]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: merge calls of btrfs_setxattr and btrfs_setxattr_trans in btrfs_set_prop
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
9f9b8e8d
QW
54/*
55 * Declare a helper function to detect underflow of various space info members
56 */
57#define DECLARE_SPACE_INFO_UPDATE(name) \
58static inline void update_##name(struct btrfs_space_info *sinfo, \
59 s64 bytes) \
60{ \
61 if (bytes < 0 && sinfo->name < -bytes) { \
62 WARN_ON(1); \
63 sinfo->name = 0; \
64 return; \
65 } \
66 sinfo->name += bytes; \
67}
68
69DECLARE_SPACE_INFO_UPDATE(bytes_may_use);
e2907c1a 70DECLARE_SPACE_INFO_UPDATE(bytes_pinned);
9f9b8e8d 71
5d4f98a2 72static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
73 struct btrfs_delayed_ref_node *node, u64 parent,
74 u64 root_objectid, u64 owner_objectid,
75 u64 owner_offset, int refs_to_drop,
76 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
77static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
78 struct extent_buffer *leaf,
79 struct btrfs_extent_item *ei);
80static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
81 u64 parent, u64 root_objectid,
82 u64 flags, u64 owner, u64 offset,
83 struct btrfs_key *ins, int ref_mod);
84static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 85 struct btrfs_delayed_ref_node *node,
21ebfbe7 86 struct btrfs_delayed_extent_op *extent_op);
01458828 87static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 88 int force);
11833d66
YZ
89static int find_next_key(struct btrfs_path *path, int level,
90 struct btrfs_key *key);
ab8d0fc4
JM
91static void dump_space_info(struct btrfs_fs_info *fs_info,
92 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 93 int dump_block_groups);
5d80366e
JB
94static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
95 u64 num_bytes);
957780eb
JB
96static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
97 struct btrfs_space_info *space_info,
98 u64 num_bytes);
99static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
100 struct btrfs_space_info *space_info,
101 u64 num_bytes);
6a63209f 102
817d52f8
JB
103static noinline int
104block_group_cache_done(struct btrfs_block_group_cache *cache)
105{
106 smp_mb();
36cce922
JB
107 return cache->cached == BTRFS_CACHE_FINISHED ||
108 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
109}
110
0f9dd46c
JB
111static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
112{
113 return (cache->flags & bits) == bits;
114}
115
758f2dfc 116void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
117{
118 atomic_inc(&cache->count);
119}
120
121void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
122{
f0486c68
YZ
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
0966a7b1
QW
126
127 /*
128 * If not empty, someone is still holding mutex of
129 * full_stripe_lock, which can only be released by caller.
130 * And it will definitely cause use-after-free when caller
131 * tries to release full stripe lock.
132 *
133 * No better way to resolve, but only to warn.
134 */
135 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 136 kfree(cache->free_space_ctl);
11dfe35a 137 kfree(cache);
f0486c68 138 }
11dfe35a
JB
139}
140
0f9dd46c
JB
141/*
142 * this adds the block group to the fs_info rb tree for the block group
143 * cache
144 */
b2950863 145static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
146 struct btrfs_block_group_cache *block_group)
147{
148 struct rb_node **p;
149 struct rb_node *parent = NULL;
150 struct btrfs_block_group_cache *cache;
151
152 spin_lock(&info->block_group_cache_lock);
153 p = &info->block_group_cache_tree.rb_node;
154
155 while (*p) {
156 parent = *p;
157 cache = rb_entry(parent, struct btrfs_block_group_cache,
158 cache_node);
159 if (block_group->key.objectid < cache->key.objectid) {
160 p = &(*p)->rb_left;
161 } else if (block_group->key.objectid > cache->key.objectid) {
162 p = &(*p)->rb_right;
163 } else {
164 spin_unlock(&info->block_group_cache_lock);
165 return -EEXIST;
166 }
167 }
168
169 rb_link_node(&block_group->cache_node, parent, p);
170 rb_insert_color(&block_group->cache_node,
171 &info->block_group_cache_tree);
a1897fdd
LB
172
173 if (info->first_logical_byte > block_group->key.objectid)
174 info->first_logical_byte = block_group->key.objectid;
175
0f9dd46c
JB
176 spin_unlock(&info->block_group_cache_lock);
177
178 return 0;
179}
180
181/*
182 * This will return the block group at or after bytenr if contains is 0, else
183 * it will return the block group that contains the bytenr
184 */
185static struct btrfs_block_group_cache *
186block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
187 int contains)
188{
189 struct btrfs_block_group_cache *cache, *ret = NULL;
190 struct rb_node *n;
191 u64 end, start;
192
193 spin_lock(&info->block_group_cache_lock);
194 n = info->block_group_cache_tree.rb_node;
195
196 while (n) {
197 cache = rb_entry(n, struct btrfs_block_group_cache,
198 cache_node);
199 end = cache->key.objectid + cache->key.offset - 1;
200 start = cache->key.objectid;
201
202 if (bytenr < start) {
203 if (!contains && (!ret || start < ret->key.objectid))
204 ret = cache;
205 n = n->rb_left;
206 } else if (bytenr > start) {
207 if (contains && bytenr <= end) {
208 ret = cache;
209 break;
210 }
211 n = n->rb_right;
212 } else {
213 ret = cache;
214 break;
215 }
216 }
a1897fdd 217 if (ret) {
11dfe35a 218 btrfs_get_block_group(ret);
a1897fdd
LB
219 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
220 info->first_logical_byte = ret->key.objectid;
221 }
0f9dd46c
JB
222 spin_unlock(&info->block_group_cache_lock);
223
224 return ret;
225}
226
2ff7e61e 227static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 228 u64 start, u64 num_bytes)
817d52f8 229{
11833d66 230 u64 end = start + num_bytes - 1;
0b246afa 231 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 232 start, end, EXTENT_UPTODATE);
0b246afa 233 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 234 start, end, EXTENT_UPTODATE);
11833d66
YZ
235 return 0;
236}
817d52f8 237
9e715da8 238static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 239{
9e715da8 240 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 241 u64 start, end;
817d52f8 242
11833d66
YZ
243 start = cache->key.objectid;
244 end = start + cache->key.offset - 1;
245
0b246afa 246 clear_extent_bits(&fs_info->freed_extents[0],
91166212 247 start, end, EXTENT_UPTODATE);
0b246afa 248 clear_extent_bits(&fs_info->freed_extents[1],
91166212 249 start, end, EXTENT_UPTODATE);
817d52f8
JB
250}
251
3c4da657 252static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 253{
3c4da657 254 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
255 u64 bytenr;
256 u64 *logical;
257 int stripe_len;
258 int i, nr, ret;
259
06b2331f
YZ
260 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
261 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
262 cache->bytes_super += stripe_len;
2ff7e61e 263 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 264 stripe_len);
835d974f
JB
265 if (ret)
266 return ret;
06b2331f
YZ
267 }
268
817d52f8
JB
269 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
270 bytenr = btrfs_sb_offset(i);
0b246afa 271 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 272 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
273 if (ret)
274 return ret;
11833d66 275
817d52f8 276 while (nr--) {
51bf5f0b
JB
277 u64 start, len;
278
279 if (logical[nr] > cache->key.objectid +
280 cache->key.offset)
281 continue;
282
283 if (logical[nr] + stripe_len <= cache->key.objectid)
284 continue;
285
286 start = logical[nr];
287 if (start < cache->key.objectid) {
288 start = cache->key.objectid;
289 len = (logical[nr] + stripe_len) - start;
290 } else {
291 len = min_t(u64, stripe_len,
292 cache->key.objectid +
293 cache->key.offset - start);
294 }
295
296 cache->bytes_super += len;
2ff7e61e 297 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
298 if (ret) {
299 kfree(logical);
300 return ret;
301 }
817d52f8 302 }
11833d66 303
817d52f8
JB
304 kfree(logical);
305 }
817d52f8
JB
306 return 0;
307}
308
11833d66
YZ
309static struct btrfs_caching_control *
310get_caching_control(struct btrfs_block_group_cache *cache)
311{
312 struct btrfs_caching_control *ctl;
313
314 spin_lock(&cache->lock);
dde5abee
JB
315 if (!cache->caching_ctl) {
316 spin_unlock(&cache->lock);
11833d66
YZ
317 return NULL;
318 }
319
320 ctl = cache->caching_ctl;
1e4f4714 321 refcount_inc(&ctl->count);
11833d66
YZ
322 spin_unlock(&cache->lock);
323 return ctl;
324}
325
326static void put_caching_control(struct btrfs_caching_control *ctl)
327{
1e4f4714 328 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
329 kfree(ctl);
330}
331
d0bd4560 332#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 333static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 334{
2ff7e61e 335 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
336 u64 start = block_group->key.objectid;
337 u64 len = block_group->key.offset;
338 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 339 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
340 u64 step = chunk << 1;
341
342 while (len > chunk) {
343 btrfs_remove_free_space(block_group, start, chunk);
344 start += step;
345 if (len < step)
346 len = 0;
347 else
348 len -= step;
349 }
350}
351#endif
352
0f9dd46c
JB
353/*
354 * this is only called by cache_block_group, since we could have freed extents
355 * we need to check the pinned_extents for any extents that can't be used yet
356 * since their free space will be released as soon as the transaction commits.
357 */
a5ed9182 358u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 359 u64 start, u64 end)
0f9dd46c 360{
4457c1c7 361 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 362 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
363 int ret;
364
365 while (start < end) {
11833d66 366 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 367 &extent_start, &extent_end,
e6138876
JB
368 EXTENT_DIRTY | EXTENT_UPTODATE,
369 NULL);
0f9dd46c
JB
370 if (ret)
371 break;
372
06b2331f 373 if (extent_start <= start) {
0f9dd46c
JB
374 start = extent_end + 1;
375 } else if (extent_start > start && extent_start < end) {
376 size = extent_start - start;
817d52f8 377 total_added += size;
ea6a478e
JB
378 ret = btrfs_add_free_space(block_group, start,
379 size);
79787eaa 380 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
381 start = extent_end + 1;
382 } else {
383 break;
384 }
385 }
386
387 if (start < end) {
388 size = end - start;
817d52f8 389 total_added += size;
ea6a478e 390 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 391 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
392 }
393
817d52f8 394 return total_added;
0f9dd46c
JB
395}
396
73fa48b6 397static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 398{
0b246afa
JM
399 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
400 struct btrfs_fs_info *fs_info = block_group->fs_info;
401 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 402 struct btrfs_path *path;
5f39d397 403 struct extent_buffer *leaf;
11833d66 404 struct btrfs_key key;
817d52f8 405 u64 total_found = 0;
11833d66
YZ
406 u64 last = 0;
407 u32 nritems;
73fa48b6 408 int ret;
d0bd4560 409 bool wakeup = true;
f510cfec 410
e37c9e69
CM
411 path = btrfs_alloc_path();
412 if (!path)
73fa48b6 413 return -ENOMEM;
7d7d6068 414
817d52f8 415 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 416
d0bd4560
JB
417#ifdef CONFIG_BTRFS_DEBUG
418 /*
419 * If we're fragmenting we don't want to make anybody think we can
420 * allocate from this block group until we've had a chance to fragment
421 * the free space.
422 */
2ff7e61e 423 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
424 wakeup = false;
425#endif
5cd57b2c 426 /*
817d52f8
JB
427 * We don't want to deadlock with somebody trying to allocate a new
428 * extent for the extent root while also trying to search the extent
429 * root to add free space. So we skip locking and search the commit
430 * root, since its read-only
5cd57b2c
CM
431 */
432 path->skip_locking = 1;
817d52f8 433 path->search_commit_root = 1;
e4058b54 434 path->reada = READA_FORWARD;
817d52f8 435
e4404d6e 436 key.objectid = last;
e37c9e69 437 key.offset = 0;
11833d66 438 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 439
52ee28d2 440next:
11833d66 441 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 442 if (ret < 0)
73fa48b6 443 goto out;
a512bbf8 444
11833d66
YZ
445 leaf = path->nodes[0];
446 nritems = btrfs_header_nritems(leaf);
447
d397712b 448 while (1) {
7841cb28 449 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 450 last = (u64)-1;
817d52f8 451 break;
f25784b3 452 }
817d52f8 453
11833d66
YZ
454 if (path->slots[0] < nritems) {
455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
456 } else {
457 ret = find_next_key(path, 0, &key);
458 if (ret)
e37c9e69 459 break;
817d52f8 460
c9ea7b24 461 if (need_resched() ||
9e351cc8 462 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
463 if (wakeup)
464 caching_ctl->progress = last;
ff5714cc 465 btrfs_release_path(path);
9e351cc8 466 up_read(&fs_info->commit_root_sem);
589d8ade 467 mutex_unlock(&caching_ctl->mutex);
11833d66 468 cond_resched();
73fa48b6
OS
469 mutex_lock(&caching_ctl->mutex);
470 down_read(&fs_info->commit_root_sem);
471 goto next;
589d8ade 472 }
0a3896d0
JB
473
474 ret = btrfs_next_leaf(extent_root, path);
475 if (ret < 0)
73fa48b6 476 goto out;
0a3896d0
JB
477 if (ret)
478 break;
589d8ade
JB
479 leaf = path->nodes[0];
480 nritems = btrfs_header_nritems(leaf);
481 continue;
11833d66 482 }
817d52f8 483
52ee28d2
LB
484 if (key.objectid < last) {
485 key.objectid = last;
486 key.offset = 0;
487 key.type = BTRFS_EXTENT_ITEM_KEY;
488
d0bd4560
JB
489 if (wakeup)
490 caching_ctl->progress = last;
52ee28d2
LB
491 btrfs_release_path(path);
492 goto next;
493 }
494
11833d66
YZ
495 if (key.objectid < block_group->key.objectid) {
496 path->slots[0]++;
817d52f8 497 continue;
e37c9e69 498 }
0f9dd46c 499
e37c9e69 500 if (key.objectid >= block_group->key.objectid +
0f9dd46c 501 block_group->key.offset)
e37c9e69 502 break;
7d7d6068 503
3173a18f
JB
504 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
505 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8 507 key.objectid);
3173a18f
JB
508 if (key.type == BTRFS_METADATA_ITEM_KEY)
509 last = key.objectid +
da17066c 510 fs_info->nodesize;
3173a18f
JB
511 else
512 last = key.objectid + key.offset;
817d52f8 513
73fa48b6 514 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 515 total_found = 0;
d0bd4560
JB
516 if (wakeup)
517 wake_up(&caching_ctl->wait);
11833d66 518 }
817d52f8 519 }
e37c9e69
CM
520 path->slots[0]++;
521 }
817d52f8 522 ret = 0;
e37c9e69 523
4457c1c7 524 total_found += add_new_free_space(block_group, last,
817d52f8
JB
525 block_group->key.objectid +
526 block_group->key.offset);
11833d66 527 caching_ctl->progress = (u64)-1;
817d52f8 528
73fa48b6
OS
529out:
530 btrfs_free_path(path);
531 return ret;
532}
533
534static noinline void caching_thread(struct btrfs_work *work)
535{
536 struct btrfs_block_group_cache *block_group;
537 struct btrfs_fs_info *fs_info;
538 struct btrfs_caching_control *caching_ctl;
539 int ret;
540
541 caching_ctl = container_of(work, struct btrfs_caching_control, work);
542 block_group = caching_ctl->block_group;
543 fs_info = block_group->fs_info;
544
545 mutex_lock(&caching_ctl->mutex);
546 down_read(&fs_info->commit_root_sem);
547
1e144fb8
OS
548 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
549 ret = load_free_space_tree(caching_ctl);
550 else
551 ret = load_extent_tree_free(caching_ctl);
73fa48b6 552
817d52f8 553 spin_lock(&block_group->lock);
11833d66 554 block_group->caching_ctl = NULL;
73fa48b6 555 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 556 spin_unlock(&block_group->lock);
0f9dd46c 557
d0bd4560 558#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 559 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
560 u64 bytes_used;
561
562 spin_lock(&block_group->space_info->lock);
563 spin_lock(&block_group->lock);
564 bytes_used = block_group->key.offset -
565 btrfs_block_group_used(&block_group->item);
566 block_group->space_info->bytes_used += bytes_used >> 1;
567 spin_unlock(&block_group->lock);
568 spin_unlock(&block_group->space_info->lock);
2ff7e61e 569 fragment_free_space(block_group);
d0bd4560
JB
570 }
571#endif
572
573 caching_ctl->progress = (u64)-1;
11833d66 574
9e351cc8 575 up_read(&fs_info->commit_root_sem);
9e715da8 576 free_excluded_extents(block_group);
11833d66 577 mutex_unlock(&caching_ctl->mutex);
73fa48b6 578
11833d66
YZ
579 wake_up(&caching_ctl->wait);
580
581 put_caching_control(caching_ctl);
11dfe35a 582 btrfs_put_block_group(block_group);
817d52f8
JB
583}
584
9d66e233 585static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 586 int load_cache_only)
817d52f8 587{
291c7d2f 588 DEFINE_WAIT(wait);
11833d66
YZ
589 struct btrfs_fs_info *fs_info = cache->fs_info;
590 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
591 int ret = 0;
592
291c7d2f 593 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
594 if (!caching_ctl)
595 return -ENOMEM;
291c7d2f
JB
596
597 INIT_LIST_HEAD(&caching_ctl->list);
598 mutex_init(&caching_ctl->mutex);
599 init_waitqueue_head(&caching_ctl->wait);
600 caching_ctl->block_group = cache;
601 caching_ctl->progress = cache->key.objectid;
1e4f4714 602 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
603 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
604 caching_thread, NULL, NULL);
291c7d2f
JB
605
606 spin_lock(&cache->lock);
607 /*
608 * This should be a rare occasion, but this could happen I think in the
609 * case where one thread starts to load the space cache info, and then
610 * some other thread starts a transaction commit which tries to do an
611 * allocation while the other thread is still loading the space cache
612 * info. The previous loop should have kept us from choosing this block
613 * group, but if we've moved to the state where we will wait on caching
614 * block groups we need to first check if we're doing a fast load here,
615 * so we can wait for it to finish, otherwise we could end up allocating
616 * from a block group who's cache gets evicted for one reason or
617 * another.
618 */
619 while (cache->cached == BTRFS_CACHE_FAST) {
620 struct btrfs_caching_control *ctl;
621
622 ctl = cache->caching_ctl;
1e4f4714 623 refcount_inc(&ctl->count);
291c7d2f
JB
624 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
625 spin_unlock(&cache->lock);
626
627 schedule();
628
629 finish_wait(&ctl->wait, &wait);
630 put_caching_control(ctl);
631 spin_lock(&cache->lock);
632 }
633
634 if (cache->cached != BTRFS_CACHE_NO) {
635 spin_unlock(&cache->lock);
636 kfree(caching_ctl);
11833d66 637 return 0;
291c7d2f
JB
638 }
639 WARN_ON(cache->caching_ctl);
640 cache->caching_ctl = caching_ctl;
641 cache->cached = BTRFS_CACHE_FAST;
642 spin_unlock(&cache->lock);
11833d66 643
d8953d69 644 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 645 mutex_lock(&caching_ctl->mutex);
bb6cb1c5 646 ret = load_free_space_cache(cache);
9d66e233
JB
647
648 spin_lock(&cache->lock);
649 if (ret == 1) {
291c7d2f 650 cache->caching_ctl = NULL;
9d66e233
JB
651 cache->cached = BTRFS_CACHE_FINISHED;
652 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 653 caching_ctl->progress = (u64)-1;
9d66e233 654 } else {
291c7d2f
JB
655 if (load_cache_only) {
656 cache->caching_ctl = NULL;
657 cache->cached = BTRFS_CACHE_NO;
658 } else {
659 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 660 cache->has_caching_ctl = 1;
291c7d2f 661 }
9d66e233
JB
662 }
663 spin_unlock(&cache->lock);
d0bd4560
JB
664#ifdef CONFIG_BTRFS_DEBUG
665 if (ret == 1 &&
2ff7e61e 666 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
667 u64 bytes_used;
668
669 spin_lock(&cache->space_info->lock);
670 spin_lock(&cache->lock);
671 bytes_used = cache->key.offset -
672 btrfs_block_group_used(&cache->item);
673 cache->space_info->bytes_used += bytes_used >> 1;
674 spin_unlock(&cache->lock);
675 spin_unlock(&cache->space_info->lock);
2ff7e61e 676 fragment_free_space(cache);
d0bd4560
JB
677 }
678#endif
cb83b7b8
JB
679 mutex_unlock(&caching_ctl->mutex);
680
291c7d2f 681 wake_up(&caching_ctl->wait);
3c14874a 682 if (ret == 1) {
291c7d2f 683 put_caching_control(caching_ctl);
9e715da8 684 free_excluded_extents(cache);
9d66e233 685 return 0;
3c14874a 686 }
291c7d2f
JB
687 } else {
688 /*
1e144fb8
OS
689 * We're either using the free space tree or no caching at all.
690 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
691 */
692 spin_lock(&cache->lock);
693 if (load_cache_only) {
694 cache->caching_ctl = NULL;
695 cache->cached = BTRFS_CACHE_NO;
696 } else {
697 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 698 cache->has_caching_ctl = 1;
291c7d2f
JB
699 }
700 spin_unlock(&cache->lock);
701 wake_up(&caching_ctl->wait);
9d66e233
JB
702 }
703
291c7d2f
JB
704 if (load_cache_only) {
705 put_caching_control(caching_ctl);
11833d66 706 return 0;
817d52f8 707 }
817d52f8 708
9e351cc8 709 down_write(&fs_info->commit_root_sem);
1e4f4714 710 refcount_inc(&caching_ctl->count);
11833d66 711 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 712 up_write(&fs_info->commit_root_sem);
11833d66 713
11dfe35a 714 btrfs_get_block_group(cache);
11833d66 715
e66f0bb1 716 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 717
ef8bbdfe 718 return ret;
e37c9e69
CM
719}
720
0f9dd46c
JB
721/*
722 * return the block group that starts at or after bytenr
723 */
d397712b
CM
724static struct btrfs_block_group_cache *
725btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 726{
e2c89907 727 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
728}
729
0f9dd46c 730/*
9f55684c 731 * return the block group that contains the given bytenr
0f9dd46c 732 */
d397712b
CM
733struct btrfs_block_group_cache *btrfs_lookup_block_group(
734 struct btrfs_fs_info *info,
735 u64 bytenr)
be744175 736{
e2c89907 737 return block_group_cache_tree_search(info, bytenr, 1);
be744175 738}
0b86a832 739
0f9dd46c
JB
740static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
741 u64 flags)
6324fbf3 742{
0f9dd46c 743 struct list_head *head = &info->space_info;
0f9dd46c 744 struct btrfs_space_info *found;
4184ea7f 745
52ba6929 746 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 747
4184ea7f
CM
748 rcu_read_lock();
749 list_for_each_entry_rcu(found, head, list) {
67377734 750 if (found->flags & flags) {
4184ea7f 751 rcu_read_unlock();
0f9dd46c 752 return found;
4184ea7f 753 }
0f9dd46c 754 }
4184ea7f 755 rcu_read_unlock();
0f9dd46c 756 return NULL;
6324fbf3
CM
757}
758
ddf30cf0
QW
759static void add_pinned_bytes(struct btrfs_fs_info *fs_info,
760 struct btrfs_ref *ref)
0d9f824d
OS
761{
762 struct btrfs_space_info *space_info;
ddf30cf0 763 s64 num_bytes = -ref->len;
0d9f824d
OS
764 u64 flags;
765
ddf30cf0
QW
766 if (ref->type == BTRFS_REF_METADATA) {
767 if (ref->tree_ref.root == BTRFS_CHUNK_TREE_OBJECTID)
0d9f824d
OS
768 flags = BTRFS_BLOCK_GROUP_SYSTEM;
769 else
770 flags = BTRFS_BLOCK_GROUP_METADATA;
771 } else {
772 flags = BTRFS_BLOCK_GROUP_DATA;
773 }
774
775 space_info = __find_space_info(fs_info, flags);
55e8196a 776 ASSERT(space_info);
dec59fa3
EL
777 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
778 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
779}
780
4184ea7f
CM
781/*
782 * after adding space to the filesystem, we need to clear the full flags
783 * on all the space infos.
784 */
785void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
786{
787 struct list_head *head = &info->space_info;
788 struct btrfs_space_info *found;
789
790 rcu_read_lock();
791 list_for_each_entry_rcu(found, head, list)
792 found->full = 0;
793 rcu_read_unlock();
794}
795
1a4ed8fd 796/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 797int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
798{
799 int ret;
800 struct btrfs_key key;
31840ae1 801 struct btrfs_path *path;
e02119d5 802
31840ae1 803 path = btrfs_alloc_path();
d8926bb3
MF
804 if (!path)
805 return -ENOMEM;
806
e02119d5
CM
807 key.objectid = start;
808 key.offset = len;
3173a18f 809 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 810 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 811 btrfs_free_path(path);
7bb86316
CM
812 return ret;
813}
814
a22285a6 815/*
3173a18f 816 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
817 *
818 * the head node for delayed ref is used to store the sum of all the
819 * reference count modifications queued up in the rbtree. the head
820 * node may also store the extent flags to set. This way you can check
821 * to see what the reference count and extent flags would be if all of
822 * the delayed refs are not processed.
823 */
824int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 825 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 826 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
827{
828 struct btrfs_delayed_ref_head *head;
829 struct btrfs_delayed_ref_root *delayed_refs;
830 struct btrfs_path *path;
831 struct btrfs_extent_item *ei;
832 struct extent_buffer *leaf;
833 struct btrfs_key key;
834 u32 item_size;
835 u64 num_refs;
836 u64 extent_flags;
837 int ret;
838
3173a18f
JB
839 /*
840 * If we don't have skinny metadata, don't bother doing anything
841 * different
842 */
0b246afa
JM
843 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
844 offset = fs_info->nodesize;
3173a18f
JB
845 metadata = 0;
846 }
847
a22285a6
YZ
848 path = btrfs_alloc_path();
849 if (!path)
850 return -ENOMEM;
851
a22285a6
YZ
852 if (!trans) {
853 path->skip_locking = 1;
854 path->search_commit_root = 1;
855 }
639eefc8
FDBM
856
857search_again:
858 key.objectid = bytenr;
859 key.offset = offset;
860 if (metadata)
861 key.type = BTRFS_METADATA_ITEM_KEY;
862 else
863 key.type = BTRFS_EXTENT_ITEM_KEY;
864
0b246afa 865 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
866 if (ret < 0)
867 goto out_free;
868
3173a18f 869 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
870 if (path->slots[0]) {
871 path->slots[0]--;
872 btrfs_item_key_to_cpu(path->nodes[0], &key,
873 path->slots[0]);
874 if (key.objectid == bytenr &&
875 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 876 key.offset == fs_info->nodesize)
74be9510
FDBM
877 ret = 0;
878 }
3173a18f
JB
879 }
880
a22285a6
YZ
881 if (ret == 0) {
882 leaf = path->nodes[0];
883 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
884 if (item_size >= sizeof(*ei)) {
885 ei = btrfs_item_ptr(leaf, path->slots[0],
886 struct btrfs_extent_item);
887 num_refs = btrfs_extent_refs(leaf, ei);
888 extent_flags = btrfs_extent_flags(leaf, ei);
889 } else {
ba3c2b19
NB
890 ret = -EINVAL;
891 btrfs_print_v0_err(fs_info);
892 if (trans)
893 btrfs_abort_transaction(trans, ret);
894 else
895 btrfs_handle_fs_error(fs_info, ret, NULL);
896
897 goto out_free;
a22285a6 898 }
ba3c2b19 899
a22285a6
YZ
900 BUG_ON(num_refs == 0);
901 } else {
902 num_refs = 0;
903 extent_flags = 0;
904 ret = 0;
905 }
906
907 if (!trans)
908 goto out;
909
910 delayed_refs = &trans->transaction->delayed_refs;
911 spin_lock(&delayed_refs->lock);
f72ad18e 912 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
913 if (head) {
914 if (!mutex_trylock(&head->mutex)) {
d278850e 915 refcount_inc(&head->refs);
a22285a6
YZ
916 spin_unlock(&delayed_refs->lock);
917
b3b4aa74 918 btrfs_release_path(path);
a22285a6 919
8cc33e5c
DS
920 /*
921 * Mutex was contended, block until it's released and try
922 * again
923 */
a22285a6
YZ
924 mutex_lock(&head->mutex);
925 mutex_unlock(&head->mutex);
d278850e 926 btrfs_put_delayed_ref_head(head);
639eefc8 927 goto search_again;
a22285a6 928 }
d7df2c79 929 spin_lock(&head->lock);
a22285a6
YZ
930 if (head->extent_op && head->extent_op->update_flags)
931 extent_flags |= head->extent_op->flags_to_set;
932 else
933 BUG_ON(num_refs == 0);
934
d278850e 935 num_refs += head->ref_mod;
d7df2c79 936 spin_unlock(&head->lock);
a22285a6
YZ
937 mutex_unlock(&head->mutex);
938 }
939 spin_unlock(&delayed_refs->lock);
940out:
941 WARN_ON(num_refs == 0);
942 if (refs)
943 *refs = num_refs;
944 if (flags)
945 *flags = extent_flags;
946out_free:
947 btrfs_free_path(path);
948 return ret;
949}
950
d8d5f3e1
CM
951/*
952 * Back reference rules. Back refs have three main goals:
953 *
954 * 1) differentiate between all holders of references to an extent so that
955 * when a reference is dropped we can make sure it was a valid reference
956 * before freeing the extent.
957 *
958 * 2) Provide enough information to quickly find the holders of an extent
959 * if we notice a given block is corrupted or bad.
960 *
961 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
962 * maintenance. This is actually the same as #2, but with a slightly
963 * different use case.
964 *
5d4f98a2
YZ
965 * There are two kinds of back refs. The implicit back refs is optimized
966 * for pointers in non-shared tree blocks. For a given pointer in a block,
967 * back refs of this kind provide information about the block's owner tree
968 * and the pointer's key. These information allow us to find the block by
969 * b-tree searching. The full back refs is for pointers in tree blocks not
970 * referenced by their owner trees. The location of tree block is recorded
971 * in the back refs. Actually the full back refs is generic, and can be
972 * used in all cases the implicit back refs is used. The major shortcoming
973 * of the full back refs is its overhead. Every time a tree block gets
974 * COWed, we have to update back refs entry for all pointers in it.
975 *
976 * For a newly allocated tree block, we use implicit back refs for
977 * pointers in it. This means most tree related operations only involve
978 * implicit back refs. For a tree block created in old transaction, the
979 * only way to drop a reference to it is COW it. So we can detect the
980 * event that tree block loses its owner tree's reference and do the
981 * back refs conversion.
982 *
01327610 983 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
984 *
985 * The reference count of the block is one and the tree is the block's
986 * owner tree. Nothing to do in this case.
987 *
988 * The reference count of the block is one and the tree is not the
989 * block's owner tree. In this case, full back refs is used for pointers
990 * in the block. Remove these full back refs, add implicit back refs for
991 * every pointers in the new block.
992 *
993 * The reference count of the block is greater than one and the tree is
994 * the block's owner tree. In this case, implicit back refs is used for
995 * pointers in the block. Add full back refs for every pointers in the
996 * block, increase lower level extents' reference counts. The original
997 * implicit back refs are entailed to the new block.
998 *
999 * The reference count of the block is greater than one and the tree is
1000 * not the block's owner tree. Add implicit back refs for every pointer in
1001 * the new block, increase lower level extents' reference count.
1002 *
1003 * Back Reference Key composing:
1004 *
1005 * The key objectid corresponds to the first byte in the extent,
1006 * The key type is used to differentiate between types of back refs.
1007 * There are different meanings of the key offset for different types
1008 * of back refs.
1009 *
d8d5f3e1
CM
1010 * File extents can be referenced by:
1011 *
1012 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1013 * - different files inside a single subvolume
d8d5f3e1
CM
1014 * - different offsets inside a file (bookend extents in file.c)
1015 *
5d4f98a2 1016 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1017 *
1018 * - Objectid of the subvolume root
d8d5f3e1 1019 * - objectid of the file holding the reference
5d4f98a2
YZ
1020 * - original offset in the file
1021 * - how many bookend extents
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * The key offset for the implicit back refs is hash of the first
1024 * three fields.
d8d5f3e1 1025 *
5d4f98a2 1026 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1027 *
5d4f98a2 1028 * - number of pointers in the tree leaf
d8d5f3e1 1029 *
5d4f98a2
YZ
1030 * The key offset for the implicit back refs is the first byte of
1031 * the tree leaf
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When a file extent is allocated, The implicit back refs is used.
1034 * the fields are filled in:
d8d5f3e1 1035 *
5d4f98a2 1036 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1037 *
5d4f98a2
YZ
1038 * When a file extent is removed file truncation, we find the
1039 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1040 *
5d4f98a2 1041 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1042 *
5d4f98a2 1043 * Btree extents can be referenced by:
d8d5f3e1 1044 *
5d4f98a2 1045 * - Different subvolumes
d8d5f3e1 1046 *
5d4f98a2
YZ
1047 * Both the implicit back refs and the full back refs for tree blocks
1048 * only consist of key. The key offset for the implicit back refs is
1049 * objectid of block's owner tree. The key offset for the full back refs
1050 * is the first byte of parent block.
d8d5f3e1 1051 *
5d4f98a2
YZ
1052 * When implicit back refs is used, information about the lowest key and
1053 * level of the tree block are required. These information are stored in
1054 * tree block info structure.
d8d5f3e1 1055 */
31840ae1 1056
167ce953
LB
1057/*
1058 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
52042d8e 1059 * is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
167ce953
LB
1060 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1061 */
1062int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1063 struct btrfs_extent_inline_ref *iref,
1064 enum btrfs_inline_ref_type is_data)
1065{
1066 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1067 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1068
1069 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1070 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1071 type == BTRFS_SHARED_DATA_REF_KEY ||
1072 type == BTRFS_EXTENT_DATA_REF_KEY) {
1073 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1074 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1075 return type;
64ecdb64
LB
1076 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1077 ASSERT(eb->fs_info);
1078 /*
1079 * Every shared one has parent tree
1080 * block, which must be aligned to
1081 * nodesize.
1082 */
1083 if (offset &&
1084 IS_ALIGNED(offset, eb->fs_info->nodesize))
1085 return type;
1086 }
167ce953 1087 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1088 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1089 return type;
64ecdb64
LB
1090 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1091 ASSERT(eb->fs_info);
1092 /*
1093 * Every shared one has parent tree
1094 * block, which must be aligned to
1095 * nodesize.
1096 */
1097 if (offset &&
1098 IS_ALIGNED(offset, eb->fs_info->nodesize))
1099 return type;
1100 }
167ce953
LB
1101 } else {
1102 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1103 return type;
1104 }
1105 }
1106
1107 btrfs_print_leaf((struct extent_buffer *)eb);
1108 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1109 eb->start, type);
1110 WARN_ON(1);
1111
1112 return BTRFS_REF_TYPE_INVALID;
1113}
1114
5d4f98a2
YZ
1115static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1116{
1117 u32 high_crc = ~(u32)0;
1118 u32 low_crc = ~(u32)0;
1119 __le64 lenum;
1120
1121 lenum = cpu_to_le64(root_objectid);
9678c543 1122 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1123 lenum = cpu_to_le64(owner);
9678c543 1124 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1125 lenum = cpu_to_le64(offset);
9678c543 1126 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1127
1128 return ((u64)high_crc << 31) ^ (u64)low_crc;
1129}
1130
1131static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1132 struct btrfs_extent_data_ref *ref)
1133{
1134 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1135 btrfs_extent_data_ref_objectid(leaf, ref),
1136 btrfs_extent_data_ref_offset(leaf, ref));
1137}
1138
1139static int match_extent_data_ref(struct extent_buffer *leaf,
1140 struct btrfs_extent_data_ref *ref,
1141 u64 root_objectid, u64 owner, u64 offset)
1142{
1143 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1144 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1145 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1146 return 0;
1147 return 1;
1148}
1149
1150static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1151 struct btrfs_path *path,
1152 u64 bytenr, u64 parent,
1153 u64 root_objectid,
1154 u64 owner, u64 offset)
1155{
bd1d53ef 1156 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1157 struct btrfs_key key;
1158 struct btrfs_extent_data_ref *ref;
31840ae1 1159 struct extent_buffer *leaf;
5d4f98a2 1160 u32 nritems;
74493f7a 1161 int ret;
5d4f98a2
YZ
1162 int recow;
1163 int err = -ENOENT;
74493f7a 1164
31840ae1 1165 key.objectid = bytenr;
5d4f98a2
YZ
1166 if (parent) {
1167 key.type = BTRFS_SHARED_DATA_REF_KEY;
1168 key.offset = parent;
1169 } else {
1170 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1171 key.offset = hash_extent_data_ref(root_objectid,
1172 owner, offset);
1173 }
1174again:
1175 recow = 0;
1176 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1177 if (ret < 0) {
1178 err = ret;
1179 goto fail;
1180 }
31840ae1 1181
5d4f98a2
YZ
1182 if (parent) {
1183 if (!ret)
1184 return 0;
5d4f98a2 1185 goto fail;
31840ae1
ZY
1186 }
1187
1188 leaf = path->nodes[0];
5d4f98a2
YZ
1189 nritems = btrfs_header_nritems(leaf);
1190 while (1) {
1191 if (path->slots[0] >= nritems) {
1192 ret = btrfs_next_leaf(root, path);
1193 if (ret < 0)
1194 err = ret;
1195 if (ret)
1196 goto fail;
1197
1198 leaf = path->nodes[0];
1199 nritems = btrfs_header_nritems(leaf);
1200 recow = 1;
1201 }
1202
1203 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1204 if (key.objectid != bytenr ||
1205 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1206 goto fail;
1207
1208 ref = btrfs_item_ptr(leaf, path->slots[0],
1209 struct btrfs_extent_data_ref);
1210
1211 if (match_extent_data_ref(leaf, ref, root_objectid,
1212 owner, offset)) {
1213 if (recow) {
b3b4aa74 1214 btrfs_release_path(path);
5d4f98a2
YZ
1215 goto again;
1216 }
1217 err = 0;
1218 break;
1219 }
1220 path->slots[0]++;
31840ae1 1221 }
5d4f98a2
YZ
1222fail:
1223 return err;
31840ae1
ZY
1224}
1225
5d4f98a2 1226static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1227 struct btrfs_path *path,
1228 u64 bytenr, u64 parent,
1229 u64 root_objectid, u64 owner,
1230 u64 offset, int refs_to_add)
31840ae1 1231{
62b895af 1232 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1233 struct btrfs_key key;
1234 struct extent_buffer *leaf;
5d4f98a2 1235 u32 size;
31840ae1
ZY
1236 u32 num_refs;
1237 int ret;
74493f7a 1238
74493f7a 1239 key.objectid = bytenr;
5d4f98a2
YZ
1240 if (parent) {
1241 key.type = BTRFS_SHARED_DATA_REF_KEY;
1242 key.offset = parent;
1243 size = sizeof(struct btrfs_shared_data_ref);
1244 } else {
1245 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1246 key.offset = hash_extent_data_ref(root_objectid,
1247 owner, offset);
1248 size = sizeof(struct btrfs_extent_data_ref);
1249 }
74493f7a 1250
5d4f98a2
YZ
1251 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1252 if (ret && ret != -EEXIST)
1253 goto fail;
1254
1255 leaf = path->nodes[0];
1256 if (parent) {
1257 struct btrfs_shared_data_ref *ref;
31840ae1 1258 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1259 struct btrfs_shared_data_ref);
1260 if (ret == 0) {
1261 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1262 } else {
1263 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1264 num_refs += refs_to_add;
1265 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1266 }
5d4f98a2
YZ
1267 } else {
1268 struct btrfs_extent_data_ref *ref;
1269 while (ret == -EEXIST) {
1270 ref = btrfs_item_ptr(leaf, path->slots[0],
1271 struct btrfs_extent_data_ref);
1272 if (match_extent_data_ref(leaf, ref, root_objectid,
1273 owner, offset))
1274 break;
b3b4aa74 1275 btrfs_release_path(path);
5d4f98a2
YZ
1276 key.offset++;
1277 ret = btrfs_insert_empty_item(trans, root, path, &key,
1278 size);
1279 if (ret && ret != -EEXIST)
1280 goto fail;
31840ae1 1281
5d4f98a2
YZ
1282 leaf = path->nodes[0];
1283 }
1284 ref = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_extent_data_ref);
1286 if (ret == 0) {
1287 btrfs_set_extent_data_ref_root(leaf, ref,
1288 root_objectid);
1289 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1290 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1291 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1292 } else {
1293 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1294 num_refs += refs_to_add;
1295 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1296 }
31840ae1 1297 }
5d4f98a2
YZ
1298 btrfs_mark_buffer_dirty(leaf);
1299 ret = 0;
1300fail:
b3b4aa74 1301 btrfs_release_path(path);
7bb86316 1302 return ret;
74493f7a
CM
1303}
1304
5d4f98a2 1305static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1306 struct btrfs_path *path,
fcebe456 1307 int refs_to_drop, int *last_ref)
31840ae1 1308{
5d4f98a2
YZ
1309 struct btrfs_key key;
1310 struct btrfs_extent_data_ref *ref1 = NULL;
1311 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1312 struct extent_buffer *leaf;
5d4f98a2 1313 u32 num_refs = 0;
31840ae1
ZY
1314 int ret = 0;
1315
1316 leaf = path->nodes[0];
5d4f98a2
YZ
1317 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1318
1319 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1320 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1321 struct btrfs_extent_data_ref);
1322 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1323 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1324 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1325 struct btrfs_shared_data_ref);
1326 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1327 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1328 btrfs_print_v0_err(trans->fs_info);
1329 btrfs_abort_transaction(trans, -EINVAL);
1330 return -EINVAL;
5d4f98a2
YZ
1331 } else {
1332 BUG();
1333 }
1334
56bec294
CM
1335 BUG_ON(num_refs < refs_to_drop);
1336 num_refs -= refs_to_drop;
5d4f98a2 1337
31840ae1 1338 if (num_refs == 0) {
e9f6290d 1339 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1340 *last_ref = 1;
31840ae1 1341 } else {
5d4f98a2
YZ
1342 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1343 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1344 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1345 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1346 btrfs_mark_buffer_dirty(leaf);
1347 }
31840ae1
ZY
1348 return ret;
1349}
1350
9ed0dea0 1351static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1352 struct btrfs_extent_inline_ref *iref)
15916de8 1353{
5d4f98a2
YZ
1354 struct btrfs_key key;
1355 struct extent_buffer *leaf;
1356 struct btrfs_extent_data_ref *ref1;
1357 struct btrfs_shared_data_ref *ref2;
1358 u32 num_refs = 0;
3de28d57 1359 int type;
5d4f98a2
YZ
1360
1361 leaf = path->nodes[0];
1362 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1363
1364 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1365 if (iref) {
3de28d57
LB
1366 /*
1367 * If type is invalid, we should have bailed out earlier than
1368 * this call.
1369 */
1370 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1371 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1372 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1373 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1374 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1375 } else {
1376 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1377 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1378 }
1379 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1380 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1381 struct btrfs_extent_data_ref);
1382 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1383 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1384 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1385 struct btrfs_shared_data_ref);
1386 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1387 } else {
1388 WARN_ON(1);
1389 }
1390 return num_refs;
1391}
15916de8 1392
5d4f98a2 1393static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1394 struct btrfs_path *path,
1395 u64 bytenr, u64 parent,
1396 u64 root_objectid)
1f3c79a2 1397{
b8582eea 1398 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1399 struct btrfs_key key;
1f3c79a2 1400 int ret;
1f3c79a2 1401
5d4f98a2
YZ
1402 key.objectid = bytenr;
1403 if (parent) {
1404 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1405 key.offset = parent;
1406 } else {
1407 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1408 key.offset = root_objectid;
1f3c79a2
LH
1409 }
1410
5d4f98a2
YZ
1411 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1412 if (ret > 0)
1413 ret = -ENOENT;
5d4f98a2 1414 return ret;
1f3c79a2
LH
1415}
1416
5d4f98a2 1417static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1418 struct btrfs_path *path,
1419 u64 bytenr, u64 parent,
1420 u64 root_objectid)
31840ae1 1421{
5d4f98a2 1422 struct btrfs_key key;
31840ae1 1423 int ret;
31840ae1 1424
5d4f98a2
YZ
1425 key.objectid = bytenr;
1426 if (parent) {
1427 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1428 key.offset = parent;
1429 } else {
1430 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1431 key.offset = root_objectid;
1432 }
1433
10728404 1434 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1435 path, &key, 0);
b3b4aa74 1436 btrfs_release_path(path);
31840ae1
ZY
1437 return ret;
1438}
1439
5d4f98a2 1440static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1441{
5d4f98a2
YZ
1442 int type;
1443 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1444 if (parent > 0)
1445 type = BTRFS_SHARED_BLOCK_REF_KEY;
1446 else
1447 type = BTRFS_TREE_BLOCK_REF_KEY;
1448 } else {
1449 if (parent > 0)
1450 type = BTRFS_SHARED_DATA_REF_KEY;
1451 else
1452 type = BTRFS_EXTENT_DATA_REF_KEY;
1453 }
1454 return type;
31840ae1 1455}
56bec294 1456
2c47e605
YZ
1457static int find_next_key(struct btrfs_path *path, int level,
1458 struct btrfs_key *key)
56bec294 1459
02217ed2 1460{
2c47e605 1461 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1462 if (!path->nodes[level])
1463 break;
5d4f98a2
YZ
1464 if (path->slots[level] + 1 >=
1465 btrfs_header_nritems(path->nodes[level]))
1466 continue;
1467 if (level == 0)
1468 btrfs_item_key_to_cpu(path->nodes[level], key,
1469 path->slots[level] + 1);
1470 else
1471 btrfs_node_key_to_cpu(path->nodes[level], key,
1472 path->slots[level] + 1);
1473 return 0;
1474 }
1475 return 1;
1476}
037e6390 1477
5d4f98a2
YZ
1478/*
1479 * look for inline back ref. if back ref is found, *ref_ret is set
1480 * to the address of inline back ref, and 0 is returned.
1481 *
1482 * if back ref isn't found, *ref_ret is set to the address where it
1483 * should be inserted, and -ENOENT is returned.
1484 *
1485 * if insert is true and there are too many inline back refs, the path
1486 * points to the extent item, and -EAGAIN is returned.
1487 *
1488 * NOTE: inline back refs are ordered in the same way that back ref
1489 * items in the tree are ordered.
1490 */
1491static noinline_for_stack
1492int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1493 struct btrfs_path *path,
1494 struct btrfs_extent_inline_ref **ref_ret,
1495 u64 bytenr, u64 num_bytes,
1496 u64 parent, u64 root_objectid,
1497 u64 owner, u64 offset, int insert)
1498{
867cc1fb 1499 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1500 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1501 struct btrfs_key key;
1502 struct extent_buffer *leaf;
1503 struct btrfs_extent_item *ei;
1504 struct btrfs_extent_inline_ref *iref;
1505 u64 flags;
1506 u64 item_size;
1507 unsigned long ptr;
1508 unsigned long end;
1509 int extra_size;
1510 int type;
1511 int want;
1512 int ret;
1513 int err = 0;
0b246afa 1514 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1515 int needed;
26b8003f 1516
db94535d 1517 key.objectid = bytenr;
31840ae1 1518 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1519 key.offset = num_bytes;
31840ae1 1520
5d4f98a2
YZ
1521 want = extent_ref_type(parent, owner);
1522 if (insert) {
1523 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1524 path->keep_locks = 1;
5d4f98a2
YZ
1525 } else
1526 extra_size = -1;
3173a18f
JB
1527
1528 /*
16d1c062
NB
1529 * Owner is our level, so we can just add one to get the level for the
1530 * block we are interested in.
3173a18f
JB
1531 */
1532 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1533 key.type = BTRFS_METADATA_ITEM_KEY;
1534 key.offset = owner;
1535 }
1536
1537again:
5d4f98a2 1538 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1539 if (ret < 0) {
5d4f98a2
YZ
1540 err = ret;
1541 goto out;
1542 }
3173a18f
JB
1543
1544 /*
1545 * We may be a newly converted file system which still has the old fat
1546 * extent entries for metadata, so try and see if we have one of those.
