]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Handle error from btrfs_uuid_tree_rem call in _btrfs_ioctl_set_received_subvol
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
f361bf4a 19#include <linux/sched/signal.h>
edbd8d4e 20#include <linux/pagemap.h>
ec44a35c 21#include <linux/writeback.h>
21af804c 22#include <linux/blkdev.h>
b7a9f29f 23#include <linux/sort.h>
4184ea7f 24#include <linux/rcupdate.h>
817d52f8 25#include <linux/kthread.h>
5a0e3ad6 26#include <linux/slab.h>
dff51cd1 27#include <linux/ratelimit.h>
b150a4f1 28#include <linux/percpu_counter.h>
69fe2d75 29#include <linux/lockdep.h>
9678c543 30#include <linux/crc32c.h>
995946dd 31#include "tree-log.h"
fec577fb
CM
32#include "disk-io.h"
33#include "print-tree.h"
0b86a832 34#include "volumes.h"
53b381b3 35#include "raid56.h"
925baedd 36#include "locking.h"
fa9c0d79 37#include "free-space-cache.h"
1e144fb8 38#include "free-space-tree.h"
3fed40cc 39#include "math.h"
6ab0a202 40#include "sysfs.h"
fcebe456 41#include "qgroup.h"
fd708b81 42#include "ref-verify.h"
fec577fb 43
709c0486
AJ
44#undef SCRAMBLE_DELAYED_REFS
45
9e622d6b
MX
46/*
47 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
48 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
49 * if we really need one.
50 *
0e4f8f88
CM
51 * CHUNK_ALLOC_LIMITED means to only try and allocate one
52 * if we have very few chunks already allocated. This is
53 * used as part of the clustering code to help make sure
54 * we have a good pool of storage to cluster in, without
55 * filling the FS with empty chunks
56 *
9e622d6b
MX
57 * CHUNK_ALLOC_FORCE means it must try to allocate one
58 *
0e4f8f88
CM
59 */
60enum {
61 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
62 CHUNK_ALLOC_LIMITED = 1,
63 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
64};
65
5d4f98a2 66static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 67 struct btrfs_fs_info *fs_info,
c682f9b3 68 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
69 u64 root_objectid, u64 owner_objectid,
70 u64 owner_offset, int refs_to_drop,
c682f9b3 71 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
72static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
73 struct extent_buffer *leaf,
74 struct btrfs_extent_item *ei);
75static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 76 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
77 u64 parent, u64 root_objectid,
78 u64 flags, u64 owner, u64 offset,
79 struct btrfs_key *ins, int ref_mod);
80static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 81 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
82 u64 parent, u64 root_objectid,
83 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 84 int level, struct btrfs_key *ins);
6a63209f 85static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 86 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 87 int force);
11833d66
YZ
88static int find_next_key(struct btrfs_path *path, int level,
89 struct btrfs_key *key);
ab8d0fc4
JM
90static void dump_space_info(struct btrfs_fs_info *fs_info,
91 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 92 int dump_block_groups);
5d80366e
JB
93static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
94 u64 num_bytes);
957780eb
JB
95static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
96 struct btrfs_space_info *space_info,
97 u64 num_bytes);
98static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
99 struct btrfs_space_info *space_info,
100 u64 num_bytes);
6a63209f 101
817d52f8
JB
102static noinline int
103block_group_cache_done(struct btrfs_block_group_cache *cache)
104{
105 smp_mb();
36cce922
JB
106 return cache->cached == BTRFS_CACHE_FINISHED ||
107 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
108}
109
0f9dd46c
JB
110static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
111{
112 return (cache->flags & bits) == bits;
113}
114
758f2dfc 115void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
116{
117 atomic_inc(&cache->count);
118}
119
120void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
121{
f0486c68
YZ
122 if (atomic_dec_and_test(&cache->count)) {
123 WARN_ON(cache->pinned > 0);
124 WARN_ON(cache->reserved > 0);
0966a7b1
QW
125
126 /*
127 * If not empty, someone is still holding mutex of
128 * full_stripe_lock, which can only be released by caller.
129 * And it will definitely cause use-after-free when caller
130 * tries to release full stripe lock.
131 *
132 * No better way to resolve, but only to warn.
133 */
134 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 135 kfree(cache->free_space_ctl);
11dfe35a 136 kfree(cache);
f0486c68 137 }
11dfe35a
JB
138}
139
0f9dd46c
JB
140/*
141 * this adds the block group to the fs_info rb tree for the block group
142 * cache
143 */
b2950863 144static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
145 struct btrfs_block_group_cache *block_group)
146{
147 struct rb_node **p;
148 struct rb_node *parent = NULL;
149 struct btrfs_block_group_cache *cache;
150
151 spin_lock(&info->block_group_cache_lock);
152 p = &info->block_group_cache_tree.rb_node;
153
154 while (*p) {
155 parent = *p;
156 cache = rb_entry(parent, struct btrfs_block_group_cache,
157 cache_node);
158 if (block_group->key.objectid < cache->key.objectid) {
159 p = &(*p)->rb_left;
160 } else if (block_group->key.objectid > cache->key.objectid) {
161 p = &(*p)->rb_right;
162 } else {
163 spin_unlock(&info->block_group_cache_lock);
164 return -EEXIST;
165 }
166 }
167
168 rb_link_node(&block_group->cache_node, parent, p);
169 rb_insert_color(&block_group->cache_node,
170 &info->block_group_cache_tree);
a1897fdd
LB
171
172 if (info->first_logical_byte > block_group->key.objectid)
173 info->first_logical_byte = block_group->key.objectid;
174
0f9dd46c
JB
175 spin_unlock(&info->block_group_cache_lock);
176
177 return 0;
178}
179
180/*
181 * This will return the block group at or after bytenr if contains is 0, else
182 * it will return the block group that contains the bytenr
183 */
184static struct btrfs_block_group_cache *
185block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
186 int contains)
187{
188 struct btrfs_block_group_cache *cache, *ret = NULL;
189 struct rb_node *n;
190 u64 end, start;
191
192 spin_lock(&info->block_group_cache_lock);
193 n = info->block_group_cache_tree.rb_node;
194
195 while (n) {
196 cache = rb_entry(n, struct btrfs_block_group_cache,
197 cache_node);
198 end = cache->key.objectid + cache->key.offset - 1;
199 start = cache->key.objectid;
200
201 if (bytenr < start) {
202 if (!contains && (!ret || start < ret->key.objectid))
203 ret = cache;
204 n = n->rb_left;
205 } else if (bytenr > start) {
206 if (contains && bytenr <= end) {
207 ret = cache;
208 break;
209 }
210 n = n->rb_right;
211 } else {
212 ret = cache;
213 break;
214 }
215 }
a1897fdd 216 if (ret) {
11dfe35a 217 btrfs_get_block_group(ret);
a1897fdd
LB
218 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
219 info->first_logical_byte = ret->key.objectid;
220 }
0f9dd46c
JB
221 spin_unlock(&info->block_group_cache_lock);
222
223 return ret;
224}
225
2ff7e61e 226static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 227 u64 start, u64 num_bytes)
817d52f8 228{
11833d66 229 u64 end = start + num_bytes - 1;
0b246afa 230 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 231 start, end, EXTENT_UPTODATE);
0b246afa 232 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 233 start, end, EXTENT_UPTODATE);
11833d66
YZ
234 return 0;
235}
817d52f8 236
2ff7e61e 237static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
238 struct btrfs_block_group_cache *cache)
239{
240 u64 start, end;
817d52f8 241
11833d66
YZ
242 start = cache->key.objectid;
243 end = start + cache->key.offset - 1;
244
0b246afa 245 clear_extent_bits(&fs_info->freed_extents[0],
91166212 246 start, end, EXTENT_UPTODATE);
0b246afa 247 clear_extent_bits(&fs_info->freed_extents[1],
91166212 248 start, end, EXTENT_UPTODATE);
817d52f8
JB
249}
250
2ff7e61e 251static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 252 struct btrfs_block_group_cache *cache)
817d52f8 253{
817d52f8
JB
254 u64 bytenr;
255 u64 *logical;
256 int stripe_len;
257 int i, nr, ret;
258
06b2331f
YZ
259 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
260 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
261 cache->bytes_super += stripe_len;
2ff7e61e 262 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 263 stripe_len);
835d974f
JB
264 if (ret)
265 return ret;
06b2331f
YZ
266 }
267
817d52f8
JB
268 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
269 bytenr = btrfs_sb_offset(i);
0b246afa 270 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 271 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
272 if (ret)
273 return ret;
11833d66 274
817d52f8 275 while (nr--) {
51bf5f0b
JB
276 u64 start, len;
277
278 if (logical[nr] > cache->key.objectid +
279 cache->key.offset)
280 continue;
281
282 if (logical[nr] + stripe_len <= cache->key.objectid)
283 continue;
284
285 start = logical[nr];
286 if (start < cache->key.objectid) {
287 start = cache->key.objectid;
288 len = (logical[nr] + stripe_len) - start;
289 } else {
290 len = min_t(u64, stripe_len,
291 cache->key.objectid +
292 cache->key.offset - start);
293 }
294
295 cache->bytes_super += len;
2ff7e61e 296 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
297 if (ret) {
298 kfree(logical);
299 return ret;
300 }
817d52f8 301 }
11833d66 302
817d52f8
JB
303 kfree(logical);
304 }
817d52f8
JB
305 return 0;
306}
307
11833d66
YZ
308static struct btrfs_caching_control *
309get_caching_control(struct btrfs_block_group_cache *cache)
310{
311 struct btrfs_caching_control *ctl;
312
313 spin_lock(&cache->lock);
dde5abee
JB
314 if (!cache->caching_ctl) {
315 spin_unlock(&cache->lock);
11833d66
YZ
316 return NULL;
317 }
318
319 ctl = cache->caching_ctl;
1e4f4714 320 refcount_inc(&ctl->count);
11833d66
YZ
321 spin_unlock(&cache->lock);
322 return ctl;
323}
324
325static void put_caching_control(struct btrfs_caching_control *ctl)
326{
1e4f4714 327 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
328 kfree(ctl);
329}
330
d0bd4560 331#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 332static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 333{
2ff7e61e 334 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
335 u64 start = block_group->key.objectid;
336 u64 len = block_group->key.offset;
337 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 338 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
339 u64 step = chunk << 1;
340
341 while (len > chunk) {
342 btrfs_remove_free_space(block_group, start, chunk);
343 start += step;
344 if (len < step)
345 len = 0;
346 else
347 len -= step;
348 }
349}
350#endif
351
0f9dd46c
JB
352/*
353 * this is only called by cache_block_group, since we could have freed extents
354 * we need to check the pinned_extents for any extents that can't be used yet
355 * since their free space will be released as soon as the transaction commits.
356 */
a5ed9182
OS
357u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
358 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 359{
817d52f8 360 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
361 int ret;
362
363 while (start < end) {
11833d66 364 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 365 &extent_start, &extent_end,
e6138876
JB
366 EXTENT_DIRTY | EXTENT_UPTODATE,
367 NULL);
0f9dd46c
JB
368 if (ret)
369 break;
370
06b2331f 371 if (extent_start <= start) {
0f9dd46c
JB
372 start = extent_end + 1;
373 } else if (extent_start > start && extent_start < end) {
374 size = extent_start - start;
817d52f8 375 total_added += size;
ea6a478e
JB
376 ret = btrfs_add_free_space(block_group, start,
377 size);
79787eaa 378 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
379 start = extent_end + 1;
380 } else {
381 break;
382 }
383 }
384
385 if (start < end) {
386 size = end - start;
817d52f8 387 total_added += size;
ea6a478e 388 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 389 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
390 }
391
817d52f8 392 return total_added;
0f9dd46c
JB
393}
394
73fa48b6 395static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 396{
0b246afa
JM
397 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
398 struct btrfs_fs_info *fs_info = block_group->fs_info;
399 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 400 struct btrfs_path *path;
5f39d397 401 struct extent_buffer *leaf;
11833d66 402 struct btrfs_key key;
817d52f8 403 u64 total_found = 0;
11833d66
YZ
404 u64 last = 0;
405 u32 nritems;
73fa48b6 406 int ret;
d0bd4560 407 bool wakeup = true;
f510cfec 408
e37c9e69
CM
409 path = btrfs_alloc_path();
410 if (!path)
73fa48b6 411 return -ENOMEM;
7d7d6068 412
817d52f8 413 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 414
d0bd4560
JB
415#ifdef CONFIG_BTRFS_DEBUG
416 /*
417 * If we're fragmenting we don't want to make anybody think we can
418 * allocate from this block group until we've had a chance to fragment
419 * the free space.
420 */
2ff7e61e 421 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
422 wakeup = false;
423#endif
5cd57b2c 424 /*
817d52f8
JB
425 * We don't want to deadlock with somebody trying to allocate a new
426 * extent for the extent root while also trying to search the extent
427 * root to add free space. So we skip locking and search the commit
428 * root, since its read-only
5cd57b2c
CM
429 */
430 path->skip_locking = 1;
817d52f8 431 path->search_commit_root = 1;
e4058b54 432 path->reada = READA_FORWARD;
817d52f8 433
e4404d6e 434 key.objectid = last;
e37c9e69 435 key.offset = 0;
11833d66 436 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 437
52ee28d2 438next:
11833d66 439 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 440 if (ret < 0)
73fa48b6 441 goto out;
a512bbf8 442
11833d66
YZ
443 leaf = path->nodes[0];
444 nritems = btrfs_header_nritems(leaf);
445
d397712b 446 while (1) {
7841cb28 447 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 448 last = (u64)-1;
817d52f8 449 break;
f25784b3 450 }
817d52f8 451
11833d66
YZ
452 if (path->slots[0] < nritems) {
453 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
454 } else {
455 ret = find_next_key(path, 0, &key);
456 if (ret)
e37c9e69 457 break;
817d52f8 458
c9ea7b24 459 if (need_resched() ||
9e351cc8 460 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
461 if (wakeup)
462 caching_ctl->progress = last;
ff5714cc 463 btrfs_release_path(path);
9e351cc8 464 up_read(&fs_info->commit_root_sem);
589d8ade 465 mutex_unlock(&caching_ctl->mutex);
11833d66 466 cond_resched();
73fa48b6
OS
467 mutex_lock(&caching_ctl->mutex);
468 down_read(&fs_info->commit_root_sem);
469 goto next;
589d8ade 470 }
0a3896d0
JB
471
472 ret = btrfs_next_leaf(extent_root, path);
473 if (ret < 0)
73fa48b6 474 goto out;
0a3896d0
JB
475 if (ret)
476 break;
589d8ade
JB
477 leaf = path->nodes[0];
478 nritems = btrfs_header_nritems(leaf);
479 continue;
11833d66 480 }
817d52f8 481
52ee28d2
LB
482 if (key.objectid < last) {
483 key.objectid = last;
484 key.offset = 0;
485 key.type = BTRFS_EXTENT_ITEM_KEY;
486
d0bd4560
JB
487 if (wakeup)
488 caching_ctl->progress = last;
52ee28d2
LB
489 btrfs_release_path(path);
490 goto next;
491 }
492
11833d66
YZ
493 if (key.objectid < block_group->key.objectid) {
494 path->slots[0]++;
817d52f8 495 continue;
e37c9e69 496 }
0f9dd46c 497
e37c9e69 498 if (key.objectid >= block_group->key.objectid +
0f9dd46c 499 block_group->key.offset)
e37c9e69 500 break;
7d7d6068 501
3173a18f
JB
502 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
503 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
504 total_found += add_new_free_space(block_group,
505 fs_info, last,
506 key.objectid);
3173a18f
JB
507 if (key.type == BTRFS_METADATA_ITEM_KEY)
508 last = key.objectid +
da17066c 509 fs_info->nodesize;
3173a18f
JB
510 else
511 last = key.objectid + key.offset;
817d52f8 512
73fa48b6 513 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 514 total_found = 0;
d0bd4560
JB
515 if (wakeup)
516 wake_up(&caching_ctl->wait);
11833d66 517 }
817d52f8 518 }
e37c9e69
CM
519 path->slots[0]++;
520 }
817d52f8 521 ret = 0;
e37c9e69 522
817d52f8
JB
523 total_found += add_new_free_space(block_group, fs_info, last,
524 block_group->key.objectid +
525 block_group->key.offset);
11833d66 526 caching_ctl->progress = (u64)-1;
817d52f8 527
73fa48b6
OS
528out:
529 btrfs_free_path(path);
530 return ret;
531}
532
533static noinline void caching_thread(struct btrfs_work *work)
534{
535 struct btrfs_block_group_cache *block_group;
536 struct btrfs_fs_info *fs_info;
537 struct btrfs_caching_control *caching_ctl;
b4570aa9 538 struct btrfs_root *extent_root;
73fa48b6
OS
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
b4570aa9 544 extent_root = fs_info->extent_root;
73fa48b6
OS
545
546 mutex_lock(&caching_ctl->mutex);
547 down_read(&fs_info->commit_root_sem);
548
1e144fb8
OS
549 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
550 ret = load_free_space_tree(caching_ctl);
551 else
552 ret = load_extent_tree_free(caching_ctl);
73fa48b6 553
817d52f8 554 spin_lock(&block_group->lock);
11833d66 555 block_group->caching_ctl = NULL;
73fa48b6 556 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 557 spin_unlock(&block_group->lock);
0f9dd46c 558
d0bd4560 559#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 560 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
561 u64 bytes_used;
562
563 spin_lock(&block_group->space_info->lock);
564 spin_lock(&block_group->lock);
565 bytes_used = block_group->key.offset -
566 btrfs_block_group_used(&block_group->item);
567 block_group->space_info->bytes_used += bytes_used >> 1;
568 spin_unlock(&block_group->lock);
569 spin_unlock(&block_group->space_info->lock);
2ff7e61e 570 fragment_free_space(block_group);
d0bd4560
JB
571 }
572#endif
573
574 caching_ctl->progress = (u64)-1;
11833d66 575
9e351cc8 576 up_read(&fs_info->commit_root_sem);
2ff7e61e 577 free_excluded_extents(fs_info, block_group);
11833d66 578 mutex_unlock(&caching_ctl->mutex);
73fa48b6 579
11833d66
YZ
580 wake_up(&caching_ctl->wait);
581
582 put_caching_control(caching_ctl);
11dfe35a 583 btrfs_put_block_group(block_group);
817d52f8
JB
584}
585
9d66e233 586static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 587 int load_cache_only)
817d52f8 588{
291c7d2f 589 DEFINE_WAIT(wait);
11833d66
YZ
590 struct btrfs_fs_info *fs_info = cache->fs_info;
591 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
592 int ret = 0;
593
291c7d2f 594 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
595 if (!caching_ctl)
596 return -ENOMEM;
291c7d2f
JB
597
598 INIT_LIST_HEAD(&caching_ctl->list);
599 mutex_init(&caching_ctl->mutex);
600 init_waitqueue_head(&caching_ctl->wait);
601 caching_ctl->block_group = cache;
602 caching_ctl->progress = cache->key.objectid;
1e4f4714 603 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
604 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
605 caching_thread, NULL, NULL);
291c7d2f
JB
606
607 spin_lock(&cache->lock);
608 /*
609 * This should be a rare occasion, but this could happen I think in the
610 * case where one thread starts to load the space cache info, and then
611 * some other thread starts a transaction commit which tries to do an
612 * allocation while the other thread is still loading the space cache
613 * info. The previous loop should have kept us from choosing this block
614 * group, but if we've moved to the state where we will wait on caching
615 * block groups we need to first check if we're doing a fast load here,
616 * so we can wait for it to finish, otherwise we could end up allocating
617 * from a block group who's cache gets evicted for one reason or
618 * another.
619 */
620 while (cache->cached == BTRFS_CACHE_FAST) {
621 struct btrfs_caching_control *ctl;
622
623 ctl = cache->caching_ctl;
1e4f4714 624 refcount_inc(&ctl->count);
291c7d2f
JB
625 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
626 spin_unlock(&cache->lock);
627
628 schedule();
629
630 finish_wait(&ctl->wait, &wait);
631 put_caching_control(ctl);
632 spin_lock(&cache->lock);
633 }
634
635 if (cache->cached != BTRFS_CACHE_NO) {
636 spin_unlock(&cache->lock);
637 kfree(caching_ctl);
11833d66 638 return 0;
291c7d2f
JB
639 }
640 WARN_ON(cache->caching_ctl);
641 cache->caching_ctl = caching_ctl;
642 cache->cached = BTRFS_CACHE_FAST;
643 spin_unlock(&cache->lock);
11833d66 644
d8953d69 645 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 646 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
647 ret = load_free_space_cache(fs_info, cache);
648
649 spin_lock(&cache->lock);
650 if (ret == 1) {
291c7d2f 651 cache->caching_ctl = NULL;
9d66e233
JB
652 cache->cached = BTRFS_CACHE_FINISHED;
653 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 654 caching_ctl->progress = (u64)-1;
9d66e233 655 } else {
291c7d2f
JB
656 if (load_cache_only) {
657 cache->caching_ctl = NULL;
658 cache->cached = BTRFS_CACHE_NO;
659 } else {
660 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 661 cache->has_caching_ctl = 1;
291c7d2f 662 }
9d66e233
JB
663 }
664 spin_unlock(&cache->lock);
d0bd4560
JB
665#ifdef CONFIG_BTRFS_DEBUG
666 if (ret == 1 &&
2ff7e61e 667 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
668 u64 bytes_used;
669
670 spin_lock(&cache->space_info->lock);
671 spin_lock(&cache->lock);
672 bytes_used = cache->key.offset -
673 btrfs_block_group_used(&cache->item);
674 cache->space_info->bytes_used += bytes_used >> 1;
675 spin_unlock(&cache->lock);
676 spin_unlock(&cache->space_info->lock);
2ff7e61e 677 fragment_free_space(cache);
d0bd4560
JB
678 }
679#endif
cb83b7b8
JB
680 mutex_unlock(&caching_ctl->mutex);
681
291c7d2f 682 wake_up(&caching_ctl->wait);
3c14874a 683 if (ret == 1) {
291c7d2f 684 put_caching_control(caching_ctl);
2ff7e61e 685 free_excluded_extents(fs_info, cache);
9d66e233 686 return 0;
3c14874a 687 }
291c7d2f
JB
688 } else {
689 /*
1e144fb8
OS
690 * We're either using the free space tree or no caching at all.
691 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
692 */
693 spin_lock(&cache->lock);
694 if (load_cache_only) {
695 cache->caching_ctl = NULL;
696 cache->cached = BTRFS_CACHE_NO;
697 } else {
698 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 699 cache->has_caching_ctl = 1;
291c7d2f
JB
700 }
701 spin_unlock(&cache->lock);
702 wake_up(&caching_ctl->wait);
9d66e233
JB
703 }
704
291c7d2f
JB
705 if (load_cache_only) {
706 put_caching_control(caching_ctl);
11833d66 707 return 0;
817d52f8 708 }
817d52f8 709
9e351cc8 710 down_write(&fs_info->commit_root_sem);
1e4f4714 711 refcount_inc(&caching_ctl->count);
11833d66 712 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 713 up_write(&fs_info->commit_root_sem);
11833d66 714
11dfe35a 715 btrfs_get_block_group(cache);
11833d66 716
e66f0bb1 717 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 718
ef8bbdfe 719 return ret;
e37c9e69
CM
720}
721
0f9dd46c
JB
722/*
723 * return the block group that starts at or after bytenr
724 */
d397712b
CM
725static struct btrfs_block_group_cache *
726btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 727{
e2c89907 728 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
729}
730
0f9dd46c 731/*
9f55684c 732 * return the block group that contains the given bytenr
0f9dd46c 733 */
d397712b
CM
734struct btrfs_block_group_cache *btrfs_lookup_block_group(
735 struct btrfs_fs_info *info,
736 u64 bytenr)
be744175 737{
e2c89907 738 return block_group_cache_tree_search(info, bytenr, 1);
be744175 739}
0b86a832 740
0f9dd46c
JB
741static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
742 u64 flags)
6324fbf3 743{
0f9dd46c 744 struct list_head *head = &info->space_info;
0f9dd46c 745 struct btrfs_space_info *found;
4184ea7f 746
52ba6929 747 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 748
4184ea7f
CM
749 rcu_read_lock();
750 list_for_each_entry_rcu(found, head, list) {
67377734 751 if (found->flags & flags) {
4184ea7f 752 rcu_read_unlock();
0f9dd46c 753 return found;
4184ea7f 754 }
0f9dd46c 755 }
4184ea7f 756 rcu_read_unlock();
0f9dd46c 757 return NULL;
6324fbf3
CM
758}
759
0d9f824d
OS
760static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
761 u64 owner, u64 root_objectid)
762{
763 struct btrfs_space_info *space_info;
764 u64 flags;
765
766 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
767 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
55e8196a 776 ASSERT(space_info);
0d9f824d
OS
777 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
778}
779
4184ea7f
CM
780/*
781 * after adding space to the filesystem, we need to clear the full flags
782 * on all the space infos.
783 */
784void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
785{
786 struct list_head *head = &info->space_info;
787 struct btrfs_space_info *found;
788
789 rcu_read_lock();
790 list_for_each_entry_rcu(found, head, list)
791 found->full = 0;
792 rcu_read_unlock();
793}
794
1a4ed8fd 795/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 796int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
797{
798 int ret;
799 struct btrfs_key key;
31840ae1 800 struct btrfs_path *path;
e02119d5 801
31840ae1 802 path = btrfs_alloc_path();
d8926bb3
MF
803 if (!path)
804 return -ENOMEM;
805
e02119d5
CM
806 key.objectid = start;
807 key.offset = len;
3173a18f 808 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 809 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 810 btrfs_free_path(path);
7bb86316
CM
811 return ret;
812}
813
a22285a6 814/*
3173a18f 815 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
816 *
817 * the head node for delayed ref is used to store the sum of all the
818 * reference count modifications queued up in the rbtree. the head
819 * node may also store the extent flags to set. This way you can check
820 * to see what the reference count and extent flags would be if all of
821 * the delayed refs are not processed.
822 */
823int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 824 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 825 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
826{
827 struct btrfs_delayed_ref_head *head;
828 struct btrfs_delayed_ref_root *delayed_refs;
829 struct btrfs_path *path;
830 struct btrfs_extent_item *ei;
831 struct extent_buffer *leaf;
832 struct btrfs_key key;
833 u32 item_size;
834 u64 num_refs;
835 u64 extent_flags;
836 int ret;
837
3173a18f
JB
838 /*
839 * If we don't have skinny metadata, don't bother doing anything
840 * different
841 */
0b246afa
JM
842 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
843 offset = fs_info->nodesize;
3173a18f
JB
844 metadata = 0;
845 }
846
a22285a6
YZ
847 path = btrfs_alloc_path();
848 if (!path)
849 return -ENOMEM;
850
a22285a6
YZ
851 if (!trans) {
852 path->skip_locking = 1;
853 path->search_commit_root = 1;
854 }
639eefc8
FDBM
855
856search_again:
857 key.objectid = bytenr;
858 key.offset = offset;
859 if (metadata)
860 key.type = BTRFS_METADATA_ITEM_KEY;
861 else
862 key.type = BTRFS_EXTENT_ITEM_KEY;
863
0b246afa 864 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
865 if (ret < 0)
866 goto out_free;
867
3173a18f 868 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
869 if (path->slots[0]) {
870 path->slots[0]--;
871 btrfs_item_key_to_cpu(path->nodes[0], &key,
872 path->slots[0]);
873 if (key.objectid == bytenr &&
874 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 875 key.offset == fs_info->nodesize)
74be9510
FDBM
876 ret = 0;
877 }
3173a18f
JB
878 }
879
a22285a6
YZ
880 if (ret == 0) {
881 leaf = path->nodes[0];
882 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
883 if (item_size >= sizeof(*ei)) {
884 ei = btrfs_item_ptr(leaf, path->slots[0],
885 struct btrfs_extent_item);
886 num_refs = btrfs_extent_refs(leaf, ei);
887 extent_flags = btrfs_extent_flags(leaf, ei);
888 } else {
889#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
890 struct btrfs_extent_item_v0 *ei0;
891 BUG_ON(item_size != sizeof(*ei0));
892 ei0 = btrfs_item_ptr(leaf, path->slots[0],
893 struct btrfs_extent_item_v0);
894 num_refs = btrfs_extent_refs_v0(leaf, ei0);
895 /* FIXME: this isn't correct for data */
896 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
897#else
898 BUG();
899#endif
900 }
901 BUG_ON(num_refs == 0);
902 } else {
903 num_refs = 0;
904 extent_flags = 0;
905 ret = 0;
906 }
907
908 if (!trans)
909 goto out;
910
911 delayed_refs = &trans->transaction->delayed_refs;
912 spin_lock(&delayed_refs->lock);
f72ad18e 913 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
914 if (head) {
915 if (!mutex_trylock(&head->mutex)) {
d278850e 916 refcount_inc(&head->refs);
a22285a6
YZ
917 spin_unlock(&delayed_refs->lock);
918
b3b4aa74 919 btrfs_release_path(path);
a22285a6 920
8cc33e5c
DS
921 /*
922 * Mutex was contended, block until it's released and try
923 * again
924 */
a22285a6
YZ
925 mutex_lock(&head->mutex);
926 mutex_unlock(&head->mutex);
d278850e 927 btrfs_put_delayed_ref_head(head);
639eefc8 928 goto search_again;
a22285a6 929 }
d7df2c79 930 spin_lock(&head->lock);
a22285a6
YZ
931 if (head->extent_op && head->extent_op->update_flags)
932 extent_flags |= head->extent_op->flags_to_set;
933 else
934 BUG_ON(num_refs == 0);
935
d278850e 936 num_refs += head->ref_mod;
d7df2c79 937 spin_unlock(&head->lock);
a22285a6
YZ
938 mutex_unlock(&head->mutex);
939 }
940 spin_unlock(&delayed_refs->lock);
941out:
942 WARN_ON(num_refs == 0);
943 if (refs)
944 *refs = num_refs;
945 if (flags)
946 *flags = extent_flags;
947out_free:
948 btrfs_free_path(path);
949 return ret;
950}
951
d8d5f3e1
CM
952/*
953 * Back reference rules. Back refs have three main goals:
954 *
955 * 1) differentiate between all holders of references to an extent so that
956 * when a reference is dropped we can make sure it was a valid reference
957 * before freeing the extent.
958 *
959 * 2) Provide enough information to quickly find the holders of an extent
960 * if we notice a given block is corrupted or bad.
961 *
962 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
963 * maintenance. This is actually the same as #2, but with a slightly
964 * different use case.
965 *
5d4f98a2
YZ
966 * There are two kinds of back refs. The implicit back refs is optimized
967 * for pointers in non-shared tree blocks. For a given pointer in a block,
968 * back refs of this kind provide information about the block's owner tree
969 * and the pointer's key. These information allow us to find the block by
970 * b-tree searching. The full back refs is for pointers in tree blocks not
971 * referenced by their owner trees. The location of tree block is recorded
972 * in the back refs. Actually the full back refs is generic, and can be
973 * used in all cases the implicit back refs is used. The major shortcoming
974 * of the full back refs is its overhead. Every time a tree block gets
975 * COWed, we have to update back refs entry for all pointers in it.
976 *
977 * For a newly allocated tree block, we use implicit back refs for
978 * pointers in it. This means most tree related operations only involve
979 * implicit back refs. For a tree block created in old transaction, the
980 * only way to drop a reference to it is COW it. So we can detect the
981 * event that tree block loses its owner tree's reference and do the
982 * back refs conversion.
983 *
01327610 984 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
985 *
986 * The reference count of the block is one and the tree is the block's
987 * owner tree. Nothing to do in this case.
988 *
989 * The reference count of the block is one and the tree is not the
990 * block's owner tree. In this case, full back refs is used for pointers
991 * in the block. Remove these full back refs, add implicit back refs for
992 * every pointers in the new block.
993 *
994 * The reference count of the block is greater than one and the tree is
995 * the block's owner tree. In this case, implicit back refs is used for
996 * pointers in the block. Add full back refs for every pointers in the
997 * block, increase lower level extents' reference counts. The original
998 * implicit back refs are entailed to the new block.
999 *
1000 * The reference count of the block is greater than one and the tree is
1001 * not the block's owner tree. Add implicit back refs for every pointer in
1002 * the new block, increase lower level extents' reference count.
1003 *
1004 * Back Reference Key composing:
1005 *
1006 * The key objectid corresponds to the first byte in the extent,
1007 * The key type is used to differentiate between types of back refs.
1008 * There are different meanings of the key offset for different types
1009 * of back refs.
1010 *
d8d5f3e1
CM
1011 * File extents can be referenced by:
1012 *
1013 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1014 * - different files inside a single subvolume
d8d5f3e1
CM
1015 * - different offsets inside a file (bookend extents in file.c)
1016 *
5d4f98a2 1017 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1018 *
1019 * - Objectid of the subvolume root
d8d5f3e1 1020 * - objectid of the file holding the reference
5d4f98a2
YZ
1021 * - original offset in the file
1022 * - how many bookend extents
d8d5f3e1 1023 *
5d4f98a2
YZ
1024 * The key offset for the implicit back refs is hash of the first
1025 * three fields.
d8d5f3e1 1026 *
5d4f98a2 1027 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1028 *
5d4f98a2 1029 * - number of pointers in the tree leaf
d8d5f3e1 1030 *
5d4f98a2
YZ
1031 * The key offset for the implicit back refs is the first byte of
1032 * the tree leaf
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * When a file extent is allocated, The implicit back refs is used.
1035 * the fields are filled in:
d8d5f3e1 1036 *
5d4f98a2 1037 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When a file extent is removed file truncation, we find the
1040 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1041 *
5d4f98a2 1042 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1043 *
5d4f98a2 1044 * Btree extents can be referenced by:
d8d5f3e1 1045 *
5d4f98a2 1046 * - Different subvolumes
d8d5f3e1 1047 *
5d4f98a2
YZ
1048 * Both the implicit back refs and the full back refs for tree blocks
1049 * only consist of key. The key offset for the implicit back refs is
1050 * objectid of block's owner tree. The key offset for the full back refs
1051 * is the first byte of parent block.
d8d5f3e1 1052 *
5d4f98a2
YZ
1053 * When implicit back refs is used, information about the lowest key and
1054 * level of the tree block are required. These information are stored in
1055 * tree block info structure.
d8d5f3e1 1056 */
31840ae1 1057
5d4f98a2
YZ
1058#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1059static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1060 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1061 struct btrfs_path *path,
1062 u64 owner, u32 extra_size)
7bb86316 1063{
87bde3cd 1064 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1065 struct btrfs_extent_item *item;
1066 struct btrfs_extent_item_v0 *ei0;
1067 struct btrfs_extent_ref_v0 *ref0;
1068 struct btrfs_tree_block_info *bi;
1069 struct extent_buffer *leaf;
7bb86316 1070 struct btrfs_key key;
5d4f98a2
YZ
1071 struct btrfs_key found_key;
1072 u32 new_size = sizeof(*item);
1073 u64 refs;
1074 int ret;
1075
1076 leaf = path->nodes[0];
1077 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1078
1079 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1080 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1081 struct btrfs_extent_item_v0);
1082 refs = btrfs_extent_refs_v0(leaf, ei0);
1083
1084 if (owner == (u64)-1) {
1085 while (1) {
1086 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1087 ret = btrfs_next_leaf(root, path);
1088 if (ret < 0)
1089 return ret;
79787eaa 1090 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1091 leaf = path->nodes[0];
1092 }
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0]);
1095 BUG_ON(key.objectid != found_key.objectid);
1096 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1097 path->slots[0]++;
1098 continue;
1099 }
1100 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1101 struct btrfs_extent_ref_v0);
1102 owner = btrfs_ref_objectid_v0(leaf, ref0);
1103 break;
1104 }
1105 }
b3b4aa74 1106 btrfs_release_path(path);
5d4f98a2
YZ
1107
1108 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1109 new_size += sizeof(*bi);
1110
1111 new_size -= sizeof(*ei0);
1112 ret = btrfs_search_slot(trans, root, &key, path,
1113 new_size + extra_size, 1);
1114 if (ret < 0)
1115 return ret;
79787eaa 1116 BUG_ON(ret); /* Corruption */
5d4f98a2 1117
87bde3cd 1118 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1119
1120 leaf = path->nodes[0];
1121 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1122 btrfs_set_extent_refs(leaf, item, refs);
1123 /* FIXME: get real generation */
1124 btrfs_set_extent_generation(leaf, item, 0);
1125 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1126 btrfs_set_extent_flags(leaf, item,
1127 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1128 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1129 bi = (struct btrfs_tree_block_info *)(item + 1);
1130 /* FIXME: get first key of the block */
b159fa28 1131 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1132 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1133 } else {
1134 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1135 }
1136 btrfs_mark_buffer_dirty(leaf);
1137 return 0;
1138}
1139#endif
1140
167ce953
LB
1141/*
1142 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1143 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1144 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1145 */
1146int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1147 struct btrfs_extent_inline_ref *iref,
1148 enum btrfs_inline_ref_type is_data)
1149{
1150 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1151 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1152
1153 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1154 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1155 type == BTRFS_SHARED_DATA_REF_KEY ||
1156 type == BTRFS_EXTENT_DATA_REF_KEY) {
1157 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1158 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953 1171 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1172 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1173 return type;
64ecdb64
LB
1174 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1175 ASSERT(eb->fs_info);
1176 /*
1177 * Every shared one has parent tree
1178 * block, which must be aligned to
1179 * nodesize.
1180 */
1181 if (offset &&
1182 IS_ALIGNED(offset, eb->fs_info->nodesize))
1183 return type;
1184 }
167ce953
LB
1185 } else {
1186 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1187 return type;
1188 }
1189 }
1190
1191 btrfs_print_leaf((struct extent_buffer *)eb);
1192 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1193 eb->start, type);
1194 WARN_ON(1);
1195
1196 return BTRFS_REF_TYPE_INVALID;
1197}
1198
5d4f98a2
YZ
1199static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1200{
1201 u32 high_crc = ~(u32)0;
1202 u32 low_crc = ~(u32)0;
1203 __le64 lenum;
1204
1205 lenum = cpu_to_le64(root_objectid);
9678c543 1206 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1207 lenum = cpu_to_le64(owner);
9678c543 1208 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1209 lenum = cpu_to_le64(offset);
9678c543 1210 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1211
1212 return ((u64)high_crc << 31) ^ (u64)low_crc;
1213}
1214
1215static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1216 struct btrfs_extent_data_ref *ref)
1217{
1218 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1219 btrfs_extent_data_ref_objectid(leaf, ref),
1220 btrfs_extent_data_ref_offset(leaf, ref));
1221}
1222
1223static int match_extent_data_ref(struct extent_buffer *leaf,
1224 struct btrfs_extent_data_ref *ref,
1225 u64 root_objectid, u64 owner, u64 offset)
1226{
1227 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1228 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1229 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1230 return 0;
1231 return 1;
1232}
1233
1234static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1235 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1236 struct btrfs_path *path,
1237 u64 bytenr, u64 parent,
1238 u64 root_objectid,
1239 u64 owner, u64 offset)
1240{
87bde3cd 1241 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1242 struct btrfs_key key;
1243 struct btrfs_extent_data_ref *ref;
31840ae1 1244 struct extent_buffer *leaf;
5d4f98a2 1245 u32 nritems;
74493f7a 1246 int ret;
5d4f98a2
YZ
1247 int recow;
1248 int err = -ENOENT;
74493f7a 1249
31840ae1 1250 key.objectid = bytenr;
5d4f98a2
YZ
1251 if (parent) {
1252 key.type = BTRFS_SHARED_DATA_REF_KEY;
1253 key.offset = parent;
1254 } else {
1255 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1256 key.offset = hash_extent_data_ref(root_objectid,
1257 owner, offset);
1258 }
1259again:
1260 recow = 0;
1261 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1262 if (ret < 0) {
1263 err = ret;
1264 goto fail;
1265 }
31840ae1 1266
5d4f98a2
YZ
1267 if (parent) {
1268 if (!ret)
1269 return 0;
1270#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1271 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1272 btrfs_release_path(path);
5d4f98a2
YZ
1273 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1274 if (ret < 0) {
1275 err = ret;
1276 goto fail;
1277 }
1278 if (!ret)
1279 return 0;
1280#endif
1281 goto fail;
31840ae1
ZY
1282 }
1283
1284 leaf = path->nodes[0];
5d4f98a2
YZ
1285 nritems = btrfs_header_nritems(leaf);
1286 while (1) {
1287 if (path->slots[0] >= nritems) {
1288 ret = btrfs_next_leaf(root, path);
1289 if (ret < 0)
1290 err = ret;
1291 if (ret)
1292 goto fail;
1293
1294 leaf = path->nodes[0];
1295 nritems = btrfs_header_nritems(leaf);
1296 recow = 1;
1297 }
1298
1299 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1300 if (key.objectid != bytenr ||
1301 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1302 goto fail;
1303
1304 ref = btrfs_item_ptr(leaf, path->slots[0],
1305 struct btrfs_extent_data_ref);
1306
1307 if (match_extent_data_ref(leaf, ref, root_objectid,
1308 owner, offset)) {
1309 if (recow) {
b3b4aa74 1310 btrfs_release_path(path);
5d4f98a2
YZ
1311 goto again;
1312 }
1313 err = 0;
1314 break;
1315 }
1316 path->slots[0]++;
31840ae1 1317 }
5d4f98a2
YZ
1318fail:
1319 return err;
31840ae1
ZY
1320}
1321
5d4f98a2 1322static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1323 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1324 struct btrfs_path *path,
1325 u64 bytenr, u64 parent,
1326 u64 root_objectid, u64 owner,
1327 u64 offset, int refs_to_add)
31840ae1 1328{
87bde3cd 1329 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1330 struct btrfs_key key;
1331 struct extent_buffer *leaf;
5d4f98a2 1332 u32 size;
31840ae1
ZY
1333 u32 num_refs;
1334 int ret;
74493f7a 1335
74493f7a 1336 key.objectid = bytenr;
5d4f98a2
YZ
1337 if (parent) {
1338 key.type = BTRFS_SHARED_DATA_REF_KEY;
1339 key.offset = parent;
1340 size = sizeof(struct btrfs_shared_data_ref);
1341 } else {
1342 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1343 key.offset = hash_extent_data_ref(root_objectid,
1344 owner, offset);
1345 size = sizeof(struct btrfs_extent_data_ref);
1346 }
74493f7a 1347
5d4f98a2
YZ
1348 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1349 if (ret && ret != -EEXIST)
1350 goto fail;
1351
1352 leaf = path->nodes[0];
1353 if (parent) {
1354 struct btrfs_shared_data_ref *ref;
31840ae1 1355 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1356 struct btrfs_shared_data_ref);
1357 if (ret == 0) {
1358 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1359 } else {
1360 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1361 num_refs += refs_to_add;
1362 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1363 }
5d4f98a2
YZ
1364 } else {
1365 struct btrfs_extent_data_ref *ref;
1366 while (ret == -EEXIST) {
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (match_extent_data_ref(leaf, ref, root_objectid,
1370 owner, offset))
1371 break;
b3b4aa74 1372 btrfs_release_path(path);
5d4f98a2
YZ
1373 key.offset++;
1374 ret = btrfs_insert_empty_item(trans, root, path, &key,
1375 size);
1376 if (ret && ret != -EEXIST)
1377 goto fail;
31840ae1 1378
5d4f98a2
YZ
1379 leaf = path->nodes[0];
1380 }
1381 ref = btrfs_item_ptr(leaf, path->slots[0],
1382 struct btrfs_extent_data_ref);
1383 if (ret == 0) {
1384 btrfs_set_extent_data_ref_root(leaf, ref,
1385 root_objectid);
1386 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1387 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1388 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1389 } else {
1390 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1391 num_refs += refs_to_add;
1392 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1393 }
31840ae1 1394 }
5d4f98a2
YZ
1395 btrfs_mark_buffer_dirty(leaf);
1396 ret = 0;
1397fail:
b3b4aa74 1398 btrfs_release_path(path);
7bb86316 1399 return ret;
74493f7a
CM
1400}
1401
5d4f98a2 1402static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1403 struct btrfs_fs_info *fs_info,
5d4f98a2 1404 struct btrfs_path *path,
fcebe456 1405 int refs_to_drop, int *last_ref)
31840ae1 1406{
5d4f98a2
YZ
1407 struct btrfs_key key;
1408 struct btrfs_extent_data_ref *ref1 = NULL;
1409 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1410 struct extent_buffer *leaf;
5d4f98a2 1411 u32 num_refs = 0;
31840ae1
ZY
1412 int ret = 0;
1413
1414 leaf = path->nodes[0];
5d4f98a2
YZ
1415 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1416
1417 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1418 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1419 struct btrfs_extent_data_ref);
1420 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1421 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1422 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1423 struct btrfs_shared_data_ref);
1424 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1425#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1426 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1427 struct btrfs_extent_ref_v0 *ref0;
1428 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1429 struct btrfs_extent_ref_v0);
1430 num_refs = btrfs_ref_count_v0(leaf, ref0);
1431#endif
1432 } else {
1433 BUG();
1434 }
1435
56bec294
CM
1436 BUG_ON(num_refs < refs_to_drop);
1437 num_refs -= refs_to_drop;
5d4f98a2 1438
31840ae1 1439 if (num_refs == 0) {
87bde3cd 1440 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1441 *last_ref = 1;
31840ae1 1442 } else {
5d4f98a2
YZ
1443 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1444 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1445 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1446 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1447#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1448 else {
1449 struct btrfs_extent_ref_v0 *ref0;
1450 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1451 struct btrfs_extent_ref_v0);
1452 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1453 }
1454#endif
31840ae1
ZY
1455 btrfs_mark_buffer_dirty(leaf);
1456 }
31840ae1
ZY
1457 return ret;
1458}
1459
9ed0dea0 1460static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1461 struct btrfs_extent_inline_ref *iref)
15916de8 1462{
5d4f98a2
YZ
1463 struct btrfs_key key;
1464 struct extent_buffer *leaf;
1465 struct btrfs_extent_data_ref *ref1;
1466 struct btrfs_shared_data_ref *ref2;
1467 u32 num_refs = 0;
3de28d57 1468 int type;
5d4f98a2
YZ
1469
1470 leaf = path->nodes[0];
1471 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1472 if (iref) {
3de28d57
LB
1473 /*
1474 * If type is invalid, we should have bailed out earlier than
1475 * this call.
