d4f98a2
YZ
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1133 btrfs_release_path(path);
5d4f98a2
YZ
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141#endif
1142 goto fail;
31840ae1
ZY
1143 }
1144
1145 leaf = path->nodes[0];
5d4f98a2
YZ
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
b3b4aa74 1171 btrfs_release_path(path);
5d4f98a2
YZ
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
31840ae1 1178 }
5d4f98a2
YZ
1179fail:
1180 return err;
31840ae1
ZY
1181}
1182
5d4f98a2
YZ
1183static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
31840ae1
ZY
1189{
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
5d4f98a2 1192 u32 size;
31840ae1
ZY
1193 u32 num_refs;
1194 int ret;
74493f7a 1195
74493f7a 1196 key.objectid = bytenr;
5d4f98a2
YZ
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
74493f7a 1207
5d4f98a2
YZ
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
31840ae1 1215 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1223 }
5d4f98a2
YZ
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
b3b4aa74 1232 btrfs_release_path(path);
5d4f98a2
YZ
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
31840ae1 1238
5d4f98a2
YZ
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1253 }
31840ae1 1254 }
5d4f98a2
YZ
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257fail:
b3b4aa74 1258 btrfs_release_path(path);
7bb86316 1259 return ret;
74493f7a
CM
1260}
1261
5d4f98a2
YZ
1262static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
fcebe456 1265 int refs_to_drop, int *last_ref)
31840ae1 1266{
5d4f98a2
YZ
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1270 struct extent_buffer *leaf;
5d4f98a2 1271 u32 num_refs = 0;
31840ae1
ZY
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
5d4f98a2
YZ
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291#endif
1292 } else {
1293 BUG();
1294 }
1295
56bec294
CM
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
5d4f98a2 1298
31840ae1
ZY
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
fcebe456 1301 *last_ref = 1;
31840ae1 1302 } else {
5d4f98a2
YZ
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314#endif
31840ae1
ZY
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
31840ae1
ZY
1317 return ret;
1318}
1319
5d4f98a2
YZ
1320static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
15916de8 1323{
5d4f98a2
YZ
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1355#endif
5d4f98a2
YZ
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360}
15916de8 1361
5d4f98a2
YZ
1362static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1f3c79a2 1367{
5d4f98a2 1368 struct btrfs_key key;
1f3c79a2 1369 int ret;
1f3c79a2 1370
5d4f98a2
YZ
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1f3c79a2
LH
1378 }
1379
5d4f98a2
YZ
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
b3b4aa74 1385 btrfs_release_path(path);
5d4f98a2
YZ
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1f3c79a2 1391#endif
5d4f98a2 1392 return ret;
1f3c79a2
LH
1393}
1394
5d4f98a2
YZ
1395static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
31840ae1 1400{
5d4f98a2 1401 struct btrfs_key key;
31840ae1 1402 int ret;
31840ae1 1403
5d4f98a2
YZ
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1414 btrfs_release_path(path);
31840ae1
ZY
1415 return ret;
1416}
1417
5d4f98a2 1418static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1419{
5d4f98a2
YZ
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
31840ae1 1433}
56bec294 1434
2c47e605
YZ
1435static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
56bec294 1437
02217ed2 1438{
2c47e605 1439 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1440 if (!path->nodes[level])
1441 break;
5d4f98a2
YZ
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454}
037e6390 1455
5d4f98a2
YZ
1456/*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469static noinline_for_stack
1470int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477{
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
3173a18f
JB
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
26b8003f 1493
db94535d 1494 key.objectid = bytenr;
31840ae1 1495 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1496 key.offset = num_bytes;
31840ae1 1497
5d4f98a2
YZ
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1501 path->keep_locks = 1;
5d4f98a2
YZ
1502 } else
1503 extra_size = -1;
3173a18f
JB
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514again:
5d4f98a2 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1516 if (ret < 0) {
5d4f98a2
YZ
1517 err = ret;
1518 goto out;
1519 }
3173a18f
JB
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
9ce49a0b 1537 key.objectid = bytenr;
3173a18f
JB
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
79787eaa
JM
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
fae7f21c 1548 } else if (WARN_ON(ret)) {
492104c8 1549 err = -EIO;
492104c8 1550 goto out;
79787eaa 1551 }
5d4f98a2
YZ
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570#endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
5d4f98a2
YZ
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
3173a18f 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
5d4f98a2
YZ
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
2c47e605
YZ
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
85d4198e 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651out:
85d4198e 1652 if (insert) {
5d4f98a2
YZ
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657}
1658
1659/*
1660 * helper to add new inline back ref
1661 */
1662static noinline_for_stack
fd279fae 1663void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1669{
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
5d4f98a2
YZ
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
4b90c680 1686 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1721}
1722
1723static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729{
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
54aa1f4d 1736 return ret;
5d4f98a2 1737
b3b4aa74 1738 btrfs_release_path(path);
5d4f98a2
YZ
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
b9473439 1747 }
5d4f98a2
YZ
1748 return ret;
1749}
31840ae1 1750
5d4f98a2
YZ
1751/*
1752 * helper to update/remove inline back ref
1753 */
1754static noinline_for_stack
afe5fea7 1755void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
fcebe456
JB
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
5d4f98a2
YZ
1761{
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
56bec294 1793 }
31840ae1 1794
5d4f98a2
YZ
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
fcebe456 1804 *last_ref = 1;
5d4f98a2
YZ
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
afe5fea7 1813 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1816}
1817
1818static noinline_for_stack
1819int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826{
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1835 update_inline_extent_backref(root, path, iref,
fcebe456 1836 refs_to_add, extent_op, NULL);
5d4f98a2 1837 } else if (ret == -ENOENT) {
fd279fae 1838 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
771ed689 1842 }
5d4f98a2
YZ
1843 return ret;
1844}
31840ae1 1845
5d4f98a2
YZ
1846static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851{
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863}
56bec294 1864
5d4f98a2
YZ
1865static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
fcebe456 1869 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1870{
143bede5 1871 int ret = 0;
b9473439 1872
5d4f98a2
YZ
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
afe5fea7 1875 update_inline_extent_backref(root, path, iref,
fcebe456 1876 -refs_to_drop, NULL, last_ref);
5d4f98a2 1877 } else if (is_data) {
fcebe456
JB
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
5d4f98a2 1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885}
1886
5378e607 1887static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1888 u64 start, u64 len)
1889{
5378e607 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1891}
5d4f98a2 1892
1edb647b
FM
1893int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1895{
5d4f98a2 1896 int ret;
5378e607 1897 u64 discarded_bytes = 0;
a1d3c478 1898 struct btrfs_bio *bbio = NULL;
5d4f98a2 1899
e244a0ae 1900
5d4f98a2 1901 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1903 bytenr, &num_bytes, &bbio, 0);
79787eaa 1904 /* Error condition is -ENOMEM */
5d4f98a2 1905 if (!ret) {
a1d3c478 1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1907 int i;
1908
5d4f98a2 1909
a1d3c478 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
5378e607
LD
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
79787eaa 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
5d4f98a2 1928 }
6e9606d2 1929 btrfs_put_bbio(bbio);
5d4f98a2 1930 }
5378e607
LD
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
5d4f98a2 1935
53b381b3
DW
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
5d4f98a2 1938 return ret;
5d4f98a2
YZ
1939}
1940
79787eaa 1941/* Can return -ENOMEM */
5d4f98a2
YZ
1942int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
5d4f98a2
YZ
1947{
1948 int ret;
66d7e7f0
AJ
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
5d4f98a2
YZ
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
5d4f98a2 1957 parent, root_objectid, (int)owner,
fcebe456 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1959 } else {
66d7e7f0
AJ
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
5d4f98a2 1962 parent, root_objectid, owner, offset,
fcebe456 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1964 }
1965 return ret;
1966}
1967
1968static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
fcebe456 1973 int no_quota,
5d4f98a2
YZ
1974 struct btrfs_delayed_extent_op *extent_op)
1975{
fcebe456 1976 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
fcebe456 1980 struct btrfs_key key;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
fcebe456 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
5d4f98a2
YZ
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
fcebe456
JB
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
5d4f98a2
YZ
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
5d4f98a2
YZ
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
fcebe456 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
5d4f98a2 2000 goto out;
fcebe456
JB
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
5d4f98a2 2014
fcebe456
JB
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
5d4f98a2 2025 leaf = path->nodes[0];
fcebe456 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
fcebe456
JB
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
5d4f98a2
YZ
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2034
5d4f98a2 2035 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2036 btrfs_release_path(path);
56bec294 2037
fcebe456
JB
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
56bec294 2045 path->reada = 1;
b9473439 2046 path->leave_spinning = 1;
56bec294
CM
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
79787eaa
JM
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2053out:
56bec294 2054 btrfs_free_path(path);
30d133fc 2055 return ret;
56bec294
CM
2056}
2057
5d4f98a2
YZ
2058static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
56bec294 2063{
5d4f98a2
YZ
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
5d4f98a2
YZ
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
fcebe456 2080 ref_root = ref->root;
5d4f98a2
YZ
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2083 if (extent_op)
5d4f98a2 2084 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
5d4f98a2
YZ
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
fcebe456 2094 node->no_quota, extent_op);
5d4f98a2
YZ
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
fcebe456 2100 extent_op, node->no_quota);
5d4f98a2
YZ
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105}
2106
2107static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110{
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123}
2124
2125static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129{
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
56bec294 2135 int ret;
5d4f98a2 2136 int err = 0;
b1c79e09 2137 int metadata = !extent_op->is_data;
5d4f98a2 2138
79787eaa
JM
2139 if (trans->aborted)
2140 return 0;
2141
3173a18f
JB
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
5d4f98a2
YZ
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
5d4f98a2 2150
3173a18f 2151 if (metadata) {
3173a18f 2152 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2153 key.offset = extent_op->level;
3173a18f
JB
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159again:
5d4f98a2
YZ
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
3173a18f 2169 if (metadata) {
55994887
FDBM
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
3173a18f 2182
55994887
FDBM
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
3173a18f 2191 }
5d4f98a2
YZ
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207#endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2211
5d4f98a2
YZ
2212 btrfs_mark_buffer_dirty(leaf);
2213out:
2214 btrfs_free_path(path);
2215 return err;
56bec294
CM
2216}
2217
5d4f98a2
YZ
2218static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
56bec294
CM
2223{
2224 int ret = 0;
5d4f98a2
YZ
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
3173a18f
JB
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
56bec294 2231
5d4f98a2 2232 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
5d4f98a2
YZ
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
fcebe456 2237 ref_root = ref->root;
5d4f98a2 2238
3173a18f
JB
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
5d4f98a2
YZ
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2250 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
fcebe456
JB
2255 ref->level, &ins,
2256 node->no_quota);
5d4f98a2
YZ
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
fcebe456
JB
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
5d4f98a2
YZ
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
fcebe456
JB
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
5d4f98a2
YZ
2267 } else {
2268 BUG();
2269 }
56bec294
CM
2270 return ret;
2271}
2272
2273/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2274static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
56bec294 2279{
79787eaa
JM
2280 int ret = 0;
2281
857cc2fc
JB
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
79787eaa 2286 return 0;
857cc2fc 2287 }
79787eaa 2288
5d4f98a2 2289 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
5d4f98a2
YZ
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
56bec294 2301 if (insert_reserved) {
f0486c68
YZ
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
5d4f98a2
YZ
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
5d4f98a2 2308 }
56bec294 2309 }
79787eaa 2310 return ret;
56bec294
CM
2311 }
2312
5d4f98a2
YZ
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
56bec294
CM
2324}
2325
2326static noinline struct btrfs_delayed_ref_node *
2327select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328{
2329 struct rb_node *node;
d7df2c79
JB
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
56bec294
CM
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
d7df2c79
JB
2337 node = rb_first(&head->ref_root);
2338 while (node) {
56bec294
CM
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
d7df2c79 2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
56bec294 2342 return ref;
d7df2c79
JB
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
56bec294 2346 }
d7df2c79 2347 return last;
56bec294
CM
2348}
2349
79787eaa
JM
2350/*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
d7df2c79
JB
2354static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
56bec294 2357{
56bec294
CM
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2361 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2362 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2363 ktime_t start = ktime_get();
56bec294 2364 int ret;
d7df2c79 2365 unsigned long count = 0;
0a2b2a84 2366 unsigned long actual_count = 0;
56bec294 2367 int must_insert_reserved = 0;
56bec294
CM
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2370 while (1) {
2371 if (!locked_ref) {
d7df2c79 2372 if (count >= nr)
56bec294 2373 break;
56bec294 2374
d7df2c79
JB
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
c3e69d58
CM
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2385 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
56bec294
CM
2396 }
2397 }
a28ec197 2398
ae1e206b
JB
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
d7df2c79 2406 spin_lock(&locked_ref->lock);
ae1e206b
JB
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
d1270cd9
AJ
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
097b8a7c 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2418 spin_unlock(&locked_ref->lock);
093486c4 2419 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
d1270cd9
AJ
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
d7df2c79 2424 locked_ref = NULL;
d1270cd9 2425 cond_resched();
27a377db 2426 count++;
d1270cd9
AJ
2427 continue;
2428 }
2429
56bec294
CM
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
7bb86316 2436
5d4f98a2
YZ
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
56bec294 2440 if (!ref) {
d7df2c79
JB
2441
2442
56bec294
CM
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
5d4f98a2
YZ
2448
2449 if (extent_op && must_insert_reserved) {
78a6184a 2450 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
d7df2c79 2455 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
78a6184a 2458 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2459
79787eaa 2460 if (ret) {
857cc2fc
JB
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
d7df2c79 2469 locked_ref->processing = 0;
c2cf52eb 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2471 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2472 return ret;
2473 }
d7df2c79 2474 continue;
5d4f98a2 2475 }
02217ed2 2476
d7df2c79
JB
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
573a0755
JB
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
d7df2c79
JB
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
c46effa6
LB
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
d7df2c79
JB
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
0a2b2a84 2497 actual_count++;
d7df2c79
JB
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
c46effa6 2500 }
d7df2c79
JB
2501 atomic_dec(&delayed_refs->num_entries);
2502
093486c4 2503 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
d7df2c79 2520 spin_unlock(&locked_ref->lock);
925baedd 2521
5d4f98a2 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2523 must_insert_reserved);
eb099670 2524
78a6184a 2525 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2526 if (ret) {
d7df2c79 2527 locked_ref->processing = 0;
093486c4
MX
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
c2cf52eb 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2531 return ret;
2532 }
2533
093486c4
MX
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
093486c4
MX
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
c3e69d58 2552 cond_resched();
c3e69d58 2553 }
0a2b2a84
JB
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2571 spin_unlock(&delayed_refs->lock);
2572 }
d7df2c79 2573 return 0;
c3e69d58
CM
2574}
2575
709c0486
AJ
2576#ifdef SCRAMBLE_DELAYED_REFS
2577/*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582static u64 find_middle(struct rb_root *root)
2583{
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616}
2617#endif
2618
1be41b78
JB
2619static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620{
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
f8c269d7 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2633}
2634
1262133b
JB
2635/*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
28f75a0e 2639u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2640{
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652}
2653
0a2b2a84 2654int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2655 struct btrfs_root *root)
2656{
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
707e8a07 2667 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2668 num_bytes <<= 1;
28f75a0e 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
1be41b78
JB
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
cb723e49
JB
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
1be41b78 2680 num_bytes <<= 1;
cb723e49 2681 }
1be41b78
JB
2682
2683 spin_lock(&global_rsv->lock);
cb723e49 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688}
2689
0a2b2a84
JB
2690int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692{
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
a79b7d4b 2697 u64 val;
0a2b2a84
JB
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2701 val = num_entries * avg_runtime;
0a2b2a84
JB
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
a79b7d4b
CM
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
0a2b2a84
JB
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708}
2709
a79b7d4b
CM
2710struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717};
2718
2719static void delayed_ref_async_start(struct btrfs_work *work)
2720{
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750}
2751
2752int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754{
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
9e0af237
LB
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783}
2784
c3e69d58
CM
2785/*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
79787eaa
JM
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2794 */
2795int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797{
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2800 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
c3e69d58 2803
79787eaa
JM
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
c3e69d58
CM
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2812 if (count == 0)
d7df2c79 2813 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2814
c3e69d58 2815again:
709c0486
AJ
2816#ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818#endif
d7df2c79
JB
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
eb099670 2823 }
c3e69d58 2824
56bec294 2825 if (run_all) {
d7df2c79 2826 if (!list_empty(&trans->new_bgs))
ea658bad 2827 btrfs_create_pending_block_groups(trans, root);
ea658bad 2828
d7df2c79 2829 spin_lock(&delayed_refs->lock);
c46effa6 2830 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
56bec294 2833 goto out;
d7df2c79 2834 }
c3e69d58 2835 count = (unsigned long)-1;
e9d0b13b 2836
56bec294 2837 while (node) {
c46effa6
LB
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
5caf2a00 2842
c46effa6 2843 ref = &head->node;
56bec294
CM
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
56bec294
CM
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
1887be66 2855 cond_resched();
56bec294 2856 goto again;
c46effa6
LB
2857 } else {
2858 WARN_ON(1);
56bec294
CM
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
d7df2c79 2863 cond_resched();
56bec294 2864 goto again;
5f39d397 2865 }
54aa1f4d 2866out:
fcebe456
JB
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
edf39272 2870 assert_qgroups_uptodate(trans);
a28ec197
CM
2871 return 0;
2872}
2873
5d4f98a2
YZ
2874int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2877 int level, int is_data)
5d4f98a2
YZ
2878{
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
78a6184a 2882 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2890 extent_op->level = level;
5d4f98a2 2891
66d7e7f0
AJ
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
5d4f98a2 2894 if (ret)
78a6184a 2895 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2896 return ret;
2897}
2898
2899static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903{
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
5d4f98a2
YZ
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
5d4f98a2
YZ
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
b3b4aa74 2923 btrfs_release_path(path);
5d4f98a2 2924
8cc33e5c
DS
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
5d4f98a2
YZ
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
d7df2c79 2934 spin_unlock(&delayed_refs->lock);
5d4f98a2 2935
d7df2c79
JB
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
5d4f98a2 2941
d7df2c79
JB
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
5d4f98a2 2947
d7df2c79 2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2949
d7df2c79
JB
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
5d4f98a2 2960 }
d7df2c79 2961 spin_unlock(&head->lock);
5d4f98a2 2962 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2963 return ret;
2964}
2965
2966static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2970{
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2972 struct extent_buffer *leaf;
5d4f98a2
YZ
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
f321e491 2976 struct btrfs_key key;
5d4f98a2 2977 u32 item_size;
be20aa9d 2978 int ret;
925baedd 2979
be20aa9d 2980 key.objectid = bytenr;
31840ae1 2981 key.offset = (u64)-1;
f321e491 2982 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2983
be20aa9d
CM
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
79787eaa 2987 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
31840ae1 2991 goto out;
be20aa9d 2992
31840ae1 2993 path->slots[0]--;
f321e491 2994 leaf = path->nodes[0];
5d4f98a2 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2996
5d4f98a2 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2998 goto out;
f321e491 2999
5d4f98a2
YZ
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007#endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3009
5d4f98a2
YZ
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
be20aa9d 3013
5d4f98a2
YZ
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033out:
3034 return ret;
3035}
3036
3037int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040{
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
f321e491 3053 goto out;
80ff3856 3054
5d4f98a2
YZ
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
f321e491 3062 }
5d4f98a2
YZ
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
be20aa9d 3066out:
80ff3856 3067 btrfs_free_path(path);
f0486c68
YZ
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
f321e491 3070 return ret;
be20aa9d 3071}
c5739bba 3072
5d4f98a2 3073static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3074 struct btrfs_root *root,
5d4f98a2 3075 struct extent_buffer *buf,
e339a6b0 3076 int full_backref, int inc)
31840ae1
ZY
3077{
3078 u64 bytenr;
5d4f98a2
YZ
3079 u64 num_bytes;
3080 u64 parent;
31840ae1 3081 u64 ref_root;
31840ae1 3082 u32 nritems;
31840ae1
ZY
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
31840ae1 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3089 u64, u64, u64, u64, u64, u64, int);
31840ae1 3090
fccb84c9
DS
3091
3092 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3093 return 0;
fccb84c9 3094
31840ae1 3095 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
27cdeb70 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3100 return 0;
31840ae1 3101
5d4f98a2
YZ
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
31840ae1 3106
5d4f98a2
YZ
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
31840ae1 3113 if (level == 0) {
5d4f98a2 3114 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3116 continue;
5d4f98a2 3117 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
5d4f98a2
YZ
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
e339a6b0 3130 key.offset, 1);
31840ae1
ZY
3131 if (ret)
3132 goto fail;
3133 } else {
5d4f98a2 3134 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3135 num_bytes = root->nodesize;
5d4f98a2 3136 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3137 parent, ref_root, level - 1, 0,
e339a6b0 3138 1);
31840ae1
ZY
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144fail:
5d4f98a2
YZ
3145 return ret;
3146}
3147
3148int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3149 struct extent_buffer *buf, int full_backref)
5d4f98a2 3150{
e339a6b0 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3152}
3153
3154int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3155 struct extent_buffer *buf, int full_backref)
5d4f98a2 3156{
e339a6b0 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3158}
3159
9078a3e1
CM
3160static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164{
3165 int ret;
9078a3e1 3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
9078a3e1 3169
9078a3e1 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
54aa1f4d 3174 goto fail;
df95e7f0 3175 }
5f39d397
CM
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 3181 btrfs_release_path(path);
54aa1f4d 3182fail:
df95e7f0 3183 if (ret)
79787eaa 3184 btrfs_abort_transaction(trans, root, ret);
df95e7f0 3185 return ret;
9078a3e1
CM
3186
3187}
3188
4a8c9a62
YZ
3189static struct btrfs_block_group_cache *
3190next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 struct rb_node *node;
292cbd51 3194
4a8c9a62 3195 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
4a8c9a62
YZ
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
11dfe35a 3212 btrfs_get_block_group(cache);
4a8c9a62
YZ
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217}
3218
0af3d00b
JB
3219static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222{
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
2b20982e 3226 int dcs = BTRFS_DC_ERROR;
f8c269d7 3227 u64 num_pages = 0;
0af3d00b
JB
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
0c0ef4bc
JB
3242 if (trans->aborted)
3243 return 0;
0af3d00b
JB
3244again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
b3b4aa74 3248 btrfs_release_path(path);
0af3d00b
JB
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
5b0e95bf
JB
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
0af3d00b
JB
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
0af3d00b
JB
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
7b61cd92
MX
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
1bbc621e 3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
cf7c1ef6 3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e570fd27
MX
3308 !btrfs_test_opt(root, SPACE_CACHE) ||
3309 block_group->delalloc_bytes) {
cf7c1ef6
LB
3310 /*
3311 * don't bother trying to write stuff out _if_
3312 * a) we're not cached,
3313 * b) we're with nospace_cache mount option.
3314 */
2b20982e 3315 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3316 spin_unlock(&block_group->lock);
3317 goto out_put;
3318 }
3319 spin_unlock(&block_group->lock);
3320
6fc823b1
JB
3321 /*
3322 * Try to preallocate enough space based on how big the block group is.
3323 * Keep in mind this has to include any pinned space which could end up
3324 * taking up quite a bit since it's not folded into the other space
3325 * cache.
3326 */
f8c269d7 3327 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3328 if (!num_pages)
3329 num_pages = 1;
3330
0af3d00b
JB
3331 num_pages *= 16;
3332 num_pages *= PAGE_CACHE_SIZE;
3333
e2d1f923 3334 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3335 if (ret)
3336 goto out_put;
3337
3338 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3339 num_pages, num_pages,
3340 &alloc_hint);
2b20982e
JB
3341 if (!ret)
3342 dcs = BTRFS_DC_SETUP;
0af3d00b 3343 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3344
0af3d00b
JB
3345out_put:
3346 iput(inode);
3347out_free:
b3b4aa74 3348 btrfs_release_path(path);
0af3d00b
JB
3349out:
3350 spin_lock(&block_group->lock);
e65cbb94 3351 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3352 block_group->cache_generation = trans->transid;
2b20982e 3353 block_group->disk_cache_state = dcs;
0af3d00b
JB
3354 spin_unlock(&block_group->lock);
3355
3356 return ret;
3357}
3358
dcdf7f6d
JB
3359int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root)
3361{
3362 struct btrfs_block_group_cache *cache, *tmp;
3363 struct btrfs_transaction *cur_trans = trans->transaction;
3364 struct btrfs_path *path;
3365
3366 if (list_empty(&cur_trans->dirty_bgs) ||
3367 !btrfs_test_opt(root, SPACE_CACHE))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373
3374 /* Could add new block groups, use _safe just in case */
3375 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3376 dirty_list) {
3377 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3378 cache_save_setup(cache, trans, path);
3379 }
3380
3381 btrfs_free_path(path);
3382 return 0;
3383}
3384
1bbc621e
CM
3385/*
3386 * transaction commit does final block group cache writeback during a
3387 * critical section where nothing is allowed to change the FS. This is
3388 * required in order for the cache to actually match the block group,
3389 * but can introduce a lot of latency into the commit.
3390 *
3391 * So, btrfs_start_dirty_block_groups is here to kick off block group
3392 * cache IO. There's a chance we'll have to redo some of it if the
3393 * block group changes again during the commit, but it greatly reduces
3394 * the commit latency by getting rid of the easy block groups while
3395 * we're still allowing others to join the commit.
3396 */
3397int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3398 struct btrfs_root *root)
9078a3e1 3399{
4a8c9a62 3400 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3401 struct btrfs_transaction *cur_trans = trans->transaction;
3402 int ret = 0;
c9dc4c65 3403 int should_put;
1bbc621e
CM
3404 struct btrfs_path *path = NULL;
3405 LIST_HEAD(dirty);
3406 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3407 int num_started = 0;
1bbc621e
CM
3408 int loops = 0;
3409
3410 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3411 if (list_empty(&cur_trans->dirty_bgs)) {
3412 spin_unlock(&cur_trans->dirty_bgs_lock);
3413 return 0;
1bbc621e 3414 }
b58d1a9e 3415 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3416 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3417
1bbc621e 3418again:
1bbc621e
CM
3419 /*
3420 * make sure all the block groups on our dirty list actually
3421 * exist
3422 */
3423 btrfs_create_pending_block_groups(trans, root);
3424
3425 if (!path) {
3426 path = btrfs_alloc_path();
3427 if (!path)
3428 return -ENOMEM;
3429 }
3430
b58d1a9e
FM
3431 /*
3432 * cache_write_mutex is here only to save us from balance or automatic
3433 * removal of empty block groups deleting this block group while we are
3434 * writing out the cache
3435 */
3436 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3437 while (!list_empty(&dirty)) {
3438 cache = list_first_entry(&dirty,
3439 struct btrfs_block_group_cache,
3440 dirty_list);
1bbc621e
CM
3441 /*
3442 * this can happen if something re-dirties a block
3443 * group that is already under IO. Just wait for it to
3444 * finish and then do it all again
3445 */
3446 if (!list_empty(&cache->io_list)) {
3447 list_del_init(&cache->io_list);
3448 btrfs_wait_cache_io(root, trans, cache,
3449 &cache->io_ctl, path,
3450 cache->key.objectid);
3451 btrfs_put_block_group(cache);
3452 }
3453
3454
3455 /*
3456 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3457 * if it should update the cache_state. Don't delete
3458 * until after we wait.
3459 *
3460 * Since we're not running in the commit critical section
3461 * we need the dirty_bgs_lock to protect from update_block_group
3462 */
3463 spin_lock(&cur_trans->dirty_bgs_lock);
3464 list_del_init(&cache->dirty_list);
3465 spin_unlock(&cur_trans->dirty_bgs_lock);
3466
3467 should_put = 1;
3468
3469 cache_save_setup(cache, trans, path);
3470
3471 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3472 cache->io_ctl.inode = NULL;
3473 ret = btrfs_write_out_cache(root, trans, cache, path);
3474 if (ret == 0 && cache->io_ctl.inode) {
3475 num_started++;
3476 should_put = 0;
3477
3478 /*
3479 * the cache_write_mutex is protecting
3480 * the io_list
3481 */
3482 list_add_tail(&cache->io_list, io);
3483 } else {
3484 /*
3485 * if we failed to write the cache, the
3486 * generation will be bad and life goes on
3487 */
3488 ret = 0;
3489 }
3490 }
3491 if (!ret)
3492 ret = write_one_cache_group(trans, root, path, cache);
1bbc621e
CM
3493
3494 /* if its not on the io list, we need to put the block group */
3495 if (should_put)
3496 btrfs_put_block_group(cache);
3497
3498 if (ret)
3499 break;
b58d1a9e
FM
3500
3501 /*
3502 * Avoid blocking other tasks for too long. It might even save
3503 * us from writing caches for block groups that are going to be
3504 * removed.
3505 */
3506 mutex_unlock(&trans->transaction->cache_write_mutex);
3507 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3508 }
b58d1a9e 3509 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3510
3511 /*
3512 * go through delayed refs for all the stuff we've just kicked off
3513 * and then loop back (just once)
3514 */
3515 ret = btrfs_run_delayed_refs(trans, root, 0);
3516 if (!ret && loops == 0) {
3517 loops++;
3518 spin_lock(&cur_trans->dirty_bgs_lock);
3519 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3520 /*
3521 * dirty_bgs_lock protects us from concurrent block group
3522 * deletes too (not just cache_write_mutex).
3523 */
3524 if (!list_empty(&dirty)) {
3525 spin_unlock(&cur_trans->dirty_bgs_lock);
3526 goto again;
3527 }
1bbc621e 3528 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3529 }
3530
3531 btrfs_free_path(path);
3532 return ret;
3533}
3534
3535int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3536 struct btrfs_root *root)
3537{
3538 struct btrfs_block_group_cache *cache;
3539 struct btrfs_transaction *cur_trans = trans->transaction;
3540 int ret = 0;
3541 int should_put;
3542 struct btrfs_path *path;
3543 struct list_head *io = &cur_trans->io_bgs;
3544 int num_started = 0;
9078a3e1
CM
3545
3546 path = btrfs_alloc_path();
3547 if (!path)
3548 return -ENOMEM;
3549
ce93ec54
JB
3550 /*
3551 * We don't need the lock here since we are protected by the transaction
3552 * commit. We want to do the cache_save_setup first and then run the
3553 * delayed refs to make sure we have the best chance at doing this all
3554 * in one shot.