1547 */
1548 if (ret > 0 && skinny_metadata) {
1549 skinny_metadata = false;
1550 if (path->slots[0]) {
1551 path->slots[0]--;
1552 btrfs_item_key_to_cpu(path->nodes[0], &key,
1553 path->slots[0]);
1554 if (key.objectid == bytenr &&
1555 key.type == BTRFS_EXTENT_ITEM_KEY &&
1556 key.offset == num_bytes)
1557 ret = 0;
1558 }
1559 if (ret) {
9ce49a0b 1560 key.objectid = bytenr;
3173a18f
JB
1561 key.type = BTRFS_EXTENT_ITEM_KEY;
1562 key.offset = num_bytes;
1563 btrfs_release_path(path);
1564 goto again;
1565 }
1566 }
1567
79787eaa
JM
1568 if (ret && !insert) {
1569 err = -ENOENT;
1570 goto out;
fae7f21c 1571 } else if (WARN_ON(ret)) {
492104c8 1572 err = -EIO;
492104c8 1573 goto out;
79787eaa 1574 }
5d4f98a2
YZ
1575
1576 leaf = path->nodes[0];
1577 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1578 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1579 err = -EINVAL;
1580 btrfs_print_v0_err(fs_info);
1581 btrfs_abort_transaction(trans, err);
1582 goto out;
1583 }
5d4f98a2 1584
5d4f98a2
YZ
1585 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1586 flags = btrfs_extent_flags(leaf, ei);
1587
1588 ptr = (unsigned long)(ei + 1);
1589 end = (unsigned long)ei + item_size;
1590
3173a18f 1591 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1592 ptr += sizeof(struct btrfs_tree_block_info);
1593 BUG_ON(ptr > end);
5d4f98a2
YZ
1594 }
1595
3de28d57
LB
1596 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1597 needed = BTRFS_REF_TYPE_DATA;
1598 else
1599 needed = BTRFS_REF_TYPE_BLOCK;
1600
5d4f98a2
YZ
1601 err = -ENOENT;
1602 while (1) {
1603 if (ptr >= end) {
1604 WARN_ON(ptr > end);
1605 break;
1606 }
1607 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1608 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1609 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1610 err = -EUCLEAN;
3de28d57
LB
1611 goto out;
1612 }
1613
5d4f98a2
YZ
1614 if (want < type)
1615 break;
1616 if (want > type) {
1617 ptr += btrfs_extent_inline_ref_size(type);
1618 continue;
1619 }
1620
1621 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1622 struct btrfs_extent_data_ref *dref;
1623 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1624 if (match_extent_data_ref(leaf, dref, root_objectid,
1625 owner, offset)) {
1626 err = 0;
1627 break;
1628 }
1629 if (hash_extent_data_ref_item(leaf, dref) <
1630 hash_extent_data_ref(root_objectid, owner, offset))
1631 break;
1632 } else {
1633 u64 ref_offset;
1634 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1635 if (parent > 0) {
1636 if (parent == ref_offset) {
1637 err = 0;
1638 break;
1639 }
1640 if (ref_offset < parent)
1641 break;
1642 } else {
1643 if (root_objectid == ref_offset) {
1644 err = 0;
1645 break;
1646 }
1647 if (ref_offset < root_objectid)
1648 break;
1649 }
1650 }
1651 ptr += btrfs_extent_inline_ref_size(type);
1652 }
1653 if (err == -ENOENT && insert) {
1654 if (item_size + extra_size >=
1655 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1656 err = -EAGAIN;
1657 goto out;
1658 }
1659 /*
1660 * To add new inline back ref, we have to make sure
1661 * there is no corresponding back ref item.
1662 * For simplicity, we just do not add new inline back
1663 * ref if there is any kind of item for this block
1664 */
2c47e605
YZ
1665 if (find_next_key(path, 0, &key) == 0 &&
1666 key.objectid == bytenr &&
85d4198e 1667 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1668 err = -EAGAIN;
1669 goto out;
1670 }
1671 }
1672 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1673out:
85d4198e 1674 if (insert) {
5d4f98a2
YZ
1675 path->keep_locks = 0;
1676 btrfs_unlock_up_safe(path, 1);
1677 }
1678 return err;
1679}
1680
1681/*
1682 * helper to add new inline back ref
1683 */
1684static noinline_for_stack
87bde3cd 1685void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1686 struct btrfs_path *path,
1687 struct btrfs_extent_inline_ref *iref,
1688 u64 parent, u64 root_objectid,
1689 u64 owner, u64 offset, int refs_to_add,
1690 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1691{
1692 struct extent_buffer *leaf;
1693 struct btrfs_extent_item *ei;
1694 unsigned long ptr;
1695 unsigned long end;
1696 unsigned long item_offset;
1697 u64 refs;
1698 int size;
1699 int type;
5d4f98a2
YZ
1700
1701 leaf = path->nodes[0];
1702 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1703 item_offset = (unsigned long)iref - (unsigned long)ei;
1704
1705 type = extent_ref_type(parent, owner);
1706 size = btrfs_extent_inline_ref_size(type);
1707
c71dd880 1708 btrfs_extend_item(path, size);
5d4f98a2
YZ
1709
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 refs += refs_to_add;
1713 btrfs_set_extent_refs(leaf, ei, refs);
1714 if (extent_op)
1715 __run_delayed_extent_op(extent_op, leaf, ei);
1716
1717 ptr = (unsigned long)ei + item_offset;
1718 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1719 if (ptr < end - size)
1720 memmove_extent_buffer(leaf, ptr + size, ptr,
1721 end - size - ptr);
1722
1723 iref = (struct btrfs_extent_inline_ref *)ptr;
1724 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1725 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1726 struct btrfs_extent_data_ref *dref;
1727 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1728 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1729 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1730 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1731 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1732 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1733 struct btrfs_shared_data_ref *sref;
1734 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1735 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1736 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1737 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1738 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1739 } else {
1740 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1741 }
1742 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1743}
1744
1745static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1746 struct btrfs_path *path,
1747 struct btrfs_extent_inline_ref **ref_ret,
1748 u64 bytenr, u64 num_bytes, u64 parent,
1749 u64 root_objectid, u64 owner, u64 offset)
1750{
1751 int ret;
1752
867cc1fb
NB
1753 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1754 num_bytes, parent, root_objectid,
1755 owner, offset, 0);
5d4f98a2 1756 if (ret != -ENOENT)
54aa1f4d 1757 return ret;
5d4f98a2 1758
b3b4aa74 1759 btrfs_release_path(path);
5d4f98a2
YZ
1760 *ref_ret = NULL;
1761
1762 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1763 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1764 root_objectid);
5d4f98a2 1765 } else {
bd1d53ef
NB
1766 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1767 root_objectid, owner, offset);
b9473439 1768 }
5d4f98a2
YZ
1769 return ret;
1770}
31840ae1 1771
5d4f98a2
YZ
1772/*
1773 * helper to update/remove inline back ref
1774 */
1775static noinline_for_stack
61a18f1c 1776void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1777 struct btrfs_extent_inline_ref *iref,
1778 int refs_to_mod,
fcebe456
JB
1779 struct btrfs_delayed_extent_op *extent_op,
1780 int *last_ref)
5d4f98a2 1781{
61a18f1c 1782 struct extent_buffer *leaf = path->nodes[0];
5d4f98a2
YZ
1783 struct btrfs_extent_item *ei;
1784 struct btrfs_extent_data_ref *dref = NULL;
1785 struct btrfs_shared_data_ref *sref = NULL;
1786 unsigned long ptr;
1787 unsigned long end;
1788 u32 item_size;
1789 int size;
1790 int type;
5d4f98a2
YZ
1791 u64 refs;
1792
5d4f98a2
YZ
1793 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1794 refs = btrfs_extent_refs(leaf, ei);
1795 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1796 refs += refs_to_mod;
1797 btrfs_set_extent_refs(leaf, ei, refs);
1798 if (extent_op)
1799 __run_delayed_extent_op(extent_op, leaf, ei);
1800
3de28d57
LB
1801 /*
1802 * If type is invalid, we should have bailed out after
1803 * lookup_inline_extent_backref().
1804 */
1805 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1806 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1807
1808 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1809 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1810 refs = btrfs_extent_data_ref_count(leaf, dref);
1811 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1812 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1813 refs = btrfs_shared_data_ref_count(leaf, sref);
1814 } else {
1815 refs = 1;
1816 BUG_ON(refs_to_mod != -1);
56bec294 1817 }
31840ae1 1818
5d4f98a2
YZ
1819 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1820 refs += refs_to_mod;
1821
1822 if (refs > 0) {
1823 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1824 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1825 else
1826 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1827 } else {
fcebe456 1828 *last_ref = 1;
5d4f98a2
YZ
1829 size = btrfs_extent_inline_ref_size(type);
1830 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1831 ptr = (unsigned long)iref;
1832 end = (unsigned long)ei + item_size;
1833 if (ptr + size < end)
1834 memmove_extent_buffer(leaf, ptr, ptr + size,
1835 end - ptr - size);
1836 item_size -= size;
78ac4f9e 1837 btrfs_truncate_item(path, item_size, 1);
5d4f98a2
YZ
1838 }
1839 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1840}
1841
1842static noinline_for_stack
1843int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1844 struct btrfs_path *path,
1845 u64 bytenr, u64 num_bytes, u64 parent,
1846 u64 root_objectid, u64 owner,
1847 u64 offset, int refs_to_add,
1848 struct btrfs_delayed_extent_op *extent_op)
1849{
1850 struct btrfs_extent_inline_ref *iref;
1851 int ret;
1852
867cc1fb
NB
1853 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1854 num_bytes, parent, root_objectid,
1855 owner, offset, 1);
5d4f98a2
YZ
1856 if (ret == 0) {
1857 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1858 update_inline_extent_backref(path, iref, refs_to_add,
1859 extent_op, NULL);
5d4f98a2 1860 } else if (ret == -ENOENT) {
a639cdeb 1861 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1862 root_objectid, owner, offset,
1863 refs_to_add, extent_op);
1864 ret = 0;
771ed689 1865 }
5d4f98a2
YZ
1866 return ret;
1867}
31840ae1 1868
5d4f98a2 1869static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 u64 bytenr, u64 parent, u64 root_objectid,
1872 u64 owner, u64 offset, int refs_to_add)
1873{
1874 int ret;
1875 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1876 BUG_ON(refs_to_add != 1);
10728404
NB
1877 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1878 root_objectid);
5d4f98a2 1879 } else {
62b895af
NB
1880 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1881 root_objectid, owner, offset,
1882 refs_to_add);
5d4f98a2
YZ
1883 }
1884 return ret;
1885}
56bec294 1886
5d4f98a2 1887static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1888 struct btrfs_path *path,
1889 struct btrfs_extent_inline_ref *iref,
fcebe456 1890 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1891{
143bede5 1892 int ret = 0;
b9473439 1893
5d4f98a2
YZ
1894 BUG_ON(!is_data && refs_to_drop != 1);
1895 if (iref) {
61a18f1c
NB
1896 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1897 last_ref);
5d4f98a2 1898 } else if (is_data) {
e9f6290d 1899 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1900 last_ref);
5d4f98a2 1901 } else {
fcebe456 1902 *last_ref = 1;
87cc7a8a 1903 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1904 }
1905 return ret;
1906}
1907
d04c6b88
JM
1908static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1909 u64 *discarded_bytes)
5d4f98a2 1910{
86557861
JM
1911 int j, ret = 0;
1912 u64 bytes_left, end;
4d89d377 1913 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1914
4d89d377
JM
1915 if (WARN_ON(start != aligned_start)) {
1916 len -= aligned_start - start;
1917 len = round_down(len, 1 << 9);
1918 start = aligned_start;
1919 }
d04c6b88 1920
4d89d377 1921 *discarded_bytes = 0;
86557861
JM
1922
1923 if (!len)
1924 return 0;
1925
1926 end = start + len;
1927 bytes_left = len;
1928
1929 /* Skip any superblocks on this device. */
1930 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1931 u64 sb_start = btrfs_sb_offset(j);
1932 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1933 u64 size = sb_start - start;
1934
1935 if (!in_range(sb_start, start, bytes_left) &&
1936 !in_range(sb_end, start, bytes_left) &&
1937 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1938 continue;
1939
1940 /*
1941 * Superblock spans beginning of range. Adjust start and
1942 * try again.
1943 */
1944 if (sb_start <= start) {
1945 start += sb_end - start;
1946 if (start > end) {
1947 bytes_left = 0;
1948 break;
1949 }
1950 bytes_left = end - start;
1951 continue;
1952 }
1953
1954 if (size) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1956 GFP_NOFS, 0);
1957 if (!ret)
1958 *discarded_bytes += size;
1959 else if (ret != -EOPNOTSUPP)
1960 return ret;
1961 }
1962
1963 start = sb_end;
1964 if (start > end) {
1965 bytes_left = 0;
1966 break;
1967 }
1968 bytes_left = end - start;
1969 }
1970
1971 if (bytes_left) {
1972 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1973 GFP_NOFS, 0);
1974 if (!ret)
86557861 1975 *discarded_bytes += bytes_left;
4d89d377 1976 }
d04c6b88 1977 return ret;
5d4f98a2 1978}
5d4f98a2 1979
2ff7e61e 1980int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1981 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1982{
5d4f98a2 1983 int ret;
5378e607 1984 u64 discarded_bytes = 0;
a1d3c478 1985 struct btrfs_bio *bbio = NULL;
5d4f98a2 1986
e244a0ae 1987
2999241d
FM
1988 /*
1989 * Avoid races with device replace and make sure our bbio has devices
1990 * associated to its stripes that don't go away while we are discarding.
1991 */
0b246afa 1992 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1993 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1994 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1995 &bbio, 0);
79787eaa 1996 /* Error condition is -ENOMEM */
5d4f98a2 1997 if (!ret) {
a1d3c478 1998 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1999 int i;
2000
5d4f98a2 2001
a1d3c478 2002 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2003 u64 bytes;
38b5f68e
AJ
2004 struct request_queue *req_q;
2005
627e0873
FM
2006 if (!stripe->dev->bdev) {
2007 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2008 continue;
2009 }
38b5f68e
AJ
2010 req_q = bdev_get_queue(stripe->dev->bdev);
2011 if (!blk_queue_discard(req_q))
d5e2003c
JB
2012 continue;
2013
5378e607
LD
2014 ret = btrfs_issue_discard(stripe->dev->bdev,
2015 stripe->physical,
d04c6b88
JM
2016 stripe->length,
2017 &bytes);
5378e607 2018 if (!ret)
d04c6b88 2019 discarded_bytes += bytes;
5378e607 2020 else if (ret != -EOPNOTSUPP)
79787eaa 2021 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2022
2023 /*
2024 * Just in case we get back EOPNOTSUPP for some reason,
2025 * just ignore the return value so we don't screw up
2026 * people calling discard_extent.
2027 */
2028 ret = 0;
5d4f98a2 2029 }
6e9606d2 2030 btrfs_put_bbio(bbio);
5d4f98a2 2031 }
0b246afa 2032 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2033
2034 if (actual_bytes)
2035 *actual_bytes = discarded_bytes;
2036
5d4f98a2 2037
53b381b3
DW
2038 if (ret == -EOPNOTSUPP)
2039 ret = 0;
5d4f98a2 2040 return ret;
5d4f98a2
YZ
2041}
2042
79787eaa 2043/* Can return -ENOMEM */
5d4f98a2 2044int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
82fa113f 2045 struct btrfs_ref *generic_ref)
5d4f98a2 2046{
82fa113f 2047 struct btrfs_fs_info *fs_info = trans->fs_info;
d7eae340 2048 int old_ref_mod, new_ref_mod;
5d4f98a2 2049 int ret;
66d7e7f0 2050
82fa113f
QW
2051 ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
2052 generic_ref->action);
2053 BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
2054 generic_ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 2055
82fa113f
QW
2056 if (generic_ref->type == BTRFS_REF_METADATA)
2057 ret = btrfs_add_delayed_tree_ref(trans, generic_ref,
ed4f255b 2058 NULL, &old_ref_mod, &new_ref_mod);
82fa113f
QW
2059 else
2060 ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0,
d7eae340 2061 &old_ref_mod, &new_ref_mod);
d7eae340 2062
82fa113f 2063 btrfs_ref_tree_mod(fs_info, generic_ref);
8a5040f7 2064
ddf30cf0 2065 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
82fa113f 2066 add_pinned_bytes(fs_info, generic_ref);
d7eae340 2067
5d4f98a2
YZ
2068 return ret;
2069}
2070
bd3c685e
NB
2071/*
2072 * __btrfs_inc_extent_ref - insert backreference for a given extent
2073 *
2074 * @trans: Handle of transaction
2075 *
2076 * @node: The delayed ref node used to get the bytenr/length for
2077 * extent whose references are incremented.
2078 *
2079 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2080 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2081 * bytenr of the parent block. Since new extents are always
2082 * created with indirect references, this will only be the case
2083 * when relocating a shared extent. In that case, root_objectid
2084 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2085 * be 0
2086 *
2087 * @root_objectid: The id of the root where this modification has originated,
2088 * this can be either one of the well-known metadata trees or
2089 * the subvolume id which references this extent.
2090 *
2091 * @owner: For data extents it is the inode number of the owning file.
2092 * For metadata extents this parameter holds the level in the
2093 * tree of the extent.
2094 *
2095 * @offset: For metadata extents the offset is ignored and is currently
2096 * always passed as 0. For data extents it is the fileoffset
2097 * this extent belongs to.
2098 *
2099 * @refs_to_add Number of references to add
2100 *
2101 * @extent_op Pointer to a structure, holding information necessary when
2102 * updating a tree block's flags
2103 *
2104 */
5d4f98a2 2105static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2106 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2107 u64 parent, u64 root_objectid,
2108 u64 owner, u64 offset, int refs_to_add,
2109 struct btrfs_delayed_extent_op *extent_op)
2110{
2111 struct btrfs_path *path;
2112 struct extent_buffer *leaf;
2113 struct btrfs_extent_item *item;
fcebe456 2114 struct btrfs_key key;
c682f9b3
QW
2115 u64 bytenr = node->bytenr;
2116 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2117 u64 refs;
2118 int ret;
5d4f98a2
YZ
2119
2120 path = btrfs_alloc_path();
2121 if (!path)
2122 return -ENOMEM;
2123
e4058b54 2124 path->reada = READA_FORWARD;
5d4f98a2
YZ
2125 path->leave_spinning = 1;
2126 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2127 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2128 parent, root_objectid, owner,
2129 offset, refs_to_add, extent_op);
0ed4792a 2130 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2131 goto out;
fcebe456
JB
2132
2133 /*
2134 * Ok we had -EAGAIN which means we didn't have space to insert and
2135 * inline extent ref, so just update the reference count and add a
2136 * normal backref.
2137 */
5d4f98a2 2138 leaf = path->nodes[0];
fcebe456 2139 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2140 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2141 refs = btrfs_extent_refs(leaf, item);
2142 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2143 if (extent_op)
2144 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2145
5d4f98a2 2146 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2147 btrfs_release_path(path);
56bec294 2148
e4058b54 2149 path->reada = READA_FORWARD;
b9473439 2150 path->leave_spinning = 1;
56bec294 2151 /* now insert the actual backref */
37593410
NB
2152 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2153 owner, offset, refs_to_add);
79787eaa 2154 if (ret)
66642832 2155 btrfs_abort_transaction(trans, ret);
5d4f98a2 2156out:
56bec294 2157 btrfs_free_path(path);
30d133fc 2158 return ret;
56bec294
CM
2159}
2160
5d4f98a2 2161static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2162 struct btrfs_delayed_ref_node *node,
2163 struct btrfs_delayed_extent_op *extent_op,
2164 int insert_reserved)
56bec294 2165{
5d4f98a2
YZ
2166 int ret = 0;
2167 struct btrfs_delayed_data_ref *ref;
2168 struct btrfs_key ins;
2169 u64 parent = 0;
2170 u64 ref_root = 0;
2171 u64 flags = 0;
2172
2173 ins.objectid = node->bytenr;
2174 ins.offset = node->num_bytes;
2175 ins.type = BTRFS_EXTENT_ITEM_KEY;
2176
2177 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2178 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2179
5d4f98a2
YZ
2180 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2181 parent = ref->parent;
fcebe456 2182 ref_root = ref->root;
5d4f98a2
YZ
2183
2184 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2185 if (extent_op)
5d4f98a2 2186 flags |= extent_op->flags_to_set;
ef89b824
NB
2187 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2188 flags, ref->objectid,
2189 ref->offset, &ins,
2190 node->ref_mod);
5d4f98a2 2191 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2192 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2193 ref->objectid, ref->offset,
2194 node->ref_mod, extent_op);
5d4f98a2 2195 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2196 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2197 ref_root, ref->objectid,
2198 ref->offset, node->ref_mod,
c682f9b3 2199 extent_op);
5d4f98a2
YZ
2200 } else {
2201 BUG();
2202 }
2203 return ret;
2204}
2205
2206static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2207 struct extent_buffer *leaf,
2208 struct btrfs_extent_item *ei)
2209{
2210 u64 flags = btrfs_extent_flags(leaf, ei);
2211 if (extent_op->update_flags) {
2212 flags |= extent_op->flags_to_set;
2213 btrfs_set_extent_flags(leaf, ei, flags);
2214 }
2215
2216 if (extent_op->update_key) {
2217 struct btrfs_tree_block_info *bi;
2218 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2219 bi = (struct btrfs_tree_block_info *)(ei + 1);
2220 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2221 }
2222}
2223
2224static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2225 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2226 struct btrfs_delayed_extent_op *extent_op)
2227{
20b9a2d6 2228 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2229 struct btrfs_key key;
2230 struct btrfs_path *path;
2231 struct btrfs_extent_item *ei;
2232 struct extent_buffer *leaf;
2233 u32 item_size;
56bec294 2234 int ret;
5d4f98a2 2235 int err = 0;
b1c79e09 2236 int metadata = !extent_op->is_data;
5d4f98a2 2237
79787eaa
JM
2238 if (trans->aborted)
2239 return 0;
2240
0b246afa 2241 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2242 metadata = 0;
2243
5d4f98a2
YZ
2244 path = btrfs_alloc_path();
2245 if (!path)
2246 return -ENOMEM;
2247
d278850e 2248 key.objectid = head->bytenr;
5d4f98a2 2249
3173a18f 2250 if (metadata) {
3173a18f 2251 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2252 key.offset = extent_op->level;
3173a18f
JB
2253 } else {
2254 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2255 key.offset = head->num_bytes;
3173a18f
JB
2256 }
2257
2258again:
e4058b54 2259 path->reada = READA_FORWARD;
5d4f98a2 2260 path->leave_spinning = 1;
0b246afa 2261 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2262 if (ret < 0) {
2263 err = ret;
2264 goto out;
2265 }
2266 if (ret > 0) {
3173a18f 2267 if (metadata) {
55994887
FDBM
2268 if (path->slots[0] > 0) {
2269 path->slots[0]--;
2270 btrfs_item_key_to_cpu(path->nodes[0], &key,
2271 path->slots[0]);
d278850e 2272 if (key.objectid == head->bytenr &&
55994887 2273 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2274 key.offset == head->num_bytes)
55994887
FDBM
2275 ret = 0;
2276 }
2277 if (ret > 0) {
2278 btrfs_release_path(path);
2279 metadata = 0;
3173a18f 2280
d278850e
JB
2281 key.objectid = head->bytenr;
2282 key.offset = head->num_bytes;
55994887
FDBM
2283 key.type = BTRFS_EXTENT_ITEM_KEY;
2284 goto again;
2285 }
2286 } else {
2287 err = -EIO;
2288 goto out;
3173a18f 2289 }
5d4f98a2
YZ
2290 }
2291
2292 leaf = path->nodes[0];
2293 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2294
6d8ff4e4 2295 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2296 err = -EINVAL;
2297 btrfs_print_v0_err(fs_info);
2298 btrfs_abort_transaction(trans, err);
2299 goto out;
2300 }
2301
5d4f98a2
YZ
2302 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2303 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2304
5d4f98a2
YZ
2305 btrfs_mark_buffer_dirty(leaf);
2306out:
2307 btrfs_free_path(path);
2308 return err;
56bec294
CM
2309}
2310
5d4f98a2 2311static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2312 struct btrfs_delayed_ref_node *node,
2313 struct btrfs_delayed_extent_op *extent_op,
2314 int insert_reserved)
56bec294
CM
2315{
2316 int ret = 0;
5d4f98a2 2317 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2318 u64 parent = 0;
2319 u64 ref_root = 0;
56bec294 2320
5d4f98a2 2321 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2322 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2323
5d4f98a2
YZ
2324 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2325 parent = ref->parent;
fcebe456 2326 ref_root = ref->root;
5d4f98a2 2327
02794222 2328 if (node->ref_mod != 1) {
f97806f2 2329 btrfs_err(trans->fs_info,
02794222
LB
2330 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2331 node->bytenr, node->ref_mod, node->action, ref_root,
2332 parent);
2333 return -EIO;
2334 }
5d4f98a2 2335 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2336 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2337 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2338 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2339 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2340 ref->level, 0, 1, extent_op);
5d4f98a2 2341 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2342 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2343 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2344 } else {
2345 BUG();
2346 }
56bec294
CM
2347 return ret;
2348}
2349
2350/* helper function to actually process a single delayed ref entry */
5d4f98a2 2351static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2352 struct btrfs_delayed_ref_node *node,
2353 struct btrfs_delayed_extent_op *extent_op,
2354 int insert_reserved)
56bec294 2355{
79787eaa
JM
2356 int ret = 0;
2357
857cc2fc
JB
2358 if (trans->aborted) {
2359 if (insert_reserved)
5fac7f9e 2360 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2361 node->num_bytes, 1);
79787eaa 2362 return 0;
857cc2fc 2363 }
79787eaa 2364
5d4f98a2
YZ
2365 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2366 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2367 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2368 insert_reserved);
2369 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2370 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2371 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2372 insert_reserved);
2373 else
2374 BUG();
80ee54bf
JB
2375 if (ret && insert_reserved)
2376 btrfs_pin_extent(trans->fs_info, node->bytenr,
2377 node->num_bytes, 1);
5d4f98a2 2378 return ret;
56bec294
CM
2379}
2380
c6fc2454 2381static inline struct btrfs_delayed_ref_node *
56bec294
CM
2382select_delayed_ref(struct btrfs_delayed_ref_head *head)
2383{
cffc3374
FM
2384 struct btrfs_delayed_ref_node *ref;
2385
e3d03965 2386 if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
c6fc2454 2387 return NULL;
d7df2c79 2388
cffc3374
FM
2389 /*
2390 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2391 * This is to prevent a ref count from going down to zero, which deletes
2392 * the extent item from the extent tree, when there still are references
2393 * to add, which would fail because they would not find the extent item.
2394 */
1d57ee94
WX
2395 if (!list_empty(&head->ref_add_list))
2396 return list_first_entry(&head->ref_add_list,
2397 struct btrfs_delayed_ref_node, add_list);
2398
e3d03965 2399 ref = rb_entry(rb_first_cached(&head->ref_tree),
0e0adbcf 2400 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2401 ASSERT(list_empty(&ref->add_list));
2402 return ref;
56bec294
CM
2403}
2404
2eadaa22
JB
2405static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2406 struct btrfs_delayed_ref_head *head)
2407{
2408 spin_lock(&delayed_refs->lock);
2409 head->processing = 0;
2410 delayed_refs->num_heads_ready++;
2411 spin_unlock(&delayed_refs->lock);
2412 btrfs_delayed_ref_unlock(head);
2413}
2414
bedc6617
JB
2415static struct btrfs_delayed_extent_op *cleanup_extent_op(
2416 struct btrfs_delayed_ref_head *head)
b00e6250
JB
2417{
2418 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
b00e6250
JB
2419
2420 if (!extent_op)
bedc6617
JB
2421 return NULL;
2422
b00e6250 2423 if (head->must_insert_reserved) {
bedc6617 2424 head->extent_op = NULL;
b00e6250 2425 btrfs_free_delayed_extent_op(extent_op);
bedc6617 2426 return NULL;
b00e6250 2427 }
bedc6617
JB
2428 return extent_op;
2429}
2430
2431static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
2432 struct btrfs_delayed_ref_head *head)
2433{
2434 struct btrfs_delayed_extent_op *extent_op;
2435 int ret;
2436
2437 extent_op = cleanup_extent_op(head);
2438 if (!extent_op)
2439 return 0;
2440 head->extent_op = NULL;
b00e6250 2441 spin_unlock(&head->lock);
20b9a2d6 2442 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2443 btrfs_free_delayed_extent_op(extent_op);
2444 return ret ? ret : 1;
2445}
2446
31890da0
JB
2447void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2448 struct btrfs_delayed_ref_root *delayed_refs,
2449 struct btrfs_delayed_ref_head *head)
07c47775 2450{
ba2c4d4e 2451 int nr_items = 1; /* Dropping this ref head update. */
07c47775
JB
2452
2453 if (head->total_ref_mod < 0) {
2454 struct btrfs_space_info *space_info;
2455 u64 flags;
2456
2457 if (head->is_data)
2458 flags = BTRFS_BLOCK_GROUP_DATA;
2459 else if (head->is_system)
2460 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2461 else
2462 flags = BTRFS_BLOCK_GROUP_METADATA;
2463 space_info = __find_space_info(fs_info, flags);
2464 ASSERT(space_info);
2465 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2466 -head->num_bytes,
2467 BTRFS_TOTAL_BYTES_PINNED_BATCH);
2468
ba2c4d4e
JB
2469 /*
2470 * We had csum deletions accounted for in our delayed refs rsv,
2471 * we need to drop the csum leaves for this update from our
2472 * delayed_refs_rsv.
2473 */
07c47775
JB
2474 if (head->is_data) {
2475 spin_lock(&delayed_refs->lock);
2476 delayed_refs->pending_csums -= head->num_bytes;
2477 spin_unlock(&delayed_refs->lock);
ba2c4d4e
JB
2478 nr_items += btrfs_csum_bytes_to_leaves(fs_info,
2479 head->num_bytes);
07c47775
JB
2480 }
2481 }
2482
ba2c4d4e 2483 btrfs_delayed_refs_rsv_release(fs_info, nr_items);
07c47775
JB
2484}
2485
194ab0bc 2486static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2487 struct btrfs_delayed_ref_head *head)
2488{
f9871edd
NB
2489
2490 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2491 struct btrfs_delayed_ref_root *delayed_refs;
2492 int ret;
2493
2494 delayed_refs = &trans->transaction->delayed_refs;
2495
bedc6617 2496 ret = run_and_cleanup_extent_op(trans, head);
194ab0bc
JB
2497 if (ret < 0) {
2498 unselect_delayed_ref_head(delayed_refs, head);
2499 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2500 return ret;
2501 } else if (ret) {
2502 return ret;
2503 }
2504
2505 /*
2506 * Need to drop our head ref lock and re-acquire the delayed ref lock
2507 * and then re-check to make sure nobody got added.
2508 */
2509 spin_unlock(&head->lock);
2510 spin_lock(&delayed_refs->lock);
2511 spin_lock(&head->lock);
e3d03965 2512 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
194ab0bc
JB
2513 spin_unlock(&head->lock);
2514 spin_unlock(&delayed_refs->lock);
2515 return 1;
2516 }
d7baffda 2517 btrfs_delete_ref_head(delayed_refs, head);
c1103f7a 2518 spin_unlock(&head->lock);
1e7a1421 2519 spin_unlock(&delayed_refs->lock);
c1103f7a 2520
c1103f7a 2521 if (head->must_insert_reserved) {
d278850e
JB
2522 btrfs_pin_extent(fs_info, head->bytenr,
2523 head->num_bytes, 1);
c1103f7a 2524 if (head->is_data) {
d278850e
JB
2525 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2526 head->num_bytes);
c1103f7a
JB
2527 }
2528 }
2529
31890da0 2530 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
07c47775
JB
2531
2532 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a 2533 btrfs_delayed_ref_unlock(head);
d278850e 2534 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2535 return 0;
2536}
2537
b1cdbcb5
NB
2538static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
2539 struct btrfs_trans_handle *trans)
2540{
2541 struct btrfs_delayed_ref_root *delayed_refs =
2542 &trans->transaction->delayed_refs;
2543 struct btrfs_delayed_ref_head *head = NULL;
2544 int ret;
2545
2546 spin_lock(&delayed_refs->lock);
5637c74b 2547 head = btrfs_select_ref_head(delayed_refs);
b1cdbcb5
NB
2548 if (!head) {
2549 spin_unlock(&delayed_refs->lock);
2550 return head;
2551 }
2552
2553 /*
2554 * Grab the lock that says we are going to process all the refs for
2555 * this head
2556 */
9e920a6f 2557 ret = btrfs_delayed_ref_lock(delayed_refs, head);
b1cdbcb5
NB
2558 spin_unlock(&delayed_refs->lock);
2559
2560 /*
2561 * We may have dropped the spin lock to get the head mutex lock, and
2562 * that might have given someone else time to free the head. If that's
2563 * true, it has been removed from our list and we can move on.
2564 */
2565 if (ret == -EAGAIN)
2566 head = ERR_PTR(-EAGAIN);
2567
2568 return head;
2569}
2570
e7261386
NB
2571static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
2572 struct btrfs_delayed_ref_head *locked_ref,
2573 unsigned long *run_refs)
2574{
2575 struct btrfs_fs_info *fs_info = trans->fs_info;
2576 struct btrfs_delayed_ref_root *delayed_refs;
2577 struct btrfs_delayed_extent_op *extent_op;
2578 struct btrfs_delayed_ref_node *ref;
2579 int must_insert_reserved = 0;
2580 int ret;
2581
2582 delayed_refs = &trans->transaction->delayed_refs;
2583
0110a4c4
NB
2584 lockdep_assert_held(&locked_ref->mutex);
2585 lockdep_assert_held(&locked_ref->lock);
2586
e7261386
NB
2587 while ((ref = select_delayed_ref(locked_ref))) {
2588 if (ref->seq &&
2589 btrfs_check_delayed_seq(fs_info, ref->seq)) {
2590 spin_unlock(&locked_ref->lock);
2591 unselect_delayed_ref_head(delayed_refs, locked_ref);
2592 return -EAGAIN;
2593 }
2594
2595 (*run_refs)++;
2596 ref->in_tree = 0;
2597 rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
2598 RB_CLEAR_NODE(&ref->ref_node);
2599 if (!list_empty(&ref->add_list))
2600 list_del(&ref->add_list);
2601 /*
2602 * When we play the delayed ref, also correct the ref_mod on
2603 * head
2604 */
2605 switch (ref->action) {
2606 case BTRFS_ADD_DELAYED_REF:
2607 case BTRFS_ADD_DELAYED_EXTENT:
2608 locked_ref->ref_mod -= ref->ref_mod;
2609 break;
2610 case BTRFS_DROP_DELAYED_REF:
2611 locked_ref->ref_mod += ref->ref_mod;
2612 break;
2613 default:
2614 WARN_ON(1);
2615 }
2616 atomic_dec(&delayed_refs->num_entries);
2617
2618 /*
2619 * Record the must_insert_reserved flag before we drop the
2620 * spin lock.
2621 */
2622 must_insert_reserved = locked_ref->must_insert_reserved;
2623 locked_ref->must_insert_reserved = 0;
2624
2625 extent_op = locked_ref->extent_op;
2626 locked_ref->extent_op = NULL;
2627 spin_unlock(&locked_ref->lock);
2628
2629 ret = run_one_delayed_ref(trans, ref, extent_op,
2630 must_insert_reserved);
2631
2632 btrfs_free_delayed_extent_op(extent_op);
2633 if (ret) {
2634 unselect_delayed_ref_head(delayed_refs, locked_ref);
2635 btrfs_put_delayed_ref(ref);
2636 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2637 ret);
2638 return ret;
2639 }
2640
2641 btrfs_put_delayed_ref(ref);
2642 cond_resched();
2643
2644 spin_lock(&locked_ref->lock);
2645 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
2646 }
2647
2648 return 0;
2649}
2650
79787eaa
JM
2651/*
2652 * Returns 0 on success or if called with an already aborted transaction.
2653 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2654 */
d7df2c79 2655static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2656 unsigned long nr)
56bec294 2657{
0a1e458a 2658 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294 2659 struct btrfs_delayed_ref_root *delayed_refs;
56bec294 2660 struct btrfs_delayed_ref_head *locked_ref = NULL;
0a2b2a84 2661 ktime_t start = ktime_get();
56bec294 2662 int ret;
d7df2c79 2663 unsigned long count = 0;
0a2b2a84 2664 unsigned long actual_count = 0;
56bec294
CM
2665
2666 delayed_refs = &trans->transaction->delayed_refs;
0110a4c4 2667 do {
56bec294 2668 if (!locked_ref) {
b1cdbcb5 2669 locked_ref = btrfs_obtain_ref_head(trans);
0110a4c4
NB
2670 if (IS_ERR_OR_NULL(locked_ref)) {
2671 if (PTR_ERR(locked_ref) == -EAGAIN) {
2672 continue;
2673 } else {
2674 break;
2675 }
56bec294 2676 }
0110a4c4 2677 count++;
56bec294 2678 }
2c3cf7d5
FM
2679 /*
2680 * We need to try and merge add/drops of the same ref since we
2681 * can run into issues with relocate dropping the implicit ref
2682 * and then it being added back again before the drop can
2683 * finish. If we merged anything we need to re-loop so we can
2684 * get a good ref.
2685 * Or we can get node references of the same type that weren't
2686 * merged when created due to bumps in the tree mod seq, and
2687 * we need to merge them to prevent adding an inline extent
2688 * backref before dropping it (triggering a BUG_ON at
2689 * insert_inline_extent_backref()).
2690 */
d7df2c79 2691 spin_lock(&locked_ref->lock);
be97f133 2692 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2693
0110a4c4
NB
2694 ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
2695 &actual_count);
2696 if (ret < 0 && ret != -EAGAIN) {
2697 /*
2698 * Error, btrfs_run_delayed_refs_for_head already
2699 * unlocked everything so just bail out
2700 */
2701 return ret;
2702 } else if (!ret) {
2703 /*
2704 * Success, perform the usual cleanup of a processed
2705 * head
2706 */
f9871edd 2707 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2708 if (ret > 0 ) {
b00e6250
JB
2709 /* We dropped our lock, we need to loop. */
2710 ret = 0;
d7df2c79 2711 continue;
194ab0bc
JB
2712 } else if (ret) {
2713 return ret;
5d4f98a2 2714 }
22cd2e7d 2715 }
1ce7a5ec 2716
b00e6250 2717 /*
0110a4c4
NB
2718 * Either success case or btrfs_run_delayed_refs_for_head
2719 * returned -EAGAIN, meaning we need to select another head
b00e6250 2720 */
b00e6250 2721
0110a4c4 2722 locked_ref = NULL;
c3e69d58 2723 cond_resched();
0110a4c4 2724 } while ((nr != -1 && count < nr) || locked_ref);
0a2b2a84
JB
2725
2726 /*
2727 * We don't want to include ref heads since we can have empty ref heads
2728 * and those will drastically skew our runtime down since we just do
2729 * accounting, no actual extent tree updates.
2730 */
2731 if (actual_count > 0) {
2732 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2733 u64 avg;
2734
2735 /*
2736 * We weigh the current average higher than our current runtime
2737 * to avoid large swings in the average.
2738 */
2739 spin_lock(&delayed_refs->lock);
2740 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2741 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2742 spin_unlock(&delayed_refs->lock);
2743 }
d7df2c79 2744 return 0;
c3e69d58
CM
2745}
2746
709c0486
AJ
2747#ifdef SCRAMBLE_DELAYED_REFS
2748/*
2749 * Normally delayed refs get processed in ascending bytenr order. This
2750 * correlates in most cases to the order added. To expose dependencies on this
2751 * order, we start to process the tree in the middle instead of the beginning
2752 */
2753static u64 find_middle(struct rb_root *root)
2754{
2755 struct rb_node *n = root->rb_node;
2756 struct btrfs_delayed_ref_node *entry;
2757 int alt = 1;
2758 u64 middle;
2759 u64 first = 0, last = 0;
2760
2761 n = rb_first(root);
2762 if (n) {
2763 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2764 first = entry->bytenr;
2765 }
2766 n = rb_last(root);
2767 if (n) {
2768 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2769 last = entry->bytenr;
2770 }
2771 n = root->rb_node;
2772
2773 while (n) {
2774 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2775 WARN_ON(!entry->in_tree);
2776
2777 middle = entry->bytenr;
2778
2779 if (alt)
2780 n = n->rb_left;
2781 else
2782 n = n->rb_right;
2783
2784 alt = 1 - alt;
2785 }
2786 return middle;
2787}
2788#endif
2789
2ff7e61e 2790static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2791{
2792 u64 num_bytes;
2793
2794 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2795 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2796 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2797 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2798
2799 /*
2800 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2801 * closer to what we're really going to want to use.
1be41b78 2802 */
0b246afa 2803 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2804}
2805
1262133b
JB
2806/*
2807 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2808 * would require to store the csums for that many bytes.
2809 */
2ff7e61e 2810u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2811{
2812 u64 csum_size;
2813 u64 num_csums_per_leaf;
2814 u64 num_csums;
2815
0b246afa 2816 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2817 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2818 (u64)btrfs_super_csum_size(fs_info->super_copy));
2819 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2820 num_csums += num_csums_per_leaf - 1;
2821 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2822 return num_csums;
2823}
2824
64403612 2825bool btrfs_check_space_for_delayed_refs(struct btrfs_fs_info *fs_info)
1be41b78 2826{
64403612
JB
2827 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
2828 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
2829 bool ret = false;
2830 u64 reserved;
1be41b78 2831
64403612
JB
2832 spin_lock(&global_rsv->lock);
2833 reserved = global_rsv->reserved;
2834 spin_unlock(&global_rsv->lock);
1be41b78
JB
2835
2836 /*
64403612
JB
2837 * Since the global reserve is just kind of magic we don't really want
2838 * to rely on it to save our bacon, so if our size is more than the
2839 * delayed_refs_rsv and the global rsv then it's time to think about
2840 * bailing.
1be41b78 2841 */
64403612
JB
2842 spin_lock(&delayed_refs_rsv->lock);
2843 reserved += delayed_refs_rsv->reserved;
2844 if (delayed_refs_rsv->size >= reserved)
2845 ret = true;
2846 spin_unlock(&delayed_refs_rsv->lock);
1be41b78
JB
2847 return ret;
2848}
2849
7c861627 2850int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans)
0a2b2a84 2851{
0a2b2a84
JB
2852 u64 num_entries =
2853 atomic_read(&trans->transaction->delayed_refs.num_entries);
2854 u64 avg_runtime;
a79b7d4b 2855 u64 val;
0a2b2a84
JB
2856
2857 smp_mb();
7c861627 2858 avg_runtime = trans->fs_info->avg_delayed_ref_runtime;
a79b7d4b 2859 val = num_entries * avg_runtime;
dc1a90c6 2860 if (val >= NSEC_PER_SEC)
0a2b2a84 2861 return 1;
a79b7d4b
CM
2862 if (val >= NSEC_PER_SEC / 2)
2863 return 2;
0a2b2a84 2864
64403612 2865 return btrfs_check_space_for_delayed_refs(trans->fs_info);
0a2b2a84
JB
2866}
2867
c3e69d58
CM
2868/*
2869 * this starts processing the delayed reference count updates and
2870 * extent insertions we have queued up so far. count can be
2871 * 0, which means to process everything in the tree at the start
2872 * of the run (but not newly added entries), or it can be some target
2873 * number you'd like to process.
79787eaa
JM
2874 *
2875 * Returns 0 on success or if called with an aborted transaction
2876 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2877 */
2878int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2879 unsigned long count)
c3e69d58 2880{
c79a70b1 2881 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2882 struct rb_node *node;
2883 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2884 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2885 int ret;
2886 int run_all = count == (unsigned long)-1;
c3e69d58 2887
79787eaa
JM
2888 /* We'll clean this up in btrfs_cleanup_transaction */
2889 if (trans->aborted)
2890 return 0;
2891
0b246afa 2892 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2893 return 0;
2894
c3e69d58 2895 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2896 if (count == 0)
d7df2c79 2897 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2898
c3e69d58 2899again:
709c0486
AJ
2900#ifdef SCRAMBLE_DELAYED_REFS
2901 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2902#endif
0a1e458a 2903 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2904 if (ret < 0) {
66642832 2905 btrfs_abort_transaction(trans, ret);
d7df2c79 2906 return ret;
eb099670 2907 }
c3e69d58 2908
56bec294 2909 if (run_all) {
119e80df 2910 btrfs_create_pending_block_groups(trans);
ea658bad 2911
d7df2c79 2912 spin_lock(&delayed_refs->lock);
5c9d028b 2913 node = rb_first_cached(&delayed_refs->href_root);
d7df2c79
JB
2914 if (!node) {
2915 spin_unlock(&delayed_refs->lock);
56bec294 2916 goto out;
d7df2c79 2917 }
d278850e
JB
2918 head = rb_entry(node, struct btrfs_delayed_ref_head,
2919 href_node);
2920 refcount_inc(&head->refs);
2921 spin_unlock(&delayed_refs->lock);
e9d0b13b 2922
d278850e
JB
2923 /* Mutex was contended, block until it's released and retry. */
2924 mutex_lock(&head->mutex);
2925 mutex_unlock(&head->mutex);
56bec294 2926
d278850e 2927 btrfs_put_delayed_ref_head(head);
d7df2c79 2928 cond_resched();
56bec294 2929 goto again;
5f39d397 2930 }
54aa1f4d 2931out:
a28ec197
CM
2932 return 0;
2933}
2934
5d4f98a2 2935int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
5d4f98a2 2936 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2937 int level, int is_data)
5d4f98a2
YZ
2938{
2939 struct btrfs_delayed_extent_op *extent_op;
2940 int ret;
2941
78a6184a 2942 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2943 if (!extent_op)
2944 return -ENOMEM;
2945
2946 extent_op->flags_to_set = flags;
35b3ad50
DS
2947 extent_op->update_flags = true;
2948 extent_op->update_key = false;
2949 extent_op->is_data = is_data ? true : false;
b1c79e09 2950 extent_op->level = level;
5d4f98a2 2951
c6e340bc 2952 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
5d4f98a2 2953 if (ret)
78a6184a 2954 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2955 return ret;
2956}
2957
e4c3b2dc 2958static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
2959 struct btrfs_path *path,
2960 u64 objectid, u64 offset, u64 bytenr)
2961{
2962 struct btrfs_delayed_ref_head *head;
2963 struct btrfs_delayed_ref_node *ref;
2964 struct btrfs_delayed_data_ref *data_ref;
2965 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 2966 struct btrfs_transaction *cur_trans;
0e0adbcf 2967 struct rb_node *node;
5d4f98a2
YZ
2968 int ret = 0;
2969
998ac6d2 2970 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 2971 cur_trans = root->fs_info->running_transaction;
998ac6d2 2972 if (cur_trans)
2973 refcount_inc(&cur_trans->use_count);
2974 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
2975 if (!cur_trans)
2976 return 0;
2977
2978 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 2979 spin_lock(&delayed_refs->lock);
f72ad18e 2980 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
2981 if (!head) {
2982 spin_unlock(&delayed_refs->lock);
998ac6d2 2983 btrfs_put_transaction(cur_trans);
d7df2c79
JB
2984 return 0;
2985 }
5d4f98a2
YZ
2986
2987 if (!mutex_trylock(&head->mutex)) {
d278850e 2988 refcount_inc(&head->refs);
5d4f98a2
YZ
2989 spin_unlock(&delayed_refs->lock);
2990
b3b4aa74 2991 btrfs_release_path(path);
5d4f98a2 2992
8cc33e5c
DS
2993 /*
2994 * Mutex was contended, block until it's released and let
2995 * caller try again
2996 */
5d4f98a2
YZ
2997 mutex_lock(&head->mutex);
2998 mutex_unlock(&head->mutex);
d278850e 2999 btrfs_put_delayed_ref_head(head);
998ac6d2 3000 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3001 return -EAGAIN;
3002 }
d7df2c79 3003 spin_unlock(&delayed_refs->lock);
5d4f98a2 3004
d7df2c79 3005 spin_lock(&head->lock);
0e0adbcf
JB
3006 /*
3007 * XXX: We should replace this with a proper search function in the
3008 * future.
3009 */
e3d03965
LB
3010 for (node = rb_first_cached(&head->ref_tree); node;
3011 node = rb_next(node)) {
0e0adbcf 3012 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3013 /* If it's a shared ref we know a cross reference exists */
3014 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3015 ret = 1;
3016 break;
3017 }
5d4f98a2 3018
d7df2c79 3019 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3020
d7df2c79
JB
3021 /*
3022 * If our ref doesn't match the one we're currently looking at
3023 * then we have a cross reference.