1476 */
1477 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1478 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1479 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1480 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1481 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1482 } else {
1483 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1484 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1485 }
1486 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1487 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1488 struct btrfs_extent_data_ref);
1489 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1490 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1491 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1492 struct btrfs_shared_data_ref);
1493 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1495 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1496 struct btrfs_extent_ref_v0 *ref0;
1497 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1498 struct btrfs_extent_ref_v0);
1499 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1500#endif
5d4f98a2
YZ
1501 } else {
1502 WARN_ON(1);
1503 }
1504 return num_refs;
1505}
15916de8 1506
5d4f98a2 1507static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1508 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1509 struct btrfs_path *path,
1510 u64 bytenr, u64 parent,
1511 u64 root_objectid)
1f3c79a2 1512{
87bde3cd 1513 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1514 struct btrfs_key key;
1f3c79a2 1515 int ret;
1f3c79a2 1516
5d4f98a2
YZ
1517 key.objectid = bytenr;
1518 if (parent) {
1519 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1520 key.offset = parent;
1521 } else {
1522 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1523 key.offset = root_objectid;
1f3c79a2
LH
1524 }
1525
5d4f98a2
YZ
1526 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1527 if (ret > 0)
1528 ret = -ENOENT;
1529#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1530 if (ret == -ENOENT && parent) {
b3b4aa74 1531 btrfs_release_path(path);
5d4f98a2
YZ
1532 key.type = BTRFS_EXTENT_REF_V0_KEY;
1533 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1534 if (ret > 0)
1535 ret = -ENOENT;
1536 }
1f3c79a2 1537#endif
5d4f98a2 1538 return ret;
1f3c79a2
LH
1539}
1540
5d4f98a2 1541static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1542 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1543 struct btrfs_path *path,
1544 u64 bytenr, u64 parent,
1545 u64 root_objectid)
31840ae1 1546{
5d4f98a2 1547 struct btrfs_key key;
31840ae1 1548 int ret;
31840ae1 1549
5d4f98a2
YZ
1550 key.objectid = bytenr;
1551 if (parent) {
1552 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1553 key.offset = parent;
1554 } else {
1555 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1556 key.offset = root_objectid;
1557 }
1558
87bde3cd
JM
1559 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1560 path, &key, 0);
b3b4aa74 1561 btrfs_release_path(path);
31840ae1
ZY
1562 return ret;
1563}
1564
5d4f98a2 1565static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1566{
5d4f98a2
YZ
1567 int type;
1568 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1569 if (parent > 0)
1570 type = BTRFS_SHARED_BLOCK_REF_KEY;
1571 else
1572 type = BTRFS_TREE_BLOCK_REF_KEY;
1573 } else {
1574 if (parent > 0)
1575 type = BTRFS_SHARED_DATA_REF_KEY;
1576 else
1577 type = BTRFS_EXTENT_DATA_REF_KEY;
1578 }
1579 return type;
31840ae1 1580}
56bec294 1581
2c47e605
YZ
1582static int find_next_key(struct btrfs_path *path, int level,
1583 struct btrfs_key *key)
56bec294 1584
02217ed2 1585{
2c47e605 1586 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1587 if (!path->nodes[level])
1588 break;
5d4f98a2
YZ
1589 if (path->slots[level] + 1 >=
1590 btrfs_header_nritems(path->nodes[level]))
1591 continue;
1592 if (level == 0)
1593 btrfs_item_key_to_cpu(path->nodes[level], key,
1594 path->slots[level] + 1);
1595 else
1596 btrfs_node_key_to_cpu(path->nodes[level], key,
1597 path->slots[level] + 1);
1598 return 0;
1599 }
1600 return 1;
1601}
037e6390 1602
5d4f98a2
YZ
1603/*
1604 * look for inline back ref. if back ref is found, *ref_ret is set
1605 * to the address of inline back ref, and 0 is returned.
1606 *
1607 * if back ref isn't found, *ref_ret is set to the address where it
1608 * should be inserted, and -ENOENT is returned.
1609 *
1610 * if insert is true and there are too many inline back refs, the path
1611 * points to the extent item, and -EAGAIN is returned.
1612 *
1613 * NOTE: inline back refs are ordered in the same way that back ref
1614 * items in the tree are ordered.
1615 */
1616static noinline_for_stack
1617int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1618 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1619 struct btrfs_path *path,
1620 struct btrfs_extent_inline_ref **ref_ret,
1621 u64 bytenr, u64 num_bytes,
1622 u64 parent, u64 root_objectid,
1623 u64 owner, u64 offset, int insert)
1624{
87bde3cd 1625 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1626 struct btrfs_key key;
1627 struct extent_buffer *leaf;
1628 struct btrfs_extent_item *ei;
1629 struct btrfs_extent_inline_ref *iref;
1630 u64 flags;
1631 u64 item_size;
1632 unsigned long ptr;
1633 unsigned long end;
1634 int extra_size;
1635 int type;
1636 int want;
1637 int ret;
1638 int err = 0;
0b246afa 1639 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1640 int needed;
26b8003f 1641
db94535d 1642 key.objectid = bytenr;
31840ae1 1643 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1644 key.offset = num_bytes;
31840ae1 1645
5d4f98a2
YZ
1646 want = extent_ref_type(parent, owner);
1647 if (insert) {
1648 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1649 path->keep_locks = 1;
5d4f98a2
YZ
1650 } else
1651 extra_size = -1;
3173a18f
JB
1652
1653 /*
1654 * Owner is our parent level, so we can just add one to get the level
1655 * for the block we are interested in.
1656 */
1657 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1658 key.type = BTRFS_METADATA_ITEM_KEY;
1659 key.offset = owner;
1660 }
1661
1662again:
5d4f98a2 1663 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1664 if (ret < 0) {
5d4f98a2
YZ
1665 err = ret;
1666 goto out;
1667 }
3173a18f
JB
1668
1669 /*
1670 * We may be a newly converted file system which still has the old fat
1671 * extent entries for metadata, so try and see if we have one of those.
1672 */
1673 if (ret > 0 && skinny_metadata) {
1674 skinny_metadata = false;
1675 if (path->slots[0]) {
1676 path->slots[0]--;
1677 btrfs_item_key_to_cpu(path->nodes[0], &key,
1678 path->slots[0]);
1679 if (key.objectid == bytenr &&
1680 key.type == BTRFS_EXTENT_ITEM_KEY &&
1681 key.offset == num_bytes)
1682 ret = 0;
1683 }
1684 if (ret) {
9ce49a0b 1685 key.objectid = bytenr;
3173a18f
JB
1686 key.type = BTRFS_EXTENT_ITEM_KEY;
1687 key.offset = num_bytes;
1688 btrfs_release_path(path);
1689 goto again;
1690 }
1691 }
1692
79787eaa
JM
1693 if (ret && !insert) {
1694 err = -ENOENT;
1695 goto out;
fae7f21c 1696 } else if (WARN_ON(ret)) {
492104c8 1697 err = -EIO;
492104c8 1698 goto out;
79787eaa 1699 }
5d4f98a2
YZ
1700
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1704 if (item_size < sizeof(*ei)) {
1705 if (!insert) {
1706 err = -ENOENT;
1707 goto out;
1708 }
87bde3cd 1709 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1710 extra_size);
1711 if (ret < 0) {
1712 err = ret;
1713 goto out;
1714 }
1715 leaf = path->nodes[0];
1716 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1717 }
1718#endif
1719 BUG_ON(item_size < sizeof(*ei));
1720
5d4f98a2
YZ
1721 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1722 flags = btrfs_extent_flags(leaf, ei);
1723
1724 ptr = (unsigned long)(ei + 1);
1725 end = (unsigned long)ei + item_size;
1726
3173a18f 1727 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1728 ptr += sizeof(struct btrfs_tree_block_info);
1729 BUG_ON(ptr > end);
5d4f98a2
YZ
1730 }
1731
3de28d57
LB
1732 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1733 needed = BTRFS_REF_TYPE_DATA;
1734 else
1735 needed = BTRFS_REF_TYPE_BLOCK;
1736
5d4f98a2
YZ
1737 err = -ENOENT;
1738 while (1) {
1739 if (ptr >= end) {
1740 WARN_ON(ptr > end);
1741 break;
1742 }
1743 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1744 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1745 if (type == BTRFS_REF_TYPE_INVALID) {
1746 err = -EINVAL;
1747 goto out;
1748 }
1749
5d4f98a2
YZ
1750 if (want < type)
1751 break;
1752 if (want > type) {
1753 ptr += btrfs_extent_inline_ref_size(type);
1754 continue;
1755 }
1756
1757 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1758 struct btrfs_extent_data_ref *dref;
1759 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1760 if (match_extent_data_ref(leaf, dref, root_objectid,
1761 owner, offset)) {
1762 err = 0;
1763 break;
1764 }
1765 if (hash_extent_data_ref_item(leaf, dref) <
1766 hash_extent_data_ref(root_objectid, owner, offset))
1767 break;
1768 } else {
1769 u64 ref_offset;
1770 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1771 if (parent > 0) {
1772 if (parent == ref_offset) {
1773 err = 0;
1774 break;
1775 }
1776 if (ref_offset < parent)
1777 break;
1778 } else {
1779 if (root_objectid == ref_offset) {
1780 err = 0;
1781 break;
1782 }
1783 if (ref_offset < root_objectid)
1784 break;
1785 }
1786 }
1787 ptr += btrfs_extent_inline_ref_size(type);
1788 }
1789 if (err == -ENOENT && insert) {
1790 if (item_size + extra_size >=
1791 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1792 err = -EAGAIN;
1793 goto out;
1794 }
1795 /*
1796 * To add new inline back ref, we have to make sure
1797 * there is no corresponding back ref item.
1798 * For simplicity, we just do not add new inline back
1799 * ref if there is any kind of item for this block
1800 */
2c47e605
YZ
1801 if (find_next_key(path, 0, &key) == 0 &&
1802 key.objectid == bytenr &&
85d4198e 1803 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1804 err = -EAGAIN;
1805 goto out;
1806 }
1807 }
1808 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1809out:
85d4198e 1810 if (insert) {
5d4f98a2
YZ
1811 path->keep_locks = 0;
1812 btrfs_unlock_up_safe(path, 1);
1813 }
1814 return err;
1815}
1816
1817/*
1818 * helper to add new inline back ref
1819 */
1820static noinline_for_stack
87bde3cd 1821void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1822 struct btrfs_path *path,
1823 struct btrfs_extent_inline_ref *iref,
1824 u64 parent, u64 root_objectid,
1825 u64 owner, u64 offset, int refs_to_add,
1826 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1827{
1828 struct extent_buffer *leaf;
1829 struct btrfs_extent_item *ei;
1830 unsigned long ptr;
1831 unsigned long end;
1832 unsigned long item_offset;
1833 u64 refs;
1834 int size;
1835 int type;
5d4f98a2
YZ
1836
1837 leaf = path->nodes[0];
1838 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1839 item_offset = (unsigned long)iref - (unsigned long)ei;
1840
1841 type = extent_ref_type(parent, owner);
1842 size = btrfs_extent_inline_ref_size(type);
1843
87bde3cd 1844 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1845
1846 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1847 refs = btrfs_extent_refs(leaf, ei);
1848 refs += refs_to_add;
1849 btrfs_set_extent_refs(leaf, ei, refs);
1850 if (extent_op)
1851 __run_delayed_extent_op(extent_op, leaf, ei);
1852
1853 ptr = (unsigned long)ei + item_offset;
1854 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1855 if (ptr < end - size)
1856 memmove_extent_buffer(leaf, ptr + size, ptr,
1857 end - size - ptr);
1858
1859 iref = (struct btrfs_extent_inline_ref *)ptr;
1860 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1861 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1862 struct btrfs_extent_data_ref *dref;
1863 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1864 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1865 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1866 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1867 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1868 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1869 struct btrfs_shared_data_ref *sref;
1870 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1871 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1872 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1873 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1874 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1875 } else {
1876 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1877 }
1878 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1879}
1880
1881static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1882 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1883 struct btrfs_path *path,
1884 struct btrfs_extent_inline_ref **ref_ret,
1885 u64 bytenr, u64 num_bytes, u64 parent,
1886 u64 root_objectid, u64 owner, u64 offset)
1887{
1888 int ret;
1889
87bde3cd 1890 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1891 bytenr, num_bytes, parent,
1892 root_objectid, owner, offset, 0);
1893 if (ret != -ENOENT)
54aa1f4d 1894 return ret;
5d4f98a2 1895
b3b4aa74 1896 btrfs_release_path(path);
5d4f98a2
YZ
1897 *ref_ret = NULL;
1898
1899 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1900 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1901 parent, root_objectid);
5d4f98a2 1902 } else {
87bde3cd
JM
1903 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1904 parent, root_objectid, owner,
1905 offset);
b9473439 1906 }
5d4f98a2
YZ
1907 return ret;
1908}
31840ae1 1909
5d4f98a2
YZ
1910/*
1911 * helper to update/remove inline back ref
1912 */
1913static noinline_for_stack
87bde3cd 1914void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1915 struct btrfs_path *path,
1916 struct btrfs_extent_inline_ref *iref,
1917 int refs_to_mod,
fcebe456
JB
1918 struct btrfs_delayed_extent_op *extent_op,
1919 int *last_ref)
5d4f98a2
YZ
1920{
1921 struct extent_buffer *leaf;
1922 struct btrfs_extent_item *ei;
1923 struct btrfs_extent_data_ref *dref = NULL;
1924 struct btrfs_shared_data_ref *sref = NULL;
1925 unsigned long ptr;
1926 unsigned long end;
1927 u32 item_size;
1928 int size;
1929 int type;
5d4f98a2
YZ
1930 u64 refs;
1931
1932 leaf = path->nodes[0];
1933 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1934 refs = btrfs_extent_refs(leaf, ei);
1935 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1936 refs += refs_to_mod;
1937 btrfs_set_extent_refs(leaf, ei, refs);
1938 if (extent_op)
1939 __run_delayed_extent_op(extent_op, leaf, ei);
1940
3de28d57
LB
1941 /*
1942 * If type is invalid, we should have bailed out after
1943 * lookup_inline_extent_backref().
1944 */
1945 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1946 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1947
1948 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1949 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1950 refs = btrfs_extent_data_ref_count(leaf, dref);
1951 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1952 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1953 refs = btrfs_shared_data_ref_count(leaf, sref);
1954 } else {
1955 refs = 1;
1956 BUG_ON(refs_to_mod != -1);
56bec294 1957 }
31840ae1 1958
5d4f98a2
YZ
1959 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1960 refs += refs_to_mod;
1961
1962 if (refs > 0) {
1963 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1964 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1965 else
1966 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1967 } else {
fcebe456 1968 *last_ref = 1;
5d4f98a2
YZ
1969 size = btrfs_extent_inline_ref_size(type);
1970 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1971 ptr = (unsigned long)iref;
1972 end = (unsigned long)ei + item_size;
1973 if (ptr + size < end)
1974 memmove_extent_buffer(leaf, ptr, ptr + size,
1975 end - ptr - size);
1976 item_size -= size;
87bde3cd 1977 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1978 }
1979 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1980}
1981
1982static noinline_for_stack
1983int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1984 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1985 struct btrfs_path *path,
1986 u64 bytenr, u64 num_bytes, u64 parent,
1987 u64 root_objectid, u64 owner,
1988 u64 offset, int refs_to_add,
1989 struct btrfs_delayed_extent_op *extent_op)
1990{
1991 struct btrfs_extent_inline_ref *iref;
1992 int ret;
1993
87bde3cd 1994 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1995 bytenr, num_bytes, parent,
1996 root_objectid, owner, offset, 1);
1997 if (ret == 0) {
1998 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1999 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2000 refs_to_add, extent_op, NULL);
5d4f98a2 2001 } else if (ret == -ENOENT) {
87bde3cd 2002 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
2003 root_objectid, owner, offset,
2004 refs_to_add, extent_op);
2005 ret = 0;
771ed689 2006 }
5d4f98a2
YZ
2007 return ret;
2008}
31840ae1 2009
5d4f98a2 2010static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2011 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2012 struct btrfs_path *path,
2013 u64 bytenr, u64 parent, u64 root_objectid,
2014 u64 owner, u64 offset, int refs_to_add)
2015{
2016 int ret;
2017 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2018 BUG_ON(refs_to_add != 1);
87bde3cd 2019 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2020 parent, root_objectid);
2021 } else {
87bde3cd 2022 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2023 parent, root_objectid,
2024 owner, offset, refs_to_add);
2025 }
2026 return ret;
2027}
56bec294 2028
5d4f98a2 2029static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2030 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2031 struct btrfs_path *path,
2032 struct btrfs_extent_inline_ref *iref,
fcebe456 2033 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2034{
143bede5 2035 int ret = 0;
b9473439 2036
5d4f98a2
YZ
2037 BUG_ON(!is_data && refs_to_drop != 1);
2038 if (iref) {
87bde3cd 2039 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2040 -refs_to_drop, NULL, last_ref);
5d4f98a2 2041 } else if (is_data) {
87bde3cd 2042 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2043 last_ref);
5d4f98a2 2044 } else {
fcebe456 2045 *last_ref = 1;
87bde3cd 2046 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2047 }
2048 return ret;
2049}
2050
86557861 2051#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2052static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2053 u64 *discarded_bytes)
5d4f98a2 2054{
86557861
JM
2055 int j, ret = 0;
2056 u64 bytes_left, end;
4d89d377 2057 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2058
4d89d377
JM
2059 if (WARN_ON(start != aligned_start)) {
2060 len -= aligned_start - start;
2061 len = round_down(len, 1 << 9);
2062 start = aligned_start;
2063 }
d04c6b88 2064
4d89d377 2065 *discarded_bytes = 0;
86557861
JM
2066
2067 if (!len)
2068 return 0;
2069
2070 end = start + len;
2071 bytes_left = len;
2072
2073 /* Skip any superblocks on this device. */
2074 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2075 u64 sb_start = btrfs_sb_offset(j);
2076 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2077 u64 size = sb_start - start;
2078
2079 if (!in_range(sb_start, start, bytes_left) &&
2080 !in_range(sb_end, start, bytes_left) &&
2081 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2082 continue;
2083
2084 /*
2085 * Superblock spans beginning of range. Adjust start and
2086 * try again.
2087 */
2088 if (sb_start <= start) {
2089 start += sb_end - start;
2090 if (start > end) {
2091 bytes_left = 0;
2092 break;
2093 }
2094 bytes_left = end - start;
2095 continue;
2096 }
2097
2098 if (size) {
2099 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2100 GFP_NOFS, 0);
2101 if (!ret)
2102 *discarded_bytes += size;
2103 else if (ret != -EOPNOTSUPP)
2104 return ret;
2105 }
2106
2107 start = sb_end;
2108 if (start > end) {
2109 bytes_left = 0;
2110 break;
2111 }
2112 bytes_left = end - start;
2113 }
2114
2115 if (bytes_left) {
2116 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2117 GFP_NOFS, 0);
2118 if (!ret)
86557861 2119 *discarded_bytes += bytes_left;
4d89d377 2120 }
d04c6b88 2121 return ret;
5d4f98a2 2122}
5d4f98a2 2123
2ff7e61e 2124int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2125 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2126{
5d4f98a2 2127 int ret;
5378e607 2128 u64 discarded_bytes = 0;
a1d3c478 2129 struct btrfs_bio *bbio = NULL;
5d4f98a2 2130
e244a0ae 2131
2999241d
FM
2132 /*
2133 * Avoid races with device replace and make sure our bbio has devices
2134 * associated to its stripes that don't go away while we are discarding.
2135 */
0b246afa 2136 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2137 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2138 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2139 &bbio, 0);
79787eaa 2140 /* Error condition is -ENOMEM */
5d4f98a2 2141 if (!ret) {
a1d3c478 2142 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2143 int i;
2144
5d4f98a2 2145
a1d3c478 2146 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2147 u64 bytes;
38b5f68e
AJ
2148 struct request_queue *req_q;
2149
627e0873
FM
2150 if (!stripe->dev->bdev) {
2151 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2152 continue;
2153 }
38b5f68e
AJ
2154 req_q = bdev_get_queue(stripe->dev->bdev);
2155 if (!blk_queue_discard(req_q))
d5e2003c
JB
2156 continue;
2157
5378e607
LD
2158 ret = btrfs_issue_discard(stripe->dev->bdev,
2159 stripe->physical,
d04c6b88
JM
2160 stripe->length,
2161 &bytes);
5378e607 2162 if (!ret)
d04c6b88 2163 discarded_bytes += bytes;
5378e607 2164 else if (ret != -EOPNOTSUPP)
79787eaa 2165 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2166
2167 /*
2168 * Just in case we get back EOPNOTSUPP for some reason,
2169 * just ignore the return value so we don't screw up
2170 * people calling discard_extent.
2171 */
2172 ret = 0;
5d4f98a2 2173 }
6e9606d2 2174 btrfs_put_bbio(bbio);
5d4f98a2 2175 }
0b246afa 2176 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2177
2178 if (actual_bytes)
2179 *actual_bytes = discarded_bytes;
2180
5d4f98a2 2181
53b381b3
DW
2182 if (ret == -EOPNOTSUPP)
2183 ret = 0;
5d4f98a2 2184 return ret;
5d4f98a2
YZ
2185}
2186
79787eaa 2187/* Can return -ENOMEM */
5d4f98a2 2188int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2189 struct btrfs_root *root,
5d4f98a2 2190 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2191 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2192{
84f7d8e6 2193 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2194 int old_ref_mod, new_ref_mod;
5d4f98a2 2195 int ret;
66d7e7f0 2196
5d4f98a2
YZ
2197 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2198 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2199
fd708b81
JB
2200 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2201 owner, offset, BTRFS_ADD_DELAYED_REF);
2202
5d4f98a2 2203 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2204 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2205 num_bytes, parent,
2206 root_objectid, (int)owner,
2207 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2208 &old_ref_mod, &new_ref_mod);
5d4f98a2 2209 } else {
66d7e7f0 2210 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2211 num_bytes, parent,
2212 root_objectid, owner, offset,
d7eae340
OS
2213 0, BTRFS_ADD_DELAYED_REF,
2214 &old_ref_mod, &new_ref_mod);
5d4f98a2 2215 }
d7eae340
OS
2216
2217 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2218 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2219
5d4f98a2
YZ
2220 return ret;
2221}
2222
2223static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2224 struct btrfs_fs_info *fs_info,
c682f9b3 2225 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2226 u64 parent, u64 root_objectid,
2227 u64 owner, u64 offset, int refs_to_add,
2228 struct btrfs_delayed_extent_op *extent_op)
2229{
2230 struct btrfs_path *path;
2231 struct extent_buffer *leaf;
2232 struct btrfs_extent_item *item;
fcebe456 2233 struct btrfs_key key;
c682f9b3
QW
2234 u64 bytenr = node->bytenr;
2235 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2236 u64 refs;
2237 int ret;
5d4f98a2
YZ
2238
2239 path = btrfs_alloc_path();
2240 if (!path)
2241 return -ENOMEM;
2242
e4058b54 2243 path->reada = READA_FORWARD;
5d4f98a2
YZ
2244 path->leave_spinning = 1;
2245 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2246 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2247 num_bytes, parent, root_objectid,
2248 owner, offset,
5d4f98a2 2249 refs_to_add, extent_op);
0ed4792a 2250 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2251 goto out;
fcebe456
JB
2252
2253 /*
2254 * Ok we had -EAGAIN which means we didn't have space to insert and
2255 * inline extent ref, so just update the reference count and add a
2256 * normal backref.
2257 */
5d4f98a2 2258 leaf = path->nodes[0];
fcebe456 2259 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2260 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2261 refs = btrfs_extent_refs(leaf, item);
2262 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2263 if (extent_op)
2264 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2265
5d4f98a2 2266 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2267 btrfs_release_path(path);
56bec294 2268
e4058b54 2269 path->reada = READA_FORWARD;
b9473439 2270 path->leave_spinning = 1;
56bec294 2271 /* now insert the actual backref */
87bde3cd
JM
2272 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2273 root_objectid, owner, offset, refs_to_add);
79787eaa 2274 if (ret)
66642832 2275 btrfs_abort_transaction(trans, ret);
5d4f98a2 2276out:
56bec294 2277 btrfs_free_path(path);
30d133fc 2278 return ret;
56bec294
CM
2279}
2280
5d4f98a2 2281static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2282 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2283 struct btrfs_delayed_ref_node *node,
2284 struct btrfs_delayed_extent_op *extent_op,
2285 int insert_reserved)
56bec294 2286{
5d4f98a2
YZ
2287 int ret = 0;
2288 struct btrfs_delayed_data_ref *ref;
2289 struct btrfs_key ins;
2290 u64 parent = 0;
2291 u64 ref_root = 0;
2292 u64 flags = 0;
2293
2294 ins.objectid = node->bytenr;
2295 ins.offset = node->num_bytes;
2296 ins.type = BTRFS_EXTENT_ITEM_KEY;
2297
2298 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2299 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2300
5d4f98a2
YZ
2301 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2302 parent = ref->parent;
fcebe456 2303 ref_root = ref->root;
5d4f98a2
YZ
2304
2305 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2306 if (extent_op)
5d4f98a2 2307 flags |= extent_op->flags_to_set;
2ff7e61e 2308 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2309 parent, ref_root, flags,
2310 ref->objectid, ref->offset,
2311 &ins, node->ref_mod);
5d4f98a2 2312 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2313 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2314 ref_root, ref->objectid,
2315 ref->offset, node->ref_mod,
c682f9b3 2316 extent_op);
5d4f98a2 2317 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2318 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2319 ref_root, ref->objectid,
2320 ref->offset, node->ref_mod,
c682f9b3 2321 extent_op);
5d4f98a2
YZ
2322 } else {
2323 BUG();
2324 }
2325 return ret;
2326}
2327
2328static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2329 struct extent_buffer *leaf,
2330 struct btrfs_extent_item *ei)
2331{
2332 u64 flags = btrfs_extent_flags(leaf, ei);
2333 if (extent_op->update_flags) {
2334 flags |= extent_op->flags_to_set;
2335 btrfs_set_extent_flags(leaf, ei, flags);
2336 }
2337
2338 if (extent_op->update_key) {
2339 struct btrfs_tree_block_info *bi;
2340 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2341 bi = (struct btrfs_tree_block_info *)(ei + 1);
2342 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2343 }
2344}
2345
2346static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2347 struct btrfs_fs_info *fs_info,
d278850e 2348 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2349 struct btrfs_delayed_extent_op *extent_op)
2350{
2351 struct btrfs_key key;
2352 struct btrfs_path *path;
2353 struct btrfs_extent_item *ei;
2354 struct extent_buffer *leaf;
2355 u32 item_size;
56bec294 2356 int ret;
5d4f98a2 2357 int err = 0;
b1c79e09 2358 int metadata = !extent_op->is_data;
5d4f98a2 2359
79787eaa
JM
2360 if (trans->aborted)
2361 return 0;
2362
0b246afa 2363 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2364 metadata = 0;
2365
5d4f98a2
YZ
2366 path = btrfs_alloc_path();
2367 if (!path)
2368 return -ENOMEM;
2369
d278850e 2370 key.objectid = head->bytenr;
5d4f98a2 2371
3173a18f 2372 if (metadata) {
3173a18f 2373 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2374 key.offset = extent_op->level;
3173a18f
JB
2375 } else {
2376 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2377 key.offset = head->num_bytes;
3173a18f
JB
2378 }
2379
2380again:
e4058b54 2381 path->reada = READA_FORWARD;
5d4f98a2 2382 path->leave_spinning = 1;
0b246afa 2383 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2384 if (ret < 0) {
2385 err = ret;
2386 goto out;
2387 }
2388 if (ret > 0) {
3173a18f 2389 if (metadata) {
55994887
FDBM
2390 if (path->slots[0] > 0) {
2391 path->slots[0]--;
2392 btrfs_item_key_to_cpu(path->nodes[0], &key,
2393 path->slots[0]);
d278850e 2394 if (key.objectid == head->bytenr &&
55994887 2395 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2396 key.offset == head->num_bytes)
55994887
FDBM
2397 ret = 0;
2398 }
2399 if (ret > 0) {
2400 btrfs_release_path(path);
2401 metadata = 0;
3173a18f 2402
d278850e
JB
2403 key.objectid = head->bytenr;
2404 key.offset = head->num_bytes;
55994887
FDBM
2405 key.type = BTRFS_EXTENT_ITEM_KEY;
2406 goto again;
2407 }
2408 } else {
2409 err = -EIO;
2410 goto out;
3173a18f 2411 }
5d4f98a2
YZ
2412 }
2413
2414 leaf = path->nodes[0];
2415 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2416#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2417 if (item_size < sizeof(*ei)) {
87bde3cd 2418 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2419 if (ret < 0) {
2420 err = ret;
2421 goto out;
2422 }
2423 leaf = path->nodes[0];
2424 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2425 }
2426#endif
2427 BUG_ON(item_size < sizeof(*ei));
2428 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2429 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2430
5d4f98a2
YZ
2431 btrfs_mark_buffer_dirty(leaf);
2432out:
2433 btrfs_free_path(path);
2434 return err;
56bec294
CM
2435}
2436
5d4f98a2 2437static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2438 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2439 struct btrfs_delayed_ref_node *node,
2440 struct btrfs_delayed_extent_op *extent_op,
2441 int insert_reserved)
56bec294
CM
2442{
2443 int ret = 0;
5d4f98a2
YZ
2444 struct btrfs_delayed_tree_ref *ref;
2445 struct btrfs_key ins;
2446 u64 parent = 0;
2447 u64 ref_root = 0;
0b246afa 2448 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2449
5d4f98a2 2450 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2451 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2452
5d4f98a2
YZ
2453 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2454 parent = ref->parent;
fcebe456 2455 ref_root = ref->root;
5d4f98a2 2456
3173a18f
JB
2457 ins.objectid = node->bytenr;
2458 if (skinny_metadata) {
2459 ins.offset = ref->level;
2460 ins.type = BTRFS_METADATA_ITEM_KEY;
2461 } else {
2462 ins.offset = node->num_bytes;
2463 ins.type = BTRFS_EXTENT_ITEM_KEY;
2464 }
2465
02794222 2466 if (node->ref_mod != 1) {
2ff7e61e 2467 btrfs_err(fs_info,
02794222
LB
2468 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2469 node->bytenr, node->ref_mod, node->action, ref_root,
2470 parent);
2471 return -EIO;
2472 }
5d4f98a2 2473 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2474 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2475 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2476 parent, ref_root,
2477 extent_op->flags_to_set,
2478 &extent_op->key,
b06c4bf5 2479 ref->level, &ins);
5d4f98a2 2480 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2481 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2482 parent, ref_root,
2483 ref->level, 0, 1,
fcebe456 2484 extent_op);
5d4f98a2 2485 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2486 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2487 parent, ref_root,
2488 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2489 } else {
2490 BUG();
2491 }
56bec294
CM
2492 return ret;
2493}
2494
2495/* helper function to actually process a single delayed ref entry */
5d4f98a2 2496static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2497 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2498 struct btrfs_delayed_ref_node *node,
2499 struct btrfs_delayed_extent_op *extent_op,
2500 int insert_reserved)
56bec294 2501{
79787eaa
JM
2502 int ret = 0;
2503
857cc2fc
JB
2504 if (trans->aborted) {
2505 if (insert_reserved)
2ff7e61e 2506 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2507 node->num_bytes, 1);
79787eaa 2508 return 0;
857cc2fc 2509 }
79787eaa 2510
5d4f98a2
YZ
2511 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2512 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2513 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2514 insert_reserved);
2515 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2516 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2517 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2518 insert_reserved);
2519 else
2520 BUG();
2521 return ret;
56bec294
CM
2522}
2523
c6fc2454 2524static inline struct btrfs_delayed_ref_node *
56bec294
CM
2525select_delayed_ref(struct btrfs_delayed_ref_head *head)
2526{
cffc3374
FM
2527 struct btrfs_delayed_ref_node *ref;
2528
0e0adbcf 2529 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2530 return NULL;
d7df2c79 2531
cffc3374
FM
2532 /*
2533 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2534 * This is to prevent a ref count from going down to zero, which deletes
2535 * the extent item from the extent tree, when there still are references
2536 * to add, which would fail because they would not find the extent item.
2537 */
1d57ee94
WX
2538 if (!list_empty(&head->ref_add_list))
2539 return list_first_entry(&head->ref_add_list,
2540 struct btrfs_delayed_ref_node, add_list);
2541
0e0adbcf
JB
2542 ref = rb_entry(rb_first(&head->ref_tree),
2543 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2544 ASSERT(list_empty(&ref->add_list));
2545 return ref;
56bec294
CM
2546}
2547
2eadaa22
JB
2548static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2549 struct btrfs_delayed_ref_head *head)
2550{
2551 spin_lock(&delayed_refs->lock);
2552 head->processing = 0;
2553 delayed_refs->num_heads_ready++;
2554 spin_unlock(&delayed_refs->lock);
2555 btrfs_delayed_ref_unlock(head);
2556}
2557
b00e6250
JB
2558static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2559 struct btrfs_fs_info *fs_info,
2560 struct btrfs_delayed_ref_head *head)
2561{
2562 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2563 int ret;
2564
2565 if (!extent_op)
2566 return 0;
2567 head->extent_op = NULL;
2568 if (head->must_insert_reserved) {
2569 btrfs_free_delayed_extent_op(extent_op);
2570 return 0;
2571 }
2572 spin_unlock(&head->lock);
d278850e 2573 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2574 btrfs_free_delayed_extent_op(extent_op);
2575 return ret ? ret : 1;
2576}
2577
194ab0bc
JB
2578static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2579 struct btrfs_fs_info *fs_info,
2580 struct btrfs_delayed_ref_head *head)
2581{
2582 struct btrfs_delayed_ref_root *delayed_refs;
2583 int ret;
2584
2585 delayed_refs = &trans->transaction->delayed_refs;
2586
2587 ret = cleanup_extent_op(trans, fs_info, head);
2588 if (ret < 0) {
2589 unselect_delayed_ref_head(delayed_refs, head);
2590 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2591 return ret;
2592 } else if (ret) {
2593 return ret;
2594 }
2595
2596 /*
2597 * Need to drop our head ref lock and re-acquire the delayed ref lock
2598 * and then re-check to make sure nobody got added.
2599 */
2600 spin_unlock(&head->lock);
2601 spin_lock(&delayed_refs->lock);
2602 spin_lock(&head->lock);
0e0adbcf 2603 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2604 spin_unlock(&head->lock);
2605 spin_unlock(&delayed_refs->lock);
2606 return 1;
2607 }
194ab0bc
JB
2608 delayed_refs->num_heads--;
2609 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2610 RB_CLEAR_NODE(&head->href_node);
194ab0bc 2611 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2612 spin_unlock(&head->lock);
2613 atomic_dec(&delayed_refs->num_entries);
2614
d278850e 2615 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2616
2617 if (head->total_ref_mod < 0) {
2618 struct btrfs_block_group_cache *cache;
2619
d278850e 2620 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
c1103f7a
JB
2621 ASSERT(cache);
2622 percpu_counter_add(&cache->space_info->total_bytes_pinned,
d278850e 2623 -head->num_bytes);
c1103f7a
JB
2624 btrfs_put_block_group(cache);
2625
2626 if (head->is_data) {
2627 spin_lock(&delayed_refs->lock);
d278850e 2628 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2629 spin_unlock(&delayed_refs->lock);
2630 }
2631 }
2632
2633 if (head->must_insert_reserved) {
d278850e
JB
2634 btrfs_pin_extent(fs_info, head->bytenr,
2635 head->num_bytes, 1);
c1103f7a 2636 if (head->is_data) {
d278850e
JB
2637 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2638 head->num_bytes);
c1103f7a
JB
2639 }
2640 }
2641
2642 /* Also free its reserved qgroup space */
2643 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2644 head->qgroup_reserved);
2645 btrfs_delayed_ref_unlock(head);
d278850e 2646 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2647 return 0;
2648}
2649
79787eaa
JM
2650/*
2651 * Returns 0 on success or if called with an already aborted transaction.
2652 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2653 */
d7df2c79 2654static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2655 struct btrfs_fs_info *fs_info,
d7df2c79 2656 unsigned long nr)
56bec294 2657{
56bec294
CM
2658 struct btrfs_delayed_ref_root *delayed_refs;
2659 struct btrfs_delayed_ref_node *ref;
2660 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2661 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2662 ktime_t start = ktime_get();
56bec294 2663 int ret;
d7df2c79 2664 unsigned long count = 0;
0a2b2a84 2665 unsigned long actual_count = 0;
56bec294 2666 int must_insert_reserved = 0;
56bec294
CM
2667
2668 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2669 while (1) {
2670 if (!locked_ref) {
d7df2c79 2671 if (count >= nr)
56bec294 2672 break;
56bec294 2673
d7df2c79
JB
2674 spin_lock(&delayed_refs->lock);
2675 locked_ref = btrfs_select_ref_head(trans);
2676 if (!locked_ref) {
2677 spin_unlock(&delayed_refs->lock);
2678 break;
2679 }
c3e69d58
CM
2680
2681 /* grab the lock that says we are going to process
2682 * all the refs for this head */
2683 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2684 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2685 /*
2686 * we may have dropped the spin lock to get the head
2687 * mutex lock, and that might have given someone else
2688 * time to free the head. If that's true, it has been
2689 * removed from our list and we can move on.
2690 */
2691 if (ret == -EAGAIN) {
2692 locked_ref = NULL;
2693 count++;
2694 continue;
56bec294
CM
2695 }
2696 }
a28ec197 2697
2c3cf7d5
FM
2698 /*
2699 * We need to try and merge add/drops of the same ref since we
2700 * can run into issues with relocate dropping the implicit ref
2701 * and then it being added back again before the drop can
2702 * finish. If we merged anything we need to re-loop so we can
2703 * get a good ref.
2704 * Or we can get node references of the same type that weren't
2705 * merged when created due to bumps in the tree mod seq, and
2706 * we need to merge them to prevent adding an inline extent
2707 * backref before dropping it (triggering a BUG_ON at
2708 * insert_inline_extent_backref()).
2709 */
d7df2c79 2710 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2711 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2712 locked_ref);
ae1e206b 2713
d1270cd9
AJ
2714 /*
2715 * locked_ref is the head node, so we have to go one
2716 * node back for any delayed ref updates
2717 */
2718 ref = select_delayed_ref(locked_ref);
2719
2720 if (ref && ref->seq &&
097b8a7c 2721 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2722 spin_unlock(&locked_ref->lock);
2eadaa22 2723 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2724 locked_ref = NULL;
d1270cd9 2725 cond_resched();
27a377db 2726 count++;
d1270cd9
AJ
2727 continue;
2728 }
2729
c1103f7a
JB
2730 /*
2731 * We're done processing refs in this ref_head, clean everything
2732 * up and move on to the next ref_head.
2733 */
56bec294 2734 if (!ref) {
194ab0bc
JB
2735 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2736 if (ret > 0 ) {
b00e6250
JB
2737 /* We dropped our lock, we need to loop. */
2738 ret = 0;
d7df2c79 2739 continue;
194ab0bc
JB
2740 } else if (ret) {
2741 return ret;
5d4f98a2 2742 }
c1103f7a
JB
2743 locked_ref = NULL;
2744 count++;
2745 continue;
2746 }
02217ed2 2747
c1103f7a
JB
2748 actual_count++;
2749 ref->in_tree = 0;
0e0adbcf
JB
2750 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2751 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2752 if (!list_empty(&ref->add_list))
2753 list_del(&ref->add_list);
2754 /*
2755 * When we play the delayed ref, also correct the ref_mod on
2756 * head
2757 */
2758 switch (ref->action) {
2759 case BTRFS_ADD_DELAYED_REF:
2760 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2761 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2762 break;
2763 case BTRFS_DROP_DELAYED_REF:
d278850e 2764 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2765 break;
2766 default:
2767 WARN_ON(1);
22cd2e7d 2768 }
1ce7a5ec
JB
2769 atomic_dec(&delayed_refs->num_entries);
2770
b00e6250
JB
2771 /*
2772 * Record the must-insert_reserved flag before we drop the spin
2773 * lock.
2774 */
2775 must_insert_reserved = locked_ref->must_insert_reserved;
2776 locked_ref->must_insert_reserved = 0;
2777
2778 extent_op = locked_ref->extent_op;
2779 locked_ref->extent_op = NULL;
d7df2c79 2780 spin_unlock(&locked_ref->lock);
925baedd 2781
2ff7e61e 2782 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2783 must_insert_reserved);
eb099670 2784
78a6184a 2785 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2786 if (ret) {
2eadaa22 2787 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2788 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2789 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2790 ret);
79787eaa
JM
2791 return ret;
2792 }
2793
093486c4
MX
2794 btrfs_put_delayed_ref(ref);
2795 count++;
c3e69d58 2796 cond_resched();
c3e69d58 2797 }
0a2b2a84
JB
2798
2799 /*
2800 * We don't want to include ref heads since we can have empty ref heads
2801 * and those will drastically skew our runtime down since we just do
2802 * accounting, no actual extent tree updates.
2803 */
2804 if (actual_count > 0) {
2805 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2806 u64 avg;
2807
2808 /*
2809 * We weigh the current average higher than our current runtime
2810 * to avoid large swings in the average.
2811 */
2812 spin_lock(&delayed_refs->lock);
2813 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2814 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2815 spin_unlock(&delayed_refs->lock);
2816 }
d7df2c79 2817 return 0;
c3e69d58
CM
2818}
2819
709c0486
AJ
2820#ifdef SCRAMBLE_DELAYED_REFS
2821/*
2822 * Normally delayed refs get processed in ascending bytenr order. This
2823 * correlates in most cases to the order added. To expose dependencies on this
2824 * order, we start to process the tree in the middle instead of the beginning
2825 */
2826static u64 find_middle(struct rb_root *root)
2827{
2828 struct rb_node *n = root->rb_node;
2829 struct btrfs_delayed_ref_node *entry;
2830 int alt = 1;
2831 u64 middle;
2832 u64 first = 0, last = 0;
2833
2834 n = rb_first(root);
2835 if (n) {
2836 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837 first = entry->bytenr;
2838 }
2839 n = rb_last(root);
2840 if (n) {
2841 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842 last = entry->bytenr;
2843 }
2844 n = root->rb_node;
2845
2846 while (n) {
2847 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2848 WARN_ON(!entry->in_tree);
2849
2850 middle = entry->bytenr;
2851
2852 if (alt)
2853 n = n->rb_left;
2854 else
2855 n = n->rb_right;
2856
2857 alt = 1 - alt;
2858 }
2859 return middle;
2860}
2861#endif
2862
2ff7e61e 2863static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2864{
2865 u64 num_bytes;
2866
2867 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2868 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2869 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2870 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2871
2872 /*
2873 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2874 * closer to what we're really going to want to use.