3555 */
3556 while (!list_empty(&cur_trans->dirty_bgs)) {
3557 cache = list_first_entry(&cur_trans->dirty_bgs,
3558 struct btrfs_block_group_cache,
3559 dirty_list);
c9dc4c65
CM
3560
3561 /*
3562 * this can happen if cache_save_setup re-dirties a block
3563 * group that is already under IO. Just wait for it to
3564 * finish and then do it all again
3565 */
3566 if (!list_empty(&cache->io_list)) {
3567 list_del_init(&cache->io_list);
3568 btrfs_wait_cache_io(root, trans, cache,
3569 &cache->io_ctl, path,
3570 cache->key.objectid);
3571 btrfs_put_block_group(cache);
c9dc4c65
CM
3572 }
3573
1bbc621e
CM
3574 /*
3575 * don't remove from the dirty list until after we've waited
3576 * on any pending IO
3577 */
ce93ec54 3578 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3579 should_put = 1;
3580
1bbc621e 3581 cache_save_setup(cache, trans, path);
c9dc4c65 3582
ce93ec54 3583 if (!ret)
c9dc4c65
CM
3584 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3585
3586 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3587 cache->io_ctl.inode = NULL;
3588 ret = btrfs_write_out_cache(root, trans, cache, path);
3589 if (ret == 0 && cache->io_ctl.inode) {
3590 num_started++;
3591 should_put = 0;
1bbc621e 3592 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3593 } else {
3594 /*
3595 * if we failed to write the cache, the
3596 * generation will be bad and life goes on
3597 */
3598 ret = 0;
3599 }
3600 }
ce93ec54
JB
3601 if (!ret)
3602 ret = write_one_cache_group(trans, root, path, cache);
c9dc4c65
CM
3603
3604 /* if its not on the io list, we need to put the block group */
3605 if (should_put)
3606 btrfs_put_block_group(cache);
3607 }
3608
1bbc621e
CM
3609 while (!list_empty(io)) {
3610 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3611 io_list);
3612 list_del_init(&cache->io_list);
c9dc4c65
CM
3613 btrfs_wait_cache_io(root, trans, cache,
3614 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3615 btrfs_put_block_group(cache);
3616 }
3617
9078a3e1 3618 btrfs_free_path(path);
ce93ec54 3619 return ret;
9078a3e1
CM
3620}
3621
d2fb3437
YZ
3622int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3623{
3624 struct btrfs_block_group_cache *block_group;
3625 int readonly = 0;
3626
3627 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3628 if (!block_group || block_group->ro)
3629 readonly = 1;
3630 if (block_group)
fa9c0d79 3631 btrfs_put_block_group(block_group);
d2fb3437
YZ
3632 return readonly;
3633}
3634
6ab0a202
JM
3635static const char *alloc_name(u64 flags)
3636{
3637 switch (flags) {
3638 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3639 return "mixed";
3640 case BTRFS_BLOCK_GROUP_METADATA:
3641 return "metadata";
3642 case BTRFS_BLOCK_GROUP_DATA:
3643 return "data";
3644 case BTRFS_BLOCK_GROUP_SYSTEM:
3645 return "system";
3646 default:
3647 WARN_ON(1);
3648 return "invalid-combination";
3649 };
3650}
3651
593060d7
CM
3652static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3653 u64 total_bytes, u64 bytes_used,
3654 struct btrfs_space_info **space_info)
3655{
3656 struct btrfs_space_info *found;
b742bb82
YZ
3657 int i;
3658 int factor;
b150a4f1 3659 int ret;
b742bb82
YZ
3660
3661 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3662 BTRFS_BLOCK_GROUP_RAID10))
3663 factor = 2;
3664 else
3665 factor = 1;
593060d7
CM
3666
3667 found = __find_space_info(info, flags);
3668 if (found) {
25179201 3669 spin_lock(&found->lock);
593060d7 3670 found->total_bytes += total_bytes;
89a55897 3671 found->disk_total += total_bytes * factor;
593060d7 3672 found->bytes_used += bytes_used;
b742bb82 3673 found->disk_used += bytes_used * factor;
8f18cf13 3674 found->full = 0;
25179201 3675 spin_unlock(&found->lock);
593060d7
CM
3676 *space_info = found;
3677 return 0;
3678 }
c146afad 3679 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3680 if (!found)
3681 return -ENOMEM;
3682
908c7f19 3683 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3684 if (ret) {
3685 kfree(found);
3686 return ret;
3687 }
3688
c1895442 3689 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3690 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3691 init_rwsem(&found->groups_sem);
0f9dd46c 3692 spin_lock_init(&found->lock);
52ba6929 3693 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3694 found->total_bytes = total_bytes;
89a55897 3695 found->disk_total = total_bytes * factor;
593060d7 3696 found->bytes_used = bytes_used;
b742bb82 3697 found->disk_used = bytes_used * factor;
593060d7 3698 found->bytes_pinned = 0;
e8569813 3699 found->bytes_reserved = 0;
c146afad 3700 found->bytes_readonly = 0;
f0486c68 3701 found->bytes_may_use = 0;
593060d7 3702 found->full = 0;
0e4f8f88 3703 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3704 found->chunk_alloc = 0;
fdb5effd
JB
3705 found->flush = 0;
3706 init_waitqueue_head(&found->wait);
633c0aad 3707 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3708
3709 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3710 info->space_info_kobj, "%s",
3711 alloc_name(found->flags));
3712 if (ret) {
3713 kfree(found);
3714 return ret;
3715 }
3716
593060d7 3717 *space_info = found;
4184ea7f 3718 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3719 if (flags & BTRFS_BLOCK_GROUP_DATA)
3720 info->data_sinfo = found;
6ab0a202
JM
3721
3722 return ret;
593060d7
CM
3723}
3724
8790d502
CM
3725static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3726{
899c81ea
ID
3727 u64 extra_flags = chunk_to_extended(flags) &
3728 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3729
de98ced9 3730 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3731 if (flags & BTRFS_BLOCK_GROUP_DATA)
3732 fs_info->avail_data_alloc_bits |= extra_flags;
3733 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3734 fs_info->avail_metadata_alloc_bits |= extra_flags;
3735 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3736 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3737 write_sequnlock(&fs_info->profiles_lock);
8790d502 3738}
593060d7 3739
fc67c450
ID
3740/*
3741 * returns target flags in extended format or 0 if restripe for this
3742 * chunk_type is not in progress
c6664b42
ID
3743 *
3744 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3745 */
3746static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3747{
3748 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3749 u64 target = 0;
3750
fc67c450
ID
3751 if (!bctl)
3752 return 0;
3753
3754 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3755 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3756 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3757 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3758 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3759 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3760 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3761 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3762 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3763 }
3764
3765 return target;
3766}
3767
a46d11a8
ID
3768/*
3769 * @flags: available profiles in extended format (see ctree.h)
3770 *
e4d8ec0f
ID
3771 * Returns reduced profile in chunk format. If profile changing is in
3772 * progress (either running or paused) picks the target profile (if it's
3773 * already available), otherwise falls back to plain reducing.
a46d11a8 3774 */
48a3b636 3775static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3776{
95669976 3777 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3778 u64 target;
53b381b3 3779 u64 tmp;
a061fc8d 3780
fc67c450
ID
3781 /*
3782 * see if restripe for this chunk_type is in progress, if so
3783 * try to reduce to the target profile
3784 */
e4d8ec0f 3785 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3786 target = get_restripe_target(root->fs_info, flags);
3787 if (target) {
3788 /* pick target profile only if it's already available */
3789 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3790 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3791 return extended_to_chunk(target);
e4d8ec0f
ID
3792 }
3793 }
3794 spin_unlock(&root->fs_info->balance_lock);
3795
53b381b3 3796 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3797 if (num_devices == 1)
53b381b3
DW
3798 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3799 BTRFS_BLOCK_GROUP_RAID5);
3800 if (num_devices < 3)
3801 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3802 if (num_devices < 4)
3803 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3804
53b381b3
DW
3805 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3806 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3807 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3808 flags &= ~tmp;
ec44a35c 3809
53b381b3
DW
3810 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3811 tmp = BTRFS_BLOCK_GROUP_RAID6;
3812 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3813 tmp = BTRFS_BLOCK_GROUP_RAID5;
3814 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3815 tmp = BTRFS_BLOCK_GROUP_RAID10;
3816 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3817 tmp = BTRFS_BLOCK_GROUP_RAID1;
3818 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3819 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3820
53b381b3 3821 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3822}
3823
f8213bdc 3824static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3825{
de98ced9 3826 unsigned seq;
f8213bdc 3827 u64 flags;
de98ced9
MX
3828
3829 do {
f8213bdc 3830 flags = orig_flags;
de98ced9
MX
3831 seq = read_seqbegin(&root->fs_info->profiles_lock);
3832
3833 if (flags & BTRFS_BLOCK_GROUP_DATA)
3834 flags |= root->fs_info->avail_data_alloc_bits;
3835 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3836 flags |= root->fs_info->avail_system_alloc_bits;
3837 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3838 flags |= root->fs_info->avail_metadata_alloc_bits;
3839 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3840
b742bb82 3841 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3842}
3843
6d07bcec 3844u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3845{
b742bb82 3846 u64 flags;
53b381b3 3847 u64 ret;
9ed74f2d 3848
b742bb82
YZ
3849 if (data)
3850 flags = BTRFS_BLOCK_GROUP_DATA;
3851 else if (root == root->fs_info->chunk_root)
3852 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3853 else
b742bb82 3854 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3855
53b381b3
DW
3856 ret = get_alloc_profile(root, flags);
3857 return ret;
6a63209f 3858}
9ed74f2d 3859
6a63209f 3860/*
6a63209f
JB
3861 * This will check the space that the inode allocates from to make sure we have
3862 * enough space for bytes.
6a63209f 3863 */
e2d1f923 3864int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3865{
6a63209f 3866 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3867 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3868 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3869 u64 used;
94b947b2 3870 int ret = 0;
c99f1b0c
ZL
3871 int need_commit = 2;
3872 int have_pinned_space;
6a63209f 3873
6a63209f 3874 /* make sure bytes are sectorsize aligned */
fda2832f 3875 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3876
9dced186 3877 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3878 need_commit = 0;
9dced186 3879 ASSERT(current->journal_info);
0af3d00b
JB
3880 }
3881
b4d7c3c9 3882 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3883 if (!data_sinfo)
3884 goto alloc;
9ed74f2d 3885
6a63209f
JB
3886again:
3887 /* make sure we have enough space to handle the data first */
3888 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3889 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3890 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3891 data_sinfo->bytes_may_use;
ab6e2410
JB
3892
3893 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3894 struct btrfs_trans_handle *trans;
9ed74f2d 3895
6a63209f
JB
3896 /*
3897 * if we don't have enough free bytes in this space then we need
3898 * to alloc a new chunk.
3899 */
b9fd47cd 3900 if (!data_sinfo->full) {
6a63209f 3901 u64 alloc_target;
9ed74f2d 3902
0e4f8f88 3903 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3904 spin_unlock(&data_sinfo->lock);
33b4d47f 3905alloc:
6a63209f 3906 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3907 /*
3908 * It is ugly that we don't call nolock join
3909 * transaction for the free space inode case here.
3910 * But it is safe because we only do the data space
3911 * reservation for the free space cache in the
3912 * transaction context, the common join transaction
3913 * just increase the counter of the current transaction
3914 * handler, doesn't try to acquire the trans_lock of
3915 * the fs.
3916 */
7a7eaa40 3917 trans = btrfs_join_transaction(root);
a22285a6
YZ
3918 if (IS_ERR(trans))
3919 return PTR_ERR(trans);
9ed74f2d 3920
6a63209f 3921 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3922 alloc_target,
3923 CHUNK_ALLOC_NO_FORCE);
6a63209f 3924 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3925 if (ret < 0) {
3926 if (ret != -ENOSPC)
3927 return ret;
c99f1b0c
ZL
3928 else {
3929 have_pinned_space = 1;
d52a5b5f 3930 goto commit_trans;
c99f1b0c 3931 }
d52a5b5f 3932 }
9ed74f2d 3933
b4d7c3c9
LZ
3934 if (!data_sinfo)
3935 data_sinfo = fs_info->data_sinfo;
3936
6a63209f
JB
3937 goto again;
3938 }
f2bb8f5c
JB
3939
3940 /*
b150a4f1 3941 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3942 * allocation, and no removed chunk in current transaction,
3943 * don't bother committing the transaction.
f2bb8f5c 3944 */
c99f1b0c
ZL
3945 have_pinned_space = percpu_counter_compare(
3946 &data_sinfo->total_bytes_pinned,
3947 used + bytes - data_sinfo->total_bytes);
6a63209f 3948 spin_unlock(&data_sinfo->lock);
6a63209f 3949
4e06bdd6 3950 /* commit the current transaction and try again */
d52a5b5f 3951commit_trans:
c99f1b0c 3952 if (need_commit &&
a4abeea4 3953 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3954 need_commit--;
b150a4f1 3955
7a7eaa40 3956 trans = btrfs_join_transaction(root);
a22285a6
YZ
3957 if (IS_ERR(trans))
3958 return PTR_ERR(trans);
c99f1b0c
ZL
3959 if (have_pinned_space >= 0 ||
3960 trans->transaction->have_free_bgs ||
3961 need_commit > 0) {
94b947b2
ZL
3962 ret = btrfs_commit_transaction(trans, root);
3963 if (ret)
3964 return ret;
d7c15171
ZL
3965 /*
3966 * make sure that all running delayed iput are
3967 * done
3968 */
3969 down_write(&root->fs_info->delayed_iput_sem);
3970 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3971 goto again;
3972 } else {
3973 btrfs_end_transaction(trans, root);
3974 }
4e06bdd6 3975 }
9ed74f2d 3976
cab45e22
JM
3977 trace_btrfs_space_reservation(root->fs_info,
3978 "space_info:enospc",
3979 data_sinfo->flags, bytes, 1);
6a63209f
JB
3980 return -ENOSPC;
3981 }
e2d1f923 3982 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3983 if (ret)
3984 goto out;
6a63209f 3985 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3986 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3987 data_sinfo->flags, bytes, 1);
237c0e9f 3988out:
6a63209f 3989 spin_unlock(&data_sinfo->lock);
6a63209f 3990
237c0e9f 3991 return ret;
9ed74f2d 3992}
6a63209f 3993
6a63209f 3994/*
fb25e914 3995 * Called if we need to clear a data reservation for this inode.
6a63209f 3996 */
0ca1f7ce 3997void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3998{
0ca1f7ce 3999 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4000 struct btrfs_space_info *data_sinfo;
e3ccfa98 4001
6a63209f 4002 /* make sure bytes are sectorsize aligned */
fda2832f 4003 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4004
b4d7c3c9 4005 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4006 spin_lock(&data_sinfo->lock);
7ee9e440 4007 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4008 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4009 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4010 data_sinfo->flags, bytes, 0);
6a63209f 4011 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4012}
4013
97e728d4 4014static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4015{
97e728d4
JB
4016 struct list_head *head = &info->space_info;
4017 struct btrfs_space_info *found;
e3ccfa98 4018
97e728d4
JB
4019 rcu_read_lock();
4020 list_for_each_entry_rcu(found, head, list) {
4021 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4022 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4023 }
97e728d4 4024 rcu_read_unlock();
e3ccfa98
JB
4025}
4026
3c76cd84
MX
4027static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4028{
4029 return (global->size << 1);
4030}
4031
e5bc2458 4032static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4033 struct btrfs_space_info *sinfo, int force)
32c00aff 4034{
fb25e914 4035 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4036 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4037 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4038 u64 thresh;
e3ccfa98 4039
0e4f8f88
CM
4040 if (force == CHUNK_ALLOC_FORCE)
4041 return 1;
4042
fb25e914
JB
4043 /*
4044 * We need to take into account the global rsv because for all intents
4045 * and purposes it's used space. Don't worry about locking the
4046 * global_rsv, it doesn't change except when the transaction commits.
4047 */
54338b5c 4048 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4049 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4050
0e4f8f88
CM
4051 /*
4052 * in limited mode, we want to have some free space up to
4053 * about 1% of the FS size.
4054 */
4055 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4056 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4057 thresh = max_t(u64, 64 * 1024 * 1024,
4058 div_factor_fine(thresh, 1));
4059
4060 if (num_bytes - num_allocated < thresh)
4061 return 1;
4062 }
0e4f8f88 4063
698d0082 4064 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4065 return 0;
424499db 4066 return 1;
32c00aff
JB
4067}
4068
15d1ff81
LB
4069static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4070{
4071 u64 num_dev;
4072
53b381b3
DW
4073 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4074 BTRFS_BLOCK_GROUP_RAID0 |
4075 BTRFS_BLOCK_GROUP_RAID5 |
4076 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4077 num_dev = root->fs_info->fs_devices->rw_devices;
4078 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4079 num_dev = 2;
4080 else
4081 num_dev = 1; /* DUP or single */
4082
4083 /* metadata for updaing devices and chunk tree */
4084 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4085}
4086
4087static void check_system_chunk(struct btrfs_trans_handle *trans,
4088 struct btrfs_root *root, u64 type)
4089{
4090 struct btrfs_space_info *info;
4091 u64 left;
4092 u64 thresh;
4093
4094 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4095 spin_lock(&info->lock);
4096 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4097 info->bytes_reserved - info->bytes_readonly;
4098 spin_unlock(&info->lock);
4099
4100 thresh = get_system_chunk_thresh(root, type);
4101 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4102 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4103 left, thresh, type);
15d1ff81
LB
4104 dump_space_info(info, 0, 0);
4105 }
4106
4107 if (left < thresh) {
4108 u64 flags;
4109
4110 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4111 btrfs_alloc_chunk(trans, root, flags);
4112 }
4113}
4114
6324fbf3 4115static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4116 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4117{
6324fbf3 4118 struct btrfs_space_info *space_info;
97e728d4 4119 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4120 int wait_for_alloc = 0;
9ed74f2d 4121 int ret = 0;
9ed74f2d 4122
c6b305a8
JB
4123 /* Don't re-enter if we're already allocating a chunk */
4124 if (trans->allocating_chunk)
4125 return -ENOSPC;
4126
6324fbf3 4127 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4128 if (!space_info) {
4129 ret = update_space_info(extent_root->fs_info, flags,
4130 0, 0, &space_info);
79787eaa 4131 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4132 }
79787eaa 4133 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4134
6d74119f 4135again:
25179201 4136 spin_lock(&space_info->lock);
9e622d6b 4137 if (force < space_info->force_alloc)
0e4f8f88 4138 force = space_info->force_alloc;
25179201 4139 if (space_info->full) {
09fb99a6
FDBM
4140 if (should_alloc_chunk(extent_root, space_info, force))
4141 ret = -ENOSPC;
4142 else
4143 ret = 0;
25179201 4144 spin_unlock(&space_info->lock);
09fb99a6 4145 return ret;
9ed74f2d
JB
4146 }
4147
698d0082 4148 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4149 spin_unlock(&space_info->lock);
6d74119f
JB
4150 return 0;
4151 } else if (space_info->chunk_alloc) {
4152 wait_for_alloc = 1;
4153 } else {
4154 space_info->chunk_alloc = 1;
9ed74f2d 4155 }
0e4f8f88 4156
25179201 4157 spin_unlock(&space_info->lock);
9ed74f2d 4158
6d74119f
JB
4159 mutex_lock(&fs_info->chunk_mutex);
4160
4161 /*
4162 * The chunk_mutex is held throughout the entirety of a chunk
4163 * allocation, so once we've acquired the chunk_mutex we know that the
4164 * other guy is done and we need to recheck and see if we should
4165 * allocate.
4166 */
4167 if (wait_for_alloc) {
4168 mutex_unlock(&fs_info->chunk_mutex);
4169 wait_for_alloc = 0;
4170 goto again;
4171 }
4172
c6b305a8
JB
4173 trans->allocating_chunk = true;
4174
67377734
JB
4175 /*
4176 * If we have mixed data/metadata chunks we want to make sure we keep
4177 * allocating mixed chunks instead of individual chunks.
4178 */
4179 if (btrfs_mixed_space_info(space_info))
4180 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4181
97e728d4
JB
4182 /*
4183 * if we're doing a data chunk, go ahead and make sure that
4184 * we keep a reasonable number of metadata chunks allocated in the
4185 * FS as well.
4186 */
9ed74f2d 4187 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4188 fs_info->data_chunk_allocations++;
4189 if (!(fs_info->data_chunk_allocations %
4190 fs_info->metadata_ratio))
4191 force_metadata_allocation(fs_info);
9ed74f2d
JB
4192 }
4193
15d1ff81
LB
4194 /*
4195 * Check if we have enough space in SYSTEM chunk because we may need
4196 * to update devices.
4197 */
4198 check_system_chunk(trans, extent_root, flags);
4199
2b82032c 4200 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4201 trans->allocating_chunk = false;
92b8e897 4202
9ed74f2d 4203 spin_lock(&space_info->lock);
a81cb9a2
AO
4204 if (ret < 0 && ret != -ENOSPC)
4205 goto out;
9ed74f2d 4206 if (ret)
6324fbf3 4207 space_info->full = 1;
424499db
YZ
4208 else
4209 ret = 1;
6d74119f 4210
0e4f8f88 4211 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4212out:
6d74119f 4213 space_info->chunk_alloc = 0;
9ed74f2d 4214 spin_unlock(&space_info->lock);
a25c75d5 4215 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4216 return ret;
6324fbf3 4217}
9ed74f2d 4218
a80c8dcf
JB
4219static int can_overcommit(struct btrfs_root *root,
4220 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4221 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4222{
96f1bb57 4223 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4224 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4225 u64 space_size;
a80c8dcf
JB
4226 u64 avail;
4227 u64 used;
4228
4229 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4230 space_info->bytes_pinned + space_info->bytes_readonly;
4231
96f1bb57
JB
4232 /*
4233 * We only want to allow over committing if we have lots of actual space
4234 * free, but if we don't have enough space to handle the global reserve
4235 * space then we could end up having a real enospc problem when trying
4236 * to allocate a chunk or some other such important allocation.
4237 */
3c76cd84
MX
4238 spin_lock(&global_rsv->lock);
4239 space_size = calc_global_rsv_need_space(global_rsv);
4240 spin_unlock(&global_rsv->lock);
4241 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4242 return 0;
4243
4244 used += space_info->bytes_may_use;
a80c8dcf
JB
4245
4246 spin_lock(&root->fs_info->free_chunk_lock);
4247 avail = root->fs_info->free_chunk_space;
4248 spin_unlock(&root->fs_info->free_chunk_lock);
4249
4250 /*
4251 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4252 * space is actually useable. For raid56, the space info used
4253 * doesn't include the parity drive, so we don't have to
4254 * change the math
a80c8dcf
JB
4255 */
4256 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4257 BTRFS_BLOCK_GROUP_RAID1 |
4258 BTRFS_BLOCK_GROUP_RAID10))
4259 avail >>= 1;
4260
4261 /*
561c294d
MX
4262 * If we aren't flushing all things, let us overcommit up to
4263 * 1/2th of the space. If we can flush, don't let us overcommit
4264 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4265 */
08e007d2 4266 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4267 avail >>= 3;
a80c8dcf 4268 else
14575aef 4269 avail >>= 1;
a80c8dcf 4270
14575aef 4271 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4272 return 1;
4273 return 0;
4274}
4275
48a3b636 4276static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4277 unsigned long nr_pages, int nr_items)
da633a42
MX
4278{
4279 struct super_block *sb = root->fs_info->sb;
da633a42 4280
925a6efb
JB
4281 if (down_read_trylock(&sb->s_umount)) {
4282 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4283 up_read(&sb->s_umount);
4284 } else {
da633a42
MX
4285 /*
4286 * We needn't worry the filesystem going from r/w to r/o though
4287 * we don't acquire ->s_umount mutex, because the filesystem
4288 * should guarantee the delalloc inodes list be empty after
4289 * the filesystem is readonly(all dirty pages are written to
4290 * the disk).
4291 */
6c255e67 4292 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4293 if (!current->journal_info)
6c255e67 4294 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4295 }
4296}
4297
18cd8ea6
MX
4298static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4299{
4300 u64 bytes;
4301 int nr;
4302
4303 bytes = btrfs_calc_trans_metadata_size(root, 1);
4304 nr = (int)div64_u64(to_reclaim, bytes);
4305 if (!nr)
4306 nr = 1;
4307 return nr;
4308}
4309
c61a16a7
MX
4310#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4311
9ed74f2d 4312/*
5da9d01b 4313 * shrink metadata reservation for delalloc
9ed74f2d 4314 */
f4c738c2
JB
4315static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4316 bool wait_ordered)
5da9d01b 4317{
0ca1f7ce 4318 struct btrfs_block_rsv *block_rsv;
0019f10d 4319 struct btrfs_space_info *space_info;
663350ac 4320 struct btrfs_trans_handle *trans;
f4c738c2 4321 u64 delalloc_bytes;
5da9d01b 4322 u64 max_reclaim;
b1953bce 4323 long time_left;
d3ee29e3
MX
4324 unsigned long nr_pages;
4325 int loops;
b0244199 4326 int items;
08e007d2 4327 enum btrfs_reserve_flush_enum flush;
5da9d01b 4328
c61a16a7 4329 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4330 items = calc_reclaim_items_nr(root, to_reclaim);
4331 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4332
663350ac 4333 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4334 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4335 space_info = block_rsv->space_info;
bf9022e0 4336
963d678b
MX
4337 delalloc_bytes = percpu_counter_sum_positive(
4338 &root->fs_info->delalloc_bytes);
f4c738c2 4339 if (delalloc_bytes == 0) {
fdb5effd 4340 if (trans)
f4c738c2 4341 return;
38c135af 4342 if (wait_ordered)
b0244199 4343 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4344 return;
fdb5effd
JB
4345 }
4346
d3ee29e3 4347 loops = 0;
f4c738c2
JB
4348 while (delalloc_bytes && loops < 3) {
4349 max_reclaim = min(delalloc_bytes, to_reclaim);
4350 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4351 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4352 /*
4353 * We need to wait for the async pages to actually start before
4354 * we do anything.
4355 */
9f3a074d
MX
4356 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4357 if (!max_reclaim)
4358 goto skip_async;
4359
4360 if (max_reclaim <= nr_pages)
4361 max_reclaim = 0;
4362 else
4363 max_reclaim -= nr_pages;
dea31f52 4364
9f3a074d
MX
4365 wait_event(root->fs_info->async_submit_wait,
4366 atomic_read(&root->fs_info->async_delalloc_pages) <=
4367 (int)max_reclaim);
4368skip_async:
08e007d2
MX
4369 if (!trans)
4370 flush = BTRFS_RESERVE_FLUSH_ALL;
4371 else
4372 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4373 spin_lock(&space_info->lock);
08e007d2 4374 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4375 spin_unlock(&space_info->lock);
4376 break;
4377 }
0019f10d 4378 spin_unlock(&space_info->lock);
5da9d01b 4379
36e39c40 4380 loops++;
f104d044 4381 if (wait_ordered && !trans) {
b0244199 4382 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4383 } else {
f4c738c2 4384 time_left = schedule_timeout_killable(1);
f104d044
JB
4385 if (time_left)
4386 break;
4387 }
963d678b
MX
4388 delalloc_bytes = percpu_counter_sum_positive(
4389 &root->fs_info->delalloc_bytes);
5da9d01b 4390 }
5da9d01b
YZ
4391}
4392
663350ac
JB
4393/**
4394 * maybe_commit_transaction - possibly commit the transaction if its ok to
4395 * @root - the root we're allocating for
4396 * @bytes - the number of bytes we want to reserve
4397 * @force - force the commit
8bb8ab2e 4398 *
663350ac
JB
4399 * This will check to make sure that committing the transaction will actually
4400 * get us somewhere and then commit the transaction if it does. Otherwise it
4401 * will return -ENOSPC.
8bb8ab2e 4402 */
663350ac
JB
4403static int may_commit_transaction(struct btrfs_root *root,
4404 struct btrfs_space_info *space_info,
4405 u64 bytes, int force)
4406{
4407 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4408 struct btrfs_trans_handle *trans;
4409
4410 trans = (struct btrfs_trans_handle *)current->journal_info;
4411 if (trans)
4412 return -EAGAIN;
4413
4414 if (force)
4415 goto commit;
4416
4417 /* See if there is enough pinned space to make this reservation */
b150a4f1 4418 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4419 bytes) >= 0)
663350ac 4420 goto commit;
663350ac
JB
4421
4422 /*
4423 * See if there is some space in the delayed insertion reservation for
4424 * this reservation.
4425 */
4426 if (space_info != delayed_rsv->space_info)
4427 return -ENOSPC;
4428
4429 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4430 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4431 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4432 spin_unlock(&delayed_rsv->lock);
4433 return -ENOSPC;
4434 }
4435 spin_unlock(&delayed_rsv->lock);
4436
4437commit:
4438 trans = btrfs_join_transaction(root);
4439 if (IS_ERR(trans))
4440 return -ENOSPC;
4441
4442 return btrfs_commit_transaction(trans, root);
4443}
4444
96c3f433 4445enum flush_state {
67b0fd63
JB
4446 FLUSH_DELAYED_ITEMS_NR = 1,
4447 FLUSH_DELAYED_ITEMS = 2,
4448 FLUSH_DELALLOC = 3,
4449 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4450 ALLOC_CHUNK = 5,
4451 COMMIT_TRANS = 6,
96c3f433
JB
4452};
4453
4454static int flush_space(struct btrfs_root *root,
4455 struct btrfs_space_info *space_info, u64 num_bytes,
4456 u64 orig_bytes, int state)
4457{
4458 struct btrfs_trans_handle *trans;
4459 int nr;
f4c738c2 4460 int ret = 0;
96c3f433
JB
4461
4462 switch (state) {
96c3f433
JB
4463 case FLUSH_DELAYED_ITEMS_NR:
4464 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4465 if (state == FLUSH_DELAYED_ITEMS_NR)
4466 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4467 else
96c3f433 4468 nr = -1;
18cd8ea6 4469
96c3f433
JB
4470 trans = btrfs_join_transaction(root);
4471 if (IS_ERR(trans)) {
4472 ret = PTR_ERR(trans);
4473 break;
4474 }
4475 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4476 btrfs_end_transaction(trans, root);
4477 break;
67b0fd63
JB
4478 case FLUSH_DELALLOC:
4479 case FLUSH_DELALLOC_WAIT:
24af7dd1 4480 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4481 state == FLUSH_DELALLOC_WAIT);
4482 break;
ea658bad
JB
4483 case ALLOC_CHUNK:
4484 trans = btrfs_join_transaction(root);
4485 if (IS_ERR(trans)) {
4486 ret = PTR_ERR(trans);
4487 break;
4488 }
4489 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4490 btrfs_get_alloc_profile(root, 0),
4491 CHUNK_ALLOC_NO_FORCE);
4492 btrfs_end_transaction(trans, root);
4493 if (ret == -ENOSPC)
4494 ret = 0;
4495 break;
96c3f433
JB
4496 case COMMIT_TRANS:
4497 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4498 break;
4499 default:
4500 ret = -ENOSPC;
4501 break;
4502 }
4503
4504 return ret;
4505}
21c7e756
MX
4506
4507static inline u64
4508btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4509 struct btrfs_space_info *space_info)
4510{
4511 u64 used;
4512 u64 expected;
4513 u64 to_reclaim;
4514
4515 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4516 16 * 1024 * 1024);
4517 spin_lock(&space_info->lock);
4518 if (can_overcommit(root, space_info, to_reclaim,
4519 BTRFS_RESERVE_FLUSH_ALL)) {
4520 to_reclaim = 0;
4521 goto out;
4522 }
4523
4524 used = space_info->bytes_used + space_info->bytes_reserved +
4525 space_info->bytes_pinned + space_info->bytes_readonly +
4526 space_info->bytes_may_use;
4527 if (can_overcommit(root, space_info, 1024 * 1024,
4528 BTRFS_RESERVE_FLUSH_ALL))
4529 expected = div_factor_fine(space_info->total_bytes, 95);
4530 else
4531 expected = div_factor_fine(space_info->total_bytes, 90);
4532
4533 if (used > expected)
4534 to_reclaim = used - expected;
4535 else
4536 to_reclaim = 0;
4537 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4538 space_info->bytes_reserved);
4539out:
4540 spin_unlock(&space_info->lock);
4541
4542 return to_reclaim;
4543}
4544
4545static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4546 struct btrfs_fs_info *fs_info, u64 used)
4547{
365c5313
JB
4548 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4549
4550 /* If we're just plain full then async reclaim just slows us down. */
4551 if (space_info->bytes_used >= thresh)
4552 return 0;
4553
4554 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4555 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4556}
4557
4558static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4559 struct btrfs_fs_info *fs_info,
4560 int flush_state)
21c7e756
MX
4561{
4562 u64 used;
4563
4564 spin_lock(&space_info->lock);
25ce459c
LB
4565 /*
4566 * We run out of space and have not got any free space via flush_space,
4567 * so don't bother doing async reclaim.
