]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: use customized batch size for total_bytes_pinned
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
55 struct btrfs_delayed_ref_node *node, u64 parent,
56 u64 root_objectid, u64 owner_objectid,
57 u64 owner_offset, int refs_to_drop,
58 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
59static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
60 struct extent_buffer *leaf,
61 struct btrfs_extent_item *ei);
62static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
63 u64 parent, u64 root_objectid,
64 u64 flags, u64 owner, u64 offset,
65 struct btrfs_key *ins, int ref_mod);
66static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 67 struct btrfs_delayed_ref_node *node,
21ebfbe7 68 struct btrfs_delayed_extent_op *extent_op);
01458828 69static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
698d0082 70 int force);
11833d66
YZ
71static int find_next_key(struct btrfs_path *path, int level,
72 struct btrfs_key *key);
ab8d0fc4
JM
73static void dump_space_info(struct btrfs_fs_info *fs_info,
74 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 75 int dump_block_groups);
5d80366e
JB
76static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
77 u64 num_bytes);
957780eb
JB
78static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *space_info,
80 u64 num_bytes);
81static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
6a63209f 84
817d52f8
JB
85static noinline int
86block_group_cache_done(struct btrfs_block_group_cache *cache)
87{
88 smp_mb();
36cce922
JB
89 return cache->cached == BTRFS_CACHE_FINISHED ||
90 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
91}
92
0f9dd46c
JB
93static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94{
95 return (cache->flags & bits) == bits;
96}
97
758f2dfc 98void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
99{
100 atomic_inc(&cache->count);
101}
102
103void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104{
f0486c68
YZ
105 if (atomic_dec_and_test(&cache->count)) {
106 WARN_ON(cache->pinned > 0);
107 WARN_ON(cache->reserved > 0);
0966a7b1
QW
108
109 /*
110 * If not empty, someone is still holding mutex of
111 * full_stripe_lock, which can only be released by caller.
112 * And it will definitely cause use-after-free when caller
113 * tries to release full stripe lock.
114 *
115 * No better way to resolve, but only to warn.
116 */
117 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 118 kfree(cache->free_space_ctl);
11dfe35a 119 kfree(cache);
f0486c68 120 }
11dfe35a
JB
121}
122
0f9dd46c
JB
123/*
124 * this adds the block group to the fs_info rb tree for the block group
125 * cache
126 */
b2950863 127static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
128 struct btrfs_block_group_cache *block_group)
129{
130 struct rb_node **p;
131 struct rb_node *parent = NULL;
132 struct btrfs_block_group_cache *cache;
133
134 spin_lock(&info->block_group_cache_lock);
135 p = &info->block_group_cache_tree.rb_node;
136
137 while (*p) {
138 parent = *p;
139 cache = rb_entry(parent, struct btrfs_block_group_cache,
140 cache_node);
141 if (block_group->key.objectid < cache->key.objectid) {
142 p = &(*p)->rb_left;
143 } else if (block_group->key.objectid > cache->key.objectid) {
144 p = &(*p)->rb_right;
145 } else {
146 spin_unlock(&info->block_group_cache_lock);
147 return -EEXIST;
148 }
149 }
150
151 rb_link_node(&block_group->cache_node, parent, p);
152 rb_insert_color(&block_group->cache_node,
153 &info->block_group_cache_tree);
a1897fdd
LB
154
155 if (info->first_logical_byte > block_group->key.objectid)
156 info->first_logical_byte = block_group->key.objectid;
157
0f9dd46c
JB
158 spin_unlock(&info->block_group_cache_lock);
159
160 return 0;
161}
162
163/*
164 * This will return the block group at or after bytenr if contains is 0, else
165 * it will return the block group that contains the bytenr
166 */
167static struct btrfs_block_group_cache *
168block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
169 int contains)
170{
171 struct btrfs_block_group_cache *cache, *ret = NULL;
172 struct rb_node *n;
173 u64 end, start;
174
175 spin_lock(&info->block_group_cache_lock);
176 n = info->block_group_cache_tree.rb_node;
177
178 while (n) {
179 cache = rb_entry(n, struct btrfs_block_group_cache,
180 cache_node);
181 end = cache->key.objectid + cache->key.offset - 1;
182 start = cache->key.objectid;
183
184 if (bytenr < start) {
185 if (!contains && (!ret || start < ret->key.objectid))
186 ret = cache;
187 n = n->rb_left;
188 } else if (bytenr > start) {
189 if (contains && bytenr <= end) {
190 ret = cache;
191 break;
192 }
193 n = n->rb_right;
194 } else {
195 ret = cache;
196 break;
197 }
198 }
a1897fdd 199 if (ret) {
11dfe35a 200 btrfs_get_block_group(ret);
a1897fdd
LB
201 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
202 info->first_logical_byte = ret->key.objectid;
203 }
0f9dd46c
JB
204 spin_unlock(&info->block_group_cache_lock);
205
206 return ret;
207}
208
2ff7e61e 209static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 210 u64 start, u64 num_bytes)
817d52f8 211{
11833d66 212 u64 end = start + num_bytes - 1;
0b246afa 213 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 214 start, end, EXTENT_UPTODATE);
0b246afa 215 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 216 start, end, EXTENT_UPTODATE);
11833d66
YZ
217 return 0;
218}
817d52f8 219
9e715da8 220static void free_excluded_extents(struct btrfs_block_group_cache *cache)
11833d66 221{
9e715da8 222 struct btrfs_fs_info *fs_info = cache->fs_info;
11833d66 223 u64 start, end;
817d52f8 224
11833d66
YZ
225 start = cache->key.objectid;
226 end = start + cache->key.offset - 1;
227
0b246afa 228 clear_extent_bits(&fs_info->freed_extents[0],
91166212 229 start, end, EXTENT_UPTODATE);
0b246afa 230 clear_extent_bits(&fs_info->freed_extents[1],
91166212 231 start, end, EXTENT_UPTODATE);
817d52f8
JB
232}
233
3c4da657 234static int exclude_super_stripes(struct btrfs_block_group_cache *cache)
817d52f8 235{
3c4da657 236 struct btrfs_fs_info *fs_info = cache->fs_info;
817d52f8
JB
237 u64 bytenr;
238 u64 *logical;
239 int stripe_len;
240 int i, nr, ret;
241
06b2331f
YZ
242 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
243 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
244 cache->bytes_super += stripe_len;
2ff7e61e 245 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 246 stripe_len);
835d974f
JB
247 if (ret)
248 return ret;
06b2331f
YZ
249 }
250
817d52f8
JB
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
0b246afa 253 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 254 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
255 if (ret)
256 return ret;
11833d66 257
817d52f8 258 while (nr--) {
51bf5f0b
JB
259 u64 start, len;
260
261 if (logical[nr] > cache->key.objectid +
262 cache->key.offset)
263 continue;
264
265 if (logical[nr] + stripe_len <= cache->key.objectid)
266 continue;
267
268 start = logical[nr];
269 if (start < cache->key.objectid) {
270 start = cache->key.objectid;
271 len = (logical[nr] + stripe_len) - start;
272 } else {
273 len = min_t(u64, stripe_len,
274 cache->key.objectid +
275 cache->key.offset - start);
276 }
277
278 cache->bytes_super += len;
2ff7e61e 279 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
280 if (ret) {
281 kfree(logical);
282 return ret;
283 }
817d52f8 284 }
11833d66 285
817d52f8
JB
286 kfree(logical);
287 }
817d52f8
JB
288 return 0;
289}
290
11833d66
YZ
291static struct btrfs_caching_control *
292get_caching_control(struct btrfs_block_group_cache *cache)
293{
294 struct btrfs_caching_control *ctl;
295
296 spin_lock(&cache->lock);
dde5abee
JB
297 if (!cache->caching_ctl) {
298 spin_unlock(&cache->lock);
11833d66
YZ
299 return NULL;
300 }
301
302 ctl = cache->caching_ctl;
1e4f4714 303 refcount_inc(&ctl->count);
11833d66
YZ
304 spin_unlock(&cache->lock);
305 return ctl;
306}
307
308static void put_caching_control(struct btrfs_caching_control *ctl)
309{
1e4f4714 310 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
311 kfree(ctl);
312}
313
d0bd4560 314#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 315static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 316{
2ff7e61e 317 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
318 u64 start = block_group->key.objectid;
319 u64 len = block_group->key.offset;
320 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 321 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
322 u64 step = chunk << 1;
323
324 while (len > chunk) {
325 btrfs_remove_free_space(block_group, start, chunk);
326 start += step;
327 if (len < step)
328 len = 0;
329 else
330 len -= step;
331 }
332}
333#endif
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
a5ed9182 340u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 341 u64 start, u64 end)
0f9dd46c 342{
4457c1c7 343 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 344 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
345 int ret;
346
347 while (start < end) {
11833d66 348 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 349 &extent_start, &extent_end,
e6138876
JB
350 EXTENT_DIRTY | EXTENT_UPTODATE,
351 NULL);
0f9dd46c
JB
352 if (ret)
353 break;
354
06b2331f 355 if (extent_start <= start) {
0f9dd46c
JB
356 start = extent_end + 1;
357 } else if (extent_start > start && extent_start < end) {
358 size = extent_start - start;
817d52f8 359 total_added += size;
ea6a478e
JB
360 ret = btrfs_add_free_space(block_group, start,
361 size);
79787eaa 362 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
363 start = extent_end + 1;
364 } else {
365 break;
366 }
367 }
368
369 if (start < end) {
370 size = end - start;
817d52f8 371 total_added += size;
ea6a478e 372 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 373 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
374 }
375
817d52f8 376 return total_added;
0f9dd46c
JB
377}
378
73fa48b6 379static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 380{
0b246afa
JM
381 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
382 struct btrfs_fs_info *fs_info = block_group->fs_info;
383 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
73fa48b6 390 int ret;
d0bd4560 391 bool wakeup = true;
f510cfec 392
e37c9e69
CM
393 path = btrfs_alloc_path();
394 if (!path)
73fa48b6 395 return -ENOMEM;
7d7d6068 396
817d52f8 397 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 398
d0bd4560
JB
399#ifdef CONFIG_BTRFS_DEBUG
400 /*
401 * If we're fragmenting we don't want to make anybody think we can
402 * allocate from this block group until we've had a chance to fragment
403 * the free space.