1be41b78 2875 */
0b246afa 2876 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2877}
2878
1262133b
JB
2879/*
2880 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2881 * would require to store the csums for that many bytes.
2882 */
2ff7e61e 2883u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2884{
2885 u64 csum_size;
2886 u64 num_csums_per_leaf;
2887 u64 num_csums;
2888
0b246afa 2889 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2890 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2891 (u64)btrfs_super_csum_size(fs_info->super_copy));
2892 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2893 num_csums += num_csums_per_leaf - 1;
2894 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2895 return num_csums;
2896}
2897
0a2b2a84 2898int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2899 struct btrfs_fs_info *fs_info)
1be41b78
JB
2900{
2901 struct btrfs_block_rsv *global_rsv;
2902 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2903 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2904 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2905 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2906 int ret = 0;
2907
0b246afa 2908 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2909 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2910 if (num_heads > 1)
0b246afa 2911 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2912 num_bytes <<= 1;
2ff7e61e
JM
2913 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2914 fs_info->nodesize;
0b246afa 2915 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2916 num_dirty_bgs);
0b246afa 2917 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2918
2919 /*
2920 * If we can't allocate any more chunks lets make sure we have _lots_ of
2921 * wiggle room since running delayed refs can create more delayed refs.
2922 */
cb723e49
JB
2923 if (global_rsv->space_info->full) {
2924 num_dirty_bgs_bytes <<= 1;
1be41b78 2925 num_bytes <<= 1;
cb723e49 2926 }
1be41b78
JB
2927
2928 spin_lock(&global_rsv->lock);
cb723e49 2929 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2930 ret = 1;
2931 spin_unlock(&global_rsv->lock);
2932 return ret;
2933}
2934
0a2b2a84 2935int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2936 struct btrfs_fs_info *fs_info)
0a2b2a84 2937{
0a2b2a84
JB
2938 u64 num_entries =
2939 atomic_read(&trans->transaction->delayed_refs.num_entries);
2940 u64 avg_runtime;
a79b7d4b 2941 u64 val;
0a2b2a84
JB
2942
2943 smp_mb();
2944 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2945 val = num_entries * avg_runtime;
dc1a90c6 2946 if (val >= NSEC_PER_SEC)
0a2b2a84 2947 return 1;
a79b7d4b
CM
2948 if (val >= NSEC_PER_SEC / 2)
2949 return 2;
0a2b2a84 2950
2ff7e61e 2951 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2952}
2953
a79b7d4b
CM
2954struct async_delayed_refs {
2955 struct btrfs_root *root;
31b9655f 2956 u64 transid;
a79b7d4b
CM
2957 int count;
2958 int error;
2959 int sync;
2960 struct completion wait;
2961 struct btrfs_work work;
2962};
2963
2ff7e61e
JM
2964static inline struct async_delayed_refs *
2965to_async_delayed_refs(struct btrfs_work *work)
2966{
2967 return container_of(work, struct async_delayed_refs, work);
2968}
2969
a79b7d4b
CM
2970static void delayed_ref_async_start(struct btrfs_work *work)
2971{
2ff7e61e 2972 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2973 struct btrfs_trans_handle *trans;
2ff7e61e 2974 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2975 int ret;
2976
0f873eca 2977 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2978 if (btrfs_transaction_blocked(fs_info))
31b9655f 2979 goto done;
31b9655f 2980
0f873eca
CM
2981 trans = btrfs_join_transaction(async->root);
2982 if (IS_ERR(trans)) {
2983 async->error = PTR_ERR(trans);
a79b7d4b
CM
2984 goto done;
2985 }
2986
2987 /*
01327610 2988 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2989 * wait on delayed refs
2990 */
2991 trans->sync = true;
0f873eca
CM
2992
2993 /* Don't bother flushing if we got into a different transaction */
2994 if (trans->transid > async->transid)
2995 goto end;
2996
2ff7e61e 2997 ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
a79b7d4b
CM
2998 if (ret)
2999 async->error = ret;
0f873eca 3000end:
3a45bb20 3001 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
3002 if (ret && !async->error)
3003 async->error = ret;
3004done:
3005 if (async->sync)
3006 complete(&async->wait);
3007 else
3008 kfree(async);
3009}
3010
2ff7e61e 3011int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3012 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3013{
3014 struct async_delayed_refs *async;
3015 int ret;
3016
3017 async = kmalloc(sizeof(*async), GFP_NOFS);
3018 if (!async)
3019 return -ENOMEM;
3020
0b246afa 3021 async->root = fs_info->tree_root;
a79b7d4b
CM
3022 async->count = count;
3023 async->error = 0;
31b9655f 3024 async->transid = transid;
a79b7d4b
CM
3025 if (wait)
3026 async->sync = 1;
3027 else
3028 async->sync = 0;
3029 init_completion(&async->wait);
3030
9e0af237
LB
3031 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3032 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3033
0b246afa 3034 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3035
3036 if (wait) {
3037 wait_for_completion(&async->wait);
3038 ret = async->error;
3039 kfree(async);
3040 return ret;
3041 }
3042 return 0;
3043}
3044
c3e69d58
CM
3045/*
3046 * this starts processing the delayed reference count updates and
3047 * extent insertions we have queued up so far. count can be
3048 * 0, which means to process everything in the tree at the start
3049 * of the run (but not newly added entries), or it can be some target
3050 * number you'd like to process.
79787eaa
JM
3051 *
3052 * Returns 0 on success or if called with an aborted transaction
3053 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3054 */
3055int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 3056 struct btrfs_fs_info *fs_info, unsigned long count)
c3e69d58
CM
3057{
3058 struct rb_node *node;
3059 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3060 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3061 int ret;
3062 int run_all = count == (unsigned long)-1;
d9a0540a 3063 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3064
79787eaa
JM
3065 /* We'll clean this up in btrfs_cleanup_transaction */
3066 if (trans->aborted)
3067 return 0;
3068
0b246afa 3069 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3070 return 0;
3071
c3e69d58 3072 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3073 if (count == 0)
d7df2c79 3074 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3075
c3e69d58 3076again:
709c0486
AJ
3077#ifdef SCRAMBLE_DELAYED_REFS
3078 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3079#endif
d9a0540a 3080 trans->can_flush_pending_bgs = false;
2ff7e61e 3081 ret = __btrfs_run_delayed_refs(trans, fs_info, count);
d7df2c79 3082 if (ret < 0) {
66642832 3083 btrfs_abort_transaction(trans, ret);
d7df2c79 3084 return ret;
eb099670 3085 }
c3e69d58 3086
56bec294 3087 if (run_all) {
d7df2c79 3088 if (!list_empty(&trans->new_bgs))
6c686b35 3089 btrfs_create_pending_block_groups(trans);
ea658bad 3090
d7df2c79 3091 spin_lock(&delayed_refs->lock);
c46effa6 3092 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3093 if (!node) {
3094 spin_unlock(&delayed_refs->lock);
56bec294 3095 goto out;
d7df2c79 3096 }
d278850e
JB
3097 head = rb_entry(node, struct btrfs_delayed_ref_head,
3098 href_node);
3099 refcount_inc(&head->refs);
3100 spin_unlock(&delayed_refs->lock);
e9d0b13b 3101
d278850e
JB
3102 /* Mutex was contended, block until it's released and retry. */
3103 mutex_lock(&head->mutex);
3104 mutex_unlock(&head->mutex);
56bec294 3105
d278850e 3106 btrfs_put_delayed_ref_head(head);
d7df2c79 3107 cond_resched();
56bec294 3108 goto again;
5f39d397 3109 }
54aa1f4d 3110out:
d9a0540a 3111 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3112 return 0;
3113}
3114
5d4f98a2 3115int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3116 struct btrfs_fs_info *fs_info,
5d4f98a2 3117 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3118 int level, int is_data)
5d4f98a2
YZ
3119{
3120 struct btrfs_delayed_extent_op *extent_op;
3121 int ret;
3122
78a6184a 3123 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3124 if (!extent_op)
3125 return -ENOMEM;
3126
3127 extent_op->flags_to_set = flags;
35b3ad50
DS
3128 extent_op->update_flags = true;
3129 extent_op->update_key = false;
3130 extent_op->is_data = is_data ? true : false;
b1c79e09 3131 extent_op->level = level;
5d4f98a2 3132
0b246afa 3133 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3134 num_bytes, extent_op);
5d4f98a2 3135 if (ret)
78a6184a 3136 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3137 return ret;
3138}
3139
e4c3b2dc 3140static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3141 struct btrfs_path *path,
3142 u64 objectid, u64 offset, u64 bytenr)
3143{
3144 struct btrfs_delayed_ref_head *head;
3145 struct btrfs_delayed_ref_node *ref;
3146 struct btrfs_delayed_data_ref *data_ref;
3147 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3148 struct btrfs_transaction *cur_trans;
0e0adbcf 3149 struct rb_node *node;
5d4f98a2
YZ
3150 int ret = 0;
3151
e4c3b2dc
LB
3152 cur_trans = root->fs_info->running_transaction;
3153 if (!cur_trans)
3154 return 0;
3155
3156 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3157 spin_lock(&delayed_refs->lock);
f72ad18e 3158 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3159 if (!head) {
3160 spin_unlock(&delayed_refs->lock);
3161 return 0;
3162 }
5d4f98a2
YZ
3163
3164 if (!mutex_trylock(&head->mutex)) {
d278850e 3165 refcount_inc(&head->refs);
5d4f98a2
YZ
3166 spin_unlock(&delayed_refs->lock);
3167
b3b4aa74 3168 btrfs_release_path(path);
5d4f98a2 3169
8cc33e5c
DS
3170 /*
3171 * Mutex was contended, block until it's released and let
3172 * caller try again
3173 */
5d4f98a2
YZ
3174 mutex_lock(&head->mutex);
3175 mutex_unlock(&head->mutex);
d278850e 3176 btrfs_put_delayed_ref_head(head);
5d4f98a2
YZ
3177 return -EAGAIN;
3178 }
d7df2c79 3179 spin_unlock(&delayed_refs->lock);
5d4f98a2 3180
d7df2c79 3181 spin_lock(&head->lock);
0e0adbcf
JB
3182 /*
3183 * XXX: We should replace this with a proper search function in the
3184 * future.
3185 */
3186 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3187 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3188 /* If it's a shared ref we know a cross reference exists */
3189 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3190 ret = 1;
3191 break;
3192 }
5d4f98a2 3193
d7df2c79 3194 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3195
d7df2c79
JB
3196 /*
3197 * If our ref doesn't match the one we're currently looking at
3198 * then we have a cross reference.
3199 */
3200 if (data_ref->root != root->root_key.objectid ||
3201 data_ref->objectid != objectid ||
3202 data_ref->offset != offset) {
3203 ret = 1;
3204 break;
3205 }
5d4f98a2 3206 }
d7df2c79 3207 spin_unlock(&head->lock);
5d4f98a2 3208 mutex_unlock(&head->mutex);
5d4f98a2
YZ
3209 return ret;
3210}
3211
e4c3b2dc 3212static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3213 struct btrfs_path *path,
3214 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3215{
0b246afa
JM
3216 struct btrfs_fs_info *fs_info = root->fs_info;
3217 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3218 struct extent_buffer *leaf;
5d4f98a2
YZ
3219 struct btrfs_extent_data_ref *ref;
3220 struct btrfs_extent_inline_ref *iref;
3221 struct btrfs_extent_item *ei;
f321e491 3222 struct btrfs_key key;
5d4f98a2 3223 u32 item_size;
3de28d57 3224 int type;
be20aa9d 3225 int ret;
925baedd 3226
be20aa9d 3227 key.objectid = bytenr;
31840ae1 3228 key.offset = (u64)-1;
f321e491 3229 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3230
be20aa9d
CM
3231 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3232 if (ret < 0)
3233 goto out;
79787eaa 3234 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3235
3236 ret = -ENOENT;
3237 if (path->slots[0] == 0)
31840ae1 3238 goto out;
be20aa9d 3239
31840ae1 3240 path->slots[0]--;
f321e491 3241 leaf = path->nodes[0];
5d4f98a2 3242 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3243
5d4f98a2 3244 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3245 goto out;
f321e491 3246
5d4f98a2
YZ
3247 ret = 1;
3248 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3249#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3250 if (item_size < sizeof(*ei)) {
3251 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3252 goto out;
3253 }
3254#endif
3255 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3256
5d4f98a2
YZ
3257 if (item_size != sizeof(*ei) +
3258 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3259 goto out;
be20aa9d 3260
5d4f98a2
YZ
3261 if (btrfs_extent_generation(leaf, ei) <=
3262 btrfs_root_last_snapshot(&root->root_item))
3263 goto out;
3264
3265 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3266
3267 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3268 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3269 goto out;
3270
3271 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3272 if (btrfs_extent_refs(leaf, ei) !=
3273 btrfs_extent_data_ref_count(leaf, ref) ||
3274 btrfs_extent_data_ref_root(leaf, ref) !=
3275 root->root_key.objectid ||
3276 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3277 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3278 goto out;
3279
3280 ret = 0;
3281out:
3282 return ret;
3283}
3284
e4c3b2dc
LB
3285int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3286 u64 bytenr)
5d4f98a2
YZ
3287{
3288 struct btrfs_path *path;
3289 int ret;
3290 int ret2;
3291
3292 path = btrfs_alloc_path();
3293 if (!path)
3294 return -ENOENT;
3295
3296 do {
e4c3b2dc 3297 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3298 offset, bytenr);
3299 if (ret && ret != -ENOENT)
f321e491 3300 goto out;
80ff3856 3301
e4c3b2dc 3302 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3303 offset, bytenr);
3304 } while (ret2 == -EAGAIN);
3305
3306 if (ret2 && ret2 != -ENOENT) {
3307 ret = ret2;
3308 goto out;
f321e491 3309 }
5d4f98a2
YZ
3310
3311 if (ret != -ENOENT || ret2 != -ENOENT)
3312 ret = 0;
be20aa9d 3313out:
80ff3856 3314 btrfs_free_path(path);
f0486c68
YZ
3315 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3316 WARN_ON(ret > 0);
f321e491 3317 return ret;
be20aa9d 3318}
c5739bba 3319
5d4f98a2 3320static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3321 struct btrfs_root *root,
5d4f98a2 3322 struct extent_buffer *buf,
e339a6b0 3323 int full_backref, int inc)
31840ae1 3324{
0b246afa 3325 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3326 u64 bytenr;
5d4f98a2
YZ
3327 u64 num_bytes;
3328 u64 parent;
31840ae1 3329 u64 ref_root;
31840ae1 3330 u32 nritems;
31840ae1
ZY
3331 struct btrfs_key key;
3332 struct btrfs_file_extent_item *fi;
3333 int i;
3334 int level;
3335 int ret = 0;
2ff7e61e 3336 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3337 struct btrfs_root *,
b06c4bf5 3338 u64, u64, u64, u64, u64, u64);
31840ae1 3339
fccb84c9 3340
0b246afa 3341 if (btrfs_is_testing(fs_info))
faa2dbf0 3342 return 0;
fccb84c9 3343
31840ae1 3344 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3345 nritems = btrfs_header_nritems(buf);
3346 level = btrfs_header_level(buf);
3347
27cdeb70 3348 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3349 return 0;
31840ae1 3350
5d4f98a2
YZ
3351 if (inc)
3352 process_func = btrfs_inc_extent_ref;
3353 else
3354 process_func = btrfs_free_extent;
31840ae1 3355
5d4f98a2
YZ
3356 if (full_backref)
3357 parent = buf->start;
3358 else
3359 parent = 0;
3360
3361 for (i = 0; i < nritems; i++) {
31840ae1 3362 if (level == 0) {
5d4f98a2 3363 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3364 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3365 continue;
5d4f98a2 3366 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3367 struct btrfs_file_extent_item);
3368 if (btrfs_file_extent_type(buf, fi) ==
3369 BTRFS_FILE_EXTENT_INLINE)
3370 continue;
3371 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3372 if (bytenr == 0)
3373 continue;
5d4f98a2
YZ
3374
3375 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3376 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3377 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3378 parent, ref_root, key.objectid,
b06c4bf5 3379 key.offset);
31840ae1
ZY
3380 if (ret)
3381 goto fail;
3382 } else {
5d4f98a2 3383 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3384 num_bytes = fs_info->nodesize;
84f7d8e6 3385 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3386 parent, ref_root, level - 1, 0);
31840ae1
ZY
3387 if (ret)
3388 goto fail;
3389 }
3390 }
3391 return 0;
3392fail:
5d4f98a2
YZ
3393 return ret;
3394}
3395
3396int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3397 struct extent_buffer *buf, int full_backref)
5d4f98a2 3398{
e339a6b0 3399 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3400}
3401
3402int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3403 struct extent_buffer *buf, int full_backref)
5d4f98a2 3404{
e339a6b0 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3406}
3407
9078a3e1 3408static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3409 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3410 struct btrfs_path *path,
3411 struct btrfs_block_group_cache *cache)
3412{
3413 int ret;
0b246afa 3414 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3415 unsigned long bi;
3416 struct extent_buffer *leaf;
9078a3e1 3417
9078a3e1 3418 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3419 if (ret) {
3420 if (ret > 0)
3421 ret = -ENOENT;
54aa1f4d 3422 goto fail;
df95e7f0 3423 }
5f39d397
CM
3424
3425 leaf = path->nodes[0];
3426 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3427 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3428 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3429fail:
24b89d08 3430 btrfs_release_path(path);
df95e7f0 3431 return ret;
9078a3e1
CM
3432
3433}
3434
4a8c9a62 3435static struct btrfs_block_group_cache *
2ff7e61e 3436next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3437 struct btrfs_block_group_cache *cache)
3438{
3439 struct rb_node *node;
292cbd51 3440
0b246afa 3441 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3442
3443 /* If our block group was removed, we need a full search. */
3444 if (RB_EMPTY_NODE(&cache->cache_node)) {
3445 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3446
0b246afa 3447 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3448 btrfs_put_block_group(cache);
0b246afa 3449 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3450 }
4a8c9a62
YZ
3451 node = rb_next(&cache->cache_node);
3452 btrfs_put_block_group(cache);
3453 if (node) {
3454 cache = rb_entry(node, struct btrfs_block_group_cache,
3455 cache_node);
11dfe35a 3456 btrfs_get_block_group(cache);
4a8c9a62
YZ
3457 } else
3458 cache = NULL;
0b246afa 3459 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3460 return cache;
3461}
3462
0af3d00b
JB
3463static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3464 struct btrfs_trans_handle *trans,
3465 struct btrfs_path *path)
3466{
0b246afa
JM
3467 struct btrfs_fs_info *fs_info = block_group->fs_info;
3468 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3469 struct inode *inode = NULL;
364ecf36 3470 struct extent_changeset *data_reserved = NULL;
0af3d00b 3471 u64 alloc_hint = 0;
2b20982e 3472 int dcs = BTRFS_DC_ERROR;
f8c269d7 3473 u64 num_pages = 0;
0af3d00b
JB
3474 int retries = 0;
3475 int ret = 0;
3476
3477 /*
3478 * If this block group is smaller than 100 megs don't bother caching the
3479 * block group.
3480 */
ee22184b 3481 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3482 spin_lock(&block_group->lock);
3483 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3484 spin_unlock(&block_group->lock);
3485 return 0;
3486 }
3487
0c0ef4bc
JB
3488 if (trans->aborted)
3489 return 0;
0af3d00b 3490again:
77ab86bf 3491 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3492 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3493 ret = PTR_ERR(inode);
b3b4aa74 3494 btrfs_release_path(path);
0af3d00b
JB
3495 goto out;
3496 }
3497
3498 if (IS_ERR(inode)) {
3499 BUG_ON(retries);
3500 retries++;
3501
3502 if (block_group->ro)
3503 goto out_free;
3504
77ab86bf
JM
3505 ret = create_free_space_inode(fs_info, trans, block_group,
3506 path);
0af3d00b
JB
3507 if (ret)
3508 goto out_free;
3509 goto again;
3510 }
3511
3512 /*
3513 * We want to set the generation to 0, that way if anything goes wrong
3514 * from here on out we know not to trust this cache when we load up next
3515 * time.
3516 */
3517 BTRFS_I(inode)->generation = 0;
3518 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3519 if (ret) {
3520 /*
3521 * So theoretically we could recover from this, simply set the
3522 * super cache generation to 0 so we know to invalidate the
3523 * cache, but then we'd have to keep track of the block groups
3524 * that fail this way so we know we _have_ to reset this cache
3525 * before the next commit or risk reading stale cache. So to
3526 * limit our exposure to horrible edge cases lets just abort the
3527 * transaction, this only happens in really bad situations
3528 * anyway.
3529 */
66642832 3530 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3531 goto out_put;
3532 }
0af3d00b
JB
3533 WARN_ON(ret);
3534
8e138e0d
JB
3535 /* We've already setup this transaction, go ahead and exit */
3536 if (block_group->cache_generation == trans->transid &&
3537 i_size_read(inode)) {
3538 dcs = BTRFS_DC_SETUP;
3539 goto out_put;
3540 }
3541
0af3d00b 3542 if (i_size_read(inode) > 0) {
2ff7e61e 3543 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3544 &fs_info->global_block_rsv);
7b61cd92
MX
3545 if (ret)
3546 goto out_put;
3547
77ab86bf 3548 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3549 if (ret)
3550 goto out_put;
3551 }
3552
3553 spin_lock(&block_group->lock);
cf7c1ef6 3554 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3555 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3556 /*
3557 * don't bother trying to write stuff out _if_
3558 * a) we're not cached,
1a79c1f2
LB
3559 * b) we're with nospace_cache mount option,
3560 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3561 */
2b20982e 3562 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3563 spin_unlock(&block_group->lock);
3564 goto out_put;
3565 }
3566 spin_unlock(&block_group->lock);
3567
2968b1f4
JB
3568 /*
3569 * We hit an ENOSPC when setting up the cache in this transaction, just
3570 * skip doing the setup, we've already cleared the cache so we're safe.
3571 */
3572 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3573 ret = -ENOSPC;
3574 goto out_put;
3575 }
3576
6fc823b1
JB
3577 /*
3578 * Try to preallocate enough space based on how big the block group is.
3579 * Keep in mind this has to include any pinned space which could end up
3580 * taking up quite a bit since it's not folded into the other space
3581 * cache.
3582 */
ee22184b 3583 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3584 if (!num_pages)
3585 num_pages = 1;
3586
0af3d00b 3587 num_pages *= 16;
09cbfeaf 3588 num_pages *= PAGE_SIZE;
0af3d00b 3589
364ecf36 3590 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3591 if (ret)
3592 goto out_put;
3593
3594 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3595 num_pages, num_pages,
3596 &alloc_hint);
2968b1f4
JB
3597 /*
3598 * Our cache requires contiguous chunks so that we don't modify a bunch
3599 * of metadata or split extents when writing the cache out, which means
3600 * we can enospc if we are heavily fragmented in addition to just normal
3601 * out of space conditions. So if we hit this just skip setting up any
3602 * other block groups for this transaction, maybe we'll unpin enough
3603 * space the next time around.
3604 */
2b20982e
JB
3605 if (!ret)
3606 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3607 else if (ret == -ENOSPC)
3608 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3609
0af3d00b
JB
3610out_put:
3611 iput(inode);
3612out_free:
b3b4aa74 3613 btrfs_release_path(path);
0af3d00b
JB
3614out:
3615 spin_lock(&block_group->lock);
e65cbb94 3616 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3617 block_group->cache_generation = trans->transid;
2b20982e 3618 block_group->disk_cache_state = dcs;
0af3d00b
JB
3619 spin_unlock(&block_group->lock);
3620
364ecf36 3621 extent_changeset_free(data_reserved);
0af3d00b
JB
3622 return ret;
3623}
3624
dcdf7f6d 3625int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3626 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3627{
3628 struct btrfs_block_group_cache *cache, *tmp;
3629 struct btrfs_transaction *cur_trans = trans->transaction;
3630 struct btrfs_path *path;
3631
3632 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3633 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3634 return 0;
3635
3636 path = btrfs_alloc_path();
3637 if (!path)
3638 return -ENOMEM;
3639
3640 /* Could add new block groups, use _safe just in case */
3641 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3642 dirty_list) {
3643 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3644 cache_save_setup(cache, trans, path);
3645 }
3646
3647 btrfs_free_path(path);
3648 return 0;
3649}
3650
1bbc621e
CM
3651/*
3652 * transaction commit does final block group cache writeback during a
3653 * critical section where nothing is allowed to change the FS. This is
3654 * required in order for the cache to actually match the block group,
3655 * but can introduce a lot of latency into the commit.
3656 *
3657 * So, btrfs_start_dirty_block_groups is here to kick off block group
3658 * cache IO. There's a chance we'll have to redo some of it if the
3659 * block group changes again during the commit, but it greatly reduces
3660 * the commit latency by getting rid of the easy block groups while
3661 * we're still allowing others to join the commit.
3662 */
21217054 3663int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3664{
21217054 3665 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3666 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3667 struct btrfs_transaction *cur_trans = trans->transaction;
3668 int ret = 0;
c9dc4c65 3669 int should_put;
1bbc621e
CM
3670 struct btrfs_path *path = NULL;
3671 LIST_HEAD(dirty);
3672 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3673 int num_started = 0;
1bbc621e
CM
3674 int loops = 0;
3675
3676 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3677 if (list_empty(&cur_trans->dirty_bgs)) {
3678 spin_unlock(&cur_trans->dirty_bgs_lock);
3679 return 0;
1bbc621e 3680 }
b58d1a9e 3681 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3682 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3683
1bbc621e 3684again:
1bbc621e
CM
3685 /*
3686 * make sure all the block groups on our dirty list actually
3687 * exist
3688 */
6c686b35 3689 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3690
3691 if (!path) {
3692 path = btrfs_alloc_path();
3693 if (!path)
3694 return -ENOMEM;
3695 }
3696
b58d1a9e
FM
3697 /*
3698 * cache_write_mutex is here only to save us from balance or automatic
3699 * removal of empty block groups deleting this block group while we are
3700 * writing out the cache
3701 */
3702 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3703 while (!list_empty(&dirty)) {
3704 cache = list_first_entry(&dirty,
3705 struct btrfs_block_group_cache,
3706 dirty_list);
1bbc621e
CM
3707 /*
3708 * this can happen if something re-dirties a block
3709 * group that is already under IO. Just wait for it to
3710 * finish and then do it all again
3711 */
3712 if (!list_empty(&cache->io_list)) {
3713 list_del_init(&cache->io_list);
afdb5718 3714 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3715 btrfs_put_block_group(cache);
3716 }
3717
3718
3719 /*
3720 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3721 * if it should update the cache_state. Don't delete
3722 * until after we wait.
3723 *
3724 * Since we're not running in the commit critical section
3725 * we need the dirty_bgs_lock to protect from update_block_group
3726 */
3727 spin_lock(&cur_trans->dirty_bgs_lock);
3728 list_del_init(&cache->dirty_list);
3729 spin_unlock(&cur_trans->dirty_bgs_lock);
3730
3731 should_put = 1;
3732
3733 cache_save_setup(cache, trans, path);
3734
3735 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3736 cache->io_ctl.inode = NULL;
0b246afa 3737 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3738 cache, path);
1bbc621e
CM
3739 if (ret == 0 && cache->io_ctl.inode) {
3740 num_started++;
3741 should_put = 0;
3742
3743 /*
45ae2c18
NB
3744 * The cache_write_mutex is protecting the
3745 * io_list, also refer to the definition of
3746 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3747 */
3748 list_add_tail(&cache->io_list, io);
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
ff1f8250 3757 if (!ret) {
2ff7e61e
JM
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
ff1f8250
FM
3760 /*
3761 * Our block group might still be attached to the list
3762 * of new block groups in the transaction handle of some
3763 * other task (struct btrfs_trans_handle->new_bgs). This
3764 * means its block group item isn't yet in the extent
3765 * tree. If this happens ignore the error, as we will
3766 * try again later in the critical section of the
3767 * transaction commit.
3768 */
3769 if (ret == -ENOENT) {
3770 ret = 0;
3771 spin_lock(&cur_trans->dirty_bgs_lock);
3772 if (list_empty(&cache->dirty_list)) {
3773 list_add_tail(&cache->dirty_list,
3774 &cur_trans->dirty_bgs);
3775 btrfs_get_block_group(cache);
3776 }
3777 spin_unlock(&cur_trans->dirty_bgs_lock);
3778 } else if (ret) {
66642832 3779 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3780 }
3781 }
1bbc621e
CM
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
3786
3787 if (ret)
3788 break;
b58d1a9e
FM
3789
3790 /*
3791 * Avoid blocking other tasks for too long. It might even save
3792 * us from writing caches for block groups that are going to be
3793 * removed.
3794 */
3795 mutex_unlock(&trans->transaction->cache_write_mutex);
3796 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3797 }
b58d1a9e 3798 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3799
3800 /*
3801 * go through delayed refs for all the stuff we've just kicked off
3802 * and then loop back (just once)
3803 */
2ff7e61e 3804 ret = btrfs_run_delayed_refs(trans, fs_info, 0);
1bbc621e
CM
3805 if (!ret && loops == 0) {
3806 loops++;
3807 spin_lock(&cur_trans->dirty_bgs_lock);
3808 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3809 /*
3810 * dirty_bgs_lock protects us from concurrent block group
3811 * deletes too (not just cache_write_mutex).
3812 */
3813 if (!list_empty(&dirty)) {
3814 spin_unlock(&cur_trans->dirty_bgs_lock);
3815 goto again;
3816 }
1bbc621e 3817 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3818 } else if (ret < 0) {
2ff7e61e 3819 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3820 }
3821
3822 btrfs_free_path(path);
3823 return ret;
3824}
3825
3826int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3827 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3828{
3829 struct btrfs_block_group_cache *cache;
3830 struct btrfs_transaction *cur_trans = trans->transaction;
3831 int ret = 0;
3832 int should_put;
3833 struct btrfs_path *path;
3834 struct list_head *io = &cur_trans->io_bgs;
3835 int num_started = 0;
9078a3e1
CM
3836
3837 path = btrfs_alloc_path();
3838 if (!path)
3839 return -ENOMEM;
3840
ce93ec54 3841 /*
e44081ef
FM
3842 * Even though we are in the critical section of the transaction commit,
3843 * we can still have concurrent tasks adding elements to this
3844 * transaction's list of dirty block groups. These tasks correspond to
3845 * endio free space workers started when writeback finishes for a
3846 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3847 * allocate new block groups as a result of COWing nodes of the root
3848 * tree when updating the free space inode. The writeback for the space
3849 * caches is triggered by an earlier call to
3850 * btrfs_start_dirty_block_groups() and iterations of the following
3851 * loop.
3852 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3853 * delayed refs to make sure we have the best chance at doing this all
3854 * in one shot.
3855 */
e44081ef 3856 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3857 while (!list_empty(&cur_trans->dirty_bgs)) {
3858 cache = list_first_entry(&cur_trans->dirty_bgs,
3859 struct btrfs_block_group_cache,
3860 dirty_list);
c9dc4c65
CM
3861
3862 /*
3863 * this can happen if cache_save_setup re-dirties a block
3864 * group that is already under IO. Just wait for it to
3865 * finish and then do it all again
3866 */
3867 if (!list_empty(&cache->io_list)) {
e44081ef 3868 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3869 list_del_init(&cache->io_list);
afdb5718 3870 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3871 btrfs_put_block_group(cache);
e44081ef 3872 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3873 }
3874
1bbc621e
CM
3875 /*
3876 * don't remove from the dirty list until after we've waited
3877 * on any pending IO
3878 */
ce93ec54 3879 list_del_init(&cache->dirty_list);
e44081ef 3880 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3881 should_put = 1;
3882
1bbc621e 3883 cache_save_setup(cache, trans, path);
c9dc4c65 3884
ce93ec54 3885 if (!ret)
2ff7e61e
JM
3886 ret = btrfs_run_delayed_refs(trans, fs_info,
3887 (unsigned long) -1);
c9dc4c65
CM
3888
3889 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3890 cache->io_ctl.inode = NULL;
0b246afa 3891 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3892 cache, path);
c9dc4c65
CM
3893 if (ret == 0 && cache->io_ctl.inode) {
3894 num_started++;
3895 should_put = 0;
1bbc621e 3896 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3897 } else {
3898 /*
3899 * if we failed to write the cache, the
3900 * generation will be bad and life goes on
3901 */
3902 ret = 0;
3903 }
3904 }
ff1f8250 3905 if (!ret) {
2ff7e61e
JM
3906 ret = write_one_cache_group(trans, fs_info,
3907 path, cache);
2bc0bb5f
FM
3908 /*
3909 * One of the free space endio workers might have
3910 * created a new block group while updating a free space
3911 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3912 * and hasn't released its transaction handle yet, in
3913 * which case the new block group is still attached to
3914 * its transaction handle and its creation has not
3915 * finished yet (no block group item in the extent tree
3916 * yet, etc). If this is the case, wait for all free
3917 * space endio workers to finish and retry. This is a
3918 * a very rare case so no need for a more efficient and
3919 * complex approach.
3920 */
3921 if (ret == -ENOENT) {
3922 wait_event(cur_trans->writer_wait,
3923 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3924 ret = write_one_cache_group(trans, fs_info,
3925 path, cache);
2bc0bb5f 3926 }
ff1f8250 3927 if (ret)
66642832 3928 btrfs_abort_transaction(trans, ret);
ff1f8250 3929 }
c9dc4c65
CM
3930
3931 /* if its not on the io list, we need to put the block group */
3932 if (should_put)
3933 btrfs_put_block_group(cache);
e44081ef 3934 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3935 }
e44081ef 3936 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3937
45ae2c18
NB
3938 /*
3939 * Refer to the definition of io_bgs member for details why it's safe
3940 * to use it without any locking
3941 */
1bbc621e
CM
3942 while (!list_empty(io)) {
3943 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3944 io_list);
3945 list_del_init(&cache->io_list);
afdb5718 3946 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3947 btrfs_put_block_group(cache);
3948 }
3949
9078a3e1 3950 btrfs_free_path(path);
ce93ec54 3951 return ret;
9078a3e1
CM
3952}
3953
2ff7e61e 3954int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3955{
3956 struct btrfs_block_group_cache *block_group;
3957 int readonly = 0;
3958
0b246afa 3959 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3960 if (!block_group || block_group->ro)
3961 readonly = 1;
3962 if (block_group)
fa9c0d79 3963 btrfs_put_block_group(block_group);
d2fb3437
YZ
3964 return readonly;
3965}
3966
f78c436c
FM
3967bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3968{
3969 struct btrfs_block_group_cache *bg;
3970 bool ret = true;
3971
3972 bg = btrfs_lookup_block_group(fs_info, bytenr);
3973 if (!bg)
3974 return false;
3975
3976 spin_lock(&bg->lock);
3977 if (bg->ro)
3978 ret = false;
3979 else
3980 atomic_inc(&bg->nocow_writers);
3981 spin_unlock(&bg->lock);
3982
3983 /* no put on block group, done by btrfs_dec_nocow_writers */
3984 if (!ret)
3985 btrfs_put_block_group(bg);
3986
3987 return ret;
3988
3989}
3990
3991void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3992{
3993 struct btrfs_block_group_cache *bg;
3994
3995 bg = btrfs_lookup_block_group(fs_info, bytenr);
3996 ASSERT(bg);
3997 if (atomic_dec_and_test(&bg->nocow_writers))
3998 wake_up_atomic_t(&bg->nocow_writers);
3999 /*
4000 * Once for our lookup and once for the lookup done by a previous call
4001 * to btrfs_inc_nocow_writers()
4002 */
4003 btrfs_put_block_group(bg);
4004 btrfs_put_block_group(bg);
4005}
4006
f78c436c
FM
4007void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4008{
5e4def20 4009 wait_on_atomic_t(&bg->nocow_writers, atomic_t_wait,
f78c436c
FM
4010 TASK_UNINTERRUPTIBLE);
4011}
4012
6ab0a202
JM
4013static const char *alloc_name(u64 flags)
4014{
4015 switch (flags) {
4016 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4017 return "mixed";
4018 case BTRFS_BLOCK_GROUP_METADATA:
4019 return "metadata";
4020 case BTRFS_BLOCK_GROUP_DATA:
4021 return "data";
4022 case BTRFS_BLOCK_GROUP_SYSTEM:
4023 return "system";
4024 default:
4025 WARN_ON(1);
4026 return "invalid-combination";
4027 };
4028}
4029
2be12ef7
NB
4030static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4031 struct btrfs_space_info **new)
4032{
4033
4034 struct btrfs_space_info *space_info;
4035 int i;
4036 int ret;
4037
4038 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4039 if (!space_info)
4040 return -ENOMEM;
4041
4042 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4043 GFP_KERNEL);
4044 if (ret) {
4045 kfree(space_info);
4046 return ret;
4047 }
4048
4049 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4050 INIT_LIST_HEAD(&space_info->block_groups[i]);
4051 init_rwsem(&space_info->groups_sem);
4052 spin_lock_init(&space_info->lock);
4053 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4054 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4055 init_waitqueue_head(&space_info->wait);
4056 INIT_LIST_HEAD(&space_info->ro_bgs);
4057 INIT_LIST_HEAD(&space_info->tickets);
4058 INIT_LIST_HEAD(&space_info->priority_tickets);
4059
4060 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4061 info->space_info_kobj, "%s",
4062 alloc_name(space_info->flags));
4063 if (ret) {
4064 percpu_counter_destroy(&space_info->total_bytes_pinned);
4065 kfree(space_info);
4066 return ret;
4067 }
4068
4069 *new = space_info;
4070 list_add_rcu(&space_info->list, &info->space_info);
4071 if (flags & BTRFS_BLOCK_GROUP_DATA)
4072 info->data_sinfo = space_info;
4073
4074 return ret;
4075}
4076
d2006e6d 4077static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4078 u64 total_bytes, u64 bytes_used,
e40edf2d 4079 u64 bytes_readonly,
593060d7
CM
4080 struct btrfs_space_info **space_info)
4081{
4082 struct btrfs_space_info *found;
b742bb82
YZ
4083 int factor;
4084
4085 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4086 BTRFS_BLOCK_GROUP_RAID10))
4087 factor = 2;
4088 else
4089 factor = 1;
593060d7
CM
4090
4091 found = __find_space_info(info, flags);
d2006e6d
NB
4092 ASSERT(found);
4093 spin_lock(&found->lock);
4094 found->total_bytes += total_bytes;
4095 found->disk_total += total_bytes * factor;
4096 found->bytes_used += bytes_used;
4097 found->disk_used += bytes_used * factor;
4098 found->bytes_readonly += bytes_readonly;
4099 if (total_bytes > 0)
4100 found->full = 0;
4101 space_info_add_new_bytes(info, found, total_bytes -
4102 bytes_used - bytes_readonly);
4103 spin_unlock(&found->lock);
4104 *space_info = found;
593060d7
CM
4105}
4106
8790d502
CM
4107static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4108{
899c81ea
ID
4109 u64 extra_flags = chunk_to_extended(flags) &
4110 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4111
de98ced9 4112 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4113 if (flags & BTRFS_BLOCK_GROUP_DATA)
4114 fs_info->avail_data_alloc_bits |= extra_flags;
4115 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4116 fs_info->avail_metadata_alloc_bits |= extra_flags;
4117 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4118 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4119 write_sequnlock(&fs_info->profiles_lock);
8790d502 4120}
593060d7 4121
fc67c450
ID
4122/*
4123 * returns target flags in extended format or 0 if restripe for this
4124 * chunk_type is not in progress
c6664b42
ID
4125 *
4126 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4127 */
4128static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4129{
4130 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4131 u64 target = 0;
4132
fc67c450
ID
4133 if (!bctl)
4134 return 0;
4135
4136 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4137 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4138 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4139 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4140 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4141 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4142 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4143 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4144 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4145 }
4146
4147 return target;
4148}
4149
a46d11a8
ID
4150/*
4151 * @flags: available profiles in extended format (see ctree.h)
4152 *
e4d8ec0f
ID
4153 * Returns reduced profile in chunk format. If profile changing is in
4154 * progress (either running or paused) picks the target profile (if it's
4155 * already available), otherwise falls back to plain reducing.
a46d11a8 4156 */
2ff7e61e 4157static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4158{
0b246afa 4159 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4160 u64 target;
9c170b26
ZL
4161 u64 raid_type;
4162 u64 allowed = 0;
a061fc8d 4163
fc67c450
ID
4164 /*
4165 * see if restripe for this chunk_type is in progress, if so
4166 * try to reduce to the target profile
4167 */
0b246afa
JM
4168 spin_lock(&fs_info->balance_lock);
4169 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4170 if (target) {
4171 /* pick target profile only if it's already available */
4172 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4173 spin_unlock(&fs_info->balance_lock);
fc67c450 4174 return extended_to_chunk(target);
e4d8ec0f
ID
4175 }
4176 }
0b246afa 4177 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4178
53b381b3 4179 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4180 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4181 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4182 allowed |= btrfs_raid_group[raid_type];
4183 }
4184 allowed &= flags;
4185
4186 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4187 allowed = BTRFS_BLOCK_GROUP_RAID6;
4188 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4189 allowed = BTRFS_BLOCK_GROUP_RAID5;
4190 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4191 allowed = BTRFS_BLOCK_GROUP_RAID10;
4192 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4193 allowed = BTRFS_BLOCK_GROUP_RAID1;
4194 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4195 allowed = BTRFS_BLOCK_GROUP_RAID0;
4196
4197 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4198
4199 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4200}
4201
2ff7e61e 4202static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4203{
de98ced9 4204 unsigned seq;
f8213bdc 4205 u64 flags;
de98ced9
MX
4206
4207 do {
f8213bdc 4208 flags = orig_flags;
0b246afa 4209 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4210
4211 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4212 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4213 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4214 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4215 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4216 flags |= fs_info->avail_metadata_alloc_bits;
4217 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4218
2ff7e61e 4219 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4220}
4221
1b86826d 4222static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4223{
0b246afa 4224 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4225 u64 flags;
53b381b3 4226 u64 ret;
9ed74f2d 4227
b742bb82
YZ
4228 if (data)
4229 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4230 else if (root == fs_info->chunk_root)
b742bb82 4231 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4232 else
b742bb82 4233 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4234
2ff7e61e 4235 ret = get_alloc_profile(fs_info, flags);
53b381b3 4236 return ret;
6a63209f 4237}
9ed74f2d 4238
1b86826d
JM
4239u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4240{
4241 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4242}
4243
4244u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4245{
4246 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4247}
4248
4249u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4250{
4251 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4252}
4253
4136135b
LB
4254static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4255 bool may_use_included)
4256{
4257 ASSERT(s_info);
4258 return s_info->bytes_used + s_info->bytes_reserved +
4259 s_info->bytes_pinned + s_info->bytes_readonly +
4260 (may_use_included ? s_info->bytes_may_use : 0);
4261}
4262
04f4f916 4263int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4264{
04f4f916 4265 struct btrfs_root *root = inode->root;
b4d7c3c9 4266 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4267 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4268 u64 used;
94b947b2 4269 int ret = 0;
c99f1b0c
ZL
4270 int need_commit = 2;
4271 int have_pinned_space;
6a63209f 4272
6a63209f 4273 /* make sure bytes are sectorsize aligned */
0b246afa 4274 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4275
9dced186 4276 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4277 need_commit = 0;
9dced186 4278 ASSERT(current->journal_info);
0af3d00b
JB
4279 }
4280
6a63209f
JB
4281again:
4282 /* make sure we have enough space to handle the data first */
4283 spin_lock(&data_sinfo->lock);
4136135b 4284 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4285
4286 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4287 struct btrfs_trans_handle *trans;
9ed74f2d 4288
6a63209f
JB
4289 /*
4290 * if we don't have enough free bytes in this space then we need
4291 * to alloc a new chunk.
4292 */
b9fd47cd 4293 if (!data_sinfo->full) {
6a63209f 4294 u64 alloc_target;
9ed74f2d 4295
0e4f8f88 4296 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4297 spin_unlock(&data_sinfo->lock);
1174cade 4298
1b86826d 4299 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4300 /*
4301 * It is ugly that we don't call nolock join
4302 * transaction for the free space inode case here.
4303 * But it is safe because we only do the data space
4304 * reservation for the free space cache in the
4305 * transaction context, the common join transaction
4306 * just increase the counter of the current transaction
4307 * handler, doesn't try to acquire the trans_lock of
4308 * the fs.
