]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Fix NO_SPACE bug caused by delayed-iput
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
82 u64 bytenr, u64 num_bytes, u64 parent,
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
fcebe456
JB
85 struct btrfs_delayed_extent_op *extra_op,
86 int no_quota);
5d4f98a2
YZ
87static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
88 struct extent_buffer *leaf,
89 struct btrfs_extent_item *ei);
90static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
91 struct btrfs_root *root,
92 u64 parent, u64 root_objectid,
93 u64 flags, u64 owner, u64 offset,
94 struct btrfs_key *ins, int ref_mod);
95static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
96 struct btrfs_root *root,
97 u64 parent, u64 root_objectid,
98 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
99 int level, struct btrfs_key *ins,
100 int no_quota);
6a63209f 101static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
102 struct btrfs_root *extent_root, u64 flags,
103 int force);
11833d66
YZ
104static int find_next_key(struct btrfs_path *path, int level,
105 struct btrfs_key *key);
9ed74f2d
JB
106static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
107 int dump_block_groups);
fb25e914 108static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
109 u64 num_bytes, int reserve,
110 int delalloc);
5d80366e
JB
111static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
112 u64 num_bytes);
48a3b636
ES
113int btrfs_pin_extent(struct btrfs_root *root,
114 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 115
817d52f8
JB
116static noinline int
117block_group_cache_done(struct btrfs_block_group_cache *cache)
118{
119 smp_mb();
36cce922
JB
120 return cache->cached == BTRFS_CACHE_FINISHED ||
121 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
122}
123
0f9dd46c
JB
124static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
125{
126 return (cache->flags & bits) == bits;
127}
128
62a45b60 129static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
130{
131 atomic_inc(&cache->count);
132}
133
134void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
135{
f0486c68
YZ
136 if (atomic_dec_and_test(&cache->count)) {
137 WARN_ON(cache->pinned > 0);
138 WARN_ON(cache->reserved > 0);
34d52cb6 139 kfree(cache->free_space_ctl);
11dfe35a 140 kfree(cache);
f0486c68 141 }
11dfe35a
JB
142}
143
0f9dd46c
JB
144/*
145 * this adds the block group to the fs_info rb tree for the block group
146 * cache
147 */
b2950863 148static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
149 struct btrfs_block_group_cache *block_group)
150{
151 struct rb_node **p;
152 struct rb_node *parent = NULL;
153 struct btrfs_block_group_cache *cache;
154
155 spin_lock(&info->block_group_cache_lock);
156 p = &info->block_group_cache_tree.rb_node;
157
158 while (*p) {
159 parent = *p;
160 cache = rb_entry(parent, struct btrfs_block_group_cache,
161 cache_node);
162 if (block_group->key.objectid < cache->key.objectid) {
163 p = &(*p)->rb_left;
164 } else if (block_group->key.objectid > cache->key.objectid) {
165 p = &(*p)->rb_right;
166 } else {
167 spin_unlock(&info->block_group_cache_lock);
168 return -EEXIST;
169 }
170 }
171
172 rb_link_node(&block_group->cache_node, parent, p);
173 rb_insert_color(&block_group->cache_node,
174 &info->block_group_cache_tree);
a1897fdd
LB
175
176 if (info->first_logical_byte > block_group->key.objectid)
177 info->first_logical_byte = block_group->key.objectid;
178
0f9dd46c
JB
179 spin_unlock(&info->block_group_cache_lock);
180
181 return 0;
182}
183
184/*
185 * This will return the block group at or after bytenr if contains is 0, else
186 * it will return the block group that contains the bytenr
187 */
188static struct btrfs_block_group_cache *
189block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
190 int contains)
191{
192 struct btrfs_block_group_cache *cache, *ret = NULL;
193 struct rb_node *n;
194 u64 end, start;
195
196 spin_lock(&info->block_group_cache_lock);
197 n = info->block_group_cache_tree.rb_node;
198
199 while (n) {
200 cache = rb_entry(n, struct btrfs_block_group_cache,
201 cache_node);
202 end = cache->key.objectid + cache->key.offset - 1;
203 start = cache->key.objectid;
204
205 if (bytenr < start) {
206 if (!contains && (!ret || start < ret->key.objectid))
207 ret = cache;
208 n = n->rb_left;
209 } else if (bytenr > start) {
210 if (contains && bytenr <= end) {
211 ret = cache;
212 break;
213 }
214 n = n->rb_right;
215 } else {
216 ret = cache;
217 break;
218 }
219 }
a1897fdd 220 if (ret) {
11dfe35a 221 btrfs_get_block_group(ret);
a1897fdd
LB
222 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
223 info->first_logical_byte = ret->key.objectid;
224 }
0f9dd46c
JB
225 spin_unlock(&info->block_group_cache_lock);
226
227 return ret;
228}
229
11833d66
YZ
230static int add_excluded_extent(struct btrfs_root *root,
231 u64 start, u64 num_bytes)
817d52f8 232{
11833d66
YZ
233 u64 end = start + num_bytes - 1;
234 set_extent_bits(&root->fs_info->freed_extents[0],
235 start, end, EXTENT_UPTODATE, GFP_NOFS);
236 set_extent_bits(&root->fs_info->freed_extents[1],
237 start, end, EXTENT_UPTODATE, GFP_NOFS);
238 return 0;
239}
817d52f8 240
11833d66
YZ
241static void free_excluded_extents(struct btrfs_root *root,
242 struct btrfs_block_group_cache *cache)
243{
244 u64 start, end;
817d52f8 245
11833d66
YZ
246 start = cache->key.objectid;
247 end = start + cache->key.offset - 1;
248
249 clear_extent_bits(&root->fs_info->freed_extents[0],
250 start, end, EXTENT_UPTODATE, GFP_NOFS);
251 clear_extent_bits(&root->fs_info->freed_extents[1],
252 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
253}
254
11833d66
YZ
255static int exclude_super_stripes(struct btrfs_root *root,
256 struct btrfs_block_group_cache *cache)
817d52f8 257{
817d52f8
JB
258 u64 bytenr;
259 u64 *logical;
260 int stripe_len;
261 int i, nr, ret;
262
06b2331f
YZ
263 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
264 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
265 cache->bytes_super += stripe_len;
266 ret = add_excluded_extent(root, cache->key.objectid,
267 stripe_len);
835d974f
JB
268 if (ret)
269 return ret;
06b2331f
YZ
270 }
271
817d52f8
JB
272 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
273 bytenr = btrfs_sb_offset(i);
274 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
275 cache->key.objectid, bytenr,
276 0, &logical, &nr, &stripe_len);
835d974f
JB
277 if (ret)
278 return ret;
11833d66 279
817d52f8 280 while (nr--) {
51bf5f0b
JB
281 u64 start, len;
282
283 if (logical[nr] > cache->key.objectid +
284 cache->key.offset)
285 continue;
286
287 if (logical[nr] + stripe_len <= cache->key.objectid)
288 continue;
289
290 start = logical[nr];
291 if (start < cache->key.objectid) {
292 start = cache->key.objectid;
293 len = (logical[nr] + stripe_len) - start;
294 } else {
295 len = min_t(u64, stripe_len,
296 cache->key.objectid +
297 cache->key.offset - start);
298 }
299
300 cache->bytes_super += len;
301 ret = add_excluded_extent(root, start, len);
835d974f
JB
302 if (ret) {
303 kfree(logical);
304 return ret;
305 }
817d52f8 306 }
11833d66 307
817d52f8
JB
308 kfree(logical);
309 }
817d52f8
JB
310 return 0;
311}
312
11833d66
YZ
313static struct btrfs_caching_control *
314get_caching_control(struct btrfs_block_group_cache *cache)
315{
316 struct btrfs_caching_control *ctl;
317
318 spin_lock(&cache->lock);
dde5abee
JB
319 if (!cache->caching_ctl) {
320 spin_unlock(&cache->lock);
11833d66
YZ
321 return NULL;
322 }
323
324 ctl = cache->caching_ctl;
325 atomic_inc(&ctl->count);
326 spin_unlock(&cache->lock);
327 return ctl;
328}
329
330static void put_caching_control(struct btrfs_caching_control *ctl)
331{
332 if (atomic_dec_and_test(&ctl->count))
333 kfree(ctl);
334}
335
0f9dd46c
JB
336/*
337 * this is only called by cache_block_group, since we could have freed extents
338 * we need to check the pinned_extents for any extents that can't be used yet
339 * since their free space will be released as soon as the transaction commits.
340 */
817d52f8 341static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
342 struct btrfs_fs_info *info, u64 start, u64 end)
343{
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
d458b054 379static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 380{
bab39bf9
JB
381 struct btrfs_block_group_cache *block_group;
382 struct btrfs_fs_info *fs_info;
383 struct btrfs_caching_control *caching_ctl;
384 struct btrfs_root *extent_root;
e37c9e69 385 struct btrfs_path *path;
5f39d397 386 struct extent_buffer *leaf;
11833d66 387 struct btrfs_key key;
817d52f8 388 u64 total_found = 0;
11833d66
YZ
389 u64 last = 0;
390 u32 nritems;
36cce922 391 int ret = -ENOMEM;
f510cfec 392
bab39bf9
JB
393 caching_ctl = container_of(work, struct btrfs_caching_control, work);
394 block_group = caching_ctl->block_group;
395 fs_info = block_group->fs_info;
396 extent_root = fs_info->extent_root;
397
e37c9e69
CM
398 path = btrfs_alloc_path();
399 if (!path)
bab39bf9 400 goto out;
7d7d6068 401
817d52f8 402 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 403
5cd57b2c 404 /*
817d52f8
JB
405 * We don't want to deadlock with somebody trying to allocate a new
406 * extent for the extent root while also trying to search the extent
407 * root to add free space. So we skip locking and search the commit
408 * root, since its read-only
5cd57b2c
CM
409 */
410 path->skip_locking = 1;
817d52f8 411 path->search_commit_root = 1;
026fd317 412 path->reada = 1;
817d52f8 413
e4404d6e 414 key.objectid = last;
e37c9e69 415 key.offset = 0;
11833d66 416 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 417again:
11833d66 418 mutex_lock(&caching_ctl->mutex);
013f1b12 419 /* need to make sure the commit_root doesn't disappear */
9e351cc8 420 down_read(&fs_info->commit_root_sem);
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
ef8bbdfe 425 goto err;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 445 caching_ctl->progress = last;
ff5714cc 446 btrfs_release_path(path);
9e351cc8 447 up_read(&fs_info->commit_root_sem);
589d8ade 448 mutex_unlock(&caching_ctl->mutex);
11833d66 449 cond_resched();
589d8ade
JB
450 goto again;
451 }
0a3896d0
JB
452
453 ret = btrfs_next_leaf(extent_root, path);
454 if (ret < 0)
455 goto err;
456 if (ret)
457 break;
589d8ade
JB
458 leaf = path->nodes[0];
459 nritems = btrfs_header_nritems(leaf);
460 continue;
11833d66 461 }
817d52f8 462
52ee28d2
LB
463 if (key.objectid < last) {
464 key.objectid = last;
465 key.offset = 0;
466 key.type = BTRFS_EXTENT_ITEM_KEY;
467
468 caching_ctl->progress = last;
469 btrfs_release_path(path);
470 goto next;
471 }
472
11833d66
YZ
473 if (key.objectid < block_group->key.objectid) {
474 path->slots[0]++;
817d52f8 475 continue;
e37c9e69 476 }
0f9dd46c 477
e37c9e69 478 if (key.objectid >= block_group->key.objectid +
0f9dd46c 479 block_group->key.offset)
e37c9e69 480 break;
7d7d6068 481
3173a18f
JB
482 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
483 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
484 total_found += add_new_free_space(block_group,
485 fs_info, last,
486 key.objectid);
3173a18f
JB
487 if (key.type == BTRFS_METADATA_ITEM_KEY)
488 last = key.objectid +
707e8a07 489 fs_info->tree_root->nodesize;
3173a18f
JB
490 else
491 last = key.objectid + key.offset;
817d52f8 492
11833d66
YZ
493 if (total_found > (1024 * 1024 * 2)) {
494 total_found = 0;
495 wake_up(&caching_ctl->wait);
496 }
817d52f8 497 }
e37c9e69
CM
498 path->slots[0]++;
499 }
817d52f8 500 ret = 0;
e37c9e69 501
817d52f8
JB
502 total_found += add_new_free_space(block_group, fs_info, last,
503 block_group->key.objectid +
504 block_group->key.offset);
11833d66 505 caching_ctl->progress = (u64)-1;
817d52f8
JB
506
507 spin_lock(&block_group->lock);
11833d66 508 block_group->caching_ctl = NULL;
817d52f8
JB
509 block_group->cached = BTRFS_CACHE_FINISHED;
510 spin_unlock(&block_group->lock);
0f9dd46c 511
54aa1f4d 512err:
e37c9e69 513 btrfs_free_path(path);
9e351cc8 514 up_read(&fs_info->commit_root_sem);
817d52f8 515
11833d66
YZ
516 free_excluded_extents(extent_root, block_group);
517
518 mutex_unlock(&caching_ctl->mutex);
bab39bf9 519out:
36cce922
JB
520 if (ret) {
521 spin_lock(&block_group->lock);
522 block_group->caching_ctl = NULL;
523 block_group->cached = BTRFS_CACHE_ERROR;
524 spin_unlock(&block_group->lock);
525 }
11833d66
YZ
526 wake_up(&caching_ctl->wait);
527
528 put_caching_control(caching_ctl);
11dfe35a 529 btrfs_put_block_group(block_group);
817d52f8
JB
530}
531
9d66e233 532static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 533 int load_cache_only)
817d52f8 534{
291c7d2f 535 DEFINE_WAIT(wait);
11833d66
YZ
536 struct btrfs_fs_info *fs_info = cache->fs_info;
537 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
538 int ret = 0;
539
291c7d2f 540 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
541 if (!caching_ctl)
542 return -ENOMEM;
291c7d2f
JB
543
544 INIT_LIST_HEAD(&caching_ctl->list);
545 mutex_init(&caching_ctl->mutex);
546 init_waitqueue_head(&caching_ctl->wait);
547 caching_ctl->block_group = cache;
548 caching_ctl->progress = cache->key.objectid;
549 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
550 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
551 caching_thread, NULL, NULL);
291c7d2f
JB
552
553 spin_lock(&cache->lock);
554 /*
555 * This should be a rare occasion, but this could happen I think in the
556 * case where one thread starts to load the space cache info, and then
557 * some other thread starts a transaction commit which tries to do an
558 * allocation while the other thread is still loading the space cache
559 * info. The previous loop should have kept us from choosing this block
560 * group, but if we've moved to the state where we will wait on caching
561 * block groups we need to first check if we're doing a fast load here,
562 * so we can wait for it to finish, otherwise we could end up allocating
563 * from a block group who's cache gets evicted for one reason or
564 * another.
565 */
566 while (cache->cached == BTRFS_CACHE_FAST) {
567 struct btrfs_caching_control *ctl;
568
569 ctl = cache->caching_ctl;
570 atomic_inc(&ctl->count);
571 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
572 spin_unlock(&cache->lock);
573
574 schedule();
575
576 finish_wait(&ctl->wait, &wait);
577 put_caching_control(ctl);
578 spin_lock(&cache->lock);
579 }
580
581 if (cache->cached != BTRFS_CACHE_NO) {
582 spin_unlock(&cache->lock);
583 kfree(caching_ctl);
11833d66 584 return 0;
291c7d2f
JB
585 }
586 WARN_ON(cache->caching_ctl);
587 cache->caching_ctl = caching_ctl;
588 cache->cached = BTRFS_CACHE_FAST;
589 spin_unlock(&cache->lock);
11833d66 590
d53ba474 591 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 592 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
593 ret = load_free_space_cache(fs_info, cache);
594
595 spin_lock(&cache->lock);
596 if (ret == 1) {
291c7d2f 597 cache->caching_ctl = NULL;
9d66e233
JB
598 cache->cached = BTRFS_CACHE_FINISHED;
599 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 600 caching_ctl->progress = (u64)-1;
9d66e233 601 } else {
291c7d2f
JB
602 if (load_cache_only) {
603 cache->caching_ctl = NULL;
604 cache->cached = BTRFS_CACHE_NO;
605 } else {
606 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 607 cache->has_caching_ctl = 1;
291c7d2f 608 }
9d66e233
JB
609 }
610 spin_unlock(&cache->lock);
cb83b7b8
JB
611 mutex_unlock(&caching_ctl->mutex);
612
291c7d2f 613 wake_up(&caching_ctl->wait);
3c14874a 614 if (ret == 1) {
291c7d2f 615 put_caching_control(caching_ctl);
3c14874a 616 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 617 return 0;
3c14874a 618 }
291c7d2f
JB
619 } else {
620 /*
621 * We are not going to do the fast caching, set cached to the
622 * appropriate value and wakeup any waiters.
623 */
624 spin_lock(&cache->lock);
625 if (load_cache_only) {
626 cache->caching_ctl = NULL;
627 cache->cached = BTRFS_CACHE_NO;
628 } else {
629 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 630 cache->has_caching_ctl = 1;
291c7d2f
JB
631 }
632 spin_unlock(&cache->lock);
633 wake_up(&caching_ctl->wait);
9d66e233
JB
634 }
635
291c7d2f
JB
636 if (load_cache_only) {
637 put_caching_control(caching_ctl);
11833d66 638 return 0;
817d52f8 639 }
817d52f8 640
9e351cc8 641 down_write(&fs_info->commit_root_sem);
291c7d2f 642 atomic_inc(&caching_ctl->count);
11833d66 643 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 644 up_write(&fs_info->commit_root_sem);
11833d66 645
11dfe35a 646 btrfs_get_block_group(cache);
11833d66 647
e66f0bb1 648 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 649
ef8bbdfe 650 return ret;
e37c9e69
CM
651}
652
0f9dd46c
JB
653/*
654 * return the block group that starts at or after bytenr
655 */
d397712b
CM
656static struct btrfs_block_group_cache *
657btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 658{
0f9dd46c 659 struct btrfs_block_group_cache *cache;
0ef3e66b 660
0f9dd46c 661 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 662
0f9dd46c 663 return cache;
0ef3e66b
CM
664}
665
0f9dd46c 666/*
9f55684c 667 * return the block group that contains the given bytenr
0f9dd46c 668 */
d397712b
CM
669struct btrfs_block_group_cache *btrfs_lookup_block_group(
670 struct btrfs_fs_info *info,
671 u64 bytenr)
be744175 672{
0f9dd46c 673 struct btrfs_block_group_cache *cache;
be744175 674
0f9dd46c 675 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 676
0f9dd46c 677 return cache;
be744175 678}
0b86a832 679
0f9dd46c
JB
680static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
681 u64 flags)
6324fbf3 682{
0f9dd46c 683 struct list_head *head = &info->space_info;
0f9dd46c 684 struct btrfs_space_info *found;
4184ea7f 685
52ba6929 686 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 687
4184ea7f
CM
688 rcu_read_lock();
689 list_for_each_entry_rcu(found, head, list) {
67377734 690 if (found->flags & flags) {
4184ea7f 691 rcu_read_unlock();
0f9dd46c 692 return found;
4184ea7f 693 }
0f9dd46c 694 }
4184ea7f 695 rcu_read_unlock();
0f9dd46c 696 return NULL;
6324fbf3
CM
697}
698
4184ea7f
CM
699/*
700 * after adding space to the filesystem, we need to clear the full flags
701 * on all the space infos.
702 */
703void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
704{
705 struct list_head *head = &info->space_info;
706 struct btrfs_space_info *found;
707
708 rcu_read_lock();
709 list_for_each_entry_rcu(found, head, list)
710 found->full = 0;
711 rcu_read_unlock();
712}
713
1a4ed8fd
FM
714/* simple helper to search for an existing data extent at a given offset */
715int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
716{
717 int ret;
718 struct btrfs_key key;
31840ae1 719 struct btrfs_path *path;
e02119d5 720
31840ae1 721 path = btrfs_alloc_path();
d8926bb3
MF
722 if (!path)
723 return -ENOMEM;
724
e02119d5
CM
725 key.objectid = start;
726 key.offset = len;
3173a18f 727 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
728 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
729 0, 0);
31840ae1 730 btrfs_free_path(path);
7bb86316
CM
731 return ret;
732}
733
a22285a6 734/*
3173a18f 735 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
736 *
737 * the head node for delayed ref is used to store the sum of all the
738 * reference count modifications queued up in the rbtree. the head
739 * node may also store the extent flags to set. This way you can check
740 * to see what the reference count and extent flags would be if all of
741 * the delayed refs are not processed.
742 */
743int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
744 struct btrfs_root *root, u64 bytenr,
3173a18f 745 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
746{
747 struct btrfs_delayed_ref_head *head;
748 struct btrfs_delayed_ref_root *delayed_refs;
749 struct btrfs_path *path;
750 struct btrfs_extent_item *ei;
751 struct extent_buffer *leaf;
752 struct btrfs_key key;
753 u32 item_size;
754 u64 num_refs;
755 u64 extent_flags;
756 int ret;
757
3173a18f
JB
758 /*
759 * If we don't have skinny metadata, don't bother doing anything
760 * different
761 */
762 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 763 offset = root->nodesize;
3173a18f
JB
764 metadata = 0;
765 }
766
a22285a6
YZ
767 path = btrfs_alloc_path();
768 if (!path)
769 return -ENOMEM;
770
a22285a6
YZ
771 if (!trans) {
772 path->skip_locking = 1;
773 path->search_commit_root = 1;
774 }
639eefc8
FDBM
775
776search_again:
777 key.objectid = bytenr;
778 key.offset = offset;
779 if (metadata)
780 key.type = BTRFS_METADATA_ITEM_KEY;
781 else
782 key.type = BTRFS_EXTENT_ITEM_KEY;
783
a22285a6
YZ
784 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
785 &key, path, 0, 0);
786 if (ret < 0)
787 goto out_free;
788
3173a18f 789 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
790 if (path->slots[0]) {
791 path->slots[0]--;
792 btrfs_item_key_to_cpu(path->nodes[0], &key,
793 path->slots[0]);
794 if (key.objectid == bytenr &&
795 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 796 key.offset == root->nodesize)
74be9510
FDBM
797 ret = 0;
798 }
3173a18f
JB
799 }
800
a22285a6
YZ
801 if (ret == 0) {
802 leaf = path->nodes[0];
803 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
804 if (item_size >= sizeof(*ei)) {
805 ei = btrfs_item_ptr(leaf, path->slots[0],
806 struct btrfs_extent_item);
807 num_refs = btrfs_extent_refs(leaf, ei);
808 extent_flags = btrfs_extent_flags(leaf, ei);
809 } else {
810#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 struct btrfs_extent_item_v0 *ei0;
812 BUG_ON(item_size != sizeof(*ei0));
813 ei0 = btrfs_item_ptr(leaf, path->slots[0],
814 struct btrfs_extent_item_v0);
815 num_refs = btrfs_extent_refs_v0(leaf, ei0);
816 /* FIXME: this isn't correct for data */
817 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
818#else
819 BUG();
820#endif
821 }
822 BUG_ON(num_refs == 0);
823 } else {
824 num_refs = 0;
825 extent_flags = 0;
826 ret = 0;
827 }
828
829 if (!trans)
830 goto out;
831
832 delayed_refs = &trans->transaction->delayed_refs;
833 spin_lock(&delayed_refs->lock);
834 head = btrfs_find_delayed_ref_head(trans, bytenr);
835 if (head) {
836 if (!mutex_trylock(&head->mutex)) {
837 atomic_inc(&head->node.refs);
838 spin_unlock(&delayed_refs->lock);
839
b3b4aa74 840 btrfs_release_path(path);
a22285a6 841
8cc33e5c
DS
842 /*
843 * Mutex was contended, block until it's released and try
844 * again
845 */
a22285a6
YZ
846 mutex_lock(&head->mutex);
847 mutex_unlock(&head->mutex);
848 btrfs_put_delayed_ref(&head->node);
639eefc8 849 goto search_again;
a22285a6 850 }
d7df2c79 851 spin_lock(&head->lock);
a22285a6
YZ
852 if (head->extent_op && head->extent_op->update_flags)
853 extent_flags |= head->extent_op->flags_to_set;
854 else
855 BUG_ON(num_refs == 0);
856
857 num_refs += head->node.ref_mod;
d7df2c79 858 spin_unlock(&head->lock);
a22285a6
YZ
859 mutex_unlock(&head->mutex);
860 }
861 spin_unlock(&delayed_refs->lock);
862out:
863 WARN_ON(num_refs == 0);
864 if (refs)
865 *refs = num_refs;
866 if (flags)
867 *flags = extent_flags;
868out_free:
869 btrfs_free_path(path);
870 return ret;
871}
872
d8d5f3e1
CM
873/*
874 * Back reference rules. Back refs have three main goals:
875 *
876 * 1) differentiate between all holders of references to an extent so that
877 * when a reference is dropped we can make sure it was a valid reference
878 * before freeing the extent.
879 *
880 * 2) Provide enough information to quickly find the holders of an extent
881 * if we notice a given block is corrupted or bad.
882 *
883 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
884 * maintenance. This is actually the same as #2, but with a slightly
885 * different use case.
886 *
5d4f98a2
YZ
887 * There are two kinds of back refs. The implicit back refs is optimized
888 * for pointers in non-shared tree blocks. For a given pointer in a block,
889 * back refs of this kind provide information about the block's owner tree
890 * and the pointer's key. These information allow us to find the block by
891 * b-tree searching. The full back refs is for pointers in tree blocks not
892 * referenced by their owner trees. The location of tree block is recorded
893 * in the back refs. Actually the full back refs is generic, and can be
894 * used in all cases the implicit back refs is used. The major shortcoming
895 * of the full back refs is its overhead. Every time a tree block gets
896 * COWed, we have to update back refs entry for all pointers in it.
897 *
898 * For a newly allocated tree block, we use implicit back refs for
899 * pointers in it. This means most tree related operations only involve
900 * implicit back refs. For a tree block created in old transaction, the
901 * only way to drop a reference to it is COW it. So we can detect the
902 * event that tree block loses its owner tree's reference and do the
903 * back refs conversion.
904 *
905 * When a tree block is COW'd through a tree, there are four cases:
906 *
907 * The reference count of the block is one and the tree is the block's
908 * owner tree. Nothing to do in this case.
909 *
910 * The reference count of the block is one and the tree is not the
911 * block's owner tree. In this case, full back refs is used for pointers
912 * in the block. Remove these full back refs, add implicit back refs for
913 * every pointers in the new block.
914 *
915 * The reference count of the block is greater than one and the tree is
916 * the block's owner tree. In this case, implicit back refs is used for
917 * pointers in the block. Add full back refs for every pointers in the
918 * block, increase lower level extents' reference counts. The original
919 * implicit back refs are entailed to the new block.
920 *
921 * The reference count of the block is greater than one and the tree is
922 * not the block's owner tree. Add implicit back refs for every pointer in
923 * the new block, increase lower level extents' reference count.
924 *
925 * Back Reference Key composing:
926 *
927 * The key objectid corresponds to the first byte in the extent,
928 * The key type is used to differentiate between types of back refs.
929 * There are different meanings of the key offset for different types
930 * of back refs.
931 *
d8d5f3e1
CM
932 * File extents can be referenced by:
933 *
934 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 935 * - different files inside a single subvolume
d8d5f3e1
CM
936 * - different offsets inside a file (bookend extents in file.c)
937 *
5d4f98a2 938 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
939 *
940 * - Objectid of the subvolume root
d8d5f3e1 941 * - objectid of the file holding the reference
5d4f98a2
YZ
942 * - original offset in the file
943 * - how many bookend extents
d8d5f3e1 944 *
5d4f98a2
YZ
945 * The key offset for the implicit back refs is hash of the first
946 * three fields.
d8d5f3e1 947 *
5d4f98a2 948 * The extent ref structure for the full back refs has field for:
d8d5f3e1 949 *
5d4f98a2 950 * - number of pointers in the tree leaf
d8d5f3e1 951 *
5d4f98a2
YZ
952 * The key offset for the implicit back refs is the first byte of
953 * the tree leaf
d8d5f3e1 954 *
5d4f98a2
YZ
955 * When a file extent is allocated, The implicit back refs is used.
956 * the fields are filled in:
d8d5f3e1 957 *
5d4f98a2 958 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 959 *
5d4f98a2
YZ
960 * When a file extent is removed file truncation, we find the
961 * corresponding implicit back refs and check the following fields:
d8d5f3e1 962 *
5d4f98a2 963 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 964 *
5d4f98a2 965 * Btree extents can be referenced by:
d8d5f3e1 966 *
5d4f98a2 967 * - Different subvolumes
d8d5f3e1 968 *
5d4f98a2
YZ
969 * Both the implicit back refs and the full back refs for tree blocks
970 * only consist of key. The key offset for the implicit back refs is
971 * objectid of block's owner tree. The key offset for the full back refs
972 * is the first byte of parent block.
d8d5f3e1 973 *
5d4f98a2
YZ
974 * When implicit back refs is used, information about the lowest key and
975 * level of the tree block are required. These information are stored in
976 * tree block info structure.
d8d5f3e1 977 */
31840ae1 978
5d4f98a2
YZ
979#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
980static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
981 struct btrfs_root *root,
982 struct btrfs_path *path,
983 u64 owner, u32 extra_size)
7bb86316 984{
5d4f98a2
YZ
985 struct btrfs_extent_item *item;
986 struct btrfs_extent_item_v0 *ei0;
987 struct btrfs_extent_ref_v0 *ref0;
988 struct btrfs_tree_block_info *bi;
989 struct extent_buffer *leaf;
7bb86316 990 struct btrfs_key key;
5d4f98a2
YZ
991 struct btrfs_key found_key;
992 u32 new_size = sizeof(*item);
993 u64 refs;
994 int ret;
995
996 leaf = path->nodes[0];
997 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
998
999 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1000 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1001 struct btrfs_extent_item_v0);
1002 refs = btrfs_extent_refs_v0(leaf, ei0);
1003
1004 if (owner == (u64)-1) {
1005 while (1) {
1006 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1007 ret = btrfs_next_leaf(root, path);
1008 if (ret < 0)
1009 return ret;
79787eaa 1010 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1011 leaf = path->nodes[0];
1012 }
1013 btrfs_item_key_to_cpu(leaf, &found_key,
1014 path->slots[0]);
1015 BUG_ON(key.objectid != found_key.objectid);
1016 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1017 path->slots[0]++;
1018 continue;
1019 }
1020 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1021 struct btrfs_extent_ref_v0);
1022 owner = btrfs_ref_objectid_v0(leaf, ref0);
1023 break;
1024 }
1025 }
b3b4aa74 1026 btrfs_release_path(path);
5d4f98a2
YZ
1027
1028 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1029 new_size += sizeof(*bi);
1030
1031 new_size -= sizeof(*ei0);
1032 ret = btrfs_search_slot(trans, root, &key, path,
1033 new_size + extra_size, 1);
1034 if (ret < 0)
1035 return ret;
79787eaa 1036 BUG_ON(ret); /* Corruption */
5d4f98a2 1037
4b90c680 1038 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1039
1040 leaf = path->nodes[0];
1041 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1042 btrfs_set_extent_refs(leaf, item, refs);
1043 /* FIXME: get real generation */
1044 btrfs_set_extent_generation(leaf, item, 0);
1045 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1046 btrfs_set_extent_flags(leaf, item,
1047 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1048 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1049 bi = (struct btrfs_tree_block_info *)(item + 1);
1050 /* FIXME: get first key of the block */
1051 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1052 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1053 } else {
1054 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1055 }
1056 btrfs_mark_buffer_dirty(leaf);
1057 return 0;
1058}
1059#endif
1060
1061static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1062{
1063 u32 high_crc = ~(u32)0;
1064 u32 low_crc = ~(u32)0;
1065 __le64 lenum;
1066
1067 lenum = cpu_to_le64(root_objectid);
14a958e6 1068 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1069 lenum = cpu_to_le64(owner);
14a958e6 1070 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1071 lenum = cpu_to_le64(offset);
14a958e6 1072 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1073
1074 return ((u64)high_crc << 31) ^ (u64)low_crc;
1075}
1076
1077static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1078 struct btrfs_extent_data_ref *ref)
1079{
1080 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1081 btrfs_extent_data_ref_objectid(leaf, ref),
1082 btrfs_extent_data_ref_offset(leaf, ref));
1083}
1084
1085static int match_extent_data_ref(struct extent_buffer *leaf,
1086 struct btrfs_extent_data_ref *ref,
1087 u64 root_objectid, u64 owner, u64 offset)
1088{
1089 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1090 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1091 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1092 return 0;
1093 return 1;
1094}
1095
1096static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1097 struct btrfs_root *root,
1098 struct btrfs_path *path,
1099 u64 bytenr, u64 parent,
1100 u64 root_objectid,
1101 u64 owner, u64 offset)
1102{
1103 struct btrfs_key key;
1104 struct btrfs_extent_data_ref *ref;
31840ae1 1105 struct extent_buffer *leaf;
5d4f98a2 1106 u32 nritems;
74493f7a 1107 int ret;
5d4f98a2
YZ
1108 int recow;
1109 int err = -ENOENT;
74493f7a 1110
31840ae1 1111 key.objectid = bytenr;
5d4f98a2
YZ
1112 if (parent) {
1113 key.type = BTRFS_SHARED_DATA_REF_KEY;
1114 key.offset = parent;
1115 } else {
1116 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1117 key.offset = hash_extent_data_ref(root_objectid,
1118 owner, offset);
1119 }
1120again:
1121 recow = 0;
1122 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1123 if (ret < 0) {
1124 err = ret;
1125 goto fail;
1126 }
31840ae1 1127
5d4f98a2
YZ
1128 if (parent) {
1129 if (!ret)
1130 return 0;
1131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1132 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1133 btrfs_release_path(path);
5d4f98a2
YZ
1134 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1135 if (ret < 0) {
1136 err = ret;
1137 goto fail;
1138 }
1139 if (!ret)
1140 return 0;
1141#endif
1142 goto fail;
31840ae1
ZY
1143 }
1144
1145 leaf = path->nodes[0];
5d4f98a2
YZ
1146 nritems = btrfs_header_nritems(leaf);
1147 while (1) {
1148 if (path->slots[0] >= nritems) {
1149 ret = btrfs_next_leaf(root, path);
1150 if (ret < 0)
1151 err = ret;
1152 if (ret)
1153 goto fail;
1154
1155 leaf = path->nodes[0];
1156 nritems = btrfs_header_nritems(leaf);
1157 recow = 1;
1158 }
1159
1160 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1161 if (key.objectid != bytenr ||
1162 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1163 goto fail;
1164
1165 ref = btrfs_item_ptr(leaf, path->slots[0],
1166 struct btrfs_extent_data_ref);
1167
1168 if (match_extent_data_ref(leaf, ref, root_objectid,
1169 owner, offset)) {
1170 if (recow) {
b3b4aa74 1171 btrfs_release_path(path);
5d4f98a2
YZ
1172 goto again;
1173 }
1174 err = 0;
1175 break;
1176 }
1177 path->slots[0]++;
31840ae1 1178 }
5d4f98a2
YZ
1179fail:
1180 return err;
31840ae1
ZY
1181}
1182
5d4f98a2
YZ
1183static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1184 struct btrfs_root *root,
1185 struct btrfs_path *path,
1186 u64 bytenr, u64 parent,
1187 u64 root_objectid, u64 owner,
1188 u64 offset, int refs_to_add)
31840ae1
ZY
1189{
1190 struct btrfs_key key;
1191 struct extent_buffer *leaf;
5d4f98a2 1192 u32 size;
31840ae1
ZY
1193 u32 num_refs;
1194 int ret;
74493f7a 1195
74493f7a 1196 key.objectid = bytenr;
5d4f98a2
YZ
1197 if (parent) {
1198 key.type = BTRFS_SHARED_DATA_REF_KEY;
1199 key.offset = parent;
1200 size = sizeof(struct btrfs_shared_data_ref);
1201 } else {
1202 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1203 key.offset = hash_extent_data_ref(root_objectid,
1204 owner, offset);
1205 size = sizeof(struct btrfs_extent_data_ref);
1206 }
74493f7a 1207
5d4f98a2
YZ
1208 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1209 if (ret && ret != -EEXIST)
1210 goto fail;
1211
1212 leaf = path->nodes[0];
1213 if (parent) {
1214 struct btrfs_shared_data_ref *ref;
31840ae1 1215 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1216 struct btrfs_shared_data_ref);
1217 if (ret == 0) {
1218 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1219 } else {
1220 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1221 num_refs += refs_to_add;
1222 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1223 }
5d4f98a2
YZ
1224 } else {
1225 struct btrfs_extent_data_ref *ref;
1226 while (ret == -EEXIST) {
1227 ref = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_data_ref);
1229 if (match_extent_data_ref(leaf, ref, root_objectid,
1230 owner, offset))
1231 break;
b3b4aa74 1232 btrfs_release_path(path);
5d4f98a2
YZ
1233 key.offset++;
1234 ret = btrfs_insert_empty_item(trans, root, path, &key,
1235 size);
1236 if (ret && ret != -EEXIST)
1237 goto fail;
31840ae1 1238
5d4f98a2
YZ
1239 leaf = path->nodes[0];
1240 }
1241 ref = btrfs_item_ptr(leaf, path->slots[0],
1242 struct btrfs_extent_data_ref);
1243 if (ret == 0) {
1244 btrfs_set_extent_data_ref_root(leaf, ref,
1245 root_objectid);
1246 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1247 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1248 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1249 } else {
1250 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1251 num_refs += refs_to_add;
1252 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1253 }
31840ae1 1254 }
5d4f98a2
YZ
1255 btrfs_mark_buffer_dirty(leaf);
1256 ret = 0;
1257fail:
b3b4aa74 1258 btrfs_release_path(path);
7bb86316 1259 return ret;
74493f7a
CM
1260}
1261
5d4f98a2
YZ
1262static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1263 struct btrfs_root *root,
1264 struct btrfs_path *path,
fcebe456 1265 int refs_to_drop, int *last_ref)
31840ae1 1266{
5d4f98a2
YZ
1267 struct btrfs_key key;
1268 struct btrfs_extent_data_ref *ref1 = NULL;
1269 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1270 struct extent_buffer *leaf;
5d4f98a2 1271 u32 num_refs = 0;
31840ae1
ZY
1272 int ret = 0;
1273
1274 leaf = path->nodes[0];
5d4f98a2
YZ
1275 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1276
1277 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1278 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1279 struct btrfs_extent_data_ref);
1280 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1281 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1282 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1283 struct btrfs_shared_data_ref);
1284 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1285#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1286 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1287 struct btrfs_extent_ref_v0 *ref0;
1288 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1289 struct btrfs_extent_ref_v0);
1290 num_refs = btrfs_ref_count_v0(leaf, ref0);
1291#endif
1292 } else {
1293 BUG();
1294 }
1295
56bec294
CM
1296 BUG_ON(num_refs < refs_to_drop);
1297 num_refs -= refs_to_drop;
5d4f98a2 1298
31840ae1
ZY
1299 if (num_refs == 0) {
1300 ret = btrfs_del_item(trans, root, path);
fcebe456 1301 *last_ref = 1;
31840ae1 1302 } else {
5d4f98a2
YZ
1303 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1304 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1305 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1306 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1307#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1308 else {
1309 struct btrfs_extent_ref_v0 *ref0;
1310 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1311 struct btrfs_extent_ref_v0);
1312 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1313 }
1314#endif
31840ae1
ZY
1315 btrfs_mark_buffer_dirty(leaf);
1316 }
31840ae1
ZY
1317 return ret;
1318}
1319
5d4f98a2
YZ
1320static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1321 struct btrfs_path *path,
1322 struct btrfs_extent_inline_ref *iref)
15916de8 1323{
5d4f98a2
YZ
1324 struct btrfs_key key;
1325 struct extent_buffer *leaf;
1326 struct btrfs_extent_data_ref *ref1;
1327 struct btrfs_shared_data_ref *ref2;
1328 u32 num_refs = 0;
1329
1330 leaf = path->nodes[0];
1331 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1332 if (iref) {
1333 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1334 BTRFS_EXTENT_DATA_REF_KEY) {
1335 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1336 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1337 } else {
1338 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1339 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1340 }
1341 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1342 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1343 struct btrfs_extent_data_ref);
1344 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1345 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1346 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1347 struct btrfs_shared_data_ref);
1348 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1349#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1350 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1351 struct btrfs_extent_ref_v0 *ref0;
1352 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_extent_ref_v0);
1354 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1355#endif
5d4f98a2
YZ
1356 } else {
1357 WARN_ON(1);
1358 }
1359 return num_refs;
1360}
15916de8 1361
5d4f98a2
YZ
1362static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1363 struct btrfs_root *root,
1364 struct btrfs_path *path,
1365 u64 bytenr, u64 parent,
1366 u64 root_objectid)
1f3c79a2 1367{
5d4f98a2 1368 struct btrfs_key key;
1f3c79a2 1369 int ret;
1f3c79a2 1370
5d4f98a2
YZ
1371 key.objectid = bytenr;
1372 if (parent) {
1373 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1374 key.offset = parent;
1375 } else {
1376 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1377 key.offset = root_objectid;
1f3c79a2
LH
1378 }
1379
5d4f98a2
YZ
1380 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1381 if (ret > 0)
1382 ret = -ENOENT;
1383#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1384 if (ret == -ENOENT && parent) {
b3b4aa74 1385 btrfs_release_path(path);
5d4f98a2
YZ
1386 key.type = BTRFS_EXTENT_REF_V0_KEY;
1387 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1388 if (ret > 0)
1389 ret = -ENOENT;
1390 }
1f3c79a2 1391#endif
5d4f98a2 1392 return ret;
1f3c79a2
LH
1393}
1394
5d4f98a2
YZ
1395static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1396 struct btrfs_root *root,
1397 struct btrfs_path *path,
1398 u64 bytenr, u64 parent,
1399 u64 root_objectid)
31840ae1 1400{
5d4f98a2 1401 struct btrfs_key key;
31840ae1 1402 int ret;
31840ae1 1403
5d4f98a2
YZ
1404 key.objectid = bytenr;
1405 if (parent) {
1406 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1407 key.offset = parent;
1408 } else {
1409 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1410 key.offset = root_objectid;
1411 }
1412
1413 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1414 btrfs_release_path(path);
31840ae1
ZY
1415 return ret;
1416}
1417
5d4f98a2 1418static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1419{
5d4f98a2
YZ
1420 int type;
1421 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1422 if (parent > 0)
1423 type = BTRFS_SHARED_BLOCK_REF_KEY;
1424 else
1425 type = BTRFS_TREE_BLOCK_REF_KEY;
1426 } else {
1427 if (parent > 0)
1428 type = BTRFS_SHARED_DATA_REF_KEY;
1429 else
1430 type = BTRFS_EXTENT_DATA_REF_KEY;
1431 }
1432 return type;
31840ae1 1433}
56bec294 1434
2c47e605
YZ
1435static int find_next_key(struct btrfs_path *path, int level,
1436 struct btrfs_key *key)
56bec294 1437
02217ed2 1438{
2c47e605 1439 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1440 if (!path->nodes[level])
1441 break;
5d4f98a2
YZ
1442 if (path->slots[level] + 1 >=
1443 btrfs_header_nritems(path->nodes[level]))
1444 continue;
1445 if (level == 0)
1446 btrfs_item_key_to_cpu(path->nodes[level], key,
1447 path->slots[level] + 1);
1448 else
1449 btrfs_node_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 return 0;
1452 }
1453 return 1;
1454}
037e6390 1455
5d4f98a2
YZ
1456/*
1457 * look for inline back ref. if back ref is found, *ref_ret is set
1458 * to the address of inline back ref, and 0 is returned.