404 */
2ff7e61e 405 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
406 wakeup = false;
407#endif
5cd57b2c 408 /*
817d52f8
JB
409 * We don't want to deadlock with somebody trying to allocate a new
410 * extent for the extent root while also trying to search the extent
411 * root to add free space. So we skip locking and search the commit
412 * root, since its read-only
5cd57b2c
CM
413 */
414 path->skip_locking = 1;
817d52f8 415 path->search_commit_root = 1;
e4058b54 416 path->reada = READA_FORWARD;
817d52f8 417
e4404d6e 418 key.objectid = last;
e37c9e69 419 key.offset = 0;
11833d66 420 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 421
52ee28d2 422next:
11833d66 423 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 424 if (ret < 0)
73fa48b6 425 goto out;
a512bbf8 426
11833d66
YZ
427 leaf = path->nodes[0];
428 nritems = btrfs_header_nritems(leaf);
429
d397712b 430 while (1) {
7841cb28 431 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 432 last = (u64)-1;
817d52f8 433 break;
f25784b3 434 }
817d52f8 435
11833d66
YZ
436 if (path->slots[0] < nritems) {
437 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
438 } else {
439 ret = find_next_key(path, 0, &key);
440 if (ret)
e37c9e69 441 break;
817d52f8 442
c9ea7b24 443 if (need_resched() ||
9e351cc8 444 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
445 if (wakeup)
446 caching_ctl->progress = last;
ff5714cc 447 btrfs_release_path(path);
9e351cc8 448 up_read(&fs_info->commit_root_sem);
589d8ade 449 mutex_unlock(&caching_ctl->mutex);
11833d66 450 cond_resched();
73fa48b6
OS
451 mutex_lock(&caching_ctl->mutex);
452 down_read(&fs_info->commit_root_sem);
453 goto next;
589d8ade 454 }
0a3896d0
JB
455
456 ret = btrfs_next_leaf(extent_root, path);
457 if (ret < 0)
73fa48b6 458 goto out;
0a3896d0
JB
459 if (ret)
460 break;
589d8ade
JB
461 leaf = path->nodes[0];
462 nritems = btrfs_header_nritems(leaf);
463 continue;
11833d66 464 }
817d52f8 465
52ee28d2
LB
466 if (key.objectid < last) {
467 key.objectid = last;
468 key.offset = 0;
469 key.type = BTRFS_EXTENT_ITEM_KEY;
470
d0bd4560
JB
471 if (wakeup)
472 caching_ctl->progress = last;
52ee28d2
LB
473 btrfs_release_path(path);
474 goto next;
475 }
476
11833d66
YZ
477 if (key.objectid < block_group->key.objectid) {
478 path->slots[0]++;
817d52f8 479 continue;
e37c9e69 480 }
0f9dd46c 481
e37c9e69 482 if (key.objectid >= block_group->key.objectid +
0f9dd46c 483 block_group->key.offset)
e37c9e69 484 break;
7d7d6068 485
3173a18f
JB
486 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
487 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 488 total_found += add_new_free_space(block_group, last,
817d52f8 489 key.objectid);
3173a18f
JB
490 if (key.type == BTRFS_METADATA_ITEM_KEY)
491 last = key.objectid +
da17066c 492 fs_info->nodesize;
3173a18f
JB
493 else
494 last = key.objectid + key.offset;
817d52f8 495
73fa48b6 496 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 497 total_found = 0;
d0bd4560
JB
498 if (wakeup)
499 wake_up(&caching_ctl->wait);
11833d66 500 }
817d52f8 501 }
e37c9e69
CM
502 path->slots[0]++;
503 }
817d52f8 504 ret = 0;
e37c9e69 505
4457c1c7 506 total_found += add_new_free_space(block_group, last,
817d52f8
JB
507 block_group->key.objectid +
508 block_group->key.offset);
11833d66 509 caching_ctl->progress = (u64)-1;
817d52f8 510
73fa48b6
OS
511out:
512 btrfs_free_path(path);
513 return ret;
514}
515
516static noinline void caching_thread(struct btrfs_work *work)
517{
518 struct btrfs_block_group_cache *block_group;
519 struct btrfs_fs_info *fs_info;
520 struct btrfs_caching_control *caching_ctl;
521 int ret;
522
523 caching_ctl = container_of(work, struct btrfs_caching_control, work);
524 block_group = caching_ctl->block_group;
525 fs_info = block_group->fs_info;
526
527 mutex_lock(&caching_ctl->mutex);
528 down_read(&fs_info->commit_root_sem);
529
1e144fb8
OS
530 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
531 ret = load_free_space_tree(caching_ctl);
532 else
533 ret = load_extent_tree_free(caching_ctl);
73fa48b6 534
817d52f8 535 spin_lock(&block_group->lock);
11833d66 536 block_group->caching_ctl = NULL;
73fa48b6 537 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 538 spin_unlock(&block_group->lock);
0f9dd46c 539
d0bd4560 540#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 541 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
542 u64 bytes_used;
543
544 spin_lock(&block_group->space_info->lock);
545 spin_lock(&block_group->lock);
546 bytes_used = block_group->key.offset -
547 btrfs_block_group_used(&block_group->item);
548 block_group->space_info->bytes_used += bytes_used >> 1;
549 spin_unlock(&block_group->lock);
550 spin_unlock(&block_group->space_info->lock);
2ff7e61e 551 fragment_free_space(block_group);
d0bd4560
JB
552 }
553#endif
554
555 caching_ctl->progress = (u64)-1;
11833d66 556
9e351cc8 557 up_read(&fs_info->commit_root_sem);
9e715da8 558 free_excluded_extents(block_group);
11833d66 559 mutex_unlock(&caching_ctl->mutex);
73fa48b6 560
11833d66
YZ
561 wake_up(&caching_ctl->wait);
562
563 put_caching_control(caching_ctl);
11dfe35a 564 btrfs_put_block_group(block_group);
817d52f8
JB
565}
566
9d66e233 567static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 568 int load_cache_only)
817d52f8 569{
291c7d2f 570 DEFINE_WAIT(wait);
11833d66
YZ
571 struct btrfs_fs_info *fs_info = cache->fs_info;
572 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
573 int ret = 0;
574
291c7d2f 575 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
576 if (!caching_ctl)
577 return -ENOMEM;
291c7d2f
JB
578
579 INIT_LIST_HEAD(&caching_ctl->list);
580 mutex_init(&caching_ctl->mutex);
581 init_waitqueue_head(&caching_ctl->wait);
582 caching_ctl->block_group = cache;
583 caching_ctl->progress = cache->key.objectid;
1e4f4714 584 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
585 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
586 caching_thread, NULL, NULL);
291c7d2f
JB
587
588 spin_lock(&cache->lock);
589 /*
590 * This should be a rare occasion, but this could happen I think in the
591 * case where one thread starts to load the space cache info, and then
592 * some other thread starts a transaction commit which tries to do an
593 * allocation while the other thread is still loading the space cache
594 * info. The previous loop should have kept us from choosing this block
595 * group, but if we've moved to the state where we will wait on caching
596 * block groups we need to first check if we're doing a fast load here,
597 * so we can wait for it to finish, otherwise we could end up allocating
598 * from a block group who's cache gets evicted for one reason or
599 * another.
600 */
601 while (cache->cached == BTRFS_CACHE_FAST) {
602 struct btrfs_caching_control *ctl;
603
604 ctl = cache->caching_ctl;
1e4f4714 605 refcount_inc(&ctl->count);
291c7d2f
JB
606 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
607 spin_unlock(&cache->lock);
608
609 schedule();
610
611 finish_wait(&ctl->wait, &wait);
612 put_caching_control(ctl);
613 spin_lock(&cache->lock);
614 }
615
616 if (cache->cached != BTRFS_CACHE_NO) {
617 spin_unlock(&cache->lock);
618 kfree(caching_ctl);
11833d66 619 return 0;
291c7d2f
JB
620 }
621 WARN_ON(cache->caching_ctl);
622 cache->caching_ctl = caching_ctl;
623 cache->cached = BTRFS_CACHE_FAST;
624 spin_unlock(&cache->lock);
11833d66 625
d8953d69 626 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 627 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
628 ret = load_free_space_cache(fs_info, cache);
629
630 spin_lock(&cache->lock);
631 if (ret == 1) {
291c7d2f 632 cache->caching_ctl = NULL;
9d66e233
JB
633 cache->cached = BTRFS_CACHE_FINISHED;
634 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 635 caching_ctl->progress = (u64)-1;
9d66e233 636 } else {
291c7d2f
JB
637 if (load_cache_only) {
638 cache->caching_ctl = NULL;
639 cache->cached = BTRFS_CACHE_NO;
640 } else {
641 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 642 cache->has_caching_ctl = 1;
291c7d2f 643 }
9d66e233
JB
644 }
645 spin_unlock(&cache->lock);
d0bd4560
JB
646#ifdef CONFIG_BTRFS_DEBUG
647 if (ret == 1 &&
2ff7e61e 648 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
649 u64 bytes_used;
650
651 spin_lock(&cache->space_info->lock);
652 spin_lock(&cache->lock);
653 bytes_used = cache->key.offset -
654 btrfs_block_group_used(&cache->item);
655 cache->space_info->bytes_used += bytes_used >> 1;
656 spin_unlock(&cache->lock);
657 spin_unlock(&cache->space_info->lock);
2ff7e61e 658 fragment_free_space(cache);
d0bd4560
JB
659 }
660#endif
cb83b7b8
JB
661 mutex_unlock(&caching_ctl->mutex);
662
291c7d2f 663 wake_up(&caching_ctl->wait);
3c14874a 664 if (ret == 1) {
291c7d2f 665 put_caching_control(caching_ctl);
9e715da8 666 free_excluded_extents(cache);
9d66e233 667 return 0;
3c14874a 668 }
291c7d2f
JB
669 } else {
670 /*
1e144fb8
OS
671 * We're either using the free space tree or no caching at all.
672 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
673 */
674 spin_lock(&cache->lock);
675 if (load_cache_only) {
676 cache->caching_ctl = NULL;
677 cache->cached = BTRFS_CACHE_NO;
678 } else {
679 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 680 cache->has_caching_ctl = 1;
291c7d2f
JB
681 }
682 spin_unlock(&cache->lock);
683 wake_up(&caching_ctl->wait);
9d66e233
JB
684 }
685
291c7d2f
JB
686 if (load_cache_only) {
687 put_caching_control(caching_ctl);
11833d66 688 return 0;
817d52f8 689 }
817d52f8 690
9e351cc8 691 down_write(&fs_info->commit_root_sem);
1e4f4714 692 refcount_inc(&caching_ctl->count);
11833d66 693 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 694 up_write(&fs_info->commit_root_sem);
11833d66 695
11dfe35a 696 btrfs_get_block_group(cache);
11833d66 697
e66f0bb1 698 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 699
ef8bbdfe 700 return ret;
e37c9e69
CM
701}
702
0f9dd46c
JB
703/*
704 * return the block group that starts at or after bytenr
705 */
d397712b
CM
706static struct btrfs_block_group_cache *
707btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 708{
e2c89907 709 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
710}
711
0f9dd46c 712/*
9f55684c 713 * return the block group that contains the given bytenr
0f9dd46c 714 */
d397712b
CM
715struct btrfs_block_group_cache *btrfs_lookup_block_group(
716 struct btrfs_fs_info *info,
717 u64 bytenr)
be744175 718{
e2c89907 719 return block_group_cache_tree_search(info, bytenr, 1);
be744175 720}
0b86a832 721
0f9dd46c
JB
722static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
723 u64 flags)
6324fbf3 724{
0f9dd46c 725 struct list_head *head = &info->space_info;
0f9dd46c 726 struct btrfs_space_info *found;
4184ea7f 727
52ba6929 728 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 729
4184ea7f
CM
730 rcu_read_lock();
731 list_for_each_entry_rcu(found, head, list) {
67377734 732 if (found->flags & flags) {
4184ea7f 733 rcu_read_unlock();
0f9dd46c 734 return found;
4184ea7f 735 }
0f9dd46c 736 }
4184ea7f 737 rcu_read_unlock();
0f9dd46c 738 return NULL;
6324fbf3
CM
739}
740
0d9f824d 741static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 742 bool metadata, u64 root_objectid)
0d9f824d
OS
743{
744 struct btrfs_space_info *space_info;
745 u64 flags;
746
29d2b84c 747 if (metadata) {
0d9f824d
OS
748 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
749 flags = BTRFS_BLOCK_GROUP_SYSTEM;
750 else
751 flags = BTRFS_BLOCK_GROUP_METADATA;
752 } else {
753 flags = BTRFS_BLOCK_GROUP_DATA;
754 }
755
756 space_info = __find_space_info(fs_info, flags);
55e8196a 757 ASSERT(space_info);
dec59fa3
EL
758 percpu_counter_add_batch(&space_info->total_bytes_pinned, num_bytes,
759 BTRFS_TOTAL_BYTES_PINNED_BATCH);
0d9f824d
OS
760}
761
4184ea7f
CM
762/*
763 * after adding space to the filesystem, we need to clear the full flags
764 * on all the space infos.