4309 */
7a7eaa40 4310 trans = btrfs_join_transaction(root);
a22285a6
YZ
4311 if (IS_ERR(trans))
4312 return PTR_ERR(trans);
9ed74f2d 4313
2ff7e61e 4314 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4315 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4316 btrfs_end_transaction(trans);
d52a5b5f
MX
4317 if (ret < 0) {
4318 if (ret != -ENOSPC)
4319 return ret;
c99f1b0c
ZL
4320 else {
4321 have_pinned_space = 1;
d52a5b5f 4322 goto commit_trans;
c99f1b0c 4323 }
d52a5b5f 4324 }
9ed74f2d 4325
6a63209f
JB
4326 goto again;
4327 }
f2bb8f5c
JB
4328
4329 /*
b150a4f1 4330 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4331 * allocation, and no removed chunk in current transaction,
4332 * don't bother committing the transaction.
f2bb8f5c 4333 */
c99f1b0c
ZL
4334 have_pinned_space = percpu_counter_compare(
4335 &data_sinfo->total_bytes_pinned,
4336 used + bytes - data_sinfo->total_bytes);
6a63209f 4337 spin_unlock(&data_sinfo->lock);
6a63209f 4338
4e06bdd6 4339 /* commit the current transaction and try again */
d52a5b5f 4340commit_trans:
92e2f7e3 4341 if (need_commit) {
c99f1b0c 4342 need_commit--;
b150a4f1 4343
e1746e83
ZL
4344 if (need_commit > 0) {
4345 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4346 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4347 (u64)-1);
e1746e83 4348 }
9a4e7276 4349
7a7eaa40 4350 trans = btrfs_join_transaction(root);
a22285a6
YZ
4351 if (IS_ERR(trans))
4352 return PTR_ERR(trans);
c99f1b0c 4353 if (have_pinned_space >= 0 ||
3204d33c
JB
4354 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4355 &trans->transaction->flags) ||
c99f1b0c 4356 need_commit > 0) {
3a45bb20 4357 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4358 if (ret)
4359 return ret;
d7c15171 4360 /*
c2d6cb16
FM
4361 * The cleaner kthread might still be doing iput
4362 * operations. Wait for it to finish so that
4363 * more space is released.
d7c15171 4364 */
0b246afa
JM
4365 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4366 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4367 goto again;
4368 } else {
3a45bb20 4369 btrfs_end_transaction(trans);
94b947b2 4370 }
4e06bdd6 4371 }
9ed74f2d 4372
0b246afa 4373 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4374 "space_info:enospc",
4375 data_sinfo->flags, bytes, 1);
6a63209f
JB
4376 return -ENOSPC;
4377 }
4378 data_sinfo->bytes_may_use += bytes;
0b246afa 4379 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4380 data_sinfo->flags, bytes, 1);
6a63209f 4381 spin_unlock(&data_sinfo->lock);
6a63209f 4382
237c0e9f 4383 return ret;
9ed74f2d 4384}
6a63209f 4385
364ecf36
QW
4386int btrfs_check_data_free_space(struct inode *inode,
4387 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4388{
0b246afa 4389 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4390 int ret;
4391
4392 /* align the range */
0b246afa
JM
4393 len = round_up(start + len, fs_info->sectorsize) -
4394 round_down(start, fs_info->sectorsize);
4395 start = round_down(start, fs_info->sectorsize);
4ceff079 4396
04f4f916 4397 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4398 if (ret < 0)
4399 return ret;
4400
1e5ec2e7 4401 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4402 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4403 if (ret < 0)
1e5ec2e7 4404 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4405 else
4406 ret = 0;
4ceff079
QW
4407 return ret;
4408}
4409
4ceff079
QW
4410/*
4411 * Called if we need to clear a data reservation for this inode
4412 * Normally in a error case.
4413 *
51773bec
QW
4414 * This one will *NOT* use accurate qgroup reserved space API, just for case
4415 * which we can't sleep and is sure it won't affect qgroup reserved space.
4416 * Like clear_bit_hook().
4ceff079 4417 */
51773bec
QW
4418void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4419 u64 len)
4ceff079 4420{
0b246afa 4421 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4422 struct btrfs_space_info *data_sinfo;
4423
4424 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4425 len = round_up(start + len, fs_info->sectorsize) -
4426 round_down(start, fs_info->sectorsize);
4427 start = round_down(start, fs_info->sectorsize);
4ceff079 4428
0b246afa 4429 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4430 spin_lock(&data_sinfo->lock);
4431 if (WARN_ON(data_sinfo->bytes_may_use < len))
4432 data_sinfo->bytes_may_use = 0;
4433 else
4434 data_sinfo->bytes_may_use -= len;
0b246afa 4435 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4436 data_sinfo->flags, len, 0);
4437 spin_unlock(&data_sinfo->lock);
4438}
4439
51773bec
QW
4440/*
4441 * Called if we need to clear a data reservation for this inode
4442 * Normally in a error case.
4443 *
01327610 4444 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4445 * space framework.
4446 */
bc42bda2
QW
4447void btrfs_free_reserved_data_space(struct inode *inode,
4448 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4449{
0c476a5d
JM
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451
4452 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4453 len = round_up(start + len, root->fs_info->sectorsize) -
4454 round_down(start, root->fs_info->sectorsize);
4455 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4456
51773bec 4457 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4458 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4459}
4460
97e728d4 4461static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4462{
97e728d4
JB
4463 struct list_head *head = &info->space_info;
4464 struct btrfs_space_info *found;
e3ccfa98 4465
97e728d4
JB
4466 rcu_read_lock();
4467 list_for_each_entry_rcu(found, head, list) {
4468 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4469 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4470 }
97e728d4 4471 rcu_read_unlock();
e3ccfa98
JB
4472}
4473
3c76cd84
MX
4474static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4475{
4476 return (global->size << 1);
4477}
4478
2ff7e61e 4479static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4480 struct btrfs_space_info *sinfo, int force)
32c00aff 4481{
0b246afa 4482 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4483 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4484 u64 thresh;
e3ccfa98 4485
0e4f8f88
CM
4486 if (force == CHUNK_ALLOC_FORCE)
4487 return 1;
4488
fb25e914
JB
4489 /*
4490 * We need to take into account the global rsv because for all intents
4491 * and purposes it's used space. Don't worry about locking the
4492 * global_rsv, it doesn't change except when the transaction commits.
4493 */
54338b5c 4494 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4495 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4496
0e4f8f88
CM
4497 /*
4498 * in limited mode, we want to have some free space up to
4499 * about 1% of the FS size.
4500 */
4501 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4502 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4503 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4504
8d8aafee 4505 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4506 return 1;
4507 }
0e4f8f88 4508
8d8aafee 4509 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4510 return 0;
424499db 4511 return 1;
32c00aff
JB
4512}
4513
2ff7e61e 4514static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4515{
4516 u64 num_dev;
4517
53b381b3
DW
4518 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4519 BTRFS_BLOCK_GROUP_RAID0 |
4520 BTRFS_BLOCK_GROUP_RAID5 |
4521 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4522 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4523 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4524 num_dev = 2;
4525 else
4526 num_dev = 1; /* DUP or single */
4527
39c2d7fa 4528 return num_dev;
15d1ff81
LB
4529}
4530
39c2d7fa
FM
4531/*
4532 * If @is_allocation is true, reserve space in the system space info necessary
4533 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4534 * removing a chunk.
4535 */
4536void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4537 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4538{
4539 struct btrfs_space_info *info;
4540 u64 left;
4541 u64 thresh;
4fbcdf66 4542 int ret = 0;
39c2d7fa 4543 u64 num_devs;
4fbcdf66
FM
4544
4545 /*
4546 * Needed because we can end up allocating a system chunk and for an
4547 * atomic and race free space reservation in the chunk block reserve.
4548 */
0b246afa 4549 ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
15d1ff81 4550
0b246afa 4551 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4552 spin_lock(&info->lock);
4136135b 4553 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4554 spin_unlock(&info->lock);
4555
2ff7e61e 4556 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4557
4558 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4559 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4560 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4561
0b246afa
JM
4562 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4563 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4564 left, thresh, type);
4565 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4566 }
4567
4568 if (left < thresh) {
1b86826d 4569 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4570
4fbcdf66
FM
4571 /*
4572 * Ignore failure to create system chunk. We might end up not
4573 * needing it, as we might not need to COW all nodes/leafs from
4574 * the paths we visit in the chunk tree (they were already COWed
4575 * or created in the current transaction for example).
4576 */
2ff7e61e 4577 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4578 }
4579
4580 if (!ret) {
0b246afa
JM
4581 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4582 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4583 thresh, BTRFS_RESERVE_NO_FLUSH);
4584 if (!ret)
4585 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4586 }
4587}
4588
28b737f6
LB
4589/*
4590 * If force is CHUNK_ALLOC_FORCE:
4591 * - return 1 if it successfully allocates a chunk,
4592 * - return errors including -ENOSPC otherwise.
4593 * If force is NOT CHUNK_ALLOC_FORCE:
4594 * - return 0 if it doesn't need to allocate a new chunk,
4595 * - return 1 if it successfully allocates a chunk,
4596 * - return errors including -ENOSPC otherwise.
4597 */
6324fbf3 4598static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4599 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4600{
6324fbf3 4601 struct btrfs_space_info *space_info;
6d74119f 4602 int wait_for_alloc = 0;
9ed74f2d 4603 int ret = 0;
9ed74f2d 4604
c6b305a8
JB
4605 /* Don't re-enter if we're already allocating a chunk */
4606 if (trans->allocating_chunk)
4607 return -ENOSPC;
4608
0b246afa 4609 space_info = __find_space_info(fs_info, flags);
593060d7 4610 if (!space_info) {
2be12ef7
NB
4611 ret = create_space_info(fs_info, flags, &space_info);
4612 if (ret)
4613 return ret;
9ed74f2d
JB
4614 }
4615
6d74119f 4616again:
25179201 4617 spin_lock(&space_info->lock);
9e622d6b 4618 if (force < space_info->force_alloc)
0e4f8f88 4619 force = space_info->force_alloc;
25179201 4620 if (space_info->full) {
2ff7e61e 4621 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4622 ret = -ENOSPC;
4623 else
4624 ret = 0;
25179201 4625 spin_unlock(&space_info->lock);
09fb99a6 4626 return ret;
9ed74f2d
JB
4627 }
4628
2ff7e61e 4629 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4630 spin_unlock(&space_info->lock);
6d74119f
JB
4631 return 0;
4632 } else if (space_info->chunk_alloc) {
4633 wait_for_alloc = 1;
4634 } else {
4635 space_info->chunk_alloc = 1;
9ed74f2d 4636 }
0e4f8f88 4637
25179201 4638 spin_unlock(&space_info->lock);
9ed74f2d 4639
6d74119f
JB
4640 mutex_lock(&fs_info->chunk_mutex);
4641
4642 /*
4643 * The chunk_mutex is held throughout the entirety of a chunk
4644 * allocation, so once we've acquired the chunk_mutex we know that the
4645 * other guy is done and we need to recheck and see if we should
4646 * allocate.
4647 */
4648 if (wait_for_alloc) {
4649 mutex_unlock(&fs_info->chunk_mutex);
4650 wait_for_alloc = 0;
4651 goto again;
4652 }
4653
c6b305a8
JB
4654 trans->allocating_chunk = true;
4655
67377734
JB
4656 /*
4657 * If we have mixed data/metadata chunks we want to make sure we keep
4658 * allocating mixed chunks instead of individual chunks.
4659 */
4660 if (btrfs_mixed_space_info(space_info))
4661 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4662
97e728d4
JB
4663 /*
4664 * if we're doing a data chunk, go ahead and make sure that
4665 * we keep a reasonable number of metadata chunks allocated in the
4666 * FS as well.
4667 */
9ed74f2d 4668 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4669 fs_info->data_chunk_allocations++;
4670 if (!(fs_info->data_chunk_allocations %
4671 fs_info->metadata_ratio))
4672 force_metadata_allocation(fs_info);
9ed74f2d
JB
4673 }
4674
15d1ff81
LB
4675 /*
4676 * Check if we have enough space in SYSTEM chunk because we may need
4677 * to update devices.
4678 */
2ff7e61e 4679 check_system_chunk(trans, fs_info, flags);
15d1ff81 4680
2ff7e61e 4681 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4682 trans->allocating_chunk = false;
92b8e897 4683
9ed74f2d 4684 spin_lock(&space_info->lock);
a81cb9a2
AO
4685 if (ret < 0 && ret != -ENOSPC)
4686 goto out;
9ed74f2d 4687 if (ret)
6324fbf3 4688 space_info->full = 1;
424499db
YZ
4689 else
4690 ret = 1;
6d74119f 4691
0e4f8f88 4692 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4693out:
6d74119f 4694 space_info->chunk_alloc = 0;
9ed74f2d 4695 spin_unlock(&space_info->lock);
a25c75d5 4696 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4697 /*
4698 * When we allocate a new chunk we reserve space in the chunk block
4699 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4700 * add new nodes/leafs to it if we end up needing to do it when
4701 * inserting the chunk item and updating device items as part of the
4702 * second phase of chunk allocation, performed by
4703 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4704 * large number of new block groups to create in our transaction
4705 * handle's new_bgs list to avoid exhausting the chunk block reserve
4706 * in extreme cases - like having a single transaction create many new
4707 * block groups when starting to write out the free space caches of all
4708 * the block groups that were made dirty during the lifetime of the
4709 * transaction.
4710 */
d9a0540a 4711 if (trans->can_flush_pending_bgs &&
ee22184b 4712 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4713 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4714 btrfs_trans_release_chunk_metadata(trans);
4715 }
0f9dd46c 4716 return ret;
6324fbf3 4717}
9ed74f2d 4718
c1c4919b 4719static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4720 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4721 enum btrfs_reserve_flush_enum flush,
4722 bool system_chunk)
a80c8dcf 4723{
0b246afa 4724 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4725 u64 profile;
3c76cd84 4726 u64 space_size;
a80c8dcf
JB
4727 u64 avail;
4728 u64 used;
4729
957780eb
JB
4730 /* Don't overcommit when in mixed mode. */
4731 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4732 return 0;
4733
c1c4919b
JM
4734 if (system_chunk)
4735 profile = btrfs_system_alloc_profile(fs_info);
4736 else
4737 profile = btrfs_metadata_alloc_profile(fs_info);
4738
4136135b 4739 used = btrfs_space_info_used(space_info, false);
96f1bb57 4740
96f1bb57
JB
4741 /*
4742 * We only want to allow over committing if we have lots of actual space
4743 * free, but if we don't have enough space to handle the global reserve
4744 * space then we could end up having a real enospc problem when trying
4745 * to allocate a chunk or some other such important allocation.
4746 */
3c76cd84
MX
4747 spin_lock(&global_rsv->lock);
4748 space_size = calc_global_rsv_need_space(global_rsv);
4749 spin_unlock(&global_rsv->lock);
4750 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4751 return 0;
4752
4753 used += space_info->bytes_may_use;
a80c8dcf 4754
a5ed45f8 4755 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4756
4757 /*
4758 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4759 * space is actually useable. For raid56, the space info used
4760 * doesn't include the parity drive, so we don't have to
4761 * change the math
a80c8dcf
JB
4762 */
4763 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4764 BTRFS_BLOCK_GROUP_RAID1 |
4765 BTRFS_BLOCK_GROUP_RAID10))
4766 avail >>= 1;
4767
4768 /*
561c294d
MX
4769 * If we aren't flushing all things, let us overcommit up to
4770 * 1/2th of the space. If we can flush, don't let us overcommit
4771 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4772 */
08e007d2 4773 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4774 avail >>= 3;
a80c8dcf 4775 else
14575aef 4776 avail >>= 1;
a80c8dcf 4777
14575aef 4778 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4779 return 1;
4780 return 0;
4781}
4782
2ff7e61e 4783static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4784 unsigned long nr_pages, int nr_items)
da633a42 4785{
0b246afa 4786 struct super_block *sb = fs_info->sb;
da633a42 4787
925a6efb
JB
4788 if (down_read_trylock(&sb->s_umount)) {
4789 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4790 up_read(&sb->s_umount);
4791 } else {
da633a42
MX
4792 /*
4793 * We needn't worry the filesystem going from r/w to r/o though
4794 * we don't acquire ->s_umount mutex, because the filesystem
4795 * should guarantee the delalloc inodes list be empty after
4796 * the filesystem is readonly(all dirty pages are written to
4797 * the disk).
4798 */
0b246afa 4799 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4800 if (!current->journal_info)
0b246afa 4801 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4802 }
4803}
4804
6374e57a 4805static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4806 u64 to_reclaim)
18cd8ea6
MX
4807{
4808 u64 bytes;
6374e57a 4809 u64 nr;
18cd8ea6 4810
2ff7e61e 4811 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4812 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4813 if (!nr)
4814 nr = 1;
4815 return nr;
4816}
4817
ee22184b 4818#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4819
9ed74f2d 4820/*
5da9d01b 4821 * shrink metadata reservation for delalloc
9ed74f2d 4822 */
c1c4919b
JM
4823static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4824 u64 orig, bool wait_ordered)
5da9d01b 4825{
0019f10d 4826 struct btrfs_space_info *space_info;
663350ac 4827 struct btrfs_trans_handle *trans;
f4c738c2 4828 u64 delalloc_bytes;
5da9d01b 4829 u64 max_reclaim;
6374e57a 4830 u64 items;
b1953bce 4831 long time_left;
d3ee29e3
MX
4832 unsigned long nr_pages;
4833 int loops;
08e007d2 4834 enum btrfs_reserve_flush_enum flush;
5da9d01b 4835
c61a16a7 4836 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4837 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4838 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4839
663350ac 4840 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4841 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4842
963d678b 4843 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4844 &fs_info->delalloc_bytes);
f4c738c2 4845 if (delalloc_bytes == 0) {
fdb5effd 4846 if (trans)
f4c738c2 4847 return;
38c135af 4848 if (wait_ordered)
0b246afa 4849 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4850 return;
fdb5effd
JB
4851 }
4852
d3ee29e3 4853 loops = 0;
f4c738c2
JB
4854 while (delalloc_bytes && loops < 3) {
4855 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4856 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4857 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4858 /*
4859 * We need to wait for the async pages to actually start before
4860 * we do anything.
4861 */
0b246afa 4862 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4863 if (!max_reclaim)
4864 goto skip_async;
4865
4866 if (max_reclaim <= nr_pages)
4867 max_reclaim = 0;
4868 else
4869 max_reclaim -= nr_pages;
dea31f52 4870
0b246afa
JM
4871 wait_event(fs_info->async_submit_wait,
4872 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4873 (int)max_reclaim);
4874skip_async:
08e007d2
MX
4875 if (!trans)
4876 flush = BTRFS_RESERVE_FLUSH_ALL;
4877 else
4878 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4879 spin_lock(&space_info->lock);
957780eb
JB
4880 if (list_empty(&space_info->tickets) &&
4881 list_empty(&space_info->priority_tickets)) {
4882 spin_unlock(&space_info->lock);
4883 break;
4884 }
0019f10d 4885 spin_unlock(&space_info->lock);
5da9d01b 4886
36e39c40 4887 loops++;
f104d044 4888 if (wait_ordered && !trans) {
0b246afa 4889 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4890 } else {
f4c738c2 4891 time_left = schedule_timeout_killable(1);
f104d044
JB
4892 if (time_left)
4893 break;
4894 }
963d678b 4895 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4896 &fs_info->delalloc_bytes);
5da9d01b 4897 }
5da9d01b
YZ
4898}
4899
996478ca
JB
4900struct reserve_ticket {
4901 u64 bytes;
4902 int error;
4903 struct list_head list;
4904 wait_queue_head_t wait;
4905};
4906
663350ac
JB
4907/**
4908 * maybe_commit_transaction - possibly commit the transaction if its ok to
4909 * @root - the root we're allocating for
4910 * @bytes - the number of bytes we want to reserve
4911 * @force - force the commit
8bb8ab2e 4912 *
663350ac
JB
4913 * This will check to make sure that committing the transaction will actually
4914 * get us somewhere and then commit the transaction if it does. Otherwise it
4915 * will return -ENOSPC.
8bb8ab2e 4916 */
0c9ab349 4917static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4918 struct btrfs_space_info *space_info)
663350ac 4919{
996478ca 4920 struct reserve_ticket *ticket = NULL;
0b246afa 4921 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4922 struct btrfs_trans_handle *trans;
996478ca 4923 u64 bytes;
663350ac
JB
4924
4925 trans = (struct btrfs_trans_handle *)current->journal_info;
4926 if (trans)
4927 return -EAGAIN;
4928
996478ca
JB
4929 spin_lock(&space_info->lock);
4930 if (!list_empty(&space_info->priority_tickets))
4931 ticket = list_first_entry(&space_info->priority_tickets,
4932 struct reserve_ticket, list);
4933 else if (!list_empty(&space_info->tickets))
4934 ticket = list_first_entry(&space_info->tickets,
4935 struct reserve_ticket, list);
4936 bytes = (ticket) ? ticket->bytes : 0;
4937 spin_unlock(&space_info->lock);
4938
4939 if (!bytes)
4940 return 0;
663350ac
JB
4941
4942 /* See if there is enough pinned space to make this reservation */
b150a4f1 4943 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4944 bytes) >= 0)
663350ac 4945 goto commit;
663350ac
JB
4946
4947 /*
4948 * See if there is some space in the delayed insertion reservation for
4949 * this reservation.
4950 */
4951 if (space_info != delayed_rsv->space_info)
4952 return -ENOSPC;
4953
4954 spin_lock(&delayed_rsv->lock);
996478ca
JB
4955 if (delayed_rsv->size > bytes)
4956 bytes = 0;
4957 else
4958 bytes -= delayed_rsv->size;
057aac3e
NB
4959 spin_unlock(&delayed_rsv->lock);
4960
b150a4f1 4961 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4962 bytes) < 0) {
663350ac
JB
4963 return -ENOSPC;
4964 }
663350ac
JB
4965
4966commit:
a9b3311e 4967 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4968 if (IS_ERR(trans))
4969 return -ENOSPC;
4970
3a45bb20 4971 return btrfs_commit_transaction(trans);
663350ac
JB
4972}
4973
e38ae7a0
NB
4974/*
4975 * Try to flush some data based on policy set by @state. This is only advisory
4976 * and may fail for various reasons. The caller is supposed to examine the
4977 * state of @space_info to detect the outcome.
4978 */
4979static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4980 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4981 int state)
96c3f433 4982{
a9b3311e 4983 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4984 struct btrfs_trans_handle *trans;
4985 int nr;
f4c738c2 4986 int ret = 0;
96c3f433
JB
4987
4988 switch (state) {
96c3f433
JB
4989 case FLUSH_DELAYED_ITEMS_NR:
4990 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4991 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4992 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4993 else
96c3f433 4994 nr = -1;
18cd8ea6 4995
96c3f433
JB
4996 trans = btrfs_join_transaction(root);
4997 if (IS_ERR(trans)) {
4998 ret = PTR_ERR(trans);
4999 break;
5000 }
e5c304e6 5001 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 5002 btrfs_end_transaction(trans);
96c3f433 5003 break;
67b0fd63
JB
5004 case FLUSH_DELALLOC:
5005 case FLUSH_DELALLOC_WAIT:
7bdd6277 5006 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5007 state == FLUSH_DELALLOC_WAIT);
5008 break;
ea658bad
JB
5009 case ALLOC_CHUNK:
5010 trans = btrfs_join_transaction(root);
5011 if (IS_ERR(trans)) {
5012 ret = PTR_ERR(trans);
5013 break;
5014 }
2ff7e61e 5015 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5016 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5017 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5018 btrfs_end_transaction(trans);
eecba891 5019 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5020 ret = 0;
5021 break;
96c3f433 5022 case COMMIT_TRANS:
996478ca 5023 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5024 break;
5025 default:
5026 ret = -ENOSPC;
5027 break;
5028 }
5029
7bdd6277
NB
5030 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5031 ret);
e38ae7a0 5032 return;
96c3f433 5033}
21c7e756
MX
5034
5035static inline u64
c1c4919b
JM
5036btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5037 struct btrfs_space_info *space_info,
5038 bool system_chunk)
21c7e756 5039{
957780eb 5040 struct reserve_ticket *ticket;
21c7e756
MX
5041 u64 used;
5042 u64 expected;
957780eb 5043 u64 to_reclaim = 0;
21c7e756 5044
957780eb
JB
5045 list_for_each_entry(ticket, &space_info->tickets, list)
5046 to_reclaim += ticket->bytes;
5047 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5048 to_reclaim += ticket->bytes;
5049 if (to_reclaim)
5050 return to_reclaim;
21c7e756 5051
e0af2484 5052 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5053 if (can_overcommit(fs_info, space_info, to_reclaim,
5054 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5055 return 0;
5056
0eee8a49
NB
5057 used = btrfs_space_info_used(space_info, true);
5058
c1c4919b
JM
5059 if (can_overcommit(fs_info, space_info, SZ_1M,
5060 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5061 expected = div_factor_fine(space_info->total_bytes, 95);
5062 else
5063 expected = div_factor_fine(space_info->total_bytes, 90);
5064
5065 if (used > expected)
5066 to_reclaim = used - expected;
5067 else
5068 to_reclaim = 0;
5069 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5070 space_info->bytes_reserved);
21c7e756
MX
5071 return to_reclaim;
5072}
5073
c1c4919b
JM
5074static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5075 struct btrfs_space_info *space_info,
5076 u64 used, bool system_chunk)
21c7e756 5077{
365c5313
JB
5078 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5079
5080 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5081 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5082 return 0;
5083
c1c4919b
JM
5084 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5085 system_chunk))
d38b349c
JB
5086 return 0;
5087
0b246afa
JM
5088 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5089 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5090}
5091
957780eb 5092static void wake_all_tickets(struct list_head *head)
21c7e756 5093{
957780eb 5094 struct reserve_ticket *ticket;
25ce459c 5095
957780eb
JB
5096 while (!list_empty(head)) {
5097 ticket = list_first_entry(head, struct reserve_ticket, list);
5098 list_del_init(&ticket->list);
5099 ticket->error = -ENOSPC;
5100 wake_up(&ticket->wait);
21c7e756 5101 }
21c7e756
MX
5102}
5103
957780eb
JB
5104/*
5105 * This is for normal flushers, we can wait all goddamned day if we want to. We
5106 * will loop and continuously try to flush as long as we are making progress.
5107 * We count progress as clearing off tickets each time we have to loop.
5108 */
21c7e756
MX
5109static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5110{
5111 struct btrfs_fs_info *fs_info;
5112 struct btrfs_space_info *space_info;
5113 u64 to_reclaim;
5114 int flush_state;
957780eb 5115 int commit_cycles = 0;
ce129655 5116 u64 last_tickets_id;
21c7e756
MX
5117
5118 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5119 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5120
957780eb 5121 spin_lock(&space_info->lock);
c1c4919b
JM
5122 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5123 false);
957780eb
JB
5124 if (!to_reclaim) {
5125 space_info->flush = 0;
5126 spin_unlock(&space_info->lock);
21c7e756 5127 return;
957780eb 5128 }
ce129655 5129 last_tickets_id = space_info->tickets_id;
957780eb 5130 spin_unlock(&space_info->lock);
21c7e756
MX
5131
5132 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5133 do {
e38ae7a0 5134 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5135 spin_lock(&space_info->lock);
5136 if (list_empty(&space_info->tickets)) {
5137 space_info->flush = 0;
5138 spin_unlock(&space_info->lock);
5139 return;
5140 }
c1c4919b
JM
5141 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5142 space_info,
5143 false);
ce129655 5144 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5145 flush_state++;
5146 } else {
ce129655 5147 last_tickets_id = space_info->tickets_id;
957780eb
JB
5148 flush_state = FLUSH_DELAYED_ITEMS_NR;
5149 if (commit_cycles)
5150 commit_cycles--;
5151 }
5152
5153 if (flush_state > COMMIT_TRANS) {
5154 commit_cycles++;
5155 if (commit_cycles > 2) {
5156 wake_all_tickets(&space_info->tickets);
5157 space_info->flush = 0;
5158 } else {
5159 flush_state = FLUSH_DELAYED_ITEMS_NR;
5160 }
5161 }
5162 spin_unlock(&space_info->lock);
5163 } while (flush_state <= COMMIT_TRANS);
5164}
5165
5166void btrfs_init_async_reclaim_work(struct work_struct *work)
5167{
5168 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5169}
5170
5171static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5172 struct btrfs_space_info *space_info,
5173 struct reserve_ticket *ticket)
5174{
5175 u64 to_reclaim;
5176 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5177
5178 spin_lock(&space_info->lock);
c1c4919b
JM
5179 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5180 false);
957780eb
JB
5181 if (!to_reclaim) {
5182 spin_unlock(&space_info->lock);
5183 return;
5184 }
5185 spin_unlock(&space_info->lock);
5186
21c7e756 5187 do {
7bdd6277 5188 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5189 flush_state++;
957780eb
JB
5190 spin_lock(&space_info->lock);
5191 if (ticket->bytes == 0) {
5192 spin_unlock(&space_info->lock);
21c7e756 5193 return;
957780eb
JB
5194 }
5195 spin_unlock(&space_info->lock);
5196
5197 /*
5198 * Priority flushers can't wait on delalloc without
5199 * deadlocking.
5200 */
5201 if (flush_state == FLUSH_DELALLOC ||
5202 flush_state == FLUSH_DELALLOC_WAIT)
5203 flush_state = ALLOC_CHUNK;
365c5313 5204 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5205}
5206
957780eb
JB
5207static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5208 struct btrfs_space_info *space_info,
5209 struct reserve_ticket *ticket, u64 orig_bytes)
5210
21c7e756 5211{
957780eb
JB
5212 DEFINE_WAIT(wait);
5213 int ret = 0;
5214
5215 spin_lock(&space_info->lock);
5216 while (ticket->bytes > 0 && ticket->error == 0) {
5217 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5218 if (ret) {
5219 ret = -EINTR;
5220 break;
5221 }
5222 spin_unlock(&space_info->lock);
5223
5224 schedule();
5225
5226 finish_wait(&ticket->wait, &wait);
5227 spin_lock(&space_info->lock);
5228 }
5229 if (!ret)
5230 ret = ticket->error;
5231 if (!list_empty(&ticket->list))
5232 list_del_init(&ticket->list);
5233 if (ticket->bytes && ticket->bytes < orig_bytes) {
5234 u64 num_bytes = orig_bytes - ticket->bytes;
5235 space_info->bytes_may_use -= num_bytes;
5236 trace_btrfs_space_reservation(fs_info, "space_info",
5237 space_info->flags, num_bytes, 0);
5238 }
5239 spin_unlock(&space_info->lock);
5240
5241 return ret;
21c7e756
MX
5242}
5243
4a92b1b8
JB
5244/**
5245 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5246 * @root - the root we're allocating for
957780eb 5247 * @space_info - the space info we want to allocate from
4a92b1b8 5248 * @orig_bytes - the number of bytes we want
48fc7f7e 5249 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5250 *
01327610 5251 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5252 * with the block_rsv. If there is not enough space it will make an attempt to
5253 * flush out space to make room. It will do this by flushing delalloc if
5254 * possible or committing the transaction. If flush is 0 then no attempts to
5255 * regain reservations will be made and this will fail if there is not enough
5256 * space already.
8bb8ab2e 5257 */
c1c4919b 5258static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5259 struct btrfs_space_info *space_info,
5260 u64 orig_bytes,
c1c4919b
JM
5261 enum btrfs_reserve_flush_enum flush,
5262 bool system_chunk)
9ed74f2d 5263{
957780eb 5264 struct reserve_ticket ticket;
2bf64758 5265 u64 used;
8bb8ab2e 5266 int ret = 0;
9ed74f2d 5267
957780eb 5268 ASSERT(orig_bytes);
8ca17f0f 5269 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5270
8bb8ab2e 5271 spin_lock(&space_info->lock);
fdb5effd 5272 ret = -ENOSPC;
4136135b 5273 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5274
8bb8ab2e 5275 /*
957780eb
JB
5276 * If we have enough space then hooray, make our reservation and carry
5277 * on. If not see if we can overcommit, and if we can, hooray carry on.
5278 * If not things get more complicated.
8bb8ab2e 5279 */
957780eb
JB
5280 if (used + orig_bytes <= space_info->total_bytes) {
5281 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5282 trace_btrfs_space_reservation(fs_info, "space_info",
5283 space_info->flags, orig_bytes, 1);
957780eb 5284 ret = 0;
c1c4919b
JM
5285 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5286 system_chunk)) {
44734ed1 5287 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5288 trace_btrfs_space_reservation(fs_info, "space_info",
5289 space_info->flags, orig_bytes, 1);
44734ed1 5290 ret = 0;
2bf64758
JB
5291 }
5292
8bb8ab2e 5293 /*
957780eb
JB
5294 * If we couldn't make a reservation then setup our reservation ticket
5295 * and kick the async worker if it's not already running.
08e007d2 5296 *
957780eb
JB
5297 * If we are a priority flusher then we just need to add our ticket to
5298 * the list and we will do our own flushing further down.
8bb8ab2e 5299 */
72bcd99d 5300 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5301 ticket.bytes = orig_bytes;
5302 ticket.error = 0;
5303 init_waitqueue_head(&ticket.wait);
5304 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5305 list_add_tail(&ticket.list, &space_info->tickets);
5306 if (!space_info->flush) {
5307 space_info->flush = 1;
0b246afa 5308 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5309 space_info->flags,
5310 orig_bytes, flush,
5311 "enospc");
957780eb 5312 queue_work(system_unbound_wq,
c1c4919b 5313 &fs_info->async_reclaim_work);
957780eb
JB
5314 }
5315 } else {
5316 list_add_tail(&ticket.list,
5317 &space_info->priority_tickets);
5318 }
21c7e756
MX
5319 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5320 used += orig_bytes;
f6acfd50
JB
5321 /*
5322 * We will do the space reservation dance during log replay,
5323 * which means we won't have fs_info->fs_root set, so don't do
5324 * the async reclaim as we will panic.
5325 */
0b246afa 5326 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5327 need_do_async_reclaim(fs_info, space_info,
5328 used, system_chunk) &&
0b246afa
JM
5329 !work_busy(&fs_info->async_reclaim_work)) {
5330 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5331 orig_bytes, flush, "preempt");
21c7e756 5332 queue_work(system_unbound_wq,
0b246afa 5333 &fs_info->async_reclaim_work);
f376df2b 5334 }
8bb8ab2e 5335 }
f0486c68 5336 spin_unlock(&space_info->lock);
08e007d2 5337 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5338 return ret;
f0486c68 5339
957780eb 5340 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5341 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5342 orig_bytes);
08e007d2 5343
957780eb 5344 ret = 0;
0b246afa 5345 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5346 spin_lock(&space_info->lock);
5347 if (ticket.bytes) {
5348 if (ticket.bytes < orig_bytes) {
5349 u64 num_bytes = orig_bytes - ticket.bytes;
5350 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5351 trace_btrfs_space_reservation(fs_info, "space_info",
5352 space_info->flags,
5353 num_bytes, 0);
08e007d2 5354
957780eb
JB
5355 }
5356 list_del_init(&ticket.list);
5357 ret = -ENOSPC;
5358 }
5359 spin_unlock(&space_info->lock);
5360 ASSERT(list_empty(&ticket.list));
5361 return ret;
5362}
8bb8ab2e 5363
957780eb
JB
5364/**
5365 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5366 * @root - the root we're allocating for
5367 * @block_rsv - the block_rsv we're allocating for
5368 * @orig_bytes - the number of bytes we want
5369 * @flush - whether or not we can flush to make our reservation
5370 *
5371 * This will reserve orgi_bytes number of bytes from the space info associated
5372 * with the block_rsv. If there is not enough space it will make an attempt to
5373 * flush out space to make room. It will do this by flushing delalloc if
5374 * possible or committing the transaction. If flush is 0 then no attempts to
5375 * regain reservations will be made and this will fail if there is not enough
5376 * space already.
5377 */
5378static int reserve_metadata_bytes(struct btrfs_root *root,
5379 struct btrfs_block_rsv *block_rsv,
5380 u64 orig_bytes,
5381 enum btrfs_reserve_flush_enum flush)
5382{
0b246afa
JM
5383 struct btrfs_fs_info *fs_info = root->fs_info;
5384 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5385 int ret;
c1c4919b 5386 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5387
c1c4919b
JM
5388 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5389 orig_bytes, flush, system_chunk);
5d80366e
JB
5390 if (ret == -ENOSPC &&
5391 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5392 if (block_rsv != global_rsv &&
5393 !block_rsv_use_bytes(global_rsv, orig_bytes))
5394 ret = 0;
5395 }
9a3daff3 5396 if (ret == -ENOSPC) {
0b246afa 5397 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5398 block_rsv->space_info->flags,
5399 orig_bytes, 1);
9a3daff3
NB
5400
5401 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5402 dump_space_info(fs_info, block_rsv->space_info,
5403 orig_bytes, 0);
5404 }
f0486c68
YZ
5405 return ret;
5406}
5407
79787eaa
JM
5408static struct btrfs_block_rsv *get_block_rsv(
5409 const struct btrfs_trans_handle *trans,
5410 const struct btrfs_root *root)
f0486c68 5411{
0b246afa 5412 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5413 struct btrfs_block_rsv *block_rsv = NULL;
5414
e9cf439f 5415 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5416 (root == fs_info->csum_root && trans->adding_csums) ||
5417 (root == fs_info->uuid_root))
f7a81ea4
SB
5418 block_rsv = trans->block_rsv;
5419
4c13d758 5420 if (!block_rsv)
f0486c68
YZ
5421 block_rsv = root->block_rsv;
5422
5423 if (!block_rsv)
0b246afa 5424 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5425
5426 return block_rsv;
5427}
5428
5429static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5430 u64 num_bytes)
5431{
5432 int ret = -ENOSPC;
5433 spin_lock(&block_rsv->lock);
5434 if (block_rsv->reserved >= num_bytes) {
5435 block_rsv->reserved -= num_bytes;
5436 if (block_rsv->reserved < block_rsv->size)
5437 block_rsv->full = 0;
5438 ret = 0;
5439 }
5440 spin_unlock(&block_rsv->lock);
5441 return ret;
5442}
5443
5444static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5445 u64 num_bytes, int update_size)
5446{
5447 spin_lock(&block_rsv->lock);
5448 block_rsv->reserved += num_bytes;
5449 if (update_size)
5450 block_rsv->size += num_bytes;
5451 else if (block_rsv->reserved >= block_rsv->size)
5452 block_rsv->full = 1;
5453 spin_unlock(&block_rsv->lock);
5454}
5455
d52be818
JB
5456int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5457 struct btrfs_block_rsv *dest, u64 num_bytes,
5458 int min_factor)
5459{
5460 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5461 u64 min_bytes;
5462
5463 if (global_rsv->space_info != dest->space_info)
5464 return -ENOSPC;
5465
5466 spin_lock(&global_rsv->lock);
5467 min_bytes = div_factor(global_rsv->size, min_factor);
5468 if (global_rsv->reserved < min_bytes + num_bytes) {
5469 spin_unlock(&global_rsv->lock);
5470 return -ENOSPC;
5471 }
5472 global_rsv->reserved -= num_bytes;
5473 if (global_rsv->reserved < global_rsv->size)
5474 global_rsv->full = 0;
5475 spin_unlock(&global_rsv->lock);
5476
5477 block_rsv_add_bytes(dest, num_bytes, 1);
5478 return 0;
5479}
5480
957780eb
JB
5481/*
5482 * This is for space we already have accounted in space_info->bytes_may_use, so
5483 * basically when we're returning space from block_rsv's.
5484 */
5485static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5486 struct btrfs_space_info *space_info,
5487 u64 num_bytes)
5488{
5489 struct reserve_ticket *ticket;
5490 struct list_head *head;
5491 u64 used;
5492 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5493 bool check_overcommit = false;
5494
5495 spin_lock(&space_info->lock);
5496 head = &space_info->priority_tickets;
5497
5498 /*
5499 * If we are over our limit then we need to check and see if we can
5500 * overcommit, and if we can't then we just need to free up our space
5501 * and not satisfy any requests.
5502 */
0eee8a49 5503 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5504 if (used - num_bytes >= space_info->total_bytes)
5505 check_overcommit = true;
5506again:
5507 while (!list_empty(head) && num_bytes) {
5508 ticket = list_first_entry(head, struct reserve_ticket,
5509 list);
5510 /*
5511 * We use 0 bytes because this space is already reserved, so
5512 * adding the ticket space would be a double count.
5513 */
5514 if (check_overcommit &&
c1c4919b 5515 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5516 break;
5517 if (num_bytes >= ticket->bytes) {
5518 list_del_init(&ticket->list);
5519 num_bytes -= ticket->bytes;
5520 ticket->bytes = 0;
ce129655 5521 space_info->tickets_id++;
957780eb
JB
5522 wake_up(&ticket->wait);
5523 } else {
5524 ticket->bytes -= num_bytes;
5525 num_bytes = 0;
5526 }
5527 }
5528
5529 if (num_bytes && head == &space_info->priority_tickets) {
5530 head = &space_info->tickets;
5531 flush = BTRFS_RESERVE_FLUSH_ALL;
5532 goto again;
5533 }
5534 space_info->bytes_may_use -= num_bytes;
5535 trace_btrfs_space_reservation(fs_info, "space_info",
5536 space_info->flags, num_bytes, 0);
5537 spin_unlock(&space_info->lock);
5538}
5539
5540/*
5541 * This is for newly allocated space that isn't accounted in
5542 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5543 * we use this helper.
5544 */
5545static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5546 struct btrfs_space_info *space_info,
5547 u64 num_bytes)
5548{
5549 struct reserve_ticket *ticket;
5550 struct list_head *head = &space_info->priority_tickets;
5551
5552again:
5553 while (!list_empty(head) && num_bytes) {
5554 ticket = list_first_entry(head, struct reserve_ticket,
5555 list);
5556 if (num_bytes >= ticket->bytes) {
5557 trace_btrfs_space_reservation(fs_info, "space_info",
5558 space_info->flags,
5559 ticket->bytes, 1);
5560 list_del_init(&ticket->list);
5561 num_bytes -= ticket->bytes;
5562 space_info->bytes_may_use += ticket->bytes;
5563 ticket->bytes = 0;
ce129655 5564 space_info->tickets_id++;
957780eb
JB
5565 wake_up(&ticket->wait);
5566 } else {
5567 trace_btrfs_space_reservation(fs_info, "space_info",
5568 space_info->flags,
5569 num_bytes, 1);
5570 space_info->bytes_may_use += num_bytes;
5571 ticket->bytes -= num_bytes;
5572 num_bytes = 0;
5573 }
5574 }
5575
5576 if (num_bytes && head == &space_info->priority_tickets) {
5577 head = &space_info->tickets;
5578 goto again;
5579 }
5580}
5581
69fe2d75 5582static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5583 struct btrfs_block_rsv *block_rsv,
62a45b60 5584 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
5585{
5586 struct btrfs_space_info *space_info = block_rsv->space_info;
69fe2d75 5587 u64 ret;
f0486c68
YZ
5588
5589 spin_lock(&block_rsv->lock);
5590 if (num_bytes == (u64)-1)
5591 num_bytes = block_rsv->size;
5592 block_rsv->size -= num_bytes;
5593 if (block_rsv->reserved >= block_rsv->size) {
5594 num_bytes = block_rsv->reserved - block_rsv->size;
5595 block_rsv->reserved = block_rsv->size;
5596 block_rsv->full = 1;
5597 } else {
5598 num_bytes = 0;
5599 }
5600 spin_unlock(&block_rsv->lock);
5601
69fe2d75 5602 ret = num_bytes;
f0486c68
YZ
5603 if (num_bytes > 0) {
5604 if (dest) {
e9e22899
JB
5605 spin_lock(&dest->lock);
5606 if (!dest->full) {
5607 u64 bytes_to_add;
5608
5609 bytes_to_add = dest->size - dest->reserved;
5610 bytes_to_add = min(num_bytes, bytes_to_add);
5611 dest->reserved += bytes_to_add;
5612 if (dest->reserved >= dest->size)
5613 dest->full = 1;
5614 num_bytes -= bytes_to_add;
5615 }
5616 spin_unlock(&dest->lock);
5617 }
957780eb
JB
5618 if (num_bytes)
5619 space_info_add_old_bytes(fs_info, space_info,
5620 num_bytes);
9ed74f2d 5621 }
69fe2d75 5622 return ret;
f0486c68 5623}
4e06bdd6 5624
25d609f8
JB
5625int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5626 struct btrfs_block_rsv *dst, u64 num_bytes,
5627 int update_size)
f0486c68
YZ
5628{
5629 int ret;
9ed74f2d 5630
f0486c68
YZ
5631 ret = block_rsv_use_bytes(src, num_bytes);
5632 if (ret)
5633 return ret;
9ed74f2d 5634
25d609f8 5635 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5636 return 0;
5637}
5638
66d8f3dd 5639void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5640{
f0486c68
YZ
5641 memset(rsv, 0, sizeof(*rsv));
5642 spin_lock_init(&rsv->lock);
66d8f3dd 5643 rsv->type = type;
f0486c68
YZ
5644}
5645
69fe2d75
JB
5646void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5647 struct btrfs_block_rsv *rsv,
5648 unsigned short type)
5649{
5650 btrfs_init_block_rsv(rsv, type);
5651 rsv->space_info = __find_space_info(fs_info,
5652 BTRFS_BLOCK_GROUP_METADATA);
5653}
5654
2ff7e61e 5655struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5656 unsigned short type)
f0486c68
YZ
5657{
5658 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5659
f0486c68
YZ
5660 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5661 if (!block_rsv)
5662 return NULL;
9ed74f2d 5663
69fe2d75 5664 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5665 return block_rsv;
5666}
9ed74f2d 5667
2ff7e61e 5668void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5669 struct btrfs_block_rsv *rsv)
5670{
2aaa6655
JB
5671 if (!rsv)
5672 return;
2ff7e61e 5673 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5674 kfree(rsv);
9ed74f2d
JB
5675}
5676
cdfb080e
CM
5677void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5678{
5679 kfree(rsv);
5680}
5681
08e007d2
MX
5682int btrfs_block_rsv_add(struct btrfs_root *root,
5683 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5684 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5685{
f0486c68 5686 int ret;
9ed74f2d 5687
f0486c68
YZ
5688 if (num_bytes == 0)
5689 return 0;
8bb8ab2e 5690
61b520a9 5691 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5692 if (!ret) {
5693 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5694 return 0;
5695 }
9ed74f2d 5696
f0486c68 5697 return ret;
f0486c68 5698}
9ed74f2d 5699
2ff7e61e 5700int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5701{
5702 u64 num_bytes = 0;
f0486c68 5703 int ret = -ENOSPC;
9ed74f2d 5704
f0486c68
YZ
5705 if (!block_rsv)
5706 return 0;
9ed74f2d 5707
f0486c68 5708 spin_lock(&block_rsv->lock);
36ba022a
JB
5709 num_bytes = div_factor(block_rsv->size, min_factor);
5710 if (block_rsv->reserved >= num_bytes)
5711 ret = 0;
5712 spin_unlock(&block_rsv->lock);
9ed74f2d 5713
36ba022a
JB
5714 return ret;
5715}
5716
08e007d2
MX
5717int btrfs_block_rsv_refill(struct btrfs_root *root,
5718 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5719 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5720{
5721 u64 num_bytes = 0;
5722 int ret = -ENOSPC;
5723
5724 if (!block_rsv)
5725 return 0;
5726
5727 spin_lock(&block_rsv->lock);
5728 num_bytes = min_reserved;
13553e52 5729 if (block_rsv->reserved >= num_bytes)
f0486c68 5730 ret = 0;
13553e52 5731 else
f0486c68 5732 num_bytes -= block_rsv->reserved;
f0486c68 5733 spin_unlock(&block_rsv->lock);
13553e52 5734
f0486c68
YZ
5735 if (!ret)
5736 return 0;
5737
aa38a711 5738 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5739 if (!ret) {
5740 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5741 return 0;
6a63209f 5742 }
9ed74f2d 5743
13553e52 5744 return ret;
f0486c68
YZ
5745}
5746
69fe2d75
JB
5747/**
5748 * btrfs_inode_rsv_refill - refill the inode block rsv.