1459 *
1460 * if back ref isn't found, *ref_ret is set to the address where it
1461 * should be inserted, and -ENOENT is returned.
1462 *
1463 * if insert is true and there are too many inline back refs, the path
1464 * points to the extent item, and -EAGAIN is returned.
1465 *
1466 * NOTE: inline back refs are ordered in the same way that back ref
1467 * items in the tree are ordered.
1468 */
1469static noinline_for_stack
1470int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1471 struct btrfs_root *root,
1472 struct btrfs_path *path,
1473 struct btrfs_extent_inline_ref **ref_ret,
1474 u64 bytenr, u64 num_bytes,
1475 u64 parent, u64 root_objectid,
1476 u64 owner, u64 offset, int insert)
1477{
1478 struct btrfs_key key;
1479 struct extent_buffer *leaf;
1480 struct btrfs_extent_item *ei;
1481 struct btrfs_extent_inline_ref *iref;
1482 u64 flags;
1483 u64 item_size;
1484 unsigned long ptr;
1485 unsigned long end;
1486 int extra_size;
1487 int type;
1488 int want;
1489 int ret;
1490 int err = 0;
3173a18f
JB
1491 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1492 SKINNY_METADATA);
26b8003f 1493
db94535d 1494 key.objectid = bytenr;
31840ae1 1495 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1496 key.offset = num_bytes;
31840ae1 1497
5d4f98a2
YZ
1498 want = extent_ref_type(parent, owner);
1499 if (insert) {
1500 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1501 path->keep_locks = 1;
5d4f98a2
YZ
1502 } else
1503 extra_size = -1;
3173a18f
JB
1504
1505 /*
1506 * Owner is our parent level, so we can just add one to get the level
1507 * for the block we are interested in.
1508 */
1509 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1510 key.type = BTRFS_METADATA_ITEM_KEY;
1511 key.offset = owner;
1512 }
1513
1514again:
5d4f98a2 1515 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1516 if (ret < 0) {
5d4f98a2
YZ
1517 err = ret;
1518 goto out;
1519 }
3173a18f
JB
1520
1521 /*
1522 * We may be a newly converted file system which still has the old fat
1523 * extent entries for metadata, so try and see if we have one of those.
1524 */
1525 if (ret > 0 && skinny_metadata) {
1526 skinny_metadata = false;
1527 if (path->slots[0]) {
1528 path->slots[0]--;
1529 btrfs_item_key_to_cpu(path->nodes[0], &key,
1530 path->slots[0]);
1531 if (key.objectid == bytenr &&
1532 key.type == BTRFS_EXTENT_ITEM_KEY &&
1533 key.offset == num_bytes)
1534 ret = 0;
1535 }
1536 if (ret) {
9ce49a0b 1537 key.objectid = bytenr;
3173a18f
JB
1538 key.type = BTRFS_EXTENT_ITEM_KEY;
1539 key.offset = num_bytes;
1540 btrfs_release_path(path);
1541 goto again;
1542 }
1543 }
1544
79787eaa
JM
1545 if (ret && !insert) {
1546 err = -ENOENT;
1547 goto out;
fae7f21c 1548 } else if (WARN_ON(ret)) {
492104c8 1549 err = -EIO;
492104c8 1550 goto out;
79787eaa 1551 }
5d4f98a2
YZ
1552
1553 leaf = path->nodes[0];
1554 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1555#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1556 if (item_size < sizeof(*ei)) {
1557 if (!insert) {
1558 err = -ENOENT;
1559 goto out;
1560 }
1561 ret = convert_extent_item_v0(trans, root, path, owner,
1562 extra_size);
1563 if (ret < 0) {
1564 err = ret;
1565 goto out;
1566 }
1567 leaf = path->nodes[0];
1568 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1569 }
1570#endif
1571 BUG_ON(item_size < sizeof(*ei));
1572
5d4f98a2
YZ
1573 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1574 flags = btrfs_extent_flags(leaf, ei);
1575
1576 ptr = (unsigned long)(ei + 1);
1577 end = (unsigned long)ei + item_size;
1578
3173a18f 1579 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1580 ptr += sizeof(struct btrfs_tree_block_info);
1581 BUG_ON(ptr > end);
5d4f98a2
YZ
1582 }
1583
1584 err = -ENOENT;
1585 while (1) {
1586 if (ptr >= end) {
1587 WARN_ON(ptr > end);
1588 break;
1589 }
1590 iref = (struct btrfs_extent_inline_ref *)ptr;
1591 type = btrfs_extent_inline_ref_type(leaf, iref);
1592 if (want < type)
1593 break;
1594 if (want > type) {
1595 ptr += btrfs_extent_inline_ref_size(type);
1596 continue;
1597 }
1598
1599 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1600 struct btrfs_extent_data_ref *dref;
1601 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1602 if (match_extent_data_ref(leaf, dref, root_objectid,
1603 owner, offset)) {
1604 err = 0;
1605 break;
1606 }
1607 if (hash_extent_data_ref_item(leaf, dref) <
1608 hash_extent_data_ref(root_objectid, owner, offset))
1609 break;
1610 } else {
1611 u64 ref_offset;
1612 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1613 if (parent > 0) {
1614 if (parent == ref_offset) {
1615 err = 0;
1616 break;
1617 }
1618 if (ref_offset < parent)
1619 break;
1620 } else {
1621 if (root_objectid == ref_offset) {
1622 err = 0;
1623 break;
1624 }
1625 if (ref_offset < root_objectid)
1626 break;
1627 }
1628 }
1629 ptr += btrfs_extent_inline_ref_size(type);
1630 }
1631 if (err == -ENOENT && insert) {
1632 if (item_size + extra_size >=
1633 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1634 err = -EAGAIN;
1635 goto out;
1636 }
1637 /*
1638 * To add new inline back ref, we have to make sure
1639 * there is no corresponding back ref item.
1640 * For simplicity, we just do not add new inline back
1641 * ref if there is any kind of item for this block
1642 */
2c47e605
YZ
1643 if (find_next_key(path, 0, &key) == 0 &&
1644 key.objectid == bytenr &&
85d4198e 1645 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1646 err = -EAGAIN;
1647 goto out;
1648 }
1649 }
1650 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1651out:
85d4198e 1652 if (insert) {
5d4f98a2
YZ
1653 path->keep_locks = 0;
1654 btrfs_unlock_up_safe(path, 1);
1655 }
1656 return err;
1657}
1658
1659/*
1660 * helper to add new inline back ref
1661 */
1662static noinline_for_stack
fd279fae 1663void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1664 struct btrfs_path *path,
1665 struct btrfs_extent_inline_ref *iref,
1666 u64 parent, u64 root_objectid,
1667 u64 owner, u64 offset, int refs_to_add,
1668 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1669{
1670 struct extent_buffer *leaf;
1671 struct btrfs_extent_item *ei;
1672 unsigned long ptr;
1673 unsigned long end;
1674 unsigned long item_offset;
1675 u64 refs;
1676 int size;
1677 int type;
5d4f98a2
YZ
1678
1679 leaf = path->nodes[0];
1680 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1681 item_offset = (unsigned long)iref - (unsigned long)ei;
1682
1683 type = extent_ref_type(parent, owner);
1684 size = btrfs_extent_inline_ref_size(type);
1685
4b90c680 1686 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1687
1688 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1689 refs = btrfs_extent_refs(leaf, ei);
1690 refs += refs_to_add;
1691 btrfs_set_extent_refs(leaf, ei, refs);
1692 if (extent_op)
1693 __run_delayed_extent_op(extent_op, leaf, ei);
1694
1695 ptr = (unsigned long)ei + item_offset;
1696 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1697 if (ptr < end - size)
1698 memmove_extent_buffer(leaf, ptr + size, ptr,
1699 end - size - ptr);
1700
1701 iref = (struct btrfs_extent_inline_ref *)ptr;
1702 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1703 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1704 struct btrfs_extent_data_ref *dref;
1705 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1706 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1707 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1708 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1709 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1710 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1711 struct btrfs_shared_data_ref *sref;
1712 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1713 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1714 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1715 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1716 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1717 } else {
1718 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1719 }
1720 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1721}
1722
1723static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1724 struct btrfs_root *root,
1725 struct btrfs_path *path,
1726 struct btrfs_extent_inline_ref **ref_ret,
1727 u64 bytenr, u64 num_bytes, u64 parent,
1728 u64 root_objectid, u64 owner, u64 offset)
1729{
1730 int ret;
1731
1732 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1733 bytenr, num_bytes, parent,
1734 root_objectid, owner, offset, 0);
1735 if (ret != -ENOENT)
54aa1f4d 1736 return ret;
5d4f98a2 1737
b3b4aa74 1738 btrfs_release_path(path);
5d4f98a2
YZ
1739 *ref_ret = NULL;
1740
1741 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1742 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1743 root_objectid);
1744 } else {
1745 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1746 root_objectid, owner, offset);
b9473439 1747 }
5d4f98a2
YZ
1748 return ret;
1749}
31840ae1 1750
5d4f98a2
YZ
1751/*
1752 * helper to update/remove inline back ref
1753 */
1754static noinline_for_stack
afe5fea7 1755void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1756 struct btrfs_path *path,
1757 struct btrfs_extent_inline_ref *iref,
1758 int refs_to_mod,
fcebe456
JB
1759 struct btrfs_delayed_extent_op *extent_op,
1760 int *last_ref)
5d4f98a2
YZ
1761{
1762 struct extent_buffer *leaf;
1763 struct btrfs_extent_item *ei;
1764 struct btrfs_extent_data_ref *dref = NULL;
1765 struct btrfs_shared_data_ref *sref = NULL;
1766 unsigned long ptr;
1767 unsigned long end;
1768 u32 item_size;
1769 int size;
1770 int type;
5d4f98a2
YZ
1771 u64 refs;
1772
1773 leaf = path->nodes[0];
1774 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1775 refs = btrfs_extent_refs(leaf, ei);
1776 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1777 refs += refs_to_mod;
1778 btrfs_set_extent_refs(leaf, ei, refs);
1779 if (extent_op)
1780 __run_delayed_extent_op(extent_op, leaf, ei);
1781
1782 type = btrfs_extent_inline_ref_type(leaf, iref);
1783
1784 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1785 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1786 refs = btrfs_extent_data_ref_count(leaf, dref);
1787 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1788 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1789 refs = btrfs_shared_data_ref_count(leaf, sref);
1790 } else {
1791 refs = 1;
1792 BUG_ON(refs_to_mod != -1);
56bec294 1793 }
31840ae1 1794
5d4f98a2
YZ
1795 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1796 refs += refs_to_mod;
1797
1798 if (refs > 0) {
1799 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1800 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1801 else
1802 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1803 } else {
fcebe456 1804 *last_ref = 1;
5d4f98a2
YZ
1805 size = btrfs_extent_inline_ref_size(type);
1806 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1807 ptr = (unsigned long)iref;
1808 end = (unsigned long)ei + item_size;
1809 if (ptr + size < end)
1810 memmove_extent_buffer(leaf, ptr, ptr + size,
1811 end - ptr - size);
1812 item_size -= size;
afe5fea7 1813 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1814 }
1815 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1816}
1817
1818static noinline_for_stack
1819int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1820 struct btrfs_root *root,
1821 struct btrfs_path *path,
1822 u64 bytenr, u64 num_bytes, u64 parent,
1823 u64 root_objectid, u64 owner,
1824 u64 offset, int refs_to_add,
1825 struct btrfs_delayed_extent_op *extent_op)
1826{
1827 struct btrfs_extent_inline_ref *iref;
1828 int ret;
1829
1830 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1831 bytenr, num_bytes, parent,
1832 root_objectid, owner, offset, 1);
1833 if (ret == 0) {
1834 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1835 update_inline_extent_backref(root, path, iref,
fcebe456 1836 refs_to_add, extent_op, NULL);
5d4f98a2 1837 } else if (ret == -ENOENT) {
fd279fae 1838 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1839 root_objectid, owner, offset,
1840 refs_to_add, extent_op);
1841 ret = 0;
771ed689 1842 }
5d4f98a2
YZ
1843 return ret;
1844}
31840ae1 1845
5d4f98a2
YZ
1846static int insert_extent_backref(struct btrfs_trans_handle *trans,
1847 struct btrfs_root *root,
1848 struct btrfs_path *path,
1849 u64 bytenr, u64 parent, u64 root_objectid,
1850 u64 owner, u64 offset, int refs_to_add)
1851{
1852 int ret;
1853 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1854 BUG_ON(refs_to_add != 1);
1855 ret = insert_tree_block_ref(trans, root, path, bytenr,
1856 parent, root_objectid);
1857 } else {
1858 ret = insert_extent_data_ref(trans, root, path, bytenr,
1859 parent, root_objectid,
1860 owner, offset, refs_to_add);
1861 }
1862 return ret;
1863}
56bec294 1864
5d4f98a2
YZ
1865static int remove_extent_backref(struct btrfs_trans_handle *trans,
1866 struct btrfs_root *root,
1867 struct btrfs_path *path,
1868 struct btrfs_extent_inline_ref *iref,
fcebe456 1869 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1870{
143bede5 1871 int ret = 0;
b9473439 1872
5d4f98a2
YZ
1873 BUG_ON(!is_data && refs_to_drop != 1);
1874 if (iref) {
afe5fea7 1875 update_inline_extent_backref(root, path, iref,
fcebe456 1876 -refs_to_drop, NULL, last_ref);
5d4f98a2 1877 } else if (is_data) {
fcebe456
JB
1878 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1879 last_ref);
5d4f98a2 1880 } else {
fcebe456 1881 *last_ref = 1;
5d4f98a2
YZ
1882 ret = btrfs_del_item(trans, root, path);
1883 }
1884 return ret;
1885}
1886
5378e607 1887static int btrfs_issue_discard(struct block_device *bdev,
5d4f98a2
YZ
1888 u64 start, u64 len)
1889{
5378e607 1890 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
5d4f98a2 1891}
5d4f98a2 1892
1edb647b
FM
1893int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1894 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1895{
5d4f98a2 1896 int ret;
5378e607 1897 u64 discarded_bytes = 0;
a1d3c478 1898 struct btrfs_bio *bbio = NULL;
5d4f98a2 1899
e244a0ae 1900
5d4f98a2 1901 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1902 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1903 bytenr, &num_bytes, &bbio, 0);
79787eaa 1904 /* Error condition is -ENOMEM */
5d4f98a2 1905 if (!ret) {
a1d3c478 1906 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1907 int i;
1908
5d4f98a2 1909
a1d3c478 1910 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d5e2003c
JB
1911 if (!stripe->dev->can_discard)
1912 continue;
1913
5378e607
LD
1914 ret = btrfs_issue_discard(stripe->dev->bdev,
1915 stripe->physical,
1916 stripe->length);
1917 if (!ret)
1918 discarded_bytes += stripe->length;
1919 else if (ret != -EOPNOTSUPP)
79787eaa 1920 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1921
1922 /*
1923 * Just in case we get back EOPNOTSUPP for some reason,
1924 * just ignore the return value so we don't screw up
1925 * people calling discard_extent.
1926 */
1927 ret = 0;
5d4f98a2 1928 }
6e9606d2 1929 btrfs_put_bbio(bbio);
5d4f98a2 1930 }
5378e607
LD
1931
1932 if (actual_bytes)
1933 *actual_bytes = discarded_bytes;
1934
5d4f98a2 1935
53b381b3
DW
1936 if (ret == -EOPNOTSUPP)
1937 ret = 0;
5d4f98a2 1938 return ret;
5d4f98a2
YZ
1939}
1940
79787eaa 1941/* Can return -ENOMEM */
5d4f98a2
YZ
1942int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1943 struct btrfs_root *root,
1944 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
1945 u64 root_objectid, u64 owner, u64 offset,
1946 int no_quota)
5d4f98a2
YZ
1947{
1948 int ret;
66d7e7f0
AJ
1949 struct btrfs_fs_info *fs_info = root->fs_info;
1950
5d4f98a2
YZ
1951 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1952 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1953
1954 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
1955 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1956 num_bytes,
5d4f98a2 1957 parent, root_objectid, (int)owner,
fcebe456 1958 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 1959 } else {
66d7e7f0
AJ
1960 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1961 num_bytes,
5d4f98a2 1962 parent, root_objectid, owner, offset,
fcebe456 1963 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
1964 }
1965 return ret;
1966}
1967
1968static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1969 struct btrfs_root *root,
1970 u64 bytenr, u64 num_bytes,
1971 u64 parent, u64 root_objectid,
1972 u64 owner, u64 offset, int refs_to_add,
fcebe456 1973 int no_quota,
5d4f98a2
YZ
1974 struct btrfs_delayed_extent_op *extent_op)
1975{
fcebe456 1976 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
1977 struct btrfs_path *path;
1978 struct extent_buffer *leaf;
1979 struct btrfs_extent_item *item;
fcebe456 1980 struct btrfs_key key;
5d4f98a2
YZ
1981 u64 refs;
1982 int ret;
fcebe456 1983 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_ADD_EXCL;
5d4f98a2
YZ
1984
1985 path = btrfs_alloc_path();
1986 if (!path)
1987 return -ENOMEM;
1988
fcebe456
JB
1989 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
1990 no_quota = 1;
1991
5d4f98a2
YZ
1992 path->reada = 1;
1993 path->leave_spinning = 1;
1994 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
1995 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
1996 bytenr, num_bytes, parent,
5d4f98a2
YZ
1997 root_objectid, owner, offset,
1998 refs_to_add, extent_op);
fcebe456 1999 if ((ret < 0 && ret != -EAGAIN) || (!ret && no_quota))
5d4f98a2 2000 goto out;
fcebe456
JB
2001 /*
2002 * Ok we were able to insert an inline extent and it appears to be a new
2003 * reference, deal with the qgroup accounting.
2004 */
2005 if (!ret && !no_quota) {
2006 ASSERT(root->fs_info->quota_enabled);
2007 leaf = path->nodes[0];
2008 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2009 item = btrfs_item_ptr(leaf, path->slots[0],
2010 struct btrfs_extent_item);
2011 if (btrfs_extent_refs(leaf, item) > (u64)refs_to_add)
2012 type = BTRFS_QGROUP_OPER_ADD_SHARED;
2013 btrfs_release_path(path);
5d4f98a2 2014
fcebe456
JB
2015 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2016 bytenr, num_bytes, type, 0);
2017 goto out;
2018 }
2019
2020 /*
2021 * Ok we had -EAGAIN which means we didn't have space to insert and
2022 * inline extent ref, so just update the reference count and add a
2023 * normal backref.
2024 */
5d4f98a2 2025 leaf = path->nodes[0];
fcebe456 2026 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2027 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2028 refs = btrfs_extent_refs(leaf, item);
fcebe456
JB
2029 if (refs)
2030 type = BTRFS_QGROUP_OPER_ADD_SHARED;
5d4f98a2
YZ
2031 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2032 if (extent_op)
2033 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2034
5d4f98a2 2035 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2036 btrfs_release_path(path);
56bec294 2037
fcebe456
JB
2038 if (!no_quota) {
2039 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
2040 bytenr, num_bytes, type, 0);
2041 if (ret)
2042 goto out;
2043 }
2044
56bec294 2045 path->reada = 1;
b9473439 2046 path->leave_spinning = 1;
56bec294
CM
2047 /* now insert the actual backref */
2048 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2049 path, bytenr, parent, root_objectid,
2050 owner, offset, refs_to_add);
79787eaa
JM
2051 if (ret)
2052 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2053out:
56bec294 2054 btrfs_free_path(path);
30d133fc 2055 return ret;
56bec294
CM
2056}
2057
5d4f98a2
YZ
2058static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2059 struct btrfs_root *root,
2060 struct btrfs_delayed_ref_node *node,
2061 struct btrfs_delayed_extent_op *extent_op,
2062 int insert_reserved)
56bec294 2063{
5d4f98a2
YZ
2064 int ret = 0;
2065 struct btrfs_delayed_data_ref *ref;
2066 struct btrfs_key ins;
2067 u64 parent = 0;
2068 u64 ref_root = 0;
2069 u64 flags = 0;
2070
2071 ins.objectid = node->bytenr;
2072 ins.offset = node->num_bytes;
2073 ins.type = BTRFS_EXTENT_ITEM_KEY;
2074
2075 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2076 trace_run_delayed_data_ref(node, ref, node->action);
2077
5d4f98a2
YZ
2078 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2079 parent = ref->parent;
fcebe456 2080 ref_root = ref->root;
5d4f98a2
YZ
2081
2082 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2083 if (extent_op)
5d4f98a2 2084 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2085 ret = alloc_reserved_file_extent(trans, root,
2086 parent, ref_root, flags,
2087 ref->objectid, ref->offset,
2088 &ins, node->ref_mod);
5d4f98a2
YZ
2089 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2090 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2091 node->num_bytes, parent,
2092 ref_root, ref->objectid,
2093 ref->offset, node->ref_mod,
fcebe456 2094 node->no_quota, extent_op);
5d4f98a2
YZ
2095 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2096 ret = __btrfs_free_extent(trans, root, node->bytenr,
2097 node->num_bytes, parent,
2098 ref_root, ref->objectid,
2099 ref->offset, node->ref_mod,
fcebe456 2100 extent_op, node->no_quota);
5d4f98a2
YZ
2101 } else {
2102 BUG();
2103 }
2104 return ret;
2105}
2106
2107static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2108 struct extent_buffer *leaf,
2109 struct btrfs_extent_item *ei)
2110{
2111 u64 flags = btrfs_extent_flags(leaf, ei);
2112 if (extent_op->update_flags) {
2113 flags |= extent_op->flags_to_set;
2114 btrfs_set_extent_flags(leaf, ei, flags);
2115 }
2116
2117 if (extent_op->update_key) {
2118 struct btrfs_tree_block_info *bi;
2119 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2120 bi = (struct btrfs_tree_block_info *)(ei + 1);
2121 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2122 }
2123}
2124
2125static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2126 struct btrfs_root *root,
2127 struct btrfs_delayed_ref_node *node,
2128 struct btrfs_delayed_extent_op *extent_op)
2129{
2130 struct btrfs_key key;
2131 struct btrfs_path *path;
2132 struct btrfs_extent_item *ei;
2133 struct extent_buffer *leaf;
2134 u32 item_size;
56bec294 2135 int ret;
5d4f98a2 2136 int err = 0;
b1c79e09 2137 int metadata = !extent_op->is_data;
5d4f98a2 2138
79787eaa
JM
2139 if (trans->aborted)
2140 return 0;
2141
3173a18f
JB
2142 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2143 metadata = 0;
2144
5d4f98a2
YZ
2145 path = btrfs_alloc_path();
2146 if (!path)
2147 return -ENOMEM;
2148
2149 key.objectid = node->bytenr;
5d4f98a2 2150
3173a18f 2151 if (metadata) {
3173a18f 2152 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2153 key.offset = extent_op->level;
3173a18f
JB
2154 } else {
2155 key.type = BTRFS_EXTENT_ITEM_KEY;
2156 key.offset = node->num_bytes;
2157 }
2158
2159again:
5d4f98a2
YZ
2160 path->reada = 1;
2161 path->leave_spinning = 1;
2162 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2163 path, 0, 1);
2164 if (ret < 0) {
2165 err = ret;
2166 goto out;
2167 }
2168 if (ret > 0) {
3173a18f 2169 if (metadata) {
55994887
FDBM
2170 if (path->slots[0] > 0) {
2171 path->slots[0]--;
2172 btrfs_item_key_to_cpu(path->nodes[0], &key,
2173 path->slots[0]);
2174 if (key.objectid == node->bytenr &&
2175 key.type == BTRFS_EXTENT_ITEM_KEY &&
2176 key.offset == node->num_bytes)
2177 ret = 0;
2178 }
2179 if (ret > 0) {
2180 btrfs_release_path(path);
2181 metadata = 0;
3173a18f 2182
55994887
FDBM
2183 key.objectid = node->bytenr;
2184 key.offset = node->num_bytes;
2185 key.type = BTRFS_EXTENT_ITEM_KEY;
2186 goto again;
2187 }
2188 } else {
2189 err = -EIO;
2190 goto out;
3173a18f 2191 }
5d4f98a2
YZ
2192 }
2193
2194 leaf = path->nodes[0];
2195 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2196#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2197 if (item_size < sizeof(*ei)) {
2198 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2199 path, (u64)-1, 0);
2200 if (ret < 0) {
2201 err = ret;
2202 goto out;
2203 }
2204 leaf = path->nodes[0];
2205 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2206 }
2207#endif
2208 BUG_ON(item_size < sizeof(*ei));
2209 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2210 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2211
5d4f98a2
YZ
2212 btrfs_mark_buffer_dirty(leaf);
2213out:
2214 btrfs_free_path(path);
2215 return err;
56bec294
CM
2216}
2217
5d4f98a2
YZ
2218static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2219 struct btrfs_root *root,
2220 struct btrfs_delayed_ref_node *node,
2221 struct btrfs_delayed_extent_op *extent_op,
2222 int insert_reserved)
56bec294
CM
2223{
2224 int ret = 0;
5d4f98a2
YZ
2225 struct btrfs_delayed_tree_ref *ref;
2226 struct btrfs_key ins;
2227 u64 parent = 0;
2228 u64 ref_root = 0;
3173a18f
JB
2229 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2230 SKINNY_METADATA);
56bec294 2231
5d4f98a2 2232 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2233 trace_run_delayed_tree_ref(node, ref, node->action);
2234
5d4f98a2
YZ
2235 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2236 parent = ref->parent;
fcebe456 2237 ref_root = ref->root;
5d4f98a2 2238
3173a18f
JB
2239 ins.objectid = node->bytenr;
2240 if (skinny_metadata) {
2241 ins.offset = ref->level;
2242 ins.type = BTRFS_METADATA_ITEM_KEY;
2243 } else {
2244 ins.offset = node->num_bytes;
2245 ins.type = BTRFS_EXTENT_ITEM_KEY;
2246 }
2247
5d4f98a2
YZ
2248 BUG_ON(node->ref_mod != 1);
2249 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2250 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2251 ret = alloc_reserved_tree_block(trans, root,
2252 parent, ref_root,
2253 extent_op->flags_to_set,
2254 &extent_op->key,
fcebe456
JB
2255 ref->level, &ins,
2256 node->no_quota);
5d4f98a2
YZ
2257 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2258 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2259 node->num_bytes, parent, ref_root,
fcebe456
JB
2260 ref->level, 0, 1, node->no_quota,
2261 extent_op);
5d4f98a2
YZ
2262 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2263 ret = __btrfs_free_extent(trans, root, node->bytenr,
2264 node->num_bytes, parent, ref_root,
fcebe456
JB
2265 ref->level, 0, 1, extent_op,
2266 node->no_quota);
5d4f98a2
YZ
2267 } else {
2268 BUG();
2269 }
56bec294
CM
2270 return ret;
2271}
2272
2273/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2274static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2275 struct btrfs_root *root,
2276 struct btrfs_delayed_ref_node *node,
2277 struct btrfs_delayed_extent_op *extent_op,
2278 int insert_reserved)
56bec294 2279{
79787eaa
JM
2280 int ret = 0;
2281
857cc2fc
JB
2282 if (trans->aborted) {
2283 if (insert_reserved)
2284 btrfs_pin_extent(root, node->bytenr,
2285 node->num_bytes, 1);
79787eaa 2286 return 0;
857cc2fc 2287 }
79787eaa 2288
5d4f98a2 2289 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2290 struct btrfs_delayed_ref_head *head;
2291 /*
2292 * we've hit the end of the chain and we were supposed
2293 * to insert this extent into the tree. But, it got
2294 * deleted before we ever needed to insert it, so all
2295 * we have to do is clean up the accounting
2296 */
5d4f98a2
YZ
2297 BUG_ON(extent_op);
2298 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2299 trace_run_delayed_ref_head(node, head, node->action);
2300
56bec294 2301 if (insert_reserved) {
f0486c68
YZ
2302 btrfs_pin_extent(root, node->bytenr,
2303 node->num_bytes, 1);
5d4f98a2
YZ
2304 if (head->is_data) {
2305 ret = btrfs_del_csums(trans, root,
2306 node->bytenr,
2307 node->num_bytes);
5d4f98a2 2308 }
56bec294 2309 }
79787eaa 2310 return ret;
56bec294
CM
2311 }
2312
5d4f98a2
YZ
2313 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2314 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2315 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2316 insert_reserved);
2317 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2318 node->type == BTRFS_SHARED_DATA_REF_KEY)
2319 ret = run_delayed_data_ref(trans, root, node, extent_op,
2320 insert_reserved);
2321 else
2322 BUG();
2323 return ret;
56bec294
CM
2324}
2325
2326static noinline struct btrfs_delayed_ref_node *
2327select_delayed_ref(struct btrfs_delayed_ref_head *head)
2328{
2329 struct rb_node *node;
d7df2c79
JB
2330 struct btrfs_delayed_ref_node *ref, *last = NULL;;
2331
56bec294
CM
2332 /*
2333 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2334 * this prevents ref count from going down to zero when
2335 * there still are pending delayed ref.
2336 */
d7df2c79
JB
2337 node = rb_first(&head->ref_root);
2338 while (node) {
56bec294
CM
2339 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2340 rb_node);
d7df2c79 2341 if (ref->action == BTRFS_ADD_DELAYED_REF)
56bec294 2342 return ref;
d7df2c79
JB
2343 else if (last == NULL)
2344 last = ref;
2345 node = rb_next(node);
56bec294 2346 }
d7df2c79 2347 return last;
56bec294
CM
2348}
2349
79787eaa
JM
2350/*
2351 * Returns 0 on success or if called with an already aborted transaction.
2352 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2353 */
d7df2c79
JB
2354static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2355 struct btrfs_root *root,
2356 unsigned long nr)
56bec294 2357{
56bec294
CM
2358 struct btrfs_delayed_ref_root *delayed_refs;
2359 struct btrfs_delayed_ref_node *ref;
2360 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2361 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2362 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2363 ktime_t start = ktime_get();
56bec294 2364 int ret;
d7df2c79 2365 unsigned long count = 0;
0a2b2a84 2366 unsigned long actual_count = 0;
56bec294 2367 int must_insert_reserved = 0;
56bec294
CM
2368
2369 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2370 while (1) {
2371 if (!locked_ref) {
d7df2c79 2372 if (count >= nr)
56bec294 2373 break;
56bec294 2374
d7df2c79
JB
2375 spin_lock(&delayed_refs->lock);
2376 locked_ref = btrfs_select_ref_head(trans);
2377 if (!locked_ref) {
2378 spin_unlock(&delayed_refs->lock);
2379 break;
2380 }
c3e69d58
CM
2381
2382 /* grab the lock that says we are going to process
2383 * all the refs for this head */
2384 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2385 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2386 /*
2387 * we may have dropped the spin lock to get the head
2388 * mutex lock, and that might have given someone else
2389 * time to free the head. If that's true, it has been
2390 * removed from our list and we can move on.
2391 */
2392 if (ret == -EAGAIN) {
2393 locked_ref = NULL;
2394 count++;
2395 continue;
56bec294
CM
2396 }
2397 }
a28ec197 2398
ae1e206b
JB
2399 /*
2400 * We need to try and merge add/drops of the same ref since we
2401 * can run into issues with relocate dropping the implicit ref
2402 * and then it being added back again before the drop can
2403 * finish. If we merged anything we need to re-loop so we can
2404 * get a good ref.
2405 */
d7df2c79 2406 spin_lock(&locked_ref->lock);
ae1e206b
JB
2407 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2408 locked_ref);
2409
d1270cd9
AJ
2410 /*
2411 * locked_ref is the head node, so we have to go one
2412 * node back for any delayed ref updates
2413 */
2414 ref = select_delayed_ref(locked_ref);
2415
2416 if (ref && ref->seq &&
097b8a7c 2417 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2418 spin_unlock(&locked_ref->lock);
093486c4 2419 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2420 spin_lock(&delayed_refs->lock);
2421 locked_ref->processing = 0;
d1270cd9
AJ
2422 delayed_refs->num_heads_ready++;
2423 spin_unlock(&delayed_refs->lock);
d7df2c79 2424 locked_ref = NULL;
d1270cd9 2425 cond_resched();
27a377db 2426 count++;
d1270cd9
AJ
2427 continue;
2428 }
2429
56bec294
CM
2430 /*
2431 * record the must insert reserved flag before we
2432 * drop the spin lock.
2433 */
2434 must_insert_reserved = locked_ref->must_insert_reserved;
2435 locked_ref->must_insert_reserved = 0;
7bb86316 2436
5d4f98a2
YZ
2437 extent_op = locked_ref->extent_op;
2438 locked_ref->extent_op = NULL;
2439
56bec294 2440 if (!ref) {
d7df2c79
JB
2441
2442
56bec294
CM
2443 /* All delayed refs have been processed, Go ahead
2444 * and send the head node to run_one_delayed_ref,
2445 * so that any accounting fixes can happen
2446 */
2447 ref = &locked_ref->node;
5d4f98a2
YZ
2448
2449 if (extent_op && must_insert_reserved) {
78a6184a 2450 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2451 extent_op = NULL;
2452 }
2453
2454 if (extent_op) {
d7df2c79 2455 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2456 ret = run_delayed_extent_op(trans, root,
2457 ref, extent_op);
78a6184a 2458 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2459
79787eaa 2460 if (ret) {
857cc2fc
JB
2461 /*
2462 * Need to reset must_insert_reserved if
2463 * there was an error so the abort stuff
2464 * can cleanup the reserved space
2465 * properly.
2466 */
2467 if (must_insert_reserved)
2468 locked_ref->must_insert_reserved = 1;
d7df2c79 2469 locked_ref->processing = 0;
c2cf52eb 2470 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2471 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2472 return ret;
2473 }
d7df2c79 2474 continue;
5d4f98a2 2475 }
02217ed2 2476
d7df2c79
JB
2477 /*
2478 * Need to drop our head ref lock and re-aqcuire the
2479 * delayed ref lock and then re-check to make sure
2480 * nobody got added.
2481 */
2482 spin_unlock(&locked_ref->lock);
2483 spin_lock(&delayed_refs->lock);
2484 spin_lock(&locked_ref->lock);
573a0755
JB
2485 if (rb_first(&locked_ref->ref_root) ||
2486 locked_ref->extent_op) {
d7df2c79
JB
2487 spin_unlock(&locked_ref->lock);
2488 spin_unlock(&delayed_refs->lock);
2489 continue;
2490 }
2491 ref->in_tree = 0;
2492 delayed_refs->num_heads--;
c46effa6
LB
2493 rb_erase(&locked_ref->href_node,
2494 &delayed_refs->href_root);
d7df2c79
JB
2495 spin_unlock(&delayed_refs->lock);
2496 } else {
0a2b2a84 2497 actual_count++;
d7df2c79
JB
2498 ref->in_tree = 0;
2499 rb_erase(&ref->rb_node, &locked_ref->ref_root);
c46effa6 2500 }
d7df2c79
JB
2501 atomic_dec(&delayed_refs->num_entries);
2502
093486c4 2503 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2504 /*
2505 * when we play the delayed ref, also correct the
2506 * ref_mod on head
2507 */
2508 switch (ref->action) {
2509 case BTRFS_ADD_DELAYED_REF:
2510 case BTRFS_ADD_DELAYED_EXTENT:
2511 locked_ref->node.ref_mod -= ref->ref_mod;
2512 break;
2513 case BTRFS_DROP_DELAYED_REF:
2514 locked_ref->node.ref_mod += ref->ref_mod;
2515 break;
2516 default:
2517 WARN_ON(1);
2518 }
2519 }
d7df2c79 2520 spin_unlock(&locked_ref->lock);
925baedd 2521
5d4f98a2 2522 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2523 must_insert_reserved);
eb099670 2524
78a6184a 2525 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2526 if (ret) {
d7df2c79 2527 locked_ref->processing = 0;
093486c4
MX
2528 btrfs_delayed_ref_unlock(locked_ref);
2529 btrfs_put_delayed_ref(ref);
c2cf52eb 2530 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2531 return ret;
2532 }
2533
093486c4
MX
2534 /*
2535 * If this node is a head, that means all the refs in this head
2536 * have been dealt with, and we will pick the next head to deal
2537 * with, so we must unlock the head and drop it from the cluster
2538 * list before we release it.
2539 */
2540 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2541 if (locked_ref->is_data &&
2542 locked_ref->total_ref_mod < 0) {
2543 spin_lock(&delayed_refs->lock);
2544 delayed_refs->pending_csums -= ref->num_bytes;
2545 spin_unlock(&delayed_refs->lock);
2546 }
093486c4
MX
2547 btrfs_delayed_ref_unlock(locked_ref);
2548 locked_ref = NULL;
2549 }
2550 btrfs_put_delayed_ref(ref);
2551 count++;
c3e69d58 2552 cond_resched();
c3e69d58 2553 }
0a2b2a84
JB
2554
2555 /*
2556 * We don't want to include ref heads since we can have empty ref heads
2557 * and those will drastically skew our runtime down since we just do
2558 * accounting, no actual extent tree updates.
2559 */
2560 if (actual_count > 0) {
2561 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2562 u64 avg;
2563
2564 /*
2565 * We weigh the current average higher than our current runtime
2566 * to avoid large swings in the average.
2567 */
2568 spin_lock(&delayed_refs->lock);
2569 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2570 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2571 spin_unlock(&delayed_refs->lock);
2572 }
d7df2c79 2573 return 0;
c3e69d58
CM
2574}
2575
709c0486
AJ
2576#ifdef SCRAMBLE_DELAYED_REFS
2577/*
2578 * Normally delayed refs get processed in ascending bytenr order. This
2579 * correlates in most cases to the order added. To expose dependencies on this
2580 * order, we start to process the tree in the middle instead of the beginning
2581 */
2582static u64 find_middle(struct rb_root *root)
2583{
2584 struct rb_node *n = root->rb_node;
2585 struct btrfs_delayed_ref_node *entry;
2586 int alt = 1;
2587 u64 middle;
2588 u64 first = 0, last = 0;
2589
2590 n = rb_first(root);
2591 if (n) {
2592 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2593 first = entry->bytenr;
2594 }
2595 n = rb_last(root);
2596 if (n) {
2597 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2598 last = entry->bytenr;
2599 }
2600 n = root->rb_node;
2601
2602 while (n) {
2603 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2604 WARN_ON(!entry->in_tree);
2605
2606 middle = entry->bytenr;
2607
2608 if (alt)
2609 n = n->rb_left;
2610 else
2611 n = n->rb_right;
2612
2613 alt = 1 - alt;
2614 }
2615 return middle;
2616}
2617#endif
2618
1be41b78
JB
2619static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2620{
2621 u64 num_bytes;
2622
2623 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2624 sizeof(struct btrfs_extent_inline_ref));
2625 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2626 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2627
2628 /*
2629 * We don't ever fill up leaves all the way so multiply by 2 just to be
2630 * closer to what we're really going to want to ouse.
2631 */
f8c269d7 2632 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2633}
2634
1262133b
JB
2635/*
2636 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2637 * would require to store the csums for that many bytes.