4568 */
4569 if (flush_state > COMMIT_TRANS && space_info->full) {
4570 spin_unlock(&space_info->lock);
4571 return 0;
4572 }
4573
21c7e756
MX
4574 used = space_info->bytes_used + space_info->bytes_reserved +
4575 space_info->bytes_pinned + space_info->bytes_readonly +
4576 space_info->bytes_may_use;
4577 if (need_do_async_reclaim(space_info, fs_info, used)) {
4578 spin_unlock(&space_info->lock);
4579 return 1;
4580 }
4581 spin_unlock(&space_info->lock);
4582
4583 return 0;
4584}
4585
4586static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4587{
4588 struct btrfs_fs_info *fs_info;
4589 struct btrfs_space_info *space_info;
4590 u64 to_reclaim;
4591 int flush_state;
4592
4593 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4594 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4595
4596 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4597 space_info);
4598 if (!to_reclaim)
4599 return;
4600
4601 flush_state = FLUSH_DELAYED_ITEMS_NR;
4602 do {
4603 flush_space(fs_info->fs_root, space_info, to_reclaim,
4604 to_reclaim, flush_state);
4605 flush_state++;
25ce459c
LB
4606 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4607 flush_state))
21c7e756 4608 return;
365c5313 4609 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4610}
4611
4612void btrfs_init_async_reclaim_work(struct work_struct *work)
4613{
4614 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4615}
4616
4a92b1b8
JB
4617/**
4618 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4619 * @root - the root we're allocating for
4620 * @block_rsv - the block_rsv we're allocating for
4621 * @orig_bytes - the number of bytes we want
48fc7f7e 4622 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4623 *
4a92b1b8
JB
4624 * This will reserve orgi_bytes number of bytes from the space info associated
4625 * with the block_rsv. If there is not enough space it will make an attempt to
4626 * flush out space to make room. It will do this by flushing delalloc if
4627 * possible or committing the transaction. If flush is 0 then no attempts to
4628 * regain reservations will be made and this will fail if there is not enough
4629 * space already.
8bb8ab2e 4630 */
4a92b1b8 4631static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4632 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4633 u64 orig_bytes,
4634 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4635{
f0486c68 4636 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4637 u64 used;
8bb8ab2e 4638 u64 num_bytes = orig_bytes;
67b0fd63 4639 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4640 int ret = 0;
fdb5effd 4641 bool flushing = false;
9ed74f2d 4642
8bb8ab2e 4643again:
fdb5effd 4644 ret = 0;
8bb8ab2e 4645 spin_lock(&space_info->lock);
fdb5effd 4646 /*
08e007d2
MX
4647 * We only want to wait if somebody other than us is flushing and we
4648 * are actually allowed to flush all things.
fdb5effd 4649 */
08e007d2
MX
4650 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4651 space_info->flush) {
fdb5effd
JB
4652 spin_unlock(&space_info->lock);
4653 /*
4654 * If we have a trans handle we can't wait because the flusher
4655 * may have to commit the transaction, which would mean we would
4656 * deadlock since we are waiting for the flusher to finish, but
4657 * hold the current transaction open.
4658 */
663350ac 4659 if (current->journal_info)
fdb5effd 4660 return -EAGAIN;
b9688bb8
AJ
4661 ret = wait_event_killable(space_info->wait, !space_info->flush);
4662 /* Must have been killed, return */
4663 if (ret)
fdb5effd
JB
4664 return -EINTR;
4665
4666 spin_lock(&space_info->lock);
4667 }
4668
4669 ret = -ENOSPC;
2bf64758
JB
4670 used = space_info->bytes_used + space_info->bytes_reserved +
4671 space_info->bytes_pinned + space_info->bytes_readonly +
4672 space_info->bytes_may_use;
9ed74f2d 4673
8bb8ab2e
JB
4674 /*
4675 * The idea here is that we've not already over-reserved the block group
4676 * then we can go ahead and save our reservation first and then start
4677 * flushing if we need to. Otherwise if we've already overcommitted
4678 * lets start flushing stuff first and then come back and try to make
4679 * our reservation.
4680 */
2bf64758
JB
4681 if (used <= space_info->total_bytes) {
4682 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4683 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4684 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4685 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4686 ret = 0;
4687 } else {
4688 /*
4689 * Ok set num_bytes to orig_bytes since we aren't
4690 * overocmmitted, this way we only try and reclaim what
4691 * we need.
4692 */
4693 num_bytes = orig_bytes;
4694 }
4695 } else {
4696 /*
4697 * Ok we're over committed, set num_bytes to the overcommitted
4698 * amount plus the amount of bytes that we need for this
4699 * reservation.
4700 */
2bf64758 4701 num_bytes = used - space_info->total_bytes +
96c3f433 4702 (orig_bytes * 2);
8bb8ab2e 4703 }
9ed74f2d 4704
44734ed1
JB
4705 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4706 space_info->bytes_may_use += orig_bytes;
4707 trace_btrfs_space_reservation(root->fs_info, "space_info",
4708 space_info->flags, orig_bytes,
4709 1);
4710 ret = 0;
2bf64758
JB
4711 }
4712
8bb8ab2e
JB
4713 /*
4714 * Couldn't make our reservation, save our place so while we're trying
4715 * to reclaim space we can actually use it instead of somebody else
4716 * stealing it from us.
08e007d2
MX
4717 *
4718 * We make the other tasks wait for the flush only when we can flush
4719 * all things.
8bb8ab2e 4720 */
72bcd99d 4721 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4722 flushing = true;
4723 space_info->flush = 1;
21c7e756
MX
4724 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4725 used += orig_bytes;
f6acfd50
JB
4726 /*
4727 * We will do the space reservation dance during log replay,
4728 * which means we won't have fs_info->fs_root set, so don't do
4729 * the async reclaim as we will panic.
4730 */
4731 if (!root->fs_info->log_root_recovering &&
4732 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4733 !work_busy(&root->fs_info->async_reclaim_work))
4734 queue_work(system_unbound_wq,
4735 &root->fs_info->async_reclaim_work);
8bb8ab2e 4736 }
f0486c68 4737 spin_unlock(&space_info->lock);
9ed74f2d 4738
08e007d2 4739 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4740 goto out;
f0486c68 4741
96c3f433
JB
4742 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4743 flush_state);
4744 flush_state++;
08e007d2
MX
4745
4746 /*
4747 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4748 * would happen. So skip delalloc flush.
4749 */
4750 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4751 (flush_state == FLUSH_DELALLOC ||
4752 flush_state == FLUSH_DELALLOC_WAIT))
4753 flush_state = ALLOC_CHUNK;
4754
96c3f433 4755 if (!ret)
8bb8ab2e 4756 goto again;
08e007d2
MX
4757 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4758 flush_state < COMMIT_TRANS)
4759 goto again;
4760 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4761 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4762 goto again;
4763
4764out:
5d80366e
JB
4765 if (ret == -ENOSPC &&
4766 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4767 struct btrfs_block_rsv *global_rsv =
4768 &root->fs_info->global_block_rsv;
4769
4770 if (block_rsv != global_rsv &&
4771 !block_rsv_use_bytes(global_rsv, orig_bytes))
4772 ret = 0;
4773 }
cab45e22
JM
4774 if (ret == -ENOSPC)
4775 trace_btrfs_space_reservation(root->fs_info,
4776 "space_info:enospc",
4777 space_info->flags, orig_bytes, 1);
fdb5effd 4778 if (flushing) {
8bb8ab2e 4779 spin_lock(&space_info->lock);
fdb5effd
JB
4780 space_info->flush = 0;
4781 wake_up_all(&space_info->wait);
8bb8ab2e 4782 spin_unlock(&space_info->lock);
f0486c68 4783 }
f0486c68
YZ
4784 return ret;
4785}
4786
79787eaa
JM
4787static struct btrfs_block_rsv *get_block_rsv(
4788 const struct btrfs_trans_handle *trans,
4789 const struct btrfs_root *root)
f0486c68 4790{
4c13d758
JB
4791 struct btrfs_block_rsv *block_rsv = NULL;
4792
27cdeb70 4793 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4794 block_rsv = trans->block_rsv;
4795
4796 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4797 block_rsv = trans->block_rsv;
4c13d758 4798
f7a81ea4
SB
4799 if (root == root->fs_info->uuid_root)
4800 block_rsv = trans->block_rsv;
4801
4c13d758 4802 if (!block_rsv)
f0486c68
YZ
4803 block_rsv = root->block_rsv;
4804
4805 if (!block_rsv)
4806 block_rsv = &root->fs_info->empty_block_rsv;
4807
4808 return block_rsv;
4809}
4810
4811static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4812 u64 num_bytes)
4813{
4814 int ret = -ENOSPC;
4815 spin_lock(&block_rsv->lock);
4816 if (block_rsv->reserved >= num_bytes) {
4817 block_rsv->reserved -= num_bytes;
4818 if (block_rsv->reserved < block_rsv->size)
4819 block_rsv->full = 0;
4820 ret = 0;
4821 }
4822 spin_unlock(&block_rsv->lock);
4823 return ret;
4824}
4825
4826static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4827 u64 num_bytes, int update_size)
4828{
4829 spin_lock(&block_rsv->lock);
4830 block_rsv->reserved += num_bytes;
4831 if (update_size)
4832 block_rsv->size += num_bytes;
4833 else if (block_rsv->reserved >= block_rsv->size)
4834 block_rsv->full = 1;
4835 spin_unlock(&block_rsv->lock);
4836}
4837
d52be818
JB
4838int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4839 struct btrfs_block_rsv *dest, u64 num_bytes,
4840 int min_factor)
4841{
4842 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4843 u64 min_bytes;
4844
4845 if (global_rsv->space_info != dest->space_info)
4846 return -ENOSPC;
4847
4848 spin_lock(&global_rsv->lock);
4849 min_bytes = div_factor(global_rsv->size, min_factor);
4850 if (global_rsv->reserved < min_bytes + num_bytes) {
4851 spin_unlock(&global_rsv->lock);
4852 return -ENOSPC;
4853 }
4854 global_rsv->reserved -= num_bytes;
4855 if (global_rsv->reserved < global_rsv->size)
4856 global_rsv->full = 0;
4857 spin_unlock(&global_rsv->lock);
4858
4859 block_rsv_add_bytes(dest, num_bytes, 1);
4860 return 0;
4861}
4862
8c2a3ca2
JB
4863static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4864 struct btrfs_block_rsv *block_rsv,
62a45b60 4865 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4866{
4867 struct btrfs_space_info *space_info = block_rsv->space_info;
4868
4869 spin_lock(&block_rsv->lock);
4870 if (num_bytes == (u64)-1)
4871 num_bytes = block_rsv->size;
4872 block_rsv->size -= num_bytes;
4873 if (block_rsv->reserved >= block_rsv->size) {
4874 num_bytes = block_rsv->reserved - block_rsv->size;
4875 block_rsv->reserved = block_rsv->size;
4876 block_rsv->full = 1;
4877 } else {
4878 num_bytes = 0;
4879 }
4880 spin_unlock(&block_rsv->lock);
4881
4882 if (num_bytes > 0) {
4883 if (dest) {
e9e22899
JB
4884 spin_lock(&dest->lock);
4885 if (!dest->full) {
4886 u64 bytes_to_add;
4887
4888 bytes_to_add = dest->size - dest->reserved;
4889 bytes_to_add = min(num_bytes, bytes_to_add);
4890 dest->reserved += bytes_to_add;
4891 if (dest->reserved >= dest->size)
4892 dest->full = 1;
4893 num_bytes -= bytes_to_add;
4894 }
4895 spin_unlock(&dest->lock);
4896 }
4897 if (num_bytes) {
f0486c68 4898 spin_lock(&space_info->lock);
fb25e914 4899 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4900 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4901 space_info->flags, num_bytes, 0);
f0486c68 4902 spin_unlock(&space_info->lock);
4e06bdd6 4903 }
9ed74f2d 4904 }
f0486c68 4905}
4e06bdd6 4906
f0486c68
YZ
4907static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4908 struct btrfs_block_rsv *dst, u64 num_bytes)
4909{
4910 int ret;
9ed74f2d 4911
f0486c68
YZ
4912 ret = block_rsv_use_bytes(src, num_bytes);
4913 if (ret)
4914 return ret;
9ed74f2d 4915
f0486c68 4916 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4917 return 0;
4918}
4919
66d8f3dd 4920void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4921{
f0486c68
YZ
4922 memset(rsv, 0, sizeof(*rsv));
4923 spin_lock_init(&rsv->lock);
66d8f3dd 4924 rsv->type = type;
f0486c68
YZ
4925}
4926
66d8f3dd
MX
4927struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4928 unsigned short type)
f0486c68
YZ
4929{
4930 struct btrfs_block_rsv *block_rsv;
4931 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4932
f0486c68
YZ
4933 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4934 if (!block_rsv)
4935 return NULL;
9ed74f2d 4936
66d8f3dd 4937 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4938 block_rsv->space_info = __find_space_info(fs_info,
4939 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4940 return block_rsv;
4941}
9ed74f2d 4942
f0486c68
YZ
4943void btrfs_free_block_rsv(struct btrfs_root *root,
4944 struct btrfs_block_rsv *rsv)
4945{
2aaa6655
JB
4946 if (!rsv)
4947 return;
dabdb640
JB
4948 btrfs_block_rsv_release(root, rsv, (u64)-1);
4949 kfree(rsv);
9ed74f2d
JB
4950}
4951
cdfb080e
CM
4952void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4953{
4954 kfree(rsv);
4955}
4956
08e007d2
MX
4957int btrfs_block_rsv_add(struct btrfs_root *root,
4958 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4959 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4960{
f0486c68 4961 int ret;
9ed74f2d 4962
f0486c68
YZ
4963 if (num_bytes == 0)
4964 return 0;
8bb8ab2e 4965
61b520a9 4966 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4967 if (!ret) {
4968 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4969 return 0;
4970 }
9ed74f2d 4971
f0486c68 4972 return ret;
f0486c68 4973}
9ed74f2d 4974
4a92b1b8 4975int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 4976 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
4977{
4978 u64 num_bytes = 0;
f0486c68 4979 int ret = -ENOSPC;
9ed74f2d 4980
f0486c68
YZ
4981 if (!block_rsv)
4982 return 0;
9ed74f2d 4983
f0486c68 4984 spin_lock(&block_rsv->lock);
36ba022a
JB
4985 num_bytes = div_factor(block_rsv->size, min_factor);
4986 if (block_rsv->reserved >= num_bytes)
4987 ret = 0;
4988 spin_unlock(&block_rsv->lock);
9ed74f2d 4989
36ba022a
JB
4990 return ret;
4991}
4992
08e007d2
MX
4993int btrfs_block_rsv_refill(struct btrfs_root *root,
4994 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4995 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
4996{
4997 u64 num_bytes = 0;
4998 int ret = -ENOSPC;
4999
5000 if (!block_rsv)
5001 return 0;
5002
5003 spin_lock(&block_rsv->lock);
5004 num_bytes = min_reserved;
13553e52 5005 if (block_rsv->reserved >= num_bytes)
f0486c68 5006 ret = 0;
13553e52 5007 else
f0486c68 5008 num_bytes -= block_rsv->reserved;
f0486c68 5009 spin_unlock(&block_rsv->lock);
13553e52 5010
f0486c68
YZ
5011 if (!ret)
5012 return 0;
5013
aa38a711 5014 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5015 if (!ret) {
5016 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5017 return 0;
6a63209f 5018 }
9ed74f2d 5019
13553e52 5020 return ret;
f0486c68
YZ
5021}
5022
5023int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5024 struct btrfs_block_rsv *dst_rsv,
5025 u64 num_bytes)
5026{
5027 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5028}
5029
5030void btrfs_block_rsv_release(struct btrfs_root *root,
5031 struct btrfs_block_rsv *block_rsv,
5032 u64 num_bytes)
5033{
5034 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5035 if (global_rsv == block_rsv ||
f0486c68
YZ
5036 block_rsv->space_info != global_rsv->space_info)
5037 global_rsv = NULL;
8c2a3ca2
JB
5038 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5039 num_bytes);
6a63209f
JB
5040}
5041
5042/*
8929ecfa
YZ
5043 * helper to calculate size of global block reservation.
5044 * the desired value is sum of space used by extent tree,
5045 * checksum tree and root tree
6a63209f 5046 */
8929ecfa 5047static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5048{
8929ecfa
YZ
5049 struct btrfs_space_info *sinfo;
5050 u64 num_bytes;
5051 u64 meta_used;
5052 u64 data_used;
6c41761f 5053 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5054
8929ecfa
YZ
5055 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5056 spin_lock(&sinfo->lock);
5057 data_used = sinfo->bytes_used;
5058 spin_unlock(&sinfo->lock);
33b4d47f 5059
8929ecfa
YZ
5060 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5061 spin_lock(&sinfo->lock);
6d48755d
JB
5062 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5063 data_used = 0;
8929ecfa
YZ
5064 meta_used = sinfo->bytes_used;
5065 spin_unlock(&sinfo->lock);
ab6e2410 5066
8929ecfa
YZ
5067 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5068 csum_size * 2;
f8c269d7 5069 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5070
8929ecfa 5071 if (num_bytes * 3 > meta_used)
f8c269d7 5072 num_bytes = div_u64(meta_used, 3);
ab6e2410 5073
707e8a07 5074 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5075}
6a63209f 5076
8929ecfa
YZ
5077static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5078{
5079 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5080 struct btrfs_space_info *sinfo = block_rsv->space_info;
5081 u64 num_bytes;
6a63209f 5082
8929ecfa 5083 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5084
8929ecfa 5085 spin_lock(&sinfo->lock);
1f699d38 5086 spin_lock(&block_rsv->lock);
4e06bdd6 5087
fdf30d1c 5088 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5089
8929ecfa 5090 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5091 sinfo->bytes_reserved + sinfo->bytes_readonly +
5092 sinfo->bytes_may_use;
8929ecfa
YZ
5093
5094 if (sinfo->total_bytes > num_bytes) {
5095 num_bytes = sinfo->total_bytes - num_bytes;
5096 block_rsv->reserved += num_bytes;
fb25e914 5097 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5098 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5099 sinfo->flags, num_bytes, 1);
6a63209f 5100 }
6a63209f 5101
8929ecfa
YZ
5102 if (block_rsv->reserved >= block_rsv->size) {
5103 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5104 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5105 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5106 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5107 block_rsv->reserved = block_rsv->size;
5108 block_rsv->full = 1;
5109 }
182608c8 5110
8929ecfa 5111 spin_unlock(&block_rsv->lock);
1f699d38 5112 spin_unlock(&sinfo->lock);
6a63209f
JB
5113}
5114
f0486c68 5115static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5116{
f0486c68 5117 struct btrfs_space_info *space_info;
6a63209f 5118
f0486c68
YZ
5119 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5120 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5121
f0486c68 5122 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5123 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5124 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5125 fs_info->trans_block_rsv.space_info = space_info;
5126 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5127 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5128
8929ecfa
YZ
5129 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5130 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5131 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5132 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5133 if (fs_info->quota_root)
5134 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5135 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5136
8929ecfa 5137 update_global_block_rsv(fs_info);
6a63209f
JB
5138}
5139
8929ecfa 5140static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5141{
8c2a3ca2
JB
5142 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5143 (u64)-1);
8929ecfa
YZ
5144 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5145 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5146 WARN_ON(fs_info->trans_block_rsv.size > 0);
5147 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5148 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5149 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5150 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5151 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5152}
5153
a22285a6
YZ
5154void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5155 struct btrfs_root *root)
6a63209f 5156{
0e721106
JB
5157 if (!trans->block_rsv)
5158 return;
5159
a22285a6
YZ
5160 if (!trans->bytes_reserved)
5161 return;
6a63209f 5162
e77266e4 5163 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5164 trans->transid, trans->bytes_reserved, 0);
b24e03db 5165 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5166 trans->bytes_reserved = 0;
5167}
6a63209f 5168
79787eaa 5169/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5170int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5171 struct inode *inode)
5172{
5173 struct btrfs_root *root = BTRFS_I(inode)->root;
5174 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5175 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5176
5177 /*
fcb80c2a
JB
5178 * We need to hold space in order to delete our orphan item once we've
5179 * added it, so this takes the reservation so we can release it later
5180 * when we are truly done with the orphan item.
d68fc57b 5181 */
ff5714cc 5182 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5183 trace_btrfs_space_reservation(root->fs_info, "orphan",
5184 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5185 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5186}
5187
d68fc57b 5188void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5189{
d68fc57b 5190 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5191 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5192 trace_btrfs_space_reservation(root->fs_info, "orphan",
5193 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5194 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5195}
97e728d4 5196
d5c12070
MX
5197/*
5198 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5199 * root: the root of the parent directory
5200 * rsv: block reservation
5201 * items: the number of items that we need do reservation
5202 * qgroup_reserved: used to return the reserved size in qgroup
5203 *
5204 * This function is used to reserve the space for snapshot/subvolume
5205 * creation and deletion. Those operations are different with the
5206 * common file/directory operations, they change two fs/file trees
5207 * and root tree, the number of items that the qgroup reserves is
5208 * different with the free space reservation. So we can not use
5209 * the space reseravtion mechanism in start_transaction().
5210 */
5211int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5212 struct btrfs_block_rsv *rsv,
5213 int items,
ee3441b4
JM
5214 u64 *qgroup_reserved,
5215 bool use_global_rsv)
a22285a6 5216{
d5c12070
MX
5217 u64 num_bytes;
5218 int ret;
ee3441b4 5219 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5220
5221 if (root->fs_info->quota_enabled) {
5222 /* One for parent inode, two for dir entries */
707e8a07 5223 num_bytes = 3 * root->nodesize;
d5c12070
MX
5224 ret = btrfs_qgroup_reserve(root, num_bytes);
5225 if (ret)
5226 return ret;
5227 } else {
5228 num_bytes = 0;
5229 }
5230
5231 *qgroup_reserved = num_bytes;
5232
5233 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5234 rsv->space_info = __find_space_info(root->fs_info,
5235 BTRFS_BLOCK_GROUP_METADATA);
5236 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5237 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5238
5239 if (ret == -ENOSPC && use_global_rsv)
5240 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5241
d5c12070
MX
5242 if (ret) {
5243 if (*qgroup_reserved)
5244 btrfs_qgroup_free(root, *qgroup_reserved);
5245 }
5246
5247 return ret;
5248}
5249
5250void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5251 struct btrfs_block_rsv *rsv,
5252 u64 qgroup_reserved)
5253{
5254 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5255}
5256
7709cde3
JB
5257/**
5258 * drop_outstanding_extent - drop an outstanding extent
5259 * @inode: the inode we're dropping the extent for
dcab6a3b 5260 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5261 *
5262 * This is called when we are freeing up an outstanding extent, either called
5263 * after an error or after an extent is written. This will return the number of
5264 * reserved extents that need to be freed. This must be called with
5265 * BTRFS_I(inode)->lock held.
5266 */
dcab6a3b 5267static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5268{
7fd2ae21 5269 unsigned drop_inode_space = 0;
9e0baf60 5270 unsigned dropped_extents = 0;
dcab6a3b 5271 unsigned num_extents = 0;
9e0baf60 5272
dcab6a3b
JB
5273 num_extents = (unsigned)div64_u64(num_bytes +
5274 BTRFS_MAX_EXTENT_SIZE - 1,
5275 BTRFS_MAX_EXTENT_SIZE);
5276 ASSERT(num_extents);
5277 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5278 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5279
7fd2ae21 5280 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5281 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5282 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5283 drop_inode_space = 1;
7fd2ae21 5284
9e0baf60
JB
5285 /*
5286 * If we have more or the same amount of outsanding extents than we have
5287 * reserved then we need to leave the reserved extents count alone.
5288 */
5289 if (BTRFS_I(inode)->outstanding_extents >=
5290 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5291 return drop_inode_space;
9e0baf60
JB
5292
5293 dropped_extents = BTRFS_I(inode)->reserved_extents -
5294 BTRFS_I(inode)->outstanding_extents;
5295 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5296 return dropped_extents + drop_inode_space;
9e0baf60
JB
5297}
5298
7709cde3
JB
5299/**
5300 * calc_csum_metadata_size - return the amount of metada space that must be
5301 * reserved/free'd for the given bytes.
5302 * @inode: the inode we're manipulating
5303 * @num_bytes: the number of bytes in question
5304 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5305 *
5306 * This adjusts the number of csum_bytes in the inode and then returns the
5307 * correct amount of metadata that must either be reserved or freed. We
5308 * calculate how many checksums we can fit into one leaf and then divide the
5309 * number of bytes that will need to be checksumed by this value to figure out
5310 * how many checksums will be required. If we are adding bytes then the number
5311 * may go up and we will return the number of additional bytes that must be
5312 * reserved. If it is going down we will return the number of bytes that must
5313 * be freed.
5314 *
5315 * This must be called with BTRFS_I(inode)->lock held.
5316 */
5317static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5318 int reserve)
6324fbf3 5319{
7709cde3 5320 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5321 u64 old_csums, num_csums;
7709cde3
JB
5322
5323 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5324 BTRFS_I(inode)->csum_bytes == 0)
5325 return 0;
5326
28f75a0e 5327 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5328 if (reserve)
5329 BTRFS_I(inode)->csum_bytes += num_bytes;
5330 else
5331 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5332 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5333
5334 /* No change, no need to reserve more */
5335 if (old_csums == num_csums)
5336 return 0;
5337
5338 if (reserve)
5339 return btrfs_calc_trans_metadata_size(root,
5340 num_csums - old_csums);
5341
5342 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5343}
c146afad 5344
0ca1f7ce
YZ
5345int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5346{
5347 struct btrfs_root *root = BTRFS_I(inode)->root;
5348 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5349 u64 to_reserve = 0;
660d3f6c 5350 u64 csum_bytes;
9e0baf60 5351 unsigned nr_extents = 0;
660d3f6c 5352 int extra_reserve = 0;
08e007d2 5353 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5354 int ret = 0;
c64c2bd8 5355 bool delalloc_lock = true;
88e081bf
WS
5356 u64 to_free = 0;
5357 unsigned dropped;
6324fbf3 5358
c64c2bd8
JB
5359 /* If we are a free space inode we need to not flush since we will be in
5360 * the middle of a transaction commit. We also don't need the delalloc
5361 * mutex since we won't race with anybody. We need this mostly to make
5362 * lockdep shut its filthy mouth.
5363 */
5364 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5365 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5366 delalloc_lock = false;
5367 }
c09544e0 5368
08e007d2
MX
5369 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5370 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5371 schedule_timeout(1);
ec44a35c 5372
c64c2bd8
JB
5373 if (delalloc_lock)
5374 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5375
0ca1f7ce 5376 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5377
9e0baf60 5378 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5379 nr_extents = (unsigned)div64_u64(num_bytes +
5380 BTRFS_MAX_EXTENT_SIZE - 1,
5381 BTRFS_MAX_EXTENT_SIZE);
5382 BTRFS_I(inode)->outstanding_extents += nr_extents;
5383 nr_extents = 0;
9e0baf60
JB
5384
5385 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5386 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5387 nr_extents = BTRFS_I(inode)->outstanding_extents -
5388 BTRFS_I(inode)->reserved_extents;
57a45ced 5389
7fd2ae21
JB
5390 /*
5391 * Add an item to reserve for updating the inode when we complete the
5392 * delalloc io.
5393 */
72ac3c0d
JB
5394 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5395 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5396 nr_extents++;
660d3f6c 5397 extra_reserve = 1;
593060d7 5398 }
7fd2ae21
JB
5399
5400 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5401 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5402 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5403 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5404
88e081bf 5405 if (root->fs_info->quota_enabled) {
237c0e9f 5406 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5407 if (ret)
5408 goto out_fail;
5409 }
c5567237 5410
88e081bf
WS
5411 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5412 if (unlikely(ret)) {
5413 if (root->fs_info->quota_enabled)
237c0e9f 5414 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5415 goto out_fail;
9e0baf60 5416 }
25179201 5417
660d3f6c
JB
5418 spin_lock(&BTRFS_I(inode)->lock);
5419 if (extra_reserve) {
72ac3c0d
JB
5420 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5421 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5422 nr_extents--;
5423 }
5424 BTRFS_I(inode)->reserved_extents += nr_extents;
5425 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5426
5427 if (delalloc_lock)
5428 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5429
8c2a3ca2 5430 if (to_reserve)
67871254 5431 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5432 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5433 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5434
0ca1f7ce 5435 return 0;
88e081bf
WS
5436
5437out_fail:
5438 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5439 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5440 /*
5441 * If the inodes csum_bytes is the same as the original
5442 * csum_bytes then we know we haven't raced with any free()ers
5443 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5444 */
f4881bc7 5445 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5446 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5447 } else {
5448 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5449 u64 bytes;
5450
5451 /*
5452 * This is tricky, but first we need to figure out how much we
5453 * free'd from any free-ers that occured during this
5454 * reservation, so we reset ->csum_bytes to the csum_bytes
5455 * before we dropped our lock, and then call the free for the
5456 * number of bytes that were freed while we were trying our
5457 * reservation.
5458 */
5459 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5460 BTRFS_I(inode)->csum_bytes = csum_bytes;
5461 to_free = calc_csum_metadata_size(inode, bytes, 0);
5462
5463
5464 /*
5465 * Now we need to see how much we would have freed had we not
5466 * been making this reservation and our ->csum_bytes were not
5467 * artificially inflated.
