]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: extent-tree: Use ref_node to replace unneeded parameters in __inc_extent_ref...
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
5d4f98a2
YZ
1319static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
15916de8 1322{
5d4f98a2
YZ
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1354#endif
5d4f98a2
YZ
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359}
15916de8 1360
5d4f98a2
YZ
1361static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1f3c79a2 1366{
5d4f98a2 1367 struct btrfs_key key;
1f3c79a2 1368 int ret;
1f3c79a2 1369
5d4f98a2
YZ
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1f3c79a2
LH
1377 }
1378
5d4f98a2
YZ
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
b3b4aa74 1384 btrfs_release_path(path);
5d4f98a2
YZ
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1f3c79a2 1390#endif
5d4f98a2 1391 return ret;
1f3c79a2
LH
1392}
1393
5d4f98a2
YZ
1394static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
31840ae1 1399{
5d4f98a2 1400 struct btrfs_key key;
31840ae1 1401 int ret;
31840ae1 1402
5d4f98a2
YZ
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1413 btrfs_release_path(path);
31840ae1
ZY
1414 return ret;
1415}
1416
5d4f98a2 1417static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1418{
5d4f98a2
YZ
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
31840ae1 1432}
56bec294 1433
2c47e605
YZ
1434static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
56bec294 1436
02217ed2 1437{
2c47e605 1438 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1439 if (!path->nodes[level])
1440 break;
5d4f98a2
YZ
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453}
037e6390 1454
5d4f98a2
YZ
1455/*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468static noinline_for_stack
1469int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476{
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
3173a18f
JB
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
26b8003f 1492
db94535d 1493 key.objectid = bytenr;
31840ae1 1494 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1495 key.offset = num_bytes;
31840ae1 1496
5d4f98a2
YZ
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1500 path->keep_locks = 1;
5d4f98a2
YZ
1501 } else
1502 extra_size = -1;
3173a18f
JB
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513again:
5d4f98a2 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1515 if (ret < 0) {
5d4f98a2
YZ
1516 err = ret;
1517 goto out;
1518 }
3173a18f
JB
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
9ce49a0b 1536 key.objectid = bytenr;
3173a18f
JB
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
79787eaa
JM
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
fae7f21c 1547 } else if (WARN_ON(ret)) {
492104c8 1548 err = -EIO;
492104c8 1549 goto out;
79787eaa 1550 }
5d4f98a2
YZ
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569#endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
5d4f98a2
YZ
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
3173a18f 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
5d4f98a2
YZ
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
2c47e605
YZ
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
85d4198e 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650out:
85d4198e 1651 if (insert) {
5d4f98a2
YZ
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656}
1657
1658/*
1659 * helper to add new inline back ref
1660 */
1661static noinline_for_stack
fd279fae 1662void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1668{
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
5d4f98a2
YZ
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
4b90c680 1685 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1720}
1721
1722static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728{
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
54aa1f4d 1735 return ret;
5d4f98a2 1736
b3b4aa74 1737 btrfs_release_path(path);
5d4f98a2
YZ
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
b9473439 1746 }
5d4f98a2
YZ
1747 return ret;
1748}
31840ae1 1749
5d4f98a2
YZ
1750/*
1751 * helper to update/remove inline back ref
1752 */
1753static noinline_for_stack
afe5fea7 1754void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
fcebe456
JB
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
5d4f98a2
YZ
1760{
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
5d4f98a2
YZ
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
56bec294 1792 }
31840ae1 1793
5d4f98a2
YZ
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
fcebe456 1803 *last_ref = 1;
5d4f98a2
YZ
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
afe5fea7 1812 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1815}
1816
1817static noinline_for_stack
1818int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825{
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1834 update_inline_extent_backref(root, path, iref,
fcebe456 1835 refs_to_add, extent_op, NULL);
5d4f98a2 1836 } else if (ret == -ENOENT) {
fd279fae 1837 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
771ed689 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850{
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862}
56bec294 1863
5d4f98a2
YZ
1864static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
fcebe456 1868 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1869{
143bede5 1870 int ret = 0;
b9473439 1871
5d4f98a2
YZ
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
afe5fea7 1874 update_inline_extent_backref(root, path, iref,
fcebe456 1875 -refs_to_drop, NULL, last_ref);
5d4f98a2 1876 } else if (is_data) {
fcebe456
JB
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
5d4f98a2 1879 } else {
fcebe456 1880 *last_ref = 1;
5d4f98a2
YZ
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884}
1885
5378e607 1886static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1887 u64 start, u64 len)
1888{
5378e607 1889 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1890}
5d4f98a2 1891
1edb647b
FM
1892int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1893 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1894{
5d4f98a2 1895 int ret;
5378e607 1896 u64 discarded_bytes = 0;
a1d3c478 1897 struct btrfs_bio *bbio = NULL;
5d4f98a2 1898
e244a0ae 1899
5d4f98a2 1900 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1901 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1902 bytenr, &num_bytes, &bbio, 0);
79787eaa 1903 /* Error condition is -ENOMEM */
5d4f98a2 1904 if (!ret) {
a1d3c478 1905 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1906 int i;
1907
5d4f98a2 1908
a1d3c478 1909 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1910 if (!stripe->dev->can_discard)
1911 continue;
1912
5378e607
LD
1913 ret = btrfs_issue_discard(stripe->dev->bdev,
1914 stripe->physical,
1915 stripe->length);
1916 if (!ret)
1917 discarded_bytes += stripe->length;
1918 else if (ret != -EOPNOTSUPP)
79787eaa 1919 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1920
1921 /*
1922 * Just in case we get back EOPNOTSUPP for some reason,
1923 * just ignore the return value so we don't screw up
1924 * people calling discard_extent.
1925 */
1926 ret = 0;
5d4f98a2 1927 }
6e9606d2 1928 btrfs_put_bbio(bbio);
5d4f98a2 1929 }
5378e607
LD
1930
1931 if (actual_bytes)
1932 *actual_bytes = discarded_bytes;
1933
5d4f98a2 1934
53b381b3
DW
1935 if (ret == -EOPNOTSUPP)
1936 ret = 0;
5d4f98a2 1937 return ret;
5d4f98a2
YZ
1938}
1939
79787eaa 1940/* Can return -ENOMEM */
5d4f98a2
YZ
1941int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1942 struct btrfs_root *root,
1943 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1944 u64 root_objectid, u64 owner, u64 offset,
1945 int no_quota)
5d4f98a2
YZ
1946{
1947 int ret;
66d7e7f0
AJ
1948 struct btrfs_fs_info *fs_info = root->fs_info;
1949
5d4f98a2
YZ
1950 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1951 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1952
1953 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1954 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1955 num_bytes,
5d4f98a2 1956 parent, root_objectid, (int)owner,
fcebe456 1957 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1958 } else {
66d7e7f0
AJ
1959 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1960 num_bytes,
5d4f98a2 1961 parent, root_objectid, owner, offset,
fcebe456 1962 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1963 }
1964 return ret;
1965}
1966
1967static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1968 struct btrfs_root *root,
c682f9b3 1969 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
1970 u64 parent, u64 root_objectid,
1971 u64 owner, u64 offset, int refs_to_add,
1972 struct btrfs_delayed_extent_op *extent_op)
1973{
fcebe456 1974 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1975 struct btrfs_path *path;
1976 struct extent_buffer *leaf;
1977 struct btrfs_extent_item *item;
fcebe456 1978 struct btrfs_key key;
c682f9b3
QW
1979 u64 bytenr = node->bytenr;
1980 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
c682f9b3 1983 int no_quota = node->no_quota;
fcebe456 1984 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
5d4f98a2
YZ
1985
1986 path = btrfs_alloc_path();
1987 if (!path)
1988 return -ENOMEM;
1989
fcebe456
JB
1990 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1991 no_quota = 1;
1992
5d4f98a2
YZ
1993 path->reada = 1;
1994 path->leave_spinning = 1;
1995 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1996 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1997 bytenr, num_bytes, parent,
5d4f98a2
YZ
1998 root_objectid, owner, offset,
1999 refs_to_add, extent_op);
fcebe456 2000 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
5d4f98a2 2001 goto out;
fcebe456
JB
2002 /*
2003 * Ok we were able to insert an inline extent and it appears to be a new
2004 * reference, deal with the qgroup accounting.
2005 */
2006 if (!ret && !no_quota) {
2007 ASSERT(root->fs_info->quota_enabled);
2008 leaf = path->nodes[0];
2009 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2010 item = btrfs_item_ptr(leaf, path->slots[0],
2011 struct btrfs_extent_item);
2012 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2013 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2014 btrfs_release_path(path);
5d4f98a2 2015
fcebe456
JB
2016 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2017 bytenr, num_bytes, type, 0);
2018 goto out;
2019 }
2020
2021 /*
2022 * Ok we had -EAGAIN which means we didn't have space to insert and
2023 * inline extent ref, so just update the reference count and add a
2024 * normal backref.
2025 */
5d4f98a2 2026 leaf = path->nodes[0];
fcebe456 2027 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2028 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2029 refs = btrfs_extent_refs(leaf, item);
fcebe456
JB
2030 if (refs)
2031 type = BTRFS_QGROUP_OPER_ADD_SHARED;
5d4f98a2
YZ
2032 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2033 if (extent_op)
2034 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2035
5d4f98a2 2036 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2037 btrfs_release_path(path);
56bec294 2038
fcebe456
JB
2039 if (!no_quota) {
2040 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2041 bytenr, num_bytes, type, 0);
2042 if (ret)
2043 goto out;
2044 }
2045
56bec294 2046 path->reada = 1;
b9473439 2047 path->leave_spinning = 1;
56bec294
CM
2048 /* now insert the actual backref */
2049 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2050 path, bytenr, parent, root_objectid,
2051 owner, offset, refs_to_add);
79787eaa
JM
2052 if (ret)
2053 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2054out:
56bec294 2055 btrfs_free_path(path);
30d133fc 2056 return ret;
56bec294
CM
2057}
2058
5d4f98a2
YZ
2059static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2060 struct btrfs_root *root,
2061 struct btrfs_delayed_ref_node *node,
2062 struct btrfs_delayed_extent_op *extent_op,
2063 int insert_reserved)
56bec294 2064{
5d4f98a2
YZ
2065 int ret = 0;
2066 struct btrfs_delayed_data_ref *ref;
2067 struct btrfs_key ins;
2068 u64 parent = 0;
2069 u64 ref_root = 0;
2070 u64 flags = 0;
2071
2072 ins.objectid = node->bytenr;
2073 ins.offset = node->num_bytes;
2074 ins.type = BTRFS_EXTENT_ITEM_KEY;
2075
2076 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2077 trace_run_delayed_data_ref(node, ref, node->action);
2078
5d4f98a2
YZ
2079 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2080 parent = ref->parent;
fcebe456 2081 ref_root = ref->root;
5d4f98a2
YZ
2082
2083 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2084 if (extent_op)
5d4f98a2 2085 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2086 ret = alloc_reserved_file_extent(trans, root,
2087 parent, ref_root, flags,
2088 ref->objectid, ref->offset,
2089 &ins, node->ref_mod);
5d4f98a2 2090 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2091 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
c682f9b3 2094 extent_op);
5d4f98a2 2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2096 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2097 ref_root, ref->objectid,
2098 ref->offset, node->ref_mod,
c682f9b3 2099 extent_op);
5d4f98a2
YZ
2100 } else {
2101 BUG();
2102 }
2103 return ret;
2104}
2105
2106static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2107 struct extent_buffer *leaf,
2108 struct btrfs_extent_item *ei)
2109{
2110 u64 flags = btrfs_extent_flags(leaf, ei);
2111 if (extent_op->update_flags) {
2112 flags |= extent_op->flags_to_set;
2113 btrfs_set_extent_flags(leaf, ei, flags);
2114 }
2115
2116 if (extent_op->update_key) {
2117 struct btrfs_tree_block_info *bi;
2118 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2119 bi = (struct btrfs_tree_block_info *)(ei + 1);
2120 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2121 }
2122}
2123
2124static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2125 struct btrfs_root *root,
2126 struct btrfs_delayed_ref_node *node,
2127 struct btrfs_delayed_extent_op *extent_op)
2128{
2129 struct btrfs_key key;
2130 struct btrfs_path *path;
2131 struct btrfs_extent_item *ei;
2132 struct extent_buffer *leaf;
2133 u32 item_size;
56bec294 2134 int ret;
5d4f98a2 2135 int err = 0;
b1c79e09 2136 int metadata = !extent_op->is_data;
5d4f98a2 2137
79787eaa
JM
2138 if (trans->aborted)
2139 return 0;
2140
3173a18f
JB
2141 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2142 metadata = 0;
2143
5d4f98a2
YZ
2144 path = btrfs_alloc_path();
2145 if (!path)
2146 return -ENOMEM;
2147
2148 key.objectid = node->bytenr;
5d4f98a2 2149
3173a18f 2150 if (metadata) {
3173a18f 2151 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2152 key.offset = extent_op->level;
3173a18f
JB
2153 } else {
2154 key.type = BTRFS_EXTENT_ITEM_KEY;
2155 key.offset = node->num_bytes;
2156 }
2157
2158again:
5d4f98a2
YZ
2159 path->reada = 1;
2160 path->leave_spinning = 1;
2161 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2162 path, 0, 1);
2163 if (ret < 0) {
2164 err = ret;
2165 goto out;
2166 }
2167 if (ret > 0) {
3173a18f 2168 if (metadata) {
55994887
FDBM
2169 if (path->slots[0] > 0) {
2170 path->slots[0]--;
2171 btrfs_item_key_to_cpu(path->nodes[0], &key,
2172 path->slots[0]);
2173 if (key.objectid == node->bytenr &&
2174 key.type == BTRFS_EXTENT_ITEM_KEY &&
2175 key.offset == node->num_bytes)
2176 ret = 0;
2177 }
2178 if (ret > 0) {
2179 btrfs_release_path(path);
2180 metadata = 0;
3173a18f 2181
55994887
FDBM
2182 key.objectid = node->bytenr;
2183 key.offset = node->num_bytes;
2184 key.type = BTRFS_EXTENT_ITEM_KEY;
2185 goto again;
2186 }
2187 } else {
2188 err = -EIO;
2189 goto out;
3173a18f 2190 }
5d4f98a2
YZ
2191 }
2192
2193 leaf = path->nodes[0];
2194 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2195#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2196 if (item_size < sizeof(*ei)) {
2197 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2198 path, (u64)-1, 0);
2199 if (ret < 0) {
2200 err = ret;
2201 goto out;
2202 }
2203 leaf = path->nodes[0];
2204 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2205 }
2206#endif
2207 BUG_ON(item_size < sizeof(*ei));
2208 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2209 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2210
5d4f98a2
YZ
2211 btrfs_mark_buffer_dirty(leaf);
2212out:
2213 btrfs_free_path(path);
2214 return err;
56bec294
CM
2215}
2216
5d4f98a2
YZ
2217static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2218 struct btrfs_root *root,
2219 struct btrfs_delayed_ref_node *node,
2220 struct btrfs_delayed_extent_op *extent_op,
2221 int insert_reserved)
56bec294
CM
2222{
2223 int ret = 0;
5d4f98a2
YZ
2224 struct btrfs_delayed_tree_ref *ref;
2225 struct btrfs_key ins;
2226 u64 parent = 0;
2227 u64 ref_root = 0;
3173a18f
JB
2228 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2229 SKINNY_METADATA);
56bec294 2230
5d4f98a2 2231 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2232 trace_run_delayed_tree_ref(node, ref, node->action);
2233
5d4f98a2
YZ
2234 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2235 parent = ref->parent;
fcebe456 2236 ref_root = ref->root;
5d4f98a2 2237
3173a18f
JB
2238 ins.objectid = node->bytenr;
2239 if (skinny_metadata) {
2240 ins.offset = ref->level;
2241 ins.type = BTRFS_METADATA_ITEM_KEY;
2242 } else {
2243 ins.offset = node->num_bytes;
2244 ins.type = BTRFS_EXTENT_ITEM_KEY;
2245 }
2246
5d4f98a2
YZ
2247 BUG_ON(node->ref_mod != 1);
2248 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2249 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2250 ret = alloc_reserved_tree_block(trans, root,
2251 parent, ref_root,
2252 extent_op->flags_to_set,
2253 &extent_op->key,
fcebe456
JB
2254 ref->level, &ins,
2255 node->no_quota);
5d4f98a2 2256 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2257 ret = __btrfs_inc_extent_ref(trans, root, node,
2258 parent, ref_root,
2259 ref->level, 0, 1,
fcebe456 2260 extent_op);
5d4f98a2 2261 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2262 ret = __btrfs_free_extent(trans, root, node,
2263 parent, ref_root,
2264 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2265 } else {
2266 BUG();
2267 }
56bec294
CM
2268 return ret;
2269}
2270
2271/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2272static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2273 struct btrfs_root *root,
2274 struct btrfs_delayed_ref_node *node,
2275 struct btrfs_delayed_extent_op *extent_op,
2276 int insert_reserved)
56bec294 2277{
79787eaa
JM
2278 int ret = 0;
2279
857cc2fc
JB
2280 if (trans->aborted) {
2281 if (insert_reserved)
2282 btrfs_pin_extent(root, node->bytenr,
2283 node->num_bytes, 1);
79787eaa 2284 return 0;
857cc2fc 2285 }
79787eaa 2286
5d4f98a2 2287 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2288 struct btrfs_delayed_ref_head *head;
2289 /*
2290 * we've hit the end of the chain and we were supposed
2291 * to insert this extent into the tree. But, it got
2292 * deleted before we ever needed to insert it, so all
2293 * we have to do is clean up the accounting
2294 */
5d4f98a2
YZ
2295 BUG_ON(extent_op);
2296 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2297 trace_run_delayed_ref_head(node, head, node->action);
2298
56bec294 2299 if (insert_reserved) {
f0486c68
YZ
2300 btrfs_pin_extent(root, node->bytenr,
2301 node->num_bytes, 1);
5d4f98a2
YZ
2302 if (head->is_data) {
2303 ret = btrfs_del_csums(trans, root,
2304 node->bytenr,
2305 node->num_bytes);
5d4f98a2 2306 }
56bec294 2307 }
79787eaa 2308 return ret;
56bec294
CM
2309 }
2310
5d4f98a2
YZ
2311 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2312 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2313 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2314 insert_reserved);
2315 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2316 node->type == BTRFS_SHARED_DATA_REF_KEY)
2317 ret = run_delayed_data_ref(trans, root, node, extent_op,
2318 insert_reserved);
2319 else
2320 BUG();
2321 return ret;
56bec294
CM
2322}
2323
c6fc2454 2324static inline struct btrfs_delayed_ref_node *
56bec294
CM
2325select_delayed_ref(struct btrfs_delayed_ref_head *head)
2326{
c6fc2454
QW
2327 if (list_empty(&head->ref_list))
2328 return NULL;
d7df2c79 2329
c6fc2454
QW
2330 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2331 list);
56bec294
CM
2332}
2333
79787eaa
JM
2334/*
2335 * Returns 0 on success or if called with an already aborted transaction.
2336 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2337 */
d7df2c79
JB
2338static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2339 struct btrfs_root *root,
2340 unsigned long nr)
56bec294 2341{
56bec294
CM
2342 struct btrfs_delayed_ref_root *delayed_refs;
2343 struct btrfs_delayed_ref_node *ref;
2344 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2345 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2346 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2347 ktime_t start = ktime_get();
56bec294 2348 int ret;
d7df2c79 2349 unsigned long count = 0;
0a2b2a84 2350 unsigned long actual_count = 0;
56bec294 2351 int must_insert_reserved = 0;
56bec294
CM
2352
2353 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2354 while (1) {
2355 if (!locked_ref) {
d7df2c79 2356 if (count >= nr)
56bec294 2357 break;
56bec294 2358
d7df2c79
JB
2359 spin_lock(&delayed_refs->lock);
2360 locked_ref = btrfs_select_ref_head(trans);
2361 if (!locked_ref) {
2362 spin_unlock(&delayed_refs->lock);
2363 break;
2364 }
c3e69d58
CM
2365
2366 /* grab the lock that says we are going to process
2367 * all the refs for this head */
2368 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2369 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2370 /*
2371 * we may have dropped the spin lock to get the head
2372 * mutex lock, and that might have given someone else
2373 * time to free the head. If that's true, it has been
2374 * removed from our list and we can move on.
2375 */
2376 if (ret == -EAGAIN) {
2377 locked_ref = NULL;
2378 count++;
2379 continue;
56bec294
CM
2380 }
2381 }
a28ec197 2382
d7df2c79 2383 spin_lock(&locked_ref->lock);
ae1e206b 2384
d1270cd9
AJ
2385 /*
2386 * locked_ref is the head node, so we have to go one
2387 * node back for any delayed ref updates
2388 */
2389 ref = select_delayed_ref(locked_ref);
2390
2391 if (ref && ref->seq &&
097b8a7c 2392 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2393 spin_unlock(&locked_ref->lock);
093486c4 2394 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2395 spin_lock(&delayed_refs->lock);
2396 locked_ref->processing = 0;
d1270cd9
AJ
2397 delayed_refs->num_heads_ready++;
2398 spin_unlock(&delayed_refs->lock);
d7df2c79 2399 locked_ref = NULL;
d1270cd9 2400 cond_resched();
27a377db 2401 count++;
d1270cd9
AJ
2402 continue;
2403 }
2404
56bec294
CM
2405 /*
2406 * record the must insert reserved flag before we
2407 * drop the spin lock.
2408 */
2409 must_insert_reserved = locked_ref->must_insert_reserved;
2410 locked_ref->must_insert_reserved = 0;
7bb86316 2411
5d4f98a2
YZ
2412 extent_op = locked_ref->extent_op;
2413 locked_ref->extent_op = NULL;
2414
56bec294 2415 if (!ref) {
d7df2c79
JB
2416
2417
56bec294
CM
2418 /* All delayed refs have been processed, Go ahead
2419 * and send the head node to run_one_delayed_ref,
2420 * so that any accounting fixes can happen
2421 */
2422 ref = &locked_ref->node;
5d4f98a2
YZ
2423
2424 if (extent_op && must_insert_reserved) {
78a6184a 2425 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2426 extent_op = NULL;
2427 }
2428
2429 if (extent_op) {
d7df2c79 2430 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2431 ret = run_delayed_extent_op(trans, root,
2432 ref, extent_op);
78a6184a 2433 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2434
79787eaa 2435 if (ret) {
857cc2fc
JB
2436 /*
2437 * Need to reset must_insert_reserved if
2438 * there was an error so the abort stuff
2439 * can cleanup the reserved space
2440 * properly.
2441 */
2442 if (must_insert_reserved)
2443 locked_ref->must_insert_reserved = 1;
d7df2c79 2444 locked_ref->processing = 0;
c2cf52eb 2445 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2446 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2447 return ret;
2448 }
d7df2c79 2449 continue;
5d4f98a2 2450 }
02217ed2 2451
d7df2c79
JB
2452 /*
2453 * Need to drop our head ref lock and re-aqcuire the
2454 * delayed ref lock and then re-check to make sure
2455 * nobody got added.
2456 */
2457 spin_unlock(&locked_ref->lock);
2458 spin_lock(&delayed_refs->lock);
2459 spin_lock(&locked_ref->lock);
c6fc2454 2460 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2461 locked_ref->extent_op) {
d7df2c79
JB
2462 spin_unlock(&locked_ref->lock);
2463 spin_unlock(&delayed_refs->lock);
2464 continue;
2465 }
2466 ref->in_tree = 0;
2467 delayed_refs->num_heads--;
c46effa6
LB
2468 rb_erase(&locked_ref->href_node,
2469 &delayed_refs->href_root);
d7df2c79
JB
2470 spin_unlock(&delayed_refs->lock);
2471 } else {
0a2b2a84 2472 actual_count++;
d7df2c79 2473 ref->in_tree = 0;
c6fc2454 2474 list_del(&ref->list);
c46effa6 2475 }
d7df2c79
JB
2476 atomic_dec(&delayed_refs->num_entries);
2477
093486c4 2478 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2479 /*
2480 * when we play the delayed ref, also correct the
2481 * ref_mod on head
2482 */
2483 switch (ref->action) {
2484 case BTRFS_ADD_DELAYED_REF:
2485 case BTRFS_ADD_DELAYED_EXTENT:
2486 locked_ref->node.ref_mod -= ref->ref_mod;
2487 break;
2488 case BTRFS_DROP_DELAYED_REF:
2489 locked_ref->node.ref_mod += ref->ref_mod;
2490 break;
2491 default:
2492 WARN_ON(1);
2493 }
2494 }
d7df2c79 2495 spin_unlock(&locked_ref->lock);
925baedd 2496
5d4f98a2 2497 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2498 must_insert_reserved);
eb099670 2499
78a6184a 2500 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2501 if (ret) {
d7df2c79 2502 locked_ref->processing = 0;
093486c4
MX
2503 btrfs_delayed_ref_unlock(locked_ref);
2504 btrfs_put_delayed_ref(ref);
c2cf52eb 2505 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2506 return ret;
2507 }
2508
093486c4
MX
2509 /*
2510 * If this node is a head, that means all the refs in this head
2511 * have been dealt with, and we will pick the next head to deal
2512 * with, so we must unlock the head and drop it from the cluster
2513 * list before we release it.
2514 */
2515 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2516 if (locked_ref->is_data &&
2517 locked_ref->total_ref_mod < 0) {
2518 spin_lock(&delayed_refs->lock);
2519 delayed_refs->pending_csums -= ref->num_bytes;
2520 spin_unlock(&delayed_refs->lock);
2521 }
093486c4
MX
2522 btrfs_delayed_ref_unlock(locked_ref);
2523 locked_ref = NULL;
2524 }
2525 btrfs_put_delayed_ref(ref);
2526 count++;
c3e69d58 2527 cond_resched();
c3e69d58 2528 }
0a2b2a84
JB
2529
2530 /*
2531 * We don't want to include ref heads since we can have empty ref heads
2532 * and those will drastically skew our runtime down since we just do
2533 * accounting, no actual extent tree updates.
2534 */
2535 if (actual_count > 0) {
2536 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2537 u64 avg;
2538
2539 /*
2540 * We weigh the current average higher than our current runtime
2541 * to avoid large swings in the average.
2542 */
2543 spin_lock(&delayed_refs->lock);
2544 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2545 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2546 spin_unlock(&delayed_refs->lock);
2547 }
d7df2c79 2548 return 0;
c3e69d58
CM
2549}
2550
709c0486
AJ
2551#ifdef SCRAMBLE_DELAYED_REFS
2552/*
2553 * Normally delayed refs get processed in ascending bytenr order. This
2554 * correlates in most cases to the order added. To expose dependencies on this
2555 * order, we start to process the tree in the middle instead of the beginning
2556 */
2557static u64 find_middle(struct rb_root *root)
2558{
2559 struct rb_node *n = root->rb_node;
2560 struct btrfs_delayed_ref_node *entry;
2561 int alt = 1;
2562 u64 middle;
2563 u64 first = 0, last = 0;
2564
2565 n = rb_first(root);
2566 if (n) {
2567 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2568 first = entry->bytenr;
2569 }
2570 n = rb_last(root);
2571 if (n) {
2572 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2573 last = entry->bytenr;
2574 }
2575 n = root->rb_node;
2576
2577 while (n) {
2578 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2579 WARN_ON(!entry->in_tree);
2580
2581 middle = entry->bytenr;
2582
2583 if (alt)
2584 n = n->rb_left;
2585 else
2586 n = n->rb_right;
2587
2588 alt = 1 - alt;
2589 }
2590 return middle;
2591}
2592#endif
2593
1be41b78
JB
2594static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2595{
2596 u64 num_bytes;
2597
2598 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2599 sizeof(struct btrfs_extent_inline_ref));
2600 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2601 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2602
2603 /*
2604 * We don't ever fill up leaves all the way so multiply by 2 just to be
2605 * closer to what we're really going to want to ouse.
2606 */
f8c269d7 2607 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2608}
2609
1262133b
JB
2610/*
2611 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2612 * would require to store the csums for that many bytes.
2613 */
28f75a0e 2614u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2615{
2616 u64 csum_size;
2617 u64 num_csums_per_leaf;
2618 u64 num_csums;
2619
2620 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2621 num_csums_per_leaf = div64_u64(csum_size,
2622 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2623 num_csums = div64_u64(csum_bytes, root->sectorsize);
2624 num_csums += num_csums_per_leaf - 1;
2625 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2626 return num_csums;
2627}
2628
0a2b2a84 2629int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2630 struct btrfs_root *root)
2631{
2632 struct btrfs_block_rsv *global_rsv;
2633 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2634 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2635 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2636 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2637 int ret = 0;
2638
2639 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2640 num_heads = heads_to_leaves(root, num_heads);
2641 if (num_heads > 1)
707e8a07 2642 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2643 num_bytes <<= 1;
28f75a0e 2644 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2645 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2646 num_dirty_bgs);
1be41b78
JB
2647 global_rsv = &root->fs_info->global_block_rsv;
2648
2649 /*
2650 * If we can't allocate any more chunks lets make sure we have _lots_ of
2651 * wiggle room since running delayed refs can create more delayed refs.
2652 */
cb723e49
JB
2653 if (global_rsv->space_info->full) {
2654 num_dirty_bgs_bytes <<= 1;
1be41b78 2655 num_bytes <<= 1;
cb723e49 2656 }
1be41b78
JB
2657
2658 spin_lock(&global_rsv->lock);
cb723e49 2659 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2660 ret = 1;
2661 spin_unlock(&global_rsv->lock);
2662 return ret;
2663}
2664
0a2b2a84
JB
2665int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2666 struct btrfs_root *root)
2667{
2668 struct btrfs_fs_info *fs_info = root->fs_info;
2669 u64 num_entries =
2670 atomic_read(&trans->transaction->delayed_refs.num_entries);
2671 u64 avg_runtime;
a79b7d4b 2672 u64 val;
0a2b2a84
JB
2673
2674 smp_mb();
2675 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2676 val = num_entries * avg_runtime;
0a2b2a84
JB
2677 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2678 return 1;
a79b7d4b
CM
2679 if (val >= NSEC_PER_SEC / 2)
2680 return 2;
0a2b2a84
JB
2681
2682 return btrfs_check_space_for_delayed_refs(trans, root);
2683}
2684
a79b7d4b
CM
2685struct async_delayed_refs {
2686 struct btrfs_root *root;
2687 int count;
2688 int error;
2689 int sync;
2690 struct completion wait;
2691 struct btrfs_work work;
2692};
2693
2694static void delayed_ref_async_start(struct btrfs_work *work)
2695{
2696 struct async_delayed_refs *async;
2697 struct btrfs_trans_handle *trans;
2698 int ret;
2699
2700 async = container_of(work, struct async_delayed_refs, work);
2701
2702 trans = btrfs_join_transaction(async->root);
2703 if (IS_ERR(trans)) {
2704 async->error = PTR_ERR(trans);
2705 goto done;
2706 }
2707
2708 /*
2709 * trans->sync means that when we call end_transaciton, we won't
2710 * wait on delayed refs
2711 */
2712 trans->sync = true;
2713 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2714 if (ret)
2715 async->error = ret;
2716
2717 ret = btrfs_end_transaction(trans, async->root);
2718 if (ret && !async->error)
2719 async->error = ret;
2720done:
2721 if (async->sync)
2722 complete(&async->wait);
2723 else
2724 kfree(async);
2725}
2726
2727int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2728 unsigned long count, int wait)
2729{
2730 struct async_delayed_refs *async;
2731 int ret;
2732
2733 async = kmalloc(sizeof(*async), GFP_NOFS);
2734 if (!async)
2735 return -ENOMEM;
2736
2737 async->root = root->fs_info->tree_root;
2738 async->count = count;
2739 async->error = 0;
2740 if (wait)
2741 async->sync = 1;
2742 else
2743 async->sync = 0;
2744 init_completion(&async->wait);
2745
9e0af237
LB
2746 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2747 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2748
2749 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2750
2751 if (wait) {
2752 wait_for_completion(&async->wait);
2753 ret = async->error;
2754 kfree(async);
2755 return ret;
2756 }
2757 return 0;
2758}
2759
c3e69d58
CM
2760/*
2761 * this starts processing the delayed reference count updates and
2762 * extent insertions we have queued up so far. count can be
2763 * 0, which means to process everything in the tree at the start
2764 * of the run (but not newly added entries), or it can be some target
2765 * number you'd like to process.