2638 */
28f75a0e 2639u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2640{
2641 u64 csum_size;
2642 u64 num_csums_per_leaf;
2643 u64 num_csums;
2644
2645 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2646 num_csums_per_leaf = div64_u64(csum_size,
2647 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2648 num_csums = div64_u64(csum_bytes, root->sectorsize);
2649 num_csums += num_csums_per_leaf - 1;
2650 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2651 return num_csums;
2652}
2653
0a2b2a84 2654int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2655 struct btrfs_root *root)
2656{
2657 struct btrfs_block_rsv *global_rsv;
2658 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2659 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2660 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2661 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2662 int ret = 0;
2663
2664 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2665 num_heads = heads_to_leaves(root, num_heads);
2666 if (num_heads > 1)
707e8a07 2667 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2668 num_bytes <<= 1;
28f75a0e 2669 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2670 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2671 num_dirty_bgs);
1be41b78
JB
2672 global_rsv = &root->fs_info->global_block_rsv;
2673
2674 /*
2675 * If we can't allocate any more chunks lets make sure we have _lots_ of
2676 * wiggle room since running delayed refs can create more delayed refs.
2677 */
cb723e49
JB
2678 if (global_rsv->space_info->full) {
2679 num_dirty_bgs_bytes <<= 1;
1be41b78 2680 num_bytes <<= 1;
cb723e49 2681 }
1be41b78
JB
2682
2683 spin_lock(&global_rsv->lock);
cb723e49 2684 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2685 ret = 1;
2686 spin_unlock(&global_rsv->lock);
2687 return ret;
2688}
2689
0a2b2a84
JB
2690int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2691 struct btrfs_root *root)
2692{
2693 struct btrfs_fs_info *fs_info = root->fs_info;
2694 u64 num_entries =
2695 atomic_read(&trans->transaction->delayed_refs.num_entries);
2696 u64 avg_runtime;
a79b7d4b 2697 u64 val;
0a2b2a84
JB
2698
2699 smp_mb();
2700 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2701 val = num_entries * avg_runtime;
0a2b2a84
JB
2702 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2703 return 1;
a79b7d4b
CM
2704 if (val >= NSEC_PER_SEC / 2)
2705 return 2;
0a2b2a84
JB
2706
2707 return btrfs_check_space_for_delayed_refs(trans, root);
2708}
2709
a79b7d4b
CM
2710struct async_delayed_refs {
2711 struct btrfs_root *root;
2712 int count;
2713 int error;
2714 int sync;
2715 struct completion wait;
2716 struct btrfs_work work;
2717};
2718
2719static void delayed_ref_async_start(struct btrfs_work *work)
2720{
2721 struct async_delayed_refs *async;
2722 struct btrfs_trans_handle *trans;
2723 int ret;
2724
2725 async = container_of(work, struct async_delayed_refs, work);
2726
2727 trans = btrfs_join_transaction(async->root);
2728 if (IS_ERR(trans)) {
2729 async->error = PTR_ERR(trans);
2730 goto done;
2731 }
2732
2733 /*
2734 * trans->sync means that when we call end_transaciton, we won't
2735 * wait on delayed refs
2736 */
2737 trans->sync = true;
2738 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2739 if (ret)
2740 async->error = ret;
2741
2742 ret = btrfs_end_transaction(trans, async->root);
2743 if (ret && !async->error)
2744 async->error = ret;
2745done:
2746 if (async->sync)
2747 complete(&async->wait);
2748 else
2749 kfree(async);
2750}
2751
2752int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2753 unsigned long count, int wait)
2754{
2755 struct async_delayed_refs *async;
2756 int ret;
2757
2758 async = kmalloc(sizeof(*async), GFP_NOFS);
2759 if (!async)
2760 return -ENOMEM;
2761
2762 async->root = root->fs_info->tree_root;
2763 async->count = count;
2764 async->error = 0;
2765 if (wait)
2766 async->sync = 1;
2767 else
2768 async->sync = 0;
2769 init_completion(&async->wait);
2770
9e0af237
LB
2771 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2772 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2773
2774 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2775
2776 if (wait) {
2777 wait_for_completion(&async->wait);
2778 ret = async->error;
2779 kfree(async);
2780 return ret;
2781 }
2782 return 0;
2783}
2784
c3e69d58
CM
2785/*
2786 * this starts processing the delayed reference count updates and
2787 * extent insertions we have queued up so far. count can be
2788 * 0, which means to process everything in the tree at the start
2789 * of the run (but not newly added entries), or it can be some target
2790 * number you'd like to process.
79787eaa
JM
2791 *
2792 * Returns 0 on success or if called with an aborted transaction
2793 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2794 */
2795int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2796 struct btrfs_root *root, unsigned long count)
2797{
2798 struct rb_node *node;
2799 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2800 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2801 int ret;
2802 int run_all = count == (unsigned long)-1;
c3e69d58 2803
79787eaa
JM
2804 /* We'll clean this up in btrfs_cleanup_transaction */
2805 if (trans->aborted)
2806 return 0;
2807
c3e69d58
CM
2808 if (root == root->fs_info->extent_root)
2809 root = root->fs_info->tree_root;
2810
2811 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2812 if (count == 0)
d7df2c79 2813 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2814
c3e69d58 2815again:
709c0486
AJ
2816#ifdef SCRAMBLE_DELAYED_REFS
2817 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2818#endif
d7df2c79
JB
2819 ret = __btrfs_run_delayed_refs(trans, root, count);
2820 if (ret < 0) {
2821 btrfs_abort_transaction(trans, root, ret);
2822 return ret;
eb099670 2823 }
c3e69d58 2824
56bec294 2825 if (run_all) {
d7df2c79 2826 if (!list_empty(&trans->new_bgs))
ea658bad 2827 btrfs_create_pending_block_groups(trans, root);
ea658bad 2828
d7df2c79 2829 spin_lock(&delayed_refs->lock);
c46effa6 2830 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2831 if (!node) {
2832 spin_unlock(&delayed_refs->lock);
56bec294 2833 goto out;
d7df2c79 2834 }
c3e69d58 2835 count = (unsigned long)-1;
e9d0b13b 2836
56bec294 2837 while (node) {
c46effa6
LB
2838 head = rb_entry(node, struct btrfs_delayed_ref_head,
2839 href_node);
2840 if (btrfs_delayed_ref_is_head(&head->node)) {
2841 struct btrfs_delayed_ref_node *ref;
5caf2a00 2842
c46effa6 2843 ref = &head->node;
56bec294
CM
2844 atomic_inc(&ref->refs);
2845
2846 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2847 /*
2848 * Mutex was contended, block until it's
2849 * released and try again
2850 */
56bec294
CM
2851 mutex_lock(&head->mutex);
2852 mutex_unlock(&head->mutex);
2853
2854 btrfs_put_delayed_ref(ref);
1887be66 2855 cond_resched();
56bec294 2856 goto again;
c46effa6
LB
2857 } else {
2858 WARN_ON(1);
56bec294
CM
2859 }
2860 node = rb_next(node);
2861 }
2862 spin_unlock(&delayed_refs->lock);
d7df2c79 2863 cond_resched();
56bec294 2864 goto again;
5f39d397 2865 }
54aa1f4d 2866out:
fcebe456
JB
2867 ret = btrfs_delayed_qgroup_accounting(trans, root->fs_info);
2868 if (ret)
2869 return ret;
edf39272 2870 assert_qgroups_uptodate(trans);
a28ec197
CM
2871 return 0;
2872}
2873
5d4f98a2
YZ
2874int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2875 struct btrfs_root *root,
2876 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2877 int level, int is_data)
5d4f98a2
YZ
2878{
2879 struct btrfs_delayed_extent_op *extent_op;
2880 int ret;
2881
78a6184a 2882 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2883 if (!extent_op)
2884 return -ENOMEM;
2885
2886 extent_op->flags_to_set = flags;
2887 extent_op->update_flags = 1;
2888 extent_op->update_key = 0;
2889 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2890 extent_op->level = level;
5d4f98a2 2891
66d7e7f0
AJ
2892 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2893 num_bytes, extent_op);
5d4f98a2 2894 if (ret)
78a6184a 2895 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2896 return ret;
2897}
2898
2899static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root,
2901 struct btrfs_path *path,
2902 u64 objectid, u64 offset, u64 bytenr)
2903{
2904 struct btrfs_delayed_ref_head *head;
2905 struct btrfs_delayed_ref_node *ref;
2906 struct btrfs_delayed_data_ref *data_ref;
2907 struct btrfs_delayed_ref_root *delayed_refs;
2908 struct rb_node *node;
2909 int ret = 0;
2910
5d4f98a2
YZ
2911 delayed_refs = &trans->transaction->delayed_refs;
2912 spin_lock(&delayed_refs->lock);
2913 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2914 if (!head) {
2915 spin_unlock(&delayed_refs->lock);
2916 return 0;
2917 }
5d4f98a2
YZ
2918
2919 if (!mutex_trylock(&head->mutex)) {
2920 atomic_inc(&head->node.refs);
2921 spin_unlock(&delayed_refs->lock);
2922
b3b4aa74 2923 btrfs_release_path(path);
5d4f98a2 2924
8cc33e5c
DS
2925 /*
2926 * Mutex was contended, block until it's released and let
2927 * caller try again
2928 */
5d4f98a2
YZ
2929 mutex_lock(&head->mutex);
2930 mutex_unlock(&head->mutex);
2931 btrfs_put_delayed_ref(&head->node);
2932 return -EAGAIN;
2933 }
d7df2c79 2934 spin_unlock(&delayed_refs->lock);
5d4f98a2 2935
d7df2c79
JB
2936 spin_lock(&head->lock);
2937 node = rb_first(&head->ref_root);
2938 while (node) {
2939 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2940 node = rb_next(node);
5d4f98a2 2941
d7df2c79
JB
2942 /* If it's a shared ref we know a cross reference exists */
2943 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2944 ret = 1;
2945 break;
2946 }
5d4f98a2 2947
d7df2c79 2948 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2949
d7df2c79
JB
2950 /*
2951 * If our ref doesn't match the one we're currently looking at
2952 * then we have a cross reference.
2953 */
2954 if (data_ref->root != root->root_key.objectid ||
2955 data_ref->objectid != objectid ||
2956 data_ref->offset != offset) {
2957 ret = 1;
2958 break;
2959 }
5d4f98a2 2960 }
d7df2c79 2961 spin_unlock(&head->lock);
5d4f98a2 2962 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2963 return ret;
2964}
2965
2966static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2967 struct btrfs_root *root,
2968 struct btrfs_path *path,
2969 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2970{
2971 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2972 struct extent_buffer *leaf;
5d4f98a2
YZ
2973 struct btrfs_extent_data_ref *ref;
2974 struct btrfs_extent_inline_ref *iref;
2975 struct btrfs_extent_item *ei;
f321e491 2976 struct btrfs_key key;
5d4f98a2 2977 u32 item_size;
be20aa9d 2978 int ret;
925baedd 2979
be20aa9d 2980 key.objectid = bytenr;
31840ae1 2981 key.offset = (u64)-1;
f321e491 2982 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 2983
be20aa9d
CM
2984 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2985 if (ret < 0)
2986 goto out;
79787eaa 2987 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
2988
2989 ret = -ENOENT;
2990 if (path->slots[0] == 0)
31840ae1 2991 goto out;
be20aa9d 2992
31840ae1 2993 path->slots[0]--;
f321e491 2994 leaf = path->nodes[0];
5d4f98a2 2995 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 2996
5d4f98a2 2997 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 2998 goto out;
f321e491 2999
5d4f98a2
YZ
3000 ret = 1;
3001 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3002#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3003 if (item_size < sizeof(*ei)) {
3004 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3005 goto out;
3006 }
3007#endif
3008 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3009
5d4f98a2
YZ
3010 if (item_size != sizeof(*ei) +
3011 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3012 goto out;
be20aa9d 3013
5d4f98a2
YZ
3014 if (btrfs_extent_generation(leaf, ei) <=
3015 btrfs_root_last_snapshot(&root->root_item))
3016 goto out;
3017
3018 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3019 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3020 BTRFS_EXTENT_DATA_REF_KEY)
3021 goto out;
3022
3023 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3024 if (btrfs_extent_refs(leaf, ei) !=
3025 btrfs_extent_data_ref_count(leaf, ref) ||
3026 btrfs_extent_data_ref_root(leaf, ref) !=
3027 root->root_key.objectid ||
3028 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3029 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3030 goto out;
3031
3032 ret = 0;
3033out:
3034 return ret;
3035}
3036
3037int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3038 struct btrfs_root *root,
3039 u64 objectid, u64 offset, u64 bytenr)
3040{
3041 struct btrfs_path *path;
3042 int ret;
3043 int ret2;
3044
3045 path = btrfs_alloc_path();
3046 if (!path)
3047 return -ENOENT;
3048
3049 do {
3050 ret = check_committed_ref(trans, root, path, objectid,
3051 offset, bytenr);
3052 if (ret && ret != -ENOENT)
f321e491 3053 goto out;
80ff3856 3054
5d4f98a2
YZ
3055 ret2 = check_delayed_ref(trans, root, path, objectid,
3056 offset, bytenr);
3057 } while (ret2 == -EAGAIN);
3058
3059 if (ret2 && ret2 != -ENOENT) {
3060 ret = ret2;
3061 goto out;
f321e491 3062 }
5d4f98a2
YZ
3063
3064 if (ret != -ENOENT || ret2 != -ENOENT)
3065 ret = 0;
be20aa9d 3066out:
80ff3856 3067 btrfs_free_path(path);
f0486c68
YZ
3068 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3069 WARN_ON(ret > 0);
f321e491 3070 return ret;
be20aa9d 3071}
c5739bba 3072
5d4f98a2 3073static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3074 struct btrfs_root *root,
5d4f98a2 3075 struct extent_buffer *buf,
e339a6b0 3076 int full_backref, int inc)
31840ae1
ZY
3077{
3078 u64 bytenr;
5d4f98a2
YZ
3079 u64 num_bytes;
3080 u64 parent;
31840ae1 3081 u64 ref_root;
31840ae1 3082 u32 nritems;
31840ae1
ZY
3083 struct btrfs_key key;
3084 struct btrfs_file_extent_item *fi;
3085 int i;
3086 int level;
3087 int ret = 0;
31840ae1 3088 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3089 u64, u64, u64, u64, u64, u64, int);
31840ae1 3090
fccb84c9
DS
3091
3092 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3093 return 0;
fccb84c9 3094
31840ae1 3095 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3096 nritems = btrfs_header_nritems(buf);
3097 level = btrfs_header_level(buf);
3098
27cdeb70 3099 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3100 return 0;
31840ae1 3101
5d4f98a2
YZ
3102 if (inc)
3103 process_func = btrfs_inc_extent_ref;
3104 else
3105 process_func = btrfs_free_extent;
31840ae1 3106
5d4f98a2
YZ
3107 if (full_backref)
3108 parent = buf->start;
3109 else
3110 parent = 0;
3111
3112 for (i = 0; i < nritems; i++) {
31840ae1 3113 if (level == 0) {
5d4f98a2 3114 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3115 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3116 continue;
5d4f98a2 3117 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3118 struct btrfs_file_extent_item);
3119 if (btrfs_file_extent_type(buf, fi) ==
3120 BTRFS_FILE_EXTENT_INLINE)
3121 continue;
3122 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3123 if (bytenr == 0)
3124 continue;
5d4f98a2
YZ
3125
3126 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3127 key.offset -= btrfs_file_extent_offset(buf, fi);
3128 ret = process_func(trans, root, bytenr, num_bytes,
3129 parent, ref_root, key.objectid,
e339a6b0 3130 key.offset, 1);
31840ae1
ZY
3131 if (ret)
3132 goto fail;
3133 } else {
5d4f98a2 3134 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3135 num_bytes = root->nodesize;
5d4f98a2 3136 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3137 parent, ref_root, level - 1, 0,
e339a6b0 3138 1);
31840ae1
ZY
3139 if (ret)
3140 goto fail;
3141 }
3142 }
3143 return 0;
3144fail:
5d4f98a2
YZ
3145 return ret;
3146}
3147
3148int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3149 struct extent_buffer *buf, int full_backref)
5d4f98a2 3150{
e339a6b0 3151 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3152}
3153
3154int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3155 struct extent_buffer *buf, int full_backref)
5d4f98a2 3156{
e339a6b0 3157 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3158}
3159
9078a3e1
CM
3160static int write_one_cache_group(struct btrfs_trans_handle *trans,
3161 struct btrfs_root *root,
3162 struct btrfs_path *path,
3163 struct btrfs_block_group_cache *cache)
3164{
3165 int ret;
9078a3e1 3166 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3167 unsigned long bi;
3168 struct extent_buffer *leaf;
9078a3e1 3169
9078a3e1 3170 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3171 if (ret) {
3172 if (ret > 0)
3173 ret = -ENOENT;
54aa1f4d 3174 goto fail;
df95e7f0 3175 }
5f39d397
CM
3176
3177 leaf = path->nodes[0];
3178 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3179 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3180 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 3181 btrfs_release_path(path);
54aa1f4d 3182fail:
df95e7f0 3183 if (ret)
79787eaa 3184 btrfs_abort_transaction(trans, root, ret);
df95e7f0 3185 return ret;
9078a3e1
CM
3186
3187}
3188
4a8c9a62
YZ
3189static struct btrfs_block_group_cache *
3190next_block_group(struct btrfs_root *root,
3191 struct btrfs_block_group_cache *cache)
3192{
3193 struct rb_node *node;
292cbd51 3194
4a8c9a62 3195 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3196
3197 /* If our block group was removed, we need a full search. */
3198 if (RB_EMPTY_NODE(&cache->cache_node)) {
3199 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3200
3201 spin_unlock(&root->fs_info->block_group_cache_lock);
3202 btrfs_put_block_group(cache);
3203 cache = btrfs_lookup_first_block_group(root->fs_info,
3204 next_bytenr);
3205 return cache;
3206 }
4a8c9a62
YZ
3207 node = rb_next(&cache->cache_node);
3208 btrfs_put_block_group(cache);
3209 if (node) {
3210 cache = rb_entry(node, struct btrfs_block_group_cache,
3211 cache_node);
11dfe35a 3212 btrfs_get_block_group(cache);
4a8c9a62
YZ
3213 } else
3214 cache = NULL;
3215 spin_unlock(&root->fs_info->block_group_cache_lock);
3216 return cache;
3217}
3218
0af3d00b
JB
3219static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3220 struct btrfs_trans_handle *trans,
3221 struct btrfs_path *path)
3222{
3223 struct btrfs_root *root = block_group->fs_info->tree_root;
3224 struct inode *inode = NULL;
3225 u64 alloc_hint = 0;
2b20982e 3226 int dcs = BTRFS_DC_ERROR;
f8c269d7 3227 u64 num_pages = 0;
0af3d00b
JB
3228 int retries = 0;
3229 int ret = 0;
3230
3231 /*
3232 * If this block group is smaller than 100 megs don't bother caching the
3233 * block group.
3234 */
3235 if (block_group->key.offset < (100 * 1024 * 1024)) {
3236 spin_lock(&block_group->lock);
3237 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3238 spin_unlock(&block_group->lock);
3239 return 0;
3240 }
3241
0c0ef4bc
JB
3242 if (trans->aborted)
3243 return 0;
0af3d00b
JB
3244again:
3245 inode = lookup_free_space_inode(root, block_group, path);
3246 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3247 ret = PTR_ERR(inode);
b3b4aa74 3248 btrfs_release_path(path);
0af3d00b
JB
3249 goto out;
3250 }
3251
3252 if (IS_ERR(inode)) {
3253 BUG_ON(retries);
3254 retries++;
3255
3256 if (block_group->ro)
3257 goto out_free;
3258
3259 ret = create_free_space_inode(root, trans, block_group, path);
3260 if (ret)
3261 goto out_free;
3262 goto again;
3263 }
3264
5b0e95bf
JB
3265 /* We've already setup this transaction, go ahead and exit */
3266 if (block_group->cache_generation == trans->transid &&
3267 i_size_read(inode)) {
3268 dcs = BTRFS_DC_SETUP;
3269 goto out_put;
3270 }
3271
0af3d00b
JB
3272 /*
3273 * We want to set the generation to 0, that way if anything goes wrong
3274 * from here on out we know not to trust this cache when we load up next
3275 * time.
3276 */
3277 BTRFS_I(inode)->generation = 0;
3278 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3279 if (ret) {
3280 /*
3281 * So theoretically we could recover from this, simply set the
3282 * super cache generation to 0 so we know to invalidate the
3283 * cache, but then we'd have to keep track of the block groups
3284 * that fail this way so we know we _have_ to reset this cache
3285 * before the next commit or risk reading stale cache. So to
3286 * limit our exposure to horrible edge cases lets just abort the
3287 * transaction, this only happens in really bad situations
3288 * anyway.
3289 */
3290 btrfs_abort_transaction(trans, root, ret);
3291 goto out_put;
3292 }
0af3d00b
JB
3293 WARN_ON(ret);
3294
3295 if (i_size_read(inode) > 0) {
7b61cd92
MX
3296 ret = btrfs_check_trunc_cache_free_space(root,
3297 &root->fs_info->global_block_rsv);
3298 if (ret)
3299 goto out_put;
3300
1bbc621e 3301 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3302 if (ret)
3303 goto out_put;
3304 }
3305
3306 spin_lock(&block_group->lock);
cf7c1ef6 3307 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e570fd27
MX
3308 !btrfs_test_opt(root, SPACE_CACHE) ||
3309 block_group->delalloc_bytes) {
cf7c1ef6
LB
3310 /*
3311 * don't bother trying to write stuff out _if_
3312 * a) we're not cached,
3313 * b) we're with nospace_cache mount option.
3314 */
2b20982e 3315 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3316 spin_unlock(&block_group->lock);
3317 goto out_put;
3318 }
3319 spin_unlock(&block_group->lock);
3320
6fc823b1
JB
3321 /*
3322 * Try to preallocate enough space based on how big the block group is.
3323 * Keep in mind this has to include any pinned space which could end up
3324 * taking up quite a bit since it's not folded into the other space
3325 * cache.
3326 */
f8c269d7 3327 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3328 if (!num_pages)
3329 num_pages = 1;
3330
0af3d00b
JB
3331 num_pages *= 16;
3332 num_pages *= PAGE_CACHE_SIZE;
3333
3334 ret = btrfs_check_data_free_space(inode, num_pages);
3335 if (ret)
3336 goto out_put;
3337
3338 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3339 num_pages, num_pages,
3340 &alloc_hint);
2b20982e
JB
3341 if (!ret)
3342 dcs = BTRFS_DC_SETUP;
0af3d00b 3343 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3344
0af3d00b
JB
3345out_put:
3346 iput(inode);
3347out_free:
b3b4aa74 3348 btrfs_release_path(path);
0af3d00b
JB
3349out:
3350 spin_lock(&block_group->lock);
e65cbb94 3351 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3352 block_group->cache_generation = trans->transid;
2b20982e 3353 block_group->disk_cache_state = dcs;
0af3d00b
JB
3354 spin_unlock(&block_group->lock);
3355
3356 return ret;
3357}
3358
dcdf7f6d
JB
3359int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3360 struct btrfs_root *root)
3361{
3362 struct btrfs_block_group_cache *cache, *tmp;
3363 struct btrfs_transaction *cur_trans = trans->transaction;
3364 struct btrfs_path *path;
3365
3366 if (list_empty(&cur_trans->dirty_bgs) ||
3367 !btrfs_test_opt(root, SPACE_CACHE))
3368 return 0;
3369
3370 path = btrfs_alloc_path();
3371 if (!path)
3372 return -ENOMEM;
3373
3374 /* Could add new block groups, use _safe just in case */
3375 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3376 dirty_list) {
3377 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3378 cache_save_setup(cache, trans, path);
3379 }
3380
3381 btrfs_free_path(path);
3382 return 0;
3383}
3384
1bbc621e
CM
3385/*
3386 * transaction commit does final block group cache writeback during a
3387 * critical section where nothing is allowed to change the FS. This is
3388 * required in order for the cache to actually match the block group,
3389 * but can introduce a lot of latency into the commit.
3390 *
3391 * So, btrfs_start_dirty_block_groups is here to kick off block group
3392 * cache IO. There's a chance we'll have to redo some of it if the
3393 * block group changes again during the commit, but it greatly reduces
3394 * the commit latency by getting rid of the easy block groups while
3395 * we're still allowing others to join the commit.
3396 */
3397int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3398 struct btrfs_root *root)
9078a3e1 3399{
4a8c9a62 3400 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3401 struct btrfs_transaction *cur_trans = trans->transaction;
3402 int ret = 0;
c9dc4c65 3403 int should_put;
1bbc621e
CM
3404 struct btrfs_path *path = NULL;
3405 LIST_HEAD(dirty);
3406 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3407 int num_started = 0;
1bbc621e
CM
3408 int loops = 0;
3409
3410 spin_lock(&cur_trans->dirty_bgs_lock);
3411 if (!list_empty(&cur_trans->dirty_bgs)) {
3412 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3413 }
3414 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3415
1bbc621e
CM
3416again:
3417 if (list_empty(&dirty)) {
3418 btrfs_free_path(path);
ce93ec54 3419 return 0;
1bbc621e
CM
3420 }
3421
3422 /*
3423 * make sure all the block groups on our dirty list actually
3424 * exist
3425 */
3426 btrfs_create_pending_block_groups(trans, root);
3427
3428 if (!path) {
3429 path = btrfs_alloc_path();
3430 if (!path)
3431 return -ENOMEM;
3432 }
3433
3434 while (!list_empty(&dirty)) {
3435 cache = list_first_entry(&dirty,
3436 struct btrfs_block_group_cache,
3437 dirty_list);
3438
3439 /*
3440 * cache_write_mutex is here only to save us from balance
3441 * deleting this block group while we are writing out the
3442 * cache
3443 */
3444 mutex_lock(&trans->transaction->cache_write_mutex);
3445
3446 /*
3447 * this can happen if something re-dirties a block
3448 * group that is already under IO. Just wait for it to
3449 * finish and then do it all again
3450 */
3451 if (!list_empty(&cache->io_list)) {
3452 list_del_init(&cache->io_list);
3453 btrfs_wait_cache_io(root, trans, cache,
3454 &cache->io_ctl, path,
3455 cache->key.objectid);
3456 btrfs_put_block_group(cache);
3457 }
3458
3459
3460 /*
3461 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3462 * if it should update the cache_state. Don't delete
3463 * until after we wait.
3464 *
3465 * Since we're not running in the commit critical section
3466 * we need the dirty_bgs_lock to protect from update_block_group
3467 */
3468 spin_lock(&cur_trans->dirty_bgs_lock);
3469 list_del_init(&cache->dirty_list);
3470 spin_unlock(&cur_trans->dirty_bgs_lock);
3471
3472 should_put = 1;
3473
3474 cache_save_setup(cache, trans, path);
3475
3476 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3477 cache->io_ctl.inode = NULL;
3478 ret = btrfs_write_out_cache(root, trans, cache, path);
3479 if (ret == 0 && cache->io_ctl.inode) {
3480 num_started++;
3481 should_put = 0;
3482
3483 /*
3484 * the cache_write_mutex is protecting
3485 * the io_list
3486 */
3487 list_add_tail(&cache->io_list, io);
3488 } else {
3489 /*
3490 * if we failed to write the cache, the
3491 * generation will be bad and life goes on
3492 */
3493 ret = 0;
3494 }
3495 }
3496 if (!ret)
3497 ret = write_one_cache_group(trans, root, path, cache);
3498 mutex_unlock(&trans->transaction->cache_write_mutex);
3499
3500 /* if its not on the io list, we need to put the block group */
3501 if (should_put)
3502 btrfs_put_block_group(cache);
3503
3504 if (ret)
3505 break;
3506 }
3507
3508 /*
3509 * go through delayed refs for all the stuff we've just kicked off
3510 * and then loop back (just once)
3511 */
3512 ret = btrfs_run_delayed_refs(trans, root, 0);
3513 if (!ret && loops == 0) {
3514 loops++;
3515 spin_lock(&cur_trans->dirty_bgs_lock);
3516 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3517 spin_unlock(&cur_trans->dirty_bgs_lock);
3518 goto again;
3519 }
3520
3521 btrfs_free_path(path);
3522 return ret;
3523}
3524
3525int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3526 struct btrfs_root *root)
3527{
3528 struct btrfs_block_group_cache *cache;
3529 struct btrfs_transaction *cur_trans = trans->transaction;
3530 int ret = 0;
3531 int should_put;
3532 struct btrfs_path *path;
3533 struct list_head *io = &cur_trans->io_bgs;
3534 int num_started = 0;
9078a3e1
CM
3535
3536 path = btrfs_alloc_path();
3537 if (!path)
3538 return -ENOMEM;
3539
ce93ec54
JB
3540 /*
3541 * We don't need the lock here since we are protected by the transaction
3542 * commit. We want to do the cache_save_setup first and then run the
3543 * delayed refs to make sure we have the best chance at doing this all
3544 * in one shot.
3545 */
3546 while (!list_empty(&cur_trans->dirty_bgs)) {
3547 cache = list_first_entry(&cur_trans->dirty_bgs,
3548 struct btrfs_block_group_cache,
3549 dirty_list);
c9dc4c65
CM
3550
3551 /*
3552 * this can happen if cache_save_setup re-dirties a block
3553 * group that is already under IO. Just wait for it to
3554 * finish and then do it all again
3555 */
3556 if (!list_empty(&cache->io_list)) {
3557 list_del_init(&cache->io_list);
3558 btrfs_wait_cache_io(root, trans, cache,
3559 &cache->io_ctl, path,
3560 cache->key.objectid);
3561 btrfs_put_block_group(cache);
c9dc4c65
CM
3562 }
3563
1bbc621e
CM
3564 /*
3565 * don't remove from the dirty list until after we've waited
3566 * on any pending IO
3567 */
ce93ec54 3568 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3569 should_put = 1;
3570
1bbc621e 3571 cache_save_setup(cache, trans, path);
c9dc4c65 3572
ce93ec54 3573 if (!ret)
c9dc4c65
CM
3574 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3575
3576 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3577 cache->io_ctl.inode = NULL;
3578 ret = btrfs_write_out_cache(root, trans, cache, path);
3579 if (ret == 0 && cache->io_ctl.inode) {
3580 num_started++;
3581 should_put = 0;
1bbc621e 3582 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3583 } else {
3584 /*
3585 * if we failed to write the cache, the
3586 * generation will be bad and life goes on
3587 */
3588 ret = 0;
3589 }
3590 }
ce93ec54
JB
3591 if (!ret)
3592 ret = write_one_cache_group(trans, root, path, cache);
c9dc4c65
CM
3593
3594 /* if its not on the io list, we need to put the block group */
3595 if (should_put)
3596 btrfs_put_block_group(cache);
3597 }
3598
1bbc621e
CM
3599 while (!list_empty(io)) {
3600 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3601 io_list);
3602 list_del_init(&cache->io_list);
c9dc4c65
CM
3603 btrfs_wait_cache_io(root, trans, cache,
3604 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3605 btrfs_put_block_group(cache);
3606 }
3607
9078a3e1 3608 btrfs_free_path(path);
ce93ec54 3609 return ret;
9078a3e1
CM
3610}
3611
d2fb3437
YZ
3612int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3613{
3614 struct btrfs_block_group_cache *block_group;
3615 int readonly = 0;
3616
3617 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3618 if (!block_group || block_group->ro)
3619 readonly = 1;
3620 if (block_group)
fa9c0d79 3621 btrfs_put_block_group(block_group);
d2fb3437
YZ
3622 return readonly;
3623}
3624
6ab0a202
JM
3625static const char *alloc_name(u64 flags)
3626{
3627 switch (flags) {
3628 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3629 return "mixed";
3630 case BTRFS_BLOCK_GROUP_METADATA:
3631 return "metadata";
3632 case BTRFS_BLOCK_GROUP_DATA:
3633 return "data";
3634 case BTRFS_BLOCK_GROUP_SYSTEM:
3635 return "system";
3636 default:
3637 WARN_ON(1);
3638 return "invalid-combination";
3639 };
3640}
3641
593060d7
CM
3642static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3643 u64 total_bytes, u64 bytes_used,
3644 struct btrfs_space_info **space_info)
3645{
3646 struct btrfs_space_info *found;
b742bb82
YZ
3647 int i;
3648 int factor;
b150a4f1 3649 int ret;
b742bb82
YZ
3650
3651 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3652 BTRFS_BLOCK_GROUP_RAID10))
3653 factor = 2;
3654 else
3655 factor = 1;
593060d7
CM
3656
3657 found = __find_space_info(info, flags);
3658 if (found) {
25179201 3659 spin_lock(&found->lock);
593060d7 3660 found->total_bytes += total_bytes;
89a55897 3661 found->disk_total += total_bytes * factor;
593060d7 3662 found->bytes_used += bytes_used;
b742bb82 3663 found->disk_used += bytes_used * factor;
8f18cf13 3664 found->full = 0;
25179201 3665 spin_unlock(&found->lock);
593060d7
CM
3666 *space_info = found;
3667 return 0;
3668 }
c146afad 3669 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3670 if (!found)
3671 return -ENOMEM;
3672
908c7f19 3673 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3674 if (ret) {
3675 kfree(found);
3676 return ret;
3677 }
3678
c1895442 3679 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3680 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3681 init_rwsem(&found->groups_sem);
0f9dd46c 3682 spin_lock_init(&found->lock);
52ba6929 3683 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3684 found->total_bytes = total_bytes;
89a55897 3685 found->disk_total = total_bytes * factor;
593060d7 3686 found->bytes_used = bytes_used;
b742bb82 3687 found->disk_used = bytes_used * factor;
593060d7 3688 found->bytes_pinned = 0;
e8569813 3689 found->bytes_reserved = 0;
c146afad 3690 found->bytes_readonly = 0;
f0486c68 3691 found->bytes_may_use = 0;
593060d7 3692 found->full = 0;
0e4f8f88 3693 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3694 found->chunk_alloc = 0;
fdb5effd
JB
3695 found->flush = 0;
3696 init_waitqueue_head(&found->wait);
633c0aad 3697 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3698
3699 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3700 info->space_info_kobj, "%s",
3701 alloc_name(found->flags));
3702 if (ret) {
3703 kfree(found);
3704 return ret;
3705 }
3706
593060d7 3707 *space_info = found;
4184ea7f 3708 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3709 if (flags & BTRFS_BLOCK_GROUP_DATA)
3710 info->data_sinfo = found;
6ab0a202
JM
3711
3712 return ret;
593060d7
CM
3713}
3714
8790d502
CM
3715static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3716{
899c81ea
ID
3717 u64 extra_flags = chunk_to_extended(flags) &
3718 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3719
de98ced9 3720 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3721 if (flags & BTRFS_BLOCK_GROUP_DATA)
3722 fs_info->avail_data_alloc_bits |= extra_flags;
3723 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3724 fs_info->avail_metadata_alloc_bits |= extra_flags;
3725 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3726 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3727 write_sequnlock(&fs_info->profiles_lock);
8790d502 3728}
593060d7 3729
fc67c450
ID
3730/*
3731 * returns target flags in extended format or 0 if restripe for this
3732 * chunk_type is not in progress
c6664b42
ID
3733 *
3734 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3735 */
3736static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3737{
3738 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3739 u64 target = 0;
3740
fc67c450
ID
3741 if (!bctl)
3742 return 0;
3743
3744 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3745 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3746 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3747 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3748 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3749 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3750 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3751 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3752 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3753 }
3754
3755 return target;
3756}
3757
a46d11a8
ID
3758/*
3759 * @flags: available profiles in extended format (see ctree.h)
3760 *
e4d8ec0f
ID
3761 * Returns reduced profile in chunk format. If profile changing is in
3762 * progress (either running or paused) picks the target profile (if it's
3763 * already available), otherwise falls back to plain reducing.
a46d11a8 3764 */
48a3b636 3765static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3766{
95669976 3767 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3768 u64 target;
53b381b3 3769 u64 tmp;
a061fc8d 3770
fc67c450
ID
3771 /*
3772 * see if restripe for this chunk_type is in progress, if so
3773 * try to reduce to the target profile
3774 */
e4d8ec0f 3775 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3776 target = get_restripe_target(root->fs_info, flags);
3777 if (target) {
3778 /* pick target profile only if it's already available */
3779 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3780 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3781 return extended_to_chunk(target);
e4d8ec0f
ID
3782 }
3783 }
3784 spin_unlock(&root->fs_info->balance_lock);
3785
53b381b3 3786 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3787 if (num_devices == 1)
53b381b3
DW
3788 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3789 BTRFS_BLOCK_GROUP_RAID5);
3790 if (num_devices < 3)
3791 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3792 if (num_devices < 4)
3793 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3794
53b381b3
DW
3795 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3796 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3797 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3798 flags &= ~tmp;
ec44a35c 3799
53b381b3
DW
3800 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3801 tmp = BTRFS_BLOCK_GROUP_RAID6;
3802 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3803 tmp = BTRFS_BLOCK_GROUP_RAID5;
3804 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3805 tmp = BTRFS_BLOCK_GROUP_RAID10;
3806 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3807 tmp = BTRFS_BLOCK_GROUP_RAID1;
3808 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3809 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3810
53b381b3 3811 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3812}
3813
f8213bdc 3814static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3815{
de98ced9 3816 unsigned seq;
f8213bdc 3817 u64 flags;
de98ced9
MX
3818
3819 do {
f8213bdc 3820 flags = orig_flags;
de98ced9
MX
3821 seq = read_seqbegin(&root->fs_info->profiles_lock);
3822
3823 if (flags & BTRFS_BLOCK_GROUP_DATA)
3824 flags |= root->fs_info->avail_data_alloc_bits;
3825 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3826 flags |= root->fs_info->avail_system_alloc_bits;
3827 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3828 flags |= root->fs_info->avail_metadata_alloc_bits;
3829 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3830
b742bb82 3831 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3832}
3833
6d07bcec 3834u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3835{
b742bb82 3836 u64 flags;
53b381b3 3837 u64 ret;
9ed74f2d 3838
b742bb82
YZ
3839 if (data)
3840 flags = BTRFS_BLOCK_GROUP_DATA;
3841 else if (root == root->fs_info->chunk_root)
3842 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3843 else
b742bb82 3844 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3845
53b381b3
DW
3846 ret = get_alloc_profile(root, flags);
3847 return ret;
6a63209f 3848}
9ed74f2d 3849
6a63209f 3850/*
6a63209f
JB
3851 * This will check the space that the inode allocates from to make sure we have
3852 * enough space for bytes.
6a63209f 3853 */
0ca1f7ce 3854int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
6a63209f 3855{
6a63209f 3856 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3857 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3858 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3859 u64 used;
94b947b2
ZL
3860 int ret = 0;
3861 int committed = 0;
3862 int have_pinned_space = 1;
6a63209f 3863
6a63209f 3864 /* make sure bytes are sectorsize aligned */
fda2832f 3865 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3866
9dced186 3867 if (btrfs_is_free_space_inode(inode)) {
0af3d00b 3868 committed = 1;
9dced186 3869 ASSERT(current->journal_info);
0af3d00b
JB
3870 }
3871
b4d7c3c9 3872 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3873 if (!data_sinfo)
3874 goto alloc;
9ed74f2d 3875
6a63209f
JB
3876again:
3877 /* make sure we have enough space to handle the data first */
3878 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3879 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3880 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3881 data_sinfo->bytes_may_use;
ab6e2410
JB
3882
3883 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3884 struct btrfs_trans_handle *trans;
9ed74f2d 3885
6a63209f
JB
3886 /*
3887 * if we don't have enough free bytes in this space then we need
3888 * to alloc a new chunk.
3889 */
b9fd47cd 3890 if (!data_sinfo->full) {
6a63209f 3891 u64 alloc_target;
9ed74f2d 3892
0e4f8f88 3893 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3894 spin_unlock(&data_sinfo->lock);
33b4d47f 3895alloc:
6a63209f 3896 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3897 /*
3898 * It is ugly that we don't call nolock join
3899 * transaction for the free space inode case here.
3900 * But it is safe because we only do the data space
3901 * reservation for the free space cache in the
3902 * transaction context, the common join transaction
3903 * just increase the counter of the current transaction
3904 * handler, doesn't try to acquire the trans_lock of
3905 * the fs.