5468 */
5469 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5470 bytes = csum_bytes - orig_csum_bytes;
5471 bytes = calc_csum_metadata_size(inode, bytes, 0);
5472
5473 /*
5474 * Now reset ->csum_bytes to what it should be. If bytes is
5475 * more than to_free then we would have free'd more space had we
5476 * not had an artificially high ->csum_bytes, so we need to free
5477 * the remainder. If bytes is the same or less then we don't
5478 * need to do anything, the other free-ers did the correct
5479 * thing.
5480 */
5481 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5482 if (bytes > to_free)
5483 to_free = bytes - to_free;
5484 else
5485 to_free = 0;
5486 }
88e081bf 5487 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5488 if (dropped)
88e081bf
WS
5489 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5490
5491 if (to_free) {
5492 btrfs_block_rsv_release(root, block_rsv, to_free);
5493 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5494 btrfs_ino(inode), to_free, 0);
5495 }
5496 if (delalloc_lock)
5497 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5498 return ret;
0ca1f7ce
YZ
5499}
5500
7709cde3
JB
5501/**
5502 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5503 * @inode: the inode to release the reservation for
5504 * @num_bytes: the number of bytes we're releasing
5505 *
5506 * This will release the metadata reservation for an inode. This can be called
5507 * once we complete IO for a given set of bytes to release their metadata
5508 * reservations.
5509 */
0ca1f7ce
YZ
5510void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5511{
5512 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5513 u64 to_free = 0;
5514 unsigned dropped;
0ca1f7ce
YZ
5515
5516 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5517 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5518 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5519
0934856d
MX
5520 if (num_bytes)
5521 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5522 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5523 if (dropped > 0)
5524 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5525
6a3891c5
JB
5526 if (btrfs_test_is_dummy_root(root))
5527 return;
5528
8c2a3ca2
JB
5529 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5530 btrfs_ino(inode), to_free, 0);
c5567237 5531
0ca1f7ce
YZ
5532 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5533 to_free);
5534}
5535
7709cde3
JB
5536/**
5537 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5538 * @inode: inode we're writing to
5539 * @num_bytes: the number of bytes we want to allocate
5540 *
5541 * This will do the following things
5542 *
5543 * o reserve space in the data space info for num_bytes
5544 * o reserve space in the metadata space info based on number of outstanding
5545 * extents and how much csums will be needed
5546 * o add to the inodes ->delalloc_bytes
5547 * o add it to the fs_info's delalloc inodes list.
5548 *
5549 * This will return 0 for success and -ENOSPC if there is no space left.
5550 */
0ca1f7ce
YZ
5551int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5552{
5553 int ret;
5554
e2d1f923 5555 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5556 if (ret)
0ca1f7ce
YZ
5557 return ret;
5558
5559 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5560 if (ret) {
5561 btrfs_free_reserved_data_space(inode, num_bytes);
5562 return ret;
5563 }
5564
5565 return 0;
5566}
5567
7709cde3
JB
5568/**
5569 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5570 * @inode: inode we're releasing space for
5571 * @num_bytes: the number of bytes we want to free up
5572 *
5573 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5574 * called in the case that we don't need the metadata AND data reservations
5575 * anymore. So if there is an error or we insert an inline extent.
5576 *
5577 * This function will release the metadata space that was not used and will
5578 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5579 * list if there are no delalloc bytes left.
5580 */
0ca1f7ce
YZ
5581void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5582{
5583 btrfs_delalloc_release_metadata(inode, num_bytes);
5584 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5585}
5586
ce93ec54
JB
5587static int update_block_group(struct btrfs_trans_handle *trans,
5588 struct btrfs_root *root, u64 bytenr,
5589 u64 num_bytes, int alloc)
9078a3e1 5590{
0af3d00b 5591 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5592 struct btrfs_fs_info *info = root->fs_info;
db94535d 5593 u64 total = num_bytes;
9078a3e1 5594 u64 old_val;
db94535d 5595 u64 byte_in_group;
0af3d00b 5596 int factor;
3e1ad54f 5597
5d4f98a2 5598 /* block accounting for super block */
eb73c1b7 5599 spin_lock(&info->delalloc_root_lock);
6c41761f 5600 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5601 if (alloc)
5602 old_val += num_bytes;
5603 else
5604 old_val -= num_bytes;
6c41761f 5605 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5606 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5607
d397712b 5608 while (total) {
db94535d 5609 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5610 if (!cache)
79787eaa 5611 return -ENOENT;
b742bb82
YZ
5612 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5613 BTRFS_BLOCK_GROUP_RAID1 |
5614 BTRFS_BLOCK_GROUP_RAID10))
5615 factor = 2;
5616 else
5617 factor = 1;
9d66e233
JB
5618 /*
5619 * If this block group has free space cache written out, we
5620 * need to make sure to load it if we are removing space. This
5621 * is because we need the unpinning stage to actually add the
5622 * space back to the block group, otherwise we will leak space.
5623 */
5624 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5625 cache_block_group(cache, 1);
0af3d00b 5626
db94535d
CM
5627 byte_in_group = bytenr - cache->key.objectid;
5628 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5629
25179201 5630 spin_lock(&cache->space_info->lock);
c286ac48 5631 spin_lock(&cache->lock);
0af3d00b 5632
73bc1876 5633 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5634 cache->disk_cache_state < BTRFS_DC_CLEAR)
5635 cache->disk_cache_state = BTRFS_DC_CLEAR;
5636
9078a3e1 5637 old_val = btrfs_block_group_used(&cache->item);
db94535d 5638 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5639 if (alloc) {
db94535d 5640 old_val += num_bytes;
11833d66
YZ
5641 btrfs_set_block_group_used(&cache->item, old_val);
5642 cache->reserved -= num_bytes;
11833d66 5643 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5644 cache->space_info->bytes_used += num_bytes;
5645 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5646 spin_unlock(&cache->lock);
25179201 5647 spin_unlock(&cache->space_info->lock);
cd1bc465 5648 } else {
db94535d 5649 old_val -= num_bytes;
ae0ab003
FM
5650 btrfs_set_block_group_used(&cache->item, old_val);
5651 cache->pinned += num_bytes;
5652 cache->space_info->bytes_pinned += num_bytes;
5653 cache->space_info->bytes_used -= num_bytes;
5654 cache->space_info->disk_used -= num_bytes * factor;
5655 spin_unlock(&cache->lock);
5656 spin_unlock(&cache->space_info->lock);
47ab2a6c 5657
ae0ab003
FM
5658 set_extent_dirty(info->pinned_extents,
5659 bytenr, bytenr + num_bytes - 1,
5660 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5661 /*
5662 * No longer have used bytes in this block group, queue
5663 * it for deletion.
5664 */
5665 if (old_val == 0) {
5666 spin_lock(&info->unused_bgs_lock);
5667 if (list_empty(&cache->bg_list)) {
5668 btrfs_get_block_group(cache);
5669 list_add_tail(&cache->bg_list,
5670 &info->unused_bgs);
5671 }
5672 spin_unlock(&info->unused_bgs_lock);
5673 }
cd1bc465 5674 }
1bbc621e
CM
5675
5676 spin_lock(&trans->transaction->dirty_bgs_lock);
5677 if (list_empty(&cache->dirty_list)) {
5678 list_add_tail(&cache->dirty_list,
5679 &trans->transaction->dirty_bgs);
5680 trans->transaction->num_dirty_bgs++;
5681 btrfs_get_block_group(cache);
5682 }
5683 spin_unlock(&trans->transaction->dirty_bgs_lock);
5684
fa9c0d79 5685 btrfs_put_block_group(cache);
db94535d
CM
5686 total -= num_bytes;
5687 bytenr += num_bytes;
9078a3e1
CM
5688 }
5689 return 0;
5690}
6324fbf3 5691
a061fc8d
CM
5692static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5693{
0f9dd46c 5694 struct btrfs_block_group_cache *cache;
d2fb3437 5695 u64 bytenr;
0f9dd46c 5696
a1897fdd
LB
5697 spin_lock(&root->fs_info->block_group_cache_lock);
5698 bytenr = root->fs_info->first_logical_byte;
5699 spin_unlock(&root->fs_info->block_group_cache_lock);
5700
5701 if (bytenr < (u64)-1)
5702 return bytenr;
5703
0f9dd46c
JB
5704 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5705 if (!cache)
a061fc8d 5706 return 0;
0f9dd46c 5707
d2fb3437 5708 bytenr = cache->key.objectid;
fa9c0d79 5709 btrfs_put_block_group(cache);
d2fb3437
YZ
5710
5711 return bytenr;
a061fc8d
CM
5712}
5713
f0486c68
YZ
5714static int pin_down_extent(struct btrfs_root *root,
5715 struct btrfs_block_group_cache *cache,
5716 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5717{
11833d66
YZ
5718 spin_lock(&cache->space_info->lock);
5719 spin_lock(&cache->lock);
5720 cache->pinned += num_bytes;
5721 cache->space_info->bytes_pinned += num_bytes;
5722 if (reserved) {
5723 cache->reserved -= num_bytes;
5724 cache->space_info->bytes_reserved -= num_bytes;
5725 }
5726 spin_unlock(&cache->lock);
5727 spin_unlock(&cache->space_info->lock);
68b38550 5728
f0486c68
YZ
5729 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5730 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5731 if (reserved)
0be5dc67 5732 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5733 return 0;
5734}
68b38550 5735
f0486c68
YZ
5736/*
5737 * this function must be called within transaction
5738 */
5739int btrfs_pin_extent(struct btrfs_root *root,
5740 u64 bytenr, u64 num_bytes, int reserved)
5741{
5742 struct btrfs_block_group_cache *cache;
68b38550 5743
f0486c68 5744 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5745 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5746
5747 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5748
5749 btrfs_put_block_group(cache);
11833d66
YZ
5750 return 0;
5751}
5752
f0486c68 5753/*
e688b725
CM
5754 * this function must be called within transaction
5755 */
dcfac415 5756int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5757 u64 bytenr, u64 num_bytes)
5758{
5759 struct btrfs_block_group_cache *cache;
b50c6e25 5760 int ret;
e688b725
CM
5761
5762 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5763 if (!cache)
5764 return -EINVAL;
e688b725
CM
5765
5766 /*
5767 * pull in the free space cache (if any) so that our pin
5768 * removes the free space from the cache. We have load_only set
5769 * to one because the slow code to read in the free extents does check
5770 * the pinned extents.
5771 */
f6373bf3 5772 cache_block_group(cache, 1);
e688b725
CM
5773
5774 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5775
5776 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5777 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5778 btrfs_put_block_group(cache);
b50c6e25 5779 return ret;
e688b725
CM
5780}
5781
8c2a1a30
JB
5782static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5783{
5784 int ret;
5785 struct btrfs_block_group_cache *block_group;
5786 struct btrfs_caching_control *caching_ctl;
5787
5788 block_group = btrfs_lookup_block_group(root->fs_info, start);
5789 if (!block_group)
5790 return -EINVAL;
5791
5792 cache_block_group(block_group, 0);
5793 caching_ctl = get_caching_control(block_group);
5794
5795 if (!caching_ctl) {
5796 /* Logic error */
5797 BUG_ON(!block_group_cache_done(block_group));
5798 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5799 } else {
5800 mutex_lock(&caching_ctl->mutex);
5801
5802 if (start >= caching_ctl->progress) {
5803 ret = add_excluded_extent(root, start, num_bytes);
5804 } else if (start + num_bytes <= caching_ctl->progress) {
5805 ret = btrfs_remove_free_space(block_group,
5806 start, num_bytes);
5807 } else {
5808 num_bytes = caching_ctl->progress - start;
5809 ret = btrfs_remove_free_space(block_group,
5810 start, num_bytes);
5811 if (ret)
5812 goto out_lock;
5813
5814 num_bytes = (start + num_bytes) -
5815 caching_ctl->progress;
5816 start = caching_ctl->progress;
5817 ret = add_excluded_extent(root, start, num_bytes);
5818 }
5819out_lock:
5820 mutex_unlock(&caching_ctl->mutex);
5821 put_caching_control(caching_ctl);
5822 }
5823 btrfs_put_block_group(block_group);
5824 return ret;
5825}
5826
5827int btrfs_exclude_logged_extents(struct btrfs_root *log,
5828 struct extent_buffer *eb)
5829{
5830 struct btrfs_file_extent_item *item;
5831 struct btrfs_key key;
5832 int found_type;
5833 int i;
5834
5835 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5836 return 0;
5837
5838 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5839 btrfs_item_key_to_cpu(eb, &key, i);
5840 if (key.type != BTRFS_EXTENT_DATA_KEY)
5841 continue;
5842 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5843 found_type = btrfs_file_extent_type(eb, item);
5844 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5845 continue;
5846 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5847 continue;
5848 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5849 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5850 __exclude_logged_extent(log, key.objectid, key.offset);
5851 }
5852
5853 return 0;
5854}
5855
fb25e914
JB
5856/**
5857 * btrfs_update_reserved_bytes - update the block_group and space info counters
5858 * @cache: The cache we are manipulating
5859 * @num_bytes: The number of bytes in question
5860 * @reserve: One of the reservation enums
e570fd27 5861 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5862 *
5863 * This is called by the allocator when it reserves space, or by somebody who is
5864 * freeing space that was never actually used on disk. For example if you
5865 * reserve some space for a new leaf in transaction A and before transaction A
5866 * commits you free that leaf, you call this with reserve set to 0 in order to
5867 * clear the reservation.
5868 *
5869 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5870 * ENOSPC accounting. For data we handle the reservation through clearing the
5871 * delalloc bits in the io_tree. We have to do this since we could end up
5872 * allocating less disk space for the amount of data we have reserved in the
5873 * case of compression.
5874 *
5875 * If this is a reservation and the block group has become read only we cannot
5876 * make the reservation and return -EAGAIN, otherwise this function always
5877 * succeeds.
f0486c68 5878 */
fb25e914 5879static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5880 u64 num_bytes, int reserve, int delalloc)
11833d66 5881{
fb25e914 5882 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5883 int ret = 0;
79787eaa 5884
fb25e914
JB
5885 spin_lock(&space_info->lock);
5886 spin_lock(&cache->lock);
5887 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5888 if (cache->ro) {
5889 ret = -EAGAIN;
5890 } else {
fb25e914
JB
5891 cache->reserved += num_bytes;
5892 space_info->bytes_reserved += num_bytes;
5893 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5894 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5895 "space_info", space_info->flags,
5896 num_bytes, 0);
fb25e914
JB
5897 space_info->bytes_may_use -= num_bytes;
5898 }
e570fd27
MX
5899
5900 if (delalloc)
5901 cache->delalloc_bytes += num_bytes;
f0486c68 5902 }
fb25e914
JB
5903 } else {
5904 if (cache->ro)
5905 space_info->bytes_readonly += num_bytes;
5906 cache->reserved -= num_bytes;
5907 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5908
5909 if (delalloc)
5910 cache->delalloc_bytes -= num_bytes;
324ae4df 5911 }
fb25e914
JB
5912 spin_unlock(&cache->lock);
5913 spin_unlock(&space_info->lock);
f0486c68 5914 return ret;
324ae4df 5915}
9078a3e1 5916
143bede5 5917void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5918 struct btrfs_root *root)
e8569813 5919{
e8569813 5920 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5921 struct btrfs_caching_control *next;
5922 struct btrfs_caching_control *caching_ctl;
5923 struct btrfs_block_group_cache *cache;
e8569813 5924
9e351cc8 5925 down_write(&fs_info->commit_root_sem);
25179201 5926
11833d66
YZ
5927 list_for_each_entry_safe(caching_ctl, next,
5928 &fs_info->caching_block_groups, list) {
5929 cache = caching_ctl->block_group;
5930 if (block_group_cache_done(cache)) {
5931 cache->last_byte_to_unpin = (u64)-1;
5932 list_del_init(&caching_ctl->list);
5933 put_caching_control(caching_ctl);
e8569813 5934 } else {
11833d66 5935 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5936 }
e8569813 5937 }
11833d66
YZ
5938
5939 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5940 fs_info->pinned_extents = &fs_info->freed_extents[1];
5941 else
5942 fs_info->pinned_extents = &fs_info->freed_extents[0];
5943
9e351cc8 5944 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5945
5946 update_global_block_rsv(fs_info);
e8569813
ZY
5947}
5948
678886bd
FM
5949static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5950 const bool return_free_space)
ccd467d6 5951{
11833d66
YZ
5952 struct btrfs_fs_info *fs_info = root->fs_info;
5953 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
5954 struct btrfs_space_info *space_info;
5955 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 5956 u64 len;
7b398f8e 5957 bool readonly;
ccd467d6 5958
11833d66 5959 while (start <= end) {
7b398f8e 5960 readonly = false;
11833d66
YZ
5961 if (!cache ||
5962 start >= cache->key.objectid + cache->key.offset) {
5963 if (cache)
5964 btrfs_put_block_group(cache);
5965 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 5966 BUG_ON(!cache); /* Logic error */
11833d66
YZ
5967 }
5968
5969 len = cache->key.objectid + cache->key.offset - start;
5970 len = min(len, end + 1 - start);
5971
5972 if (start < cache->last_byte_to_unpin) {
5973 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
5974 if (return_free_space)
5975 btrfs_add_free_space(cache, start, len);
11833d66
YZ
5976 }
5977
f0486c68 5978 start += len;
7b398f8e 5979 space_info = cache->space_info;
f0486c68 5980
7b398f8e 5981 spin_lock(&space_info->lock);
11833d66
YZ
5982 spin_lock(&cache->lock);
5983 cache->pinned -= len;
7b398f8e 5984 space_info->bytes_pinned -= len;
d288db5d 5985 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
5986 if (cache->ro) {
5987 space_info->bytes_readonly += len;
5988 readonly = true;
5989 }
11833d66 5990 spin_unlock(&cache->lock);
7b398f8e
JB
5991 if (!readonly && global_rsv->space_info == space_info) {
5992 spin_lock(&global_rsv->lock);
5993 if (!global_rsv->full) {
5994 len = min(len, global_rsv->size -
5995 global_rsv->reserved);
5996 global_rsv->reserved += len;
5997 space_info->bytes_may_use += len;
5998 if (global_rsv->reserved >= global_rsv->size)
5999 global_rsv->full = 1;
6000 }
6001 spin_unlock(&global_rsv->lock);
6002 }
6003 spin_unlock(&space_info->lock);
ccd467d6 6004 }
11833d66
YZ
6005
6006 if (cache)
6007 btrfs_put_block_group(cache);
ccd467d6
CM
6008 return 0;
6009}
6010
6011int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6012 struct btrfs_root *root)
a28ec197 6013{
11833d66
YZ
6014 struct btrfs_fs_info *fs_info = root->fs_info;
6015 struct extent_io_tree *unpin;
1a5bc167
CM
6016 u64 start;
6017 u64 end;
a28ec197 6018 int ret;
a28ec197 6019
79787eaa
JM
6020 if (trans->aborted)
6021 return 0;
6022
11833d66
YZ
6023 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6024 unpin = &fs_info->freed_extents[1];
6025 else
6026 unpin = &fs_info->freed_extents[0];
6027
d397712b 6028 while (1) {
d4b450cd 6029 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6030 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6031 EXTENT_DIRTY, NULL);
d4b450cd
FM
6032 if (ret) {
6033 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6034 break;
d4b450cd 6035 }
1f3c79a2 6036
5378e607
LD
6037 if (btrfs_test_opt(root, DISCARD))
6038 ret = btrfs_discard_extent(root, start,
6039 end + 1 - start, NULL);
1f3c79a2 6040
1a5bc167 6041 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6042 unpin_extent_range(root, start, end, true);
d4b450cd 6043 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6044 cond_resched();
a28ec197 6045 }
817d52f8 6046
e20d96d6
CM
6047 return 0;
6048}
6049
b150a4f1
JB
6050static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6051 u64 owner, u64 root_objectid)
6052{
6053 struct btrfs_space_info *space_info;
6054 u64 flags;
6055
6056 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6057 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6058 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6059 else
6060 flags = BTRFS_BLOCK_GROUP_METADATA;
6061 } else {
6062 flags = BTRFS_BLOCK_GROUP_DATA;
6063 }
6064
6065 space_info = __find_space_info(fs_info, flags);
6066 BUG_ON(!space_info); /* Logic bug */
6067 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6068}
6069
6070
5d4f98a2
YZ
6071static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6072 struct btrfs_root *root,
6073 u64 bytenr, u64 num_bytes, u64 parent,
6074 u64 root_objectid, u64 owner_objectid,
6075 u64 owner_offset, int refs_to_drop,
fcebe456
JB
6076 struct btrfs_delayed_extent_op *extent_op,
6077 int no_quota)
a28ec197 6078{
e2fa7227 6079 struct btrfs_key key;
5d4f98a2 6080 struct btrfs_path *path;
1261ec42
CM
6081 struct btrfs_fs_info *info = root->fs_info;
6082 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6083 struct extent_buffer *leaf;
5d4f98a2
YZ
6084 struct btrfs_extent_item *ei;
6085 struct btrfs_extent_inline_ref *iref;
a28ec197 6086 int ret;
5d4f98a2 6087 int is_data;
952fccac
CM
6088 int extent_slot = 0;
6089 int found_extent = 0;
6090 int num_to_del = 1;
5d4f98a2
YZ
6091 u32 item_size;
6092 u64 refs;
fcebe456
JB
6093 int last_ref = 0;
6094 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
3173a18f
JB
6095 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6096 SKINNY_METADATA);
037e6390 6097
fcebe456
JB
6098 if (!info->quota_enabled || !is_fstree(root_objectid))
6099 no_quota = 1;
6100
5caf2a00 6101 path = btrfs_alloc_path();
54aa1f4d
CM
6102 if (!path)
6103 return -ENOMEM;
5f26f772 6104
3c12ac72 6105 path->reada = 1;
b9473439 6106 path->leave_spinning = 1;
5d4f98a2
YZ
6107
6108 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6109 BUG_ON(!is_data && refs_to_drop != 1);
6110
3173a18f
JB
6111 if (is_data)
6112 skinny_metadata = 0;
6113
5d4f98a2
YZ
6114 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6115 bytenr, num_bytes, parent,
6116 root_objectid, owner_objectid,
6117 owner_offset);
7bb86316 6118 if (ret == 0) {
952fccac 6119 extent_slot = path->slots[0];
5d4f98a2
YZ
6120 while (extent_slot >= 0) {
6121 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6122 extent_slot);
5d4f98a2 6123 if (key.objectid != bytenr)
952fccac 6124 break;
5d4f98a2
YZ
6125 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6126 key.offset == num_bytes) {
952fccac
CM
6127 found_extent = 1;
6128 break;
6129 }
3173a18f
JB
6130 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6131 key.offset == owner_objectid) {
6132 found_extent = 1;
6133 break;
6134 }
952fccac
CM
6135 if (path->slots[0] - extent_slot > 5)
6136 break;
5d4f98a2 6137 extent_slot--;
952fccac 6138 }
5d4f98a2
YZ
6139#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6140 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6141 if (found_extent && item_size < sizeof(*ei))
6142 found_extent = 0;
6143#endif
31840ae1 6144 if (!found_extent) {
5d4f98a2 6145 BUG_ON(iref);
56bec294 6146 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6147 NULL, refs_to_drop,
fcebe456 6148 is_data, &last_ref);
005d6427
DS
6149 if (ret) {
6150 btrfs_abort_transaction(trans, extent_root, ret);
6151 goto out;
6152 }
b3b4aa74 6153 btrfs_release_path(path);
b9473439 6154 path->leave_spinning = 1;
5d4f98a2
YZ
6155
6156 key.objectid = bytenr;
6157 key.type = BTRFS_EXTENT_ITEM_KEY;
6158 key.offset = num_bytes;
6159
3173a18f
JB
6160 if (!is_data && skinny_metadata) {
6161 key.type = BTRFS_METADATA_ITEM_KEY;
6162 key.offset = owner_objectid;
6163 }
6164
31840ae1
ZY
6165 ret = btrfs_search_slot(trans, extent_root,
6166 &key, path, -1, 1);
3173a18f
JB
6167 if (ret > 0 && skinny_metadata && path->slots[0]) {
6168 /*
6169 * Couldn't find our skinny metadata item,
6170 * see if we have ye olde extent item.
6171 */
6172 path->slots[0]--;
6173 btrfs_item_key_to_cpu(path->nodes[0], &key,
6174 path->slots[0]);
6175 if (key.objectid == bytenr &&
6176 key.type == BTRFS_EXTENT_ITEM_KEY &&
6177 key.offset == num_bytes)
6178 ret = 0;
6179 }
6180
6181 if (ret > 0 && skinny_metadata) {
6182 skinny_metadata = false;
9ce49a0b 6183 key.objectid = bytenr;
3173a18f
JB
6184 key.type = BTRFS_EXTENT_ITEM_KEY;
6185 key.offset = num_bytes;
6186 btrfs_release_path(path);
6187 ret = btrfs_search_slot(trans, extent_root,
6188 &key, path, -1, 1);
6189 }
6190
f3465ca4 6191 if (ret) {
c2cf52eb 6192 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6193 ret, bytenr);
b783e62d
JB
6194 if (ret > 0)
6195 btrfs_print_leaf(extent_root,
6196 path->nodes[0]);
f3465ca4 6197 }
005d6427
DS
6198 if (ret < 0) {
6199 btrfs_abort_transaction(trans, extent_root, ret);
6200 goto out;
6201 }
31840ae1
ZY
6202 extent_slot = path->slots[0];
6203 }
fae7f21c 6204 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6205 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6206 btrfs_err(info,
6207 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6208 bytenr, parent, root_objectid, owner_objectid,
6209 owner_offset);
c4a050bb
JB
6210 btrfs_abort_transaction(trans, extent_root, ret);
6211 goto out;
79787eaa 6212 } else {
005d6427
DS
6213 btrfs_abort_transaction(trans, extent_root, ret);
6214 goto out;
7bb86316 6215 }
5f39d397
CM
6216
6217 leaf = path->nodes[0];
5d4f98a2
YZ
6218 item_size = btrfs_item_size_nr(leaf, extent_slot);
6219#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6220 if (item_size < sizeof(*ei)) {
6221 BUG_ON(found_extent || extent_slot != path->slots[0]);
6222 ret = convert_extent_item_v0(trans, extent_root, path,
6223 owner_objectid, 0);
005d6427
DS
6224 if (ret < 0) {
6225 btrfs_abort_transaction(trans, extent_root, ret);
6226 goto out;
6227 }
5d4f98a2 6228
b3b4aa74 6229 btrfs_release_path(path);
5d4f98a2
YZ
6230 path->leave_spinning = 1;
6231
6232 key.objectid = bytenr;
6233 key.type = BTRFS_EXTENT_ITEM_KEY;
6234 key.offset = num_bytes;
6235
6236 ret = btrfs_search_slot(trans, extent_root, &key, path,
6237 -1, 1);
6238 if (ret) {
c2cf52eb 6239 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6240 ret, bytenr);
5d4f98a2
YZ
6241 btrfs_print_leaf(extent_root, path->nodes[0]);
6242 }
005d6427
DS
6243 if (ret < 0) {
6244 btrfs_abort_transaction(trans, extent_root, ret);
6245 goto out;
6246 }
6247
5d4f98a2
YZ
6248 extent_slot = path->slots[0];
6249 leaf = path->nodes[0];
6250 item_size = btrfs_item_size_nr(leaf, extent_slot);
6251 }
6252#endif
6253 BUG_ON(item_size < sizeof(*ei));
952fccac 6254 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6255 struct btrfs_extent_item);
3173a18f
JB
6256 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6257 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6258 struct btrfs_tree_block_info *bi;
6259 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6260 bi = (struct btrfs_tree_block_info *)(ei + 1);
6261 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6262 }
56bec294 6263
5d4f98a2 6264 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6265 if (refs < refs_to_drop) {
6266 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6267 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6268 ret = -EINVAL;
6269 btrfs_abort_transaction(trans, extent_root, ret);
6270 goto out;
6271 }
56bec294 6272 refs -= refs_to_drop;
5f39d397 6273
5d4f98a2 6274 if (refs > 0) {
fcebe456 6275 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5d4f98a2
YZ
6276 if (extent_op)
6277 __run_delayed_extent_op(extent_op, leaf, ei);
6278 /*
6279 * In the case of inline back ref, reference count will
6280 * be updated by remove_extent_backref
952fccac 6281 */
5d4f98a2
YZ
6282 if (iref) {
6283 BUG_ON(!found_extent);
6284 } else {
6285 btrfs_set_extent_refs(leaf, ei, refs);
6286 btrfs_mark_buffer_dirty(leaf);
6287 }
6288 if (found_extent) {
6289 ret = remove_extent_backref(trans, extent_root, path,
6290 iref, refs_to_drop,
fcebe456 6291 is_data, &last_ref);
005d6427
DS
6292 if (ret) {
6293 btrfs_abort_transaction(trans, extent_root, ret);
6294 goto out;
6295 }
952fccac 6296 }
b150a4f1
JB
6297 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6298 root_objectid);
5d4f98a2 6299 } else {
5d4f98a2
YZ
6300 if (found_extent) {
6301 BUG_ON(is_data && refs_to_drop !=
6302 extent_data_ref_count(root, path, iref));
6303 if (iref) {
6304 BUG_ON(path->slots[0] != extent_slot);
6305 } else {
6306 BUG_ON(path->slots[0] != extent_slot + 1);
6307 path->slots[0] = extent_slot;
6308 num_to_del = 2;
6309 }
78fae27e 6310 }
b9473439 6311
fcebe456 6312 last_ref = 1;
952fccac
CM
6313 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6314 num_to_del);
005d6427
DS
6315 if (ret) {
6316 btrfs_abort_transaction(trans, extent_root, ret);
6317 goto out;
6318 }
b3b4aa74 6319 btrfs_release_path(path);
21af804c 6320
5d4f98a2 6321 if (is_data) {
459931ec 6322 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6323 if (ret) {
6324 btrfs_abort_transaction(trans, extent_root, ret);
6325 goto out;
6326 }
459931ec
CM
6327 }
6328
ce93ec54 6329 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6330 if (ret) {
6331 btrfs_abort_transaction(trans, extent_root, ret);
6332 goto out;
6333 }
a28ec197 6334 }
fcebe456
JB
6335 btrfs_release_path(path);
6336
6337 /* Deal with the quota accounting */
6338 if (!ret && last_ref && !no_quota) {
6339 int mod_seq = 0;
6340
6341 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6342 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6343 mod_seq = 1;
6344
6345 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6346 bytenr, num_bytes, type,
6347 mod_seq);
6348 }
79787eaa 6349out:
5caf2a00 6350 btrfs_free_path(path);
a28ec197
CM
6351 return ret;
6352}
6353
1887be66 6354/*
f0486c68 6355 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6356 * delayed ref for that extent as well. This searches the delayed ref tree for
6357 * a given extent, and if there are no other delayed refs to be processed, it
6358 * removes it from the tree.