79787eaa
JM
2766 *
2767 * Returns 0 on success or if called with an aborted transaction
2768 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2769 */
2770int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2771 struct btrfs_root *root, unsigned long count)
2772{
2773 struct rb_node *node;
2774 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2775 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2776 int ret;
2777 int run_all = count == (unsigned long)-1;
c3e69d58 2778
79787eaa
JM
2779 /* We'll clean this up in btrfs_cleanup_transaction */
2780 if (trans->aborted)
2781 return 0;
2782
c3e69d58
CM
2783 if (root == root->fs_info->extent_root)
2784 root = root->fs_info->tree_root;
2785
2786 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2787 if (count == 0)
d7df2c79 2788 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2789
c3e69d58 2790again:
709c0486
AJ
2791#ifdef SCRAMBLE_DELAYED_REFS
2792 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2793#endif
d7df2c79
JB
2794 ret = __btrfs_run_delayed_refs(trans, root, count);
2795 if (ret < 0) {
2796 btrfs_abort_transaction(trans, root, ret);
2797 return ret;
eb099670 2798 }
c3e69d58 2799
56bec294 2800 if (run_all) {
d7df2c79 2801 if (!list_empty(&trans->new_bgs))
ea658bad 2802 btrfs_create_pending_block_groups(trans, root);
ea658bad 2803
d7df2c79 2804 spin_lock(&delayed_refs->lock);
c46effa6 2805 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2806 if (!node) {
2807 spin_unlock(&delayed_refs->lock);
56bec294 2808 goto out;
d7df2c79 2809 }
c3e69d58 2810 count = (unsigned long)-1;
e9d0b13b 2811
56bec294 2812 while (node) {
c46effa6
LB
2813 head = rb_entry(node, struct btrfs_delayed_ref_head,
2814 href_node);
2815 if (btrfs_delayed_ref_is_head(&head->node)) {
2816 struct btrfs_delayed_ref_node *ref;
5caf2a00 2817
c46effa6 2818 ref = &head->node;
56bec294
CM
2819 atomic_inc(&ref->refs);
2820
2821 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2822 /*
2823 * Mutex was contended, block until it's
2824 * released and try again
2825 */
56bec294
CM
2826 mutex_lock(&head->mutex);
2827 mutex_unlock(&head->mutex);
2828
2829 btrfs_put_delayed_ref(ref);
1887be66 2830 cond_resched();
56bec294 2831 goto again;
c46effa6
LB
2832 } else {
2833 WARN_ON(1);
56bec294
CM
2834 }
2835 node = rb_next(node);
2836 }
2837 spin_unlock(&delayed_refs->lock);
d7df2c79 2838 cond_resched();
56bec294 2839 goto again;
5f39d397 2840 }
54aa1f4d 2841out:
fcebe456
JB
2842 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2843 if (ret)
2844 return ret;
edf39272 2845 assert_qgroups_uptodate(trans);
a28ec197
CM
2846 return 0;
2847}
2848
5d4f98a2
YZ
2849int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2850 struct btrfs_root *root,
2851 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2852 int level, int is_data)
5d4f98a2
YZ
2853{
2854 struct btrfs_delayed_extent_op *extent_op;
2855 int ret;
2856
78a6184a 2857 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2858 if (!extent_op)
2859 return -ENOMEM;
2860
2861 extent_op->flags_to_set = flags;
2862 extent_op->update_flags = 1;
2863 extent_op->update_key = 0;
2864 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2865 extent_op->level = level;
5d4f98a2 2866
66d7e7f0
AJ
2867 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2868 num_bytes, extent_op);
5d4f98a2 2869 if (ret)
78a6184a 2870 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2871 return ret;
2872}
2873
2874static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 struct btrfs_path *path,
2877 u64 objectid, u64 offset, u64 bytenr)
2878{
2879 struct btrfs_delayed_ref_head *head;
2880 struct btrfs_delayed_ref_node *ref;
2881 struct btrfs_delayed_data_ref *data_ref;
2882 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2883 int ret = 0;
2884
5d4f98a2
YZ
2885 delayed_refs = &trans->transaction->delayed_refs;
2886 spin_lock(&delayed_refs->lock);
2887 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2888 if (!head) {
2889 spin_unlock(&delayed_refs->lock);
2890 return 0;
2891 }
5d4f98a2
YZ
2892
2893 if (!mutex_trylock(&head->mutex)) {
2894 atomic_inc(&head->node.refs);
2895 spin_unlock(&delayed_refs->lock);
2896
b3b4aa74 2897 btrfs_release_path(path);
5d4f98a2 2898
8cc33e5c
DS
2899 /*
2900 * Mutex was contended, block until it's released and let
2901 * caller try again
2902 */
5d4f98a2
YZ
2903 mutex_lock(&head->mutex);
2904 mutex_unlock(&head->mutex);
2905 btrfs_put_delayed_ref(&head->node);
2906 return -EAGAIN;
2907 }
d7df2c79 2908 spin_unlock(&delayed_refs->lock);
5d4f98a2 2909
d7df2c79 2910 spin_lock(&head->lock);
c6fc2454 2911 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2912 /* If it's a shared ref we know a cross reference exists */
2913 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2914 ret = 1;
2915 break;
2916 }
5d4f98a2 2917
d7df2c79 2918 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2919
d7df2c79
JB
2920 /*
2921 * If our ref doesn't match the one we're currently looking at
2922 * then we have a cross reference.
2923 */
2924 if (data_ref->root != root->root_key.objectid ||
2925 data_ref->objectid != objectid ||
2926 data_ref->offset != offset) {
2927 ret = 1;
2928 break;
2929 }
5d4f98a2 2930 }
d7df2c79 2931 spin_unlock(&head->lock);
5d4f98a2 2932 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2933 return ret;
2934}
2935
2936static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2937 struct btrfs_root *root,
2938 struct btrfs_path *path,
2939 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2940{
2941 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2942 struct extent_buffer *leaf;
5d4f98a2
YZ
2943 struct btrfs_extent_data_ref *ref;
2944 struct btrfs_extent_inline_ref *iref;
2945 struct btrfs_extent_item *ei;
f321e491 2946 struct btrfs_key key;
5d4f98a2 2947 u32 item_size;
be20aa9d 2948 int ret;
925baedd 2949
be20aa9d 2950 key.objectid = bytenr;
31840ae1 2951 key.offset = (u64)-1;
f321e491 2952 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2953
be20aa9d
CM
2954 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2955 if (ret < 0)
2956 goto out;
79787eaa 2957 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2958
2959 ret = -ENOENT;
2960 if (path->slots[0] == 0)
31840ae1 2961 goto out;
be20aa9d 2962
31840ae1 2963 path->slots[0]--;
f321e491 2964 leaf = path->nodes[0];
5d4f98a2 2965 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2966
5d4f98a2 2967 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2968 goto out;
f321e491 2969
5d4f98a2
YZ
2970 ret = 1;
2971 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2972#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2973 if (item_size < sizeof(*ei)) {
2974 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2975 goto out;
2976 }
2977#endif
2978 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 2979
5d4f98a2
YZ
2980 if (item_size != sizeof(*ei) +
2981 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2982 goto out;
be20aa9d 2983
5d4f98a2
YZ
2984 if (btrfs_extent_generation(leaf, ei) <=
2985 btrfs_root_last_snapshot(&root->root_item))
2986 goto out;
2987
2988 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2989 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2990 BTRFS_EXTENT_DATA_REF_KEY)
2991 goto out;
2992
2993 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2994 if (btrfs_extent_refs(leaf, ei) !=
2995 btrfs_extent_data_ref_count(leaf, ref) ||
2996 btrfs_extent_data_ref_root(leaf, ref) !=
2997 root->root_key.objectid ||
2998 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2999 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3000 goto out;
3001
3002 ret = 0;
3003out:
3004 return ret;
3005}
3006
3007int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3008 struct btrfs_root *root,
3009 u64 objectid, u64 offset, u64 bytenr)
3010{
3011 struct btrfs_path *path;
3012 int ret;
3013 int ret2;
3014
3015 path = btrfs_alloc_path();
3016 if (!path)
3017 return -ENOENT;
3018
3019 do {
3020 ret = check_committed_ref(trans, root, path, objectid,
3021 offset, bytenr);
3022 if (ret && ret != -ENOENT)
f321e491 3023 goto out;
80ff3856 3024
5d4f98a2
YZ
3025 ret2 = check_delayed_ref(trans, root, path, objectid,
3026 offset, bytenr);
3027 } while (ret2 == -EAGAIN);
3028
3029 if (ret2 && ret2 != -ENOENT) {
3030 ret = ret2;
3031 goto out;
f321e491 3032 }
5d4f98a2
YZ
3033
3034 if (ret != -ENOENT || ret2 != -ENOENT)
3035 ret = 0;
be20aa9d 3036out:
80ff3856 3037 btrfs_free_path(path);
f0486c68
YZ
3038 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3039 WARN_ON(ret > 0);
f321e491 3040 return ret;
be20aa9d 3041}
c5739bba 3042
5d4f98a2 3043static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3044 struct btrfs_root *root,
5d4f98a2 3045 struct extent_buffer *buf,
e339a6b0 3046 int full_backref, int inc)
31840ae1
ZY
3047{
3048 u64 bytenr;
5d4f98a2
YZ
3049 u64 num_bytes;
3050 u64 parent;
31840ae1 3051 u64 ref_root;
31840ae1 3052 u32 nritems;
31840ae1
ZY
3053 struct btrfs_key key;
3054 struct btrfs_file_extent_item *fi;
3055 int i;
3056 int level;
3057 int ret = 0;
31840ae1 3058 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3059 u64, u64, u64, u64, u64, u64, int);
31840ae1 3060
fccb84c9
DS
3061
3062 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3063 return 0;
fccb84c9 3064
31840ae1 3065 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3066 nritems = btrfs_header_nritems(buf);
3067 level = btrfs_header_level(buf);
3068
27cdeb70 3069 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3070 return 0;
31840ae1 3071
5d4f98a2
YZ
3072 if (inc)
3073 process_func = btrfs_inc_extent_ref;
3074 else
3075 process_func = btrfs_free_extent;
31840ae1 3076
5d4f98a2
YZ
3077 if (full_backref)
3078 parent = buf->start;
3079 else
3080 parent = 0;
3081
3082 for (i = 0; i < nritems; i++) {
31840ae1 3083 if (level == 0) {
5d4f98a2 3084 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3085 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3086 continue;
5d4f98a2 3087 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3088 struct btrfs_file_extent_item);
3089 if (btrfs_file_extent_type(buf, fi) ==
3090 BTRFS_FILE_EXTENT_INLINE)
3091 continue;
3092 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3093 if (bytenr == 0)
3094 continue;
5d4f98a2
YZ
3095
3096 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3097 key.offset -= btrfs_file_extent_offset(buf, fi);
3098 ret = process_func(trans, root, bytenr, num_bytes,
3099 parent, ref_root, key.objectid,
e339a6b0 3100 key.offset, 1);
31840ae1
ZY
3101 if (ret)
3102 goto fail;
3103 } else {
5d4f98a2 3104 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3105 num_bytes = root->nodesize;
5d4f98a2 3106 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3107 parent, ref_root, level - 1, 0,
e339a6b0 3108 1);
31840ae1
ZY
3109 if (ret)
3110 goto fail;
3111 }
3112 }
3113 return 0;
3114fail:
5d4f98a2
YZ
3115 return ret;
3116}
3117
3118int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3119 struct extent_buffer *buf, int full_backref)
5d4f98a2 3120{
e339a6b0 3121 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3122}
3123
3124int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3125 struct extent_buffer *buf, int full_backref)
5d4f98a2 3126{
e339a6b0 3127 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3128}
3129
9078a3e1
CM
3130static int write_one_cache_group(struct btrfs_trans_handle *trans,
3131 struct btrfs_root *root,
3132 struct btrfs_path *path,
3133 struct btrfs_block_group_cache *cache)
3134{
3135 int ret;
9078a3e1 3136 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3137 unsigned long bi;
3138 struct extent_buffer *leaf;
9078a3e1 3139
9078a3e1 3140 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3141 if (ret) {
3142 if (ret > 0)
3143 ret = -ENOENT;
54aa1f4d 3144 goto fail;
df95e7f0 3145 }
5f39d397
CM
3146
3147 leaf = path->nodes[0];
3148 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3149 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3150 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3151fail:
24b89d08 3152 btrfs_release_path(path);
df95e7f0 3153 return ret;
9078a3e1
CM
3154
3155}
3156
4a8c9a62
YZ
3157static struct btrfs_block_group_cache *
3158next_block_group(struct btrfs_root *root,
3159 struct btrfs_block_group_cache *cache)
3160{
3161 struct rb_node *node;
292cbd51 3162
4a8c9a62 3163 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3164
3165 /* If our block group was removed, we need a full search. */
3166 if (RB_EMPTY_NODE(&cache->cache_node)) {
3167 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3168
3169 spin_unlock(&root->fs_info->block_group_cache_lock);
3170 btrfs_put_block_group(cache);
3171 cache = btrfs_lookup_first_block_group(root->fs_info,
3172 next_bytenr);
3173 return cache;
3174 }
4a8c9a62
YZ
3175 node = rb_next(&cache->cache_node);
3176 btrfs_put_block_group(cache);
3177 if (node) {
3178 cache = rb_entry(node, struct btrfs_block_group_cache,
3179 cache_node);
11dfe35a 3180 btrfs_get_block_group(cache);
4a8c9a62
YZ
3181 } else
3182 cache = NULL;
3183 spin_unlock(&root->fs_info->block_group_cache_lock);
3184 return cache;
3185}
3186
0af3d00b
JB
3187static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3188 struct btrfs_trans_handle *trans,
3189 struct btrfs_path *path)
3190{
3191 struct btrfs_root *root = block_group->fs_info->tree_root;
3192 struct inode *inode = NULL;
3193 u64 alloc_hint = 0;
2b20982e 3194 int dcs = BTRFS_DC_ERROR;
f8c269d7 3195 u64 num_pages = 0;
0af3d00b
JB
3196 int retries = 0;
3197 int ret = 0;
3198
3199 /*
3200 * If this block group is smaller than 100 megs don't bother caching the
3201 * block group.
3202 */
3203 if (block_group->key.offset < (100 * 1024 * 1024)) {
3204 spin_lock(&block_group->lock);
3205 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3206 spin_unlock(&block_group->lock);
3207 return 0;
3208 }
3209
0c0ef4bc
JB
3210 if (trans->aborted)
3211 return 0;
0af3d00b
JB
3212again:
3213 inode = lookup_free_space_inode(root, block_group, path);
3214 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3215 ret = PTR_ERR(inode);
b3b4aa74 3216 btrfs_release_path(path);
0af3d00b
JB
3217 goto out;
3218 }
3219
3220 if (IS_ERR(inode)) {
3221 BUG_ON(retries);
3222 retries++;
3223
3224 if (block_group->ro)
3225 goto out_free;
3226
3227 ret = create_free_space_inode(root, trans, block_group, path);
3228 if (ret)
3229 goto out_free;
3230 goto again;
3231 }
3232
5b0e95bf
JB
3233 /* We've already setup this transaction, go ahead and exit */
3234 if (block_group->cache_generation == trans->transid &&
3235 i_size_read(inode)) {
3236 dcs = BTRFS_DC_SETUP;
3237 goto out_put;
3238 }
3239
0af3d00b
JB
3240 /*
3241 * We want to set the generation to 0, that way if anything goes wrong
3242 * from here on out we know not to trust this cache when we load up next
3243 * time.
3244 */
3245 BTRFS_I(inode)->generation = 0;
3246 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3247 if (ret) {
3248 /*
3249 * So theoretically we could recover from this, simply set the
3250 * super cache generation to 0 so we know to invalidate the
3251 * cache, but then we'd have to keep track of the block groups
3252 * that fail this way so we know we _have_ to reset this cache
3253 * before the next commit or risk reading stale cache. So to
3254 * limit our exposure to horrible edge cases lets just abort the
3255 * transaction, this only happens in really bad situations
3256 * anyway.
3257 */
3258 btrfs_abort_transaction(trans, root, ret);
3259 goto out_put;
3260 }
0af3d00b
JB
3261 WARN_ON(ret);
3262
3263 if (i_size_read(inode) > 0) {
7b61cd92
MX
3264 ret = btrfs_check_trunc_cache_free_space(root,
3265 &root->fs_info->global_block_rsv);
3266 if (ret)
3267 goto out_put;
3268
1bbc621e 3269 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3270 if (ret)
3271 goto out_put;
3272 }
3273
3274 spin_lock(&block_group->lock);
cf7c1ef6 3275 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3276 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3277 /*
3278 * don't bother trying to write stuff out _if_
3279 * a) we're not cached,
3280 * b) we're with nospace_cache mount option.
3281 */
2b20982e 3282 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3283 spin_unlock(&block_group->lock);
3284 goto out_put;
3285 }
3286 spin_unlock(&block_group->lock);
3287
6fc823b1
JB
3288 /*
3289 * Try to preallocate enough space based on how big the block group is.
3290 * Keep in mind this has to include any pinned space which could end up
3291 * taking up quite a bit since it's not folded into the other space
3292 * cache.
3293 */
f8c269d7 3294 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3295 if (!num_pages)
3296 num_pages = 1;
3297
0af3d00b
JB
3298 num_pages *= 16;
3299 num_pages *= PAGE_CACHE_SIZE;
3300
e2d1f923 3301 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3302 if (ret)
3303 goto out_put;
3304
3305 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3306 num_pages, num_pages,
3307 &alloc_hint);
2b20982e
JB
3308 if (!ret)
3309 dcs = BTRFS_DC_SETUP;
0af3d00b 3310 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3311
0af3d00b
JB
3312out_put:
3313 iput(inode);
3314out_free:
b3b4aa74 3315 btrfs_release_path(path);
0af3d00b
JB
3316out:
3317 spin_lock(&block_group->lock);
e65cbb94 3318 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3319 block_group->cache_generation = trans->transid;
2b20982e 3320 block_group->disk_cache_state = dcs;
0af3d00b
JB
3321 spin_unlock(&block_group->lock);
3322
3323 return ret;
3324}
3325
dcdf7f6d
JB
3326int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3327 struct btrfs_root *root)
3328{
3329 struct btrfs_block_group_cache *cache, *tmp;
3330 struct btrfs_transaction *cur_trans = trans->transaction;
3331 struct btrfs_path *path;
3332
3333 if (list_empty(&cur_trans->dirty_bgs) ||
3334 !btrfs_test_opt(root, SPACE_CACHE))
3335 return 0;
3336
3337 path = btrfs_alloc_path();
3338 if (!path)
3339 return -ENOMEM;
3340
3341 /* Could add new block groups, use _safe just in case */
3342 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3343 dirty_list) {
3344 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3345 cache_save_setup(cache, trans, path);
3346 }
3347
3348 btrfs_free_path(path);
3349 return 0;
3350}
3351
1bbc621e
CM
3352/*
3353 * transaction commit does final block group cache writeback during a
3354 * critical section where nothing is allowed to change the FS. This is
3355 * required in order for the cache to actually match the block group,
3356 * but can introduce a lot of latency into the commit.
3357 *
3358 * So, btrfs_start_dirty_block_groups is here to kick off block group
3359 * cache IO. There's a chance we'll have to redo some of it if the
3360 * block group changes again during the commit, but it greatly reduces
3361 * the commit latency by getting rid of the easy block groups while
3362 * we're still allowing others to join the commit.
3363 */
3364int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3365 struct btrfs_root *root)
9078a3e1 3366{
4a8c9a62 3367 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3368 struct btrfs_transaction *cur_trans = trans->transaction;
3369 int ret = 0;
c9dc4c65 3370 int should_put;
1bbc621e
CM
3371 struct btrfs_path *path = NULL;
3372 LIST_HEAD(dirty);
3373 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3374 int num_started = 0;
1bbc621e
CM
3375 int loops = 0;
3376
3377 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3378 if (list_empty(&cur_trans->dirty_bgs)) {
3379 spin_unlock(&cur_trans->dirty_bgs_lock);
3380 return 0;
1bbc621e 3381 }
b58d1a9e 3382 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3383 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3384
1bbc621e 3385again:
1bbc621e
CM
3386 /*
3387 * make sure all the block groups on our dirty list actually
3388 * exist
3389 */
3390 btrfs_create_pending_block_groups(trans, root);
3391
3392 if (!path) {
3393 path = btrfs_alloc_path();
3394 if (!path)
3395 return -ENOMEM;
3396 }
3397
b58d1a9e
FM
3398 /*
3399 * cache_write_mutex is here only to save us from balance or automatic
3400 * removal of empty block groups deleting this block group while we are
3401 * writing out the cache
3402 */
3403 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3404 while (!list_empty(&dirty)) {
3405 cache = list_first_entry(&dirty,
3406 struct btrfs_block_group_cache,
3407 dirty_list);
1bbc621e
CM
3408 /*
3409 * this can happen if something re-dirties a block
3410 * group that is already under IO. Just wait for it to
3411 * finish and then do it all again
3412 */
3413 if (!list_empty(&cache->io_list)) {
3414 list_del_init(&cache->io_list);
3415 btrfs_wait_cache_io(root, trans, cache,
3416 &cache->io_ctl, path,
3417 cache->key.objectid);
3418 btrfs_put_block_group(cache);
3419 }
3420
3421
3422 /*
3423 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3424 * if it should update the cache_state. Don't delete
3425 * until after we wait.
3426 *
3427 * Since we're not running in the commit critical section
3428 * we need the dirty_bgs_lock to protect from update_block_group
3429 */
3430 spin_lock(&cur_trans->dirty_bgs_lock);
3431 list_del_init(&cache->dirty_list);
3432 spin_unlock(&cur_trans->dirty_bgs_lock);
3433
3434 should_put = 1;
3435
3436 cache_save_setup(cache, trans, path);
3437
3438 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3439 cache->io_ctl.inode = NULL;
3440 ret = btrfs_write_out_cache(root, trans, cache, path);
3441 if (ret == 0 && cache->io_ctl.inode) {
3442 num_started++;
3443 should_put = 0;
3444
3445 /*
3446 * the cache_write_mutex is protecting
3447 * the io_list
3448 */
3449 list_add_tail(&cache->io_list, io);
3450 } else {
3451 /*
3452 * if we failed to write the cache, the
3453 * generation will be bad and life goes on
3454 */
3455 ret = 0;
3456 }
3457 }
ff1f8250 3458 if (!ret) {
1bbc621e 3459 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3460 /*
3461 * Our block group might still be attached to the list
3462 * of new block groups in the transaction handle of some
3463 * other task (struct btrfs_trans_handle->new_bgs). This
3464 * means its block group item isn't yet in the extent
3465 * tree. If this happens ignore the error, as we will
3466 * try again later in the critical section of the
3467 * transaction commit.
3468 */
3469 if (ret == -ENOENT) {
3470 ret = 0;
3471 spin_lock(&cur_trans->dirty_bgs_lock);
3472 if (list_empty(&cache->dirty_list)) {
3473 list_add_tail(&cache->dirty_list,
3474 &cur_trans->dirty_bgs);
3475 btrfs_get_block_group(cache);
3476 }
3477 spin_unlock(&cur_trans->dirty_bgs_lock);
3478 } else if (ret) {
3479 btrfs_abort_transaction(trans, root, ret);
3480 }
3481 }
1bbc621e
CM
3482
3483 /* if its not on the io list, we need to put the block group */
3484 if (should_put)
3485 btrfs_put_block_group(cache);
3486
3487 if (ret)
3488 break;
b58d1a9e
FM
3489
3490 /*
3491 * Avoid blocking other tasks for too long. It might even save
3492 * us from writing caches for block groups that are going to be
3493 * removed.
3494 */
3495 mutex_unlock(&trans->transaction->cache_write_mutex);
3496 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3497 }
b58d1a9e 3498 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3499
3500 /*
3501 * go through delayed refs for all the stuff we've just kicked off
3502 * and then loop back (just once)
3503 */
3504 ret = btrfs_run_delayed_refs(trans, root, 0);
3505 if (!ret && loops == 0) {
3506 loops++;
3507 spin_lock(&cur_trans->dirty_bgs_lock);
3508 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3509 /*
3510 * dirty_bgs_lock protects us from concurrent block group
3511 * deletes too (not just cache_write_mutex).
3512 */
3513 if (!list_empty(&dirty)) {
3514 spin_unlock(&cur_trans->dirty_bgs_lock);
3515 goto again;
3516 }
1bbc621e 3517 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3518 }
3519
3520 btrfs_free_path(path);
3521 return ret;
3522}
3523
3524int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3525 struct btrfs_root *root)
3526{
3527 struct btrfs_block_group_cache *cache;
3528 struct btrfs_transaction *cur_trans = trans->transaction;
3529 int ret = 0;
3530 int should_put;
3531 struct btrfs_path *path;
3532 struct list_head *io = &cur_trans->io_bgs;
3533 int num_started = 0;
9078a3e1
CM
3534
3535 path = btrfs_alloc_path();
3536 if (!path)
3537 return -ENOMEM;
3538
ce93ec54
JB
3539 /*
3540 * We don't need the lock here since we are protected by the transaction
3541 * commit. We want to do the cache_save_setup first and then run the
3542 * delayed refs to make sure we have the best chance at doing this all
3543 * in one shot.
3544 */
3545 while (!list_empty(&cur_trans->dirty_bgs)) {
3546 cache = list_first_entry(&cur_trans->dirty_bgs,
3547 struct btrfs_block_group_cache,
3548 dirty_list);
c9dc4c65
CM
3549
3550 /*
3551 * this can happen if cache_save_setup re-dirties a block
3552 * group that is already under IO. Just wait for it to
3553 * finish and then do it all again
3554 */
3555 if (!list_empty(&cache->io_list)) {
3556 list_del_init(&cache->io_list);
3557 btrfs_wait_cache_io(root, trans, cache,
3558 &cache->io_ctl, path,
3559 cache->key.objectid);
3560 btrfs_put_block_group(cache);
c9dc4c65
CM
3561 }
3562
1bbc621e
CM
3563 /*
3564 * don't remove from the dirty list until after we've waited
3565 * on any pending IO
3566 */
ce93ec54 3567 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3568 should_put = 1;
3569
1bbc621e 3570 cache_save_setup(cache, trans, path);
c9dc4c65 3571
ce93ec54 3572 if (!ret)
c9dc4c65
CM
3573 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3574
3575 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3576 cache->io_ctl.inode = NULL;
3577 ret = btrfs_write_out_cache(root, trans, cache, path);
3578 if (ret == 0 && cache->io_ctl.inode) {
3579 num_started++;
3580 should_put = 0;
1bbc621e 3581 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3582 } else {
3583 /*
3584 * if we failed to write the cache, the
3585 * generation will be bad and life goes on
3586 */
3587 ret = 0;
3588 }
3589 }
ff1f8250 3590 if (!ret) {
ce93ec54 3591 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3592 if (ret)
3593 btrfs_abort_transaction(trans, root, ret);
3594 }
c9dc4c65
CM
3595
3596 /* if its not on the io list, we need to put the block group */
3597 if (should_put)
3598 btrfs_put_block_group(cache);
3599 }
3600
1bbc621e
CM
3601 while (!list_empty(io)) {
3602 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3603 io_list);
3604 list_del_init(&cache->io_list);
c9dc4c65
CM
3605 btrfs_wait_cache_io(root, trans, cache,
3606 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3607 btrfs_put_block_group(cache);
3608 }
3609
9078a3e1 3610 btrfs_free_path(path);
ce93ec54 3611 return ret;
9078a3e1
CM
3612}
3613
d2fb3437
YZ
3614int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3615{
3616 struct btrfs_block_group_cache *block_group;
3617 int readonly = 0;
3618
3619 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3620 if (!block_group || block_group->ro)
3621 readonly = 1;
3622 if (block_group)
fa9c0d79 3623 btrfs_put_block_group(block_group);
d2fb3437
YZ
3624 return readonly;
3625}
3626
6ab0a202
JM
3627static const char *alloc_name(u64 flags)
3628{
3629 switch (flags) {
3630 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3631 return "mixed";
3632 case BTRFS_BLOCK_GROUP_METADATA:
3633 return "metadata";
3634 case BTRFS_BLOCK_GROUP_DATA:
3635 return "data";
3636 case BTRFS_BLOCK_GROUP_SYSTEM:
3637 return "system";
3638 default:
3639 WARN_ON(1);
3640 return "invalid-combination";
3641 };
3642}
3643
593060d7
CM
3644static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3645 u64 total_bytes, u64 bytes_used,
3646 struct btrfs_space_info **space_info)
3647{
3648 struct btrfs_space_info *found;
b742bb82
YZ
3649 int i;
3650 int factor;
b150a4f1 3651 int ret;
b742bb82
YZ
3652
3653 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3654 BTRFS_BLOCK_GROUP_RAID10))
3655 factor = 2;
3656 else
3657 factor = 1;
593060d7
CM
3658
3659 found = __find_space_info(info, flags);
3660 if (found) {
25179201 3661 spin_lock(&found->lock);
593060d7 3662 found->total_bytes += total_bytes;
89a55897 3663 found->disk_total += total_bytes * factor;
593060d7 3664 found->bytes_used += bytes_used;
b742bb82 3665 found->disk_used += bytes_used * factor;
2e6e5183
FM
3666 if (total_bytes > 0)
3667 found->full = 0;
25179201 3668 spin_unlock(&found->lock);
593060d7
CM
3669 *space_info = found;
3670 return 0;
3671 }
c146afad 3672 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3673 if (!found)
3674 return -ENOMEM;
3675
908c7f19 3676 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3677 if (ret) {
3678 kfree(found);
3679 return ret;
3680 }
3681
c1895442 3682 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3683 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3684 init_rwsem(&found->groups_sem);
0f9dd46c 3685 spin_lock_init(&found->lock);
52ba6929 3686 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3687 found->total_bytes = total_bytes;
89a55897 3688 found->disk_total = total_bytes * factor;
593060d7 3689 found->bytes_used = bytes_used;
b742bb82 3690 found->disk_used = bytes_used * factor;
593060d7 3691 found->bytes_pinned = 0;
e8569813 3692 found->bytes_reserved = 0;
c146afad 3693 found->bytes_readonly = 0;
f0486c68 3694 found->bytes_may_use = 0;
2e6e5183
FM
3695 if (total_bytes > 0)
3696 found->full = 0;
3697 else
3698 found->full = 1;
0e4f8f88 3699 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3700 found->chunk_alloc = 0;
fdb5effd
JB
3701 found->flush = 0;
3702 init_waitqueue_head(&found->wait);
633c0aad 3703 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3704
3705 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3706 info->space_info_kobj, "%s",
3707 alloc_name(found->flags));
3708 if (ret) {
3709 kfree(found);
3710 return ret;
3711 }
3712
593060d7 3713 *space_info = found;
4184ea7f 3714 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3715 if (flags & BTRFS_BLOCK_GROUP_DATA)
3716 info->data_sinfo = found;
6ab0a202
JM
3717
3718 return ret;
593060d7
CM
3719}
3720
8790d502
CM
3721static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3722{
899c81ea
ID
3723 u64 extra_flags = chunk_to_extended(flags) &
3724 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3725
de98ced9 3726 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3727 if (flags & BTRFS_BLOCK_GROUP_DATA)
3728 fs_info->avail_data_alloc_bits |= extra_flags;
3729 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3730 fs_info->avail_metadata_alloc_bits |= extra_flags;
3731 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3732 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3733 write_sequnlock(&fs_info->profiles_lock);
8790d502 3734}
593060d7 3735
fc67c450
ID
3736/*
3737 * returns target flags in extended format or 0 if restripe for this
3738 * chunk_type is not in progress
c6664b42
ID
3739 *
3740 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3741 */
3742static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3743{
3744 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3745 u64 target = 0;
3746
fc67c450
ID
3747 if (!bctl)
3748 return 0;
3749
3750 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3751 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3753 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3754 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3755 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3756 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3757 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3758 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3759 }
3760
3761 return target;
3762}
3763
a46d11a8
ID
3764/*
3765 * @flags: available profiles in extended format (see ctree.h)
3766 *
e4d8ec0f
ID
3767 * Returns reduced profile in chunk format. If profile changing is in
3768 * progress (either running or paused) picks the target profile (if it's
3769 * already available), otherwise falls back to plain reducing.
a46d11a8 3770 */
48a3b636 3771static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3772{
95669976 3773 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3774 u64 target;
53b381b3 3775 u64 tmp;
a061fc8d 3776
fc67c450
ID
3777 /*
3778 * see if restripe for this chunk_type is in progress, if so
3779 * try to reduce to the target profile
3780 */
e4d8ec0f 3781 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3782 target = get_restripe_target(root->fs_info, flags);
3783 if (target) {
3784 /* pick target profile only if it's already available */
3785 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3786 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3787 return extended_to_chunk(target);
e4d8ec0f
ID
3788 }
3789 }
3790 spin_unlock(&root->fs_info->balance_lock);
3791
53b381b3 3792 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3793 if (num_devices == 1)
53b381b3
DW
3794 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3795 BTRFS_BLOCK_GROUP_RAID5);
3796 if (num_devices < 3)
3797 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3798 if (num_devices < 4)
3799 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3800
53b381b3
DW
3801 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3802 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3803 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3804 flags &= ~tmp;
ec44a35c 3805
53b381b3
DW
3806 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3807 tmp = BTRFS_BLOCK_GROUP_RAID6;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3809 tmp = BTRFS_BLOCK_GROUP_RAID5;
3810 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3811 tmp = BTRFS_BLOCK_GROUP_RAID10;
3812 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3813 tmp = BTRFS_BLOCK_GROUP_RAID1;
3814 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3815 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3816
53b381b3 3817 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3818}
3819
f8213bdc 3820static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3821{
de98ced9 3822 unsigned seq;
f8213bdc 3823 u64 flags;
de98ced9
MX
3824
3825 do {
f8213bdc 3826 flags = orig_flags;
de98ced9
MX
3827 seq = read_seqbegin(&root->fs_info->profiles_lock);
3828
3829 if (flags & BTRFS_BLOCK_GROUP_DATA)
3830 flags |= root->fs_info->avail_data_alloc_bits;
3831 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3832 flags |= root->fs_info->avail_system_alloc_bits;
3833 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3834 flags |= root->fs_info->avail_metadata_alloc_bits;
3835 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3836
b742bb82 3837 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3838}
3839
6d07bcec 3840u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3841{
b742bb82 3842 u64 flags;
53b381b3 3843 u64 ret;
9ed74f2d 3844
b742bb82
YZ
3845 if (data)
3846 flags = BTRFS_BLOCK_GROUP_DATA;
3847 else if (root == root->fs_info->chunk_root)
3848 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3849 else
b742bb82 3850 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3851
53b381b3
DW
3852 ret = get_alloc_profile(root, flags);
3853 return ret;
6a63209f 3854}
9ed74f2d 3855
6a63209f 3856/*
6a63209f
JB
3857 * This will check the space that the inode allocates from to make sure we have
3858 * enough space for bytes.
6a63209f 3859 */
e2d1f923 3860int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3861{
6a63209f 3862 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3863 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3864 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3865 u64 used;
94b947b2 3866 int ret = 0;
c99f1b0c
ZL
3867 int need_commit = 2;
3868 int have_pinned_space;
6a63209f 3869
6a63209f 3870 /* make sure bytes are sectorsize aligned */
fda2832f 3871 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3872
9dced186 3873 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3874 need_commit = 0;
9dced186 3875 ASSERT(current->journal_info);
0af3d00b
JB
3876 }
3877
b4d7c3c9 3878 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3879 if (!data_sinfo)
3880 goto alloc;
9ed74f2d 3881
6a63209f
JB
3882again:
3883 /* make sure we have enough space to handle the data first */
3884 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3885 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3886 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3887 data_sinfo->bytes_may_use;
ab6e2410
JB
3888
3889 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3890 struct btrfs_trans_handle *trans;
9ed74f2d 3891
6a63209f
JB
3892 /*
3893 * if we don't have enough free bytes in this space then we need
3894 * to alloc a new chunk.
3895 */
b9fd47cd 3896 if (!data_sinfo->full) {
6a63209f 3897 u64 alloc_target;
9ed74f2d 3898
0e4f8f88 3899 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3900 spin_unlock(&data_sinfo->lock);
33b4d47f 3901alloc:
6a63209f 3902 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3903 /*
3904 * It is ugly that we don't call nolock join
3905 * transaction for the free space inode case here.
3906 * But it is safe because we only do the data space
3907 * reservation for the free space cache in the
3908 * transaction context, the common join transaction
3909 * just increase the counter of the current transaction
3910 * handler, doesn't try to acquire the trans_lock of
3911 * the fs.