3024 */
3025 if (data_ref->root != root->root_key.objectid ||
3026 data_ref->objectid != objectid ||
3027 data_ref->offset != offset) {
3028 ret = 1;
3029 break;
3030 }
5d4f98a2 3031 }
d7df2c79 3032 spin_unlock(&head->lock);
5d4f98a2 3033 mutex_unlock(&head->mutex);
998ac6d2 3034 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3035 return ret;
3036}
3037
e4c3b2dc 3038static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3039 struct btrfs_path *path,
3040 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3041{
0b246afa
JM
3042 struct btrfs_fs_info *fs_info = root->fs_info;
3043 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3044 struct extent_buffer *leaf;
5d4f98a2
YZ
3045 struct btrfs_extent_data_ref *ref;
3046 struct btrfs_extent_inline_ref *iref;
3047 struct btrfs_extent_item *ei;
f321e491 3048 struct btrfs_key key;
5d4f98a2 3049 u32 item_size;
3de28d57 3050 int type;
be20aa9d 3051 int ret;
925baedd 3052
be20aa9d 3053 key.objectid = bytenr;
31840ae1 3054 key.offset = (u64)-1;
f321e491 3055 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3056
be20aa9d
CM
3057 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3058 if (ret < 0)
3059 goto out;
79787eaa 3060 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3061
3062 ret = -ENOENT;
3063 if (path->slots[0] == 0)
31840ae1 3064 goto out;
be20aa9d 3065
31840ae1 3066 path->slots[0]--;
f321e491 3067 leaf = path->nodes[0];
5d4f98a2 3068 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3069
5d4f98a2 3070 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3071 goto out;
f321e491 3072
5d4f98a2
YZ
3073 ret = 1;
3074 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3075 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3076
5d4f98a2
YZ
3077 if (item_size != sizeof(*ei) +
3078 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3079 goto out;
be20aa9d 3080
5d4f98a2
YZ
3081 if (btrfs_extent_generation(leaf, ei) <=
3082 btrfs_root_last_snapshot(&root->root_item))
3083 goto out;
3084
3085 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3086
3087 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3088 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3089 goto out;
3090
3091 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3092 if (btrfs_extent_refs(leaf, ei) !=
3093 btrfs_extent_data_ref_count(leaf, ref) ||
3094 btrfs_extent_data_ref_root(leaf, ref) !=
3095 root->root_key.objectid ||
3096 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3097 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3098 goto out;
3099
3100 ret = 0;
3101out:
3102 return ret;
3103}
3104
e4c3b2dc
LB
3105int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3106 u64 bytenr)
5d4f98a2
YZ
3107{
3108 struct btrfs_path *path;
3109 int ret;
5d4f98a2
YZ
3110
3111 path = btrfs_alloc_path();
3112 if (!path)
9132c4ff 3113 return -ENOMEM;
5d4f98a2
YZ
3114
3115 do {
e4c3b2dc 3116 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3117 offset, bytenr);
3118 if (ret && ret != -ENOENT)
f321e491 3119 goto out;
80ff3856 3120
380fd066
MT
3121 ret = check_delayed_ref(root, path, objectid, offset, bytenr);
3122 } while (ret == -EAGAIN);
5d4f98a2 3123
be20aa9d 3124out:
80ff3856 3125 btrfs_free_path(path);
f0486c68
YZ
3126 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3127 WARN_ON(ret > 0);
f321e491 3128 return ret;
be20aa9d 3129}
c5739bba 3130
5d4f98a2 3131static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3132 struct btrfs_root *root,
5d4f98a2 3133 struct extent_buffer *buf,
e339a6b0 3134 int full_backref, int inc)
31840ae1 3135{
0b246afa 3136 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3137 u64 bytenr;
5d4f98a2
YZ
3138 u64 num_bytes;
3139 u64 parent;
31840ae1 3140 u64 ref_root;
31840ae1 3141 u32 nritems;
31840ae1
ZY
3142 struct btrfs_key key;
3143 struct btrfs_file_extent_item *fi;
82fa113f
QW
3144 struct btrfs_ref generic_ref = { 0 };
3145 bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
31840ae1 3146 int i;
82fa113f 3147 int action;
31840ae1
ZY
3148 int level;
3149 int ret = 0;
fccb84c9 3150
0b246afa 3151 if (btrfs_is_testing(fs_info))
faa2dbf0 3152 return 0;
fccb84c9 3153
31840ae1 3154 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3155 nritems = btrfs_header_nritems(buf);
3156 level = btrfs_header_level(buf);
3157
27cdeb70 3158 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3159 return 0;
31840ae1 3160
5d4f98a2
YZ
3161 if (full_backref)
3162 parent = buf->start;
3163 else
3164 parent = 0;
82fa113f
QW
3165 if (inc)
3166 action = BTRFS_ADD_DELAYED_REF;
3167 else
3168 action = BTRFS_DROP_DELAYED_REF;
5d4f98a2
YZ
3169
3170 for (i = 0; i < nritems; i++) {
31840ae1 3171 if (level == 0) {
5d4f98a2 3172 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3173 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3174 continue;
5d4f98a2 3175 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3176 struct btrfs_file_extent_item);
3177 if (btrfs_file_extent_type(buf, fi) ==
3178 BTRFS_FILE_EXTENT_INLINE)
3179 continue;
3180 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3181 if (bytenr == 0)
3182 continue;
5d4f98a2
YZ
3183
3184 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3185 key.offset -= btrfs_file_extent_offset(buf, fi);
82fa113f
QW
3186 btrfs_init_generic_ref(&generic_ref, action, bytenr,
3187 num_bytes, parent);
3188 generic_ref.real_root = root->root_key.objectid;
3189 btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
3190 key.offset);
3191 generic_ref.skip_qgroup = for_reloc;
dd28b6a5 3192 if (inc)
82fa113f 3193 ret = btrfs_inc_extent_ref(trans, &generic_ref);
dd28b6a5 3194 else
ffd4bb2a 3195 ret = btrfs_free_extent(trans, &generic_ref);
31840ae1
ZY
3196 if (ret)
3197 goto fail;
3198 } else {
5d4f98a2 3199 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3200 num_bytes = fs_info->nodesize;
82fa113f
QW
3201 btrfs_init_generic_ref(&generic_ref, action, bytenr,
3202 num_bytes, parent);
3203 generic_ref.real_root = root->root_key.objectid;
3204 btrfs_init_tree_ref(&generic_ref, level - 1, ref_root);
3205 generic_ref.skip_qgroup = for_reloc;
dd28b6a5 3206 if (inc)
82fa113f 3207 ret = btrfs_inc_extent_ref(trans, &generic_ref);
dd28b6a5 3208 else
ffd4bb2a 3209 ret = btrfs_free_extent(trans, &generic_ref);
31840ae1
ZY
3210 if (ret)
3211 goto fail;
3212 }
3213 }
3214 return 0;
3215fail:
5d4f98a2
YZ
3216 return ret;
3217}
3218
3219int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3220 struct extent_buffer *buf, int full_backref)
5d4f98a2 3221{
e339a6b0 3222 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3223}
3224
3225int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3226 struct extent_buffer *buf, int full_backref)
5d4f98a2 3227{
e339a6b0 3228 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3229}
3230
9078a3e1 3231static int write_one_cache_group(struct btrfs_trans_handle *trans,
9078a3e1
CM
3232 struct btrfs_path *path,
3233 struct btrfs_block_group_cache *cache)
3234{
39db232d 3235 struct btrfs_fs_info *fs_info = trans->fs_info;
9078a3e1 3236 int ret;
0b246afa 3237 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3238 unsigned long bi;
3239 struct extent_buffer *leaf;
9078a3e1 3240
9078a3e1 3241 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3242 if (ret) {
3243 if (ret > 0)
3244 ret = -ENOENT;
54aa1f4d 3245 goto fail;
df95e7f0 3246 }
5f39d397
CM
3247
3248 leaf = path->nodes[0];
3249 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3250 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3251 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3252fail:
24b89d08 3253 btrfs_release_path(path);
df95e7f0 3254 return ret;
9078a3e1
CM
3255
3256}
3257
f87b7eb8
DS
3258static struct btrfs_block_group_cache *next_block_group(
3259 struct btrfs_block_group_cache *cache)
4a8c9a62 3260{
f87b7eb8 3261 struct btrfs_fs_info *fs_info = cache->fs_info;
4a8c9a62 3262 struct rb_node *node;
292cbd51 3263
0b246afa 3264 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3265
3266 /* If our block group was removed, we need a full search. */
3267 if (RB_EMPTY_NODE(&cache->cache_node)) {
3268 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3269
0b246afa 3270 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3271 btrfs_put_block_group(cache);
0b246afa 3272 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3273 }
4a8c9a62
YZ
3274 node = rb_next(&cache->cache_node);
3275 btrfs_put_block_group(cache);
3276 if (node) {
3277 cache = rb_entry(node, struct btrfs_block_group_cache,
3278 cache_node);
11dfe35a 3279 btrfs_get_block_group(cache);
4a8c9a62
YZ
3280 } else
3281 cache = NULL;
0b246afa 3282 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3283 return cache;
3284}
3285
0af3d00b
JB
3286static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3287 struct btrfs_trans_handle *trans,
3288 struct btrfs_path *path)
3289{
0b246afa
JM
3290 struct btrfs_fs_info *fs_info = block_group->fs_info;
3291 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3292 struct inode *inode = NULL;
364ecf36 3293 struct extent_changeset *data_reserved = NULL;
0af3d00b 3294 u64 alloc_hint = 0;
2b20982e 3295 int dcs = BTRFS_DC_ERROR;
f8c269d7 3296 u64 num_pages = 0;
0af3d00b
JB
3297 int retries = 0;
3298 int ret = 0;
3299
3300 /*
3301 * If this block group is smaller than 100 megs don't bother caching the
3302 * block group.
3303 */
ee22184b 3304 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3305 spin_lock(&block_group->lock);
3306 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3307 spin_unlock(&block_group->lock);
3308 return 0;
3309 }
3310
0c0ef4bc
JB
3311 if (trans->aborted)
3312 return 0;
0af3d00b 3313again:
7949f339 3314 inode = lookup_free_space_inode(block_group, path);
0af3d00b
JB
3315 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3316 ret = PTR_ERR(inode);
b3b4aa74 3317 btrfs_release_path(path);
0af3d00b
JB
3318 goto out;
3319 }
3320
3321 if (IS_ERR(inode)) {
3322 BUG_ON(retries);
3323 retries++;
3324
3325 if (block_group->ro)
3326 goto out_free;
3327
4ca75f1b 3328 ret = create_free_space_inode(trans, block_group, path);
0af3d00b
JB
3329 if (ret)
3330 goto out_free;
3331 goto again;
3332 }
3333
3334 /*
3335 * We want to set the generation to 0, that way if anything goes wrong
3336 * from here on out we know not to trust this cache when we load up next
3337 * time.
3338 */
3339 BTRFS_I(inode)->generation = 0;
3340 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3341 if (ret) {
3342 /*
3343 * So theoretically we could recover from this, simply set the
3344 * super cache generation to 0 so we know to invalidate the
3345 * cache, but then we'd have to keep track of the block groups
3346 * that fail this way so we know we _have_ to reset this cache
3347 * before the next commit or risk reading stale cache. So to
3348 * limit our exposure to horrible edge cases lets just abort the
3349 * transaction, this only happens in really bad situations
3350 * anyway.
3351 */
66642832 3352 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3353 goto out_put;
3354 }
0af3d00b
JB
3355 WARN_ON(ret);
3356
8e138e0d
JB
3357 /* We've already setup this transaction, go ahead and exit */
3358 if (block_group->cache_generation == trans->transid &&
3359 i_size_read(inode)) {
3360 dcs = BTRFS_DC_SETUP;
3361 goto out_put;
3362 }
3363
0af3d00b 3364 if (i_size_read(inode) > 0) {
2ff7e61e 3365 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3366 &fs_info->global_block_rsv);
7b61cd92
MX
3367 if (ret)
3368 goto out_put;
3369
77ab86bf 3370 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3371 if (ret)
3372 goto out_put;
3373 }
3374
3375 spin_lock(&block_group->lock);
cf7c1ef6 3376 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3377 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3378 /*
3379 * don't bother trying to write stuff out _if_
3380 * a) we're not cached,
1a79c1f2
LB
3381 * b) we're with nospace_cache mount option,
3382 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3383 */
2b20982e 3384 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3385 spin_unlock(&block_group->lock);
3386 goto out_put;
3387 }
3388 spin_unlock(&block_group->lock);
3389
2968b1f4
JB
3390 /*
3391 * We hit an ENOSPC when setting up the cache in this transaction, just
3392 * skip doing the setup, we've already cleared the cache so we're safe.
3393 */
3394 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3395 ret = -ENOSPC;
3396 goto out_put;
3397 }
3398
6fc823b1
JB
3399 /*
3400 * Try to preallocate enough space based on how big the block group is.
3401 * Keep in mind this has to include any pinned space which could end up
3402 * taking up quite a bit since it's not folded into the other space
3403 * cache.
3404 */
ee22184b 3405 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3406 if (!num_pages)
3407 num_pages = 1;
3408
0af3d00b 3409 num_pages *= 16;
09cbfeaf 3410 num_pages *= PAGE_SIZE;
0af3d00b 3411
364ecf36 3412 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3413 if (ret)
3414 goto out_put;
3415
3416 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3417 num_pages, num_pages,
3418 &alloc_hint);
2968b1f4
JB
3419 /*
3420 * Our cache requires contiguous chunks so that we don't modify a bunch
3421 * of metadata or split extents when writing the cache out, which means
3422 * we can enospc if we are heavily fragmented in addition to just normal
3423 * out of space conditions. So if we hit this just skip setting up any
3424 * other block groups for this transaction, maybe we'll unpin enough
3425 * space the next time around.
3426 */
2b20982e
JB
3427 if (!ret)
3428 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3429 else if (ret == -ENOSPC)
3430 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3431
0af3d00b
JB
3432out_put:
3433 iput(inode);
3434out_free:
b3b4aa74 3435 btrfs_release_path(path);
0af3d00b
JB
3436out:
3437 spin_lock(&block_group->lock);
e65cbb94 3438 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3439 block_group->cache_generation = trans->transid;
2b20982e 3440 block_group->disk_cache_state = dcs;
0af3d00b
JB
3441 spin_unlock(&block_group->lock);
3442
364ecf36 3443 extent_changeset_free(data_reserved);
0af3d00b
JB
3444 return ret;
3445}
3446
bbebb3e0 3447int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
dcdf7f6d 3448{
bbebb3e0 3449 struct btrfs_fs_info *fs_info = trans->fs_info;
dcdf7f6d
JB
3450 struct btrfs_block_group_cache *cache, *tmp;
3451 struct btrfs_transaction *cur_trans = trans->transaction;
3452 struct btrfs_path *path;
3453
3454 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3455 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3456 return 0;
3457
3458 path = btrfs_alloc_path();
3459 if (!path)
3460 return -ENOMEM;
3461
3462 /* Could add new block groups, use _safe just in case */
3463 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3464 dirty_list) {
3465 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3466 cache_save_setup(cache, trans, path);
3467 }
3468
3469 btrfs_free_path(path);
3470 return 0;
3471}
3472
1bbc621e
CM
3473/*
3474 * transaction commit does final block group cache writeback during a
3475 * critical section where nothing is allowed to change the FS. This is
3476 * required in order for the cache to actually match the block group,
3477 * but can introduce a lot of latency into the commit.
3478 *
3479 * So, btrfs_start_dirty_block_groups is here to kick off block group
3480 * cache IO. There's a chance we'll have to redo some of it if the
3481 * block group changes again during the commit, but it greatly reduces
3482 * the commit latency by getting rid of the easy block groups while
3483 * we're still allowing others to join the commit.
3484 */
21217054 3485int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3486{
21217054 3487 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3488 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3489 struct btrfs_transaction *cur_trans = trans->transaction;
3490 int ret = 0;
c9dc4c65 3491 int should_put;
1bbc621e
CM
3492 struct btrfs_path *path = NULL;
3493 LIST_HEAD(dirty);
3494 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3495 int num_started = 0;
1bbc621e
CM
3496 int loops = 0;
3497
3498 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3499 if (list_empty(&cur_trans->dirty_bgs)) {
3500 spin_unlock(&cur_trans->dirty_bgs_lock);
3501 return 0;
1bbc621e 3502 }
b58d1a9e 3503 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3504 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3505
1bbc621e 3506again:
1bbc621e
CM
3507 /*
3508 * make sure all the block groups on our dirty list actually
3509 * exist
3510 */
6c686b35 3511 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3512
3513 if (!path) {
3514 path = btrfs_alloc_path();
3515 if (!path)
3516 return -ENOMEM;
3517 }
3518
b58d1a9e
FM
3519 /*
3520 * cache_write_mutex is here only to save us from balance or automatic
3521 * removal of empty block groups deleting this block group while we are
3522 * writing out the cache
3523 */
3524 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3525 while (!list_empty(&dirty)) {
ba2c4d4e
JB
3526 bool drop_reserve = true;
3527
1bbc621e
CM
3528 cache = list_first_entry(&dirty,
3529 struct btrfs_block_group_cache,
3530 dirty_list);
1bbc621e
CM
3531 /*
3532 * this can happen if something re-dirties a block
3533 * group that is already under IO. Just wait for it to
3534 * finish and then do it all again
3535 */
3536 if (!list_empty(&cache->io_list)) {
3537 list_del_init(&cache->io_list);
afdb5718 3538 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3539 btrfs_put_block_group(cache);
3540 }
3541
3542
3543 /*
3544 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3545 * if it should update the cache_state. Don't delete
3546 * until after we wait.
3547 *
3548 * Since we're not running in the commit critical section
3549 * we need the dirty_bgs_lock to protect from update_block_group
3550 */
3551 spin_lock(&cur_trans->dirty_bgs_lock);
3552 list_del_init(&cache->dirty_list);
3553 spin_unlock(&cur_trans->dirty_bgs_lock);
3554
3555 should_put = 1;
3556
3557 cache_save_setup(cache, trans, path);
3558
3559 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3560 cache->io_ctl.inode = NULL;
fe041534 3561 ret = btrfs_write_out_cache(trans, cache, path);
1bbc621e
CM
3562 if (ret == 0 && cache->io_ctl.inode) {
3563 num_started++;
3564 should_put = 0;
3565
3566 /*
45ae2c18
NB
3567 * The cache_write_mutex is protecting the
3568 * io_list, also refer to the definition of
3569 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3570 */
3571 list_add_tail(&cache->io_list, io);
3572 } else {
3573 /*
3574 * if we failed to write the cache, the
3575 * generation will be bad and life goes on
3576 */
3577 ret = 0;
3578 }
3579 }
ff1f8250 3580 if (!ret) {
39db232d 3581 ret = write_one_cache_group(trans, path, cache);
ff1f8250
FM
3582 /*
3583 * Our block group might still be attached to the list
3584 * of new block groups in the transaction handle of some
3585 * other task (struct btrfs_trans_handle->new_bgs). This
3586 * means its block group item isn't yet in the extent
3587 * tree. If this happens ignore the error, as we will
3588 * try again later in the critical section of the
3589 * transaction commit.
3590 */
3591 if (ret == -ENOENT) {
3592 ret = 0;
3593 spin_lock(&cur_trans->dirty_bgs_lock);
3594 if (list_empty(&cache->dirty_list)) {
3595 list_add_tail(&cache->dirty_list,
3596 &cur_trans->dirty_bgs);
3597 btrfs_get_block_group(cache);
ba2c4d4e 3598 drop_reserve = false;
ff1f8250
FM
3599 }
3600 spin_unlock(&cur_trans->dirty_bgs_lock);
3601 } else if (ret) {
66642832 3602 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3603 }
3604 }
1bbc621e 3605
52042d8e 3606 /* if it's not on the io list, we need to put the block group */
1bbc621e
CM
3607 if (should_put)
3608 btrfs_put_block_group(cache);
ba2c4d4e
JB
3609 if (drop_reserve)
3610 btrfs_delayed_refs_rsv_release(fs_info, 1);
1bbc621e
CM
3611
3612 if (ret)
3613 break;
b58d1a9e
FM
3614
3615 /*
3616 * Avoid blocking other tasks for too long. It might even save
3617 * us from writing caches for block groups that are going to be
3618 * removed.
3619 */
3620 mutex_unlock(&trans->transaction->cache_write_mutex);
3621 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3622 }
b58d1a9e 3623 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3624
3625 /*
3626 * go through delayed refs for all the stuff we've just kicked off
3627 * and then loop back (just once)
3628 */
c79a70b1 3629 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3630 if (!ret && loops == 0) {
3631 loops++;
3632 spin_lock(&cur_trans->dirty_bgs_lock);
3633 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3634 /*
3635 * dirty_bgs_lock protects us from concurrent block group
3636 * deletes too (not just cache_write_mutex).
3637 */
3638 if (!list_empty(&dirty)) {
3639 spin_unlock(&cur_trans->dirty_bgs_lock);
3640 goto again;
3641 }
1bbc621e 3642 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3643 } else if (ret < 0) {
2ff7e61e 3644 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3645 }
3646
3647 btrfs_free_path(path);
3648 return ret;
3649}
3650
5742d15f 3651int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
1bbc621e 3652{
5742d15f 3653 struct btrfs_fs_info *fs_info = trans->fs_info;
1bbc621e
CM
3654 struct btrfs_block_group_cache *cache;
3655 struct btrfs_transaction *cur_trans = trans->transaction;
3656 int ret = 0;
3657 int should_put;
3658 struct btrfs_path *path;
3659 struct list_head *io = &cur_trans->io_bgs;
3660 int num_started = 0;
9078a3e1
CM
3661
3662 path = btrfs_alloc_path();
3663 if (!path)
3664 return -ENOMEM;
3665
ce93ec54 3666 /*
e44081ef
FM
3667 * Even though we are in the critical section of the transaction commit,
3668 * we can still have concurrent tasks adding elements to this
3669 * transaction's list of dirty block groups. These tasks correspond to
3670 * endio free space workers started when writeback finishes for a
3671 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3672 * allocate new block groups as a result of COWing nodes of the root
3673 * tree when updating the free space inode. The writeback for the space
3674 * caches is triggered by an earlier call to
3675 * btrfs_start_dirty_block_groups() and iterations of the following
3676 * loop.
3677 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3678 * delayed refs to make sure we have the best chance at doing this all
3679 * in one shot.
3680 */
e44081ef 3681 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3682 while (!list_empty(&cur_trans->dirty_bgs)) {
3683 cache = list_first_entry(&cur_trans->dirty_bgs,
3684 struct btrfs_block_group_cache,
3685 dirty_list);
c9dc4c65
CM
3686
3687 /*
3688 * this can happen if cache_save_setup re-dirties a block
3689 * group that is already under IO. Just wait for it to
3690 * finish and then do it all again
3691 */
3692 if (!list_empty(&cache->io_list)) {
e44081ef 3693 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3694 list_del_init(&cache->io_list);
afdb5718 3695 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3696 btrfs_put_block_group(cache);
e44081ef 3697 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3698 }
3699
1bbc621e
CM
3700 /*
3701 * don't remove from the dirty list until after we've waited
3702 * on any pending IO
3703 */
ce93ec54 3704 list_del_init(&cache->dirty_list);
e44081ef 3705 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3706 should_put = 1;
3707
1bbc621e 3708 cache_save_setup(cache, trans, path);
c9dc4c65 3709
ce93ec54 3710 if (!ret)
c79a70b1 3711 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3712 (unsigned long) -1);
c9dc4c65
CM
3713
3714 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3715 cache->io_ctl.inode = NULL;
fe041534 3716 ret = btrfs_write_out_cache(trans, cache, path);
c9dc4c65
CM
3717 if (ret == 0 && cache->io_ctl.inode) {
3718 num_started++;
3719 should_put = 0;
1bbc621e 3720 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3721 } else {
3722 /*
3723 * if we failed to write the cache, the
3724 * generation will be bad and life goes on
3725 */
3726 ret = 0;
3727 }
3728 }
ff1f8250 3729 if (!ret) {
39db232d 3730 ret = write_one_cache_group(trans, path, cache);
2bc0bb5f
FM
3731 /*
3732 * One of the free space endio workers might have
3733 * created a new block group while updating a free space
3734 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3735 * and hasn't released its transaction handle yet, in
3736 * which case the new block group is still attached to
3737 * its transaction handle and its creation has not
3738 * finished yet (no block group item in the extent tree
3739 * yet, etc). If this is the case, wait for all free
3740 * space endio workers to finish and retry. This is a
3741 * a very rare case so no need for a more efficient and
3742 * complex approach.
3743 */
3744 if (ret == -ENOENT) {
3745 wait_event(cur_trans->writer_wait,
3746 atomic_read(&cur_trans->num_writers) == 1);
39db232d 3747 ret = write_one_cache_group(trans, path, cache);
2bc0bb5f 3748 }
ff1f8250 3749 if (ret)
66642832 3750 btrfs_abort_transaction(trans, ret);
ff1f8250 3751 }
c9dc4c65
CM
3752
3753 /* if its not on the io list, we need to put the block group */
3754 if (should_put)
3755 btrfs_put_block_group(cache);
ba2c4d4e 3756 btrfs_delayed_refs_rsv_release(fs_info, 1);
e44081ef 3757 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3758 }
e44081ef 3759 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3760
45ae2c18
NB
3761 /*
3762 * Refer to the definition of io_bgs member for details why it's safe
3763 * to use it without any locking
3764 */
1bbc621e
CM
3765 while (!list_empty(io)) {
3766 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3767 io_list);
3768 list_del_init(&cache->io_list);
afdb5718 3769 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3770 btrfs_put_block_group(cache);
3771 }
3772
9078a3e1 3773 btrfs_free_path(path);
ce93ec54 3774 return ret;
9078a3e1
CM
3775}
3776
2ff7e61e 3777int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3778{
3779 struct btrfs_block_group_cache *block_group;
3780 int readonly = 0;
3781
0b246afa 3782 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3783 if (!block_group || block_group->ro)
3784 readonly = 1;
3785 if (block_group)
fa9c0d79 3786 btrfs_put_block_group(block_group);
d2fb3437
YZ
3787 return readonly;
3788}
3789
f78c436c
FM
3790bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3791{
3792 struct btrfs_block_group_cache *bg;
3793 bool ret = true;
3794
3795 bg = btrfs_lookup_block_group(fs_info, bytenr);
3796 if (!bg)
3797 return false;
3798
3799 spin_lock(&bg->lock);
3800 if (bg->ro)
3801 ret = false;
3802 else
3803 atomic_inc(&bg->nocow_writers);
3804 spin_unlock(&bg->lock);
3805
3806 /* no put on block group, done by btrfs_dec_nocow_writers */
3807 if (!ret)
3808 btrfs_put_block_group(bg);
3809
3810 return ret;
3811
3812}
3813
3814void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3815{
3816 struct btrfs_block_group_cache *bg;
3817
3818 bg = btrfs_lookup_block_group(fs_info, bytenr);
3819 ASSERT(bg);
3820 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3821 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3822 /*
3823 * Once for our lookup and once for the lookup done by a previous call
3824 * to btrfs_inc_nocow_writers()
3825 */
3826 btrfs_put_block_group(bg);
3827 btrfs_put_block_group(bg);
3828}
3829
f78c436c
FM
3830void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3831{
4625956a 3832 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3833}
3834
6ab0a202
JM
3835static const char *alloc_name(u64 flags)
3836{
3837 switch (flags) {
3838 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3839 return "mixed";
3840 case BTRFS_BLOCK_GROUP_METADATA:
3841 return "metadata";
3842 case BTRFS_BLOCK_GROUP_DATA:
3843 return "data";
3844 case BTRFS_BLOCK_GROUP_SYSTEM:
3845 return "system";
3846 default:
3847 WARN_ON(1);
3848 return "invalid-combination";
3849 };
3850}
3851
4ca61683 3852static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3853{
3854
3855 struct btrfs_space_info *space_info;
3856 int i;
3857 int ret;
3858
3859 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3860 if (!space_info)
3861 return -ENOMEM;
3862
3863 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3864 GFP_KERNEL);
3865 if (ret) {
3866 kfree(space_info);
3867 return ret;
3868 }
3869
3870 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3871 INIT_LIST_HEAD(&space_info->block_groups[i]);
3872 init_rwsem(&space_info->groups_sem);
3873 spin_lock_init(&space_info->lock);
3874 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3875 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3876 init_waitqueue_head(&space_info->wait);
3877 INIT_LIST_HEAD(&space_info->ro_bgs);
3878 INIT_LIST_HEAD(&space_info->tickets);
3879 INIT_LIST_HEAD(&space_info->priority_tickets);
3880
3881 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3882 info->space_info_kobj, "%s",
3883 alloc_name(space_info->flags));
3884 if (ret) {
3885 percpu_counter_destroy(&space_info->total_bytes_pinned);
3886 kfree(space_info);
3887 return ret;
3888 }
3889
2be12ef7
NB
3890 list_add_rcu(&space_info->list, &info->space_info);
3891 if (flags & BTRFS_BLOCK_GROUP_DATA)
3892 info->data_sinfo = space_info;
3893
3894 return ret;
3895}
3896
d2006e6d 3897static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3898 u64 total_bytes, u64 bytes_used,
e40edf2d 3899 u64 bytes_readonly,
593060d7
CM
3900 struct btrfs_space_info **space_info)
3901{
3902 struct btrfs_space_info *found;
b742bb82
YZ
3903 int factor;
3904
46df06b8 3905 factor = btrfs_bg_type_to_factor(flags);
593060d7
CM
3906
3907 found = __find_space_info(info, flags);
d2006e6d
NB
3908 ASSERT(found);
3909 spin_lock(&found->lock);
3910 found->total_bytes += total_bytes;
3911 found->disk_total += total_bytes * factor;
3912 found->bytes_used += bytes_used;
3913 found->disk_used += bytes_used * factor;
3914 found->bytes_readonly += bytes_readonly;
3915 if (total_bytes > 0)
3916 found->full = 0;
3917 space_info_add_new_bytes(info, found, total_bytes -
3918 bytes_used - bytes_readonly);
3919 spin_unlock(&found->lock);
3920 *space_info = found;
593060d7
CM
3921}
3922
8790d502
CM
3923static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3924{
899c81ea
ID
3925 u64 extra_flags = chunk_to_extended(flags) &
3926 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3927
de98ced9 3928 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3929 if (flags & BTRFS_BLOCK_GROUP_DATA)
3930 fs_info->avail_data_alloc_bits |= extra_flags;
3931 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3932 fs_info->avail_metadata_alloc_bits |= extra_flags;
3933 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3934 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3935 write_sequnlock(&fs_info->profiles_lock);
8790d502 3936}
593060d7 3937
fc67c450
ID
3938/*
3939 * returns target flags in extended format or 0 if restripe for this
3940 * chunk_type is not in progress
c6664b42 3941 *
dccdb07b 3942 * should be called with balance_lock held
fc67c450
ID
3943 */
3944static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3945{
3946 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3947 u64 target = 0;
3948
fc67c450
ID
3949 if (!bctl)
3950 return 0;
3951
3952 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3953 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3954 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3955 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3956 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3957 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3958 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3959 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3960 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3961 }
3962
3963 return target;
3964}
3965
a46d11a8
ID
3966/*
3967 * @flags: available profiles in extended format (see ctree.h)
3968 *
e4d8ec0f
ID
3969 * Returns reduced profile in chunk format. If profile changing is in
3970 * progress (either running or paused) picks the target profile (if it's
3971 * already available), otherwise falls back to plain reducing.
a46d11a8 3972 */
2ff7e61e 3973static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 3974{
0b246afa 3975 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 3976 u64 target;
9c170b26
ZL
3977 u64 raid_type;
3978 u64 allowed = 0;
a061fc8d 3979
fc67c450
ID
3980 /*
3981 * see if restripe for this chunk_type is in progress, if so
3982 * try to reduce to the target profile
3983 */
0b246afa
JM
3984 spin_lock(&fs_info->balance_lock);
3985 target = get_restripe_target(fs_info, flags);
fc67c450
ID
3986 if (target) {
3987 /* pick target profile only if it's already available */
3988 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 3989 spin_unlock(&fs_info->balance_lock);
fc67c450 3990 return extended_to_chunk(target);
e4d8ec0f
ID
3991 }
3992 }
0b246afa 3993 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 3994
53b381b3 3995 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
3996 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3997 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 3998 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
3999 }
4000 allowed &= flags;
4001
4002 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4003 allowed = BTRFS_BLOCK_GROUP_RAID6;
4004 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4005 allowed = BTRFS_BLOCK_GROUP_RAID5;
4006 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4007 allowed = BTRFS_BLOCK_GROUP_RAID10;
4008 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4009 allowed = BTRFS_BLOCK_GROUP_RAID1;
4010 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4011 allowed = BTRFS_BLOCK_GROUP_RAID0;
4012
4013 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4014
4015 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4016}
4017
2ff7e61e 4018static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4019{
de98ced9 4020 unsigned seq;
f8213bdc 4021 u64 flags;
de98ced9
MX
4022
4023 do {
f8213bdc 4024 flags = orig_flags;
0b246afa 4025 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4026
4027 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4028 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4029 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4030 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4031 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4032 flags |= fs_info->avail_metadata_alloc_bits;
4033 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4034
2ff7e61e 4035 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4036}
4037
1b86826d 4038static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4039{
0b246afa 4040 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4041 u64 flags;
53b381b3 4042 u64 ret;
9ed74f2d 4043
b742bb82
YZ
4044 if (data)
4045 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4046 else if (root == fs_info->chunk_root)
b742bb82 4047 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4048 else
b742bb82 4049 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4050
2ff7e61e 4051 ret = get_alloc_profile(fs_info, flags);
53b381b3 4052 return ret;
6a63209f 4053}
9ed74f2d 4054
1b86826d
JM
4055u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4056{
4057 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4058}
4059
4060u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4061{
4062 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4063}
4064
4065u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4066{
4067 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4068}
4069
4136135b
LB
4070static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4071 bool may_use_included)
4072{
4073 ASSERT(s_info);
4074 return s_info->bytes_used + s_info->bytes_reserved +
4075 s_info->bytes_pinned + s_info->bytes_readonly +
4076 (may_use_included ? s_info->bytes_may_use : 0);
4077}
4078
04f4f916 4079int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4080{
04f4f916 4081 struct btrfs_root *root = inode->root;
b4d7c3c9 4082 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4083 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4084 u64 used;
94b947b2 4085 int ret = 0;
c99f1b0c
ZL
4086 int need_commit = 2;
4087 int have_pinned_space;
6a63209f 4088
6a63209f 4089 /* make sure bytes are sectorsize aligned */
0b246afa 4090 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4091
9dced186 4092 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4093 need_commit = 0;
9dced186 4094 ASSERT(current->journal_info);
0af3d00b
JB
4095 }
4096
6a63209f
JB
4097again:
4098 /* make sure we have enough space to handle the data first */
4099 spin_lock(&data_sinfo->lock);
4136135b 4100 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4101
4102 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4103 struct btrfs_trans_handle *trans;
9ed74f2d 4104
6a63209f
JB
4105 /*
4106 * if we don't have enough free bytes in this space then we need
4107 * to alloc a new chunk.
4108 */
b9fd47cd 4109 if (!data_sinfo->full) {
6a63209f 4110 u64 alloc_target;
9ed74f2d 4111
0e4f8f88 4112 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4113 spin_unlock(&data_sinfo->lock);
1174cade 4114
1b86826d 4115 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4116 /*
4117 * It is ugly that we don't call nolock join
4118 * transaction for the free space inode case here.
4119 * But it is safe because we only do the data space
4120 * reservation for the free space cache in the
4121 * transaction context, the common join transaction
4122 * just increase the counter of the current transaction
4123 * handler, doesn't try to acquire the trans_lock of
4124 * the fs.
4125 */
7a7eaa40 4126 trans = btrfs_join_transaction(root);
a22285a6
YZ
4127 if (IS_ERR(trans))
4128 return PTR_ERR(trans);
9ed74f2d 4129
01458828 4130 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4131 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4132 btrfs_end_transaction(trans);
d52a5b5f
MX
4133 if (ret < 0) {
4134 if (ret != -ENOSPC)
4135 return ret;
c99f1b0c
ZL
4136 else {
4137 have_pinned_space = 1;
d52a5b5f 4138 goto commit_trans;
c99f1b0c 4139 }
d52a5b5f 4140 }
9ed74f2d 4141
6a63209f
JB
4142 goto again;
4143 }
f2bb8f5c
JB
4144
4145 /*
b150a4f1 4146 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4147 * allocation, and no removed chunk in current transaction,
4148 * don't bother committing the transaction.
f2bb8f5c 4149 */
dec59fa3 4150 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4151 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4152 used + bytes - data_sinfo->total_bytes,
4153 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4154 spin_unlock(&data_sinfo->lock);
6a63209f 4155
4e06bdd6 4156 /* commit the current transaction and try again */
d52a5b5f 4157commit_trans:
92e2f7e3 4158 if (need_commit) {
c99f1b0c 4159 need_commit--;
b150a4f1 4160
e1746e83 4161 if (need_commit > 0) {
82b3e53b 4162 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4163 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4164 (u64)-1);
e1746e83 4165 }
9a4e7276 4166
7a7eaa40 4167 trans = btrfs_join_transaction(root);
a22285a6
YZ
4168 if (IS_ERR(trans))
4169 return PTR_ERR(trans);
c99f1b0c 4170 if (have_pinned_space >= 0 ||
3204d33c
JB
4171 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4172 &trans->transaction->flags) ||
c99f1b0c 4173 need_commit > 0) {
3a45bb20 4174 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4175 if (ret)
4176 return ret;
d7c15171 4177 /*
c2d6cb16
FM
4178 * The cleaner kthread might still be doing iput
4179 * operations. Wait for it to finish so that
034f784d
JB
4180 * more space is released. We don't need to
4181 * explicitly run the delayed iputs here because
4182 * the commit_transaction would have woken up
4183 * the cleaner.
d7c15171 4184 */
034f784d
JB
4185 ret = btrfs_wait_on_delayed_iputs(fs_info);
4186 if (ret)
4187 return ret;
94b947b2
ZL
4188 goto again;
4189 } else {
3a45bb20 4190 btrfs_end_transaction(trans);
94b947b2 4191 }
4e06bdd6 4192 }
9ed74f2d 4193
0b246afa 4194 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4195 "space_info:enospc",
4196 data_sinfo->flags, bytes, 1);
6a63209f
JB
4197 return -ENOSPC;
4198 }
9f9b8e8d 4199 update_bytes_may_use(data_sinfo, bytes);
0b246afa 4200 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4201 data_sinfo->flags, bytes, 1);
6a63209f 4202 spin_unlock(&data_sinfo->lock);
6a63209f 4203
4559b0a7 4204 return 0;
9ed74f2d 4205}
6a63209f 4206
364ecf36
QW
4207int btrfs_check_data_free_space(struct inode *inode,
4208 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4209{
0b246afa 4210 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4211 int ret;
4212
4213 /* align the range */
0b246afa
JM
4214 len = round_up(start + len, fs_info->sectorsize) -
4215 round_down(start, fs_info->sectorsize);
4216 start = round_down(start, fs_info->sectorsize);
4ceff079 4217
04f4f916 4218 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4219 if (ret < 0)
4220 return ret;
4221
1e5ec2e7 4222 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4223 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4224 if (ret < 0)
1e5ec2e7 4225 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4226 else
4227 ret = 0;
4ceff079
QW
4228 return ret;
4229}
4230
4ceff079
QW
4231/*
4232 * Called if we need to clear a data reservation for this inode
4233 * Normally in a error case.
4234 *
51773bec
QW
4235 * This one will *NOT* use accurate qgroup reserved space API, just for case
4236 * which we can't sleep and is sure it won't affect qgroup reserved space.
4237 * Like clear_bit_hook().
4ceff079 4238 */
51773bec
QW
4239void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4240 u64 len)
4ceff079 4241{
0b246afa 4242 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4243 struct btrfs_space_info *data_sinfo;
4244
4245 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4246 len = round_up(start + len, fs_info->sectorsize) -
4247 round_down(start, fs_info->sectorsize);
4248 start = round_down(start, fs_info->sectorsize);
4ceff079 4249
0b246afa 4250 data_sinfo = fs_info->data_sinfo;
4ceff079 4251 spin_lock(&data_sinfo->lock);
9f9b8e8d 4252 update_bytes_may_use(data_sinfo, -len);
0b246afa 4253 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4254 data_sinfo->flags, len, 0);
4255 spin_unlock(&data_sinfo->lock);
4256}
4257
51773bec
QW
4258/*
4259 * Called if we need to clear a data reservation for this inode
4260 * Normally in a error case.
4261 *
01327610 4262 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4263 * space framework.
4264 */
bc42bda2
QW
4265void btrfs_free_reserved_data_space(struct inode *inode,
4266 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4267{
0c476a5d
JM
4268 struct btrfs_root *root = BTRFS_I(inode)->root;
4269
4270 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4271 len = round_up(start + len, root->fs_info->sectorsize) -
4272 round_down(start, root->fs_info->sectorsize);
4273 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4274
51773bec 4275 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4276 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4277}
4278
97e728d4 4279static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4280{
97e728d4
JB
4281 struct list_head *head = &info->space_info;
4282 struct btrfs_space_info *found;
e3ccfa98 4283
97e728d4
JB
4284 rcu_read_lock();
4285 list_for_each_entry_rcu(found, head, list) {
4286 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4287 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4288 }
97e728d4 4289 rcu_read_unlock();
e3ccfa98
JB
4290}
4291
3c76cd84
MX
4292static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4293{
4294 return (global->size << 1);
4295}
4296
2ff7e61e 4297static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4298 struct btrfs_space_info *sinfo, int force)
32c00aff 4299{
8d8aafee 4300 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4301 u64 thresh;
e3ccfa98 4302
0e4f8f88
CM
4303 if (force == CHUNK_ALLOC_FORCE)
4304 return 1;
4305
4306 /*
4307 * in limited mode, we want to have some free space up to
4308 * about 1% of the FS size.
4309 */
4310 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4311 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4312 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4313
8d8aafee 4314 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4315 return 1;
4316 }
0e4f8f88 4317
8d8aafee 4318 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4319 return 0;
424499db 4320 return 1;
32c00aff
JB
4321}
4322
2ff7e61e 4323static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4324{
4325 u64 num_dev;
4326
53b381b3
DW
4327 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4328 BTRFS_BLOCK_GROUP_RAID0 |
4329 BTRFS_BLOCK_GROUP_RAID5 |
4330 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4331 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4332 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4333 num_dev = 2;
4334 else
4335 num_dev = 1; /* DUP or single */
4336
39c2d7fa 4337 return num_dev;
15d1ff81
LB
4338}
4339
39c2d7fa
FM
4340/*
4341 * If @is_allocation is true, reserve space in the system space info necessary
4342 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4343 * removing a chunk.
4344 */
451a2c13 4345void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4346{
451a2c13 4347 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4348 struct btrfs_space_info *info;
4349 u64 left;
4350 u64 thresh;
4fbcdf66 4351 int ret = 0;
39c2d7fa 4352 u64 num_devs;
4fbcdf66
FM
4353
4354 /*
4355 * Needed because we can end up allocating a system chunk and for an
4356 * atomic and race free space reservation in the chunk block reserve.
4357 */
a32bf9a3 4358 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4359
0b246afa 4360 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4361 spin_lock(&info->lock);
4136135b 4362 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4363 spin_unlock(&info->lock);
4364
2ff7e61e 4365 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4366
4367 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4368 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4369 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4370
0b246afa
JM
4371 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4372 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4373 left, thresh, type);
4374 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4375 }
4376
4377 if (left < thresh) {
1b86826d 4378 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4379
4fbcdf66
FM
4380 /*
4381 * Ignore failure to create system chunk. We might end up not
4382 * needing it, as we might not need to COW all nodes/leafs from
4383 * the paths we visit in the chunk tree (they were already COWed
4384 * or created in the current transaction for example).
4385 */
c216b203 4386 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4387 }
4388
4389 if (!ret) {
0b246afa
JM
4390 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4391 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4392 thresh, BTRFS_RESERVE_NO_FLUSH);
4393 if (!ret)
4394 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4395 }
4396}
4397
28b737f6
LB
4398/*
4399 * If force is CHUNK_ALLOC_FORCE:
4400 * - return 1 if it successfully allocates a chunk,
4401 * - return errors including -ENOSPC otherwise.
4402 * If force is NOT CHUNK_ALLOC_FORCE:
4403 * - return 0 if it doesn't need to allocate a new chunk,
4404 * - return 1 if it successfully allocates a chunk,
4405 * - return errors including -ENOSPC otherwise.
4406 */
01458828
NB
4407static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4408 int force)
9ed74f2d 4409{
01458828 4410 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4411 struct btrfs_space_info *space_info;
2556fbb0
NB
4412 bool wait_for_alloc = false;
4413 bool should_alloc = false;
9ed74f2d 4414 int ret = 0;
9ed74f2d 4415
c6b305a8
JB
4416 /* Don't re-enter if we're already allocating a chunk */
4417 if (trans->allocating_chunk)
4418 return -ENOSPC;
4419
0b246afa 4420 space_info = __find_space_info(fs_info, flags);
dc2d3005 4421 ASSERT(space_info);
9ed74f2d 4422
2556fbb0
NB
4423 do {
4424 spin_lock(&space_info->lock);
4425 if (force < space_info->force_alloc)
4426 force = space_info->force_alloc;
4427 should_alloc = should_alloc_chunk(fs_info, space_info, force);
4428 if (space_info->full) {
4429 /* No more free physical space */
4430 if (should_alloc)
4431 ret = -ENOSPC;
4432 else
4433 ret = 0;
4434 spin_unlock(&space_info->lock);
4435 return ret;
4436 } else if (!should_alloc) {
4437 spin_unlock(&space_info->lock);
4438 return 0;
4439 } else if (space_info->chunk_alloc) {
4440 /*
4441 * Someone is already allocating, so we need to block
4442 * until this someone is finished and then loop to
4443 * recheck if we should continue with our allocation
4444 * attempt.
4445 */
4446 wait_for_alloc = true;
4447 spin_unlock(&space_info->lock);
4448 mutex_lock(&fs_info->chunk_mutex);
4449 mutex_unlock(&fs_info->chunk_mutex);
4450 } else {
4451 /* Proceed with allocation */
4452 space_info->chunk_alloc = 1;
4453 wait_for_alloc = false;
4454 spin_unlock(&space_info->lock);
4455 }
6d74119f 4456
1e1c50a9 4457 cond_resched();
2556fbb0 4458 } while (wait_for_alloc);
6d74119f 4459
2556fbb0 4460 mutex_lock(&fs_info->chunk_mutex);
c6b305a8
JB
4461 trans->allocating_chunk = true;
4462
67377734
JB
4463 /*
4464 * If we have mixed data/metadata chunks we want to make sure we keep
4465 * allocating mixed chunks instead of individual chunks.
4466 */
4467 if (btrfs_mixed_space_info(space_info))
4468 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4469
97e728d4
JB
4470 /*
4471 * if we're doing a data chunk, go ahead and make sure that
4472 * we keep a reasonable number of metadata chunks allocated in the
4473 * FS as well.
4474 */
9ed74f2d 4475 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4476 fs_info->data_chunk_allocations++;
4477 if (!(fs_info->data_chunk_allocations %
4478 fs_info->metadata_ratio))
4479 force_metadata_allocation(fs_info);
9ed74f2d
JB
4480 }
4481
15d1ff81
LB
4482 /*
4483 * Check if we have enough space in SYSTEM chunk because we may need
4484 * to update devices.
4485 */
451a2c13 4486 check_system_chunk(trans, flags);
15d1ff81 4487
c216b203 4488 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4489 trans->allocating_chunk = false;
92b8e897 4490
9ed74f2d 4491 spin_lock(&space_info->lock);
57f1642e
NB
4492 if (ret < 0) {
4493 if (ret == -ENOSPC)
4494 space_info->full = 1;
4495 else
4496 goto out;
4497 } else {
424499db 4498 ret = 1;
21a94f7a 4499 space_info->max_extent_size = 0;
57f1642e 4500 }
6d74119f 4501
0e4f8f88 4502 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4503out:
6d74119f 4504 space_info->chunk_alloc = 0;
9ed74f2d 4505 spin_unlock(&space_info->lock);
a25c75d5 4506 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4507 /*
4508 * When we allocate a new chunk we reserve space in the chunk block
4509 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4510 * add new nodes/leafs to it if we end up needing to do it when
4511 * inserting the chunk item and updating device items as part of the
4512 * second phase of chunk allocation, performed by
4513 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4514 * large number of new block groups to create in our transaction
4515 * handle's new_bgs list to avoid exhausting the chunk block reserve
4516 * in extreme cases - like having a single transaction create many new
4517 * block groups when starting to write out the free space caches of all
4518 * the block groups that were made dirty during the lifetime of the
4519 * transaction.