3906 */
7a7eaa40 3907 trans = btrfs_join_transaction(root);
a22285a6
YZ
3908 if (IS_ERR(trans))
3909 return PTR_ERR(trans);
9ed74f2d 3910
6a63209f 3911 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3912 alloc_target,
3913 CHUNK_ALLOC_NO_FORCE);
6a63209f 3914 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3915 if (ret < 0) {
3916 if (ret != -ENOSPC)
3917 return ret;
3918 else
3919 goto commit_trans;
3920 }
9ed74f2d 3921
b4d7c3c9
LZ
3922 if (!data_sinfo)
3923 data_sinfo = fs_info->data_sinfo;
3924
6a63209f
JB
3925 goto again;
3926 }
f2bb8f5c
JB
3927
3928 /*
b150a4f1 3929 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3930 * allocation, and no removed chunk in current transaction,
3931 * don't bother committing the transaction.
f2bb8f5c 3932 */
b150a4f1 3933 if (percpu_counter_compare(&data_sinfo->total_bytes_pinned,
264ca0f6
ZL
3934 used + bytes -
3935 data_sinfo->total_bytes) < 0)
94b947b2 3936 have_pinned_space = 0;
6a63209f 3937 spin_unlock(&data_sinfo->lock);
6a63209f 3938
4e06bdd6 3939 /* commit the current transaction and try again */
d52a5b5f 3940commit_trans:
a4abeea4
JB
3941 if (!committed &&
3942 !atomic_read(&root->fs_info->open_ioctl_trans)) {
4e06bdd6 3943 committed = 1;
b150a4f1 3944
7a7eaa40 3945 trans = btrfs_join_transaction(root);
a22285a6
YZ
3946 if (IS_ERR(trans))
3947 return PTR_ERR(trans);
94b947b2
ZL
3948 if (have_pinned_space ||
3949 trans->transaction->have_free_bgs) {
3950 ret = btrfs_commit_transaction(trans, root);
3951 if (ret)
3952 return ret;
d7c15171
ZL
3953 /*
3954 * make sure that all running delayed iput are
3955 * done
3956 */
3957 down_write(&root->fs_info->delayed_iput_sem);
3958 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
3959 goto again;
3960 } else {
3961 btrfs_end_transaction(trans, root);
3962 }
4e06bdd6 3963 }
9ed74f2d 3964
cab45e22
JM
3965 trace_btrfs_space_reservation(root->fs_info,
3966 "space_info:enospc",
3967 data_sinfo->flags, bytes, 1);
6a63209f
JB
3968 return -ENOSPC;
3969 }
3970 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 3971 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3972 data_sinfo->flags, bytes, 1);
6a63209f 3973 spin_unlock(&data_sinfo->lock);
6a63209f 3974
9ed74f2d 3975 return 0;
9ed74f2d 3976}
6a63209f 3977
6a63209f 3978/*
fb25e914 3979 * Called if we need to clear a data reservation for this inode.
6a63209f 3980 */
0ca1f7ce 3981void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 3982{
0ca1f7ce 3983 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 3984 struct btrfs_space_info *data_sinfo;
e3ccfa98 3985
6a63209f 3986 /* make sure bytes are sectorsize aligned */
fda2832f 3987 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 3988
b4d7c3c9 3989 data_sinfo = root->fs_info->data_sinfo;
6a63209f 3990 spin_lock(&data_sinfo->lock);
7ee9e440 3991 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 3992 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 3993 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 3994 data_sinfo->flags, bytes, 0);
6a63209f 3995 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
3996}
3997
97e728d4 3998static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 3999{
97e728d4
JB
4000 struct list_head *head = &info->space_info;
4001 struct btrfs_space_info *found;
e3ccfa98 4002
97e728d4
JB
4003 rcu_read_lock();
4004 list_for_each_entry_rcu(found, head, list) {
4005 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4006 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4007 }
97e728d4 4008 rcu_read_unlock();
e3ccfa98
JB
4009}
4010
3c76cd84
MX
4011static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4012{
4013 return (global->size << 1);
4014}
4015
e5bc2458 4016static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4017 struct btrfs_space_info *sinfo, int force)
32c00aff 4018{
fb25e914 4019 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4020 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4021 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4022 u64 thresh;
e3ccfa98 4023
0e4f8f88
CM
4024 if (force == CHUNK_ALLOC_FORCE)
4025 return 1;
4026
fb25e914
JB
4027 /*
4028 * We need to take into account the global rsv because for all intents
4029 * and purposes it's used space. Don't worry about locking the
4030 * global_rsv, it doesn't change except when the transaction commits.
4031 */
54338b5c 4032 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4033 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4034
0e4f8f88
CM
4035 /*
4036 * in limited mode, we want to have some free space up to
4037 * about 1% of the FS size.
4038 */
4039 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4040 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4041 thresh = max_t(u64, 64 * 1024 * 1024,
4042 div_factor_fine(thresh, 1));
4043
4044 if (num_bytes - num_allocated < thresh)
4045 return 1;
4046 }
0e4f8f88 4047
698d0082 4048 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4049 return 0;
424499db 4050 return 1;
32c00aff
JB
4051}
4052
15d1ff81
LB
4053static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
4054{
4055 u64 num_dev;
4056
53b381b3
DW
4057 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4058 BTRFS_BLOCK_GROUP_RAID0 |
4059 BTRFS_BLOCK_GROUP_RAID5 |
4060 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4061 num_dev = root->fs_info->fs_devices->rw_devices;
4062 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4063 num_dev = 2;
4064 else
4065 num_dev = 1; /* DUP or single */
4066
4067 /* metadata for updaing devices and chunk tree */
4068 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
4069}
4070
4071static void check_system_chunk(struct btrfs_trans_handle *trans,
4072 struct btrfs_root *root, u64 type)
4073{
4074 struct btrfs_space_info *info;
4075 u64 left;
4076 u64 thresh;
4077
4078 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4079 spin_lock(&info->lock);
4080 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4081 info->bytes_reserved - info->bytes_readonly;
4082 spin_unlock(&info->lock);
4083
4084 thresh = get_system_chunk_thresh(root, type);
4085 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4086 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4087 left, thresh, type);
15d1ff81
LB
4088 dump_space_info(info, 0, 0);
4089 }
4090
4091 if (left < thresh) {
4092 u64 flags;
4093
4094 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4095 btrfs_alloc_chunk(trans, root, flags);
4096 }
4097}
4098
6324fbf3 4099static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4100 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4101{
6324fbf3 4102 struct btrfs_space_info *space_info;
97e728d4 4103 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4104 int wait_for_alloc = 0;
9ed74f2d 4105 int ret = 0;
9ed74f2d 4106
c6b305a8
JB
4107 /* Don't re-enter if we're already allocating a chunk */
4108 if (trans->allocating_chunk)
4109 return -ENOSPC;
4110
6324fbf3 4111 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4112 if (!space_info) {
4113 ret = update_space_info(extent_root->fs_info, flags,
4114 0, 0, &space_info);
79787eaa 4115 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4116 }
79787eaa 4117 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4118
6d74119f 4119again:
25179201 4120 spin_lock(&space_info->lock);
9e622d6b 4121 if (force < space_info->force_alloc)
0e4f8f88 4122 force = space_info->force_alloc;
25179201 4123 if (space_info->full) {
09fb99a6
FDBM
4124 if (should_alloc_chunk(extent_root, space_info, force))
4125 ret = -ENOSPC;
4126 else
4127 ret = 0;
25179201 4128 spin_unlock(&space_info->lock);
09fb99a6 4129 return ret;
9ed74f2d
JB
4130 }
4131
698d0082 4132 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4133 spin_unlock(&space_info->lock);
6d74119f
JB
4134 return 0;
4135 } else if (space_info->chunk_alloc) {
4136 wait_for_alloc = 1;
4137 } else {
4138 space_info->chunk_alloc = 1;
9ed74f2d 4139 }
0e4f8f88 4140
25179201 4141 spin_unlock(&space_info->lock);
9ed74f2d 4142
6d74119f
JB
4143 mutex_lock(&fs_info->chunk_mutex);
4144
4145 /*
4146 * The chunk_mutex is held throughout the entirety of a chunk
4147 * allocation, so once we've acquired the chunk_mutex we know that the
4148 * other guy is done and we need to recheck and see if we should
4149 * allocate.
4150 */
4151 if (wait_for_alloc) {
4152 mutex_unlock(&fs_info->chunk_mutex);
4153 wait_for_alloc = 0;
4154 goto again;
4155 }
4156
c6b305a8
JB
4157 trans->allocating_chunk = true;
4158
67377734
JB
4159 /*
4160 * If we have mixed data/metadata chunks we want to make sure we keep
4161 * allocating mixed chunks instead of individual chunks.
4162 */
4163 if (btrfs_mixed_space_info(space_info))
4164 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4165
97e728d4
JB
4166 /*
4167 * if we're doing a data chunk, go ahead and make sure that
4168 * we keep a reasonable number of metadata chunks allocated in the
4169 * FS as well.
4170 */
9ed74f2d 4171 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4172 fs_info->data_chunk_allocations++;
4173 if (!(fs_info->data_chunk_allocations %
4174 fs_info->metadata_ratio))
4175 force_metadata_allocation(fs_info);
9ed74f2d
JB
4176 }
4177
15d1ff81
LB
4178 /*
4179 * Check if we have enough space in SYSTEM chunk because we may need
4180 * to update devices.
4181 */
4182 check_system_chunk(trans, extent_root, flags);
4183
2b82032c 4184 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4185 trans->allocating_chunk = false;
92b8e897 4186
9ed74f2d 4187 spin_lock(&space_info->lock);
a81cb9a2
AO
4188 if (ret < 0 && ret != -ENOSPC)
4189 goto out;
9ed74f2d 4190 if (ret)
6324fbf3 4191 space_info->full = 1;
424499db
YZ
4192 else
4193 ret = 1;
6d74119f 4194
0e4f8f88 4195 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4196out:
6d74119f 4197 space_info->chunk_alloc = 0;
9ed74f2d 4198 spin_unlock(&space_info->lock);
a25c75d5 4199 mutex_unlock(&fs_info->chunk_mutex);
0f9dd46c 4200 return ret;
6324fbf3 4201}
9ed74f2d 4202
a80c8dcf
JB
4203static int can_overcommit(struct btrfs_root *root,
4204 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4205 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4206{
96f1bb57 4207 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4208 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4209 u64 space_size;
a80c8dcf
JB
4210 u64 avail;
4211 u64 used;
4212
4213 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4214 space_info->bytes_pinned + space_info->bytes_readonly;
4215
96f1bb57
JB
4216 /*
4217 * We only want to allow over committing if we have lots of actual space
4218 * free, but if we don't have enough space to handle the global reserve
4219 * space then we could end up having a real enospc problem when trying
4220 * to allocate a chunk or some other such important allocation.
4221 */
3c76cd84
MX
4222 spin_lock(&global_rsv->lock);
4223 space_size = calc_global_rsv_need_space(global_rsv);
4224 spin_unlock(&global_rsv->lock);
4225 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4226 return 0;
4227
4228 used += space_info->bytes_may_use;
a80c8dcf
JB
4229
4230 spin_lock(&root->fs_info->free_chunk_lock);
4231 avail = root->fs_info->free_chunk_space;
4232 spin_unlock(&root->fs_info->free_chunk_lock);
4233
4234 /*
4235 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4236 * space is actually useable. For raid56, the space info used
4237 * doesn't include the parity drive, so we don't have to
4238 * change the math
a80c8dcf
JB
4239 */
4240 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4241 BTRFS_BLOCK_GROUP_RAID1 |
4242 BTRFS_BLOCK_GROUP_RAID10))
4243 avail >>= 1;
4244
4245 /*
561c294d
MX
4246 * If we aren't flushing all things, let us overcommit up to
4247 * 1/2th of the space. If we can flush, don't let us overcommit
4248 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4249 */
08e007d2 4250 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4251 avail >>= 3;
a80c8dcf 4252 else
14575aef 4253 avail >>= 1;
a80c8dcf 4254
14575aef 4255 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4256 return 1;
4257 return 0;
4258}
4259
48a3b636 4260static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4261 unsigned long nr_pages, int nr_items)
da633a42
MX
4262{
4263 struct super_block *sb = root->fs_info->sb;
da633a42 4264
925a6efb
JB
4265 if (down_read_trylock(&sb->s_umount)) {
4266 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4267 up_read(&sb->s_umount);
4268 } else {
da633a42
MX
4269 /*
4270 * We needn't worry the filesystem going from r/w to r/o though
4271 * we don't acquire ->s_umount mutex, because the filesystem
4272 * should guarantee the delalloc inodes list be empty after
4273 * the filesystem is readonly(all dirty pages are written to
4274 * the disk).
4275 */
6c255e67 4276 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4277 if (!current->journal_info)
6c255e67 4278 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4279 }
4280}
4281
18cd8ea6
MX
4282static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4283{
4284 u64 bytes;
4285 int nr;
4286
4287 bytes = btrfs_calc_trans_metadata_size(root, 1);
4288 nr = (int)div64_u64(to_reclaim, bytes);
4289 if (!nr)
4290 nr = 1;
4291 return nr;
4292}
4293
c61a16a7
MX
4294#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4295
9ed74f2d 4296/*
5da9d01b 4297 * shrink metadata reservation for delalloc
9ed74f2d 4298 */
f4c738c2
JB
4299static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4300 bool wait_ordered)
5da9d01b 4301{
0ca1f7ce 4302 struct btrfs_block_rsv *block_rsv;
0019f10d 4303 struct btrfs_space_info *space_info;
663350ac 4304 struct btrfs_trans_handle *trans;
f4c738c2 4305 u64 delalloc_bytes;
5da9d01b 4306 u64 max_reclaim;
b1953bce 4307 long time_left;
d3ee29e3
MX
4308 unsigned long nr_pages;
4309 int loops;
b0244199 4310 int items;
08e007d2 4311 enum btrfs_reserve_flush_enum flush;
5da9d01b 4312
c61a16a7 4313 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4314 items = calc_reclaim_items_nr(root, to_reclaim);
4315 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4316
663350ac 4317 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4318 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4319 space_info = block_rsv->space_info;
bf9022e0 4320
963d678b
MX
4321 delalloc_bytes = percpu_counter_sum_positive(
4322 &root->fs_info->delalloc_bytes);
f4c738c2 4323 if (delalloc_bytes == 0) {
fdb5effd 4324 if (trans)
f4c738c2 4325 return;
38c135af 4326 if (wait_ordered)
b0244199 4327 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4328 return;
fdb5effd
JB
4329 }
4330
d3ee29e3 4331 loops = 0;
f4c738c2
JB
4332 while (delalloc_bytes && loops < 3) {
4333 max_reclaim = min(delalloc_bytes, to_reclaim);
4334 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4335 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4336 /*
4337 * We need to wait for the async pages to actually start before
4338 * we do anything.
4339 */
9f3a074d
MX
4340 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4341 if (!max_reclaim)
4342 goto skip_async;
4343
4344 if (max_reclaim <= nr_pages)
4345 max_reclaim = 0;
4346 else
4347 max_reclaim -= nr_pages;
dea31f52 4348
9f3a074d
MX
4349 wait_event(root->fs_info->async_submit_wait,
4350 atomic_read(&root->fs_info->async_delalloc_pages) <=
4351 (int)max_reclaim);
4352skip_async:
08e007d2
MX
4353 if (!trans)
4354 flush = BTRFS_RESERVE_FLUSH_ALL;
4355 else
4356 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4357 spin_lock(&space_info->lock);
08e007d2 4358 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4359 spin_unlock(&space_info->lock);
4360 break;
4361 }
0019f10d 4362 spin_unlock(&space_info->lock);
5da9d01b 4363
36e39c40 4364 loops++;
f104d044 4365 if (wait_ordered && !trans) {
b0244199 4366 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4367 } else {
f4c738c2 4368 time_left = schedule_timeout_killable(1);
f104d044
JB
4369 if (time_left)
4370 break;
4371 }
963d678b
MX
4372 delalloc_bytes = percpu_counter_sum_positive(
4373 &root->fs_info->delalloc_bytes);
5da9d01b 4374 }
5da9d01b
YZ
4375}
4376
663350ac
JB
4377/**
4378 * maybe_commit_transaction - possibly commit the transaction if its ok to
4379 * @root - the root we're allocating for
4380 * @bytes - the number of bytes we want to reserve
4381 * @force - force the commit
8bb8ab2e 4382 *
663350ac
JB
4383 * This will check to make sure that committing the transaction will actually
4384 * get us somewhere and then commit the transaction if it does. Otherwise it
4385 * will return -ENOSPC.
8bb8ab2e 4386 */
663350ac
JB
4387static int may_commit_transaction(struct btrfs_root *root,
4388 struct btrfs_space_info *space_info,
4389 u64 bytes, int force)
4390{
4391 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4392 struct btrfs_trans_handle *trans;
4393
4394 trans = (struct btrfs_trans_handle *)current->journal_info;
4395 if (trans)
4396 return -EAGAIN;
4397
4398 if (force)
4399 goto commit;
4400
4401 /* See if there is enough pinned space to make this reservation */
b150a4f1 4402 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4403 bytes) >= 0)
663350ac 4404 goto commit;
663350ac
JB
4405
4406 /*
4407 * See if there is some space in the delayed insertion reservation for
4408 * this reservation.
4409 */
4410 if (space_info != delayed_rsv->space_info)
4411 return -ENOSPC;
4412
4413 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4414 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4415 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4416 spin_unlock(&delayed_rsv->lock);
4417 return -ENOSPC;
4418 }
4419 spin_unlock(&delayed_rsv->lock);
4420
4421commit:
4422 trans = btrfs_join_transaction(root);
4423 if (IS_ERR(trans))
4424 return -ENOSPC;
4425
4426 return btrfs_commit_transaction(trans, root);
4427}
4428
96c3f433 4429enum flush_state {
67b0fd63
JB
4430 FLUSH_DELAYED_ITEMS_NR = 1,
4431 FLUSH_DELAYED_ITEMS = 2,
4432 FLUSH_DELALLOC = 3,
4433 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4434 ALLOC_CHUNK = 5,
4435 COMMIT_TRANS = 6,
96c3f433
JB
4436};
4437
4438static int flush_space(struct btrfs_root *root,
4439 struct btrfs_space_info *space_info, u64 num_bytes,
4440 u64 orig_bytes, int state)
4441{
4442 struct btrfs_trans_handle *trans;
4443 int nr;
f4c738c2 4444 int ret = 0;
96c3f433
JB
4445
4446 switch (state) {
96c3f433
JB
4447 case FLUSH_DELAYED_ITEMS_NR:
4448 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4449 if (state == FLUSH_DELAYED_ITEMS_NR)
4450 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4451 else
96c3f433 4452 nr = -1;
18cd8ea6 4453
96c3f433
JB
4454 trans = btrfs_join_transaction(root);
4455 if (IS_ERR(trans)) {
4456 ret = PTR_ERR(trans);
4457 break;
4458 }
4459 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4460 btrfs_end_transaction(trans, root);
4461 break;
67b0fd63
JB
4462 case FLUSH_DELALLOC:
4463 case FLUSH_DELALLOC_WAIT:
24af7dd1 4464 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4465 state == FLUSH_DELALLOC_WAIT);
4466 break;
ea658bad
JB
4467 case ALLOC_CHUNK:
4468 trans = btrfs_join_transaction(root);
4469 if (IS_ERR(trans)) {
4470 ret = PTR_ERR(trans);
4471 break;
4472 }
4473 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4474 btrfs_get_alloc_profile(root, 0),
4475 CHUNK_ALLOC_NO_FORCE);
4476 btrfs_end_transaction(trans, root);
4477 if (ret == -ENOSPC)
4478 ret = 0;
4479 break;
96c3f433
JB
4480 case COMMIT_TRANS:
4481 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4482 break;
4483 default:
4484 ret = -ENOSPC;
4485 break;
4486 }
4487
4488 return ret;
4489}
21c7e756
MX
4490
4491static inline u64
4492btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4493 struct btrfs_space_info *space_info)
4494{
4495 u64 used;
4496 u64 expected;
4497 u64 to_reclaim;
4498
4499 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4500 16 * 1024 * 1024);
4501 spin_lock(&space_info->lock);
4502 if (can_overcommit(root, space_info, to_reclaim,
4503 BTRFS_RESERVE_FLUSH_ALL)) {
4504 to_reclaim = 0;
4505 goto out;
4506 }
4507
4508 used = space_info->bytes_used + space_info->bytes_reserved +
4509 space_info->bytes_pinned + space_info->bytes_readonly +
4510 space_info->bytes_may_use;
4511 if (can_overcommit(root, space_info, 1024 * 1024,
4512 BTRFS_RESERVE_FLUSH_ALL))
4513 expected = div_factor_fine(space_info->total_bytes, 95);
4514 else
4515 expected = div_factor_fine(space_info->total_bytes, 90);
4516
4517 if (used > expected)
4518 to_reclaim = used - expected;
4519 else
4520 to_reclaim = 0;
4521 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4522 space_info->bytes_reserved);
4523out:
4524 spin_unlock(&space_info->lock);
4525
4526 return to_reclaim;
4527}
4528
4529static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4530 struct btrfs_fs_info *fs_info, u64 used)
4531{
365c5313
JB
4532 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4533
4534 /* If we're just plain full then async reclaim just slows us down. */
4535 if (space_info->bytes_used >= thresh)
4536 return 0;
4537
4538 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4539 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4540}
4541
4542static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4543 struct btrfs_fs_info *fs_info,
4544 int flush_state)
21c7e756
MX
4545{
4546 u64 used;
4547
4548 spin_lock(&space_info->lock);
25ce459c
LB
4549 /*
4550 * We run out of space and have not got any free space via flush_space,
4551 * so don't bother doing async reclaim.
4552 */
4553 if (flush_state > COMMIT_TRANS && space_info->full) {
4554 spin_unlock(&space_info->lock);
4555 return 0;
4556 }
4557
21c7e756
MX
4558 used = space_info->bytes_used + space_info->bytes_reserved +
4559 space_info->bytes_pinned + space_info->bytes_readonly +
4560 space_info->bytes_may_use;
4561 if (need_do_async_reclaim(space_info, fs_info, used)) {
4562 spin_unlock(&space_info->lock);
4563 return 1;
4564 }
4565 spin_unlock(&space_info->lock);
4566
4567 return 0;
4568}
4569
4570static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4571{
4572 struct btrfs_fs_info *fs_info;
4573 struct btrfs_space_info *space_info;
4574 u64 to_reclaim;
4575 int flush_state;
4576
4577 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4578 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4579
4580 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4581 space_info);
4582 if (!to_reclaim)
4583 return;
4584
4585 flush_state = FLUSH_DELAYED_ITEMS_NR;
4586 do {
4587 flush_space(fs_info->fs_root, space_info, to_reclaim,
4588 to_reclaim, flush_state);
4589 flush_state++;
25ce459c
LB
4590 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4591 flush_state))
21c7e756 4592 return;
365c5313 4593 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4594}
4595
4596void btrfs_init_async_reclaim_work(struct work_struct *work)
4597{
4598 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4599}
4600
4a92b1b8
JB
4601/**
4602 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4603 * @root - the root we're allocating for
4604 * @block_rsv - the block_rsv we're allocating for
4605 * @orig_bytes - the number of bytes we want
48fc7f7e 4606 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4607 *
4a92b1b8
JB
4608 * This will reserve orgi_bytes number of bytes from the space info associated
4609 * with the block_rsv. If there is not enough space it will make an attempt to
4610 * flush out space to make room. It will do this by flushing delalloc if
4611 * possible or committing the transaction. If flush is 0 then no attempts to
4612 * regain reservations will be made and this will fail if there is not enough
4613 * space already.
8bb8ab2e 4614 */
4a92b1b8 4615static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4616 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4617 u64 orig_bytes,
4618 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4619{
f0486c68 4620 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4621 u64 used;
8bb8ab2e 4622 u64 num_bytes = orig_bytes;
67b0fd63 4623 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4624 int ret = 0;
fdb5effd 4625 bool flushing = false;
9ed74f2d 4626
8bb8ab2e 4627again:
fdb5effd 4628 ret = 0;
8bb8ab2e 4629 spin_lock(&space_info->lock);
fdb5effd 4630 /*
08e007d2
MX
4631 * We only want to wait if somebody other than us is flushing and we
4632 * are actually allowed to flush all things.
fdb5effd 4633 */
08e007d2
MX
4634 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4635 space_info->flush) {
fdb5effd
JB
4636 spin_unlock(&space_info->lock);
4637 /*
4638 * If we have a trans handle we can't wait because the flusher
4639 * may have to commit the transaction, which would mean we would
4640 * deadlock since we are waiting for the flusher to finish, but
4641 * hold the current transaction open.
4642 */
663350ac 4643 if (current->journal_info)
fdb5effd 4644 return -EAGAIN;
b9688bb8
AJ
4645 ret = wait_event_killable(space_info->wait, !space_info->flush);
4646 /* Must have been killed, return */
4647 if (ret)
fdb5effd
JB
4648 return -EINTR;
4649
4650 spin_lock(&space_info->lock);
4651 }
4652
4653 ret = -ENOSPC;
2bf64758
JB
4654 used = space_info->bytes_used + space_info->bytes_reserved +
4655 space_info->bytes_pinned + space_info->bytes_readonly +
4656 space_info->bytes_may_use;
9ed74f2d 4657
8bb8ab2e
JB
4658 /*
4659 * The idea here is that we've not already over-reserved the block group
4660 * then we can go ahead and save our reservation first and then start
4661 * flushing if we need to. Otherwise if we've already overcommitted
4662 * lets start flushing stuff first and then come back and try to make
4663 * our reservation.
4664 */
2bf64758
JB
4665 if (used <= space_info->total_bytes) {
4666 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4667 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4668 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4669 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4670 ret = 0;
4671 } else {
4672 /*
4673 * Ok set num_bytes to orig_bytes since we aren't
4674 * overocmmitted, this way we only try and reclaim what
4675 * we need.
4676 */
4677 num_bytes = orig_bytes;
4678 }
4679 } else {
4680 /*
4681 * Ok we're over committed, set num_bytes to the overcommitted
4682 * amount plus the amount of bytes that we need for this
4683 * reservation.
4684 */
2bf64758 4685 num_bytes = used - space_info->total_bytes +
96c3f433 4686 (orig_bytes * 2);
8bb8ab2e 4687 }
9ed74f2d 4688
44734ed1
JB
4689 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4690 space_info->bytes_may_use += orig_bytes;
4691 trace_btrfs_space_reservation(root->fs_info, "space_info",
4692 space_info->flags, orig_bytes,
4693 1);
4694 ret = 0;
2bf64758
JB
4695 }
4696
8bb8ab2e
JB
4697 /*
4698 * Couldn't make our reservation, save our place so while we're trying
4699 * to reclaim space we can actually use it instead of somebody else
4700 * stealing it from us.
08e007d2
MX
4701 *
4702 * We make the other tasks wait for the flush only when we can flush
4703 * all things.
8bb8ab2e 4704 */
72bcd99d 4705 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4706 flushing = true;
4707 space_info->flush = 1;
21c7e756
MX
4708 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4709 used += orig_bytes;
f6acfd50
JB
4710 /*
4711 * We will do the space reservation dance during log replay,
4712 * which means we won't have fs_info->fs_root set, so don't do
4713 * the async reclaim as we will panic.
4714 */
4715 if (!root->fs_info->log_root_recovering &&
4716 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4717 !work_busy(&root->fs_info->async_reclaim_work))
4718 queue_work(system_unbound_wq,
4719 &root->fs_info->async_reclaim_work);
8bb8ab2e 4720 }
f0486c68 4721 spin_unlock(&space_info->lock);
9ed74f2d 4722
08e007d2 4723 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4724 goto out;
f0486c68 4725
96c3f433
JB
4726 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4727 flush_state);
4728 flush_state++;
08e007d2
MX
4729
4730 /*
4731 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4732 * would happen. So skip delalloc flush.
4733 */
4734 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4735 (flush_state == FLUSH_DELALLOC ||
4736 flush_state == FLUSH_DELALLOC_WAIT))
4737 flush_state = ALLOC_CHUNK;
4738
96c3f433 4739 if (!ret)
8bb8ab2e 4740 goto again;
08e007d2
MX
4741 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4742 flush_state < COMMIT_TRANS)
4743 goto again;
4744 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4745 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4746 goto again;
4747
4748out:
5d80366e
JB
4749 if (ret == -ENOSPC &&
4750 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4751 struct btrfs_block_rsv *global_rsv =
4752 &root->fs_info->global_block_rsv;
4753
4754 if (block_rsv != global_rsv &&
4755 !block_rsv_use_bytes(global_rsv, orig_bytes))
4756 ret = 0;
4757 }
cab45e22
JM
4758 if (ret == -ENOSPC)
4759 trace_btrfs_space_reservation(root->fs_info,
4760 "space_info:enospc",
4761 space_info->flags, orig_bytes, 1);
fdb5effd 4762 if (flushing) {
8bb8ab2e 4763 spin_lock(&space_info->lock);
fdb5effd
JB
4764 space_info->flush = 0;
4765 wake_up_all(&space_info->wait);
8bb8ab2e 4766 spin_unlock(&space_info->lock);
f0486c68 4767 }
f0486c68
YZ
4768 return ret;
4769}
4770
79787eaa
JM
4771static struct btrfs_block_rsv *get_block_rsv(
4772 const struct btrfs_trans_handle *trans,
4773 const struct btrfs_root *root)
f0486c68 4774{
4c13d758
JB
4775 struct btrfs_block_rsv *block_rsv = NULL;
4776
27cdeb70 4777 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4778 block_rsv = trans->block_rsv;
4779
4780 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4781 block_rsv = trans->block_rsv;
4c13d758 4782
f7a81ea4
SB
4783 if (root == root->fs_info->uuid_root)
4784 block_rsv = trans->block_rsv;
4785
4c13d758 4786 if (!block_rsv)
f0486c68
YZ
4787 block_rsv = root->block_rsv;
4788
4789 if (!block_rsv)
4790 block_rsv = &root->fs_info->empty_block_rsv;
4791
4792 return block_rsv;
4793}
4794
4795static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4796 u64 num_bytes)
4797{
4798 int ret = -ENOSPC;
4799 spin_lock(&block_rsv->lock);
4800 if (block_rsv->reserved >= num_bytes) {
4801 block_rsv->reserved -= num_bytes;
4802 if (block_rsv->reserved < block_rsv->size)
4803 block_rsv->full = 0;
4804 ret = 0;
4805 }
4806 spin_unlock(&block_rsv->lock);
4807 return ret;
4808}
4809
4810static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4811 u64 num_bytes, int update_size)
4812{
4813 spin_lock(&block_rsv->lock);
4814 block_rsv->reserved += num_bytes;
4815 if (update_size)
4816 block_rsv->size += num_bytes;
4817 else if (block_rsv->reserved >= block_rsv->size)
4818 block_rsv->full = 1;
4819 spin_unlock(&block_rsv->lock);
4820}
4821
d52be818
JB
4822int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4823 struct btrfs_block_rsv *dest, u64 num_bytes,
4824 int min_factor)
4825{
4826 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4827 u64 min_bytes;
4828
4829 if (global_rsv->space_info != dest->space_info)
4830 return -ENOSPC;
4831
4832 spin_lock(&global_rsv->lock);
4833 min_bytes = div_factor(global_rsv->size, min_factor);
4834 if (global_rsv->reserved < min_bytes + num_bytes) {
4835 spin_unlock(&global_rsv->lock);
4836 return -ENOSPC;
4837 }
4838 global_rsv->reserved -= num_bytes;
4839 if (global_rsv->reserved < global_rsv->size)
4840 global_rsv->full = 0;
4841 spin_unlock(&global_rsv->lock);
4842
4843 block_rsv_add_bytes(dest, num_bytes, 1);
4844 return 0;
4845}
4846
8c2a3ca2
JB
4847static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4848 struct btrfs_block_rsv *block_rsv,
62a45b60 4849 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4850{
4851 struct btrfs_space_info *space_info = block_rsv->space_info;
4852
4853 spin_lock(&block_rsv->lock);
4854 if (num_bytes == (u64)-1)
4855 num_bytes = block_rsv->size;
4856 block_rsv->size -= num_bytes;
4857 if (block_rsv->reserved >= block_rsv->size) {
4858 num_bytes = block_rsv->reserved - block_rsv->size;
4859 block_rsv->reserved = block_rsv->size;
4860 block_rsv->full = 1;
4861 } else {
4862 num_bytes = 0;
4863 }
4864 spin_unlock(&block_rsv->lock);
4865
4866 if (num_bytes > 0) {
4867 if (dest) {
e9e22899
JB
4868 spin_lock(&dest->lock);
4869 if (!dest->full) {
4870 u64 bytes_to_add;
4871
4872 bytes_to_add = dest->size - dest->reserved;
4873 bytes_to_add = min(num_bytes, bytes_to_add);
4874 dest->reserved += bytes_to_add;
4875 if (dest->reserved >= dest->size)
4876 dest->full = 1;
4877 num_bytes -= bytes_to_add;
4878 }
4879 spin_unlock(&dest->lock);
4880 }
4881 if (num_bytes) {
f0486c68 4882 spin_lock(&space_info->lock);
fb25e914 4883 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 4884 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4885 space_info->flags, num_bytes, 0);
f0486c68 4886 spin_unlock(&space_info->lock);
4e06bdd6 4887 }
9ed74f2d 4888 }
f0486c68 4889}
4e06bdd6 4890
f0486c68
YZ
4891static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4892 struct btrfs_block_rsv *dst, u64 num_bytes)
4893{
4894 int ret;
9ed74f2d 4895
f0486c68
YZ
4896 ret = block_rsv_use_bytes(src, num_bytes);
4897 if (ret)
4898 return ret;
9ed74f2d 4899
f0486c68 4900 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
4901 return 0;
4902}
4903
66d8f3dd 4904void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 4905{
f0486c68
YZ
4906 memset(rsv, 0, sizeof(*rsv));
4907 spin_lock_init(&rsv->lock);
66d8f3dd 4908 rsv->type = type;
f0486c68
YZ
4909}
4910
66d8f3dd
MX
4911struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
4912 unsigned short type)
f0486c68
YZ
4913{
4914 struct btrfs_block_rsv *block_rsv;
4915 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 4916
f0486c68
YZ
4917 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4918 if (!block_rsv)
4919 return NULL;
9ed74f2d 4920
66d8f3dd 4921 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
4922 block_rsv->space_info = __find_space_info(fs_info,
4923 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
4924 return block_rsv;
4925}
9ed74f2d 4926
f0486c68
YZ
4927void btrfs_free_block_rsv(struct btrfs_root *root,
4928 struct btrfs_block_rsv *rsv)
4929{
2aaa6655
JB
4930 if (!rsv)
4931 return;
dabdb640
JB
4932 btrfs_block_rsv_release(root, rsv, (u64)-1);
4933 kfree(rsv);
9ed74f2d
JB
4934}
4935
cdfb080e
CM
4936void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
4937{
4938 kfree(rsv);
4939}
4940
08e007d2
MX
4941int btrfs_block_rsv_add(struct btrfs_root *root,
4942 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
4943 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4944{
f0486c68 4945 int ret;
9ed74f2d 4946
f0486c68
YZ
4947 if (num_bytes == 0)
4948 return 0;
8bb8ab2e 4949
61b520a9 4950 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
4951 if (!ret) {
4952 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4953 return 0;
4954 }
9ed74f2d 4955
f0486c68 4956 return ret;
f0486c68 4957}
9ed74f2d 4958
4a92b1b8 4959int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 4960 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
4961{
4962 u64 num_bytes = 0;
f0486c68 4963 int ret = -ENOSPC;
9ed74f2d 4964
f0486c68
YZ
4965 if (!block_rsv)
4966 return 0;
9ed74f2d 4967
f0486c68 4968 spin_lock(&block_rsv->lock);
36ba022a
JB
4969 num_bytes = div_factor(block_rsv->size, min_factor);
4970 if (block_rsv->reserved >= num_bytes)
4971 ret = 0;
4972 spin_unlock(&block_rsv->lock);
9ed74f2d 4973
36ba022a
JB
4974 return ret;
4975}
4976
08e007d2
MX
4977int btrfs_block_rsv_refill(struct btrfs_root *root,
4978 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
4979 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
4980{
4981 u64 num_bytes = 0;
4982 int ret = -ENOSPC;
4983
4984 if (!block_rsv)
4985 return 0;
4986
4987 spin_lock(&block_rsv->lock);
4988 num_bytes = min_reserved;
13553e52 4989 if (block_rsv->reserved >= num_bytes)
f0486c68 4990 ret = 0;
13553e52 4991 else
f0486c68 4992 num_bytes -= block_rsv->reserved;
f0486c68 4993 spin_unlock(&block_rsv->lock);
13553e52 4994
f0486c68
YZ
4995 if (!ret)
4996 return 0;
4997
aa38a711 4998 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
4999 if (!ret) {
5000 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5001 return 0;
6a63209f 5002 }
9ed74f2d 5003
13553e52 5004 return ret;
f0486c68
YZ
5005}
5006
5007int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5008 struct btrfs_block_rsv *dst_rsv,
5009 u64 num_bytes)
5010{
5011 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5012}
5013
5014void btrfs_block_rsv_release(struct btrfs_root *root,
5015 struct btrfs_block_rsv *block_rsv,
5016 u64 num_bytes)
5017{
5018 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5019 if (global_rsv == block_rsv ||
f0486c68
YZ
5020 block_rsv->space_info != global_rsv->space_info)
5021 global_rsv = NULL;
8c2a3ca2
JB
5022 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5023 num_bytes);
6a63209f
JB
5024}
5025
5026/*
8929ecfa
YZ
5027 * helper to calculate size of global block reservation.
5028 * the desired value is sum of space used by extent tree,
5029 * checksum tree and root tree
6a63209f 5030 */
8929ecfa 5031static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5032{
8929ecfa
YZ
5033 struct btrfs_space_info *sinfo;
5034 u64 num_bytes;
5035 u64 meta_used;
5036 u64 data_used;
6c41761f 5037 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5038
8929ecfa
YZ
5039 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5040 spin_lock(&sinfo->lock);
5041 data_used = sinfo->bytes_used;
5042 spin_unlock(&sinfo->lock);
33b4d47f 5043
8929ecfa
YZ
5044 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5045 spin_lock(&sinfo->lock);
6d48755d
JB
5046 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5047 data_used = 0;
8929ecfa
YZ
5048 meta_used = sinfo->bytes_used;
5049 spin_unlock(&sinfo->lock);
ab6e2410 5050
8929ecfa
YZ
5051 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5052 csum_size * 2;
f8c269d7 5053 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5054
8929ecfa 5055 if (num_bytes * 3 > meta_used)
f8c269d7 5056 num_bytes = div_u64(meta_used, 3);
ab6e2410 5057
707e8a07 5058 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5059}
6a63209f 5060
8929ecfa
YZ
5061static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5062{
5063 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5064 struct btrfs_space_info *sinfo = block_rsv->space_info;
5065 u64 num_bytes;
6a63209f 5066
8929ecfa 5067 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5068
8929ecfa 5069 spin_lock(&sinfo->lock);
1f699d38 5070 spin_lock(&block_rsv->lock);
4e06bdd6 5071
fdf30d1c 5072 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5073
8929ecfa 5074 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5075 sinfo->bytes_reserved + sinfo->bytes_readonly +
5076 sinfo->bytes_may_use;
8929ecfa
YZ
5077
5078 if (sinfo->total_bytes > num_bytes) {
5079 num_bytes = sinfo->total_bytes - num_bytes;
5080 block_rsv->reserved += num_bytes;
fb25e914 5081 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5082 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5083 sinfo->flags, num_bytes, 1);
6a63209f 5084 }
6a63209f 5085
8929ecfa
YZ
5086 if (block_rsv->reserved >= block_rsv->size) {
5087 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5088 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5089 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5090 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5091 block_rsv->reserved = block_rsv->size;
5092 block_rsv->full = 1;
5093 }
182608c8 5094
8929ecfa 5095 spin_unlock(&block_rsv->lock);
1f699d38 5096 spin_unlock(&sinfo->lock);
6a63209f
JB
5097}
5098
f0486c68 5099static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5100{
f0486c68 5101 struct btrfs_space_info *space_info;
6a63209f 5102
f0486c68
YZ
5103 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5104 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5105
f0486c68 5106 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5107 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5108 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5109 fs_info->trans_block_rsv.space_info = space_info;
5110 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5111 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5112
8929ecfa
YZ
5113 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5114 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5115 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5116 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5117 if (fs_info->quota_root)
5118 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5119 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5120
8929ecfa 5121 update_global_block_rsv(fs_info);
6a63209f
JB
5122}
5123
8929ecfa 5124static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5125{
8c2a3ca2
JB
5126 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5127 (u64)-1);
8929ecfa
YZ
5128 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5129 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5130 WARN_ON(fs_info->trans_block_rsv.size > 0);
5131 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5132 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5133 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5134 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5135 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5136}
5137
a22285a6
YZ
5138void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5139 struct btrfs_root *root)
6a63209f 5140{
0e721106
JB
5141 if (!trans->block_rsv)
5142 return;
5143
a22285a6
YZ
5144 if (!trans->bytes_reserved)
5145 return;
6a63209f 5146
e77266e4 5147 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5148 trans->transid, trans->bytes_reserved, 0);
b24e03db 5149 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5150 trans->bytes_reserved = 0;
5151}
6a63209f 5152
79787eaa 5153/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5154int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5155 struct inode *inode)
5156{
5157 struct btrfs_root *root = BTRFS_I(inode)->root;
5158 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5159 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5160
5161 /*
fcb80c2a
JB
5162 * We need to hold space in order to delete our orphan item once we've
5163 * added it, so this takes the reservation so we can release it later
5164 * when we are truly done with the orphan item.
d68fc57b 5165 */
ff5714cc 5166 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5167 trace_btrfs_space_reservation(root->fs_info, "orphan",
5168 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5169 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5170}
5171
d68fc57b 5172void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5173{
d68fc57b 5174 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5175 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5176 trace_btrfs_space_reservation(root->fs_info, "orphan",
5177 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5178 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5179}
97e728d4 5180
d5c12070
MX
5181/*
5182 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5183 * root: the root of the parent directory
5184 * rsv: block reservation
5185 * items: the number of items that we need do reservation
5186 * qgroup_reserved: used to return the reserved size in qgroup
5187 *
5188 * This function is used to reserve the space for snapshot/subvolume
5189 * creation and deletion. Those operations are different with the
5190 * common file/directory operations, they change two fs/file trees
5191 * and root tree, the number of items that the qgroup reserves is
5192 * different with the free space reservation. So we can not use
5193 * the space reseravtion mechanism in start_transaction().