6359 */
6360static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6361 struct btrfs_root *root, u64 bytenr)
6362{
6363 struct btrfs_delayed_ref_head *head;
6364 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6365 int ret = 0;
1887be66
CM
6366
6367 delayed_refs = &trans->transaction->delayed_refs;
6368 spin_lock(&delayed_refs->lock);
6369 head = btrfs_find_delayed_ref_head(trans, bytenr);
6370 if (!head)
cf93da7b 6371 goto out_delayed_unlock;
1887be66 6372
d7df2c79
JB
6373 spin_lock(&head->lock);
6374 if (rb_first(&head->ref_root))
1887be66
CM
6375 goto out;
6376
5d4f98a2
YZ
6377 if (head->extent_op) {
6378 if (!head->must_insert_reserved)
6379 goto out;
78a6184a 6380 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6381 head->extent_op = NULL;
6382 }
6383
1887be66
CM
6384 /*
6385 * waiting for the lock here would deadlock. If someone else has it
6386 * locked they are already in the process of dropping it anyway
6387 */
6388 if (!mutex_trylock(&head->mutex))
6389 goto out;
6390
6391 /*
6392 * at this point we have a head with no other entries. Go
6393 * ahead and process it.
6394 */
6395 head->node.in_tree = 0;
c46effa6 6396 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6397
d7df2c79 6398 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6399
6400 /*
6401 * we don't take a ref on the node because we're removing it from the
6402 * tree, so we just steal the ref the tree was holding.
6403 */
c3e69d58 6404 delayed_refs->num_heads--;
d7df2c79 6405 if (head->processing == 0)
c3e69d58 6406 delayed_refs->num_heads_ready--;
d7df2c79
JB
6407 head->processing = 0;
6408 spin_unlock(&head->lock);
1887be66
CM
6409 spin_unlock(&delayed_refs->lock);
6410
f0486c68
YZ
6411 BUG_ON(head->extent_op);
6412 if (head->must_insert_reserved)
6413 ret = 1;
6414
6415 mutex_unlock(&head->mutex);
1887be66 6416 btrfs_put_delayed_ref(&head->node);
f0486c68 6417 return ret;
1887be66 6418out:
d7df2c79 6419 spin_unlock(&head->lock);
cf93da7b
CM
6420
6421out_delayed_unlock:
1887be66
CM
6422 spin_unlock(&delayed_refs->lock);
6423 return 0;
6424}
6425
f0486c68
YZ
6426void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6427 struct btrfs_root *root,
6428 struct extent_buffer *buf,
5581a51a 6429 u64 parent, int last_ref)
f0486c68 6430{
b150a4f1 6431 int pin = 1;
f0486c68
YZ
6432 int ret;
6433
6434 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6435 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6436 buf->start, buf->len,
6437 parent, root->root_key.objectid,
6438 btrfs_header_level(buf),
5581a51a 6439 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6440 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6441 }
6442
6443 if (!last_ref)
6444 return;
6445
f0486c68 6446 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6447 struct btrfs_block_group_cache *cache;
6448
f0486c68
YZ
6449 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6450 ret = check_ref_cleanup(trans, root, buf->start);
6451 if (!ret)
37be25bc 6452 goto out;
f0486c68
YZ
6453 }
6454
6219872d
FM
6455 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6456
f0486c68
YZ
6457 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6458 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6459 btrfs_put_block_group(cache);
37be25bc 6460 goto out;
f0486c68
YZ
6461 }
6462
6463 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6464
6465 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6466 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6467 btrfs_put_block_group(cache);
0be5dc67 6468 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6469 pin = 0;
f0486c68
YZ
6470 }
6471out:
b150a4f1
JB
6472 if (pin)
6473 add_pinned_bytes(root->fs_info, buf->len,
6474 btrfs_header_level(buf),
6475 root->root_key.objectid);
6476
a826d6dc
JB
6477 /*
6478 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6479 * anymore.
6480 */
6481 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6482}
6483
79787eaa 6484/* Can return -ENOMEM */
66d7e7f0
AJ
6485int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6486 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6487 u64 owner, u64 offset, int no_quota)
925baedd
CM
6488{
6489 int ret;
66d7e7f0 6490 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6491
fccb84c9 6492 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6493 return 0;
fccb84c9 6494
b150a4f1
JB
6495 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6496
56bec294
CM
6497 /*
6498 * tree log blocks never actually go into the extent allocation
6499 * tree, just update pinning info and exit early.
56bec294 6500 */
5d4f98a2
YZ
6501 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6502 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6503 /* unlocks the pinned mutex */
11833d66 6504 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6505 ret = 0;
5d4f98a2 6506 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6507 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6508 num_bytes,
5d4f98a2 6509 parent, root_objectid, (int)owner,
fcebe456 6510 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6511 } else {
66d7e7f0
AJ
6512 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6513 num_bytes,
6514 parent, root_objectid, owner,
6515 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6516 NULL, no_quota);
56bec294 6517 }
925baedd
CM
6518 return ret;
6519}
6520
817d52f8
JB
6521/*
6522 * when we wait for progress in the block group caching, its because
6523 * our allocation attempt failed at least once. So, we must sleep
6524 * and let some progress happen before we try again.
6525 *
6526 * This function will sleep at least once waiting for new free space to
6527 * show up, and then it will check the block group free space numbers
6528 * for our min num_bytes. Another option is to have it go ahead
6529 * and look in the rbtree for a free extent of a given size, but this
6530 * is a good start.
36cce922
JB
6531 *
6532 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6533 * any of the information in this block group.
817d52f8 6534 */
36cce922 6535static noinline void
817d52f8
JB
6536wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6537 u64 num_bytes)
6538{
11833d66 6539 struct btrfs_caching_control *caching_ctl;
817d52f8 6540
11833d66
YZ
6541 caching_ctl = get_caching_control(cache);
6542 if (!caching_ctl)
36cce922 6543 return;
817d52f8 6544
11833d66 6545 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6546 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6547
6548 put_caching_control(caching_ctl);
11833d66
YZ
6549}
6550
6551static noinline int
6552wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6553{
6554 struct btrfs_caching_control *caching_ctl;
36cce922 6555 int ret = 0;
11833d66
YZ
6556
6557 caching_ctl = get_caching_control(cache);
6558 if (!caching_ctl)
36cce922 6559 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6560
6561 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6562 if (cache->cached == BTRFS_CACHE_ERROR)
6563 ret = -EIO;
11833d66 6564 put_caching_control(caching_ctl);
36cce922 6565 return ret;
817d52f8
JB
6566}
6567
31e50229 6568int __get_raid_index(u64 flags)
b742bb82 6569{
7738a53a 6570 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6571 return BTRFS_RAID_RAID10;
7738a53a 6572 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6573 return BTRFS_RAID_RAID1;
7738a53a 6574 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6575 return BTRFS_RAID_DUP;
7738a53a 6576 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6577 return BTRFS_RAID_RAID0;
53b381b3 6578 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6579 return BTRFS_RAID_RAID5;
53b381b3 6580 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6581 return BTRFS_RAID_RAID6;
7738a53a 6582
e942f883 6583 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6584}
6585
6ab0a202 6586int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6587{
31e50229 6588 return __get_raid_index(cache->flags);
7738a53a
ID
6589}
6590
6ab0a202
JM
6591static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6592 [BTRFS_RAID_RAID10] = "raid10",
6593 [BTRFS_RAID_RAID1] = "raid1",
6594 [BTRFS_RAID_DUP] = "dup",
6595 [BTRFS_RAID_RAID0] = "raid0",
6596 [BTRFS_RAID_SINGLE] = "single",
6597 [BTRFS_RAID_RAID5] = "raid5",
6598 [BTRFS_RAID_RAID6] = "raid6",
6599};
6600
1b8e5df6 6601static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6602{
6603 if (type >= BTRFS_NR_RAID_TYPES)
6604 return NULL;
6605
6606 return btrfs_raid_type_names[type];
6607}
6608
817d52f8 6609enum btrfs_loop_type {
285ff5af
JB
6610 LOOP_CACHING_NOWAIT = 0,
6611 LOOP_CACHING_WAIT = 1,
6612 LOOP_ALLOC_CHUNK = 2,
6613 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6614};
6615
e570fd27
MX
6616static inline void
6617btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6618 int delalloc)
6619{
6620 if (delalloc)
6621 down_read(&cache->data_rwsem);
6622}
6623
6624static inline void
6625btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6626 int delalloc)
6627{
6628 btrfs_get_block_group(cache);
6629 if (delalloc)
6630 down_read(&cache->data_rwsem);
6631}
6632
6633static struct btrfs_block_group_cache *
6634btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6635 struct btrfs_free_cluster *cluster,
6636 int delalloc)
6637{
6638 struct btrfs_block_group_cache *used_bg;
6639 bool locked = false;
6640again:
6641 spin_lock(&cluster->refill_lock);
6642 if (locked) {
6643 if (used_bg == cluster->block_group)
6644 return used_bg;
6645
6646 up_read(&used_bg->data_rwsem);
6647 btrfs_put_block_group(used_bg);
6648 }
6649
6650 used_bg = cluster->block_group;
6651 if (!used_bg)
6652 return NULL;
6653
6654 if (used_bg == block_group)
6655 return used_bg;
6656
6657 btrfs_get_block_group(used_bg);
6658
6659 if (!delalloc)
6660 return used_bg;
6661
6662 if (down_read_trylock(&used_bg->data_rwsem))
6663 return used_bg;
6664
6665 spin_unlock(&cluster->refill_lock);
6666 down_read(&used_bg->data_rwsem);
6667 locked = true;
6668 goto again;
6669}
6670
6671static inline void
6672btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6673 int delalloc)
6674{
6675 if (delalloc)
6676 up_read(&cache->data_rwsem);
6677 btrfs_put_block_group(cache);
6678}
6679
fec577fb
CM
6680/*
6681 * walks the btree of allocated extents and find a hole of a given size.
6682 * The key ins is changed to record the hole:
a4820398 6683 * ins->objectid == start position
62e2749e 6684 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6685 * ins->offset == the size of the hole.
fec577fb 6686 * Any available blocks before search_start are skipped.
a4820398
MX
6687 *
6688 * If there is no suitable free space, we will record the max size of
6689 * the free space extent currently.
fec577fb 6690 */
00361589 6691static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6692 u64 num_bytes, u64 empty_size,
98ed5174 6693 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6694 u64 flags, int delalloc)
fec577fb 6695{
80eb234a 6696 int ret = 0;
d397712b 6697 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6698 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6699 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6700 u64 search_start = 0;
a4820398 6701 u64 max_extent_size = 0;
239b14b3 6702 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6703 struct btrfs_space_info *space_info;
fa9c0d79 6704 int loop = 0;
b6919a58
DS
6705 int index = __get_raid_index(flags);
6706 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6707 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6708 bool failed_cluster_refill = false;
1cdda9b8 6709 bool failed_alloc = false;
67377734 6710 bool use_cluster = true;
60d2adbb 6711 bool have_caching_bg = false;
fec577fb 6712
db94535d 6713 WARN_ON(num_bytes < root->sectorsize);
962a298f 6714 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6715 ins->objectid = 0;
6716 ins->offset = 0;
b1a4d965 6717
b6919a58 6718 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6719
b6919a58 6720 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6721 if (!space_info) {
b6919a58 6722 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6723 return -ENOSPC;
6724 }
2552d17e 6725
67377734
JB
6726 /*
6727 * If the space info is for both data and metadata it means we have a
6728 * small filesystem and we can't use the clustering stuff.
6729 */
6730 if (btrfs_mixed_space_info(space_info))
6731 use_cluster = false;
6732
b6919a58 6733 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6734 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6735 if (!btrfs_test_opt(root, SSD))
6736 empty_cluster = 64 * 1024;
239b14b3
CM
6737 }
6738
b6919a58 6739 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6740 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6741 last_ptr = &root->fs_info->data_alloc_cluster;
6742 }
0f9dd46c 6743
239b14b3 6744 if (last_ptr) {
fa9c0d79
CM
6745 spin_lock(&last_ptr->lock);
6746 if (last_ptr->block_group)
6747 hint_byte = last_ptr->window_start;
6748 spin_unlock(&last_ptr->lock);
239b14b3 6749 }
fa9c0d79 6750
a061fc8d 6751 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6752 search_start = max(search_start, hint_byte);
0b86a832 6753
817d52f8 6754 if (!last_ptr)
fa9c0d79 6755 empty_cluster = 0;
fa9c0d79 6756
2552d17e 6757 if (search_start == hint_byte) {
2552d17e
JB
6758 block_group = btrfs_lookup_block_group(root->fs_info,
6759 search_start);
817d52f8
JB
6760 /*
6761 * we don't want to use the block group if it doesn't match our
6762 * allocation bits, or if its not cached.
ccf0e725
JB
6763 *
6764 * However if we are re-searching with an ideal block group
6765 * picked out then we don't care that the block group is cached.
817d52f8 6766 */
b6919a58 6767 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6768 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6769 down_read(&space_info->groups_sem);
44fb5511
CM
6770 if (list_empty(&block_group->list) ||
6771 block_group->ro) {
6772 /*
6773 * someone is removing this block group,
6774 * we can't jump into the have_block_group
6775 * target because our list pointers are not
6776 * valid
6777 */
6778 btrfs_put_block_group(block_group);
6779 up_read(&space_info->groups_sem);
ccf0e725 6780 } else {
b742bb82 6781 index = get_block_group_index(block_group);
e570fd27 6782 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6783 goto have_block_group;
ccf0e725 6784 }
2552d17e 6785 } else if (block_group) {
fa9c0d79 6786 btrfs_put_block_group(block_group);
2552d17e 6787 }
42e70e7a 6788 }
2552d17e 6789search:
60d2adbb 6790 have_caching_bg = false;
80eb234a 6791 down_read(&space_info->groups_sem);
b742bb82
YZ
6792 list_for_each_entry(block_group, &space_info->block_groups[index],
6793 list) {
6226cb0a 6794 u64 offset;
817d52f8 6795 int cached;
8a1413a2 6796
e570fd27 6797 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6798 search_start = block_group->key.objectid;
42e70e7a 6799
83a50de9
CM
6800 /*
6801 * this can happen if we end up cycling through all the
6802 * raid types, but we want to make sure we only allocate
6803 * for the proper type.
6804 */
b6919a58 6805 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6806 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6807 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6808 BTRFS_BLOCK_GROUP_RAID5 |
6809 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6810 BTRFS_BLOCK_GROUP_RAID10;
6811
6812 /*
6813 * if they asked for extra copies and this block group
6814 * doesn't provide them, bail. This does allow us to
6815 * fill raid0 from raid1.
6816 */
b6919a58 6817 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6818 goto loop;
6819 }
6820
2552d17e 6821have_block_group:
291c7d2f
JB
6822 cached = block_group_cache_done(block_group);
6823 if (unlikely(!cached)) {
f6373bf3 6824 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6825 BUG_ON(ret < 0);
6826 ret = 0;
817d52f8
JB
6827 }
6828
36cce922
JB
6829 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6830 goto loop;
ea6a478e 6831 if (unlikely(block_group->ro))
2552d17e 6832 goto loop;
0f9dd46c 6833
0a24325e 6834 /*
062c05c4
AO
6835 * Ok we want to try and use the cluster allocator, so
6836 * lets look there
0a24325e 6837 */
062c05c4 6838 if (last_ptr) {
215a63d1 6839 struct btrfs_block_group_cache *used_block_group;
8de972b4 6840 unsigned long aligned_cluster;
fa9c0d79
CM
6841 /*
6842 * the refill lock keeps out other
6843 * people trying to start a new cluster
6844 */
e570fd27
MX
6845 used_block_group = btrfs_lock_cluster(block_group,
6846 last_ptr,
6847 delalloc);
6848 if (!used_block_group)
44fb5511 6849 goto refill_cluster;
274bd4fb 6850
e570fd27
MX
6851 if (used_block_group != block_group &&
6852 (used_block_group->ro ||
6853 !block_group_bits(used_block_group, flags)))
6854 goto release_cluster;
44fb5511 6855
274bd4fb 6856 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6857 last_ptr,
6858 num_bytes,
6859 used_block_group->key.objectid,
6860 &max_extent_size);
fa9c0d79
CM
6861 if (offset) {
6862 /* we have a block, we're done */
6863 spin_unlock(&last_ptr->refill_lock);
3f7de037 6864 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6865 used_block_group,
6866 search_start, num_bytes);
215a63d1 6867 if (used_block_group != block_group) {
e570fd27
MX
6868 btrfs_release_block_group(block_group,
6869 delalloc);
215a63d1
MX
6870 block_group = used_block_group;
6871 }
fa9c0d79
CM
6872 goto checks;
6873 }
6874
274bd4fb 6875 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6876release_cluster:
062c05c4
AO
6877 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6878 * set up a new clusters, so lets just skip it
6879 * and let the allocator find whatever block
6880 * it can find. If we reach this point, we
6881 * will have tried the cluster allocator
6882 * plenty of times and not have found
6883 * anything, so we are likely way too
6884 * fragmented for the clustering stuff to find
a5f6f719
AO
6885 * anything.
6886 *
6887 * However, if the cluster is taken from the
6888 * current block group, release the cluster
6889 * first, so that we stand a better chance of
6890 * succeeding in the unclustered
6891 * allocation. */
6892 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6893 used_block_group != block_group) {
062c05c4 6894 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6895 btrfs_release_block_group(used_block_group,
6896 delalloc);
062c05c4
AO
6897 goto unclustered_alloc;
6898 }
6899
fa9c0d79
CM
6900 /*
6901 * this cluster didn't work out, free it and
6902 * start over
6903 */
6904 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6905
e570fd27
MX
6906 if (used_block_group != block_group)
6907 btrfs_release_block_group(used_block_group,
6908 delalloc);
6909refill_cluster:
a5f6f719
AO
6910 if (loop >= LOOP_NO_EMPTY_SIZE) {
6911 spin_unlock(&last_ptr->refill_lock);
6912 goto unclustered_alloc;
6913 }
6914
8de972b4
CM
6915 aligned_cluster = max_t(unsigned long,
6916 empty_cluster + empty_size,
6917 block_group->full_stripe_len);
6918
fa9c0d79 6919 /* allocate a cluster in this block group */
00361589
JB
6920 ret = btrfs_find_space_cluster(root, block_group,
6921 last_ptr, search_start,
6922 num_bytes,
6923 aligned_cluster);
fa9c0d79
CM
6924 if (ret == 0) {
6925 /*
6926 * now pull our allocation out of this
6927 * cluster
6928 */
6929 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6930 last_ptr,
6931 num_bytes,
6932 search_start,
6933 &max_extent_size);
fa9c0d79
CM
6934 if (offset) {
6935 /* we found one, proceed */
6936 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6937 trace_btrfs_reserve_extent_cluster(root,
6938 block_group, search_start,
6939 num_bytes);
fa9c0d79
CM
6940 goto checks;
6941 }
0a24325e
JB
6942 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6943 && !failed_cluster_refill) {
817d52f8
JB
6944 spin_unlock(&last_ptr->refill_lock);
6945
0a24325e 6946 failed_cluster_refill = true;
817d52f8
JB
6947 wait_block_group_cache_progress(block_group,
6948 num_bytes + empty_cluster + empty_size);
6949 goto have_block_group;
fa9c0d79 6950 }
817d52f8 6951
fa9c0d79
CM
6952 /*
6953 * at this point we either didn't find a cluster
6954 * or we weren't able to allocate a block from our
6955 * cluster. Free the cluster we've been trying
6956 * to use, and go to the next block group
6957 */
0a24325e 6958 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 6959 spin_unlock(&last_ptr->refill_lock);
0a24325e 6960 goto loop;
fa9c0d79
CM
6961 }
6962
062c05c4 6963unclustered_alloc:
a5f6f719
AO
6964 spin_lock(&block_group->free_space_ctl->tree_lock);
6965 if (cached &&
6966 block_group->free_space_ctl->free_space <
6967 num_bytes + empty_cluster + empty_size) {
a4820398
MX
6968 if (block_group->free_space_ctl->free_space >
6969 max_extent_size)
6970 max_extent_size =
6971 block_group->free_space_ctl->free_space;
a5f6f719
AO
6972 spin_unlock(&block_group->free_space_ctl->tree_lock);
6973 goto loop;
6974 }
6975 spin_unlock(&block_group->free_space_ctl->tree_lock);
6976
6226cb0a 6977 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
6978 num_bytes, empty_size,
6979 &max_extent_size);
1cdda9b8
JB
6980 /*
6981 * If we didn't find a chunk, and we haven't failed on this
6982 * block group before, and this block group is in the middle of
6983 * caching and we are ok with waiting, then go ahead and wait
6984 * for progress to be made, and set failed_alloc to true.
6985 *
6986 * If failed_alloc is true then we've already waited on this
6987 * block group once and should move on to the next block group.
6988 */
6989 if (!offset && !failed_alloc && !cached &&
6990 loop > LOOP_CACHING_NOWAIT) {
817d52f8 6991 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
6992 num_bytes + empty_size);
6993 failed_alloc = true;
817d52f8 6994 goto have_block_group;
1cdda9b8 6995 } else if (!offset) {
60d2adbb
MX
6996 if (!cached)
6997 have_caching_bg = true;
1cdda9b8 6998 goto loop;
817d52f8 6999 }
fa9c0d79 7000checks:
4e54b17a 7001 search_start = ALIGN(offset, root->stripesize);
25179201 7002
2552d17e
JB
7003 /* move on to the next group */
7004 if (search_start + num_bytes >
215a63d1
MX
7005 block_group->key.objectid + block_group->key.offset) {
7006 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7007 goto loop;
6226cb0a 7008 }
f5a31e16 7009
f0486c68 7010 if (offset < search_start)
215a63d1 7011 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7012 search_start - offset);
7013 BUG_ON(offset > search_start);
2552d17e 7014
215a63d1 7015 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7016 alloc_type, delalloc);
f0486c68 7017 if (ret == -EAGAIN) {
215a63d1 7018 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7019 goto loop;
0f9dd46c 7020 }
0b86a832 7021
f0486c68 7022 /* we are all good, lets return */
2552d17e
JB
7023 ins->objectid = search_start;
7024 ins->offset = num_bytes;
d2fb3437 7025
3f7de037
JB
7026 trace_btrfs_reserve_extent(orig_root, block_group,
7027 search_start, num_bytes);
e570fd27 7028 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7029 break;
7030loop:
0a24325e 7031 failed_cluster_refill = false;
1cdda9b8 7032 failed_alloc = false;
b742bb82 7033 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7034 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7035 }
7036 up_read(&space_info->groups_sem);
7037
60d2adbb
MX
7038 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7039 goto search;
7040
b742bb82
YZ
7041 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7042 goto search;
7043
285ff5af 7044 /*
ccf0e725
JB
7045 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7046 * caching kthreads as we move along
817d52f8
JB
7047 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7048 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7049 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7050 * again
fa9c0d79 7051 */
723bda20 7052 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7053 index = 0;
723bda20 7054 loop++;
817d52f8 7055 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7056 struct btrfs_trans_handle *trans;
f017f15f
WS
7057 int exist = 0;
7058
7059 trans = current->journal_info;
7060 if (trans)
7061 exist = 1;
7062 else
7063 trans = btrfs_join_transaction(root);
00361589 7064
00361589
JB
7065 if (IS_ERR(trans)) {
7066 ret = PTR_ERR(trans);
7067 goto out;
7068 }
7069
b6919a58 7070 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7071 CHUNK_ALLOC_FORCE);
7072 /*
7073 * Do not bail out on ENOSPC since we
7074 * can do more things.
7075 */
00361589 7076 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7077 btrfs_abort_transaction(trans,
7078 root, ret);
00361589
JB
7079 else
7080 ret = 0;
f017f15f
WS
7081 if (!exist)
7082 btrfs_end_transaction(trans, root);
00361589 7083 if (ret)
ea658bad 7084 goto out;
2552d17e
JB
7085 }
7086
723bda20
JB
7087 if (loop == LOOP_NO_EMPTY_SIZE) {
7088 empty_size = 0;
7089 empty_cluster = 0;
fa9c0d79 7090 }
723bda20
JB
7091
7092 goto search;
2552d17e
JB
7093 } else if (!ins->objectid) {
7094 ret = -ENOSPC;
d82a6f1d 7095 } else if (ins->objectid) {
80eb234a 7096 ret = 0;
be744175 7097 }
79787eaa 7098out:
a4820398
MX
7099 if (ret == -ENOSPC)
7100 ins->offset = max_extent_size;
0f70abe2 7101 return ret;
fec577fb 7102}
ec44a35c 7103
9ed74f2d
JB
7104static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7105 int dump_block_groups)
0f9dd46c
JB
7106{
7107 struct btrfs_block_group_cache *cache;
b742bb82 7108 int index = 0;
0f9dd46c 7109
9ed74f2d 7110 spin_lock(&info->lock);
efe120a0 7111 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7112 info->flags,
7113 info->total_bytes - info->bytes_used - info->bytes_pinned -
7114 info->bytes_reserved - info->bytes_readonly,
d397712b 7115 (info->full) ? "" : "not ");
efe120a0 7116 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7117 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7118 info->total_bytes, info->bytes_used, info->bytes_pinned,
7119 info->bytes_reserved, info->bytes_may_use,
7120 info->bytes_readonly);
9ed74f2d
JB
7121 spin_unlock(&info->lock);
7122
7123 if (!dump_block_groups)
7124 return;
0f9dd46c 7125
80eb234a 7126 down_read(&info->groups_sem);
b742bb82
YZ
7127again:
7128 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7129 spin_lock(&cache->lock);
efe120a0
FH
7130 printk(KERN_INFO "BTRFS: "
7131 "block group %llu has %llu bytes, "
7132 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7133 cache->key.objectid, cache->key.offset,
7134 btrfs_block_group_used(&cache->item), cache->pinned,
7135 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7136 btrfs_dump_free_space(cache, bytes);
7137 spin_unlock(&cache->lock);
7138 }
b742bb82
YZ
7139 if (++index < BTRFS_NR_RAID_TYPES)
7140 goto again;
80eb234a 7141 up_read(&info->groups_sem);
0f9dd46c 7142}
e8569813 7143
00361589 7144int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7145 u64 num_bytes, u64 min_alloc_size,
7146 u64 empty_size, u64 hint_byte,
e570fd27 7147 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7148{
9e622d6b 7149 bool final_tried = false;
b6919a58 7150 u64 flags;
fec577fb 7151 int ret;
925baedd 7152
b6919a58 7153 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7154again:
db94535d 7155 WARN_ON(num_bytes < root->sectorsize);
00361589 7156 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7157 flags, delalloc);
3b951516 7158
9e622d6b 7159 if (ret == -ENOSPC) {
a4820398
MX
7160 if (!final_tried && ins->offset) {
7161 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7162 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7163 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7164 if (num_bytes == min_alloc_size)
7165 final_tried = true;
7166 goto again;
7167 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7168 struct btrfs_space_info *sinfo;
7169
b6919a58 7170 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7171 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7172 flags, num_bytes);
53804280
JM
7173 if (sinfo)
7174 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7175 }
925baedd 7176 }
0f9dd46c
JB
7177
7178 return ret;
e6dcd2dc
CM
7179}
7180
e688b725 7181static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7182 u64 start, u64 len,
7183 int pin, int delalloc)
65b51a00 7184{
0f9dd46c 7185 struct btrfs_block_group_cache *cache;
1f3c79a2 7186 int ret = 0;
0f9dd46c 7187
0f9dd46c
JB
7188 cache = btrfs_lookup_block_group(root->fs_info, start);
7189 if (!cache) {
c2cf52eb 7190 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7191 start);
0f9dd46c
JB
7192 return -ENOSPC;
7193 }
1f3c79a2 7194
e688b725
CM
7195 if (pin)
7196 pin_down_extent(root, cache, start, len, 1);
7197 else {
dcc82f47
FM
7198 if (btrfs_test_opt(root, DISCARD))
7199 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7200 btrfs_add_free_space(cache, start, len);
e570fd27 7201 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7202 }
31193213 7203
fa9c0d79 7204 btrfs_put_block_group(cache);
817d52f8 7205
1abe9b8a 7206 trace_btrfs_reserved_extent_free(root, start, len);
7207
e6dcd2dc
CM
7208 return ret;
7209}
7210
e688b725 7211int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7212 u64 start, u64 len, int delalloc)
e688b725 7213{
e570fd27 7214 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7215}
7216
7217int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7218 u64 start, u64 len)
7219{
e570fd27 7220 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7221}
7222
5d4f98a2
YZ
7223static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7224 struct btrfs_root *root,
7225 u64 parent, u64 root_objectid,
7226 u64 flags, u64 owner, u64 offset,
7227 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7228{
7229 int ret;
5d4f98a2 7230 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7231 struct btrfs_extent_item *extent_item;
5d4f98a2 7232 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7233 struct btrfs_path *path;
5d4f98a2
YZ
7234 struct extent_buffer *leaf;
7235 int type;
7236 u32 size;
26b8003f 7237
5d4f98a2
YZ
7238 if (parent > 0)
7239 type = BTRFS_SHARED_DATA_REF_KEY;
7240 else
7241 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7242
5d4f98a2 7243 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7244
7245 path = btrfs_alloc_path();
db5b493a
TI
7246 if (!path)
7247 return -ENOMEM;
47e4bb98 7248
b9473439 7249 path->leave_spinning = 1;
5d4f98a2
YZ
7250 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7251 ins, size);
79787eaa
JM
7252 if (ret) {
7253 btrfs_free_path(path);
7254 return ret;
7255 }
0f9dd46c 7256
5d4f98a2
YZ
7257 leaf = path->nodes[0];
7258 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7259 struct btrfs_extent_item);
5d4f98a2
YZ
7260 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7261 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7262 btrfs_set_extent_flags(leaf, extent_item,
7263 flags | BTRFS_EXTENT_FLAG_DATA);
7264
7265 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7266 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7267 if (parent > 0) {
7268 struct btrfs_shared_data_ref *ref;
7269 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7270 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7271 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7272 } else {
7273 struct btrfs_extent_data_ref *ref;
7274 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7275 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7276 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7277 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7278 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7279 }
47e4bb98
CM
7280
7281 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7282 btrfs_free_path(path);
f510cfec 7283
fcebe456
JB
7284 /* Always set parent to 0 here since its exclusive anyway. */
7285 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7286 ins->objectid, ins->offset,
7287 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7288 if (ret)
7289 return ret;
7290
ce93ec54 7291 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7292 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7293 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7294 ins->objectid, ins->offset);
f5947066
CM
7295 BUG();
7296 }
0be5dc67 7297 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7298 return ret;
7299}
7300
5d4f98a2
YZ
7301static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7302 struct btrfs_root *root,
7303 u64 parent, u64 root_objectid,
7304 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7305 int level, struct btrfs_key *ins,
7306 int no_quota)
e6dcd2dc
CM
7307{
7308 int ret;
5d4f98a2
YZ
7309 struct btrfs_fs_info *fs_info = root->fs_info;
7310 struct btrfs_extent_item *extent_item;
7311 struct btrfs_tree_block_info *block_info;
7312 struct btrfs_extent_inline_ref *iref;
7313 struct btrfs_path *path;
7314 struct extent_buffer *leaf;
3173a18f 7315 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7316 u64 num_bytes = ins->offset;
3173a18f
JB
7317 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7318 SKINNY_METADATA);
7319
7320 if (!skinny_metadata)
7321 size += sizeof(*block_info);
1c2308f8 7322
5d4f98a2 7323 path = btrfs_alloc_path();
857cc2fc
JB
7324 if (!path) {
7325 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7326 root->nodesize);
d8926bb3 7327 return -ENOMEM;
857cc2fc 7328 }
56bec294 7329
5d4f98a2
YZ
7330 path->leave_spinning = 1;
7331 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7332 ins, size);
79787eaa 7333 if (ret) {
dd825259 7334 btrfs_free_path(path);
857cc2fc 7335 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7336 root->nodesize);
79787eaa
JM
7337 return ret;
7338 }
5d4f98a2
YZ
7339
7340 leaf = path->nodes[0];
7341 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7342 struct btrfs_extent_item);
7343 btrfs_set_extent_refs(leaf, extent_item, 1);
7344 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7345 btrfs_set_extent_flags(leaf, extent_item,
7346 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7347
3173a18f
JB
7348 if (skinny_metadata) {
7349 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7350 num_bytes = root->nodesize;
3173a18f
JB
7351 } else {
7352 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7353 btrfs_set_tree_block_key(leaf, block_info, key);
7354 btrfs_set_tree_block_level(leaf, block_info, level);
7355 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7356 }
5d4f98a2 7357
5d4f98a2
YZ
7358 if (parent > 0) {
7359 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7360 btrfs_set_extent_inline_ref_type(leaf, iref,
7361 BTRFS_SHARED_BLOCK_REF_KEY);
7362 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7363 } else {
7364 btrfs_set_extent_inline_ref_type(leaf, iref,
7365 BTRFS_TREE_BLOCK_REF_KEY);
7366 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7367 }
7368
7369 btrfs_mark_buffer_dirty(leaf);
7370 btrfs_free_path(path);
7371
fcebe456
JB
7372 if (!no_quota) {
7373 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7374 ins->objectid, num_bytes,
7375 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7376 if (ret)
7377 return ret;
7378 }
7379
ce93ec54
JB
7380 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7381 1);
79787eaa 7382 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7383 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7384 ins->objectid, ins->offset);
5d4f98a2
YZ
7385 BUG();
7386 }
0be5dc67 7387
707e8a07 7388 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7389 return ret;
7390}
7391
7392int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7393 struct btrfs_root *root,
7394 u64 root_objectid, u64 owner,
7395 u64 offset, struct btrfs_key *ins)
7396{
7397 int ret;
7398
7399 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7400
66d7e7f0
AJ
7401 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7402 ins->offset, 0,
7403 root_objectid, owner, offset,
7404 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7405 return ret;
7406}
e02119d5
CM
7407
7408/*
7409 * this is used by the tree logging recovery code. It records that
7410 * an extent has been allocated and makes sure to clear the free
7411 * space cache bits as well
7412 */
5d4f98a2
YZ
7413int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7414 struct btrfs_root *root,
7415 u64 root_objectid, u64 owner, u64 offset,
7416 struct btrfs_key *ins)
e02119d5
CM
7417{
7418 int ret;
7419 struct btrfs_block_group_cache *block_group;
11833d66 7420
8c2a1a30
JB
7421 /*
7422 * Mixed block groups will exclude before processing the log so we only
7423 * need to do the exlude dance if this fs isn't mixed.