3912 */
7a7eaa40 3913 trans = btrfs_join_transaction(root);
a22285a6
YZ
3914 if (IS_ERR(trans))
3915 return PTR_ERR(trans);
9ed74f2d 3916
6a63209f 3917 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3918 alloc_target,
3919 CHUNK_ALLOC_NO_FORCE);
6a63209f 3920 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3921 if (ret < 0) {
3922 if (ret != -ENOSPC)
3923 return ret;
c99f1b0c
ZL
3924 else {
3925 have_pinned_space = 1;
d52a5b5f 3926 goto commit_trans;
c99f1b0c 3927 }
d52a5b5f 3928 }
9ed74f2d 3929
b4d7c3c9
LZ
3930 if (!data_sinfo)
3931 data_sinfo = fs_info->data_sinfo;
3932
6a63209f
JB
3933 goto again;
3934 }
f2bb8f5c
JB
3935
3936 /*
b150a4f1 3937 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3938 * allocation, and no removed chunk in current transaction,
3939 * don't bother committing the transaction.
f2bb8f5c 3940 */
c99f1b0c
ZL
3941 have_pinned_space = percpu_counter_compare(
3942 &data_sinfo->total_bytes_pinned,
3943 used + bytes - data_sinfo->total_bytes);
6a63209f 3944 spin_unlock(&data_sinfo->lock);
6a63209f 3945
4e06bdd6 3946 /* commit the current transaction and try again */
d52a5b5f 3947commit_trans:
c99f1b0c 3948 if (need_commit &&
a4abeea4 3949 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 3950 need_commit--;
b150a4f1 3951
7a7eaa40 3952 trans = btrfs_join_transaction(root);
a22285a6
YZ
3953 if (IS_ERR(trans))
3954 return PTR_ERR(trans);
c99f1b0c
ZL
3955 if (have_pinned_space >= 0 ||
3956 trans->transaction->have_free_bgs ||
3957 need_commit > 0) {
94b947b2
ZL
3958 ret = btrfs_commit_transaction(trans, root);
3959 if (ret)
3960 return ret;
d7c15171
ZL
3961 /*
3962 * make sure that all running delayed iput are
3963 * done
3964 */
3965 down_write(&root->fs_info->delayed_iput_sem);
3966 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3967 goto again;
3968 } else {
3969 btrfs_end_transaction(trans, root);
3970 }
4e06bdd6 3971 }
9ed74f2d 3972
cab45e22
JM
3973 trace_btrfs_space_reservation(root->fs_info,
3974 "space_info:enospc",
3975 data_sinfo->flags, bytes, 1);
6a63209f
JB
3976 return -ENOSPC;
3977 }
e2d1f923 3978 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
3979 if (ret)
3980 goto out;
6a63209f 3981 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3982 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3983 data_sinfo->flags, bytes, 1);
237c0e9f 3984out:
6a63209f 3985 spin_unlock(&data_sinfo->lock);
6a63209f 3986
237c0e9f 3987 return ret;
9ed74f2d 3988}
6a63209f 3989
6a63209f 3990/*
fb25e914 3991 * Called if we need to clear a data reservation for this inode.
6a63209f 3992 */
0ca1f7ce 3993void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3994{
0ca1f7ce 3995 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3996 struct btrfs_space_info *data_sinfo;
e3ccfa98 3997
6a63209f 3998 /* make sure bytes are sectorsize aligned */
fda2832f 3999 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4000
b4d7c3c9 4001 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4002 spin_lock(&data_sinfo->lock);
7ee9e440 4003 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4004 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4005 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4006 data_sinfo->flags, bytes, 0);
6a63209f 4007 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4008}
4009
97e728d4 4010static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4011{
97e728d4
JB
4012 struct list_head *head = &info->space_info;
4013 struct btrfs_space_info *found;
e3ccfa98 4014
97e728d4
JB
4015 rcu_read_lock();
4016 list_for_each_entry_rcu(found, head, list) {
4017 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4018 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4019 }
97e728d4 4020 rcu_read_unlock();
e3ccfa98
JB
4021}
4022
3c76cd84
MX
4023static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4024{
4025 return (global->size << 1);
4026}
4027
e5bc2458 4028static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4029 struct btrfs_space_info *sinfo, int force)
32c00aff 4030{
fb25e914 4031 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4032 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4033 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4034 u64 thresh;
e3ccfa98 4035
0e4f8f88
CM
4036 if (force == CHUNK_ALLOC_FORCE)
4037 return 1;
4038
fb25e914
JB
4039 /*
4040 * We need to take into account the global rsv because for all intents
4041 * and purposes it's used space. Don't worry about locking the
4042 * global_rsv, it doesn't change except when the transaction commits.
4043 */
54338b5c 4044 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4045 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4046
0e4f8f88
CM
4047 /*
4048 * in limited mode, we want to have some free space up to
4049 * about 1% of the FS size.
4050 */
4051 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4052 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4053 thresh = max_t(u64, 64 * 1024 * 1024,
4054 div_factor_fine(thresh, 1));
4055
4056 if (num_bytes - num_allocated < thresh)
4057 return 1;
4058 }
0e4f8f88 4059
698d0082 4060 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4061 return 0;
424499db 4062 return 1;
32c00aff
JB
4063}
4064
39c2d7fa 4065static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4066{
4067 u64 num_dev;
4068
53b381b3
DW
4069 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4070 BTRFS_BLOCK_GROUP_RAID0 |
4071 BTRFS_BLOCK_GROUP_RAID5 |
4072 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4073 num_dev = root->fs_info->fs_devices->rw_devices;
4074 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4075 num_dev = 2;
4076 else
4077 num_dev = 1; /* DUP or single */
4078
39c2d7fa 4079 return num_dev;
15d1ff81
LB
4080}
4081
39c2d7fa
FM
4082/*
4083 * If @is_allocation is true, reserve space in the system space info necessary
4084 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4085 * removing a chunk.
4086 */
4087void check_system_chunk(struct btrfs_trans_handle *trans,
4088 struct btrfs_root *root,
4617ea3a 4089 u64 type)
15d1ff81
LB
4090{
4091 struct btrfs_space_info *info;
4092 u64 left;
4093 u64 thresh;
4fbcdf66 4094 int ret = 0;
39c2d7fa 4095 u64 num_devs;
4fbcdf66
FM
4096
4097 /*
4098 * Needed because we can end up allocating a system chunk and for an
4099 * atomic and race free space reservation in the chunk block reserve.
4100 */
4101 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4102
4103 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4104 spin_lock(&info->lock);
4105 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4106 info->bytes_reserved - info->bytes_readonly -
4107 info->bytes_may_use;
15d1ff81
LB
4108 spin_unlock(&info->lock);
4109
39c2d7fa
FM
4110 num_devs = get_profile_num_devs(root, type);
4111
4112 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4113 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4114 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4115
15d1ff81 4116 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4117 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4118 left, thresh, type);
15d1ff81
LB
4119 dump_space_info(info, 0, 0);
4120 }
4121
4122 if (left < thresh) {
4123 u64 flags;
4124
4125 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4126 /*
4127 * Ignore failure to create system chunk. We might end up not
4128 * needing it, as we might not need to COW all nodes/leafs from
4129 * the paths we visit in the chunk tree (they were already COWed
4130 * or created in the current transaction for example).
4131 */
4132 ret = btrfs_alloc_chunk(trans, root, flags);
4133 }
4134
4135 if (!ret) {
4136 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4137 &root->fs_info->chunk_block_rsv,
4138 thresh, BTRFS_RESERVE_NO_FLUSH);
4139 if (!ret)
4140 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4141 }
4142}
4143
6324fbf3 4144static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4145 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4146{
6324fbf3 4147 struct btrfs_space_info *space_info;
97e728d4 4148 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4149 int wait_for_alloc = 0;
9ed74f2d 4150 int ret = 0;
9ed74f2d 4151
c6b305a8
JB
4152 /* Don't re-enter if we're already allocating a chunk */
4153 if (trans->allocating_chunk)
4154 return -ENOSPC;
4155
6324fbf3 4156 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4157 if (!space_info) {
4158 ret = update_space_info(extent_root->fs_info, flags,
4159 0, 0, &space_info);
79787eaa 4160 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4161 }
79787eaa 4162 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4163
6d74119f 4164again:
25179201 4165 spin_lock(&space_info->lock);
9e622d6b 4166 if (force < space_info->force_alloc)
0e4f8f88 4167 force = space_info->force_alloc;
25179201 4168 if (space_info->full) {
09fb99a6
FDBM
4169 if (should_alloc_chunk(extent_root, space_info, force))
4170 ret = -ENOSPC;
4171 else
4172 ret = 0;
25179201 4173 spin_unlock(&space_info->lock);
09fb99a6 4174 return ret;
9ed74f2d
JB
4175 }
4176
698d0082 4177 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4178 spin_unlock(&space_info->lock);
6d74119f
JB
4179 return 0;
4180 } else if (space_info->chunk_alloc) {
4181 wait_for_alloc = 1;
4182 } else {
4183 space_info->chunk_alloc = 1;
9ed74f2d 4184 }
0e4f8f88 4185
25179201 4186 spin_unlock(&space_info->lock);
9ed74f2d 4187
6d74119f
JB
4188 mutex_lock(&fs_info->chunk_mutex);
4189
4190 /*
4191 * The chunk_mutex is held throughout the entirety of a chunk
4192 * allocation, so once we've acquired the chunk_mutex we know that the
4193 * other guy is done and we need to recheck and see if we should
4194 * allocate.
4195 */
4196 if (wait_for_alloc) {
4197 mutex_unlock(&fs_info->chunk_mutex);
4198 wait_for_alloc = 0;
4199 goto again;
4200 }
4201
c6b305a8
JB
4202 trans->allocating_chunk = true;
4203
67377734
JB
4204 /*
4205 * If we have mixed data/metadata chunks we want to make sure we keep
4206 * allocating mixed chunks instead of individual chunks.
4207 */
4208 if (btrfs_mixed_space_info(space_info))
4209 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4210
97e728d4
JB
4211 /*
4212 * if we're doing a data chunk, go ahead and make sure that
4213 * we keep a reasonable number of metadata chunks allocated in the
4214 * FS as well.
4215 */
9ed74f2d 4216 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4217 fs_info->data_chunk_allocations++;
4218 if (!(fs_info->data_chunk_allocations %
4219 fs_info->metadata_ratio))
4220 force_metadata_allocation(fs_info);
9ed74f2d
JB
4221 }
4222
15d1ff81
LB
4223 /*
4224 * Check if we have enough space in SYSTEM chunk because we may need
4225 * to update devices.
4226 */
4617ea3a 4227 check_system_chunk(trans, extent_root, flags);
15d1ff81 4228
2b82032c 4229 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4230 trans->allocating_chunk = false;
92b8e897 4231
9ed74f2d 4232 spin_lock(&space_info->lock);
a81cb9a2
AO
4233 if (ret < 0 && ret != -ENOSPC)
4234 goto out;
9ed74f2d 4235 if (ret)
6324fbf3 4236 space_info->full = 1;
424499db
YZ
4237 else
4238 ret = 1;
6d74119f 4239
0e4f8f88 4240 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4241out:
6d74119f 4242 space_info->chunk_alloc = 0;
9ed74f2d 4243 spin_unlock(&space_info->lock);
a25c75d5 4244 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4245 return ret;
6324fbf3 4246}
9ed74f2d 4247
a80c8dcf
JB
4248static int can_overcommit(struct btrfs_root *root,
4249 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4250 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4251{
96f1bb57 4252 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4253 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4254 u64 space_size;
a80c8dcf
JB
4255 u64 avail;
4256 u64 used;
4257
4258 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4259 space_info->bytes_pinned + space_info->bytes_readonly;
4260
96f1bb57
JB
4261 /*
4262 * We only want to allow over committing if we have lots of actual space
4263 * free, but if we don't have enough space to handle the global reserve
4264 * space then we could end up having a real enospc problem when trying
4265 * to allocate a chunk or some other such important allocation.
4266 */
3c76cd84
MX
4267 spin_lock(&global_rsv->lock);
4268 space_size = calc_global_rsv_need_space(global_rsv);
4269 spin_unlock(&global_rsv->lock);
4270 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4271 return 0;
4272
4273 used += space_info->bytes_may_use;
a80c8dcf
JB
4274
4275 spin_lock(&root->fs_info->free_chunk_lock);
4276 avail = root->fs_info->free_chunk_space;
4277 spin_unlock(&root->fs_info->free_chunk_lock);
4278
4279 /*
4280 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4281 * space is actually useable. For raid56, the space info used
4282 * doesn't include the parity drive, so we don't have to
4283 * change the math
a80c8dcf
JB
4284 */
4285 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4286 BTRFS_BLOCK_GROUP_RAID1 |
4287 BTRFS_BLOCK_GROUP_RAID10))
4288 avail >>= 1;
4289
4290 /*
561c294d
MX
4291 * If we aren't flushing all things, let us overcommit up to
4292 * 1/2th of the space. If we can flush, don't let us overcommit
4293 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4294 */
08e007d2 4295 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4296 avail >>= 3;
a80c8dcf 4297 else
14575aef 4298 avail >>= 1;
a80c8dcf 4299
14575aef 4300 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4301 return 1;
4302 return 0;
4303}
4304
48a3b636 4305static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4306 unsigned long nr_pages, int nr_items)
da633a42
MX
4307{
4308 struct super_block *sb = root->fs_info->sb;
da633a42 4309
925a6efb
JB
4310 if (down_read_trylock(&sb->s_umount)) {
4311 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4312 up_read(&sb->s_umount);
4313 } else {
da633a42
MX
4314 /*
4315 * We needn't worry the filesystem going from r/w to r/o though
4316 * we don't acquire ->s_umount mutex, because the filesystem
4317 * should guarantee the delalloc inodes list be empty after
4318 * the filesystem is readonly(all dirty pages are written to
4319 * the disk).
4320 */
6c255e67 4321 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4322 if (!current->journal_info)
6c255e67 4323 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4324 }
4325}
4326
18cd8ea6
MX
4327static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4328{
4329 u64 bytes;
4330 int nr;
4331
4332 bytes = btrfs_calc_trans_metadata_size(root, 1);
4333 nr = (int)div64_u64(to_reclaim, bytes);
4334 if (!nr)
4335 nr = 1;
4336 return nr;
4337}
4338
c61a16a7
MX
4339#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4340
9ed74f2d 4341/*
5da9d01b 4342 * shrink metadata reservation for delalloc
9ed74f2d 4343 */
f4c738c2
JB
4344static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4345 bool wait_ordered)
5da9d01b 4346{
0ca1f7ce 4347 struct btrfs_block_rsv *block_rsv;
0019f10d 4348 struct btrfs_space_info *space_info;
663350ac 4349 struct btrfs_trans_handle *trans;
f4c738c2 4350 u64 delalloc_bytes;
5da9d01b 4351 u64 max_reclaim;
b1953bce 4352 long time_left;
d3ee29e3
MX
4353 unsigned long nr_pages;
4354 int loops;
b0244199 4355 int items;
08e007d2 4356 enum btrfs_reserve_flush_enum flush;
5da9d01b 4357
c61a16a7 4358 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4359 items = calc_reclaim_items_nr(root, to_reclaim);
4360 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4361
663350ac 4362 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4363 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4364 space_info = block_rsv->space_info;
bf9022e0 4365
963d678b
MX
4366 delalloc_bytes = percpu_counter_sum_positive(
4367 &root->fs_info->delalloc_bytes);
f4c738c2 4368 if (delalloc_bytes == 0) {
fdb5effd 4369 if (trans)
f4c738c2 4370 return;
38c135af 4371 if (wait_ordered)
b0244199 4372 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4373 return;
fdb5effd
JB
4374 }
4375
d3ee29e3 4376 loops = 0;
f4c738c2
JB
4377 while (delalloc_bytes && loops < 3) {
4378 max_reclaim = min(delalloc_bytes, to_reclaim);
4379 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4380 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4381 /*
4382 * We need to wait for the async pages to actually start before
4383 * we do anything.
4384 */
9f3a074d
MX
4385 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4386 if (!max_reclaim)
4387 goto skip_async;
4388
4389 if (max_reclaim <= nr_pages)
4390 max_reclaim = 0;
4391 else
4392 max_reclaim -= nr_pages;
dea31f52 4393
9f3a074d
MX
4394 wait_event(root->fs_info->async_submit_wait,
4395 atomic_read(&root->fs_info->async_delalloc_pages) <=
4396 (int)max_reclaim);
4397skip_async:
08e007d2
MX
4398 if (!trans)
4399 flush = BTRFS_RESERVE_FLUSH_ALL;
4400 else
4401 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4402 spin_lock(&space_info->lock);
08e007d2 4403 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4404 spin_unlock(&space_info->lock);
4405 break;
4406 }
0019f10d 4407 spin_unlock(&space_info->lock);
5da9d01b 4408
36e39c40 4409 loops++;
f104d044 4410 if (wait_ordered && !trans) {
b0244199 4411 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4412 } else {
f4c738c2 4413 time_left = schedule_timeout_killable(1);
f104d044
JB
4414 if (time_left)
4415 break;
4416 }
963d678b
MX
4417 delalloc_bytes = percpu_counter_sum_positive(
4418 &root->fs_info->delalloc_bytes);
5da9d01b 4419 }
5da9d01b
YZ
4420}
4421
663350ac
JB
4422/**
4423 * maybe_commit_transaction - possibly commit the transaction if its ok to
4424 * @root - the root we're allocating for
4425 * @bytes - the number of bytes we want to reserve
4426 * @force - force the commit
8bb8ab2e 4427 *
663350ac
JB
4428 * This will check to make sure that committing the transaction will actually
4429 * get us somewhere and then commit the transaction if it does. Otherwise it
4430 * will return -ENOSPC.
8bb8ab2e 4431 */
663350ac
JB
4432static int may_commit_transaction(struct btrfs_root *root,
4433 struct btrfs_space_info *space_info,
4434 u64 bytes, int force)
4435{
4436 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4437 struct btrfs_trans_handle *trans;
4438
4439 trans = (struct btrfs_trans_handle *)current->journal_info;
4440 if (trans)
4441 return -EAGAIN;
4442
4443 if (force)
4444 goto commit;
4445
4446 /* See if there is enough pinned space to make this reservation */
b150a4f1 4447 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4448 bytes) >= 0)
663350ac 4449 goto commit;
663350ac
JB
4450
4451 /*
4452 * See if there is some space in the delayed insertion reservation for
4453 * this reservation.
4454 */
4455 if (space_info != delayed_rsv->space_info)
4456 return -ENOSPC;
4457
4458 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4459 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4460 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4461 spin_unlock(&delayed_rsv->lock);
4462 return -ENOSPC;
4463 }
4464 spin_unlock(&delayed_rsv->lock);
4465
4466commit:
4467 trans = btrfs_join_transaction(root);
4468 if (IS_ERR(trans))
4469 return -ENOSPC;
4470
4471 return btrfs_commit_transaction(trans, root);
4472}
4473
96c3f433 4474enum flush_state {
67b0fd63
JB
4475 FLUSH_DELAYED_ITEMS_NR = 1,
4476 FLUSH_DELAYED_ITEMS = 2,
4477 FLUSH_DELALLOC = 3,
4478 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4479 ALLOC_CHUNK = 5,
4480 COMMIT_TRANS = 6,
96c3f433
JB
4481};
4482
4483static int flush_space(struct btrfs_root *root,
4484 struct btrfs_space_info *space_info, u64 num_bytes,
4485 u64 orig_bytes, int state)
4486{
4487 struct btrfs_trans_handle *trans;
4488 int nr;
f4c738c2 4489 int ret = 0;
96c3f433
JB
4490
4491 switch (state) {
96c3f433
JB
4492 case FLUSH_DELAYED_ITEMS_NR:
4493 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4494 if (state == FLUSH_DELAYED_ITEMS_NR)
4495 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4496 else
96c3f433 4497 nr = -1;
18cd8ea6 4498
96c3f433
JB
4499 trans = btrfs_join_transaction(root);
4500 if (IS_ERR(trans)) {
4501 ret = PTR_ERR(trans);
4502 break;
4503 }
4504 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4505 btrfs_end_transaction(trans, root);
4506 break;
67b0fd63
JB
4507 case FLUSH_DELALLOC:
4508 case FLUSH_DELALLOC_WAIT:
24af7dd1 4509 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4510 state == FLUSH_DELALLOC_WAIT);
4511 break;
ea658bad
JB
4512 case ALLOC_CHUNK:
4513 trans = btrfs_join_transaction(root);
4514 if (IS_ERR(trans)) {
4515 ret = PTR_ERR(trans);
4516 break;
4517 }
4518 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4519 btrfs_get_alloc_profile(root, 0),
4520 CHUNK_ALLOC_NO_FORCE);
4521 btrfs_end_transaction(trans, root);
4522 if (ret == -ENOSPC)
4523 ret = 0;
4524 break;
96c3f433
JB
4525 case COMMIT_TRANS:
4526 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4527 break;
4528 default:
4529 ret = -ENOSPC;
4530 break;
4531 }
4532
4533 return ret;
4534}
21c7e756
MX
4535
4536static inline u64
4537btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4538 struct btrfs_space_info *space_info)
4539{
4540 u64 used;
4541 u64 expected;
4542 u64 to_reclaim;
4543
4544 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4545 16 * 1024 * 1024);
4546 spin_lock(&space_info->lock);
4547 if (can_overcommit(root, space_info, to_reclaim,
4548 BTRFS_RESERVE_FLUSH_ALL)) {
4549 to_reclaim = 0;
4550 goto out;
4551 }
4552
4553 used = space_info->bytes_used + space_info->bytes_reserved +
4554 space_info->bytes_pinned + space_info->bytes_readonly +
4555 space_info->bytes_may_use;
4556 if (can_overcommit(root, space_info, 1024 * 1024,
4557 BTRFS_RESERVE_FLUSH_ALL))
4558 expected = div_factor_fine(space_info->total_bytes, 95);
4559 else
4560 expected = div_factor_fine(space_info->total_bytes, 90);
4561
4562 if (used > expected)
4563 to_reclaim = used - expected;
4564 else
4565 to_reclaim = 0;
4566 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4567 space_info->bytes_reserved);
4568out:
4569 spin_unlock(&space_info->lock);
4570
4571 return to_reclaim;
4572}
4573
4574static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4575 struct btrfs_fs_info *fs_info, u64 used)
4576{
365c5313
JB
4577 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4578
4579 /* If we're just plain full then async reclaim just slows us down. */
4580 if (space_info->bytes_used >= thresh)
4581 return 0;
4582
4583 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4584 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4585}
4586
4587static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4588 struct btrfs_fs_info *fs_info,
4589 int flush_state)
21c7e756
MX
4590{
4591 u64 used;
4592
4593 spin_lock(&space_info->lock);
25ce459c
LB
4594 /*
4595 * We run out of space and have not got any free space via flush_space,
4596 * so don't bother doing async reclaim.
4597 */
4598 if (flush_state > COMMIT_TRANS && space_info->full) {
4599 spin_unlock(&space_info->lock);
4600 return 0;
4601 }
4602
21c7e756
MX
4603 used = space_info->bytes_used + space_info->bytes_reserved +
4604 space_info->bytes_pinned + space_info->bytes_readonly +
4605 space_info->bytes_may_use;
4606 if (need_do_async_reclaim(space_info, fs_info, used)) {
4607 spin_unlock(&space_info->lock);
4608 return 1;
4609 }
4610 spin_unlock(&space_info->lock);
4611
4612 return 0;
4613}
4614
4615static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4616{
4617 struct btrfs_fs_info *fs_info;
4618 struct btrfs_space_info *space_info;
4619 u64 to_reclaim;
4620 int flush_state;
4621
4622 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4623 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4624
4625 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4626 space_info);
4627 if (!to_reclaim)
4628 return;
4629
4630 flush_state = FLUSH_DELAYED_ITEMS_NR;
4631 do {
4632 flush_space(fs_info->fs_root, space_info, to_reclaim,
4633 to_reclaim, flush_state);
4634 flush_state++;
25ce459c
LB
4635 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4636 flush_state))
21c7e756 4637 return;
365c5313 4638 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4639}
4640
4641void btrfs_init_async_reclaim_work(struct work_struct *work)
4642{
4643 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4644}
4645
4a92b1b8
JB
4646/**
4647 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4648 * @root - the root we're allocating for
4649 * @block_rsv - the block_rsv we're allocating for
4650 * @orig_bytes - the number of bytes we want
48fc7f7e 4651 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4652 *
4a92b1b8
JB
4653 * This will reserve orgi_bytes number of bytes from the space info associated
4654 * with the block_rsv. If there is not enough space it will make an attempt to
4655 * flush out space to make room. It will do this by flushing delalloc if
4656 * possible or committing the transaction. If flush is 0 then no attempts to
4657 * regain reservations will be made and this will fail if there is not enough
4658 * space already.
8bb8ab2e 4659 */
4a92b1b8 4660static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4661 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4662 u64 orig_bytes,
4663 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4664{
f0486c68 4665 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4666 u64 used;
8bb8ab2e 4667 u64 num_bytes = orig_bytes;
67b0fd63 4668 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4669 int ret = 0;
fdb5effd 4670 bool flushing = false;
9ed74f2d 4671
8bb8ab2e 4672again:
fdb5effd 4673 ret = 0;
8bb8ab2e 4674 spin_lock(&space_info->lock);
fdb5effd 4675 /*
08e007d2
MX
4676 * We only want to wait if somebody other than us is flushing and we
4677 * are actually allowed to flush all things.
fdb5effd 4678 */
08e007d2
MX
4679 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4680 space_info->flush) {
fdb5effd
JB
4681 spin_unlock(&space_info->lock);
4682 /*
4683 * If we have a trans handle we can't wait because the flusher
4684 * may have to commit the transaction, which would mean we would
4685 * deadlock since we are waiting for the flusher to finish, but
4686 * hold the current transaction open.
4687 */
663350ac 4688 if (current->journal_info)
fdb5effd 4689 return -EAGAIN;
b9688bb8
AJ
4690 ret = wait_event_killable(space_info->wait, !space_info->flush);
4691 /* Must have been killed, return */
4692 if (ret)
fdb5effd
JB
4693 return -EINTR;
4694
4695 spin_lock(&space_info->lock);
4696 }
4697
4698 ret = -ENOSPC;
2bf64758
JB
4699 used = space_info->bytes_used + space_info->bytes_reserved +
4700 space_info->bytes_pinned + space_info->bytes_readonly +
4701 space_info->bytes_may_use;
9ed74f2d 4702
8bb8ab2e
JB
4703 /*
4704 * The idea here is that we've not already over-reserved the block group
4705 * then we can go ahead and save our reservation first and then start
4706 * flushing if we need to. Otherwise if we've already overcommitted
4707 * lets start flushing stuff first and then come back and try to make
4708 * our reservation.
4709 */
2bf64758
JB
4710 if (used <= space_info->total_bytes) {
4711 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4712 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4713 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4714 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4715 ret = 0;
4716 } else {
4717 /*
4718 * Ok set num_bytes to orig_bytes since we aren't
4719 * overocmmitted, this way we only try and reclaim what
4720 * we need.
4721 */
4722 num_bytes = orig_bytes;
4723 }
4724 } else {
4725 /*
4726 * Ok we're over committed, set num_bytes to the overcommitted
4727 * amount plus the amount of bytes that we need for this
4728 * reservation.
4729 */
2bf64758 4730 num_bytes = used - space_info->total_bytes +
96c3f433 4731 (orig_bytes * 2);
8bb8ab2e 4732 }
9ed74f2d 4733
44734ed1
JB
4734 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4735 space_info->bytes_may_use += orig_bytes;
4736 trace_btrfs_space_reservation(root->fs_info, "space_info",
4737 space_info->flags, orig_bytes,
4738 1);
4739 ret = 0;
2bf64758
JB
4740 }
4741
8bb8ab2e
JB
4742 /*
4743 * Couldn't make our reservation, save our place so while we're trying
4744 * to reclaim space we can actually use it instead of somebody else
4745 * stealing it from us.
08e007d2
MX
4746 *
4747 * We make the other tasks wait for the flush only when we can flush
4748 * all things.
8bb8ab2e 4749 */
72bcd99d 4750 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4751 flushing = true;
4752 space_info->flush = 1;
21c7e756
MX
4753 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4754 used += orig_bytes;
f6acfd50
JB
4755 /*
4756 * We will do the space reservation dance during log replay,
4757 * which means we won't have fs_info->fs_root set, so don't do
4758 * the async reclaim as we will panic.
4759 */
4760 if (!root->fs_info->log_root_recovering &&
4761 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4762 !work_busy(&root->fs_info->async_reclaim_work))
4763 queue_work(system_unbound_wq,
4764 &root->fs_info->async_reclaim_work);
8bb8ab2e 4765 }
f0486c68 4766 spin_unlock(&space_info->lock);
9ed74f2d 4767
08e007d2 4768 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4769 goto out;
f0486c68 4770
96c3f433
JB
4771 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4772 flush_state);
4773 flush_state++;
08e007d2
MX
4774
4775 /*
4776 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4777 * would happen. So skip delalloc flush.
4778 */
4779 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4780 (flush_state == FLUSH_DELALLOC ||
4781 flush_state == FLUSH_DELALLOC_WAIT))
4782 flush_state = ALLOC_CHUNK;
4783
96c3f433 4784 if (!ret)
8bb8ab2e 4785 goto again;
08e007d2
MX
4786 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4787 flush_state < COMMIT_TRANS)
4788 goto again;
4789 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4790 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4791 goto again;
4792
4793out:
5d80366e
JB
4794 if (ret == -ENOSPC &&
4795 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4796 struct btrfs_block_rsv *global_rsv =
4797 &root->fs_info->global_block_rsv;
4798
4799 if (block_rsv != global_rsv &&
4800 !block_rsv_use_bytes(global_rsv, orig_bytes))
4801 ret = 0;
4802 }
cab45e22
JM
4803 if (ret == -ENOSPC)
4804 trace_btrfs_space_reservation(root->fs_info,
4805 "space_info:enospc",
4806 space_info->flags, orig_bytes, 1);
fdb5effd 4807 if (flushing) {
8bb8ab2e 4808 spin_lock(&space_info->lock);
fdb5effd
JB
4809 space_info->flush = 0;
4810 wake_up_all(&space_info->wait);
8bb8ab2e 4811 spin_unlock(&space_info->lock);
f0486c68 4812 }
f0486c68
YZ
4813 return ret;
4814}
4815
79787eaa
JM
4816static struct btrfs_block_rsv *get_block_rsv(
4817 const struct btrfs_trans_handle *trans,
4818 const struct btrfs_root *root)
f0486c68 4819{
4c13d758
JB
4820 struct btrfs_block_rsv *block_rsv = NULL;
4821
27cdeb70 4822 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4823 block_rsv = trans->block_rsv;
4824
4825 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4826 block_rsv = trans->block_rsv;
4c13d758 4827
f7a81ea4
SB
4828 if (root == root->fs_info->uuid_root)
4829 block_rsv = trans->block_rsv;
4830
4c13d758 4831 if (!block_rsv)
f0486c68
YZ
4832 block_rsv = root->block_rsv;
4833
4834 if (!block_rsv)
4835 block_rsv = &root->fs_info->empty_block_rsv;
4836
4837 return block_rsv;
4838}
4839
4840static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4841 u64 num_bytes)
4842{
4843 int ret = -ENOSPC;
4844 spin_lock(&block_rsv->lock);
4845 if (block_rsv->reserved >= num_bytes) {
4846 block_rsv->reserved -= num_bytes;
4847 if (block_rsv->reserved < block_rsv->size)
4848 block_rsv->full = 0;
4849 ret = 0;
4850 }
4851 spin_unlock(&block_rsv->lock);
4852 return ret;
4853}
4854
4855static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4856 u64 num_bytes, int update_size)
4857{
4858 spin_lock(&block_rsv->lock);
4859 block_rsv->reserved += num_bytes;
4860 if (update_size)
4861 block_rsv->size += num_bytes;
4862 else if (block_rsv->reserved >= block_rsv->size)
4863 block_rsv->full = 1;
4864 spin_unlock(&block_rsv->lock);
4865}
4866
d52be818
JB
4867int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4868 struct btrfs_block_rsv *dest, u64 num_bytes,
4869 int min_factor)
4870{
4871 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4872 u64 min_bytes;
4873
4874 if (global_rsv->space_info != dest->space_info)
4875 return -ENOSPC;
4876
4877 spin_lock(&global_rsv->lock);
4878 min_bytes = div_factor(global_rsv->size, min_factor);
4879 if (global_rsv->reserved < min_bytes + num_bytes) {
4880 spin_unlock(&global_rsv->lock);
4881 return -ENOSPC;
4882 }
4883 global_rsv->reserved -= num_bytes;
4884 if (global_rsv->reserved < global_rsv->size)
4885 global_rsv->full = 0;
4886 spin_unlock(&global_rsv->lock);
4887
4888 block_rsv_add_bytes(dest, num_bytes, 1);
4889 return 0;
4890}
4891
8c2a3ca2
JB
4892static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4893 struct btrfs_block_rsv *block_rsv,
62a45b60 4894 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4895{
4896 struct btrfs_space_info *space_info = block_rsv->space_info;
4897
4898 spin_lock(&block_rsv->lock);
4899 if (num_bytes == (u64)-1)
4900 num_bytes = block_rsv->size;
4901 block_rsv->size -= num_bytes;
4902 if (block_rsv->reserved >= block_rsv->size) {
4903 num_bytes = block_rsv->reserved - block_rsv->size;
4904 block_rsv->reserved = block_rsv->size;
4905 block_rsv->full = 1;
4906 } else {
4907 num_bytes = 0;
4908 }
4909 spin_unlock(&block_rsv->lock);
4910
4911 if (num_bytes > 0) {
4912 if (dest) {
e9e22899
JB
4913 spin_lock(&dest->lock);
4914 if (!dest->full) {
4915 u64 bytes_to_add;
4916
4917 bytes_to_add = dest->size - dest->reserved;
4918 bytes_to_add = min(num_bytes, bytes_to_add);
4919 dest->reserved += bytes_to_add;
4920 if (dest->reserved >= dest->size)
4921 dest->full = 1;
4922 num_bytes -= bytes_to_add;
4923 }
4924 spin_unlock(&dest->lock);
4925 }
4926 if (num_bytes) {
f0486c68 4927 spin_lock(&space_info->lock);
fb25e914 4928 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4929 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4930 space_info->flags, num_bytes, 0);
f0486c68 4931 spin_unlock(&space_info->lock);
4e06bdd6 4932 }
9ed74f2d 4933 }
f0486c68 4934}
4e06bdd6 4935
f0486c68
YZ
4936static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4937 struct btrfs_block_rsv *dst, u64 num_bytes)
4938{
4939 int ret;
9ed74f2d 4940
f0486c68
YZ
4941 ret = block_rsv_use_bytes(src, num_bytes);
4942 if (ret)
4943 return ret;
9ed74f2d 4944
f0486c68 4945 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4946 return 0;
4947}
4948
66d8f3dd 4949void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4950{
f0486c68
YZ
4951 memset(rsv, 0, sizeof(*rsv));
4952 spin_lock_init(&rsv->lock);
66d8f3dd 4953 rsv->type = type;
f0486c68
YZ
4954}
4955
66d8f3dd
MX
4956struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4957 unsigned short type)
f0486c68
YZ
4958{
4959 struct btrfs_block_rsv *block_rsv;
4960 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4961
f0486c68
YZ
4962 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4963 if (!block_rsv)
4964 return NULL;
9ed74f2d 4965
66d8f3dd 4966 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4967 block_rsv->space_info = __find_space_info(fs_info,
4968 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4969 return block_rsv;
4970}
9ed74f2d 4971
f0486c68
YZ
4972void btrfs_free_block_rsv(struct btrfs_root *root,
4973 struct btrfs_block_rsv *rsv)
4974{
2aaa6655
JB
4975 if (!rsv)
4976 return;
dabdb640
JB
4977 btrfs_block_rsv_release(root, rsv, (u64)-1);
4978 kfree(rsv);
9ed74f2d
JB
4979}
4980
cdfb080e
CM
4981void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4982{
4983 kfree(rsv);
4984}
4985
08e007d2
MX
4986int btrfs_block_rsv_add(struct btrfs_root *root,
4987 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4988 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4989{
f0486c68 4990 int ret;
9ed74f2d 4991
f0486c68
YZ
4992 if (num_bytes == 0)
4993 return 0;
8bb8ab2e 4994
61b520a9 4995 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4996 if (!ret) {
4997 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4998 return 0;
4999 }
9ed74f2d 5000
f0486c68 5001 return ret;
f0486c68 5002}
9ed74f2d 5003
4a92b1b8 5004int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5005 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5006{
5007 u64 num_bytes = 0;
f0486c68 5008 int ret = -ENOSPC;
9ed74f2d 5009
f0486c68
YZ
5010 if (!block_rsv)
5011 return 0;
9ed74f2d 5012
f0486c68 5013 spin_lock(&block_rsv->lock);
36ba022a
JB
5014 num_bytes = div_factor(block_rsv->size, min_factor);
5015 if (block_rsv->reserved >= num_bytes)
5016 ret = 0;
5017 spin_unlock(&block_rsv->lock);
9ed74f2d 5018
36ba022a
JB
5019 return ret;
5020}
5021
08e007d2
MX
5022int btrfs_block_rsv_refill(struct btrfs_root *root,
5023 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5024 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5025{
5026 u64 num_bytes = 0;
5027 int ret = -ENOSPC;
5028
5029 if (!block_rsv)
5030 return 0;
5031
5032 spin_lock(&block_rsv->lock);
5033 num_bytes = min_reserved;
13553e52 5034 if (block_rsv->reserved >= num_bytes)
f0486c68 5035 ret = 0;
13553e52 5036 else
f0486c68 5037 num_bytes -= block_rsv->reserved;
f0486c68 5038 spin_unlock(&block_rsv->lock);
13553e52 5039
f0486c68
YZ
5040 if (!ret)
5041 return 0;
5042
aa38a711 5043 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5044 if (!ret) {
5045 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5046 return 0;
6a63209f 5047 }
9ed74f2d 5048
13553e52 5049 return ret;
f0486c68
YZ
5050}
5051
5052int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5053 struct btrfs_block_rsv *dst_rsv,
5054 u64 num_bytes)
5055{
5056 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5057}
5058
5059void btrfs_block_rsv_release(struct btrfs_root *root,
5060 struct btrfs_block_rsv *block_rsv,
5061 u64 num_bytes)
5062{
5063 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5064 if (global_rsv == block_rsv ||
f0486c68
YZ
5065 block_rsv->space_info != global_rsv->space_info)
5066 global_rsv = NULL;
8c2a3ca2
JB
5067 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5068 num_bytes);
6a63209f
JB
5069}
5070
5071/*
8929ecfa
YZ
5072 * helper to calculate size of global block reservation.