5194 */
5195int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5196 struct btrfs_block_rsv *rsv,
5197 int items,
ee3441b4
JM
5198 u64 *qgroup_reserved,
5199 bool use_global_rsv)
a22285a6 5200{
d5c12070
MX
5201 u64 num_bytes;
5202 int ret;
ee3441b4 5203 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5204
5205 if (root->fs_info->quota_enabled) {
5206 /* One for parent inode, two for dir entries */
707e8a07 5207 num_bytes = 3 * root->nodesize;
d5c12070
MX
5208 ret = btrfs_qgroup_reserve(root, num_bytes);
5209 if (ret)
5210 return ret;
5211 } else {
5212 num_bytes = 0;
5213 }
5214
5215 *qgroup_reserved = num_bytes;
5216
5217 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5218 rsv->space_info = __find_space_info(root->fs_info,
5219 BTRFS_BLOCK_GROUP_METADATA);
5220 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5221 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5222
5223 if (ret == -ENOSPC && use_global_rsv)
5224 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5225
d5c12070
MX
5226 if (ret) {
5227 if (*qgroup_reserved)
5228 btrfs_qgroup_free(root, *qgroup_reserved);
5229 }
5230
5231 return ret;
5232}
5233
5234void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5235 struct btrfs_block_rsv *rsv,
5236 u64 qgroup_reserved)
5237{
5238 btrfs_block_rsv_release(root, rsv, (u64)-1);
5239 if (qgroup_reserved)
5240 btrfs_qgroup_free(root, qgroup_reserved);
97e728d4
JB
5241}
5242
7709cde3
JB
5243/**
5244 * drop_outstanding_extent - drop an outstanding extent
5245 * @inode: the inode we're dropping the extent for
dcab6a3b 5246 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5247 *
5248 * This is called when we are freeing up an outstanding extent, either called
5249 * after an error or after an extent is written. This will return the number of
5250 * reserved extents that need to be freed. This must be called with
5251 * BTRFS_I(inode)->lock held.
5252 */
dcab6a3b 5253static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5254{
7fd2ae21 5255 unsigned drop_inode_space = 0;
9e0baf60 5256 unsigned dropped_extents = 0;
dcab6a3b 5257 unsigned num_extents = 0;
9e0baf60 5258
dcab6a3b
JB
5259 num_extents = (unsigned)div64_u64(num_bytes +
5260 BTRFS_MAX_EXTENT_SIZE - 1,
5261 BTRFS_MAX_EXTENT_SIZE);
5262 ASSERT(num_extents);
5263 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5264 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5265
7fd2ae21 5266 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5267 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5268 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5269 drop_inode_space = 1;
7fd2ae21 5270
9e0baf60
JB
5271 /*
5272 * If we have more or the same amount of outsanding extents than we have
5273 * reserved then we need to leave the reserved extents count alone.
5274 */
5275 if (BTRFS_I(inode)->outstanding_extents >=
5276 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5277 return drop_inode_space;
9e0baf60
JB
5278
5279 dropped_extents = BTRFS_I(inode)->reserved_extents -
5280 BTRFS_I(inode)->outstanding_extents;
5281 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5282 return dropped_extents + drop_inode_space;
9e0baf60
JB
5283}
5284
7709cde3
JB
5285/**
5286 * calc_csum_metadata_size - return the amount of metada space that must be
5287 * reserved/free'd for the given bytes.
5288 * @inode: the inode we're manipulating
5289 * @num_bytes: the number of bytes in question
5290 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5291 *
5292 * This adjusts the number of csum_bytes in the inode and then returns the
5293 * correct amount of metadata that must either be reserved or freed. We
5294 * calculate how many checksums we can fit into one leaf and then divide the
5295 * number of bytes that will need to be checksumed by this value to figure out
5296 * how many checksums will be required. If we are adding bytes then the number
5297 * may go up and we will return the number of additional bytes that must be
5298 * reserved. If it is going down we will return the number of bytes that must
5299 * be freed.
5300 *
5301 * This must be called with BTRFS_I(inode)->lock held.
5302 */
5303static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5304 int reserve)
6324fbf3 5305{
7709cde3 5306 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5307 u64 old_csums, num_csums;
7709cde3
JB
5308
5309 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5310 BTRFS_I(inode)->csum_bytes == 0)
5311 return 0;
5312
28f75a0e 5313 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5314 if (reserve)
5315 BTRFS_I(inode)->csum_bytes += num_bytes;
5316 else
5317 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5318 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5319
5320 /* No change, no need to reserve more */
5321 if (old_csums == num_csums)
5322 return 0;
5323
5324 if (reserve)
5325 return btrfs_calc_trans_metadata_size(root,
5326 num_csums - old_csums);
5327
5328 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5329}
c146afad 5330
0ca1f7ce
YZ
5331int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5332{
5333 struct btrfs_root *root = BTRFS_I(inode)->root;
5334 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5335 u64 to_reserve = 0;
660d3f6c 5336 u64 csum_bytes;
9e0baf60 5337 unsigned nr_extents = 0;
660d3f6c 5338 int extra_reserve = 0;
08e007d2 5339 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5340 int ret = 0;
c64c2bd8 5341 bool delalloc_lock = true;
88e081bf
WS
5342 u64 to_free = 0;
5343 unsigned dropped;
6324fbf3 5344
c64c2bd8
JB
5345 /* If we are a free space inode we need to not flush since we will be in
5346 * the middle of a transaction commit. We also don't need the delalloc
5347 * mutex since we won't race with anybody. We need this mostly to make
5348 * lockdep shut its filthy mouth.
5349 */
5350 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5351 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5352 delalloc_lock = false;
5353 }
c09544e0 5354
08e007d2
MX
5355 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5356 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5357 schedule_timeout(1);
ec44a35c 5358
c64c2bd8
JB
5359 if (delalloc_lock)
5360 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5361
0ca1f7ce 5362 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5363
9e0baf60 5364 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5365 nr_extents = (unsigned)div64_u64(num_bytes +
5366 BTRFS_MAX_EXTENT_SIZE - 1,
5367 BTRFS_MAX_EXTENT_SIZE);
5368 BTRFS_I(inode)->outstanding_extents += nr_extents;
5369 nr_extents = 0;
9e0baf60
JB
5370
5371 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5372 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5373 nr_extents = BTRFS_I(inode)->outstanding_extents -
5374 BTRFS_I(inode)->reserved_extents;
57a45ced 5375
7fd2ae21
JB
5376 /*
5377 * Add an item to reserve for updating the inode when we complete the
5378 * delalloc io.
5379 */
72ac3c0d
JB
5380 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5381 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5382 nr_extents++;
660d3f6c 5383 extra_reserve = 1;
593060d7 5384 }
7fd2ae21
JB
5385
5386 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5387 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5388 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5389 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5390
88e081bf 5391 if (root->fs_info->quota_enabled) {
c5567237 5392 ret = btrfs_qgroup_reserve(root, num_bytes +
707e8a07 5393 nr_extents * root->nodesize);
88e081bf
WS
5394 if (ret)
5395 goto out_fail;
5396 }
c5567237 5397
88e081bf
WS
5398 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5399 if (unlikely(ret)) {
5400 if (root->fs_info->quota_enabled)
4b5829a8 5401 btrfs_qgroup_free(root, num_bytes +
707e8a07 5402 nr_extents * root->nodesize);
88e081bf 5403 goto out_fail;
9e0baf60 5404 }
25179201 5405
660d3f6c
JB
5406 spin_lock(&BTRFS_I(inode)->lock);
5407 if (extra_reserve) {
72ac3c0d
JB
5408 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5409 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5410 nr_extents--;
5411 }
5412 BTRFS_I(inode)->reserved_extents += nr_extents;
5413 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5414
5415 if (delalloc_lock)
5416 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5417
8c2a3ca2 5418 if (to_reserve)
67871254 5419 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5420 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5421 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5422
0ca1f7ce 5423 return 0;
88e081bf
WS
5424
5425out_fail:
5426 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5427 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5428 /*
5429 * If the inodes csum_bytes is the same as the original
5430 * csum_bytes then we know we haven't raced with any free()ers
5431 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5432 */
f4881bc7 5433 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5434 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5435 } else {
5436 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5437 u64 bytes;
5438
5439 /*
5440 * This is tricky, but first we need to figure out how much we
5441 * free'd from any free-ers that occured during this
5442 * reservation, so we reset ->csum_bytes to the csum_bytes
5443 * before we dropped our lock, and then call the free for the
5444 * number of bytes that were freed while we were trying our
5445 * reservation.
5446 */
5447 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5448 BTRFS_I(inode)->csum_bytes = csum_bytes;
5449 to_free = calc_csum_metadata_size(inode, bytes, 0);
5450
5451
5452 /*
5453 * Now we need to see how much we would have freed had we not
5454 * been making this reservation and our ->csum_bytes were not
5455 * artificially inflated.
5456 */
5457 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5458 bytes = csum_bytes - orig_csum_bytes;
5459 bytes = calc_csum_metadata_size(inode, bytes, 0);
5460
5461 /*
5462 * Now reset ->csum_bytes to what it should be. If bytes is
5463 * more than to_free then we would have free'd more space had we
5464 * not had an artificially high ->csum_bytes, so we need to free
5465 * the remainder. If bytes is the same or less then we don't
5466 * need to do anything, the other free-ers did the correct
5467 * thing.
5468 */
5469 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5470 if (bytes > to_free)
5471 to_free = bytes - to_free;
5472 else
5473 to_free = 0;
5474 }
88e081bf
WS
5475 spin_unlock(&BTRFS_I(inode)->lock);
5476 if (dropped)
5477 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5478
5479 if (to_free) {
5480 btrfs_block_rsv_release(root, block_rsv, to_free);
5481 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5482 btrfs_ino(inode), to_free, 0);
5483 }
5484 if (delalloc_lock)
5485 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5486 return ret;
0ca1f7ce
YZ
5487}
5488
7709cde3
JB
5489/**
5490 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5491 * @inode: the inode to release the reservation for
5492 * @num_bytes: the number of bytes we're releasing
5493 *
5494 * This will release the metadata reservation for an inode. This can be called
5495 * once we complete IO for a given set of bytes to release their metadata
5496 * reservations.
5497 */
0ca1f7ce
YZ
5498void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5499{
5500 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5501 u64 to_free = 0;
5502 unsigned dropped;
0ca1f7ce
YZ
5503
5504 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5505 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5506 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5507
0934856d
MX
5508 if (num_bytes)
5509 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5510 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5511 if (dropped > 0)
5512 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5513
6a3891c5
JB
5514 if (btrfs_test_is_dummy_root(root))
5515 return;
5516
8c2a3ca2
JB
5517 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5518 btrfs_ino(inode), to_free, 0);
c5567237
AJ
5519 if (root->fs_info->quota_enabled) {
5520 btrfs_qgroup_free(root, num_bytes +
707e8a07 5521 dropped * root->nodesize);
c5567237
AJ
5522 }
5523
0ca1f7ce
YZ
5524 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5525 to_free);
5526}
5527
7709cde3
JB
5528/**
5529 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5530 * @inode: inode we're writing to
5531 * @num_bytes: the number of bytes we want to allocate
5532 *
5533 * This will do the following things
5534 *
5535 * o reserve space in the data space info for num_bytes
5536 * o reserve space in the metadata space info based on number of outstanding
5537 * extents and how much csums will be needed
5538 * o add to the inodes ->delalloc_bytes
5539 * o add it to the fs_info's delalloc inodes list.
5540 *
5541 * This will return 0 for success and -ENOSPC if there is no space left.
5542 */
0ca1f7ce
YZ
5543int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5544{
5545 int ret;
5546
5547 ret = btrfs_check_data_free_space(inode, num_bytes);
d397712b 5548 if (ret)
0ca1f7ce
YZ
5549 return ret;
5550
5551 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5552 if (ret) {
5553 btrfs_free_reserved_data_space(inode, num_bytes);
5554 return ret;
5555 }
5556
5557 return 0;
5558}
5559
7709cde3
JB
5560/**
5561 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5562 * @inode: inode we're releasing space for
5563 * @num_bytes: the number of bytes we want to free up
5564 *
5565 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5566 * called in the case that we don't need the metadata AND data reservations
5567 * anymore. So if there is an error or we insert an inline extent.
5568 *
5569 * This function will release the metadata space that was not used and will
5570 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5571 * list if there are no delalloc bytes left.
5572 */
0ca1f7ce
YZ
5573void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5574{
5575 btrfs_delalloc_release_metadata(inode, num_bytes);
5576 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5577}
5578
ce93ec54
JB
5579static int update_block_group(struct btrfs_trans_handle *trans,
5580 struct btrfs_root *root, u64 bytenr,
5581 u64 num_bytes, int alloc)
9078a3e1 5582{
0af3d00b 5583 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5584 struct btrfs_fs_info *info = root->fs_info;
db94535d 5585 u64 total = num_bytes;
9078a3e1 5586 u64 old_val;
db94535d 5587 u64 byte_in_group;
0af3d00b 5588 int factor;
3e1ad54f 5589
5d4f98a2 5590 /* block accounting for super block */
eb73c1b7 5591 spin_lock(&info->delalloc_root_lock);
6c41761f 5592 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5593 if (alloc)
5594 old_val += num_bytes;
5595 else
5596 old_val -= num_bytes;
6c41761f 5597 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5598 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5599
d397712b 5600 while (total) {
db94535d 5601 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5602 if (!cache)
79787eaa 5603 return -ENOENT;
b742bb82
YZ
5604 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5605 BTRFS_BLOCK_GROUP_RAID1 |
5606 BTRFS_BLOCK_GROUP_RAID10))
5607 factor = 2;
5608 else
5609 factor = 1;
9d66e233
JB
5610 /*
5611 * If this block group has free space cache written out, we
5612 * need to make sure to load it if we are removing space. This
5613 * is because we need the unpinning stage to actually add the
5614 * space back to the block group, otherwise we will leak space.
5615 */
5616 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5617 cache_block_group(cache, 1);
0af3d00b 5618
db94535d
CM
5619 byte_in_group = bytenr - cache->key.objectid;
5620 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5621
25179201 5622 spin_lock(&cache->space_info->lock);
c286ac48 5623 spin_lock(&cache->lock);
0af3d00b 5624
73bc1876 5625 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5626 cache->disk_cache_state < BTRFS_DC_CLEAR)
5627 cache->disk_cache_state = BTRFS_DC_CLEAR;
5628
9078a3e1 5629 old_val = btrfs_block_group_used(&cache->item);
db94535d 5630 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5631 if (alloc) {
db94535d 5632 old_val += num_bytes;
11833d66
YZ
5633 btrfs_set_block_group_used(&cache->item, old_val);
5634 cache->reserved -= num_bytes;
11833d66 5635 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5636 cache->space_info->bytes_used += num_bytes;
5637 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5638 spin_unlock(&cache->lock);
25179201 5639 spin_unlock(&cache->space_info->lock);
cd1bc465 5640 } else {
db94535d 5641 old_val -= num_bytes;
ae0ab003
FM
5642 btrfs_set_block_group_used(&cache->item, old_val);
5643 cache->pinned += num_bytes;
5644 cache->space_info->bytes_pinned += num_bytes;
5645 cache->space_info->bytes_used -= num_bytes;
5646 cache->space_info->disk_used -= num_bytes * factor;
5647 spin_unlock(&cache->lock);
5648 spin_unlock(&cache->space_info->lock);
47ab2a6c 5649
ae0ab003
FM
5650 set_extent_dirty(info->pinned_extents,
5651 bytenr, bytenr + num_bytes - 1,
5652 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5653 /*
5654 * No longer have used bytes in this block group, queue
5655 * it for deletion.
5656 */
5657 if (old_val == 0) {
5658 spin_lock(&info->unused_bgs_lock);
5659 if (list_empty(&cache->bg_list)) {
5660 btrfs_get_block_group(cache);
5661 list_add_tail(&cache->bg_list,
5662 &info->unused_bgs);
5663 }
5664 spin_unlock(&info->unused_bgs_lock);
5665 }
cd1bc465 5666 }
1bbc621e
CM
5667
5668 spin_lock(&trans->transaction->dirty_bgs_lock);
5669 if (list_empty(&cache->dirty_list)) {
5670 list_add_tail(&cache->dirty_list,
5671 &trans->transaction->dirty_bgs);
5672 trans->transaction->num_dirty_bgs++;
5673 btrfs_get_block_group(cache);
5674 }
5675 spin_unlock(&trans->transaction->dirty_bgs_lock);
5676
fa9c0d79 5677 btrfs_put_block_group(cache);
db94535d
CM
5678 total -= num_bytes;
5679 bytenr += num_bytes;
9078a3e1
CM
5680 }
5681 return 0;
5682}
6324fbf3 5683
a061fc8d
CM
5684static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5685{
0f9dd46c 5686 struct btrfs_block_group_cache *cache;
d2fb3437 5687 u64 bytenr;
0f9dd46c 5688
a1897fdd
LB
5689 spin_lock(&root->fs_info->block_group_cache_lock);
5690 bytenr = root->fs_info->first_logical_byte;
5691 spin_unlock(&root->fs_info->block_group_cache_lock);
5692
5693 if (bytenr < (u64)-1)
5694 return bytenr;
5695
0f9dd46c
JB
5696 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5697 if (!cache)
a061fc8d 5698 return 0;
0f9dd46c 5699
d2fb3437 5700 bytenr = cache->key.objectid;
fa9c0d79 5701 btrfs_put_block_group(cache);
d2fb3437
YZ
5702
5703 return bytenr;
a061fc8d
CM
5704}
5705
f0486c68
YZ
5706static int pin_down_extent(struct btrfs_root *root,
5707 struct btrfs_block_group_cache *cache,
5708 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5709{
11833d66
YZ
5710 spin_lock(&cache->space_info->lock);
5711 spin_lock(&cache->lock);
5712 cache->pinned += num_bytes;
5713 cache->space_info->bytes_pinned += num_bytes;
5714 if (reserved) {
5715 cache->reserved -= num_bytes;
5716 cache->space_info->bytes_reserved -= num_bytes;
5717 }
5718 spin_unlock(&cache->lock);
5719 spin_unlock(&cache->space_info->lock);
68b38550 5720
f0486c68
YZ
5721 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5722 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
0be5dc67
JB
5723 if (reserved)
5724 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5725 return 0;
5726}
68b38550 5727
f0486c68
YZ
5728/*
5729 * this function must be called within transaction
5730 */
5731int btrfs_pin_extent(struct btrfs_root *root,
5732 u64 bytenr, u64 num_bytes, int reserved)
5733{
5734 struct btrfs_block_group_cache *cache;
68b38550 5735
f0486c68 5736 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5737 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5738
5739 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5740
5741 btrfs_put_block_group(cache);
11833d66
YZ
5742 return 0;
5743}
5744
f0486c68 5745/*
e688b725
CM
5746 * this function must be called within transaction
5747 */
dcfac415 5748int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5749 u64 bytenr, u64 num_bytes)
5750{
5751 struct btrfs_block_group_cache *cache;
b50c6e25 5752 int ret;
e688b725
CM
5753
5754 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5755 if (!cache)
5756 return -EINVAL;
e688b725
CM
5757
5758 /*
5759 * pull in the free space cache (if any) so that our pin
5760 * removes the free space from the cache. We have load_only set
5761 * to one because the slow code to read in the free extents does check
5762 * the pinned extents.
5763 */
f6373bf3 5764 cache_block_group(cache, 1);
e688b725
CM
5765
5766 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5767
5768 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5769 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5770 btrfs_put_block_group(cache);
b50c6e25 5771 return ret;
e688b725
CM
5772}
5773
8c2a1a30
JB
5774static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5775{
5776 int ret;
5777 struct btrfs_block_group_cache *block_group;
5778 struct btrfs_caching_control *caching_ctl;
5779
5780 block_group = btrfs_lookup_block_group(root->fs_info, start);
5781 if (!block_group)
5782 return -EINVAL;
5783
5784 cache_block_group(block_group, 0);
5785 caching_ctl = get_caching_control(block_group);
5786
5787 if (!caching_ctl) {
5788 /* Logic error */
5789 BUG_ON(!block_group_cache_done(block_group));
5790 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5791 } else {
5792 mutex_lock(&caching_ctl->mutex);
5793
5794 if (start >= caching_ctl->progress) {
5795 ret = add_excluded_extent(root, start, num_bytes);
5796 } else if (start + num_bytes <= caching_ctl->progress) {
5797 ret = btrfs_remove_free_space(block_group,
5798 start, num_bytes);
5799 } else {
5800 num_bytes = caching_ctl->progress - start;
5801 ret = btrfs_remove_free_space(block_group,
5802 start, num_bytes);
5803 if (ret)
5804 goto out_lock;
5805
5806 num_bytes = (start + num_bytes) -
5807 caching_ctl->progress;
5808 start = caching_ctl->progress;
5809 ret = add_excluded_extent(root, start, num_bytes);
5810 }
5811out_lock:
5812 mutex_unlock(&caching_ctl->mutex);
5813 put_caching_control(caching_ctl);
5814 }
5815 btrfs_put_block_group(block_group);
5816 return ret;
5817}
5818
5819int btrfs_exclude_logged_extents(struct btrfs_root *log,
5820 struct extent_buffer *eb)
5821{
5822 struct btrfs_file_extent_item *item;
5823 struct btrfs_key key;
5824 int found_type;
5825 int i;
5826
5827 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5828 return 0;
5829
5830 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5831 btrfs_item_key_to_cpu(eb, &key, i);
5832 if (key.type != BTRFS_EXTENT_DATA_KEY)
5833 continue;
5834 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5835 found_type = btrfs_file_extent_type(eb, item);
5836 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5837 continue;
5838 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5839 continue;
5840 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5841 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5842 __exclude_logged_extent(log, key.objectid, key.offset);
5843 }
5844
5845 return 0;
5846}
5847
fb25e914
JB
5848/**
5849 * btrfs_update_reserved_bytes - update the block_group and space info counters
5850 * @cache: The cache we are manipulating
5851 * @num_bytes: The number of bytes in question
5852 * @reserve: One of the reservation enums
e570fd27 5853 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5854 *
5855 * This is called by the allocator when it reserves space, or by somebody who is
5856 * freeing space that was never actually used on disk. For example if you
5857 * reserve some space for a new leaf in transaction A and before transaction A
5858 * commits you free that leaf, you call this with reserve set to 0 in order to
5859 * clear the reservation.
5860 *
5861 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5862 * ENOSPC accounting. For data we handle the reservation through clearing the
5863 * delalloc bits in the io_tree. We have to do this since we could end up
5864 * allocating less disk space for the amount of data we have reserved in the
5865 * case of compression.
5866 *
5867 * If this is a reservation and the block group has become read only we cannot
5868 * make the reservation and return -EAGAIN, otherwise this function always
5869 * succeeds.
f0486c68 5870 */
fb25e914 5871static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5872 u64 num_bytes, int reserve, int delalloc)
11833d66 5873{
fb25e914 5874 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 5875 int ret = 0;
79787eaa 5876
fb25e914
JB
5877 spin_lock(&space_info->lock);
5878 spin_lock(&cache->lock);
5879 if (reserve != RESERVE_FREE) {
f0486c68
YZ
5880 if (cache->ro) {
5881 ret = -EAGAIN;
5882 } else {
fb25e914
JB
5883 cache->reserved += num_bytes;
5884 space_info->bytes_reserved += num_bytes;
5885 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 5886 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
5887 "space_info", space_info->flags,
5888 num_bytes, 0);
fb25e914
JB
5889 space_info->bytes_may_use -= num_bytes;
5890 }
e570fd27
MX
5891
5892 if (delalloc)
5893 cache->delalloc_bytes += num_bytes;
f0486c68 5894 }
fb25e914
JB
5895 } else {
5896 if (cache->ro)
5897 space_info->bytes_readonly += num_bytes;
5898 cache->reserved -= num_bytes;
5899 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
5900
5901 if (delalloc)
5902 cache->delalloc_bytes -= num_bytes;
324ae4df 5903 }
fb25e914
JB
5904 spin_unlock(&cache->lock);
5905 spin_unlock(&space_info->lock);
f0486c68 5906 return ret;
324ae4df 5907}
9078a3e1 5908
143bede5 5909void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 5910 struct btrfs_root *root)
e8569813 5911{
e8569813 5912 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
5913 struct btrfs_caching_control *next;
5914 struct btrfs_caching_control *caching_ctl;
5915 struct btrfs_block_group_cache *cache;
e8569813 5916
9e351cc8 5917 down_write(&fs_info->commit_root_sem);
25179201 5918
11833d66
YZ
5919 list_for_each_entry_safe(caching_ctl, next,
5920 &fs_info->caching_block_groups, list) {
5921 cache = caching_ctl->block_group;
5922 if (block_group_cache_done(cache)) {
5923 cache->last_byte_to_unpin = (u64)-1;
5924 list_del_init(&caching_ctl->list);
5925 put_caching_control(caching_ctl);
e8569813 5926 } else {
11833d66 5927 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 5928 }
e8569813 5929 }
11833d66
YZ
5930
5931 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
5932 fs_info->pinned_extents = &fs_info->freed_extents[1];
5933 else
5934 fs_info->pinned_extents = &fs_info->freed_extents[0];
5935
9e351cc8 5936 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
5937
5938 update_global_block_rsv(fs_info);
e8569813
ZY
5939}
5940
678886bd
FM
5941static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
5942 const bool return_free_space)
ccd467d6 5943{
11833d66
YZ
5944 struct btrfs_fs_info *fs_info = root->fs_info;
5945 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
5946 struct btrfs_space_info *space_info;
5947 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 5948 u64 len;
7b398f8e 5949 bool readonly;
ccd467d6 5950
11833d66 5951 while (start <= end) {
7b398f8e 5952 readonly = false;
11833d66
YZ
5953 if (!cache ||
5954 start >= cache->key.objectid + cache->key.offset) {
5955 if (cache)
5956 btrfs_put_block_group(cache);
5957 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 5958 BUG_ON(!cache); /* Logic error */
11833d66
YZ
5959 }
5960
5961 len = cache->key.objectid + cache->key.offset - start;
5962 len = min(len, end + 1 - start);
5963
5964 if (start < cache->last_byte_to_unpin) {
5965 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
5966 if (return_free_space)
5967 btrfs_add_free_space(cache, start, len);
11833d66
YZ
5968 }
5969
f0486c68 5970 start += len;
7b398f8e 5971 space_info = cache->space_info;
f0486c68 5972
7b398f8e 5973 spin_lock(&space_info->lock);
11833d66
YZ
5974 spin_lock(&cache->lock);
5975 cache->pinned -= len;
7b398f8e 5976 space_info->bytes_pinned -= len;
d288db5d 5977 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
5978 if (cache->ro) {
5979 space_info->bytes_readonly += len;
5980 readonly = true;
5981 }
11833d66 5982 spin_unlock(&cache->lock);
7b398f8e
JB
5983 if (!readonly && global_rsv->space_info == space_info) {
5984 spin_lock(&global_rsv->lock);
5985 if (!global_rsv->full) {
5986 len = min(len, global_rsv->size -
5987 global_rsv->reserved);
5988 global_rsv->reserved += len;
5989 space_info->bytes_may_use += len;
5990 if (global_rsv->reserved >= global_rsv->size)
5991 global_rsv->full = 1;
5992 }
5993 spin_unlock(&global_rsv->lock);
5994 }
5995 spin_unlock(&space_info->lock);
ccd467d6 5996 }
11833d66
YZ
5997
5998 if (cache)
5999 btrfs_put_block_group(cache);
ccd467d6
CM
6000 return 0;
6001}
6002
6003int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6004 struct btrfs_root *root)
a28ec197 6005{
11833d66
YZ
6006 struct btrfs_fs_info *fs_info = root->fs_info;
6007 struct extent_io_tree *unpin;
1a5bc167
CM
6008 u64 start;
6009 u64 end;
a28ec197 6010 int ret;
a28ec197 6011
79787eaa
JM
6012 if (trans->aborted)
6013 return 0;
6014
11833d66
YZ
6015 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6016 unpin = &fs_info->freed_extents[1];
6017 else
6018 unpin = &fs_info->freed_extents[0];
6019
d397712b 6020 while (1) {
d4b450cd 6021 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6022 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6023 EXTENT_DIRTY, NULL);
d4b450cd
FM
6024 if (ret) {
6025 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6026 break;
d4b450cd 6027 }
1f3c79a2 6028
5378e607
LD
6029 if (btrfs_test_opt(root, DISCARD))
6030 ret = btrfs_discard_extent(root, start,
6031 end + 1 - start, NULL);
1f3c79a2 6032
1a5bc167 6033 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6034 unpin_extent_range(root, start, end, true);
d4b450cd 6035 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6036 cond_resched();
a28ec197 6037 }
817d52f8 6038
e20d96d6
CM
6039 return 0;
6040}
6041
b150a4f1
JB
6042static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6043 u64 owner, u64 root_objectid)
6044{
6045 struct btrfs_space_info *space_info;
6046 u64 flags;
6047
6048 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6049 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6050 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6051 else
6052 flags = BTRFS_BLOCK_GROUP_METADATA;
6053 } else {
6054 flags = BTRFS_BLOCK_GROUP_DATA;
6055 }
6056
6057 space_info = __find_space_info(fs_info, flags);
6058 BUG_ON(!space_info); /* Logic bug */
6059 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6060}
6061
6062
5d4f98a2
YZ
6063static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6064 struct btrfs_root *root,
6065 u64 bytenr, u64 num_bytes, u64 parent,
6066 u64 root_objectid, u64 owner_objectid,
6067 u64 owner_offset, int refs_to_drop,
fcebe456
JB
6068 struct btrfs_delayed_extent_op *extent_op,
6069 int no_quota)
a28ec197 6070{
e2fa7227 6071 struct btrfs_key key;
5d4f98a2 6072 struct btrfs_path *path;
1261ec42
CM
6073 struct btrfs_fs_info *info = root->fs_info;
6074 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6075 struct extent_buffer *leaf;
5d4f98a2
YZ
6076 struct btrfs_extent_item *ei;
6077 struct btrfs_extent_inline_ref *iref;
a28ec197 6078 int ret;
5d4f98a2 6079 int is_data;
952fccac
CM
6080 int extent_slot = 0;
6081 int found_extent = 0;
6082 int num_to_del = 1;
5d4f98a2
YZ
6083 u32 item_size;
6084 u64 refs;
fcebe456
JB
6085 int last_ref = 0;
6086 enum btrfs_qgroup_operation_type type = BTRFS_QGROUP_OPER_SUB_EXCL;
3173a18f
JB
6087 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6088 SKINNY_METADATA);
037e6390 6089
fcebe456
JB
6090 if (!info->quota_enabled || !is_fstree(root_objectid))
6091 no_quota = 1;
6092
5caf2a00 6093 path = btrfs_alloc_path();
54aa1f4d
CM
6094 if (!path)
6095 return -ENOMEM;
5f26f772 6096
3c12ac72 6097 path->reada = 1;
b9473439 6098 path->leave_spinning = 1;
5d4f98a2
YZ
6099
6100 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6101 BUG_ON(!is_data && refs_to_drop != 1);
6102
3173a18f
JB
6103 if (is_data)
6104 skinny_metadata = 0;
6105
5d4f98a2
YZ
6106 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6107 bytenr, num_bytes, parent,
6108 root_objectid, owner_objectid,
6109 owner_offset);
7bb86316 6110 if (ret == 0) {
952fccac 6111 extent_slot = path->slots[0];
5d4f98a2
YZ
6112 while (extent_slot >= 0) {
6113 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6114 extent_slot);
5d4f98a2 6115 if (key.objectid != bytenr)
952fccac 6116 break;
5d4f98a2
YZ
6117 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6118 key.offset == num_bytes) {
952fccac
CM
6119 found_extent = 1;
6120 break;
6121 }
3173a18f
JB
6122 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6123 key.offset == owner_objectid) {
6124 found_extent = 1;
6125 break;
6126 }
952fccac
CM
6127 if (path->slots[0] - extent_slot > 5)
6128 break;
5d4f98a2 6129 extent_slot--;
952fccac 6130 }
5d4f98a2
YZ
6131#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6132 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6133 if (found_extent && item_size < sizeof(*ei))
6134 found_extent = 0;
6135#endif
31840ae1 6136 if (!found_extent) {
5d4f98a2 6137 BUG_ON(iref);
56bec294 6138 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6139 NULL, refs_to_drop,
fcebe456 6140 is_data, &last_ref);
005d6427
DS
6141 if (ret) {
6142 btrfs_abort_transaction(trans, extent_root, ret);
6143 goto out;
6144 }
b3b4aa74 6145 btrfs_release_path(path);
b9473439 6146 path->leave_spinning = 1;
5d4f98a2
YZ
6147
6148 key.objectid = bytenr;
6149 key.type = BTRFS_EXTENT_ITEM_KEY;
6150 key.offset = num_bytes;
6151
3173a18f
JB
6152 if (!is_data && skinny_metadata) {
6153 key.type = BTRFS_METADATA_ITEM_KEY;
6154 key.offset = owner_objectid;
6155 }
6156
31840ae1
ZY
6157 ret = btrfs_search_slot(trans, extent_root,
6158 &key, path, -1, 1);
3173a18f
JB
6159 if (ret > 0 && skinny_metadata && path->slots[0]) {
6160 /*
6161 * Couldn't find our skinny metadata item,
6162 * see if we have ye olde extent item.
6163 */
6164 path->slots[0]--;
6165 btrfs_item_key_to_cpu(path->nodes[0], &key,
6166 path->slots[0]);
6167 if (key.objectid == bytenr &&
6168 key.type == BTRFS_EXTENT_ITEM_KEY &&
6169 key.offset == num_bytes)
6170 ret = 0;
6171 }
6172
6173 if (ret > 0 && skinny_metadata) {
6174 skinny_metadata = false;
9ce49a0b 6175 key.objectid = bytenr;
3173a18f
JB
6176 key.type = BTRFS_EXTENT_ITEM_KEY;
6177 key.offset = num_bytes;
6178 btrfs_release_path(path);
6179 ret = btrfs_search_slot(trans, extent_root,
6180 &key, path, -1, 1);
6181 }
6182
f3465ca4 6183 if (ret) {
c2cf52eb 6184 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6185 ret, bytenr);
b783e62d
JB
6186 if (ret > 0)
6187 btrfs_print_leaf(extent_root,
6188 path->nodes[0]);
f3465ca4 6189 }
005d6427
DS
6190 if (ret < 0) {
6191 btrfs_abort_transaction(trans, extent_root, ret);
6192 goto out;
6193 }
31840ae1
ZY
6194 extent_slot = path->slots[0];
6195 }
fae7f21c 6196 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6197 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6198 btrfs_err(info,
6199 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6200 bytenr, parent, root_objectid, owner_objectid,
6201 owner_offset);
c4a050bb
JB
6202 btrfs_abort_transaction(trans, extent_root, ret);
6203 goto out;
79787eaa 6204 } else {
005d6427
DS
6205 btrfs_abort_transaction(trans, extent_root, ret);
6206 goto out;
7bb86316 6207 }
5f39d397
CM
6208
6209 leaf = path->nodes[0];
5d4f98a2
YZ
6210 item_size = btrfs_item_size_nr(leaf, extent_slot);
6211#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6212 if (item_size < sizeof(*ei)) {
6213 BUG_ON(found_extent || extent_slot != path->slots[0]);
6214 ret = convert_extent_item_v0(trans, extent_root, path,
6215 owner_objectid, 0);
005d6427
DS
6216 if (ret < 0) {
6217 btrfs_abort_transaction(trans, extent_root, ret);
6218 goto out;
6219 }
5d4f98a2 6220
b3b4aa74 6221 btrfs_release_path(path);
5d4f98a2
YZ
6222 path->leave_spinning = 1;
6223
6224 key.objectid = bytenr;
6225 key.type = BTRFS_EXTENT_ITEM_KEY;
6226 key.offset = num_bytes;
6227
6228 ret = btrfs_search_slot(trans, extent_root, &key, path,
6229 -1, 1);
6230 if (ret) {
c2cf52eb 6231 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6232 ret, bytenr);
5d4f98a2
YZ
6233 btrfs_print_leaf(extent_root, path->nodes[0]);
6234 }
005d6427
DS
6235 if (ret < 0) {
6236 btrfs_abort_transaction(trans, extent_root, ret);
6237 goto out;
6238 }
6239
5d4f98a2
YZ
6240 extent_slot = path->slots[0];
6241 leaf = path->nodes[0];
6242 item_size = btrfs_item_size_nr(leaf, extent_slot);
6243 }
6244#endif
6245 BUG_ON(item_size < sizeof(*ei));
952fccac 6246 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6247 struct btrfs_extent_item);
3173a18f
JB
6248 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6249 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6250 struct btrfs_tree_block_info *bi;
6251 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6252 bi = (struct btrfs_tree_block_info *)(ei + 1);
6253 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6254 }
56bec294 6255
5d4f98a2 6256 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6257 if (refs < refs_to_drop) {
6258 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6259 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6260 ret = -EINVAL;
6261 btrfs_abort_transaction(trans, extent_root, ret);
6262 goto out;
6263 }
56bec294 6264 refs -= refs_to_drop;
5f39d397 6265
5d4f98a2 6266 if (refs > 0) {
fcebe456 6267 type = BTRFS_QGROUP_OPER_SUB_SHARED;
5d4f98a2
YZ
6268 if (extent_op)
6269 __run_delayed_extent_op(extent_op, leaf, ei);
6270 /*
6271 * In the case of inline back ref, reference count will
6272 * be updated by remove_extent_backref
952fccac 6273 */
5d4f98a2
YZ
6274 if (iref) {
6275 BUG_ON(!found_extent);
6276 } else {
6277 btrfs_set_extent_refs(leaf, ei, refs);
6278 btrfs_mark_buffer_dirty(leaf);
6279 }
6280 if (found_extent) {
6281 ret = remove_extent_backref(trans, extent_root, path,
6282 iref, refs_to_drop,
fcebe456 6283 is_data, &last_ref);
005d6427
DS
6284 if (ret) {
6285 btrfs_abort_transaction(trans, extent_root, ret);
6286 goto out;
6287 }
952fccac 6288 }
b150a4f1
JB
6289 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6290 root_objectid);
5d4f98a2 6291 } else {
5d4f98a2
YZ
6292 if (found_extent) {
6293 BUG_ON(is_data && refs_to_drop !=
6294 extent_data_ref_count(root, path, iref));
6295 if (iref) {
6296 BUG_ON(path->slots[0] != extent_slot);
6297 } else {
6298 BUG_ON(path->slots[0] != extent_slot + 1);
6299 path->slots[0] = extent_slot;
6300 num_to_del = 2;
6301 }
78fae27e 6302 }
b9473439 6303
fcebe456 6304 last_ref = 1;
952fccac
CM
6305 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6306 num_to_del);
005d6427
DS
6307 if (ret) {
6308 btrfs_abort_transaction(trans, extent_root, ret);
6309 goto out;
6310 }
b3b4aa74 6311 btrfs_release_path(path);
21af804c 6312
5d4f98a2 6313 if (is_data) {
459931ec 6314 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6315 if (ret) {
6316 btrfs_abort_transaction(trans, extent_root, ret);
6317 goto out;
6318 }
459931ec
CM
6319 }
6320
ce93ec54 6321 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6322 if (ret) {
6323 btrfs_abort_transaction(trans, extent_root, ret);
6324 goto out;
6325 }
a28ec197 6326 }
fcebe456
JB
6327 btrfs_release_path(path);
6328
6329 /* Deal with the quota accounting */
6330 if (!ret && last_ref && !no_quota) {
6331 int mod_seq = 0;
6332
6333 if (owner_objectid >= BTRFS_FIRST_FREE_OBJECTID &&
6334 type == BTRFS_QGROUP_OPER_SUB_SHARED)
6335 mod_seq = 1;
6336
6337 ret = btrfs_qgroup_record_ref(trans, info, root_objectid,
6338 bytenr, num_bytes, type,
6339 mod_seq);
6340 }
79787eaa 6341out:
5caf2a00 6342 btrfs_free_path(path);
a28ec197
CM
6343 return ret;
6344}
6345
1887be66 6346/*
f0486c68 6347 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6348 * delayed ref for that extent as well. This searches the delayed ref tree for
6349 * a given extent, and if there are no other delayed refs to be processed, it
6350 * removes it from the tree.