7424 */
7425 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7426 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7427 if (ret)
8c2a1a30 7428 return ret;
11833d66
YZ
7429 }
7430
8c2a1a30
JB
7431 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7432 if (!block_group)
7433 return -EINVAL;
7434
fb25e914 7435 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7436 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7437 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7438 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7439 0, owner, offset, ins, 1);
b50c6e25 7440 btrfs_put_block_group(block_group);
e02119d5
CM
7441 return ret;
7442}
7443
48a3b636
ES
7444static struct extent_buffer *
7445btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7446 u64 bytenr, int level)
65b51a00
CM
7447{
7448 struct extent_buffer *buf;
7449
a83fffb7 7450 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7451 if (!buf)
7452 return ERR_PTR(-ENOMEM);
7453 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7454 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7455 btrfs_tree_lock(buf);
01d58472 7456 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7457 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7458
7459 btrfs_set_lock_blocking(buf);
65b51a00 7460 btrfs_set_buffer_uptodate(buf);
b4ce94de 7461
d0c803c4 7462 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7463 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7464 /*
7465 * we allow two log transactions at a time, use different
7466 * EXENT bit to differentiate dirty pages.
7467 */
656f30db 7468 if (buf->log_index == 0)
8cef4e16
YZ
7469 set_extent_dirty(&root->dirty_log_pages, buf->start,
7470 buf->start + buf->len - 1, GFP_NOFS);
7471 else
7472 set_extent_new(&root->dirty_log_pages, buf->start,
7473 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7474 } else {
656f30db 7475 buf->log_index = -1;
d0c803c4 7476 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7477 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7478 }
65b51a00 7479 trans->blocks_used++;
b4ce94de 7480 /* this returns a buffer locked for blocking */
65b51a00
CM
7481 return buf;
7482}
7483
f0486c68
YZ
7484static struct btrfs_block_rsv *
7485use_block_rsv(struct btrfs_trans_handle *trans,
7486 struct btrfs_root *root, u32 blocksize)
7487{
7488 struct btrfs_block_rsv *block_rsv;
68a82277 7489 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7490 int ret;
d88033db 7491 bool global_updated = false;
f0486c68
YZ
7492
7493 block_rsv = get_block_rsv(trans, root);
7494
b586b323
MX
7495 if (unlikely(block_rsv->size == 0))
7496 goto try_reserve;
d88033db 7497again:
f0486c68
YZ
7498 ret = block_rsv_use_bytes(block_rsv, blocksize);
7499 if (!ret)
7500 return block_rsv;
7501
b586b323
MX
7502 if (block_rsv->failfast)
7503 return ERR_PTR(ret);
7504
d88033db
MX
7505 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7506 global_updated = true;
7507 update_global_block_rsv(root->fs_info);
7508 goto again;
7509 }
7510
b586b323
MX
7511 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7512 static DEFINE_RATELIMIT_STATE(_rs,
7513 DEFAULT_RATELIMIT_INTERVAL * 10,
7514 /*DEFAULT_RATELIMIT_BURST*/ 1);
7515 if (__ratelimit(&_rs))
7516 WARN(1, KERN_DEBUG
efe120a0 7517 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7518 }
7519try_reserve:
7520 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7521 BTRFS_RESERVE_NO_FLUSH);
7522 if (!ret)
7523 return block_rsv;
7524 /*
7525 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7526 * the global reserve if its space type is the same as the global
7527 * reservation.
b586b323 7528 */
5881cfc9
MX
7529 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7530 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7531 ret = block_rsv_use_bytes(global_rsv, blocksize);
7532 if (!ret)
7533 return global_rsv;
7534 }
7535 return ERR_PTR(ret);
f0486c68
YZ
7536}
7537
8c2a3ca2
JB
7538static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7539 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7540{
7541 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7542 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7543}
7544
fec577fb 7545/*
f0486c68
YZ
7546 * finds a free extent and does all the dirty work required for allocation
7547 * returns the key for the extent through ins, and a tree buffer for
7548 * the first block of the extent through buf.
7549 *
fec577fb
CM
7550 * returns the tree buffer or NULL.
7551 */
4d75f8a9
DS
7552struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7553 struct btrfs_root *root,
5d4f98a2
YZ
7554 u64 parent, u64 root_objectid,
7555 struct btrfs_disk_key *key, int level,
5581a51a 7556 u64 hint, u64 empty_size)
fec577fb 7557{
e2fa7227 7558 struct btrfs_key ins;
f0486c68 7559 struct btrfs_block_rsv *block_rsv;
5f39d397 7560 struct extent_buffer *buf;
f0486c68
YZ
7561 u64 flags = 0;
7562 int ret;
4d75f8a9 7563 u32 blocksize = root->nodesize;
3173a18f
JB
7564 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7565 SKINNY_METADATA);
fec577fb 7566
fccb84c9 7567 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7568 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7569 level);
faa2dbf0
JB
7570 if (!IS_ERR(buf))
7571 root->alloc_bytenr += blocksize;
7572 return buf;
7573 }
fccb84c9 7574
f0486c68
YZ
7575 block_rsv = use_block_rsv(trans, root, blocksize);
7576 if (IS_ERR(block_rsv))
7577 return ERR_CAST(block_rsv);
7578
00361589 7579 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7580 empty_size, hint, &ins, 0, 0);
fec577fb 7581 if (ret) {
8c2a3ca2 7582 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
54aa1f4d 7583 return ERR_PTR(ret);
fec577fb 7584 }
55c69072 7585
fe864576 7586 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
79787eaa 7587 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
f0486c68
YZ
7588
7589 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7590 if (parent == 0)
7591 parent = ins.objectid;
7592 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7593 } else
7594 BUG_ON(parent > 0);
7595
7596 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7597 struct btrfs_delayed_extent_op *extent_op;
78a6184a 7598 extent_op = btrfs_alloc_delayed_extent_op();
79787eaa 7599 BUG_ON(!extent_op); /* -ENOMEM */
f0486c68
YZ
7600 if (key)
7601 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7602 else
7603 memset(&extent_op->key, 0, sizeof(extent_op->key));
7604 extent_op->flags_to_set = flags;
3173a18f
JB
7605 if (skinny_metadata)
7606 extent_op->update_key = 0;
7607 else
7608 extent_op->update_key = 1;
f0486c68
YZ
7609 extent_op->update_flags = 1;
7610 extent_op->is_data = 0;
b1c79e09 7611 extent_op->level = level;
f0486c68 7612
66d7e7f0
AJ
7613 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7614 ins.objectid,
f0486c68
YZ
7615 ins.offset, parent, root_objectid,
7616 level, BTRFS_ADD_DELAYED_EXTENT,
5581a51a 7617 extent_op, 0);
79787eaa 7618 BUG_ON(ret); /* -ENOMEM */
f0486c68 7619 }
fec577fb
CM
7620 return buf;
7621}
a28ec197 7622
2c47e605
YZ
7623struct walk_control {
7624 u64 refs[BTRFS_MAX_LEVEL];
7625 u64 flags[BTRFS_MAX_LEVEL];
7626 struct btrfs_key update_progress;
7627 int stage;
7628 int level;
7629 int shared_level;
7630 int update_ref;
7631 int keep_locks;
1c4850e2
YZ
7632 int reada_slot;
7633 int reada_count;
66d7e7f0 7634 int for_reloc;
2c47e605
YZ
7635};
7636
7637#define DROP_REFERENCE 1
7638#define UPDATE_BACKREF 2
7639
1c4850e2
YZ
7640static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7641 struct btrfs_root *root,
7642 struct walk_control *wc,
7643 struct btrfs_path *path)
6407bf6d 7644{
1c4850e2
YZ
7645 u64 bytenr;
7646 u64 generation;
7647 u64 refs;
94fcca9f 7648 u64 flags;
5d4f98a2 7649 u32 nritems;
1c4850e2
YZ
7650 u32 blocksize;
7651 struct btrfs_key key;
7652 struct extent_buffer *eb;
6407bf6d 7653 int ret;
1c4850e2
YZ
7654 int slot;
7655 int nread = 0;
6407bf6d 7656
1c4850e2
YZ
7657 if (path->slots[wc->level] < wc->reada_slot) {
7658 wc->reada_count = wc->reada_count * 2 / 3;
7659 wc->reada_count = max(wc->reada_count, 2);
7660 } else {
7661 wc->reada_count = wc->reada_count * 3 / 2;
7662 wc->reada_count = min_t(int, wc->reada_count,
7663 BTRFS_NODEPTRS_PER_BLOCK(root));
7664 }
7bb86316 7665
1c4850e2
YZ
7666 eb = path->nodes[wc->level];
7667 nritems = btrfs_header_nritems(eb);
707e8a07 7668 blocksize = root->nodesize;
bd56b302 7669
1c4850e2
YZ
7670 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7671 if (nread >= wc->reada_count)
7672 break;
bd56b302 7673
2dd3e67b 7674 cond_resched();
1c4850e2
YZ
7675 bytenr = btrfs_node_blockptr(eb, slot);
7676 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7677
1c4850e2
YZ
7678 if (slot == path->slots[wc->level])
7679 goto reada;
5d4f98a2 7680
1c4850e2
YZ
7681 if (wc->stage == UPDATE_BACKREF &&
7682 generation <= root->root_key.offset)
bd56b302
CM
7683 continue;
7684
94fcca9f 7685 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7686 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7687 wc->level - 1, 1, &refs,
7688 &flags);
79787eaa
JM
7689 /* We don't care about errors in readahead. */
7690 if (ret < 0)
7691 continue;
94fcca9f
YZ
7692 BUG_ON(refs == 0);
7693
1c4850e2 7694 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7695 if (refs == 1)
7696 goto reada;
bd56b302 7697
94fcca9f
YZ
7698 if (wc->level == 1 &&
7699 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7700 continue;
1c4850e2
YZ
7701 if (!wc->update_ref ||
7702 generation <= root->root_key.offset)
7703 continue;
7704 btrfs_node_key_to_cpu(eb, &key, slot);
7705 ret = btrfs_comp_cpu_keys(&key,
7706 &wc->update_progress);
7707 if (ret < 0)
7708 continue;
94fcca9f
YZ
7709 } else {
7710 if (wc->level == 1 &&
7711 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7712 continue;
6407bf6d 7713 }
1c4850e2 7714reada:
d3e46fea 7715 readahead_tree_block(root, bytenr);
1c4850e2 7716 nread++;
20524f02 7717 }
1c4850e2 7718 wc->reada_slot = slot;
20524f02 7719}
2c47e605 7720
1152651a
MF
7721static int account_leaf_items(struct btrfs_trans_handle *trans,
7722 struct btrfs_root *root,
7723 struct extent_buffer *eb)
7724{
7725 int nr = btrfs_header_nritems(eb);
7726 int i, extent_type, ret;
7727 struct btrfs_key key;
7728 struct btrfs_file_extent_item *fi;
7729 u64 bytenr, num_bytes;
7730
7731 for (i = 0; i < nr; i++) {
7732 btrfs_item_key_to_cpu(eb, &key, i);
7733
7734 if (key.type != BTRFS_EXTENT_DATA_KEY)
7735 continue;
7736
7737 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7738 /* filter out non qgroup-accountable extents */
7739 extent_type = btrfs_file_extent_type(eb, fi);
7740
7741 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7742 continue;
7743
7744 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7745 if (!bytenr)
7746 continue;
7747
7748 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7749
7750 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7751 root->objectid,
7752 bytenr, num_bytes,
7753 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7754 if (ret)
7755 return ret;
7756 }
7757 return 0;
7758}
7759
7760/*
7761 * Walk up the tree from the bottom, freeing leaves and any interior
7762 * nodes which have had all slots visited. If a node (leaf or
7763 * interior) is freed, the node above it will have it's slot
7764 * incremented. The root node will never be freed.
7765 *
7766 * At the end of this function, we should have a path which has all
7767 * slots incremented to the next position for a search. If we need to
7768 * read a new node it will be NULL and the node above it will have the
7769 * correct slot selected for a later read.
7770 *
7771 * If we increment the root nodes slot counter past the number of
7772 * elements, 1 is returned to signal completion of the search.
7773 */
7774static int adjust_slots_upwards(struct btrfs_root *root,
7775 struct btrfs_path *path, int root_level)
7776{
7777 int level = 0;
7778 int nr, slot;
7779 struct extent_buffer *eb;
7780
7781 if (root_level == 0)
7782 return 1;
7783
7784 while (level <= root_level) {
7785 eb = path->nodes[level];
7786 nr = btrfs_header_nritems(eb);
7787 path->slots[level]++;
7788 slot = path->slots[level];
7789 if (slot >= nr || level == 0) {
7790 /*
7791 * Don't free the root - we will detect this
7792 * condition after our loop and return a
7793 * positive value for caller to stop walking the tree.
7794 */
7795 if (level != root_level) {
7796 btrfs_tree_unlock_rw(eb, path->locks[level]);
7797 path->locks[level] = 0;
7798
7799 free_extent_buffer(eb);
7800 path->nodes[level] = NULL;
7801 path->slots[level] = 0;
7802 }
7803 } else {
7804 /*
7805 * We have a valid slot to walk back down
7806 * from. Stop here so caller can process these
7807 * new nodes.
7808 */
7809 break;
7810 }
7811
7812 level++;
7813 }
7814
7815 eb = path->nodes[root_level];
7816 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7817 return 1;
7818
7819 return 0;
7820}
7821
7822/*
7823 * root_eb is the subtree root and is locked before this function is called.
7824 */
7825static int account_shared_subtree(struct btrfs_trans_handle *trans,
7826 struct btrfs_root *root,
7827 struct extent_buffer *root_eb,
7828 u64 root_gen,
7829 int root_level)
7830{
7831 int ret = 0;
7832 int level;
7833 struct extent_buffer *eb = root_eb;
7834 struct btrfs_path *path = NULL;
7835
7836 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7837 BUG_ON(root_eb == NULL);
7838
7839 if (!root->fs_info->quota_enabled)
7840 return 0;
7841
7842 if (!extent_buffer_uptodate(root_eb)) {
7843 ret = btrfs_read_buffer(root_eb, root_gen);
7844 if (ret)
7845 goto out;
7846 }
7847
7848 if (root_level == 0) {
7849 ret = account_leaf_items(trans, root, root_eb);
7850 goto out;
7851 }
7852
7853 path = btrfs_alloc_path();
7854 if (!path)
7855 return -ENOMEM;
7856
7857 /*
7858 * Walk down the tree. Missing extent blocks are filled in as
7859 * we go. Metadata is accounted every time we read a new
7860 * extent block.
7861 *
7862 * When we reach a leaf, we account for file extent items in it,
7863 * walk back up the tree (adjusting slot pointers as we go)
7864 * and restart the search process.
7865 */
7866 extent_buffer_get(root_eb); /* For path */
7867 path->nodes[root_level] = root_eb;
7868 path->slots[root_level] = 0;
7869 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7870walk_down:
7871 level = root_level;
7872 while (level >= 0) {
7873 if (path->nodes[level] == NULL) {
1152651a
MF
7874 int parent_slot;
7875 u64 child_gen;
7876 u64 child_bytenr;
7877
7878 /* We need to get child blockptr/gen from
7879 * parent before we can read it. */
7880 eb = path->nodes[level + 1];
7881 parent_slot = path->slots[level + 1];
7882 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7883 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7884
ce86cd59 7885 eb = read_tree_block(root, child_bytenr, child_gen);
1152651a
MF
7886 if (!eb || !extent_buffer_uptodate(eb)) {
7887 ret = -EIO;
7888 goto out;
7889 }
7890
7891 path->nodes[level] = eb;
7892 path->slots[level] = 0;
7893
7894 btrfs_tree_read_lock(eb);
7895 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7896 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7897
7898 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7899 root->objectid,
7900 child_bytenr,
ce86cd59 7901 root->nodesize,
1152651a
MF
7902 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7903 0);
7904 if (ret)
7905 goto out;
7906
7907 }
7908
7909 if (level == 0) {
7910 ret = account_leaf_items(trans, root, path->nodes[level]);
7911 if (ret)
7912 goto out;
7913
7914 /* Nonzero return here means we completed our search */
7915 ret = adjust_slots_upwards(root, path, root_level);
7916 if (ret)
7917 break;
7918
7919 /* Restart search with new slots */
7920 goto walk_down;
7921 }
7922
7923 level--;
7924 }
7925
7926 ret = 0;
7927out:
7928 btrfs_free_path(path);
7929
7930 return ret;
7931}
7932
f82d02d9 7933/*
2c016dc2 7934 * helper to process tree block while walking down the tree.
2c47e605 7935 *
2c47e605
YZ
7936 * when wc->stage == UPDATE_BACKREF, this function updates
7937 * back refs for pointers in the block.
7938 *
7939 * NOTE: return value 1 means we should stop walking down.
f82d02d9 7940 */
2c47e605 7941static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 7942 struct btrfs_root *root,
2c47e605 7943 struct btrfs_path *path,
94fcca9f 7944 struct walk_control *wc, int lookup_info)
f82d02d9 7945{
2c47e605
YZ
7946 int level = wc->level;
7947 struct extent_buffer *eb = path->nodes[level];
2c47e605 7948 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
7949 int ret;
7950
2c47e605
YZ
7951 if (wc->stage == UPDATE_BACKREF &&
7952 btrfs_header_owner(eb) != root->root_key.objectid)
7953 return 1;
f82d02d9 7954
2c47e605
YZ
7955 /*
7956 * when reference count of tree block is 1, it won't increase
7957 * again. once full backref flag is set, we never clear it.
7958 */
94fcca9f
YZ
7959 if (lookup_info &&
7960 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7961 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
7962 BUG_ON(!path->locks[level]);
7963 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 7964 eb->start, level, 1,
2c47e605
YZ
7965 &wc->refs[level],
7966 &wc->flags[level]);
79787eaa
JM
7967 BUG_ON(ret == -ENOMEM);
7968 if (ret)
7969 return ret;
2c47e605
YZ
7970 BUG_ON(wc->refs[level] == 0);
7971 }
5d4f98a2 7972
2c47e605
YZ
7973 if (wc->stage == DROP_REFERENCE) {
7974 if (wc->refs[level] > 1)
7975 return 1;
f82d02d9 7976
2c47e605 7977 if (path->locks[level] && !wc->keep_locks) {
bd681513 7978 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
7979 path->locks[level] = 0;
7980 }
7981 return 0;
7982 }
f82d02d9 7983
2c47e605
YZ
7984 /* wc->stage == UPDATE_BACKREF */
7985 if (!(wc->flags[level] & flag)) {
7986 BUG_ON(!path->locks[level]);
e339a6b0 7987 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 7988 BUG_ON(ret); /* -ENOMEM */
e339a6b0 7989 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 7990 BUG_ON(ret); /* -ENOMEM */
2c47e605 7991 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
7992 eb->len, flag,
7993 btrfs_header_level(eb), 0);
79787eaa 7994 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
7995 wc->flags[level] |= flag;
7996 }
7997
7998 /*
7999 * the block is shared by multiple trees, so it's not good to
8000 * keep the tree lock
8001 */
8002 if (path->locks[level] && level > 0) {
bd681513 8003 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8004 path->locks[level] = 0;
8005 }
8006 return 0;
8007}
8008
1c4850e2 8009/*
2c016dc2 8010 * helper to process tree block pointer.
1c4850e2
YZ
8011 *
8012 * when wc->stage == DROP_REFERENCE, this function checks
8013 * reference count of the block pointed to. if the block
8014 * is shared and we need update back refs for the subtree
8015 * rooted at the block, this function changes wc->stage to
8016 * UPDATE_BACKREF. if the block is shared and there is no
8017 * need to update back, this function drops the reference
8018 * to the block.
8019 *
8020 * NOTE: return value 1 means we should stop walking down.
8021 */
8022static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8023 struct btrfs_root *root,
8024 struct btrfs_path *path,
94fcca9f 8025 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8026{
8027 u64 bytenr;
8028 u64 generation;
8029 u64 parent;
8030 u32 blocksize;
8031 struct btrfs_key key;
8032 struct extent_buffer *next;
8033 int level = wc->level;
8034 int reada = 0;
8035 int ret = 0;
1152651a 8036 bool need_account = false;
1c4850e2
YZ
8037
8038 generation = btrfs_node_ptr_generation(path->nodes[level],
8039 path->slots[level]);
8040 /*
8041 * if the lower level block was created before the snapshot
8042 * was created, we know there is no need to update back refs
8043 * for the subtree
8044 */
8045 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8046 generation <= root->root_key.offset) {
8047 *lookup_info = 1;
1c4850e2 8048 return 1;
94fcca9f 8049 }
1c4850e2
YZ
8050
8051 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8052 blocksize = root->nodesize;
1c4850e2 8053
01d58472 8054 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8055 if (!next) {
a83fffb7 8056 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8057 if (!next)
8058 return -ENOMEM;
b2aaaa3b
JB
8059 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8060 level - 1);
1c4850e2
YZ
8061 reada = 1;
8062 }
8063 btrfs_tree_lock(next);
8064 btrfs_set_lock_blocking(next);
8065
3173a18f 8066 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8067 &wc->refs[level - 1],
8068 &wc->flags[level - 1]);
79787eaa
JM
8069 if (ret < 0) {
8070 btrfs_tree_unlock(next);
8071 return ret;
8072 }
8073
c2cf52eb
SK
8074 if (unlikely(wc->refs[level - 1] == 0)) {
8075 btrfs_err(root->fs_info, "Missing references.");
8076 BUG();
8077 }
94fcca9f 8078 *lookup_info = 0;
1c4850e2 8079
94fcca9f 8080 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8081 if (wc->refs[level - 1] > 1) {
1152651a 8082 need_account = true;
94fcca9f
YZ
8083 if (level == 1 &&
8084 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8085 goto skip;
8086
1c4850e2
YZ
8087 if (!wc->update_ref ||
8088 generation <= root->root_key.offset)
8089 goto skip;
8090
8091 btrfs_node_key_to_cpu(path->nodes[level], &key,
8092 path->slots[level]);
8093 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8094 if (ret < 0)
8095 goto skip;
8096
8097 wc->stage = UPDATE_BACKREF;
8098 wc->shared_level = level - 1;
8099 }
94fcca9f
YZ
8100 } else {
8101 if (level == 1 &&
8102 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8103 goto skip;
1c4850e2
YZ
8104 }
8105
b9fab919 8106 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8107 btrfs_tree_unlock(next);
8108 free_extent_buffer(next);
8109 next = NULL;
94fcca9f 8110 *lookup_info = 1;
1c4850e2
YZ
8111 }
8112
8113 if (!next) {
8114 if (reada && level == 1)
8115 reada_walk_down(trans, root, wc, path);
ce86cd59 8116 next = read_tree_block(root, bytenr, generation);
416bc658
JB
8117 if (!next || !extent_buffer_uptodate(next)) {
8118 free_extent_buffer(next);
97d9a8a4 8119 return -EIO;
416bc658 8120 }
1c4850e2
YZ
8121 btrfs_tree_lock(next);
8122 btrfs_set_lock_blocking(next);
8123 }
8124
8125 level--;
8126 BUG_ON(level != btrfs_header_level(next));
8127 path->nodes[level] = next;
8128 path->slots[level] = 0;
bd681513 8129 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8130 wc->level = level;
8131 if (wc->level == 1)
8132 wc->reada_slot = 0;
8133 return 0;
8134skip:
8135 wc->refs[level - 1] = 0;
8136 wc->flags[level - 1] = 0;
94fcca9f
YZ
8137 if (wc->stage == DROP_REFERENCE) {
8138 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8139 parent = path->nodes[level]->start;
8140 } else {
8141 BUG_ON(root->root_key.objectid !=
8142 btrfs_header_owner(path->nodes[level]));
8143 parent = 0;
8144 }
1c4850e2 8145
1152651a
MF
8146 if (need_account) {
8147 ret = account_shared_subtree(trans, root, next,
8148 generation, level - 1);
8149 if (ret) {
8150 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8151 "%d accounting shared subtree. Quota "
8152 "is out of sync, rescan required.\n",
8153 root->fs_info->sb->s_id, ret);
8154 }
8155 }
94fcca9f 8156 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8157 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8158 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8159 }
1c4850e2
YZ
8160 btrfs_tree_unlock(next);
8161 free_extent_buffer(next);
94fcca9f 8162 *lookup_info = 1;
1c4850e2
YZ
8163 return 1;
8164}
8165
2c47e605 8166/*
2c016dc2 8167 * helper to process tree block while walking up the tree.
2c47e605
YZ
8168 *
8169 * when wc->stage == DROP_REFERENCE, this function drops
8170 * reference count on the block.
8171 *
8172 * when wc->stage == UPDATE_BACKREF, this function changes
8173 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8174 * to UPDATE_BACKREF previously while processing the block.
8175 *
8176 * NOTE: return value 1 means we should stop walking up.
8177 */
8178static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8179 struct btrfs_root *root,
8180 struct btrfs_path *path,
8181 struct walk_control *wc)
8182{
f0486c68 8183 int ret;
2c47e605
YZ
8184 int level = wc->level;
8185 struct extent_buffer *eb = path->nodes[level];
8186 u64 parent = 0;
8187
8188 if (wc->stage == UPDATE_BACKREF) {
8189 BUG_ON(wc->shared_level < level);
8190 if (level < wc->shared_level)
8191 goto out;
8192
2c47e605
YZ
8193 ret = find_next_key(path, level + 1, &wc->update_progress);
8194 if (ret > 0)
8195 wc->update_ref = 0;
8196
8197 wc->stage = DROP_REFERENCE;
8198 wc->shared_level = -1;
8199 path->slots[level] = 0;
8200
8201 /*
8202 * check reference count again if the block isn't locked.
8203 * we should start walking down the tree again if reference
8204 * count is one.