5073 * the desired value is sum of space used by extent tree,
5074 * checksum tree and root tree
6a63209f 5075 */
8929ecfa 5076static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5077{
8929ecfa
YZ
5078 struct btrfs_space_info *sinfo;
5079 u64 num_bytes;
5080 u64 meta_used;
5081 u64 data_used;
6c41761f 5082 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5083
8929ecfa
YZ
5084 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5085 spin_lock(&sinfo->lock);
5086 data_used = sinfo->bytes_used;
5087 spin_unlock(&sinfo->lock);
33b4d47f 5088
8929ecfa
YZ
5089 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5090 spin_lock(&sinfo->lock);
6d48755d
JB
5091 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5092 data_used = 0;
8929ecfa
YZ
5093 meta_used = sinfo->bytes_used;
5094 spin_unlock(&sinfo->lock);
ab6e2410 5095
8929ecfa
YZ
5096 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5097 csum_size * 2;
f8c269d7 5098 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5099
8929ecfa 5100 if (num_bytes * 3 > meta_used)
f8c269d7 5101 num_bytes = div_u64(meta_used, 3);
ab6e2410 5102
707e8a07 5103 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5104}
6a63209f 5105
8929ecfa
YZ
5106static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5107{
5108 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5109 struct btrfs_space_info *sinfo = block_rsv->space_info;
5110 u64 num_bytes;
6a63209f 5111
8929ecfa 5112 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5113
8929ecfa 5114 spin_lock(&sinfo->lock);
1f699d38 5115 spin_lock(&block_rsv->lock);
4e06bdd6 5116
fdf30d1c 5117 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5118
8929ecfa 5119 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5120 sinfo->bytes_reserved + sinfo->bytes_readonly +
5121 sinfo->bytes_may_use;
8929ecfa
YZ
5122
5123 if (sinfo->total_bytes > num_bytes) {
5124 num_bytes = sinfo->total_bytes - num_bytes;
5125 block_rsv->reserved += num_bytes;
fb25e914 5126 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5127 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5128 sinfo->flags, num_bytes, 1);
6a63209f 5129 }
6a63209f 5130
8929ecfa
YZ
5131 if (block_rsv->reserved >= block_rsv->size) {
5132 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5133 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5134 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5135 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5136 block_rsv->reserved = block_rsv->size;
5137 block_rsv->full = 1;
5138 }
182608c8 5139
8929ecfa 5140 spin_unlock(&block_rsv->lock);
1f699d38 5141 spin_unlock(&sinfo->lock);
6a63209f
JB
5142}
5143
f0486c68 5144static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5145{
f0486c68 5146 struct btrfs_space_info *space_info;
6a63209f 5147
f0486c68
YZ
5148 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5149 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5150
f0486c68 5151 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5152 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5153 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5154 fs_info->trans_block_rsv.space_info = space_info;
5155 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5156 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5157
8929ecfa
YZ
5158 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5159 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5160 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5161 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5162 if (fs_info->quota_root)
5163 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5164 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5165
8929ecfa 5166 update_global_block_rsv(fs_info);
6a63209f
JB
5167}
5168
8929ecfa 5169static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5170{
8c2a3ca2
JB
5171 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5172 (u64)-1);
8929ecfa
YZ
5173 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5174 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5175 WARN_ON(fs_info->trans_block_rsv.size > 0);
5176 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5177 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5178 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5179 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5180 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5181}
5182
a22285a6
YZ
5183void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5184 struct btrfs_root *root)
6a63209f 5185{
0e721106
JB
5186 if (!trans->block_rsv)
5187 return;
5188
a22285a6
YZ
5189 if (!trans->bytes_reserved)
5190 return;
6a63209f 5191
e77266e4 5192 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5193 trans->transid, trans->bytes_reserved, 0);
b24e03db 5194 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5195 trans->bytes_reserved = 0;
5196}
6a63209f 5197
4fbcdf66
FM
5198/*
5199 * To be called after all the new block groups attached to the transaction
5200 * handle have been created (btrfs_create_pending_block_groups()).
5201 */
5202void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5203{
5204 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5205
5206 if (!trans->chunk_bytes_reserved)
5207 return;
5208
5209 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5210
5211 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5212 trans->chunk_bytes_reserved);
5213 trans->chunk_bytes_reserved = 0;
5214}
5215
79787eaa 5216/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5217int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5218 struct inode *inode)
5219{
5220 struct btrfs_root *root = BTRFS_I(inode)->root;
5221 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5222 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5223
5224 /*
fcb80c2a
JB
5225 * We need to hold space in order to delete our orphan item once we've
5226 * added it, so this takes the reservation so we can release it later
5227 * when we are truly done with the orphan item.
d68fc57b 5228 */
ff5714cc 5229 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5230 trace_btrfs_space_reservation(root->fs_info, "orphan",
5231 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5232 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5233}
5234
d68fc57b 5235void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5236{
d68fc57b 5237 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5238 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5239 trace_btrfs_space_reservation(root->fs_info, "orphan",
5240 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5241 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5242}
97e728d4 5243
d5c12070
MX
5244/*
5245 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5246 * root: the root of the parent directory
5247 * rsv: block reservation
5248 * items: the number of items that we need do reservation
5249 * qgroup_reserved: used to return the reserved size in qgroup
5250 *
5251 * This function is used to reserve the space for snapshot/subvolume
5252 * creation and deletion. Those operations are different with the
5253 * common file/directory operations, they change two fs/file trees
5254 * and root tree, the number of items that the qgroup reserves is
5255 * different with the free space reservation. So we can not use
5256 * the space reseravtion mechanism in start_transaction().
5257 */
5258int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5259 struct btrfs_block_rsv *rsv,
5260 int items,
ee3441b4
JM
5261 u64 *qgroup_reserved,
5262 bool use_global_rsv)
a22285a6 5263{
d5c12070
MX
5264 u64 num_bytes;
5265 int ret;
ee3441b4 5266 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5267
5268 if (root->fs_info->quota_enabled) {
5269 /* One for parent inode, two for dir entries */
707e8a07 5270 num_bytes = 3 * root->nodesize;
d5c12070
MX
5271 ret = btrfs_qgroup_reserve(root, num_bytes);
5272 if (ret)
5273 return ret;
5274 } else {
5275 num_bytes = 0;
5276 }
5277
5278 *qgroup_reserved = num_bytes;
5279
5280 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5281 rsv->space_info = __find_space_info(root->fs_info,
5282 BTRFS_BLOCK_GROUP_METADATA);
5283 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5284 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5285
5286 if (ret == -ENOSPC && use_global_rsv)
5287 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5288
d5c12070
MX
5289 if (ret) {
5290 if (*qgroup_reserved)
5291 btrfs_qgroup_free(root, *qgroup_reserved);
5292 }
5293
5294 return ret;
5295}
5296
5297void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5298 struct btrfs_block_rsv *rsv,
5299 u64 qgroup_reserved)
5300{
5301 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5302}
5303
7709cde3
JB
5304/**
5305 * drop_outstanding_extent - drop an outstanding extent
5306 * @inode: the inode we're dropping the extent for
dcab6a3b 5307 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5308 *
5309 * This is called when we are freeing up an outstanding extent, either called
5310 * after an error or after an extent is written. This will return the number of
5311 * reserved extents that need to be freed. This must be called with
5312 * BTRFS_I(inode)->lock held.
5313 */
dcab6a3b 5314static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5315{
7fd2ae21 5316 unsigned drop_inode_space = 0;
9e0baf60 5317 unsigned dropped_extents = 0;
dcab6a3b 5318 unsigned num_extents = 0;
9e0baf60 5319
dcab6a3b
JB
5320 num_extents = (unsigned)div64_u64(num_bytes +
5321 BTRFS_MAX_EXTENT_SIZE - 1,
5322 BTRFS_MAX_EXTENT_SIZE);
5323 ASSERT(num_extents);
5324 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5325 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5326
7fd2ae21 5327 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5328 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5329 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5330 drop_inode_space = 1;
7fd2ae21 5331
9e0baf60
JB
5332 /*
5333 * If we have more or the same amount of outsanding extents than we have
5334 * reserved then we need to leave the reserved extents count alone.
5335 */
5336 if (BTRFS_I(inode)->outstanding_extents >=
5337 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5338 return drop_inode_space;
9e0baf60
JB
5339
5340 dropped_extents = BTRFS_I(inode)->reserved_extents -
5341 BTRFS_I(inode)->outstanding_extents;
5342 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5343 return dropped_extents + drop_inode_space;
9e0baf60
JB
5344}
5345
7709cde3
JB
5346/**
5347 * calc_csum_metadata_size - return the amount of metada space that must be
5348 * reserved/free'd for the given bytes.
5349 * @inode: the inode we're manipulating
5350 * @num_bytes: the number of bytes in question
5351 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5352 *
5353 * This adjusts the number of csum_bytes in the inode and then returns the
5354 * correct amount of metadata that must either be reserved or freed. We
5355 * calculate how many checksums we can fit into one leaf and then divide the
5356 * number of bytes that will need to be checksumed by this value to figure out
5357 * how many checksums will be required. If we are adding bytes then the number
5358 * may go up and we will return the number of additional bytes that must be
5359 * reserved. If it is going down we will return the number of bytes that must
5360 * be freed.
5361 *
5362 * This must be called with BTRFS_I(inode)->lock held.
5363 */
5364static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5365 int reserve)
6324fbf3 5366{
7709cde3 5367 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5368 u64 old_csums, num_csums;
7709cde3
JB
5369
5370 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5371 BTRFS_I(inode)->csum_bytes == 0)
5372 return 0;
5373
28f75a0e 5374 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5375 if (reserve)
5376 BTRFS_I(inode)->csum_bytes += num_bytes;
5377 else
5378 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5379 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5380
5381 /* No change, no need to reserve more */
5382 if (old_csums == num_csums)
5383 return 0;
5384
5385 if (reserve)
5386 return btrfs_calc_trans_metadata_size(root,
5387 num_csums - old_csums);
5388
5389 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5390}
c146afad 5391
0ca1f7ce
YZ
5392int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5393{
5394 struct btrfs_root *root = BTRFS_I(inode)->root;
5395 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5396 u64 to_reserve = 0;
660d3f6c 5397 u64 csum_bytes;
9e0baf60 5398 unsigned nr_extents = 0;
660d3f6c 5399 int extra_reserve = 0;
08e007d2 5400 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5401 int ret = 0;
c64c2bd8 5402 bool delalloc_lock = true;
88e081bf
WS
5403 u64 to_free = 0;
5404 unsigned dropped;
6324fbf3 5405
c64c2bd8
JB
5406 /* If we are a free space inode we need to not flush since we will be in
5407 * the middle of a transaction commit. We also don't need the delalloc
5408 * mutex since we won't race with anybody. We need this mostly to make
5409 * lockdep shut its filthy mouth.
5410 */
5411 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5412 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5413 delalloc_lock = false;
5414 }
c09544e0 5415
08e007d2
MX
5416 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5417 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5418 schedule_timeout(1);
ec44a35c 5419
c64c2bd8
JB
5420 if (delalloc_lock)
5421 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5422
0ca1f7ce 5423 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5424
9e0baf60 5425 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5426 nr_extents = (unsigned)div64_u64(num_bytes +
5427 BTRFS_MAX_EXTENT_SIZE - 1,
5428 BTRFS_MAX_EXTENT_SIZE);
5429 BTRFS_I(inode)->outstanding_extents += nr_extents;
5430 nr_extents = 0;
9e0baf60
JB
5431
5432 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5433 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5434 nr_extents = BTRFS_I(inode)->outstanding_extents -
5435 BTRFS_I(inode)->reserved_extents;
57a45ced 5436
7fd2ae21
JB
5437 /*
5438 * Add an item to reserve for updating the inode when we complete the
5439 * delalloc io.
5440 */
72ac3c0d
JB
5441 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5442 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5443 nr_extents++;
660d3f6c 5444 extra_reserve = 1;
593060d7 5445 }
7fd2ae21
JB
5446
5447 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5448 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5449 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5450 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5451
88e081bf 5452 if (root->fs_info->quota_enabled) {
237c0e9f 5453 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5454 if (ret)
5455 goto out_fail;
5456 }
c5567237 5457
88e081bf
WS
5458 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5459 if (unlikely(ret)) {
5460 if (root->fs_info->quota_enabled)
237c0e9f 5461 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5462 goto out_fail;
9e0baf60 5463 }
25179201 5464
660d3f6c
JB
5465 spin_lock(&BTRFS_I(inode)->lock);
5466 if (extra_reserve) {
72ac3c0d
JB
5467 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5468 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5469 nr_extents--;
5470 }
5471 BTRFS_I(inode)->reserved_extents += nr_extents;
5472 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5473
5474 if (delalloc_lock)
5475 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5476
8c2a3ca2 5477 if (to_reserve)
67871254 5478 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5479 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5480 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5481
0ca1f7ce 5482 return 0;
88e081bf
WS
5483
5484out_fail:
5485 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5486 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5487 /*
5488 * If the inodes csum_bytes is the same as the original
5489 * csum_bytes then we know we haven't raced with any free()ers
5490 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5491 */
f4881bc7 5492 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5493 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5494 } else {
5495 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5496 u64 bytes;
5497
5498 /*
5499 * This is tricky, but first we need to figure out how much we
5500 * free'd from any free-ers that occured during this
5501 * reservation, so we reset ->csum_bytes to the csum_bytes
5502 * before we dropped our lock, and then call the free for the
5503 * number of bytes that were freed while we were trying our
5504 * reservation.
5505 */
5506 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5507 BTRFS_I(inode)->csum_bytes = csum_bytes;
5508 to_free = calc_csum_metadata_size(inode, bytes, 0);
5509
5510
5511 /*
5512 * Now we need to see how much we would have freed had we not
5513 * been making this reservation and our ->csum_bytes were not
5514 * artificially inflated.
5515 */
5516 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5517 bytes = csum_bytes - orig_csum_bytes;
5518 bytes = calc_csum_metadata_size(inode, bytes, 0);
5519
5520 /*
5521 * Now reset ->csum_bytes to what it should be. If bytes is
5522 * more than to_free then we would have free'd more space had we
5523 * not had an artificially high ->csum_bytes, so we need to free
5524 * the remainder. If bytes is the same or less then we don't
5525 * need to do anything, the other free-ers did the correct
5526 * thing.
5527 */
5528 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5529 if (bytes > to_free)
5530 to_free = bytes - to_free;
5531 else
5532 to_free = 0;
5533 }
88e081bf 5534 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5535 if (dropped)
88e081bf
WS
5536 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5537
5538 if (to_free) {
5539 btrfs_block_rsv_release(root, block_rsv, to_free);
5540 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5541 btrfs_ino(inode), to_free, 0);
5542 }
5543 if (delalloc_lock)
5544 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5545 return ret;
0ca1f7ce
YZ
5546}
5547
7709cde3
JB
5548/**
5549 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5550 * @inode: the inode to release the reservation for
5551 * @num_bytes: the number of bytes we're releasing
5552 *
5553 * This will release the metadata reservation for an inode. This can be called
5554 * once we complete IO for a given set of bytes to release their metadata
5555 * reservations.
5556 */
0ca1f7ce
YZ
5557void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5558{
5559 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5560 u64 to_free = 0;
5561 unsigned dropped;
0ca1f7ce
YZ
5562
5563 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5564 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5565 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5566
0934856d
MX
5567 if (num_bytes)
5568 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5569 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5570 if (dropped > 0)
5571 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5572
6a3891c5
JB
5573 if (btrfs_test_is_dummy_root(root))
5574 return;
5575
8c2a3ca2
JB
5576 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5577 btrfs_ino(inode), to_free, 0);
c5567237 5578
0ca1f7ce
YZ
5579 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5580 to_free);
5581}
5582
7709cde3
JB
5583/**
5584 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5585 * @inode: inode we're writing to
5586 * @num_bytes: the number of bytes we want to allocate
5587 *
5588 * This will do the following things
5589 *
5590 * o reserve space in the data space info for num_bytes
5591 * o reserve space in the metadata space info based on number of outstanding
5592 * extents and how much csums will be needed
5593 * o add to the inodes ->delalloc_bytes
5594 * o add it to the fs_info's delalloc inodes list.
5595 *
5596 * This will return 0 for success and -ENOSPC if there is no space left.
5597 */
0ca1f7ce
YZ
5598int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5599{
5600 int ret;
5601
e2d1f923 5602 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5603 if (ret)
0ca1f7ce
YZ
5604 return ret;
5605
5606 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5607 if (ret) {
5608 btrfs_free_reserved_data_space(inode, num_bytes);
5609 return ret;
5610 }
5611
5612 return 0;
5613}
5614
7709cde3
JB
5615/**
5616 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5617 * @inode: inode we're releasing space for
5618 * @num_bytes: the number of bytes we want to free up
5619 *
5620 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5621 * called in the case that we don't need the metadata AND data reservations
5622 * anymore. So if there is an error or we insert an inline extent.
5623 *
5624 * This function will release the metadata space that was not used and will
5625 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5626 * list if there are no delalloc bytes left.
5627 */
0ca1f7ce
YZ
5628void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5629{
5630 btrfs_delalloc_release_metadata(inode, num_bytes);
5631 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5632}
5633
ce93ec54
JB
5634static int update_block_group(struct btrfs_trans_handle *trans,
5635 struct btrfs_root *root, u64 bytenr,
5636 u64 num_bytes, int alloc)
9078a3e1 5637{
0af3d00b 5638 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5639 struct btrfs_fs_info *info = root->fs_info;
db94535d 5640 u64 total = num_bytes;
9078a3e1 5641 u64 old_val;
db94535d 5642 u64 byte_in_group;
0af3d00b 5643 int factor;
3e1ad54f 5644
5d4f98a2 5645 /* block accounting for super block */
eb73c1b7 5646 spin_lock(&info->delalloc_root_lock);
6c41761f 5647 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5648 if (alloc)
5649 old_val += num_bytes;
5650 else
5651 old_val -= num_bytes;
6c41761f 5652 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5653 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5654
d397712b 5655 while (total) {
db94535d 5656 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5657 if (!cache)
79787eaa 5658 return -ENOENT;
b742bb82
YZ
5659 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5660 BTRFS_BLOCK_GROUP_RAID1 |
5661 BTRFS_BLOCK_GROUP_RAID10))
5662 factor = 2;
5663 else
5664 factor = 1;
9d66e233
JB
5665 /*
5666 * If this block group has free space cache written out, we
5667 * need to make sure to load it if we are removing space. This
5668 * is because we need the unpinning stage to actually add the
5669 * space back to the block group, otherwise we will leak space.
5670 */
5671 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5672 cache_block_group(cache, 1);
0af3d00b 5673
db94535d
CM
5674 byte_in_group = bytenr - cache->key.objectid;
5675 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5676
25179201 5677 spin_lock(&cache->space_info->lock);
c286ac48 5678 spin_lock(&cache->lock);
0af3d00b 5679
73bc1876 5680 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5681 cache->disk_cache_state < BTRFS_DC_CLEAR)
5682 cache->disk_cache_state = BTRFS_DC_CLEAR;
5683
9078a3e1 5684 old_val = btrfs_block_group_used(&cache->item);
db94535d 5685 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5686 if (alloc) {
db94535d 5687 old_val += num_bytes;
11833d66
YZ
5688 btrfs_set_block_group_used(&cache->item, old_val);
5689 cache->reserved -= num_bytes;
11833d66 5690 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5691 cache->space_info->bytes_used += num_bytes;
5692 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5693 spin_unlock(&cache->lock);
25179201 5694 spin_unlock(&cache->space_info->lock);
cd1bc465 5695 } else {
db94535d 5696 old_val -= num_bytes;
ae0ab003
FM
5697 btrfs_set_block_group_used(&cache->item, old_val);
5698 cache->pinned += num_bytes;
5699 cache->space_info->bytes_pinned += num_bytes;
5700 cache->space_info->bytes_used -= num_bytes;
5701 cache->space_info->disk_used -= num_bytes * factor;
5702 spin_unlock(&cache->lock);
5703 spin_unlock(&cache->space_info->lock);
47ab2a6c 5704
ae0ab003
FM
5705 set_extent_dirty(info->pinned_extents,
5706 bytenr, bytenr + num_bytes - 1,
5707 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5708 /*
5709 * No longer have used bytes in this block group, queue
5710 * it for deletion.
5711 */
5712 if (old_val == 0) {
5713 spin_lock(&info->unused_bgs_lock);
5714 if (list_empty(&cache->bg_list)) {
5715 btrfs_get_block_group(cache);
5716 list_add_tail(&cache->bg_list,
5717 &info->unused_bgs);
5718 }
5719 spin_unlock(&info->unused_bgs_lock);
5720 }
cd1bc465 5721 }
1bbc621e
CM
5722
5723 spin_lock(&trans->transaction->dirty_bgs_lock);
5724 if (list_empty(&cache->dirty_list)) {
5725 list_add_tail(&cache->dirty_list,
5726 &trans->transaction->dirty_bgs);
5727 trans->transaction->num_dirty_bgs++;
5728 btrfs_get_block_group(cache);
5729 }
5730 spin_unlock(&trans->transaction->dirty_bgs_lock);
5731
fa9c0d79 5732 btrfs_put_block_group(cache);
db94535d
CM
5733 total -= num_bytes;
5734 bytenr += num_bytes;
9078a3e1
CM
5735 }
5736 return 0;
5737}
6324fbf3 5738
a061fc8d
CM
5739static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5740{
0f9dd46c 5741 struct btrfs_block_group_cache *cache;
d2fb3437 5742 u64 bytenr;
0f9dd46c 5743
a1897fdd
LB
5744 spin_lock(&root->fs_info->block_group_cache_lock);
5745 bytenr = root->fs_info->first_logical_byte;
5746 spin_unlock(&root->fs_info->block_group_cache_lock);
5747
5748 if (bytenr < (u64)-1)
5749 return bytenr;
5750
0f9dd46c
JB
5751 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5752 if (!cache)
a061fc8d 5753 return 0;
0f9dd46c 5754
d2fb3437 5755 bytenr = cache->key.objectid;
fa9c0d79 5756 btrfs_put_block_group(cache);
d2fb3437
YZ
5757
5758 return bytenr;
a061fc8d
CM
5759}
5760
f0486c68
YZ
5761static int pin_down_extent(struct btrfs_root *root,
5762 struct btrfs_block_group_cache *cache,
5763 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5764{
11833d66
YZ
5765 spin_lock(&cache->space_info->lock);
5766 spin_lock(&cache->lock);
5767 cache->pinned += num_bytes;
5768 cache->space_info->bytes_pinned += num_bytes;
5769 if (reserved) {
5770 cache->reserved -= num_bytes;
5771 cache->space_info->bytes_reserved -= num_bytes;
5772 }
5773 spin_unlock(&cache->lock);
5774 spin_unlock(&cache->space_info->lock);
68b38550 5775
f0486c68
YZ
5776 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5777 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5778 if (reserved)
0be5dc67 5779 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5780 return 0;
5781}
68b38550 5782
f0486c68
YZ
5783/*
5784 * this function must be called within transaction
5785 */
5786int btrfs_pin_extent(struct btrfs_root *root,
5787 u64 bytenr, u64 num_bytes, int reserved)
5788{
5789 struct btrfs_block_group_cache *cache;
68b38550 5790
f0486c68 5791 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5792 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5793
5794 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5795
5796 btrfs_put_block_group(cache);
11833d66
YZ
5797 return 0;
5798}
5799
f0486c68 5800/*
e688b725
CM
5801 * this function must be called within transaction
5802 */
dcfac415 5803int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5804 u64 bytenr, u64 num_bytes)
5805{
5806 struct btrfs_block_group_cache *cache;
b50c6e25 5807 int ret;
e688b725
CM
5808
5809 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5810 if (!cache)
5811 return -EINVAL;
e688b725
CM
5812
5813 /*
5814 * pull in the free space cache (if any) so that our pin
5815 * removes the free space from the cache. We have load_only set
5816 * to one because the slow code to read in the free extents does check
5817 * the pinned extents.
5818 */
f6373bf3 5819 cache_block_group(cache, 1);
e688b725
CM
5820
5821 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5822
5823 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5824 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5825 btrfs_put_block_group(cache);
b50c6e25 5826 return ret;
e688b725
CM
5827}
5828
8c2a1a30
JB
5829static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5830{
5831 int ret;
5832 struct btrfs_block_group_cache *block_group;
5833 struct btrfs_caching_control *caching_ctl;
5834
5835 block_group = btrfs_lookup_block_group(root->fs_info, start);
5836 if (!block_group)
5837 return -EINVAL;
5838
5839 cache_block_group(block_group, 0);
5840 caching_ctl = get_caching_control(block_group);
5841
5842 if (!caching_ctl) {
5843 /* Logic error */
5844 BUG_ON(!block_group_cache_done(block_group));
5845 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5846 } else {
5847 mutex_lock(&caching_ctl->mutex);
5848
5849 if (start >= caching_ctl->progress) {
5850 ret = add_excluded_extent(root, start, num_bytes);
5851 } else if (start + num_bytes <= caching_ctl->progress) {
5852 ret = btrfs_remove_free_space(block_group,
5853 start, num_bytes);
5854 } else {
5855 num_bytes = caching_ctl->progress - start;
5856 ret = btrfs_remove_free_space(block_group,
5857 start, num_bytes);
5858 if (ret)
5859 goto out_lock;
5860
5861 num_bytes = (start + num_bytes) -
5862 caching_ctl->progress;
5863 start = caching_ctl->progress;
5864 ret = add_excluded_extent(root, start, num_bytes);
5865 }
5866out_lock:
5867 mutex_unlock(&caching_ctl->mutex);
5868 put_caching_control(caching_ctl);
5869 }
5870 btrfs_put_block_group(block_group);
5871 return ret;
5872}
5873
5874int btrfs_exclude_logged_extents(struct btrfs_root *log,
5875 struct extent_buffer *eb)
5876{
5877 struct btrfs_file_extent_item *item;
5878 struct btrfs_key key;
5879 int found_type;
5880 int i;
5881
5882 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5883 return 0;
5884
5885 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5886 btrfs_item_key_to_cpu(eb, &key, i);
5887 if (key.type != BTRFS_EXTENT_DATA_KEY)
5888 continue;
5889 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5890 found_type = btrfs_file_extent_type(eb, item);
5891 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5892 continue;
5893 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5894 continue;
5895 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5896 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5897 __exclude_logged_extent(log, key.objectid, key.offset);
5898 }
5899
5900 return 0;
5901}
5902
fb25e914
JB
5903/**
5904 * btrfs_update_reserved_bytes - update the block_group and space info counters
5905 * @cache: The cache we are manipulating
5906 * @num_bytes: The number of bytes in question
5907 * @reserve: One of the reservation enums
e570fd27 5908 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5909 *
5910 * This is called by the allocator when it reserves space, or by somebody who is
5911 * freeing space that was never actually used on disk. For example if you
5912 * reserve some space for a new leaf in transaction A and before transaction A
5913 * commits you free that leaf, you call this with reserve set to 0 in order to
5914 * clear the reservation.
5915 *
5916 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5917 * ENOSPC accounting. For data we handle the reservation through clearing the
5918 * delalloc bits in the io_tree. We have to do this since we could end up
5919 * allocating less disk space for the amount of data we have reserved in the
5920 * case of compression.