4520 */
5ce55557 4521 if (trans->chunk_bytes_reserved >= (u64)SZ_2M)
6c686b35 4522 btrfs_create_pending_block_groups(trans);
5ce55557 4523
0f9dd46c 4524 return ret;
6324fbf3 4525}
9ed74f2d 4526
c1c4919b 4527static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4528 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4529 enum btrfs_reserve_flush_enum flush,
4530 bool system_chunk)
a80c8dcf 4531{
0b246afa 4532 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4533 u64 profile;
3c76cd84 4534 u64 space_size;
a80c8dcf
JB
4535 u64 avail;
4536 u64 used;
46df06b8 4537 int factor;
a80c8dcf 4538
957780eb
JB
4539 /* Don't overcommit when in mixed mode. */
4540 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4541 return 0;
4542
c1c4919b
JM
4543 if (system_chunk)
4544 profile = btrfs_system_alloc_profile(fs_info);
4545 else
4546 profile = btrfs_metadata_alloc_profile(fs_info);
4547
4136135b 4548 used = btrfs_space_info_used(space_info, false);
96f1bb57 4549
96f1bb57
JB
4550 /*
4551 * We only want to allow over committing if we have lots of actual space
4552 * free, but if we don't have enough space to handle the global reserve
4553 * space then we could end up having a real enospc problem when trying
4554 * to allocate a chunk or some other such important allocation.
4555 */
3c76cd84
MX
4556 spin_lock(&global_rsv->lock);
4557 space_size = calc_global_rsv_need_space(global_rsv);
4558 spin_unlock(&global_rsv->lock);
4559 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4560 return 0;
4561
4562 used += space_info->bytes_may_use;
a80c8dcf 4563
a5ed45f8 4564 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4565
4566 /*
4567 * If we have dup, raid1 or raid10 then only half of the free
52042d8e 4568 * space is actually usable. For raid56, the space info used
53b381b3
DW
4569 * doesn't include the parity drive, so we don't have to
4570 * change the math
a80c8dcf 4571 */
46df06b8
DS
4572 factor = btrfs_bg_type_to_factor(profile);
4573 avail = div_u64(avail, factor);
a80c8dcf
JB
4574
4575 /*
561c294d
MX
4576 * If we aren't flushing all things, let us overcommit up to
4577 * 1/2th of the space. If we can flush, don't let us overcommit
4578 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4579 */
08e007d2 4580 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4581 avail >>= 3;
a80c8dcf 4582 else
14575aef 4583 avail >>= 1;
a80c8dcf 4584
14575aef 4585 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4586 return 1;
4587 return 0;
4588}
4589
2ff7e61e 4590static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4591 unsigned long nr_pages, int nr_items)
da633a42 4592{
0b246afa 4593 struct super_block *sb = fs_info->sb;
da633a42 4594
925a6efb
JB
4595 if (down_read_trylock(&sb->s_umount)) {
4596 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4597 up_read(&sb->s_umount);
4598 } else {
da633a42
MX
4599 /*
4600 * We needn't worry the filesystem going from r/w to r/o though
4601 * we don't acquire ->s_umount mutex, because the filesystem
4602 * should guarantee the delalloc inodes list be empty after
4603 * the filesystem is readonly(all dirty pages are written to
4604 * the disk).
4605 */
82b3e53b 4606 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4607 if (!current->journal_info)
0b246afa 4608 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4609 }
4610}
4611
6374e57a 4612static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4613 u64 to_reclaim)
18cd8ea6
MX
4614{
4615 u64 bytes;
6374e57a 4616 u64 nr;
18cd8ea6 4617
2ff7e61e 4618 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4619 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4620 if (!nr)
4621 nr = 1;
4622 return nr;
4623}
4624
ee22184b 4625#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4626
9ed74f2d 4627/*
5da9d01b 4628 * shrink metadata reservation for delalloc
9ed74f2d 4629 */
c1c4919b
JM
4630static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4631 u64 orig, bool wait_ordered)
5da9d01b 4632{
0019f10d 4633 struct btrfs_space_info *space_info;
663350ac 4634 struct btrfs_trans_handle *trans;
f4c738c2 4635 u64 delalloc_bytes;
420829d8 4636 u64 async_pages;
6374e57a 4637 u64 items;
b1953bce 4638 long time_left;
d3ee29e3
MX
4639 unsigned long nr_pages;
4640 int loops;
5da9d01b 4641
c61a16a7 4642 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4643 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4644 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4645
663350ac 4646 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4647 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4648
963d678b 4649 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4650 &fs_info->delalloc_bytes);
f4c738c2 4651 if (delalloc_bytes == 0) {
fdb5effd 4652 if (trans)
f4c738c2 4653 return;
38c135af 4654 if (wait_ordered)
0b246afa 4655 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4656 return;
fdb5effd
JB
4657 }
4658
d3ee29e3 4659 loops = 0;
f4c738c2 4660 while (delalloc_bytes && loops < 3) {
420829d8
NB
4661 nr_pages = min(delalloc_bytes, to_reclaim) >> PAGE_SHIFT;
4662
4663 /*
4664 * Triggers inode writeback for up to nr_pages. This will invoke
4665 * ->writepages callback and trigger delalloc filling
4666 * (btrfs_run_delalloc_range()).
4667 */
2ff7e61e 4668 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
420829d8 4669
dea31f52 4670 /*
420829d8
NB
4671 * We need to wait for the compressed pages to start before
4672 * we continue.
dea31f52 4673 */
420829d8
NB
4674 async_pages = atomic_read(&fs_info->async_delalloc_pages);
4675 if (!async_pages)
9f3a074d
MX
4676 goto skip_async;
4677
420829d8
NB
4678 /*
4679 * Calculate how many compressed pages we want to be written
4680 * before we continue. I.e if there are more async pages than we
4681 * require wait_event will wait until nr_pages are written.
4682 */
4683 if (async_pages <= nr_pages)
4684 async_pages = 0;
9f3a074d 4685 else
420829d8 4686 async_pages -= nr_pages;
dea31f52 4687
0b246afa
JM
4688 wait_event(fs_info->async_submit_wait,
4689 atomic_read(&fs_info->async_delalloc_pages) <=
420829d8 4690 (int)async_pages);
9f3a074d 4691skip_async:
0019f10d 4692 spin_lock(&space_info->lock);
957780eb
JB
4693 if (list_empty(&space_info->tickets) &&
4694 list_empty(&space_info->priority_tickets)) {
4695 spin_unlock(&space_info->lock);
4696 break;
4697 }
0019f10d 4698 spin_unlock(&space_info->lock);
5da9d01b 4699
36e39c40 4700 loops++;
f104d044 4701 if (wait_ordered && !trans) {
0b246afa 4702 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4703 } else {
f4c738c2 4704 time_left = schedule_timeout_killable(1);
f104d044
JB
4705 if (time_left)
4706 break;
4707 }
963d678b 4708 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4709 &fs_info->delalloc_bytes);
5da9d01b 4710 }
5da9d01b
YZ
4711}
4712
996478ca 4713struct reserve_ticket {
f91587e4 4714 u64 orig_bytes;
996478ca
JB
4715 u64 bytes;
4716 int error;
4717 struct list_head list;
4718 wait_queue_head_t wait;
4719};
4720
663350ac
JB
4721/**
4722 * maybe_commit_transaction - possibly commit the transaction if its ok to
4723 * @root - the root we're allocating for
4724 * @bytes - the number of bytes we want to reserve
4725 * @force - force the commit
8bb8ab2e 4726 *
663350ac
JB
4727 * This will check to make sure that committing the transaction will actually
4728 * get us somewhere and then commit the transaction if it does. Otherwise it
4729 * will return -ENOSPC.
8bb8ab2e 4730 */
0c9ab349 4731static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4732 struct btrfs_space_info *space_info)
663350ac 4733{
996478ca 4734 struct reserve_ticket *ticket = NULL;
0b246afa 4735 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4c8edbc7 4736 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
663350ac 4737 struct btrfs_trans_handle *trans;
4c8edbc7
JB
4738 u64 bytes_needed;
4739 u64 reclaim_bytes = 0;
663350ac
JB
4740
4741 trans = (struct btrfs_trans_handle *)current->journal_info;
4742 if (trans)
4743 return -EAGAIN;
4744
996478ca
JB
4745 spin_lock(&space_info->lock);
4746 if (!list_empty(&space_info->priority_tickets))
4747 ticket = list_first_entry(&space_info->priority_tickets,
4748 struct reserve_ticket, list);
4749 else if (!list_empty(&space_info->tickets))
4750 ticket = list_first_entry(&space_info->tickets,
4751 struct reserve_ticket, list);
4c8edbc7 4752 bytes_needed = (ticket) ? ticket->bytes : 0;
996478ca
JB
4753 spin_unlock(&space_info->lock);
4754
4c8edbc7 4755 if (!bytes_needed)
996478ca 4756 return 0;
663350ac 4757
d89dbefb
JB
4758 trans = btrfs_join_transaction(fs_info->extent_root);
4759 if (IS_ERR(trans))
4760 return PTR_ERR(trans);
4761
4762 /*
4763 * See if there is enough pinned space to make this reservation, or if
4764 * we have block groups that are going to be freed, allowing us to
4765 * possibly do a chunk allocation the next loop through.
4766 */
4767 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags) ||
4768 __percpu_counter_compare(&space_info->total_bytes_pinned,
4769 bytes_needed,
4770 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4771 goto commit;
663350ac
JB
4772
4773 /*
4774 * See if there is some space in the delayed insertion reservation for
4775 * this reservation.
4776 */
4777 if (space_info != delayed_rsv->space_info)
d89dbefb 4778 goto enospc;
663350ac
JB
4779
4780 spin_lock(&delayed_rsv->lock);
4c8edbc7 4781 reclaim_bytes += delayed_rsv->reserved;
057aac3e
NB
4782 spin_unlock(&delayed_rsv->lock);
4783
4c8edbc7
JB
4784 spin_lock(&delayed_refs_rsv->lock);
4785 reclaim_bytes += delayed_refs_rsv->reserved;
4786 spin_unlock(&delayed_refs_rsv->lock);
4787 if (reclaim_bytes >= bytes_needed)
4788 goto commit;
4789 bytes_needed -= reclaim_bytes;
4790
dec59fa3 4791 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4c8edbc7 4792 bytes_needed,
d89dbefb
JB
4793 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0)
4794 goto enospc;
663350ac
JB
4795
4796commit:
3a45bb20 4797 return btrfs_commit_transaction(trans);
d89dbefb
JB
4798enospc:
4799 btrfs_end_transaction(trans);
4800 return -ENOSPC;
663350ac
JB
4801}
4802
e38ae7a0
NB
4803/*
4804 * Try to flush some data based on policy set by @state. This is only advisory
4805 * and may fail for various reasons. The caller is supposed to examine the
4806 * state of @space_info to detect the outcome.
4807 */
4808static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4809 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4810 int state)
96c3f433 4811{
a9b3311e 4812 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4813 struct btrfs_trans_handle *trans;
4814 int nr;
f4c738c2 4815 int ret = 0;
96c3f433
JB
4816
4817 switch (state) {
96c3f433
JB
4818 case FLUSH_DELAYED_ITEMS_NR:
4819 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4820 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4821 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4822 else
96c3f433 4823 nr = -1;
18cd8ea6 4824
96c3f433
JB
4825 trans = btrfs_join_transaction(root);
4826 if (IS_ERR(trans)) {
4827 ret = PTR_ERR(trans);
4828 break;
4829 }
e5c304e6 4830 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4831 btrfs_end_transaction(trans);
96c3f433 4832 break;
67b0fd63
JB
4833 case FLUSH_DELALLOC:
4834 case FLUSH_DELALLOC_WAIT:
7bdd6277 4835 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4836 state == FLUSH_DELALLOC_WAIT);
4837 break;
413df725
JB
4838 case FLUSH_DELAYED_REFS_NR:
4839 case FLUSH_DELAYED_REFS:
4840 trans = btrfs_join_transaction(root);
4841 if (IS_ERR(trans)) {
4842 ret = PTR_ERR(trans);
4843 break;
4844 }
4845 if (state == FLUSH_DELAYED_REFS_NR)
4846 nr = calc_reclaim_items_nr(fs_info, num_bytes);
4847 else
4848 nr = 0;
4849 btrfs_run_delayed_refs(trans, nr);
4850 btrfs_end_transaction(trans);
4851 break;
ea658bad 4852 case ALLOC_CHUNK:
450114fc 4853 case ALLOC_CHUNK_FORCE:
ea658bad
JB
4854 trans = btrfs_join_transaction(root);
4855 if (IS_ERR(trans)) {
4856 ret = PTR_ERR(trans);
4857 break;
4858 }
01458828 4859 ret = do_chunk_alloc(trans,
1b86826d 4860 btrfs_metadata_alloc_profile(fs_info),
450114fc
JB
4861 (state == ALLOC_CHUNK) ?
4862 CHUNK_ALLOC_NO_FORCE : CHUNK_ALLOC_FORCE);
3a45bb20 4863 btrfs_end_transaction(trans);
eecba891 4864 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4865 ret = 0;
4866 break;
96c3f433 4867 case COMMIT_TRANS:
3ec9a4c8
JB
4868 /*
4869 * If we have pending delayed iputs then we could free up a
4870 * bunch of pinned space, so make sure we run the iputs before
4871 * we do our pinned bytes check below.
4872 */
3ec9a4c8 4873 btrfs_run_delayed_iputs(fs_info);
034f784d 4874 btrfs_wait_on_delayed_iputs(fs_info);
3ec9a4c8 4875
996478ca 4876 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4877 break;
4878 default:
4879 ret = -ENOSPC;
4880 break;
4881 }
4882
7bdd6277
NB
4883 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4884 ret);
e38ae7a0 4885 return;
96c3f433 4886}
21c7e756
MX
4887
4888static inline u64
c1c4919b
JM
4889btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4890 struct btrfs_space_info *space_info,
4891 bool system_chunk)
21c7e756 4892{
957780eb 4893 struct reserve_ticket *ticket;
21c7e756
MX
4894 u64 used;
4895 u64 expected;
957780eb 4896 u64 to_reclaim = 0;
21c7e756 4897
957780eb
JB
4898 list_for_each_entry(ticket, &space_info->tickets, list)
4899 to_reclaim += ticket->bytes;
4900 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4901 to_reclaim += ticket->bytes;
4902 if (to_reclaim)
4903 return to_reclaim;
21c7e756 4904
e0af2484 4905 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4906 if (can_overcommit(fs_info, space_info, to_reclaim,
4907 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4908 return 0;
4909
0eee8a49
NB
4910 used = btrfs_space_info_used(space_info, true);
4911
c1c4919b
JM
4912 if (can_overcommit(fs_info, space_info, SZ_1M,
4913 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4914 expected = div_factor_fine(space_info->total_bytes, 95);
4915 else
4916 expected = div_factor_fine(space_info->total_bytes, 90);
4917
4918 if (used > expected)
4919 to_reclaim = used - expected;
4920 else
4921 to_reclaim = 0;
4922 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4923 space_info->bytes_reserved);
21c7e756
MX
4924 return to_reclaim;
4925}
4926
c1c4919b
JM
4927static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4928 struct btrfs_space_info *space_info,
4929 u64 used, bool system_chunk)
21c7e756 4930{
365c5313
JB
4931 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4932
4933 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4934 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4935 return 0;
4936
c1c4919b
JM
4937 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4938 system_chunk))
d38b349c
JB
4939 return 0;
4940
0b246afa
JM
4941 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4942 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4943}
4944
f91587e4 4945static bool wake_all_tickets(struct list_head *head)
21c7e756 4946{
957780eb 4947 struct reserve_ticket *ticket;
25ce459c 4948
957780eb
JB
4949 while (!list_empty(head)) {
4950 ticket = list_first_entry(head, struct reserve_ticket, list);
4951 list_del_init(&ticket->list);
4952 ticket->error = -ENOSPC;
4953 wake_up(&ticket->wait);
f91587e4
JB
4954 if (ticket->bytes != ticket->orig_bytes)
4955 return true;
21c7e756 4956 }
f91587e4 4957 return false;
21c7e756
MX
4958}
4959
957780eb
JB
4960/*
4961 * This is for normal flushers, we can wait all goddamned day if we want to. We
4962 * will loop and continuously try to flush as long as we are making progress.
4963 * We count progress as clearing off tickets each time we have to loop.
4964 */
21c7e756
MX
4965static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4966{
4967 struct btrfs_fs_info *fs_info;
4968 struct btrfs_space_info *space_info;
4969 u64 to_reclaim;
4970 int flush_state;
957780eb 4971 int commit_cycles = 0;
ce129655 4972 u64 last_tickets_id;
21c7e756
MX
4973
4974 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4975 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4976
957780eb 4977 spin_lock(&space_info->lock);
c1c4919b
JM
4978 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4979 false);
957780eb
JB
4980 if (!to_reclaim) {
4981 space_info->flush = 0;
4982 spin_unlock(&space_info->lock);
21c7e756 4983 return;
957780eb 4984 }
ce129655 4985 last_tickets_id = space_info->tickets_id;
957780eb 4986 spin_unlock(&space_info->lock);
21c7e756
MX
4987
4988 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 4989 do {
e38ae7a0 4990 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
4991 spin_lock(&space_info->lock);
4992 if (list_empty(&space_info->tickets)) {
4993 space_info->flush = 0;
4994 spin_unlock(&space_info->lock);
4995 return;
4996 }
c1c4919b
JM
4997 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4998 space_info,
4999 false);
ce129655 5000 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5001 flush_state++;
5002 } else {
ce129655 5003 last_tickets_id = space_info->tickets_id;
957780eb
JB
5004 flush_state = FLUSH_DELAYED_ITEMS_NR;
5005 if (commit_cycles)
5006 commit_cycles--;
5007 }
5008
450114fc
JB
5009 /*
5010 * We don't want to force a chunk allocation until we've tried
5011 * pretty hard to reclaim space. Think of the case where we
5012 * freed up a bunch of space and so have a lot of pinned space
5013 * to reclaim. We would rather use that than possibly create a
5014 * underutilized metadata chunk. So if this is our first run
5015 * through the flushing state machine skip ALLOC_CHUNK_FORCE and
5016 * commit the transaction. If nothing has changed the next go
5017 * around then we can force a chunk allocation.
5018 */
5019 if (flush_state == ALLOC_CHUNK_FORCE && !commit_cycles)
5020 flush_state++;
5021
957780eb
JB
5022 if (flush_state > COMMIT_TRANS) {
5023 commit_cycles++;
5024 if (commit_cycles > 2) {
f91587e4
JB
5025 if (wake_all_tickets(&space_info->tickets)) {
5026 flush_state = FLUSH_DELAYED_ITEMS_NR;
5027 commit_cycles--;
5028 } else {
5029 space_info->flush = 0;
5030 }
957780eb
JB
5031 } else {
5032 flush_state = FLUSH_DELAYED_ITEMS_NR;
5033 }
5034 }
5035 spin_unlock(&space_info->lock);
5036 } while (flush_state <= COMMIT_TRANS);
5037}
5038
5039void btrfs_init_async_reclaim_work(struct work_struct *work)
5040{
5041 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5042}
5043
8a1bbe1d
JB
5044static const enum btrfs_flush_state priority_flush_states[] = {
5045 FLUSH_DELAYED_ITEMS_NR,
5046 FLUSH_DELAYED_ITEMS,
5047 ALLOC_CHUNK,
5048};
5049
957780eb
JB
5050static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5051 struct btrfs_space_info *space_info,
5052 struct reserve_ticket *ticket)
5053{
5054 u64 to_reclaim;
8a1bbe1d 5055 int flush_state;
957780eb
JB
5056
5057 spin_lock(&space_info->lock);
c1c4919b
JM
5058 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5059 false);
957780eb
JB
5060 if (!to_reclaim) {
5061 spin_unlock(&space_info->lock);
5062 return;
5063 }
5064 spin_unlock(&space_info->lock);
5065
8a1bbe1d 5066 flush_state = 0;
21c7e756 5067 do {
8a1bbe1d
JB
5068 flush_space(fs_info, space_info, to_reclaim,
5069 priority_flush_states[flush_state]);
21c7e756 5070 flush_state++;
957780eb
JB
5071 spin_lock(&space_info->lock);
5072 if (ticket->bytes == 0) {
5073 spin_unlock(&space_info->lock);
21c7e756 5074 return;
957780eb
JB
5075 }
5076 spin_unlock(&space_info->lock);
8a1bbe1d 5077 } while (flush_state < ARRAY_SIZE(priority_flush_states));
21c7e756
MX
5078}
5079
957780eb
JB
5080static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5081 struct btrfs_space_info *space_info,
f91587e4 5082 struct reserve_ticket *ticket)
957780eb 5083
21c7e756 5084{
957780eb 5085 DEFINE_WAIT(wait);
f91587e4 5086 u64 reclaim_bytes = 0;
957780eb
JB
5087 int ret = 0;
5088
5089 spin_lock(&space_info->lock);
5090 while (ticket->bytes > 0 && ticket->error == 0) {
5091 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5092 if (ret) {
5093 ret = -EINTR;
5094 break;
5095 }
5096 spin_unlock(&space_info->lock);
5097
5098 schedule();
5099
5100 finish_wait(&ticket->wait, &wait);
5101 spin_lock(&space_info->lock);
5102 }
5103 if (!ret)
5104 ret = ticket->error;
5105 if (!list_empty(&ticket->list))
5106 list_del_init(&ticket->list);
f91587e4
JB
5107 if (ticket->bytes && ticket->bytes < ticket->orig_bytes)
5108 reclaim_bytes = ticket->orig_bytes - ticket->bytes;
957780eb
JB
5109 spin_unlock(&space_info->lock);
5110
f91587e4
JB
5111 if (reclaim_bytes)
5112 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb 5113 return ret;
21c7e756
MX
5114}
5115
4a92b1b8
JB
5116/**
5117 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5118 * @root - the root we're allocating for
957780eb 5119 * @space_info - the space info we want to allocate from
4a92b1b8 5120 * @orig_bytes - the number of bytes we want
48fc7f7e 5121 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5122 *
01327610 5123 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5124 * with the block_rsv. If there is not enough space it will make an attempt to
5125 * flush out space to make room. It will do this by flushing delalloc if
5126 * possible or committing the transaction. If flush is 0 then no attempts to
5127 * regain reservations will be made and this will fail if there is not enough
5128 * space already.
8bb8ab2e 5129 */
c1c4919b 5130static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5131 struct btrfs_space_info *space_info,
5132 u64 orig_bytes,
c1c4919b
JM
5133 enum btrfs_reserve_flush_enum flush,
5134 bool system_chunk)
9ed74f2d 5135{
957780eb 5136 struct reserve_ticket ticket;
2bf64758 5137 u64 used;
f91587e4 5138 u64 reclaim_bytes = 0;
8bb8ab2e 5139 int ret = 0;
9ed74f2d 5140
957780eb 5141 ASSERT(orig_bytes);
8ca17f0f 5142 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5143
8bb8ab2e 5144 spin_lock(&space_info->lock);
fdb5effd 5145 ret = -ENOSPC;
4136135b 5146 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5147
8bb8ab2e 5148 /*
957780eb
JB
5149 * If we have enough space then hooray, make our reservation and carry
5150 * on. If not see if we can overcommit, and if we can, hooray carry on.
5151 * If not things get more complicated.
8bb8ab2e 5152 */
957780eb 5153 if (used + orig_bytes <= space_info->total_bytes) {
9f9b8e8d 5154 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5155 trace_btrfs_space_reservation(fs_info, "space_info",
5156 space_info->flags, orig_bytes, 1);
957780eb 5157 ret = 0;
c1c4919b
JM
5158 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5159 system_chunk)) {
9f9b8e8d 5160 update_bytes_may_use(space_info, orig_bytes);
0b246afa
JM
5161 trace_btrfs_space_reservation(fs_info, "space_info",
5162 space_info->flags, orig_bytes, 1);
44734ed1 5163 ret = 0;
2bf64758
JB
5164 }
5165
8bb8ab2e 5166 /*
957780eb
JB
5167 * If we couldn't make a reservation then setup our reservation ticket
5168 * and kick the async worker if it's not already running.
08e007d2 5169 *
957780eb
JB
5170 * If we are a priority flusher then we just need to add our ticket to
5171 * the list and we will do our own flushing further down.
8bb8ab2e 5172 */
72bcd99d 5173 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
f91587e4 5174 ticket.orig_bytes = orig_bytes;
957780eb
JB
5175 ticket.bytes = orig_bytes;
5176 ticket.error = 0;
5177 init_waitqueue_head(&ticket.wait);
5178 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5179 list_add_tail(&ticket.list, &space_info->tickets);
5180 if (!space_info->flush) {
5181 space_info->flush = 1;
0b246afa 5182 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5183 space_info->flags,
5184 orig_bytes, flush,
5185 "enospc");
957780eb 5186 queue_work(system_unbound_wq,
c1c4919b 5187 &fs_info->async_reclaim_work);
957780eb
JB
5188 }
5189 } else {
5190 list_add_tail(&ticket.list,
5191 &space_info->priority_tickets);
5192 }
21c7e756
MX
5193 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5194 used += orig_bytes;
f6acfd50
JB
5195 /*
5196 * We will do the space reservation dance during log replay,
5197 * which means we won't have fs_info->fs_root set, so don't do
5198 * the async reclaim as we will panic.
5199 */
0b246afa 5200 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5201 need_do_async_reclaim(fs_info, space_info,
5202 used, system_chunk) &&
0b246afa
JM
5203 !work_busy(&fs_info->async_reclaim_work)) {
5204 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5205 orig_bytes, flush, "preempt");
21c7e756 5206 queue_work(system_unbound_wq,
0b246afa 5207 &fs_info->async_reclaim_work);
f376df2b 5208 }
8bb8ab2e 5209 }
f0486c68 5210 spin_unlock(&space_info->lock);
08e007d2 5211 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5212 return ret;
f0486c68 5213
957780eb 5214 if (flush == BTRFS_RESERVE_FLUSH_ALL)
f91587e4 5215 return wait_reserve_ticket(fs_info, space_info, &ticket);
08e007d2 5216
957780eb 5217 ret = 0;
0b246afa 5218 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5219 spin_lock(&space_info->lock);
5220 if (ticket.bytes) {
f91587e4
JB
5221 if (ticket.bytes < orig_bytes)
5222 reclaim_bytes = orig_bytes - ticket.bytes;
957780eb
JB
5223 list_del_init(&ticket.list);
5224 ret = -ENOSPC;
5225 }
5226 spin_unlock(&space_info->lock);
f91587e4
JB
5227
5228 if (reclaim_bytes)
5229 space_info_add_old_bytes(fs_info, space_info, reclaim_bytes);
957780eb
JB
5230 ASSERT(list_empty(&ticket.list));
5231 return ret;
5232}
8bb8ab2e 5233
957780eb
JB
5234/**
5235 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5236 * @root - the root we're allocating for
5237 * @block_rsv - the block_rsv we're allocating for
5238 * @orig_bytes - the number of bytes we want
5239 * @flush - whether or not we can flush to make our reservation
5240 *
52042d8e 5241 * This will reserve orig_bytes number of bytes from the space info associated
957780eb
JB
5242 * with the block_rsv. If there is not enough space it will make an attempt to
5243 * flush out space to make room. It will do this by flushing delalloc if
5244 * possible or committing the transaction. If flush is 0 then no attempts to
5245 * regain reservations will be made and this will fail if there is not enough
5246 * space already.
5247 */
5248static int reserve_metadata_bytes(struct btrfs_root *root,
5249 struct btrfs_block_rsv *block_rsv,
5250 u64 orig_bytes,
5251 enum btrfs_reserve_flush_enum flush)
5252{
0b246afa
JM
5253 struct btrfs_fs_info *fs_info = root->fs_info;
5254 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5255 int ret;
c1c4919b 5256 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5257
c1c4919b
JM
5258 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5259 orig_bytes, flush, system_chunk);
5d80366e
JB
5260 if (ret == -ENOSPC &&
5261 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5262 if (block_rsv != global_rsv &&
5263 !block_rsv_use_bytes(global_rsv, orig_bytes))
5264 ret = 0;
5265 }
9a3daff3 5266 if (ret == -ENOSPC) {
0b246afa 5267 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5268 block_rsv->space_info->flags,
5269 orig_bytes, 1);
9a3daff3
NB
5270
5271 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5272 dump_space_info(fs_info, block_rsv->space_info,
5273 orig_bytes, 0);
5274 }
f0486c68
YZ
5275 return ret;
5276}
5277
79787eaa
JM
5278static struct btrfs_block_rsv *get_block_rsv(
5279 const struct btrfs_trans_handle *trans,
5280 const struct btrfs_root *root)
f0486c68 5281{
0b246afa 5282 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5283 struct btrfs_block_rsv *block_rsv = NULL;
5284
e9cf439f 5285 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5286 (root == fs_info->csum_root && trans->adding_csums) ||
5287 (root == fs_info->uuid_root))
f7a81ea4
SB
5288 block_rsv = trans->block_rsv;
5289
4c13d758 5290 if (!block_rsv)
f0486c68
YZ
5291 block_rsv = root->block_rsv;
5292
5293 if (!block_rsv)
0b246afa 5294 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5295
5296 return block_rsv;
5297}
5298
5299static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5300 u64 num_bytes)
5301{
5302 int ret = -ENOSPC;
5303 spin_lock(&block_rsv->lock);
5304 if (block_rsv->reserved >= num_bytes) {
5305 block_rsv->reserved -= num_bytes;
5306 if (block_rsv->reserved < block_rsv->size)
5307 block_rsv->full = 0;
5308 ret = 0;
5309 }
5310 spin_unlock(&block_rsv->lock);
5311 return ret;
5312}
5313
5314static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3a584174 5315 u64 num_bytes, bool update_size)
f0486c68
YZ
5316{
5317 spin_lock(&block_rsv->lock);
5318 block_rsv->reserved += num_bytes;
5319 if (update_size)
5320 block_rsv->size += num_bytes;
5321 else if (block_rsv->reserved >= block_rsv->size)
5322 block_rsv->full = 1;
5323 spin_unlock(&block_rsv->lock);
5324}
5325
d52be818
JB
5326int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5327 struct btrfs_block_rsv *dest, u64 num_bytes,
5328 int min_factor)
5329{
5330 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5331 u64 min_bytes;
5332
5333 if (global_rsv->space_info != dest->space_info)
5334 return -ENOSPC;
5335
5336 spin_lock(&global_rsv->lock);
5337 min_bytes = div_factor(global_rsv->size, min_factor);
5338 if (global_rsv->reserved < min_bytes + num_bytes) {
5339 spin_unlock(&global_rsv->lock);
5340 return -ENOSPC;
5341 }
5342 global_rsv->reserved -= num_bytes;
5343 if (global_rsv->reserved < global_rsv->size)
5344 global_rsv->full = 0;
5345 spin_unlock(&global_rsv->lock);
5346
3a584174 5347 block_rsv_add_bytes(dest, num_bytes, true);
d52be818
JB
5348 return 0;
5349}
5350
ba2c4d4e
JB
5351/**
5352 * btrfs_migrate_to_delayed_refs_rsv - transfer bytes to our delayed refs rsv.
5353 * @fs_info - the fs info for our fs.
5354 * @src - the source block rsv to transfer from.
5355 * @num_bytes - the number of bytes to transfer.
5356 *
5357 * This transfers up to the num_bytes amount from the src rsv to the
5358 * delayed_refs_rsv. Any extra bytes are returned to the space info.
5359 */
5360void btrfs_migrate_to_delayed_refs_rsv(struct btrfs_fs_info *fs_info,
5361 struct btrfs_block_rsv *src,
5362 u64 num_bytes)
5363{
5364 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
5365 u64 to_free = 0;
5366
5367 spin_lock(&src->lock);
5368 src->reserved -= num_bytes;
5369 src->size -= num_bytes;
5370 spin_unlock(&src->lock);
5371
5372 spin_lock(&delayed_refs_rsv->lock);
5373 if (delayed_refs_rsv->size > delayed_refs_rsv->reserved) {
5374 u64 delta = delayed_refs_rsv->size -
5375 delayed_refs_rsv->reserved;
5376 if (num_bytes > delta) {
5377 to_free = num_bytes - delta;
5378 num_bytes = delta;
5379 }
5380 } else {
5381 to_free = num_bytes;
5382 num_bytes = 0;
5383 }
5384
5385 if (num_bytes)
5386 delayed_refs_rsv->reserved += num_bytes;
5387 if (delayed_refs_rsv->reserved >= delayed_refs_rsv->size)
5388 delayed_refs_rsv->full = 1;
5389 spin_unlock(&delayed_refs_rsv->lock);
5390
5391 if (num_bytes)
5392 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5393 0, num_bytes, 1);
5394 if (to_free)
5395 space_info_add_old_bytes(fs_info, delayed_refs_rsv->space_info,
5396 to_free);
5397}
5398
5399/**
5400 * btrfs_delayed_refs_rsv_refill - refill based on our delayed refs usage.
5401 * @fs_info - the fs_info for our fs.
5402 * @flush - control how we can flush for this reservation.
5403 *
5404 * This will refill the delayed block_rsv up to 1 items size worth of space and
5405 * will return -ENOSPC if we can't make the reservation.
5406 */
5407int btrfs_delayed_refs_rsv_refill(struct btrfs_fs_info *fs_info,
5408 enum btrfs_reserve_flush_enum flush)
5409{
5410 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
5411 u64 limit = btrfs_calc_trans_metadata_size(fs_info, 1);
5412 u64 num_bytes = 0;
5413 int ret = -ENOSPC;
5414
5415 spin_lock(&block_rsv->lock);
5416 if (block_rsv->reserved < block_rsv->size) {
5417 num_bytes = block_rsv->size - block_rsv->reserved;
5418 num_bytes = min(num_bytes, limit);
5419 }
5420 spin_unlock(&block_rsv->lock);
5421
5422 if (!num_bytes)
5423 return 0;
5424
5425 ret = reserve_metadata_bytes(fs_info->extent_root, block_rsv,
5426 num_bytes, flush);
5427 if (ret)
5428 return ret;
5429 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5430 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5431 0, num_bytes, 1);
5432 return 0;
5433}
5434
957780eb
JB
5435/*
5436 * This is for space we already have accounted in space_info->bytes_may_use, so
5437 * basically when we're returning space from block_rsv's.
5438 */
5439static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5440 struct btrfs_space_info *space_info,
5441 u64 num_bytes)
5442{
5443 struct reserve_ticket *ticket;
5444 struct list_head *head;
5445 u64 used;
5446 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5447 bool check_overcommit = false;
5448
5449 spin_lock(&space_info->lock);
5450 head = &space_info->priority_tickets;
5451
5452 /*
5453 * If we are over our limit then we need to check and see if we can
5454 * overcommit, and if we can't then we just need to free up our space
5455 * and not satisfy any requests.
5456 */
0eee8a49 5457 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5458 if (used - num_bytes >= space_info->total_bytes)
5459 check_overcommit = true;
5460again:
5461 while (!list_empty(head) && num_bytes) {
5462 ticket = list_first_entry(head, struct reserve_ticket,
5463 list);
5464 /*
5465 * We use 0 bytes because this space is already reserved, so
5466 * adding the ticket space would be a double count.
5467 */
5468 if (check_overcommit &&
c1c4919b 5469 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5470 break;
5471 if (num_bytes >= ticket->bytes) {
5472 list_del_init(&ticket->list);
5473 num_bytes -= ticket->bytes;
5474 ticket->bytes = 0;
ce129655 5475 space_info->tickets_id++;
957780eb
JB
5476 wake_up(&ticket->wait);
5477 } else {
5478 ticket->bytes -= num_bytes;
5479 num_bytes = 0;
5480 }
5481 }
5482
5483 if (num_bytes && head == &space_info->priority_tickets) {
5484 head = &space_info->tickets;
5485 flush = BTRFS_RESERVE_FLUSH_ALL;
5486 goto again;
5487 }
9f9b8e8d 5488 update_bytes_may_use(space_info, -num_bytes);
957780eb
JB
5489 trace_btrfs_space_reservation(fs_info, "space_info",
5490 space_info->flags, num_bytes, 0);
5491 spin_unlock(&space_info->lock);
5492}
5493
5494/*
5495 * This is for newly allocated space that isn't accounted in
5496 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5497 * we use this helper.
5498 */
5499static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5500 struct btrfs_space_info *space_info,
5501 u64 num_bytes)
5502{
5503 struct reserve_ticket *ticket;
5504 struct list_head *head = &space_info->priority_tickets;
5505
5506again:
5507 while (!list_empty(head) && num_bytes) {
5508 ticket = list_first_entry(head, struct reserve_ticket,
5509 list);
5510 if (num_bytes >= ticket->bytes) {
5511 trace_btrfs_space_reservation(fs_info, "space_info",
5512 space_info->flags,
5513 ticket->bytes, 1);
5514 list_del_init(&ticket->list);
5515 num_bytes -= ticket->bytes;
9f9b8e8d 5516 update_bytes_may_use(space_info, ticket->bytes);
957780eb 5517 ticket->bytes = 0;
ce129655 5518 space_info->tickets_id++;
957780eb
JB
5519 wake_up(&ticket->wait);
5520 } else {
5521 trace_btrfs_space_reservation(fs_info, "space_info",
5522 space_info->flags,
5523 num_bytes, 1);
9f9b8e8d 5524 update_bytes_may_use(space_info, num_bytes);
957780eb
JB
5525 ticket->bytes -= num_bytes;
5526 num_bytes = 0;
5527 }
5528 }
5529
5530 if (num_bytes && head == &space_info->priority_tickets) {
5531 head = &space_info->tickets;
5532 goto again;
5533 }
5534}
5535
69fe2d75 5536static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5537 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5538 struct btrfs_block_rsv *dest, u64 num_bytes,
5539 u64 *qgroup_to_release_ret)
f0486c68
YZ
5540{
5541 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5542 u64 qgroup_to_release = 0;
69fe2d75 5543 u64 ret;
f0486c68
YZ
5544
5545 spin_lock(&block_rsv->lock);
ff6bc37e 5546 if (num_bytes == (u64)-1) {
f0486c68 5547 num_bytes = block_rsv->size;
ff6bc37e
QW
5548 qgroup_to_release = block_rsv->qgroup_rsv_size;
5549 }
f0486c68
YZ
5550 block_rsv->size -= num_bytes;
5551 if (block_rsv->reserved >= block_rsv->size) {
5552 num_bytes = block_rsv->reserved - block_rsv->size;
5553 block_rsv->reserved = block_rsv->size;
5554 block_rsv->full = 1;
5555 } else {
5556 num_bytes = 0;
5557 }
ff6bc37e
QW
5558 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5559 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5560 block_rsv->qgroup_rsv_size;
5561 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5562 } else {
5563 qgroup_to_release = 0;
5564 }
f0486c68
YZ
5565 spin_unlock(&block_rsv->lock);
5566
69fe2d75 5567 ret = num_bytes;
f0486c68
YZ
5568 if (num_bytes > 0) {
5569 if (dest) {
e9e22899
JB
5570 spin_lock(&dest->lock);
5571 if (!dest->full) {
5572 u64 bytes_to_add;
5573
5574 bytes_to_add = dest->size - dest->reserved;
5575 bytes_to_add = min(num_bytes, bytes_to_add);
5576 dest->reserved += bytes_to_add;
5577 if (dest->reserved >= dest->size)
5578 dest->full = 1;
5579 num_bytes -= bytes_to_add;
5580 }
5581 spin_unlock(&dest->lock);
5582 }
957780eb
JB
5583 if (num_bytes)
5584 space_info_add_old_bytes(fs_info, space_info,
5585 num_bytes);
9ed74f2d 5586 }
ff6bc37e
QW
5587 if (qgroup_to_release_ret)
5588 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5589 return ret;
f0486c68 5590}
4e06bdd6 5591
25d609f8
JB
5592int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5593 struct btrfs_block_rsv *dst, u64 num_bytes,
3a584174 5594 bool update_size)
f0486c68
YZ
5595{
5596 int ret;
9ed74f2d 5597
f0486c68
YZ
5598 ret = block_rsv_use_bytes(src, num_bytes);
5599 if (ret)
5600 return ret;
9ed74f2d 5601
25d609f8 5602 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5603 return 0;
5604}
5605
66d8f3dd 5606void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5607{
f0486c68
YZ
5608 memset(rsv, 0, sizeof(*rsv));
5609 spin_lock_init(&rsv->lock);
66d8f3dd 5610 rsv->type = type;
f0486c68
YZ
5611}
5612
69fe2d75
JB
5613void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5614 struct btrfs_block_rsv *rsv,
5615 unsigned short type)
5616{
5617 btrfs_init_block_rsv(rsv, type);
5618 rsv->space_info = __find_space_info(fs_info,
5619 BTRFS_BLOCK_GROUP_METADATA);
5620}
5621
2ff7e61e 5622struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5623 unsigned short type)
f0486c68
YZ
5624{
5625 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5626
f0486c68
YZ
5627 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5628 if (!block_rsv)
5629 return NULL;
9ed74f2d 5630
69fe2d75 5631 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5632 return block_rsv;
5633}
9ed74f2d 5634
2ff7e61e 5635void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5636 struct btrfs_block_rsv *rsv)
5637{
2aaa6655
JB
5638 if (!rsv)
5639 return;
2ff7e61e 5640 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5641 kfree(rsv);
9ed74f2d
JB
5642}
5643
08e007d2
MX
5644int btrfs_block_rsv_add(struct btrfs_root *root,
5645 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5646 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5647{
f0486c68 5648 int ret;
9ed74f2d 5649
f0486c68
YZ
5650 if (num_bytes == 0)
5651 return 0;
8bb8ab2e 5652
61b520a9 5653 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5a2cb25a 5654 if (!ret)
3a584174 5655 block_rsv_add_bytes(block_rsv, num_bytes, true);
9ed74f2d 5656
f0486c68 5657 return ret;
f0486c68 5658}
9ed74f2d 5659
2ff7e61e 5660int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5661{
5662 u64 num_bytes = 0;
f0486c68 5663 int ret = -ENOSPC;
9ed74f2d 5664
f0486c68
YZ
5665 if (!block_rsv)
5666 return 0;
9ed74f2d 5667
f0486c68 5668 spin_lock(&block_rsv->lock);
36ba022a
JB
5669 num_bytes = div_factor(block_rsv->size, min_factor);
5670 if (block_rsv->reserved >= num_bytes)
5671 ret = 0;
5672 spin_unlock(&block_rsv->lock);
9ed74f2d 5673
36ba022a
JB
5674 return ret;
5675}
5676
08e007d2
MX
5677int btrfs_block_rsv_refill(struct btrfs_root *root,
5678 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5679 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5680{
5681 u64 num_bytes = 0;
5682 int ret = -ENOSPC;
5683
5684 if (!block_rsv)
5685 return 0;
5686
5687 spin_lock(&block_rsv->lock);
5688 num_bytes = min_reserved;
13553e52 5689 if (block_rsv->reserved >= num_bytes)
f0486c68 5690 ret = 0;
13553e52 5691 else
f0486c68 5692 num_bytes -= block_rsv->reserved;
f0486c68 5693 spin_unlock(&block_rsv->lock);
13553e52 5694
f0486c68
YZ
5695 if (!ret)
5696 return 0;
5697
aa38a711 5698 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640 5699 if (!ret) {
3a584174 5700 block_rsv_add_bytes(block_rsv, num_bytes, false);
f0486c68 5701 return 0;
6a63209f 5702 }
9ed74f2d 5703
13553e52 5704 return ret;
f0486c68
YZ
5705}
5706
5df11363
JB
5707static void calc_refill_bytes(struct btrfs_block_rsv *block_rsv,
5708 u64 *metadata_bytes, u64 *qgroup_bytes)
5709{
5710 *metadata_bytes = 0;
5711 *qgroup_bytes = 0;
5712
5713 spin_lock(&block_rsv->lock);
5714 if (block_rsv->reserved < block_rsv->size)
5715 *metadata_bytes = block_rsv->size - block_rsv->reserved;
5716 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5717 *qgroup_bytes = block_rsv->qgroup_rsv_size -
5718 block_rsv->qgroup_rsv_reserved;
5719 spin_unlock(&block_rsv->lock);
5720}
5721
69fe2d75
JB
5722/**
5723 * btrfs_inode_rsv_refill - refill the inode block rsv.
5724 * @inode - the inode we are refilling.
52042d8e 5725 * @flush - the flushing restriction.
69fe2d75
JB
5726 *
5727 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5728 * block_rsv->size as the minimum size. We'll either refill the missing amount
52042d8e 5729 * or return if we already have enough space. This will also handle the reserve
69fe2d75
JB
5730 * tracepoint for the reserved amount.
5731 */
3f2dd7a0
QW
5732static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5733 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5734{
5735 struct btrfs_root *root = inode->root;
5736 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5df11363
JB
5737 u64 num_bytes, last = 0;
5738 u64 qgroup_num_bytes;
69fe2d75
JB
5739 int ret = -ENOSPC;
5740
5df11363 5741 calc_refill_bytes(block_rsv, &num_bytes, &qgroup_num_bytes);
69fe2d75
JB
5742 if (num_bytes == 0)
5743 return 0;
5744
5df11363
JB
5745 do {
5746 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes,
5747 true);
5748 if (ret)
5749 return ret;
5750 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5751 if (ret) {
5752 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
5753 last = num_bytes;
5754 /*
5755 * If we are fragmented we can end up with a lot of
5756 * outstanding extents which will make our size be much
5757 * larger than our reserved amount.
5758 *
5759 * If the reservation happens here, it might be very
5760 * big though not needed in the end, if the delalloc
5761 * flushing happens.
5762 *
5763 * If this is the case try and do the reserve again.
5764 */
5765 if (flush == BTRFS_RESERVE_FLUSH_ALL)
5766 calc_refill_bytes(block_rsv, &num_bytes,
5767 &qgroup_num_bytes);
5768 if (num_bytes == 0)
5769 return 0;
5770 }
5771 } while (ret && last != num_bytes);
5772
69fe2d75 5773 if (!ret) {
3a584174 5774 block_rsv_add_bytes(block_rsv, num_bytes, false);
69fe2d75
JB
5775 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5776 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5777
5778 /* Don't forget to increase qgroup_rsv_reserved */
5779 spin_lock(&block_rsv->lock);
5780 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5781 spin_unlock(&block_rsv->lock);
5df11363 5782 }
69fe2d75
JB
5783 return ret;
5784}
5785
ba2c4d4e
JB
5786static u64 __btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5787 struct btrfs_block_rsv *block_rsv,
5788 u64 num_bytes, u64 *qgroup_to_release)
5789{
5790 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5791 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5792 struct btrfs_block_rsv *target = delayed_rsv;
5793
5794 if (target->full || target == block_rsv)
5795 target = global_rsv;
5796
5797 if (block_rsv->space_info != target->space_info)
5798 target = NULL;
5799
5800 return block_rsv_release_bytes(fs_info, block_rsv, target, num_bytes,
5801 qgroup_to_release);
5802}
5803
5804void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5805 struct btrfs_block_rsv *block_rsv,
5806 u64 num_bytes)
5807{
5808 __btrfs_block_rsv_release(fs_info, block_rsv, num_bytes, NULL);
5809}
5810
69fe2d75
JB
5811/**
5812 * btrfs_inode_rsv_release - release any excessive reservation.
5813 * @inode - the inode we need to release from.
43b18595
QW
5814 * @qgroup_free - free or convert qgroup meta.
5815 * Unlike normal operation, qgroup meta reservation needs to know if we are
5816 * freeing qgroup reservation or just converting it into per-trans. Normally
5817 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5818 *
5819 * This is the same as btrfs_block_rsv_release, except that it handles the
5820 * tracepoint for the reservation.
5821 */
43b18595 5822static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5823{
5824 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75
JB
5825 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5826 u64 released = 0;
ff6bc37e 5827 u64 qgroup_to_release = 0;
69fe2d75
JB
5828
5829 /*
5830 * Since we statically set the block_rsv->size we just want to say we
5831 * are releasing 0 bytes, and then we'll just get the reservation over
5832 * the size free'd.
5833 */
ba2c4d4e
JB
5834 released = __btrfs_block_rsv_release(fs_info, block_rsv, 0,
5835 &qgroup_to_release);
69fe2d75
JB
5836 if (released > 0)
5837 trace_btrfs_space_reservation(fs_info, "delalloc",
5838 btrfs_ino(inode), released, 0);
43b18595 5839 if (qgroup_free)
ff6bc37e 5840 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5841 else
ff6bc37e
QW
5842 btrfs_qgroup_convert_reserved_meta(inode->root,
5843 qgroup_to_release);
69fe2d75
JB
5844}
5845
ba2c4d4e
JB
5846/**
5847 * btrfs_delayed_refs_rsv_release - release a ref head's reservation.
5848 * @fs_info - the fs_info for our fs.
5849 * @nr - the number of items to drop.
5850 *
5851 * This drops the delayed ref head's count from the delayed refs rsv and frees
5852 * any excess reservation we had.
5853 */
5854void btrfs_delayed_refs_rsv_release(struct btrfs_fs_info *fs_info, int nr)
f0486c68 5855{
ba2c4d4e 5856 struct btrfs_block_rsv *block_rsv = &fs_info->delayed_refs_rsv;
0b246afa 5857 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
ba2c4d4e
JB
5858 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, nr);
5859 u64 released = 0;
0b246afa 5860
ba2c4d4e
JB
5861 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv,
5862 num_bytes, NULL);
5863 if (released)
5864 trace_btrfs_space_reservation(fs_info, "delayed_refs_rsv",
5865 0, released, 0);
6a63209f
JB
5866}
5867
8929ecfa
YZ
5868static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5869{
5870 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5871 struct btrfs_space_info *sinfo = block_rsv->space_info;
5872 u64 num_bytes;
6a63209f 5873
ae2e4728
JB
5874 /*
5875 * The global block rsv is based on the size of the extent tree, the
5876 * checksum tree and the root tree. If the fs is empty we want to set
5877 * it to a minimal amount for safety.