765 */
766void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
767{
768 struct list_head *head = &info->space_info;
769 struct btrfs_space_info *found;
770
771 rcu_read_lock();
772 list_for_each_entry_rcu(found, head, list)
773 found->full = 0;
774 rcu_read_unlock();
775}
776
1a4ed8fd 777/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 778int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
779{
780 int ret;
781 struct btrfs_key key;
31840ae1 782 struct btrfs_path *path;
e02119d5 783
31840ae1 784 path = btrfs_alloc_path();
d8926bb3
MF
785 if (!path)
786 return -ENOMEM;
787
e02119d5
CM
788 key.objectid = start;
789 key.offset = len;
3173a18f 790 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 791 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 792 btrfs_free_path(path);
7bb86316
CM
793 return ret;
794}
795
a22285a6 796/*
3173a18f 797 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
798 *
799 * the head node for delayed ref is used to store the sum of all the
800 * reference count modifications queued up in the rbtree. the head
801 * node may also store the extent flags to set. This way you can check
802 * to see what the reference count and extent flags would be if all of
803 * the delayed refs are not processed.
804 */
805int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 806 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 807 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
808{
809 struct btrfs_delayed_ref_head *head;
810 struct btrfs_delayed_ref_root *delayed_refs;
811 struct btrfs_path *path;
812 struct btrfs_extent_item *ei;
813 struct extent_buffer *leaf;
814 struct btrfs_key key;
815 u32 item_size;
816 u64 num_refs;
817 u64 extent_flags;
818 int ret;
819
3173a18f
JB
820 /*
821 * If we don't have skinny metadata, don't bother doing anything
822 * different
823 */
0b246afa
JM
824 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
825 offset = fs_info->nodesize;
3173a18f
JB
826 metadata = 0;
827 }
828
a22285a6
YZ
829 path = btrfs_alloc_path();
830 if (!path)
831 return -ENOMEM;
832
a22285a6
YZ
833 if (!trans) {
834 path->skip_locking = 1;
835 path->search_commit_root = 1;
836 }
639eefc8
FDBM
837
838search_again:
839 key.objectid = bytenr;
840 key.offset = offset;
841 if (metadata)
842 key.type = BTRFS_METADATA_ITEM_KEY;
843 else
844 key.type = BTRFS_EXTENT_ITEM_KEY;
845
0b246afa 846 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
847 if (ret < 0)
848 goto out_free;
849
3173a18f 850 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
851 if (path->slots[0]) {
852 path->slots[0]--;
853 btrfs_item_key_to_cpu(path->nodes[0], &key,
854 path->slots[0]);
855 if (key.objectid == bytenr &&
856 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 857 key.offset == fs_info->nodesize)
74be9510
FDBM
858 ret = 0;
859 }
3173a18f
JB
860 }
861
a22285a6
YZ
862 if (ret == 0) {
863 leaf = path->nodes[0];
864 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
865 if (item_size >= sizeof(*ei)) {
866 ei = btrfs_item_ptr(leaf, path->slots[0],
867 struct btrfs_extent_item);
868 num_refs = btrfs_extent_refs(leaf, ei);
869 extent_flags = btrfs_extent_flags(leaf, ei);
870 } else {
ba3c2b19
NB
871 ret = -EINVAL;
872 btrfs_print_v0_err(fs_info);
873 if (trans)
874 btrfs_abort_transaction(trans, ret);
875 else
876 btrfs_handle_fs_error(fs_info, ret, NULL);
877
878 goto out_free;
a22285a6 879 }
ba3c2b19 880
a22285a6
YZ
881 BUG_ON(num_refs == 0);
882 } else {
883 num_refs = 0;
884 extent_flags = 0;
885 ret = 0;
886 }
887
888 if (!trans)
889 goto out;
890
891 delayed_refs = &trans->transaction->delayed_refs;
892 spin_lock(&delayed_refs->lock);
f72ad18e 893 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
894 if (head) {
895 if (!mutex_trylock(&head->mutex)) {
d278850e 896 refcount_inc(&head->refs);
a22285a6
YZ
897 spin_unlock(&delayed_refs->lock);
898
b3b4aa74 899 btrfs_release_path(path);
a22285a6 900
8cc33e5c
DS
901 /*
902 * Mutex was contended, block until it's released and try
903 * again
904 */
a22285a6
YZ
905 mutex_lock(&head->mutex);
906 mutex_unlock(&head->mutex);
d278850e 907 btrfs_put_delayed_ref_head(head);
639eefc8 908 goto search_again;
a22285a6 909 }
d7df2c79 910 spin_lock(&head->lock);
a22285a6
YZ
911 if (head->extent_op && head->extent_op->update_flags)
912 extent_flags |= head->extent_op->flags_to_set;
913 else
914 BUG_ON(num_refs == 0);
915
d278850e 916 num_refs += head->ref_mod;
d7df2c79 917 spin_unlock(&head->lock);
a22285a6
YZ
918 mutex_unlock(&head->mutex);
919 }
920 spin_unlock(&delayed_refs->lock);
921out:
922 WARN_ON(num_refs == 0);
923 if (refs)
924 *refs = num_refs;
925 if (flags)
926 *flags = extent_flags;
927out_free:
928 btrfs_free_path(path);
929 return ret;
930}
931
d8d5f3e1
CM
932/*
933 * Back reference rules. Back refs have three main goals:
934 *
935 * 1) differentiate between all holders of references to an extent so that
936 * when a reference is dropped we can make sure it was a valid reference
937 * before freeing the extent.
938 *
939 * 2) Provide enough information to quickly find the holders of an extent
940 * if we notice a given block is corrupted or bad.
941 *
942 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
943 * maintenance. This is actually the same as #2, but with a slightly
944 * different use case.
945 *
5d4f98a2
YZ
946 * There are two kinds of back refs. The implicit back refs is optimized
947 * for pointers in non-shared tree blocks. For a given pointer in a block,
948 * back refs of this kind provide information about the block's owner tree
949 * and the pointer's key. These information allow us to find the block by
950 * b-tree searching. The full back refs is for pointers in tree blocks not
951 * referenced by their owner trees. The location of tree block is recorded
952 * in the back refs. Actually the full back refs is generic, and can be
953 * used in all cases the implicit back refs is used. The major shortcoming
954 * of the full back refs is its overhead. Every time a tree block gets
955 * COWed, we have to update back refs entry for all pointers in it.
956 *
957 * For a newly allocated tree block, we use implicit back refs for
958 * pointers in it. This means most tree related operations only involve
959 * implicit back refs. For a tree block created in old transaction, the
960 * only way to drop a reference to it is COW it. So we can detect the
961 * event that tree block loses its owner tree's reference and do the
962 * back refs conversion.
963 *
01327610 964 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
965 *
966 * The reference count of the block is one and the tree is the block's
967 * owner tree. Nothing to do in this case.
968 *
969 * The reference count of the block is one and the tree is not the
970 * block's owner tree. In this case, full back refs is used for pointers
971 * in the block. Remove these full back refs, add implicit back refs for
972 * every pointers in the new block.
973 *
974 * The reference count of the block is greater than one and the tree is
975 * the block's owner tree. In this case, implicit back refs is used for
976 * pointers in the block. Add full back refs for every pointers in the
977 * block, increase lower level extents' reference counts. The original
978 * implicit back refs are entailed to the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * not the block's owner tree. Add implicit back refs for every pointer in
982 * the new block, increase lower level extents' reference count.
983 *
984 * Back Reference Key composing:
985 *
986 * The key objectid corresponds to the first byte in the extent,
987 * The key type is used to differentiate between types of back refs.
988 * There are different meanings of the key offset for different types
989 * of back refs.
990 *
d8d5f3e1
CM
991 * File extents can be referenced by:
992 *
993 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 994 * - different files inside a single subvolume
d8d5f3e1
CM
995 * - different offsets inside a file (bookend extents in file.c)
996 *
5d4f98a2 997 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
998 *
999 * - Objectid of the subvolume root
d8d5f3e1 1000 * - objectid of the file holding the reference
5d4f98a2
YZ
1001 * - original offset in the file
1002 * - how many bookend extents
d8d5f3e1 1003 *
5d4f98a2
YZ
1004 * The key offset for the implicit back refs is hash of the first
1005 * three fields.
d8d5f3e1 1006 *
5d4f98a2 1007 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1008 *
5d4f98a2 1009 * - number of pointers in the tree leaf
d8d5f3e1 1010 *
5d4f98a2
YZ
1011 * The key offset for the implicit back refs is the first byte of
1012 * the tree leaf
d8d5f3e1 1013 *
5d4f98a2
YZ
1014 * When a file extent is allocated, The implicit back refs is used.
1015 * the fields are filled in:
d8d5f3e1 1016 *
5d4f98a2 1017 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1018 *
5d4f98a2
YZ
1019 * When a file extent is removed file truncation, we find the
1020 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1021 *
5d4f98a2 1022 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1023 *
5d4f98a2 1024 * Btree extents can be referenced by:
d8d5f3e1 1025 *
5d4f98a2 1026 * - Different subvolumes
d8d5f3e1 1027 *
5d4f98a2
YZ
1028 * Both the implicit back refs and the full back refs for tree blocks
1029 * only consist of key. The key offset for the implicit back refs is
1030 * objectid of block's owner tree. The key offset for the full back refs
1031 * is the first byte of parent block.
d8d5f3e1 1032 *
5d4f98a2
YZ
1033 * When implicit back refs is used, information about the lowest key and
1034 * level of the tree block are required. These information are stored in
1035 * tree block info structure.
d8d5f3e1 1036 */
31840ae1 1037
167ce953
LB
1038/*
1039 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1040 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1041 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1042 */
1043int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1044 struct btrfs_extent_inline_ref *iref,
1045 enum btrfs_inline_ref_type is_data)
1046{
1047 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1048 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1049
1050 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1051 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1052 type == BTRFS_SHARED_DATA_REF_KEY ||
1053 type == BTRFS_EXTENT_DATA_REF_KEY) {
1054 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1055 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1056 return type;
64ecdb64
LB
1057 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1058 ASSERT(eb->fs_info);
1059 /*
1060 * Every shared one has parent tree
1061 * block, which must be aligned to
1062 * nodesize.
1063 */
1064 if (offset &&
1065 IS_ALIGNED(offset, eb->fs_info->nodesize))
1066 return type;
1067 }
167ce953 1068 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1069 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1070 return type;
64ecdb64
LB
1071 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1072 ASSERT(eb->fs_info);
1073 /*
1074 * Every shared one has parent tree
1075 * block, which must be aligned to
1076 * nodesize.