5921 *
5922 * If this is a reservation and the block group has become read only we cannot
5923 * make the reservation and return -EAGAIN, otherwise this function always
5924 * succeeds.
f0486c68 5925 */
fb25e914 5926static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5927 u64 num_bytes, int reserve, int delalloc)
11833d66 5928{
fb25e914 5929 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5930 int ret = 0;
79787eaa 5931
fb25e914
JB
5932 spin_lock(&space_info->lock);
5933 spin_lock(&cache->lock);
5934 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5935 if (cache->ro) {
5936 ret = -EAGAIN;
5937 } else {
fb25e914
JB
5938 cache->reserved += num_bytes;
5939 space_info->bytes_reserved += num_bytes;
5940 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5941 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5942 "space_info", space_info->flags,
5943 num_bytes, 0);
fb25e914
JB
5944 space_info->bytes_may_use -= num_bytes;
5945 }
e570fd27
MX
5946
5947 if (delalloc)
5948 cache->delalloc_bytes += num_bytes;
f0486c68 5949 }
fb25e914
JB
5950 } else {
5951 if (cache->ro)
5952 space_info->bytes_readonly += num_bytes;
5953 cache->reserved -= num_bytes;
5954 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5955
5956 if (delalloc)
5957 cache->delalloc_bytes -= num_bytes;
324ae4df 5958 }
fb25e914
JB
5959 spin_unlock(&cache->lock);
5960 spin_unlock(&space_info->lock);
f0486c68 5961 return ret;
324ae4df 5962}
9078a3e1 5963
143bede5 5964void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5965 struct btrfs_root *root)
e8569813 5966{
e8569813 5967 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5968 struct btrfs_caching_control *next;
5969 struct btrfs_caching_control *caching_ctl;
5970 struct btrfs_block_group_cache *cache;
e8569813 5971
9e351cc8 5972 down_write(&fs_info->commit_root_sem);
25179201 5973
11833d66
YZ
5974 list_for_each_entry_safe(caching_ctl, next,
5975 &fs_info->caching_block_groups, list) {
5976 cache = caching_ctl->block_group;
5977 if (block_group_cache_done(cache)) {
5978 cache->last_byte_to_unpin = (u64)-1;
5979 list_del_init(&caching_ctl->list);
5980 put_caching_control(caching_ctl);
e8569813 5981 } else {
11833d66 5982 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5983 }
e8569813 5984 }
11833d66
YZ
5985
5986 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5987 fs_info->pinned_extents = &fs_info->freed_extents[1];
5988 else
5989 fs_info->pinned_extents = &fs_info->freed_extents[0];
5990
9e351cc8 5991 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5992
5993 update_global_block_rsv(fs_info);
e8569813
ZY
5994}
5995
678886bd
FM
5996static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5997 const bool return_free_space)
ccd467d6 5998{
11833d66
YZ
5999 struct btrfs_fs_info *fs_info = root->fs_info;
6000 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6001 struct btrfs_space_info *space_info;
6002 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6003 u64 len;
7b398f8e 6004 bool readonly;
ccd467d6 6005
11833d66 6006 while (start <= end) {
7b398f8e 6007 readonly = false;
11833d66
YZ
6008 if (!cache ||
6009 start >= cache->key.objectid + cache->key.offset) {
6010 if (cache)
6011 btrfs_put_block_group(cache);
6012 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6013 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6014 }
6015
6016 len = cache->key.objectid + cache->key.offset - start;
6017 len = min(len, end + 1 - start);
6018
6019 if (start < cache->last_byte_to_unpin) {
6020 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6021 if (return_free_space)
6022 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6023 }
6024
f0486c68 6025 start += len;
7b398f8e 6026 space_info = cache->space_info;
f0486c68 6027
7b398f8e 6028 spin_lock(&space_info->lock);
11833d66
YZ
6029 spin_lock(&cache->lock);
6030 cache->pinned -= len;
7b398f8e 6031 space_info->bytes_pinned -= len;
d288db5d 6032 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6033 if (cache->ro) {
6034 space_info->bytes_readonly += len;
6035 readonly = true;
6036 }
11833d66 6037 spin_unlock(&cache->lock);
7b398f8e
JB
6038 if (!readonly && global_rsv->space_info == space_info) {
6039 spin_lock(&global_rsv->lock);
6040 if (!global_rsv->full) {
6041 len = min(len, global_rsv->size -
6042 global_rsv->reserved);
6043 global_rsv->reserved += len;
6044 space_info->bytes_may_use += len;
6045 if (global_rsv->reserved >= global_rsv->size)
6046 global_rsv->full = 1;
6047 }
6048 spin_unlock(&global_rsv->lock);
6049 }
6050 spin_unlock(&space_info->lock);
ccd467d6 6051 }
11833d66
YZ
6052
6053 if (cache)
6054 btrfs_put_block_group(cache);
ccd467d6
CM
6055 return 0;
6056}
6057
6058int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6059 struct btrfs_root *root)
a28ec197 6060{
11833d66
YZ
6061 struct btrfs_fs_info *fs_info = root->fs_info;
6062 struct extent_io_tree *unpin;
1a5bc167
CM
6063 u64 start;
6064 u64 end;
a28ec197 6065 int ret;
a28ec197 6066
79787eaa
JM
6067 if (trans->aborted)
6068 return 0;
6069
11833d66
YZ
6070 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6071 unpin = &fs_info->freed_extents[1];
6072 else
6073 unpin = &fs_info->freed_extents[0];
6074
d397712b 6075 while (1) {
d4b450cd 6076 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6077 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6078 EXTENT_DIRTY, NULL);
d4b450cd
FM
6079 if (ret) {
6080 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6081 break;
d4b450cd 6082 }
1f3c79a2 6083
5378e607
LD
6084 if (btrfs_test_opt(root, DISCARD))
6085 ret = btrfs_discard_extent(root, start,
6086 end + 1 - start, NULL);
1f3c79a2 6087
1a5bc167 6088 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6089 unpin_extent_range(root, start, end, true);
d4b450cd 6090 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6091 cond_resched();
a28ec197 6092 }
817d52f8 6093
e20d96d6
CM
6094 return 0;
6095}
6096
b150a4f1
JB
6097static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6098 u64 owner, u64 root_objectid)
6099{
6100 struct btrfs_space_info *space_info;
6101 u64 flags;
6102
6103 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6104 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6105 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6106 else
6107 flags = BTRFS_BLOCK_GROUP_METADATA;
6108 } else {
6109 flags = BTRFS_BLOCK_GROUP_DATA;
6110 }
6111
6112 space_info = __find_space_info(fs_info, flags);
6113 BUG_ON(!space_info); /* Logic bug */
6114 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6115}
6116
6117
5d4f98a2
YZ
6118static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6119 struct btrfs_root *root,
c682f9b3 6120 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6121 u64 root_objectid, u64 owner_objectid,
6122 u64 owner_offset, int refs_to_drop,
c682f9b3 6123 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6124{
e2fa7227 6125 struct btrfs_key key;
5d4f98a2 6126 struct btrfs_path *path;
1261ec42
CM
6127 struct btrfs_fs_info *info = root->fs_info;
6128 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6129 struct extent_buffer *leaf;
5d4f98a2
YZ
6130 struct btrfs_extent_item *ei;
6131 struct btrfs_extent_inline_ref *iref;
a28ec197 6132 int ret;
5d4f98a2 6133 int is_data;
952fccac
CM
6134 int extent_slot = 0;
6135 int found_extent = 0;
6136 int num_to_del = 1;
c682f9b3 6137 int no_quota = node->no_quota;
5d4f98a2
YZ
6138 u32 item_size;
6139 u64 refs;
c682f9b3
QW
6140 u64 bytenr = node->bytenr;
6141 u64 num_bytes = node->num_bytes;
fcebe456
JB
6142 int last_ref = 0;
6143 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
3173a18f
JB
6144 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6145 SKINNY_METADATA);
037e6390 6146
fcebe456
JB
6147 if (!info->quota_enabled || !is_fstree(root_objectid))
6148 no_quota = 1;
6149
5caf2a00 6150 path = btrfs_alloc_path();
54aa1f4d
CM
6151 if (!path)
6152 return -ENOMEM;
5f26f772 6153
3c12ac72 6154 path->reada = 1;
b9473439 6155 path->leave_spinning = 1;
5d4f98a2
YZ
6156
6157 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6158 BUG_ON(!is_data && refs_to_drop != 1);
6159
3173a18f
JB
6160 if (is_data)
6161 skinny_metadata = 0;
6162
5d4f98a2
YZ
6163 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6164 bytenr, num_bytes, parent,
6165 root_objectid, owner_objectid,
6166 owner_offset);
7bb86316 6167 if (ret == 0) {
952fccac 6168 extent_slot = path->slots[0];
5d4f98a2
YZ
6169 while (extent_slot >= 0) {
6170 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6171 extent_slot);
5d4f98a2 6172 if (key.objectid != bytenr)
952fccac 6173 break;
5d4f98a2
YZ
6174 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6175 key.offset == num_bytes) {
952fccac
CM
6176 found_extent = 1;
6177 break;
6178 }
3173a18f
JB
6179 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6180 key.offset == owner_objectid) {
6181 found_extent = 1;
6182 break;
6183 }
952fccac
CM
6184 if (path->slots[0] - extent_slot > 5)
6185 break;
5d4f98a2 6186 extent_slot--;
952fccac 6187 }
5d4f98a2
YZ
6188#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6189 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6190 if (found_extent && item_size < sizeof(*ei))
6191 found_extent = 0;
6192#endif
31840ae1 6193 if (!found_extent) {
5d4f98a2 6194 BUG_ON(iref);
56bec294 6195 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6196 NULL, refs_to_drop,
fcebe456 6197 is_data, &last_ref);
005d6427
DS
6198 if (ret) {
6199 btrfs_abort_transaction(trans, extent_root, ret);
6200 goto out;
6201 }
b3b4aa74 6202 btrfs_release_path(path);
b9473439 6203 path->leave_spinning = 1;
5d4f98a2
YZ
6204
6205 key.objectid = bytenr;
6206 key.type = BTRFS_EXTENT_ITEM_KEY;
6207 key.offset = num_bytes;
6208
3173a18f
JB
6209 if (!is_data && skinny_metadata) {
6210 key.type = BTRFS_METADATA_ITEM_KEY;
6211 key.offset = owner_objectid;
6212 }
6213
31840ae1
ZY
6214 ret = btrfs_search_slot(trans, extent_root,
6215 &key, path, -1, 1);
3173a18f
JB
6216 if (ret > 0 && skinny_metadata && path->slots[0]) {
6217 /*
6218 * Couldn't find our skinny metadata item,
6219 * see if we have ye olde extent item.
6220 */
6221 path->slots[0]--;
6222 btrfs_item_key_to_cpu(path->nodes[0], &key,
6223 path->slots[0]);
6224 if (key.objectid == bytenr &&
6225 key.type == BTRFS_EXTENT_ITEM_KEY &&
6226 key.offset == num_bytes)
6227 ret = 0;
6228 }
6229
6230 if (ret > 0 && skinny_metadata) {
6231 skinny_metadata = false;
9ce49a0b 6232 key.objectid = bytenr;
3173a18f
JB
6233 key.type = BTRFS_EXTENT_ITEM_KEY;
6234 key.offset = num_bytes;
6235 btrfs_release_path(path);
6236 ret = btrfs_search_slot(trans, extent_root,
6237 &key, path, -1, 1);
6238 }
6239
f3465ca4 6240 if (ret) {
c2cf52eb 6241 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6242 ret, bytenr);
b783e62d
JB
6243 if (ret > 0)
6244 btrfs_print_leaf(extent_root,
6245 path->nodes[0]);
f3465ca4 6246 }
005d6427
DS
6247 if (ret < 0) {
6248 btrfs_abort_transaction(trans, extent_root, ret);
6249 goto out;
6250 }
31840ae1
ZY
6251 extent_slot = path->slots[0];
6252 }
fae7f21c 6253 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6254 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6255 btrfs_err(info,
6256 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6257 bytenr, parent, root_objectid, owner_objectid,
6258 owner_offset);
c4a050bb
JB
6259 btrfs_abort_transaction(trans, extent_root, ret);
6260 goto out;
79787eaa 6261 } else {
005d6427
DS
6262 btrfs_abort_transaction(trans, extent_root, ret);
6263 goto out;
7bb86316 6264 }
5f39d397
CM
6265
6266 leaf = path->nodes[0];
5d4f98a2
YZ
6267 item_size = btrfs_item_size_nr(leaf, extent_slot);
6268#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6269 if (item_size < sizeof(*ei)) {
6270 BUG_ON(found_extent || extent_slot != path->slots[0]);
6271 ret = convert_extent_item_v0(trans, extent_root, path,
6272 owner_objectid, 0);
005d6427
DS
6273 if (ret < 0) {
6274 btrfs_abort_transaction(trans, extent_root, ret);
6275 goto out;
6276 }
5d4f98a2 6277
b3b4aa74 6278 btrfs_release_path(path);
5d4f98a2
YZ
6279 path->leave_spinning = 1;
6280
6281 key.objectid = bytenr;
6282 key.type = BTRFS_EXTENT_ITEM_KEY;
6283 key.offset = num_bytes;
6284
6285 ret = btrfs_search_slot(trans, extent_root, &key, path,
6286 -1, 1);
6287 if (ret) {
c2cf52eb 6288 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6289 ret, bytenr);
5d4f98a2
YZ
6290 btrfs_print_leaf(extent_root, path->nodes[0]);
6291 }
005d6427
DS
6292 if (ret < 0) {
6293 btrfs_abort_transaction(trans, extent_root, ret);
6294 goto out;
6295 }
6296
5d4f98a2
YZ
6297 extent_slot = path->slots[0];
6298 leaf = path->nodes[0];
6299 item_size = btrfs_item_size_nr(leaf, extent_slot);
6300 }
6301#endif
6302 BUG_ON(item_size < sizeof(*ei));
952fccac 6303 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6304 struct btrfs_extent_item);
3173a18f
JB
6305 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6306 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6307 struct btrfs_tree_block_info *bi;
6308 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6309 bi = (struct btrfs_tree_block_info *)(ei + 1);
6310 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6311 }
56bec294 6312
5d4f98a2 6313 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6314 if (refs < refs_to_drop) {
6315 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6316 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6317 ret = -EINVAL;
6318 btrfs_abort_transaction(trans, extent_root, ret);
6319 goto out;
6320 }
56bec294 6321 refs -= refs_to_drop;
5f39d397 6322
5d4f98a2 6323 if (refs > 0) {
fcebe456 6324 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5d4f98a2
YZ
6325 if (extent_op)
6326 __run_delayed_extent_op(extent_op, leaf, ei);
6327 /*
6328 * In the case of inline back ref, reference count will
6329 * be updated by remove_extent_backref
952fccac 6330 */
5d4f98a2
YZ
6331 if (iref) {
6332 BUG_ON(!found_extent);
6333 } else {
6334 btrfs_set_extent_refs(leaf, ei, refs);
6335 btrfs_mark_buffer_dirty(leaf);
6336 }
6337 if (found_extent) {
6338 ret = remove_extent_backref(trans, extent_root, path,
6339 iref, refs_to_drop,
fcebe456 6340 is_data, &last_ref);
005d6427
DS
6341 if (ret) {
6342 btrfs_abort_transaction(trans, extent_root, ret);
6343 goto out;
6344 }
952fccac 6345 }
b150a4f1
JB
6346 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6347 root_objectid);
5d4f98a2 6348 } else {
5d4f98a2
YZ
6349 if (found_extent) {
6350 BUG_ON(is_data && refs_to_drop !=
6351 extent_data_ref_count(root, path, iref));
6352 if (iref) {
6353 BUG_ON(path->slots[0] != extent_slot);
6354 } else {
6355 BUG_ON(path->slots[0] != extent_slot + 1);
6356 path->slots[0] = extent_slot;
6357 num_to_del = 2;
6358 }
78fae27e 6359 }
b9473439 6360
fcebe456 6361 last_ref = 1;
952fccac
CM
6362 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6363 num_to_del);
005d6427
DS
6364 if (ret) {
6365 btrfs_abort_transaction(trans, extent_root, ret);
6366 goto out;
6367 }
b3b4aa74 6368 btrfs_release_path(path);
21af804c 6369
5d4f98a2 6370 if (is_data) {
459931ec 6371 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6372 if (ret) {
6373 btrfs_abort_transaction(trans, extent_root, ret);
6374 goto out;
6375 }
459931ec
CM
6376 }
6377
ce93ec54 6378 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6379 if (ret) {
6380 btrfs_abort_transaction(trans, extent_root, ret);
6381 goto out;
6382 }
a28ec197 6383 }
fcebe456
JB
6384 btrfs_release_path(path);
6385
6386 /* Deal with the quota accounting */
6387 if (!ret && last_ref && !no_quota) {
6388 int mod_seq = 0;
6389
6390 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6391 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6392 mod_seq = 1;
6393
6394 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6395 bytenr, num_bytes, type,
6396 mod_seq);
6397 }
79787eaa 6398out:
5caf2a00 6399 btrfs_free_path(path);
a28ec197
CM
6400 return ret;
6401}
6402
1887be66 6403/*
f0486c68 6404 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6405 * delayed ref for that extent as well. This searches the delayed ref tree for
6406 * a given extent, and if there are no other delayed refs to be processed, it
6407 * removes it from the tree.
6408 */
6409static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6410 struct btrfs_root *root, u64 bytenr)
6411{
6412 struct btrfs_delayed_ref_head *head;
6413 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6414 int ret = 0;
1887be66
CM
6415
6416 delayed_refs = &trans->transaction->delayed_refs;
6417 spin_lock(&delayed_refs->lock);
6418 head = btrfs_find_delayed_ref_head(trans, bytenr);
6419 if (!head)
cf93da7b 6420 goto out_delayed_unlock;
1887be66 6421
d7df2c79 6422 spin_lock(&head->lock);
c6fc2454 6423 if (!list_empty(&head->ref_list))
1887be66
CM
6424 goto out;
6425
5d4f98a2
YZ
6426 if (head->extent_op) {
6427 if (!head->must_insert_reserved)
6428 goto out;
78a6184a 6429 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6430 head->extent_op = NULL;
6431 }
6432
1887be66
CM
6433 /*
6434 * waiting for the lock here would deadlock. If someone else has it
6435 * locked they are already in the process of dropping it anyway
6436 */
6437 if (!mutex_trylock(&head->mutex))
6438 goto out;
6439
6440 /*
6441 * at this point we have a head with no other entries. Go
6442 * ahead and process it.
6443 */
6444 head->node.in_tree = 0;
c46effa6 6445 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6446
d7df2c79 6447 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6448
6449 /*
6450 * we don't take a ref on the node because we're removing it from the
6451 * tree, so we just steal the ref the tree was holding.
6452 */
c3e69d58 6453 delayed_refs->num_heads--;
d7df2c79 6454 if (head->processing == 0)
c3e69d58 6455 delayed_refs->num_heads_ready--;
d7df2c79
JB
6456 head->processing = 0;
6457 spin_unlock(&head->lock);
1887be66
CM
6458 spin_unlock(&delayed_refs->lock);
6459
f0486c68
YZ
6460 BUG_ON(head->extent_op);
6461 if (head->must_insert_reserved)
6462 ret = 1;
6463
6464 mutex_unlock(&head->mutex);
1887be66 6465 btrfs_put_delayed_ref(&head->node);
f0486c68 6466 return ret;
1887be66 6467out:
d7df2c79 6468 spin_unlock(&head->lock);
cf93da7b
CM
6469
6470out_delayed_unlock:
1887be66
CM
6471 spin_unlock(&delayed_refs->lock);
6472 return 0;
6473}
6474
f0486c68
YZ
6475void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6476 struct btrfs_root *root,
6477 struct extent_buffer *buf,
5581a51a 6478 u64 parent, int last_ref)
f0486c68 6479{
b150a4f1 6480 int pin = 1;
f0486c68
YZ
6481 int ret;
6482
6483 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6484 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6485 buf->start, buf->len,
6486 parent, root->root_key.objectid,
6487 btrfs_header_level(buf),
5581a51a 6488 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6489 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6490 }
6491
6492 if (!last_ref)
6493 return;
6494
f0486c68 6495 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6496 struct btrfs_block_group_cache *cache;
6497
f0486c68
YZ
6498 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6499 ret = check_ref_cleanup(trans, root, buf->start);
6500 if (!ret)
37be25bc 6501 goto out;
f0486c68
YZ
6502 }
6503
6219872d
FM
6504 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6505
f0486c68
YZ
6506 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6507 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6508 btrfs_put_block_group(cache);
37be25bc 6509 goto out;
f0486c68
YZ
6510 }
6511
6512 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6513
6514 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6515 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6516 btrfs_put_block_group(cache);
0be5dc67 6517 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6518 pin = 0;
f0486c68
YZ
6519 }
6520out:
b150a4f1
JB
6521 if (pin)
6522 add_pinned_bytes(root->fs_info, buf->len,
6523 btrfs_header_level(buf),
6524 root->root_key.objectid);
6525
a826d6dc
JB
6526 /*
6527 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6528 * anymore.
6529 */
6530 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6531}
6532
79787eaa 6533/* Can return -ENOMEM */
66d7e7f0
AJ
6534int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6535 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6536 u64 owner, u64 offset, int no_quota)
925baedd
CM
6537{
6538 int ret;
66d7e7f0 6539 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6540
fccb84c9 6541 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6542 return 0;
fccb84c9 6543
b150a4f1
JB
6544 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6545
56bec294
CM
6546 /*
6547 * tree log blocks never actually go into the extent allocation
6548 * tree, just update pinning info and exit early.
56bec294 6549 */
5d4f98a2
YZ
6550 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6551 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6552 /* unlocks the pinned mutex */
11833d66 6553 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6554 ret = 0;
5d4f98a2 6555 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6556 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6557 num_bytes,
5d4f98a2 6558 parent, root_objectid, (int)owner,
fcebe456 6559 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6560 } else {
66d7e7f0
AJ
6561 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6562 num_bytes,
6563 parent, root_objectid, owner,
6564 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6565 NULL, no_quota);
56bec294 6566 }
925baedd
CM
6567 return ret;
6568}
6569
817d52f8
JB
6570/*
6571 * when we wait for progress in the block group caching, its because
6572 * our allocation attempt failed at least once. So, we must sleep
6573 * and let some progress happen before we try again.
6574 *
6575 * This function will sleep at least once waiting for new free space to
6576 * show up, and then it will check the block group free space numbers
6577 * for our min num_bytes. Another option is to have it go ahead
6578 * and look in the rbtree for a free extent of a given size, but this
6579 * is a good start.
36cce922
JB
6580 *
6581 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6582 * any of the information in this block group.
817d52f8 6583 */
36cce922 6584static noinline void
817d52f8
JB
6585wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6586 u64 num_bytes)
6587{
11833d66 6588 struct btrfs_caching_control *caching_ctl;
817d52f8 6589
11833d66
YZ
6590 caching_ctl = get_caching_control(cache);
6591 if (!caching_ctl)
36cce922 6592 return;
817d52f8 6593
11833d66 6594 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6595 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6596
6597 put_caching_control(caching_ctl);
11833d66
YZ
6598}
6599
6600static noinline int
6601wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6602{
6603 struct btrfs_caching_control *caching_ctl;
36cce922 6604 int ret = 0;
11833d66
YZ
6605
6606 caching_ctl = get_caching_control(cache);
6607 if (!caching_ctl)
36cce922 6608 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6609
6610 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6611 if (cache->cached == BTRFS_CACHE_ERROR)
6612 ret = -EIO;
11833d66 6613 put_caching_control(caching_ctl);
36cce922 6614 return ret;
817d52f8
JB
6615}
6616
31e50229 6617int __get_raid_index(u64 flags)
b742bb82 6618{
7738a53a 6619 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6620 return BTRFS_RAID_RAID10;
7738a53a 6621 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6622 return BTRFS_RAID_RAID1;
7738a53a 6623 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6624 return BTRFS_RAID_DUP;
7738a53a 6625 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6626 return BTRFS_RAID_RAID0;
53b381b3 6627 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6628 return BTRFS_RAID_RAID5;
53b381b3 6629 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6630 return BTRFS_RAID_RAID6;
7738a53a 6631
e942f883 6632 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6633}
6634
6ab0a202 6635int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6636{
31e50229 6637 return __get_raid_index(cache->flags);
7738a53a
ID
6638}
6639
6ab0a202
JM
6640static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6641 [BTRFS_RAID_RAID10] = "raid10",
6642 [BTRFS_RAID_RAID1] = "raid1",
6643 [BTRFS_RAID_DUP] = "dup",
6644 [BTRFS_RAID_RAID0] = "raid0",
6645 [BTRFS_RAID_SINGLE] = "single",
6646 [BTRFS_RAID_RAID5] = "raid5",
6647 [BTRFS_RAID_RAID6] = "raid6",
6648};
6649
1b8e5df6 6650static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6651{
6652 if (type >= BTRFS_NR_RAID_TYPES)
6653 return NULL;
6654
6655 return btrfs_raid_type_names[type];
6656}
6657
817d52f8 6658enum btrfs_loop_type {
285ff5af
JB
6659 LOOP_CACHING_NOWAIT = 0,
6660 LOOP_CACHING_WAIT = 1,
6661 LOOP_ALLOC_CHUNK = 2,
6662 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6663};
6664
e570fd27
MX
6665static inline void
6666btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6667 int delalloc)
6668{
6669 if (delalloc)
6670 down_read(&cache->data_rwsem);
6671}
6672
6673static inline void
6674btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6675 int delalloc)
6676{
6677 btrfs_get_block_group(cache);
6678 if (delalloc)
6679 down_read(&cache->data_rwsem);
6680}
6681
6682static struct btrfs_block_group_cache *
6683btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6684 struct btrfs_free_cluster *cluster,
6685 int delalloc)
6686{
6687 struct btrfs_block_group_cache *used_bg;
6688 bool locked = false;
6689again:
6690 spin_lock(&cluster->refill_lock);
6691 if (locked) {
6692 if (used_bg == cluster->block_group)
6693 return used_bg;
6694
6695 up_read(&used_bg->data_rwsem);
6696 btrfs_put_block_group(used_bg);
6697 }
6698
6699 used_bg = cluster->block_group;
6700 if (!used_bg)
6701 return NULL;
6702
6703 if (used_bg == block_group)
6704 return used_bg;
6705
6706 btrfs_get_block_group(used_bg);
6707
6708 if (!delalloc)
6709 return used_bg;
6710
6711 if (down_read_trylock(&used_bg->data_rwsem))
6712 return used_bg;
6713
6714 spin_unlock(&cluster->refill_lock);
6715 down_read(&used_bg->data_rwsem);
6716 locked = true;
6717 goto again;
6718}
6719
6720static inline void
6721btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6722 int delalloc)
6723{
6724 if (delalloc)
6725 up_read(&cache->data_rwsem);
6726 btrfs_put_block_group(cache);
6727}
6728
fec577fb
CM
6729/*
6730 * walks the btree of allocated extents and find a hole of a given size.
6731 * The key ins is changed to record the hole:
a4820398 6732 * ins->objectid == start position
62e2749e 6733 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6734 * ins->offset == the size of the hole.
fec577fb 6735 * Any available blocks before search_start are skipped.
a4820398
MX
6736 *
6737 * If there is no suitable free space, we will record the max size of
6738 * the free space extent currently.
fec577fb 6739 */
00361589 6740static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6741 u64 num_bytes, u64 empty_size,
98ed5174 6742 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6743 u64 flags, int delalloc)
fec577fb 6744{
80eb234a 6745 int ret = 0;
d397712b 6746 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6747 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6748 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6749 u64 search_start = 0;
a4820398 6750 u64 max_extent_size = 0;
239b14b3 6751 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6752 struct btrfs_space_info *space_info;
fa9c0d79 6753 int loop = 0;
b6919a58
DS
6754 int index = __get_raid_index(flags);
6755 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6756 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6757 bool failed_cluster_refill = false;
1cdda9b8 6758 bool failed_alloc = false;
67377734 6759 bool use_cluster = true;
60d2adbb 6760 bool have_caching_bg = false;
fec577fb 6761
db94535d 6762 WARN_ON(num_bytes < root->sectorsize);
962a298f 6763 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6764 ins->objectid = 0;
6765 ins->offset = 0;
b1a4d965 6766
b6919a58 6767 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6768
b6919a58 6769 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6770 if (!space_info) {
b6919a58 6771 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6772 return -ENOSPC;
6773 }
2552d17e 6774
67377734
JB
6775 /*
6776 * If the space info is for both data and metadata it means we have a
6777 * small filesystem and we can't use the clustering stuff.
6778 */
6779 if (btrfs_mixed_space_info(space_info))
6780 use_cluster = false;
6781
b6919a58 6782 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6783 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6784 if (!btrfs_test_opt(root, SSD))
6785 empty_cluster = 64 * 1024;
239b14b3
CM
6786 }
6787
b6919a58 6788 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6789 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6790 last_ptr = &root->fs_info->data_alloc_cluster;
6791 }
0f9dd46c 6792
239b14b3 6793 if (last_ptr) {
fa9c0d79
CM
6794 spin_lock(&last_ptr->lock);
6795 if (last_ptr->block_group)
6796 hint_byte = last_ptr->window_start;
6797 spin_unlock(&last_ptr->lock);
239b14b3 6798 }
fa9c0d79 6799
a061fc8d 6800 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6801 search_start = max(search_start, hint_byte);
0b86a832 6802
817d52f8 6803 if (!last_ptr)
fa9c0d79 6804 empty_cluster = 0;
fa9c0d79 6805
2552d17e 6806 if (search_start == hint_byte) {
2552d17e
JB
6807 block_group = btrfs_lookup_block_group(root->fs_info,
6808 search_start);
817d52f8
JB
6809 /*
6810 * we don't want to use the block group if it doesn't match our
6811 * allocation bits, or if its not cached.
ccf0e725
JB
6812 *
6813 * However if we are re-searching with an ideal block group
6814 * picked out then we don't care that the block group is cached.
817d52f8 6815 */
b6919a58 6816 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6817 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6818 down_read(&space_info->groups_sem);
44fb5511
CM
6819 if (list_empty(&block_group->list) ||
6820 block_group->ro) {
6821 /*
6822 * someone is removing this block group,
6823 * we can't jump into the have_block_group
6824 * target because our list pointers are not
6825 * valid
6826 */
6827 btrfs_put_block_group(block_group);
6828 up_read(&space_info->groups_sem);
ccf0e725 6829 } else {
b742bb82 6830 index = get_block_group_index(block_group);
e570fd27 6831 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6832 goto have_block_group;
ccf0e725 6833 }
2552d17e 6834 } else if (block_group) {
fa9c0d79 6835 btrfs_put_block_group(block_group);
2552d17e 6836 }
42e70e7a 6837 }
2552d17e 6838search:
60d2adbb 6839 have_caching_bg = false;
80eb234a 6840 down_read(&space_info->groups_sem);
b742bb82
YZ
6841 list_for_each_entry(block_group, &space_info->block_groups[index],
6842 list) {
6226cb0a 6843 u64 offset;
817d52f8 6844 int cached;
8a1413a2 6845
e570fd27 6846 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6847 search_start = block_group->key.objectid;
42e70e7a 6848
83a50de9
CM
6849 /*
6850 * this can happen if we end up cycling through all the
6851 * raid types, but we want to make sure we only allocate
6852 * for the proper type.
6853 */
b6919a58 6854 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6855 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6856 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6857 BTRFS_BLOCK_GROUP_RAID5 |
6858 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6859 BTRFS_BLOCK_GROUP_RAID10;
6860
6861 /*
6862 * if they asked for extra copies and this block group
6863 * doesn't provide them, bail. This does allow us to
6864 * fill raid0 from raid1.
6865 */
b6919a58 6866 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6867 goto loop;
6868 }
6869
2552d17e 6870have_block_group:
291c7d2f
JB
6871 cached = block_group_cache_done(block_group);
6872 if (unlikely(!cached)) {
f6373bf3 6873 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6874 BUG_ON(ret < 0);
6875 ret = 0;
817d52f8
JB
6876 }
6877
36cce922
JB
6878 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6879 goto loop;
ea6a478e 6880 if (unlikely(block_group->ro))
2552d17e 6881 goto loop;
0f9dd46c 6882
0a24325e 6883 /*
062c05c4
AO
6884 * Ok we want to try and use the cluster allocator, so
6885 * lets look there
0a24325e 6886 */
062c05c4 6887 if (last_ptr) {
215a63d1 6888 struct btrfs_block_group_cache *used_block_group;
8de972b4 6889 unsigned long aligned_cluster;
fa9c0d79
CM
6890 /*
6891 * the refill lock keeps out other
6892 * people trying to start a new cluster
6893 */
e570fd27
MX
6894 used_block_group = btrfs_lock_cluster(block_group,
6895 last_ptr,
6896 delalloc);
6897 if (!used_block_group)
44fb5511 6898 goto refill_cluster;
274bd4fb 6899
e570fd27
MX
6900 if (used_block_group != block_group &&
6901 (used_block_group->ro ||
6902 !block_group_bits(used_block_group, flags)))
6903 goto release_cluster;
44fb5511 6904
274bd4fb 6905 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6906 last_ptr,
6907 num_bytes,
6908 used_block_group->key.objectid,
6909 &max_extent_size);
fa9c0d79
CM
6910 if (offset) {
6911 /* we have a block, we're done */
6912 spin_unlock(&last_ptr->refill_lock);
3f7de037 6913 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6914 used_block_group,
6915 search_start, num_bytes);
215a63d1 6916 if (used_block_group != block_group) {
e570fd27
MX
6917 btrfs_release_block_group(block_group,
6918 delalloc);
215a63d1
MX
6919 block_group = used_block_group;
6920 }
fa9c0d79
CM
6921 goto checks;
6922 }
6923
274bd4fb 6924 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6925release_cluster:
062c05c4
AO
6926 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6927 * set up a new clusters, so lets just skip it
6928 * and let the allocator find whatever block
6929 * it can find. If we reach this point, we
6930 * will have tried the cluster allocator
6931 * plenty of times and not have found
6932 * anything, so we are likely way too
6933 * fragmented for the clustering stuff to find
a5f6f719
AO
6934 * anything.
6935 *
6936 * However, if the cluster is taken from the
6937 * current block group, release the cluster
6938 * first, so that we stand a better chance of
6939 * succeeding in the unclustered
6940 * allocation. */
6941 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6942 used_block_group != block_group) {
062c05c4 6943 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6944 btrfs_release_block_group(used_block_group,
6945 delalloc);
062c05c4
AO
6946 goto unclustered_alloc;
6947 }
6948
fa9c0d79
CM
6949 /*
6950 * this cluster didn't work out, free it and
6951 * start over
6952 */
6953 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6954
e570fd27
MX
6955 if (used_block_group != block_group)
6956 btrfs_release_block_group(used_block_group,
6957 delalloc);
6958refill_cluster:
a5f6f719
AO
6959 if (loop >= LOOP_NO_EMPTY_SIZE) {
6960 spin_unlock(&last_ptr->refill_lock);
6961 goto unclustered_alloc;
6962 }
6963
8de972b4
CM
6964 aligned_cluster = max_t(unsigned long,
6965 empty_cluster + empty_size,
6966 block_group->full_stripe_len);
6967
fa9c0d79 6968 /* allocate a cluster in this block group */
00361589
JB
6969 ret = btrfs_find_space_cluster(root, block_group,
6970 last_ptr, search_start,
6971 num_bytes,
6972 aligned_cluster);
fa9c0d79
CM
6973 if (ret == 0) {
6974 /*
6975 * now pull our allocation out of this
6976 * cluster
6977 */
6978 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6979 last_ptr,
6980 num_bytes,
6981 search_start,
6982 &max_extent_size);
fa9c0d79
CM
6983 if (offset) {
6984 /* we found one, proceed */
6985 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6986 trace_btrfs_reserve_extent_cluster(root,
6987 block_group, search_start,
6988 num_bytes);
fa9c0d79
CM
6989 goto checks;
6990 }
0a24325e
JB
6991 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6992 && !failed_cluster_refill) {
817d52f8
JB
6993 spin_unlock(&last_ptr->refill_lock);
6994
0a24325e 6995 failed_cluster_refill = true;
817d52f8
JB
6996 wait_block_group_cache_progress(block_group,
6997 num_bytes + empty_cluster + empty_size);
6998 goto have_block_group;
fa9c0d79 6999 }
817d52f8 7000
fa9c0d79
CM
7001 /*
7002 * at this point we either didn't find a cluster
7003 * or we weren't able to allocate a block from our
7004 * cluster. Free the cluster we've been trying
7005 * to use, and go to the next block group
7006 */
0a24325e 7007 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7008 spin_unlock(&last_ptr->refill_lock);
0a24325e 7009 goto loop;
fa9c0d79
CM
7010 }
7011
062c05c4 7012unclustered_alloc:
a5f6f719
AO
7013 spin_lock(&block_group->free_space_ctl->tree_lock);
7014 if (cached &&
7015 block_group->free_space_ctl->free_space <
7016 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7017 if (block_group->free_space_ctl->free_space >
7018 max_extent_size)
7019 max_extent_size =
7020 block_group->free_space_ctl->free_space;
a5f6f719
AO
7021 spin_unlock(&block_group->free_space_ctl->tree_lock);
7022 goto loop;
7023 }
7024 spin_unlock(&block_group->free_space_ctl->tree_lock);
7025
6226cb0a 7026 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7027 num_bytes, empty_size,
7028 &max_extent_size);
1cdda9b8
JB
7029 /*
7030 * If we didn't find a chunk, and we haven't failed on this
7031 * block group before, and this block group is in the middle of
7032 * caching and we are ok with waiting, then go ahead and wait
7033 * for progress to be made, and set failed_alloc to true.
7034 *
7035 * If failed_alloc is true then we've already waited on this
7036 * block group once and should move on to the next block group.