5878 */
5879 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5880 btrfs_root_used(&fs_info->csum_root->root_item) +
5881 btrfs_root_used(&fs_info->tree_root->root_item);
5882 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5883
8929ecfa 5884 spin_lock(&sinfo->lock);
1f699d38 5885 spin_lock(&block_rsv->lock);
4e06bdd6 5886
ee22184b 5887 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5888
fb4b10e5 5889 if (block_rsv->reserved < block_rsv->size) {
4136135b 5890 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5891 if (sinfo->total_bytes > num_bytes) {
5892 num_bytes = sinfo->total_bytes - num_bytes;
5893 num_bytes = min(num_bytes,
5894 block_rsv->size - block_rsv->reserved);
5895 block_rsv->reserved += num_bytes;
9f9b8e8d 5896 update_bytes_may_use(sinfo, num_bytes);
fb4b10e5
JB
5897 trace_btrfs_space_reservation(fs_info, "space_info",
5898 sinfo->flags, num_bytes,
5899 1);
5900 }
5901 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5902 num_bytes = block_rsv->reserved - block_rsv->size;
9f9b8e8d 5903 update_bytes_may_use(sinfo, -num_bytes);
8c2a3ca2 5904 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5905 sinfo->flags, num_bytes, 0);
8929ecfa 5906 block_rsv->reserved = block_rsv->size;
8929ecfa 5907 }
182608c8 5908
fb4b10e5
JB
5909 if (block_rsv->reserved == block_rsv->size)
5910 block_rsv->full = 1;
5911 else
5912 block_rsv->full = 0;
5913
8929ecfa 5914 spin_unlock(&block_rsv->lock);
1f699d38 5915 spin_unlock(&sinfo->lock);
6a63209f
JB
5916}
5917
f0486c68 5918static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5919{
f0486c68 5920 struct btrfs_space_info *space_info;
6a63209f 5921
f0486c68
YZ
5922 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5923 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5924
f0486c68 5925 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5926 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5927 fs_info->trans_block_rsv.space_info = space_info;
5928 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5929 fs_info->delayed_block_rsv.space_info = space_info;
ba2c4d4e 5930 fs_info->delayed_refs_rsv.space_info = space_info;
f0486c68 5931
ba2c4d4e
JB
5932 fs_info->extent_root->block_rsv = &fs_info->delayed_refs_rsv;
5933 fs_info->csum_root->block_rsv = &fs_info->delayed_refs_rsv;
8929ecfa
YZ
5934 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5935 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5936 if (fs_info->quota_root)
5937 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5938 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5939
8929ecfa 5940 update_global_block_rsv(fs_info);
6a63209f
JB
5941}
5942
8929ecfa 5943static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5944{
8c2a3ca2 5945 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5946 (u64)-1, NULL);
8929ecfa
YZ
5947 WARN_ON(fs_info->trans_block_rsv.size > 0);
5948 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5949 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5950 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5951 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5952 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
ba2c4d4e
JB
5953 WARN_ON(fs_info->delayed_refs_rsv.reserved > 0);
5954 WARN_ON(fs_info->delayed_refs_rsv.size > 0);
fcb80c2a
JB
5955}
5956
ba2c4d4e
JB
5957/*
5958 * btrfs_update_delayed_refs_rsv - adjust the size of the delayed refs rsv
5959 * @trans - the trans that may have generated delayed refs
5960 *
5961 * This is to be called anytime we may have adjusted trans->delayed_ref_updates,
5962 * it'll calculate the additional size and add it to the delayed_refs_rsv.
5963 */
5964void btrfs_update_delayed_refs_rsv(struct btrfs_trans_handle *trans)
5965{
5966 struct btrfs_fs_info *fs_info = trans->fs_info;
5967 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_refs_rsv;
5968 u64 num_bytes;
5969
5970 if (!trans->delayed_ref_updates)
5971 return;
5972
5973 num_bytes = btrfs_calc_trans_metadata_size(fs_info,
5974 trans->delayed_ref_updates);
5975 spin_lock(&delayed_rsv->lock);
5976 delayed_rsv->size += num_bytes;
5977 delayed_rsv->full = 0;
5978 spin_unlock(&delayed_rsv->lock);
5979 trans->delayed_ref_updates = 0;
5980}
6a63209f 5981
4fbcdf66
FM
5982/*
5983 * To be called after all the new block groups attached to the transaction
5984 * handle have been created (btrfs_create_pending_block_groups()).
5985 */
5986void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5987{
64b63580 5988 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5989
5990 if (!trans->chunk_bytes_reserved)
5991 return;
5992
5993 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5994
5995 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5996 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5997 trans->chunk_bytes_reserved = 0;
5998}
5999
d5c12070
MX
6000/*
6001 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
6002 * root: the root of the parent directory
6003 * rsv: block reservation
6004 * items: the number of items that we need do reservation
a5b7f429 6005 * use_global_rsv: allow fallback to the global block reservation
d5c12070
MX
6006 *
6007 * This function is used to reserve the space for snapshot/subvolume
6008 * creation and deletion. Those operations are different with the
6009 * common file/directory operations, they change two fs/file trees
6010 * and root tree, the number of items that the qgroup reserves is
6011 * different with the free space reservation. So we can not use
01327610 6012 * the space reservation mechanism in start_transaction().
d5c12070
MX
6013 */
6014int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
a5b7f429 6015 struct btrfs_block_rsv *rsv, int items,
ee3441b4 6016 bool use_global_rsv)
a22285a6 6017{
a5b7f429 6018 u64 qgroup_num_bytes = 0;
d5c12070
MX
6019 u64 num_bytes;
6020 int ret;
0b246afa
JM
6021 struct btrfs_fs_info *fs_info = root->fs_info;
6022 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6023
0b246afa 6024 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6025 /* One for parent inode, two for dir entries */
a5b7f429
LF
6026 qgroup_num_bytes = 3 * fs_info->nodesize;
6027 ret = btrfs_qgroup_reserve_meta_prealloc(root,
6028 qgroup_num_bytes, true);
d5c12070
MX
6029 if (ret)
6030 return ret;
d5c12070
MX
6031 }
6032
0b246afa
JM
6033 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6034 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6035 BTRFS_BLOCK_GROUP_METADATA);
6036 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6037 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6038
6039 if (ret == -ENOSPC && use_global_rsv)
3a584174 6040 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, true);
ee3441b4 6041
a5b7f429
LF
6042 if (ret && qgroup_num_bytes)
6043 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
d5c12070
MX
6044
6045 return ret;
6046}
6047
2ff7e61e 6048void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6049 struct btrfs_block_rsv *rsv)
d5c12070 6050{
2ff7e61e 6051 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6052}
6053
69fe2d75
JB
6054static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6055 struct btrfs_inode *inode)
9e0baf60 6056{
69fe2d75
JB
6057 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6058 u64 reserve_size = 0;
ff6bc37e 6059 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6060 u64 csum_leaves;
6061 unsigned outstanding_extents;
9e0baf60 6062
69fe2d75
JB
6063 lockdep_assert_held(&inode->lock);
6064 outstanding_extents = inode->outstanding_extents;
6065 if (outstanding_extents)
6066 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6067 outstanding_extents + 1);
6068 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6069 inode->csum_bytes);
6070 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6071 csum_leaves);
ff6bc37e
QW
6072 /*
6073 * For qgroup rsv, the calculation is very simple:
6074 * account one nodesize for each outstanding extent
6075 *
6076 * This is overestimating in most cases.
6077 */
139a5617 6078 qgroup_rsv_size = (u64)outstanding_extents * fs_info->nodesize;
9e0baf60 6079
69fe2d75
JB
6080 spin_lock(&block_rsv->lock);
6081 block_rsv->size = reserve_size;
ff6bc37e 6082 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6083 spin_unlock(&block_rsv->lock);
0ca1f7ce 6084}
c146afad 6085
9f3db423 6086int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6087{
3ffbd68c 6088 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 6089 unsigned nr_extents;
08e007d2 6090 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6091 int ret = 0;
c64c2bd8 6092 bool delalloc_lock = true;
6324fbf3 6093
c64c2bd8
JB
6094 /* If we are a free space inode we need to not flush since we will be in
6095 * the middle of a transaction commit. We also don't need the delalloc
6096 * mutex since we won't race with anybody. We need this mostly to make
6097 * lockdep shut its filthy mouth.
bac357dc
JB
6098 *
6099 * If we have a transaction open (can happen if we call truncate_block
6100 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6101 */
6102 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6103 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6104 delalloc_lock = false;
da07d4ab
NB
6105 } else {
6106 if (current->journal_info)
6107 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6108
da07d4ab
NB
6109 if (btrfs_transaction_in_commit(fs_info))
6110 schedule_timeout(1);
6111 }
ec44a35c 6112
c64c2bd8 6113 if (delalloc_lock)
9f3db423 6114 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6115
0b246afa 6116 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6117
6118 /* Add our new extents and calculate the new rsv size. */
9f3db423 6119 spin_lock(&inode->lock);
69fe2d75 6120 nr_extents = count_max_extents(num_bytes);
8b62f87b 6121 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6122 inode->csum_bytes += num_bytes;
6123 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6124 spin_unlock(&inode->lock);
57a45ced 6125
69fe2d75 6126 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6127 if (unlikely(ret))
88e081bf 6128 goto out_fail;
25179201 6129
c64c2bd8 6130 if (delalloc_lock)
9f3db423 6131 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6132 return 0;
88e081bf
WS
6133
6134out_fail:
9f3db423 6135 spin_lock(&inode->lock);
8b62f87b
JB
6136 nr_extents = count_max_extents(num_bytes);
6137 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6138 inode->csum_bytes -= num_bytes;
6139 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6140 spin_unlock(&inode->lock);
88e081bf 6141
43b18595 6142 btrfs_inode_rsv_release(inode, true);
88e081bf 6143 if (delalloc_lock)
9f3db423 6144 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6145 return ret;
0ca1f7ce
YZ
6146}
6147
7709cde3
JB
6148/**
6149 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6150 * @inode: the inode to release the reservation for.
6151 * @num_bytes: the number of bytes we are releasing.
43b18595 6152 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6153 *
6154 * This will release the metadata reservation for an inode. This can be called
6155 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6156 * reservations, or on error for the same reason.
7709cde3 6157 */
43b18595
QW
6158void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6159 bool qgroup_free)
0ca1f7ce 6160{
3ffbd68c 6161 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 6162
0b246afa 6163 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6164 spin_lock(&inode->lock);
69fe2d75
JB
6165 inode->csum_bytes -= num_bytes;
6166 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6167 spin_unlock(&inode->lock);
0ca1f7ce 6168
0b246afa 6169 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6170 return;
6171
43b18595 6172 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6173}
6174
8b62f87b
JB
6175/**
6176 * btrfs_delalloc_release_extents - release our outstanding_extents
6177 * @inode: the inode to balance the reservation for.
6178 * @num_bytes: the number of bytes we originally reserved with
43b18595 6179 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6180 *
6181 * When we reserve space we increase outstanding_extents for the extents we may
6182 * add. Once we've set the range as delalloc or created our ordered extents we
6183 * have outstanding_extents to track the real usage, so we use this to free our
6184 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6185 * with btrfs_delalloc_reserve_metadata.
6186 */
43b18595
QW
6187void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6188 bool qgroup_free)
8b62f87b 6189{
3ffbd68c 6190 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6191 unsigned num_extents;
8b62f87b
JB
6192
6193 spin_lock(&inode->lock);
6194 num_extents = count_max_extents(num_bytes);
6195 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6196 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6197 spin_unlock(&inode->lock);
6198
8b62f87b
JB
6199 if (btrfs_is_testing(fs_info))
6200 return;
6201
43b18595 6202 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6203}
6204
1ada3a62 6205/**
7cf5b976 6206 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6207 * delalloc
6208 * @inode: inode we're writing to
6209 * @start: start range we are writing to
6210 * @len: how long the range we are writing to
364ecf36
QW
6211 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6212 * current reservation.
1ada3a62 6213 *
1ada3a62
QW
6214 * This will do the following things
6215 *
6216 * o reserve space in data space info for num bytes
6217 * and reserve precious corresponding qgroup space
6218 * (Done in check_data_free_space)
6219 *
6220 * o reserve space for metadata space, based on the number of outstanding
6221 * extents and how much csums will be needed
6222 * also reserve metadata space in a per root over-reserve method.
6223 * o add to the inodes->delalloc_bytes
6224 * o add it to the fs_info's delalloc inodes list.
6225 * (Above 3 all done in delalloc_reserve_metadata)
6226 *
6227 * Return 0 for success
6228 * Return <0 for error(-ENOSPC or -EQUOT)
6229 */
364ecf36
QW
6230int btrfs_delalloc_reserve_space(struct inode *inode,
6231 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6232{
6233 int ret;
6234
364ecf36 6235 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6236 if (ret < 0)
6237 return ret;
9f3db423 6238 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6239 if (ret < 0)
bc42bda2 6240 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6241 return ret;
6242}
6243
7709cde3 6244/**
7cf5b976 6245 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6246 * @inode: inode we're releasing space for
6247 * @start: start position of the space already reserved
6248 * @len: the len of the space already reserved
8b62f87b 6249 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6250 *
6251 * This function will release the metadata space that was not used and will
6252 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6253 * list if there are no delalloc bytes left.
6254 * Also it will handle the qgroup reserved space.
6255 */
bc42bda2 6256void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6257 struct extent_changeset *reserved,
43b18595 6258 u64 start, u64 len, bool qgroup_free)
1ada3a62 6259{
43b18595 6260 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6261 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6262}
6263
ce93ec54 6264static int update_block_group(struct btrfs_trans_handle *trans,
6b279408 6265 u64 bytenr, u64 num_bytes, int alloc)
9078a3e1 6266{
6b279408 6267 struct btrfs_fs_info *info = trans->fs_info;
0af3d00b 6268 struct btrfs_block_group_cache *cache = NULL;
db94535d 6269 u64 total = num_bytes;
9078a3e1 6270 u64 old_val;
db94535d 6271 u64 byte_in_group;
0af3d00b 6272 int factor;
ba2c4d4e 6273 int ret = 0;
3e1ad54f 6274
5d4f98a2 6275 /* block accounting for super block */
eb73c1b7 6276 spin_lock(&info->delalloc_root_lock);
6c41761f 6277 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6278 if (alloc)
6279 old_val += num_bytes;
6280 else
6281 old_val -= num_bytes;
6c41761f 6282 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6283 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6284
d397712b 6285 while (total) {
db94535d 6286 cache = btrfs_lookup_block_group(info, bytenr);
ba2c4d4e
JB
6287 if (!cache) {
6288 ret = -ENOENT;
6289 break;
6290 }
46df06b8
DS
6291 factor = btrfs_bg_type_to_factor(cache->flags);
6292
9d66e233
JB
6293 /*
6294 * If this block group has free space cache written out, we
6295 * need to make sure to load it if we are removing space. This
6296 * is because we need the unpinning stage to actually add the
6297 * space back to the block group, otherwise we will leak space.
6298 */
6299 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6300 cache_block_group(cache, 1);
0af3d00b 6301
db94535d
CM
6302 byte_in_group = bytenr - cache->key.objectid;
6303 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6304
25179201 6305 spin_lock(&cache->space_info->lock);
c286ac48 6306 spin_lock(&cache->lock);
0af3d00b 6307
6202df69 6308 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6309 cache->disk_cache_state < BTRFS_DC_CLEAR)
6310 cache->disk_cache_state = BTRFS_DC_CLEAR;
6311
9078a3e1 6312 old_val = btrfs_block_group_used(&cache->item);
db94535d 6313 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6314 if (alloc) {
db94535d 6315 old_val += num_bytes;
11833d66
YZ
6316 btrfs_set_block_group_used(&cache->item, old_val);
6317 cache->reserved -= num_bytes;
11833d66 6318 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6319 cache->space_info->bytes_used += num_bytes;
6320 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6321 spin_unlock(&cache->lock);
25179201 6322 spin_unlock(&cache->space_info->lock);
cd1bc465 6323 } else {
db94535d 6324 old_val -= num_bytes;
ae0ab003
FM
6325 btrfs_set_block_group_used(&cache->item, old_val);
6326 cache->pinned += num_bytes;
e2907c1a 6327 update_bytes_pinned(cache->space_info, num_bytes);
ae0ab003
FM
6328 cache->space_info->bytes_used -= num_bytes;
6329 cache->space_info->disk_used -= num_bytes * factor;
6330 spin_unlock(&cache->lock);
6331 spin_unlock(&cache->space_info->lock);
47ab2a6c 6332
0b246afa 6333 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6334 cache->space_info->flags,
6335 num_bytes, 1);
dec59fa3
EL
6336 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6337 num_bytes,
6338 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6339 set_extent_dirty(info->pinned_extents,
6340 bytenr, bytenr + num_bytes - 1,
6341 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6342 }
1bbc621e
CM
6343
6344 spin_lock(&trans->transaction->dirty_bgs_lock);
6345 if (list_empty(&cache->dirty_list)) {
6346 list_add_tail(&cache->dirty_list,
6347 &trans->transaction->dirty_bgs);
ba2c4d4e 6348 trans->delayed_ref_updates++;
1bbc621e
CM
6349 btrfs_get_block_group(cache);
6350 }
6351 spin_unlock(&trans->transaction->dirty_bgs_lock);
6352
036a9348
FM
6353 /*
6354 * No longer have used bytes in this block group, queue it for
6355 * deletion. We do this after adding the block group to the
6356 * dirty list to avoid races between cleaner kthread and space
6357 * cache writeout.
6358 */
031f24da
QW
6359 if (!alloc && old_val == 0)
6360 btrfs_mark_bg_unused(cache);
036a9348 6361
fa9c0d79 6362 btrfs_put_block_group(cache);
db94535d
CM
6363 total -= num_bytes;
6364 bytenr += num_bytes;
9078a3e1 6365 }
ba2c4d4e
JB
6366
6367 /* Modified block groups are accounted for in the delayed_refs_rsv. */
6368 btrfs_update_delayed_refs_rsv(trans);
6369 return ret;
9078a3e1 6370}
6324fbf3 6371
2ff7e61e 6372static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6373{
0f9dd46c 6374 struct btrfs_block_group_cache *cache;
d2fb3437 6375 u64 bytenr;
0f9dd46c 6376
0b246afa
JM
6377 spin_lock(&fs_info->block_group_cache_lock);
6378 bytenr = fs_info->first_logical_byte;
6379 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6380
6381 if (bytenr < (u64)-1)
6382 return bytenr;
6383
0b246afa 6384 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6385 if (!cache)
a061fc8d 6386 return 0;
0f9dd46c 6387
d2fb3437 6388 bytenr = cache->key.objectid;
fa9c0d79 6389 btrfs_put_block_group(cache);
d2fb3437
YZ
6390
6391 return bytenr;
a061fc8d
CM
6392}
6393
fdf08605 6394static int pin_down_extent(struct btrfs_block_group_cache *cache,
f0486c68 6395 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6396{
fdf08605
DS
6397 struct btrfs_fs_info *fs_info = cache->fs_info;
6398
11833d66
YZ
6399 spin_lock(&cache->space_info->lock);
6400 spin_lock(&cache->lock);
6401 cache->pinned += num_bytes;
e2907c1a 6402 update_bytes_pinned(cache->space_info, num_bytes);
11833d66
YZ
6403 if (reserved) {
6404 cache->reserved -= num_bytes;
6405 cache->space_info->bytes_reserved -= num_bytes;
6406 }
6407 spin_unlock(&cache->lock);
6408 spin_unlock(&cache->space_info->lock);
68b38550 6409
0b246afa 6410 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6411 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6412 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6413 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6414 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6415 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6416 return 0;
6417}
68b38550 6418
f0486c68
YZ
6419/*
6420 * this function must be called within transaction
6421 */
2ff7e61e 6422int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6423 u64 bytenr, u64 num_bytes, int reserved)
6424{
6425 struct btrfs_block_group_cache *cache;
68b38550 6426
0b246afa 6427 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6428 BUG_ON(!cache); /* Logic error */
f0486c68 6429
fdf08605 6430 pin_down_extent(cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6431
6432 btrfs_put_block_group(cache);
11833d66
YZ
6433 return 0;
6434}
6435
f0486c68 6436/*
e688b725
CM
6437 * this function must be called within transaction
6438 */
2ff7e61e 6439int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6440 u64 bytenr, u64 num_bytes)
6441{
6442 struct btrfs_block_group_cache *cache;
b50c6e25 6443 int ret;
e688b725 6444
0b246afa 6445 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6446 if (!cache)
6447 return -EINVAL;
e688b725
CM
6448
6449 /*
6450 * pull in the free space cache (if any) so that our pin
6451 * removes the free space from the cache. We have load_only set
6452 * to one because the slow code to read in the free extents does check
6453 * the pinned extents.
6454 */
f6373bf3 6455 cache_block_group(cache, 1);
e688b725 6456
fdf08605 6457 pin_down_extent(cache, bytenr, num_bytes, 0);
e688b725
CM
6458
6459 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6460 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6461 btrfs_put_block_group(cache);
b50c6e25 6462 return ret;
e688b725
CM
6463}
6464
2ff7e61e
JM
6465static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6466 u64 start, u64 num_bytes)
8c2a1a30
JB
6467{
6468 int ret;
6469 struct btrfs_block_group_cache *block_group;
6470 struct btrfs_caching_control *caching_ctl;
6471
0b246afa 6472 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6473 if (!block_group)
6474 return -EINVAL;
6475
6476 cache_block_group(block_group, 0);
6477 caching_ctl = get_caching_control(block_group);
6478
6479 if (!caching_ctl) {
6480 /* Logic error */
6481 BUG_ON(!block_group_cache_done(block_group));
6482 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6483 } else {
6484 mutex_lock(&caching_ctl->mutex);
6485
6486 if (start >= caching_ctl->progress) {
2ff7e61e 6487 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6488 } else if (start + num_bytes <= caching_ctl->progress) {
6489 ret = btrfs_remove_free_space(block_group,
6490 start, num_bytes);
6491 } else {
6492 num_bytes = caching_ctl->progress - start;
6493 ret = btrfs_remove_free_space(block_group,
6494 start, num_bytes);
6495 if (ret)
6496 goto out_lock;
6497
6498 num_bytes = (start + num_bytes) -
6499 caching_ctl->progress;
6500 start = caching_ctl->progress;
2ff7e61e 6501 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6502 }
6503out_lock:
6504 mutex_unlock(&caching_ctl->mutex);
6505 put_caching_control(caching_ctl);
6506 }
6507 btrfs_put_block_group(block_group);
6508 return ret;
6509}
6510
bcdc428c 6511int btrfs_exclude_logged_extents(struct extent_buffer *eb)
8c2a1a30 6512{
bcdc428c 6513 struct btrfs_fs_info *fs_info = eb->fs_info;
8c2a1a30
JB
6514 struct btrfs_file_extent_item *item;
6515 struct btrfs_key key;
6516 int found_type;
6517 int i;
b89311ef 6518 int ret = 0;
8c2a1a30 6519
2ff7e61e 6520 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6521 return 0;
6522
6523 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6524 btrfs_item_key_to_cpu(eb, &key, i);
6525 if (key.type != BTRFS_EXTENT_DATA_KEY)
6526 continue;
6527 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6528 found_type = btrfs_file_extent_type(eb, item);
6529 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6530 continue;
6531 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6532 continue;
6533 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6534 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6535 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6536 if (ret)
6537 break;
8c2a1a30
JB
6538 }
6539
b89311ef 6540 return ret;
8c2a1a30
JB
6541}
6542
9cfa3e34
FM
6543static void
6544btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6545{
6546 atomic_inc(&bg->reservations);
6547}
6548
6549void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6550 const u64 start)
6551{
6552 struct btrfs_block_group_cache *bg;
6553
6554 bg = btrfs_lookup_block_group(fs_info, start);
6555 ASSERT(bg);
6556 if (atomic_dec_and_test(&bg->reservations))
4625956a 6557 wake_up_var(&bg->reservations);
9cfa3e34
FM
6558 btrfs_put_block_group(bg);
6559}
6560
9cfa3e34
FM
6561void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6562{
6563 struct btrfs_space_info *space_info = bg->space_info;
6564
6565 ASSERT(bg->ro);
6566
6567 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6568 return;
6569
6570 /*
6571 * Our block group is read only but before we set it to read only,
6572 * some task might have had allocated an extent from it already, but it
6573 * has not yet created a respective ordered extent (and added it to a
6574 * root's list of ordered extents).
6575 * Therefore wait for any task currently allocating extents, since the
6576 * block group's reservations counter is incremented while a read lock
6577 * on the groups' semaphore is held and decremented after releasing
6578 * the read access on that semaphore and creating the ordered extent.
6579 */
6580 down_write(&space_info->groups_sem);
6581 up_write(&space_info->groups_sem);
6582
4625956a 6583 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6584}
6585
fb25e914 6586/**
4824f1f4 6587 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6588 * @cache: The cache we are manipulating
18513091
WX
6589 * @ram_bytes: The number of bytes of file content, and will be same to
6590 * @num_bytes except for the compress path.
fb25e914 6591 * @num_bytes: The number of bytes in question
e570fd27 6592 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6593 *
745699ef
XW
6594 * This is called by the allocator when it reserves space. If this is a
6595 * reservation and the block group has become read only we cannot make the
6596 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6597 */
4824f1f4 6598static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6599 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6600{
fb25e914 6601 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6602 int ret = 0;
79787eaa 6603
fb25e914
JB
6604 spin_lock(&space_info->lock);
6605 spin_lock(&cache->lock);
4824f1f4
WX
6606 if (cache->ro) {
6607 ret = -EAGAIN;
fb25e914 6608 } else {
4824f1f4
WX
6609 cache->reserved += num_bytes;
6610 space_info->bytes_reserved += num_bytes;
9f9b8e8d 6611 update_bytes_may_use(space_info, -ram_bytes);
e570fd27 6612 if (delalloc)
4824f1f4 6613 cache->delalloc_bytes += num_bytes;
324ae4df 6614 }
fb25e914
JB
6615 spin_unlock(&cache->lock);
6616 spin_unlock(&space_info->lock);
f0486c68 6617 return ret;
324ae4df 6618}
9078a3e1 6619
4824f1f4
WX
6620/**
6621 * btrfs_free_reserved_bytes - update the block_group and space info counters
6622 * @cache: The cache we are manipulating
6623 * @num_bytes: The number of bytes in question
6624 * @delalloc: The blocks are allocated for the delalloc write
6625 *
6626 * This is called by somebody who is freeing space that was never actually used
6627 * on disk. For example if you reserve some space for a new leaf in transaction
6628 * A and before transaction A commits you free that leaf, you call this with
6629 * reserve set to 0 in order to clear the reservation.
6630 */
6631
556f3ca8 6632static void btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6633 u64 num_bytes, int delalloc)
4824f1f4
WX
6634{
6635 struct btrfs_space_info *space_info = cache->space_info;
4824f1f4
WX
6636
6637 spin_lock(&space_info->lock);
6638 spin_lock(&cache->lock);
6639 if (cache->ro)
6640 space_info->bytes_readonly += num_bytes;
6641 cache->reserved -= num_bytes;
6642 space_info->bytes_reserved -= num_bytes;
21a94f7a 6643 space_info->max_extent_size = 0;
4824f1f4
WX
6644
6645 if (delalloc)
6646 cache->delalloc_bytes -= num_bytes;
6647 spin_unlock(&cache->lock);
6648 spin_unlock(&space_info->lock);
4824f1f4 6649}
8b74c03e 6650void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6651{
11833d66
YZ
6652 struct btrfs_caching_control *next;
6653 struct btrfs_caching_control *caching_ctl;
6654 struct btrfs_block_group_cache *cache;
e8569813 6655
9e351cc8 6656 down_write(&fs_info->commit_root_sem);
25179201 6657
11833d66
YZ
6658 list_for_each_entry_safe(caching_ctl, next,
6659 &fs_info->caching_block_groups, list) {
6660 cache = caching_ctl->block_group;
6661 if (block_group_cache_done(cache)) {
6662 cache->last_byte_to_unpin = (u64)-1;
6663 list_del_init(&caching_ctl->list);
6664 put_caching_control(caching_ctl);
e8569813 6665 } else {
11833d66 6666 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6667 }
e8569813 6668 }
11833d66
YZ
6669
6670 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6671 fs_info->pinned_extents = &fs_info->freed_extents[1];
6672 else
6673 fs_info->pinned_extents = &fs_info->freed_extents[0];
6674
9e351cc8 6675 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6676
6677 update_global_block_rsv(fs_info);
e8569813
ZY
6678}
6679
c759c4e1
JB
6680/*
6681 * Returns the free cluster for the given space info and sets empty_cluster to
6682 * what it should be based on the mount options.
6683 */
6684static struct btrfs_free_cluster *
2ff7e61e
JM
6685fetch_cluster_info(struct btrfs_fs_info *fs_info,
6686 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6687{
6688 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6689
6690 *empty_cluster = 0;
6691 if (btrfs_mixed_space_info(space_info))
6692 return ret;
6693
c759c4e1 6694 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6695 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6696 if (btrfs_test_opt(fs_info, SSD))
6697 *empty_cluster = SZ_2M;
6698 else
ee22184b 6699 *empty_cluster = SZ_64K;
583b7231
HK
6700 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6701 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6702 *empty_cluster = SZ_2M;
0b246afa 6703 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6704 }
6705
6706 return ret;
6707}
6708
2ff7e61e
JM
6709static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6710 u64 start, u64 end,
678886bd 6711 const bool return_free_space)
ccd467d6 6712{
11833d66 6713 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6714 struct btrfs_space_info *space_info;
6715 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6716 struct btrfs_free_cluster *cluster = NULL;
11833d66 6717 u64 len;
c759c4e1
JB
6718 u64 total_unpinned = 0;
6719 u64 empty_cluster = 0;
7b398f8e 6720 bool readonly;
ccd467d6 6721
11833d66 6722 while (start <= end) {
7b398f8e 6723 readonly = false;
11833d66
YZ
6724 if (!cache ||
6725 start >= cache->key.objectid + cache->key.offset) {
6726 if (cache)
6727 btrfs_put_block_group(cache);
c759c4e1 6728 total_unpinned = 0;
11833d66 6729 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6730 BUG_ON(!cache); /* Logic error */
c759c4e1 6731
2ff7e61e 6732 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6733 cache->space_info,
6734 &empty_cluster);
6735 empty_cluster <<= 1;
11833d66
YZ
6736 }
6737
6738 len = cache->key.objectid + cache->key.offset - start;
6739 len = min(len, end + 1 - start);
6740
6741 if (start < cache->last_byte_to_unpin) {
6742 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6743 if (return_free_space)
6744 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6745 }
6746
f0486c68 6747 start += len;
c759c4e1 6748 total_unpinned += len;
7b398f8e 6749 space_info = cache->space_info;
f0486c68 6750
c759c4e1
JB
6751 /*
6752 * If this space cluster has been marked as fragmented and we've
6753 * unpinned enough in this block group to potentially allow a
6754 * cluster to be created inside of it go ahead and clear the
6755 * fragmented check.
6756 */
6757 if (cluster && cluster->fragmented &&
6758 total_unpinned > empty_cluster) {
6759 spin_lock(&cluster->lock);
6760 cluster->fragmented = 0;
6761 spin_unlock(&cluster->lock);
6762 }
6763
7b398f8e 6764 spin_lock(&space_info->lock);
11833d66
YZ
6765 spin_lock(&cache->lock);
6766 cache->pinned -= len;
e2907c1a 6767 update_bytes_pinned(space_info, -len);
c51e7bb1
JB
6768
6769 trace_btrfs_space_reservation(fs_info, "pinned",
6770 space_info->flags, len, 0);
4f4db217 6771 space_info->max_extent_size = 0;
dec59fa3
EL
6772 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6773 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6774 if (cache->ro) {
6775 space_info->bytes_readonly += len;
6776 readonly = true;
6777 }
11833d66 6778 spin_unlock(&cache->lock);
957780eb
JB
6779 if (!readonly && return_free_space &&
6780 global_rsv->space_info == space_info) {
6781 u64 to_add = len;
92ac58ec 6782
7b398f8e
JB
6783 spin_lock(&global_rsv->lock);
6784 if (!global_rsv->full) {
957780eb
JB
6785 to_add = min(len, global_rsv->size -
6786 global_rsv->reserved);
6787 global_rsv->reserved += to_add;
9f9b8e8d 6788 update_bytes_may_use(space_info, to_add);
7b398f8e
JB
6789 if (global_rsv->reserved >= global_rsv->size)
6790 global_rsv->full = 1;
957780eb
JB
6791 trace_btrfs_space_reservation(fs_info,
6792 "space_info",
6793 space_info->flags,
6794 to_add, 1);
6795 len -= to_add;
7b398f8e
JB
6796 }
6797 spin_unlock(&global_rsv->lock);
957780eb
JB
6798 /* Add to any tickets we may have */
6799 if (len)
6800 space_info_add_new_bytes(fs_info, space_info,
6801 len);
7b398f8e
JB
6802 }
6803 spin_unlock(&space_info->lock);
ccd467d6 6804 }
11833d66
YZ
6805
6806 if (cache)
6807 btrfs_put_block_group(cache);
ccd467d6
CM
6808 return 0;
6809}
6810
5ead2dd0 6811int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6812{
5ead2dd0 6813 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6814 struct btrfs_block_group_cache *block_group, *tmp;
6815 struct list_head *deleted_bgs;
11833d66 6816 struct extent_io_tree *unpin;
1a5bc167
CM
6817 u64 start;
6818 u64 end;
a28ec197 6819 int ret;
a28ec197 6820
11833d66
YZ
6821 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6822 unpin = &fs_info->freed_extents[1];
6823 else
6824 unpin = &fs_info->freed_extents[0];
6825
e33e17ee 6826 while (!trans->aborted) {
0e6ec385
FM
6827 struct extent_state *cached_state = NULL;
6828
d4b450cd 6829 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6830 ret = find_first_extent_bit(unpin, 0, &start, &end,
0e6ec385 6831 EXTENT_DIRTY, &cached_state);
d4b450cd
FM
6832 if (ret) {
6833 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6834 break;
d4b450cd 6835 }
1f3c79a2 6836
0b246afa 6837 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6838 ret = btrfs_discard_extent(fs_info, start,
5378e607 6839 end + 1 - start, NULL);
1f3c79a2 6840
0e6ec385 6841 clear_extent_dirty(unpin, start, end, &cached_state);
2ff7e61e 6842 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6843 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
0e6ec385 6844 free_extent_state(cached_state);
b9473439 6845 cond_resched();
a28ec197 6846 }
817d52f8 6847
e33e17ee
JM
6848 /*
6849 * Transaction is finished. We don't need the lock anymore. We
6850 * do need to clean up the block groups in case of a transaction
6851 * abort.
6852 */
6853 deleted_bgs = &trans->transaction->deleted_bgs;
6854 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6855 u64 trimmed = 0;
6856
6857 ret = -EROFS;
6858 if (!trans->aborted)
2ff7e61e 6859 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6860 block_group->key.objectid,
6861 block_group->key.offset,
6862 &trimmed);
6863
6864 list_del_init(&block_group->bg_list);
6865 btrfs_put_block_group_trimming(block_group);
6866 btrfs_put_block_group(block_group);
6867
6868 if (ret) {
6869 const char *errstr = btrfs_decode_error(ret);
6870 btrfs_warn(fs_info,
913e1535 6871 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6872 ret, errstr);
6873 }
6874 }
6875
e20d96d6
CM
6876 return 0;
6877}
6878
5d4f98a2 6879static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6880 struct btrfs_delayed_ref_node *node, u64 parent,
6881 u64 root_objectid, u64 owner_objectid,
6882 u64 owner_offset, int refs_to_drop,
6883 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6884{
e72cb923 6885 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6886 struct btrfs_key key;
5d4f98a2 6887 struct btrfs_path *path;
1261ec42 6888 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6889 struct extent_buffer *leaf;
5d4f98a2
YZ
6890 struct btrfs_extent_item *ei;
6891 struct btrfs_extent_inline_ref *iref;
a28ec197 6892 int ret;
5d4f98a2 6893 int is_data;
952fccac
CM
6894 int extent_slot = 0;
6895 int found_extent = 0;
6896 int num_to_del = 1;
5d4f98a2
YZ
6897 u32 item_size;
6898 u64 refs;
c682f9b3
QW
6899 u64 bytenr = node->bytenr;
6900 u64 num_bytes = node->num_bytes;
fcebe456 6901 int last_ref = 0;
0b246afa 6902 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6903
5caf2a00 6904 path = btrfs_alloc_path();
54aa1f4d
CM
6905 if (!path)
6906 return -ENOMEM;
5f26f772 6907
e4058b54 6908 path->reada = READA_FORWARD;
b9473439 6909 path->leave_spinning = 1;
5d4f98a2
YZ
6910
6911 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6912 BUG_ON(!is_data && refs_to_drop != 1);
6913
3173a18f 6914 if (is_data)
897ca819 6915 skinny_metadata = false;
3173a18f 6916
fbe4801b
NB
6917 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6918 parent, root_objectid, owner_objectid,
5d4f98a2 6919 owner_offset);
7bb86316 6920 if (ret == 0) {
952fccac 6921 extent_slot = path->slots[0];
5d4f98a2
YZ
6922 while (extent_slot >= 0) {
6923 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6924 extent_slot);
5d4f98a2 6925 if (key.objectid != bytenr)
952fccac 6926 break;
5d4f98a2
YZ
6927 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6928 key.offset == num_bytes) {
952fccac
CM
6929 found_extent = 1;
6930 break;
6931 }
3173a18f
JB
6932 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6933 key.offset == owner_objectid) {
6934 found_extent = 1;
6935 break;
6936 }
952fccac
CM
6937 if (path->slots[0] - extent_slot > 5)
6938 break;
5d4f98a2 6939 extent_slot--;
952fccac 6940 }
a79865c6 6941
31840ae1 6942 if (!found_extent) {
5d4f98a2 6943 BUG_ON(iref);
87cc7a8a 6944 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6945 refs_to_drop,
fcebe456 6946 is_data, &last_ref);
005d6427 6947 if (ret) {
66642832 6948 btrfs_abort_transaction(trans, ret);
005d6427
DS
6949 goto out;
6950 }
b3b4aa74 6951 btrfs_release_path(path);
b9473439 6952 path->leave_spinning = 1;
5d4f98a2
YZ
6953
6954 key.objectid = bytenr;
6955 key.type = BTRFS_EXTENT_ITEM_KEY;
6956 key.offset = num_bytes;
6957
3173a18f
JB
6958 if (!is_data && skinny_metadata) {
6959 key.type = BTRFS_METADATA_ITEM_KEY;
6960 key.offset = owner_objectid;
6961 }
6962
31840ae1
ZY
6963 ret = btrfs_search_slot(trans, extent_root,
6964 &key, path, -1, 1);
3173a18f
JB
6965 if (ret > 0 && skinny_metadata && path->slots[0]) {
6966 /*
6967 * Couldn't find our skinny metadata item,
6968 * see if we have ye olde extent item.
6969 */
6970 path->slots[0]--;
6971 btrfs_item_key_to_cpu(path->nodes[0], &key,
6972 path->slots[0]);
6973 if (key.objectid == bytenr &&
6974 key.type == BTRFS_EXTENT_ITEM_KEY &&
6975 key.offset == num_bytes)
6976 ret = 0;
6977 }
6978
6979 if (ret > 0 && skinny_metadata) {
6980 skinny_metadata = false;
9ce49a0b 6981 key.objectid = bytenr;
3173a18f
JB
6982 key.type = BTRFS_EXTENT_ITEM_KEY;
6983 key.offset = num_bytes;
6984 btrfs_release_path(path);
6985 ret = btrfs_search_slot(trans, extent_root,
6986 &key, path, -1, 1);
6987 }
6988
f3465ca4 6989 if (ret) {
5d163e0e
JM
6990 btrfs_err(info,
6991 "umm, got %d back from search, was looking for %llu",
6992 ret, bytenr);
b783e62d 6993 if (ret > 0)
a4f78750 6994 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6995 }
005d6427 6996 if (ret < 0) {
66642832 6997 btrfs_abort_transaction(trans, ret);
005d6427
DS
6998 goto out;
6999 }
31840ae1
ZY
7000 extent_slot = path->slots[0];
7001 }
fae7f21c 7002 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7003 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7004 btrfs_err(info,
7005 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7006 bytenr, parent, root_objectid, owner_objectid,
7007 owner_offset);
66642832 7008 btrfs_abort_transaction(trans, ret);
c4a050bb 7009 goto out;
79787eaa 7010 } else {
66642832 7011 btrfs_abort_transaction(trans, ret);
005d6427 7012 goto out;
7bb86316 7013 }
5f39d397
CM
7014
7015 leaf = path->nodes[0];
5d4f98a2 7016 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 7017 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
7018 ret = -EINVAL;
7019 btrfs_print_v0_err(info);
7020 btrfs_abort_transaction(trans, ret);
7021 goto out;
7022 }
952fccac 7023 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7024 struct btrfs_extent_item);
3173a18f
JB
7025 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7026 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7027 struct btrfs_tree_block_info *bi;
7028 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7029 bi = (struct btrfs_tree_block_info *)(ei + 1);
7030 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7031 }
56bec294 7032
5d4f98a2 7033 refs = btrfs_extent_refs(leaf, ei);
32b02538 7034 if (refs < refs_to_drop) {
5d163e0e
JM
7035 btrfs_err(info,
7036 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7037 refs_to_drop, refs, bytenr);
32b02538 7038 ret = -EINVAL;
66642832 7039 btrfs_abort_transaction(trans, ret);
32b02538
JB
7040 goto out;
7041 }
56bec294 7042 refs -= refs_to_drop;
5f39d397 7043
5d4f98a2
YZ
7044 if (refs > 0) {
7045 if (extent_op)
7046 __run_delayed_extent_op(extent_op, leaf, ei);
7047 /*
7048 * In the case of inline back ref, reference count will
7049 * be updated by remove_extent_backref
952fccac 7050 */
5d4f98a2
YZ
7051 if (iref) {
7052 BUG_ON(!found_extent);
7053 } else {
7054 btrfs_set_extent_refs(leaf, ei, refs);
7055 btrfs_mark_buffer_dirty(leaf);
7056 }
7057 if (found_extent) {
87cc7a8a
NB
7058 ret = remove_extent_backref(trans, path, iref,
7059 refs_to_drop, is_data,
7060 &last_ref);
005d6427 7061 if (ret) {
66642832 7062 btrfs_abort_transaction(trans, ret);
005d6427
DS
7063 goto out;
7064 }
952fccac 7065 }
5d4f98a2 7066 } else {
5d4f98a2
YZ
7067 if (found_extent) {
7068 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7069 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7070 if (iref) {
7071 BUG_ON(path->slots[0] != extent_slot);
7072 } else {
7073 BUG_ON(path->slots[0] != extent_slot + 1);
7074 path->slots[0] = extent_slot;
7075 num_to_del = 2;
7076 }
78fae27e 7077 }
b9473439 7078
fcebe456 7079 last_ref = 1;
952fccac
CM
7080 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7081 num_to_del);
005d6427 7082 if (ret) {
66642832 7083 btrfs_abort_transaction(trans, ret);
005d6427
DS
7084 goto out;
7085 }
b3b4aa74 7086 btrfs_release_path(path);
21af804c 7087
5d4f98a2 7088 if (is_data) {
5b4aacef 7089 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7090 if (ret) {
66642832 7091 btrfs_abort_transaction(trans, ret);
005d6427
DS
7092 goto out;
7093 }
459931ec
CM
7094 }
7095
e7355e50 7096 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7097 if (ret) {
66642832 7098 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7099 goto out;
7100 }
7101
6b279408 7102 ret = update_block_group(trans, bytenr, num_bytes, 0);
005d6427 7103 if (ret) {
66642832 7104 btrfs_abort_transaction(trans, ret);
005d6427
DS
7105 goto out;
7106 }
a28ec197 7107 }
fcebe456
JB
7108 btrfs_release_path(path);
7109
79787eaa 7110out:
5caf2a00 7111 btrfs_free_path(path);
a28ec197
CM
7112 return ret;
7113}
7114
1887be66 7115/*
f0486c68 7116 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7117 * delayed ref for that extent as well. This searches the delayed ref tree for
7118 * a given extent, and if there are no other delayed refs to be processed, it
7119 * removes it from the tree.
7120 */
7121static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7122 u64 bytenr)
1887be66
CM
7123{
7124 struct btrfs_delayed_ref_head *head;
7125 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7126 int ret = 0;
1887be66
CM
7127
7128 delayed_refs = &trans->transaction->delayed_refs;
7129 spin_lock(&delayed_refs->lock);
f72ad18e 7130 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7131 if (!head)
cf93da7b 7132 goto out_delayed_unlock;
1887be66 7133
d7df2c79 7134 spin_lock(&head->lock);
e3d03965 7135 if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
1887be66
CM
7136 goto out;
7137
bedc6617
JB
7138 if (cleanup_extent_op(head) != NULL)
7139 goto out;
5d4f98a2 7140
1887be66
CM
7141 /*
7142 * waiting for the lock here would deadlock. If someone else has it
7143 * locked they are already in the process of dropping it anyway
7144 */
7145 if (!mutex_trylock(&head->mutex))
7146 goto out;
7147
d7baffda 7148 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79 7149 head->processing = 0;
d7baffda 7150
d7df2c79 7151 spin_unlock(&head->lock);
1887be66
CM
7152 spin_unlock(&delayed_refs->lock);
7153
f0486c68
YZ
7154 BUG_ON(head->extent_op);
7155 if (head->must_insert_reserved)
7156 ret = 1;
7157
31890da0 7158 btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
f0486c68 7159 mutex_unlock(&head->mutex);
d278850e 7160 btrfs_put_delayed_ref_head(head);
f0486c68 7161 return ret;
1887be66 7162out:
d7df2c79 7163 spin_unlock(&head->lock);
cf93da7b
CM
7164
7165out_delayed_unlock:
1887be66
CM
7166 spin_unlock(&delayed_refs->lock);
7167 return 0;
7168}
7169
f0486c68
YZ
7170void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7171 struct btrfs_root *root,
7172 struct extent_buffer *buf,
5581a51a 7173 u64 parent, int last_ref)
f0486c68 7174{
0b246afa 7175 struct btrfs_fs_info *fs_info = root->fs_info;
ed4f255b 7176 struct btrfs_ref generic_ref = { 0 };
b150a4f1 7177 int pin = 1;
f0486c68
YZ
7178 int ret;
7179
ed4f255b
QW
7180 btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
7181 buf->start, buf->len, parent);
7182 btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
7183 root->root_key.objectid);
7184
f0486c68 7185 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7186 int old_ref_mod, new_ref_mod;
7187
8a5040f7 7188 btrfs_ref_tree_mod(fs_info, &generic_ref);
ed4f255b 7189 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL,
d7eae340 7190 &old_ref_mod, &new_ref_mod);
79787eaa 7191 BUG_ON(ret); /* -ENOMEM */
d7eae340 7192 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7193 }
7194
0a16c7d7 7195 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7196 struct btrfs_block_group_cache *cache;
7197
f0486c68 7198 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7199 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7200 if (!ret)
37be25bc 7201 goto out;
f0486c68
YZ
7202 }
7203
4da8b76d 7204 pin = 0;
0b246afa 7205 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7206
f0486c68 7207 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
fdf08605 7208 pin_down_extent(cache, buf->start, buf->len, 1);
6219872d 7209 btrfs_put_block_group(cache);
37be25bc 7210 goto out;
f0486c68
YZ
7211 }
7212
7213 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7214
7215 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7216 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7217 btrfs_put_block_group(cache);
71ff6437 7218 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7219 }
7220out:
b150a4f1 7221 if (pin)
ddf30cf0 7222 add_pinned_bytes(fs_info, &generic_ref);
b150a4f1 7223
0a16c7d7
OS
7224 if (last_ref) {
7225 /*
7226 * Deleting the buffer, clear the corrupt flag since it doesn't
7227 * matter anymore.
7228 */
7229 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7230 }
f0486c68
YZ
7231}
7232
79787eaa 7233/* Can return -ENOMEM */
ffd4bb2a 7234int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
925baedd 7235{
ffd4bb2a 7236 struct btrfs_fs_info *fs_info = trans->fs_info;
d7eae340 7237 int old_ref_mod, new_ref_mod;
925baedd
CM
7238 int ret;
7239
f5ee5c9a 7240 if (btrfs_is_testing(fs_info))
faa2dbf0 7241 return 0;
fccb84c9 7242
56bec294
CM
7243 /*
7244 * tree log blocks never actually go into the extent allocation
7245 * tree, just update pinning info and exit early.