1077 */
1078 if (offset &&
1079 IS_ALIGNED(offset, eb->fs_info->nodesize))
1080 return type;
1081 }
167ce953
LB
1082 } else {
1083 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1084 return type;
1085 }
1086 }
1087
1088 btrfs_print_leaf((struct extent_buffer *)eb);
1089 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1090 eb->start, type);
1091 WARN_ON(1);
1092
1093 return BTRFS_REF_TYPE_INVALID;
1094}
1095
5d4f98a2
YZ
1096static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1097{
1098 u32 high_crc = ~(u32)0;
1099 u32 low_crc = ~(u32)0;
1100 __le64 lenum;
1101
1102 lenum = cpu_to_le64(root_objectid);
9678c543 1103 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1104 lenum = cpu_to_le64(owner);
9678c543 1105 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1106 lenum = cpu_to_le64(offset);
9678c543 1107 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1108
1109 return ((u64)high_crc << 31) ^ (u64)low_crc;
1110}
1111
1112static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1113 struct btrfs_extent_data_ref *ref)
1114{
1115 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1116 btrfs_extent_data_ref_objectid(leaf, ref),
1117 btrfs_extent_data_ref_offset(leaf, ref));
1118}
1119
1120static int match_extent_data_ref(struct extent_buffer *leaf,
1121 struct btrfs_extent_data_ref *ref,
1122 u64 root_objectid, u64 owner, u64 offset)
1123{
1124 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1125 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1126 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1127 return 0;
1128 return 1;
1129}
1130
1131static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1132 struct btrfs_path *path,
1133 u64 bytenr, u64 parent,
1134 u64 root_objectid,
1135 u64 owner, u64 offset)
1136{
bd1d53ef 1137 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1138 struct btrfs_key key;
1139 struct btrfs_extent_data_ref *ref;
31840ae1 1140 struct extent_buffer *leaf;
5d4f98a2 1141 u32 nritems;
74493f7a 1142 int ret;
5d4f98a2
YZ
1143 int recow;
1144 int err = -ENOENT;
74493f7a 1145
31840ae1 1146 key.objectid = bytenr;
5d4f98a2
YZ
1147 if (parent) {
1148 key.type = BTRFS_SHARED_DATA_REF_KEY;
1149 key.offset = parent;
1150 } else {
1151 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1152 key.offset = hash_extent_data_ref(root_objectid,
1153 owner, offset);
1154 }
1155again:
1156 recow = 0;
1157 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1158 if (ret < 0) {
1159 err = ret;
1160 goto fail;
1161 }
31840ae1 1162
5d4f98a2
YZ
1163 if (parent) {
1164 if (!ret)
1165 return 0;
5d4f98a2 1166 goto fail;
31840ae1
ZY
1167 }
1168
1169 leaf = path->nodes[0];
5d4f98a2
YZ
1170 nritems = btrfs_header_nritems(leaf);
1171 while (1) {
1172 if (path->slots[0] >= nritems) {
1173 ret = btrfs_next_leaf(root, path);
1174 if (ret < 0)
1175 err = ret;
1176 if (ret)
1177 goto fail;
1178
1179 leaf = path->nodes[0];
1180 nritems = btrfs_header_nritems(leaf);
1181 recow = 1;
1182 }
1183
1184 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1185 if (key.objectid != bytenr ||
1186 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1187 goto fail;
1188
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_extent_data_ref);
1191
1192 if (match_extent_data_ref(leaf, ref, root_objectid,
1193 owner, offset)) {
1194 if (recow) {
b3b4aa74 1195 btrfs_release_path(path);
5d4f98a2
YZ
1196 goto again;
1197 }
1198 err = 0;
1199 break;
1200 }
1201 path->slots[0]++;
31840ae1 1202 }
5d4f98a2
YZ
1203fail:
1204 return err;
31840ae1
ZY
1205}
1206
5d4f98a2 1207static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1208 struct btrfs_path *path,
1209 u64 bytenr, u64 parent,
1210 u64 root_objectid, u64 owner,
1211 u64 offset, int refs_to_add)
31840ae1 1212{
62b895af 1213 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1214 struct btrfs_key key;
1215 struct extent_buffer *leaf;
5d4f98a2 1216 u32 size;
31840ae1
ZY
1217 u32 num_refs;
1218 int ret;
74493f7a 1219
74493f7a 1220 key.objectid = bytenr;
5d4f98a2
YZ
1221 if (parent) {
1222 key.type = BTRFS_SHARED_DATA_REF_KEY;
1223 key.offset = parent;
1224 size = sizeof(struct btrfs_shared_data_ref);
1225 } else {
1226 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1227 key.offset = hash_extent_data_ref(root_objectid,
1228 owner, offset);
1229 size = sizeof(struct btrfs_extent_data_ref);
1230 }
74493f7a 1231
5d4f98a2
YZ
1232 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1233 if (ret && ret != -EEXIST)
1234 goto fail;
1235
1236 leaf = path->nodes[0];
1237 if (parent) {
1238 struct btrfs_shared_data_ref *ref;
31840ae1 1239 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1240 struct btrfs_shared_data_ref);
1241 if (ret == 0) {
1242 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1243 } else {
1244 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1245 num_refs += refs_to_add;
1246 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1247 }
5d4f98a2
YZ
1248 } else {
1249 struct btrfs_extent_data_ref *ref;
1250 while (ret == -EEXIST) {
1251 ref = btrfs_item_ptr(leaf, path->slots[0],
1252 struct btrfs_extent_data_ref);
1253 if (match_extent_data_ref(leaf, ref, root_objectid,
1254 owner, offset))
1255 break;
b3b4aa74 1256 btrfs_release_path(path);
5d4f98a2
YZ
1257 key.offset++;
1258 ret = btrfs_insert_empty_item(trans, root, path, &key,
1259 size);
1260 if (ret && ret != -EEXIST)
1261 goto fail;
31840ae1 1262
5d4f98a2
YZ
1263 leaf = path->nodes[0];
1264 }
1265 ref = btrfs_item_ptr(leaf, path->slots[0],
1266 struct btrfs_extent_data_ref);
1267 if (ret == 0) {
1268 btrfs_set_extent_data_ref_root(leaf, ref,
1269 root_objectid);
1270 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1271 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1272 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1273 } else {
1274 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1275 num_refs += refs_to_add;
1276 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1277 }
31840ae1 1278 }
5d4f98a2
YZ
1279 btrfs_mark_buffer_dirty(leaf);
1280 ret = 0;
1281fail:
b3b4aa74 1282 btrfs_release_path(path);
7bb86316 1283 return ret;
74493f7a
CM
1284}
1285
5d4f98a2 1286static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1287 struct btrfs_path *path,
fcebe456 1288 int refs_to_drop, int *last_ref)
31840ae1 1289{
5d4f98a2
YZ
1290 struct btrfs_key key;
1291 struct btrfs_extent_data_ref *ref1 = NULL;
1292 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1293 struct extent_buffer *leaf;
5d4f98a2 1294 u32 num_refs = 0;
31840ae1
ZY
1295 int ret = 0;
1296
1297 leaf = path->nodes[0];
5d4f98a2
YZ
1298 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1299
1300 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1301 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_extent_data_ref);
1303 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1304 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1305 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1306 struct btrfs_shared_data_ref);
1307 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
6d8ff4e4 1308 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
ba3c2b19
NB
1309 btrfs_print_v0_err(trans->fs_info);
1310 btrfs_abort_transaction(trans, -EINVAL);
1311 return -EINVAL;
5d4f98a2
YZ
1312 } else {
1313 BUG();
1314 }
1315
56bec294
CM
1316 BUG_ON(num_refs < refs_to_drop);
1317 num_refs -= refs_to_drop;
5d4f98a2 1318
31840ae1 1319 if (num_refs == 0) {
e9f6290d 1320 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1321 *last_ref = 1;
31840ae1 1322 } else {
5d4f98a2
YZ
1323 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1324 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1325 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1326 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
31840ae1
ZY
1327 btrfs_mark_buffer_dirty(leaf);
1328 }
31840ae1
ZY
1329 return ret;
1330}
1331
9ed0dea0 1332static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1333 struct btrfs_extent_inline_ref *iref)
15916de8 1334{
5d4f98a2
YZ
1335 struct btrfs_key key;
1336 struct extent_buffer *leaf;
1337 struct btrfs_extent_data_ref *ref1;
1338 struct btrfs_shared_data_ref *ref2;
1339 u32 num_refs = 0;
3de28d57 1340 int type;
5d4f98a2
YZ
1341
1342 leaf = path->nodes[0];
1343 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
ba3c2b19
NB
1344
1345 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
5d4f98a2 1346 if (iref) {
3de28d57
LB
1347 /*
1348 * If type is invalid, we should have bailed out earlier than
1349 * this call.
1350 */
1351 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1352 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1353 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1354 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1355 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1356 } else {
1357 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1358 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1359 }
1360 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1361 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1362 struct btrfs_extent_data_ref);
1363 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1364 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1365 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1366 struct btrfs_shared_data_ref);
1367 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
5d4f98a2
YZ
1368 } else {
1369 WARN_ON(1);
1370 }
1371 return num_refs;
1372}
15916de8 1373
5d4f98a2 1374static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1375 struct btrfs_path *path,
1376 u64 bytenr, u64 parent,
1377 u64 root_objectid)
1f3c79a2 1378{
b8582eea 1379 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1380 struct btrfs_key key;
1f3c79a2 1381 int ret;
1f3c79a2 1382
5d4f98a2
YZ
1383 key.objectid = bytenr;
1384 if (parent) {
1385 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1386 key.offset = parent;
1387 } else {
1388 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1389 key.offset = root_objectid;
1f3c79a2
LH
1390 }
1391
5d4f98a2
YZ
1392 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1393 if (ret > 0)
1394 ret = -ENOENT;
5d4f98a2 1395 return ret;
1f3c79a2
LH
1396}
1397
5d4f98a2 1398static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1399 struct btrfs_path *path,
1400 u64 bytenr, u64 parent,
1401 u64 root_objectid)
31840ae1 1402{
5d4f98a2 1403 struct btrfs_key key;
31840ae1 1404 int ret;
31840ae1 1405
5d4f98a2
YZ
1406 key.objectid = bytenr;
1407 if (parent) {
1408 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1409 key.offset = parent;
1410 } else {
1411 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1412 key.offset = root_objectid;
1413 }
1414
10728404 1415 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1416 path, &key, 0);
b3b4aa74 1417 btrfs_release_path(path);
31840ae1
ZY
1418 return ret;
1419}
1420
5d4f98a2 1421static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1422{
5d4f98a2
YZ
1423 int type;
1424 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1425 if (parent > 0)
1426 type = BTRFS_SHARED_BLOCK_REF_KEY;
1427 else
1428 type = BTRFS_TREE_BLOCK_REF_KEY;
1429 } else {
1430 if (parent > 0)
1431 type = BTRFS_SHARED_DATA_REF_KEY;
1432 else
1433 type = BTRFS_EXTENT_DATA_REF_KEY;
1434 }
1435 return type;
31840ae1 1436}
56bec294 1437
2c47e605
YZ
1438static int find_next_key(struct btrfs_path *path, int level,
1439 struct btrfs_key *key)
56bec294 1440
02217ed2 1441{
2c47e605 1442 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1443 if (!path->nodes[level])
1444 break;
5d4f98a2
YZ
1445 if (path->slots[level] + 1 >=
1446 btrfs_header_nritems(path->nodes[level]))
1447 continue;
1448 if (level == 0)
1449 btrfs_item_key_to_cpu(path->nodes[level], key,
1450 path->slots[level] + 1);
1451 else
1452 btrfs_node_key_to_cpu(path->nodes[level], key,
1453 path->slots[level] + 1);
1454 return 0;
1455 }
1456 return 1;
1457}
037e6390 1458
5d4f98a2
YZ
1459/*
1460 * look for inline back ref. if back ref is found, *ref_ret is set
1461 * to the address of inline back ref, and 0 is returned.
1462 *
1463 * if back ref isn't found, *ref_ret is set to the address where it
1464 * should be inserted, and -ENOENT is returned.
1465 *
1466 * if insert is true and there are too many inline back refs, the path
1467 * points to the extent item, and -EAGAIN is returned.
1468 *
1469 * NOTE: inline back refs are ordered in the same way that back ref
1470 * items in the tree are ordered.