5749 * @inode - the inode we are refilling.
5750 * @flush - the flusing restriction.
5751 *
5752 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5753 * block_rsv->size as the minimum size. We'll either refill the missing amount
5754 * or return if we already have enough space. This will also handle the resreve
5755 * tracepoint for the reserved amount.
5756 */
3f2dd7a0
QW
5757static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5758 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5759{
5760 struct btrfs_root *root = inode->root;
5761 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5762 u64 num_bytes = 0;
5763 int ret = -ENOSPC;
5764
5765 spin_lock(&block_rsv->lock);
5766 if (block_rsv->reserved < block_rsv->size)
5767 num_bytes = block_rsv->size - block_rsv->reserved;
5768 spin_unlock(&block_rsv->lock);
5769
5770 if (num_bytes == 0)
5771 return 0;
5772
5773 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5774 if (!ret) {
5775 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5776 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5777 btrfs_ino(inode), num_bytes, 1);
5778 }
5779 return ret;
5780}
5781
5782/**
5783 * btrfs_inode_rsv_release - release any excessive reservation.
5784 * @inode - the inode we need to release from.
5785 *
5786 * This is the same as btrfs_block_rsv_release, except that it handles the
5787 * tracepoint for the reservation.
5788 */
d2560ebd 5789static void btrfs_inode_rsv_release(struct btrfs_inode *inode)
69fe2d75
JB
5790{
5791 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5792 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5793 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5794 u64 released = 0;
5795
5796 /*
5797 * Since we statically set the block_rsv->size we just want to say we
5798 * are releasing 0 bytes, and then we'll just get the reservation over
5799 * the size free'd.
5800 */
5801 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0);
5802 if (released > 0)
5803 trace_btrfs_space_reservation(fs_info, "delalloc",
5804 btrfs_ino(inode), released, 0);
5805}
5806
2ff7e61e 5807void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5808 struct btrfs_block_rsv *block_rsv,
5809 u64 num_bytes)
5810{
0b246afa
JM
5811 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5812
17504584 5813 if (global_rsv == block_rsv ||
f0486c68
YZ
5814 block_rsv->space_info != global_rsv->space_info)
5815 global_rsv = NULL;
0b246afa 5816 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
6a63209f
JB
5817}
5818
8929ecfa
YZ
5819static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5820{
5821 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5822 struct btrfs_space_info *sinfo = block_rsv->space_info;
5823 u64 num_bytes;
6a63209f 5824
ae2e4728
JB
5825 /*
5826 * The global block rsv is based on the size of the extent tree, the
5827 * checksum tree and the root tree. If the fs is empty we want to set
5828 * it to a minimal amount for safety.
5829 */
5830 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5831 btrfs_root_used(&fs_info->csum_root->root_item) +
5832 btrfs_root_used(&fs_info->tree_root->root_item);
5833 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5834
8929ecfa 5835 spin_lock(&sinfo->lock);
1f699d38 5836 spin_lock(&block_rsv->lock);
4e06bdd6 5837
ee22184b 5838 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5839
fb4b10e5 5840 if (block_rsv->reserved < block_rsv->size) {
4136135b 5841 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5842 if (sinfo->total_bytes > num_bytes) {
5843 num_bytes = sinfo->total_bytes - num_bytes;
5844 num_bytes = min(num_bytes,
5845 block_rsv->size - block_rsv->reserved);
5846 block_rsv->reserved += num_bytes;
5847 sinfo->bytes_may_use += num_bytes;
5848 trace_btrfs_space_reservation(fs_info, "space_info",
5849 sinfo->flags, num_bytes,
5850 1);
5851 }
5852 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5853 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5854 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5855 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5856 sinfo->flags, num_bytes, 0);
8929ecfa 5857 block_rsv->reserved = block_rsv->size;
8929ecfa 5858 }
182608c8 5859
fb4b10e5
JB
5860 if (block_rsv->reserved == block_rsv->size)
5861 block_rsv->full = 1;
5862 else
5863 block_rsv->full = 0;
5864
8929ecfa 5865 spin_unlock(&block_rsv->lock);
1f699d38 5866 spin_unlock(&sinfo->lock);
6a63209f
JB
5867}
5868
f0486c68 5869static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5870{
f0486c68 5871 struct btrfs_space_info *space_info;
6a63209f 5872
f0486c68
YZ
5873 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5874 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5875
f0486c68 5876 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5877 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5878 fs_info->trans_block_rsv.space_info = space_info;
5879 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5880 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5881
8929ecfa
YZ
5882 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5883 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5884 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5885 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5886 if (fs_info->quota_root)
5887 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5888 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5889
8929ecfa 5890 update_global_block_rsv(fs_info);
6a63209f
JB
5891}
5892
8929ecfa 5893static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5894{
8c2a3ca2
JB
5895 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5896 (u64)-1);
8929ecfa
YZ
5897 WARN_ON(fs_info->trans_block_rsv.size > 0);
5898 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5899 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5900 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5901 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5902 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5903}
5904
6a63209f 5905
4fbcdf66
FM
5906/*
5907 * To be called after all the new block groups attached to the transaction
5908 * handle have been created (btrfs_create_pending_block_groups()).
5909 */
5910void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5911{
64b63580 5912 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5913
5914 if (!trans->chunk_bytes_reserved)
5915 return;
5916
5917 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5918
5919 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5920 trans->chunk_bytes_reserved);
5921 trans->chunk_bytes_reserved = 0;
5922}
5923
79787eaa 5924/* Can only return 0 or -ENOSPC */
d68fc57b 5925int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5926 struct btrfs_inode *inode)
d68fc57b 5927{
8ed7a2a0
NB
5928 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5929 struct btrfs_root *root = inode->root;
40acc3ee
JB
5930 /*
5931 * We always use trans->block_rsv here as we will have reserved space
5932 * for our orphan when starting the transaction, using get_block_rsv()
5933 * here will sometimes make us choose the wrong block rsv as we could be
5934 * doing a reloc inode for a non refcounted root.
5935 */
5936 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5937 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5938
5939 /*
fcb80c2a
JB
5940 * We need to hold space in order to delete our orphan item once we've
5941 * added it, so this takes the reservation so we can release it later
5942 * when we are truly done with the orphan item.
d68fc57b 5943 */
0b246afa
JM
5944 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5945
9678c543 5946 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
8ed7a2a0 5947 num_bytes, 1);
25d609f8 5948 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5949}
5950
703b391a 5951void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5952{
703b391a
NB
5953 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5954 struct btrfs_root *root = inode->root;
0b246afa
JM
5955 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5956
703b391a
NB
5957 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5958 num_bytes, 0);
2ff7e61e 5959 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5960}
97e728d4 5961
d5c12070
MX
5962/*
5963 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5964 * root: the root of the parent directory
5965 * rsv: block reservation
5966 * items: the number of items that we need do reservation
5967 * qgroup_reserved: used to return the reserved size in qgroup
5968 *
5969 * This function is used to reserve the space for snapshot/subvolume
5970 * creation and deletion. Those operations are different with the
5971 * common file/directory operations, they change two fs/file trees
5972 * and root tree, the number of items that the qgroup reserves is
5973 * different with the free space reservation. So we can not use
01327610 5974 * the space reservation mechanism in start_transaction().
d5c12070
MX
5975 */
5976int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5977 struct btrfs_block_rsv *rsv,
5978 int items,
ee3441b4
JM
5979 u64 *qgroup_reserved,
5980 bool use_global_rsv)
a22285a6 5981{
d5c12070
MX
5982 u64 num_bytes;
5983 int ret;
0b246afa
JM
5984 struct btrfs_fs_info *fs_info = root->fs_info;
5985 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5986
0b246afa 5987 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5988 /* One for parent inode, two for dir entries */
0b246afa 5989 num_bytes = 3 * fs_info->nodesize;
003d7c59 5990 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
d5c12070
MX
5991 if (ret)
5992 return ret;
5993 } else {
5994 num_bytes = 0;
5995 }
5996
5997 *qgroup_reserved = num_bytes;
5998
0b246afa
JM
5999 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6000 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6001 BTRFS_BLOCK_GROUP_METADATA);
6002 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6003 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6004
6005 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6006 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6007
7174109c
QW
6008 if (ret && *qgroup_reserved)
6009 btrfs_qgroup_free_meta(root, *qgroup_reserved);
d5c12070
MX
6010
6011 return ret;
6012}
6013
2ff7e61e 6014void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6015 struct btrfs_block_rsv *rsv)
d5c12070 6016{
2ff7e61e 6017 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6018}
6019
69fe2d75
JB
6020static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6021 struct btrfs_inode *inode)
9e0baf60 6022{
69fe2d75
JB
6023 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6024 u64 reserve_size = 0;
6025 u64 csum_leaves;
6026 unsigned outstanding_extents;
9e0baf60 6027
69fe2d75
JB
6028 lockdep_assert_held(&inode->lock);
6029 outstanding_extents = inode->outstanding_extents;
6030 if (outstanding_extents)
6031 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6032 outstanding_extents + 1);
6033 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6034 inode->csum_bytes);
6035 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6036 csum_leaves);
9e0baf60 6037
69fe2d75
JB
6038 spin_lock(&block_rsv->lock);
6039 block_rsv->size = reserve_size;
6040 spin_unlock(&block_rsv->lock);
0ca1f7ce 6041}
c146afad 6042
9f3db423 6043int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6044{
9f3db423
NB
6045 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6046 struct btrfs_root *root = inode->root;
69fe2d75 6047 unsigned nr_extents;
08e007d2 6048 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6049 int ret = 0;
c64c2bd8 6050 bool delalloc_lock = true;
6324fbf3 6051
c64c2bd8
JB
6052 /* If we are a free space inode we need to not flush since we will be in
6053 * the middle of a transaction commit. We also don't need the delalloc
6054 * mutex since we won't race with anybody. We need this mostly to make
6055 * lockdep shut its filthy mouth.
bac357dc
JB
6056 *
6057 * If we have a transaction open (can happen if we call truncate_block
6058 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6059 */
6060 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6061 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6062 delalloc_lock = false;
da07d4ab
NB
6063 } else {
6064 if (current->journal_info)
6065 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6066
da07d4ab
NB
6067 if (btrfs_transaction_in_commit(fs_info))
6068 schedule_timeout(1);
6069 }
ec44a35c 6070
c64c2bd8 6071 if (delalloc_lock)
9f3db423 6072 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6073
0b246afa 6074 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6075
6076 /* Add our new extents and calculate the new rsv size. */
9f3db423 6077 spin_lock(&inode->lock);
69fe2d75 6078 nr_extents = count_max_extents(num_bytes);
8b62f87b 6079 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6080 inode->csum_bytes += num_bytes;
6081 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6082 spin_unlock(&inode->lock);
57a45ced 6083
0b246afa 6084 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
7174109c 6085 ret = btrfs_qgroup_reserve_meta(root,
003d7c59 6086 nr_extents * fs_info->nodesize, true);
88e081bf
WS
6087 if (ret)
6088 goto out_fail;
6089 }
c5567237 6090
69fe2d75 6091 ret = btrfs_inode_rsv_refill(inode, flush);
88e081bf 6092 if (unlikely(ret)) {
da17066c 6093 btrfs_qgroup_free_meta(root,
0b246afa 6094 nr_extents * fs_info->nodesize);
88e081bf 6095 goto out_fail;
9e0baf60 6096 }
25179201 6097
c64c2bd8 6098 if (delalloc_lock)
9f3db423 6099 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6100 return 0;
88e081bf
WS
6101
6102out_fail:
9f3db423 6103 spin_lock(&inode->lock);
8b62f87b
JB
6104 nr_extents = count_max_extents(num_bytes);
6105 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6106 inode->csum_bytes -= num_bytes;
6107 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6108 spin_unlock(&inode->lock);
88e081bf 6109
69fe2d75 6110 btrfs_inode_rsv_release(inode);
88e081bf 6111 if (delalloc_lock)
9f3db423 6112 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6113 return ret;
0ca1f7ce
YZ
6114}
6115
7709cde3
JB
6116/**
6117 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6118 * @inode: the inode to release the reservation for.
6119 * @num_bytes: the number of bytes we are releasing.
7709cde3
JB
6120 *
6121 * This will release the metadata reservation for an inode. This can be called
6122 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6123 * reservations, or on error for the same reason.
7709cde3 6124 */
691fa059 6125void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6126{
691fa059 6127 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6128
0b246afa 6129 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6130 spin_lock(&inode->lock);
69fe2d75
JB
6131 inode->csum_bytes -= num_bytes;
6132 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6133 spin_unlock(&inode->lock);
0ca1f7ce 6134
0b246afa 6135 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6136 return;
6137
69fe2d75 6138 btrfs_inode_rsv_release(inode);
0ca1f7ce
YZ
6139}
6140
8b62f87b
JB
6141/**
6142 * btrfs_delalloc_release_extents - release our outstanding_extents
6143 * @inode: the inode to balance the reservation for.
6144 * @num_bytes: the number of bytes we originally reserved with
6145 *
6146 * When we reserve space we increase outstanding_extents for the extents we may
6147 * add. Once we've set the range as delalloc or created our ordered extents we
6148 * have outstanding_extents to track the real usage, so we use this to free our
6149 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6150 * with btrfs_delalloc_reserve_metadata.
6151 */
6152void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes)
6153{
6154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6155 unsigned num_extents;
8b62f87b
JB
6156
6157 spin_lock(&inode->lock);
6158 num_extents = count_max_extents(num_bytes);
6159 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6160 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6161 spin_unlock(&inode->lock);
6162
8b62f87b
JB
6163 if (btrfs_is_testing(fs_info))
6164 return;
6165
69fe2d75 6166 btrfs_inode_rsv_release(inode);
8b62f87b
JB
6167}
6168
1ada3a62 6169/**
7cf5b976 6170 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6171 * delalloc
6172 * @inode: inode we're writing to
6173 * @start: start range we are writing to
6174 * @len: how long the range we are writing to
364ecf36
QW
6175 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6176 * current reservation.
1ada3a62 6177 *
1ada3a62
QW
6178 * This will do the following things
6179 *
6180 * o reserve space in data space info for num bytes
6181 * and reserve precious corresponding qgroup space
6182 * (Done in check_data_free_space)
6183 *
6184 * o reserve space for metadata space, based on the number of outstanding
6185 * extents and how much csums will be needed
6186 * also reserve metadata space in a per root over-reserve method.
6187 * o add to the inodes->delalloc_bytes
6188 * o add it to the fs_info's delalloc inodes list.
6189 * (Above 3 all done in delalloc_reserve_metadata)
6190 *
6191 * Return 0 for success
6192 * Return <0 for error(-ENOSPC or -EQUOT)
6193 */
364ecf36
QW
6194int btrfs_delalloc_reserve_space(struct inode *inode,
6195 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6196{
6197 int ret;
6198
364ecf36 6199 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6200 if (ret < 0)
6201 return ret;
9f3db423 6202 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6203 if (ret < 0)
bc42bda2 6204 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6205 return ret;
6206}
6207
7709cde3 6208/**
7cf5b976 6209 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6210 * @inode: inode we're releasing space for
6211 * @start: start position of the space already reserved
6212 * @len: the len of the space already reserved
8b62f87b 6213 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6214 *
6215 * This function will release the metadata space that was not used and will
6216 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6217 * list if there are no delalloc bytes left.
6218 * Also it will handle the qgroup reserved space.
6219 */
bc42bda2 6220void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b
JB
6221 struct extent_changeset *reserved,
6222 u64 start, u64 len)
1ada3a62 6223{
691fa059 6224 btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
bc42bda2 6225 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6226}
6227
ce93ec54 6228static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6229 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6230 u64 num_bytes, int alloc)
9078a3e1 6231{
0af3d00b 6232 struct btrfs_block_group_cache *cache = NULL;
db94535d 6233 u64 total = num_bytes;
9078a3e1 6234 u64 old_val;
db94535d 6235 u64 byte_in_group;
0af3d00b 6236 int factor;
3e1ad54f 6237
5d4f98a2 6238 /* block accounting for super block */
eb73c1b7 6239 spin_lock(&info->delalloc_root_lock);
6c41761f 6240 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6241 if (alloc)
6242 old_val += num_bytes;
6243 else
6244 old_val -= num_bytes;
6c41761f 6245 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6246 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6247
d397712b 6248 while (total) {
db94535d 6249 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6250 if (!cache)
79787eaa 6251 return -ENOENT;
b742bb82
YZ
6252 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6253 BTRFS_BLOCK_GROUP_RAID1 |
6254 BTRFS_BLOCK_GROUP_RAID10))
6255 factor = 2;
6256 else
6257 factor = 1;
9d66e233
JB
6258 /*
6259 * If this block group has free space cache written out, we
6260 * need to make sure to load it if we are removing space. This
6261 * is because we need the unpinning stage to actually add the
6262 * space back to the block group, otherwise we will leak space.
6263 */
6264 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6265 cache_block_group(cache, 1);
0af3d00b 6266
db94535d
CM
6267 byte_in_group = bytenr - cache->key.objectid;
6268 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6269
25179201 6270 spin_lock(&cache->space_info->lock);
c286ac48 6271 spin_lock(&cache->lock);
0af3d00b 6272
6202df69 6273 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6274 cache->disk_cache_state < BTRFS_DC_CLEAR)
6275 cache->disk_cache_state = BTRFS_DC_CLEAR;
6276
9078a3e1 6277 old_val = btrfs_block_group_used(&cache->item);
db94535d 6278 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6279 if (alloc) {
db94535d 6280 old_val += num_bytes;
11833d66
YZ
6281 btrfs_set_block_group_used(&cache->item, old_val);
6282 cache->reserved -= num_bytes;
11833d66 6283 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6284 cache->space_info->bytes_used += num_bytes;
6285 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6286 spin_unlock(&cache->lock);
25179201 6287 spin_unlock(&cache->space_info->lock);
cd1bc465 6288 } else {
db94535d 6289 old_val -= num_bytes;
ae0ab003
FM
6290 btrfs_set_block_group_used(&cache->item, old_val);
6291 cache->pinned += num_bytes;
6292 cache->space_info->bytes_pinned += num_bytes;
6293 cache->space_info->bytes_used -= num_bytes;
6294 cache->space_info->disk_used -= num_bytes * factor;
6295 spin_unlock(&cache->lock);
6296 spin_unlock(&cache->space_info->lock);
47ab2a6c 6297
0b246afa 6298 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6299 cache->space_info->flags,
6300 num_bytes, 1);
d7eae340
OS
6301 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6302 num_bytes);
ae0ab003
FM
6303 set_extent_dirty(info->pinned_extents,
6304 bytenr, bytenr + num_bytes - 1,
6305 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6306 }
1bbc621e
CM
6307
6308 spin_lock(&trans->transaction->dirty_bgs_lock);
6309 if (list_empty(&cache->dirty_list)) {
6310 list_add_tail(&cache->dirty_list,
6311 &trans->transaction->dirty_bgs);
6312 trans->transaction->num_dirty_bgs++;
6313 btrfs_get_block_group(cache);
6314 }
6315 spin_unlock(&trans->transaction->dirty_bgs_lock);
6316
036a9348
FM
6317 /*
6318 * No longer have used bytes in this block group, queue it for
6319 * deletion. We do this after adding the block group to the
6320 * dirty list to avoid races between cleaner kthread and space
6321 * cache writeout.
6322 */
6323 if (!alloc && old_val == 0) {
6324 spin_lock(&info->unused_bgs_lock);
6325 if (list_empty(&cache->bg_list)) {
6326 btrfs_get_block_group(cache);
6327 list_add_tail(&cache->bg_list,
6328 &info->unused_bgs);
6329 }
6330 spin_unlock(&info->unused_bgs_lock);
6331 }
6332
fa9c0d79 6333 btrfs_put_block_group(cache);
db94535d
CM
6334 total -= num_bytes;
6335 bytenr += num_bytes;
9078a3e1
CM
6336 }
6337 return 0;
6338}
6324fbf3 6339
2ff7e61e 6340static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6341{
0f9dd46c 6342 struct btrfs_block_group_cache *cache;
d2fb3437 6343 u64 bytenr;
0f9dd46c 6344
0b246afa
JM
6345 spin_lock(&fs_info->block_group_cache_lock);
6346 bytenr = fs_info->first_logical_byte;
6347 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6348
6349 if (bytenr < (u64)-1)
6350 return bytenr;
6351
0b246afa 6352 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6353 if (!cache)
a061fc8d 6354 return 0;
0f9dd46c 6355
d2fb3437 6356 bytenr = cache->key.objectid;
fa9c0d79 6357 btrfs_put_block_group(cache);
d2fb3437
YZ
6358
6359 return bytenr;
a061fc8d
CM
6360}
6361
2ff7e61e 6362static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6363 struct btrfs_block_group_cache *cache,
6364 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6365{
11833d66
YZ
6366 spin_lock(&cache->space_info->lock);
6367 spin_lock(&cache->lock);
6368 cache->pinned += num_bytes;
6369 cache->space_info->bytes_pinned += num_bytes;
6370 if (reserved) {
6371 cache->reserved -= num_bytes;
6372 cache->space_info->bytes_reserved -= num_bytes;
6373 }
6374 spin_unlock(&cache->lock);
6375 spin_unlock(&cache->space_info->lock);
68b38550 6376
0b246afa 6377 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6378 cache->space_info->flags, num_bytes, 1);
4da8b76d 6379 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6380 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6381 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6382 return 0;
6383}
68b38550 6384
f0486c68
YZ
6385/*
6386 * this function must be called within transaction
6387 */
2ff7e61e 6388int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6389 u64 bytenr, u64 num_bytes, int reserved)
6390{
6391 struct btrfs_block_group_cache *cache;
68b38550 6392
0b246afa 6393 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6394 BUG_ON(!cache); /* Logic error */
f0486c68 6395
2ff7e61e 6396 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6397
6398 btrfs_put_block_group(cache);
11833d66
YZ
6399 return 0;
6400}
6401
f0486c68 6402/*
e688b725
CM
6403 * this function must be called within transaction
6404 */
2ff7e61e 6405int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6406 u64 bytenr, u64 num_bytes)
6407{
6408 struct btrfs_block_group_cache *cache;
b50c6e25 6409 int ret;
e688b725 6410
0b246afa 6411 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6412 if (!cache)
6413 return -EINVAL;
e688b725
CM
6414
6415 /*
6416 * pull in the free space cache (if any) so that our pin
6417 * removes the free space from the cache. We have load_only set
6418 * to one because the slow code to read in the free extents does check
6419 * the pinned extents.
6420 */
f6373bf3 6421 cache_block_group(cache, 1);
e688b725 6422
2ff7e61e 6423 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6424
6425 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6426 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6427 btrfs_put_block_group(cache);
b50c6e25 6428 return ret;
e688b725
CM
6429}
6430
2ff7e61e
JM
6431static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6432 u64 start, u64 num_bytes)
8c2a1a30
JB
6433{
6434 int ret;
6435 struct btrfs_block_group_cache *block_group;
6436 struct btrfs_caching_control *caching_ctl;
6437
0b246afa 6438 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6439 if (!block_group)
6440 return -EINVAL;
6441
6442 cache_block_group(block_group, 0);
6443 caching_ctl = get_caching_control(block_group);
6444
6445 if (!caching_ctl) {
6446 /* Logic error */
6447 BUG_ON(!block_group_cache_done(block_group));
6448 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6449 } else {
6450 mutex_lock(&caching_ctl->mutex);
6451
6452 if (start >= caching_ctl->progress) {
2ff7e61e 6453 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6454 } else if (start + num_bytes <= caching_ctl->progress) {
6455 ret = btrfs_remove_free_space(block_group,
6456 start, num_bytes);
6457 } else {
6458 num_bytes = caching_ctl->progress - start;
6459 ret = btrfs_remove_free_space(block_group,
6460 start, num_bytes);
6461 if (ret)
6462 goto out_lock;
6463
6464 num_bytes = (start + num_bytes) -
6465 caching_ctl->progress;
6466 start = caching_ctl->progress;
2ff7e61e 6467 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6468 }
6469out_lock:
6470 mutex_unlock(&caching_ctl->mutex);
6471 put_caching_control(caching_ctl);
6472 }
6473 btrfs_put_block_group(block_group);
6474 return ret;
6475}
6476
2ff7e61e 6477int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6478 struct extent_buffer *eb)
6479{
6480 struct btrfs_file_extent_item *item;
6481 struct btrfs_key key;
6482 int found_type;
6483 int i;
6484
2ff7e61e 6485 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6486 return 0;
6487
6488 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6489 btrfs_item_key_to_cpu(eb, &key, i);
6490 if (key.type != BTRFS_EXTENT_DATA_KEY)
6491 continue;
6492 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6493 found_type = btrfs_file_extent_type(eb, item);
6494 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6495 continue;
6496 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6497 continue;
6498 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6499 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6500 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6501 }
6502
6503 return 0;
6504}
6505
9cfa3e34
FM
6506static void
6507btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6508{
6509 atomic_inc(&bg->reservations);
6510}
6511
6512void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6513 const u64 start)
6514{
6515 struct btrfs_block_group_cache *bg;
6516
6517 bg = btrfs_lookup_block_group(fs_info, start);
6518 ASSERT(bg);
6519 if (atomic_dec_and_test(&bg->reservations))
6520 wake_up_atomic_t(&bg->reservations);
6521 btrfs_put_block_group(bg);
6522}
6523
9cfa3e34
FM
6524void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6525{
6526 struct btrfs_space_info *space_info = bg->space_info;
6527
6528 ASSERT(bg->ro);
6529
6530 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6531 return;
6532
6533 /*
6534 * Our block group is read only but before we set it to read only,
6535 * some task might have had allocated an extent from it already, but it
6536 * has not yet created a respective ordered extent (and added it to a
6537 * root's list of ordered extents).
6538 * Therefore wait for any task currently allocating extents, since the
6539 * block group's reservations counter is incremented while a read lock
6540 * on the groups' semaphore is held and decremented after releasing
6541 * the read access on that semaphore and creating the ordered extent.
6542 */
6543 down_write(&space_info->groups_sem);
6544 up_write(&space_info->groups_sem);
6545
5e4def20 6546 wait_on_atomic_t(&bg->reservations, atomic_t_wait,
9cfa3e34
FM
6547 TASK_UNINTERRUPTIBLE);
6548}
6549
fb25e914 6550/**
4824f1f4 6551 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6552 * @cache: The cache we are manipulating
18513091
WX
6553 * @ram_bytes: The number of bytes of file content, and will be same to
6554 * @num_bytes except for the compress path.
fb25e914 6555 * @num_bytes: The number of bytes in question
e570fd27 6556 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6557 *
745699ef
XW
6558 * This is called by the allocator when it reserves space. If this is a
6559 * reservation and the block group has become read only we cannot make the
6560 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6561 */
4824f1f4 6562static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6563 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6564{
fb25e914 6565 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6566 int ret = 0;
79787eaa 6567
fb25e914
JB
6568 spin_lock(&space_info->lock);
6569 spin_lock(&cache->lock);
4824f1f4
WX
6570 if (cache->ro) {
6571 ret = -EAGAIN;
fb25e914 6572 } else {
4824f1f4
WX
6573 cache->reserved += num_bytes;
6574 space_info->bytes_reserved += num_bytes;
e570fd27 6575
18513091
WX
6576 trace_btrfs_space_reservation(cache->fs_info,
6577 "space_info", space_info->flags,
6578 ram_bytes, 0);
6579 space_info->bytes_may_use -= ram_bytes;
e570fd27 6580 if (delalloc)
4824f1f4 6581 cache->delalloc_bytes += num_bytes;
324ae4df 6582 }
fb25e914
JB
6583 spin_unlock(&cache->lock);
6584 spin_unlock(&space_info->lock);
f0486c68 6585 return ret;
324ae4df 6586}
9078a3e1 6587
4824f1f4
WX
6588/**
6589 * btrfs_free_reserved_bytes - update the block_group and space info counters
6590 * @cache: The cache we are manipulating
6591 * @num_bytes: The number of bytes in question
6592 * @delalloc: The blocks are allocated for the delalloc write
6593 *
6594 * This is called by somebody who is freeing space that was never actually used
6595 * on disk. For example if you reserve some space for a new leaf in transaction
6596 * A and before transaction A commits you free that leaf, you call this with
6597 * reserve set to 0 in order to clear the reservation.
6598 */
6599
6600static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6601 u64 num_bytes, int delalloc)
6602{
6603 struct btrfs_space_info *space_info = cache->space_info;
6604 int ret = 0;
6605
6606 spin_lock(&space_info->lock);
6607 spin_lock(&cache->lock);
6608 if (cache->ro)
6609 space_info->bytes_readonly += num_bytes;
6610 cache->reserved -= num_bytes;
6611 space_info->bytes_reserved -= num_bytes;
6612
6613 if (delalloc)
6614 cache->delalloc_bytes -= num_bytes;
6615 spin_unlock(&cache->lock);
6616 spin_unlock(&space_info->lock);
6617 return ret;
6618}
8b74c03e 6619void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6620{
11833d66
YZ
6621 struct btrfs_caching_control *next;
6622 struct btrfs_caching_control *caching_ctl;
6623 struct btrfs_block_group_cache *cache;
e8569813 6624
9e351cc8 6625 down_write(&fs_info->commit_root_sem);
25179201 6626
11833d66
YZ
6627 list_for_each_entry_safe(caching_ctl, next,
6628 &fs_info->caching_block_groups, list) {
6629 cache = caching_ctl->block_group;
6630 if (block_group_cache_done(cache)) {
6631 cache->last_byte_to_unpin = (u64)-1;
6632 list_del_init(&caching_ctl->list);
6633 put_caching_control(caching_ctl);
e8569813 6634 } else {
11833d66 6635 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6636 }
e8569813 6637 }
11833d66
YZ
6638
6639 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6640 fs_info->pinned_extents = &fs_info->freed_extents[1];
6641 else
6642 fs_info->pinned_extents = &fs_info->freed_extents[0];
6643
9e351cc8 6644 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6645
6646 update_global_block_rsv(fs_info);
e8569813
ZY
6647}
6648
c759c4e1
JB
6649/*
6650 * Returns the free cluster for the given space info and sets empty_cluster to
6651 * what it should be based on the mount options.
6652 */
6653static struct btrfs_free_cluster *
2ff7e61e
JM
6654fetch_cluster_info(struct btrfs_fs_info *fs_info,
6655 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6656{
6657 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6658
6659 *empty_cluster = 0;
6660 if (btrfs_mixed_space_info(space_info))
6661 return ret;
6662
c759c4e1 6663 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6664 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6665 if (btrfs_test_opt(fs_info, SSD))
6666 *empty_cluster = SZ_2M;
6667 else
ee22184b 6668 *empty_cluster = SZ_64K;
583b7231
HK
6669 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6670 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6671 *empty_cluster = SZ_2M;
0b246afa 6672 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6673 }
6674
6675 return ret;
6676}
6677
2ff7e61e
JM
6678static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6679 u64 start, u64 end,
678886bd 6680 const bool return_free_space)
ccd467d6 6681{
11833d66 6682 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6683 struct btrfs_space_info *space_info;
6684 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6685 struct btrfs_free_cluster *cluster = NULL;
11833d66 6686 u64 len;
c759c4e1
JB
6687 u64 total_unpinned = 0;
6688 u64 empty_cluster = 0;
7b398f8e 6689 bool readonly;
ccd467d6 6690
11833d66 6691 while (start <= end) {
7b398f8e 6692 readonly = false;
11833d66
YZ
6693 if (!cache ||
6694 start >= cache->key.objectid + cache->key.offset) {
6695 if (cache)
6696 btrfs_put_block_group(cache);
c759c4e1 6697 total_unpinned = 0;
11833d66 6698 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6699 BUG_ON(!cache); /* Logic error */
c759c4e1 6700
2ff7e61e 6701 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6702 cache->space_info,
6703 &empty_cluster);
6704 empty_cluster <<= 1;
11833d66
YZ
6705 }
6706
6707 len = cache->key.objectid + cache->key.offset - start;
6708 len = min(len, end + 1 - start);
6709
6710 if (start < cache->last_byte_to_unpin) {
6711 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6712 if (return_free_space)
6713 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6714 }
6715
f0486c68 6716 start += len;
c759c4e1 6717 total_unpinned += len;
7b398f8e 6718 space_info = cache->space_info;
f0486c68 6719
c759c4e1
JB
6720 /*
6721 * If this space cluster has been marked as fragmented and we've
6722 * unpinned enough in this block group to potentially allow a
6723 * cluster to be created inside of it go ahead and clear the
6724 * fragmented check.
6725 */
6726 if (cluster && cluster->fragmented &&
6727 total_unpinned > empty_cluster) {
6728 spin_lock(&cluster->lock);
6729 cluster->fragmented = 0;
6730 spin_unlock(&cluster->lock);
6731 }
6732
7b398f8e 6733 spin_lock(&space_info->lock);
11833d66
YZ
6734 spin_lock(&cache->lock);
6735 cache->pinned -= len;
7b398f8e 6736 space_info->bytes_pinned -= len;
c51e7bb1
JB
6737
6738 trace_btrfs_space_reservation(fs_info, "pinned",
6739 space_info->flags, len, 0);
4f4db217 6740 space_info->max_extent_size = 0;
d288db5d 6741 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6742 if (cache->ro) {
6743 space_info->bytes_readonly += len;
6744 readonly = true;
6745 }
11833d66 6746 spin_unlock(&cache->lock);
957780eb
JB
6747 if (!readonly && return_free_space &&
6748 global_rsv->space_info == space_info) {
6749 u64 to_add = len;
92ac58ec 6750
7b398f8e
JB
6751 spin_lock(&global_rsv->lock);
6752 if (!global_rsv->full) {
957780eb
JB
6753 to_add = min(len, global_rsv->size -
6754 global_rsv->reserved);
6755 global_rsv->reserved += to_add;
6756 space_info->bytes_may_use += to_add;
7b398f8e
JB
6757 if (global_rsv->reserved >= global_rsv->size)
6758 global_rsv->full = 1;
957780eb
JB
6759 trace_btrfs_space_reservation(fs_info,
6760 "space_info",
6761 space_info->flags,
6762 to_add, 1);
6763 len -= to_add;
7b398f8e
JB
6764 }
6765 spin_unlock(&global_rsv->lock);
957780eb
JB
6766 /* Add to any tickets we may have */
6767 if (len)
6768 space_info_add_new_bytes(fs_info, space_info,
6769 len);
7b398f8e
JB
6770 }
6771 spin_unlock(&space_info->lock);
ccd467d6 6772 }
11833d66
YZ
6773
6774 if (cache)
6775 btrfs_put_block_group(cache);
ccd467d6
CM
6776 return 0;
6777}
6778
6779int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2ff7e61e 6780 struct btrfs_fs_info *fs_info)
a28ec197 6781{
e33e17ee
JM
6782 struct btrfs_block_group_cache *block_group, *tmp;
6783 struct list_head *deleted_bgs;
11833d66 6784 struct extent_io_tree *unpin;
1a5bc167
CM
6785 u64 start;
6786 u64 end;
a28ec197 6787 int ret;
a28ec197 6788
11833d66
YZ
6789 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6790 unpin = &fs_info->freed_extents[1];
6791 else
6792 unpin = &fs_info->freed_extents[0];
6793
e33e17ee 6794 while (!trans->aborted) {
d4b450cd 6795 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6796 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6797 EXTENT_DIRTY, NULL);
d4b450cd
FM
6798 if (ret) {
6799 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6800 break;
d4b450cd 6801 }
1f3c79a2 6802
0b246afa 6803 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6804 ret = btrfs_discard_extent(fs_info, start,
5378e607 6805 end + 1 - start, NULL);
1f3c79a2 6806
af6f8f60 6807 clear_extent_dirty(unpin, start, end);
2ff7e61e 6808 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6809 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6810 cond_resched();
a28ec197 6811 }
817d52f8 6812
e33e17ee
JM
6813 /*
6814 * Transaction is finished. We don't need the lock anymore. We
6815 * do need to clean up the block groups in case of a transaction
6816 * abort.
6817 */
6818 deleted_bgs = &trans->transaction->deleted_bgs;
6819 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6820 u64 trimmed = 0;
6821
6822 ret = -EROFS;
6823 if (!trans->aborted)
2ff7e61e 6824 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6825 block_group->key.objectid,
6826 block_group->key.offset,
6827 &trimmed);
6828
6829 list_del_init(&block_group->bg_list);
6830 btrfs_put_block_group_trimming(block_group);
6831 btrfs_put_block_group(block_group);
6832
6833 if (ret) {
6834 const char *errstr = btrfs_decode_error(ret);
6835 btrfs_warn(fs_info,
913e1535 6836 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6837 ret, errstr);
6838 }
6839 }
6840
e20d96d6
CM
6841 return 0;
6842}
6843
5d4f98a2 6844static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6845 struct btrfs_fs_info *info,
c682f9b3 6846 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6847 u64 root_objectid, u64 owner_objectid,
6848 u64 owner_offset, int refs_to_drop,
c682f9b3 6849 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6850{
e2fa7227 6851 struct btrfs_key key;
5d4f98a2 6852 struct btrfs_path *path;
1261ec42 6853 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6854 struct extent_buffer *leaf;
5d4f98a2
YZ
6855 struct btrfs_extent_item *ei;
6856 struct btrfs_extent_inline_ref *iref;
a28ec197 6857 int ret;
5d4f98a2 6858 int is_data;
952fccac
CM
6859 int extent_slot = 0;
6860 int found_extent = 0;
6861 int num_to_del = 1;
5d4f98a2
YZ
6862 u32 item_size;
6863 u64 refs;
c682f9b3
QW
6864 u64 bytenr = node->bytenr;
6865 u64 num_bytes = node->num_bytes;
fcebe456 6866 int last_ref = 0;
0b246afa 6867 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6868
5caf2a00 6869 path = btrfs_alloc_path();
54aa1f4d
CM
6870 if (!path)
6871 return -ENOMEM;
5f26f772 6872
e4058b54 6873 path->reada = READA_FORWARD;
b9473439 6874 path->leave_spinning = 1;
5d4f98a2
YZ
6875
6876 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6877 BUG_ON(!is_data && refs_to_drop != 1);
6878
3173a18f 6879 if (is_data)
897ca819 6880 skinny_metadata = false;
3173a18f 6881
87bde3cd 6882 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6883 bytenr, num_bytes, parent,
6884 root_objectid, owner_objectid,
6885 owner_offset);
7bb86316 6886 if (ret == 0) {
952fccac 6887 extent_slot = path->slots[0];
5d4f98a2
YZ
6888 while (extent_slot >= 0) {
6889 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6890 extent_slot);
5d4f98a2 6891 if (key.objectid != bytenr)
952fccac 6892 break;
5d4f98a2
YZ
6893 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6894 key.offset == num_bytes) {
952fccac
CM
6895 found_extent = 1;
6896 break;
6897 }
3173a18f
JB
6898 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6899 key.offset == owner_objectid) {
6900 found_extent = 1;
6901 break;
6902 }
952fccac
CM
6903 if (path->slots[0] - extent_slot > 5)
6904 break;
5d4f98a2 6905 extent_slot--;
952fccac 6906 }
5d4f98a2
YZ
6907#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6908 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6909 if (found_extent && item_size < sizeof(*ei))
6910 found_extent = 0;
6911#endif
31840ae1 6912 if (!found_extent) {
5d4f98a2 6913 BUG_ON(iref);
87bde3cd
JM
6914 ret = remove_extent_backref(trans, info, path, NULL,
6915 refs_to_drop,
fcebe456 6916 is_data, &last_ref);
005d6427 6917 if (ret) {
66642832 6918 btrfs_abort_transaction(trans, ret);
005d6427
DS
6919 goto out;
6920 }
b3b4aa74 6921 btrfs_release_path(path);
b9473439 6922 path->leave_spinning = 1;
5d4f98a2
YZ
6923
6924 key.objectid = bytenr;
6925 key.type = BTRFS_EXTENT_ITEM_KEY;
6926 key.offset = num_bytes;
6927
3173a18f
JB
6928 if (!is_data && skinny_metadata) {
6929 key.type = BTRFS_METADATA_ITEM_KEY;
6930 key.offset = owner_objectid;
6931 }
6932
31840ae1
ZY
6933 ret = btrfs_search_slot(trans, extent_root,
6934 &key, path, -1, 1);
3173a18f
JB
6935 if (ret > 0 && skinny_metadata && path->slots[0]) {
6936 /*
6937 * Couldn't find our skinny metadata item,
6938 * see if we have ye olde extent item.