7037 */
7038 if (!offset && !failed_alloc && !cached &&
7039 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7040 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7041 num_bytes + empty_size);
7042 failed_alloc = true;
817d52f8 7043 goto have_block_group;
1cdda9b8 7044 } else if (!offset) {
60d2adbb
MX
7045 if (!cached)
7046 have_caching_bg = true;
1cdda9b8 7047 goto loop;
817d52f8 7048 }
fa9c0d79 7049checks:
4e54b17a 7050 search_start = ALIGN(offset, root->stripesize);
25179201 7051
2552d17e
JB
7052 /* move on to the next group */
7053 if (search_start + num_bytes >
215a63d1
MX
7054 block_group->key.objectid + block_group->key.offset) {
7055 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7056 goto loop;
6226cb0a 7057 }
f5a31e16 7058
f0486c68 7059 if (offset < search_start)
215a63d1 7060 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7061 search_start - offset);
7062 BUG_ON(offset > search_start);
2552d17e 7063
215a63d1 7064 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7065 alloc_type, delalloc);
f0486c68 7066 if (ret == -EAGAIN) {
215a63d1 7067 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7068 goto loop;
0f9dd46c 7069 }
0b86a832 7070
f0486c68 7071 /* we are all good, lets return */
2552d17e
JB
7072 ins->objectid = search_start;
7073 ins->offset = num_bytes;
d2fb3437 7074
3f7de037
JB
7075 trace_btrfs_reserve_extent(orig_root, block_group,
7076 search_start, num_bytes);
e570fd27 7077 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7078 break;
7079loop:
0a24325e 7080 failed_cluster_refill = false;
1cdda9b8 7081 failed_alloc = false;
b742bb82 7082 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7083 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7084 }
7085 up_read(&space_info->groups_sem);
7086
60d2adbb
MX
7087 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7088 goto search;
7089
b742bb82
YZ
7090 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7091 goto search;
7092
285ff5af 7093 /*
ccf0e725
JB
7094 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7095 * caching kthreads as we move along
817d52f8
JB
7096 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7097 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7098 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7099 * again
fa9c0d79 7100 */
723bda20 7101 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7102 index = 0;
723bda20 7103 loop++;
817d52f8 7104 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7105 struct btrfs_trans_handle *trans;
f017f15f
WS
7106 int exist = 0;
7107
7108 trans = current->journal_info;
7109 if (trans)
7110 exist = 1;
7111 else
7112 trans = btrfs_join_transaction(root);
00361589 7113
00361589
JB
7114 if (IS_ERR(trans)) {
7115 ret = PTR_ERR(trans);
7116 goto out;
7117 }
7118
b6919a58 7119 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7120 CHUNK_ALLOC_FORCE);
7121 /*
7122 * Do not bail out on ENOSPC since we
7123 * can do more things.
7124 */
00361589 7125 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7126 btrfs_abort_transaction(trans,
7127 root, ret);
00361589
JB
7128 else
7129 ret = 0;
f017f15f
WS
7130 if (!exist)
7131 btrfs_end_transaction(trans, root);
00361589 7132 if (ret)
ea658bad 7133 goto out;
2552d17e
JB
7134 }
7135
723bda20
JB
7136 if (loop == LOOP_NO_EMPTY_SIZE) {
7137 empty_size = 0;
7138 empty_cluster = 0;
fa9c0d79 7139 }
723bda20
JB
7140
7141 goto search;
2552d17e
JB
7142 } else if (!ins->objectid) {
7143 ret = -ENOSPC;
d82a6f1d 7144 } else if (ins->objectid) {
80eb234a 7145 ret = 0;
be744175 7146 }
79787eaa 7147out:
a4820398
MX
7148 if (ret == -ENOSPC)
7149 ins->offset = max_extent_size;
0f70abe2 7150 return ret;
fec577fb 7151}
ec44a35c 7152
9ed74f2d
JB
7153static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7154 int dump_block_groups)
0f9dd46c
JB
7155{
7156 struct btrfs_block_group_cache *cache;
b742bb82 7157 int index = 0;
0f9dd46c 7158
9ed74f2d 7159 spin_lock(&info->lock);
efe120a0 7160 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7161 info->flags,
7162 info->total_bytes - info->bytes_used - info->bytes_pinned -
7163 info->bytes_reserved - info->bytes_readonly,
d397712b 7164 (info->full) ? "" : "not ");
efe120a0 7165 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7166 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7167 info->total_bytes, info->bytes_used, info->bytes_pinned,
7168 info->bytes_reserved, info->bytes_may_use,
7169 info->bytes_readonly);
9ed74f2d
JB
7170 spin_unlock(&info->lock);
7171
7172 if (!dump_block_groups)
7173 return;
0f9dd46c 7174
80eb234a 7175 down_read(&info->groups_sem);
b742bb82
YZ
7176again:
7177 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7178 spin_lock(&cache->lock);
efe120a0
FH
7179 printk(KERN_INFO "BTRFS: "
7180 "block group %llu has %llu bytes, "
7181 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7182 cache->key.objectid, cache->key.offset,
7183 btrfs_block_group_used(&cache->item), cache->pinned,
7184 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7185 btrfs_dump_free_space(cache, bytes);
7186 spin_unlock(&cache->lock);
7187 }
b742bb82
YZ
7188 if (++index < BTRFS_NR_RAID_TYPES)
7189 goto again;
80eb234a 7190 up_read(&info->groups_sem);
0f9dd46c 7191}
e8569813 7192
00361589 7193int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7194 u64 num_bytes, u64 min_alloc_size,
7195 u64 empty_size, u64 hint_byte,
e570fd27 7196 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7197{
9e622d6b 7198 bool final_tried = false;
b6919a58 7199 u64 flags;
fec577fb 7200 int ret;
925baedd 7201
b6919a58 7202 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7203again:
db94535d 7204 WARN_ON(num_bytes < root->sectorsize);
00361589 7205 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7206 flags, delalloc);
3b951516 7207
9e622d6b 7208 if (ret == -ENOSPC) {
a4820398
MX
7209 if (!final_tried && ins->offset) {
7210 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7211 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7212 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7213 if (num_bytes == min_alloc_size)
7214 final_tried = true;
7215 goto again;
7216 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7217 struct btrfs_space_info *sinfo;
7218
b6919a58 7219 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7220 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7221 flags, num_bytes);
53804280
JM
7222 if (sinfo)
7223 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7224 }
925baedd 7225 }
0f9dd46c
JB
7226
7227 return ret;
e6dcd2dc
CM
7228}
7229
e688b725 7230static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7231 u64 start, u64 len,
7232 int pin, int delalloc)
65b51a00 7233{
0f9dd46c 7234 struct btrfs_block_group_cache *cache;
1f3c79a2 7235 int ret = 0;
0f9dd46c 7236
0f9dd46c
JB
7237 cache = btrfs_lookup_block_group(root->fs_info, start);
7238 if (!cache) {
c2cf52eb 7239 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7240 start);
0f9dd46c
JB
7241 return -ENOSPC;
7242 }
1f3c79a2 7243
e688b725
CM
7244 if (pin)
7245 pin_down_extent(root, cache, start, len, 1);
7246 else {
dcc82f47
FM
7247 if (btrfs_test_opt(root, DISCARD))
7248 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7249 btrfs_add_free_space(cache, start, len);
e570fd27 7250 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7251 }
31193213 7252
fa9c0d79 7253 btrfs_put_block_group(cache);
817d52f8 7254
1abe9b8a 7255 trace_btrfs_reserved_extent_free(root, start, len);
7256
e6dcd2dc
CM
7257 return ret;
7258}
7259
e688b725 7260int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7261 u64 start, u64 len, int delalloc)
e688b725 7262{
e570fd27 7263 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7264}
7265
7266int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7267 u64 start, u64 len)
7268{
e570fd27 7269 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7270}
7271
5d4f98a2
YZ
7272static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7273 struct btrfs_root *root,
7274 u64 parent, u64 root_objectid,
7275 u64 flags, u64 owner, u64 offset,
7276 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7277{
7278 int ret;
5d4f98a2 7279 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7280 struct btrfs_extent_item *extent_item;
5d4f98a2 7281 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7282 struct btrfs_path *path;
5d4f98a2
YZ
7283 struct extent_buffer *leaf;
7284 int type;
7285 u32 size;
26b8003f 7286
5d4f98a2
YZ
7287 if (parent > 0)
7288 type = BTRFS_SHARED_DATA_REF_KEY;
7289 else
7290 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7291
5d4f98a2 7292 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7293
7294 path = btrfs_alloc_path();
db5b493a
TI
7295 if (!path)
7296 return -ENOMEM;
47e4bb98 7297
b9473439 7298 path->leave_spinning = 1;
5d4f98a2
YZ
7299 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7300 ins, size);
79787eaa
JM
7301 if (ret) {
7302 btrfs_free_path(path);
7303 return ret;
7304 }
0f9dd46c 7305
5d4f98a2
YZ
7306 leaf = path->nodes[0];
7307 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7308 struct btrfs_extent_item);
5d4f98a2
YZ
7309 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7310 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7311 btrfs_set_extent_flags(leaf, extent_item,
7312 flags | BTRFS_EXTENT_FLAG_DATA);
7313
7314 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7315 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7316 if (parent > 0) {
7317 struct btrfs_shared_data_ref *ref;
7318 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7319 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7320 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7321 } else {
7322 struct btrfs_extent_data_ref *ref;
7323 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7324 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7325 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7326 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7327 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7328 }
47e4bb98
CM
7329
7330 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7331 btrfs_free_path(path);
f510cfec 7332
fcebe456
JB
7333 /* Always set parent to 0 here since its exclusive anyway. */
7334 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7335 ins->objectid, ins->offset,
7336 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7337 if (ret)
7338 return ret;
7339
ce93ec54 7340 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7341 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7342 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7343 ins->objectid, ins->offset);
f5947066
CM
7344 BUG();
7345 }
0be5dc67 7346 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7347 return ret;
7348}
7349
5d4f98a2
YZ
7350static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7351 struct btrfs_root *root,
7352 u64 parent, u64 root_objectid,
7353 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7354 int level, struct btrfs_key *ins,
7355 int no_quota)
e6dcd2dc
CM
7356{
7357 int ret;
5d4f98a2
YZ
7358 struct btrfs_fs_info *fs_info = root->fs_info;
7359 struct btrfs_extent_item *extent_item;
7360 struct btrfs_tree_block_info *block_info;
7361 struct btrfs_extent_inline_ref *iref;
7362 struct btrfs_path *path;
7363 struct extent_buffer *leaf;
3173a18f 7364 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7365 u64 num_bytes = ins->offset;
3173a18f
JB
7366 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7367 SKINNY_METADATA);
7368
7369 if (!skinny_metadata)
7370 size += sizeof(*block_info);
1c2308f8 7371
5d4f98a2 7372 path = btrfs_alloc_path();
857cc2fc
JB
7373 if (!path) {
7374 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7375 root->nodesize);
d8926bb3 7376 return -ENOMEM;
857cc2fc 7377 }
56bec294 7378
5d4f98a2
YZ
7379 path->leave_spinning = 1;
7380 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7381 ins, size);
79787eaa 7382 if (ret) {
dd825259 7383 btrfs_free_path(path);
857cc2fc 7384 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7385 root->nodesize);
79787eaa
JM
7386 return ret;
7387 }
5d4f98a2
YZ
7388
7389 leaf = path->nodes[0];
7390 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7391 struct btrfs_extent_item);
7392 btrfs_set_extent_refs(leaf, extent_item, 1);
7393 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7394 btrfs_set_extent_flags(leaf, extent_item,
7395 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7396
3173a18f
JB
7397 if (skinny_metadata) {
7398 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7399 num_bytes = root->nodesize;
3173a18f
JB
7400 } else {
7401 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7402 btrfs_set_tree_block_key(leaf, block_info, key);
7403 btrfs_set_tree_block_level(leaf, block_info, level);
7404 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7405 }
5d4f98a2 7406
5d4f98a2
YZ
7407 if (parent > 0) {
7408 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7409 btrfs_set_extent_inline_ref_type(leaf, iref,
7410 BTRFS_SHARED_BLOCK_REF_KEY);
7411 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7412 } else {
7413 btrfs_set_extent_inline_ref_type(leaf, iref,
7414 BTRFS_TREE_BLOCK_REF_KEY);
7415 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7416 }
7417
7418 btrfs_mark_buffer_dirty(leaf);
7419 btrfs_free_path(path);
7420
fcebe456
JB
7421 if (!no_quota) {
7422 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7423 ins->objectid, num_bytes,
7424 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7425 if (ret)
7426 return ret;
7427 }
7428
ce93ec54
JB
7429 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7430 1);
79787eaa 7431 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7432 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7433 ins->objectid, ins->offset);
5d4f98a2
YZ
7434 BUG();
7435 }
0be5dc67 7436
707e8a07 7437 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7438 return ret;
7439}
7440
7441int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7442 struct btrfs_root *root,
7443 u64 root_objectid, u64 owner,
7444 u64 offset, struct btrfs_key *ins)
7445{
7446 int ret;
7447
7448 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7449
66d7e7f0
AJ
7450 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7451 ins->offset, 0,
7452 root_objectid, owner, offset,
7453 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7454 return ret;
7455}
e02119d5
CM
7456
7457/*
7458 * this is used by the tree logging recovery code. It records that
7459 * an extent has been allocated and makes sure to clear the free
7460 * space cache bits as well
7461 */
5d4f98a2
YZ
7462int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7463 struct btrfs_root *root,
7464 u64 root_objectid, u64 owner, u64 offset,
7465 struct btrfs_key *ins)
e02119d5
CM
7466{
7467 int ret;
7468 struct btrfs_block_group_cache *block_group;
11833d66 7469
8c2a1a30
JB
7470 /*
7471 * Mixed block groups will exclude before processing the log so we only
7472 * need to do the exlude dance if this fs isn't mixed.
7473 */
7474 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7475 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7476 if (ret)
8c2a1a30 7477 return ret;
11833d66
YZ
7478 }
7479
8c2a1a30
JB
7480 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7481 if (!block_group)
7482 return -EINVAL;
7483
fb25e914 7484 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7485 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7486 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7487 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7488 0, owner, offset, ins, 1);
b50c6e25 7489 btrfs_put_block_group(block_group);
e02119d5
CM
7490 return ret;
7491}
7492
48a3b636
ES
7493static struct extent_buffer *
7494btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7495 u64 bytenr, int level)
65b51a00
CM
7496{
7497 struct extent_buffer *buf;
7498
a83fffb7 7499 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7500 if (!buf)
7501 return ERR_PTR(-ENOMEM);
7502 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7503 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7504 btrfs_tree_lock(buf);
01d58472 7505 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7506 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7507
7508 btrfs_set_lock_blocking(buf);
65b51a00 7509 btrfs_set_buffer_uptodate(buf);
b4ce94de 7510
d0c803c4 7511 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7512 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7513 /*
7514 * we allow two log transactions at a time, use different
7515 * EXENT bit to differentiate dirty pages.
7516 */
656f30db 7517 if (buf->log_index == 0)
8cef4e16
YZ
7518 set_extent_dirty(&root->dirty_log_pages, buf->start,
7519 buf->start + buf->len - 1, GFP_NOFS);
7520 else
7521 set_extent_new(&root->dirty_log_pages, buf->start,
7522 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7523 } else {
656f30db 7524 buf->log_index = -1;
d0c803c4 7525 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7526 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7527 }
65b51a00 7528 trans->blocks_used++;
b4ce94de 7529 /* this returns a buffer locked for blocking */
65b51a00
CM
7530 return buf;
7531}
7532
f0486c68
YZ
7533static struct btrfs_block_rsv *
7534use_block_rsv(struct btrfs_trans_handle *trans,
7535 struct btrfs_root *root, u32 blocksize)
7536{
7537 struct btrfs_block_rsv *block_rsv;
68a82277 7538 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7539 int ret;
d88033db 7540 bool global_updated = false;
f0486c68
YZ
7541
7542 block_rsv = get_block_rsv(trans, root);
7543
b586b323
MX
7544 if (unlikely(block_rsv->size == 0))
7545 goto try_reserve;
d88033db 7546again:
f0486c68
YZ
7547 ret = block_rsv_use_bytes(block_rsv, blocksize);
7548 if (!ret)
7549 return block_rsv;
7550
b586b323
MX
7551 if (block_rsv->failfast)
7552 return ERR_PTR(ret);
7553
d88033db
MX
7554 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7555 global_updated = true;
7556 update_global_block_rsv(root->fs_info);
7557 goto again;
7558 }
7559
b586b323
MX
7560 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7561 static DEFINE_RATELIMIT_STATE(_rs,
7562 DEFAULT_RATELIMIT_INTERVAL * 10,
7563 /*DEFAULT_RATELIMIT_BURST*/ 1);
7564 if (__ratelimit(&_rs))
7565 WARN(1, KERN_DEBUG
efe120a0 7566 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7567 }
7568try_reserve:
7569 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7570 BTRFS_RESERVE_NO_FLUSH);
7571 if (!ret)
7572 return block_rsv;
7573 /*
7574 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7575 * the global reserve if its space type is the same as the global
7576 * reservation.
b586b323 7577 */
5881cfc9
MX
7578 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7579 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7580 ret = block_rsv_use_bytes(global_rsv, blocksize);
7581 if (!ret)
7582 return global_rsv;
7583 }
7584 return ERR_PTR(ret);
f0486c68
YZ
7585}
7586
8c2a3ca2
JB
7587static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7588 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7589{
7590 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7591 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7592}
7593
fec577fb 7594/*
f0486c68
YZ
7595 * finds a free extent and does all the dirty work required for allocation
7596 * returns the key for the extent through ins, and a tree buffer for
7597 * the first block of the extent through buf.
7598 *
67b7859e 7599 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7600 */
4d75f8a9
DS
7601struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7602 struct btrfs_root *root,
5d4f98a2
YZ
7603 u64 parent, u64 root_objectid,
7604 struct btrfs_disk_key *key, int level,
5581a51a 7605 u64 hint, u64 empty_size)
fec577fb 7606{
e2fa7227 7607 struct btrfs_key ins;
f0486c68 7608 struct btrfs_block_rsv *block_rsv;
5f39d397 7609 struct extent_buffer *buf;
67b7859e 7610 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7611 u64 flags = 0;
7612 int ret;
4d75f8a9 7613 u32 blocksize = root->nodesize;
3173a18f
JB
7614 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7615 SKINNY_METADATA);
fec577fb 7616
fccb84c9 7617 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7618 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7619 level);
faa2dbf0
JB
7620 if (!IS_ERR(buf))
7621 root->alloc_bytenr += blocksize;
7622 return buf;
7623 }
fccb84c9 7624
f0486c68
YZ
7625 block_rsv = use_block_rsv(trans, root, blocksize);
7626 if (IS_ERR(block_rsv))
7627 return ERR_CAST(block_rsv);
7628
00361589 7629 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7630 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7631 if (ret)
7632 goto out_unuse;
55c69072 7633
fe864576 7634 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7635 if (IS_ERR(buf)) {
7636 ret = PTR_ERR(buf);
7637 goto out_free_reserved;
7638 }
f0486c68
YZ
7639
7640 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7641 if (parent == 0)
7642 parent = ins.objectid;
7643 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7644 } else
7645 BUG_ON(parent > 0);
7646
7647 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7648 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7649 if (!extent_op) {
7650 ret = -ENOMEM;
7651 goto out_free_buf;
7652 }
f0486c68
YZ
7653 if (key)
7654 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7655 else
7656 memset(&extent_op->key, 0, sizeof(extent_op->key));
7657 extent_op->flags_to_set = flags;
3173a18f
JB
7658 if (skinny_metadata)
7659 extent_op->update_key = 0;
7660 else
7661 extent_op->update_key = 1;
f0486c68
YZ
7662 extent_op->update_flags = 1;
7663 extent_op->is_data = 0;
b1c79e09 7664 extent_op->level = level;
f0486c68 7665
66d7e7f0 7666 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7667 ins.objectid, ins.offset,
7668 parent, root_objectid, level,
7669 BTRFS_ADD_DELAYED_EXTENT,
7670 extent_op, 0);
7671 if (ret)
7672 goto out_free_delayed;
f0486c68 7673 }
fec577fb 7674 return buf;
67b7859e
OS
7675
7676out_free_delayed:
7677 btrfs_free_delayed_extent_op(extent_op);
7678out_free_buf:
7679 free_extent_buffer(buf);
7680out_free_reserved:
7681 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7682out_unuse:
7683 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7684 return ERR_PTR(ret);
fec577fb 7685}
a28ec197 7686
2c47e605
YZ
7687struct walk_control {
7688 u64 refs[BTRFS_MAX_LEVEL];
7689 u64 flags[BTRFS_MAX_LEVEL];
7690 struct btrfs_key update_progress;
7691 int stage;
7692 int level;
7693 int shared_level;
7694 int update_ref;
7695 int keep_locks;
1c4850e2
YZ
7696 int reada_slot;
7697 int reada_count;
66d7e7f0 7698 int for_reloc;
2c47e605
YZ
7699};
7700
7701#define DROP_REFERENCE 1
7702#define UPDATE_BACKREF 2
7703
1c4850e2
YZ
7704static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7705 struct btrfs_root *root,
7706 struct walk_control *wc,
7707 struct btrfs_path *path)
6407bf6d 7708{
1c4850e2
YZ
7709 u64 bytenr;
7710 u64 generation;
7711 u64 refs;
94fcca9f 7712 u64 flags;
5d4f98a2 7713 u32 nritems;
1c4850e2
YZ
7714 u32 blocksize;
7715 struct btrfs_key key;
7716 struct extent_buffer *eb;
6407bf6d 7717 int ret;
1c4850e2
YZ
7718 int slot;
7719 int nread = 0;
6407bf6d 7720
1c4850e2
YZ
7721 if (path->slots[wc->level] < wc->reada_slot) {
7722 wc->reada_count = wc->reada_count * 2 / 3;
7723 wc->reada_count = max(wc->reada_count, 2);
7724 } else {
7725 wc->reada_count = wc->reada_count * 3 / 2;
7726 wc->reada_count = min_t(int, wc->reada_count,
7727 BTRFS_NODEPTRS_PER_BLOCK(root));
7728 }
7bb86316 7729
1c4850e2
YZ
7730 eb = path->nodes[wc->level];
7731 nritems = btrfs_header_nritems(eb);
707e8a07 7732 blocksize = root->nodesize;
bd56b302 7733
1c4850e2
YZ
7734 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7735 if (nread >= wc->reada_count)
7736 break;
bd56b302 7737
2dd3e67b 7738 cond_resched();
1c4850e2
YZ
7739 bytenr = btrfs_node_blockptr(eb, slot);
7740 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7741
1c4850e2
YZ
7742 if (slot == path->slots[wc->level])
7743 goto reada;
5d4f98a2 7744
1c4850e2
YZ
7745 if (wc->stage == UPDATE_BACKREF &&
7746 generation <= root->root_key.offset)
bd56b302
CM
7747 continue;
7748
94fcca9f 7749 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7750 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7751 wc->level - 1, 1, &refs,
7752 &flags);
79787eaa
JM
7753 /* We don't care about errors in readahead. */
7754 if (ret < 0)
7755 continue;
94fcca9f
YZ
7756 BUG_ON(refs == 0);
7757
1c4850e2 7758 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7759 if (refs == 1)
7760 goto reada;
bd56b302 7761
94fcca9f
YZ
7762 if (wc->level == 1 &&
7763 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7764 continue;
1c4850e2
YZ
7765 if (!wc->update_ref ||
7766 generation <= root->root_key.offset)
7767 continue;
7768 btrfs_node_key_to_cpu(eb, &key, slot);
7769 ret = btrfs_comp_cpu_keys(&key,
7770 &wc->update_progress);
7771 if (ret < 0)
7772 continue;
94fcca9f
YZ
7773 } else {
7774 if (wc->level == 1 &&
7775 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7776 continue;
6407bf6d 7777 }
1c4850e2 7778reada:
d3e46fea 7779 readahead_tree_block(root, bytenr);
1c4850e2 7780 nread++;
20524f02 7781 }
1c4850e2 7782 wc->reada_slot = slot;
20524f02 7783}
2c47e605 7784
1152651a
MF
7785static int account_leaf_items(struct btrfs_trans_handle *trans,
7786 struct btrfs_root *root,
7787 struct extent_buffer *eb)
7788{
7789 int nr = btrfs_header_nritems(eb);
7790 int i, extent_type, ret;
7791 struct btrfs_key key;
7792 struct btrfs_file_extent_item *fi;
7793 u64 bytenr, num_bytes;
7794
7795 for (i = 0; i < nr; i++) {
7796 btrfs_item_key_to_cpu(eb, &key, i);
7797
7798 if (key.type != BTRFS_EXTENT_DATA_KEY)
7799 continue;
7800
7801 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7802 /* filter out non qgroup-accountable extents */
7803 extent_type = btrfs_file_extent_type(eb, fi);
7804
7805 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7806 continue;
7807
7808 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7809 if (!bytenr)
7810 continue;
7811
7812 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7813
7814 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7815 root->objectid,
7816 bytenr, num_bytes,
7817 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7818 if (ret)
7819 return ret;
7820 }
7821 return 0;
7822}
7823
7824/*
7825 * Walk up the tree from the bottom, freeing leaves and any interior
7826 * nodes which have had all slots visited. If a node (leaf or
7827 * interior) is freed, the node above it will have it's slot
7828 * incremented. The root node will never be freed.
7829 *
7830 * At the end of this function, we should have a path which has all
7831 * slots incremented to the next position for a search. If we need to
7832 * read a new node it will be NULL and the node above it will have the
7833 * correct slot selected for a later read.
7834 *
7835 * If we increment the root nodes slot counter past the number of
7836 * elements, 1 is returned to signal completion of the search.
7837 */
7838static int adjust_slots_upwards(struct btrfs_root *root,
7839 struct btrfs_path *path, int root_level)
7840{
7841 int level = 0;
7842 int nr, slot;
7843 struct extent_buffer *eb;
7844
7845 if (root_level == 0)
7846 return 1;
7847
7848 while (level <= root_level) {
7849 eb = path->nodes[level];
7850 nr = btrfs_header_nritems(eb);
7851 path->slots[level]++;
7852 slot = path->slots[level];
7853 if (slot >= nr || level == 0) {
7854 /*
7855 * Don't free the root - we will detect this
7856 * condition after our loop and return a
7857 * positive value for caller to stop walking the tree.
7858 */
7859 if (level != root_level) {
7860 btrfs_tree_unlock_rw(eb, path->locks[level]);
7861 path->locks[level] = 0;
7862
7863 free_extent_buffer(eb);
7864 path->nodes[level] = NULL;
7865 path->slots[level] = 0;
7866 }
7867 } else {
7868 /*
7869 * We have a valid slot to walk back down
7870 * from. Stop here so caller can process these
7871 * new nodes.
7872 */
7873 break;
7874 }
7875
7876 level++;
7877 }
7878
7879 eb = path->nodes[root_level];
7880 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7881 return 1;
7882
7883 return 0;
7884}
7885
7886/*
7887 * root_eb is the subtree root and is locked before this function is called.
7888 */
7889static int account_shared_subtree(struct btrfs_trans_handle *trans,
7890 struct btrfs_root *root,
7891 struct extent_buffer *root_eb,
7892 u64 root_gen,
7893 int root_level)
7894{
7895 int ret = 0;
7896 int level;
7897 struct extent_buffer *eb = root_eb;
7898 struct btrfs_path *path = NULL;
7899
7900 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7901 BUG_ON(root_eb == NULL);
7902
7903 if (!root->fs_info->quota_enabled)
7904 return 0;
7905
7906 if (!extent_buffer_uptodate(root_eb)) {
7907 ret = btrfs_read_buffer(root_eb, root_gen);
7908 if (ret)
7909 goto out;
7910 }
7911
7912 if (root_level == 0) {
7913 ret = account_leaf_items(trans, root, root_eb);
7914 goto out;
7915 }
7916
7917 path = btrfs_alloc_path();
7918 if (!path)
7919 return -ENOMEM;
7920
7921 /*
7922 * Walk down the tree. Missing extent blocks are filled in as
7923 * we go. Metadata is accounted every time we read a new
7924 * extent block.
7925 *
7926 * When we reach a leaf, we account for file extent items in it,
7927 * walk back up the tree (adjusting slot pointers as we go)
7928 * and restart the search process.
7929 */
7930 extent_buffer_get(root_eb); /* For path */
7931 path->nodes[root_level] = root_eb;
7932 path->slots[root_level] = 0;
7933 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7934walk_down:
7935 level = root_level;
7936 while (level >= 0) {
7937 if (path->nodes[level] == NULL) {
1152651a
MF
7938 int parent_slot;
7939 u64 child_gen;
7940 u64 child_bytenr;
7941
7942 /* We need to get child blockptr/gen from
7943 * parent before we can read it. */
7944 eb = path->nodes[level + 1];
7945 parent_slot = path->slots[level + 1];
7946 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7947 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7948
ce86cd59 7949 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
7950 if (IS_ERR(eb)) {
7951 ret = PTR_ERR(eb);
7952 goto out;
7953 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 7954 free_extent_buffer(eb);
64c043de 7955 ret = -EIO;
1152651a
MF
7956 goto out;
7957 }
7958
7959 path->nodes[level] = eb;
7960 path->slots[level] = 0;
7961
7962 btrfs_tree_read_lock(eb);
7963 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7964 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7965
7966 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7967 root->objectid,
7968 child_bytenr,
ce86cd59 7969 root->nodesize,
1152651a
MF
7970 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7971 0);
7972 if (ret)
7973 goto out;
7974
7975 }
7976
7977 if (level == 0) {
7978 ret = account_leaf_items(trans, root, path->nodes[level]);
7979 if (ret)
7980 goto out;
7981
7982 /* Nonzero return here means we completed our search */
7983 ret = adjust_slots_upwards(root, path, root_level);
7984 if (ret)
7985 break;
7986
7987 /* Restart search with new slots */
7988 goto walk_down;
7989 }
7990
7991 level--;
7992 }
7993
7994 ret = 0;
7995out:
7996 btrfs_free_path(path);
7997
7998 return ret;
7999}
8000
f82d02d9 8001/*
2c016dc2 8002 * helper to process tree block while walking down the tree.
2c47e605 8003 *
2c47e605
YZ
8004 * when wc->stage == UPDATE_BACKREF, this function updates
8005 * back refs for pointers in the block.
8006 *
8007 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8008 */
2c47e605 8009static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8010 struct btrfs_root *root,
2c47e605 8011 struct btrfs_path *path,
94fcca9f 8012 struct walk_control *wc, int lookup_info)
f82d02d9 8013{
2c47e605
YZ
8014 int level = wc->level;
8015 struct extent_buffer *eb = path->nodes[level];
2c47e605 8016 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8017 int ret;
8018
2c47e605
YZ
8019 if (wc->stage == UPDATE_BACKREF &&
8020 btrfs_header_owner(eb) != root->root_key.objectid)
8021 return 1;
f82d02d9 8022
2c47e605
YZ
8023 /*
8024 * when reference count of tree block is 1, it won't increase
8025 * again. once full backref flag is set, we never clear it.
8026 */
94fcca9f
YZ
8027 if (lookup_info &&
8028 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8029 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8030 BUG_ON(!path->locks[level]);
8031 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8032 eb->start, level, 1,
2c47e605
YZ
8033 &wc->refs[level],
8034 &wc->flags[level]);
79787eaa
JM
8035 BUG_ON(ret == -ENOMEM);
8036 if (ret)
8037 return ret;
2c47e605
YZ
8038 BUG_ON(wc->refs[level] == 0);
8039 }
5d4f98a2 8040
2c47e605
YZ
8041 if (wc->stage == DROP_REFERENCE) {
8042 if (wc->refs[level] > 1)
8043 return 1;
f82d02d9 8044
2c47e605 8045 if (path->locks[level] && !wc->keep_locks) {
bd681513 8046 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8047 path->locks[level] = 0;
8048 }
8049 return 0;
8050 }
f82d02d9 8051
2c47e605
YZ
8052 /* wc->stage == UPDATE_BACKREF */
8053 if (!(wc->flags[level] & flag)) {
8054 BUG_ON(!path->locks[level]);
e339a6b0 8055 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8056 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8057 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8058 BUG_ON(ret); /* -ENOMEM */
2c47e605 8059 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8060 eb->len, flag,
8061 btrfs_header_level(eb), 0);
79787eaa 8062 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8063 wc->flags[level] |= flag;
8064 }
8065
8066 /*
8067 * the block is shared by multiple trees, so it's not good to
8068 * keep the tree lock
8069 */
8070 if (path->locks[level] && level > 0) {
bd681513 8071 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8072 path->locks[level] = 0;
8073 }
8074 return 0;
8075}
8076
1c4850e2 8077/*
2c016dc2 8078 * helper to process tree block pointer.
1c4850e2
YZ
8079 *
8080 * when wc->stage == DROP_REFERENCE, this function checks
8081 * reference count of the block pointed to. if the block
8082 * is shared and we need update back refs for the subtree
8083 * rooted at the block, this function changes wc->stage to
8084 * UPDATE_BACKREF. if the block is shared and there is no
8085 * need to update back, this function drops the reference
8086 * to the block.
8087 *
8088 * NOTE: return value 1 means we should stop walking down.