1471 */
1472static noinline_for_stack
1473int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1474 struct btrfs_path *path,
1475 struct btrfs_extent_inline_ref **ref_ret,
1476 u64 bytenr, u64 num_bytes,
1477 u64 parent, u64 root_objectid,
1478 u64 owner, u64 offset, int insert)
1479{
867cc1fb 1480 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1481 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1482 struct btrfs_key key;
1483 struct extent_buffer *leaf;
1484 struct btrfs_extent_item *ei;
1485 struct btrfs_extent_inline_ref *iref;
1486 u64 flags;
1487 u64 item_size;
1488 unsigned long ptr;
1489 unsigned long end;
1490 int extra_size;
1491 int type;
1492 int want;
1493 int ret;
1494 int err = 0;
0b246afa 1495 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1496 int needed;
26b8003f 1497
db94535d 1498 key.objectid = bytenr;
31840ae1 1499 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1500 key.offset = num_bytes;
31840ae1 1501
5d4f98a2
YZ
1502 want = extent_ref_type(parent, owner);
1503 if (insert) {
1504 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1505 path->keep_locks = 1;
5d4f98a2
YZ
1506 } else
1507 extra_size = -1;
3173a18f
JB
1508
1509 /*
16d1c062
NB
1510 * Owner is our level, so we can just add one to get the level for the
1511 * block we are interested in.
3173a18f
JB
1512 */
1513 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1514 key.type = BTRFS_METADATA_ITEM_KEY;
1515 key.offset = owner;
1516 }
1517
1518again:
5d4f98a2 1519 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1520 if (ret < 0) {
5d4f98a2
YZ
1521 err = ret;
1522 goto out;
1523 }
3173a18f
JB
1524
1525 /*
1526 * We may be a newly converted file system which still has the old fat
1527 * extent entries for metadata, so try and see if we have one of those.
1528 */
1529 if (ret > 0 && skinny_metadata) {
1530 skinny_metadata = false;
1531 if (path->slots[0]) {
1532 path->slots[0]--;
1533 btrfs_item_key_to_cpu(path->nodes[0], &key,
1534 path->slots[0]);
1535 if (key.objectid == bytenr &&
1536 key.type == BTRFS_EXTENT_ITEM_KEY &&
1537 key.offset == num_bytes)
1538 ret = 0;
1539 }
1540 if (ret) {
9ce49a0b 1541 key.objectid = bytenr;
3173a18f
JB
1542 key.type = BTRFS_EXTENT_ITEM_KEY;
1543 key.offset = num_bytes;
1544 btrfs_release_path(path);
1545 goto again;
1546 }
1547 }
1548
79787eaa
JM
1549 if (ret && !insert) {
1550 err = -ENOENT;
1551 goto out;
fae7f21c 1552 } else if (WARN_ON(ret)) {
492104c8 1553 err = -EIO;
492104c8 1554 goto out;
79787eaa 1555 }
5d4f98a2
YZ
1556
1557 leaf = path->nodes[0];
1558 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
6d8ff4e4 1559 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
1560 err = -EINVAL;
1561 btrfs_print_v0_err(fs_info);
1562 btrfs_abort_transaction(trans, err);
1563 goto out;
1564 }
5d4f98a2 1565
5d4f98a2
YZ
1566 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1567 flags = btrfs_extent_flags(leaf, ei);
1568
1569 ptr = (unsigned long)(ei + 1);
1570 end = (unsigned long)ei + item_size;
1571
3173a18f 1572 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1573 ptr += sizeof(struct btrfs_tree_block_info);
1574 BUG_ON(ptr > end);
5d4f98a2
YZ
1575 }
1576
3de28d57
LB
1577 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1578 needed = BTRFS_REF_TYPE_DATA;
1579 else
1580 needed = BTRFS_REF_TYPE_BLOCK;
1581
5d4f98a2
YZ
1582 err = -ENOENT;
1583 while (1) {
1584 if (ptr >= end) {
1585 WARN_ON(ptr > end);
1586 break;
1587 }
1588 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1589 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1590 if (type == BTRFS_REF_TYPE_INVALID) {
af431dcb 1591 err = -EUCLEAN;
3de28d57
LB
1592 goto out;
1593 }
1594
5d4f98a2
YZ
1595 if (want < type)
1596 break;
1597 if (want > type) {
1598 ptr += btrfs_extent_inline_ref_size(type);
1599 continue;
1600 }
1601
1602 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1603 struct btrfs_extent_data_ref *dref;
1604 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1605 if (match_extent_data_ref(leaf, dref, root_objectid,
1606 owner, offset)) {
1607 err = 0;
1608 break;
1609 }
1610 if (hash_extent_data_ref_item(leaf, dref) <
1611 hash_extent_data_ref(root_objectid, owner, offset))
1612 break;
1613 } else {
1614 u64 ref_offset;
1615 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1616 if (parent > 0) {
1617 if (parent == ref_offset) {
1618 err = 0;
1619 break;
1620 }
1621 if (ref_offset < parent)
1622 break;
1623 } else {
1624 if (root_objectid == ref_offset) {
1625 err = 0;
1626 break;
1627 }
1628 if (ref_offset < root_objectid)
1629 break;
1630 }
1631 }
1632 ptr += btrfs_extent_inline_ref_size(type);
1633 }
1634 if (err == -ENOENT && insert) {
1635 if (item_size + extra_size >=
1636 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1637 err = -EAGAIN;
1638 goto out;
1639 }
1640 /*
1641 * To add new inline back ref, we have to make sure
1642 * there is no corresponding back ref item.
1643 * For simplicity, we just do not add new inline back
1644 * ref if there is any kind of item for this block
1645 */
2c47e605
YZ
1646 if (find_next_key(path, 0, &key) == 0 &&
1647 key.objectid == bytenr &&
85d4198e 1648 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1649 err = -EAGAIN;
1650 goto out;
1651 }
1652 }
1653 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1654out:
85d4198e 1655 if (insert) {
5d4f98a2
YZ
1656 path->keep_locks = 0;
1657 btrfs_unlock_up_safe(path, 1);
1658 }
1659 return err;
1660}
1661
1662/*
1663 * helper to add new inline back ref
1664 */
1665static noinline_for_stack
87bde3cd 1666void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1667 struct btrfs_path *path,
1668 struct btrfs_extent_inline_ref *iref,
1669 u64 parent, u64 root_objectid,
1670 u64 owner, u64 offset, int refs_to_add,
1671 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1672{
1673 struct extent_buffer *leaf;
1674 struct btrfs_extent_item *ei;
1675 unsigned long ptr;
1676 unsigned long end;
1677 unsigned long item_offset;
1678 u64 refs;
1679 int size;
1680 int type;
5d4f98a2
YZ
1681
1682 leaf = path->nodes[0];
1683 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1684 item_offset = (unsigned long)iref - (unsigned long)ei;
1685
1686 type = extent_ref_type(parent, owner);
1687 size = btrfs_extent_inline_ref_size(type);
1688
87bde3cd 1689 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1690
1691 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1692 refs = btrfs_extent_refs(leaf, ei);
1693 refs += refs_to_add;
1694 btrfs_set_extent_refs(leaf, ei, refs);
1695 if (extent_op)
1696 __run_delayed_extent_op(extent_op, leaf, ei);
1697
1698 ptr = (unsigned long)ei + item_offset;
1699 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1700 if (ptr < end - size)
1701 memmove_extent_buffer(leaf, ptr + size, ptr,
1702 end - size - ptr);
1703
1704 iref = (struct btrfs_extent_inline_ref *)ptr;
1705 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1706 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1707 struct btrfs_extent_data_ref *dref;
1708 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1709 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1710 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1711 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1712 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1713 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1714 struct btrfs_shared_data_ref *sref;
1715 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1716 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1718 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1719 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1720 } else {
1721 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1722 }
1723 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1724}
1725
1726static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1727 struct btrfs_path *path,
1728 struct btrfs_extent_inline_ref **ref_ret,
1729 u64 bytenr, u64 num_bytes, u64 parent,
1730 u64 root_objectid, u64 owner, u64 offset)
1731{
1732 int ret;
1733
867cc1fb
NB
1734 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1735 num_bytes, parent, root_objectid,
1736 owner, offset, 0);
5d4f98a2 1737 if (ret != -ENOENT)
54aa1f4d 1738 return ret;
5d4f98a2 1739
b3b4aa74 1740 btrfs_release_path(path);
5d4f98a2
YZ
1741 *ref_ret = NULL;
1742
1743 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1744 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1745 root_objectid);
5d4f98a2 1746 } else {
bd1d53ef
NB
1747 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1748 root_objectid, owner, offset);
b9473439 1749 }
5d4f98a2
YZ
1750 return ret;
1751}
31840ae1 1752
5d4f98a2
YZ
1753/*
1754 * helper to update/remove inline back ref
1755 */
1756static noinline_for_stack
61a18f1c 1757void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1758 struct btrfs_extent_inline_ref *iref,
1759 int refs_to_mod,
fcebe456
JB
1760 struct btrfs_delayed_extent_op *extent_op,
1761 int *last_ref)
5d4f98a2 1762{
61a18f1c
NB
1763 struct extent_buffer *leaf = path->nodes[0];
1764 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1765 struct btrfs_extent_item *ei;
1766 struct btrfs_extent_data_ref *dref = NULL;
1767 struct btrfs_shared_data_ref *sref = NULL;
1768 unsigned long ptr;
1769 unsigned long end;
1770 u32 item_size;
1771 int size;
1772 int type;
5d4f98a2
YZ
1773 u64 refs;
1774
5d4f98a2
YZ
1775 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1776 refs = btrfs_extent_refs(leaf, ei);
1777 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1778 refs += refs_to_mod;
1779 btrfs_set_extent_refs(leaf, ei, refs);
1780 if (extent_op)
1781 __run_delayed_extent_op(extent_op, leaf, ei);
1782
3de28d57
LB
1783 /*
1784 * If type is invalid, we should have bailed out after
1785 * lookup_inline_extent_backref().