8205 */
8206 if (!path->locks[level]) {
8207 BUG_ON(level == 0);
8208 btrfs_tree_lock(eb);
8209 btrfs_set_lock_blocking(eb);
bd681513 8210 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8211
8212 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8213 eb->start, level, 1,
2c47e605
YZ
8214 &wc->refs[level],
8215 &wc->flags[level]);
79787eaa
JM
8216 if (ret < 0) {
8217 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8218 path->locks[level] = 0;
79787eaa
JM
8219 return ret;
8220 }
2c47e605
YZ
8221 BUG_ON(wc->refs[level] == 0);
8222 if (wc->refs[level] == 1) {
bd681513 8223 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8224 path->locks[level] = 0;
2c47e605
YZ
8225 return 1;
8226 }
f82d02d9 8227 }
2c47e605 8228 }
f82d02d9 8229
2c47e605
YZ
8230 /* wc->stage == DROP_REFERENCE */
8231 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8232
2c47e605
YZ
8233 if (wc->refs[level] == 1) {
8234 if (level == 0) {
8235 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8236 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8237 else
e339a6b0 8238 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8239 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8240 ret = account_leaf_items(trans, root, eb);
8241 if (ret) {
8242 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8243 "%d accounting leaf items. Quota "
8244 "is out of sync, rescan required.\n",
8245 root->fs_info->sb->s_id, ret);
8246 }
2c47e605
YZ
8247 }
8248 /* make block locked assertion in clean_tree_block happy */
8249 if (!path->locks[level] &&
8250 btrfs_header_generation(eb) == trans->transid) {
8251 btrfs_tree_lock(eb);
8252 btrfs_set_lock_blocking(eb);
bd681513 8253 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8254 }
01d58472 8255 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8256 }
8257
8258 if (eb == root->node) {
8259 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8260 parent = eb->start;
8261 else
8262 BUG_ON(root->root_key.objectid !=
8263 btrfs_header_owner(eb));
8264 } else {
8265 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8266 parent = path->nodes[level + 1]->start;
8267 else
8268 BUG_ON(root->root_key.objectid !=
8269 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8270 }
f82d02d9 8271
5581a51a 8272 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8273out:
8274 wc->refs[level] = 0;
8275 wc->flags[level] = 0;
f0486c68 8276 return 0;
2c47e605
YZ
8277}
8278
8279static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8280 struct btrfs_root *root,
8281 struct btrfs_path *path,
8282 struct walk_control *wc)
8283{
2c47e605 8284 int level = wc->level;
94fcca9f 8285 int lookup_info = 1;
2c47e605
YZ
8286 int ret;
8287
8288 while (level >= 0) {
94fcca9f 8289 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8290 if (ret > 0)
8291 break;
8292
8293 if (level == 0)
8294 break;
8295
7a7965f8
YZ
8296 if (path->slots[level] >=
8297 btrfs_header_nritems(path->nodes[level]))
8298 break;
8299
94fcca9f 8300 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8301 if (ret > 0) {
8302 path->slots[level]++;
8303 continue;
90d2c51d
MX
8304 } else if (ret < 0)
8305 return ret;
1c4850e2 8306 level = wc->level;
f82d02d9 8307 }
f82d02d9
YZ
8308 return 0;
8309}
8310
d397712b 8311static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8312 struct btrfs_root *root,
f82d02d9 8313 struct btrfs_path *path,
2c47e605 8314 struct walk_control *wc, int max_level)
20524f02 8315{
2c47e605 8316 int level = wc->level;
20524f02 8317 int ret;
9f3a7427 8318
2c47e605
YZ
8319 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8320 while (level < max_level && path->nodes[level]) {
8321 wc->level = level;
8322 if (path->slots[level] + 1 <
8323 btrfs_header_nritems(path->nodes[level])) {
8324 path->slots[level]++;
20524f02
CM
8325 return 0;
8326 } else {
2c47e605
YZ
8327 ret = walk_up_proc(trans, root, path, wc);
8328 if (ret > 0)
8329 return 0;
bd56b302 8330
2c47e605 8331 if (path->locks[level]) {
bd681513
CM
8332 btrfs_tree_unlock_rw(path->nodes[level],
8333 path->locks[level]);
2c47e605 8334 path->locks[level] = 0;
f82d02d9 8335 }
2c47e605
YZ
8336 free_extent_buffer(path->nodes[level]);
8337 path->nodes[level] = NULL;
8338 level++;
20524f02
CM
8339 }
8340 }
8341 return 1;
8342}
8343
9aca1d51 8344/*
2c47e605
YZ
8345 * drop a subvolume tree.
8346 *
8347 * this function traverses the tree freeing any blocks that only
8348 * referenced by the tree.
8349 *
8350 * when a shared tree block is found. this function decreases its
8351 * reference count by one. if update_ref is true, this function
8352 * also make sure backrefs for the shared block and all lower level
8353 * blocks are properly updated.
9d1a2a3a
DS
8354 *
8355 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8356 */
2c536799 8357int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8358 struct btrfs_block_rsv *block_rsv, int update_ref,
8359 int for_reloc)
20524f02 8360{
5caf2a00 8361 struct btrfs_path *path;
2c47e605
YZ
8362 struct btrfs_trans_handle *trans;
8363 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8364 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8365 struct walk_control *wc;
8366 struct btrfs_key key;
8367 int err = 0;
8368 int ret;
8369 int level;
d29a9f62 8370 bool root_dropped = false;
20524f02 8371
1152651a
MF
8372 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8373
5caf2a00 8374 path = btrfs_alloc_path();
cb1b69f4
TI
8375 if (!path) {
8376 err = -ENOMEM;
8377 goto out;
8378 }
20524f02 8379
2c47e605 8380 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8381 if (!wc) {
8382 btrfs_free_path(path);
cb1b69f4
TI
8383 err = -ENOMEM;
8384 goto out;
38a1a919 8385 }
2c47e605 8386
a22285a6 8387 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8388 if (IS_ERR(trans)) {
8389 err = PTR_ERR(trans);
8390 goto out_free;
8391 }
98d5dc13 8392
3fd0a558
YZ
8393 if (block_rsv)
8394 trans->block_rsv = block_rsv;
2c47e605 8395
9f3a7427 8396 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8397 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8398 path->nodes[level] = btrfs_lock_root_node(root);
8399 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8400 path->slots[level] = 0;
bd681513 8401 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8402 memset(&wc->update_progress, 0,
8403 sizeof(wc->update_progress));
9f3a7427 8404 } else {
9f3a7427 8405 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8406 memcpy(&wc->update_progress, &key,
8407 sizeof(wc->update_progress));
8408
6702ed49 8409 level = root_item->drop_level;
2c47e605 8410 BUG_ON(level == 0);
6702ed49 8411 path->lowest_level = level;
2c47e605
YZ
8412 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8413 path->lowest_level = 0;
8414 if (ret < 0) {
8415 err = ret;
79787eaa 8416 goto out_end_trans;
9f3a7427 8417 }
1c4850e2 8418 WARN_ON(ret > 0);
2c47e605 8419
7d9eb12c
CM
8420 /*
8421 * unlock our path, this is safe because only this
8422 * function is allowed to delete this snapshot
8423 */
5d4f98a2 8424 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8425
8426 level = btrfs_header_level(root->node);
8427 while (1) {
8428 btrfs_tree_lock(path->nodes[level]);
8429 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8430 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8431
8432 ret = btrfs_lookup_extent_info(trans, root,
8433 path->nodes[level]->start,
3173a18f 8434 level, 1, &wc->refs[level],
2c47e605 8435 &wc->flags[level]);
79787eaa
JM
8436 if (ret < 0) {
8437 err = ret;
8438 goto out_end_trans;
8439 }
2c47e605
YZ
8440 BUG_ON(wc->refs[level] == 0);
8441
8442 if (level == root_item->drop_level)
8443 break;
8444
8445 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8446 path->locks[level] = 0;
2c47e605
YZ
8447 WARN_ON(wc->refs[level] != 1);
8448 level--;
8449 }
9f3a7427 8450 }
2c47e605
YZ
8451
8452 wc->level = level;
8453 wc->shared_level = -1;
8454 wc->stage = DROP_REFERENCE;
8455 wc->update_ref = update_ref;
8456 wc->keep_locks = 0;
66d7e7f0 8457 wc->for_reloc = for_reloc;
1c4850e2 8458 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8459
d397712b 8460 while (1) {
9d1a2a3a 8461
2c47e605
YZ
8462 ret = walk_down_tree(trans, root, path, wc);
8463 if (ret < 0) {
8464 err = ret;
20524f02 8465 break;
2c47e605 8466 }
9aca1d51 8467
2c47e605
YZ
8468 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8469 if (ret < 0) {
8470 err = ret;
20524f02 8471 break;
2c47e605
YZ
8472 }
8473
8474 if (ret > 0) {
8475 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8476 break;
8477 }
2c47e605
YZ
8478
8479 if (wc->stage == DROP_REFERENCE) {
8480 level = wc->level;
8481 btrfs_node_key(path->nodes[level],
8482 &root_item->drop_progress,
8483 path->slots[level]);
8484 root_item->drop_level = level;
8485 }
8486
8487 BUG_ON(wc->level == 0);
3c8f2422
JB
8488 if (btrfs_should_end_transaction(trans, tree_root) ||
8489 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8490 ret = btrfs_update_root(trans, tree_root,
8491 &root->root_key,
8492 root_item);
79787eaa
JM
8493 if (ret) {
8494 btrfs_abort_transaction(trans, tree_root, ret);
8495 err = ret;
8496 goto out_end_trans;
8497 }
2c47e605 8498
1152651a
MF
8499 /*
8500 * Qgroup update accounting is run from
8501 * delayed ref handling. This usually works
8502 * out because delayed refs are normally the
8503 * only way qgroup updates are added. However,
8504 * we may have added updates during our tree
8505 * walk so run qgroups here to make sure we
8506 * don't lose any updates.
8507 */
8508 ret = btrfs_delayed_qgroup_accounting(trans,
8509 root->fs_info);
8510 if (ret)
8511 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8512 "running qgroup updates "
8513 "during snapshot delete. "
8514 "Quota is out of sync, "
8515 "rescan required.\n", ret);
8516
3fd0a558 8517 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8518 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8519 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8520 err = -EAGAIN;
8521 goto out_free;
8522 }
8523
a22285a6 8524 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8525 if (IS_ERR(trans)) {
8526 err = PTR_ERR(trans);
8527 goto out_free;
8528 }
3fd0a558
YZ
8529 if (block_rsv)
8530 trans->block_rsv = block_rsv;
c3e69d58 8531 }
20524f02 8532 }
b3b4aa74 8533 btrfs_release_path(path);
79787eaa
JM
8534 if (err)
8535 goto out_end_trans;
2c47e605
YZ
8536
8537 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8538 if (ret) {
8539 btrfs_abort_transaction(trans, tree_root, ret);
8540 goto out_end_trans;
8541 }
2c47e605 8542
76dda93c 8543 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8544 ret = btrfs_find_root(tree_root, &root->root_key, path,
8545 NULL, NULL);
79787eaa
JM
8546 if (ret < 0) {
8547 btrfs_abort_transaction(trans, tree_root, ret);
8548 err = ret;
8549 goto out_end_trans;
8550 } else if (ret > 0) {
84cd948c
JB
8551 /* if we fail to delete the orphan item this time
8552 * around, it'll get picked up the next time.
8553 *
8554 * The most common failure here is just -ENOENT.
8555 */
8556 btrfs_del_orphan_item(trans, tree_root,
8557 root->root_key.objectid);
76dda93c
YZ
8558 }
8559 }
8560
27cdeb70 8561 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8562 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8563 } else {
8564 free_extent_buffer(root->node);
8565 free_extent_buffer(root->commit_root);
b0feb9d9 8566 btrfs_put_fs_root(root);
76dda93c 8567 }
d29a9f62 8568 root_dropped = true;
79787eaa 8569out_end_trans:
1152651a
MF
8570 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8571 if (ret)
8572 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8573 "running qgroup updates "
8574 "during snapshot delete. "
8575 "Quota is out of sync, "
8576 "rescan required.\n", ret);
8577
3fd0a558 8578 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8579out_free:
2c47e605 8580 kfree(wc);
5caf2a00 8581 btrfs_free_path(path);
cb1b69f4 8582out:
d29a9f62
JB
8583 /*
8584 * So if we need to stop dropping the snapshot for whatever reason we
8585 * need to make sure to add it back to the dead root list so that we
8586 * keep trying to do the work later. This also cleans up roots if we
8587 * don't have it in the radix (like when we recover after a power fail
8588 * or unmount) so we don't leak memory.
8589 */
b37b39cd 8590 if (!for_reloc && root_dropped == false)
d29a9f62 8591 btrfs_add_dead_root(root);
90515e7f 8592 if (err && err != -EAGAIN)
cb1b69f4 8593 btrfs_std_error(root->fs_info, err);
2c536799 8594 return err;
20524f02 8595}
9078a3e1 8596
2c47e605
YZ
8597/*
8598 * drop subtree rooted at tree block 'node'.
8599 *
8600 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8601 * only used by relocation code
2c47e605 8602 */
f82d02d9
YZ
8603int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8604 struct btrfs_root *root,
8605 struct extent_buffer *node,
8606 struct extent_buffer *parent)
8607{
8608 struct btrfs_path *path;
2c47e605 8609 struct walk_control *wc;
f82d02d9
YZ
8610 int level;
8611 int parent_level;
8612 int ret = 0;
8613 int wret;
8614
2c47e605
YZ
8615 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8616
f82d02d9 8617 path = btrfs_alloc_path();
db5b493a
TI
8618 if (!path)
8619 return -ENOMEM;
f82d02d9 8620
2c47e605 8621 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8622 if (!wc) {
8623 btrfs_free_path(path);
8624 return -ENOMEM;
8625 }
2c47e605 8626
b9447ef8 8627 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8628 parent_level = btrfs_header_level(parent);
8629 extent_buffer_get(parent);
8630 path->nodes[parent_level] = parent;
8631 path->slots[parent_level] = btrfs_header_nritems(parent);
8632
b9447ef8 8633 btrfs_assert_tree_locked(node);
f82d02d9 8634 level = btrfs_header_level(node);
f82d02d9
YZ
8635 path->nodes[level] = node;
8636 path->slots[level] = 0;
bd681513 8637 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8638
8639 wc->refs[parent_level] = 1;
8640 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8641 wc->level = level;
8642 wc->shared_level = -1;
8643 wc->stage = DROP_REFERENCE;
8644 wc->update_ref = 0;
8645 wc->keep_locks = 1;
66d7e7f0 8646 wc->for_reloc = 1;
1c4850e2 8647 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8648
8649 while (1) {
2c47e605
YZ
8650 wret = walk_down_tree(trans, root, path, wc);
8651 if (wret < 0) {
f82d02d9 8652 ret = wret;
f82d02d9 8653 break;
2c47e605 8654 }
f82d02d9 8655
2c47e605 8656 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8657 if (wret < 0)
8658 ret = wret;
8659 if (wret != 0)
8660 break;
8661 }
8662
2c47e605 8663 kfree(wc);
f82d02d9
YZ
8664 btrfs_free_path(path);
8665 return ret;
8666}
8667
ec44a35c
CM
8668static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8669{
8670 u64 num_devices;
fc67c450 8671 u64 stripped;
e4d8ec0f 8672
fc67c450
ID
8673 /*
8674 * if restripe for this chunk_type is on pick target profile and
8675 * return, otherwise do the usual balance
8676 */
8677 stripped = get_restripe_target(root->fs_info, flags);
8678 if (stripped)
8679 return extended_to_chunk(stripped);
e4d8ec0f 8680
95669976 8681 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8682
fc67c450 8683 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8684 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8685 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8686
ec44a35c
CM
8687 if (num_devices == 1) {
8688 stripped |= BTRFS_BLOCK_GROUP_DUP;
8689 stripped = flags & ~stripped;
8690
8691 /* turn raid0 into single device chunks */
8692 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8693 return stripped;
8694
8695 /* turn mirroring into duplication */
8696 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8697 BTRFS_BLOCK_GROUP_RAID10))
8698 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8699 } else {
8700 /* they already had raid on here, just return */
ec44a35c
CM
8701 if (flags & stripped)
8702 return flags;
8703
8704 stripped |= BTRFS_BLOCK_GROUP_DUP;
8705 stripped = flags & ~stripped;
8706
8707 /* switch duplicated blocks with raid1 */
8708 if (flags & BTRFS_BLOCK_GROUP_DUP)
8709 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8710
e3176ca2 8711 /* this is drive concat, leave it alone */
ec44a35c 8712 }
e3176ca2 8713
ec44a35c
CM
8714 return flags;
8715}
8716
199c36ea 8717static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8718{
f0486c68
YZ
8719 struct btrfs_space_info *sinfo = cache->space_info;
8720 u64 num_bytes;
199c36ea 8721 u64 min_allocable_bytes;
f0486c68 8722 int ret = -ENOSPC;
0ef3e66b 8723
c286ac48 8724
199c36ea
MX
8725 /*
8726 * We need some metadata space and system metadata space for
8727 * allocating chunks in some corner cases until we force to set
8728 * it to be readonly.
8729 */
8730 if ((sinfo->flags &
8731 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8732 !force)
8733 min_allocable_bytes = 1 * 1024 * 1024;
8734 else
8735 min_allocable_bytes = 0;
8736
f0486c68
YZ
8737 spin_lock(&sinfo->lock);
8738 spin_lock(&cache->lock);
61cfea9b
W
8739
8740 if (cache->ro) {
8741 ret = 0;
8742 goto out;
8743 }
8744
f0486c68
YZ
8745 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8746 cache->bytes_super - btrfs_block_group_used(&cache->item);
8747
8748 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8749 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8750 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8751 sinfo->bytes_readonly += num_bytes;
f0486c68 8752 cache->ro = 1;
633c0aad 8753 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8754 ret = 0;
8755 }
61cfea9b 8756out:
f0486c68
YZ
8757 spin_unlock(&cache->lock);
8758 spin_unlock(&sinfo->lock);
8759 return ret;
8760}
7d9eb12c 8761
f0486c68
YZ
8762int btrfs_set_block_group_ro(struct btrfs_root *root,
8763 struct btrfs_block_group_cache *cache)
c286ac48 8764
f0486c68
YZ
8765{
8766 struct btrfs_trans_handle *trans;
8767 u64 alloc_flags;
8768 int ret;
7d9eb12c 8769
f0486c68 8770 BUG_ON(cache->ro);
0ef3e66b 8771
1bbc621e 8772again:
ff5714cc 8773 trans = btrfs_join_transaction(root);
79787eaa
JM
8774 if (IS_ERR(trans))
8775 return PTR_ERR(trans);
5d4f98a2 8776
1bbc621e
CM
8777 /*
8778 * we're not allowed to set block groups readonly after the dirty
8779 * block groups cache has started writing. If it already started,
8780 * back off and let this transaction commit
8781 */
8782 mutex_lock(&root->fs_info->ro_block_group_mutex);
8783 if (trans->transaction->dirty_bg_run) {
8784 u64 transid = trans->transid;
8785
8786 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8787 btrfs_end_transaction(trans, root);
8788
8789 ret = btrfs_wait_for_commit(root, transid);
8790 if (ret)
8791 return ret;
8792 goto again;
8793 }
8794
8795
199c36ea 8796 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8797 if (!ret)
8798 goto out;
8799 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8800 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8801 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8802 if (ret < 0)
8803 goto out;
199c36ea 8804 ret = set_block_group_ro(cache, 0);
f0486c68 8805out:
2f081088
SL
8806 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8807 alloc_flags = update_block_group_flags(root, cache->flags);
8808 check_system_chunk(trans, root, alloc_flags);
8809 }
1bbc621e 8810 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8811
f0486c68
YZ
8812 btrfs_end_transaction(trans, root);
8813 return ret;
8814}
5d4f98a2 8815
c87f08ca
CM
8816int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8817 struct btrfs_root *root, u64 type)
8818{
8819 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8820 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8821 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8822}
8823
6d07bcec
MX
8824/*
8825 * helper to account the unused space of all the readonly block group in the
633c0aad 8826 * space_info. takes mirrors into account.
6d07bcec 8827 */
633c0aad 8828u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8829{
8830 struct btrfs_block_group_cache *block_group;
8831 u64 free_bytes = 0;
8832 int factor;
8833
633c0aad
JB
8834 /* It's df, we don't care if it's racey */
8835 if (list_empty(&sinfo->ro_bgs))
8836 return 0;
8837
8838 spin_lock(&sinfo->lock);
8839 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8840 spin_lock(&block_group->lock);
8841
8842 if (!block_group->ro) {
8843 spin_unlock(&block_group->lock);
8844 continue;
8845 }
8846
8847 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8848 BTRFS_BLOCK_GROUP_RAID10 |
8849 BTRFS_BLOCK_GROUP_DUP))
8850 factor = 2;
8851 else
8852 factor = 1;
8853
8854 free_bytes += (block_group->key.offset -
8855 btrfs_block_group_used(&block_group->item)) *
8856 factor;
8857
8858 spin_unlock(&block_group->lock);
8859 }
6d07bcec
MX
8860 spin_unlock(&sinfo->lock);
8861
8862 return free_bytes;
8863}
8864
143bede5 8865void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8866 struct btrfs_block_group_cache *cache)
5d4f98a2 8867{
f0486c68
YZ
8868 struct btrfs_space_info *sinfo = cache->space_info;
8869 u64 num_bytes;
8870
8871 BUG_ON(!cache->ro);
8872
8873 spin_lock(&sinfo->lock);
8874 spin_lock(&cache->lock);
8875 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8876 cache->bytes_super - btrfs_block_group_used(&cache->item);
8877 sinfo->bytes_readonly -= num_bytes;
8878 cache->ro = 0;
633c0aad 8879 list_del_init(&cache->ro_list);
f0486c68
YZ
8880 spin_unlock(&cache->lock);
8881 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8882}
8883
ba1bf481
JB
8884/*
8885 * checks to see if its even possible to relocate this block group.
8886 *
8887 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8888 * ok to go ahead and try.
8889 */
8890int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8891{
ba1bf481
JB
8892 struct btrfs_block_group_cache *block_group;
8893 struct btrfs_space_info *space_info;
8894 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8895 struct btrfs_device *device;
6df9a95e 8896 struct btrfs_trans_handle *trans;
cdcb725c 8897 u64 min_free;
6719db6a
JB
8898 u64 dev_min = 1;
8899 u64 dev_nr = 0;
4a5e98f5 8900 u64 target;
cdcb725c 8901 int index;
ba1bf481
JB
8902 int full = 0;
8903 int ret = 0;
1a40e23b 8904
ba1bf481 8905 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8906
ba1bf481
JB
8907 /* odd, couldn't find the block group, leave it alone */
8908 if (!block_group)
8909 return -1;
1a40e23b 8910
cdcb725c 8911 min_free = btrfs_block_group_used(&block_group->item);
8912
ba1bf481 8913 /* no bytes used, we're good */
cdcb725c 8914 if (!min_free)
1a40e23b
ZY
8915 goto out;
8916
ba1bf481
JB
8917 space_info = block_group->space_info;
8918 spin_lock(&space_info->lock);
17d217fe 8919
ba1bf481 8920 full = space_info->full;
17d217fe 8921
ba1bf481
JB
8922 /*
8923 * if this is the last block group we have in this space, we can't
7ce618db
CM
8924 * relocate it unless we're able to allocate a new chunk below.
8925 *
8926 * Otherwise, we need to make sure we have room in the space to handle
8927 * all of the extents from this block group. If we can, we're good
ba1bf481 8928 */
7ce618db 8929 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 8930 (space_info->bytes_used + space_info->bytes_reserved +
8931 space_info->bytes_pinned + space_info->bytes_readonly +
8932 min_free < space_info->total_bytes)) {
ba1bf481
JB
8933 spin_unlock(&space_info->lock);
8934 goto out;
17d217fe 8935 }
ba1bf481 8936 spin_unlock(&space_info->lock);
ea8c2819 8937
ba1bf481
JB
8938 /*
8939 * ok we don't have enough space, but maybe we have free space on our
8940 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
8941 * alloc devices and guess if we have enough space. if this block
8942 * group is going to be restriped, run checks against the target
8943 * profile instead of the current one.
ba1bf481
JB
8944 */
8945 ret = -1;
ea8c2819 8946
cdcb725c 8947 /*
8948 * index:
8949 * 0: raid10
8950 * 1: raid1
8951 * 2: dup
8952 * 3: raid0
8953 * 4: single
8954 */
4a5e98f5
ID
8955 target = get_restripe_target(root->fs_info, block_group->flags);
8956 if (target) {
31e50229 8957 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
8958 } else {
8959 /*
8960 * this is just a balance, so if we were marked as full
8961 * we know there is no space for a new chunk
8962 */
8963 if (full)
8964 goto out;
8965
8966 index = get_block_group_index(block_group);
8967 }
8968
e6ec716f 8969 if (index == BTRFS_RAID_RAID10) {
cdcb725c 8970 dev_min = 4;
6719db6a
JB
8971 /* Divide by 2 */
8972 min_free >>= 1;
e6ec716f 8973 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 8974 dev_min = 2;
e6ec716f 8975 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
8976 /* Multiply by 2 */
8977 min_free <<= 1;
e6ec716f 8978 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 8979 dev_min = fs_devices->rw_devices;
47c5713f 8980 min_free = div64_u64(min_free, dev_min);
cdcb725c 8981 }
8982
6df9a95e
JB
8983 /* We need to do this so that we can look at pending chunks */
8984 trans = btrfs_join_transaction(root);
8985 if (IS_ERR(trans)) {
8986 ret = PTR_ERR(trans);
8987 goto out;
8988 }
8989
ba1bf481
JB
8990 mutex_lock(&root->fs_info->chunk_mutex);
8991 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 8992 u64 dev_offset;
56bec294 8993
ba1bf481
JB
8994 /*
8995 * check to make sure we can actually find a chunk with enough
8996 * space to fit our block group in.
8997 */
63a212ab
SB
8998 if (device->total_bytes > device->bytes_used + min_free &&
8999 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9000 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9001 &dev_offset, NULL);
ba1bf481 9002 if (!ret)
cdcb725c 9003 dev_nr++;
9004
9005 if (dev_nr >= dev_min)
73e48b27 9006 break;
cdcb725c 9007
ba1bf481 9008 ret = -1;
725c8463 9009 }
edbd8d4e 9010 }
ba1bf481 9011 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9012 btrfs_end_transaction(trans, root);
edbd8d4e 9013out:
ba1bf481 9014 btrfs_put_block_group(block_group);
edbd8d4e
CM
9015 return ret;
9016}
9017
b2950863
CH
9018static int find_first_block_group(struct btrfs_root *root,
9019 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9020{
925baedd 9021 int ret = 0;
0b86a832
CM
9022 struct btrfs_key found_key;
9023 struct extent_buffer *leaf;
9024 int slot;
edbd8d4e 9025
0b86a832
CM
9026 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9027 if (ret < 0)
925baedd
CM
9028 goto out;
9029
d397712b 9030 while (1) {
0b86a832 9031 slot = path->slots[0];
edbd8d4e 9032 leaf = path->nodes[0];
0b86a832
CM
9033 if (slot >= btrfs_header_nritems(leaf)) {
9034 ret = btrfs_next_leaf(root, path);
9035 if (ret == 0)
9036 continue;
9037 if (ret < 0)
925baedd 9038 goto out;
0b86a832 9039 break;
edbd8d4e 9040 }
0b86a832 9041 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9042
0b86a832 9043 if (found_key.objectid >= key->objectid &&
925baedd
CM
9044 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9045 ret = 0;
9046 goto out;
9047 }
0b86a832 9048 path->slots[0]++;
edbd8d4e 9049 }
925baedd 9050out:
0b86a832 9051 return ret;
edbd8d4e
CM
9052}
9053
0af3d00b
JB
9054void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9055{
9056 struct btrfs_block_group_cache *block_group;
9057 u64 last = 0;
9058
9059 while (1) {
9060 struct inode *inode;
9061
9062 block_group = btrfs_lookup_first_block_group(info, last);
9063 while (block_group) {
9064 spin_lock(&block_group->lock);
9065 if (block_group->iref)
9066 break;
9067 spin_unlock(&block_group->lock);
9068 block_group = next_block_group(info->tree_root,
9069 block_group);
9070 }
9071 if (!block_group) {
9072 if (last == 0)
9073 break;
9074 last = 0;
9075 continue;
9076 }
9077
9078 inode = block_group->inode;
9079 block_group->iref = 0;
9080 block_group->inode = NULL;
9081 spin_unlock(&block_group->lock);
9082 iput(inode);
9083 last = block_group->key.objectid + block_group->key.offset;
9084 btrfs_put_block_group(block_group);
9085 }
9086}
9087
1a40e23b
ZY
9088int btrfs_free_block_groups(struct btrfs_fs_info *info)
9089{
9090 struct btrfs_block_group_cache *block_group;
4184ea7f 9091 struct btrfs_space_info *space_info;
11833d66 9092 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9093 struct rb_node *n;
9094
9e351cc8 9095 down_write(&info->commit_root_sem);
11833d66
YZ
9096 while (!list_empty(&info->caching_block_groups)) {
9097 caching_ctl = list_entry(info->caching_block_groups.next,
9098 struct btrfs_caching_control, list);
9099 list_del(&caching_ctl->list);
9100 put_caching_control(caching_ctl);
9101 }
9e351cc8 9102 up_write(&info->commit_root_sem);
11833d66 9103
47ab2a6c
JB
9104 spin_lock(&info->unused_bgs_lock);
9105 while (!list_empty(&info->unused_bgs)) {
9106 block_group = list_first_entry(&info->unused_bgs,
9107 struct btrfs_block_group_cache,
9108 bg_list);
9109 list_del_init(&block_group->bg_list);
9110 btrfs_put_block_group(block_group);
9111 }
9112 spin_unlock(&info->unused_bgs_lock);
9113
1a40e23b
ZY
9114 spin_lock(&info->block_group_cache_lock);
9115 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9116 block_group = rb_entry(n, struct btrfs_block_group_cache,
9117 cache_node);
1a40e23b
ZY
9118 rb_erase(&block_group->cache_node,
9119 &info->block_group_cache_tree);
01eacb27 9120 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9121 spin_unlock(&info->block_group_cache_lock);
9122
80eb234a 9123 down_write(&block_group->space_info->groups_sem);
1a40e23b 9124 list_del(&block_group->list);
80eb234a 9125 up_write(&block_group->space_info->groups_sem);
d2fb3437 9126
817d52f8 9127 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9128 wait_block_group_cache_done(block_group);
817d52f8 9129
3c14874a
JB
9130 /*
9131 * We haven't cached this block group, which means we could
9132 * possibly have excluded extents on this block group.
9133 */
36cce922
JB
9134 if (block_group->cached == BTRFS_CACHE_NO ||
9135 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9136 free_excluded_extents(info->extent_root, block_group);
9137
817d52f8 9138 btrfs_remove_free_space_cache(block_group);
11dfe35a 9139 btrfs_put_block_group(block_group);
d899e052
YZ
9140
9141 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9142 }
9143 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9144
9145 /* now that all the block groups are freed, go through and
9146 * free all the space_info structs. This is only called during
9147 * the final stages of unmount, and so we know nobody is
9148 * using them. We call synchronize_rcu() once before we start,
9149 * just to be on the safe side.