8089 */
8090static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8091 struct btrfs_root *root,
8092 struct btrfs_path *path,
94fcca9f 8093 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8094{
8095 u64 bytenr;
8096 u64 generation;
8097 u64 parent;
8098 u32 blocksize;
8099 struct btrfs_key key;
8100 struct extent_buffer *next;
8101 int level = wc->level;
8102 int reada = 0;
8103 int ret = 0;
1152651a 8104 bool need_account = false;
1c4850e2
YZ
8105
8106 generation = btrfs_node_ptr_generation(path->nodes[level],
8107 path->slots[level]);
8108 /*
8109 * if the lower level block was created before the snapshot
8110 * was created, we know there is no need to update back refs
8111 * for the subtree
8112 */
8113 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8114 generation <= root->root_key.offset) {
8115 *lookup_info = 1;
1c4850e2 8116 return 1;
94fcca9f 8117 }
1c4850e2
YZ
8118
8119 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8120 blocksize = root->nodesize;
1c4850e2 8121
01d58472 8122 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8123 if (!next) {
a83fffb7 8124 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8125 if (!next)
8126 return -ENOMEM;
b2aaaa3b
JB
8127 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8128 level - 1);
1c4850e2
YZ
8129 reada = 1;
8130 }
8131 btrfs_tree_lock(next);
8132 btrfs_set_lock_blocking(next);
8133
3173a18f 8134 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8135 &wc->refs[level - 1],
8136 &wc->flags[level - 1]);
79787eaa
JM
8137 if (ret < 0) {
8138 btrfs_tree_unlock(next);
8139 return ret;
8140 }
8141
c2cf52eb
SK
8142 if (unlikely(wc->refs[level - 1] == 0)) {
8143 btrfs_err(root->fs_info, "Missing references.");
8144 BUG();
8145 }
94fcca9f 8146 *lookup_info = 0;
1c4850e2 8147
94fcca9f 8148 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8149 if (wc->refs[level - 1] > 1) {
1152651a 8150 need_account = true;
94fcca9f
YZ
8151 if (level == 1 &&
8152 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8153 goto skip;
8154
1c4850e2
YZ
8155 if (!wc->update_ref ||
8156 generation <= root->root_key.offset)
8157 goto skip;
8158
8159 btrfs_node_key_to_cpu(path->nodes[level], &key,
8160 path->slots[level]);
8161 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8162 if (ret < 0)
8163 goto skip;
8164
8165 wc->stage = UPDATE_BACKREF;
8166 wc->shared_level = level - 1;
8167 }
94fcca9f
YZ
8168 } else {
8169 if (level == 1 &&
8170 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8171 goto skip;
1c4850e2
YZ
8172 }
8173
b9fab919 8174 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8175 btrfs_tree_unlock(next);
8176 free_extent_buffer(next);
8177 next = NULL;
94fcca9f 8178 *lookup_info = 1;
1c4850e2
YZ
8179 }
8180
8181 if (!next) {
8182 if (reada && level == 1)
8183 reada_walk_down(trans, root, wc, path);
ce86cd59 8184 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8185 if (IS_ERR(next)) {
8186 return PTR_ERR(next);
8187 } else if (!extent_buffer_uptodate(next)) {
416bc658 8188 free_extent_buffer(next);
97d9a8a4 8189 return -EIO;
416bc658 8190 }
1c4850e2
YZ
8191 btrfs_tree_lock(next);
8192 btrfs_set_lock_blocking(next);
8193 }
8194
8195 level--;
8196 BUG_ON(level != btrfs_header_level(next));
8197 path->nodes[level] = next;
8198 path->slots[level] = 0;
bd681513 8199 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8200 wc->level = level;
8201 if (wc->level == 1)
8202 wc->reada_slot = 0;
8203 return 0;
8204skip:
8205 wc->refs[level - 1] = 0;
8206 wc->flags[level - 1] = 0;
94fcca9f
YZ
8207 if (wc->stage == DROP_REFERENCE) {
8208 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8209 parent = path->nodes[level]->start;
8210 } else {
8211 BUG_ON(root->root_key.objectid !=
8212 btrfs_header_owner(path->nodes[level]));
8213 parent = 0;
8214 }
1c4850e2 8215
1152651a
MF
8216 if (need_account) {
8217 ret = account_shared_subtree(trans, root, next,
8218 generation, level - 1);
8219 if (ret) {
8220 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8221 "%d accounting shared subtree. Quota "
8222 "is out of sync, rescan required.\n",
8223 root->fs_info->sb->s_id, ret);
8224 }
8225 }
94fcca9f 8226 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8227 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8228 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8229 }
1c4850e2
YZ
8230 btrfs_tree_unlock(next);
8231 free_extent_buffer(next);
94fcca9f 8232 *lookup_info = 1;
1c4850e2
YZ
8233 return 1;
8234}
8235
2c47e605 8236/*
2c016dc2 8237 * helper to process tree block while walking up the tree.
2c47e605
YZ
8238 *
8239 * when wc->stage == DROP_REFERENCE, this function drops
8240 * reference count on the block.
8241 *
8242 * when wc->stage == UPDATE_BACKREF, this function changes
8243 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8244 * to UPDATE_BACKREF previously while processing the block.
8245 *
8246 * NOTE: return value 1 means we should stop walking up.
8247 */
8248static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8249 struct btrfs_root *root,
8250 struct btrfs_path *path,
8251 struct walk_control *wc)
8252{
f0486c68 8253 int ret;
2c47e605
YZ
8254 int level = wc->level;
8255 struct extent_buffer *eb = path->nodes[level];
8256 u64 parent = 0;
8257
8258 if (wc->stage == UPDATE_BACKREF) {
8259 BUG_ON(wc->shared_level < level);
8260 if (level < wc->shared_level)
8261 goto out;
8262
2c47e605
YZ
8263 ret = find_next_key(path, level + 1, &wc->update_progress);
8264 if (ret > 0)
8265 wc->update_ref = 0;
8266
8267 wc->stage = DROP_REFERENCE;
8268 wc->shared_level = -1;
8269 path->slots[level] = 0;
8270
8271 /*
8272 * check reference count again if the block isn't locked.
8273 * we should start walking down the tree again if reference
8274 * count is one.
8275 */
8276 if (!path->locks[level]) {
8277 BUG_ON(level == 0);
8278 btrfs_tree_lock(eb);
8279 btrfs_set_lock_blocking(eb);
bd681513 8280 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8281
8282 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8283 eb->start, level, 1,
2c47e605
YZ
8284 &wc->refs[level],
8285 &wc->flags[level]);
79787eaa
JM
8286 if (ret < 0) {
8287 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8288 path->locks[level] = 0;
79787eaa
JM
8289 return ret;
8290 }
2c47e605
YZ
8291 BUG_ON(wc->refs[level] == 0);
8292 if (wc->refs[level] == 1) {
bd681513 8293 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8294 path->locks[level] = 0;
2c47e605
YZ
8295 return 1;
8296 }
f82d02d9 8297 }
2c47e605 8298 }
f82d02d9 8299
2c47e605
YZ
8300 /* wc->stage == DROP_REFERENCE */
8301 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8302
2c47e605
YZ
8303 if (wc->refs[level] == 1) {
8304 if (level == 0) {
8305 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8306 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8307 else
e339a6b0 8308 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8309 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8310 ret = account_leaf_items(trans, root, eb);
8311 if (ret) {
8312 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8313 "%d accounting leaf items. Quota "
8314 "is out of sync, rescan required.\n",
8315 root->fs_info->sb->s_id, ret);
8316 }
2c47e605
YZ
8317 }
8318 /* make block locked assertion in clean_tree_block happy */
8319 if (!path->locks[level] &&
8320 btrfs_header_generation(eb) == trans->transid) {
8321 btrfs_tree_lock(eb);
8322 btrfs_set_lock_blocking(eb);
bd681513 8323 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8324 }
01d58472 8325 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8326 }
8327
8328 if (eb == root->node) {
8329 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8330 parent = eb->start;
8331 else
8332 BUG_ON(root->root_key.objectid !=
8333 btrfs_header_owner(eb));
8334 } else {
8335 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8336 parent = path->nodes[level + 1]->start;
8337 else
8338 BUG_ON(root->root_key.objectid !=
8339 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8340 }
f82d02d9 8341
5581a51a 8342 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8343out:
8344 wc->refs[level] = 0;
8345 wc->flags[level] = 0;
f0486c68 8346 return 0;
2c47e605
YZ
8347}
8348
8349static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8350 struct btrfs_root *root,
8351 struct btrfs_path *path,
8352 struct walk_control *wc)
8353{
2c47e605 8354 int level = wc->level;
94fcca9f 8355 int lookup_info = 1;
2c47e605
YZ
8356 int ret;
8357
8358 while (level >= 0) {
94fcca9f 8359 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8360 if (ret > 0)
8361 break;
8362
8363 if (level == 0)
8364 break;
8365
7a7965f8
YZ
8366 if (path->slots[level] >=
8367 btrfs_header_nritems(path->nodes[level]))
8368 break;
8369
94fcca9f 8370 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8371 if (ret > 0) {
8372 path->slots[level]++;
8373 continue;
90d2c51d
MX
8374 } else if (ret < 0)
8375 return ret;
1c4850e2 8376 level = wc->level;
f82d02d9 8377 }
f82d02d9
YZ
8378 return 0;
8379}
8380
d397712b 8381static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8382 struct btrfs_root *root,
f82d02d9 8383 struct btrfs_path *path,
2c47e605 8384 struct walk_control *wc, int max_level)
20524f02 8385{
2c47e605 8386 int level = wc->level;
20524f02 8387 int ret;
9f3a7427 8388
2c47e605
YZ
8389 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8390 while (level < max_level && path->nodes[level]) {
8391 wc->level = level;
8392 if (path->slots[level] + 1 <
8393 btrfs_header_nritems(path->nodes[level])) {
8394 path->slots[level]++;
20524f02
CM
8395 return 0;
8396 } else {
2c47e605
YZ
8397 ret = walk_up_proc(trans, root, path, wc);
8398 if (ret > 0)
8399 return 0;
bd56b302 8400
2c47e605 8401 if (path->locks[level]) {
bd681513
CM
8402 btrfs_tree_unlock_rw(path->nodes[level],
8403 path->locks[level]);
2c47e605 8404 path->locks[level] = 0;
f82d02d9 8405 }
2c47e605
YZ
8406 free_extent_buffer(path->nodes[level]);
8407 path->nodes[level] = NULL;
8408 level++;
20524f02
CM
8409 }
8410 }
8411 return 1;
8412}
8413
9aca1d51 8414/*
2c47e605
YZ
8415 * drop a subvolume tree.
8416 *
8417 * this function traverses the tree freeing any blocks that only
8418 * referenced by the tree.
8419 *
8420 * when a shared tree block is found. this function decreases its
8421 * reference count by one. if update_ref is true, this function
8422 * also make sure backrefs for the shared block and all lower level
8423 * blocks are properly updated.
9d1a2a3a
DS
8424 *
8425 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8426 */
2c536799 8427int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8428 struct btrfs_block_rsv *block_rsv, int update_ref,
8429 int for_reloc)
20524f02 8430{
5caf2a00 8431 struct btrfs_path *path;
2c47e605
YZ
8432 struct btrfs_trans_handle *trans;
8433 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8434 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8435 struct walk_control *wc;
8436 struct btrfs_key key;
8437 int err = 0;
8438 int ret;
8439 int level;
d29a9f62 8440 bool root_dropped = false;
20524f02 8441
1152651a
MF
8442 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8443
5caf2a00 8444 path = btrfs_alloc_path();
cb1b69f4
TI
8445 if (!path) {
8446 err = -ENOMEM;
8447 goto out;
8448 }
20524f02 8449
2c47e605 8450 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8451 if (!wc) {
8452 btrfs_free_path(path);
cb1b69f4
TI
8453 err = -ENOMEM;
8454 goto out;
38a1a919 8455 }
2c47e605 8456
a22285a6 8457 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8458 if (IS_ERR(trans)) {
8459 err = PTR_ERR(trans);
8460 goto out_free;
8461 }
98d5dc13 8462
3fd0a558
YZ
8463 if (block_rsv)
8464 trans->block_rsv = block_rsv;
2c47e605 8465
9f3a7427 8466 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8467 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8468 path->nodes[level] = btrfs_lock_root_node(root);
8469 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8470 path->slots[level] = 0;
bd681513 8471 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8472 memset(&wc->update_progress, 0,
8473 sizeof(wc->update_progress));
9f3a7427 8474 } else {
9f3a7427 8475 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8476 memcpy(&wc->update_progress, &key,
8477 sizeof(wc->update_progress));
8478
6702ed49 8479 level = root_item->drop_level;
2c47e605 8480 BUG_ON(level == 0);
6702ed49 8481 path->lowest_level = level;
2c47e605
YZ
8482 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8483 path->lowest_level = 0;
8484 if (ret < 0) {
8485 err = ret;
79787eaa 8486 goto out_end_trans;
9f3a7427 8487 }
1c4850e2 8488 WARN_ON(ret > 0);
2c47e605 8489
7d9eb12c
CM
8490 /*
8491 * unlock our path, this is safe because only this
8492 * function is allowed to delete this snapshot
8493 */
5d4f98a2 8494 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8495
8496 level = btrfs_header_level(root->node);
8497 while (1) {
8498 btrfs_tree_lock(path->nodes[level]);
8499 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8500 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8501
8502 ret = btrfs_lookup_extent_info(trans, root,
8503 path->nodes[level]->start,
3173a18f 8504 level, 1, &wc->refs[level],
2c47e605 8505 &wc->flags[level]);
79787eaa
JM
8506 if (ret < 0) {
8507 err = ret;
8508 goto out_end_trans;
8509 }
2c47e605
YZ
8510 BUG_ON(wc->refs[level] == 0);
8511
8512 if (level == root_item->drop_level)
8513 break;
8514
8515 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8516 path->locks[level] = 0;
2c47e605
YZ
8517 WARN_ON(wc->refs[level] != 1);
8518 level--;
8519 }
9f3a7427 8520 }
2c47e605
YZ
8521
8522 wc->level = level;
8523 wc->shared_level = -1;
8524 wc->stage = DROP_REFERENCE;
8525 wc->update_ref = update_ref;
8526 wc->keep_locks = 0;
66d7e7f0 8527 wc->for_reloc = for_reloc;
1c4850e2 8528 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8529
d397712b 8530 while (1) {
9d1a2a3a 8531
2c47e605
YZ
8532 ret = walk_down_tree(trans, root, path, wc);
8533 if (ret < 0) {
8534 err = ret;
20524f02 8535 break;
2c47e605 8536 }
9aca1d51 8537
2c47e605
YZ
8538 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8539 if (ret < 0) {
8540 err = ret;
20524f02 8541 break;
2c47e605
YZ
8542 }
8543
8544 if (ret > 0) {
8545 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8546 break;
8547 }
2c47e605
YZ
8548
8549 if (wc->stage == DROP_REFERENCE) {
8550 level = wc->level;
8551 btrfs_node_key(path->nodes[level],
8552 &root_item->drop_progress,
8553 path->slots[level]);
8554 root_item->drop_level = level;
8555 }
8556
8557 BUG_ON(wc->level == 0);
3c8f2422
JB
8558 if (btrfs_should_end_transaction(trans, tree_root) ||
8559 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8560 ret = btrfs_update_root(trans, tree_root,
8561 &root->root_key,
8562 root_item);
79787eaa
JM
8563 if (ret) {
8564 btrfs_abort_transaction(trans, tree_root, ret);
8565 err = ret;
8566 goto out_end_trans;
8567 }
2c47e605 8568
1152651a
MF
8569 /*
8570 * Qgroup update accounting is run from
8571 * delayed ref handling. This usually works
8572 * out because delayed refs are normally the
8573 * only way qgroup updates are added. However,
8574 * we may have added updates during our tree
8575 * walk so run qgroups here to make sure we
8576 * don't lose any updates.
8577 */
8578 ret = btrfs_delayed_qgroup_accounting(trans,
8579 root->fs_info);
8580 if (ret)
8581 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8582 "running qgroup updates "
8583 "during snapshot delete. "
8584 "Quota is out of sync, "
8585 "rescan required.\n", ret);
8586
3fd0a558 8587 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8588 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8589 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8590 err = -EAGAIN;
8591 goto out_free;
8592 }
8593
a22285a6 8594 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8595 if (IS_ERR(trans)) {
8596 err = PTR_ERR(trans);
8597 goto out_free;
8598 }
3fd0a558
YZ
8599 if (block_rsv)
8600 trans->block_rsv = block_rsv;
c3e69d58 8601 }
20524f02 8602 }
b3b4aa74 8603 btrfs_release_path(path);
79787eaa
JM
8604 if (err)
8605 goto out_end_trans;
2c47e605
YZ
8606
8607 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8608 if (ret) {
8609 btrfs_abort_transaction(trans, tree_root, ret);
8610 goto out_end_trans;
8611 }
2c47e605 8612
76dda93c 8613 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8614 ret = btrfs_find_root(tree_root, &root->root_key, path,
8615 NULL, NULL);
79787eaa
JM
8616 if (ret < 0) {
8617 btrfs_abort_transaction(trans, tree_root, ret);
8618 err = ret;
8619 goto out_end_trans;
8620 } else if (ret > 0) {
84cd948c
JB
8621 /* if we fail to delete the orphan item this time
8622 * around, it'll get picked up the next time.
8623 *
8624 * The most common failure here is just -ENOENT.
8625 */
8626 btrfs_del_orphan_item(trans, tree_root,
8627 root->root_key.objectid);
76dda93c
YZ
8628 }
8629 }
8630
27cdeb70 8631 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8632 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8633 } else {
8634 free_extent_buffer(root->node);
8635 free_extent_buffer(root->commit_root);
b0feb9d9 8636 btrfs_put_fs_root(root);
76dda93c 8637 }
d29a9f62 8638 root_dropped = true;
79787eaa 8639out_end_trans:
1152651a
MF
8640 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8641 if (ret)
8642 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8643 "running qgroup updates "
8644 "during snapshot delete. "
8645 "Quota is out of sync, "
8646 "rescan required.\n", ret);
8647
3fd0a558 8648 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8649out_free:
2c47e605 8650 kfree(wc);
5caf2a00 8651 btrfs_free_path(path);
cb1b69f4 8652out:
d29a9f62
JB
8653 /*
8654 * So if we need to stop dropping the snapshot for whatever reason we
8655 * need to make sure to add it back to the dead root list so that we
8656 * keep trying to do the work later. This also cleans up roots if we
8657 * don't have it in the radix (like when we recover after a power fail
8658 * or unmount) so we don't leak memory.
8659 */
b37b39cd 8660 if (!for_reloc && root_dropped == false)
d29a9f62 8661 btrfs_add_dead_root(root);
90515e7f 8662 if (err && err != -EAGAIN)
cb1b69f4 8663 btrfs_std_error(root->fs_info, err);
2c536799 8664 return err;
20524f02 8665}
9078a3e1 8666
2c47e605
YZ
8667/*
8668 * drop subtree rooted at tree block 'node'.
8669 *
8670 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8671 * only used by relocation code
2c47e605 8672 */
f82d02d9
YZ
8673int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8674 struct btrfs_root *root,
8675 struct extent_buffer *node,
8676 struct extent_buffer *parent)
8677{
8678 struct btrfs_path *path;
2c47e605 8679 struct walk_control *wc;
f82d02d9
YZ
8680 int level;
8681 int parent_level;
8682 int ret = 0;
8683 int wret;
8684
2c47e605
YZ
8685 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8686
f82d02d9 8687 path = btrfs_alloc_path();
db5b493a
TI
8688 if (!path)
8689 return -ENOMEM;
f82d02d9 8690
2c47e605 8691 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8692 if (!wc) {
8693 btrfs_free_path(path);
8694 return -ENOMEM;
8695 }
2c47e605 8696
b9447ef8 8697 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8698 parent_level = btrfs_header_level(parent);
8699 extent_buffer_get(parent);
8700 path->nodes[parent_level] = parent;
8701 path->slots[parent_level] = btrfs_header_nritems(parent);
8702
b9447ef8 8703 btrfs_assert_tree_locked(node);
f82d02d9 8704 level = btrfs_header_level(node);
f82d02d9
YZ
8705 path->nodes[level] = node;
8706 path->slots[level] = 0;
bd681513 8707 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8708
8709 wc->refs[parent_level] = 1;
8710 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8711 wc->level = level;
8712 wc->shared_level = -1;
8713 wc->stage = DROP_REFERENCE;
8714 wc->update_ref = 0;
8715 wc->keep_locks = 1;
66d7e7f0 8716 wc->for_reloc = 1;
1c4850e2 8717 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8718
8719 while (1) {
2c47e605
YZ
8720 wret = walk_down_tree(trans, root, path, wc);
8721 if (wret < 0) {
f82d02d9 8722 ret = wret;
f82d02d9 8723 break;
2c47e605 8724 }
f82d02d9 8725
2c47e605 8726 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8727 if (wret < 0)
8728 ret = wret;
8729 if (wret != 0)
8730 break;
8731 }
8732
2c47e605 8733 kfree(wc);
f82d02d9
YZ
8734 btrfs_free_path(path);
8735 return ret;
8736}
8737
ec44a35c
CM
8738static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8739{
8740 u64 num_devices;
fc67c450 8741 u64 stripped;
e4d8ec0f 8742
fc67c450
ID
8743 /*
8744 * if restripe for this chunk_type is on pick target profile and
8745 * return, otherwise do the usual balance
8746 */
8747 stripped = get_restripe_target(root->fs_info, flags);
8748 if (stripped)
8749 return extended_to_chunk(stripped);
e4d8ec0f 8750
95669976 8751 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8752
fc67c450 8753 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8754 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8755 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8756
ec44a35c
CM
8757 if (num_devices == 1) {
8758 stripped |= BTRFS_BLOCK_GROUP_DUP;
8759 stripped = flags & ~stripped;
8760
8761 /* turn raid0 into single device chunks */
8762 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8763 return stripped;
8764
8765 /* turn mirroring into duplication */
8766 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8767 BTRFS_BLOCK_GROUP_RAID10))
8768 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8769 } else {
8770 /* they already had raid on here, just return */
ec44a35c
CM
8771 if (flags & stripped)
8772 return flags;
8773
8774 stripped |= BTRFS_BLOCK_GROUP_DUP;
8775 stripped = flags & ~stripped;
8776
8777 /* switch duplicated blocks with raid1 */
8778 if (flags & BTRFS_BLOCK_GROUP_DUP)
8779 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8780
e3176ca2 8781 /* this is drive concat, leave it alone */
ec44a35c 8782 }
e3176ca2 8783
ec44a35c
CM
8784 return flags;
8785}
8786
199c36ea 8787static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8788{
f0486c68
YZ
8789 struct btrfs_space_info *sinfo = cache->space_info;
8790 u64 num_bytes;
199c36ea 8791 u64 min_allocable_bytes;
f0486c68 8792 int ret = -ENOSPC;
0ef3e66b 8793
c286ac48 8794
199c36ea
MX
8795 /*
8796 * We need some metadata space and system metadata space for
8797 * allocating chunks in some corner cases until we force to set
8798 * it to be readonly.
8799 */
8800 if ((sinfo->flags &
8801 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8802 !force)
8803 min_allocable_bytes = 1 * 1024 * 1024;
8804 else
8805 min_allocable_bytes = 0;
8806
f0486c68
YZ
8807 spin_lock(&sinfo->lock);
8808 spin_lock(&cache->lock);
61cfea9b
W
8809
8810 if (cache->ro) {
8811 ret = 0;
8812 goto out;
8813 }
8814
f0486c68
YZ
8815 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8816 cache->bytes_super - btrfs_block_group_used(&cache->item);
8817
8818 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8819 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8820 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8821 sinfo->bytes_readonly += num_bytes;
f0486c68 8822 cache->ro = 1;
633c0aad 8823 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8824 ret = 0;
8825 }
61cfea9b 8826out:
f0486c68
YZ
8827 spin_unlock(&cache->lock);
8828 spin_unlock(&sinfo->lock);
8829 return ret;
8830}
7d9eb12c 8831
f0486c68
YZ
8832int btrfs_set_block_group_ro(struct btrfs_root *root,
8833 struct btrfs_block_group_cache *cache)
c286ac48 8834
f0486c68
YZ
8835{
8836 struct btrfs_trans_handle *trans;
8837 u64 alloc_flags;
8838 int ret;
7d9eb12c 8839
f0486c68 8840 BUG_ON(cache->ro);
0ef3e66b 8841
1bbc621e 8842again:
ff5714cc 8843 trans = btrfs_join_transaction(root);
79787eaa
JM
8844 if (IS_ERR(trans))
8845 return PTR_ERR(trans);
5d4f98a2 8846
1bbc621e
CM
8847 /*
8848 * we're not allowed to set block groups readonly after the dirty
8849 * block groups cache has started writing. If it already started,
8850 * back off and let this transaction commit
8851 */
8852 mutex_lock(&root->fs_info->ro_block_group_mutex);
8853 if (trans->transaction->dirty_bg_run) {
8854 u64 transid = trans->transid;
8855
8856 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8857 btrfs_end_transaction(trans, root);
8858
8859 ret = btrfs_wait_for_commit(root, transid);
8860 if (ret)
8861 return ret;
8862 goto again;
8863 }
8864
153c35b6
CM
8865 /*
8866 * if we are changing raid levels, try to allocate a corresponding
8867 * block group with the new raid level.
8868 */
8869 alloc_flags = update_block_group_flags(root, cache->flags);
8870 if (alloc_flags != cache->flags) {
8871 ret = do_chunk_alloc(trans, root, alloc_flags,
8872 CHUNK_ALLOC_FORCE);
8873 /*
8874 * ENOSPC is allowed here, we may have enough space
8875 * already allocated at the new raid level to
8876 * carry on
8877 */
8878 if (ret == -ENOSPC)
8879 ret = 0;
8880 if (ret < 0)
8881 goto out;
8882 }
1bbc621e 8883
199c36ea 8884 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8885 if (!ret)
8886 goto out;
8887 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8888 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8889 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8890 if (ret < 0)
8891 goto out;
199c36ea 8892 ret = set_block_group_ro(cache, 0);
f0486c68 8893out:
2f081088
SL
8894 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8895 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8896 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8897 check_system_chunk(trans, root, alloc_flags);
a9629596 8898 unlock_chunks(root->fs_info->chunk_root);
2f081088 8899 }
1bbc621e 8900 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8901
f0486c68
YZ
8902 btrfs_end_transaction(trans, root);
8903 return ret;
8904}
5d4f98a2 8905
c87f08ca
CM
8906int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8907 struct btrfs_root *root, u64 type)
8908{
8909 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8910 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8911 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8912}
8913
6d07bcec
MX
8914/*
8915 * helper to account the unused space of all the readonly block group in the
633c0aad 8916 * space_info. takes mirrors into account.
6d07bcec 8917 */
633c0aad 8918u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8919{
8920 struct btrfs_block_group_cache *block_group;
8921 u64 free_bytes = 0;
8922 int factor;
8923
633c0aad
JB
8924 /* It's df, we don't care if it's racey */
8925 if (list_empty(&sinfo->ro_bgs))
8926 return 0;
8927
8928 spin_lock(&sinfo->lock);
8929 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8930 spin_lock(&block_group->lock);
8931
8932 if (!block_group->ro) {
8933 spin_unlock(&block_group->lock);
8934 continue;
8935 }
8936
8937 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8938 BTRFS_BLOCK_GROUP_RAID10 |
8939 BTRFS_BLOCK_GROUP_DUP))
8940 factor = 2;
8941 else
8942 factor = 1;
8943
8944 free_bytes += (block_group->key.offset -
8945 btrfs_block_group_used(&block_group->item)) *
8946 factor;
8947
8948 spin_unlock(&block_group->lock);
8949 }
6d07bcec
MX
8950 spin_unlock(&sinfo->lock);
8951
8952 return free_bytes;
8953}
8954
143bede5 8955void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8956 struct btrfs_block_group_cache *cache)
5d4f98a2 8957{
f0486c68
YZ
8958 struct btrfs_space_info *sinfo = cache->space_info;
8959 u64 num_bytes;
8960
8961 BUG_ON(!cache->ro);
8962
8963 spin_lock(&sinfo->lock);
8964 spin_lock(&cache->lock);
8965 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8966 cache->bytes_super - btrfs_block_group_used(&cache->item);
8967 sinfo->bytes_readonly -= num_bytes;
8968 cache->ro = 0;
633c0aad 8969 list_del_init(&cache->ro_list);
f0486c68
YZ
8970 spin_unlock(&cache->lock);
8971 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8972}
8973
ba1bf481
JB
8974/*
8975 * checks to see if its even possible to relocate this block group.
8976 *
8977 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8978 * ok to go ahead and try.
8979 */
8980int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8981{
ba1bf481
JB
8982 struct btrfs_block_group_cache *block_group;
8983 struct btrfs_space_info *space_info;
8984 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8985 struct btrfs_device *device;
6df9a95e 8986 struct btrfs_trans_handle *trans;
cdcb725c 8987 u64 min_free;
6719db6a
JB
8988 u64 dev_min = 1;
8989 u64 dev_nr = 0;
4a5e98f5 8990 u64 target;
cdcb725c 8991 int index;
ba1bf481
JB
8992 int full = 0;
8993 int ret = 0;
1a40e23b 8994
ba1bf481 8995 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8996
ba1bf481
JB
8997 /* odd, couldn't find the block group, leave it alone */
8998 if (!block_group)
8999 return -1;
1a40e23b 9000
cdcb725c 9001 min_free = btrfs_block_group_used(&block_group->item);
9002
ba1bf481 9003 /* no bytes used, we're good */
cdcb725c 9004 if (!min_free)
1a40e23b
ZY
9005 goto out;
9006
ba1bf481
JB
9007 space_info = block_group->space_info;
9008 spin_lock(&space_info->lock);
17d217fe 9009
ba1bf481 9010 full = space_info->full;
17d217fe 9011
ba1bf481
JB
9012 /*
9013 * if this is the last block group we have in this space, we can't
7ce618db
CM
9014 * relocate it unless we're able to allocate a new chunk below.
9015 *
9016 * Otherwise, we need to make sure we have room in the space to handle
9017 * all of the extents from this block group. If we can, we're good
ba1bf481 9018 */
7ce618db 9019 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9020 (space_info->bytes_used + space_info->bytes_reserved +
9021 space_info->bytes_pinned + space_info->bytes_readonly +
9022 min_free < space_info->total_bytes)) {
ba1bf481
JB
9023 spin_unlock(&space_info->lock);
9024 goto out;
17d217fe 9025 }
ba1bf481 9026 spin_unlock(&space_info->lock);
ea8c2819 9027
ba1bf481
JB
9028 /*
9029 * ok we don't have enough space, but maybe we have free space on our
9030 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9031 * alloc devices and guess if we have enough space. if this block
9032 * group is going to be restriped, run checks against the target
9033 * profile instead of the current one.
ba1bf481
JB
9034 */
9035 ret = -1;
ea8c2819 9036
cdcb725c 9037 /*
9038 * index:
9039 * 0: raid10
9040 * 1: raid1
9041 * 2: dup
9042 * 3: raid0
9043 * 4: single
9044 */
4a5e98f5
ID
9045 target = get_restripe_target(root->fs_info, block_group->flags);
9046 if (target) {
31e50229 9047 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9048 } else {
9049 /*
9050 * this is just a balance, so if we were marked as full
9051 * we know there is no space for a new chunk
9052 */
9053 if (full)
9054 goto out;
9055
9056 index = get_block_group_index(block_group);
9057 }
9058
e6ec716f 9059 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9060 dev_min = 4;
6719db6a
JB
9061 /* Divide by 2 */
9062 min_free >>= 1;
e6ec716f 9063 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9064 dev_min = 2;
e6ec716f 9065 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9066 /* Multiply by 2 */
9067 min_free <<= 1;
e6ec716f 9068 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9069 dev_min = fs_devices->rw_devices;
47c5713f 9070 min_free = div64_u64(min_free, dev_min);
cdcb725c 9071 }
9072
6df9a95e
JB
9073 /* We need to do this so that we can look at pending chunks */
9074 trans = btrfs_join_transaction(root);
9075 if (IS_ERR(trans)) {
9076 ret = PTR_ERR(trans);
9077 goto out;
9078 }
9079
ba1bf481
JB
9080 mutex_lock(&root->fs_info->chunk_mutex);
9081 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9082 u64 dev_offset;
56bec294 9083
ba1bf481
JB
9084 /*
9085 * check to make sure we can actually find a chunk with enough
9086 * space to fit our block group in.
9087 */
63a212ab
SB
9088 if (device->total_bytes > device->bytes_used + min_free &&
9089 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9090 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9091 &dev_offset, NULL);
ba1bf481 9092 if (!ret)
cdcb725c 9093 dev_nr++;
9094
9095 if (dev_nr >= dev_min)
73e48b27 9096 break;
cdcb725c 9097
ba1bf481 9098 ret = -1;
725c8463 9099 }
edbd8d4e 9100 }
ba1bf481 9101 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9102 btrfs_end_transaction(trans, root);
edbd8d4e 9103out:
ba1bf481 9104 btrfs_put_block_group(block_group);
edbd8d4e
CM
9105 return ret;
9106}
9107
b2950863
CH
9108static int find_first_block_group(struct btrfs_root *root,
9109 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9110{
925baedd 9111 int ret = 0;
0b86a832
CM
9112 struct btrfs_key found_key;
9113 struct extent_buffer *leaf;
9114 int slot;
edbd8d4e 9115
0b86a832
CM
9116 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9117 if (ret < 0)
925baedd
CM
9118 goto out;
9119
d397712b 9120 while (1) {
0b86a832 9121 slot = path->slots[0];
edbd8d4e 9122 leaf = path->nodes[0];
0b86a832
CM
9123 if (slot >= btrfs_header_nritems(leaf)) {
9124 ret = btrfs_next_leaf(root, path);
9125 if (ret == 0)
9126 continue;
9127 if (ret < 0)
925baedd 9128 goto out;
0b86a832 9129 break;
edbd8d4e 9130 }
0b86a832 9131 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9132
0b86a832 9133 if (found_key.objectid >= key->objectid &&
925baedd
CM
9134 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9135 ret = 0;
9136 goto out;
9137 }
0b86a832 9138 path->slots[0]++;
edbd8d4e 9139 }
925baedd 9140out:
0b86a832 9141 return ret;
edbd8d4e
CM
9142}
9143
0af3d00b
JB
9144void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9145{
9146 struct btrfs_block_group_cache *block_group;
9147 u64 last = 0;
9148
9149 while (1) {
9150 struct inode *inode;
9151
9152 block_group = btrfs_lookup_first_block_group(info, last);
9153 while (block_group) {
9154 spin_lock(&block_group->lock);
9155 if (block_group->iref)
9156 break;
9157 spin_unlock(&block_group->lock);
9158 block_group = next_block_group(info->tree_root,
9159 block_group);
9160 }
9161 if (!block_group) {
9162 if (last == 0)
9163 break;
9164 last = 0;
9165 continue;
9166 }
9167
9168 inode = block_group->inode;
9169 block_group->iref = 0;
9170 block_group->inode = NULL;
9171 spin_unlock(&block_group->lock);
9172 iput(inode);
9173 last = block_group->key.objectid + block_group->key.offset;
9174 btrfs_put_block_group(block_group);
9175 }
9176}
9177
1a40e23b
ZY
9178int btrfs_free_block_groups(struct btrfs_fs_info *info)
9179{
9180 struct btrfs_block_group_cache *block_group;
4184ea7f 9181 struct btrfs_space_info *space_info;
11833d66 9182 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9183 struct rb_node *n;
9184
9e351cc8 9185 down_write(&info->commit_root_sem);
11833d66
YZ
9186 while (!list_empty(&info->caching_block_groups)) {
9187 caching_ctl = list_entry(info->caching_block_groups.next,
9188 struct btrfs_caching_control, list);
9189 list_del(&caching_ctl->list);
9190 put_caching_control(caching_ctl);
9191 }
9e351cc8 9192 up_write(&info->commit_root_sem);
11833d66 9193
47ab2a6c
JB
9194 spin_lock(&info->unused_bgs_lock);
9195 while (!list_empty(&info->unused_bgs)) {
9196 block_group = list_first_entry(&info->unused_bgs,
9197 struct btrfs_block_group_cache,
9198 bg_list);
9199 list_del_init(&block_group->bg_list);
9200 btrfs_put_block_group(block_group);
9201 }
9202 spin_unlock(&info->unused_bgs_lock);
9203
1a40e23b
ZY
9204 spin_lock(&info->block_group_cache_lock);
9205 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9206 block_group = rb_entry(n, struct btrfs_block_group_cache,
9207 cache_node);
1a40e23b
ZY
9208 rb_erase(&block_group->cache_node,
9209 &info->block_group_cache_tree);
01eacb27 9210 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9211 spin_unlock(&info->block_group_cache_lock);
9212
80eb234a 9213 down_write(&block_group->space_info->groups_sem);
1a40e23b 9214 list_del(&block_group->list);
80eb234a 9215 up_write(&block_group->space_info->groups_sem);
d2fb3437 9216
817d52f8 9217 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9218 wait_block_group_cache_done(block_group);
817d52f8 9219
3c14874a
JB
9220 /*
9221 * We haven't cached this block group, which means we could
9222 * possibly have excluded extents on this block group.