6939 */
6940 path->slots[0]--;
6941 btrfs_item_key_to_cpu(path->nodes[0], &key,
6942 path->slots[0]);
6943 if (key.objectid == bytenr &&
6944 key.type == BTRFS_EXTENT_ITEM_KEY &&
6945 key.offset == num_bytes)
6946 ret = 0;
6947 }
6948
6949 if (ret > 0 && skinny_metadata) {
6950 skinny_metadata = false;
9ce49a0b 6951 key.objectid = bytenr;
3173a18f
JB
6952 key.type = BTRFS_EXTENT_ITEM_KEY;
6953 key.offset = num_bytes;
6954 btrfs_release_path(path);
6955 ret = btrfs_search_slot(trans, extent_root,
6956 &key, path, -1, 1);
6957 }
6958
f3465ca4 6959 if (ret) {
5d163e0e
JM
6960 btrfs_err(info,
6961 "umm, got %d back from search, was looking for %llu",
6962 ret, bytenr);
b783e62d 6963 if (ret > 0)
a4f78750 6964 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6965 }
005d6427 6966 if (ret < 0) {
66642832 6967 btrfs_abort_transaction(trans, ret);
005d6427
DS
6968 goto out;
6969 }
31840ae1
ZY
6970 extent_slot = path->slots[0];
6971 }
fae7f21c 6972 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6973 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6974 btrfs_err(info,
6975 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6976 bytenr, parent, root_objectid, owner_objectid,
6977 owner_offset);
66642832 6978 btrfs_abort_transaction(trans, ret);
c4a050bb 6979 goto out;
79787eaa 6980 } else {
66642832 6981 btrfs_abort_transaction(trans, ret);
005d6427 6982 goto out;
7bb86316 6983 }
5f39d397
CM
6984
6985 leaf = path->nodes[0];
5d4f98a2
YZ
6986 item_size = btrfs_item_size_nr(leaf, extent_slot);
6987#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6988 if (item_size < sizeof(*ei)) {
6989 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6990 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6991 0);
005d6427 6992 if (ret < 0) {
66642832 6993 btrfs_abort_transaction(trans, ret);
005d6427
DS
6994 goto out;
6995 }
5d4f98a2 6996
b3b4aa74 6997 btrfs_release_path(path);
5d4f98a2
YZ
6998 path->leave_spinning = 1;
6999
7000 key.objectid = bytenr;
7001 key.type = BTRFS_EXTENT_ITEM_KEY;
7002 key.offset = num_bytes;
7003
7004 ret = btrfs_search_slot(trans, extent_root, &key, path,
7005 -1, 1);
7006 if (ret) {
5d163e0e
JM
7007 btrfs_err(info,
7008 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7009 ret, bytenr);
a4f78750 7010 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7011 }
005d6427 7012 if (ret < 0) {
66642832 7013 btrfs_abort_transaction(trans, ret);
005d6427
DS
7014 goto out;
7015 }
7016
5d4f98a2
YZ
7017 extent_slot = path->slots[0];
7018 leaf = path->nodes[0];
7019 item_size = btrfs_item_size_nr(leaf, extent_slot);
7020 }
7021#endif
7022 BUG_ON(item_size < sizeof(*ei));
952fccac 7023 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7024 struct btrfs_extent_item);
3173a18f
JB
7025 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7026 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7027 struct btrfs_tree_block_info *bi;
7028 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7029 bi = (struct btrfs_tree_block_info *)(ei + 1);
7030 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7031 }
56bec294 7032
5d4f98a2 7033 refs = btrfs_extent_refs(leaf, ei);
32b02538 7034 if (refs < refs_to_drop) {
5d163e0e
JM
7035 btrfs_err(info,
7036 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7037 refs_to_drop, refs, bytenr);
32b02538 7038 ret = -EINVAL;
66642832 7039 btrfs_abort_transaction(trans, ret);
32b02538
JB
7040 goto out;
7041 }
56bec294 7042 refs -= refs_to_drop;
5f39d397 7043
5d4f98a2
YZ
7044 if (refs > 0) {
7045 if (extent_op)
7046 __run_delayed_extent_op(extent_op, leaf, ei);
7047 /*
7048 * In the case of inline back ref, reference count will
7049 * be updated by remove_extent_backref
952fccac 7050 */
5d4f98a2
YZ
7051 if (iref) {
7052 BUG_ON(!found_extent);
7053 } else {
7054 btrfs_set_extent_refs(leaf, ei, refs);
7055 btrfs_mark_buffer_dirty(leaf);
7056 }
7057 if (found_extent) {
87bde3cd 7058 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7059 iref, refs_to_drop,
fcebe456 7060 is_data, &last_ref);
005d6427 7061 if (ret) {
66642832 7062 btrfs_abort_transaction(trans, ret);
005d6427
DS
7063 goto out;
7064 }
952fccac 7065 }
5d4f98a2 7066 } else {
5d4f98a2
YZ
7067 if (found_extent) {
7068 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7069 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7070 if (iref) {
7071 BUG_ON(path->slots[0] != extent_slot);
7072 } else {
7073 BUG_ON(path->slots[0] != extent_slot + 1);
7074 path->slots[0] = extent_slot;
7075 num_to_del = 2;
7076 }
78fae27e 7077 }
b9473439 7078
fcebe456 7079 last_ref = 1;
952fccac
CM
7080 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7081 num_to_del);
005d6427 7082 if (ret) {
66642832 7083 btrfs_abort_transaction(trans, ret);
005d6427
DS
7084 goto out;
7085 }
b3b4aa74 7086 btrfs_release_path(path);
21af804c 7087
5d4f98a2 7088 if (is_data) {
5b4aacef 7089 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7090 if (ret) {
66642832 7091 btrfs_abort_transaction(trans, ret);
005d6427
DS
7092 goto out;
7093 }
459931ec
CM
7094 }
7095
0b246afa 7096 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7097 if (ret) {
66642832 7098 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7099 goto out;
7100 }
7101
0b246afa 7102 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7103 if (ret) {
66642832 7104 btrfs_abort_transaction(trans, ret);
005d6427
DS
7105 goto out;
7106 }
a28ec197 7107 }
fcebe456
JB
7108 btrfs_release_path(path);
7109
79787eaa 7110out:
5caf2a00 7111 btrfs_free_path(path);
a28ec197
CM
7112 return ret;
7113}
7114
1887be66 7115/*
f0486c68 7116 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7117 * delayed ref for that extent as well. This searches the delayed ref tree for
7118 * a given extent, and if there are no other delayed refs to be processed, it
7119 * removes it from the tree.
7120 */
7121static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7122 u64 bytenr)
1887be66
CM
7123{
7124 struct btrfs_delayed_ref_head *head;
7125 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7126 int ret = 0;
1887be66
CM
7127
7128 delayed_refs = &trans->transaction->delayed_refs;
7129 spin_lock(&delayed_refs->lock);
f72ad18e 7130 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7131 if (!head)
cf93da7b 7132 goto out_delayed_unlock;
1887be66 7133
d7df2c79 7134 spin_lock(&head->lock);
0e0adbcf 7135 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7136 goto out;
7137
5d4f98a2
YZ
7138 if (head->extent_op) {
7139 if (!head->must_insert_reserved)
7140 goto out;
78a6184a 7141 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7142 head->extent_op = NULL;
7143 }
7144
1887be66
CM
7145 /*
7146 * waiting for the lock here would deadlock. If someone else has it
7147 * locked they are already in the process of dropping it anyway
7148 */
7149 if (!mutex_trylock(&head->mutex))
7150 goto out;
7151
7152 /*
7153 * at this point we have a head with no other entries. Go
7154 * ahead and process it.
7155 */
c46effa6 7156 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7157 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7158 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7159
7160 /*
7161 * we don't take a ref on the node because we're removing it from the
7162 * tree, so we just steal the ref the tree was holding.
7163 */
c3e69d58 7164 delayed_refs->num_heads--;
d7df2c79 7165 if (head->processing == 0)
c3e69d58 7166 delayed_refs->num_heads_ready--;
d7df2c79
JB
7167 head->processing = 0;
7168 spin_unlock(&head->lock);
1887be66
CM
7169 spin_unlock(&delayed_refs->lock);
7170
f0486c68
YZ
7171 BUG_ON(head->extent_op);
7172 if (head->must_insert_reserved)
7173 ret = 1;
7174
7175 mutex_unlock(&head->mutex);
d278850e 7176 btrfs_put_delayed_ref_head(head);
f0486c68 7177 return ret;
1887be66 7178out:
d7df2c79 7179 spin_unlock(&head->lock);
cf93da7b
CM
7180
7181out_delayed_unlock:
1887be66
CM
7182 spin_unlock(&delayed_refs->lock);
7183 return 0;
7184}
7185
f0486c68
YZ
7186void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7187 struct btrfs_root *root,
7188 struct extent_buffer *buf,
5581a51a 7189 u64 parent, int last_ref)
f0486c68 7190{
0b246afa 7191 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7192 int pin = 1;
f0486c68
YZ
7193 int ret;
7194
7195 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7196 int old_ref_mod, new_ref_mod;
7197
fd708b81
JB
7198 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7199 root->root_key.objectid,
7200 btrfs_header_level(buf), 0,
7201 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7202 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7203 buf->len, parent,
0b246afa
JM
7204 root->root_key.objectid,
7205 btrfs_header_level(buf),
7be07912 7206 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7207 &old_ref_mod, &new_ref_mod);
79787eaa 7208 BUG_ON(ret); /* -ENOMEM */
d7eae340 7209 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7210 }
7211
0a16c7d7 7212 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7213 struct btrfs_block_group_cache *cache;
7214
f0486c68 7215 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7216 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7217 if (!ret)
37be25bc 7218 goto out;
f0486c68
YZ
7219 }
7220
4da8b76d 7221 pin = 0;
0b246afa 7222 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7223
f0486c68 7224 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7225 pin_down_extent(fs_info, cache, buf->start,
7226 buf->len, 1);
6219872d 7227 btrfs_put_block_group(cache);
37be25bc 7228 goto out;
f0486c68
YZ
7229 }
7230
7231 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7232
7233 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7234 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7235 btrfs_put_block_group(cache);
71ff6437 7236 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7237 }
7238out:
b150a4f1 7239 if (pin)
0b246afa 7240 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
b150a4f1
JB
7241 root->root_key.objectid);
7242
0a16c7d7
OS
7243 if (last_ref) {
7244 /*
7245 * Deleting the buffer, clear the corrupt flag since it doesn't
7246 * matter anymore.
7247 */
7248 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7249 }
f0486c68
YZ
7250}
7251
79787eaa 7252/* Can return -ENOMEM */
2ff7e61e 7253int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7254 struct btrfs_root *root,
66d7e7f0 7255 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7256 u64 owner, u64 offset)
925baedd 7257{
84f7d8e6 7258 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7259 int old_ref_mod, new_ref_mod;
925baedd
CM
7260 int ret;
7261
f5ee5c9a 7262 if (btrfs_is_testing(fs_info))
faa2dbf0 7263 return 0;
fccb84c9 7264
fd708b81
JB
7265 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7266 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7267 root_objectid, owner, offset,
7268 BTRFS_DROP_DELAYED_REF);
7269
56bec294
CM
7270 /*
7271 * tree log blocks never actually go into the extent allocation
7272 * tree, just update pinning info and exit early.
56bec294 7273 */
5d4f98a2
YZ
7274 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7275 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7276 /* unlocks the pinned mutex */
2ff7e61e 7277 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7278 old_ref_mod = new_ref_mod = 0;
56bec294 7279 ret = 0;
5d4f98a2 7280 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7281 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7282 num_bytes, parent,
7283 root_objectid, (int)owner,
7284 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7285 &old_ref_mod, &new_ref_mod);
5d4f98a2 7286 } else {
66d7e7f0 7287 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7288 num_bytes, parent,
7289 root_objectid, owner, offset,
7290 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7291 &old_ref_mod, &new_ref_mod);
56bec294 7292 }
d7eae340
OS
7293
7294 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7295 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7296
925baedd
CM
7297 return ret;
7298}
7299
817d52f8
JB
7300/*
7301 * when we wait for progress in the block group caching, its because
7302 * our allocation attempt failed at least once. So, we must sleep
7303 * and let some progress happen before we try again.
7304 *
7305 * This function will sleep at least once waiting for new free space to
7306 * show up, and then it will check the block group free space numbers
7307 * for our min num_bytes. Another option is to have it go ahead
7308 * and look in the rbtree for a free extent of a given size, but this
7309 * is a good start.
36cce922
JB
7310 *
7311 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7312 * any of the information in this block group.
817d52f8 7313 */
36cce922 7314static noinline void
817d52f8
JB
7315wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7316 u64 num_bytes)
7317{
11833d66 7318 struct btrfs_caching_control *caching_ctl;
817d52f8 7319
11833d66
YZ
7320 caching_ctl = get_caching_control(cache);
7321 if (!caching_ctl)
36cce922 7322 return;
817d52f8 7323
11833d66 7324 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7325 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7326
7327 put_caching_control(caching_ctl);
11833d66
YZ
7328}
7329
7330static noinline int
7331wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7332{
7333 struct btrfs_caching_control *caching_ctl;
36cce922 7334 int ret = 0;
11833d66
YZ
7335
7336 caching_ctl = get_caching_control(cache);
7337 if (!caching_ctl)
36cce922 7338 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7339
7340 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7341 if (cache->cached == BTRFS_CACHE_ERROR)
7342 ret = -EIO;
11833d66 7343 put_caching_control(caching_ctl);
36cce922 7344 return ret;
817d52f8
JB
7345}
7346
6ab0a202
JM
7347static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7348 [BTRFS_RAID_RAID10] = "raid10",
7349 [BTRFS_RAID_RAID1] = "raid1",
7350 [BTRFS_RAID_DUP] = "dup",
7351 [BTRFS_RAID_RAID0] = "raid0",
7352 [BTRFS_RAID_SINGLE] = "single",
7353 [BTRFS_RAID_RAID5] = "raid5",
7354 [BTRFS_RAID_RAID6] = "raid6",
7355};
7356
1b8e5df6 7357static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7358{
7359 if (type >= BTRFS_NR_RAID_TYPES)
7360 return NULL;
7361
7362 return btrfs_raid_type_names[type];
7363}
7364
817d52f8 7365enum btrfs_loop_type {
285ff5af
JB
7366 LOOP_CACHING_NOWAIT = 0,
7367 LOOP_CACHING_WAIT = 1,
7368 LOOP_ALLOC_CHUNK = 2,
7369 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7370};
7371
e570fd27
MX
7372static inline void
7373btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7374 int delalloc)
7375{
7376 if (delalloc)
7377 down_read(&cache->data_rwsem);
7378}
7379
7380static inline void
7381btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7382 int delalloc)
7383{
7384 btrfs_get_block_group(cache);
7385 if (delalloc)
7386 down_read(&cache->data_rwsem);
7387}
7388
7389static struct btrfs_block_group_cache *
7390btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7391 struct btrfs_free_cluster *cluster,
7392 int delalloc)
7393{
89771cc9 7394 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7395
e570fd27 7396 spin_lock(&cluster->refill_lock);
6719afdc
GU
7397 while (1) {
7398 used_bg = cluster->block_group;
7399 if (!used_bg)
7400 return NULL;
7401
7402 if (used_bg == block_group)
e570fd27
MX
7403 return used_bg;
7404
6719afdc 7405 btrfs_get_block_group(used_bg);
e570fd27 7406
6719afdc
GU
7407 if (!delalloc)
7408 return used_bg;
e570fd27 7409
6719afdc
GU
7410 if (down_read_trylock(&used_bg->data_rwsem))
7411 return used_bg;
e570fd27 7412
6719afdc 7413 spin_unlock(&cluster->refill_lock);
e570fd27 7414
e321f8a8
LB
7415 /* We should only have one-level nested. */
7416 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7417
6719afdc
GU
7418 spin_lock(&cluster->refill_lock);
7419 if (used_bg == cluster->block_group)
7420 return used_bg;
e570fd27 7421
6719afdc
GU
7422 up_read(&used_bg->data_rwsem);
7423 btrfs_put_block_group(used_bg);
7424 }
e570fd27
MX
7425}
7426
7427static inline void
7428btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7429 int delalloc)
7430{
7431 if (delalloc)
7432 up_read(&cache->data_rwsem);
7433 btrfs_put_block_group(cache);
7434}
7435
fec577fb
CM
7436/*
7437 * walks the btree of allocated extents and find a hole of a given size.
7438 * The key ins is changed to record the hole:
a4820398 7439 * ins->objectid == start position
62e2749e 7440 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7441 * ins->offset == the size of the hole.
fec577fb 7442 * Any available blocks before search_start are skipped.
a4820398
MX
7443 *
7444 * If there is no suitable free space, we will record the max size of
7445 * the free space extent currently.
fec577fb 7446 */
87bde3cd 7447static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7448 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7449 u64 hint_byte, struct btrfs_key *ins,
7450 u64 flags, int delalloc)
fec577fb 7451{
80eb234a 7452 int ret = 0;
0b246afa 7453 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7454 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7455 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7456 u64 search_start = 0;
a4820398 7457 u64 max_extent_size = 0;
c759c4e1 7458 u64 empty_cluster = 0;
80eb234a 7459 struct btrfs_space_info *space_info;
fa9c0d79 7460 int loop = 0;
3e72ee88 7461 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7462 bool failed_cluster_refill = false;
1cdda9b8 7463 bool failed_alloc = false;
67377734 7464 bool use_cluster = true;
60d2adbb 7465 bool have_caching_bg = false;
13a0db5a 7466 bool orig_have_caching_bg = false;
a5e681d9 7467 bool full_search = false;
fec577fb 7468
0b246afa 7469 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7470 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7471 ins->objectid = 0;
7472 ins->offset = 0;
b1a4d965 7473
71ff6437 7474 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7475
0b246afa 7476 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7477 if (!space_info) {
0b246afa 7478 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7479 return -ENOSPC;
7480 }
2552d17e 7481
67377734 7482 /*
4f4db217
JB
7483 * If our free space is heavily fragmented we may not be able to make
7484 * big contiguous allocations, so instead of doing the expensive search
7485 * for free space, simply return ENOSPC with our max_extent_size so we
7486 * can go ahead and search for a more manageable chunk.
7487 *
7488 * If our max_extent_size is large enough for our allocation simply
7489 * disable clustering since we will likely not be able to find enough
7490 * space to create a cluster and induce latency trying.
67377734 7491 */
4f4db217
JB
7492 if (unlikely(space_info->max_extent_size)) {
7493 spin_lock(&space_info->lock);
7494 if (space_info->max_extent_size &&
7495 num_bytes > space_info->max_extent_size) {
7496 ins->offset = space_info->max_extent_size;
7497 spin_unlock(&space_info->lock);
7498 return -ENOSPC;
7499 } else if (space_info->max_extent_size) {
7500 use_cluster = false;
7501 }
7502 spin_unlock(&space_info->lock);
fa9c0d79 7503 }
0f9dd46c 7504
2ff7e61e 7505 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7506 if (last_ptr) {
fa9c0d79
CM
7507 spin_lock(&last_ptr->lock);
7508 if (last_ptr->block_group)
7509 hint_byte = last_ptr->window_start;
c759c4e1
JB
7510 if (last_ptr->fragmented) {
7511 /*
7512 * We still set window_start so we can keep track of the
7513 * last place we found an allocation to try and save
7514 * some time.
7515 */
7516 hint_byte = last_ptr->window_start;
7517 use_cluster = false;
7518 }
fa9c0d79 7519 spin_unlock(&last_ptr->lock);
239b14b3 7520 }
fa9c0d79 7521
2ff7e61e 7522 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7523 search_start = max(search_start, hint_byte);
2552d17e 7524 if (search_start == hint_byte) {
0b246afa 7525 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7526 /*
7527 * we don't want to use the block group if it doesn't match our
7528 * allocation bits, or if its not cached.
ccf0e725
JB
7529 *
7530 * However if we are re-searching with an ideal block group
7531 * picked out then we don't care that the block group is cached.
817d52f8 7532 */
b6919a58 7533 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7534 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7535 down_read(&space_info->groups_sem);
44fb5511
CM
7536 if (list_empty(&block_group->list) ||
7537 block_group->ro) {
7538 /*
7539 * someone is removing this block group,
7540 * we can't jump into the have_block_group
7541 * target because our list pointers are not
7542 * valid
7543 */
7544 btrfs_put_block_group(block_group);
7545 up_read(&space_info->groups_sem);
ccf0e725 7546 } else {
3e72ee88
QW
7547 index = btrfs_bg_flags_to_raid_index(
7548 block_group->flags);
e570fd27 7549 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7550 goto have_block_group;
ccf0e725 7551 }
2552d17e 7552 } else if (block_group) {
fa9c0d79 7553 btrfs_put_block_group(block_group);
2552d17e 7554 }
42e70e7a 7555 }
2552d17e 7556search:
60d2adbb 7557 have_caching_bg = false;
3e72ee88 7558 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7559 full_search = true;
80eb234a 7560 down_read(&space_info->groups_sem);
b742bb82
YZ
7561 list_for_each_entry(block_group, &space_info->block_groups[index],
7562 list) {
6226cb0a 7563 u64 offset;
817d52f8 7564 int cached;
8a1413a2 7565
14443937
JM
7566 /* If the block group is read-only, we can skip it entirely. */
7567 if (unlikely(block_group->ro))
7568 continue;
7569
e570fd27 7570 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7571 search_start = block_group->key.objectid;
42e70e7a 7572
83a50de9
CM
7573 /*
7574 * this can happen if we end up cycling through all the
7575 * raid types, but we want to make sure we only allocate
7576 * for the proper type.
7577 */
b6919a58 7578 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7579 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7580 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7581 BTRFS_BLOCK_GROUP_RAID5 |
7582 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7583 BTRFS_BLOCK_GROUP_RAID10;
7584
7585 /*
7586 * if they asked for extra copies and this block group
7587 * doesn't provide them, bail. This does allow us to
7588 * fill raid0 from raid1.
7589 */
b6919a58 7590 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7591 goto loop;
7592 }
7593
2552d17e 7594have_block_group:
291c7d2f
JB
7595 cached = block_group_cache_done(block_group);
7596 if (unlikely(!cached)) {
a5e681d9 7597 have_caching_bg = true;
f6373bf3 7598 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7599 BUG_ON(ret < 0);
7600 ret = 0;
817d52f8
JB
7601 }
7602
36cce922
JB
7603 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7604 goto loop;
0f9dd46c 7605
0a24325e 7606 /*
062c05c4
AO
7607 * Ok we want to try and use the cluster allocator, so
7608 * lets look there
0a24325e 7609 */
c759c4e1 7610 if (last_ptr && use_cluster) {
215a63d1 7611 struct btrfs_block_group_cache *used_block_group;
8de972b4 7612 unsigned long aligned_cluster;
fa9c0d79
CM
7613 /*
7614 * the refill lock keeps out other
7615 * people trying to start a new cluster
7616 */
e570fd27
MX
7617 used_block_group = btrfs_lock_cluster(block_group,
7618 last_ptr,
7619 delalloc);
7620 if (!used_block_group)
44fb5511 7621 goto refill_cluster;
274bd4fb 7622
e570fd27
MX
7623 if (used_block_group != block_group &&
7624 (used_block_group->ro ||
7625 !block_group_bits(used_block_group, flags)))
7626 goto release_cluster;
44fb5511 7627
274bd4fb 7628 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7629 last_ptr,
7630 num_bytes,
7631 used_block_group->key.objectid,
7632 &max_extent_size);
fa9c0d79
CM
7633 if (offset) {
7634 /* we have a block, we're done */
7635 spin_unlock(&last_ptr->refill_lock);
71ff6437 7636 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7637 used_block_group,
7638 search_start, num_bytes);
215a63d1 7639 if (used_block_group != block_group) {
e570fd27
MX
7640 btrfs_release_block_group(block_group,
7641 delalloc);
215a63d1
MX
7642 block_group = used_block_group;
7643 }
fa9c0d79
CM
7644 goto checks;
7645 }
7646
274bd4fb 7647 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7648release_cluster:
062c05c4
AO
7649 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7650 * set up a new clusters, so lets just skip it
7651 * and let the allocator find whatever block
7652 * it can find. If we reach this point, we
7653 * will have tried the cluster allocator
7654 * plenty of times and not have found
7655 * anything, so we are likely way too
7656 * fragmented for the clustering stuff to find
a5f6f719
AO
7657 * anything.
7658 *
7659 * However, if the cluster is taken from the
7660 * current block group, release the cluster
7661 * first, so that we stand a better chance of
7662 * succeeding in the unclustered
7663 * allocation. */
7664 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7665 used_block_group != block_group) {
062c05c4 7666 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7667 btrfs_release_block_group(used_block_group,
7668 delalloc);
062c05c4
AO
7669 goto unclustered_alloc;
7670 }
7671
fa9c0d79
CM
7672 /*
7673 * this cluster didn't work out, free it and
7674 * start over
7675 */
7676 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7677
e570fd27
MX
7678 if (used_block_group != block_group)
7679 btrfs_release_block_group(used_block_group,
7680 delalloc);
7681refill_cluster:
a5f6f719
AO
7682 if (loop >= LOOP_NO_EMPTY_SIZE) {
7683 spin_unlock(&last_ptr->refill_lock);
7684 goto unclustered_alloc;
7685 }
7686
8de972b4
CM
7687 aligned_cluster = max_t(unsigned long,
7688 empty_cluster + empty_size,
7689 block_group->full_stripe_len);
7690
fa9c0d79 7691 /* allocate a cluster in this block group */
2ff7e61e 7692 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7693 last_ptr, search_start,
7694 num_bytes,
7695 aligned_cluster);
fa9c0d79
CM
7696 if (ret == 0) {
7697 /*
7698 * now pull our allocation out of this
7699 * cluster
7700 */
7701 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7702 last_ptr,
7703 num_bytes,
7704 search_start,
7705 &max_extent_size);
fa9c0d79
CM
7706 if (offset) {
7707 /* we found one, proceed */
7708 spin_unlock(&last_ptr->refill_lock);
71ff6437 7709 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7710 block_group, search_start,
7711 num_bytes);
fa9c0d79
CM
7712 goto checks;
7713 }
0a24325e
JB
7714 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7715 && !failed_cluster_refill) {
817d52f8
JB
7716 spin_unlock(&last_ptr->refill_lock);
7717
0a24325e 7718 failed_cluster_refill = true;
817d52f8
JB
7719 wait_block_group_cache_progress(block_group,
7720 num_bytes + empty_cluster + empty_size);
7721 goto have_block_group;
fa9c0d79 7722 }
817d52f8 7723
fa9c0d79
CM
7724 /*
7725 * at this point we either didn't find a cluster
7726 * or we weren't able to allocate a block from our
7727 * cluster. Free the cluster we've been trying
7728 * to use, and go to the next block group
7729 */
0a24325e 7730 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7731 spin_unlock(&last_ptr->refill_lock);
0a24325e 7732 goto loop;
fa9c0d79
CM
7733 }
7734
062c05c4 7735unclustered_alloc:
c759c4e1
JB
7736 /*
7737 * We are doing an unclustered alloc, set the fragmented flag so
7738 * we don't bother trying to setup a cluster again until we get
7739 * more space.
7740 */
7741 if (unlikely(last_ptr)) {
7742 spin_lock(&last_ptr->lock);
7743 last_ptr->fragmented = 1;
7744 spin_unlock(&last_ptr->lock);
7745 }
0c9b36e0
LB
7746 if (cached) {
7747 struct btrfs_free_space_ctl *ctl =
7748 block_group->free_space_ctl;
7749
7750 spin_lock(&ctl->tree_lock);
7751 if (ctl->free_space <
7752 num_bytes + empty_cluster + empty_size) {
7753 if (ctl->free_space > max_extent_size)
7754 max_extent_size = ctl->free_space;
7755 spin_unlock(&ctl->tree_lock);
7756 goto loop;
7757 }
7758 spin_unlock(&ctl->tree_lock);
a5f6f719 7759 }
a5f6f719 7760
6226cb0a 7761 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7762 num_bytes, empty_size,
7763 &max_extent_size);
1cdda9b8
JB
7764 /*
7765 * If we didn't find a chunk, and we haven't failed on this
7766 * block group before, and this block group is in the middle of
7767 * caching and we are ok with waiting, then go ahead and wait
7768 * for progress to be made, and set failed_alloc to true.
7769 *
7770 * If failed_alloc is true then we've already waited on this
7771 * block group once and should move on to the next block group.
7772 */
7773 if (!offset && !failed_alloc && !cached &&
7774 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7775 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7776 num_bytes + empty_size);
7777 failed_alloc = true;
817d52f8 7778 goto have_block_group;
1cdda9b8
JB
7779 } else if (!offset) {
7780 goto loop;
817d52f8 7781 }
fa9c0d79 7782checks:
0b246afa 7783 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7784
2552d17e
JB
7785 /* move on to the next group */
7786 if (search_start + num_bytes >
215a63d1
MX
7787 block_group->key.objectid + block_group->key.offset) {
7788 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7789 goto loop;
6226cb0a 7790 }
f5a31e16 7791
f0486c68 7792 if (offset < search_start)
215a63d1 7793 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7794 search_start - offset);
7795 BUG_ON(offset > search_start);
2552d17e 7796
18513091
WX
7797 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7798 num_bytes, delalloc);
f0486c68 7799 if (ret == -EAGAIN) {
215a63d1 7800 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7801 goto loop;
0f9dd46c 7802 }
9cfa3e34 7803 btrfs_inc_block_group_reservations(block_group);
0b86a832 7804
f0486c68 7805 /* we are all good, lets return */
2552d17e
JB
7806 ins->objectid = search_start;
7807 ins->offset = num_bytes;
d2fb3437 7808
71ff6437 7809 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7810 search_start, num_bytes);
e570fd27 7811 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7812 break;
7813loop:
0a24325e 7814 failed_cluster_refill = false;
1cdda9b8 7815 failed_alloc = false;
3e72ee88
QW
7816 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7817 index);
e570fd27 7818 btrfs_release_block_group(block_group, delalloc);
14443937 7819 cond_resched();
2552d17e
JB
7820 }
7821 up_read(&space_info->groups_sem);
7822
13a0db5a 7823 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7824 && !orig_have_caching_bg)
7825 orig_have_caching_bg = true;
7826
60d2adbb
MX
7827 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7828 goto search;
7829
b742bb82
YZ
7830 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7831 goto search;
7832
285ff5af 7833 /*
ccf0e725
JB
7834 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7835 * caching kthreads as we move along
817d52f8
JB
7836 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7837 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7838 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7839 * again
fa9c0d79 7840 */
723bda20 7841 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7842 index = 0;
a5e681d9
JB
7843 if (loop == LOOP_CACHING_NOWAIT) {
7844 /*
7845 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7846 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7847 * full search through.
7848 */
13a0db5a 7849 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7850 loop = LOOP_CACHING_WAIT;
7851 else
7852 loop = LOOP_ALLOC_CHUNK;
7853 } else {
7854 loop++;
7855 }
7856
817d52f8 7857 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7858 struct btrfs_trans_handle *trans;
f017f15f
WS
7859 int exist = 0;
7860
7861 trans = current->journal_info;
7862 if (trans)
7863 exist = 1;
7864 else
7865 trans = btrfs_join_transaction(root);
00361589 7866
00361589
JB
7867 if (IS_ERR(trans)) {
7868 ret = PTR_ERR(trans);
7869 goto out;
7870 }
7871
2ff7e61e 7872 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7873 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7874
7875 /*
7876 * If we can't allocate a new chunk we've already looped
7877 * through at least once, move on to the NO_EMPTY_SIZE
7878 * case.
7879 */
7880 if (ret == -ENOSPC)
7881 loop = LOOP_NO_EMPTY_SIZE;
7882
ea658bad
JB
7883 /*
7884 * Do not bail out on ENOSPC since we
7885 * can do more things.
7886 */
00361589 7887 if (ret < 0 && ret != -ENOSPC)
66642832 7888 btrfs_abort_transaction(trans, ret);
00361589
JB
7889 else
7890 ret = 0;
f017f15f 7891 if (!exist)
3a45bb20 7892 btrfs_end_transaction(trans);
00361589 7893 if (ret)
ea658bad 7894 goto out;
2552d17e
JB
7895 }
7896
723bda20 7897 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7898 /*
7899 * Don't loop again if we already have no empty_size and
7900 * no empty_cluster.
7901 */
7902 if (empty_size == 0 &&
7903 empty_cluster == 0) {
7904 ret = -ENOSPC;
7905 goto out;
7906 }
723bda20
JB
7907 empty_size = 0;
7908 empty_cluster = 0;
fa9c0d79 7909 }
723bda20
JB
7910
7911 goto search;
2552d17e
JB
7912 } else if (!ins->objectid) {
7913 ret = -ENOSPC;
d82a6f1d 7914 } else if (ins->objectid) {
c759c4e1
JB
7915 if (!use_cluster && last_ptr) {
7916 spin_lock(&last_ptr->lock);
7917 last_ptr->window_start = ins->objectid;
7918 spin_unlock(&last_ptr->lock);
7919 }
80eb234a 7920 ret = 0;
be744175 7921 }
79787eaa 7922out:
4f4db217
JB
7923 if (ret == -ENOSPC) {
7924 spin_lock(&space_info->lock);
7925 space_info->max_extent_size = max_extent_size;
7926 spin_unlock(&space_info->lock);
a4820398 7927 ins->offset = max_extent_size;
4f4db217 7928 }
0f70abe2 7929 return ret;
fec577fb 7930}
ec44a35c 7931
ab8d0fc4
JM
7932static void dump_space_info(struct btrfs_fs_info *fs_info,
7933 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7934 int dump_block_groups)
0f9dd46c
JB
7935{
7936 struct btrfs_block_group_cache *cache;
b742bb82 7937 int index = 0;
0f9dd46c 7938
9ed74f2d 7939 spin_lock(&info->lock);
ab8d0fc4
JM
7940 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7941 info->flags,
4136135b
LB
7942 info->total_bytes - btrfs_space_info_used(info, true),
7943 info->full ? "" : "not ");
ab8d0fc4
JM
7944 btrfs_info(fs_info,
7945 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7946 info->total_bytes, info->bytes_used, info->bytes_pinned,
7947 info->bytes_reserved, info->bytes_may_use,
7948 info->bytes_readonly);
9ed74f2d
JB
7949 spin_unlock(&info->lock);
7950
7951 if (!dump_block_groups)
7952 return;
0f9dd46c 7953
80eb234a 7954 down_read(&info->groups_sem);
b742bb82
YZ
7955again:
7956 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7957 spin_lock(&cache->lock);
ab8d0fc4
JM
7958 btrfs_info(fs_info,
7959 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7960 cache->key.objectid, cache->key.offset,
7961 btrfs_block_group_used(&cache->item), cache->pinned,
7962 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7963 btrfs_dump_free_space(cache, bytes);
7964 spin_unlock(&cache->lock);
7965 }
b742bb82
YZ
7966 if (++index < BTRFS_NR_RAID_TYPES)
7967 goto again;
80eb234a 7968 up_read(&info->groups_sem);
0f9dd46c 7969}
e8569813 7970
18513091 7971int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7972 u64 num_bytes, u64 min_alloc_size,
7973 u64 empty_size, u64 hint_byte,
e570fd27 7974 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7975{
ab8d0fc4 7976 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7977 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7978 u64 flags;
fec577fb 7979 int ret;
925baedd 7980
1b86826d 7981 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7982again:
0b246afa 7983 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7984 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7985 hint_byte, ins, flags, delalloc);
9cfa3e34 7986 if (!ret && !is_data) {
ab8d0fc4 7987 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7988 } else if (ret == -ENOSPC) {
a4820398
MX
7989 if (!final_tried && ins->offset) {
7990 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7991 num_bytes = round_down(num_bytes,
0b246afa 7992 fs_info->sectorsize);
9e622d6b 7993 num_bytes = max(num_bytes, min_alloc_size);
18513091 7994 ram_bytes = num_bytes;
9e622d6b
MX
7995 if (num_bytes == min_alloc_size)
7996 final_tried = true;
7997 goto again;
ab8d0fc4 7998 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7999 struct btrfs_space_info *sinfo;
8000
ab8d0fc4 8001 sinfo = __find_space_info(fs_info, flags);
0b246afa 8002 btrfs_err(fs_info,
5d163e0e
JM
8003 "allocation failed flags %llu, wanted %llu",
8004 flags, num_bytes);
53804280 8005 if (sinfo)
ab8d0fc4 8006 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8007 }
925baedd 8008 }
0f9dd46c
JB
8009
8010 return ret;
e6dcd2dc
CM
8011}
8012
2ff7e61e 8013static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8014 u64 start, u64 len,
8015 int pin, int delalloc)
65b51a00 8016{
0f9dd46c 8017 struct btrfs_block_group_cache *cache;
1f3c79a2 8018 int ret = 0;
0f9dd46c 8019
0b246afa 8020 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8021 if (!cache) {
0b246afa
JM
8022 btrfs_err(fs_info, "Unable to find block group for %llu",
8023 start);
0f9dd46c
JB
8024 return -ENOSPC;
8025 }
1f3c79a2 8026
e688b725 8027 if (pin)
2ff7e61e 8028 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8029 else {
0b246afa 8030 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8031 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8032 btrfs_add_free_space(cache, start, len);
4824f1f4 8033 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8034 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8035 }
31193213 8036
fa9c0d79 8037 btrfs_put_block_group(cache);
e6dcd2dc
CM
8038 return ret;
8039}
8040
2ff7e61e 8041int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8042 u64 start, u64 len, int delalloc)
e688b725 8043{
2ff7e61e 8044 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8045}
8046
2ff7e61e 8047int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8048 u64 start, u64 len)
8049{
2ff7e61e 8050 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8051}
8052
5d4f98a2 8053static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8054 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8055 u64 parent, u64 root_objectid,
8056 u64 flags, u64 owner, u64 offset,
8057 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8058{
8059 int ret;
e6dcd2dc 8060 struct btrfs_extent_item *extent_item;
5d4f98a2 8061 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8062 struct btrfs_path *path;
5d4f98a2
YZ
8063 struct extent_buffer *leaf;
8064 int type;
8065 u32 size;
26b8003f 8066
5d4f98a2
YZ
8067 if (parent > 0)
8068 type = BTRFS_SHARED_DATA_REF_KEY;
8069 else
8070 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8071
5d4f98a2 8072 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8073
8074 path = btrfs_alloc_path();
db5b493a
TI
8075 if (!path)
8076 return -ENOMEM;
47e4bb98 8077
b9473439 8078 path->leave_spinning = 1;
5d4f98a2
YZ
8079 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8080 ins, size);
79787eaa
JM
8081 if (ret) {
8082 btrfs_free_path(path);
8083 return ret;
8084 }
0f9dd46c 8085
5d4f98a2
YZ
8086 leaf = path->nodes[0];
8087 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8088 struct btrfs_extent_item);
5d4f98a2
YZ
8089 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8090 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8091 btrfs_set_extent_flags(leaf, extent_item,
8092 flags | BTRFS_EXTENT_FLAG_DATA);
8093
8094 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8095 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8096 if (parent > 0) {
8097 struct btrfs_shared_data_ref *ref;
8098 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8099 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8100 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8101 } else {
8102 struct btrfs_extent_data_ref *ref;
8103 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8104 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8105 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8106 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8107 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8108 }
47e4bb98
CM
8109
8110 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8111 btrfs_free_path(path);
f510cfec 8112
1e144fb8
OS
8113 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8114 ins->offset);
8115 if (ret)
8116 return ret;
8117
6202df69 8118 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8119 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8120 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8121 ins->objectid, ins->offset);
f5947066
CM
8122 BUG();
8123 }
71ff6437 8124 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8125 return ret;
8126}
8127
5d4f98a2 8128static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8129 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8130 u64 parent, u64 root_objectid,
8131 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8132 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8133{
8134 int ret;
5d4f98a2
YZ
8135 struct btrfs_extent_item *extent_item;
8136 struct btrfs_tree_block_info *block_info;
8137 struct btrfs_extent_inline_ref *iref;
8138 struct btrfs_path *path;
8139 struct extent_buffer *leaf;
3173a18f 8140 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8141 u64 num_bytes = ins->offset;
0b246afa 8142 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8143
8144 if (!skinny_metadata)
8145 size += sizeof(*block_info);
1c2308f8 8146
5d4f98a2 8147 path = btrfs_alloc_path();
857cc2fc 8148 if (!path) {
2ff7e61e 8149 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8150 fs_info->nodesize);
d8926bb3 8151 return -ENOMEM;
857cc2fc 8152 }
56bec294 8153
5d4f98a2
YZ
8154 path->leave_spinning = 1;
8155 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8156 ins, size);
79787eaa 8157 if (ret) {
dd825259 8158 btrfs_free_path(path);
2ff7e61e 8159 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8160 fs_info->nodesize);
79787eaa
JM
8161 return ret;
8162 }
5d4f98a2
YZ
8163
8164 leaf = path->nodes[0];
8165 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8166 struct btrfs_extent_item);
8167 btrfs_set_extent_refs(leaf, extent_item, 1);
8168 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8169 btrfs_set_extent_flags(leaf, extent_item,
8170 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8171
3173a18f
JB
8172 if (skinny_metadata) {
8173 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8174 num_bytes = fs_info->nodesize;
3173a18f
JB
8175 } else {
8176 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8177 btrfs_set_tree_block_key(leaf, block_info, key);
8178 btrfs_set_tree_block_level(leaf, block_info, level);
8179 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8180 }
5d4f98a2 8181
5d4f98a2
YZ
8182 if (parent > 0) {
8183 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8184 btrfs_set_extent_inline_ref_type(leaf, iref,
8185 BTRFS_SHARED_BLOCK_REF_KEY);
8186 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8187 } else {
8188 btrfs_set_extent_inline_ref_type(leaf, iref,
8189 BTRFS_TREE_BLOCK_REF_KEY);
8190 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8191 }
8192
8193 btrfs_mark_buffer_dirty(leaf);
8194 btrfs_free_path(path);
8195
1e144fb8
OS
8196 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8197 num_bytes);
8198 if (ret)
8199 return ret;
8200
6202df69
JM
8201 ret = update_block_group(trans, fs_info, ins->objectid,
8202 fs_info->nodesize, 1);
79787eaa 8203 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8204 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8205 ins->objectid, ins->offset);
5d4f98a2
YZ
8206 BUG();
8207 }
0be5dc67 8208
71ff6437 8209 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8210 fs_info->nodesize);
5d4f98a2
YZ
8211 return ret;
8212}
8213
8214int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8215 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8216 u64 offset, u64 ram_bytes,
8217 struct btrfs_key *ins)
5d4f98a2 8218{
84f7d8e6 8219 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8220 int ret;
8221
84f7d8e6 8222 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8223
fd708b81
JB
8224 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8225 root->root_key.objectid, owner, offset,
8226 BTRFS_ADD_DELAYED_EXTENT);
8227
0b246afa 8228 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8229 ins->offset, 0,
8230 root->root_key.objectid, owner,
7be07912
OS
8231 offset, ram_bytes,
8232 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8233 return ret;
8234}
e02119d5
CM
8235
8236/*
8237 * this is used by the tree logging recovery code. It records that
8238 * an extent has been allocated and makes sure to clear the free
8239 * space cache bits as well
8240 */
5d4f98a2 8241int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8242 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8243 u64 root_objectid, u64 owner, u64 offset,
8244 struct btrfs_key *ins)
e02119d5
CM
8245{
8246 int ret;
8247 struct btrfs_block_group_cache *block_group;
ed7a6948 8248 struct btrfs_space_info *space_info;
11833d66 8249
8c2a1a30
JB
8250 /*
8251 * Mixed block groups will exclude before processing the log so we only
01327610 8252 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8253 */
0b246afa 8254 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8255 ret = __exclude_logged_extent(fs_info, ins->objectid,
8256 ins->offset);
b50c6e25 8257 if (ret)
8c2a1a30 8258 return ret;
11833d66
YZ
8259 }
8260
0b246afa 8261 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8262 if (!block_group)
8263 return -EINVAL;
8264
ed7a6948
WX
8265 space_info = block_group->space_info;
8266 spin_lock(&space_info->lock);
8267 spin_lock(&block_group->lock);
8268 space_info->bytes_reserved += ins->offset;
8269 block_group->reserved += ins->offset;
8270 spin_unlock(&block_group->lock);
8271 spin_unlock(&space_info->lock);
8272
2ff7e61e 8273 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8274 0, owner, offset, ins, 1);
b50c6e25 8275 btrfs_put_block_group(block_group);
e02119d5
CM
8276 return ret;
8277}
8278
48a3b636
ES
8279static struct extent_buffer *
8280btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8281 u64 bytenr, int level)
65b51a00 8282{
0b246afa 8283 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8284 struct extent_buffer *buf;
8285
2ff7e61e 8286 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8287 if (IS_ERR(buf))
8288 return buf;
8289
65b51a00 8290 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8291 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8292 btrfs_tree_lock(buf);
7c302b49 8293 clean_tree_block(fs_info, buf);
3083ee2e 8294 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8295
8296 btrfs_set_lock_blocking(buf);
4db8c528 8297 set_extent_buffer_uptodate(buf);
b4ce94de 8298
d0c803c4 8299 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8300 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8301 /*
8302 * we allow two log transactions at a time, use different
8303 * EXENT bit to differentiate dirty pages.