1786 */
1787 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1788 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1789
1790 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1791 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1792 refs = btrfs_extent_data_ref_count(leaf, dref);
1793 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1794 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1795 refs = btrfs_shared_data_ref_count(leaf, sref);
1796 } else {
1797 refs = 1;
1798 BUG_ON(refs_to_mod != -1);
56bec294 1799 }
31840ae1 1800
5d4f98a2
YZ
1801 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1802 refs += refs_to_mod;
1803
1804 if (refs > 0) {
1805 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1806 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1807 else
1808 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1809 } else {
fcebe456 1810 *last_ref = 1;
5d4f98a2
YZ
1811 size = btrfs_extent_inline_ref_size(type);
1812 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1813 ptr = (unsigned long)iref;
1814 end = (unsigned long)ei + item_size;
1815 if (ptr + size < end)
1816 memmove_extent_buffer(leaf, ptr, ptr + size,
1817 end - ptr - size);
1818 item_size -= size;
87bde3cd 1819 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1820 }
1821 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1822}
1823
1824static noinline_for_stack
1825int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1826 struct btrfs_path *path,
1827 u64 bytenr, u64 num_bytes, u64 parent,
1828 u64 root_objectid, u64 owner,
1829 u64 offset, int refs_to_add,
1830 struct btrfs_delayed_extent_op *extent_op)
1831{
1832 struct btrfs_extent_inline_ref *iref;
1833 int ret;
1834
867cc1fb
NB
1835 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1836 num_bytes, parent, root_objectid,
1837 owner, offset, 1);
5d4f98a2
YZ
1838 if (ret == 0) {
1839 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1840 update_inline_extent_backref(path, iref, refs_to_add,
1841 extent_op, NULL);
5d4f98a2 1842 } else if (ret == -ENOENT) {
a639cdeb 1843 setup_inline_extent_backref(trans->fs_info, path, iref, parent,
143bede5
JM
1844 root_objectid, owner, offset,
1845 refs_to_add, extent_op);
1846 ret = 0;
771ed689 1847 }
5d4f98a2
YZ
1848 return ret;
1849}
31840ae1 1850
5d4f98a2 1851static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1852 struct btrfs_path *path,
1853 u64 bytenr, u64 parent, u64 root_objectid,
1854 u64 owner, u64 offset, int refs_to_add)
1855{
1856 int ret;
1857 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1858 BUG_ON(refs_to_add != 1);
10728404
NB
1859 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1860 root_objectid);
5d4f98a2 1861 } else {
62b895af
NB
1862 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1863 root_objectid, owner, offset,
1864 refs_to_add);
5d4f98a2
YZ
1865 }
1866 return ret;
1867}
56bec294 1868
5d4f98a2 1869static int remove_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1870 struct btrfs_path *path,
1871 struct btrfs_extent_inline_ref *iref,
fcebe456 1872 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1873{
143bede5 1874 int ret = 0;
b9473439 1875
5d4f98a2
YZ
1876 BUG_ON(!is_data && refs_to_drop != 1);
1877 if (iref) {
61a18f1c
NB
1878 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
1879 last_ref);
5d4f98a2 1880 } else if (is_data) {
e9f6290d 1881 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 1882 last_ref);
5d4f98a2 1883 } else {
fcebe456 1884 *last_ref = 1;
87cc7a8a 1885 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
5d4f98a2
YZ
1886 }
1887 return ret;
1888}
1889
86557861 1890#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1891static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1892 u64 *discarded_bytes)
5d4f98a2 1893{
86557861
JM
1894 int j, ret = 0;
1895 u64 bytes_left, end;
4d89d377 1896 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1897
4d89d377
JM
1898 if (WARN_ON(start != aligned_start)) {
1899 len -= aligned_start - start;
1900 len = round_down(len, 1 << 9);
1901 start = aligned_start;
1902 }
d04c6b88 1903
4d89d377 1904 *discarded_bytes = 0;
86557861
JM
1905
1906 if (!len)
1907 return 0;
1908
1909 end = start + len;
1910 bytes_left = len;
1911
1912 /* Skip any superblocks on this device. */
1913 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1914 u64 sb_start = btrfs_sb_offset(j);
1915 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1916 u64 size = sb_start - start;
1917
1918 if (!in_range(sb_start, start, bytes_left) &&
1919 !in_range(sb_end, start, bytes_left) &&
1920 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1921 continue;
1922
1923 /*
1924 * Superblock spans beginning of range. Adjust start and
1925 * try again.
1926 */
1927 if (sb_start <= start) {
1928 start += sb_end - start;
1929 if (start > end) {
1930 bytes_left = 0;
1931 break;
1932 }
1933 bytes_left = end - start;
1934 continue;
1935 }
1936
1937 if (size) {
1938 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1939 GFP_NOFS, 0);
1940 if (!ret)
1941 *discarded_bytes += size;
1942 else if (ret != -EOPNOTSUPP)
1943 return ret;
1944 }
1945
1946 start = sb_end;
1947 if (start > end) {
1948 bytes_left = 0;
1949 break;
1950 }
1951 bytes_left = end - start;
1952 }
1953
1954 if (bytes_left) {
1955 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1956 GFP_NOFS, 0);
1957 if (!ret)
86557861 1958 *discarded_bytes += bytes_left;
4d89d377 1959 }
d04c6b88 1960 return ret;
5d4f98a2 1961}
5d4f98a2 1962
2ff7e61e 1963int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 1964 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1965{
5d4f98a2 1966 int ret;
5378e607 1967 u64 discarded_bytes = 0;
a1d3c478 1968 struct btrfs_bio *bbio = NULL;
5d4f98a2 1969
e244a0ae 1970
2999241d
FM
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are discarding.
1974 */
0b246afa 1975 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 1976 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
1977 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
1978 &bbio, 0);
79787eaa 1979 /* Error condition is -ENOMEM */
5d4f98a2 1980 if (!ret) {
a1d3c478 1981 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1982 int i;
1983
5d4f98a2 1984
a1d3c478 1985 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1986 u64 bytes;
38b5f68e
AJ
1987 struct request_queue *req_q;
1988
627e0873
FM
1989 if (!stripe->dev->bdev) {
1990 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
1991 continue;
1992 }
38b5f68e
AJ
1993 req_q = bdev_get_queue(stripe->dev->bdev);
1994 if (!blk_queue_discard(req_q))
d5e2003c
JB
1995 continue;
1996
5378e607
LD
1997 ret = btrfs_issue_discard(stripe->dev->bdev,
1998 stripe->physical,
d04c6b88
JM
1999 stripe->length,
2000 &bytes);
5378e607 2001 if (!ret)
d04c6b88 2002 discarded_bytes += bytes;
5378e607 2003 else if (ret != -EOPNOTSUPP)
79787eaa 2004 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2005
2006 /*
2007 * Just in case we get back EOPNOTSUPP for some reason,
2008 * just ignore the return value so we don't screw up
2009 * people calling discard_extent.
2010 */
2011 ret = 0;
5d4f98a2 2012 }
6e9606d2 2013 btrfs_put_bbio(bbio);
5d4f98a2 2014 }
0b246afa 2015 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2016
2017 if (actual_bytes)
2018 *actual_bytes = discarded_bytes;
2019
5d4f98a2 2020
53b381b3
DW
2021 if (ret == -EOPNOTSUPP)
2022 ret = 0;
5d4f98a2 2023 return ret;
5d4f98a2
YZ
2024}
2025
79787eaa 2026/* Can return -ENOMEM */
5d4f98a2 2027int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2028 struct btrfs_root *root,
5d4f98a2 2029 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2030 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2031{
84f7d8e6 2032 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2033 int old_ref_mod, new_ref_mod;
5d4f98a2 2034 int ret;
66d7e7f0 2035
5d4f98a2
YZ
2036 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2037 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2038
fd708b81
JB
2039 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2040 owner, offset, BTRFS_ADD_DELAYED_REF);
2041
5d4f98a2 2042 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 2043 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
2044 num_bytes, parent,
2045 root_objectid, (int)owner,
2046 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2047 &old_ref_mod, &new_ref_mod);
5d4f98a2 2048 } else {
88a979c6 2049 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
2050 num_bytes, parent,
2051 root_objectid, owner, offset,
d7eae340
OS
2052 0, BTRFS_ADD_DELAYED_REF,
2053 &old_ref_mod, &new_ref_mod);
5d4f98a2 2054 }
d7eae340 2055
29d2b84c
NB
2056 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2057 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2058
2059 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2060 }
d7eae340 2061
5d4f98a2
YZ
2062 return ret;
2063}
2064
bd3c685e
NB
2065/*
2066 * __btrfs_inc_extent_ref - insert backreference for a given extent
2067 *
2068 * @trans: Handle of transaction
2069 *
2070 * @node: The delayed ref node used to get the bytenr/length for
2071 * extent whose references are incremented.
2072 *
2073 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2074 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2075 * bytenr of the parent block. Since new extents are always
2076 * created with indirect references, this will only be the case
2077 * when relocating a shared extent. In that case, root_objectid
2078 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2079 * be 0
2080 *
2081 * @root_objectid: The id of the root where this modification has originated,
2082 * this can be either one of the well-known metadata trees or
2083 * the subvolume id which references this extent.
2084 *
2085 * @owner: For data extents it is the inode number of the owning file.
2086 * For metadata extents this parameter holds the level in the
2087 * tree of the extent.
2088 *
2089 * @offset: For metadata extents the offset is ignored and is currently
2090 * always passed as 0. For data extents it is the fileoffset
2091 * this extent belongs to.
2092 *
2093 * @refs_to_add Number of references to add
2094 *
2095 * @extent_op Pointer to a structure, holding information necessary when
2096 * updating a tree block's flags
2097 *
2098 */
5d4f98a2 2099static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
c682f9b3 2100 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2101 u64 parent, u64 root_objectid,
2102 u64 owner, u64 offset, int refs_to_add,
2103 struct btrfs_delayed_extent_op *extent_op)
2104{
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_extent_item *item;
fcebe456 2108 struct btrfs_key key;
c682f9b3
QW
2109 u64 bytenr = node->bytenr;
2110 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2111 u64 refs;
2112 int ret;
5d4f98a2
YZ
2113
2114 path = btrfs_alloc_path();
2115 if (!path)
2116 return -ENOMEM;
2117
e4058b54 2118 path->reada = READA_FORWARD;
5d4f98a2
YZ
2119 path->leave_spinning = 1;
2120 /* this will setup the path even if it fails to insert the back ref */
a639cdeb
NB
2121 ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
2122 parent, root_objectid, owner,
2123 offset, refs_to_add, extent_op);
0ed4792a 2124 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2125 goto out;
fcebe456
JB
2126
2127 /*
2128 * Ok we had -EAGAIN which means we didn't have space to insert and
2129 * inline extent ref, so just update the reference count and add a
2130 * normal backref.