6351 */
6352static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6353 struct btrfs_root *root, u64 bytenr)
6354{
6355 struct btrfs_delayed_ref_head *head;
6356 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6357 int ret = 0;
1887be66
CM
6358
6359 delayed_refs = &trans->transaction->delayed_refs;
6360 spin_lock(&delayed_refs->lock);
6361 head = btrfs_find_delayed_ref_head(trans, bytenr);
6362 if (!head)
cf93da7b 6363 goto out_delayed_unlock;
1887be66 6364
d7df2c79
JB
6365 spin_lock(&head->lock);
6366 if (rb_first(&head->ref_root))
1887be66
CM
6367 goto out;
6368
5d4f98a2
YZ
6369 if (head->extent_op) {
6370 if (!head->must_insert_reserved)
6371 goto out;
78a6184a 6372 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6373 head->extent_op = NULL;
6374 }
6375
1887be66
CM
6376 /*
6377 * waiting for the lock here would deadlock. If someone else has it
6378 * locked they are already in the process of dropping it anyway
6379 */
6380 if (!mutex_trylock(&head->mutex))
6381 goto out;
6382
6383 /*
6384 * at this point we have a head with no other entries. Go
6385 * ahead and process it.
6386 */
6387 head->node.in_tree = 0;
c46effa6 6388 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6389
d7df2c79 6390 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6391
6392 /*
6393 * we don't take a ref on the node because we're removing it from the
6394 * tree, so we just steal the ref the tree was holding.
6395 */
c3e69d58 6396 delayed_refs->num_heads--;
d7df2c79 6397 if (head->processing == 0)
c3e69d58 6398 delayed_refs->num_heads_ready--;
d7df2c79
JB
6399 head->processing = 0;
6400 spin_unlock(&head->lock);
1887be66
CM
6401 spin_unlock(&delayed_refs->lock);
6402
f0486c68
YZ
6403 BUG_ON(head->extent_op);
6404 if (head->must_insert_reserved)
6405 ret = 1;
6406
6407 mutex_unlock(&head->mutex);
1887be66 6408 btrfs_put_delayed_ref(&head->node);
f0486c68 6409 return ret;
1887be66 6410out:
d7df2c79 6411 spin_unlock(&head->lock);
cf93da7b
CM
6412
6413out_delayed_unlock:
1887be66
CM
6414 spin_unlock(&delayed_refs->lock);
6415 return 0;
6416}
6417
f0486c68
YZ
6418void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6419 struct btrfs_root *root,
6420 struct extent_buffer *buf,
5581a51a 6421 u64 parent, int last_ref)
f0486c68 6422{
b150a4f1 6423 int pin = 1;
f0486c68
YZ
6424 int ret;
6425
6426 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6427 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6428 buf->start, buf->len,
6429 parent, root->root_key.objectid,
6430 btrfs_header_level(buf),
5581a51a 6431 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6432 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6433 }
6434
6435 if (!last_ref)
6436 return;
6437
f0486c68 6438 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6439 struct btrfs_block_group_cache *cache;
6440
f0486c68
YZ
6441 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6442 ret = check_ref_cleanup(trans, root, buf->start);
6443 if (!ret)
37be25bc 6444 goto out;
f0486c68
YZ
6445 }
6446
6219872d
FM
6447 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6448
f0486c68
YZ
6449 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6450 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6451 btrfs_put_block_group(cache);
37be25bc 6452 goto out;
f0486c68
YZ
6453 }
6454
6455 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6456
6457 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6458 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6459 btrfs_put_block_group(cache);
0be5dc67 6460 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6461 pin = 0;
f0486c68
YZ
6462 }
6463out:
b150a4f1
JB
6464 if (pin)
6465 add_pinned_bytes(root->fs_info, buf->len,
6466 btrfs_header_level(buf),
6467 root->root_key.objectid);
6468
a826d6dc
JB
6469 /*
6470 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6471 * anymore.
6472 */
6473 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6474}
6475
79787eaa 6476/* Can return -ENOMEM */
66d7e7f0
AJ
6477int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6478 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6479 u64 owner, u64 offset, int no_quota)
925baedd
CM
6480{
6481 int ret;
66d7e7f0 6482 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6483
fccb84c9 6484 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6485 return 0;
fccb84c9 6486
b150a4f1
JB
6487 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6488
56bec294
CM
6489 /*
6490 * tree log blocks never actually go into the extent allocation
6491 * tree, just update pinning info and exit early.
56bec294 6492 */
5d4f98a2
YZ
6493 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6494 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6495 /* unlocks the pinned mutex */
11833d66 6496 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6497 ret = 0;
5d4f98a2 6498 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6499 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6500 num_bytes,
5d4f98a2 6501 parent, root_objectid, (int)owner,
fcebe456 6502 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6503 } else {
66d7e7f0
AJ
6504 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6505 num_bytes,
6506 parent, root_objectid, owner,
6507 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6508 NULL, no_quota);
56bec294 6509 }
925baedd
CM
6510 return ret;
6511}
6512
817d52f8
JB
6513/*
6514 * when we wait for progress in the block group caching, its because
6515 * our allocation attempt failed at least once. So, we must sleep
6516 * and let some progress happen before we try again.
6517 *
6518 * This function will sleep at least once waiting for new free space to
6519 * show up, and then it will check the block group free space numbers
6520 * for our min num_bytes. Another option is to have it go ahead
6521 * and look in the rbtree for a free extent of a given size, but this
6522 * is a good start.
36cce922
JB
6523 *
6524 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6525 * any of the information in this block group.
817d52f8 6526 */
36cce922 6527static noinline void
817d52f8
JB
6528wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6529 u64 num_bytes)
6530{
11833d66 6531 struct btrfs_caching_control *caching_ctl;
817d52f8 6532
11833d66
YZ
6533 caching_ctl = get_caching_control(cache);
6534 if (!caching_ctl)
36cce922 6535 return;
817d52f8 6536
11833d66 6537 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6538 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6539
6540 put_caching_control(caching_ctl);
11833d66
YZ
6541}
6542
6543static noinline int
6544wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6545{
6546 struct btrfs_caching_control *caching_ctl;
36cce922 6547 int ret = 0;
11833d66
YZ
6548
6549 caching_ctl = get_caching_control(cache);
6550 if (!caching_ctl)
36cce922 6551 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6552
6553 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6554 if (cache->cached == BTRFS_CACHE_ERROR)
6555 ret = -EIO;
11833d66 6556 put_caching_control(caching_ctl);
36cce922 6557 return ret;
817d52f8
JB
6558}
6559
31e50229 6560int __get_raid_index(u64 flags)
b742bb82 6561{
7738a53a 6562 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6563 return BTRFS_RAID_RAID10;
7738a53a 6564 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6565 return BTRFS_RAID_RAID1;
7738a53a 6566 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6567 return BTRFS_RAID_DUP;
7738a53a 6568 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6569 return BTRFS_RAID_RAID0;
53b381b3 6570 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6571 return BTRFS_RAID_RAID5;
53b381b3 6572 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6573 return BTRFS_RAID_RAID6;
7738a53a 6574
e942f883 6575 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6576}
6577
6ab0a202 6578int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6579{
31e50229 6580 return __get_raid_index(cache->flags);
7738a53a
ID
6581}
6582
6ab0a202
JM
6583static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6584 [BTRFS_RAID_RAID10] = "raid10",
6585 [BTRFS_RAID_RAID1] = "raid1",
6586 [BTRFS_RAID_DUP] = "dup",
6587 [BTRFS_RAID_RAID0] = "raid0",
6588 [BTRFS_RAID_SINGLE] = "single",
6589 [BTRFS_RAID_RAID5] = "raid5",
6590 [BTRFS_RAID_RAID6] = "raid6",
6591};
6592
1b8e5df6 6593static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6594{
6595 if (type >= BTRFS_NR_RAID_TYPES)
6596 return NULL;
6597
6598 return btrfs_raid_type_names[type];
6599}
6600
817d52f8 6601enum btrfs_loop_type {
285ff5af
JB
6602 LOOP_CACHING_NOWAIT = 0,
6603 LOOP_CACHING_WAIT = 1,
6604 LOOP_ALLOC_CHUNK = 2,
6605 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6606};
6607
e570fd27
MX
6608static inline void
6609btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6610 int delalloc)
6611{
6612 if (delalloc)
6613 down_read(&cache->data_rwsem);
6614}
6615
6616static inline void
6617btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6618 int delalloc)
6619{
6620 btrfs_get_block_group(cache);
6621 if (delalloc)
6622 down_read(&cache->data_rwsem);
6623}
6624
6625static struct btrfs_block_group_cache *
6626btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6627 struct btrfs_free_cluster *cluster,
6628 int delalloc)
6629{
6630 struct btrfs_block_group_cache *used_bg;
6631 bool locked = false;
6632again:
6633 spin_lock(&cluster->refill_lock);
6634 if (locked) {
6635 if (used_bg == cluster->block_group)
6636 return used_bg;
6637
6638 up_read(&used_bg->data_rwsem);
6639 btrfs_put_block_group(used_bg);
6640 }
6641
6642 used_bg = cluster->block_group;
6643 if (!used_bg)
6644 return NULL;
6645
6646 if (used_bg == block_group)
6647 return used_bg;
6648
6649 btrfs_get_block_group(used_bg);
6650
6651 if (!delalloc)
6652 return used_bg;
6653
6654 if (down_read_trylock(&used_bg->data_rwsem))
6655 return used_bg;
6656
6657 spin_unlock(&cluster->refill_lock);
6658 down_read(&used_bg->data_rwsem);
6659 locked = true;
6660 goto again;
6661}
6662
6663static inline void
6664btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6665 int delalloc)
6666{
6667 if (delalloc)
6668 up_read(&cache->data_rwsem);
6669 btrfs_put_block_group(cache);
6670}
6671
fec577fb
CM
6672/*
6673 * walks the btree of allocated extents and find a hole of a given size.
6674 * The key ins is changed to record the hole:
a4820398 6675 * ins->objectid == start position
62e2749e 6676 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6677 * ins->offset == the size of the hole.
fec577fb 6678 * Any available blocks before search_start are skipped.
a4820398
MX
6679 *
6680 * If there is no suitable free space, we will record the max size of
6681 * the free space extent currently.
fec577fb 6682 */
00361589 6683static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6684 u64 num_bytes, u64 empty_size,
98ed5174 6685 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6686 u64 flags, int delalloc)
fec577fb 6687{
80eb234a 6688 int ret = 0;
d397712b 6689 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6690 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6691 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6692 u64 search_start = 0;
a4820398 6693 u64 max_extent_size = 0;
239b14b3 6694 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6695 struct btrfs_space_info *space_info;
fa9c0d79 6696 int loop = 0;
b6919a58
DS
6697 int index = __get_raid_index(flags);
6698 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6699 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6700 bool failed_cluster_refill = false;
1cdda9b8 6701 bool failed_alloc = false;
67377734 6702 bool use_cluster = true;
60d2adbb 6703 bool have_caching_bg = false;
fec577fb 6704
db94535d 6705 WARN_ON(num_bytes < root->sectorsize);
962a298f 6706 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6707 ins->objectid = 0;
6708 ins->offset = 0;
b1a4d965 6709
b6919a58 6710 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6711
b6919a58 6712 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6713 if (!space_info) {
b6919a58 6714 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6715 return -ENOSPC;
6716 }
2552d17e 6717
67377734
JB
6718 /*
6719 * If the space info is for both data and metadata it means we have a
6720 * small filesystem and we can't use the clustering stuff.
6721 */
6722 if (btrfs_mixed_space_info(space_info))
6723 use_cluster = false;
6724
b6919a58 6725 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6726 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6727 if (!btrfs_test_opt(root, SSD))
6728 empty_cluster = 64 * 1024;
239b14b3
CM
6729 }
6730
b6919a58 6731 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6732 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6733 last_ptr = &root->fs_info->data_alloc_cluster;
6734 }
0f9dd46c 6735
239b14b3 6736 if (last_ptr) {
fa9c0d79
CM
6737 spin_lock(&last_ptr->lock);
6738 if (last_ptr->block_group)
6739 hint_byte = last_ptr->window_start;
6740 spin_unlock(&last_ptr->lock);
239b14b3 6741 }
fa9c0d79 6742
a061fc8d 6743 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6744 search_start = max(search_start, hint_byte);
0b86a832 6745
817d52f8 6746 if (!last_ptr)
fa9c0d79 6747 empty_cluster = 0;
fa9c0d79 6748
2552d17e 6749 if (search_start == hint_byte) {
2552d17e
JB
6750 block_group = btrfs_lookup_block_group(root->fs_info,
6751 search_start);
817d52f8
JB
6752 /*
6753 * we don't want to use the block group if it doesn't match our
6754 * allocation bits, or if its not cached.
ccf0e725
JB
6755 *
6756 * However if we are re-searching with an ideal block group
6757 * picked out then we don't care that the block group is cached.
817d52f8 6758 */
b6919a58 6759 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6760 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6761 down_read(&space_info->groups_sem);
44fb5511
CM
6762 if (list_empty(&block_group->list) ||
6763 block_group->ro) {
6764 /*
6765 * someone is removing this block group,
6766 * we can't jump into the have_block_group
6767 * target because our list pointers are not
6768 * valid
6769 */
6770 btrfs_put_block_group(block_group);
6771 up_read(&space_info->groups_sem);
ccf0e725 6772 } else {
b742bb82 6773 index = get_block_group_index(block_group);
e570fd27 6774 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6775 goto have_block_group;
ccf0e725 6776 }
2552d17e 6777 } else if (block_group) {
fa9c0d79 6778 btrfs_put_block_group(block_group);
2552d17e 6779 }
42e70e7a 6780 }
2552d17e 6781search:
60d2adbb 6782 have_caching_bg = false;
80eb234a 6783 down_read(&space_info->groups_sem);
b742bb82
YZ
6784 list_for_each_entry(block_group, &space_info->block_groups[index],
6785 list) {
6226cb0a 6786 u64 offset;
817d52f8 6787 int cached;
8a1413a2 6788
e570fd27 6789 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6790 search_start = block_group->key.objectid;
42e70e7a 6791
83a50de9
CM
6792 /*
6793 * this can happen if we end up cycling through all the
6794 * raid types, but we want to make sure we only allocate
6795 * for the proper type.
6796 */
b6919a58 6797 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6798 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6799 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6800 BTRFS_BLOCK_GROUP_RAID5 |
6801 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6802 BTRFS_BLOCK_GROUP_RAID10;
6803
6804 /*
6805 * if they asked for extra copies and this block group
6806 * doesn't provide them, bail. This does allow us to
6807 * fill raid0 from raid1.
6808 */
b6919a58 6809 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6810 goto loop;
6811 }
6812
2552d17e 6813have_block_group:
291c7d2f
JB
6814 cached = block_group_cache_done(block_group);
6815 if (unlikely(!cached)) {
f6373bf3 6816 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6817 BUG_ON(ret < 0);
6818 ret = 0;
817d52f8
JB
6819 }
6820
36cce922
JB
6821 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6822 goto loop;
ea6a478e 6823 if (unlikely(block_group->ro))
2552d17e 6824 goto loop;
0f9dd46c 6825
0a24325e 6826 /*
062c05c4
AO
6827 * Ok we want to try and use the cluster allocator, so
6828 * lets look there
0a24325e 6829 */
062c05c4 6830 if (last_ptr) {
215a63d1 6831 struct btrfs_block_group_cache *used_block_group;
8de972b4 6832 unsigned long aligned_cluster;
fa9c0d79
CM
6833 /*
6834 * the refill lock keeps out other
6835 * people trying to start a new cluster
6836 */
e570fd27
MX
6837 used_block_group = btrfs_lock_cluster(block_group,
6838 last_ptr,
6839 delalloc);
6840 if (!used_block_group)
44fb5511 6841 goto refill_cluster;
274bd4fb 6842
e570fd27
MX
6843 if (used_block_group != block_group &&
6844 (used_block_group->ro ||
6845 !block_group_bits(used_block_group, flags)))
6846 goto release_cluster;
44fb5511 6847
274bd4fb 6848 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6849 last_ptr,
6850 num_bytes,
6851 used_block_group->key.objectid,
6852 &max_extent_size);
fa9c0d79
CM
6853 if (offset) {
6854 /* we have a block, we're done */
6855 spin_unlock(&last_ptr->refill_lock);
3f7de037 6856 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6857 used_block_group,
6858 search_start, num_bytes);
215a63d1 6859 if (used_block_group != block_group) {
e570fd27
MX
6860 btrfs_release_block_group(block_group,
6861 delalloc);
215a63d1
MX
6862 block_group = used_block_group;
6863 }
fa9c0d79
CM
6864 goto checks;
6865 }
6866
274bd4fb 6867 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 6868release_cluster:
062c05c4
AO
6869 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
6870 * set up a new clusters, so lets just skip it
6871 * and let the allocator find whatever block
6872 * it can find. If we reach this point, we
6873 * will have tried the cluster allocator
6874 * plenty of times and not have found
6875 * anything, so we are likely way too
6876 * fragmented for the clustering stuff to find
a5f6f719
AO
6877 * anything.
6878 *
6879 * However, if the cluster is taken from the
6880 * current block group, release the cluster
6881 * first, so that we stand a better chance of
6882 * succeeding in the unclustered
6883 * allocation. */
6884 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 6885 used_block_group != block_group) {
062c05c4 6886 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
6887 btrfs_release_block_group(used_block_group,
6888 delalloc);
062c05c4
AO
6889 goto unclustered_alloc;
6890 }
6891
fa9c0d79
CM
6892 /*
6893 * this cluster didn't work out, free it and
6894 * start over
6895 */
6896 btrfs_return_cluster_to_free_space(NULL, last_ptr);
6897
e570fd27
MX
6898 if (used_block_group != block_group)
6899 btrfs_release_block_group(used_block_group,
6900 delalloc);
6901refill_cluster:
a5f6f719
AO
6902 if (loop >= LOOP_NO_EMPTY_SIZE) {
6903 spin_unlock(&last_ptr->refill_lock);
6904 goto unclustered_alloc;
6905 }
6906
8de972b4
CM
6907 aligned_cluster = max_t(unsigned long,
6908 empty_cluster + empty_size,
6909 block_group->full_stripe_len);
6910
fa9c0d79 6911 /* allocate a cluster in this block group */
00361589
JB
6912 ret = btrfs_find_space_cluster(root, block_group,
6913 last_ptr, search_start,
6914 num_bytes,
6915 aligned_cluster);
fa9c0d79
CM
6916 if (ret == 0) {
6917 /*
6918 * now pull our allocation out of this
6919 * cluster
6920 */
6921 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
6922 last_ptr,
6923 num_bytes,
6924 search_start,
6925 &max_extent_size);
fa9c0d79
CM
6926 if (offset) {
6927 /* we found one, proceed */
6928 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
6929 trace_btrfs_reserve_extent_cluster(root,
6930 block_group, search_start,
6931 num_bytes);
fa9c0d79
CM
6932 goto checks;
6933 }
0a24325e
JB
6934 } else if (!cached && loop > LOOP_CACHING_NOWAIT
6935 && !failed_cluster_refill) {
817d52f8
JB
6936 spin_unlock(&last_ptr->refill_lock);
6937
0a24325e 6938 failed_cluster_refill = true;
817d52f8
JB
6939 wait_block_group_cache_progress(block_group,
6940 num_bytes + empty_cluster + empty_size);
6941 goto have_block_group;
fa9c0d79 6942 }
817d52f8 6943
fa9c0d79
CM
6944 /*
6945 * at this point we either didn't find a cluster
6946 * or we weren't able to allocate a block from our
6947 * cluster. Free the cluster we've been trying
6948 * to use, and go to the next block group
6949 */
0a24325e 6950 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 6951 spin_unlock(&last_ptr->refill_lock);
0a24325e 6952 goto loop;
fa9c0d79
CM
6953 }
6954
062c05c4 6955unclustered_alloc:
a5f6f719
AO
6956 spin_lock(&block_group->free_space_ctl->tree_lock);
6957 if (cached &&
6958 block_group->free_space_ctl->free_space <
6959 num_bytes + empty_cluster + empty_size) {
a4820398
MX
6960 if (block_group->free_space_ctl->free_space >
6961 max_extent_size)
6962 max_extent_size =
6963 block_group->free_space_ctl->free_space;
a5f6f719
AO
6964 spin_unlock(&block_group->free_space_ctl->tree_lock);
6965 goto loop;
6966 }
6967 spin_unlock(&block_group->free_space_ctl->tree_lock);
6968
6226cb0a 6969 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
6970 num_bytes, empty_size,
6971 &max_extent_size);
1cdda9b8
JB
6972 /*
6973 * If we didn't find a chunk, and we haven't failed on this
6974 * block group before, and this block group is in the middle of
6975 * caching and we are ok with waiting, then go ahead and wait
6976 * for progress to be made, and set failed_alloc to true.
6977 *
6978 * If failed_alloc is true then we've already waited on this
6979 * block group once and should move on to the next block group.
6980 */
6981 if (!offset && !failed_alloc && !cached &&
6982 loop > LOOP_CACHING_NOWAIT) {
817d52f8 6983 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
6984 num_bytes + empty_size);
6985 failed_alloc = true;
817d52f8 6986 goto have_block_group;
1cdda9b8 6987 } else if (!offset) {
60d2adbb
MX
6988 if (!cached)
6989 have_caching_bg = true;
1cdda9b8 6990 goto loop;
817d52f8 6991 }
fa9c0d79 6992checks:
4e54b17a 6993 search_start = ALIGN(offset, root->stripesize);
25179201 6994
2552d17e
JB
6995 /* move on to the next group */
6996 if (search_start + num_bytes >
215a63d1
MX
6997 block_group->key.objectid + block_group->key.offset) {
6998 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 6999 goto loop;
6226cb0a 7000 }
f5a31e16 7001
f0486c68 7002 if (offset < search_start)
215a63d1 7003 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7004 search_start - offset);
7005 BUG_ON(offset > search_start);
2552d17e 7006
215a63d1 7007 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7008 alloc_type, delalloc);
f0486c68 7009 if (ret == -EAGAIN) {
215a63d1 7010 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7011 goto loop;
0f9dd46c 7012 }
0b86a832 7013
f0486c68 7014 /* we are all good, lets return */
2552d17e
JB
7015 ins->objectid = search_start;
7016 ins->offset = num_bytes;
d2fb3437 7017
3f7de037
JB
7018 trace_btrfs_reserve_extent(orig_root, block_group,
7019 search_start, num_bytes);
e570fd27 7020 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7021 break;
7022loop:
0a24325e 7023 failed_cluster_refill = false;
1cdda9b8 7024 failed_alloc = false;
b742bb82 7025 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7026 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7027 }
7028 up_read(&space_info->groups_sem);
7029
60d2adbb
MX
7030 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7031 goto search;
7032
b742bb82
YZ
7033 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7034 goto search;
7035
285ff5af 7036 /*
ccf0e725
JB
7037 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7038 * caching kthreads as we move along
817d52f8
JB
7039 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7040 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7041 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7042 * again
fa9c0d79 7043 */
723bda20 7044 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7045 index = 0;
723bda20 7046 loop++;
817d52f8 7047 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7048 struct btrfs_trans_handle *trans;
f017f15f
WS
7049 int exist = 0;
7050
7051 trans = current->journal_info;
7052 if (trans)
7053 exist = 1;
7054 else
7055 trans = btrfs_join_transaction(root);
00361589 7056
00361589
JB
7057 if (IS_ERR(trans)) {
7058 ret = PTR_ERR(trans);
7059 goto out;
7060 }
7061
b6919a58 7062 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7063 CHUNK_ALLOC_FORCE);
7064 /*
7065 * Do not bail out on ENOSPC since we
7066 * can do more things.
7067 */
00361589 7068 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7069 btrfs_abort_transaction(trans,
7070 root, ret);
00361589
JB
7071 else
7072 ret = 0;
f017f15f
WS
7073 if (!exist)
7074 btrfs_end_transaction(trans, root);
00361589 7075 if (ret)
ea658bad 7076 goto out;
2552d17e
JB
7077 }
7078
723bda20
JB
7079 if (loop == LOOP_NO_EMPTY_SIZE) {
7080 empty_size = 0;
7081 empty_cluster = 0;
fa9c0d79 7082 }
723bda20
JB
7083
7084 goto search;
2552d17e
JB
7085 } else if (!ins->objectid) {
7086 ret = -ENOSPC;
d82a6f1d 7087 } else if (ins->objectid) {
80eb234a 7088 ret = 0;
be744175 7089 }
79787eaa 7090out:
a4820398
MX
7091 if (ret == -ENOSPC)
7092 ins->offset = max_extent_size;
0f70abe2 7093 return ret;
fec577fb 7094}
ec44a35c 7095
9ed74f2d
JB
7096static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7097 int dump_block_groups)
0f9dd46c
JB
7098{
7099 struct btrfs_block_group_cache *cache;
b742bb82 7100 int index = 0;
0f9dd46c 7101
9ed74f2d 7102 spin_lock(&info->lock);
efe120a0 7103 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7104 info->flags,
7105 info->total_bytes - info->bytes_used - info->bytes_pinned -
7106 info->bytes_reserved - info->bytes_readonly,
d397712b 7107 (info->full) ? "" : "not ");
efe120a0 7108 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7109 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7110 info->total_bytes, info->bytes_used, info->bytes_pinned,
7111 info->bytes_reserved, info->bytes_may_use,
7112 info->bytes_readonly);
9ed74f2d
JB
7113 spin_unlock(&info->lock);
7114
7115 if (!dump_block_groups)
7116 return;
0f9dd46c 7117
80eb234a 7118 down_read(&info->groups_sem);
b742bb82
YZ
7119again:
7120 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7121 spin_lock(&cache->lock);
efe120a0
FH
7122 printk(KERN_INFO "BTRFS: "
7123 "block group %llu has %llu bytes, "
7124 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7125 cache->key.objectid, cache->key.offset,
7126 btrfs_block_group_used(&cache->item), cache->pinned,
7127 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7128 btrfs_dump_free_space(cache, bytes);
7129 spin_unlock(&cache->lock);
7130 }
b742bb82
YZ
7131 if (++index < BTRFS_NR_RAID_TYPES)
7132 goto again;
80eb234a 7133 up_read(&info->groups_sem);
0f9dd46c 7134}
e8569813 7135
00361589 7136int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7137 u64 num_bytes, u64 min_alloc_size,
7138 u64 empty_size, u64 hint_byte,
e570fd27 7139 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7140{
9e622d6b 7141 bool final_tried = false;
b6919a58 7142 u64 flags;
fec577fb 7143 int ret;
925baedd 7144
b6919a58 7145 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7146again:
db94535d 7147 WARN_ON(num_bytes < root->sectorsize);
00361589 7148 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7149 flags, delalloc);
3b951516 7150
9e622d6b 7151 if (ret == -ENOSPC) {
a4820398
MX
7152 if (!final_tried && ins->offset) {
7153 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7154 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7155 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7156 if (num_bytes == min_alloc_size)
7157 final_tried = true;
7158 goto again;
7159 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7160 struct btrfs_space_info *sinfo;
7161
b6919a58 7162 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7163 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7164 flags, num_bytes);
53804280
JM
7165 if (sinfo)
7166 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7167 }
925baedd 7168 }
0f9dd46c
JB
7169
7170 return ret;
e6dcd2dc
CM
7171}
7172
e688b725 7173static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7174 u64 start, u64 len,
7175 int pin, int delalloc)
65b51a00 7176{
0f9dd46c 7177 struct btrfs_block_group_cache *cache;
1f3c79a2 7178 int ret = 0;
0f9dd46c 7179
0f9dd46c
JB
7180 cache = btrfs_lookup_block_group(root->fs_info, start);
7181 if (!cache) {
c2cf52eb 7182 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7183 start);
0f9dd46c
JB
7184 return -ENOSPC;
7185 }
1f3c79a2 7186
e688b725
CM
7187 if (pin)
7188 pin_down_extent(root, cache, start, len, 1);
7189 else {
dcc82f47
FM
7190 if (btrfs_test_opt(root, DISCARD))
7191 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7192 btrfs_add_free_space(cache, start, len);
e570fd27 7193 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7194 }
fa9c0d79 7195 btrfs_put_block_group(cache);
817d52f8 7196
1abe9b8a 7197 trace_btrfs_reserved_extent_free(root, start, len);
7198
e6dcd2dc
CM
7199 return ret;
7200}
7201
e688b725 7202int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7203 u64 start, u64 len, int delalloc)
e688b725 7204{
e570fd27 7205 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7206}
7207
7208int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7209 u64 start, u64 len)
7210{
e570fd27 7211 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7212}
7213
5d4f98a2
YZ
7214static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7215 struct btrfs_root *root,
7216 u64 parent, u64 root_objectid,
7217 u64 flags, u64 owner, u64 offset,
7218 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7219{
7220 int ret;
5d4f98a2 7221 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7222 struct btrfs_extent_item *extent_item;
5d4f98a2 7223 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7224 struct btrfs_path *path;
5d4f98a2
YZ
7225 struct extent_buffer *leaf;
7226 int type;
7227 u32 size;
26b8003f 7228
5d4f98a2
YZ
7229 if (parent > 0)
7230 type = BTRFS_SHARED_DATA_REF_KEY;
7231 else
7232 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7233
5d4f98a2 7234 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7235
7236 path = btrfs_alloc_path();
db5b493a
TI
7237 if (!path)
7238 return -ENOMEM;
47e4bb98 7239
b9473439 7240 path->leave_spinning = 1;
5d4f98a2
YZ
7241 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7242 ins, size);
79787eaa
JM
7243 if (ret) {
7244 btrfs_free_path(path);
7245 return ret;
7246 }
0f9dd46c 7247
5d4f98a2
YZ
7248 leaf = path->nodes[0];
7249 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7250 struct btrfs_extent_item);
5d4f98a2
YZ
7251 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7252 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7253 btrfs_set_extent_flags(leaf, extent_item,
7254 flags | BTRFS_EXTENT_FLAG_DATA);
7255
7256 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7257 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7258 if (parent > 0) {
7259 struct btrfs_shared_data_ref *ref;
7260 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7261 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7262 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7263 } else {
7264 struct btrfs_extent_data_ref *ref;
7265 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7266 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7267 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7268 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7269 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7270 }
47e4bb98
CM
7271
7272 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7273 btrfs_free_path(path);
f510cfec 7274
fcebe456
JB
7275 /* Always set parent to 0 here since its exclusive anyway. */
7276 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7277 ins->objectid, ins->offset,
7278 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7279 if (ret)
7280 return ret;
7281
ce93ec54 7282 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7283 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7284 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7285 ins->objectid, ins->offset);
f5947066
CM
7286 BUG();
7287 }
0be5dc67 7288 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7289 return ret;
7290}
7291
5d4f98a2
YZ
7292static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7293 struct btrfs_root *root,
7294 u64 parent, u64 root_objectid,
7295 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7296 int level, struct btrfs_key *ins,
7297 int no_quota)
e6dcd2dc
CM
7298{
7299 int ret;
5d4f98a2
YZ
7300 struct btrfs_fs_info *fs_info = root->fs_info;
7301 struct btrfs_extent_item *extent_item;
7302 struct btrfs_tree_block_info *block_info;
7303 struct btrfs_extent_inline_ref *iref;
7304 struct btrfs_path *path;
7305 struct extent_buffer *leaf;
3173a18f 7306 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7307 u64 num_bytes = ins->offset;
3173a18f
JB
7308 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7309 SKINNY_METADATA);
7310
7311 if (!skinny_metadata)
7312 size += sizeof(*block_info);
1c2308f8 7313
5d4f98a2 7314 path = btrfs_alloc_path();
857cc2fc
JB
7315 if (!path) {
7316 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7317 root->nodesize);
d8926bb3 7318 return -ENOMEM;
857cc2fc 7319 }
56bec294 7320
5d4f98a2
YZ
7321 path->leave_spinning = 1;
7322 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7323 ins, size);
79787eaa 7324 if (ret) {
dd825259 7325 btrfs_free_path(path);
857cc2fc 7326 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7327 root->nodesize);
79787eaa
JM
7328 return ret;
7329 }
5d4f98a2
YZ
7330
7331 leaf = path->nodes[0];
7332 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7333 struct btrfs_extent_item);
7334 btrfs_set_extent_refs(leaf, extent_item, 1);
7335 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7336 btrfs_set_extent_flags(leaf, extent_item,
7337 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7338
3173a18f
JB
7339 if (skinny_metadata) {
7340 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7341 num_bytes = root->nodesize;
3173a18f
JB
7342 } else {
7343 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7344 btrfs_set_tree_block_key(leaf, block_info, key);
7345 btrfs_set_tree_block_level(leaf, block_info, level);
7346 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7347 }
5d4f98a2 7348
5d4f98a2
YZ
7349 if (parent > 0) {
7350 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7351 btrfs_set_extent_inline_ref_type(leaf, iref,
7352 BTRFS_SHARED_BLOCK_REF_KEY);
7353 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7354 } else {
7355 btrfs_set_extent_inline_ref_type(leaf, iref,
7356 BTRFS_TREE_BLOCK_REF_KEY);
7357 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7358 }
7359
7360 btrfs_mark_buffer_dirty(leaf);
7361 btrfs_free_path(path);
7362
fcebe456
JB
7363 if (!no_quota) {
7364 ret = btrfs_qgroup_record_ref(trans, fs_info, root_objectid,
7365 ins->objectid, num_bytes,
7366 BTRFS_QGROUP_OPER_ADD_EXCL, 0);
7367 if (ret)
7368 return ret;
7369 }
7370
ce93ec54
JB
7371 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7372 1);
79787eaa 7373 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7374 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7375 ins->objectid, ins->offset);
5d4f98a2
YZ
7376 BUG();
7377 }
0be5dc67 7378
707e8a07 7379 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7380 return ret;
7381}
7382
7383int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7384 struct btrfs_root *root,
7385 u64 root_objectid, u64 owner,
7386 u64 offset, struct btrfs_key *ins)
7387{
7388 int ret;
7389
7390 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7391
66d7e7f0
AJ
7392 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7393 ins->offset, 0,
7394 root_objectid, owner, offset,
7395 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7396 return ret;
7397}
e02119d5
CM
7398
7399/*
7400 * this is used by the tree logging recovery code. It records that
7401 * an extent has been allocated and makes sure to clear the free
7402 * space cache bits as well
7403 */
5d4f98a2
YZ
7404int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7405 struct btrfs_root *root,
7406 u64 root_objectid, u64 owner, u64 offset,
7407 struct btrfs_key *ins)
e02119d5
CM
7408{
7409 int ret;
7410 struct btrfs_block_group_cache *block_group;
11833d66 7411
8c2a1a30
JB
7412 /*
7413 * Mixed block groups will exclude before processing the log so we only
7414 * need to do the exlude dance if this fs isn't mixed.
7415 */
7416 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7417 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7418 if (ret)
8c2a1a30 7419 return ret;
11833d66
YZ
7420 }
7421
8c2a1a30
JB
7422 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7423 if (!block_group)
7424 return -EINVAL;
7425
fb25e914 7426 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7427 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7428 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7429 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7430 0, owner, offset, ins, 1);
b50c6e25 7431 btrfs_put_block_group(block_group);
e02119d5
CM
7432 return ret;
7433}
7434
48a3b636
ES
7435static struct extent_buffer *
7436btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7437 u64 bytenr, int level)
65b51a00
CM
7438{
7439 struct extent_buffer *buf;
7440
a83fffb7 7441 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7442 if (!buf)
7443 return ERR_PTR(-ENOMEM);
7444 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7445 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7446 btrfs_tree_lock(buf);
01d58472 7447 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7448 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7449
7450 btrfs_set_lock_blocking(buf);
65b51a00 7451 btrfs_set_buffer_uptodate(buf);
b4ce94de 7452
d0c803c4 7453 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7454 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7455 /*
7456 * we allow two log transactions at a time, use different
7457 * EXENT bit to differentiate dirty pages.
7458 */
656f30db 7459 if (buf->log_index == 0)
8cef4e16
YZ
7460 set_extent_dirty(&root->dirty_log_pages, buf->start,
7461 buf->start + buf->len - 1, GFP_NOFS);
7462 else
7463 set_extent_new(&root->dirty_log_pages, buf->start,
7464 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7465 } else {
656f30db 7466 buf->log_index = -1;
d0c803c4 7467 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7468 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7469 }
65b51a00 7470 trans->blocks_used++;
b4ce94de 7471 /* this returns a buffer locked for blocking */
65b51a00
CM
7472 return buf;
7473}
7474
f0486c68
YZ
7475static struct btrfs_block_rsv *
7476use_block_rsv(struct btrfs_trans_handle *trans,
7477 struct btrfs_root *root, u32 blocksize)
7478{
7479 struct btrfs_block_rsv *block_rsv;
68a82277 7480 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7481 int ret;
d88033db 7482 bool global_updated = false;
f0486c68
YZ
7483
7484 block_rsv = get_block_rsv(trans, root);
7485
b586b323
MX
7486 if (unlikely(block_rsv->size == 0))
7487 goto try_reserve;
d88033db 7488again:
f0486c68
YZ
7489 ret = block_rsv_use_bytes(block_rsv, blocksize);
7490 if (!ret)
7491 return block_rsv;
7492
b586b323
MX
7493 if (block_rsv->failfast)
7494 return ERR_PTR(ret);
7495
d88033db
MX
7496 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7497 global_updated = true;
7498 update_global_block_rsv(root->fs_info);
7499 goto again;
7500 }
7501
b586b323
MX
7502 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7503 static DEFINE_RATELIMIT_STATE(_rs,
7504 DEFAULT_RATELIMIT_INTERVAL * 10,
7505 /*DEFAULT_RATELIMIT_BURST*/ 1);
7506 if (__ratelimit(&_rs))
7507 WARN(1, KERN_DEBUG
efe120a0 7508 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7509 }
7510try_reserve:
7511 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7512 BTRFS_RESERVE_NO_FLUSH);
7513 if (!ret)
7514 return block_rsv;
7515 /*
7516 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7517 * the global reserve if its space type is the same as the global
7518 * reservation.
b586b323 7519 */
5881cfc9
MX
7520 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7521 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7522 ret = block_rsv_use_bytes(global_rsv, blocksize);
7523 if (!ret)
7524 return global_rsv;
7525 }
7526 return ERR_PTR(ret);
f0486c68
YZ
7527}
7528
8c2a3ca2
JB
7529static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7530 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7531{
7532 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7533 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7534}
7535
fec577fb 7536/*
f0486c68
YZ
7537 * finds a free extent and does all the dirty work required for allocation
7538 * returns the key for the extent through ins, and a tree buffer for
7539 * the first block of the extent through buf.
7540 *
fec577fb
CM
7541 * returns the tree buffer or NULL.