8304 */
656f30db 8305 if (buf->log_index == 0)
8cef4e16
YZ
8306 set_extent_dirty(&root->dirty_log_pages, buf->start,
8307 buf->start + buf->len - 1, GFP_NOFS);
8308 else
8309 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8310 buf->start + buf->len - 1);
d0c803c4 8311 } else {
656f30db 8312 buf->log_index = -1;
d0c803c4 8313 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8314 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8315 }
64c12921 8316 trans->dirty = true;
b4ce94de 8317 /* this returns a buffer locked for blocking */
65b51a00
CM
8318 return buf;
8319}
8320
f0486c68
YZ
8321static struct btrfs_block_rsv *
8322use_block_rsv(struct btrfs_trans_handle *trans,
8323 struct btrfs_root *root, u32 blocksize)
8324{
0b246afa 8325 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8326 struct btrfs_block_rsv *block_rsv;
0b246afa 8327 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8328 int ret;
d88033db 8329 bool global_updated = false;
f0486c68
YZ
8330
8331 block_rsv = get_block_rsv(trans, root);
8332
b586b323
MX
8333 if (unlikely(block_rsv->size == 0))
8334 goto try_reserve;
d88033db 8335again:
f0486c68
YZ
8336 ret = block_rsv_use_bytes(block_rsv, blocksize);
8337 if (!ret)
8338 return block_rsv;
8339
b586b323
MX
8340 if (block_rsv->failfast)
8341 return ERR_PTR(ret);
8342
d88033db
MX
8343 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8344 global_updated = true;
0b246afa 8345 update_global_block_rsv(fs_info);
d88033db
MX
8346 goto again;
8347 }
8348
0b246afa 8349 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8350 static DEFINE_RATELIMIT_STATE(_rs,
8351 DEFAULT_RATELIMIT_INTERVAL * 10,
8352 /*DEFAULT_RATELIMIT_BURST*/ 1);
8353 if (__ratelimit(&_rs))
8354 WARN(1, KERN_DEBUG
efe120a0 8355 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8356 }
8357try_reserve:
8358 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8359 BTRFS_RESERVE_NO_FLUSH);
8360 if (!ret)
8361 return block_rsv;
8362 /*
8363 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8364 * the global reserve if its space type is the same as the global
8365 * reservation.
b586b323 8366 */
5881cfc9
MX
8367 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8368 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8369 ret = block_rsv_use_bytes(global_rsv, blocksize);
8370 if (!ret)
8371 return global_rsv;
8372 }
8373 return ERR_PTR(ret);
f0486c68
YZ
8374}
8375
8c2a3ca2
JB
8376static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8377 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8378{
8379 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 8380 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
8381}
8382
fec577fb 8383/*
f0486c68 8384 * finds a free extent and does all the dirty work required for allocation
67b7859e 8385 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8386 */
4d75f8a9 8387struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8388 struct btrfs_root *root,
8389 u64 parent, u64 root_objectid,
8390 const struct btrfs_disk_key *key,
8391 int level, u64 hint,
8392 u64 empty_size)
fec577fb 8393{
0b246afa 8394 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8395 struct btrfs_key ins;
f0486c68 8396 struct btrfs_block_rsv *block_rsv;
5f39d397 8397 struct extent_buffer *buf;
67b7859e 8398 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8399 u64 flags = 0;
8400 int ret;
0b246afa
JM
8401 u32 blocksize = fs_info->nodesize;
8402 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8403
05653ef3 8404#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8405 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8406 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8407 level);
faa2dbf0
JB
8408 if (!IS_ERR(buf))
8409 root->alloc_bytenr += blocksize;
8410 return buf;
8411 }
05653ef3 8412#endif
fccb84c9 8413
f0486c68
YZ
8414 block_rsv = use_block_rsv(trans, root, blocksize);
8415 if (IS_ERR(block_rsv))
8416 return ERR_CAST(block_rsv);
8417
18513091 8418 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8419 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8420 if (ret)
8421 goto out_unuse;
55c69072 8422
fe864576 8423 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8424 if (IS_ERR(buf)) {
8425 ret = PTR_ERR(buf);
8426 goto out_free_reserved;
8427 }
f0486c68
YZ
8428
8429 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8430 if (parent == 0)
8431 parent = ins.objectid;
8432 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8433 } else
8434 BUG_ON(parent > 0);
8435
8436 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8437 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8438 if (!extent_op) {
8439 ret = -ENOMEM;
8440 goto out_free_buf;
8441 }
f0486c68
YZ
8442 if (key)
8443 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8444 else
8445 memset(&extent_op->key, 0, sizeof(extent_op->key));
8446 extent_op->flags_to_set = flags;
35b3ad50
DS
8447 extent_op->update_key = skinny_metadata ? false : true;
8448 extent_op->update_flags = true;
8449 extent_op->is_data = false;
b1c79e09 8450 extent_op->level = level;
f0486c68 8451
fd708b81
JB
8452 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8453 root_objectid, level, 0,
8454 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8455 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8456 ins.offset, parent,
8457 root_objectid, level,
67b7859e 8458 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8459 extent_op, NULL, NULL);
67b7859e
OS
8460 if (ret)
8461 goto out_free_delayed;
f0486c68 8462 }
fec577fb 8463 return buf;
67b7859e
OS
8464
8465out_free_delayed:
8466 btrfs_free_delayed_extent_op(extent_op);
8467out_free_buf:
8468 free_extent_buffer(buf);
8469out_free_reserved:
2ff7e61e 8470 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8471out_unuse:
0b246afa 8472 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8473 return ERR_PTR(ret);
fec577fb 8474}
a28ec197 8475
2c47e605
YZ
8476struct walk_control {
8477 u64 refs[BTRFS_MAX_LEVEL];
8478 u64 flags[BTRFS_MAX_LEVEL];
8479 struct btrfs_key update_progress;
8480 int stage;
8481 int level;
8482 int shared_level;
8483 int update_ref;
8484 int keep_locks;
1c4850e2
YZ
8485 int reada_slot;
8486 int reada_count;
66d7e7f0 8487 int for_reloc;
2c47e605
YZ
8488};
8489
8490#define DROP_REFERENCE 1
8491#define UPDATE_BACKREF 2
8492
1c4850e2
YZ
8493static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8494 struct btrfs_root *root,
8495 struct walk_control *wc,
8496 struct btrfs_path *path)
6407bf6d 8497{
0b246afa 8498 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8499 u64 bytenr;
8500 u64 generation;
8501 u64 refs;
94fcca9f 8502 u64 flags;
5d4f98a2 8503 u32 nritems;
1c4850e2
YZ
8504 struct btrfs_key key;
8505 struct extent_buffer *eb;
6407bf6d 8506 int ret;
1c4850e2
YZ
8507 int slot;
8508 int nread = 0;
6407bf6d 8509
1c4850e2
YZ
8510 if (path->slots[wc->level] < wc->reada_slot) {
8511 wc->reada_count = wc->reada_count * 2 / 3;
8512 wc->reada_count = max(wc->reada_count, 2);
8513 } else {
8514 wc->reada_count = wc->reada_count * 3 / 2;
8515 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8516 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8517 }
7bb86316 8518
1c4850e2
YZ
8519 eb = path->nodes[wc->level];
8520 nritems = btrfs_header_nritems(eb);
bd56b302 8521
1c4850e2
YZ
8522 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8523 if (nread >= wc->reada_count)
8524 break;
bd56b302 8525
2dd3e67b 8526 cond_resched();
1c4850e2
YZ
8527 bytenr = btrfs_node_blockptr(eb, slot);
8528 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8529
1c4850e2
YZ
8530 if (slot == path->slots[wc->level])
8531 goto reada;
5d4f98a2 8532
1c4850e2
YZ
8533 if (wc->stage == UPDATE_BACKREF &&
8534 generation <= root->root_key.offset)
bd56b302
CM
8535 continue;
8536
94fcca9f 8537 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8538 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8539 wc->level - 1, 1, &refs,
8540 &flags);
79787eaa
JM
8541 /* We don't care about errors in readahead. */
8542 if (ret < 0)
8543 continue;
94fcca9f
YZ
8544 BUG_ON(refs == 0);
8545
1c4850e2 8546 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8547 if (refs == 1)
8548 goto reada;
bd56b302 8549
94fcca9f
YZ
8550 if (wc->level == 1 &&
8551 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8552 continue;
1c4850e2
YZ
8553 if (!wc->update_ref ||
8554 generation <= root->root_key.offset)
8555 continue;
8556 btrfs_node_key_to_cpu(eb, &key, slot);
8557 ret = btrfs_comp_cpu_keys(&key,
8558 &wc->update_progress);
8559 if (ret < 0)
8560 continue;
94fcca9f
YZ
8561 } else {
8562 if (wc->level == 1 &&
8563 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8564 continue;
6407bf6d 8565 }
1c4850e2 8566reada:
2ff7e61e 8567 readahead_tree_block(fs_info, bytenr);
1c4850e2 8568 nread++;
20524f02 8569 }
1c4850e2 8570 wc->reada_slot = slot;
20524f02 8571}
2c47e605 8572
f82d02d9 8573/*
2c016dc2 8574 * helper to process tree block while walking down the tree.
2c47e605 8575 *
2c47e605
YZ
8576 * when wc->stage == UPDATE_BACKREF, this function updates
8577 * back refs for pointers in the block.
8578 *
8579 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8580 */
2c47e605 8581static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8582 struct btrfs_root *root,
2c47e605 8583 struct btrfs_path *path,
94fcca9f 8584 struct walk_control *wc, int lookup_info)
f82d02d9 8585{
2ff7e61e 8586 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8587 int level = wc->level;
8588 struct extent_buffer *eb = path->nodes[level];
2c47e605 8589 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8590 int ret;
8591
2c47e605
YZ
8592 if (wc->stage == UPDATE_BACKREF &&
8593 btrfs_header_owner(eb) != root->root_key.objectid)
8594 return 1;
f82d02d9 8595
2c47e605
YZ
8596 /*
8597 * when reference count of tree block is 1, it won't increase
8598 * again. once full backref flag is set, we never clear it.
8599 */
94fcca9f
YZ
8600 if (lookup_info &&
8601 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8602 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8603 BUG_ON(!path->locks[level]);
2ff7e61e 8604 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8605 eb->start, level, 1,
2c47e605
YZ
8606 &wc->refs[level],
8607 &wc->flags[level]);
79787eaa
JM
8608 BUG_ON(ret == -ENOMEM);
8609 if (ret)
8610 return ret;
2c47e605
YZ
8611 BUG_ON(wc->refs[level] == 0);
8612 }
5d4f98a2 8613
2c47e605
YZ
8614 if (wc->stage == DROP_REFERENCE) {
8615 if (wc->refs[level] > 1)
8616 return 1;
f82d02d9 8617
2c47e605 8618 if (path->locks[level] && !wc->keep_locks) {
bd681513 8619 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8620 path->locks[level] = 0;
8621 }
8622 return 0;
8623 }
f82d02d9 8624
2c47e605
YZ
8625 /* wc->stage == UPDATE_BACKREF */
8626 if (!(wc->flags[level] & flag)) {
8627 BUG_ON(!path->locks[level]);
e339a6b0 8628 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8629 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8630 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8631 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8632 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8633 eb->len, flag,
8634 btrfs_header_level(eb), 0);
79787eaa 8635 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8636 wc->flags[level] |= flag;
8637 }
8638
8639 /*
8640 * the block is shared by multiple trees, so it's not good to
8641 * keep the tree lock
8642 */
8643 if (path->locks[level] && level > 0) {
bd681513 8644 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8645 path->locks[level] = 0;
8646 }
8647 return 0;
8648}
8649
1c4850e2 8650/*
2c016dc2 8651 * helper to process tree block pointer.
1c4850e2
YZ
8652 *
8653 * when wc->stage == DROP_REFERENCE, this function checks
8654 * reference count of the block pointed to. if the block
8655 * is shared and we need update back refs for the subtree
8656 * rooted at the block, this function changes wc->stage to
8657 * UPDATE_BACKREF. if the block is shared and there is no
8658 * need to update back, this function drops the reference
8659 * to the block.
8660 *
8661 * NOTE: return value 1 means we should stop walking down.
8662 */
8663static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8664 struct btrfs_root *root,
8665 struct btrfs_path *path,
94fcca9f 8666 struct walk_control *wc, int *lookup_info)
1c4850e2 8667{
0b246afa 8668 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8669 u64 bytenr;
8670 u64 generation;
8671 u64 parent;
8672 u32 blocksize;
8673 struct btrfs_key key;
8674 struct extent_buffer *next;
8675 int level = wc->level;
8676 int reada = 0;
8677 int ret = 0;
1152651a 8678 bool need_account = false;
1c4850e2
YZ
8679
8680 generation = btrfs_node_ptr_generation(path->nodes[level],
8681 path->slots[level]);
8682 /*
8683 * if the lower level block was created before the snapshot
8684 * was created, we know there is no need to update back refs
8685 * for the subtree
8686 */
8687 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8688 generation <= root->root_key.offset) {
8689 *lookup_info = 1;
1c4850e2 8690 return 1;
94fcca9f 8691 }
1c4850e2
YZ
8692
8693 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
0b246afa 8694 blocksize = fs_info->nodesize;
1c4850e2 8695
0b246afa 8696 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8697 if (!next) {
2ff7e61e 8698 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8699 if (IS_ERR(next))
8700 return PTR_ERR(next);
8701
b2aaaa3b
JB
8702 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8703 level - 1);
1c4850e2
YZ
8704 reada = 1;
8705 }
8706 btrfs_tree_lock(next);
8707 btrfs_set_lock_blocking(next);
8708
2ff7e61e 8709 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8710 &wc->refs[level - 1],
8711 &wc->flags[level - 1]);
4867268c
JB
8712 if (ret < 0)
8713 goto out_unlock;
79787eaa 8714
c2cf52eb 8715 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8716 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8717 ret = -EIO;
8718 goto out_unlock;
c2cf52eb 8719 }
94fcca9f 8720 *lookup_info = 0;
1c4850e2 8721
94fcca9f 8722 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8723 if (wc->refs[level - 1] > 1) {
1152651a 8724 need_account = true;
94fcca9f
YZ
8725 if (level == 1 &&
8726 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8727 goto skip;
8728
1c4850e2
YZ
8729 if (!wc->update_ref ||
8730 generation <= root->root_key.offset)
8731 goto skip;
8732
8733 btrfs_node_key_to_cpu(path->nodes[level], &key,
8734 path->slots[level]);
8735 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8736 if (ret < 0)
8737 goto skip;
8738
8739 wc->stage = UPDATE_BACKREF;
8740 wc->shared_level = level - 1;
8741 }
94fcca9f
YZ
8742 } else {
8743 if (level == 1 &&
8744 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8745 goto skip;
1c4850e2
YZ
8746 }
8747
b9fab919 8748 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8749 btrfs_tree_unlock(next);
8750 free_extent_buffer(next);
8751 next = NULL;
94fcca9f 8752 *lookup_info = 1;
1c4850e2
YZ
8753 }
8754
8755 if (!next) {
8756 if (reada && level == 1)
8757 reada_walk_down(trans, root, wc, path);
2ff7e61e 8758 next = read_tree_block(fs_info, bytenr, generation);
64c043de
LB
8759 if (IS_ERR(next)) {
8760 return PTR_ERR(next);
8761 } else if (!extent_buffer_uptodate(next)) {
416bc658 8762 free_extent_buffer(next);
97d9a8a4 8763 return -EIO;
416bc658 8764 }
1c4850e2
YZ
8765 btrfs_tree_lock(next);
8766 btrfs_set_lock_blocking(next);
8767 }
8768
8769 level--;
4867268c
JB
8770 ASSERT(level == btrfs_header_level(next));
8771 if (level != btrfs_header_level(next)) {
8772 btrfs_err(root->fs_info, "mismatched level");
8773 ret = -EIO;
8774 goto out_unlock;
8775 }
1c4850e2
YZ
8776 path->nodes[level] = next;
8777 path->slots[level] = 0;
bd681513 8778 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8779 wc->level = level;
8780 if (wc->level == 1)
8781 wc->reada_slot = 0;
8782 return 0;
8783skip:
8784 wc->refs[level - 1] = 0;
8785 wc->flags[level - 1] = 0;
94fcca9f
YZ
8786 if (wc->stage == DROP_REFERENCE) {
8787 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8788 parent = path->nodes[level]->start;
8789 } else {
4867268c 8790 ASSERT(root->root_key.objectid ==
94fcca9f 8791 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8792 if (root->root_key.objectid !=
8793 btrfs_header_owner(path->nodes[level])) {
8794 btrfs_err(root->fs_info,
8795 "mismatched block owner");
8796 ret = -EIO;
8797 goto out_unlock;
8798 }
94fcca9f
YZ
8799 parent = 0;
8800 }
1c4850e2 8801
1152651a 8802 if (need_account) {
33d1f05c
QW
8803 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8804 generation, level - 1);
1152651a 8805 if (ret) {
0b246afa 8806 btrfs_err_rl(fs_info,
5d163e0e
JM
8807 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8808 ret);
1152651a
MF
8809 }
8810 }
84f7d8e6 8811 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8812 parent, root->root_key.objectid,
8813 level - 1, 0);
4867268c
JB
8814 if (ret)
8815 goto out_unlock;
1c4850e2 8816 }
4867268c
JB
8817
8818 *lookup_info = 1;
8819 ret = 1;
8820
8821out_unlock:
1c4850e2
YZ
8822 btrfs_tree_unlock(next);
8823 free_extent_buffer(next);
4867268c
JB
8824
8825 return ret;
1c4850e2
YZ
8826}
8827
2c47e605 8828/*
2c016dc2 8829 * helper to process tree block while walking up the tree.
2c47e605
YZ
8830 *
8831 * when wc->stage == DROP_REFERENCE, this function drops
8832 * reference count on the block.
8833 *
8834 * when wc->stage == UPDATE_BACKREF, this function changes
8835 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8836 * to UPDATE_BACKREF previously while processing the block.
8837 *
8838 * NOTE: return value 1 means we should stop walking up.
8839 */
8840static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8841 struct btrfs_root *root,
8842 struct btrfs_path *path,
8843 struct walk_control *wc)
8844{
0b246afa 8845 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8846 int ret;
2c47e605
YZ
8847 int level = wc->level;
8848 struct extent_buffer *eb = path->nodes[level];
8849 u64 parent = 0;
8850
8851 if (wc->stage == UPDATE_BACKREF) {
8852 BUG_ON(wc->shared_level < level);
8853 if (level < wc->shared_level)
8854 goto out;
8855
2c47e605
YZ
8856 ret = find_next_key(path, level + 1, &wc->update_progress);
8857 if (ret > 0)
8858 wc->update_ref = 0;
8859
8860 wc->stage = DROP_REFERENCE;
8861 wc->shared_level = -1;
8862 path->slots[level] = 0;
8863
8864 /*
8865 * check reference count again if the block isn't locked.
8866 * we should start walking down the tree again if reference
8867 * count is one.
8868 */
8869 if (!path->locks[level]) {
8870 BUG_ON(level == 0);
8871 btrfs_tree_lock(eb);
8872 btrfs_set_lock_blocking(eb);
bd681513 8873 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8874
2ff7e61e 8875 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8876 eb->start, level, 1,
2c47e605
YZ
8877 &wc->refs[level],
8878 &wc->flags[level]);
79787eaa
JM
8879 if (ret < 0) {
8880 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8881 path->locks[level] = 0;
79787eaa
JM
8882 return ret;
8883 }
2c47e605
YZ
8884 BUG_ON(wc->refs[level] == 0);
8885 if (wc->refs[level] == 1) {
bd681513 8886 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8887 path->locks[level] = 0;
2c47e605
YZ
8888 return 1;
8889 }
f82d02d9 8890 }
2c47e605 8891 }
f82d02d9 8892
2c47e605
YZ
8893 /* wc->stage == DROP_REFERENCE */
8894 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8895
2c47e605
YZ
8896 if (wc->refs[level] == 1) {
8897 if (level == 0) {
8898 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8899 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8900 else
e339a6b0 8901 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8902 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8903 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8904 if (ret) {
0b246afa 8905 btrfs_err_rl(fs_info,
5d163e0e
JM
8906 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8907 ret);
1152651a 8908 }
2c47e605
YZ
8909 }
8910 /* make block locked assertion in clean_tree_block happy */
8911 if (!path->locks[level] &&
8912 btrfs_header_generation(eb) == trans->transid) {
8913 btrfs_tree_lock(eb);
8914 btrfs_set_lock_blocking(eb);
bd681513 8915 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8916 }
7c302b49 8917 clean_tree_block(fs_info, eb);
2c47e605
YZ
8918 }
8919
8920 if (eb == root->node) {
8921 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8922 parent = eb->start;
8923 else
8924 BUG_ON(root->root_key.objectid !=
8925 btrfs_header_owner(eb));
8926 } else {
8927 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8928 parent = path->nodes[level + 1]->start;
8929 else
8930 BUG_ON(root->root_key.objectid !=
8931 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8932 }
f82d02d9 8933
5581a51a 8934 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8935out:
8936 wc->refs[level] = 0;
8937 wc->flags[level] = 0;
f0486c68 8938 return 0;
2c47e605
YZ
8939}
8940
8941static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8942 struct btrfs_root *root,
8943 struct btrfs_path *path,
8944 struct walk_control *wc)
8945{
2c47e605 8946 int level = wc->level;
94fcca9f 8947 int lookup_info = 1;
2c47e605
YZ
8948 int ret;
8949
8950 while (level >= 0) {
94fcca9f 8951 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8952 if (ret > 0)
8953 break;
8954
8955 if (level == 0)
8956 break;
8957
7a7965f8
YZ
8958 if (path->slots[level] >=
8959 btrfs_header_nritems(path->nodes[level]))
8960 break;
8961
94fcca9f 8962 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8963 if (ret > 0) {
8964 path->slots[level]++;
8965 continue;
90d2c51d
MX
8966 } else if (ret < 0)
8967 return ret;
1c4850e2 8968 level = wc->level;
f82d02d9 8969 }
f82d02d9
YZ
8970 return 0;
8971}
8972
d397712b 8973static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8974 struct btrfs_root *root,
f82d02d9 8975 struct btrfs_path *path,
2c47e605 8976 struct walk_control *wc, int max_level)
20524f02 8977{
2c47e605 8978 int level = wc->level;
20524f02 8979 int ret;
9f3a7427 8980
2c47e605
YZ
8981 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8982 while (level < max_level && path->nodes[level]) {
8983 wc->level = level;
8984 if (path->slots[level] + 1 <
8985 btrfs_header_nritems(path->nodes[level])) {
8986 path->slots[level]++;
20524f02
CM
8987 return 0;
8988 } else {
2c47e605
YZ
8989 ret = walk_up_proc(trans, root, path, wc);
8990 if (ret > 0)
8991 return 0;
bd56b302 8992
2c47e605 8993 if (path->locks[level]) {
bd681513
CM
8994 btrfs_tree_unlock_rw(path->nodes[level],
8995 path->locks[level]);
2c47e605 8996 path->locks[level] = 0;
f82d02d9 8997 }
2c47e605
YZ
8998 free_extent_buffer(path->nodes[level]);
8999 path->nodes[level] = NULL;
9000 level++;
20524f02
CM
9001 }
9002 }
9003 return 1;
9004}
9005
9aca1d51 9006/*
2c47e605
YZ
9007 * drop a subvolume tree.
9008 *
9009 * this function traverses the tree freeing any blocks that only
9010 * referenced by the tree.
9011 *
9012 * when a shared tree block is found. this function decreases its
9013 * reference count by one. if update_ref is true, this function
9014 * also make sure backrefs for the shared block and all lower level
9015 * blocks are properly updated.
9d1a2a3a
DS
9016 *
9017 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9018 */
2c536799 9019int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9020 struct btrfs_block_rsv *block_rsv, int update_ref,
9021 int for_reloc)
20524f02 9022{
ab8d0fc4 9023 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9024 struct btrfs_path *path;
2c47e605 9025 struct btrfs_trans_handle *trans;
ab8d0fc4 9026 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9027 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9028 struct walk_control *wc;
9029 struct btrfs_key key;
9030 int err = 0;
9031 int ret;
9032 int level;
d29a9f62 9033 bool root_dropped = false;
20524f02 9034
ab8d0fc4 9035 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9036
5caf2a00 9037 path = btrfs_alloc_path();
cb1b69f4
TI
9038 if (!path) {
9039 err = -ENOMEM;
9040 goto out;
9041 }
20524f02 9042
2c47e605 9043 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9044 if (!wc) {
9045 btrfs_free_path(path);
cb1b69f4
TI
9046 err = -ENOMEM;
9047 goto out;
38a1a919 9048 }
2c47e605 9049
a22285a6 9050 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9051 if (IS_ERR(trans)) {
9052 err = PTR_ERR(trans);
9053 goto out_free;
9054 }
98d5dc13 9055
3fd0a558
YZ
9056 if (block_rsv)
9057 trans->block_rsv = block_rsv;
2c47e605 9058
9f3a7427 9059 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9060 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9061 path->nodes[level] = btrfs_lock_root_node(root);
9062 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9063 path->slots[level] = 0;
bd681513 9064 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9065 memset(&wc->update_progress, 0,
9066 sizeof(wc->update_progress));
9f3a7427 9067 } else {
9f3a7427 9068 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9069 memcpy(&wc->update_progress, &key,
9070 sizeof(wc->update_progress));
9071
6702ed49 9072 level = root_item->drop_level;
2c47e605 9073 BUG_ON(level == 0);
6702ed49 9074 path->lowest_level = level;
2c47e605
YZ
9075 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9076 path->lowest_level = 0;
9077 if (ret < 0) {
9078 err = ret;
79787eaa 9079 goto out_end_trans;
9f3a7427 9080 }
1c4850e2 9081 WARN_ON(ret > 0);
2c47e605 9082
7d9eb12c
CM
9083 /*
9084 * unlock our path, this is safe because only this
9085 * function is allowed to delete this snapshot
9086 */
5d4f98a2 9087 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9088
9089 level = btrfs_header_level(root->node);
9090 while (1) {
9091 btrfs_tree_lock(path->nodes[level]);
9092 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9093 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9094
2ff7e61e 9095 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9096 path->nodes[level]->start,
3173a18f 9097 level, 1, &wc->refs[level],
2c47e605 9098 &wc->flags[level]);
79787eaa
JM
9099 if (ret < 0) {
9100 err = ret;
9101 goto out_end_trans;
9102 }
2c47e605
YZ
9103 BUG_ON(wc->refs[level] == 0);
9104
9105 if (level == root_item->drop_level)
9106 break;
9107
9108 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9109 path->locks[level] = 0;
2c47e605
YZ
9110 WARN_ON(wc->refs[level] != 1);
9111 level--;
9112 }
9f3a7427 9113 }
2c47e605
YZ
9114
9115 wc->level = level;
9116 wc->shared_level = -1;
9117 wc->stage = DROP_REFERENCE;
9118 wc->update_ref = update_ref;
9119 wc->keep_locks = 0;
66d7e7f0 9120 wc->for_reloc = for_reloc;
0b246afa 9121 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9122
d397712b 9123 while (1) {
9d1a2a3a 9124
2c47e605
YZ
9125 ret = walk_down_tree(trans, root, path, wc);
9126 if (ret < 0) {
9127 err = ret;
20524f02 9128 break;
2c47e605 9129 }
9aca1d51 9130
2c47e605
YZ
9131 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9132 if (ret < 0) {
9133 err = ret;
20524f02 9134 break;
2c47e605
YZ
9135 }
9136
9137 if (ret > 0) {
9138 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9139 break;
9140 }
2c47e605
YZ
9141
9142 if (wc->stage == DROP_REFERENCE) {
9143 level = wc->level;
9144 btrfs_node_key(path->nodes[level],
9145 &root_item->drop_progress,
9146 path->slots[level]);
9147 root_item->drop_level = level;
9148 }
9149
9150 BUG_ON(wc->level == 0);
3a45bb20 9151 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9152 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9153 ret = btrfs_update_root(trans, tree_root,
9154 &root->root_key,
9155 root_item);
79787eaa 9156 if (ret) {
66642832 9157 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9158 err = ret;
9159 goto out_end_trans;
9160 }
2c47e605 9161
3a45bb20 9162 btrfs_end_transaction_throttle(trans);
2ff7e61e 9163 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9164 btrfs_debug(fs_info,
9165 "drop snapshot early exit");
3c8f2422
JB
9166 err = -EAGAIN;
9167 goto out_free;
9168 }
9169
a22285a6 9170 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9171 if (IS_ERR(trans)) {
9172 err = PTR_ERR(trans);
9173 goto out_free;
9174 }
3fd0a558
YZ
9175 if (block_rsv)
9176 trans->block_rsv = block_rsv;
c3e69d58 9177 }
20524f02 9178 }
b3b4aa74 9179 btrfs_release_path(path);
79787eaa
JM
9180 if (err)
9181 goto out_end_trans;
2c47e605 9182
1cd5447e 9183 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9184 if (ret) {
66642832 9185 btrfs_abort_transaction(trans, ret);
e19182c0 9186 err = ret;
79787eaa
JM
9187 goto out_end_trans;
9188 }
2c47e605 9189
76dda93c 9190 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9191 ret = btrfs_find_root(tree_root, &root->root_key, path,
9192 NULL, NULL);
79787eaa 9193 if (ret < 0) {
66642832 9194 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9195 err = ret;
9196 goto out_end_trans;
9197 } else if (ret > 0) {
84cd948c
JB
9198 /* if we fail to delete the orphan item this time
9199 * around, it'll get picked up the next time.
9200 *
9201 * The most common failure here is just -ENOENT.
9202 */
9203 btrfs_del_orphan_item(trans, tree_root,
9204 root->root_key.objectid);
76dda93c
YZ
9205 }
9206 }
9207
27cdeb70 9208 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9209 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9210 } else {
9211 free_extent_buffer(root->node);
9212 free_extent_buffer(root->commit_root);
b0feb9d9 9213 btrfs_put_fs_root(root);
76dda93c 9214 }
d29a9f62 9215 root_dropped = true;
79787eaa 9216out_end_trans:
3a45bb20 9217 btrfs_end_transaction_throttle(trans);
79787eaa 9218out_free:
2c47e605 9219 kfree(wc);
5caf2a00 9220 btrfs_free_path(path);
cb1b69f4 9221out:
d29a9f62
JB
9222 /*
9223 * So if we need to stop dropping the snapshot for whatever reason we
9224 * need to make sure to add it back to the dead root list so that we
9225 * keep trying to do the work later. This also cleans up roots if we
9226 * don't have it in the radix (like when we recover after a power fail
9227 * or unmount) so we don't leak memory.
9228 */
897ca819 9229 if (!for_reloc && !root_dropped)
d29a9f62 9230 btrfs_add_dead_root(root);
90515e7f 9231 if (err && err != -EAGAIN)
ab8d0fc4 9232 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9233 return err;
20524f02 9234}
9078a3e1 9235
2c47e605
YZ
9236/*
9237 * drop subtree rooted at tree block 'node'.
9238 *
9239 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9240 * only used by relocation code
2c47e605 9241 */
f82d02d9
YZ
9242int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9243 struct btrfs_root *root,
9244 struct extent_buffer *node,
9245 struct extent_buffer *parent)
9246{
0b246afa 9247 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9248 struct btrfs_path *path;
2c47e605 9249 struct walk_control *wc;
f82d02d9
YZ
9250 int level;
9251 int parent_level;
9252 int ret = 0;
9253 int wret;
9254
2c47e605
YZ
9255 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9256
f82d02d9 9257 path = btrfs_alloc_path();
db5b493a
TI
9258 if (!path)
9259 return -ENOMEM;
f82d02d9 9260
2c47e605 9261 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9262 if (!wc) {
9263 btrfs_free_path(path);
9264 return -ENOMEM;
9265 }
2c47e605 9266
b9447ef8 9267 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9268 parent_level = btrfs_header_level(parent);
9269 extent_buffer_get(parent);
9270 path->nodes[parent_level] = parent;
9271 path->slots[parent_level] = btrfs_header_nritems(parent);
9272
b9447ef8 9273 btrfs_assert_tree_locked(node);
f82d02d9 9274 level = btrfs_header_level(node);
f82d02d9
YZ
9275 path->nodes[level] = node;
9276 path->slots[level] = 0;
bd681513 9277 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9278
9279 wc->refs[parent_level] = 1;
9280 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9281 wc->level = level;
9282 wc->shared_level = -1;
9283 wc->stage = DROP_REFERENCE;
9284 wc->update_ref = 0;
9285 wc->keep_locks = 1;
66d7e7f0 9286 wc->for_reloc = 1;
0b246afa 9287 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9288
9289 while (1) {
2c47e605
YZ
9290 wret = walk_down_tree(trans, root, path, wc);
9291 if (wret < 0) {
f82d02d9 9292 ret = wret;
f82d02d9 9293 break;
2c47e605 9294 }
f82d02d9 9295
2c47e605 9296 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9297 if (wret < 0)
9298 ret = wret;
9299 if (wret != 0)
9300 break;
9301 }
9302
2c47e605 9303 kfree(wc);
f82d02d9
YZ
9304 btrfs_free_path(path);
9305 return ret;
9306}
9307
6202df69 9308static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9309{
9310 u64 num_devices;
fc67c450 9311 u64 stripped;
e4d8ec0f 9312
fc67c450
ID
9313 /*
9314 * if restripe for this chunk_type is on pick target profile and
9315 * return, otherwise do the usual balance
9316 */
6202df69 9317 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9318 if (stripped)
9319 return extended_to_chunk(stripped);
e4d8ec0f 9320
6202df69 9321 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9322
fc67c450 9323 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9324 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9325 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9326
ec44a35c
CM
9327 if (num_devices == 1) {
9328 stripped |= BTRFS_BLOCK_GROUP_DUP;
9329 stripped = flags & ~stripped;
9330
9331 /* turn raid0 into single device chunks */
9332 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9333 return stripped;
9334
9335 /* turn mirroring into duplication */
9336 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9337 BTRFS_BLOCK_GROUP_RAID10))
9338 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9339 } else {
9340 /* they already had raid on here, just return */
ec44a35c
CM
9341 if (flags & stripped)
9342 return flags;
9343
9344 stripped |= BTRFS_BLOCK_GROUP_DUP;
9345 stripped = flags & ~stripped;
9346
9347 /* switch duplicated blocks with raid1 */
9348 if (flags & BTRFS_BLOCK_GROUP_DUP)
9349 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9350
e3176ca2 9351 /* this is drive concat, leave it alone */
ec44a35c 9352 }
e3176ca2 9353
ec44a35c
CM
9354 return flags;
9355}
9356
868f401a 9357static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9358{
f0486c68
YZ
9359 struct btrfs_space_info *sinfo = cache->space_info;
9360 u64 num_bytes;
199c36ea 9361 u64 min_allocable_bytes;
f0486c68 9362 int ret = -ENOSPC;
0ef3e66b 9363
199c36ea
MX
9364 /*
9365 * We need some metadata space and system metadata space for
9366 * allocating chunks in some corner cases until we force to set
9367 * it to be readonly.
9368 */
9369 if ((sinfo->flags &
9370 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9371 !force)
ee22184b 9372 min_allocable_bytes = SZ_1M;
199c36ea
MX
9373 else
9374 min_allocable_bytes = 0;
9375
f0486c68
YZ
9376 spin_lock(&sinfo->lock);
9377 spin_lock(&cache->lock);
61cfea9b
W
9378
9379 if (cache->ro) {
868f401a 9380 cache->ro++;
61cfea9b
W
9381 ret = 0;
9382 goto out;
9383 }
9384
f0486c68
YZ
9385 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9386 cache->bytes_super - btrfs_block_group_used(&cache->item);
9387
4136135b 9388 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9389 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9390 sinfo->bytes_readonly += num_bytes;
868f401a 9391 cache->ro++;
633c0aad 9392 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9393 ret = 0;
9394 }
61cfea9b 9395out:
f0486c68
YZ
9396 spin_unlock(&cache->lock);
9397 spin_unlock(&sinfo->lock);
9398 return ret;
9399}
7d9eb12c 9400
5e00f193 9401int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9402 struct btrfs_block_group_cache *cache)
c286ac48 9403
f0486c68
YZ
9404{
9405 struct btrfs_trans_handle *trans;
9406 u64 alloc_flags;
9407 int ret;
7d9eb12c 9408
1bbc621e 9409again:
5e00f193 9410 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9411 if (IS_ERR(trans))
9412 return PTR_ERR(trans);
5d4f98a2 9413
1bbc621e
CM
9414 /*
9415 * we're not allowed to set block groups readonly after the dirty
9416 * block groups cache has started writing. If it already started,
9417 * back off and let this transaction commit
9418 */
0b246afa 9419 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9420 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9421 u64 transid = trans->transid;
9422
0b246afa 9423 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9424 btrfs_end_transaction(trans);
1bbc621e 9425
2ff7e61e 9426 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9427 if (ret)
9428 return ret;
9429 goto again;
9430 }
9431
153c35b6
CM
9432 /*
9433 * if we are changing raid levels, try to allocate a corresponding
9434 * block group with the new raid level.
9435 */
0b246afa 9436 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9437 if (alloc_flags != cache->flags) {
2ff7e61e 9438 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9439 CHUNK_ALLOC_FORCE);
9440 /*
9441 * ENOSPC is allowed here, we may have enough space
9442 * already allocated at the new raid level to
9443 * carry on
9444 */
9445 if (ret == -ENOSPC)
9446 ret = 0;
9447 if (ret < 0)
9448 goto out;
9449 }
1bbc621e 9450
868f401a 9451 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9452 if (!ret)
9453 goto out;
2ff7e61e
JM
9454 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9455 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9456 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9457 if (ret < 0)
9458 goto out;
868f401a 9459 ret = inc_block_group_ro(cache, 0);
f0486c68 9460out:
2f081088 9461 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9462 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9463 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9464 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9465 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9466 }
0b246afa 9467 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9468
3a45bb20 9469 btrfs_end_transaction(trans);
f0486c68
YZ
9470 return ret;
9471}
5d4f98a2 9472
c87f08ca 9473int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9474 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9475{
2ff7e61e
JM
9476 u64 alloc_flags = get_alloc_profile(fs_info, type);
9477
9478 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9479}
9480
6d07bcec
MX
9481/*
9482 * helper to account the unused space of all the readonly block group in the
633c0aad 9483 * space_info. takes mirrors into account.
6d07bcec 9484 */
633c0aad 9485u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9486{
9487 struct btrfs_block_group_cache *block_group;
9488 u64 free_bytes = 0;
9489 int factor;
9490
01327610 9491 /* It's df, we don't care if it's racy */
633c0aad
JB
9492 if (list_empty(&sinfo->ro_bgs))
9493 return 0;
9494
9495 spin_lock(&sinfo->lock);
9496 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9497 spin_lock(&block_group->lock);
9498
9499 if (!block_group->ro) {
9500 spin_unlock(&block_group->lock);
9501 continue;
9502 }
9503
9504 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9505 BTRFS_BLOCK_GROUP_RAID10 |
9506 BTRFS_BLOCK_GROUP_DUP))
9507 factor = 2;
9508 else
9509 factor = 1;
9510
9511 free_bytes += (block_group->key.offset -
9512 btrfs_block_group_used(&block_group->item)) *
9513 factor;
9514
9515 spin_unlock(&block_group->lock);
9516 }
6d07bcec
MX
9517 spin_unlock(&sinfo->lock);
9518
9519 return free_bytes;
9520}
9521
2ff7e61e 9522void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9523{
f0486c68
YZ
9524 struct btrfs_space_info *sinfo = cache->space_info;
9525 u64 num_bytes;
9526
9527 BUG_ON(!cache->ro);
9528
9529 spin_lock(&sinfo->lock);
9530 spin_lock(&cache->lock);
868f401a
Z
9531 if (!--cache->ro) {
9532 num_bytes = cache->key.offset - cache->reserved -
9533 cache->pinned - cache->bytes_super -
9534 btrfs_block_group_used(&cache->item);
9535 sinfo->bytes_readonly -= num_bytes;
9536 list_del_init(&cache->ro_list);
9537 }
f0486c68
YZ
9538 spin_unlock(&cache->lock);
9539 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9540}
9541
ba1bf481
JB
9542/*
9543 * checks to see if its even possible to relocate this block group.
9544 *
9545 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9546 * ok to go ahead and try.
9547 */
6bccf3ab 9548int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9549{
6bccf3ab 9550 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9551 struct btrfs_block_group_cache *block_group;
9552 struct btrfs_space_info *space_info;
0b246afa 9553 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9554 struct btrfs_device *device;
6df9a95e 9555 struct btrfs_trans_handle *trans;
cdcb725c 9556 u64 min_free;
6719db6a
JB
9557 u64 dev_min = 1;
9558 u64 dev_nr = 0;
4a5e98f5 9559 u64 target;
0305bc27 9560 int debug;
cdcb725c 9561 int index;
ba1bf481
JB
9562 int full = 0;
9563 int ret = 0;
1a40e23b 9564
0b246afa 9565 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9566
0b246afa 9567 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9568
ba1bf481 9569 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9570 if (!block_group) {
9571 if (debug)
0b246afa 9572 btrfs_warn(fs_info,
0305bc27
QW
9573 "can't find block group for bytenr %llu",
9574 bytenr);
ba1bf481 9575 return -1;
0305bc27 9576 }
1a40e23b 9577
cdcb725c 9578 min_free = btrfs_block_group_used(&block_group->item);
9579
ba1bf481 9580 /* no bytes used, we're good */
cdcb725c 9581 if (!min_free)
1a40e23b
ZY
9582 goto out;
9583
ba1bf481
JB
9584 space_info = block_group->space_info;
9585 spin_lock(&space_info->lock);
17d217fe 9586
ba1bf481 9587 full = space_info->full;
17d217fe 9588
ba1bf481
JB
9589 /*
9590 * if this is the last block group we have in this space, we can't
7ce618db
CM
9591 * relocate it unless we're able to allocate a new chunk below.
9592 *
9593 * Otherwise, we need to make sure we have room in the space to handle
9594 * all of the extents from this block group. If we can, we're good
ba1bf481 9595 */
7ce618db 9596 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9597 (btrfs_space_info_used(space_info, false) + min_free <
9598 space_info->total_bytes)) {
ba1bf481
JB
9599 spin_unlock(&space_info->lock);
9600 goto out;
17d217fe 9601 }
ba1bf481 9602 spin_unlock(&space_info->lock);
ea8c2819 9603
ba1bf481
JB
9604 /*
9605 * ok we don't have enough space, but maybe we have free space on our
9606 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9607 * alloc devices and guess if we have enough space. if this block
9608 * group is going to be restriped, run checks against the target
9609 * profile instead of the current one.
ba1bf481
JB
9610 */
9611 ret = -1;
ea8c2819 9612
cdcb725c 9613 /*
9614 * index:
9615 * 0: raid10
9616 * 1: raid1
9617 * 2: dup
9618 * 3: raid0
9619 * 4: single
9620 */
0b246afa 9621 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9622 if (target) {
3e72ee88 9623 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9624 } else {
9625 /*
9626 * this is just a balance, so if we were marked as full
9627 * we know there is no space for a new chunk
9628 */
0305bc27
QW
9629 if (full) {
9630 if (debug)
0b246afa
JM
9631 btrfs_warn(fs_info,
9632 "no space to alloc new chunk for block group %llu",
9633 block_group->key.objectid);
4a5e98f5 9634 goto out;
0305bc27 9635 }
4a5e98f5 9636
3e72ee88 9637 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9638 }
9639
e6ec716f 9640 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9641 dev_min = 4;
6719db6a
JB
9642 /* Divide by 2 */
9643 min_free >>= 1;
e6ec716f 9644 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9645 dev_min = 2;
e6ec716f 9646 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9647 /* Multiply by 2 */
9648 min_free <<= 1;
e6ec716f 9649 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9650 dev_min = fs_devices->rw_devices;
47c5713f 9651 min_free = div64_u64(min_free, dev_min);
cdcb725c 9652 }
9653
6df9a95e
JB
9654 /* We need to do this so that we can look at pending chunks */
9655 trans = btrfs_join_transaction(root);
9656 if (IS_ERR(trans)) {
9657 ret = PTR_ERR(trans);
9658 goto out;
9659 }
9660
0b246afa 9661 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9662 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9663 u64 dev_offset;
56bec294 9664
ba1bf481
JB
9665 /*
9666 * check to make sure we can actually find a chunk with enough
9667 * space to fit our block group in.