9150 */
9151 synchronize_rcu();
9152
8929ecfa
YZ
9153 release_global_block_rsv(info);
9154
67871254 9155 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9156 int i;
9157
4184ea7f
CM
9158 space_info = list_entry(info->space_info.next,
9159 struct btrfs_space_info,
9160 list);
b069e0c3 9161 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9162 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9163 space_info->bytes_reserved > 0 ||
fae7f21c 9164 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9165 dump_space_info(space_info, 0, 0);
9166 }
f0486c68 9167 }
4184ea7f 9168 list_del(&space_info->list);
6ab0a202
JM
9169 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9170 struct kobject *kobj;
c1895442
JM
9171 kobj = space_info->block_group_kobjs[i];
9172 space_info->block_group_kobjs[i] = NULL;
9173 if (kobj) {
6ab0a202
JM
9174 kobject_del(kobj);
9175 kobject_put(kobj);
9176 }
9177 }
9178 kobject_del(&space_info->kobj);
9179 kobject_put(&space_info->kobj);
4184ea7f 9180 }
1a40e23b
ZY
9181 return 0;
9182}
9183
b742bb82
YZ
9184static void __link_block_group(struct btrfs_space_info *space_info,
9185 struct btrfs_block_group_cache *cache)
9186{
9187 int index = get_block_group_index(cache);
ed55b6ac 9188 bool first = false;
b742bb82
YZ
9189
9190 down_write(&space_info->groups_sem);
ed55b6ac
JM
9191 if (list_empty(&space_info->block_groups[index]))
9192 first = true;
9193 list_add_tail(&cache->list, &space_info->block_groups[index]);
9194 up_write(&space_info->groups_sem);
9195
9196 if (first) {
c1895442 9197 struct raid_kobject *rkobj;
6ab0a202
JM
9198 int ret;
9199
c1895442
JM
9200 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9201 if (!rkobj)
9202 goto out_err;
9203 rkobj->raid_type = index;
9204 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9205 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9206 "%s", get_raid_name(index));
6ab0a202 9207 if (ret) {
c1895442
JM
9208 kobject_put(&rkobj->kobj);
9209 goto out_err;
6ab0a202 9210 }
c1895442 9211 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9212 }
c1895442
JM
9213
9214 return;
9215out_err:
9216 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9217}
9218
920e4a58
MX
9219static struct btrfs_block_group_cache *
9220btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9221{
9222 struct btrfs_block_group_cache *cache;
9223
9224 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9225 if (!cache)
9226 return NULL;
9227
9228 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9229 GFP_NOFS);
9230 if (!cache->free_space_ctl) {
9231 kfree(cache);
9232 return NULL;
9233 }
9234
9235 cache->key.objectid = start;
9236 cache->key.offset = size;
9237 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9238
9239 cache->sectorsize = root->sectorsize;
9240 cache->fs_info = root->fs_info;
9241 cache->full_stripe_len = btrfs_full_stripe_len(root,
9242 &root->fs_info->mapping_tree,
9243 start);
9244 atomic_set(&cache->count, 1);
9245 spin_lock_init(&cache->lock);
e570fd27 9246 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9247 INIT_LIST_HEAD(&cache->list);
9248 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9249 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9250 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9251 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9252 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9253 btrfs_init_free_space_ctl(cache);
04216820 9254 atomic_set(&cache->trimming, 0);
920e4a58
MX
9255
9256 return cache;
9257}
9258
9078a3e1
CM
9259int btrfs_read_block_groups(struct btrfs_root *root)
9260{
9261 struct btrfs_path *path;
9262 int ret;
9078a3e1 9263 struct btrfs_block_group_cache *cache;
be744175 9264 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9265 struct btrfs_space_info *space_info;
9078a3e1
CM
9266 struct btrfs_key key;
9267 struct btrfs_key found_key;
5f39d397 9268 struct extent_buffer *leaf;
0af3d00b
JB
9269 int need_clear = 0;
9270 u64 cache_gen;
96b5179d 9271
be744175 9272 root = info->extent_root;
9078a3e1 9273 key.objectid = 0;
0b86a832 9274 key.offset = 0;
962a298f 9275 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9276 path = btrfs_alloc_path();
9277 if (!path)
9278 return -ENOMEM;
026fd317 9279 path->reada = 1;
9078a3e1 9280
6c41761f 9281 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9282 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9283 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9284 need_clear = 1;
88c2ba3b
JB
9285 if (btrfs_test_opt(root, CLEAR_CACHE))
9286 need_clear = 1;
0af3d00b 9287
d397712b 9288 while (1) {
0b86a832 9289 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9290 if (ret > 0)
9291 break;
0b86a832
CM
9292 if (ret != 0)
9293 goto error;
920e4a58 9294
5f39d397
CM
9295 leaf = path->nodes[0];
9296 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9297
9298 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9299 found_key.offset);
9078a3e1 9300 if (!cache) {
0b86a832 9301 ret = -ENOMEM;
f0486c68 9302 goto error;
9078a3e1 9303 }
96303081 9304
cf7c1ef6
LB
9305 if (need_clear) {
9306 /*
9307 * When we mount with old space cache, we need to
9308 * set BTRFS_DC_CLEAR and set dirty flag.
9309 *
9310 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9311 * truncate the old free space cache inode and
9312 * setup a new one.
9313 * b) Setting 'dirty flag' makes sure that we flush
9314 * the new space cache info onto disk.
9315 */
cf7c1ef6 9316 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9317 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9318 }
0af3d00b 9319
5f39d397
CM
9320 read_extent_buffer(leaf, &cache->item,
9321 btrfs_item_ptr_offset(leaf, path->slots[0]),
9322 sizeof(cache->item));
920e4a58 9323 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9324
9078a3e1 9325 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9326 btrfs_release_path(path);
34d52cb6 9327
3c14874a
JB
9328 /*
9329 * We need to exclude the super stripes now so that the space
9330 * info has super bytes accounted for, otherwise we'll think
9331 * we have more space than we actually do.
9332 */
835d974f
JB
9333 ret = exclude_super_stripes(root, cache);
9334 if (ret) {
9335 /*
9336 * We may have excluded something, so call this just in
9337 * case.
9338 */
9339 free_excluded_extents(root, cache);
920e4a58 9340 btrfs_put_block_group(cache);
835d974f
JB
9341 goto error;
9342 }
3c14874a 9343
817d52f8
JB
9344 /*
9345 * check for two cases, either we are full, and therefore
9346 * don't need to bother with the caching work since we won't
9347 * find any space, or we are empty, and we can just add all
9348 * the space in and be done with it. This saves us _alot_ of
9349 * time, particularly in the full case.
9350 */
9351 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9352 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9353 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9354 free_excluded_extents(root, cache);
817d52f8 9355 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9356 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9357 cache->cached = BTRFS_CACHE_FINISHED;
9358 add_new_free_space(cache, root->fs_info,
9359 found_key.objectid,
9360 found_key.objectid +
9361 found_key.offset);
11833d66 9362 free_excluded_extents(root, cache);
817d52f8 9363 }
96b5179d 9364
8c579fe7
JB
9365 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9366 if (ret) {
9367 btrfs_remove_free_space_cache(cache);
9368 btrfs_put_block_group(cache);
9369 goto error;
9370 }
9371
6324fbf3
CM
9372 ret = update_space_info(info, cache->flags, found_key.offset,
9373 btrfs_block_group_used(&cache->item),
9374 &space_info);
8c579fe7
JB
9375 if (ret) {
9376 btrfs_remove_free_space_cache(cache);
9377 spin_lock(&info->block_group_cache_lock);
9378 rb_erase(&cache->cache_node,
9379 &info->block_group_cache_tree);
01eacb27 9380 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9381 spin_unlock(&info->block_group_cache_lock);
9382 btrfs_put_block_group(cache);
9383 goto error;
9384 }
9385
6324fbf3 9386 cache->space_info = space_info;
1b2da372 9387 spin_lock(&cache->space_info->lock);
f0486c68 9388 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9389 spin_unlock(&cache->space_info->lock);
9390
b742bb82 9391 __link_block_group(space_info, cache);
0f9dd46c 9392
75ccf47d 9393 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9394 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9395 set_block_group_ro(cache, 1);
47ab2a6c
JB
9396 } else if (btrfs_block_group_used(&cache->item) == 0) {
9397 spin_lock(&info->unused_bgs_lock);
9398 /* Should always be true but just in case. */
9399 if (list_empty(&cache->bg_list)) {
9400 btrfs_get_block_group(cache);
9401 list_add_tail(&cache->bg_list,
9402 &info->unused_bgs);
9403 }
9404 spin_unlock(&info->unused_bgs_lock);
9405 }
9078a3e1 9406 }
b742bb82
YZ
9407
9408 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9409 if (!(get_alloc_profile(root, space_info->flags) &
9410 (BTRFS_BLOCK_GROUP_RAID10 |
9411 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9412 BTRFS_BLOCK_GROUP_RAID5 |
9413 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9414 BTRFS_BLOCK_GROUP_DUP)))
9415 continue;
9416 /*
9417 * avoid allocating from un-mirrored block group if there are
9418 * mirrored block groups.
9419 */
1095cc0d 9420 list_for_each_entry(cache,
9421 &space_info->block_groups[BTRFS_RAID_RAID0],
9422 list)
199c36ea 9423 set_block_group_ro(cache, 1);
1095cc0d 9424 list_for_each_entry(cache,
9425 &space_info->block_groups[BTRFS_RAID_SINGLE],
9426 list)
199c36ea 9427 set_block_group_ro(cache, 1);
9078a3e1 9428 }
f0486c68
YZ
9429
9430 init_global_block_rsv(info);
0b86a832
CM
9431 ret = 0;
9432error:
9078a3e1 9433 btrfs_free_path(path);
0b86a832 9434 return ret;
9078a3e1 9435}
6324fbf3 9436
ea658bad
JB
9437void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9438 struct btrfs_root *root)
9439{
9440 struct btrfs_block_group_cache *block_group, *tmp;
9441 struct btrfs_root *extent_root = root->fs_info->extent_root;
9442 struct btrfs_block_group_item item;
9443 struct btrfs_key key;
9444 int ret = 0;
9445
47ab2a6c 9446 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9447 if (ret)
c92f6be3 9448 goto next;
ea658bad
JB
9449
9450 spin_lock(&block_group->lock);
9451 memcpy(&item, &block_group->item, sizeof(item));
9452 memcpy(&key, &block_group->key, sizeof(key));
9453 spin_unlock(&block_group->lock);
9454
9455 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9456 sizeof(item));
9457 if (ret)
9458 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9459 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9460 key.objectid, key.offset);
9461 if (ret)
9462 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9463next:
9464 list_del_init(&block_group->bg_list);
ea658bad
JB
9465 }
9466}
9467
6324fbf3
CM
9468int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9469 struct btrfs_root *root, u64 bytes_used,
e17cade2 9470 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9471 u64 size)
9472{
9473 int ret;
6324fbf3
CM
9474 struct btrfs_root *extent_root;
9475 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9476
9477 extent_root = root->fs_info->extent_root;
6324fbf3 9478
995946dd 9479 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9480
920e4a58 9481 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9482 if (!cache)
9483 return -ENOMEM;
34d52cb6 9484
6324fbf3 9485 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9486 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9487 btrfs_set_block_group_flags(&cache->item, type);
9488
920e4a58 9489 cache->flags = type;
11833d66 9490 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9491 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9492 ret = exclude_super_stripes(root, cache);
9493 if (ret) {
9494 /*
9495 * We may have excluded something, so call this just in
9496 * case.
9497 */
9498 free_excluded_extents(root, cache);
920e4a58 9499 btrfs_put_block_group(cache);
835d974f
JB
9500 return ret;
9501 }
96303081 9502
817d52f8
JB
9503 add_new_free_space(cache, root->fs_info, chunk_offset,
9504 chunk_offset + size);
9505
11833d66
YZ
9506 free_excluded_extents(root, cache);
9507
8c579fe7
JB
9508 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9509 if (ret) {
9510 btrfs_remove_free_space_cache(cache);
9511 btrfs_put_block_group(cache);
9512 return ret;
9513 }
9514
6324fbf3
CM
9515 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9516 &cache->space_info);
8c579fe7
JB
9517 if (ret) {
9518 btrfs_remove_free_space_cache(cache);
9519 spin_lock(&root->fs_info->block_group_cache_lock);
9520 rb_erase(&cache->cache_node,
9521 &root->fs_info->block_group_cache_tree);
01eacb27 9522 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9523 spin_unlock(&root->fs_info->block_group_cache_lock);
9524 btrfs_put_block_group(cache);
9525 return ret;
9526 }
c7c144db 9527 update_global_block_rsv(root->fs_info);
1b2da372
JB
9528
9529 spin_lock(&cache->space_info->lock);
f0486c68 9530 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9531 spin_unlock(&cache->space_info->lock);
9532
b742bb82 9533 __link_block_group(cache->space_info, cache);
6324fbf3 9534
47ab2a6c 9535 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9536
d18a2c44 9537 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9538
6324fbf3
CM
9539 return 0;
9540}
1a40e23b 9541
10ea00f5
ID
9542static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9543{
899c81ea
ID
9544 u64 extra_flags = chunk_to_extended(flags) &
9545 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9546
de98ced9 9547 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9548 if (flags & BTRFS_BLOCK_GROUP_DATA)
9549 fs_info->avail_data_alloc_bits &= ~extra_flags;
9550 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9551 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9552 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9553 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9554 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9555}
9556
1a40e23b 9557int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9558 struct btrfs_root *root, u64 group_start,
9559 struct extent_map *em)
1a40e23b
ZY
9560{
9561 struct btrfs_path *path;
9562 struct btrfs_block_group_cache *block_group;
44fb5511 9563 struct btrfs_free_cluster *cluster;
0af3d00b 9564 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9565 struct btrfs_key key;
0af3d00b 9566 struct inode *inode;
c1895442 9567 struct kobject *kobj = NULL;
1a40e23b 9568 int ret;
10ea00f5 9569 int index;
89a55897 9570 int factor;
4f69cb98 9571 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9572 bool remove_em;
1a40e23b 9573
1a40e23b
ZY
9574 root = root->fs_info->extent_root;
9575
9576 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9577 BUG_ON(!block_group);
c146afad 9578 BUG_ON(!block_group->ro);
1a40e23b 9579
9f7c43c9 9580 /*
9581 * Free the reserved super bytes from this block group before
9582 * remove it.
9583 */
9584 free_excluded_extents(root, block_group);
9585
1a40e23b 9586 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9587 index = get_block_group_index(block_group);
89a55897
JB
9588 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9589 BTRFS_BLOCK_GROUP_RAID1 |
9590 BTRFS_BLOCK_GROUP_RAID10))
9591 factor = 2;
9592 else
9593 factor = 1;
1a40e23b 9594
44fb5511
CM
9595 /* make sure this block group isn't part of an allocation cluster */
9596 cluster = &root->fs_info->data_alloc_cluster;
9597 spin_lock(&cluster->refill_lock);
9598 btrfs_return_cluster_to_free_space(block_group, cluster);
9599 spin_unlock(&cluster->refill_lock);
9600
9601 /*
9602 * make sure this block group isn't part of a metadata
9603 * allocation cluster
9604 */
9605 cluster = &root->fs_info->meta_alloc_cluster;
9606 spin_lock(&cluster->refill_lock);
9607 btrfs_return_cluster_to_free_space(block_group, cluster);
9608 spin_unlock(&cluster->refill_lock);
9609
1a40e23b 9610 path = btrfs_alloc_path();
d8926bb3
MF
9611 if (!path) {
9612 ret = -ENOMEM;
9613 goto out;
9614 }
1a40e23b 9615
1bbc621e
CM
9616 /*
9617 * get the inode first so any iput calls done for the io_list
9618 * aren't the final iput (no unlinks allowed now)
9619 */
10b2f34d 9620 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9621
9622 mutex_lock(&trans->transaction->cache_write_mutex);
9623 /*
9624 * make sure our free spache cache IO is done before remove the
9625 * free space inode
9626 */
9627 spin_lock(&trans->transaction->dirty_bgs_lock);
9628 if (!list_empty(&block_group->io_list)) {
9629 list_del_init(&block_group->io_list);
9630
9631 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9632
9633 spin_unlock(&trans->transaction->dirty_bgs_lock);
9634 btrfs_wait_cache_io(root, trans, block_group,
9635 &block_group->io_ctl, path,
9636 block_group->key.objectid);
9637 btrfs_put_block_group(block_group);
9638 spin_lock(&trans->transaction->dirty_bgs_lock);
9639 }
9640
9641 if (!list_empty(&block_group->dirty_list)) {
9642 list_del_init(&block_group->dirty_list);
9643 btrfs_put_block_group(block_group);
9644 }
9645 spin_unlock(&trans->transaction->dirty_bgs_lock);
9646 mutex_unlock(&trans->transaction->cache_write_mutex);
9647
0af3d00b 9648 if (!IS_ERR(inode)) {
b532402e 9649 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9650 if (ret) {
9651 btrfs_add_delayed_iput(inode);
9652 goto out;
9653 }
0af3d00b
JB
9654 clear_nlink(inode);
9655 /* One for the block groups ref */
9656 spin_lock(&block_group->lock);
9657 if (block_group->iref) {
9658 block_group->iref = 0;
9659 block_group->inode = NULL;
9660 spin_unlock(&block_group->lock);
9661 iput(inode);
9662 } else {
9663 spin_unlock(&block_group->lock);
9664 }
9665 /* One for our lookup ref */
455757c3 9666 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9667 }
9668
9669 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9670 key.offset = block_group->key.objectid;
9671 key.type = 0;
9672
9673 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9674 if (ret < 0)
9675 goto out;
9676 if (ret > 0)
b3b4aa74 9677 btrfs_release_path(path);
0af3d00b
JB
9678 if (ret == 0) {
9679 ret = btrfs_del_item(trans, tree_root, path);
9680 if (ret)
9681 goto out;
b3b4aa74 9682 btrfs_release_path(path);
0af3d00b
JB
9683 }
9684
3dfdb934 9685 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9686 rb_erase(&block_group->cache_node,
9687 &root->fs_info->block_group_cache_tree);
292cbd51 9688 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9689
9690 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9691 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9692 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9693
80eb234a 9694 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9695 /*
9696 * we must use list_del_init so people can check to see if they
9697 * are still on the list after taking the semaphore
9698 */
9699 list_del_init(&block_group->list);
6ab0a202 9700 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9701 kobj = block_group->space_info->block_group_kobjs[index];
9702 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9703 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9704 }
80eb234a 9705 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9706 if (kobj) {
9707 kobject_del(kobj);
9708 kobject_put(kobj);
9709 }
1a40e23b 9710
4f69cb98
FM
9711 if (block_group->has_caching_ctl)
9712 caching_ctl = get_caching_control(block_group);
817d52f8 9713 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9714 wait_block_group_cache_done(block_group);
4f69cb98
FM
9715 if (block_group->has_caching_ctl) {
9716 down_write(&root->fs_info->commit_root_sem);
9717 if (!caching_ctl) {
9718 struct btrfs_caching_control *ctl;
9719
9720 list_for_each_entry(ctl,
9721 &root->fs_info->caching_block_groups, list)
9722 if (ctl->block_group == block_group) {
9723 caching_ctl = ctl;
9724 atomic_inc(&caching_ctl->count);
9725 break;
9726 }
9727 }
9728 if (caching_ctl)
9729 list_del_init(&caching_ctl->list);
9730 up_write(&root->fs_info->commit_root_sem);
9731 if (caching_ctl) {
9732 /* Once for the caching bgs list and once for us. */
9733 put_caching_control(caching_ctl);
9734 put_caching_control(caching_ctl);
9735 }
9736 }
817d52f8 9737
ce93ec54
JB
9738 spin_lock(&trans->transaction->dirty_bgs_lock);
9739 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9740 WARN_ON(1);
9741 }
9742 if (!list_empty(&block_group->io_list)) {
9743 WARN_ON(1);
ce93ec54
JB
9744 }
9745 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9746 btrfs_remove_free_space_cache(block_group);
9747
c146afad 9748 spin_lock(&block_group->space_info->lock);
75c68e9f 9749 list_del_init(&block_group->ro_list);
18d018ad
ZL
9750
9751 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9752 WARN_ON(block_group->space_info->total_bytes
9753 < block_group->key.offset);
9754 WARN_ON(block_group->space_info->bytes_readonly
9755 < block_group->key.offset);
9756 WARN_ON(block_group->space_info->disk_total
9757 < block_group->key.offset * factor);
9758 }
c146afad
YZ
9759 block_group->space_info->total_bytes -= block_group->key.offset;
9760 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9761 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9762
c146afad 9763 spin_unlock(&block_group->space_info->lock);
283bb197 9764
0af3d00b
JB
9765 memcpy(&key, &block_group->key, sizeof(key));
9766
04216820 9767 lock_chunks(root);
495e64f4
FM
9768 if (!list_empty(&em->list)) {
9769 /* We're in the transaction->pending_chunks list. */
9770 free_extent_map(em);
9771 }
04216820
FM
9772 spin_lock(&block_group->lock);
9773 block_group->removed = 1;
9774 /*
9775 * At this point trimming can't start on this block group, because we
9776 * removed the block group from the tree fs_info->block_group_cache_tree
9777 * so no one can't find it anymore and even if someone already got this
9778 * block group before we removed it from the rbtree, they have already
9779 * incremented block_group->trimming - if they didn't, they won't find
9780 * any free space entries because we already removed them all when we
9781 * called btrfs_remove_free_space_cache().
9782 *
9783 * And we must not remove the extent map from the fs_info->mapping_tree
9784 * to prevent the same logical address range and physical device space
9785 * ranges from being reused for a new block group. This is because our
9786 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9787 * completely transactionless, so while it is trimming a range the
9788 * currently running transaction might finish and a new one start,
9789 * allowing for new block groups to be created that can reuse the same
9790 * physical device locations unless we take this special care.
9791 */
9792 remove_em = (atomic_read(&block_group->trimming) == 0);
9793 /*
9794 * Make sure a trimmer task always sees the em in the pinned_chunks list
9795 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9796 * before checking block_group->removed).
9797 */
9798 if (!remove_em) {
9799 /*
9800 * Our em might be in trans->transaction->pending_chunks which
9801 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9802 * and so is the fs_info->pinned_chunks list.
9803 *
9804 * So at this point we must be holding the chunk_mutex to avoid
9805 * any races with chunk allocation (more specifically at
9806 * volumes.c:contains_pending_extent()), to ensure it always
9807 * sees the em, either in the pending_chunks list or in the
9808 * pinned_chunks list.
9809 */
9810 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9811 }
9812 spin_unlock(&block_group->lock);
04216820
FM
9813
9814 if (remove_em) {
9815 struct extent_map_tree *em_tree;
9816
9817 em_tree = &root->fs_info->mapping_tree.map_tree;
9818 write_lock(&em_tree->lock);
8dbcd10f
FM
9819 /*
9820 * The em might be in the pending_chunks list, so make sure the
9821 * chunk mutex is locked, since remove_extent_mapping() will
9822 * delete us from that list.
9823 */
04216820
FM
9824 remove_extent_mapping(em_tree, em);
9825 write_unlock(&em_tree->lock);
9826 /* once for the tree */
9827 free_extent_map(em);
9828 }
9829
8dbcd10f
FM
9830 unlock_chunks(root);
9831
fa9c0d79
CM
9832 btrfs_put_block_group(block_group);
9833 btrfs_put_block_group(block_group);
1a40e23b
ZY
9834
9835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9836 if (ret > 0)
9837 ret = -EIO;
9838 if (ret < 0)
9839 goto out;
9840
9841 ret = btrfs_del_item(trans, root, path);
9842out:
9843 btrfs_free_path(path);
9844 return ret;
9845}
acce952b 9846
47ab2a6c
JB
9847/*
9848 * Process the unused_bgs list and remove any that don't have any allocated
9849 * space inside of them.
9850 */
9851void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9852{
9853 struct btrfs_block_group_cache *block_group;
9854 struct btrfs_space_info *space_info;
9855 struct btrfs_root *root = fs_info->extent_root;
9856 struct btrfs_trans_handle *trans;
9857 int ret = 0;
9858
9859 if (!fs_info->open)
9860 return;
9861
9862 spin_lock(&fs_info->unused_bgs_lock);
9863 while (!list_empty(&fs_info->unused_bgs)) {
9864 u64 start, end;
9865
9866 block_group = list_first_entry(&fs_info->unused_bgs,
9867 struct btrfs_block_group_cache,
9868 bg_list);
9869 space_info = block_group->space_info;
9870 list_del_init(&block_group->bg_list);
9871 if (ret || btrfs_mixed_space_info(space_info)) {
9872 btrfs_put_block_group(block_group);
9873 continue;
9874 }
9875 spin_unlock(&fs_info->unused_bgs_lock);
9876
9877 /* Don't want to race with allocators so take the groups_sem */
9878 down_write(&space_info->groups_sem);
9879 spin_lock(&block_group->lock);
9880 if (block_group->reserved ||
9881 btrfs_block_group_used(&block_group->item) ||
9882 block_group->ro) {
9883 /*
9884 * We want to bail if we made new allocations or have
9885 * outstanding allocations in this block group. We do
9886 * the ro check in case balance is currently acting on
9887 * this block group.
9888 */
9889 spin_unlock(&block_group->lock);
9890 up_write(&space_info->groups_sem);
9891 goto next;
9892 }
9893 spin_unlock(&block_group->lock);
9894
9895 /* We don't want to force the issue, only flip if it's ok. */
9896 ret = set_block_group_ro(block_group, 0);
9897 up_write(&space_info->groups_sem);
9898 if (ret < 0) {
9899 ret = 0;
9900 goto next;
9901 }
9902
9903 /*
9904 * Want to do this before we do anything else so we can recover
9905 * properly if we fail to join the transaction.
9906 */
3d84be79
FL
9907 /* 1 for btrfs_orphan_reserve_metadata() */
9908 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
9909 if (IS_ERR(trans)) {
9910 btrfs_set_block_group_rw(root, block_group);
9911 ret = PTR_ERR(trans);
9912 goto next;
9913 }
9914
9915 /*
9916 * We could have pending pinned extents for this block group,
9917 * just delete them, we don't care about them anymore.
9918 */
9919 start = block_group->key.objectid;
9920 end = start + block_group->key.offset - 1;
d4b450cd
FM
9921 /*
9922 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9923 * btrfs_finish_extent_commit(). If we are at transaction N,
9924 * another task might be running finish_extent_commit() for the
9925 * previous transaction N - 1, and have seen a range belonging
9926 * to the block group in freed_extents[] before we were able to
9927 * clear the whole block group range from freed_extents[]. This
9928 * means that task can lookup for the block group after we
9929 * unpinned it from freed_extents[] and removed it, leading to
9930 * a BUG_ON() at btrfs_unpin_extent_range().
9931 */
9932 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 9933 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 9934 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9935 if (ret) {
d4b450cd 9936 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9937 btrfs_set_block_group_rw(root, block_group);
9938 goto end_trans;
9939 }
9940 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 9941 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9942 if (ret) {
d4b450cd 9943 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9944 btrfs_set_block_group_rw(root, block_group);
9945 goto end_trans;
9946 }
d4b450cd 9947 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
9948
9949 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
9950 spin_lock(&space_info->lock);
9951 spin_lock(&block_group->lock);
9952
9953 space_info->bytes_pinned -= block_group->pinned;
9954 space_info->bytes_readonly += block_group->pinned;
9955 percpu_counter_add(&space_info->total_bytes_pinned,
9956 -block_group->pinned);
47ab2a6c
JB
9957 block_group->pinned = 0;
9958
c30666d4
ZL
9959 spin_unlock(&block_group->lock);
9960 spin_unlock(&space_info->lock);
9961
47ab2a6c
JB
9962 /*
9963 * Btrfs_remove_chunk will abort the transaction if things go
9964 * horribly wrong.
9965 */
9966 ret = btrfs_remove_chunk(trans, root,
9967 block_group->key.objectid);
758eb51e 9968end_trans:
47ab2a6c
JB
9969 btrfs_end_transaction(trans, root);
9970next:
9971 btrfs_put_block_group(block_group);
9972 spin_lock(&fs_info->unused_bgs_lock);
9973 }
9974 spin_unlock(&fs_info->unused_bgs_lock);
9975}
9976
c59021f8 9977int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9978{
9979 struct btrfs_space_info *space_info;
1aba86d6 9980 struct btrfs_super_block *disk_super;
9981 u64 features;
9982 u64 flags;
9983 int mixed = 0;
c59021f8 9984 int ret;
9985
6c41761f 9986 disk_super = fs_info->super_copy;
1aba86d6 9987 if (!btrfs_super_root(disk_super))
9988 return 1;
c59021f8 9989
1aba86d6 9990 features = btrfs_super_incompat_flags(disk_super);
9991 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9992 mixed = 1;
c59021f8 9993
1aba86d6 9994 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9995 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 9996 if (ret)
1aba86d6 9997 goto out;
c59021f8 9998
1aba86d6 9999 if (mixed) {
10000 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10001 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10002 } else {
10003 flags = BTRFS_BLOCK_GROUP_METADATA;
10004 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10005 if (ret)
10006 goto out;
10007
10008 flags = BTRFS_BLOCK_GROUP_DATA;
10009 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10010 }
10011out:
c59021f8 10012 return ret;
10013}
10014
acce952b 10015int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10016{
678886bd 10017 return unpin_extent_range(root, start, end, false);
acce952b 10018}
10019
f7039b1d
LD
10020int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10021{
10022 struct btrfs_fs_info *fs_info = root->fs_info;
10023 struct btrfs_block_group_cache *cache = NULL;
10024 u64 group_trimmed;
10025 u64 start;
10026 u64 end;
10027 u64 trimmed = 0;
2cac13e4 10028 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10029 int ret = 0;
10030
2cac13e4
LB
10031 /*
10032 * try to trim all FS space, our block group may start from non-zero.
10033 */
10034 if (range->len == total_bytes)
10035 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10036 else
10037 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10038
10039 while (cache) {
10040 if (cache->key.objectid >= (range->start + range->len)) {
10041 btrfs_put_block_group(cache);
10042 break;
10043 }
10044
10045 start = max(range->start, cache->key.objectid);
10046 end = min(range->start + range->len,
10047 cache->key.objectid + cache->key.offset);
10048
10049 if (end - start >= range->minlen) {
10050 if (!block_group_cache_done(cache)) {
f6373bf3 10051 ret = cache_block_group(cache, 0);
1be41b78
JB
10052 if (ret) {
10053 btrfs_put_block_group(cache);
10054 break;
10055 }
10056 ret = wait_block_group_cache_done(cache);
10057 if (ret) {
10058 btrfs_put_block_group(cache);
10059 break;
10060 }
f7039b1d
LD
10061 }
10062 ret = btrfs_trim_block_group(cache,
10063 &group_trimmed,
10064 start,
10065 end,
10066 range->minlen);
10067
10068 trimmed += group_trimmed;
10069 if (ret) {
10070 btrfs_put_block_group(cache);
10071 break;
10072 }
10073 }
10074
10075 cache = next_block_group(fs_info->tree_root, cache);
10076 }
10077
10078 range->len = trimmed;
10079 return ret;
10080}
8257b2dc
MX
10081
10082/*
9ea24bbe
FM
10083 * btrfs_{start,end}_write_no_snapshoting() are similar to
10084 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10085 * data into the page cache through nocow before the subvolume is snapshoted,
10086 * but flush the data into disk after the snapshot creation, or to prevent
10087 * operations while snapshoting is ongoing and that cause the snapshot to be
10088 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10089 */
9ea24bbe 10090void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10091{
10092 percpu_counter_dec(&root->subv_writers->counter);
10093 /*
10094 * Make sure counter is updated before we wake up
10095 * waiters.
10096 */
10097 smp_mb();
10098 if (waitqueue_active(&root->subv_writers->wait))
10099 wake_up(&root->subv_writers->wait);
10100}
10101
9ea24bbe 10102int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10103{
ee39b432 10104 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10105 return 0;
10106
10107 percpu_counter_inc(&root->subv_writers->counter);
10108 /*
10109 * Make sure counter is updated before we check for snapshot creation.
10110 */
10111 smp_mb();
ee39b432 10112 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10113 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10114 return 0;
10115 }
10116 return 1;
10117}