7542 */
4d75f8a9
DS
7543struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7544 struct btrfs_root *root,
5d4f98a2
YZ
7545 u64 parent, u64 root_objectid,
7546 struct btrfs_disk_key *key, int level,
5581a51a 7547 u64 hint, u64 empty_size)
fec577fb 7548{
e2fa7227 7549 struct btrfs_key ins;
f0486c68 7550 struct btrfs_block_rsv *block_rsv;
5f39d397 7551 struct extent_buffer *buf;
f0486c68
YZ
7552 u64 flags = 0;
7553 int ret;
4d75f8a9 7554 u32 blocksize = root->nodesize;
3173a18f
JB
7555 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7556 SKINNY_METADATA);
fec577fb 7557
fccb84c9 7558 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7559 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7560 level);
faa2dbf0
JB
7561 if (!IS_ERR(buf))
7562 root->alloc_bytenr += blocksize;
7563 return buf;
7564 }
fccb84c9 7565
f0486c68
YZ
7566 block_rsv = use_block_rsv(trans, root, blocksize);
7567 if (IS_ERR(block_rsv))
7568 return ERR_CAST(block_rsv);
7569
00361589 7570 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7571 empty_size, hint, &ins, 0, 0);
fec577fb 7572 if (ret) {
8c2a3ca2 7573 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
54aa1f4d 7574 return ERR_PTR(ret);
fec577fb 7575 }
55c69072 7576
fe864576 7577 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
79787eaa 7578 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
f0486c68
YZ
7579
7580 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7581 if (parent == 0)
7582 parent = ins.objectid;
7583 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7584 } else
7585 BUG_ON(parent > 0);
7586
7587 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
7588 struct btrfs_delayed_extent_op *extent_op;
78a6184a 7589 extent_op = btrfs_alloc_delayed_extent_op();
79787eaa 7590 BUG_ON(!extent_op); /* -ENOMEM */
f0486c68
YZ
7591 if (key)
7592 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7593 else
7594 memset(&extent_op->key, 0, sizeof(extent_op->key));
7595 extent_op->flags_to_set = flags;
3173a18f
JB
7596 if (skinny_metadata)
7597 extent_op->update_key = 0;
7598 else
7599 extent_op->update_key = 1;
f0486c68
YZ
7600 extent_op->update_flags = 1;
7601 extent_op->is_data = 0;
b1c79e09 7602 extent_op->level = level;
f0486c68 7603
66d7e7f0
AJ
7604 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
7605 ins.objectid,
f0486c68
YZ
7606 ins.offset, parent, root_objectid,
7607 level, BTRFS_ADD_DELAYED_EXTENT,
5581a51a 7608 extent_op, 0);
79787eaa 7609 BUG_ON(ret); /* -ENOMEM */
f0486c68 7610 }
fec577fb
CM
7611 return buf;
7612}
a28ec197 7613
2c47e605
YZ
7614struct walk_control {
7615 u64 refs[BTRFS_MAX_LEVEL];
7616 u64 flags[BTRFS_MAX_LEVEL];
7617 struct btrfs_key update_progress;
7618 int stage;
7619 int level;
7620 int shared_level;
7621 int update_ref;
7622 int keep_locks;
1c4850e2
YZ
7623 int reada_slot;
7624 int reada_count;
66d7e7f0 7625 int for_reloc;
2c47e605
YZ
7626};
7627
7628#define DROP_REFERENCE 1
7629#define UPDATE_BACKREF 2
7630
1c4850e2
YZ
7631static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7632 struct btrfs_root *root,
7633 struct walk_control *wc,
7634 struct btrfs_path *path)
6407bf6d 7635{
1c4850e2
YZ
7636 u64 bytenr;
7637 u64 generation;
7638 u64 refs;
94fcca9f 7639 u64 flags;
5d4f98a2 7640 u32 nritems;
1c4850e2
YZ
7641 u32 blocksize;
7642 struct btrfs_key key;
7643 struct extent_buffer *eb;
6407bf6d 7644 int ret;
1c4850e2
YZ
7645 int slot;
7646 int nread = 0;
6407bf6d 7647
1c4850e2
YZ
7648 if (path->slots[wc->level] < wc->reada_slot) {
7649 wc->reada_count = wc->reada_count * 2 / 3;
7650 wc->reada_count = max(wc->reada_count, 2);
7651 } else {
7652 wc->reada_count = wc->reada_count * 3 / 2;
7653 wc->reada_count = min_t(int, wc->reada_count,
7654 BTRFS_NODEPTRS_PER_BLOCK(root));
7655 }
7bb86316 7656
1c4850e2
YZ
7657 eb = path->nodes[wc->level];
7658 nritems = btrfs_header_nritems(eb);
707e8a07 7659 blocksize = root->nodesize;
bd56b302 7660
1c4850e2
YZ
7661 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7662 if (nread >= wc->reada_count)
7663 break;
bd56b302 7664
2dd3e67b 7665 cond_resched();
1c4850e2
YZ
7666 bytenr = btrfs_node_blockptr(eb, slot);
7667 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7668
1c4850e2
YZ
7669 if (slot == path->slots[wc->level])
7670 goto reada;
5d4f98a2 7671
1c4850e2
YZ
7672 if (wc->stage == UPDATE_BACKREF &&
7673 generation <= root->root_key.offset)
bd56b302
CM
7674 continue;
7675
94fcca9f 7676 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7677 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7678 wc->level - 1, 1, &refs,
7679 &flags);
79787eaa
JM
7680 /* We don't care about errors in readahead. */
7681 if (ret < 0)
7682 continue;
94fcca9f
YZ
7683 BUG_ON(refs == 0);
7684
1c4850e2 7685 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7686 if (refs == 1)
7687 goto reada;
bd56b302 7688
94fcca9f
YZ
7689 if (wc->level == 1 &&
7690 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7691 continue;
1c4850e2
YZ
7692 if (!wc->update_ref ||
7693 generation <= root->root_key.offset)
7694 continue;
7695 btrfs_node_key_to_cpu(eb, &key, slot);
7696 ret = btrfs_comp_cpu_keys(&key,
7697 &wc->update_progress);
7698 if (ret < 0)
7699 continue;
94fcca9f
YZ
7700 } else {
7701 if (wc->level == 1 &&
7702 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7703 continue;
6407bf6d 7704 }
1c4850e2 7705reada:
d3e46fea 7706 readahead_tree_block(root, bytenr);
1c4850e2 7707 nread++;
20524f02 7708 }
1c4850e2 7709 wc->reada_slot = slot;
20524f02 7710}
2c47e605 7711
1152651a
MF
7712static int account_leaf_items(struct btrfs_trans_handle *trans,
7713 struct btrfs_root *root,
7714 struct extent_buffer *eb)
7715{
7716 int nr = btrfs_header_nritems(eb);
7717 int i, extent_type, ret;
7718 struct btrfs_key key;
7719 struct btrfs_file_extent_item *fi;
7720 u64 bytenr, num_bytes;
7721
7722 for (i = 0; i < nr; i++) {
7723 btrfs_item_key_to_cpu(eb, &key, i);
7724
7725 if (key.type != BTRFS_EXTENT_DATA_KEY)
7726 continue;
7727
7728 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7729 /* filter out non qgroup-accountable extents */
7730 extent_type = btrfs_file_extent_type(eb, fi);
7731
7732 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7733 continue;
7734
7735 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7736 if (!bytenr)
7737 continue;
7738
7739 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
7740
7741 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7742 root->objectid,
7743 bytenr, num_bytes,
7744 BTRFS_QGROUP_OPER_SUB_SUBTREE, 0);
7745 if (ret)
7746 return ret;
7747 }
7748 return 0;
7749}
7750
7751/*
7752 * Walk up the tree from the bottom, freeing leaves and any interior
7753 * nodes which have had all slots visited. If a node (leaf or
7754 * interior) is freed, the node above it will have it's slot
7755 * incremented. The root node will never be freed.
7756 *
7757 * At the end of this function, we should have a path which has all
7758 * slots incremented to the next position for a search. If we need to
7759 * read a new node it will be NULL and the node above it will have the
7760 * correct slot selected for a later read.
7761 *
7762 * If we increment the root nodes slot counter past the number of
7763 * elements, 1 is returned to signal completion of the search.
7764 */
7765static int adjust_slots_upwards(struct btrfs_root *root,
7766 struct btrfs_path *path, int root_level)
7767{
7768 int level = 0;
7769 int nr, slot;
7770 struct extent_buffer *eb;
7771
7772 if (root_level == 0)
7773 return 1;
7774
7775 while (level <= root_level) {
7776 eb = path->nodes[level];
7777 nr = btrfs_header_nritems(eb);
7778 path->slots[level]++;
7779 slot = path->slots[level];
7780 if (slot >= nr || level == 0) {
7781 /*
7782 * Don't free the root - we will detect this
7783 * condition after our loop and return a
7784 * positive value for caller to stop walking the tree.
7785 */
7786 if (level != root_level) {
7787 btrfs_tree_unlock_rw(eb, path->locks[level]);
7788 path->locks[level] = 0;
7789
7790 free_extent_buffer(eb);
7791 path->nodes[level] = NULL;
7792 path->slots[level] = 0;
7793 }
7794 } else {
7795 /*
7796 * We have a valid slot to walk back down
7797 * from. Stop here so caller can process these
7798 * new nodes.
7799 */
7800 break;
7801 }
7802
7803 level++;
7804 }
7805
7806 eb = path->nodes[root_level];
7807 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7808 return 1;
7809
7810 return 0;
7811}
7812
7813/*
7814 * root_eb is the subtree root and is locked before this function is called.
7815 */
7816static int account_shared_subtree(struct btrfs_trans_handle *trans,
7817 struct btrfs_root *root,
7818 struct extent_buffer *root_eb,
7819 u64 root_gen,
7820 int root_level)
7821{
7822 int ret = 0;
7823 int level;
7824 struct extent_buffer *eb = root_eb;
7825 struct btrfs_path *path = NULL;
7826
7827 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7828 BUG_ON(root_eb == NULL);
7829
7830 if (!root->fs_info->quota_enabled)
7831 return 0;
7832
7833 if (!extent_buffer_uptodate(root_eb)) {
7834 ret = btrfs_read_buffer(root_eb, root_gen);
7835 if (ret)
7836 goto out;
7837 }
7838
7839 if (root_level == 0) {
7840 ret = account_leaf_items(trans, root, root_eb);
7841 goto out;
7842 }
7843
7844 path = btrfs_alloc_path();
7845 if (!path)
7846 return -ENOMEM;
7847
7848 /*
7849 * Walk down the tree. Missing extent blocks are filled in as
7850 * we go. Metadata is accounted every time we read a new
7851 * extent block.
7852 *
7853 * When we reach a leaf, we account for file extent items in it,
7854 * walk back up the tree (adjusting slot pointers as we go)
7855 * and restart the search process.
7856 */
7857 extent_buffer_get(root_eb); /* For path */
7858 path->nodes[root_level] = root_eb;
7859 path->slots[root_level] = 0;
7860 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
7861walk_down:
7862 level = root_level;
7863 while (level >= 0) {
7864 if (path->nodes[level] == NULL) {
1152651a
MF
7865 int parent_slot;
7866 u64 child_gen;
7867 u64 child_bytenr;
7868
7869 /* We need to get child blockptr/gen from
7870 * parent before we can read it. */
7871 eb = path->nodes[level + 1];
7872 parent_slot = path->slots[level + 1];
7873 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
7874 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
7875
ce86cd59 7876 eb = read_tree_block(root, child_bytenr, child_gen);
1152651a
MF
7877 if (!eb || !extent_buffer_uptodate(eb)) {
7878 ret = -EIO;
7879 goto out;
7880 }
7881
7882 path->nodes[level] = eb;
7883 path->slots[level] = 0;
7884
7885 btrfs_tree_read_lock(eb);
7886 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
7887 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
7888
7889 ret = btrfs_qgroup_record_ref(trans, root->fs_info,
7890 root->objectid,
7891 child_bytenr,
ce86cd59 7892 root->nodesize,
1152651a
MF
7893 BTRFS_QGROUP_OPER_SUB_SUBTREE,
7894 0);
7895 if (ret)
7896 goto out;
7897
7898 }
7899
7900 if (level == 0) {
7901 ret = account_leaf_items(trans, root, path->nodes[level]);
7902 if (ret)
7903 goto out;
7904
7905 /* Nonzero return here means we completed our search */
7906 ret = adjust_slots_upwards(root, path, root_level);
7907 if (ret)
7908 break;
7909
7910 /* Restart search with new slots */
7911 goto walk_down;
7912 }
7913
7914 level--;
7915 }
7916
7917 ret = 0;
7918out:
7919 btrfs_free_path(path);
7920
7921 return ret;
7922}
7923
f82d02d9 7924/*
2c016dc2 7925 * helper to process tree block while walking down the tree.
2c47e605 7926 *
2c47e605
YZ
7927 * when wc->stage == UPDATE_BACKREF, this function updates
7928 * back refs for pointers in the block.
7929 *
7930 * NOTE: return value 1 means we should stop walking down.
f82d02d9 7931 */
2c47e605 7932static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 7933 struct btrfs_root *root,
2c47e605 7934 struct btrfs_path *path,
94fcca9f 7935 struct walk_control *wc, int lookup_info)
f82d02d9 7936{
2c47e605
YZ
7937 int level = wc->level;
7938 struct extent_buffer *eb = path->nodes[level];
2c47e605 7939 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
7940 int ret;
7941
2c47e605
YZ
7942 if (wc->stage == UPDATE_BACKREF &&
7943 btrfs_header_owner(eb) != root->root_key.objectid)
7944 return 1;
f82d02d9 7945
2c47e605
YZ
7946 /*
7947 * when reference count of tree block is 1, it won't increase
7948 * again. once full backref flag is set, we never clear it.
7949 */
94fcca9f
YZ
7950 if (lookup_info &&
7951 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
7952 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
7953 BUG_ON(!path->locks[level]);
7954 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 7955 eb->start, level, 1,
2c47e605
YZ
7956 &wc->refs[level],
7957 &wc->flags[level]);
79787eaa
JM
7958 BUG_ON(ret == -ENOMEM);
7959 if (ret)
7960 return ret;
2c47e605
YZ
7961 BUG_ON(wc->refs[level] == 0);
7962 }
5d4f98a2 7963
2c47e605
YZ
7964 if (wc->stage == DROP_REFERENCE) {
7965 if (wc->refs[level] > 1)
7966 return 1;
f82d02d9 7967
2c47e605 7968 if (path->locks[level] && !wc->keep_locks) {
bd681513 7969 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
7970 path->locks[level] = 0;
7971 }
7972 return 0;
7973 }
f82d02d9 7974
2c47e605
YZ
7975 /* wc->stage == UPDATE_BACKREF */
7976 if (!(wc->flags[level] & flag)) {
7977 BUG_ON(!path->locks[level]);
e339a6b0 7978 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 7979 BUG_ON(ret); /* -ENOMEM */
e339a6b0 7980 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 7981 BUG_ON(ret); /* -ENOMEM */
2c47e605 7982 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
7983 eb->len, flag,
7984 btrfs_header_level(eb), 0);
79787eaa 7985 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
7986 wc->flags[level] |= flag;
7987 }
7988
7989 /*
7990 * the block is shared by multiple trees, so it's not good to
7991 * keep the tree lock
7992 */
7993 if (path->locks[level] && level > 0) {
bd681513 7994 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
7995 path->locks[level] = 0;
7996 }
7997 return 0;
7998}
7999
1c4850e2 8000/*
2c016dc2 8001 * helper to process tree block pointer.
1c4850e2
YZ
8002 *
8003 * when wc->stage == DROP_REFERENCE, this function checks
8004 * reference count of the block pointed to. if the block
8005 * is shared and we need update back refs for the subtree
8006 * rooted at the block, this function changes wc->stage to
8007 * UPDATE_BACKREF. if the block is shared and there is no
8008 * need to update back, this function drops the reference
8009 * to the block.
8010 *
8011 * NOTE: return value 1 means we should stop walking down.
8012 */
8013static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8014 struct btrfs_root *root,
8015 struct btrfs_path *path,
94fcca9f 8016 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8017{
8018 u64 bytenr;
8019 u64 generation;
8020 u64 parent;
8021 u32 blocksize;
8022 struct btrfs_key key;
8023 struct extent_buffer *next;
8024 int level = wc->level;
8025 int reada = 0;
8026 int ret = 0;
1152651a 8027 bool need_account = false;
1c4850e2
YZ
8028
8029 generation = btrfs_node_ptr_generation(path->nodes[level],
8030 path->slots[level]);
8031 /*
8032 * if the lower level block was created before the snapshot
8033 * was created, we know there is no need to update back refs
8034 * for the subtree
8035 */
8036 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8037 generation <= root->root_key.offset) {
8038 *lookup_info = 1;
1c4850e2 8039 return 1;
94fcca9f 8040 }
1c4850e2
YZ
8041
8042 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8043 blocksize = root->nodesize;
1c4850e2 8044
01d58472 8045 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8046 if (!next) {
a83fffb7 8047 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8048 if (!next)
8049 return -ENOMEM;
b2aaaa3b
JB
8050 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8051 level - 1);
1c4850e2
YZ
8052 reada = 1;
8053 }
8054 btrfs_tree_lock(next);
8055 btrfs_set_lock_blocking(next);
8056
3173a18f 8057 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8058 &wc->refs[level - 1],
8059 &wc->flags[level - 1]);
79787eaa
JM
8060 if (ret < 0) {
8061 btrfs_tree_unlock(next);
8062 return ret;
8063 }
8064
c2cf52eb
SK
8065 if (unlikely(wc->refs[level - 1] == 0)) {
8066 btrfs_err(root->fs_info, "Missing references.");
8067 BUG();
8068 }
94fcca9f 8069 *lookup_info = 0;
1c4850e2 8070
94fcca9f 8071 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8072 if (wc->refs[level - 1] > 1) {
1152651a 8073 need_account = true;
94fcca9f
YZ
8074 if (level == 1 &&
8075 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8076 goto skip;
8077
1c4850e2
YZ
8078 if (!wc->update_ref ||
8079 generation <= root->root_key.offset)
8080 goto skip;
8081
8082 btrfs_node_key_to_cpu(path->nodes[level], &key,
8083 path->slots[level]);
8084 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8085 if (ret < 0)
8086 goto skip;
8087
8088 wc->stage = UPDATE_BACKREF;
8089 wc->shared_level = level - 1;
8090 }
94fcca9f
YZ
8091 } else {
8092 if (level == 1 &&
8093 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8094 goto skip;
1c4850e2
YZ
8095 }
8096
b9fab919 8097 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8098 btrfs_tree_unlock(next);
8099 free_extent_buffer(next);
8100 next = NULL;
94fcca9f 8101 *lookup_info = 1;
1c4850e2
YZ
8102 }
8103
8104 if (!next) {
8105 if (reada && level == 1)
8106 reada_walk_down(trans, root, wc, path);
ce86cd59 8107 next = read_tree_block(root, bytenr, generation);
416bc658
JB
8108 if (!next || !extent_buffer_uptodate(next)) {
8109 free_extent_buffer(next);
97d9a8a4 8110 return -EIO;
416bc658 8111 }
1c4850e2
YZ
8112 btrfs_tree_lock(next);
8113 btrfs_set_lock_blocking(next);
8114 }
8115
8116 level--;
8117 BUG_ON(level != btrfs_header_level(next));
8118 path->nodes[level] = next;
8119 path->slots[level] = 0;
bd681513 8120 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8121 wc->level = level;
8122 if (wc->level == 1)
8123 wc->reada_slot = 0;
8124 return 0;
8125skip:
8126 wc->refs[level - 1] = 0;
8127 wc->flags[level - 1] = 0;
94fcca9f
YZ
8128 if (wc->stage == DROP_REFERENCE) {
8129 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8130 parent = path->nodes[level]->start;
8131 } else {
8132 BUG_ON(root->root_key.objectid !=
8133 btrfs_header_owner(path->nodes[level]));
8134 parent = 0;
8135 }
1c4850e2 8136
1152651a
MF
8137 if (need_account) {
8138 ret = account_shared_subtree(trans, root, next,
8139 generation, level - 1);
8140 if (ret) {
8141 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8142 "%d accounting shared subtree. Quota "
8143 "is out of sync, rescan required.\n",
8144 root->fs_info->sb->s_id, ret);
8145 }
8146 }
94fcca9f 8147 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8148 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8149 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8150 }
1c4850e2
YZ
8151 btrfs_tree_unlock(next);
8152 free_extent_buffer(next);
94fcca9f 8153 *lookup_info = 1;
1c4850e2
YZ
8154 return 1;
8155}
8156
2c47e605 8157/*
2c016dc2 8158 * helper to process tree block while walking up the tree.
2c47e605
YZ
8159 *
8160 * when wc->stage == DROP_REFERENCE, this function drops
8161 * reference count on the block.
8162 *
8163 * when wc->stage == UPDATE_BACKREF, this function changes
8164 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8165 * to UPDATE_BACKREF previously while processing the block.
8166 *
8167 * NOTE: return value 1 means we should stop walking up.
8168 */
8169static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8170 struct btrfs_root *root,
8171 struct btrfs_path *path,
8172 struct walk_control *wc)
8173{
f0486c68 8174 int ret;
2c47e605
YZ
8175 int level = wc->level;
8176 struct extent_buffer *eb = path->nodes[level];
8177 u64 parent = 0;
8178
8179 if (wc->stage == UPDATE_BACKREF) {
8180 BUG_ON(wc->shared_level < level);
8181 if (level < wc->shared_level)
8182 goto out;
8183
2c47e605
YZ
8184 ret = find_next_key(path, level + 1, &wc->update_progress);
8185 if (ret > 0)
8186 wc->update_ref = 0;
8187
8188 wc->stage = DROP_REFERENCE;
8189 wc->shared_level = -1;
8190 path->slots[level] = 0;
8191
8192 /*
8193 * check reference count again if the block isn't locked.
8194 * we should start walking down the tree again if reference
8195 * count is one.
8196 */
8197 if (!path->locks[level]) {
8198 BUG_ON(level == 0);
8199 btrfs_tree_lock(eb);
8200 btrfs_set_lock_blocking(eb);
bd681513 8201 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8202
8203 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8204 eb->start, level, 1,
2c47e605
YZ
8205 &wc->refs[level],
8206 &wc->flags[level]);
79787eaa
JM
8207 if (ret < 0) {
8208 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8209 path->locks[level] = 0;
79787eaa
JM
8210 return ret;
8211 }
2c47e605
YZ
8212 BUG_ON(wc->refs[level] == 0);
8213 if (wc->refs[level] == 1) {
bd681513 8214 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8215 path->locks[level] = 0;
2c47e605
YZ
8216 return 1;
8217 }
f82d02d9 8218 }
2c47e605 8219 }
f82d02d9 8220
2c47e605
YZ
8221 /* wc->stage == DROP_REFERENCE */
8222 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8223
2c47e605
YZ
8224 if (wc->refs[level] == 1) {
8225 if (level == 0) {
8226 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8227 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8228 else
e339a6b0 8229 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8230 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8231 ret = account_leaf_items(trans, root, eb);
8232 if (ret) {
8233 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8234 "%d accounting leaf items. Quota "
8235 "is out of sync, rescan required.\n",
8236 root->fs_info->sb->s_id, ret);
8237 }
2c47e605
YZ
8238 }
8239 /* make block locked assertion in clean_tree_block happy */
8240 if (!path->locks[level] &&
8241 btrfs_header_generation(eb) == trans->transid) {
8242 btrfs_tree_lock(eb);
8243 btrfs_set_lock_blocking(eb);
bd681513 8244 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8245 }
01d58472 8246 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8247 }
8248
8249 if (eb == root->node) {
8250 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8251 parent = eb->start;
8252 else
8253 BUG_ON(root->root_key.objectid !=
8254 btrfs_header_owner(eb));
8255 } else {
8256 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8257 parent = path->nodes[level + 1]->start;
8258 else
8259 BUG_ON(root->root_key.objectid !=
8260 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8261 }
f82d02d9 8262
5581a51a 8263 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8264out:
8265 wc->refs[level] = 0;
8266 wc->flags[level] = 0;
f0486c68 8267 return 0;
2c47e605
YZ
8268}
8269
8270static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8271 struct btrfs_root *root,
8272 struct btrfs_path *path,
8273 struct walk_control *wc)
8274{
2c47e605 8275 int level = wc->level;
94fcca9f 8276 int lookup_info = 1;
2c47e605
YZ
8277 int ret;
8278
8279 while (level >= 0) {
94fcca9f 8280 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8281 if (ret > 0)
8282 break;
8283
8284 if (level == 0)
8285 break;
8286
7a7965f8
YZ
8287 if (path->slots[level] >=
8288 btrfs_header_nritems(path->nodes[level]))
8289 break;
8290
94fcca9f 8291 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8292 if (ret > 0) {
8293 path->slots[level]++;
8294 continue;
90d2c51d
MX
8295 } else if (ret < 0)
8296 return ret;
1c4850e2 8297 level = wc->level;
f82d02d9 8298 }
f82d02d9
YZ
8299 return 0;
8300}
8301
d397712b 8302static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8303 struct btrfs_root *root,
f82d02d9 8304 struct btrfs_path *path,
2c47e605 8305 struct walk_control *wc, int max_level)
20524f02 8306{
2c47e605 8307 int level = wc->level;
20524f02 8308 int ret;
9f3a7427 8309
2c47e605
YZ
8310 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8311 while (level < max_level && path->nodes[level]) {
8312 wc->level = level;
8313 if (path->slots[level] + 1 <
8314 btrfs_header_nritems(path->nodes[level])) {
8315 path->slots[level]++;
20524f02
CM
8316 return 0;
8317 } else {
2c47e605
YZ
8318 ret = walk_up_proc(trans, root, path, wc);
8319 if (ret > 0)
8320 return 0;
bd56b302 8321
2c47e605 8322 if (path->locks[level]) {
bd681513
CM
8323 btrfs_tree_unlock_rw(path->nodes[level],
8324 path->locks[level]);
2c47e605 8325 path->locks[level] = 0;
f82d02d9 8326 }
2c47e605
YZ
8327 free_extent_buffer(path->nodes[level]);
8328 path->nodes[level] = NULL;
8329 level++;
20524f02
CM
8330 }
8331 }
8332 return 1;
8333}
8334
9aca1d51 8335/*
2c47e605
YZ
8336 * drop a subvolume tree.
8337 *
8338 * this function traverses the tree freeing any blocks that only
8339 * referenced by the tree.
8340 *
8341 * when a shared tree block is found. this function decreases its
8342 * reference count by one. if update_ref is true, this function
8343 * also make sure backrefs for the shared block and all lower level
8344 * blocks are properly updated.
9d1a2a3a
DS
8345 *
8346 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8347 */
2c536799 8348int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8349 struct btrfs_block_rsv *block_rsv, int update_ref,
8350 int for_reloc)
20524f02 8351{
5caf2a00 8352 struct btrfs_path *path;
2c47e605
YZ
8353 struct btrfs_trans_handle *trans;
8354 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8355 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8356 struct walk_control *wc;
8357 struct btrfs_key key;
8358 int err = 0;
8359 int ret;
8360 int level;
d29a9f62 8361 bool root_dropped = false;
20524f02 8362
1152651a
MF
8363 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8364
5caf2a00 8365 path = btrfs_alloc_path();
cb1b69f4
TI
8366 if (!path) {
8367 err = -ENOMEM;
8368 goto out;
8369 }
20524f02 8370
2c47e605 8371 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8372 if (!wc) {
8373 btrfs_free_path(path);
cb1b69f4
TI
8374 err = -ENOMEM;
8375 goto out;
38a1a919 8376 }
2c47e605 8377
a22285a6 8378 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8379 if (IS_ERR(trans)) {
8380 err = PTR_ERR(trans);
8381 goto out_free;
8382 }
98d5dc13 8383
3fd0a558
YZ
8384 if (block_rsv)
8385 trans->block_rsv = block_rsv;
2c47e605 8386
9f3a7427 8387 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8388 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8389 path->nodes[level] = btrfs_lock_root_node(root);
8390 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8391 path->slots[level] = 0;
bd681513 8392 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8393 memset(&wc->update_progress, 0,
8394 sizeof(wc->update_progress));
9f3a7427 8395 } else {
9f3a7427 8396 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8397 memcpy(&wc->update_progress, &key,
8398 sizeof(wc->update_progress));
8399
6702ed49 8400 level = root_item->drop_level;
2c47e605 8401 BUG_ON(level == 0);
6702ed49 8402 path->lowest_level = level;
2c47e605
YZ
8403 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8404 path->lowest_level = 0;
8405 if (ret < 0) {
8406 err = ret;
79787eaa 8407 goto out_end_trans;
9f3a7427 8408 }
1c4850e2 8409 WARN_ON(ret > 0);
2c47e605 8410
7d9eb12c
CM
8411 /*
8412 * unlock our path, this is safe because only this
8413 * function is allowed to delete this snapshot
8414 */
5d4f98a2 8415 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8416
8417 level = btrfs_header_level(root->node);
8418 while (1) {
8419 btrfs_tree_lock(path->nodes[level]);
8420 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8421 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8422
8423 ret = btrfs_lookup_extent_info(trans, root,
8424 path->nodes[level]->start,
3173a18f 8425 level, 1, &wc->refs[level],
2c47e605 8426 &wc->flags[level]);
79787eaa
JM
8427 if (ret < 0) {
8428 err = ret;
8429 goto out_end_trans;
8430 }
2c47e605
YZ
8431 BUG_ON(wc->refs[level] == 0);
8432
8433 if (level == root_item->drop_level)
8434 break;
8435
8436 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8437 path->locks[level] = 0;
2c47e605
YZ
8438 WARN_ON(wc->refs[level] != 1);
8439 level--;
8440 }
9f3a7427 8441 }
2c47e605
YZ
8442
8443 wc->level = level;
8444 wc->shared_level = -1;
8445 wc->stage = DROP_REFERENCE;
8446 wc->update_ref = update_ref;
8447 wc->keep_locks = 0;
66d7e7f0 8448 wc->for_reloc = for_reloc;
1c4850e2 8449 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8450
d397712b 8451 while (1) {
9d1a2a3a 8452
2c47e605
YZ
8453 ret = walk_down_tree(trans, root, path, wc);
8454 if (ret < 0) {
8455 err = ret;
20524f02 8456 break;
2c47e605 8457 }
9aca1d51 8458
2c47e605
YZ
8459 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8460 if (ret < 0) {
8461 err = ret;
20524f02 8462 break;
2c47e605
YZ
8463 }
8464
8465 if (ret > 0) {
8466 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8467 break;
8468 }
2c47e605
YZ
8469
8470 if (wc->stage == DROP_REFERENCE) {
8471 level = wc->level;
8472 btrfs_node_key(path->nodes[level],
8473 &root_item->drop_progress,
8474 path->slots[level]);
8475 root_item->drop_level = level;
8476 }
8477
8478 BUG_ON(wc->level == 0);
3c8f2422
JB
8479 if (btrfs_should_end_transaction(trans, tree_root) ||
8480 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8481 ret = btrfs_update_root(trans, tree_root,
8482 &root->root_key,
8483 root_item);
79787eaa
JM
8484 if (ret) {
8485 btrfs_abort_transaction(trans, tree_root, ret);
8486 err = ret;
8487 goto out_end_trans;
8488 }
2c47e605 8489
1152651a
MF
8490 /*
8491 * Qgroup update accounting is run from
8492 * delayed ref handling. This usually works
8493 * out because delayed refs are normally the
8494 * only way qgroup updates are added. However,
8495 * we may have added updates during our tree
8496 * walk so run qgroups here to make sure we
8497 * don't lose any updates.
8498 */
8499 ret = btrfs_delayed_qgroup_accounting(trans,
8500 root->fs_info);
8501 if (ret)
8502 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8503 "running qgroup updates "
8504 "during snapshot delete. "
8505 "Quota is out of sync, "
8506 "rescan required.\n", ret);
8507
3fd0a558 8508 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8509 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8510 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8511 err = -EAGAIN;
8512 goto out_free;
8513 }
8514
a22285a6 8515 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8516 if (IS_ERR(trans)) {
8517 err = PTR_ERR(trans);
8518 goto out_free;
8519 }
3fd0a558
YZ
8520 if (block_rsv)
8521 trans->block_rsv = block_rsv;
c3e69d58 8522 }
20524f02 8523 }
b3b4aa74 8524 btrfs_release_path(path);
79787eaa
JM
8525 if (err)
8526 goto out_end_trans;
2c47e605
YZ
8527
8528 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8529 if (ret) {
8530 btrfs_abort_transaction(trans, tree_root, ret);
8531 goto out_end_trans;
8532 }
2c47e605 8533
76dda93c 8534 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8535 ret = btrfs_find_root(tree_root, &root->root_key, path,
8536 NULL, NULL);
79787eaa
JM
8537 if (ret < 0) {
8538 btrfs_abort_transaction(trans, tree_root, ret);
8539 err = ret;
8540 goto out_end_trans;
8541 } else if (ret > 0) {
84cd948c
JB
8542 /* if we fail to delete the orphan item this time
8543 * around, it'll get picked up the next time.
8544 *
8545 * The most common failure here is just -ENOENT.
8546 */
8547 btrfs_del_orphan_item(trans, tree_root,
8548 root->root_key.objectid);
76dda93c
YZ
8549 }
8550 }
8551
27cdeb70 8552 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8553 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8554 } else {
8555 free_extent_buffer(root->node);
8556 free_extent_buffer(root->commit_root);
b0feb9d9 8557 btrfs_put_fs_root(root);
76dda93c 8558 }
d29a9f62 8559 root_dropped = true;
79787eaa 8560out_end_trans:
1152651a
MF
8561 ret = btrfs_delayed_qgroup_accounting(trans, tree_root->fs_info);
8562 if (ret)
8563 printk_ratelimited(KERN_ERR "BTRFS: Failure %d "
8564 "running qgroup updates "
8565 "during snapshot delete. "
8566 "Quota is out of sync, "
8567 "rescan required.\n", ret);
8568
3fd0a558 8569 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8570out_free:
2c47e605 8571 kfree(wc);
5caf2a00 8572 btrfs_free_path(path);
cb1b69f4 8573out:
d29a9f62
JB
8574 /*
8575 * So if we need to stop dropping the snapshot for whatever reason we
8576 * need to make sure to add it back to the dead root list so that we
8577 * keep trying to do the work later. This also cleans up roots if we
8578 * don't have it in the radix (like when we recover after a power fail
8579 * or unmount) so we don't leak memory.
8580 */
b37b39cd 8581 if (!for_reloc && root_dropped == false)
d29a9f62 8582 btrfs_add_dead_root(root);
90515e7f 8583 if (err && err != -EAGAIN)
cb1b69f4 8584 btrfs_std_error(root->fs_info, err);
2c536799 8585 return err;
20524f02 8586}
9078a3e1 8587
2c47e605
YZ
8588/*
8589 * drop subtree rooted at tree block 'node'.
8590 *
8591 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8592 * only used by relocation code
2c47e605 8593 */
f82d02d9
YZ
8594int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8595 struct btrfs_root *root,
8596 struct extent_buffer *node,
8597 struct extent_buffer *parent)
8598{
8599 struct btrfs_path *path;
2c47e605 8600 struct walk_control *wc;
f82d02d9
YZ
8601 int level;
8602 int parent_level;
8603 int ret = 0;
8604 int wret;
8605
2c47e605
YZ
8606 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8607
f82d02d9 8608 path = btrfs_alloc_path();
db5b493a
TI
8609 if (!path)
8610 return -ENOMEM;
f82d02d9 8611
2c47e605 8612 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8613 if (!wc) {
8614 btrfs_free_path(path);
8615 return -ENOMEM;
8616 }
2c47e605 8617
b9447ef8 8618 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8619 parent_level = btrfs_header_level(parent);
8620 extent_buffer_get(parent);
8621 path->nodes[parent_level] = parent;
8622 path->slots[parent_level] = btrfs_header_nritems(parent);
8623
b9447ef8 8624 btrfs_assert_tree_locked(node);
f82d02d9 8625 level = btrfs_header_level(node);
f82d02d9
YZ
8626 path->nodes[level] = node;
8627 path->slots[level] = 0;
bd681513 8628 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8629
8630 wc->refs[parent_level] = 1;
8631 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8632 wc->level = level;
8633 wc->shared_level = -1;
8634 wc->stage = DROP_REFERENCE;
8635 wc->update_ref = 0;
8636 wc->keep_locks = 1;
66d7e7f0 8637 wc->for_reloc = 1;
1c4850e2 8638 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8639
8640 while (1) {
2c47e605
YZ
8641 wret = walk_down_tree(trans, root, path, wc);
8642 if (wret < 0) {
f82d02d9 8643 ret = wret;
f82d02d9 8644 break;
2c47e605 8645 }
f82d02d9 8646
2c47e605 8647 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8648 if (wret < 0)
8649 ret = wret;
8650 if (wret != 0)
8651 break;
8652 }
8653
2c47e605 8654 kfree(wc);
f82d02d9
YZ
8655 btrfs_free_path(path);
8656 return ret;
8657}
8658
ec44a35c
CM
8659static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8660{
8661 u64 num_devices;
fc67c450 8662 u64 stripped;
e4d8ec0f 8663
fc67c450
ID
8664 /*
8665 * if restripe for this chunk_type is on pick target profile and
8666 * return, otherwise do the usual balance
8667 */
8668 stripped = get_restripe_target(root->fs_info, flags);
8669 if (stripped)
8670 return extended_to_chunk(stripped);
e4d8ec0f 8671
95669976 8672 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8673
fc67c450 8674 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8675 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8676 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8677
ec44a35c
CM
8678 if (num_devices == 1) {
8679 stripped |= BTRFS_BLOCK_GROUP_DUP;
8680 stripped = flags & ~stripped;
8681
8682 /* turn raid0 into single device chunks */
8683 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8684 return stripped;
8685
8686 /* turn mirroring into duplication */
8687 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8688 BTRFS_BLOCK_GROUP_RAID10))
8689 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8690 } else {
8691 /* they already had raid on here, just return */
ec44a35c
CM
8692 if (flags & stripped)
8693 return flags;
8694
8695 stripped |= BTRFS_BLOCK_GROUP_DUP;
8696 stripped = flags & ~stripped;
8697
8698 /* switch duplicated blocks with raid1 */
8699 if (flags & BTRFS_BLOCK_GROUP_DUP)
8700 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8701
e3176ca2 8702 /* this is drive concat, leave it alone */
ec44a35c 8703 }
e3176ca2 8704
ec44a35c
CM
8705 return flags;
8706}
8707
199c36ea 8708static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8709{
f0486c68
YZ
8710 struct btrfs_space_info *sinfo = cache->space_info;
8711 u64 num_bytes;
199c36ea 8712 u64 min_allocable_bytes;
f0486c68 8713 int ret = -ENOSPC;
0ef3e66b 8714
c286ac48 8715
199c36ea
MX
8716 /*
8717 * We need some metadata space and system metadata space for
8718 * allocating chunks in some corner cases until we force to set
8719 * it to be readonly.
8720 */
8721 if ((sinfo->flags &
8722 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8723 !force)
8724 min_allocable_bytes = 1 * 1024 * 1024;
8725 else
8726 min_allocable_bytes = 0;
8727
f0486c68
YZ
8728 spin_lock(&sinfo->lock);
8729 spin_lock(&cache->lock);
61cfea9b
W
8730
8731 if (cache->ro) {
8732 ret = 0;
8733 goto out;
8734 }
8735
f0486c68
YZ
8736 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8737 cache->bytes_super - btrfs_block_group_used(&cache->item);
8738
8739 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8740 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8741 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8742 sinfo->bytes_readonly += num_bytes;
f0486c68 8743 cache->ro = 1;
633c0aad 8744 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8745 ret = 0;
8746 }
61cfea9b 8747out:
f0486c68
YZ
8748 spin_unlock(&cache->lock);
8749 spin_unlock(&sinfo->lock);
8750 return ret;
8751}
7d9eb12c 8752
f0486c68
YZ
8753int btrfs_set_block_group_ro(struct btrfs_root *root,
8754 struct btrfs_block_group_cache *cache)
c286ac48 8755
f0486c68
YZ
8756{
8757 struct btrfs_trans_handle *trans;
8758 u64 alloc_flags;
8759 int ret;
7d9eb12c 8760
f0486c68 8761 BUG_ON(cache->ro);
0ef3e66b 8762
1bbc621e 8763again:
ff5714cc 8764 trans = btrfs_join_transaction(root);
79787eaa
JM
8765 if (IS_ERR(trans))
8766 return PTR_ERR(trans);
5d4f98a2 8767
1bbc621e
CM
8768 /*
8769 * we're not allowed to set block groups readonly after the dirty
8770 * block groups cache has started writing. If it already started,
8771 * back off and let this transaction commit
8772 */
8773 mutex_lock(&root->fs_info->ro_block_group_mutex);
8774 if (trans->transaction->dirty_bg_run) {
8775 u64 transid = trans->transid;
8776
8777 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8778 btrfs_end_transaction(trans, root);
8779
8780 ret = btrfs_wait_for_commit(root, transid);
8781 if (ret)
8782 return ret;
8783 goto again;
8784 }
8785
8786
199c36ea 8787 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8788 if (!ret)
8789 goto out;
8790 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8791 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8792 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8793 if (ret < 0)
8794 goto out;
199c36ea 8795 ret = set_block_group_ro(cache, 0);
f0486c68 8796out:
2f081088
SL
8797 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8798 alloc_flags = update_block_group_flags(root, cache->flags);
8799 check_system_chunk(trans, root, alloc_flags);
8800 }
1bbc621e 8801 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8802
f0486c68
YZ
8803 btrfs_end_transaction(trans, root);
8804 return ret;
8805}
5d4f98a2 8806
c87f08ca
CM
8807int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8808 struct btrfs_root *root, u64 type)
8809{
8810 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8811 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8812 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8813}
8814
6d07bcec
MX
8815/*
8816 * helper to account the unused space of all the readonly block group in the
633c0aad 8817 * space_info. takes mirrors into account.
6d07bcec 8818 */
633c0aad 8819u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8820{
8821 struct btrfs_block_group_cache *block_group;
8822 u64 free_bytes = 0;
8823 int factor;
8824
633c0aad
JB
8825 /* It's df, we don't care if it's racey */
8826 if (list_empty(&sinfo->ro_bgs))
8827 return 0;
8828
8829 spin_lock(&sinfo->lock);
8830 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8831 spin_lock(&block_group->lock);
8832
8833 if (!block_group->ro) {
8834 spin_unlock(&block_group->lock);
8835 continue;
8836 }
8837
8838 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8839 BTRFS_BLOCK_GROUP_RAID10 |
8840 BTRFS_BLOCK_GROUP_DUP))
8841 factor = 2;
8842 else
8843 factor = 1;
8844
8845 free_bytes += (block_group->key.offset -
8846 btrfs_block_group_used(&block_group->item)) *
8847 factor;
8848
8849 spin_unlock(&block_group->lock);
8850 }
6d07bcec
MX
8851 spin_unlock(&sinfo->lock);
8852
8853 return free_bytes;
8854}
8855
143bede5 8856void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8857 struct btrfs_block_group_cache *cache)
5d4f98a2 8858{
f0486c68
YZ
8859 struct btrfs_space_info *sinfo = cache->space_info;
8860 u64 num_bytes;
8861
8862 BUG_ON(!cache->ro);
8863
8864 spin_lock(&sinfo->lock);
8865 spin_lock(&cache->lock);
8866 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8867 cache->bytes_super - btrfs_block_group_used(&cache->item);
8868 sinfo->bytes_readonly -= num_bytes;
8869 cache->ro = 0;
633c0aad 8870 list_del_init(&cache->ro_list);
f0486c68
YZ
8871 spin_unlock(&cache->lock);
8872 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
8873}
8874
ba1bf481
JB
8875/*
8876 * checks to see if its even possible to relocate this block group.
8877 *
8878 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8879 * ok to go ahead and try.