9668 */
63a212ab 9669 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9670 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9671 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9672 &dev_offset, NULL);
ba1bf481 9673 if (!ret)
cdcb725c 9674 dev_nr++;
9675
9676 if (dev_nr >= dev_min)
73e48b27 9677 break;
cdcb725c 9678
ba1bf481 9679 ret = -1;
725c8463 9680 }
edbd8d4e 9681 }
0305bc27 9682 if (debug && ret == -1)
0b246afa
JM
9683 btrfs_warn(fs_info,
9684 "no space to allocate a new chunk for block group %llu",
9685 block_group->key.objectid);
9686 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9687 btrfs_end_transaction(trans);
edbd8d4e 9688out:
ba1bf481 9689 btrfs_put_block_group(block_group);
edbd8d4e
CM
9690 return ret;
9691}
9692
6bccf3ab
JM
9693static int find_first_block_group(struct btrfs_fs_info *fs_info,
9694 struct btrfs_path *path,
9695 struct btrfs_key *key)
0b86a832 9696{
6bccf3ab 9697 struct btrfs_root *root = fs_info->extent_root;
925baedd 9698 int ret = 0;
0b86a832
CM
9699 struct btrfs_key found_key;
9700 struct extent_buffer *leaf;
9701 int slot;
edbd8d4e 9702
0b86a832
CM
9703 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9704 if (ret < 0)
925baedd
CM
9705 goto out;
9706
d397712b 9707 while (1) {
0b86a832 9708 slot = path->slots[0];
edbd8d4e 9709 leaf = path->nodes[0];
0b86a832
CM
9710 if (slot >= btrfs_header_nritems(leaf)) {
9711 ret = btrfs_next_leaf(root, path);
9712 if (ret == 0)
9713 continue;
9714 if (ret < 0)
925baedd 9715 goto out;
0b86a832 9716 break;
edbd8d4e 9717 }
0b86a832 9718 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9719
0b86a832 9720 if (found_key.objectid >= key->objectid &&
925baedd 9721 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9722 struct extent_map_tree *em_tree;
9723 struct extent_map *em;
9724
9725 em_tree = &root->fs_info->mapping_tree.map_tree;
9726 read_lock(&em_tree->lock);
9727 em = lookup_extent_mapping(em_tree, found_key.objectid,
9728 found_key.offset);
9729 read_unlock(&em_tree->lock);
9730 if (!em) {
0b246afa 9731 btrfs_err(fs_info,
6fb37b75
LB
9732 "logical %llu len %llu found bg but no related chunk",
9733 found_key.objectid, found_key.offset);
9734 ret = -ENOENT;
9735 } else {
9736 ret = 0;
9737 }
187ee58c 9738 free_extent_map(em);
925baedd
CM
9739 goto out;
9740 }
0b86a832 9741 path->slots[0]++;
edbd8d4e 9742 }
925baedd 9743out:
0b86a832 9744 return ret;
edbd8d4e
CM
9745}
9746
0af3d00b
JB
9747void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9748{
9749 struct btrfs_block_group_cache *block_group;
9750 u64 last = 0;
9751
9752 while (1) {
9753 struct inode *inode;
9754
9755 block_group = btrfs_lookup_first_block_group(info, last);
9756 while (block_group) {
9757 spin_lock(&block_group->lock);
9758 if (block_group->iref)
9759 break;
9760 spin_unlock(&block_group->lock);
2ff7e61e 9761 block_group = next_block_group(info, block_group);
0af3d00b
JB
9762 }
9763 if (!block_group) {
9764 if (last == 0)
9765 break;
9766 last = 0;
9767 continue;
9768 }
9769
9770 inode = block_group->inode;
9771 block_group->iref = 0;
9772 block_group->inode = NULL;
9773 spin_unlock(&block_group->lock);
f3bca802 9774 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9775 iput(inode);
9776 last = block_group->key.objectid + block_group->key.offset;
9777 btrfs_put_block_group(block_group);
9778 }
9779}
9780
5cdd7db6
FM
9781/*
9782 * Must be called only after stopping all workers, since we could have block
9783 * group caching kthreads running, and therefore they could race with us if we
9784 * freed the block groups before stopping them.
9785 */
1a40e23b
ZY
9786int btrfs_free_block_groups(struct btrfs_fs_info *info)
9787{
9788 struct btrfs_block_group_cache *block_group;
4184ea7f 9789 struct btrfs_space_info *space_info;
11833d66 9790 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9791 struct rb_node *n;
9792
9e351cc8 9793 down_write(&info->commit_root_sem);
11833d66
YZ
9794 while (!list_empty(&info->caching_block_groups)) {
9795 caching_ctl = list_entry(info->caching_block_groups.next,
9796 struct btrfs_caching_control, list);
9797 list_del(&caching_ctl->list);
9798 put_caching_control(caching_ctl);
9799 }
9e351cc8 9800 up_write(&info->commit_root_sem);
11833d66 9801
47ab2a6c
JB
9802 spin_lock(&info->unused_bgs_lock);
9803 while (!list_empty(&info->unused_bgs)) {
9804 block_group = list_first_entry(&info->unused_bgs,
9805 struct btrfs_block_group_cache,
9806 bg_list);
9807 list_del_init(&block_group->bg_list);
9808 btrfs_put_block_group(block_group);
9809 }
9810 spin_unlock(&info->unused_bgs_lock);
9811
1a40e23b
ZY
9812 spin_lock(&info->block_group_cache_lock);
9813 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9814 block_group = rb_entry(n, struct btrfs_block_group_cache,
9815 cache_node);
1a40e23b
ZY
9816 rb_erase(&block_group->cache_node,
9817 &info->block_group_cache_tree);
01eacb27 9818 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9819 spin_unlock(&info->block_group_cache_lock);
9820
80eb234a 9821 down_write(&block_group->space_info->groups_sem);
1a40e23b 9822 list_del(&block_group->list);
80eb234a 9823 up_write(&block_group->space_info->groups_sem);
d2fb3437 9824
3c14874a
JB
9825 /*
9826 * We haven't cached this block group, which means we could
9827 * possibly have excluded extents on this block group.
9828 */
36cce922
JB
9829 if (block_group->cached == BTRFS_CACHE_NO ||
9830 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9831 free_excluded_extents(info, block_group);
3c14874a 9832
817d52f8 9833 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9834 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9835 ASSERT(list_empty(&block_group->dirty_list));
9836 ASSERT(list_empty(&block_group->io_list));
9837 ASSERT(list_empty(&block_group->bg_list));
9838 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9839 btrfs_put_block_group(block_group);
d899e052
YZ
9840
9841 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9842 }
9843 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9844
9845 /* now that all the block groups are freed, go through and
9846 * free all the space_info structs. This is only called during
9847 * the final stages of unmount, and so we know nobody is
9848 * using them. We call synchronize_rcu() once before we start,
9849 * just to be on the safe side.
9850 */
9851 synchronize_rcu();
9852
8929ecfa
YZ
9853 release_global_block_rsv(info);
9854
67871254 9855 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9856 int i;
9857
4184ea7f
CM
9858 space_info = list_entry(info->space_info.next,
9859 struct btrfs_space_info,
9860 list);
d555b6c3
JB
9861
9862 /*
9863 * Do not hide this behind enospc_debug, this is actually
9864 * important and indicates a real bug if this happens.
9865 */
9866 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9867 space_info->bytes_reserved > 0 ||
d555b6c3 9868 space_info->bytes_may_use > 0))
ab8d0fc4 9869 dump_space_info(info, space_info, 0, 0);
4184ea7f 9870 list_del(&space_info->list);
6ab0a202
JM
9871 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9872 struct kobject *kobj;
c1895442
JM
9873 kobj = space_info->block_group_kobjs[i];
9874 space_info->block_group_kobjs[i] = NULL;
9875 if (kobj) {
6ab0a202
JM
9876 kobject_del(kobj);
9877 kobject_put(kobj);
9878 }
9879 }
9880 kobject_del(&space_info->kobj);
9881 kobject_put(&space_info->kobj);
4184ea7f 9882 }
1a40e23b
ZY
9883 return 0;
9884}
9885
c434d21c 9886static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9887{
c434d21c 9888 struct btrfs_space_info *space_info = cache->space_info;
3e72ee88 9889 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9890 bool first = false;
b742bb82
YZ
9891
9892 down_write(&space_info->groups_sem);
ed55b6ac
JM
9893 if (list_empty(&space_info->block_groups[index]))
9894 first = true;
9895 list_add_tail(&cache->list, &space_info->block_groups[index]);
9896 up_write(&space_info->groups_sem);
9897
9898 if (first) {
c1895442 9899 struct raid_kobject *rkobj;
6ab0a202
JM
9900 int ret;
9901
c1895442
JM
9902 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9903 if (!rkobj)
9904 goto out_err;
9905 rkobj->raid_type = index;
9906 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9907 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9908 "%s", get_raid_name(index));
6ab0a202 9909 if (ret) {
c1895442
JM
9910 kobject_put(&rkobj->kobj);
9911 goto out_err;
6ab0a202 9912 }
c1895442 9913 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9914 }
c1895442
JM
9915
9916 return;
9917out_err:
ab8d0fc4
JM
9918 btrfs_warn(cache->fs_info,
9919 "failed to add kobject for block cache, ignoring");
b742bb82
YZ
9920}
9921
920e4a58 9922static struct btrfs_block_group_cache *
2ff7e61e
JM
9923btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9924 u64 start, u64 size)
920e4a58
MX
9925{
9926 struct btrfs_block_group_cache *cache;
9927
9928 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9929 if (!cache)
9930 return NULL;
9931
9932 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9933 GFP_NOFS);
9934 if (!cache->free_space_ctl) {
9935 kfree(cache);
9936 return NULL;
9937 }
9938
9939 cache->key.objectid = start;
9940 cache->key.offset = size;
9941 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9942
0b246afa 9943 cache->fs_info = fs_info;
e4ff5fb5 9944 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9945 set_free_space_tree_thresholds(cache);
9946
920e4a58
MX
9947 atomic_set(&cache->count, 1);
9948 spin_lock_init(&cache->lock);
e570fd27 9949 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9950 INIT_LIST_HEAD(&cache->list);
9951 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9952 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9953 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9954 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9955 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9956 btrfs_init_free_space_ctl(cache);
04216820 9957 atomic_set(&cache->trimming, 0);
a5ed9182 9958 mutex_init(&cache->free_space_lock);
0966a7b1 9959 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9960
9961 return cache;
9962}
9963
5b4aacef 9964int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9965{
9966 struct btrfs_path *path;
9967 int ret;
9078a3e1 9968 struct btrfs_block_group_cache *cache;
6324fbf3 9969 struct btrfs_space_info *space_info;
9078a3e1
CM
9970 struct btrfs_key key;
9971 struct btrfs_key found_key;
5f39d397 9972 struct extent_buffer *leaf;
0af3d00b
JB
9973 int need_clear = 0;
9974 u64 cache_gen;
49303381
LB
9975 u64 feature;
9976 int mixed;
9977
9978 feature = btrfs_super_incompat_flags(info->super_copy);
9979 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9980
9078a3e1 9981 key.objectid = 0;
0b86a832 9982 key.offset = 0;
962a298f 9983 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9984 path = btrfs_alloc_path();
9985 if (!path)
9986 return -ENOMEM;
e4058b54 9987 path->reada = READA_FORWARD;
9078a3e1 9988
0b246afa
JM
9989 cache_gen = btrfs_super_cache_generation(info->super_copy);
9990 if (btrfs_test_opt(info, SPACE_CACHE) &&
9991 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9992 need_clear = 1;
0b246afa 9993 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9994 need_clear = 1;
0af3d00b 9995
d397712b 9996 while (1) {
6bccf3ab 9997 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9998 if (ret > 0)
9999 break;
0b86a832
CM
10000 if (ret != 0)
10001 goto error;
920e4a58 10002
5f39d397
CM
10003 leaf = path->nodes[0];
10004 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10005
2ff7e61e 10006 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10007 found_key.offset);
9078a3e1 10008 if (!cache) {
0b86a832 10009 ret = -ENOMEM;
f0486c68 10010 goto error;
9078a3e1 10011 }
96303081 10012
cf7c1ef6
LB
10013 if (need_clear) {
10014 /*
10015 * When we mount with old space cache, we need to
10016 * set BTRFS_DC_CLEAR and set dirty flag.
10017 *
10018 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10019 * truncate the old free space cache inode and
10020 * setup a new one.
10021 * b) Setting 'dirty flag' makes sure that we flush
10022 * the new space cache info onto disk.
10023 */
0b246afa 10024 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10025 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10026 }
0af3d00b 10027
5f39d397
CM
10028 read_extent_buffer(leaf, &cache->item,
10029 btrfs_item_ptr_offset(leaf, path->slots[0]),
10030 sizeof(cache->item));
920e4a58 10031 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10032 if (!mixed &&
10033 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10034 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10035 btrfs_err(info,
10036"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10037 cache->key.objectid);
10038 ret = -EINVAL;
10039 goto error;
10040 }
0b86a832 10041
9078a3e1 10042 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10043 btrfs_release_path(path);
34d52cb6 10044
3c14874a
JB
10045 /*
10046 * We need to exclude the super stripes now so that the space
10047 * info has super bytes accounted for, otherwise we'll think
10048 * we have more space than we actually do.
10049 */
2ff7e61e 10050 ret = exclude_super_stripes(info, cache);
835d974f
JB
10051 if (ret) {
10052 /*
10053 * We may have excluded something, so call this just in
10054 * case.
10055 */
2ff7e61e 10056 free_excluded_extents(info, cache);
920e4a58 10057 btrfs_put_block_group(cache);
835d974f
JB
10058 goto error;
10059 }
3c14874a 10060
817d52f8
JB
10061 /*
10062 * check for two cases, either we are full, and therefore
10063 * don't need to bother with the caching work since we won't
10064 * find any space, or we are empty, and we can just add all
10065 * the space in and be done with it. This saves us _alot_ of
10066 * time, particularly in the full case.
10067 */
10068 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10069 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10070 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10071 free_excluded_extents(info, cache);
817d52f8 10072 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10073 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10074 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10075 add_new_free_space(cache, info,
817d52f8
JB
10076 found_key.objectid,
10077 found_key.objectid +
10078 found_key.offset);
2ff7e61e 10079 free_excluded_extents(info, cache);
817d52f8 10080 }
96b5179d 10081
0b246afa 10082 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10083 if (ret) {
10084 btrfs_remove_free_space_cache(cache);
10085 btrfs_put_block_group(cache);
10086 goto error;
10087 }
10088
0b246afa 10089 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10090 update_space_info(info, cache->flags, found_key.offset,
10091 btrfs_block_group_used(&cache->item),
10092 cache->bytes_super, &space_info);
8c579fe7 10093
6324fbf3 10094 cache->space_info = space_info;
1b2da372 10095
c434d21c 10096 link_block_group(cache);
0f9dd46c 10097
0b246afa 10098 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10099 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10100 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10101 } else if (btrfs_block_group_used(&cache->item) == 0) {
10102 spin_lock(&info->unused_bgs_lock);
10103 /* Should always be true but just in case. */
10104 if (list_empty(&cache->bg_list)) {
10105 btrfs_get_block_group(cache);
10106 list_add_tail(&cache->bg_list,
10107 &info->unused_bgs);
10108 }
10109 spin_unlock(&info->unused_bgs_lock);
10110 }
9078a3e1 10111 }
b742bb82 10112
0b246afa 10113 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10114 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10115 (BTRFS_BLOCK_GROUP_RAID10 |
10116 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10117 BTRFS_BLOCK_GROUP_RAID5 |
10118 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10119 BTRFS_BLOCK_GROUP_DUP)))
10120 continue;
10121 /*
10122 * avoid allocating from un-mirrored block group if there are
10123 * mirrored block groups.
10124 */
1095cc0d 10125 list_for_each_entry(cache,
10126 &space_info->block_groups[BTRFS_RAID_RAID0],
10127 list)
868f401a 10128 inc_block_group_ro(cache, 1);
1095cc0d 10129 list_for_each_entry(cache,
10130 &space_info->block_groups[BTRFS_RAID_SINGLE],
10131 list)
868f401a 10132 inc_block_group_ro(cache, 1);
9078a3e1 10133 }
f0486c68
YZ
10134
10135 init_global_block_rsv(info);
0b86a832
CM
10136 ret = 0;
10137error:
9078a3e1 10138 btrfs_free_path(path);
0b86a832 10139 return ret;
9078a3e1 10140}
6324fbf3 10141
6c686b35 10142void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10143{
6c686b35 10144 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10145 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10146 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10147 struct btrfs_block_group_item item;
10148 struct btrfs_key key;
10149 int ret = 0;
d9a0540a 10150 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10151
d9a0540a 10152 trans->can_flush_pending_bgs = false;
47ab2a6c 10153 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10154 if (ret)
c92f6be3 10155 goto next;
ea658bad
JB
10156
10157 spin_lock(&block_group->lock);
10158 memcpy(&item, &block_group->item, sizeof(item));
10159 memcpy(&key, &block_group->key, sizeof(key));
10160 spin_unlock(&block_group->lock);
10161
10162 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10163 sizeof(item));
10164 if (ret)
66642832 10165 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10166 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10167 key.offset);
6df9a95e 10168 if (ret)
66642832 10169 btrfs_abort_transaction(trans, ret);
0b246afa 10170 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10171 /* already aborted the transaction if it failed. */
c92f6be3
FM
10172next:
10173 list_del_init(&block_group->bg_list);
ea658bad 10174 }
d9a0540a 10175 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10176}
10177
6324fbf3 10178int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10179 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10180 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10181{
6324fbf3 10182 struct btrfs_block_group_cache *cache;
0b246afa 10183 int ret;
6324fbf3 10184
0b246afa 10185 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10186
2ff7e61e 10187 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10188 if (!cache)
10189 return -ENOMEM;
34d52cb6 10190
6324fbf3 10191 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10192 btrfs_set_block_group_chunk_objectid(&cache->item,
10193 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10194 btrfs_set_block_group_flags(&cache->item, type);
10195
920e4a58 10196 cache->flags = type;
11833d66 10197 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10198 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10199 cache->needs_free_space = 1;
2ff7e61e 10200 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10201 if (ret) {
10202 /*
10203 * We may have excluded something, so call this just in
10204 * case.
10205 */
2ff7e61e 10206 free_excluded_extents(fs_info, cache);
920e4a58 10207 btrfs_put_block_group(cache);
835d974f
JB
10208 return ret;
10209 }
96303081 10210
0b246afa 10211 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10212
2ff7e61e 10213 free_excluded_extents(fs_info, cache);
11833d66 10214
d0bd4560 10215#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10216 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10217 u64 new_bytes_used = size - bytes_used;
10218
10219 bytes_used += new_bytes_used >> 1;
2ff7e61e 10220 fragment_free_space(cache);
d0bd4560
JB
10221 }
10222#endif
2e6e5183 10223 /*
2be12ef7
NB
10224 * Ensure the corresponding space_info object is created and
10225 * assigned to our block group. We want our bg to be added to the rbtree
10226 * with its ->space_info set.
2e6e5183 10227 */
2be12ef7
NB
10228 cache->space_info = __find_space_info(fs_info, cache->flags);
10229 if (!cache->space_info) {
10230 ret = create_space_info(fs_info, cache->flags,
10231 &cache->space_info);
10232 if (ret) {
10233 btrfs_remove_free_space_cache(cache);
10234 btrfs_put_block_group(cache);
10235 return ret;
10236 }
2e6e5183
FM
10237 }
10238
0b246afa 10239 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10240 if (ret) {
10241 btrfs_remove_free_space_cache(cache);
10242 btrfs_put_block_group(cache);
10243 return ret;
10244 }
10245
2e6e5183
FM
10246 /*
10247 * Now that our block group has its ->space_info set and is inserted in
10248 * the rbtree, update the space info's counters.
10249 */
0b246afa 10250 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10251 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10252 cache->bytes_super, &cache->space_info);
0b246afa 10253 update_global_block_rsv(fs_info);
1b2da372 10254
c434d21c 10255 link_block_group(cache);
6324fbf3 10256
47ab2a6c 10257 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10258
0b246afa 10259 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10260 return 0;
10261}
1a40e23b 10262
10ea00f5
ID
10263static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10264{
899c81ea
ID
10265 u64 extra_flags = chunk_to_extended(flags) &
10266 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10267
de98ced9 10268 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10269 if (flags & BTRFS_BLOCK_GROUP_DATA)
10270 fs_info->avail_data_alloc_bits &= ~extra_flags;
10271 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10272 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10273 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10274 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10275 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10276}
10277
1a40e23b 10278int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10279 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10280 struct extent_map *em)
1a40e23b 10281{
6bccf3ab 10282 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10283 struct btrfs_path *path;
10284 struct btrfs_block_group_cache *block_group;
44fb5511 10285 struct btrfs_free_cluster *cluster;
0b246afa 10286 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10287 struct btrfs_key key;
0af3d00b 10288 struct inode *inode;
c1895442 10289 struct kobject *kobj = NULL;
1a40e23b 10290 int ret;
10ea00f5 10291 int index;
89a55897 10292 int factor;
4f69cb98 10293 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10294 bool remove_em;
1a40e23b 10295
6bccf3ab 10296 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10297 BUG_ON(!block_group);
c146afad 10298 BUG_ON(!block_group->ro);
1a40e23b 10299
9f7c43c9 10300 /*
10301 * Free the reserved super bytes from this block group before
10302 * remove it.
10303 */
2ff7e61e 10304 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10305 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10306 block_group->key.offset);
9f7c43c9 10307
1a40e23b 10308 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10309 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10310 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10311 BTRFS_BLOCK_GROUP_RAID1 |
10312 BTRFS_BLOCK_GROUP_RAID10))
10313 factor = 2;
10314 else
10315 factor = 1;
1a40e23b 10316
44fb5511 10317 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10318 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10319 spin_lock(&cluster->refill_lock);
10320 btrfs_return_cluster_to_free_space(block_group, cluster);
10321 spin_unlock(&cluster->refill_lock);
10322
10323 /*
10324 * make sure this block group isn't part of a metadata
10325 * allocation cluster
10326 */
0b246afa 10327 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10328 spin_lock(&cluster->refill_lock);
10329 btrfs_return_cluster_to_free_space(block_group, cluster);
10330 spin_unlock(&cluster->refill_lock);
10331
1a40e23b 10332 path = btrfs_alloc_path();
d8926bb3
MF
10333 if (!path) {
10334 ret = -ENOMEM;
10335 goto out;
10336 }
1a40e23b 10337
1bbc621e
CM
10338 /*
10339 * get the inode first so any iput calls done for the io_list
10340 * aren't the final iput (no unlinks allowed now)
10341 */
77ab86bf 10342 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10343
10344 mutex_lock(&trans->transaction->cache_write_mutex);
10345 /*
10346 * make sure our free spache cache IO is done before remove the
10347 * free space inode
10348 */
10349 spin_lock(&trans->transaction->dirty_bgs_lock);
10350 if (!list_empty(&block_group->io_list)) {
10351 list_del_init(&block_group->io_list);
10352
10353 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10354
10355 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10356 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10357 btrfs_put_block_group(block_group);
10358 spin_lock(&trans->transaction->dirty_bgs_lock);
10359 }
10360
10361 if (!list_empty(&block_group->dirty_list)) {
10362 list_del_init(&block_group->dirty_list);
10363 btrfs_put_block_group(block_group);
10364 }
10365 spin_unlock(&trans->transaction->dirty_bgs_lock);
10366 mutex_unlock(&trans->transaction->cache_write_mutex);
10367
0af3d00b 10368 if (!IS_ERR(inode)) {
73f2e545 10369 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10370 if (ret) {
10371 btrfs_add_delayed_iput(inode);
10372 goto out;
10373 }
0af3d00b
JB
10374 clear_nlink(inode);
10375 /* One for the block groups ref */
10376 spin_lock(&block_group->lock);
10377 if (block_group->iref) {
10378 block_group->iref = 0;
10379 block_group->inode = NULL;
10380 spin_unlock(&block_group->lock);
10381 iput(inode);
10382 } else {
10383 spin_unlock(&block_group->lock);
10384 }
10385 /* One for our lookup ref */
455757c3 10386 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10387 }
10388
10389 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10390 key.offset = block_group->key.objectid;
10391 key.type = 0;
10392
10393 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10394 if (ret < 0)
10395 goto out;
10396 if (ret > 0)
b3b4aa74 10397 btrfs_release_path(path);
0af3d00b
JB
10398 if (ret == 0) {
10399 ret = btrfs_del_item(trans, tree_root, path);
10400 if (ret)
10401 goto out;
b3b4aa74 10402 btrfs_release_path(path);
0af3d00b
JB
10403 }
10404
0b246afa 10405 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10406 rb_erase(&block_group->cache_node,
0b246afa 10407 &fs_info->block_group_cache_tree);
292cbd51 10408 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10409
0b246afa
JM
10410 if (fs_info->first_logical_byte == block_group->key.objectid)
10411 fs_info->first_logical_byte = (u64)-1;
10412 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10413
80eb234a 10414 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10415 /*
10416 * we must use list_del_init so people can check to see if they
10417 * are still on the list after taking the semaphore
10418 */
10419 list_del_init(&block_group->list);
6ab0a202 10420 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10421 kobj = block_group->space_info->block_group_kobjs[index];
10422 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10423 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10424 }
80eb234a 10425 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10426 if (kobj) {
10427 kobject_del(kobj);
10428 kobject_put(kobj);
10429 }
1a40e23b 10430
4f69cb98
FM
10431 if (block_group->has_caching_ctl)
10432 caching_ctl = get_caching_control(block_group);
817d52f8 10433 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10434 wait_block_group_cache_done(block_group);
4f69cb98 10435 if (block_group->has_caching_ctl) {
0b246afa 10436 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10437 if (!caching_ctl) {
10438 struct btrfs_caching_control *ctl;
10439
10440 list_for_each_entry(ctl,
0b246afa 10441 &fs_info->caching_block_groups, list)
4f69cb98
FM
10442 if (ctl->block_group == block_group) {
10443 caching_ctl = ctl;
1e4f4714 10444 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10445 break;
10446 }
10447 }
10448 if (caching_ctl)
10449 list_del_init(&caching_ctl->list);
0b246afa 10450 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10451 if (caching_ctl) {
10452 /* Once for the caching bgs list and once for us. */
10453 put_caching_control(caching_ctl);
10454 put_caching_control(caching_ctl);
10455 }
10456 }
817d52f8 10457
ce93ec54
JB
10458 spin_lock(&trans->transaction->dirty_bgs_lock);
10459 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10460 WARN_ON(1);
10461 }
10462 if (!list_empty(&block_group->io_list)) {
10463 WARN_ON(1);
ce93ec54
JB
10464 }
10465 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10466 btrfs_remove_free_space_cache(block_group);
10467
c146afad 10468 spin_lock(&block_group->space_info->lock);
75c68e9f 10469 list_del_init(&block_group->ro_list);
18d018ad 10470
0b246afa 10471 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10472 WARN_ON(block_group->space_info->total_bytes
10473 < block_group->key.offset);
10474 WARN_ON(block_group->space_info->bytes_readonly
10475 < block_group->key.offset);
10476 WARN_ON(block_group->space_info->disk_total
10477 < block_group->key.offset * factor);
10478 }
c146afad
YZ
10479 block_group->space_info->total_bytes -= block_group->key.offset;
10480 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10481 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10482
c146afad 10483 spin_unlock(&block_group->space_info->lock);
283bb197 10484
0af3d00b
JB
10485 memcpy(&key, &block_group->key, sizeof(key));
10486
34441361 10487 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10488 if (!list_empty(&em->list)) {
10489 /* We're in the transaction->pending_chunks list. */
10490 free_extent_map(em);
10491 }
04216820
FM
10492 spin_lock(&block_group->lock);
10493 block_group->removed = 1;
10494 /*
10495 * At this point trimming can't start on this block group, because we
10496 * removed the block group from the tree fs_info->block_group_cache_tree
10497 * so no one can't find it anymore and even if someone already got this
10498 * block group before we removed it from the rbtree, they have already
10499 * incremented block_group->trimming - if they didn't, they won't find
10500 * any free space entries because we already removed them all when we
10501 * called btrfs_remove_free_space_cache().
10502 *
10503 * And we must not remove the extent map from the fs_info->mapping_tree
10504 * to prevent the same logical address range and physical device space
10505 * ranges from being reused for a new block group. This is because our
10506 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10507 * completely transactionless, so while it is trimming a range the
10508 * currently running transaction might finish and a new one start,
10509 * allowing for new block groups to be created that can reuse the same
10510 * physical device locations unless we take this special care.
e33e17ee
JM
10511 *
10512 * There may also be an implicit trim operation if the file system
10513 * is mounted with -odiscard. The same protections must remain
10514 * in place until the extents have been discarded completely when
10515 * the transaction commit has completed.
04216820
FM
10516 */
10517 remove_em = (atomic_read(&block_group->trimming) == 0);
10518 /*
10519 * Make sure a trimmer task always sees the em in the pinned_chunks list
10520 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10521 * before checking block_group->removed).
10522 */
10523 if (!remove_em) {
10524 /*
10525 * Our em might be in trans->transaction->pending_chunks which
10526 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10527 * and so is the fs_info->pinned_chunks list.
10528 *
10529 * So at this point we must be holding the chunk_mutex to avoid
10530 * any races with chunk allocation (more specifically at
10531 * volumes.c:contains_pending_extent()), to ensure it always
10532 * sees the em, either in the pending_chunks list or in the
10533 * pinned_chunks list.
10534 */
0b246afa 10535 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10536 }
10537 spin_unlock(&block_group->lock);
04216820
FM
10538
10539 if (remove_em) {
10540 struct extent_map_tree *em_tree;
10541
0b246afa 10542 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10543 write_lock(&em_tree->lock);
8dbcd10f
FM
10544 /*
10545 * The em might be in the pending_chunks list, so make sure the
10546 * chunk mutex is locked, since remove_extent_mapping() will
10547 * delete us from that list.
10548 */
04216820
FM
10549 remove_extent_mapping(em_tree, em);
10550 write_unlock(&em_tree->lock);
10551 /* once for the tree */
10552 free_extent_map(em);
10553 }
10554
34441361 10555 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10556
0b246afa 10557 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10558 if (ret)
10559 goto out;
10560
fa9c0d79
CM
10561 btrfs_put_block_group(block_group);
10562 btrfs_put_block_group(block_group);
1a40e23b
ZY
10563
10564 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10565 if (ret > 0)
10566 ret = -EIO;
10567 if (ret < 0)
10568 goto out;
10569
10570 ret = btrfs_del_item(trans, root, path);
10571out:
10572 btrfs_free_path(path);
10573 return ret;
10574}
acce952b 10575
8eab77ff 10576struct btrfs_trans_handle *
7fd01182
FM
10577btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10578 const u64 chunk_offset)
8eab77ff 10579{
7fd01182
FM
10580 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10581 struct extent_map *em;
10582 struct map_lookup *map;
10583 unsigned int num_items;
10584
10585 read_lock(&em_tree->lock);
10586 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10587 read_unlock(&em_tree->lock);
10588 ASSERT(em && em->start == chunk_offset);
10589
8eab77ff 10590 /*
7fd01182
FM
10591 * We need to reserve 3 + N units from the metadata space info in order
10592 * to remove a block group (done at btrfs_remove_chunk() and at
10593 * btrfs_remove_block_group()), which are used for:
10594 *
8eab77ff
FM
10595 * 1 unit for adding the free space inode's orphan (located in the tree
10596 * of tree roots).
7fd01182
FM
10597 * 1 unit for deleting the block group item (located in the extent
10598 * tree).
10599 * 1 unit for deleting the free space item (located in tree of tree
10600 * roots).
10601 * N units for deleting N device extent items corresponding to each
10602 * stripe (located in the device tree).
10603 *
10604 * In order to remove a block group we also need to reserve units in the
10605 * system space info in order to update the chunk tree (update one or
10606 * more device items and remove one chunk item), but this is done at
10607 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10608 */
95617d69 10609 map = em->map_lookup;
7fd01182
FM
10610 num_items = 3 + map->num_stripes;
10611 free_extent_map(em);
10612
8eab77ff 10613 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10614 num_items, 1);
8eab77ff
FM
10615}
10616
47ab2a6c
JB
10617/*
10618 * Process the unused_bgs list and remove any that don't have any allocated
10619 * space inside of them.
10620 */
10621void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10622{
10623 struct btrfs_block_group_cache *block_group;
10624 struct btrfs_space_info *space_info;
47ab2a6c
JB
10625 struct btrfs_trans_handle *trans;
10626 int ret = 0;
10627
afcdd129 10628 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10629 return;
10630
10631 spin_lock(&fs_info->unused_bgs_lock);
10632 while (!list_empty(&fs_info->unused_bgs)) {
10633 u64 start, end;
e33e17ee 10634 int trimming;
47ab2a6c
JB
10635
10636 block_group = list_first_entry(&fs_info->unused_bgs,
10637 struct btrfs_block_group_cache,
10638 bg_list);
47ab2a6c 10639 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10640
10641 space_info = block_group->space_info;
10642
47ab2a6c
JB
10643 if (ret || btrfs_mixed_space_info(space_info)) {
10644 btrfs_put_block_group(block_group);
10645 continue;
10646 }
10647 spin_unlock(&fs_info->unused_bgs_lock);
10648
d5f2e33b 10649 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10650
47ab2a6c
JB
10651 /* Don't want to race with allocators so take the groups_sem */
10652 down_write(&space_info->groups_sem);
10653 spin_lock(&block_group->lock);
10654 if (block_group->reserved ||
10655 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10656 block_group->ro ||
aefbe9a6 10657 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10658 /*
10659 * We want to bail if we made new allocations or have
10660 * outstanding allocations in this block group. We do
10661 * the ro check in case balance is currently acting on
10662 * this block group.
10663 */
10664 spin_unlock(&block_group->lock);
10665 up_write(&space_info->groups_sem);
10666 goto next;
10667 }
10668 spin_unlock(&block_group->lock);
10669
10670 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10671 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10672 up_write(&space_info->groups_sem);
10673 if (ret < 0) {
10674 ret = 0;
10675 goto next;
10676 }
10677
10678 /*
10679 * Want to do this before we do anything else so we can recover
10680 * properly if we fail to join the transaction.
10681 */
7fd01182
FM
10682 trans = btrfs_start_trans_remove_block_group(fs_info,
10683 block_group->key.objectid);
47ab2a6c 10684 if (IS_ERR(trans)) {
2ff7e61e 10685 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10686 ret = PTR_ERR(trans);
10687 goto next;
10688 }
10689
10690 /*
10691 * We could have pending pinned extents for this block group,
10692 * just delete them, we don't care about them anymore.
10693 */
10694 start = block_group->key.objectid;
10695 end = start + block_group->key.offset - 1;
d4b450cd
FM
10696 /*
10697 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10698 * btrfs_finish_extent_commit(). If we are at transaction N,
10699 * another task might be running finish_extent_commit() for the
10700 * previous transaction N - 1, and have seen a range belonging
10701 * to the block group in freed_extents[] before we were able to
10702 * clear the whole block group range from freed_extents[]. This
10703 * means that task can lookup for the block group after we
10704 * unpinned it from freed_extents[] and removed it, leading to
10705 * a BUG_ON() at btrfs_unpin_extent_range().
10706 */
10707 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10708 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10709 EXTENT_DIRTY);
758eb51e 10710 if (ret) {
d4b450cd 10711 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10712 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10713 goto end_trans;
10714 }
10715 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10716 EXTENT_DIRTY);
758eb51e 10717 if (ret) {
d4b450cd 10718 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10719 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10720 goto end_trans;
10721 }
d4b450cd 10722 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10723
10724 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10725 spin_lock(&space_info->lock);
10726 spin_lock(&block_group->lock);
10727
10728 space_info->bytes_pinned -= block_group->pinned;
10729 space_info->bytes_readonly += block_group->pinned;
10730 percpu_counter_add(&space_info->total_bytes_pinned,
10731 -block_group->pinned);
47ab2a6c
JB
10732 block_group->pinned = 0;
10733
c30666d4
ZL
10734 spin_unlock(&block_group->lock);
10735 spin_unlock(&space_info->lock);
10736
e33e17ee 10737 /* DISCARD can flip during remount */
0b246afa 10738 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10739
10740 /* Implicit trim during transaction commit. */
10741 if (trimming)
10742 btrfs_get_block_group_trimming(block_group);
10743
47ab2a6c
JB
10744 /*
10745 * Btrfs_remove_chunk will abort the transaction if things go
10746 * horribly wrong.
10747 */
5b4aacef 10748 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10749 block_group->key.objectid);
e33e17ee
JM
10750
10751 if (ret) {
10752 if (trimming)
10753 btrfs_put_block_group_trimming(block_group);
10754 goto end_trans;
10755 }
10756
10757 /*
10758 * If we're not mounted with -odiscard, we can just forget
10759 * about this block group. Otherwise we'll need to wait
10760 * until transaction commit to do the actual discard.
10761 */
10762 if (trimming) {
348a0013
FM
10763 spin_lock(&fs_info->unused_bgs_lock);
10764 /*
10765 * A concurrent scrub might have added us to the list
10766 * fs_info->unused_bgs, so use a list_move operation
10767 * to add the block group to the deleted_bgs list.
10768 */
e33e17ee
JM
10769 list_move(&block_group->bg_list,
10770 &trans->transaction->deleted_bgs);
348a0013 10771 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10772 btrfs_get_block_group(block_group);
10773 }
758eb51e 10774end_trans:
3a45bb20 10775 btrfs_end_transaction(trans);
47ab2a6c 10776next:
d5f2e33b 10777 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10778 btrfs_put_block_group(block_group);
10779 spin_lock(&fs_info->unused_bgs_lock);
10780 }
10781 spin_unlock(&fs_info->unused_bgs_lock);
10782}
10783
c59021f8 10784int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10785{
10786 struct btrfs_space_info *space_info;
1aba86d6 10787 struct btrfs_super_block *disk_super;
10788 u64 features;
10789 u64 flags;
10790 int mixed = 0;
c59021f8 10791 int ret;
10792
6c41761f 10793 disk_super = fs_info->super_copy;
1aba86d6 10794 if (!btrfs_super_root(disk_super))
0dc924c5 10795 return -EINVAL;
c59021f8 10796
1aba86d6 10797 features = btrfs_super_incompat_flags(disk_super);
10798 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10799 mixed = 1;
c59021f8 10800
1aba86d6 10801 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10802 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10803 if (ret)
1aba86d6 10804 goto out;
c59021f8 10805
1aba86d6 10806 if (mixed) {
10807 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10808 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10809 } else {
10810 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10811 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10812 if (ret)
10813 goto out;
10814
10815 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10816 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10817 }
10818out:
c59021f8 10819 return ret;
10820}
10821
2ff7e61e
JM
10822int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10823 u64 start, u64 end)
acce952b 10824{
2ff7e61e 10825 return unpin_extent_range(fs_info, start, end, false);
acce952b 10826}
10827
499f377f
JM
10828/*
10829 * It used to be that old block groups would be left around forever.
10830 * Iterating over them would be enough to trim unused space. Since we
10831 * now automatically remove them, we also need to iterate over unallocated
10832 * space.
10833 *
10834 * We don't want a transaction for this since the discard may take a
10835 * substantial amount of time. We don't require that a transaction be
10836 * running, but we do need to take a running transaction into account
10837 * to ensure that we're not discarding chunks that were released in
10838 * the current transaction.
10839 *
10840 * Holding the chunks lock will prevent other threads from allocating
10841 * or releasing chunks, but it won't prevent a running transaction
10842 * from committing and releasing the memory that the pending chunks
10843 * list head uses. For that, we need to take a reference to the
10844 * transaction.
10845 */
10846static int btrfs_trim_free_extents(struct btrfs_device *device,
10847 u64 minlen, u64 *trimmed)
10848{
10849 u64 start = 0, len = 0;
10850 int ret;
10851
10852 *trimmed = 0;
10853
10854 /* Not writeable = nothing to do. */
ebbede42 10855 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10856 return 0;
10857
10858 /* No free space = nothing to do. */
10859 if (device->total_bytes <= device->bytes_used)
10860 return 0;
10861
10862 ret = 0;
10863
10864 while (1) {
fb456252 10865 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10866 struct btrfs_transaction *trans;
10867 u64 bytes;
10868
10869 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10870 if (ret)
10871 return ret;
10872
10873 down_read(&fs_info->commit_root_sem);
10874
10875 spin_lock(&fs_info->trans_lock);
10876 trans = fs_info->running_transaction;
10877 if (trans)
9b64f57d 10878 refcount_inc(&trans->use_count);
499f377f
JM
10879 spin_unlock(&fs_info->trans_lock);
10880
10881 ret = find_free_dev_extent_start(trans, device, minlen, start,
10882 &start, &len);
10883 if (trans)
10884 btrfs_put_transaction(trans);
10885
10886 if (ret) {
10887 up_read(&fs_info->commit_root_sem);
10888 mutex_unlock(&fs_info->chunk_mutex);
10889 if (ret == -ENOSPC)
10890 ret = 0;
10891 break;
10892 }
10893
10894 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10895 up_read(&fs_info->commit_root_sem);
10896 mutex_unlock(&fs_info->chunk_mutex);
10897
10898 if (ret)
10899 break;
10900
10901 start += len;
10902 *trimmed += bytes;
10903
10904 if (fatal_signal_pending(current)) {
10905 ret = -ERESTARTSYS;
10906 break;
10907 }
10908
10909 cond_resched();
10910 }
10911
10912 return ret;
10913}
10914
2ff7e61e 10915int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10916{
f7039b1d 10917 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10918 struct btrfs_device *device;
10919 struct list_head *devices;
f7039b1d
LD
10920 u64 group_trimmed;
10921 u64 start;
10922 u64 end;
10923 u64 trimmed = 0;
2cac13e4 10924 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10925 int ret = 0;
10926
2cac13e4
LB
10927 /*
10928 * try to trim all FS space, our block group may start from non-zero.
10929 */
10930 if (range->len == total_bytes)
10931 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10932 else
10933 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10934
10935 while (cache) {
10936 if (cache->key.objectid >= (range->start + range->len)) {
10937 btrfs_put_block_group(cache);
10938 break;
10939 }
10940
10941 start = max(range->start, cache->key.objectid);
10942 end = min(range->start + range->len,
10943 cache->key.objectid + cache->key.offset);
10944
10945 if (end - start >= range->minlen) {
10946 if (!block_group_cache_done(cache)) {
f6373bf3 10947 ret = cache_block_group(cache, 0);
1be41b78
JB
10948 if (ret) {
10949 btrfs_put_block_group(cache);
10950 break;
10951 }
10952 ret = wait_block_group_cache_done(cache);
10953 if (ret) {
10954 btrfs_put_block_group(cache);
10955 break;
10956 }
f7039b1d
LD
10957 }
10958 ret = btrfs_trim_block_group(cache,
10959 &group_trimmed,
10960 start,
10961 end,
10962 range->minlen);
10963
10964 trimmed += group_trimmed;
10965 if (ret) {
10966 btrfs_put_block_group(cache);
10967 break;
10968 }
10969 }
10970
2ff7e61e 10971 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10972 }
10973
0b246afa
JM
10974 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10975 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10976 list_for_each_entry(device, devices, dev_alloc_list) {
10977 ret = btrfs_trim_free_extents(device, range->minlen,
10978 &group_trimmed);
10979 if (ret)
10980 break;
10981
10982 trimmed += group_trimmed;
10983 }
0b246afa 10984 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10985
f7039b1d
LD
10986 range->len = trimmed;
10987 return ret;
10988}
8257b2dc
MX
10989
10990/*
ea14b57f 10991 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
10992 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10993 * data into the page cache through nocow before the subvolume is snapshoted,
10994 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 10995 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 10996 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10997 */
ea14b57f 10998void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
10999{
11000 percpu_counter_dec(&root->subv_writers->counter);
11001 /*
a83342aa 11002 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11003 */
11004 smp_mb();
11005 if (waitqueue_active(&root->subv_writers->wait))
11006 wake_up(&root->subv_writers->wait);
11007}
11008
ea14b57f 11009int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11010{
ea14b57f 11011 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11012 return 0;
11013
11014 percpu_counter_inc(&root->subv_writers->counter);
11015 /*
11016 * Make sure counter is updated before we check for snapshot creation.
11017 */
11018 smp_mb();
ea14b57f
DS
11019 if (atomic_read(&root->will_be_snapshotted)) {
11020 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11021 return 0;
11022 }
11023 return 1;
11024}
0bc19f90 11025
0bc19f90
ZL
11026void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11027{
11028 while (true) {
11029 int ret;
11030
ea14b57f 11031 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11032 if (ret)
11033 break;
5e4def20 11034 wait_on_atomic_t(&root->will_be_snapshotted, atomic_t_wait,
0bc19f90
ZL
11035 TASK_UNINTERRUPTIBLE);
11036 }
11037}