2131 */
5d4f98a2 2132 leaf = path->nodes[0];
fcebe456 2133 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2134 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2135 refs = btrfs_extent_refs(leaf, item);
2136 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2137 if (extent_op)
2138 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2139
5d4f98a2 2140 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2141 btrfs_release_path(path);
56bec294 2142
e4058b54 2143 path->reada = READA_FORWARD;
b9473439 2144 path->leave_spinning = 1;
56bec294 2145 /* now insert the actual backref */
37593410
NB
2146 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2147 owner, offset, refs_to_add);
79787eaa 2148 if (ret)
66642832 2149 btrfs_abort_transaction(trans, ret);
5d4f98a2 2150out:
56bec294 2151 btrfs_free_path(path);
30d133fc 2152 return ret;
56bec294
CM
2153}
2154
5d4f98a2 2155static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2156 struct btrfs_delayed_ref_node *node,
2157 struct btrfs_delayed_extent_op *extent_op,
2158 int insert_reserved)
56bec294 2159{
5d4f98a2
YZ
2160 int ret = 0;
2161 struct btrfs_delayed_data_ref *ref;
2162 struct btrfs_key ins;
2163 u64 parent = 0;
2164 u64 ref_root = 0;
2165 u64 flags = 0;
2166
2167 ins.objectid = node->bytenr;
2168 ins.offset = node->num_bytes;
2169 ins.type = BTRFS_EXTENT_ITEM_KEY;
2170
2171 ref = btrfs_delayed_node_to_data_ref(node);
2bf98ef3 2172 trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
599c75ec 2173
5d4f98a2
YZ
2174 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2175 parent = ref->parent;
fcebe456 2176 ref_root = ref->root;
5d4f98a2
YZ
2177
2178 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2179 if (extent_op)
5d4f98a2 2180 flags |= extent_op->flags_to_set;
ef89b824
NB
2181 ret = alloc_reserved_file_extent(trans, parent, ref_root,
2182 flags, ref->objectid,
2183 ref->offset, &ins,
2184 node->ref_mod);
5d4f98a2 2185 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2186 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2187 ref->objectid, ref->offset,
2188 node->ref_mod, extent_op);
5d4f98a2 2189 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2190 ret = __btrfs_free_extent(trans, node, parent,
5d4f98a2
YZ
2191 ref_root, ref->objectid,
2192 ref->offset, node->ref_mod,
c682f9b3 2193 extent_op);
5d4f98a2
YZ
2194 } else {
2195 BUG();
2196 }
2197 return ret;
2198}
2199
2200static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2201 struct extent_buffer *leaf,
2202 struct btrfs_extent_item *ei)
2203{
2204 u64 flags = btrfs_extent_flags(leaf, ei);
2205 if (extent_op->update_flags) {
2206 flags |= extent_op->flags_to_set;
2207 btrfs_set_extent_flags(leaf, ei, flags);
2208 }
2209
2210 if (extent_op->update_key) {
2211 struct btrfs_tree_block_info *bi;
2212 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2213 bi = (struct btrfs_tree_block_info *)(ei + 1);
2214 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2215 }
2216}
2217
2218static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
d278850e 2219 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2220 struct btrfs_delayed_extent_op *extent_op)
2221{
20b9a2d6 2222 struct btrfs_fs_info *fs_info = trans->fs_info;
5d4f98a2
YZ
2223 struct btrfs_key key;
2224 struct btrfs_path *path;
2225 struct btrfs_extent_item *ei;
2226 struct extent_buffer *leaf;
2227 u32 item_size;
56bec294 2228 int ret;
5d4f98a2 2229 int err = 0;
b1c79e09 2230 int metadata = !extent_op->is_data;
5d4f98a2 2231
79787eaa
JM
2232 if (trans->aborted)
2233 return 0;
2234
0b246afa 2235 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2236 metadata = 0;
2237
5d4f98a2
YZ
2238 path = btrfs_alloc_path();
2239 if (!path)
2240 return -ENOMEM;
2241
d278850e 2242 key.objectid = head->bytenr;
5d4f98a2 2243
3173a18f 2244 if (metadata) {
3173a18f 2245 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2246 key.offset = extent_op->level;
3173a18f
JB
2247 } else {
2248 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2249 key.offset = head->num_bytes;
3173a18f
JB
2250 }
2251
2252again:
e4058b54 2253 path->reada = READA_FORWARD;
5d4f98a2 2254 path->leave_spinning = 1;
0b246afa 2255 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2256 if (ret < 0) {
2257 err = ret;
2258 goto out;
2259 }
2260 if (ret > 0) {
3173a18f 2261 if (metadata) {
55994887
FDBM
2262 if (path->slots[0] > 0) {
2263 path->slots[0]--;
2264 btrfs_item_key_to_cpu(path->nodes[0], &key,
2265 path->slots[0]);
d278850e 2266 if (key.objectid == head->bytenr &&
55994887 2267 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2268 key.offset == head->num_bytes)
55994887
FDBM
2269 ret = 0;
2270 }
2271 if (ret > 0) {
2272 btrfs_release_path(path);
2273 metadata = 0;
3173a18f 2274
d278850e
JB
2275 key.objectid = head->bytenr;
2276 key.offset = head->num_bytes;
55994887
FDBM
2277 key.type = BTRFS_EXTENT_ITEM_KEY;
2278 goto again;
2279 }
2280 } else {
2281 err = -EIO;
2282 goto out;
3173a18f 2283 }
5d4f98a2
YZ
2284 }
2285
2286 leaf = path->nodes[0];
2287 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ba3c2b19 2288
6d8ff4e4 2289 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
2290 err = -EINVAL;
2291 btrfs_print_v0_err(fs_info);
2292 btrfs_abort_transaction(trans, err);
2293 goto out;
2294 }
2295
5d4f98a2
YZ
2296 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2297 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2298
5d4f98a2
YZ
2299 btrfs_mark_buffer_dirty(leaf);
2300out:
2301 btrfs_free_path(path);
2302 return err;
56bec294
CM
2303}
2304
5d4f98a2 2305static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2306 struct btrfs_delayed_ref_node *node,
2307 struct btrfs_delayed_extent_op *extent_op,
2308 int insert_reserved)
56bec294
CM
2309{
2310 int ret = 0;
5d4f98a2 2311 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2312 u64 parent = 0;
2313 u64 ref_root = 0;
56bec294 2314
5d4f98a2 2315 ref = btrfs_delayed_node_to_tree_ref(node);
f97806f2 2316 trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
599c75ec 2317
5d4f98a2
YZ
2318 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2319 parent = ref->parent;
fcebe456 2320 ref_root = ref->root;
5d4f98a2 2321
02794222 2322 if (node->ref_mod != 1) {
f97806f2 2323 btrfs_err(trans->fs_info,
02794222
LB
2324 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2325 node->bytenr, node->ref_mod, node->action, ref_root,
2326 parent);
2327 return -EIO;
2328 }
5d4f98a2 2329 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2330 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2331 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2332 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2590d0f1
NB
2333 ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
2334 ref->level, 0, 1, extent_op);
5d4f98a2 2335 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
e72cb923 2336 ret = __btrfs_free_extent(trans, node, parent, ref_root,
c682f9b3 2337 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2338 } else {
2339 BUG();
2340 }
56bec294
CM
2341 return ret;
2342}
2343
2344/* helper function to actually process a single delayed ref entry */
5d4f98a2 2345static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
2346 struct btrfs_delayed_ref_node *node,
2347 struct btrfs_delayed_extent_op *extent_op,
2348 int insert_reserved)
56bec294 2349{
79787eaa
JM
2350 int ret = 0;
2351
857cc2fc
JB
2352 if (trans->aborted) {
2353 if (insert_reserved)
5fac7f9e 2354 btrfs_pin_extent(trans->fs_info, node->bytenr,
857cc2fc 2355 node->num_bytes, 1);
79787eaa 2356 return 0;
857cc2fc 2357 }
79787eaa 2358
5d4f98a2
YZ
2359 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2360 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
f97806f2 2361 ret = run_delayed_tree_ref(trans, node, extent_op,
5d4f98a2
YZ
2362 insert_reserved);
2363 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2364 node->type == BTRFS_SHARED_DATA_REF_KEY)
2bf98ef3 2365 ret = run_delayed_data_ref(trans, node, extent_op,
5d4f98a2
YZ
2366 insert_reserved);
2367 else
2368 BUG();
2369 return ret;
56bec294
CM
2370}
2371
c6fc2454 2372static inline struct btrfs_delayed_ref_node *
56bec294
CM
2373select_delayed_ref(struct btrfs_delayed_ref_head *head)
2374{
cffc3374
FM
2375 struct btrfs_delayed_ref_node *ref;
2376
0e0adbcf 2377 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2378 return NULL;
d7df2c79 2379
cffc3374
FM
2380 /*
2381 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2382 * This is to prevent a ref count from going down to zero, which deletes
2383 * the extent item from the extent tree, when there still are references
2384 * to add, which would fail because they would not find the extent item.
2385 */
1d57ee94
WX
2386 if (!list_empty(&head->ref_add_list))
2387 return list_first_entry(&head->ref_add_list,
2388 struct btrfs_delayed_ref_node, add_list);
2389
0e0adbcf
JB
2390 ref = rb_entry(rb_first(&head->ref_tree),
2391 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2392 ASSERT(list_empty(&ref->add_list));
2393 return ref;
56bec294
CM
2394}
2395
2eadaa22
JB
2396static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2397 struct btrfs_delayed_ref_head *head)
2398{
2399 spin_lock(&delayed_refs->lock);
2400 head->processing = 0;
2401 delayed_refs->num_heads_ready++;
2402 spin_unlock(&delayed_refs->lock);
2403 btrfs_delayed_ref_unlock(head);
2404}
2405
b00e6250 2406static int cleanup_extent_op(struct btrfs_trans_handle *trans,
b00e6250
JB
2407 struct btrfs_delayed_ref_head *head)
2408{
2409 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2410 int ret;
2411
2412 if (!extent_op)
2413 return 0;
2414 head->extent_op = NULL;
2415 if (head->must_insert_reserved) {
2416 btrfs_free_delayed_extent_op(extent_op);
2417 return 0;
2418 }
2419 spin_unlock(&head->lock);
20b9a2d6 2420 ret = run_delayed_extent_op(trans, head, extent_op);
b00e6250
JB
2421 btrfs_free_delayed_extent_op(extent_op);
2422 return ret ? ret : 1;
2423}
2424
194ab0bc 2425static int cleanup_ref_head(struct btrfs_trans_handle *trans,
194ab0bc
JB
2426 struct btrfs_delayed_ref_head *head)
2427{
f9871edd
NB
2428
2429 struct btrfs_fs_info *fs_info = trans->fs_info;
194ab0bc
JB
2430 struct btrfs_delayed_ref_root *delayed_refs;
2431 int ret;
2432
2433 delayed_refs = &trans->transaction->delayed_refs;
2434
c4d56d4a 2435 ret = cleanup_extent_op(trans, head);
194ab0bc
JB
2436 if (ret < 0) {
2437 unselect_delayed_ref_head(delayed_refs, head);
2438 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2439 return ret;
2440 } else if (ret) {
2441 return ret;
2442 }
2443
2444 /*
2445 * Need to drop our head ref lock and re-acquire the delayed ref lock
2446 * and then re-check to make sure nobody got added.
2447 */
2448 spin_unlock(&head->lock);
2449 spin_lock(&delayed_refs->lock);
2450 spin_lock(&head->lock);
0e0adbcf 2451 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2452 spin_unlock(&head->lock);
2453 spin_unlock(&delayed_refs->lock);
2454 return 1;
2455 }
194ab0bc
JB
2456 delayed_refs->num_heads--;
2457 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2458 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2459 spin_unlock(&head->lock);
1e7a1421 2460 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2461 atomic_dec(&delayed_refs->num_entries);
2462
d278850e 2463 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2464
2465 if (head->total_ref_mod < 0) {
5e388e95
NB
2466 struct btrfs_space_info *space_info;
2467 u64 flags;
c1103f7a 2468
5e388e95
NB
2469 if (head->is_data)
2470 flags = BTRFS_BLOCK_GROUP_DATA;
2471 else if (head->is_system)
2472 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2473 else
2474 flags = BTRFS_BLOCK_GROUP_METADATA;
2475 space_info = __find_space_info(fs_info, flags);
2476 ASSERT(space_info);
dec59fa3
EL
2477 percpu_counter_add_batch(&space_info->total_bytes_pinned,
2478 -head->num_bytes,
2479 BTRFS_TOTAL_BYTES_PINNED_BATCH);
c1103f7a
JB
2480
2481 if (head->is_data) {
2482 spin_lock(&delayed_refs->lock);
d278850e 2483 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2484 spin_unlock(&delayed_refs->lock);
2485 }
2486 }
2487
2488 if (head->must_insert_reserved) {
d278850e
JB
2489 btrfs_pin_extent(fs_info, head->bytenr,
2490 head->num_bytes, 1);
c1103f7a 2491 if (head->is_data) {
d278850e
JB
2492 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2493 head->num_bytes);
c1103f7a
JB
2494 }
2495 }
2496
2497 /* Also free its reserved qgroup space */
2498 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2499 head->qgroup_reserved);
2500 btrfs_delayed_ref_unlock(head);
d278850e 2501 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2502 return 0;
2503}
2504
79787eaa
JM
2505/*
2506 * Returns 0 on success or if called with an already aborted transaction.