8880 */
8881int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 8882{
ba1bf481
JB
8883 struct btrfs_block_group_cache *block_group;
8884 struct btrfs_space_info *space_info;
8885 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
8886 struct btrfs_device *device;
6df9a95e 8887 struct btrfs_trans_handle *trans;
cdcb725c 8888 u64 min_free;
6719db6a
JB
8889 u64 dev_min = 1;
8890 u64 dev_nr = 0;
4a5e98f5 8891 u64 target;
cdcb725c 8892 int index;
ba1bf481
JB
8893 int full = 0;
8894 int ret = 0;
1a40e23b 8895
ba1bf481 8896 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 8897
ba1bf481
JB
8898 /* odd, couldn't find the block group, leave it alone */
8899 if (!block_group)
8900 return -1;
1a40e23b 8901
cdcb725c 8902 min_free = btrfs_block_group_used(&block_group->item);
8903
ba1bf481 8904 /* no bytes used, we're good */
cdcb725c 8905 if (!min_free)
1a40e23b
ZY
8906 goto out;
8907
ba1bf481
JB
8908 space_info = block_group->space_info;
8909 spin_lock(&space_info->lock);
17d217fe 8910
ba1bf481 8911 full = space_info->full;
17d217fe 8912
ba1bf481
JB
8913 /*
8914 * if this is the last block group we have in this space, we can't
7ce618db
CM
8915 * relocate it unless we're able to allocate a new chunk below.
8916 *
8917 * Otherwise, we need to make sure we have room in the space to handle
8918 * all of the extents from this block group. If we can, we're good
ba1bf481 8919 */
7ce618db 8920 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 8921 (space_info->bytes_used + space_info->bytes_reserved +
8922 space_info->bytes_pinned + space_info->bytes_readonly +
8923 min_free < space_info->total_bytes)) {
ba1bf481
JB
8924 spin_unlock(&space_info->lock);
8925 goto out;
17d217fe 8926 }
ba1bf481 8927 spin_unlock(&space_info->lock);
ea8c2819 8928
ba1bf481
JB
8929 /*
8930 * ok we don't have enough space, but maybe we have free space on our
8931 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
8932 * alloc devices and guess if we have enough space. if this block
8933 * group is going to be restriped, run checks against the target
8934 * profile instead of the current one.
ba1bf481
JB
8935 */
8936 ret = -1;
ea8c2819 8937
cdcb725c 8938 /*
8939 * index:
8940 * 0: raid10
8941 * 1: raid1
8942 * 2: dup
8943 * 3: raid0
8944 * 4: single
8945 */
4a5e98f5
ID
8946 target = get_restripe_target(root->fs_info, block_group->flags);
8947 if (target) {
31e50229 8948 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
8949 } else {
8950 /*
8951 * this is just a balance, so if we were marked as full
8952 * we know there is no space for a new chunk
8953 */
8954 if (full)
8955 goto out;
8956
8957 index = get_block_group_index(block_group);
8958 }
8959
e6ec716f 8960 if (index == BTRFS_RAID_RAID10) {
cdcb725c 8961 dev_min = 4;
6719db6a
JB
8962 /* Divide by 2 */
8963 min_free >>= 1;
e6ec716f 8964 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 8965 dev_min = 2;
e6ec716f 8966 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
8967 /* Multiply by 2 */
8968 min_free <<= 1;
e6ec716f 8969 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 8970 dev_min = fs_devices->rw_devices;
47c5713f 8971 min_free = div64_u64(min_free, dev_min);
cdcb725c 8972 }
8973
6df9a95e
JB
8974 /* We need to do this so that we can look at pending chunks */
8975 trans = btrfs_join_transaction(root);
8976 if (IS_ERR(trans)) {
8977 ret = PTR_ERR(trans);
8978 goto out;
8979 }
8980
ba1bf481
JB
8981 mutex_lock(&root->fs_info->chunk_mutex);
8982 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 8983 u64 dev_offset;
56bec294 8984
ba1bf481
JB
8985 /*
8986 * check to make sure we can actually find a chunk with enough
8987 * space to fit our block group in.
8988 */
63a212ab
SB
8989 if (device->total_bytes > device->bytes_used + min_free &&
8990 !device->is_tgtdev_for_dev_replace) {
6df9a95e 8991 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 8992 &dev_offset, NULL);
ba1bf481 8993 if (!ret)
cdcb725c 8994 dev_nr++;
8995
8996 if (dev_nr >= dev_min)
73e48b27 8997 break;
cdcb725c 8998
ba1bf481 8999 ret = -1;
725c8463 9000 }
edbd8d4e 9001 }
ba1bf481 9002 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9003 btrfs_end_transaction(trans, root);
edbd8d4e 9004out:
ba1bf481 9005 btrfs_put_block_group(block_group);
edbd8d4e
CM
9006 return ret;
9007}
9008
b2950863
CH
9009static int find_first_block_group(struct btrfs_root *root,
9010 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9011{
925baedd 9012 int ret = 0;
0b86a832
CM
9013 struct btrfs_key found_key;
9014 struct extent_buffer *leaf;
9015 int slot;
edbd8d4e 9016
0b86a832
CM
9017 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9018 if (ret < 0)
925baedd
CM
9019 goto out;
9020
d397712b 9021 while (1) {
0b86a832 9022 slot = path->slots[0];
edbd8d4e 9023 leaf = path->nodes[0];
0b86a832
CM
9024 if (slot >= btrfs_header_nritems(leaf)) {
9025 ret = btrfs_next_leaf(root, path);
9026 if (ret == 0)
9027 continue;
9028 if (ret < 0)
925baedd 9029 goto out;
0b86a832 9030 break;
edbd8d4e 9031 }
0b86a832 9032 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9033
0b86a832 9034 if (found_key.objectid >= key->objectid &&
925baedd
CM
9035 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9036 ret = 0;
9037 goto out;
9038 }
0b86a832 9039 path->slots[0]++;
edbd8d4e 9040 }
925baedd 9041out:
0b86a832 9042 return ret;
edbd8d4e
CM
9043}
9044
0af3d00b
JB
9045void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9046{
9047 struct btrfs_block_group_cache *block_group;
9048 u64 last = 0;
9049
9050 while (1) {
9051 struct inode *inode;
9052
9053 block_group = btrfs_lookup_first_block_group(info, last);
9054 while (block_group) {
9055 spin_lock(&block_group->lock);
9056 if (block_group->iref)
9057 break;
9058 spin_unlock(&block_group->lock);
9059 block_group = next_block_group(info->tree_root,
9060 block_group);
9061 }
9062 if (!block_group) {
9063 if (last == 0)
9064 break;
9065 last = 0;
9066 continue;
9067 }
9068
9069 inode = block_group->inode;
9070 block_group->iref = 0;
9071 block_group->inode = NULL;
9072 spin_unlock(&block_group->lock);
9073 iput(inode);
9074 last = block_group->key.objectid + block_group->key.offset;
9075 btrfs_put_block_group(block_group);
9076 }
9077}
9078
1a40e23b
ZY
9079int btrfs_free_block_groups(struct btrfs_fs_info *info)
9080{
9081 struct btrfs_block_group_cache *block_group;
4184ea7f 9082 struct btrfs_space_info *space_info;
11833d66 9083 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9084 struct rb_node *n;
9085
9e351cc8 9086 down_write(&info->commit_root_sem);
11833d66
YZ
9087 while (!list_empty(&info->caching_block_groups)) {
9088 caching_ctl = list_entry(info->caching_block_groups.next,
9089 struct btrfs_caching_control, list);
9090 list_del(&caching_ctl->list);
9091 put_caching_control(caching_ctl);
9092 }
9e351cc8 9093 up_write(&info->commit_root_sem);
11833d66 9094
47ab2a6c
JB
9095 spin_lock(&info->unused_bgs_lock);
9096 while (!list_empty(&info->unused_bgs)) {
9097 block_group = list_first_entry(&info->unused_bgs,
9098 struct btrfs_block_group_cache,
9099 bg_list);
9100 list_del_init(&block_group->bg_list);
9101 btrfs_put_block_group(block_group);
9102 }
9103 spin_unlock(&info->unused_bgs_lock);
9104
1a40e23b
ZY
9105 spin_lock(&info->block_group_cache_lock);
9106 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9107 block_group = rb_entry(n, struct btrfs_block_group_cache,
9108 cache_node);
1a40e23b
ZY
9109 rb_erase(&block_group->cache_node,
9110 &info->block_group_cache_tree);
01eacb27 9111 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9112 spin_unlock(&info->block_group_cache_lock);
9113
80eb234a 9114 down_write(&block_group->space_info->groups_sem);
1a40e23b 9115 list_del(&block_group->list);
80eb234a 9116 up_write(&block_group->space_info->groups_sem);
d2fb3437 9117
817d52f8 9118 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9119 wait_block_group_cache_done(block_group);
817d52f8 9120
3c14874a
JB
9121 /*
9122 * We haven't cached this block group, which means we could
9123 * possibly have excluded extents on this block group.
9124 */
36cce922
JB
9125 if (block_group->cached == BTRFS_CACHE_NO ||
9126 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9127 free_excluded_extents(info->extent_root, block_group);
9128
817d52f8 9129 btrfs_remove_free_space_cache(block_group);
11dfe35a 9130 btrfs_put_block_group(block_group);
d899e052
YZ
9131
9132 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9133 }
9134 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9135
9136 /* now that all the block groups are freed, go through and
9137 * free all the space_info structs. This is only called during
9138 * the final stages of unmount, and so we know nobody is
9139 * using them. We call synchronize_rcu() once before we start,
9140 * just to be on the safe side.
9141 */
9142 synchronize_rcu();
9143
8929ecfa
YZ
9144 release_global_block_rsv(info);
9145
67871254 9146 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9147 int i;
9148
4184ea7f
CM
9149 space_info = list_entry(info->space_info.next,
9150 struct btrfs_space_info,
9151 list);
b069e0c3 9152 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9153 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9154 space_info->bytes_reserved > 0 ||
fae7f21c 9155 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9156 dump_space_info(space_info, 0, 0);
9157 }
f0486c68 9158 }
4184ea7f 9159 list_del(&space_info->list);
6ab0a202
JM
9160 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9161 struct kobject *kobj;
c1895442
JM
9162 kobj = space_info->block_group_kobjs[i];
9163 space_info->block_group_kobjs[i] = NULL;
9164 if (kobj) {
6ab0a202
JM
9165 kobject_del(kobj);
9166 kobject_put(kobj);
9167 }
9168 }
9169 kobject_del(&space_info->kobj);
9170 kobject_put(&space_info->kobj);
4184ea7f 9171 }
1a40e23b
ZY
9172 return 0;
9173}
9174
b742bb82
YZ
9175static void __link_block_group(struct btrfs_space_info *space_info,
9176 struct btrfs_block_group_cache *cache)
9177{
9178 int index = get_block_group_index(cache);
ed55b6ac 9179 bool first = false;
b742bb82
YZ
9180
9181 down_write(&space_info->groups_sem);
ed55b6ac
JM
9182 if (list_empty(&space_info->block_groups[index]))
9183 first = true;
9184 list_add_tail(&cache->list, &space_info->block_groups[index]);
9185 up_write(&space_info->groups_sem);
9186
9187 if (first) {
c1895442 9188 struct raid_kobject *rkobj;
6ab0a202
JM
9189 int ret;
9190
c1895442
JM
9191 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9192 if (!rkobj)
9193 goto out_err;
9194 rkobj->raid_type = index;
9195 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9196 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9197 "%s", get_raid_name(index));
6ab0a202 9198 if (ret) {
c1895442
JM
9199 kobject_put(&rkobj->kobj);
9200 goto out_err;
6ab0a202 9201 }
c1895442 9202 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9203 }
c1895442
JM
9204
9205 return;
9206out_err:
9207 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9208}
9209
920e4a58
MX
9210static struct btrfs_block_group_cache *
9211btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9212{
9213 struct btrfs_block_group_cache *cache;
9214
9215 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9216 if (!cache)
9217 return NULL;
9218
9219 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9220 GFP_NOFS);
9221 if (!cache->free_space_ctl) {
9222 kfree(cache);
9223 return NULL;
9224 }
9225
9226 cache->key.objectid = start;
9227 cache->key.offset = size;
9228 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9229
9230 cache->sectorsize = root->sectorsize;
9231 cache->fs_info = root->fs_info;
9232 cache->full_stripe_len = btrfs_full_stripe_len(root,
9233 &root->fs_info->mapping_tree,
9234 start);
9235 atomic_set(&cache->count, 1);
9236 spin_lock_init(&cache->lock);
e570fd27 9237 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9238 INIT_LIST_HEAD(&cache->list);
9239 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9240 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9241 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9242 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9243 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9244 btrfs_init_free_space_ctl(cache);
04216820 9245 atomic_set(&cache->trimming, 0);
920e4a58
MX
9246
9247 return cache;
9248}
9249
9078a3e1
CM
9250int btrfs_read_block_groups(struct btrfs_root *root)
9251{
9252 struct btrfs_path *path;
9253 int ret;
9078a3e1 9254 struct btrfs_block_group_cache *cache;
be744175 9255 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9256 struct btrfs_space_info *space_info;
9078a3e1
CM
9257 struct btrfs_key key;
9258 struct btrfs_key found_key;
5f39d397 9259 struct extent_buffer *leaf;
0af3d00b
JB
9260 int need_clear = 0;
9261 u64 cache_gen;
96b5179d 9262
be744175 9263 root = info->extent_root;
9078a3e1 9264 key.objectid = 0;
0b86a832 9265 key.offset = 0;
962a298f 9266 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9267 path = btrfs_alloc_path();
9268 if (!path)
9269 return -ENOMEM;
026fd317 9270 path->reada = 1;
9078a3e1 9271
6c41761f 9272 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9273 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9274 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9275 need_clear = 1;
88c2ba3b
JB
9276 if (btrfs_test_opt(root, CLEAR_CACHE))
9277 need_clear = 1;
0af3d00b 9278
d397712b 9279 while (1) {
0b86a832 9280 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9281 if (ret > 0)
9282 break;
0b86a832
CM
9283 if (ret != 0)
9284 goto error;
920e4a58 9285
5f39d397
CM
9286 leaf = path->nodes[0];
9287 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9288
9289 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9290 found_key.offset);
9078a3e1 9291 if (!cache) {
0b86a832 9292 ret = -ENOMEM;
f0486c68 9293 goto error;
9078a3e1 9294 }
96303081 9295
cf7c1ef6
LB
9296 if (need_clear) {
9297 /*
9298 * When we mount with old space cache, we need to
9299 * set BTRFS_DC_CLEAR and set dirty flag.
9300 *
9301 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9302 * truncate the old free space cache inode and
9303 * setup a new one.
9304 * b) Setting 'dirty flag' makes sure that we flush
9305 * the new space cache info onto disk.
9306 */
cf7c1ef6 9307 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9308 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9309 }
0af3d00b 9310
5f39d397
CM
9311 read_extent_buffer(leaf, &cache->item,
9312 btrfs_item_ptr_offset(leaf, path->slots[0]),
9313 sizeof(cache->item));
920e4a58 9314 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9315
9078a3e1 9316 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9317 btrfs_release_path(path);
34d52cb6 9318
3c14874a
JB
9319 /*
9320 * We need to exclude the super stripes now so that the space
9321 * info has super bytes accounted for, otherwise we'll think
9322 * we have more space than we actually do.
9323 */
835d974f
JB
9324 ret = exclude_super_stripes(root, cache);
9325 if (ret) {
9326 /*
9327 * We may have excluded something, so call this just in
9328 * case.
9329 */
9330 free_excluded_extents(root, cache);
920e4a58 9331 btrfs_put_block_group(cache);
835d974f
JB
9332 goto error;
9333 }
3c14874a 9334
817d52f8
JB
9335 /*
9336 * check for two cases, either we are full, and therefore
9337 * don't need to bother with the caching work since we won't
9338 * find any space, or we are empty, and we can just add all
9339 * the space in and be done with it. This saves us _alot_ of
9340 * time, particularly in the full case.
9341 */
9342 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9343 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9344 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9345 free_excluded_extents(root, cache);
817d52f8 9346 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9347 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9348 cache->cached = BTRFS_CACHE_FINISHED;
9349 add_new_free_space(cache, root->fs_info,
9350 found_key.objectid,
9351 found_key.objectid +
9352 found_key.offset);
11833d66 9353 free_excluded_extents(root, cache);
817d52f8 9354 }
96b5179d 9355
8c579fe7
JB
9356 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9357 if (ret) {
9358 btrfs_remove_free_space_cache(cache);
9359 btrfs_put_block_group(cache);
9360 goto error;
9361 }
9362
6324fbf3
CM
9363 ret = update_space_info(info, cache->flags, found_key.offset,
9364 btrfs_block_group_used(&cache->item),
9365 &space_info);
8c579fe7
JB
9366 if (ret) {
9367 btrfs_remove_free_space_cache(cache);
9368 spin_lock(&info->block_group_cache_lock);
9369 rb_erase(&cache->cache_node,
9370 &info->block_group_cache_tree);
01eacb27 9371 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9372 spin_unlock(&info->block_group_cache_lock);
9373 btrfs_put_block_group(cache);
9374 goto error;
9375 }
9376
6324fbf3 9377 cache->space_info = space_info;
1b2da372 9378 spin_lock(&cache->space_info->lock);
f0486c68 9379 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9380 spin_unlock(&cache->space_info->lock);
9381
b742bb82 9382 __link_block_group(space_info, cache);
0f9dd46c 9383
75ccf47d 9384 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9385 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9386 set_block_group_ro(cache, 1);
47ab2a6c
JB
9387 } else if (btrfs_block_group_used(&cache->item) == 0) {
9388 spin_lock(&info->unused_bgs_lock);
9389 /* Should always be true but just in case. */
9390 if (list_empty(&cache->bg_list)) {
9391 btrfs_get_block_group(cache);
9392 list_add_tail(&cache->bg_list,
9393 &info->unused_bgs);
9394 }
9395 spin_unlock(&info->unused_bgs_lock);
9396 }
9078a3e1 9397 }
b742bb82
YZ
9398
9399 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9400 if (!(get_alloc_profile(root, space_info->flags) &
9401 (BTRFS_BLOCK_GROUP_RAID10 |
9402 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9403 BTRFS_BLOCK_GROUP_RAID5 |
9404 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9405 BTRFS_BLOCK_GROUP_DUP)))
9406 continue;
9407 /*
9408 * avoid allocating from un-mirrored block group if there are
9409 * mirrored block groups.
9410 */
1095cc0d 9411 list_for_each_entry(cache,
9412 &space_info->block_groups[BTRFS_RAID_RAID0],
9413 list)
199c36ea 9414 set_block_group_ro(cache, 1);
1095cc0d 9415 list_for_each_entry(cache,
9416 &space_info->block_groups[BTRFS_RAID_SINGLE],
9417 list)
199c36ea 9418 set_block_group_ro(cache, 1);
9078a3e1 9419 }
f0486c68
YZ
9420
9421 init_global_block_rsv(info);
0b86a832
CM
9422 ret = 0;
9423error:
9078a3e1 9424 btrfs_free_path(path);
0b86a832 9425 return ret;
9078a3e1 9426}
6324fbf3 9427
ea658bad
JB
9428void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9429 struct btrfs_root *root)
9430{
9431 struct btrfs_block_group_cache *block_group, *tmp;
9432 struct btrfs_root *extent_root = root->fs_info->extent_root;
9433 struct btrfs_block_group_item item;
9434 struct btrfs_key key;
9435 int ret = 0;
9436
47ab2a6c 9437 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9438 if (ret)
c92f6be3 9439 goto next;
ea658bad
JB
9440
9441 spin_lock(&block_group->lock);
9442 memcpy(&item, &block_group->item, sizeof(item));
9443 memcpy(&key, &block_group->key, sizeof(key));
9444 spin_unlock(&block_group->lock);
9445
9446 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9447 sizeof(item));
9448 if (ret)
9449 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9450 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9451 key.objectid, key.offset);
9452 if (ret)
9453 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9454next:
9455 list_del_init(&block_group->bg_list);
ea658bad
JB
9456 }
9457}
9458
6324fbf3
CM
9459int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9460 struct btrfs_root *root, u64 bytes_used,
e17cade2 9461 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9462 u64 size)
9463{
9464 int ret;
6324fbf3
CM
9465 struct btrfs_root *extent_root;
9466 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9467
9468 extent_root = root->fs_info->extent_root;
6324fbf3 9469
995946dd 9470 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9471
920e4a58 9472 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9473 if (!cache)
9474 return -ENOMEM;
34d52cb6 9475
6324fbf3 9476 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9477 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9478 btrfs_set_block_group_flags(&cache->item, type);
9479
920e4a58 9480 cache->flags = type;
11833d66 9481 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9482 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9483 ret = exclude_super_stripes(root, cache);
9484 if (ret) {
9485 /*
9486 * We may have excluded something, so call this just in
9487 * case.
9488 */
9489 free_excluded_extents(root, cache);
920e4a58 9490 btrfs_put_block_group(cache);
835d974f
JB
9491 return ret;
9492 }
96303081 9493
817d52f8
JB
9494 add_new_free_space(cache, root->fs_info, chunk_offset,
9495 chunk_offset + size);
9496
11833d66
YZ
9497 free_excluded_extents(root, cache);
9498
8c579fe7
JB
9499 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9500 if (ret) {
9501 btrfs_remove_free_space_cache(cache);
9502 btrfs_put_block_group(cache);
9503 return ret;
9504 }
9505
6324fbf3
CM
9506 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9507 &cache->space_info);
8c579fe7
JB
9508 if (ret) {
9509 btrfs_remove_free_space_cache(cache);
9510 spin_lock(&root->fs_info->block_group_cache_lock);
9511 rb_erase(&cache->cache_node,
9512 &root->fs_info->block_group_cache_tree);
01eacb27 9513 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9514 spin_unlock(&root->fs_info->block_group_cache_lock);
9515 btrfs_put_block_group(cache);
9516 return ret;
9517 }
c7c144db 9518 update_global_block_rsv(root->fs_info);
1b2da372
JB
9519
9520 spin_lock(&cache->space_info->lock);
f0486c68 9521 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9522 spin_unlock(&cache->space_info->lock);
9523
b742bb82 9524 __link_block_group(cache->space_info, cache);
6324fbf3 9525
47ab2a6c 9526 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9527
d18a2c44 9528 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9529
6324fbf3
CM
9530 return 0;
9531}
1a40e23b 9532
10ea00f5
ID
9533static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9534{
899c81ea
ID
9535 u64 extra_flags = chunk_to_extended(flags) &
9536 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9537
de98ced9 9538 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9539 if (flags & BTRFS_BLOCK_GROUP_DATA)
9540 fs_info->avail_data_alloc_bits &= ~extra_flags;
9541 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9542 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9543 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9544 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9545 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9546}
9547
1a40e23b 9548int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9549 struct btrfs_root *root, u64 group_start,
9550 struct extent_map *em)
1a40e23b
ZY
9551{
9552 struct btrfs_path *path;
9553 struct btrfs_block_group_cache *block_group;
44fb5511 9554 struct btrfs_free_cluster *cluster;
0af3d00b 9555 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9556 struct btrfs_key key;
0af3d00b 9557 struct inode *inode;
c1895442 9558 struct kobject *kobj = NULL;
1a40e23b 9559 int ret;
10ea00f5 9560 int index;
89a55897 9561 int factor;
4f69cb98 9562 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9563 bool remove_em;
1a40e23b 9564
1a40e23b
ZY
9565 root = root->fs_info->extent_root;
9566
9567 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9568 BUG_ON(!block_group);
c146afad 9569 BUG_ON(!block_group->ro);
1a40e23b 9570
9f7c43c9 9571 /*
9572 * Free the reserved super bytes from this block group before
9573 * remove it.
9574 */
9575 free_excluded_extents(root, block_group);
9576
1a40e23b 9577 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9578 index = get_block_group_index(block_group);
89a55897
JB
9579 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9580 BTRFS_BLOCK_GROUP_RAID1 |
9581 BTRFS_BLOCK_GROUP_RAID10))
9582 factor = 2;
9583 else
9584 factor = 1;
1a40e23b 9585
44fb5511
CM
9586 /* make sure this block group isn't part of an allocation cluster */
9587 cluster = &root->fs_info->data_alloc_cluster;
9588 spin_lock(&cluster->refill_lock);
9589 btrfs_return_cluster_to_free_space(block_group, cluster);
9590 spin_unlock(&cluster->refill_lock);
9591
9592 /*
9593 * make sure this block group isn't part of a metadata
9594 * allocation cluster
9595 */
9596 cluster = &root->fs_info->meta_alloc_cluster;
9597 spin_lock(&cluster->refill_lock);
9598 btrfs_return_cluster_to_free_space(block_group, cluster);
9599 spin_unlock(&cluster->refill_lock);
9600
1a40e23b 9601 path = btrfs_alloc_path();
d8926bb3
MF
9602 if (!path) {
9603 ret = -ENOMEM;
9604 goto out;
9605 }
1a40e23b 9606
1bbc621e
CM
9607 /*
9608 * get the inode first so any iput calls done for the io_list
9609 * aren't the final iput (no unlinks allowed now)
9610 */
10b2f34d 9611 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9612
9613 mutex_lock(&trans->transaction->cache_write_mutex);
9614 /*
9615 * make sure our free spache cache IO is done before remove the
9616 * free space inode
9617 */
9618 spin_lock(&trans->transaction->dirty_bgs_lock);
9619 if (!list_empty(&block_group->io_list)) {
9620 list_del_init(&block_group->io_list);
9621
9622 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9623
9624 spin_unlock(&trans->transaction->dirty_bgs_lock);
9625 btrfs_wait_cache_io(root, trans, block_group,
9626 &block_group->io_ctl, path,
9627 block_group->key.objectid);
9628 btrfs_put_block_group(block_group);
9629 spin_lock(&trans->transaction->dirty_bgs_lock);
9630 }
9631
9632 if (!list_empty(&block_group->dirty_list)) {
9633 list_del_init(&block_group->dirty_list);
9634 btrfs_put_block_group(block_group);
9635 }
9636 spin_unlock(&trans->transaction->dirty_bgs_lock);
9637 mutex_unlock(&trans->transaction->cache_write_mutex);
9638
0af3d00b 9639 if (!IS_ERR(inode)) {
b532402e 9640 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9641 if (ret) {
9642 btrfs_add_delayed_iput(inode);
9643 goto out;
9644 }
0af3d00b
JB
9645 clear_nlink(inode);
9646 /* One for the block groups ref */
9647 spin_lock(&block_group->lock);
9648 if (block_group->iref) {
9649 block_group->iref = 0;
9650 block_group->inode = NULL;
9651 spin_unlock(&block_group->lock);
9652 iput(inode);
9653 } else {
9654 spin_unlock(&block_group->lock);
9655 }
9656 /* One for our lookup ref */
455757c3 9657 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9658 }
9659
9660 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9661 key.offset = block_group->key.objectid;
9662 key.type = 0;
9663
9664 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9665 if (ret < 0)
9666 goto out;
9667 if (ret > 0)
b3b4aa74 9668 btrfs_release_path(path);
0af3d00b
JB
9669 if (ret == 0) {
9670 ret = btrfs_del_item(trans, tree_root, path);
9671 if (ret)
9672 goto out;
b3b4aa74 9673 btrfs_release_path(path);
0af3d00b
JB
9674 }
9675
3dfdb934 9676 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9677 rb_erase(&block_group->cache_node,
9678 &root->fs_info->block_group_cache_tree);
292cbd51 9679 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9680
9681 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9682 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9683 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9684
80eb234a 9685 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9686 /*
9687 * we must use list_del_init so people can check to see if they
9688 * are still on the list after taking the semaphore
9689 */
9690 list_del_init(&block_group->list);
6ab0a202 9691 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9692 kobj = block_group->space_info->block_group_kobjs[index];
9693 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9694 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9695 }
80eb234a 9696 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9697 if (kobj) {
9698 kobject_del(kobj);
9699 kobject_put(kobj);
9700 }
1a40e23b 9701
4f69cb98
FM
9702 if (block_group->has_caching_ctl)
9703 caching_ctl = get_caching_control(block_group);
817d52f8 9704 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9705 wait_block_group_cache_done(block_group);
4f69cb98
FM
9706 if (block_group->has_caching_ctl) {
9707 down_write(&root->fs_info->commit_root_sem);
9708 if (!caching_ctl) {
9709 struct btrfs_caching_control *ctl;
9710
9711 list_for_each_entry(ctl,
9712 &root->fs_info->caching_block_groups, list)
9713 if (ctl->block_group == block_group) {
9714 caching_ctl = ctl;
9715 atomic_inc(&caching_ctl->count);
9716 break;
9717 }
9718 }
9719 if (caching_ctl)
9720 list_del_init(&caching_ctl->list);
9721 up_write(&root->fs_info->commit_root_sem);
9722 if (caching_ctl) {
9723 /* Once for the caching bgs list and once for us. */
9724 put_caching_control(caching_ctl);
9725 put_caching_control(caching_ctl);
9726 }
9727 }
817d52f8 9728
ce93ec54
JB
9729 spin_lock(&trans->transaction->dirty_bgs_lock);
9730 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9731 WARN_ON(1);
9732 }
9733 if (!list_empty(&block_group->io_list)) {
9734 WARN_ON(1);
ce93ec54
JB
9735 }
9736 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9737 btrfs_remove_free_space_cache(block_group);
9738
c146afad 9739 spin_lock(&block_group->space_info->lock);
75c68e9f 9740 list_del_init(&block_group->ro_list);
18d018ad
ZL
9741
9742 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9743 WARN_ON(block_group->space_info->total_bytes
9744 < block_group->key.offset);
9745 WARN_ON(block_group->space_info->bytes_readonly
9746 < block_group->key.offset);
9747 WARN_ON(block_group->space_info->disk_total
9748 < block_group->key.offset * factor);
9749 }
c146afad
YZ
9750 block_group->space_info->total_bytes -= block_group->key.offset;
9751 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9752 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9753
c146afad 9754 spin_unlock(&block_group->space_info->lock);
283bb197 9755
0af3d00b
JB
9756 memcpy(&key, &block_group->key, sizeof(key));
9757
04216820 9758 lock_chunks(root);
495e64f4
FM
9759 if (!list_empty(&em->list)) {
9760 /* We're in the transaction->pending_chunks list. */
9761 free_extent_map(em);
9762 }
04216820
FM
9763 spin_lock(&block_group->lock);
9764 block_group->removed = 1;
9765 /*
9766 * At this point trimming can't start on this block group, because we
9767 * removed the block group from the tree fs_info->block_group_cache_tree
9768 * so no one can't find it anymore and even if someone already got this
9769 * block group before we removed it from the rbtree, they have already
9770 * incremented block_group->trimming - if they didn't, they won't find
9771 * any free space entries because we already removed them all when we
9772 * called btrfs_remove_free_space_cache().
9773 *
9774 * And we must not remove the extent map from the fs_info->mapping_tree
9775 * to prevent the same logical address range and physical device space
9776 * ranges from being reused for a new block group. This is because our
9777 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9778 * completely transactionless, so while it is trimming a range the
9779 * currently running transaction might finish and a new one start,
9780 * allowing for new block groups to be created that can reuse the same
9781 * physical device locations unless we take this special care.
9782 */
9783 remove_em = (atomic_read(&block_group->trimming) == 0);
9784 /*
9785 * Make sure a trimmer task always sees the em in the pinned_chunks list
9786 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9787 * before checking block_group->removed).
9788 */
9789 if (!remove_em) {
9790 /*
9791 * Our em might be in trans->transaction->pending_chunks which
9792 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9793 * and so is the fs_info->pinned_chunks list.
9794 *
9795 * So at this point we must be holding the chunk_mutex to avoid
9796 * any races with chunk allocation (more specifically at
9797 * volumes.c:contains_pending_extent()), to ensure it always
9798 * sees the em, either in the pending_chunks list or in the
9799 * pinned_chunks list.
9800 */
9801 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9802 }
9803 spin_unlock(&block_group->lock);
04216820
FM
9804
9805 if (remove_em) {
9806 struct extent_map_tree *em_tree;
9807
9808 em_tree = &root->fs_info->mapping_tree.map_tree;
9809 write_lock(&em_tree->lock);
8dbcd10f
FM
9810 /*
9811 * The em might be in the pending_chunks list, so make sure the
9812 * chunk mutex is locked, since remove_extent_mapping() will
9813 * delete us from that list.
9814 */
04216820
FM
9815 remove_extent_mapping(em_tree, em);
9816 write_unlock(&em_tree->lock);
9817 /* once for the tree */
9818 free_extent_map(em);
9819 }
9820
8dbcd10f
FM
9821 unlock_chunks(root);
9822
fa9c0d79
CM
9823 btrfs_put_block_group(block_group);
9824 btrfs_put_block_group(block_group);
1a40e23b
ZY
9825
9826 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9827 if (ret > 0)
9828 ret = -EIO;
9829 if (ret < 0)
9830 goto out;
9831
9832 ret = btrfs_del_item(trans, root, path);
9833out:
9834 btrfs_free_path(path);
9835 return ret;
9836}
acce952b 9837
47ab2a6c
JB
9838/*
9839 * Process the unused_bgs list and remove any that don't have any allocated
9840 * space inside of them.
9841 */
9842void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9843{
9844 struct btrfs_block_group_cache *block_group;
9845 struct btrfs_space_info *space_info;
9846 struct btrfs_root *root = fs_info->extent_root;
9847 struct btrfs_trans_handle *trans;
9848 int ret = 0;
9849
9850 if (!fs_info->open)
9851 return;
9852
9853 spin_lock(&fs_info->unused_bgs_lock);
9854 while (!list_empty(&fs_info->unused_bgs)) {
9855 u64 start, end;
9856
9857 block_group = list_first_entry(&fs_info->unused_bgs,
9858 struct btrfs_block_group_cache,
9859 bg_list);
9860 space_info = block_group->space_info;
9861 list_del_init(&block_group->bg_list);
9862 if (ret || btrfs_mixed_space_info(space_info)) {
9863 btrfs_put_block_group(block_group);
9864 continue;
9865 }
9866 spin_unlock(&fs_info->unused_bgs_lock);
9867
9868 /* Don't want to race with allocators so take the groups_sem */
9869 down_write(&space_info->groups_sem);
9870 spin_lock(&block_group->lock);
9871 if (block_group->reserved ||
9872 btrfs_block_group_used(&block_group->item) ||
9873 block_group->ro) {
9874 /*
9875 * We want to bail if we made new allocations or have
9876 * outstanding allocations in this block group. We do
9877 * the ro check in case balance is currently acting on
9878 * this block group.
9879 */
9880 spin_unlock(&block_group->lock);
9881 up_write(&space_info->groups_sem);
9882 goto next;
9883 }
9884 spin_unlock(&block_group->lock);
9885
9886 /* We don't want to force the issue, only flip if it's ok. */
9887 ret = set_block_group_ro(block_group, 0);
9888 up_write(&space_info->groups_sem);
9889 if (ret < 0) {
9890 ret = 0;
9891 goto next;
9892 }
9893
9894 /*
9895 * Want to do this before we do anything else so we can recover
9896 * properly if we fail to join the transaction.
9897 */
3d84be79
FL
9898 /* 1 for btrfs_orphan_reserve_metadata() */
9899 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
9900 if (IS_ERR(trans)) {
9901 btrfs_set_block_group_rw(root, block_group);
9902 ret = PTR_ERR(trans);
9903 goto next;
9904 }
9905
9906 /*
9907 * We could have pending pinned extents for this block group,
9908 * just delete them, we don't care about them anymore.
9909 */
9910 start = block_group->key.objectid;
9911 end = start + block_group->key.offset - 1;
d4b450cd
FM
9912 /*
9913 * Hold the unused_bg_unpin_mutex lock to avoid racing with
9914 * btrfs_finish_extent_commit(). If we are at transaction N,
9915 * another task might be running finish_extent_commit() for the
9916 * previous transaction N - 1, and have seen a range belonging
9917 * to the block group in freed_extents[] before we were able to
9918 * clear the whole block group range from freed_extents[]. This
9919 * means that task can lookup for the block group after we
9920 * unpinned it from freed_extents[] and removed it, leading to
9921 * a BUG_ON() at btrfs_unpin_extent_range().
9922 */
9923 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 9924 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 9925 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9926 if (ret) {
d4b450cd 9927 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9928 btrfs_set_block_group_rw(root, block_group);
9929 goto end_trans;
9930 }
9931 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 9932 EXTENT_DIRTY, GFP_NOFS);
758eb51e 9933 if (ret) {
d4b450cd 9934 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
9935 btrfs_set_block_group_rw(root, block_group);
9936 goto end_trans;
9937 }
d4b450cd 9938 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
9939
9940 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
9941 spin_lock(&space_info->lock);
9942 spin_lock(&block_group->lock);
9943
9944 space_info->bytes_pinned -= block_group->pinned;
9945 space_info->bytes_readonly += block_group->pinned;
9946 percpu_counter_add(&space_info->total_bytes_pinned,
9947 -block_group->pinned);
47ab2a6c
JB
9948 block_group->pinned = 0;
9949
c30666d4
ZL
9950 spin_unlock(&block_group->lock);
9951 spin_unlock(&space_info->lock);
9952
47ab2a6c
JB
9953 /*
9954 * Btrfs_remove_chunk will abort the transaction if things go
9955 * horribly wrong.
9956 */
9957 ret = btrfs_remove_chunk(trans, root,
9958 block_group->key.objectid);
758eb51e 9959end_trans:
47ab2a6c
JB
9960 btrfs_end_transaction(trans, root);
9961next:
9962 btrfs_put_block_group(block_group);
9963 spin_lock(&fs_info->unused_bgs_lock);
9964 }
9965 spin_unlock(&fs_info->unused_bgs_lock);
9966}
9967
c59021f8 9968int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
9969{
9970 struct btrfs_space_info *space_info;
1aba86d6 9971 struct btrfs_super_block *disk_super;
9972 u64 features;
9973 u64 flags;
9974 int mixed = 0;
c59021f8 9975 int ret;
9976
6c41761f 9977 disk_super = fs_info->super_copy;
1aba86d6 9978 if (!btrfs_super_root(disk_super))
9979 return 1;
c59021f8 9980
1aba86d6 9981 features = btrfs_super_incompat_flags(disk_super);
9982 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
9983 mixed = 1;
c59021f8 9984
1aba86d6 9985 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9986 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 9987 if (ret)
1aba86d6 9988 goto out;
c59021f8 9989
1aba86d6 9990 if (mixed) {
9991 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
9992 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9993 } else {
9994 flags = BTRFS_BLOCK_GROUP_METADATA;
9995 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
9996 if (ret)
9997 goto out;
9998
9999 flags = BTRFS_BLOCK_GROUP_DATA;
10000 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10001 }
10002out:
c59021f8 10003 return ret;
10004}
10005
acce952b 10006int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10007{
678886bd 10008 return unpin_extent_range(root, start, end, false);
acce952b 10009}
10010
f7039b1d
LD
10011int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10012{
10013 struct btrfs_fs_info *fs_info = root->fs_info;
10014 struct btrfs_block_group_cache *cache = NULL;
10015 u64 group_trimmed;
10016 u64 start;
10017 u64 end;
10018 u64 trimmed = 0;
2cac13e4 10019 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10020 int ret = 0;
10021
2cac13e4
LB
10022 /*
10023 * try to trim all FS space, our block group may start from non-zero.
10024 */
10025 if (range->len == total_bytes)
10026 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10027 else
10028 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10029
10030 while (cache) {
10031 if (cache->key.objectid >= (range->start + range->len)) {
10032 btrfs_put_block_group(cache);
10033 break;
10034 }
10035
10036 start = max(range->start, cache->key.objectid);
10037 end = min(range->start + range->len,
10038 cache->key.objectid + cache->key.offset);
10039
10040 if (end - start >= range->minlen) {
10041 if (!block_group_cache_done(cache)) {
f6373bf3 10042 ret = cache_block_group(cache, 0);
1be41b78
JB
10043 if (ret) {
10044 btrfs_put_block_group(cache);
10045 break;
10046 }
10047 ret = wait_block_group_cache_done(cache);
10048 if (ret) {
10049 btrfs_put_block_group(cache);
10050 break;
10051 }
f7039b1d
LD
10052 }
10053 ret = btrfs_trim_block_group(cache,
10054 &group_trimmed,
10055 start,
10056 end,
10057 range->minlen);
10058
10059 trimmed += group_trimmed;
10060 if (ret) {
10061 btrfs_put_block_group(cache);
10062 break;
10063 }
10064 }
10065
10066 cache = next_block_group(fs_info->tree_root, cache);
10067 }
10068
10069 range->len = trimmed;
10070 return ret;
10071}
8257b2dc
MX
10072
10073/*
9ea24bbe
FM
10074 * btrfs_{start,end}_write_no_snapshoting() are similar to
10075 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10076 * data into the page cache through nocow before the subvolume is snapshoted,
10077 * but flush the data into disk after the snapshot creation, or to prevent
10078 * operations while snapshoting is ongoing and that cause the snapshot to be
10079 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10080 */
9ea24bbe 10081void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10082{
10083 percpu_counter_dec(&root->subv_writers->counter);
10084 /*
10085 * Make sure counter is updated before we wake up
10086 * waiters.
10087 */
10088 smp_mb();
10089 if (waitqueue_active(&root->subv_writers->wait))
10090 wake_up(&root->subv_writers->wait);
10091}
10092
9ea24bbe 10093int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10094{
ee39b432 10095 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10096 return 0;
10097
10098 percpu_counter_inc(&root->subv_writers->counter);
10099 /*
10100 * Make sure counter is updated before we check for snapshot creation.
10101 */
10102 smp_mb();
ee39b432 10103 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10104 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10105 return 0;
10106 }
10107 return 1;
10108}