56bec294 7246 */
ffd4bb2a
QW
7247 if ((ref->type == BTRFS_REF_METADATA &&
7248 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7249 (ref->type == BTRFS_REF_DATA &&
7250 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)) {
b9473439 7251 /* unlocks the pinned mutex */
ffd4bb2a 7252 btrfs_pin_extent(fs_info, ref->bytenr, ref->len, 1);
d7eae340 7253 old_ref_mod = new_ref_mod = 0;
56bec294 7254 ret = 0;
ffd4bb2a
QW
7255 } else if (ref->type == BTRFS_REF_METADATA) {
7256 ret = btrfs_add_delayed_tree_ref(trans, ref, NULL,
d7eae340 7257 &old_ref_mod, &new_ref_mod);
5d4f98a2 7258 } else {
ffd4bb2a 7259 ret = btrfs_add_delayed_data_ref(trans, ref, 0,
d7eae340 7260 &old_ref_mod, &new_ref_mod);
56bec294 7261 }
d7eae340 7262
ffd4bb2a
QW
7263 if (!((ref->type == BTRFS_REF_METADATA &&
7264 ref->tree_ref.root == BTRFS_TREE_LOG_OBJECTID) ||
7265 (ref->type == BTRFS_REF_DATA &&
7266 ref->data_ref.ref_root == BTRFS_TREE_LOG_OBJECTID)))
7267 btrfs_ref_tree_mod(fs_info, ref);
8a5040f7 7268
ddf30cf0 7269 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
ffd4bb2a 7270 add_pinned_bytes(fs_info, ref);
d7eae340 7271
925baedd
CM
7272 return ret;
7273}
7274
817d52f8
JB
7275/*
7276 * when we wait for progress in the block group caching, its because
7277 * our allocation attempt failed at least once. So, we must sleep
7278 * and let some progress happen before we try again.
7279 *
7280 * This function will sleep at least once waiting for new free space to
7281 * show up, and then it will check the block group free space numbers
7282 * for our min num_bytes. Another option is to have it go ahead
7283 * and look in the rbtree for a free extent of a given size, but this
7284 * is a good start.
36cce922
JB
7285 *
7286 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7287 * any of the information in this block group.
817d52f8 7288 */
36cce922 7289static noinline void
817d52f8
JB
7290wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7291 u64 num_bytes)
7292{
11833d66 7293 struct btrfs_caching_control *caching_ctl;
817d52f8 7294
11833d66
YZ
7295 caching_ctl = get_caching_control(cache);
7296 if (!caching_ctl)
36cce922 7297 return;
817d52f8 7298
11833d66 7299 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7300 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7301
7302 put_caching_control(caching_ctl);
11833d66
YZ
7303}
7304
7305static noinline int
7306wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7307{
7308 struct btrfs_caching_control *caching_ctl;
36cce922 7309 int ret = 0;
11833d66
YZ
7310
7311 caching_ctl = get_caching_control(cache);
7312 if (!caching_ctl)
36cce922 7313 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7314
7315 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7316 if (cache->cached == BTRFS_CACHE_ERROR)
7317 ret = -EIO;
11833d66 7318 put_caching_control(caching_ctl);
36cce922 7319 return ret;
817d52f8
JB
7320}
7321
7322enum btrfs_loop_type {
285ff5af
JB
7323 LOOP_CACHING_NOWAIT = 0,
7324 LOOP_CACHING_WAIT = 1,
7325 LOOP_ALLOC_CHUNK = 2,
7326 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7327};
7328
e570fd27
MX
7329static inline void
7330btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7331 int delalloc)
7332{
7333 if (delalloc)
7334 down_read(&cache->data_rwsem);
7335}
7336
7337static inline void
7338btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7339 int delalloc)
7340{
7341 btrfs_get_block_group(cache);
7342 if (delalloc)
7343 down_read(&cache->data_rwsem);
7344}
7345
7346static struct btrfs_block_group_cache *
7347btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7348 struct btrfs_free_cluster *cluster,
7349 int delalloc)
7350{
89771cc9 7351 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7352
e570fd27 7353 spin_lock(&cluster->refill_lock);
6719afdc
GU
7354 while (1) {
7355 used_bg = cluster->block_group;
7356 if (!used_bg)
7357 return NULL;
7358
7359 if (used_bg == block_group)
e570fd27
MX
7360 return used_bg;
7361
6719afdc 7362 btrfs_get_block_group(used_bg);
e570fd27 7363
6719afdc
GU
7364 if (!delalloc)
7365 return used_bg;
e570fd27 7366
6719afdc
GU
7367 if (down_read_trylock(&used_bg->data_rwsem))
7368 return used_bg;
e570fd27 7369
6719afdc 7370 spin_unlock(&cluster->refill_lock);
e570fd27 7371
e321f8a8
LB
7372 /* We should only have one-level nested. */
7373 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7374
6719afdc
GU
7375 spin_lock(&cluster->refill_lock);
7376 if (used_bg == cluster->block_group)
7377 return used_bg;
e570fd27 7378
6719afdc
GU
7379 up_read(&used_bg->data_rwsem);
7380 btrfs_put_block_group(used_bg);
7381 }
e570fd27
MX
7382}
7383
7384static inline void
7385btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7386 int delalloc)
7387{
7388 if (delalloc)
7389 up_read(&cache->data_rwsem);
7390 btrfs_put_block_group(cache);
7391}
7392
b4bd745d
QW
7393/*
7394 * Structure used internally for find_free_extent() function. Wraps needed
7395 * parameters.
7396 */
7397struct find_free_extent_ctl {
7398 /* Basic allocation info */
7399 u64 ram_bytes;
7400 u64 num_bytes;
7401 u64 empty_size;
7402 u64 flags;
7403 int delalloc;
7404
7405 /* Where to start the search inside the bg */
7406 u64 search_start;
7407
7408 /* For clustered allocation */
7409 u64 empty_cluster;
7410
7411 bool have_caching_bg;
7412 bool orig_have_caching_bg;
7413
7414 /* RAID index, converted from flags */
7415 int index;
7416
e72d79d6
QW
7417 /*
7418 * Current loop number, check find_free_extent_update_loop() for details
7419 */
b4bd745d
QW
7420 int loop;
7421
7422 /*
7423 * Whether we're refilling a cluster, if true we need to re-search
7424 * current block group but don't try to refill the cluster again.
7425 */
7426 bool retry_clustered;
7427
7428 /*
7429 * Whether we're updating free space cache, if true we need to re-search
7430 * current block group but don't try updating free space cache again.
7431 */
7432 bool retry_unclustered;
7433
7434 /* If current block group is cached */
7435 int cached;
7436
7437 /* Max contiguous hole found */
7438 u64 max_extent_size;
7439
7440 /* Total free space from free space cache, not always contiguous */
7441 u64 total_free_space;
7442
7443 /* Found result */
7444 u64 found_offset;
7445};
7446
d06e3bb6
QW
7447
7448/*
7449 * Helper function for find_free_extent().
7450 *
7451 * Return -ENOENT to inform caller that we need fallback to unclustered mode.
7452 * Return -EAGAIN to inform caller that we need to re-search this block group
7453 * Return >0 to inform caller that we find nothing
7454 * Return 0 means we have found a location and set ffe_ctl->found_offset.
7455 */
7456static int find_free_extent_clustered(struct btrfs_block_group_cache *bg,
7457 struct btrfs_free_cluster *last_ptr,
7458 struct find_free_extent_ctl *ffe_ctl,
7459 struct btrfs_block_group_cache **cluster_bg_ret)
7460{
d06e3bb6
QW
7461 struct btrfs_block_group_cache *cluster_bg;
7462 u64 aligned_cluster;
7463 u64 offset;
7464 int ret;
7465
7466 cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
7467 if (!cluster_bg)
7468 goto refill_cluster;
7469 if (cluster_bg != bg && (cluster_bg->ro ||
7470 !block_group_bits(cluster_bg, ffe_ctl->flags)))
7471 goto release_cluster;
7472
7473 offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
7474 ffe_ctl->num_bytes, cluster_bg->key.objectid,
7475 &ffe_ctl->max_extent_size);
7476 if (offset) {
7477 /* We have a block, we're done */
7478 spin_unlock(&last_ptr->refill_lock);
7479 trace_btrfs_reserve_extent_cluster(cluster_bg,
7480 ffe_ctl->search_start, ffe_ctl->num_bytes);
7481 *cluster_bg_ret = cluster_bg;
7482 ffe_ctl->found_offset = offset;
7483 return 0;
7484 }
7485 WARN_ON(last_ptr->block_group != cluster_bg);
7486
7487release_cluster:
7488 /*
7489 * If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
7490 * lets just skip it and let the allocator find whatever block it can
7491 * find. If we reach this point, we will have tried the cluster
7492 * allocator plenty of times and not have found anything, so we are
7493 * likely way too fragmented for the clustering stuff to find anything.
7494 *
7495 * However, if the cluster is taken from the current block group,
7496 * release the cluster first, so that we stand a better chance of
7497 * succeeding in the unclustered allocation.
7498 */
7499 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
7500 spin_unlock(&last_ptr->refill_lock);
7501 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7502 return -ENOENT;
7503 }
7504
7505 /* This cluster didn't work out, free it and start over */
7506 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7507
7508 if (cluster_bg != bg)
7509 btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
7510
7511refill_cluster:
7512 if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
7513 spin_unlock(&last_ptr->refill_lock);
7514 return -ENOENT;
7515 }
7516
7517 aligned_cluster = max_t(u64,
7518 ffe_ctl->empty_cluster + ffe_ctl->empty_size,
7519 bg->full_stripe_len);
2ceeae2e
DS
7520 ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
7521 ffe_ctl->num_bytes, aligned_cluster);
d06e3bb6
QW
7522 if (ret == 0) {
7523 /* Now pull our allocation out of this cluster */
7524 offset = btrfs_alloc_from_cluster(bg, last_ptr,
7525 ffe_ctl->num_bytes, ffe_ctl->search_start,
7526 &ffe_ctl->max_extent_size);
7527 if (offset) {
7528 /* We found one, proceed */
7529 spin_unlock(&last_ptr->refill_lock);
7530 trace_btrfs_reserve_extent_cluster(bg,
7531 ffe_ctl->search_start,
7532 ffe_ctl->num_bytes);
7533 ffe_ctl->found_offset = offset;
7534 return 0;
7535 }
7536 } else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
7537 !ffe_ctl->retry_clustered) {
7538 spin_unlock(&last_ptr->refill_lock);
7539
7540 ffe_ctl->retry_clustered = true;
7541 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7542 ffe_ctl->empty_cluster + ffe_ctl->empty_size);
7543 return -EAGAIN;
7544 }
7545 /*
7546 * At this point we either didn't find a cluster or we weren't able to
7547 * allocate a block from our cluster. Free the cluster we've been
7548 * trying to use, and go to the next block group.
7549 */
7550 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7551 spin_unlock(&last_ptr->refill_lock);
7552 return 1;
7553}
7554
e1a41848
QW
7555/*
7556 * Return >0 to inform caller that we find nothing
7557 * Return 0 when we found an free extent and set ffe_ctrl->found_offset
7558 * Return -EAGAIN to inform caller that we need to re-search this block group
7559 */
7560static int find_free_extent_unclustered(struct btrfs_block_group_cache *bg,
7561 struct btrfs_free_cluster *last_ptr,
7562 struct find_free_extent_ctl *ffe_ctl)
7563{
7564 u64 offset;
7565
7566 /*
7567 * We are doing an unclustered allocation, set the fragmented flag so
7568 * we don't bother trying to setup a cluster again until we get more
7569 * space.
7570 */
7571 if (unlikely(last_ptr)) {
7572 spin_lock(&last_ptr->lock);
7573 last_ptr->fragmented = 1;
7574 spin_unlock(&last_ptr->lock);
7575 }
7576 if (ffe_ctl->cached) {
7577 struct btrfs_free_space_ctl *free_space_ctl;
7578
7579 free_space_ctl = bg->free_space_ctl;
7580 spin_lock(&free_space_ctl->tree_lock);
7581 if (free_space_ctl->free_space <
7582 ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
7583 ffe_ctl->empty_size) {
7584 ffe_ctl->total_free_space = max_t(u64,
7585 ffe_ctl->total_free_space,
7586 free_space_ctl->free_space);
7587 spin_unlock(&free_space_ctl->tree_lock);
7588 return 1;
7589 }
7590 spin_unlock(&free_space_ctl->tree_lock);
7591 }
7592
7593 offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
7594 ffe_ctl->num_bytes, ffe_ctl->empty_size,
7595 &ffe_ctl->max_extent_size);
7596
7597 /*
7598 * If we didn't find a chunk, and we haven't failed on this block group
7599 * before, and this block group is in the middle of caching and we are
7600 * ok with waiting, then go ahead and wait for progress to be made, and
7601 * set @retry_unclustered to true.
7602 *
7603 * If @retry_unclustered is true then we've already waited on this
7604 * block group once and should move on to the next block group.
7605 */
7606 if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
7607 ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
7608 wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
7609 ffe_ctl->empty_size);
7610 ffe_ctl->retry_unclustered = true;
7611 return -EAGAIN;
7612 } else if (!offset) {
7613 return 1;
7614 }
7615 ffe_ctl->found_offset = offset;
7616 return 0;
7617}
7618
e72d79d6
QW
7619/*
7620 * Return >0 means caller needs to re-search for free extent
7621 * Return 0 means we have the needed free extent.
7622 * Return <0 means we failed to locate any free extent.
7623 */
7624static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
7625 struct btrfs_free_cluster *last_ptr,
7626 struct btrfs_key *ins,
7627 struct find_free_extent_ctl *ffe_ctl,
7628 int full_search, bool use_cluster)
7629{
7630 struct btrfs_root *root = fs_info->extent_root;
7631 int ret;
7632
7633 if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
7634 ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
7635 ffe_ctl->orig_have_caching_bg = true;
7636
7637 if (!ins->objectid && ffe_ctl->loop >= LOOP_CACHING_WAIT &&
7638 ffe_ctl->have_caching_bg)
7639 return 1;
7640
7641 if (!ins->objectid && ++(ffe_ctl->index) < BTRFS_NR_RAID_TYPES)
7642 return 1;
7643
7644 if (ins->objectid) {
7645 if (!use_cluster && last_ptr) {
7646 spin_lock(&last_ptr->lock);
7647 last_ptr->window_start = ins->objectid;
7648 spin_unlock(&last_ptr->lock);
7649 }
7650 return 0;
7651 }
7652
7653 /*
7654 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7655 * caching kthreads as we move along
7656 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7657 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7658 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7659 * again
7660 */
7661 if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
7662 ffe_ctl->index = 0;
7663 if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
7664 /*
7665 * We want to skip the LOOP_CACHING_WAIT step if we
7666 * don't have any uncached bgs and we've already done a
7667 * full search through.
7668 */
7669 if (ffe_ctl->orig_have_caching_bg || !full_search)
7670 ffe_ctl->loop = LOOP_CACHING_WAIT;
7671 else
7672 ffe_ctl->loop = LOOP_ALLOC_CHUNK;
7673 } else {
7674 ffe_ctl->loop++;
7675 }
7676
7677 if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
7678 struct btrfs_trans_handle *trans;
7679 int exist = 0;
7680
7681 trans = current->journal_info;
7682 if (trans)
7683 exist = 1;
7684 else
7685 trans = btrfs_join_transaction(root);
7686
7687 if (IS_ERR(trans)) {
7688 ret = PTR_ERR(trans);
7689 return ret;
7690 }
7691
7692 ret = do_chunk_alloc(trans, ffe_ctl->flags,
7693 CHUNK_ALLOC_FORCE);
7694
7695 /*
7696 * If we can't allocate a new chunk we've already looped
7697 * through at least once, move on to the NO_EMPTY_SIZE
7698 * case.
7699 */
7700 if (ret == -ENOSPC)
7701 ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
7702
7703 /* Do not bail out on ENOSPC since we can do more. */
7704 if (ret < 0 && ret != -ENOSPC)
7705 btrfs_abort_transaction(trans, ret);
7706 else
7707 ret = 0;
7708 if (!exist)
7709 btrfs_end_transaction(trans);
7710 if (ret)
7711 return ret;
7712 }
7713
7714 if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
7715 /*
7716 * Don't loop again if we already have no empty_size and
7717 * no empty_cluster.
7718 */
7719 if (ffe_ctl->empty_size == 0 &&
7720 ffe_ctl->empty_cluster == 0)
7721 return -ENOSPC;
7722 ffe_ctl->empty_size = 0;
7723 ffe_ctl->empty_cluster = 0;
7724 }
7725 return 1;
7726 }
7727 return -ENOSPC;
7728}
7729
fec577fb
CM
7730/*
7731 * walks the btree of allocated extents and find a hole of a given size.
7732 * The key ins is changed to record the hole:
a4820398 7733 * ins->objectid == start position
62e2749e 7734 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7735 * ins->offset == the size of the hole.
fec577fb 7736 * Any available blocks before search_start are skipped.
a4820398
MX
7737 *
7738 * If there is no suitable free space, we will record the max size of
7739 * the free space extent currently.
e72d79d6
QW
7740 *
7741 * The overall logic and call chain:
7742 *
7743 * find_free_extent()
7744 * |- Iterate through all block groups
7745 * | |- Get a valid block group
7746 * | |- Try to do clustered allocation in that block group
7747 * | |- Try to do unclustered allocation in that block group
7748 * | |- Check if the result is valid
7749 * | | |- If valid, then exit
7750 * | |- Jump to next block group
7751 * |
7752 * |- Push harder to find free extents
7753 * |- If not found, re-iterate all block groups
fec577fb 7754 */
87bde3cd 7755static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7756 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7757 u64 hint_byte, struct btrfs_key *ins,
7758 u64 flags, int delalloc)
fec577fb 7759{
80eb234a 7760 int ret = 0;
fa9c0d79 7761 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7762 struct btrfs_block_group_cache *block_group = NULL;
b4bd745d 7763 struct find_free_extent_ctl ffe_ctl = {0};
80eb234a 7764 struct btrfs_space_info *space_info;
67377734 7765 bool use_cluster = true;
a5e681d9 7766 bool full_search = false;
fec577fb 7767
0b246afa 7768 WARN_ON(num_bytes < fs_info->sectorsize);
b4bd745d
QW
7769
7770 ffe_ctl.ram_bytes = ram_bytes;
7771 ffe_ctl.num_bytes = num_bytes;
7772 ffe_ctl.empty_size = empty_size;
7773 ffe_ctl.flags = flags;
7774 ffe_ctl.search_start = 0;
7775 ffe_ctl.retry_clustered = false;
7776 ffe_ctl.retry_unclustered = false;
7777 ffe_ctl.delalloc = delalloc;
7778 ffe_ctl.index = btrfs_bg_flags_to_raid_index(flags);
7779 ffe_ctl.have_caching_bg = false;
7780 ffe_ctl.orig_have_caching_bg = false;
7781 ffe_ctl.found_offset = 0;
7782
962a298f 7783 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7784 ins->objectid = 0;
7785 ins->offset = 0;
b1a4d965 7786
71ff6437 7787 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7788
0b246afa 7789 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7790 if (!space_info) {
0b246afa 7791 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7792 return -ENOSPC;
7793 }
2552d17e 7794
67377734 7795 /*
4f4db217
JB
7796 * If our free space is heavily fragmented we may not be able to make
7797 * big contiguous allocations, so instead of doing the expensive search
7798 * for free space, simply return ENOSPC with our max_extent_size so we
7799 * can go ahead and search for a more manageable chunk.
7800 *
7801 * If our max_extent_size is large enough for our allocation simply
7802 * disable clustering since we will likely not be able to find enough
7803 * space to create a cluster and induce latency trying.
67377734 7804 */
4f4db217
JB
7805 if (unlikely(space_info->max_extent_size)) {
7806 spin_lock(&space_info->lock);
7807 if (space_info->max_extent_size &&
7808 num_bytes > space_info->max_extent_size) {
7809 ins->offset = space_info->max_extent_size;
7810 spin_unlock(&space_info->lock);
7811 return -ENOSPC;
7812 } else if (space_info->max_extent_size) {
7813 use_cluster = false;
7814 }
7815 spin_unlock(&space_info->lock);
fa9c0d79 7816 }
0f9dd46c 7817
b4bd745d
QW
7818 last_ptr = fetch_cluster_info(fs_info, space_info,
7819 &ffe_ctl.empty_cluster);
239b14b3 7820 if (last_ptr) {
fa9c0d79
CM
7821 spin_lock(&last_ptr->lock);
7822 if (last_ptr->block_group)
7823 hint_byte = last_ptr->window_start;
c759c4e1
JB
7824 if (last_ptr->fragmented) {
7825 /*
7826 * We still set window_start so we can keep track of the
7827 * last place we found an allocation to try and save
7828 * some time.
7829 */
7830 hint_byte = last_ptr->window_start;
7831 use_cluster = false;
7832 }
fa9c0d79 7833 spin_unlock(&last_ptr->lock);
239b14b3 7834 }
fa9c0d79 7835
b4bd745d
QW
7836 ffe_ctl.search_start = max(ffe_ctl.search_start,
7837 first_logical_byte(fs_info, 0));
7838 ffe_ctl.search_start = max(ffe_ctl.search_start, hint_byte);
7839 if (ffe_ctl.search_start == hint_byte) {
7840 block_group = btrfs_lookup_block_group(fs_info,
7841 ffe_ctl.search_start);
817d52f8
JB
7842 /*
7843 * we don't want to use the block group if it doesn't match our
7844 * allocation bits, or if its not cached.
ccf0e725
JB
7845 *
7846 * However if we are re-searching with an ideal block group
7847 * picked out then we don't care that the block group is cached.
817d52f8 7848 */
b6919a58 7849 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7850 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7851 down_read(&space_info->groups_sem);
44fb5511
CM
7852 if (list_empty(&block_group->list) ||
7853 block_group->ro) {
7854 /*
7855 * someone is removing this block group,
7856 * we can't jump into the have_block_group
7857 * target because our list pointers are not
7858 * valid
7859 */
7860 btrfs_put_block_group(block_group);
7861 up_read(&space_info->groups_sem);
ccf0e725 7862 } else {
b4bd745d 7863 ffe_ctl.index = btrfs_bg_flags_to_raid_index(
3e72ee88 7864 block_group->flags);
e570fd27 7865 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7866 goto have_block_group;
ccf0e725 7867 }
2552d17e 7868 } else if (block_group) {
fa9c0d79 7869 btrfs_put_block_group(block_group);
2552d17e 7870 }
42e70e7a 7871 }
2552d17e 7872search:
b4bd745d
QW
7873 ffe_ctl.have_caching_bg = false;
7874 if (ffe_ctl.index == btrfs_bg_flags_to_raid_index(flags) ||
7875 ffe_ctl.index == 0)
a5e681d9 7876 full_search = true;
80eb234a 7877 down_read(&space_info->groups_sem);
b4bd745d
QW
7878 list_for_each_entry(block_group,
7879 &space_info->block_groups[ffe_ctl.index], list) {
14443937
JM
7880 /* If the block group is read-only, we can skip it entirely. */
7881 if (unlikely(block_group->ro))
7882 continue;
7883
e570fd27 7884 btrfs_grab_block_group(block_group, delalloc);
b4bd745d 7885 ffe_ctl.search_start = block_group->key.objectid;
42e70e7a 7886
83a50de9
CM
7887 /*
7888 * this can happen if we end up cycling through all the
7889 * raid types, but we want to make sure we only allocate
7890 * for the proper type.
7891 */
b6919a58 7892 if (!block_group_bits(block_group, flags)) {
bece2e82 7893 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7894 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7895 BTRFS_BLOCK_GROUP_RAID5 |
7896 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7897 BTRFS_BLOCK_GROUP_RAID10;
7898
7899 /*
7900 * if they asked for extra copies and this block group
7901 * doesn't provide them, bail. This does allow us to
7902 * fill raid0 from raid1.
7903 */
b6919a58 7904 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7905 goto loop;
7906 }
7907
2552d17e 7908have_block_group:
b4bd745d
QW
7909 ffe_ctl.cached = block_group_cache_done(block_group);
7910 if (unlikely(!ffe_ctl.cached)) {
7911 ffe_ctl.have_caching_bg = true;
f6373bf3 7912 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7913 BUG_ON(ret < 0);
7914 ret = 0;
817d52f8
JB
7915 }
7916
36cce922
JB
7917 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7918 goto loop;
0f9dd46c 7919
0a24325e 7920 /*
062c05c4
AO
7921 * Ok we want to try and use the cluster allocator, so
7922 * lets look there
0a24325e 7923 */
c759c4e1 7924 if (last_ptr && use_cluster) {
d06e3bb6 7925 struct btrfs_block_group_cache *cluster_bg = NULL;
fa9c0d79 7926
d06e3bb6
QW
7927 ret = find_free_extent_clustered(block_group, last_ptr,
7928 &ffe_ctl, &cluster_bg);
062c05c4 7929
fa9c0d79 7930 if (ret == 0) {
d06e3bb6
QW
7931 if (cluster_bg && cluster_bg != block_group) {
7932 btrfs_release_block_group(block_group,
7933 delalloc);
7934 block_group = cluster_bg;
fa9c0d79 7935 }
d06e3bb6
QW
7936 goto checks;
7937 } else if (ret == -EAGAIN) {
817d52f8 7938 goto have_block_group;
d06e3bb6
QW
7939 } else if (ret > 0) {
7940 goto loop;
fa9c0d79 7941 }
d06e3bb6 7942 /* ret == -ENOENT case falls through */
fa9c0d79
CM
7943 }
7944
e1a41848
QW
7945 ret = find_free_extent_unclustered(block_group, last_ptr,
7946 &ffe_ctl);
7947 if (ret == -EAGAIN)
817d52f8 7948 goto have_block_group;
e1a41848 7949 else if (ret > 0)
1cdda9b8 7950 goto loop;
e1a41848 7951 /* ret == 0 case falls through */
fa9c0d79 7952checks:
b4bd745d
QW
7953 ffe_ctl.search_start = round_up(ffe_ctl.found_offset,
7954 fs_info->stripesize);
25179201 7955
2552d17e 7956 /* move on to the next group */
b4bd745d 7957 if (ffe_ctl.search_start + num_bytes >
215a63d1 7958 block_group->key.objectid + block_group->key.offset) {
b4bd745d
QW
7959 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7960 num_bytes);
2552d17e 7961 goto loop;
6226cb0a 7962 }
f5a31e16 7963
b4bd745d
QW
7964 if (ffe_ctl.found_offset < ffe_ctl.search_start)
7965 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7966 ffe_ctl.search_start - ffe_ctl.found_offset);
2552d17e 7967
18513091
WX
7968 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7969 num_bytes, delalloc);
f0486c68 7970 if (ret == -EAGAIN) {
b4bd745d
QW
7971 btrfs_add_free_space(block_group, ffe_ctl.found_offset,
7972 num_bytes);
2552d17e 7973 goto loop;
0f9dd46c 7974 }
9cfa3e34 7975 btrfs_inc_block_group_reservations(block_group);
0b86a832 7976
f0486c68 7977 /* we are all good, lets return */
b4bd745d 7978 ins->objectid = ffe_ctl.search_start;
2552d17e 7979 ins->offset = num_bytes;
d2fb3437 7980
b4bd745d
QW
7981 trace_btrfs_reserve_extent(block_group, ffe_ctl.search_start,
7982 num_bytes);
e570fd27 7983 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7984 break;
7985loop:
b4bd745d
QW
7986 ffe_ctl.retry_clustered = false;
7987 ffe_ctl.retry_unclustered = false;
3e72ee88 7988 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
b4bd745d 7989 ffe_ctl.index);
e570fd27 7990 btrfs_release_block_group(block_group, delalloc);
14443937 7991 cond_resched();
2552d17e
JB
7992 }
7993 up_read(&space_info->groups_sem);
7994
e72d79d6
QW
7995 ret = find_free_extent_update_loop(fs_info, last_ptr, ins, &ffe_ctl,
7996 full_search, use_cluster);
7997 if (ret > 0)
b742bb82
YZ
7998 goto search;
7999
4f4db217 8000 if (ret == -ENOSPC) {
b4bd745d
QW
8001 /*
8002 * Use ffe_ctl->total_free_space as fallback if we can't find
8003 * any contiguous hole.
8004 */
8005 if (!ffe_ctl.max_extent_size)
8006 ffe_ctl.max_extent_size = ffe_ctl.total_free_space;
4f4db217 8007 spin_lock(&space_info->lock);
b4bd745d 8008 space_info->max_extent_size = ffe_ctl.max_extent_size;
4f4db217 8009 spin_unlock(&space_info->lock);
b4bd745d 8010 ins->offset = ffe_ctl.max_extent_size;
4f4db217 8011 }
0f70abe2 8012 return ret;
fec577fb 8013}
ec44a35c 8014
b78e5616
JB
8015#define DUMP_BLOCK_RSV(fs_info, rsv_name) \
8016do { \
8017 struct btrfs_block_rsv *__rsv = &(fs_info)->rsv_name; \
8018 spin_lock(&__rsv->lock); \
8019 btrfs_info(fs_info, #rsv_name ": size %llu reserved %llu", \
8020 __rsv->size, __rsv->reserved); \
8021 spin_unlock(&__rsv->lock); \
8022} while (0)
8023
ab8d0fc4
JM
8024static void dump_space_info(struct btrfs_fs_info *fs_info,
8025 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 8026 int dump_block_groups)
0f9dd46c
JB
8027{
8028 struct btrfs_block_group_cache *cache;
b742bb82 8029 int index = 0;
0f9dd46c 8030
9ed74f2d 8031 spin_lock(&info->lock);
ab8d0fc4
JM
8032 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8033 info->flags,
4136135b
LB
8034 info->total_bytes - btrfs_space_info_used(info, true),
8035 info->full ? "" : "not ");
ab8d0fc4
JM
8036 btrfs_info(fs_info,
8037 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8038 info->total_bytes, info->bytes_used, info->bytes_pinned,
8039 info->bytes_reserved, info->bytes_may_use,
8040 info->bytes_readonly);
9ed74f2d
JB
8041 spin_unlock(&info->lock);
8042
b78e5616
JB
8043 DUMP_BLOCK_RSV(fs_info, global_block_rsv);
8044 DUMP_BLOCK_RSV(fs_info, trans_block_rsv);
8045 DUMP_BLOCK_RSV(fs_info, chunk_block_rsv);
8046 DUMP_BLOCK_RSV(fs_info, delayed_block_rsv);
8047 DUMP_BLOCK_RSV(fs_info, delayed_refs_rsv);
8048
9ed74f2d
JB
8049 if (!dump_block_groups)
8050 return;
0f9dd46c 8051
80eb234a 8052 down_read(&info->groups_sem);
b742bb82
YZ
8053again:
8054 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 8055 spin_lock(&cache->lock);
ab8d0fc4
JM
8056 btrfs_info(fs_info,
8057 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8058 cache->key.objectid, cache->key.offset,
8059 btrfs_block_group_used(&cache->item), cache->pinned,
8060 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8061 btrfs_dump_free_space(cache, bytes);
8062 spin_unlock(&cache->lock);
8063 }
b742bb82
YZ
8064 if (++index < BTRFS_NR_RAID_TYPES)
8065 goto again;
80eb234a 8066 up_read(&info->groups_sem);
0f9dd46c 8067}
e8569813 8068
6f47c706
NB
8069/*
8070 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8071 * hole that is at least as big as @num_bytes.
8072 *
8073 * @root - The root that will contain this extent
8074 *
8075 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8076 * is used for accounting purposes. This value differs
8077 * from @num_bytes only in the case of compressed extents.
8078 *
8079 * @num_bytes - Number of bytes to allocate on-disk.
8080 *
8081 * @min_alloc_size - Indicates the minimum amount of space that the
8082 * allocator should try to satisfy. In some cases
8083 * @num_bytes may be larger than what is required and if
8084 * the filesystem is fragmented then allocation fails.
8085 * However, the presence of @min_alloc_size gives a
8086 * chance to try and satisfy the smaller allocation.
8087 *
8088 * @empty_size - A hint that you plan on doing more COW. This is the
8089 * size in bytes the allocator should try to find free
8090 * next to the block it returns. This is just a hint and
8091 * may be ignored by the allocator.
8092 *
8093 * @hint_byte - Hint to the allocator to start searching above the byte
8094 * address passed. It might be ignored.
8095 *
8096 * @ins - This key is modified to record the found hole. It will
8097 * have the following values:
8098 * ins->objectid == start position
8099 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8100 * ins->offset == the size of the hole.
8101 *
8102 * @is_data - Boolean flag indicating whether an extent is
8103 * allocated for data (true) or metadata (false)
8104 *
8105 * @delalloc - Boolean flag indicating whether this allocation is for
8106 * delalloc or not. If 'true' data_rwsem of block groups
8107 * is going to be acquired.
8108 *
8109 *
8110 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8111 * case -ENOSPC is returned then @ins->offset will contain the size of the
8112 * largest available hole the allocator managed to find.
8113 */
18513091 8114int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8115 u64 num_bytes, u64 min_alloc_size,
8116 u64 empty_size, u64 hint_byte,
e570fd27 8117 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8118{
ab8d0fc4 8119 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8120 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8121 u64 flags;
fec577fb 8122 int ret;
925baedd 8123
1b86826d 8124 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8125again:
0b246afa 8126 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8127 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8128 hint_byte, ins, flags, delalloc);
9cfa3e34 8129 if (!ret && !is_data) {
ab8d0fc4 8130 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8131 } else if (ret == -ENOSPC) {
a4820398
MX
8132 if (!final_tried && ins->offset) {
8133 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8134 num_bytes = round_down(num_bytes,
0b246afa 8135 fs_info->sectorsize);
9e622d6b 8136 num_bytes = max(num_bytes, min_alloc_size);
18513091 8137 ram_bytes = num_bytes;
9e622d6b
MX
8138 if (num_bytes == min_alloc_size)
8139 final_tried = true;
8140 goto again;
ab8d0fc4 8141 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8142 struct btrfs_space_info *sinfo;
8143
ab8d0fc4 8144 sinfo = __find_space_info(fs_info, flags);
0b246afa 8145 btrfs_err(fs_info,
5d163e0e
JM
8146 "allocation failed flags %llu, wanted %llu",
8147 flags, num_bytes);
53804280 8148 if (sinfo)
ab8d0fc4 8149 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8150 }
925baedd 8151 }
0f9dd46c
JB
8152
8153 return ret;
e6dcd2dc
CM
8154}
8155
2ff7e61e 8156static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8157 u64 start, u64 len,
8158 int pin, int delalloc)
65b51a00 8159{
0f9dd46c 8160 struct btrfs_block_group_cache *cache;
1f3c79a2 8161 int ret = 0;
0f9dd46c 8162
0b246afa 8163 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8164 if (!cache) {
0b246afa
JM
8165 btrfs_err(fs_info, "Unable to find block group for %llu",
8166 start);
0f9dd46c
JB
8167 return -ENOSPC;
8168 }
1f3c79a2 8169
e688b725 8170 if (pin)
fdf08605 8171 pin_down_extent(cache, start, len, 1);
e688b725 8172 else {
0b246afa 8173 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8174 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8175 btrfs_add_free_space(cache, start, len);
4824f1f4 8176 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8177 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8178 }
31193213 8179
fa9c0d79 8180 btrfs_put_block_group(cache);
e6dcd2dc
CM
8181 return ret;
8182}
8183
2ff7e61e 8184int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8185 u64 start, u64 len, int delalloc)
e688b725 8186{
2ff7e61e 8187 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8188}
8189
2ff7e61e 8190int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8191 u64 start, u64 len)
8192{
2ff7e61e 8193 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8194}
8195
5d4f98a2 8196static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8197 u64 parent, u64 root_objectid,
8198 u64 flags, u64 owner, u64 offset,
8199 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 8200{
ef89b824 8201 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8202 int ret;
e6dcd2dc 8203 struct btrfs_extent_item *extent_item;
5d4f98a2 8204 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8205 struct btrfs_path *path;
5d4f98a2
YZ
8206 struct extent_buffer *leaf;
8207 int type;
8208 u32 size;
26b8003f 8209
5d4f98a2
YZ
8210 if (parent > 0)
8211 type = BTRFS_SHARED_DATA_REF_KEY;
8212 else
8213 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8214
5d4f98a2 8215 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8216
8217 path = btrfs_alloc_path();
db5b493a
TI
8218 if (!path)
8219 return -ENOMEM;
47e4bb98 8220
b9473439 8221 path->leave_spinning = 1;
5d4f98a2
YZ
8222 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8223 ins, size);
79787eaa
JM
8224 if (ret) {
8225 btrfs_free_path(path);
8226 return ret;
8227 }
0f9dd46c 8228
5d4f98a2
YZ
8229 leaf = path->nodes[0];
8230 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8231 struct btrfs_extent_item);
5d4f98a2
YZ
8232 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8233 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8234 btrfs_set_extent_flags(leaf, extent_item,
8235 flags | BTRFS_EXTENT_FLAG_DATA);
8236
8237 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8238 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8239 if (parent > 0) {
8240 struct btrfs_shared_data_ref *ref;
8241 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8242 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8243 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8244 } else {
8245 struct btrfs_extent_data_ref *ref;
8246 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8247 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8248 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8249 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8250 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8251 }
47e4bb98
CM
8252
8253 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8254 btrfs_free_path(path);
f510cfec 8255
25a356d3 8256 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8257 if (ret)
8258 return ret;
8259
6b279408 8260 ret = update_block_group(trans, ins->objectid, ins->offset, 1);
79787eaa 8261 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8262 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8263 ins->objectid, ins->offset);
f5947066
CM
8264 BUG();
8265 }
71ff6437 8266 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8267 return ret;
8268}
8269
5d4f98a2 8270static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8271 struct btrfs_delayed_ref_node *node,
21ebfbe7 8272 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8273{
9dcdbe01 8274 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8275 int ret;
5d4f98a2 8276 struct btrfs_extent_item *extent_item;
4e6bd4e0 8277 struct btrfs_key extent_key;
5d4f98a2
YZ
8278 struct btrfs_tree_block_info *block_info;
8279 struct btrfs_extent_inline_ref *iref;
8280 struct btrfs_path *path;
8281 struct extent_buffer *leaf;
4e6bd4e0 8282 struct btrfs_delayed_tree_ref *ref;
3173a18f 8283 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8284 u64 num_bytes;
21ebfbe7 8285 u64 flags = extent_op->flags_to_set;
0b246afa 8286 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8287
4e6bd4e0
NB
8288 ref = btrfs_delayed_node_to_tree_ref(node);
8289
4e6bd4e0
NB
8290 extent_key.objectid = node->bytenr;
8291 if (skinny_metadata) {
8292 extent_key.offset = ref->level;
8293 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8294 num_bytes = fs_info->nodesize;
8295 } else {
8296 extent_key.offset = node->num_bytes;
8297 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8298 size += sizeof(*block_info);
4e6bd4e0
NB
8299 num_bytes = node->num_bytes;
8300 }
1c2308f8 8301
5d4f98a2 8302 path = btrfs_alloc_path();
80ee54bf 8303 if (!path)
d8926bb3 8304 return -ENOMEM;
56bec294 8305
5d4f98a2
YZ
8306 path->leave_spinning = 1;
8307 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8308 &extent_key, size);
79787eaa 8309 if (ret) {
dd825259 8310 btrfs_free_path(path);
79787eaa
JM
8311 return ret;
8312 }
5d4f98a2
YZ
8313
8314 leaf = path->nodes[0];
8315 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8316 struct btrfs_extent_item);
8317 btrfs_set_extent_refs(leaf, extent_item, 1);
8318 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8319 btrfs_set_extent_flags(leaf, extent_item,
8320 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8321
3173a18f
JB
8322 if (skinny_metadata) {
8323 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8324 } else {
8325 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8326 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8327 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8328 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8329 }
5d4f98a2 8330
d4b20733 8331 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8332 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8333 btrfs_set_extent_inline_ref_type(leaf, iref,
8334 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8335 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8336 } else {
8337 btrfs_set_extent_inline_ref_type(leaf, iref,
8338 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8339 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8340 }
8341
8342 btrfs_mark_buffer_dirty(leaf);
8343 btrfs_free_path(path);
8344
4e6bd4e0
NB
8345 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8346 num_bytes);
1e144fb8
OS
8347 if (ret)
8348 return ret;
8349
6b279408 8350 ret = update_block_group(trans, extent_key.objectid,
6202df69 8351 fs_info->nodesize, 1);
79787eaa 8352 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8353 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8354 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8355 BUG();
8356 }
0be5dc67 8357
4e6bd4e0 8358 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8359 fs_info->nodesize);
5d4f98a2
YZ
8360 return ret;
8361}
8362
8363int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8364 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8365 u64 offset, u64 ram_bytes,
8366 struct btrfs_key *ins)
5d4f98a2 8367{
76675593 8368 struct btrfs_ref generic_ref = { 0 };
5d4f98a2
YZ
8369 int ret;
8370
84f7d8e6 8371 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8372
76675593
QW
8373 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8374 ins->objectid, ins->offset, 0);
8375 btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner, offset);
8a5040f7 8376 btrfs_ref_tree_mod(root->fs_info, &generic_ref);
76675593
QW
8377 ret = btrfs_add_delayed_data_ref(trans, &generic_ref,
8378 ram_bytes, NULL, NULL);
e6dcd2dc
CM
8379 return ret;
8380}
e02119d5
CM
8381
8382/*
8383 * this is used by the tree logging recovery code. It records that
8384 * an extent has been allocated and makes sure to clear the free
8385 * space cache bits as well
8386 */
5d4f98a2 8387int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8388 u64 root_objectid, u64 owner, u64 offset,
8389 struct btrfs_key *ins)
e02119d5 8390{
61da2abf 8391 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8392 int ret;
8393 struct btrfs_block_group_cache *block_group;
ed7a6948 8394 struct btrfs_space_info *space_info;
11833d66 8395
8c2a1a30
JB
8396 /*
8397 * Mixed block groups will exclude before processing the log so we only
01327610 8398 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8399 */
0b246afa 8400 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8401 ret = __exclude_logged_extent(fs_info, ins->objectid,
8402 ins->offset);
b50c6e25 8403 if (ret)
8c2a1a30 8404 return ret;
11833d66
YZ
8405 }
8406
0b246afa 8407 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8408 if (!block_group)
8409 return -EINVAL;
8410
ed7a6948
WX
8411 space_info = block_group->space_info;
8412 spin_lock(&space_info->lock);
8413 spin_lock(&block_group->lock);
8414 space_info->bytes_reserved += ins->offset;
8415 block_group->reserved += ins->offset;
8416 spin_unlock(&block_group->lock);
8417 spin_unlock(&space_info->lock);
8418
ef89b824
NB
8419 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8420 offset, ins, 1);
b50c6e25 8421 btrfs_put_block_group(block_group);
e02119d5
CM
8422 return ret;
8423}
8424
48a3b636
ES
8425static struct extent_buffer *
8426btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8427 u64 bytenr, int level, u64 owner)
65b51a00 8428{
0b246afa 8429 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8430 struct extent_buffer *buf;
8431
2ff7e61e 8432 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8433 if (IS_ERR(buf))
8434 return buf;
8435
b72c3aba
QW
8436 /*
8437 * Extra safety check in case the extent tree is corrupted and extent
8438 * allocator chooses to use a tree block which is already used and
8439 * locked.
8440 */
8441 if (buf->lock_owner == current->pid) {
8442 btrfs_err_rl(fs_info,
8443"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8444 buf->start, btrfs_header_owner(buf), current->pid);
8445 free_extent_buffer(buf);
8446 return ERR_PTR(-EUCLEAN);
8447 }
8448
85d4e461 8449 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8450 btrfs_tree_lock(buf);
6a884d7d 8451 btrfs_clean_tree_block(buf);
3083ee2e 8452 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de 8453
8bead258 8454 btrfs_set_lock_blocking_write(buf);
4db8c528 8455 set_extent_buffer_uptodate(buf);
b4ce94de 8456
bc877d28
NB
8457 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8458 btrfs_set_header_level(buf, level);
8459 btrfs_set_header_bytenr(buf, buf->start);
8460 btrfs_set_header_generation(buf, trans->transid);
8461 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8462 btrfs_set_header_owner(buf, owner);
de37aa51 8463 write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
bc877d28 8464 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8465 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8466 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8467 /*
8468 * we allow two log transactions at a time, use different
52042d8e 8469 * EXTENT bit to differentiate dirty pages.
8cef4e16 8470 */
656f30db 8471 if (buf->log_index == 0)
8cef4e16
YZ
8472 set_extent_dirty(&root->dirty_log_pages, buf->start,
8473 buf->start + buf->len - 1, GFP_NOFS);
8474 else
8475 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8476 buf->start + buf->len - 1);
d0c803c4 8477 } else {
656f30db 8478 buf->log_index = -1;
d0c803c4 8479 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8480 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8481 }
64c12921 8482 trans->dirty = true;
b4ce94de 8483 /* this returns a buffer locked for blocking */
65b51a00
CM
8484 return buf;
8485}
8486
f0486c68
YZ
8487static struct btrfs_block_rsv *
8488use_block_rsv(struct btrfs_trans_handle *trans,
8489 struct btrfs_root *root, u32 blocksize)
8490{
0b246afa 8491 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8492 struct btrfs_block_rsv *block_rsv;
0b246afa 8493 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8494 int ret;
d88033db 8495 bool global_updated = false;
f0486c68
YZ
8496
8497 block_rsv = get_block_rsv(trans, root);
8498
b586b323
MX
8499 if (unlikely(block_rsv->size == 0))
8500 goto try_reserve;
d88033db 8501again:
f0486c68
YZ
8502 ret = block_rsv_use_bytes(block_rsv, blocksize);
8503 if (!ret)
8504 return block_rsv;
8505
b586b323
MX
8506 if (block_rsv->failfast)
8507 return ERR_PTR(ret);
8508
d88033db
MX
8509 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8510 global_updated = true;
0b246afa 8511 update_global_block_rsv(fs_info);
d88033db
MX
8512 goto again;
8513 }
8514
ba2c4d4e
JB
8515 /*
8516 * The global reserve still exists to save us from ourselves, so don't
8517 * warn_on if we are short on our delayed refs reserve.