9223 */
36cce922
JB
9224 if (block_group->cached == BTRFS_CACHE_NO ||
9225 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9226 free_excluded_extents(info->extent_root, block_group);
9227
817d52f8 9228 btrfs_remove_free_space_cache(block_group);
11dfe35a 9229 btrfs_put_block_group(block_group);
d899e052
YZ
9230
9231 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9232 }
9233 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9234
9235 /* now that all the block groups are freed, go through and
9236 * free all the space_info structs. This is only called during
9237 * the final stages of unmount, and so we know nobody is
9238 * using them. We call synchronize_rcu() once before we start,
9239 * just to be on the safe side.
9240 */
9241 synchronize_rcu();
9242
8929ecfa
YZ
9243 release_global_block_rsv(info);
9244
67871254 9245 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9246 int i;
9247
4184ea7f
CM
9248 space_info = list_entry(info->space_info.next,
9249 struct btrfs_space_info,
9250 list);
b069e0c3 9251 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9252 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9253 space_info->bytes_reserved > 0 ||
fae7f21c 9254 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9255 dump_space_info(space_info, 0, 0);
9256 }
f0486c68 9257 }
4184ea7f 9258 list_del(&space_info->list);
6ab0a202
JM
9259 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9260 struct kobject *kobj;
c1895442
JM
9261 kobj = space_info->block_group_kobjs[i];
9262 space_info->block_group_kobjs[i] = NULL;
9263 if (kobj) {
6ab0a202
JM
9264 kobject_del(kobj);
9265 kobject_put(kobj);
9266 }
9267 }
9268 kobject_del(&space_info->kobj);
9269 kobject_put(&space_info->kobj);
4184ea7f 9270 }
1a40e23b
ZY
9271 return 0;
9272}
9273
b742bb82
YZ
9274static void __link_block_group(struct btrfs_space_info *space_info,
9275 struct btrfs_block_group_cache *cache)
9276{
9277 int index = get_block_group_index(cache);
ed55b6ac 9278 bool first = false;
b742bb82
YZ
9279
9280 down_write(&space_info->groups_sem);
ed55b6ac
JM
9281 if (list_empty(&space_info->block_groups[index]))
9282 first = true;
9283 list_add_tail(&cache->list, &space_info->block_groups[index]);
9284 up_write(&space_info->groups_sem);
9285
9286 if (first) {
c1895442 9287 struct raid_kobject *rkobj;
6ab0a202
JM
9288 int ret;
9289
c1895442
JM
9290 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9291 if (!rkobj)
9292 goto out_err;
9293 rkobj->raid_type = index;
9294 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9295 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9296 "%s", get_raid_name(index));
6ab0a202 9297 if (ret) {
c1895442
JM
9298 kobject_put(&rkobj->kobj);
9299 goto out_err;
6ab0a202 9300 }
c1895442 9301 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9302 }
c1895442
JM
9303
9304 return;
9305out_err:
9306 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9307}
9308
920e4a58
MX
9309static struct btrfs_block_group_cache *
9310btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9311{
9312 struct btrfs_block_group_cache *cache;
9313
9314 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9315 if (!cache)
9316 return NULL;
9317
9318 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9319 GFP_NOFS);
9320 if (!cache->free_space_ctl) {
9321 kfree(cache);
9322 return NULL;
9323 }
9324
9325 cache->key.objectid = start;
9326 cache->key.offset = size;
9327 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9328
9329 cache->sectorsize = root->sectorsize;
9330 cache->fs_info = root->fs_info;
9331 cache->full_stripe_len = btrfs_full_stripe_len(root,
9332 &root->fs_info->mapping_tree,
9333 start);
9334 atomic_set(&cache->count, 1);
9335 spin_lock_init(&cache->lock);
e570fd27 9336 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9337 INIT_LIST_HEAD(&cache->list);
9338 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9339 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9340 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9341 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9342 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9343 btrfs_init_free_space_ctl(cache);
04216820 9344 atomic_set(&cache->trimming, 0);
920e4a58
MX
9345
9346 return cache;
9347}
9348
9078a3e1
CM
9349int btrfs_read_block_groups(struct btrfs_root *root)
9350{
9351 struct btrfs_path *path;
9352 int ret;
9078a3e1 9353 struct btrfs_block_group_cache *cache;
be744175 9354 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9355 struct btrfs_space_info *space_info;
9078a3e1
CM
9356 struct btrfs_key key;
9357 struct btrfs_key found_key;
5f39d397 9358 struct extent_buffer *leaf;
0af3d00b
JB
9359 int need_clear = 0;
9360 u64 cache_gen;
96b5179d 9361
be744175 9362 root = info->extent_root;
9078a3e1 9363 key.objectid = 0;
0b86a832 9364 key.offset = 0;
962a298f 9365 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9366 path = btrfs_alloc_path();
9367 if (!path)
9368 return -ENOMEM;
026fd317 9369 path->reada = 1;
9078a3e1 9370
6c41761f 9371 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9372 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9373 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9374 need_clear = 1;
88c2ba3b
JB
9375 if (btrfs_test_opt(root, CLEAR_CACHE))
9376 need_clear = 1;
0af3d00b 9377
d397712b 9378 while (1) {
0b86a832 9379 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9380 if (ret > 0)
9381 break;
0b86a832
CM
9382 if (ret != 0)
9383 goto error;
920e4a58 9384
5f39d397
CM
9385 leaf = path->nodes[0];
9386 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9387
9388 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9389 found_key.offset);
9078a3e1 9390 if (!cache) {
0b86a832 9391 ret = -ENOMEM;
f0486c68 9392 goto error;
9078a3e1 9393 }
96303081 9394
cf7c1ef6
LB
9395 if (need_clear) {
9396 /*
9397 * When we mount with old space cache, we need to
9398 * set BTRFS_DC_CLEAR and set dirty flag.
9399 *
9400 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9401 * truncate the old free space cache inode and
9402 * setup a new one.
9403 * b) Setting 'dirty flag' makes sure that we flush
9404 * the new space cache info onto disk.
9405 */
cf7c1ef6 9406 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9407 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9408 }
0af3d00b 9409
5f39d397
CM
9410 read_extent_buffer(leaf, &cache->item,
9411 btrfs_item_ptr_offset(leaf, path->slots[0]),
9412 sizeof(cache->item));
920e4a58 9413 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9414
9078a3e1 9415 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9416 btrfs_release_path(path);
34d52cb6 9417
3c14874a
JB
9418 /*
9419 * We need to exclude the super stripes now so that the space
9420 * info has super bytes accounted for, otherwise we'll think
9421 * we have more space than we actually do.
9422 */
835d974f
JB
9423 ret = exclude_super_stripes(root, cache);
9424 if (ret) {
9425 /*
9426 * We may have excluded something, so call this just in
9427 * case.
9428 */
9429 free_excluded_extents(root, cache);
920e4a58 9430 btrfs_put_block_group(cache);
835d974f
JB
9431 goto error;
9432 }
3c14874a 9433
817d52f8
JB
9434 /*
9435 * check for two cases, either we are full, and therefore
9436 * don't need to bother with the caching work since we won't
9437 * find any space, or we are empty, and we can just add all
9438 * the space in and be done with it. This saves us _alot_ of
9439 * time, particularly in the full case.
9440 */
9441 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9442 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9443 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9444 free_excluded_extents(root, cache);
817d52f8 9445 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9446 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9447 cache->cached = BTRFS_CACHE_FINISHED;
9448 add_new_free_space(cache, root->fs_info,
9449 found_key.objectid,
9450 found_key.objectid +
9451 found_key.offset);
11833d66 9452 free_excluded_extents(root, cache);
817d52f8 9453 }
96b5179d 9454
8c579fe7
JB
9455 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9456 if (ret) {
9457 btrfs_remove_free_space_cache(cache);
9458 btrfs_put_block_group(cache);
9459 goto error;
9460 }
9461
6324fbf3
CM
9462 ret = update_space_info(info, cache->flags, found_key.offset,
9463 btrfs_block_group_used(&cache->item),
9464 &space_info);
8c579fe7
JB
9465 if (ret) {
9466 btrfs_remove_free_space_cache(cache);
9467 spin_lock(&info->block_group_cache_lock);
9468 rb_erase(&cache->cache_node,
9469 &info->block_group_cache_tree);
01eacb27 9470 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9471 spin_unlock(&info->block_group_cache_lock);
9472 btrfs_put_block_group(cache);
9473 goto error;
9474 }
9475
6324fbf3 9476 cache->space_info = space_info;
1b2da372 9477 spin_lock(&cache->space_info->lock);
f0486c68 9478 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9479 spin_unlock(&cache->space_info->lock);
9480
b742bb82 9481 __link_block_group(space_info, cache);
0f9dd46c 9482
75ccf47d 9483 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9484 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9485 set_block_group_ro(cache, 1);
47ab2a6c
JB
9486 } else if (btrfs_block_group_used(&cache->item) == 0) {
9487 spin_lock(&info->unused_bgs_lock);
9488 /* Should always be true but just in case. */
9489 if (list_empty(&cache->bg_list)) {
9490 btrfs_get_block_group(cache);
9491 list_add_tail(&cache->bg_list,
9492 &info->unused_bgs);
9493 }
9494 spin_unlock(&info->unused_bgs_lock);
9495 }
9078a3e1 9496 }
b742bb82
YZ
9497
9498 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9499 if (!(get_alloc_profile(root, space_info->flags) &
9500 (BTRFS_BLOCK_GROUP_RAID10 |
9501 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9502 BTRFS_BLOCK_GROUP_RAID5 |
9503 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9504 BTRFS_BLOCK_GROUP_DUP)))
9505 continue;
9506 /*
9507 * avoid allocating from un-mirrored block group if there are
9508 * mirrored block groups.
9509 */
1095cc0d 9510 list_for_each_entry(cache,
9511 &space_info->block_groups[BTRFS_RAID_RAID0],
9512 list)
199c36ea 9513 set_block_group_ro(cache, 1);
1095cc0d 9514 list_for_each_entry(cache,
9515 &space_info->block_groups[BTRFS_RAID_SINGLE],
9516 list)
199c36ea 9517 set_block_group_ro(cache, 1);
9078a3e1 9518 }
f0486c68
YZ
9519
9520 init_global_block_rsv(info);
0b86a832
CM
9521 ret = 0;
9522error:
9078a3e1 9523 btrfs_free_path(path);
0b86a832 9524 return ret;
9078a3e1 9525}
6324fbf3 9526
ea658bad
JB
9527void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9528 struct btrfs_root *root)
9529{
9530 struct btrfs_block_group_cache *block_group, *tmp;
9531 struct btrfs_root *extent_root = root->fs_info->extent_root;
9532 struct btrfs_block_group_item item;
9533 struct btrfs_key key;
9534 int ret = 0;
9535
47ab2a6c 9536 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9537 if (ret)
c92f6be3 9538 goto next;
ea658bad
JB
9539
9540 spin_lock(&block_group->lock);
9541 memcpy(&item, &block_group->item, sizeof(item));
9542 memcpy(&key, &block_group->key, sizeof(key));
9543 spin_unlock(&block_group->lock);
9544
9545 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9546 sizeof(item));
9547 if (ret)
9548 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9549 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9550 key.objectid, key.offset);
9551 if (ret)
9552 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9553next:
9554 list_del_init(&block_group->bg_list);
ea658bad
JB
9555 }
9556}
9557
6324fbf3
CM
9558int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9559 struct btrfs_root *root, u64 bytes_used,
e17cade2 9560 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9561 u64 size)
9562{
9563 int ret;
6324fbf3
CM
9564 struct btrfs_root *extent_root;
9565 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9566
9567 extent_root = root->fs_info->extent_root;
6324fbf3 9568
995946dd 9569 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9570
920e4a58 9571 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9572 if (!cache)
9573 return -ENOMEM;
34d52cb6 9574
6324fbf3 9575 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9576 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9577 btrfs_set_block_group_flags(&cache->item, type);
9578
920e4a58 9579 cache->flags = type;
11833d66 9580 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9581 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9582 ret = exclude_super_stripes(root, cache);
9583 if (ret) {
9584 /*
9585 * We may have excluded something, so call this just in
9586 * case.
9587 */
9588 free_excluded_extents(root, cache);
920e4a58 9589 btrfs_put_block_group(cache);
835d974f
JB
9590 return ret;
9591 }
96303081 9592
817d52f8
JB
9593 add_new_free_space(cache, root->fs_info, chunk_offset,
9594 chunk_offset + size);
9595
11833d66
YZ
9596 free_excluded_extents(root, cache);
9597
2e6e5183
FM
9598 /*
9599 * Call to ensure the corresponding space_info object is created and
9600 * assigned to our block group, but don't update its counters just yet.
9601 * We want our bg to be added to the rbtree with its ->space_info set.
9602 */
9603 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9604 &cache->space_info);
9605 if (ret) {
9606 btrfs_remove_free_space_cache(cache);
9607 btrfs_put_block_group(cache);
9608 return ret;
9609 }
9610
8c579fe7
JB
9611 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9612 if (ret) {
9613 btrfs_remove_free_space_cache(cache);
9614 btrfs_put_block_group(cache);
9615 return ret;
9616 }
9617
2e6e5183
FM
9618 /*
9619 * Now that our block group has its ->space_info set and is inserted in
9620 * the rbtree, update the space info's counters.
9621 */
6324fbf3
CM
9622 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9623 &cache->space_info);
8c579fe7
JB
9624 if (ret) {
9625 btrfs_remove_free_space_cache(cache);
9626 spin_lock(&root->fs_info->block_group_cache_lock);
9627 rb_erase(&cache->cache_node,
9628 &root->fs_info->block_group_cache_tree);
01eacb27 9629 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9630 spin_unlock(&root->fs_info->block_group_cache_lock);
9631 btrfs_put_block_group(cache);
9632 return ret;
9633 }
c7c144db 9634 update_global_block_rsv(root->fs_info);
1b2da372
JB
9635
9636 spin_lock(&cache->space_info->lock);
f0486c68 9637 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9638 spin_unlock(&cache->space_info->lock);
9639
b742bb82 9640 __link_block_group(cache->space_info, cache);
6324fbf3 9641
47ab2a6c 9642 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9643
d18a2c44 9644 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9645
6324fbf3
CM
9646 return 0;
9647}
1a40e23b 9648
10ea00f5
ID
9649static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9650{
899c81ea
ID
9651 u64 extra_flags = chunk_to_extended(flags) &
9652 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9653
de98ced9 9654 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9655 if (flags & BTRFS_BLOCK_GROUP_DATA)
9656 fs_info->avail_data_alloc_bits &= ~extra_flags;
9657 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9658 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9659 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9660 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9661 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9662}
9663
1a40e23b 9664int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9665 struct btrfs_root *root, u64 group_start,
9666 struct extent_map *em)
1a40e23b
ZY
9667{
9668 struct btrfs_path *path;
9669 struct btrfs_block_group_cache *block_group;
44fb5511 9670 struct btrfs_free_cluster *cluster;
0af3d00b 9671 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9672 struct btrfs_key key;
0af3d00b 9673 struct inode *inode;
c1895442 9674 struct kobject *kobj = NULL;
1a40e23b 9675 int ret;
10ea00f5 9676 int index;
89a55897 9677 int factor;
4f69cb98 9678 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9679 bool remove_em;
1a40e23b 9680
1a40e23b
ZY
9681 root = root->fs_info->extent_root;
9682
9683 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9684 BUG_ON(!block_group);
c146afad 9685 BUG_ON(!block_group->ro);
1a40e23b 9686
9f7c43c9 9687 /*
9688 * Free the reserved super bytes from this block group before
9689 * remove it.
9690 */
9691 free_excluded_extents(root, block_group);
9692
1a40e23b 9693 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9694 index = get_block_group_index(block_group);
89a55897
JB
9695 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9696 BTRFS_BLOCK_GROUP_RAID1 |
9697 BTRFS_BLOCK_GROUP_RAID10))
9698 factor = 2;
9699 else
9700 factor = 1;
1a40e23b 9701
44fb5511
CM
9702 /* make sure this block group isn't part of an allocation cluster */
9703 cluster = &root->fs_info->data_alloc_cluster;
9704 spin_lock(&cluster->refill_lock);
9705 btrfs_return_cluster_to_free_space(block_group, cluster);
9706 spin_unlock(&cluster->refill_lock);
9707
9708 /*
9709 * make sure this block group isn't part of a metadata
9710 * allocation cluster
9711 */
9712 cluster = &root->fs_info->meta_alloc_cluster;
9713 spin_lock(&cluster->refill_lock);
9714 btrfs_return_cluster_to_free_space(block_group, cluster);
9715 spin_unlock(&cluster->refill_lock);
9716
1a40e23b 9717 path = btrfs_alloc_path();
d8926bb3
MF
9718 if (!path) {
9719 ret = -ENOMEM;
9720 goto out;
9721 }
1a40e23b 9722
1bbc621e
CM
9723 /*
9724 * get the inode first so any iput calls done for the io_list
9725 * aren't the final iput (no unlinks allowed now)
9726 */
10b2f34d 9727 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9728
9729 mutex_lock(&trans->transaction->cache_write_mutex);
9730 /*
9731 * make sure our free spache cache IO is done before remove the
9732 * free space inode
9733 */
9734 spin_lock(&trans->transaction->dirty_bgs_lock);
9735 if (!list_empty(&block_group->io_list)) {
9736 list_del_init(&block_group->io_list);
9737
9738 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9739
9740 spin_unlock(&trans->transaction->dirty_bgs_lock);
9741 btrfs_wait_cache_io(root, trans, block_group,
9742 &block_group->io_ctl, path,
9743 block_group->key.objectid);
9744 btrfs_put_block_group(block_group);
9745 spin_lock(&trans->transaction->dirty_bgs_lock);
9746 }
9747
9748 if (!list_empty(&block_group->dirty_list)) {
9749 list_del_init(&block_group->dirty_list);
9750 btrfs_put_block_group(block_group);
9751 }
9752 spin_unlock(&trans->transaction->dirty_bgs_lock);
9753 mutex_unlock(&trans->transaction->cache_write_mutex);
9754
0af3d00b 9755 if (!IS_ERR(inode)) {
b532402e 9756 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9757 if (ret) {
9758 btrfs_add_delayed_iput(inode);
9759 goto out;
9760 }
0af3d00b
JB
9761 clear_nlink(inode);
9762 /* One for the block groups ref */
9763 spin_lock(&block_group->lock);
9764 if (block_group->iref) {
9765 block_group->iref = 0;
9766 block_group->inode = NULL;
9767 spin_unlock(&block_group->lock);
9768 iput(inode);
9769 } else {
9770 spin_unlock(&block_group->lock);
9771 }
9772 /* One for our lookup ref */
455757c3 9773 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9774 }
9775
9776 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9777 key.offset = block_group->key.objectid;
9778 key.type = 0;
9779
9780 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9781 if (ret < 0)
9782 goto out;
9783 if (ret > 0)
b3b4aa74 9784 btrfs_release_path(path);
0af3d00b
JB
9785 if (ret == 0) {
9786 ret = btrfs_del_item(trans, tree_root, path);
9787 if (ret)
9788 goto out;
b3b4aa74 9789 btrfs_release_path(path);
0af3d00b
JB
9790 }
9791
3dfdb934 9792 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9793 rb_erase(&block_group->cache_node,
9794 &root->fs_info->block_group_cache_tree);
292cbd51 9795 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9796
9797 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9798 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9799 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9800
80eb234a 9801 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9802 /*
9803 * we must use list_del_init so people can check to see if they
9804 * are still on the list after taking the semaphore
9805 */
9806 list_del_init(&block_group->list);
6ab0a202 9807 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9808 kobj = block_group->space_info->block_group_kobjs[index];
9809 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9810 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9811 }
80eb234a 9812 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9813 if (kobj) {
9814 kobject_del(kobj);
9815 kobject_put(kobj);
9816 }
1a40e23b 9817
4f69cb98
FM
9818 if (block_group->has_caching_ctl)
9819 caching_ctl = get_caching_control(block_group);
817d52f8 9820 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9821 wait_block_group_cache_done(block_group);
4f69cb98
FM
9822 if (block_group->has_caching_ctl) {
9823 down_write(&root->fs_info->commit_root_sem);
9824 if (!caching_ctl) {
9825 struct btrfs_caching_control *ctl;
9826
9827 list_for_each_entry(ctl,
9828 &root->fs_info->caching_block_groups, list)
9829 if (ctl->block_group == block_group) {
9830 caching_ctl = ctl;
9831 atomic_inc(&caching_ctl->count);
9832 break;
9833 }
9834 }
9835 if (caching_ctl)
9836 list_del_init(&caching_ctl->list);
9837 up_write(&root->fs_info->commit_root_sem);
9838 if (caching_ctl) {
9839 /* Once for the caching bgs list and once for us. */
9840 put_caching_control(caching_ctl);
9841 put_caching_control(caching_ctl);
9842 }
9843 }
817d52f8 9844
ce93ec54
JB
9845 spin_lock(&trans->transaction->dirty_bgs_lock);
9846 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9847 WARN_ON(1);
9848 }
9849 if (!list_empty(&block_group->io_list)) {
9850 WARN_ON(1);
ce93ec54
JB
9851 }
9852 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9853 btrfs_remove_free_space_cache(block_group);
9854
c146afad 9855 spin_lock(&block_group->space_info->lock);
75c68e9f 9856 list_del_init(&block_group->ro_list);
18d018ad
ZL
9857
9858 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9859 WARN_ON(block_group->space_info->total_bytes
9860 < block_group->key.offset);
9861 WARN_ON(block_group->space_info->bytes_readonly
9862 < block_group->key.offset);
9863 WARN_ON(block_group->space_info->disk_total
9864 < block_group->key.offset * factor);
9865 }
c146afad
YZ
9866 block_group->space_info->total_bytes -= block_group->key.offset;
9867 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9868 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9869
c146afad 9870 spin_unlock(&block_group->space_info->lock);
283bb197 9871
0af3d00b
JB
9872 memcpy(&key, &block_group->key, sizeof(key));
9873
04216820 9874 lock_chunks(root);
495e64f4
FM
9875 if (!list_empty(&em->list)) {
9876 /* We're in the transaction->pending_chunks list. */
9877 free_extent_map(em);
9878 }
04216820
FM
9879 spin_lock(&block_group->lock);
9880 block_group->removed = 1;
9881 /*
9882 * At this point trimming can't start on this block group, because we
9883 * removed the block group from the tree fs_info->block_group_cache_tree
9884 * so no one can't find it anymore and even if someone already got this
9885 * block group before we removed it from the rbtree, they have already
9886 * incremented block_group->trimming - if they didn't, they won't find
9887 * any free space entries because we already removed them all when we
9888 * called btrfs_remove_free_space_cache().
9889 *
9890 * And we must not remove the extent map from the fs_info->mapping_tree
9891 * to prevent the same logical address range and physical device space
9892 * ranges from being reused for a new block group. This is because our
9893 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9894 * completely transactionless, so while it is trimming a range the
9895 * currently running transaction might finish and a new one start,
9896 * allowing for new block groups to be created that can reuse the same
9897 * physical device locations unless we take this special care.
9898 */
9899 remove_em = (atomic_read(&block_group->trimming) == 0);
9900 /*
9901 * Make sure a trimmer task always sees the em in the pinned_chunks list
9902 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9903 * before checking block_group->removed).
9904 */
9905 if (!remove_em) {
9906 /*
9907 * Our em might be in trans->transaction->pending_chunks which
9908 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9909 * and so is the fs_info->pinned_chunks list.
9910 *
9911 * So at this point we must be holding the chunk_mutex to avoid
9912 * any races with chunk allocation (more specifically at
9913 * volumes.c:contains_pending_extent()), to ensure it always
9914 * sees the em, either in the pending_chunks list or in the
9915 * pinned_chunks list.
9916 */
9917 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9918 }
9919 spin_unlock(&block_group->lock);
04216820
FM
9920
9921 if (remove_em) {
9922 struct extent_map_tree *em_tree;
9923
9924 em_tree = &root->fs_info->mapping_tree.map_tree;
9925 write_lock(&em_tree->lock);
8dbcd10f
FM
9926 /*
9927 * The em might be in the pending_chunks list, so make sure the
9928 * chunk mutex is locked, since remove_extent_mapping() will
9929 * delete us from that list.
9930 */
04216820
FM
9931 remove_extent_mapping(em_tree, em);
9932 write_unlock(&em_tree->lock);
9933 /* once for the tree */
9934 free_extent_map(em);
9935 }
9936
8dbcd10f
FM
9937 unlock_chunks(root);
9938
fa9c0d79
CM
9939 btrfs_put_block_group(block_group);
9940 btrfs_put_block_group(block_group);
1a40e23b
ZY
9941
9942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9943 if (ret > 0)
9944 ret = -EIO;
9945 if (ret < 0)
9946 goto out;
9947
9948 ret = btrfs_del_item(trans, root, path);
9949out:
9950 btrfs_free_path(path);
9951 return ret;
9952}
acce952b 9953
47ab2a6c
JB
9954/*
9955 * Process the unused_bgs list and remove any that don't have any allocated
9956 * space inside of them.
9957 */
9958void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9959{
9960 struct btrfs_block_group_cache *block_group;
9961 struct btrfs_space_info *space_info;
9962 struct btrfs_root *root = fs_info->extent_root;
9963 struct btrfs_trans_handle *trans;
9964 int ret = 0;
9965
9966 if (!fs_info->open)
9967 return;
9968
9969 spin_lock(&fs_info->unused_bgs_lock);
9970 while (!list_empty(&fs_info->unused_bgs)) {
9971 u64 start, end;
9972
9973 block_group = list_first_entry(&fs_info->unused_bgs,
9974 struct btrfs_block_group_cache,
9975 bg_list);
9976 space_info = block_group->space_info;
9977 list_del_init(&block_group->bg_list);
9978 if (ret || btrfs_mixed_space_info(space_info)) {
9979 btrfs_put_block_group(block_group);
9980 continue;
9981 }
9982 spin_unlock(&fs_info->unused_bgs_lock);
9983
9984 /* Don't want to race with allocators so take the groups_sem */
9985 down_write(&space_info->groups_sem);
9986 spin_lock(&block_group->lock);
9987 if (block_group->reserved ||
9988 btrfs_block_group_used(&block_group->item) ||
9989 block_group->ro) {
9990 /*
9991 * We want to bail if we made new allocations or have
9992 * outstanding allocations in this block group. We do
9993 * the ro check in case balance is currently acting on
9994 * this block group.
9995 */
9996 spin_unlock(&block_group->lock);
9997 up_write(&space_info->groups_sem);
9998 goto next;
9999 }
10000 spin_unlock(&block_group->lock);
10001
10002 /* We don't want to force the issue, only flip if it's ok. */
10003 ret = set_block_group_ro(block_group, 0);
10004 up_write(&space_info->groups_sem);
10005 if (ret < 0) {
10006 ret = 0;
10007 goto next;
10008 }
10009
10010 /*
10011 * Want to do this before we do anything else so we can recover
10012 * properly if we fail to join the transaction.
10013 */
3d84be79
FL
10014 /* 1 for btrfs_orphan_reserve_metadata() */
10015 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
10016 if (IS_ERR(trans)) {
10017 btrfs_set_block_group_rw(root, block_group);
10018 ret = PTR_ERR(trans);
10019 goto next;
10020 }
10021
10022 /*
10023 * We could have pending pinned extents for this block group,
10024 * just delete them, we don't care about them anymore.
10025 */
10026 start = block_group->key.objectid;
10027 end = start + block_group->key.offset - 1;
d4b450cd
FM
10028 /*
10029 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10030 * btrfs_finish_extent_commit(). If we are at transaction N,
10031 * another task might be running finish_extent_commit() for the
10032 * previous transaction N - 1, and have seen a range belonging
10033 * to the block group in freed_extents[] before we were able to
10034 * clear the whole block group range from freed_extents[]. This
10035 * means that task can lookup for the block group after we
10036 * unpinned it from freed_extents[] and removed it, leading to
10037 * a BUG_ON() at btrfs_unpin_extent_range().
10038 */
10039 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10040 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10041 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10042 if (ret) {
d4b450cd 10043 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10044 btrfs_set_block_group_rw(root, block_group);
10045 goto end_trans;
10046 }
10047 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10048 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10049 if (ret) {
d4b450cd 10050 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10051 btrfs_set_block_group_rw(root, block_group);
10052 goto end_trans;
10053 }
d4b450cd 10054 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10055
10056 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10057 spin_lock(&space_info->lock);
10058 spin_lock(&block_group->lock);
10059
10060 space_info->bytes_pinned -= block_group->pinned;
10061 space_info->bytes_readonly += block_group->pinned;
10062 percpu_counter_add(&space_info->total_bytes_pinned,
10063 -block_group->pinned);
47ab2a6c
JB
10064 block_group->pinned = 0;
10065
c30666d4
ZL
10066 spin_unlock(&block_group->lock);
10067 spin_unlock(&space_info->lock);
10068
47ab2a6c
JB
10069 /*
10070 * Btrfs_remove_chunk will abort the transaction if things go
10071 * horribly wrong.
10072 */
10073 ret = btrfs_remove_chunk(trans, root,
10074 block_group->key.objectid);
758eb51e 10075end_trans:
47ab2a6c
JB
10076 btrfs_end_transaction(trans, root);
10077next:
10078 btrfs_put_block_group(block_group);
10079 spin_lock(&fs_info->unused_bgs_lock);
10080 }
10081 spin_unlock(&fs_info->unused_bgs_lock);
10082}
10083
c59021f8 10084int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10085{
10086 struct btrfs_space_info *space_info;
1aba86d6 10087 struct btrfs_super_block *disk_super;
10088 u64 features;
10089 u64 flags;
10090 int mixed = 0;
c59021f8 10091 int ret;
10092
6c41761f 10093 disk_super = fs_info->super_copy;
1aba86d6 10094 if (!btrfs_super_root(disk_super))
10095 return 1;
c59021f8 10096
1aba86d6 10097 features = btrfs_super_incompat_flags(disk_super);
10098 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10099 mixed = 1;
c59021f8 10100
1aba86d6 10101 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10102 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10103 if (ret)
1aba86d6 10104 goto out;
c59021f8 10105
1aba86d6 10106 if (mixed) {
10107 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10108 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10109 } else {
10110 flags = BTRFS_BLOCK_GROUP_METADATA;
10111 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10112 if (ret)
10113 goto out;
10114
10115 flags = BTRFS_BLOCK_GROUP_DATA;
10116 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10117 }
10118out:
c59021f8 10119 return ret;
10120}
10121
acce952b 10122int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10123{
678886bd 10124 return unpin_extent_range(root, start, end, false);
acce952b 10125}
10126
f7039b1d
LD
10127int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10128{
10129 struct btrfs_fs_info *fs_info = root->fs_info;
10130 struct btrfs_block_group_cache *cache = NULL;
10131 u64 group_trimmed;
10132 u64 start;
10133 u64 end;
10134 u64 trimmed = 0;
2cac13e4 10135 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10136 int ret = 0;
10137
2cac13e4
LB
10138 /*
10139 * try to trim all FS space, our block group may start from non-zero.
10140 */
10141 if (range->len == total_bytes)
10142 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10143 else
10144 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10145
10146 while (cache) {
10147 if (cache->key.objectid >= (range->start + range->len)) {
10148 btrfs_put_block_group(cache);
10149 break;
10150 }
10151
10152 start = max(range->start, cache->key.objectid);
10153 end = min(range->start + range->len,
10154 cache->key.objectid + cache->key.offset);
10155
10156 if (end - start >= range->minlen) {
10157 if (!block_group_cache_done(cache)) {
f6373bf3 10158 ret = cache_block_group(cache, 0);
1be41b78
JB
10159 if (ret) {
10160 btrfs_put_block_group(cache);
10161 break;
10162 }
10163 ret = wait_block_group_cache_done(cache);
10164 if (ret) {
10165 btrfs_put_block_group(cache);
10166 break;
10167 }
f7039b1d
LD
10168 }
10169 ret = btrfs_trim_block_group(cache,
10170 &group_trimmed,
10171 start,
10172 end,
10173 range->minlen);
10174
10175 trimmed += group_trimmed;
10176 if (ret) {
10177 btrfs_put_block_group(cache);
10178 break;
10179 }
10180 }
10181
10182 cache = next_block_group(fs_info->tree_root, cache);
10183 }
10184
10185 range->len = trimmed;
10186 return ret;
10187}
8257b2dc
MX
10188
10189/*
9ea24bbe
FM
10190 * btrfs_{start,end}_write_no_snapshoting() are similar to
10191 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10192 * data into the page cache through nocow before the subvolume is snapshoted,
10193 * but flush the data into disk after the snapshot creation, or to prevent
10194 * operations while snapshoting is ongoing and that cause the snapshot to be
10195 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10196 */
9ea24bbe 10197void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10198{
10199 percpu_counter_dec(&root->subv_writers->counter);
10200 /*
10201 * Make sure counter is updated before we wake up
10202 * waiters.
10203 */
10204 smp_mb();
10205 if (waitqueue_active(&root->subv_writers->wait))
10206 wake_up(&root->subv_writers->wait);
10207}
10208
9ea24bbe 10209int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10210{
ee39b432 10211 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10212 return 0;
10213
10214 percpu_counter_inc(&root->subv_writers->counter);
10215 /*
10216 * Make sure counter is updated before we check for snapshot creation.
10217 */
10218 smp_mb();
ee39b432 10219 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10220 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10221 return 0;
10222 }
10223 return 1;
10224}