8518 */
8519 if (block_rsv->type != BTRFS_BLOCK_RSV_DELREFS &&
8520 btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8521 static DEFINE_RATELIMIT_STATE(_rs,
8522 DEFAULT_RATELIMIT_INTERVAL * 10,
8523 /*DEFAULT_RATELIMIT_BURST*/ 1);
8524 if (__ratelimit(&_rs))
8525 WARN(1, KERN_DEBUG
efe120a0 8526 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8527 }
8528try_reserve:
8529 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8530 BTRFS_RESERVE_NO_FLUSH);
8531 if (!ret)
8532 return block_rsv;
8533 /*
8534 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8535 * the global reserve if its space type is the same as the global
8536 * reservation.
b586b323 8537 */
5881cfc9
MX
8538 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8539 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8540 ret = block_rsv_use_bytes(global_rsv, blocksize);
8541 if (!ret)
8542 return global_rsv;
8543 }
8544 return ERR_PTR(ret);
f0486c68
YZ
8545}
8546
8c2a3ca2
JB
8547static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8548 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68 8549{
3a584174 8550 block_rsv_add_bytes(block_rsv, blocksize, false);
ff6bc37e 8551 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8552}
8553
fec577fb 8554/*
f0486c68 8555 * finds a free extent and does all the dirty work required for allocation
67b7859e 8556 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8557 */
4d75f8a9 8558struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8559 struct btrfs_root *root,
8560 u64 parent, u64 root_objectid,
8561 const struct btrfs_disk_key *key,
8562 int level, u64 hint,
8563 u64 empty_size)
fec577fb 8564{
0b246afa 8565 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8566 struct btrfs_key ins;
f0486c68 8567 struct btrfs_block_rsv *block_rsv;
5f39d397 8568 struct extent_buffer *buf;
67b7859e 8569 struct btrfs_delayed_extent_op *extent_op;
ed4f255b 8570 struct btrfs_ref generic_ref = { 0 };
f0486c68
YZ
8571 u64 flags = 0;
8572 int ret;
0b246afa
JM
8573 u32 blocksize = fs_info->nodesize;
8574 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8575
05653ef3 8576#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8577 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8578 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8579 level, root_objectid);
faa2dbf0
JB
8580 if (!IS_ERR(buf))
8581 root->alloc_bytenr += blocksize;
8582 return buf;
8583 }
05653ef3 8584#endif
fccb84c9 8585
f0486c68
YZ
8586 block_rsv = use_block_rsv(trans, root, blocksize);
8587 if (IS_ERR(block_rsv))
8588 return ERR_CAST(block_rsv);
8589
18513091 8590 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8591 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8592 if (ret)
8593 goto out_unuse;
55c69072 8594
bc877d28
NB
8595 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8596 root_objectid);
67b7859e
OS
8597 if (IS_ERR(buf)) {
8598 ret = PTR_ERR(buf);
8599 goto out_free_reserved;
8600 }
f0486c68
YZ
8601
8602 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8603 if (parent == 0)
8604 parent = ins.objectid;
8605 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8606 } else
8607 BUG_ON(parent > 0);
8608
8609 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8610 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8611 if (!extent_op) {
8612 ret = -ENOMEM;
8613 goto out_free_buf;
8614 }
f0486c68
YZ
8615 if (key)
8616 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8617 else
8618 memset(&extent_op->key, 0, sizeof(extent_op->key));
8619 extent_op->flags_to_set = flags;
35b3ad50
DS
8620 extent_op->update_key = skinny_metadata ? false : true;
8621 extent_op->update_flags = true;
8622 extent_op->is_data = false;
b1c79e09 8623 extent_op->level = level;
f0486c68 8624
ed4f255b
QW
8625 btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
8626 ins.objectid, ins.offset, parent);
8627 generic_ref.real_root = root->root_key.objectid;
8628 btrfs_init_tree_ref(&generic_ref, level, root_objectid);
8a5040f7 8629 btrfs_ref_tree_mod(fs_info, &generic_ref);
ed4f255b 8630 ret = btrfs_add_delayed_tree_ref(trans, &generic_ref,
7be07912 8631 extent_op, NULL, NULL);
67b7859e
OS
8632 if (ret)
8633 goto out_free_delayed;
f0486c68 8634 }
fec577fb 8635 return buf;
67b7859e
OS
8636
8637out_free_delayed:
8638 btrfs_free_delayed_extent_op(extent_op);
8639out_free_buf:
8640 free_extent_buffer(buf);
8641out_free_reserved:
2ff7e61e 8642 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8643out_unuse:
0b246afa 8644 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8645 return ERR_PTR(ret);
fec577fb 8646}
a28ec197 8647
2c47e605
YZ
8648struct walk_control {
8649 u64 refs[BTRFS_MAX_LEVEL];
8650 u64 flags[BTRFS_MAX_LEVEL];
8651 struct btrfs_key update_progress;
aea6f028
JB
8652 struct btrfs_key drop_progress;
8653 int drop_level;
2c47e605
YZ
8654 int stage;
8655 int level;
8656 int shared_level;
8657 int update_ref;
8658 int keep_locks;
1c4850e2
YZ
8659 int reada_slot;
8660 int reada_count;
78c52d9e 8661 int restarted;
2c47e605
YZ
8662};
8663
8664#define DROP_REFERENCE 1
8665#define UPDATE_BACKREF 2
8666
1c4850e2
YZ
8667static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8668 struct btrfs_root *root,
8669 struct walk_control *wc,
8670 struct btrfs_path *path)
6407bf6d 8671{
0b246afa 8672 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8673 u64 bytenr;
8674 u64 generation;
8675 u64 refs;
94fcca9f 8676 u64 flags;
5d4f98a2 8677 u32 nritems;
1c4850e2
YZ
8678 struct btrfs_key key;
8679 struct extent_buffer *eb;
6407bf6d 8680 int ret;
1c4850e2
YZ
8681 int slot;
8682 int nread = 0;
6407bf6d 8683
1c4850e2
YZ
8684 if (path->slots[wc->level] < wc->reada_slot) {
8685 wc->reada_count = wc->reada_count * 2 / 3;
8686 wc->reada_count = max(wc->reada_count, 2);
8687 } else {
8688 wc->reada_count = wc->reada_count * 3 / 2;
8689 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8690 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8691 }
7bb86316 8692
1c4850e2
YZ
8693 eb = path->nodes[wc->level];
8694 nritems = btrfs_header_nritems(eb);
bd56b302 8695
1c4850e2
YZ
8696 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8697 if (nread >= wc->reada_count)
8698 break;
bd56b302 8699
2dd3e67b 8700 cond_resched();
1c4850e2
YZ
8701 bytenr = btrfs_node_blockptr(eb, slot);
8702 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8703
1c4850e2
YZ
8704 if (slot == path->slots[wc->level])
8705 goto reada;
5d4f98a2 8706
1c4850e2
YZ
8707 if (wc->stage == UPDATE_BACKREF &&
8708 generation <= root->root_key.offset)
bd56b302
CM
8709 continue;
8710
94fcca9f 8711 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8712 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8713 wc->level - 1, 1, &refs,
8714 &flags);
79787eaa
JM
8715 /* We don't care about errors in readahead. */
8716 if (ret < 0)
8717 continue;
94fcca9f
YZ
8718 BUG_ON(refs == 0);
8719
1c4850e2 8720 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8721 if (refs == 1)
8722 goto reada;
bd56b302 8723
94fcca9f
YZ
8724 if (wc->level == 1 &&
8725 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8726 continue;
1c4850e2
YZ
8727 if (!wc->update_ref ||
8728 generation <= root->root_key.offset)
8729 continue;
8730 btrfs_node_key_to_cpu(eb, &key, slot);
8731 ret = btrfs_comp_cpu_keys(&key,
8732 &wc->update_progress);
8733 if (ret < 0)
8734 continue;
94fcca9f
YZ
8735 } else {
8736 if (wc->level == 1 &&
8737 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8738 continue;
6407bf6d 8739 }
1c4850e2 8740reada:
2ff7e61e 8741 readahead_tree_block(fs_info, bytenr);
1c4850e2 8742 nread++;
20524f02 8743 }
1c4850e2 8744 wc->reada_slot = slot;
20524f02 8745}
2c47e605 8746
f82d02d9 8747/*
2c016dc2 8748 * helper to process tree block while walking down the tree.
2c47e605 8749 *
2c47e605
YZ
8750 * when wc->stage == UPDATE_BACKREF, this function updates
8751 * back refs for pointers in the block.
8752 *
8753 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8754 */
2c47e605 8755static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8756 struct btrfs_root *root,
2c47e605 8757 struct btrfs_path *path,
94fcca9f 8758 struct walk_control *wc, int lookup_info)
f82d02d9 8759{
2ff7e61e 8760 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8761 int level = wc->level;
8762 struct extent_buffer *eb = path->nodes[level];
2c47e605 8763 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8764 int ret;
8765
2c47e605
YZ
8766 if (wc->stage == UPDATE_BACKREF &&
8767 btrfs_header_owner(eb) != root->root_key.objectid)
8768 return 1;
f82d02d9 8769
2c47e605
YZ
8770 /*
8771 * when reference count of tree block is 1, it won't increase
8772 * again. once full backref flag is set, we never clear it.
8773 */
94fcca9f
YZ
8774 if (lookup_info &&
8775 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8776 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8777 BUG_ON(!path->locks[level]);
2ff7e61e 8778 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8779 eb->start, level, 1,
2c47e605
YZ
8780 &wc->refs[level],
8781 &wc->flags[level]);
79787eaa
JM
8782 BUG_ON(ret == -ENOMEM);
8783 if (ret)
8784 return ret;
2c47e605
YZ
8785 BUG_ON(wc->refs[level] == 0);
8786 }
5d4f98a2 8787
2c47e605
YZ
8788 if (wc->stage == DROP_REFERENCE) {
8789 if (wc->refs[level] > 1)
8790 return 1;
f82d02d9 8791
2c47e605 8792 if (path->locks[level] && !wc->keep_locks) {
bd681513 8793 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8794 path->locks[level] = 0;
8795 }
8796 return 0;
8797 }
f82d02d9 8798
2c47e605
YZ
8799 /* wc->stage == UPDATE_BACKREF */
8800 if (!(wc->flags[level] & flag)) {
8801 BUG_ON(!path->locks[level]);
e339a6b0 8802 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8803 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8804 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8805 BUG_ON(ret); /* -ENOMEM */
f5c8daa5 8806 ret = btrfs_set_disk_extent_flags(trans, eb->start,
b1c79e09
JB
8807 eb->len, flag,
8808 btrfs_header_level(eb), 0);
79787eaa 8809 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8810 wc->flags[level] |= flag;
8811 }
8812
8813 /*
8814 * the block is shared by multiple trees, so it's not good to
8815 * keep the tree lock
8816 */
8817 if (path->locks[level] && level > 0) {
bd681513 8818 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8819 path->locks[level] = 0;
8820 }
8821 return 0;
8822}
8823
78c52d9e
JB
8824/*
8825 * This is used to verify a ref exists for this root to deal with a bug where we
8826 * would have a drop_progress key that hadn't been updated properly.
8827 */
8828static int check_ref_exists(struct btrfs_trans_handle *trans,
8829 struct btrfs_root *root, u64 bytenr, u64 parent,
8830 int level)
8831{
8832 struct btrfs_path *path;
8833 struct btrfs_extent_inline_ref *iref;
8834 int ret;
8835
8836 path = btrfs_alloc_path();
8837 if (!path)
8838 return -ENOMEM;
8839
8840 ret = lookup_extent_backref(trans, path, &iref, bytenr,
8841 root->fs_info->nodesize, parent,
8842 root->root_key.objectid, level, 0);
8843 btrfs_free_path(path);
8844 if (ret == -ENOENT)
8845 return 0;
8846 if (ret < 0)
8847 return ret;
8848 return 1;
8849}
8850
1c4850e2 8851/*
2c016dc2 8852 * helper to process tree block pointer.
1c4850e2
YZ
8853 *
8854 * when wc->stage == DROP_REFERENCE, this function checks
8855 * reference count of the block pointed to. if the block
8856 * is shared and we need update back refs for the subtree
8857 * rooted at the block, this function changes wc->stage to
8858 * UPDATE_BACKREF. if the block is shared and there is no
8859 * need to update back, this function drops the reference
8860 * to the block.
8861 *
8862 * NOTE: return value 1 means we should stop walking down.
8863 */
8864static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8865 struct btrfs_root *root,
8866 struct btrfs_path *path,
94fcca9f 8867 struct walk_control *wc, int *lookup_info)
1c4850e2 8868{
0b246afa 8869 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8870 u64 bytenr;
8871 u64 generation;
8872 u64 parent;
1c4850e2 8873 struct btrfs_key key;
581c1760 8874 struct btrfs_key first_key;
ffd4bb2a 8875 struct btrfs_ref ref = { 0 };
1c4850e2
YZ
8876 struct extent_buffer *next;
8877 int level = wc->level;
8878 int reada = 0;
8879 int ret = 0;
1152651a 8880 bool need_account = false;
1c4850e2
YZ
8881
8882 generation = btrfs_node_ptr_generation(path->nodes[level],
8883 path->slots[level]);
8884 /*
8885 * if the lower level block was created before the snapshot
8886 * was created, we know there is no need to update back refs
8887 * for the subtree
8888 */
8889 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8890 generation <= root->root_key.offset) {
8891 *lookup_info = 1;
1c4850e2 8892 return 1;
94fcca9f 8893 }
1c4850e2
YZ
8894
8895 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8896 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8897 path->slots[level]);
1c4850e2 8898
0b246afa 8899 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8900 if (!next) {
2ff7e61e 8901 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8902 if (IS_ERR(next))
8903 return PTR_ERR(next);
8904
b2aaaa3b
JB
8905 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8906 level - 1);
1c4850e2
YZ
8907 reada = 1;
8908 }
8909 btrfs_tree_lock(next);
8bead258 8910 btrfs_set_lock_blocking_write(next);
1c4850e2 8911
2ff7e61e 8912 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8913 &wc->refs[level - 1],
8914 &wc->flags[level - 1]);
4867268c
JB
8915 if (ret < 0)
8916 goto out_unlock;
79787eaa 8917
c2cf52eb 8918 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8919 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8920 ret = -EIO;
8921 goto out_unlock;
c2cf52eb 8922 }
94fcca9f 8923 *lookup_info = 0;
1c4850e2 8924
94fcca9f 8925 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8926 if (wc->refs[level - 1] > 1) {
1152651a 8927 need_account = true;
94fcca9f
YZ
8928 if (level == 1 &&
8929 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8930 goto skip;
8931
1c4850e2
YZ
8932 if (!wc->update_ref ||
8933 generation <= root->root_key.offset)
8934 goto skip;
8935
8936 btrfs_node_key_to_cpu(path->nodes[level], &key,
8937 path->slots[level]);
8938 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8939 if (ret < 0)
8940 goto skip;
8941
8942 wc->stage = UPDATE_BACKREF;
8943 wc->shared_level = level - 1;
8944 }
94fcca9f
YZ
8945 } else {
8946 if (level == 1 &&
8947 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8948 goto skip;
1c4850e2
YZ
8949 }
8950
b9fab919 8951 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8952 btrfs_tree_unlock(next);
8953 free_extent_buffer(next);
8954 next = NULL;
94fcca9f 8955 *lookup_info = 1;
1c4850e2
YZ
8956 }
8957
8958 if (!next) {
8959 if (reada && level == 1)
8960 reada_walk_down(trans, root, wc, path);
581c1760
QW
8961 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8962 &first_key);
64c043de
LB
8963 if (IS_ERR(next)) {
8964 return PTR_ERR(next);
8965 } else if (!extent_buffer_uptodate(next)) {
416bc658 8966 free_extent_buffer(next);
97d9a8a4 8967 return -EIO;
416bc658 8968 }
1c4850e2 8969 btrfs_tree_lock(next);
8bead258 8970 btrfs_set_lock_blocking_write(next);
1c4850e2
YZ
8971 }
8972
8973 level--;
4867268c
JB
8974 ASSERT(level == btrfs_header_level(next));
8975 if (level != btrfs_header_level(next)) {
8976 btrfs_err(root->fs_info, "mismatched level");
8977 ret = -EIO;
8978 goto out_unlock;
8979 }
1c4850e2
YZ
8980 path->nodes[level] = next;
8981 path->slots[level] = 0;
bd681513 8982 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8983 wc->level = level;
8984 if (wc->level == 1)
8985 wc->reada_slot = 0;
8986 return 0;
8987skip:
8988 wc->refs[level - 1] = 0;
8989 wc->flags[level - 1] = 0;
94fcca9f
YZ
8990 if (wc->stage == DROP_REFERENCE) {
8991 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8992 parent = path->nodes[level]->start;
8993 } else {
4867268c 8994 ASSERT(root->root_key.objectid ==
94fcca9f 8995 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8996 if (root->root_key.objectid !=
8997 btrfs_header_owner(path->nodes[level])) {
8998 btrfs_err(root->fs_info,
8999 "mismatched block owner");
9000 ret = -EIO;
9001 goto out_unlock;
9002 }
94fcca9f
YZ
9003 parent = 0;
9004 }
1c4850e2 9005
78c52d9e
JB
9006 /*
9007 * If we had a drop_progress we need to verify the refs are set
9008 * as expected. If we find our ref then we know that from here
9009 * on out everything should be correct, and we can clear the
9010 * ->restarted flag.
9011 */
9012 if (wc->restarted) {
9013 ret = check_ref_exists(trans, root, bytenr, parent,
9014 level - 1);
9015 if (ret < 0)
9016 goto out_unlock;
9017 if (ret == 0)
9018 goto no_delete;
9019 ret = 0;
9020 wc->restarted = 0;
9021 }
9022
2cd86d30
QW
9023 /*
9024 * Reloc tree doesn't contribute to qgroup numbers, and we have
9025 * already accounted them at merge time (replace_path),
9026 * thus we could skip expensive subtree trace here.
9027 */
9028 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
9029 need_account) {
deb40627 9030 ret = btrfs_qgroup_trace_subtree(trans, next,
33d1f05c 9031 generation, level - 1);
1152651a 9032 if (ret) {
0b246afa 9033 btrfs_err_rl(fs_info,
5d163e0e
JM
9034 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
9035 ret);
1152651a
MF
9036 }
9037 }
aea6f028
JB
9038
9039 /*
9040 * We need to update the next key in our walk control so we can
9041 * update the drop_progress key accordingly. We don't care if
9042 * find_next_key doesn't find a key because that means we're at
9043 * the end and are going to clean up now.
9044 */
9045 wc->drop_level = level;
9046 find_next_key(path, level, &wc->drop_progress);
9047
ffd4bb2a
QW
9048 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
9049 fs_info->nodesize, parent);
9050 btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid);
9051 ret = btrfs_free_extent(trans, &ref);
4867268c
JB
9052 if (ret)
9053 goto out_unlock;
1c4850e2 9054 }
78c52d9e 9055no_delete:
4867268c
JB
9056 *lookup_info = 1;
9057 ret = 1;
9058
9059out_unlock:
1c4850e2
YZ
9060 btrfs_tree_unlock(next);
9061 free_extent_buffer(next);
4867268c
JB
9062
9063 return ret;
1c4850e2
YZ
9064}
9065
2c47e605 9066/*
2c016dc2 9067 * helper to process tree block while walking up the tree.
2c47e605
YZ
9068 *
9069 * when wc->stage == DROP_REFERENCE, this function drops
9070 * reference count on the block.
9071 *
9072 * when wc->stage == UPDATE_BACKREF, this function changes
9073 * wc->stage back to DROP_REFERENCE if we changed wc->stage
9074 * to UPDATE_BACKREF previously while processing the block.
9075 *
9076 * NOTE: return value 1 means we should stop walking up.
9077 */
9078static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
9079 struct btrfs_root *root,
9080 struct btrfs_path *path,
9081 struct walk_control *wc)
9082{
0b246afa 9083 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 9084 int ret;
2c47e605
YZ
9085 int level = wc->level;
9086 struct extent_buffer *eb = path->nodes[level];
9087 u64 parent = 0;
9088
9089 if (wc->stage == UPDATE_BACKREF) {
9090 BUG_ON(wc->shared_level < level);
9091 if (level < wc->shared_level)
9092 goto out;
9093
2c47e605
YZ
9094 ret = find_next_key(path, level + 1, &wc->update_progress);
9095 if (ret > 0)
9096 wc->update_ref = 0;
9097
9098 wc->stage = DROP_REFERENCE;
9099 wc->shared_level = -1;
9100 path->slots[level] = 0;
9101
9102 /*
9103 * check reference count again if the block isn't locked.
9104 * we should start walking down the tree again if reference
9105 * count is one.
9106 */
9107 if (!path->locks[level]) {
9108 BUG_ON(level == 0);
9109 btrfs_tree_lock(eb);
8bead258 9110 btrfs_set_lock_blocking_write(eb);
bd681513 9111 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9112
2ff7e61e 9113 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 9114 eb->start, level, 1,
2c47e605
YZ
9115 &wc->refs[level],
9116 &wc->flags[level]);
79787eaa
JM
9117 if (ret < 0) {
9118 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9119 path->locks[level] = 0;
79787eaa
JM
9120 return ret;
9121 }
2c47e605
YZ
9122 BUG_ON(wc->refs[level] == 0);
9123 if (wc->refs[level] == 1) {
bd681513 9124 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 9125 path->locks[level] = 0;
2c47e605
YZ
9126 return 1;
9127 }
f82d02d9 9128 }
2c47e605 9129 }
f82d02d9 9130
2c47e605
YZ
9131 /* wc->stage == DROP_REFERENCE */
9132 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 9133
2c47e605
YZ
9134 if (wc->refs[level] == 1) {
9135 if (level == 0) {
9136 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 9137 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 9138 else
e339a6b0 9139 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 9140 BUG_ON(ret); /* -ENOMEM */
c4140cbf
QW
9141 if (is_fstree(root->root_key.objectid)) {
9142 ret = btrfs_qgroup_trace_leaf_items(trans, eb);
9143 if (ret) {
9144 btrfs_err_rl(fs_info,
9145 "error %d accounting leaf items, quota is out of sync, rescan required",
5d163e0e 9146 ret);
c4140cbf 9147 }
1152651a 9148 }
2c47e605 9149 }
6a884d7d 9150 /* make block locked assertion in btrfs_clean_tree_block happy */
2c47e605
YZ
9151 if (!path->locks[level] &&
9152 btrfs_header_generation(eb) == trans->transid) {
9153 btrfs_tree_lock(eb);
8bead258 9154 btrfs_set_lock_blocking_write(eb);
bd681513 9155 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9156 }
6a884d7d 9157 btrfs_clean_tree_block(eb);
2c47e605
YZ
9158 }
9159
9160 if (eb == root->node) {
9161 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9162 parent = eb->start;
65c6e82b
QW
9163 else if (root->root_key.objectid != btrfs_header_owner(eb))
9164 goto owner_mismatch;
2c47e605
YZ
9165 } else {
9166 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9167 parent = path->nodes[level + 1]->start;
65c6e82b
QW
9168 else if (root->root_key.objectid !=
9169 btrfs_header_owner(path->nodes[level + 1]))
9170 goto owner_mismatch;
f82d02d9 9171 }
f82d02d9 9172
5581a51a 9173 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9174out:
9175 wc->refs[level] = 0;
9176 wc->flags[level] = 0;
f0486c68 9177 return 0;
65c6e82b
QW
9178
9179owner_mismatch:
9180 btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9181 btrfs_header_owner(eb), root->root_key.objectid);
9182 return -EUCLEAN;
2c47e605
YZ
9183}
9184
9185static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9186 struct btrfs_root *root,
9187 struct btrfs_path *path,
9188 struct walk_control *wc)
9189{
2c47e605 9190 int level = wc->level;
94fcca9f 9191 int lookup_info = 1;
2c47e605
YZ
9192 int ret;
9193
9194 while (level >= 0) {
94fcca9f 9195 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9196 if (ret > 0)
9197 break;
9198
9199 if (level == 0)
9200 break;
9201
7a7965f8
YZ
9202 if (path->slots[level] >=
9203 btrfs_header_nritems(path->nodes[level]))
9204 break;
9205
94fcca9f 9206 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9207 if (ret > 0) {
9208 path->slots[level]++;
9209 continue;
90d2c51d
MX
9210 } else if (ret < 0)
9211 return ret;
1c4850e2 9212 level = wc->level;
f82d02d9 9213 }
f82d02d9
YZ
9214 return 0;
9215}
9216
d397712b 9217static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9218 struct btrfs_root *root,
f82d02d9 9219 struct btrfs_path *path,
2c47e605 9220 struct walk_control *wc, int max_level)
20524f02 9221{
2c47e605 9222 int level = wc->level;
20524f02 9223 int ret;
9f3a7427 9224
2c47e605
YZ
9225 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9226 while (level < max_level && path->nodes[level]) {
9227 wc->level = level;
9228 if (path->slots[level] + 1 <
9229 btrfs_header_nritems(path->nodes[level])) {
9230 path->slots[level]++;
20524f02
CM
9231 return 0;
9232 } else {
2c47e605
YZ
9233 ret = walk_up_proc(trans, root, path, wc);
9234 if (ret > 0)
9235 return 0;
65c6e82b
QW
9236 if (ret < 0)
9237 return ret;
bd56b302 9238
2c47e605 9239 if (path->locks[level]) {
bd681513
CM
9240 btrfs_tree_unlock_rw(path->nodes[level],
9241 path->locks[level]);
2c47e605 9242 path->locks[level] = 0;
f82d02d9 9243 }
2c47e605
YZ
9244 free_extent_buffer(path->nodes[level]);
9245 path->nodes[level] = NULL;
9246 level++;
20524f02
CM
9247 }
9248 }
9249 return 1;
9250}
9251
9aca1d51 9252/*
2c47e605
YZ
9253 * drop a subvolume tree.
9254 *
9255 * this function traverses the tree freeing any blocks that only
9256 * referenced by the tree.
9257 *
9258 * when a shared tree block is found. this function decreases its
9259 * reference count by one. if update_ref is true, this function
9260 * also make sure backrefs for the shared block and all lower level
9261 * blocks are properly updated.
9d1a2a3a
DS
9262 *
9263 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9264 */
2c536799 9265int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9266 struct btrfs_block_rsv *block_rsv, int update_ref,
9267 int for_reloc)
20524f02 9268{
ab8d0fc4 9269 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9270 struct btrfs_path *path;
2c47e605 9271 struct btrfs_trans_handle *trans;
ab8d0fc4 9272 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9273 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9274 struct walk_control *wc;
9275 struct btrfs_key key;
9276 int err = 0;
9277 int ret;
9278 int level;
d29a9f62 9279 bool root_dropped = false;
20524f02 9280
4fd786e6 9281 btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
1152651a 9282
5caf2a00 9283 path = btrfs_alloc_path();
cb1b69f4
TI
9284 if (!path) {
9285 err = -ENOMEM;
9286 goto out;
9287 }
20524f02 9288
2c47e605 9289 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9290 if (!wc) {
9291 btrfs_free_path(path);
cb1b69f4
TI
9292 err = -ENOMEM;
9293 goto out;
38a1a919 9294 }
2c47e605 9295
a22285a6 9296 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9297 if (IS_ERR(trans)) {
9298 err = PTR_ERR(trans);
9299 goto out_free;
9300 }
98d5dc13 9301
0568e82d
JB
9302 err = btrfs_run_delayed_items(trans);
9303 if (err)
9304 goto out_end_trans;
9305
3fd0a558
YZ
9306 if (block_rsv)
9307 trans->block_rsv = block_rsv;
2c47e605 9308
83354f07
JB
9309 /*
9310 * This will help us catch people modifying the fs tree while we're
9311 * dropping it. It is unsafe to mess with the fs tree while it's being
9312 * dropped as we unlock the root node and parent nodes as we walk down
9313 * the tree, assuming nothing will change. If something does change
9314 * then we'll have stale information and drop references to blocks we've
9315 * already dropped.
9316 */
9317 set_bit(BTRFS_ROOT_DELETING, &root->state);
9f3a7427 9318 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9319 level = btrfs_header_level(root->node);
5d4f98a2 9320 path->nodes[level] = btrfs_lock_root_node(root);
8bead258 9321 btrfs_set_lock_blocking_write(path->nodes[level]);
9f3a7427 9322 path->slots[level] = 0;
bd681513 9323 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9324 memset(&wc->update_progress, 0,
9325 sizeof(wc->update_progress));
9f3a7427 9326 } else {
9f3a7427 9327 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9328 memcpy(&wc->update_progress, &key,
9329 sizeof(wc->update_progress));
9330
6702ed49 9331 level = root_item->drop_level;
2c47e605 9332 BUG_ON(level == 0);
6702ed49 9333 path->lowest_level = level;
2c47e605
YZ
9334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9335 path->lowest_level = 0;
9336 if (ret < 0) {
9337 err = ret;
79787eaa 9338 goto out_end_trans;
9f3a7427 9339 }
1c4850e2 9340 WARN_ON(ret > 0);
2c47e605 9341
7d9eb12c
CM
9342 /*
9343 * unlock our path, this is safe because only this
9344 * function is allowed to delete this snapshot
9345 */
5d4f98a2 9346 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9347
9348 level = btrfs_header_level(root->node);
9349 while (1) {
9350 btrfs_tree_lock(path->nodes[level]);
8bead258 9351 btrfs_set_lock_blocking_write(path->nodes[level]);
fec386ac 9352 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9353
2ff7e61e 9354 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9355 path->nodes[level]->start,
3173a18f 9356 level, 1, &wc->refs[level],
2c47e605 9357 &wc->flags[level]);
79787eaa
JM
9358 if (ret < 0) {
9359 err = ret;
9360 goto out_end_trans;
9361 }
2c47e605
YZ
9362 BUG_ON(wc->refs[level] == 0);
9363
9364 if (level == root_item->drop_level)
9365 break;
9366
9367 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9368 path->locks[level] = 0;
2c47e605
YZ
9369 WARN_ON(wc->refs[level] != 1);
9370 level--;
9371 }
9f3a7427 9372 }
2c47e605 9373
78c52d9e 9374 wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
2c47e605
YZ
9375 wc->level = level;
9376 wc->shared_level = -1;
9377 wc->stage = DROP_REFERENCE;
9378 wc->update_ref = update_ref;
9379 wc->keep_locks = 0;
0b246afa 9380 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9381
d397712b 9382 while (1) {
9d1a2a3a 9383
2c47e605
YZ
9384 ret = walk_down_tree(trans, root, path, wc);
9385 if (ret < 0) {
9386 err = ret;
20524f02 9387 break;
2c47e605 9388 }
9aca1d51 9389
2c47e605
YZ
9390 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9391 if (ret < 0) {
9392 err = ret;
20524f02 9393 break;
2c47e605
YZ
9394 }
9395
9396 if (ret > 0) {
9397 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9398 break;
9399 }
2c47e605
YZ
9400
9401 if (wc->stage == DROP_REFERENCE) {
aea6f028
JB
9402 wc->drop_level = wc->level;
9403 btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
9404 &wc->drop_progress,
9405 path->slots[wc->drop_level]);
9406 }
9407 btrfs_cpu_key_to_disk(&root_item->drop_progress,
9408 &wc->drop_progress);
9409 root_item->drop_level = wc->drop_level;
2c47e605
YZ
9410
9411 BUG_ON(wc->level == 0);
3a45bb20 9412 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9413 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9414 ret = btrfs_update_root(trans, tree_root,
9415 &root->root_key,
9416 root_item);
79787eaa 9417 if (ret) {
66642832 9418 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9419 err = ret;
9420 goto out_end_trans;
9421 }
2c47e605 9422
3a45bb20 9423 btrfs_end_transaction_throttle(trans);
2ff7e61e 9424 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9425 btrfs_debug(fs_info,
9426 "drop snapshot early exit");
3c8f2422
JB
9427 err = -EAGAIN;
9428 goto out_free;
9429 }
9430
a22285a6 9431 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9432 if (IS_ERR(trans)) {
9433 err = PTR_ERR(trans);
9434 goto out_free;
9435 }
3fd0a558
YZ
9436 if (block_rsv)
9437 trans->block_rsv = block_rsv;
c3e69d58 9438 }
20524f02 9439 }
b3b4aa74 9440 btrfs_release_path(path);
79787eaa
JM
9441 if (err)
9442 goto out_end_trans;
2c47e605 9443
ab9ce7d4 9444 ret = btrfs_del_root(trans, &root->root_key);
79787eaa 9445 if (ret) {
66642832 9446 btrfs_abort_transaction(trans, ret);
e19182c0 9447 err = ret;
79787eaa
JM
9448 goto out_end_trans;
9449 }
2c47e605 9450
76dda93c 9451 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9452 ret = btrfs_find_root(tree_root, &root->root_key, path,
9453 NULL, NULL);
79787eaa 9454 if (ret < 0) {
66642832 9455 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9456 err = ret;
9457 goto out_end_trans;
9458 } else if (ret > 0) {
84cd948c
JB
9459 /* if we fail to delete the orphan item this time
9460 * around, it'll get picked up the next time.
9461 *
9462 * The most common failure here is just -ENOENT.
9463 */
9464 btrfs_del_orphan_item(trans, tree_root,
9465 root->root_key.objectid);
76dda93c
YZ
9466 }
9467 }
9468
27cdeb70 9469 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9470 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9471 } else {
9472 free_extent_buffer(root->node);
9473 free_extent_buffer(root->commit_root);
b0feb9d9 9474 btrfs_put_fs_root(root);
76dda93c 9475 }
d29a9f62 9476 root_dropped = true;
79787eaa 9477out_end_trans:
3a45bb20 9478 btrfs_end_transaction_throttle(trans);
79787eaa 9479out_free:
2c47e605 9480 kfree(wc);
5caf2a00 9481 btrfs_free_path(path);
cb1b69f4 9482out:
d29a9f62
JB
9483 /*
9484 * So if we need to stop dropping the snapshot for whatever reason we
9485 * need to make sure to add it back to the dead root list so that we
9486 * keep trying to do the work later. This also cleans up roots if we
9487 * don't have it in the radix (like when we recover after a power fail
9488 * or unmount) so we don't leak memory.
9489 */
897ca819 9490 if (!for_reloc && !root_dropped)
d29a9f62 9491 btrfs_add_dead_root(root);
90515e7f 9492 if (err && err != -EAGAIN)
ab8d0fc4 9493 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9494 return err;
20524f02 9495}
9078a3e1 9496
2c47e605
YZ
9497/*
9498 * drop subtree rooted at tree block 'node'.
9499 *
9500 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9501 * only used by relocation code
2c47e605 9502 */
f82d02d9
YZ
9503int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9504 struct btrfs_root *root,
9505 struct extent_buffer *node,
9506 struct extent_buffer *parent)
9507{
0b246afa 9508 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9509 struct btrfs_path *path;
2c47e605 9510 struct walk_control *wc;
f82d02d9
YZ
9511 int level;
9512 int parent_level;
9513 int ret = 0;
9514 int wret;
9515
2c47e605
YZ
9516 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9517
f82d02d9 9518 path = btrfs_alloc_path();
db5b493a
TI
9519 if (!path)
9520 return -ENOMEM;
f82d02d9 9521
2c47e605 9522 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9523 if (!wc) {
9524 btrfs_free_path(path);
9525 return -ENOMEM;
9526 }
2c47e605 9527
b9447ef8 9528 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9529 parent_level = btrfs_header_level(parent);
9530 extent_buffer_get(parent);
9531 path->nodes[parent_level] = parent;
9532 path->slots[parent_level] = btrfs_header_nritems(parent);
9533
b9447ef8 9534 btrfs_assert_tree_locked(node);
f82d02d9 9535 level = btrfs_header_level(node);
f82d02d9
YZ
9536 path->nodes[level] = node;
9537 path->slots[level] = 0;
bd681513 9538 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9539
9540 wc->refs[parent_level] = 1;
9541 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9542 wc->level = level;
9543 wc->shared_level = -1;
9544 wc->stage = DROP_REFERENCE;
9545 wc->update_ref = 0;
9546 wc->keep_locks = 1;
0b246afa 9547 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9548
9549 while (1) {
2c47e605
YZ
9550 wret = walk_down_tree(trans, root, path, wc);
9551 if (wret < 0) {
f82d02d9 9552 ret = wret;
f82d02d9 9553 break;
2c47e605 9554 }
f82d02d9 9555
2c47e605 9556 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9557 if (wret < 0)
9558 ret = wret;
9559 if (wret != 0)
9560 break;
9561 }
9562
2c47e605 9563 kfree(wc);
f82d02d9
YZ
9564 btrfs_free_path(path);
9565 return ret;
9566}
9567
6202df69 9568static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9569{
9570 u64 num_devices;
fc67c450 9571 u64 stripped;
e4d8ec0f 9572
fc67c450
ID
9573 /*
9574 * if restripe for this chunk_type is on pick target profile and
9575 * return, otherwise do the usual balance
9576 */
6202df69 9577 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9578 if (stripped)
9579 return extended_to_chunk(stripped);
e4d8ec0f 9580
6202df69 9581 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9582
fc67c450 9583 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9584 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9585 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9586
ec44a35c
CM
9587 if (num_devices == 1) {
9588 stripped |= BTRFS_BLOCK_GROUP_DUP;
9589 stripped = flags & ~stripped;
9590
9591 /* turn raid0 into single device chunks */
9592 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9593 return stripped;
9594
9595 /* turn mirroring into duplication */
9596 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9597 BTRFS_BLOCK_GROUP_RAID10))
9598 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9599 } else {
9600 /* they already had raid on here, just return */
ec44a35c
CM
9601 if (flags & stripped)
9602 return flags;
9603
9604 stripped |= BTRFS_BLOCK_GROUP_DUP;
9605 stripped = flags & ~stripped;
9606
9607 /* switch duplicated blocks with raid1 */
9608 if (flags & BTRFS_BLOCK_GROUP_DUP)
9609 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9610
e3176ca2 9611 /* this is drive concat, leave it alone */
ec44a35c 9612 }
e3176ca2 9613
ec44a35c
CM
9614 return flags;
9615}
9616
868f401a 9617static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9618{
f0486c68
YZ
9619 struct btrfs_space_info *sinfo = cache->space_info;
9620 u64 num_bytes;
3ece54e5 9621 u64 sinfo_used;
199c36ea 9622 u64 min_allocable_bytes;
f0486c68 9623 int ret = -ENOSPC;
0ef3e66b 9624
199c36ea
MX
9625 /*
9626 * We need some metadata space and system metadata space for
9627 * allocating chunks in some corner cases until we force to set
9628 * it to be readonly.
9629 */
9630 if ((sinfo->flags &
9631 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9632 !force)
ee22184b 9633 min_allocable_bytes = SZ_1M;
199c36ea
MX
9634 else
9635 min_allocable_bytes = 0;
9636
f0486c68
YZ
9637 spin_lock(&sinfo->lock);
9638 spin_lock(&cache->lock);
61cfea9b
W
9639
9640 if (cache->ro) {
868f401a 9641 cache->ro++;
61cfea9b
W
9642 ret = 0;
9643 goto out;
9644 }
9645
f0486c68
YZ
9646 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9647 cache->bytes_super - btrfs_block_group_used(&cache->item);
3ece54e5 9648 sinfo_used = btrfs_space_info_used(sinfo, true);
f0486c68 9649
3ece54e5
QW
9650 if (sinfo_used + num_bytes + min_allocable_bytes <=
9651 sinfo->total_bytes) {
f0486c68 9652 sinfo->bytes_readonly += num_bytes;
868f401a 9653 cache->ro++;
633c0aad 9654 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9655 ret = 0;
9656 }
61cfea9b 9657out:
f0486c68
YZ
9658 spin_unlock(&cache->lock);
9659 spin_unlock(&sinfo->lock);
3ece54e5
QW
9660 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
9661 btrfs_info(cache->fs_info,
9662 "unable to make block group %llu ro",
9663 cache->key.objectid);
9664 btrfs_info(cache->fs_info,
9665 "sinfo_used=%llu bg_num_bytes=%llu min_allocable=%llu",
9666 sinfo_used, num_bytes, min_allocable_bytes);
9667 dump_space_info(cache->fs_info, cache->space_info, 0, 0);
9668 }
f0486c68
YZ
9669 return ret;
9670}
7d9eb12c 9671
c83488af 9672int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9673
f0486c68 9674{
c83488af 9675 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9676 struct btrfs_trans_handle *trans;
9677 u64 alloc_flags;
9678 int ret;
7d9eb12c 9679
1bbc621e 9680again:
5e00f193 9681 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9682 if (IS_ERR(trans))
9683 return PTR_ERR(trans);
5d4f98a2 9684
1bbc621e
CM
9685 /*
9686 * we're not allowed to set block groups readonly after the dirty
9687 * block groups cache has started writing. If it already started,
9688 * back off and let this transaction commit
9689 */
0b246afa 9690 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9691 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9692 u64 transid = trans->transid;
9693
0b246afa 9694 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9695 btrfs_end_transaction(trans);
1bbc621e 9696
2ff7e61e 9697 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9698 if (ret)
9699 return ret;
9700 goto again;
9701 }
9702
153c35b6
CM
9703 /*
9704 * if we are changing raid levels, try to allocate a corresponding
9705 * block group with the new raid level.
9706 */
0b246afa 9707 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9708 if (alloc_flags != cache->flags) {
01458828 9709 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9710 CHUNK_ALLOC_FORCE);
9711 /*
9712 * ENOSPC is allowed here, we may have enough space
9713 * already allocated at the new raid level to
9714 * carry on
9715 */
9716 if (ret == -ENOSPC)
9717 ret = 0;
9718 if (ret < 0)
9719 goto out;
9720 }
1bbc621e 9721
868f401a 9722 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9723 if (!ret)
9724 goto out;
2ff7e61e 9725 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9726 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9727 if (ret < 0)
9728 goto out;
868f401a 9729 ret = inc_block_group_ro(cache, 0);
f0486c68 9730out:
2f081088 9731 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9732 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9733 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9734 check_system_chunk(trans, alloc_flags);
34441361 9735 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9736 }
0b246afa 9737 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9738
3a45bb20 9739 btrfs_end_transaction(trans);
f0486c68
YZ
9740 return ret;
9741}
5d4f98a2 9742
43a7e99d 9743int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9744{
43a7e99d 9745 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9746
01458828 9747 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9748}
9749
6d07bcec
MX
9750/*
9751 * helper to account the unused space of all the readonly block group in the
633c0aad 9752 * space_info. takes mirrors into account.
6d07bcec 9753 */
633c0aad 9754u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9755{
9756 struct btrfs_block_group_cache *block_group;
9757 u64 free_bytes = 0;
9758 int factor;
9759
01327610 9760 /* It's df, we don't care if it's racy */
633c0aad
JB
9761 if (list_empty(&sinfo->ro_bgs))
9762 return 0;
9763
9764 spin_lock(&sinfo->lock);
9765 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9766 spin_lock(&block_group->lock);
9767
9768 if (!block_group->ro) {
9769 spin_unlock(&block_group->lock);
9770 continue;
9771 }
9772
46df06b8 9773 factor = btrfs_bg_type_to_factor(block_group->flags);
6d07bcec
MX
9774 free_bytes += (block_group->key.offset -
9775 btrfs_block_group_used(&block_group->item)) *
9776 factor;
9777
9778 spin_unlock(&block_group->lock);
9779 }
6d07bcec
MX
9780 spin_unlock(&sinfo->lock);
9781
9782 return free_bytes;
9783}
9784
2ff7e61e 9785void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9786{
f0486c68
YZ
9787 struct btrfs_space_info *sinfo = cache->space_info;
9788 u64 num_bytes;
9789
9790 BUG_ON(!cache->ro);
9791
9792 spin_lock(&sinfo->lock);
9793 spin_lock(&cache->lock);
868f401a
Z
9794 if (!--cache->ro) {
9795 num_bytes = cache->key.offset - cache->reserved -
9796 cache->pinned - cache->bytes_super -
9797 btrfs_block_group_used(&cache->item);
9798 sinfo->bytes_readonly -= num_bytes;
9799 list_del_init(&cache->ro_list);
9800 }
f0486c68
YZ
9801 spin_unlock(&cache->lock);
9802 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9803}
9804
ba1bf481 9805/*
52042d8e 9806 * Checks to see if it's even possible to relocate this block group.
ba1bf481
JB
9807 *
9808 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9809 * ok to go ahead and try.
9810 */
6bccf3ab 9811int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9812{
ba1bf481
JB
9813 struct btrfs_block_group_cache *block_group;
9814 struct btrfs_space_info *space_info;
0b246afa 9815 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9816 struct btrfs_device *device;
cdcb725c 9817 u64 min_free;
6719db6a
JB
9818 u64 dev_min = 1;
9819 u64 dev_nr = 0;
4a5e98f5 9820 u64 target;
0305bc27 9821 int debug;
cdcb725c 9822 int index;
ba1bf481
JB
9823 int full = 0;
9824 int ret = 0;
1a40e23b 9825
0b246afa 9826 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9827
0b246afa 9828 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9829
ba1bf481 9830 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9831 if (!block_group) {
9832 if (debug)
0b246afa 9833 btrfs_warn(fs_info,
0305bc27
QW
9834 "can't find block group for bytenr %llu",
9835 bytenr);
ba1bf481 9836 return -1;
0305bc27 9837 }
1a40e23b 9838
cdcb725c 9839 min_free = btrfs_block_group_used(&block_group->item);
9840
ba1bf481 9841 /* no bytes used, we're good */
cdcb725c 9842 if (!min_free)
1a40e23b
ZY
9843 goto out;
9844
ba1bf481
JB
9845 space_info = block_group->space_info;
9846 spin_lock(&space_info->lock);
17d217fe 9847
ba1bf481 9848 full = space_info->full;
17d217fe 9849
ba1bf481
JB
9850 /*
9851 * if this is the last block group we have in this space, we can't
7ce618db
CM
9852 * relocate it unless we're able to allocate a new chunk below.
9853 *
9854 * Otherwise, we need to make sure we have room in the space to handle
9855 * all of the extents from this block group. If we can, we're good
ba1bf481 9856 */
7ce618db 9857 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9858 (btrfs_space_info_used(space_info, false) + min_free <
9859 space_info->total_bytes)) {
ba1bf481
JB
9860 spin_unlock(&space_info->lock);
9861 goto out;
17d217fe 9862 }
ba1bf481 9863 spin_unlock(&space_info->lock);
ea8c2819 9864
ba1bf481
JB
9865 /*
9866 * ok we don't have enough space, but maybe we have free space on our
9867 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9868 * alloc devices and guess if we have enough space. if this block
9869 * group is going to be restriped, run checks against the target
9870 * profile instead of the current one.
ba1bf481
JB
9871 */
9872 ret = -1;
ea8c2819 9873
cdcb725c 9874 /*
9875 * index:
9876 * 0: raid10
9877 * 1: raid1
9878 * 2: dup
9879 * 3: raid0
9880 * 4: single
9881 */
0b246afa 9882 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9883 if (target) {
3e72ee88 9884 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9885 } else {
9886 /*
9887 * this is just a balance, so if we were marked as full
9888 * we know there is no space for a new chunk
9889 */
0305bc27
QW
9890 if (full) {
9891 if (debug)
0b246afa
JM
9892 btrfs_warn(fs_info,
9893 "no space to alloc new chunk for block group %llu",
9894 block_group->key.objectid);
4a5e98f5 9895 goto out;
0305bc27 9896 }
4a5e98f5 9897
3e72ee88 9898 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9899 }
9900
e6ec716f 9901 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9902 dev_min = 4;
6719db6a
JB
9903 /* Divide by 2 */
9904 min_free >>= 1;
e6ec716f 9905 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9906 dev_min = 2;
e6ec716f 9907 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9908 /* Multiply by 2 */
9909 min_free <<= 1;
e6ec716f 9910 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9911 dev_min = fs_devices->rw_devices;
47c5713f 9912 min_free = div64_u64(min_free, dev_min);
cdcb725c 9913 }
9914
0b246afa 9915 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9916 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9917 u64 dev_offset;
56bec294 9918
ba1bf481
JB
9919 /*
9920 * check to make sure we can actually find a chunk with enough
9921 * space to fit our block group in.
9922 */
63a212ab 9923 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9924 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
60dfdf25 9925 ret = find_free_dev_extent(device, min_free,
7bfc837d 9926 &dev_offset, NULL);
ba1bf481 9927 if (!ret)
cdcb725c 9928 dev_nr++;
9929
9930 if (dev_nr >= dev_min)
73e48b27 9931 break;
cdcb725c 9932
ba1bf481 9933 ret = -1;
725c8463 9934 }
edbd8d4e 9935 }
0305bc27 9936 if (debug && ret == -1)
0b246afa
JM
9937 btrfs_warn(fs_info,
9938 "no space to allocate a new chunk for block group %llu",
9939 block_group->key.objectid);
9940 mutex_unlock(&fs_info->chunk_mutex);
edbd8d4e 9941out:
ba1bf481 9942 btrfs_put_block_group(block_group);
edbd8d4e
CM
9943 return ret;
9944}
9945
6bccf3ab
JM
9946static int find_first_block_group(struct btrfs_fs_info *fs_info,
9947 struct btrfs_path *path,
9948 struct btrfs_key *key)
0b86a832 9949{
6bccf3ab 9950 struct btrfs_root *root = fs_info->extent_root;
925baedd 9951 int ret = 0;
0b86a832
CM
9952 struct btrfs_key found_key;
9953 struct extent_buffer *leaf;
514c7dca
QW
9954 struct btrfs_block_group_item bg;
9955 u64 flags;
0b86a832 9956 int slot;
edbd8d4e 9957
0b86a832
CM
9958 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9959 if (ret < 0)
925baedd
CM
9960 goto out;
9961
d397712b 9962 while (1) {
0b86a832 9963 slot = path->slots[0];
edbd8d4e 9964 leaf = path->nodes[0];
0b86a832
CM
9965 if (slot >= btrfs_header_nritems(leaf)) {
9966 ret = btrfs_next_leaf(root, path);
9967 if (ret == 0)
9968 continue;
9969 if (ret < 0)
925baedd 9970 goto out;
0b86a832 9971 break;
edbd8d4e 9972 }
0b86a832 9973 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9974
0b86a832 9975 if (found_key.objectid >= key->objectid &&
925baedd 9976 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9977 struct extent_map_tree *em_tree;
9978 struct extent_map *em;
9979
9980 em_tree = &root->fs_info->mapping_tree.map_tree;
9981 read_lock(&em_tree->lock);
9982 em = lookup_extent_mapping(em_tree, found_key.objectid,
9983 found_key.offset);
9984 read_unlock(&em_tree->lock);
9985 if (!em) {
0b246afa 9986 btrfs_err(fs_info,
6fb37b75
LB
9987 "logical %llu len %llu found bg but no related chunk",
9988 found_key.objectid, found_key.offset);
9989 ret = -ENOENT;
514c7dca
QW
9990 } else if (em->start != found_key.objectid ||
9991 em->len != found_key.offset) {
9992 btrfs_err(fs_info,
9993 "block group %llu len %llu mismatch with chunk %llu len %llu",
9994 found_key.objectid, found_key.offset,
9995 em->start, em->len);
9996 ret = -EUCLEAN;
6fb37b75 9997 } else {
514c7dca
QW
9998 read_extent_buffer(leaf, &bg,
9999 btrfs_item_ptr_offset(leaf, slot),
10000 sizeof(bg));
10001 flags = btrfs_block_group_flags(&bg) &
10002 BTRFS_BLOCK_GROUP_TYPE_MASK;
10003
10004 if (flags != (em->map_lookup->type &
10005 BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10006 btrfs_err(fs_info,
10007"block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
10008 found_key.objectid,
10009 found_key.offset, flags,
10010 (BTRFS_BLOCK_GROUP_TYPE_MASK &
10011 em->map_lookup->type));
10012 ret = -EUCLEAN;
10013 } else {
10014 ret = 0;
10015 }
6fb37b75 10016 }
187ee58c 10017 free_extent_map(em);
925baedd
CM
10018 goto out;
10019 }
0b86a832 10020 path->slots[0]++;
edbd8d4e 10021 }
925baedd 10022out:
0b86a832 10023 return ret;
edbd8d4e
CM
10024}
10025
0af3d00b
JB
10026void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
10027{
10028 struct btrfs_block_group_cache *block_group;
10029 u64 last = 0;
10030
10031 while (1) {
10032 struct inode *inode;
10033
10034 block_group = btrfs_lookup_first_block_group(info, last);
10035 while (block_group) {
3aa7c7a3 10036 wait_block_group_cache_done(block_group);
0af3d00b
JB
10037 spin_lock(&block_group->lock);
10038 if (block_group->iref)
10039 break;
10040 spin_unlock(&block_group->lock);
f87b7eb8 10041 block_group = next_block_group(block_group);
0af3d00b
JB
10042 }
10043 if (!block_group) {
10044 if (last == 0)
10045 break;
10046 last = 0;
10047 continue;
10048 }
10049
10050 inode = block_group->inode;
10051 block_group->iref = 0;
10052 block_group->inode = NULL;
10053 spin_unlock(&block_group->lock);
f3bca802 10054 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
10055 iput(inode);
10056 last = block_group->key.objectid + block_group->key.offset;
10057 btrfs_put_block_group(block_group);
10058 }
10059}
10060
5cdd7db6
FM
10061/*
10062 * Must be called only after stopping all workers, since we could have block
10063 * group caching kthreads running, and therefore they could race with us if we
10064 * freed the block groups before stopping them.
10065 */
1a40e23b
ZY
10066int btrfs_free_block_groups(struct btrfs_fs_info *info)
10067{
10068 struct btrfs_block_group_cache *block_group;
4184ea7f 10069 struct btrfs_space_info *space_info;
11833d66 10070 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
10071 struct rb_node *n;
10072
9e351cc8 10073 down_write(&info->commit_root_sem);
11833d66
YZ
10074 while (!list_empty(&info->caching_block_groups)) {
10075 caching_ctl = list_entry(info->caching_block_groups.next,
10076 struct btrfs_caching_control, list);
10077 list_del(&caching_ctl->list);
10078 put_caching_control(caching_ctl);
10079 }
9e351cc8 10080 up_write(&info->commit_root_sem);
11833d66 10081
47ab2a6c
JB
10082 spin_lock(&info->unused_bgs_lock);
10083 while (!list_empty(&info->unused_bgs)) {
10084 block_group = list_first_entry(&info->unused_bgs,
10085 struct btrfs_block_group_cache,
10086 bg_list);
10087 list_del_init(&block_group->bg_list);
10088 btrfs_put_block_group(block_group);
10089 }
10090 spin_unlock(&info->unused_bgs_lock);
10091
1a40e23b
ZY
10092 spin_lock(&info->block_group_cache_lock);
10093 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
10094 block_group = rb_entry(n, struct btrfs_block_group_cache,
10095 cache_node);
1a40e23b
ZY
10096 rb_erase(&block_group->cache_node,
10097 &info->block_group_cache_tree);
01eacb27 10098 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
10099 spin_unlock(&info->block_group_cache_lock);
10100
80eb234a 10101 down_write(&block_group->space_info->groups_sem);
1a40e23b 10102 list_del(&block_group->list);
80eb234a 10103 up_write(&block_group->space_info->groups_sem);
d2fb3437 10104
3c14874a
JB
10105 /*
10106 * We haven't cached this block group, which means we could
10107 * possibly have excluded extents on this block group.
10108 */
36cce922
JB
10109 if (block_group->cached == BTRFS_CACHE_NO ||
10110 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 10111 free_excluded_extents(block_group);
3c14874a 10112
817d52f8 10113 btrfs_remove_free_space_cache(block_group);
5cdd7db6 10114 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
10115 ASSERT(list_empty(&block_group->dirty_list));
10116 ASSERT(list_empty(&block_group->io_list));
10117 ASSERT(list_empty(&block_group->bg_list));
10118 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 10119 btrfs_put_block_group(block_group);
d899e052
YZ
10120
10121 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
10122 }
10123 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
10124
10125 /* now that all the block groups are freed, go through and
10126 * free all the space_info structs. This is only called during
10127 * the final stages of unmount, and so we know nobody is
10128 * using them. We call synchronize_rcu() once before we start,
10129 * just to be on the safe side.
10130 */
10131 synchronize_rcu();
10132
8929ecfa
YZ
10133 release_global_block_rsv(info);
10134
67871254 10135 while (!list_empty(&info->space_info)) {
6ab0a202
JM
10136 int i;
10137
4184ea7f
CM
10138 space_info = list_entry(info->space_info.next,
10139 struct btrfs_space_info,
10140 list);
d555b6c3
JB
10141
10142 /*
10143 * Do not hide this behind enospc_debug, this is actually
10144 * important and indicates a real bug if this happens.
10145 */
10146 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 10147 space_info->bytes_reserved > 0 ||
d555b6c3 10148 space_info->bytes_may_use > 0))
ab8d0fc4 10149 dump_space_info(info, space_info, 0, 0);
4184ea7f 10150 list_del(&space_info->list);
6ab0a202
JM
10151 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10152 struct kobject *kobj;
c1895442
JM
10153 kobj = space_info->block_group_kobjs[i];
10154 space_info->block_group_kobjs[i] = NULL;
10155 if (kobj) {
6ab0a202
JM
10156 kobject_del(kobj);
10157 kobject_put(kobj);
10158 }
10159 }
10160 kobject_del(&space_info->kobj);
10161 kobject_put(&space_info->kobj);
4184ea7f 10162 }
1a40e23b
ZY
10163 return 0;
10164}
10165
75cb379d
JM
10166/* link_block_group will queue up kobjects to add when we're reclaim-safe */
10167void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
10168{
10169 struct btrfs_space_info *space_info;
10170 struct raid_kobject *rkobj;
10171 LIST_HEAD(list);
10172 int index;
10173 int ret = 0;
10174
10175 spin_lock(&fs_info->pending_raid_kobjs_lock);
10176 list_splice_init(&fs_info->pending_raid_kobjs, &list);
10177 spin_unlock(&fs_info->pending_raid_kobjs_lock);
10178
10179 list_for_each_entry(rkobj, &list, list) {
10180 space_info = __find_space_info(fs_info, rkobj->flags);
10181 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
10182
10183 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10184 "%s", get_raid_name(index));
10185 if (ret) {
10186 kobject_put(&rkobj->kobj);
10187 break;
10188 }
10189 }
10190 if (ret)
10191 btrfs_warn(fs_info,
10192 "failed to add kobject for block cache, ignoring");
10193}
10194
c434d21c 10195static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10196{
c434d21c 10197 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10198 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10199 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10200 bool first = false;
b742bb82
YZ
10201
10202 down_write(&space_info->groups_sem);
ed55b6ac
JM
10203 if (list_empty(&space_info->block_groups[index]))
10204 first = true;
10205 list_add_tail(&cache->list, &space_info->block_groups[index]);
10206 up_write(&space_info->groups_sem);
10207
10208 if (first) {
75cb379d
JM
10209 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10210 if (!rkobj) {
10211 btrfs_warn(cache->fs_info,
10212 "couldn't alloc memory for raid level kobject");
10213 return;
6ab0a202 10214 }
75cb379d
JM
10215 rkobj->flags = cache->flags;
10216 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10217
10218 spin_lock(&fs_info->pending_raid_kobjs_lock);
10219 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10220 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10221 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10222 }
b742bb82
YZ
10223}
10224
920e4a58 10225static struct btrfs_block_group_cache *
2ff7e61e
JM
10226btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10227 u64 start, u64 size)
920e4a58
MX
10228{
10229 struct btrfs_block_group_cache *cache;
10230
10231 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10232 if (!cache)
10233 return NULL;
10234
10235 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10236 GFP_NOFS);
10237 if (!cache->free_space_ctl) {
10238 kfree(cache);
10239 return NULL;
10240 }
10241
10242 cache->key.objectid = start;
10243 cache->key.offset = size;
10244 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10245
0b246afa 10246 cache->fs_info = fs_info;
e4ff5fb5 10247 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10248 set_free_space_tree_thresholds(cache);
10249
920e4a58
MX
10250 atomic_set(&cache->count, 1);
10251 spin_lock_init(&cache->lock);
e570fd27 10252 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10253 INIT_LIST_HEAD(&cache->list);
10254 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10255 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10256 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10257 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10258 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10259 btrfs_init_free_space_ctl(cache);
04216820 10260 atomic_set(&cache->trimming, 0);
a5ed9182 10261 mutex_init(&cache->free_space_lock);
0966a7b1 10262 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10263
10264 return cache;
10265}
10266
7ef49515
QW
10267
10268/*
10269 * Iterate all chunks and verify that each of them has the corresponding block
10270 * group
10271 */
10272static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10273{
10274 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10275 struct extent_map *em;
10276 struct btrfs_block_group_cache *bg;
10277 u64 start = 0;
10278 int ret = 0;
10279
10280 while (1) {
10281 read_lock(&map_tree->map_tree.lock);
10282 /*
10283 * lookup_extent_mapping will return the first extent map
10284 * intersecting the range, so setting @len to 1 is enough to
10285 * get the first chunk.
10286 */
10287 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10288 read_unlock(&map_tree->map_tree.lock);
10289 if (!em)
10290 break;
10291
10292 bg = btrfs_lookup_block_group(fs_info, em->start);
10293 if (!bg) {
10294 btrfs_err(fs_info,
10295 "chunk start=%llu len=%llu doesn't have corresponding block group",
10296 em->start, em->len);
10297 ret = -EUCLEAN;
10298 free_extent_map(em);
10299 break;
10300 }
10301 if (bg->key.objectid != em->start ||
10302 bg->key.offset != em->len ||
10303 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10304 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10305 btrfs_err(fs_info,
10306"chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10307 em->start, em->len,
10308 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10309 bg->key.objectid, bg->key.offset,
10310 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10311 ret = -EUCLEAN;
10312 free_extent_map(em);
10313 btrfs_put_block_group(bg);
10314 break;
10315 }
10316 start = em->start + em->len;
10317 free_extent_map(em);
10318 btrfs_put_block_group(bg);
10319 }
10320 return ret;
10321}
10322
5b4aacef 10323int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10324{
10325 struct btrfs_path *path;
10326 int ret;
9078a3e1 10327 struct btrfs_block_group_cache *cache;
6324fbf3 10328 struct btrfs_space_info *space_info;
9078a3e1
CM
10329 struct btrfs_key key;
10330 struct btrfs_key found_key;
5f39d397 10331 struct extent_buffer *leaf;
0af3d00b
JB
10332 int need_clear = 0;
10333 u64 cache_gen;
49303381
LB
10334 u64 feature;
10335 int mixed;
10336
10337 feature = btrfs_super_incompat_flags(info->super_copy);
10338 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10339
9078a3e1 10340 key.objectid = 0;
0b86a832 10341 key.offset = 0;
962a298f 10342 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10343 path = btrfs_alloc_path();
10344 if (!path)
10345 return -ENOMEM;
e4058b54 10346 path->reada = READA_FORWARD;
9078a3e1 10347
0b246afa
JM
10348 cache_gen = btrfs_super_cache_generation(info->super_copy);
10349 if (btrfs_test_opt(info, SPACE_CACHE) &&
10350 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10351 need_clear = 1;
0b246afa 10352 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10353 need_clear = 1;
0af3d00b 10354
d397712b 10355 while (1) {
6bccf3ab 10356 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10357 if (ret > 0)
10358 break;
0b86a832
CM
10359 if (ret != 0)
10360 goto error;
920e4a58 10361
5f39d397
CM
10362 leaf = path->nodes[0];
10363 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10364
2ff7e61e 10365 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10366 found_key.offset);
9078a3e1 10367 if (!cache) {
0b86a832 10368 ret = -ENOMEM;
f0486c68 10369 goto error;
9078a3e1 10370 }
96303081 10371
cf7c1ef6
LB
10372 if (need_clear) {
10373 /*
10374 * When we mount with old space cache, we need to
10375 * set BTRFS_DC_CLEAR and set dirty flag.
10376 *
10377 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10378 * truncate the old free space cache inode and
10379 * setup a new one.
10380 * b) Setting 'dirty flag' makes sure that we flush
10381 * the new space cache info onto disk.
10382 */
0b246afa 10383 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10384 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10385 }
0af3d00b 10386
5f39d397
CM
10387 read_extent_buffer(leaf, &cache->item,
10388 btrfs_item_ptr_offset(leaf, path->slots[0]),
10389 sizeof(cache->item));
920e4a58 10390 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10391 if (!mixed &&
10392 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10393 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10394 btrfs_err(info,
10395"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10396 cache->key.objectid);
10397 ret = -EINVAL;
10398 goto error;
10399 }
0b86a832 10400
9078a3e1 10401 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10402 btrfs_release_path(path);
34d52cb6 10403
3c14874a
JB
10404 /*
10405 * We need to exclude the super stripes now so that the space
10406 * info has super bytes accounted for, otherwise we'll think
10407 * we have more space than we actually do.
10408 */
3c4da657 10409 ret = exclude_super_stripes(cache);
835d974f
JB
10410 if (ret) {
10411 /*
10412 * We may have excluded something, so call this just in
10413 * case.
10414 */
9e715da8 10415 free_excluded_extents(cache);
920e4a58 10416 btrfs_put_block_group(cache);
835d974f
JB
10417 goto error;
10418 }
3c14874a 10419
817d52f8
JB
10420 /*
10421 * check for two cases, either we are full, and therefore
10422 * don't need to bother with the caching work since we won't
10423 * find any space, or we are empty, and we can just add all
52042d8e 10424 * the space in and be done with it. This saves us _a_lot_ of
817d52f8
JB
10425 * time, particularly in the full case.
10426 */
10427 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10428 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10429 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 10430 free_excluded_extents(cache);
817d52f8 10431 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10432 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10433 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10434 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10435 found_key.objectid +
10436 found_key.offset);
9e715da8 10437 free_excluded_extents(cache);
817d52f8 10438 }
96b5179d 10439
0b246afa 10440 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10441 if (ret) {
10442 btrfs_remove_free_space_cache(cache);
10443 btrfs_put_block_group(cache);
10444 goto error;
10445 }
10446
0b246afa 10447 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10448 update_space_info(info, cache->flags, found_key.offset,
10449 btrfs_block_group_used(&cache->item),
10450 cache->bytes_super, &space_info);
8c579fe7 10451
6324fbf3 10452 cache->space_info = space_info;
1b2da372 10453
c434d21c 10454 link_block_group(cache);
0f9dd46c 10455
0b246afa 10456 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10457 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10458 inc_block_group_ro(cache, 1);
47ab2a6c 10459 } else if (btrfs_block_group_used(&cache->item) == 0) {
031f24da
QW
10460 ASSERT(list_empty(&cache->bg_list));
10461 btrfs_mark_bg_unused(cache);
47ab2a6c 10462 }
9078a3e1 10463 }
b742bb82 10464
0b246afa 10465 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10466 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10467 (BTRFS_BLOCK_GROUP_RAID10 |
10468 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10469 BTRFS_BLOCK_GROUP_RAID5 |
10470 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10471 BTRFS_BLOCK_GROUP_DUP)))
10472 continue;
10473 /*
10474 * avoid allocating from un-mirrored block group if there are
10475 * mirrored block groups.
10476 */
1095cc0d 10477 list_for_each_entry(cache,
10478 &space_info->block_groups[BTRFS_RAID_RAID0],
10479 list)
868f401a 10480 inc_block_group_ro(cache, 1);
1095cc0d 10481 list_for_each_entry(cache,
10482 &space_info->block_groups[BTRFS_RAID_SINGLE],
10483 list)
868f401a 10484 inc_block_group_ro(cache, 1);
9078a3e1 10485 }
f0486c68 10486
75cb379d 10487 btrfs_add_raid_kobjects(info);
f0486c68 10488 init_global_block_rsv(info);
7ef49515 10489 ret = check_chunk_block_group_mappings(info);
0b86a832 10490error:
9078a3e1 10491 btrfs_free_path(path);
0b86a832 10492 return ret;
9078a3e1 10493}
6324fbf3 10494
6c686b35 10495void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10496{
6c686b35 10497 struct btrfs_fs_info *fs_info = trans->fs_info;
545e3366 10498 struct btrfs_block_group_cache *block_group;
0b246afa 10499 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10500 struct btrfs_block_group_item item;
10501 struct btrfs_key key;
10502 int ret = 0;
10503
5ce55557
FM
10504 if (!trans->can_flush_pending_bgs)
10505 return;
10506
545e3366
JB
10507 while (!list_empty(&trans->new_bgs)) {
10508 block_group = list_first_entry(&trans->new_bgs,
10509 struct btrfs_block_group_cache,
10510 bg_list);
ea658bad 10511 if (ret)
c92f6be3 10512 goto next;
ea658bad
JB
10513
10514 spin_lock(&block_group->lock);
10515 memcpy(&item, &block_group->item, sizeof(item));
10516 memcpy(&key, &block_group->key, sizeof(key));
10517 spin_unlock(&block_group->lock);
10518
10519 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10520 sizeof(item));
10521 if (ret)
66642832 10522 btrfs_abort_transaction(trans, ret);
97aff912 10523 ret = btrfs_finish_chunk_alloc(trans, key.objectid, key.offset);
6df9a95e 10524 if (ret)
66642832 10525 btrfs_abort_transaction(trans, ret);
e4e0711c 10526 add_block_group_free_space(trans, block_group);
1e144fb8 10527 /* already aborted the transaction if it failed. */
c92f6be3 10528next:
ba2c4d4e 10529 btrfs_delayed_refs_rsv_release(fs_info, 1);
c92f6be3 10530 list_del_init(&block_group->bg_list);
ea658bad 10531 }
5ce55557 10532 btrfs_trans_release_chunk_metadata(trans);
ea658bad
JB
10533}
10534
e7e02096 10535int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10536 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10537{
e7e02096 10538 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10539 struct btrfs_block_group_cache *cache;
0b246afa 10540 int ret;
6324fbf3 10541
90787766 10542 btrfs_set_log_full_commit(trans);
e02119d5 10543
2ff7e61e 10544 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10545 if (!cache)
10546 return -ENOMEM;
34d52cb6 10547
6324fbf3 10548 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10549 btrfs_set_block_group_chunk_objectid(&cache->item,
10550 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10551 btrfs_set_block_group_flags(&cache->item, type);
10552
920e4a58 10553 cache->flags = type;
11833d66 10554 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10555 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10556 cache->needs_free_space = 1;
3c4da657 10557 ret = exclude_super_stripes(cache);
835d974f
JB
10558 if (ret) {
10559 /*
10560 * We may have excluded something, so call this just in
10561 * case.
10562 */
9e715da8 10563 free_excluded_extents(cache);
920e4a58 10564 btrfs_put_block_group(cache);
835d974f
JB
10565 return ret;
10566 }
96303081 10567
4457c1c7 10568 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10569
9e715da8 10570 free_excluded_extents(cache);
11833d66 10571
d0bd4560 10572#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10573 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10574 u64 new_bytes_used = size - bytes_used;
10575
10576 bytes_used += new_bytes_used >> 1;
2ff7e61e 10577 fragment_free_space(cache);
d0bd4560
JB
10578 }
10579#endif
2e6e5183 10580 /*
2be12ef7
NB
10581 * Ensure the corresponding space_info object is created and
10582 * assigned to our block group. We want our bg to be added to the rbtree
10583 * with its ->space_info set.
2e6e5183 10584 */
2be12ef7 10585 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10586 ASSERT(cache->space_info);
2e6e5183 10587
0b246afa 10588 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10589 if (ret) {
10590 btrfs_remove_free_space_cache(cache);
10591 btrfs_put_block_group(cache);
10592 return ret;
10593 }
10594
2e6e5183
FM
10595 /*
10596 * Now that our block group has its ->space_info set and is inserted in
10597 * the rbtree, update the space info's counters.
10598 */
0b246afa 10599 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10600 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10601 cache->bytes_super, &cache->space_info);
0b246afa 10602 update_global_block_rsv(fs_info);
1b2da372 10603
c434d21c 10604 link_block_group(cache);
6324fbf3 10605
47ab2a6c 10606 list_add_tail(&cache->bg_list, &trans->new_bgs);
ba2c4d4e
JB
10607 trans->delayed_ref_updates++;
10608 btrfs_update_delayed_refs_rsv(trans);
6324fbf3 10609
0b246afa 10610 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10611 return 0;
10612}
1a40e23b 10613
10ea00f5
ID
10614static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10615{
899c81ea
ID
10616 u64 extra_flags = chunk_to_extended(flags) &
10617 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10618
de98ced9 10619 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10620 if (flags & BTRFS_BLOCK_GROUP_DATA)
10621 fs_info->avail_data_alloc_bits &= ~extra_flags;
10622 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10623 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10624 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10625 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10626 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10627}
10628
1a40e23b 10629int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10630 u64 group_start, struct extent_map *em)
1a40e23b 10631{
5a98ec01 10632 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10633 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10634 struct btrfs_path *path;
10635 struct btrfs_block_group_cache *block_group;
44fb5511 10636 struct btrfs_free_cluster *cluster;
0b246afa 10637 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10638 struct btrfs_key key;
0af3d00b 10639 struct inode *inode;
c1895442 10640 struct kobject *kobj = NULL;
1a40e23b 10641 int ret;
10ea00f5 10642 int index;
89a55897 10643 int factor;
4f69cb98 10644 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10645 bool remove_em;
ba2c4d4e 10646 bool remove_rsv = false;
1a40e23b 10647
6bccf3ab 10648 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10649 BUG_ON(!block_group);
c146afad 10650 BUG_ON(!block_group->ro);
1a40e23b 10651
4ed0a7a3 10652 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10653 /*
10654 * Free the reserved super bytes from this block group before
10655 * remove it.
10656 */
9e715da8 10657 free_excluded_extents(block_group);
fd708b81
JB
10658 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10659 block_group->key.offset);
9f7c43c9 10660
1a40e23b 10661 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10662 index = btrfs_bg_flags_to_raid_index(block_group->flags);
46df06b8 10663 factor = btrfs_bg_type_to_factor(block_group->flags);
1a40e23b 10664
44fb5511 10665 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10666 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10667 spin_lock(&cluster->refill_lock);
10668 btrfs_return_cluster_to_free_space(block_group, cluster);
10669 spin_unlock(&cluster->refill_lock);
10670
10671 /*
10672 * make sure this block group isn't part of a metadata
10673 * allocation cluster
10674 */
0b246afa 10675 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10676 spin_lock(&cluster->refill_lock);
10677 btrfs_return_cluster_to_free_space(block_group, cluster);
10678 spin_unlock(&cluster->refill_lock);
10679
1a40e23b 10680 path = btrfs_alloc_path();
d8926bb3
MF
10681 if (!path) {
10682 ret = -ENOMEM;
10683 goto out;
10684 }
1a40e23b 10685
1bbc621e
CM
10686 /*
10687 * get the inode first so any iput calls done for the io_list
10688 * aren't the final iput (no unlinks allowed now)
10689 */
7949f339 10690 inode = lookup_free_space_inode(block_group, path);
1bbc621e
CM
10691
10692 mutex_lock(&trans->transaction->cache_write_mutex);
10693 /*
52042d8e 10694 * Make sure our free space cache IO is done before removing the
1bbc621e
CM
10695 * free space inode
10696 */
10697 spin_lock(&trans->transaction->dirty_bgs_lock);
10698 if (!list_empty(&block_group->io_list)) {
10699 list_del_init(&block_group->io_list);
10700
10701 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10702
10703 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10704 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10705 btrfs_put_block_group(block_group);
10706 spin_lock(&trans->transaction->dirty_bgs_lock);
10707 }
10708
10709 if (!list_empty(&block_group->dirty_list)) {
10710 list_del_init(&block_group->dirty_list);
ba2c4d4e 10711 remove_rsv = true;
1bbc621e
CM
10712 btrfs_put_block_group(block_group);
10713 }
10714 spin_unlock(&trans->transaction->dirty_bgs_lock);
10715 mutex_unlock(&trans->transaction->cache_write_mutex);
10716
0af3d00b 10717 if (!IS_ERR(inode)) {
73f2e545 10718 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10719 if (ret) {
10720 btrfs_add_delayed_iput(inode);
10721 goto out;
10722 }
0af3d00b
JB
10723 clear_nlink(inode);
10724 /* One for the block groups ref */
10725 spin_lock(&block_group->lock);
10726 if (block_group->iref) {
10727 block_group->iref = 0;
10728 block_group->inode = NULL;
10729 spin_unlock(&block_group->lock);
10730 iput(inode);
10731 } else {
10732 spin_unlock(&block_group->lock);
10733 }
10734 /* One for our lookup ref */
455757c3 10735 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10736 }
10737
10738 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10739 key.offset = block_group->key.objectid;
10740 key.type = 0;
10741
10742 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10743 if (ret < 0)
10744 goto out;
10745 if (ret > 0)
b3b4aa74 10746 btrfs_release_path(path);
0af3d00b
JB
10747 if (ret == 0) {
10748 ret = btrfs_del_item(trans, tree_root, path);
10749 if (ret)
10750 goto out;
b3b4aa74 10751 btrfs_release_path(path);
0af3d00b
JB
10752 }
10753
0b246afa 10754 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10755 rb_erase(&block_group->cache_node,
0b246afa 10756 &fs_info->block_group_cache_tree);
292cbd51 10757 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10758
0b246afa
JM
10759 if (fs_info->first_logical_byte == block_group->key.objectid)
10760 fs_info->first_logical_byte = (u64)-1;
10761 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10762
80eb234a 10763 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10764 /*
10765 * we must use list_del_init so people can check to see if they
10766 * are still on the list after taking the semaphore
10767 */
10768 list_del_init(&block_group->list);
6ab0a202 10769 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10770 kobj = block_group->space_info->block_group_kobjs[index];
10771 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10772 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10773 }
80eb234a 10774 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10775 if (kobj) {
10776 kobject_del(kobj);
10777 kobject_put(kobj);
10778 }
1a40e23b 10779
4f69cb98
FM
10780 if (block_group->has_caching_ctl)
10781 caching_ctl = get_caching_control(block_group);
817d52f8 10782 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10783 wait_block_group_cache_done(block_group);
4f69cb98 10784 if (block_group->has_caching_ctl) {
0b246afa 10785 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10786 if (!caching_ctl) {
10787 struct btrfs_caching_control *ctl;
10788
10789 list_for_each_entry(ctl,
0b246afa 10790 &fs_info->caching_block_groups, list)
4f69cb98
FM
10791 if (ctl->block_group == block_group) {
10792 caching_ctl = ctl;
1e4f4714 10793 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10794 break;
10795 }
10796 }
10797 if (caching_ctl)
10798 list_del_init(&caching_ctl->list);
0b246afa 10799 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10800 if (caching_ctl) {
10801 /* Once for the caching bgs list and once for us. */
10802 put_caching_control(caching_ctl);
10803 put_caching_control(caching_ctl);
10804 }
10805 }
817d52f8 10806
ce93ec54 10807 spin_lock(&trans->transaction->dirty_bgs_lock);
9a0ec83d
NB
10808 WARN_ON(!list_empty(&block_group->dirty_list));
10809 WARN_ON(!list_empty(&block_group->io_list));
ce93ec54 10810 spin_unlock(&trans->transaction->dirty_bgs_lock);
9a0ec83d 10811
817d52f8
JB
10812 btrfs_remove_free_space_cache(block_group);
10813
c146afad 10814 spin_lock(&block_group->space_info->lock);
75c68e9f 10815 list_del_init(&block_group->ro_list);
18d018ad 10816
0b246afa 10817 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10818 WARN_ON(block_group->space_info->total_bytes
10819 < block_group->key.offset);
10820 WARN_ON(block_group->space_info->bytes_readonly
10821 < block_group->key.offset);
10822 WARN_ON(block_group->space_info->disk_total
10823 < block_group->key.offset * factor);
10824 }
c146afad
YZ
10825 block_group->space_info->total_bytes -= block_group->key.offset;
10826 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10827 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10828
c146afad 10829 spin_unlock(&block_group->space_info->lock);
283bb197 10830
0af3d00b
JB
10831 memcpy(&key, &block_group->key, sizeof(key));
10832
34441361 10833 mutex_lock(&fs_info->chunk_mutex);
04216820
FM
10834 spin_lock(&block_group->lock);
10835 block_group->removed = 1;
10836 /*
10837 * At this point trimming can't start on this block group, because we
10838 * removed the block group from the tree fs_info->block_group_cache_tree
10839 * so no one can't find it anymore and even if someone already got this
10840 * block group before we removed it from the rbtree, they have already
10841 * incremented block_group->trimming - if they didn't, they won't find
10842 * any free space entries because we already removed them all when we
10843 * called btrfs_remove_free_space_cache().
10844 *
10845 * And we must not remove the extent map from the fs_info->mapping_tree
10846 * to prevent the same logical address range and physical device space
10847 * ranges from being reused for a new block group. This is because our
10848 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10849 * completely transactionless, so while it is trimming a range the
10850 * currently running transaction might finish and a new one start,
10851 * allowing for new block groups to be created that can reuse the same
10852 * physical device locations unless we take this special care.
e33e17ee
JM
10853 *
10854 * There may also be an implicit trim operation if the file system
10855 * is mounted with -odiscard. The same protections must remain
10856 * in place until the extents have been discarded completely when
10857 * the transaction commit has completed.
04216820
FM
10858 */
10859 remove_em = (atomic_read(&block_group->trimming) == 0);
04216820 10860 spin_unlock(&block_group->lock);
04216820
FM
10861
10862 if (remove_em) {
10863 struct extent_map_tree *em_tree;
10864
0b246afa 10865 em_tree = &fs_info->mapping_tree.map_tree;
04216820
FM
10866 write_lock(&em_tree->lock);
10867 remove_extent_mapping(em_tree, em);
10868 write_unlock(&em_tree->lock);
10869 /* once for the tree */
10870 free_extent_map(em);
10871 }
10872
34441361 10873 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10874
f3f72779 10875 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10876 if (ret)
10877 goto out;
10878
fa9c0d79
CM
10879 btrfs_put_block_group(block_group);
10880 btrfs_put_block_group(block_group);
1a40e23b
ZY
10881
10882 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10883 if (ret > 0)
10884 ret = -EIO;
10885 if (ret < 0)
10886 goto out;
10887
10888 ret = btrfs_del_item(trans, root, path);
10889out:
ba2c4d4e
JB
10890 if (remove_rsv)
10891 btrfs_delayed_refs_rsv_release(fs_info, 1);
1a40e23b
ZY
10892 btrfs_free_path(path);
10893 return ret;
10894}
acce952b 10895
8eab77ff 10896struct btrfs_trans_handle *
7fd01182
FM
10897btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10898 const u64 chunk_offset)
8eab77ff 10899{
7fd01182
FM
10900 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10901 struct extent_map *em;
10902 struct map_lookup *map;
10903 unsigned int num_items;
10904
10905 read_lock(&em_tree->lock);
10906 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10907 read_unlock(&em_tree->lock);
10908 ASSERT(em && em->start == chunk_offset);
10909
8eab77ff 10910 /*
7fd01182
FM
10911 * We need to reserve 3 + N units from the metadata space info in order
10912 * to remove a block group (done at btrfs_remove_chunk() and at
10913 * btrfs_remove_block_group()), which are used for:
10914 *
8eab77ff
FM
10915 * 1 unit for adding the free space inode's orphan (located in the tree
10916 * of tree roots).
7fd01182
FM
10917 * 1 unit for deleting the block group item (located in the extent
10918 * tree).
10919 * 1 unit for deleting the free space item (located in tree of tree
10920 * roots).
10921 * N units for deleting N device extent items corresponding to each
10922 * stripe (located in the device tree).
10923 *
10924 * In order to remove a block group we also need to reserve units in the
10925 * system space info in order to update the chunk tree (update one or
10926 * more device items and remove one chunk item), but this is done at
10927 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10928 */
95617d69 10929 map = em->map_lookup;
7fd01182
FM
10930 num_items = 3 + map->num_stripes;
10931 free_extent_map(em);
10932
8eab77ff 10933 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10934 num_items, 1);
8eab77ff
FM
10935}
10936
47ab2a6c
JB
10937/*
10938 * Process the unused_bgs list and remove any that don't have any allocated
10939 * space inside of them.
10940 */
10941void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10942{
10943 struct btrfs_block_group_cache *block_group;
10944 struct btrfs_space_info *space_info;
47ab2a6c
JB
10945 struct btrfs_trans_handle *trans;
10946 int ret = 0;
10947
afcdd129 10948 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10949 return;
10950
10951 spin_lock(&fs_info->unused_bgs_lock);
10952 while (!list_empty(&fs_info->unused_bgs)) {
10953 u64 start, end;
e33e17ee 10954 int trimming;
47ab2a6c
JB
10955
10956 block_group = list_first_entry(&fs_info->unused_bgs,
10957 struct btrfs_block_group_cache,
10958 bg_list);
47ab2a6c 10959 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10960
10961 space_info = block_group->space_info;
10962
47ab2a6c
JB
10963 if (ret || btrfs_mixed_space_info(space_info)) {
10964 btrfs_put_block_group(block_group);
10965 continue;
10966 }
10967 spin_unlock(&fs_info->unused_bgs_lock);
10968
d5f2e33b 10969 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10970
47ab2a6c
JB
10971 /* Don't want to race with allocators so take the groups_sem */
10972 down_write(&space_info->groups_sem);
10973 spin_lock(&block_group->lock);
43794446 10974 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10975 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10976 block_group->ro ||
aefbe9a6 10977 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10978 /*
10979 * We want to bail if we made new allocations or have
10980 * outstanding allocations in this block group. We do
10981 * the ro check in case balance is currently acting on
10982 * this block group.
10983 */
4ed0a7a3 10984 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10985 spin_unlock(&block_group->lock);
10986 up_write(&space_info->groups_sem);
10987 goto next;
10988 }
10989 spin_unlock(&block_group->lock);
10990
10991 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10992 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10993 up_write(&space_info->groups_sem);
10994 if (ret < 0) {
10995 ret = 0;
10996 goto next;
10997 }
10998
10999 /*
11000 * Want to do this before we do anything else so we can recover
11001 * properly if we fail to join the transaction.
11002 */
7fd01182
FM
11003 trans = btrfs_start_trans_remove_block_group(fs_info,
11004 block_group->key.objectid);
47ab2a6c 11005 if (IS_ERR(trans)) {
2ff7e61e 11006 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
11007 ret = PTR_ERR(trans);
11008 goto next;
11009 }
11010
11011 /*
11012 * We could have pending pinned extents for this block group,
11013 * just delete them, we don't care about them anymore.
11014 */
11015 start = block_group->key.objectid;
11016 end = start + block_group->key.offset - 1;
d4b450cd
FM
11017 /*
11018 * Hold the unused_bg_unpin_mutex lock to avoid racing with
11019 * btrfs_finish_extent_commit(). If we are at transaction N,
11020 * another task might be running finish_extent_commit() for the
11021 * previous transaction N - 1, and have seen a range belonging
11022 * to the block group in freed_extents[] before we were able to
11023 * clear the whole block group range from freed_extents[]. This
11024 * means that task can lookup for the block group after we
11025 * unpinned it from freed_extents[] and removed it, leading to
11026 * a BUG_ON() at btrfs_unpin_extent_range().
11027 */
11028 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 11029 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 11030 EXTENT_DIRTY);
758eb51e 11031 if (ret) {
d4b450cd 11032 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11033 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11034 goto end_trans;
11035 }
11036 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 11037 EXTENT_DIRTY);
758eb51e 11038 if (ret) {
d4b450cd 11039 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 11040 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
11041 goto end_trans;
11042 }
d4b450cd 11043 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
11044
11045 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
11046 spin_lock(&space_info->lock);
11047 spin_lock(&block_group->lock);
11048
e2907c1a 11049 update_bytes_pinned(space_info, -block_group->pinned);
c30666d4 11050 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
11051 percpu_counter_add_batch(&space_info->total_bytes_pinned,
11052 -block_group->pinned,
11053 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
11054 block_group->pinned = 0;
11055
c30666d4
ZL
11056 spin_unlock(&block_group->lock);
11057 spin_unlock(&space_info->lock);
11058
e33e17ee 11059 /* DISCARD can flip during remount */
0b246afa 11060 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
11061
11062 /* Implicit trim during transaction commit. */
11063 if (trimming)
11064 btrfs_get_block_group_trimming(block_group);
11065
47ab2a6c
JB
11066 /*
11067 * Btrfs_remove_chunk will abort the transaction if things go
11068 * horribly wrong.
11069 */
97aff912 11070 ret = btrfs_remove_chunk(trans, block_group->key.objectid);
e33e17ee
JM
11071
11072 if (ret) {
11073 if (trimming)
11074 btrfs_put_block_group_trimming(block_group);
11075 goto end_trans;
11076 }
11077
11078 /*
11079 * If we're not mounted with -odiscard, we can just forget
11080 * about this block group. Otherwise we'll need to wait
11081 * until transaction commit to do the actual discard.
11082 */
11083 if (trimming) {
348a0013
FM
11084 spin_lock(&fs_info->unused_bgs_lock);
11085 /*
11086 * A concurrent scrub might have added us to the list
11087 * fs_info->unused_bgs, so use a list_move operation
11088 * to add the block group to the deleted_bgs list.
11089 */
e33e17ee
JM
11090 list_move(&block_group->bg_list,
11091 &trans->transaction->deleted_bgs);
348a0013 11092 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
11093 btrfs_get_block_group(block_group);
11094 }
758eb51e 11095end_trans:
3a45bb20 11096 btrfs_end_transaction(trans);
47ab2a6c 11097next:
d5f2e33b 11098 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
11099 btrfs_put_block_group(block_group);
11100 spin_lock(&fs_info->unused_bgs_lock);
11101 }
11102 spin_unlock(&fs_info->unused_bgs_lock);
11103}
11104
c59021f8 11105int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11106{
1aba86d6 11107 struct btrfs_super_block *disk_super;
11108 u64 features;
11109 u64 flags;
11110 int mixed = 0;
c59021f8 11111 int ret;
11112
6c41761f 11113 disk_super = fs_info->super_copy;
1aba86d6 11114 if (!btrfs_super_root(disk_super))
0dc924c5 11115 return -EINVAL;
c59021f8 11116
1aba86d6 11117 features = btrfs_super_incompat_flags(disk_super);
11118 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11119 mixed = 1;
c59021f8 11120
1aba86d6 11121 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 11122 ret = create_space_info(fs_info, flags);
c59021f8 11123 if (ret)
1aba86d6 11124 goto out;
c59021f8 11125
1aba86d6 11126 if (mixed) {
11127 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 11128 ret = create_space_info(fs_info, flags);
1aba86d6 11129 } else {
11130 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 11131 ret = create_space_info(fs_info, flags);
1aba86d6 11132 if (ret)
11133 goto out;
11134
11135 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 11136 ret = create_space_info(fs_info, flags);
1aba86d6 11137 }
11138out:
c59021f8 11139 return ret;
11140}
11141
2ff7e61e
JM
11142int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11143 u64 start, u64 end)
acce952b 11144{
2ff7e61e 11145 return unpin_extent_range(fs_info, start, end, false);
acce952b 11146}
11147
499f377f
JM
11148/*
11149 * It used to be that old block groups would be left around forever.
11150 * Iterating over them would be enough to trim unused space. Since we
11151 * now automatically remove them, we also need to iterate over unallocated
11152 * space.
11153 *
11154 * We don't want a transaction for this since the discard may take a
11155 * substantial amount of time. We don't require that a transaction be
11156 * running, but we do need to take a running transaction into account
fee7acc3
JM
11157 * to ensure that we're not discarding chunks that were released or
11158 * allocated in the current transaction.
499f377f
JM
11159 *
11160 * Holding the chunks lock will prevent other threads from allocating
11161 * or releasing chunks, but it won't prevent a running transaction
11162 * from committing and releasing the memory that the pending chunks
11163 * list head uses. For that, we need to take a reference to the
fee7acc3
JM
11164 * transaction and hold the commit root sem. We only need to hold
11165 * it while performing the free space search since we have already
11166 * held back allocations.
499f377f
JM
11167 */
11168static int btrfs_trim_free_extents(struct btrfs_device *device,
c2d1b3aa 11169 struct fstrim_range *range, u64 *trimmed)
499f377f 11170{
929be17a 11171 u64 start, len = 0, end = 0;
499f377f
JM
11172 int ret;
11173
929be17a 11174 start = max_t(u64, range->start, SZ_1M);
499f377f
JM
11175 *trimmed = 0;
11176
0be88e36
JM
11177 /* Discard not supported = nothing to do. */
11178 if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11179 return 0;
11180
52042d8e 11181 /* Not writable = nothing to do. */
ebbede42 11182 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
11183 return 0;
11184
11185 /* No free space = nothing to do. */
11186 if (device->total_bytes <= device->bytes_used)
11187 return 0;
11188
11189 ret = 0;
11190
11191 while (1) {
fb456252 11192 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
11193 u64 bytes;
11194
11195 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11196 if (ret)
fee7acc3 11197 break;
499f377f 11198
929be17a
NB
11199 find_first_clear_extent_bit(&device->alloc_state, start,
11200 &start, &end,
11201 CHUNK_TRIMMED | CHUNK_ALLOCATED);
11202 /*
11203 * If find_first_clear_extent_bit find a range that spans the
11204 * end of the device it will set end to -1, in this case it's up
11205 * to the caller to trim the value to the size of the device.
11206 */
11207 end = min(end, device->total_bytes - 1);
11208 len = end - start + 1;
499f377f 11209
929be17a
NB
11210 /* We didn't find any extents */
11211 if (!len) {
499f377f 11212 mutex_unlock(&fs_info->chunk_mutex);
929be17a 11213 ret = 0;
499f377f
JM
11214 break;
11215 }
11216
929be17a
NB
11217 /* Keep going until we satisfy minlen or reach end of space */
11218 if (len < range->minlen) {
11219 mutex_unlock(&fs_info->chunk_mutex);
11220 start += len;
11221 continue;
11222 }
11223
c2d1b3aa
NB
11224 /* If we are out of the passed range break */
11225 if (start > range->start + range->len - 1) {
11226 mutex_unlock(&fs_info->chunk_mutex);
c2d1b3aa
NB
11227 break;
11228 }
11229
11230 start = max(range->start, start);
11231 len = min(range->len, len);
11232
929be17a
NB
11233 ret = btrfs_issue_discard(device->bdev, start, len,
11234 &bytes);
11235 if (!ret)
11236 set_extent_bits(&device->alloc_state, start,
11237 start + bytes - 1,
11238 CHUNK_TRIMMED);
499f377f
JM
11239 mutex_unlock(&fs_info->chunk_mutex);
11240
11241 if (ret)
11242 break;
11243
11244 start += len;
11245 *trimmed += bytes;
11246
c2d1b3aa
NB
11247 /* We've trimmed enough */
11248 if (*trimmed >= range->len)
11249 break;
11250
499f377f
JM
11251 if (fatal_signal_pending(current)) {
11252 ret = -ERESTARTSYS;
11253 break;
11254 }
11255
11256 cond_resched();
11257 }
11258
11259 return ret;
11260}
11261
93bba24d
QW
11262/*
11263 * Trim the whole filesystem by:
11264 * 1) trimming the free space in each block group
11265 * 2) trimming the unallocated space on each device
11266 *
11267 * This will also continue trimming even if a block group or device encounters
11268 * an error. The return value will be the last error, or 0 if nothing bad
11269 * happens.
11270 */
2ff7e61e 11271int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11272{
f7039b1d 11273 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11274 struct btrfs_device *device;
11275 struct list_head *devices;
f7039b1d
LD
11276 u64 group_trimmed;
11277 u64 start;
11278 u64 end;
11279 u64 trimmed = 0;
93bba24d
QW
11280 u64 bg_failed = 0;
11281 u64 dev_failed = 0;
11282 int bg_ret = 0;
11283 int dev_ret = 0;
f7039b1d
LD
11284 int ret = 0;
11285
6ba9fc8e 11286 cache = btrfs_lookup_first_block_group(fs_info, range->start);
f87b7eb8 11287 for (; cache; cache = next_block_group(cache)) {
f7039b1d
LD
11288 if (cache->key.objectid >= (range->start + range->len)) {
11289 btrfs_put_block_group(cache);
11290 break;
11291 }
11292
11293 start = max(range->start, cache->key.objectid);
11294 end = min(range->start + range->len,
11295 cache->key.objectid + cache->key.offset);
11296
11297 if (end - start >= range->minlen) {
11298 if (!block_group_cache_done(cache)) {
f6373bf3 11299 ret = cache_block_group(cache, 0);
1be41b78 11300 if (ret) {
93bba24d
QW
11301 bg_failed++;
11302 bg_ret = ret;
11303 continue;
1be41b78
JB
11304 }
11305 ret = wait_block_group_cache_done(cache);
11306 if (ret) {
93bba24d
QW
11307 bg_failed++;
11308 bg_ret = ret;
11309 continue;
1be41b78 11310 }
f7039b1d
LD
11311 }
11312 ret = btrfs_trim_block_group(cache,
11313 &group_trimmed,
11314 start,
11315 end,
11316 range->minlen);
11317
11318 trimmed += group_trimmed;
11319 if (ret) {
93bba24d
QW
11320 bg_failed++;
11321 bg_ret = ret;
11322 continue;
f7039b1d
LD
11323 }
11324 }
f7039b1d
LD
11325 }
11326
93bba24d
QW
11327 if (bg_failed)
11328 btrfs_warn(fs_info,
11329 "failed to trim %llu block group(s), last error %d",
11330 bg_failed, bg_ret);
0b246afa 11331 mutex_lock(&fs_info->fs_devices->device_list_mutex);
d4e329de
JM
11332 devices = &fs_info->fs_devices->devices;
11333 list_for_each_entry(device, devices, dev_list) {
c2d1b3aa 11334 ret = btrfs_trim_free_extents(device, range, &group_trimmed);
93bba24d
QW
11335 if (ret) {
11336 dev_failed++;
11337 dev_ret = ret;
499f377f 11338 break;
93bba24d 11339 }
499f377f
JM
11340
11341 trimmed += group_trimmed;
11342 }
0b246afa 11343 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11344
93bba24d
QW
11345 if (dev_failed)
11346 btrfs_warn(fs_info,
11347 "failed to trim %llu device(s), last error %d",
11348 dev_failed, dev_ret);
f7039b1d 11349 range->len = trimmed;
93bba24d
QW
11350 if (bg_ret)
11351 return bg_ret;
11352 return dev_ret;
f7039b1d 11353}
8257b2dc
MX
11354
11355/*
ea14b57f 11356 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11357 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11358 * data into the page cache through nocow before the subvolume is snapshoted,
11359 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11360 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11361 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11362 */
ea14b57f 11363void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11364{
11365 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11366 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11367}
11368
ea14b57f 11369int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11370{
ea14b57f 11371 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11372 return 0;
11373
11374 percpu_counter_inc(&root->subv_writers->counter);
11375 /*
11376 * Make sure counter is updated before we check for snapshot creation.
11377 */
11378 smp_mb();
ea14b57f
DS
11379 if (atomic_read(&root->will_be_snapshotted)) {
11380 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11381 return 0;
11382 }
11383 return 1;
11384}
0bc19f90 11385
0bc19f90
ZL
11386void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11387{
11388 while (true) {
11389 int ret;
11390
ea14b57f 11391 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11392 if (ret)
11393 break;
4625956a
PZ
11394 wait_var_event(&root->will_be_snapshotted,
11395 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11396 }
11397}
031f24da
QW
11398
11399void btrfs_mark_bg_unused(struct btrfs_block_group_cache *bg)
11400{
11401 struct btrfs_fs_info *fs_info = bg->fs_info;
11402
11403 spin_lock(&fs_info->unused_bgs_lock);
11404 if (list_empty(&bg->bg_list)) {
11405 btrfs_get_block_group(bg);
11406 trace_btrfs_add_unused_block_group(bg);
11407 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
11408 }
11409 spin_unlock(&fs_info->unused_bgs_lock);
11410}