2507 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2508 */
d7df2c79 2509static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2510 unsigned long nr)
56bec294 2511{
0a1e458a 2512 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2513 struct btrfs_delayed_ref_root *delayed_refs;
2514 struct btrfs_delayed_ref_node *ref;
2515 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2516 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2517 ktime_t start = ktime_get();
56bec294 2518 int ret;
d7df2c79 2519 unsigned long count = 0;
0a2b2a84 2520 unsigned long actual_count = 0;
56bec294 2521 int must_insert_reserved = 0;
56bec294
CM
2522
2523 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2524 while (1) {
2525 if (!locked_ref) {
d7df2c79 2526 if (count >= nr)
56bec294 2527 break;
56bec294 2528
d7df2c79
JB
2529 spin_lock(&delayed_refs->lock);
2530 locked_ref = btrfs_select_ref_head(trans);
2531 if (!locked_ref) {
2532 spin_unlock(&delayed_refs->lock);
2533 break;
2534 }
c3e69d58
CM
2535
2536 /* grab the lock that says we are going to process
2537 * all the refs for this head */
2538 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2539 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2540 /*
2541 * we may have dropped the spin lock to get the head
2542 * mutex lock, and that might have given someone else
2543 * time to free the head. If that's true, it has been
2544 * removed from our list and we can move on.
2545 */
2546 if (ret == -EAGAIN) {
2547 locked_ref = NULL;
2548 count++;
2549 continue;
56bec294
CM
2550 }
2551 }
a28ec197 2552
2c3cf7d5
FM
2553 /*
2554 * We need to try and merge add/drops of the same ref since we
2555 * can run into issues with relocate dropping the implicit ref
2556 * and then it being added back again before the drop can
2557 * finish. If we merged anything we need to re-loop so we can
2558 * get a good ref.
2559 * Or we can get node references of the same type that weren't
2560 * merged when created due to bumps in the tree mod seq, and
2561 * we need to merge them to prevent adding an inline extent
2562 * backref before dropping it (triggering a BUG_ON at
2563 * insert_inline_extent_backref()).
2564 */
d7df2c79 2565 spin_lock(&locked_ref->lock);
be97f133 2566 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2567
d1270cd9
AJ
2568 ref = select_delayed_ref(locked_ref);
2569
2570 if (ref && ref->seq &&
41d0bd3b 2571 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2572 spin_unlock(&locked_ref->lock);
2eadaa22 2573 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2574 locked_ref = NULL;
d1270cd9 2575 cond_resched();
27a377db 2576 count++;
d1270cd9
AJ
2577 continue;
2578 }
2579
c1103f7a
JB
2580 /*
2581 * We're done processing refs in this ref_head, clean everything
2582 * up and move on to the next ref_head.
2583 */
56bec294 2584 if (!ref) {
f9871edd 2585 ret = cleanup_ref_head(trans, locked_ref);
194ab0bc 2586 if (ret > 0 ) {
b00e6250
JB
2587 /* We dropped our lock, we need to loop. */
2588 ret = 0;
d7df2c79 2589 continue;
194ab0bc
JB
2590 } else if (ret) {
2591 return ret;
5d4f98a2 2592 }
c1103f7a
JB
2593 locked_ref = NULL;
2594 count++;
2595 continue;
2596 }
02217ed2 2597
c1103f7a
JB
2598 actual_count++;
2599 ref->in_tree = 0;
0e0adbcf
JB
2600 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2601 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2602 if (!list_empty(&ref->add_list))
2603 list_del(&ref->add_list);
2604 /*
2605 * When we play the delayed ref, also correct the ref_mod on
2606 * head
2607 */
2608 switch (ref->action) {
2609 case BTRFS_ADD_DELAYED_REF:
2610 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2611 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2612 break;
2613 case BTRFS_DROP_DELAYED_REF:
d278850e 2614 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2615 break;
2616 default:
2617 WARN_ON(1);
22cd2e7d 2618 }
1ce7a5ec
JB
2619 atomic_dec(&delayed_refs->num_entries);
2620
b00e6250
JB
2621 /*
2622 * Record the must-insert_reserved flag before we drop the spin
2623 * lock.
2624 */
2625 must_insert_reserved = locked_ref->must_insert_reserved;
2626 locked_ref->must_insert_reserved = 0;
2627
2628 extent_op = locked_ref->extent_op;
2629 locked_ref->extent_op = NULL;
d7df2c79 2630 spin_unlock(&locked_ref->lock);
925baedd 2631
5fac7f9e 2632 ret = run_one_delayed_ref(trans, ref, extent_op,
56bec294 2633 must_insert_reserved);
eb099670 2634
78a6184a 2635 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2636 if (ret) {
2eadaa22 2637 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2638 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2639 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2640 ret);
79787eaa
JM
2641 return ret;
2642 }
2643
093486c4
MX
2644 btrfs_put_delayed_ref(ref);
2645 count++;
c3e69d58 2646 cond_resched();
c3e69d58 2647 }
0a2b2a84
JB
2648
2649 /*
2650 * We don't want to include ref heads since we can have empty ref heads
2651 * and those will drastically skew our runtime down since we just do
2652 * accounting, no actual extent tree updates.
2653 */
2654 if (actual_count > 0) {
2655 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2656 u64 avg;
2657
2658 /*
2659 * We weigh the current average higher than our current runtime
2660 * to avoid large swings in the average.
2661 */
2662 spin_lock(&delayed_refs->lock);
2663 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2664 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2665 spin_unlock(&delayed_refs->lock);
2666 }
d7df2c79 2667 return 0;
c3e69d58
CM
2668}
2669
709c0486
AJ
2670#ifdef SCRAMBLE_DELAYED_REFS
2671/*
2672 * Normally delayed refs get processed in ascending bytenr order. This
2673 * correlates in most cases to the order added. To expose dependencies on this
2674 * order, we start to process the tree in the middle instead of the beginning
2675 */
2676static u64 find_middle(struct rb_root *root)
2677{
2678 struct rb_node *n = root->rb_node;
2679 struct btrfs_delayed_ref_node *entry;
2680 int alt = 1;
2681 u64 middle;
2682 u64 first = 0, last = 0;
2683
2684 n = rb_first(root);
2685 if (n) {
2686 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2687 first = entry->bytenr;
2688 }
2689 n = rb_last(root);
2690 if (n) {
2691 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2692 last = entry->bytenr;
2693 }
2694 n = root->rb_node;
2695
2696 while (n) {
2697 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2698 WARN_ON(!entry->in_tree);
2699
2700 middle = entry->bytenr;
2701
2702 if (alt)
2703 n = n->rb_left;
2704 else
2705 n = n->rb_right;
2706
2707 alt = 1 - alt;
2708 }
2709 return middle;
2710}
2711#endif
2712
2ff7e61e 2713static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2714{
2715 u64 num_bytes;
2716
2717 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2718 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2719 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2720 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2721
2722 /*
2723 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2724 * closer to what we're really going to want to use.
1be41b78 2725 */
0b246afa 2726 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2727}
2728
1262133b
JB
2729/*
2730 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2731 * would require to store the csums for that many bytes.
2732 */
2ff7e61e 2733u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2734{
2735 u64 csum_size;
2736 u64 num_csums_per_leaf;
2737 u64 num_csums;
2738
0b246afa 2739 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2740 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2741 (u64)btrfs_super_csum_size(fs_info->super_copy));
2742 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2743 num_csums += num_csums_per_leaf - 1;
2744 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2745 return num_csums;
2746}
2747
0a2b2a84 2748int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2749 struct btrfs_fs_info *fs_info)
1be41b78
JB
2750{
2751 struct btrfs_block_rsv *global_rsv;
2752 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2753 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2754 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2755 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2756 int ret = 0;
2757
0b246afa 2758 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2759 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2760 if (num_heads > 1)
0b246afa 2761 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2762 num_bytes <<= 1;
2ff7e61e
JM
2763 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2764 fs_info->nodesize;
0b246afa 2765 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2766 num_dirty_bgs);
0b246afa 2767 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2768
2769 /*
2770 * If we can't allocate any more chunks lets make sure we have _lots_ of
2771 * wiggle room since running delayed refs can create more delayed refs.
2772 */
cb723e49
JB
2773 if (global_rsv->space_info->full) {
2774 num_dirty_bgs_bytes <<= 1;
1be41b78 2775 num_bytes <<= 1;
cb723e49 2776 }
1be41b78
JB
2777
2778 spin_lock(&global_rsv->lock);
cb723e49 2779 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2780 ret = 1;
2781 spin_unlock(&global_rsv->lock);
2782 return ret;
2783}
2784
0a2b2a84 2785int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2786 struct btrfs_fs_info *fs_info)
0a2b2a84 2787{
0a2b2a84
JB
2788 u64 num_entries =
2789 atomic_read(&trans->transaction->delayed_refs.num_entries);
2790 u64 avg_runtime;
a79b7d4b 2791 u64 val;
0a2b2a84
JB
2792
2793 smp_mb();
2794 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2795 val = num_entries * avg_runtime;
dc1a90c6 2796 if (val >= NSEC_PER_SEC)
0a2b2a84 2797 return 1;
a79b7d4b
CM
2798 if (val >= NSEC_PER_SEC / 2)
2799 return 2;
0a2b2a84 2800
2ff7e61e 2801 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2802}
2803
a79b7d4b
CM
2804struct async_delayed_refs {
2805 struct btrfs_root *root;
31b9655f 2806 u64 transid;
a79b7d4b
CM
2807 int count;
2808 int error;
2809 int sync;
2810 struct completion wait;
2811 struct btrfs_work work;
2812};
2813
2ff7e61e
JM
2814static inline struct async_delayed_refs *
2815to_async_delayed_refs(struct btrfs_work *work)
2816{
2817 return container_of(work, struct async_delayed_refs, work);
2818}
2819
a79b7d4b
CM
2820static void delayed_ref_async_start(struct btrfs_work *work)
2821{
2ff7e61e 2822 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2823 struct btrfs_trans_handle *trans;
2ff7e61e 2824 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2825 int ret;
2826
0f873eca 2827 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2828 if (btrfs_transaction_blocked(fs_info))
31b9655f 2829 goto done;
31b9655f 2830
0f873eca
CM
2831 trans = btrfs_join_transaction(async->root);
2832 if (IS_ERR(trans)) {
2833 async->error = PTR_ERR(trans);
a79b7d4b
CM
2834 goto done;
2835 }
2836
2837 /*
01327610 2838 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2839 * wait on delayed refs
2840 */
2841 trans->sync = true;
0f873eca
CM
2842
2843 /* Don't bother flushing if we got into a different transaction */
2844 if (trans->transid > async->transid)
2845 goto end;
2846
c79a70b1 2847 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2848 if (ret)
2849 async->error = ret;
0f873eca 2850end:
3a45bb20 2851 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2852 if (ret && !async->error)
2853 async->error = ret;
2854done:
2855 if (async->sync)
2856 complete(&async->wait);
2857 else
2858 kfree(async);
2859}
2860
2ff7e61e 2861int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 2862 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
2863{
2864 struct async_delayed_refs *async;
2865 int ret;
2866
2867 async = kmalloc(sizeof(*async), GFP_NOFS);
2868 if (!async)
2869 return -ENOMEM;
2870
0b246afa 2871 async->root = fs_info->tree_root;
a79b7d4b
CM
2872 async->count = count;
2873 async->error = 0;
31b9655f 2874 async->transid = transid;
a79b7d4b
CM
2875 if (wait)
2876 async->sync = 1;
2877 else
2878 async->sync = 0;
2879 init_completion(&async->wait);
2880
9e0af237
LB
2881 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2882 delayed_ref_async_start, NULL, NULL);
a79b7d4b 2883
0b246afa 2884 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
2885
2886 if (wait) {
2887 wait_for_completion(&async->wait);
2888 ret = async->error;
2889 kfree(async);
2890 return ret;
2891 }
2892 return 0;
2893}
2894
c3e69d58
CM
2895/*
2896 * this starts processing the delayed reference count updates and
2897 * extent insertions we have queued up so far. count can be
2898 * 0, which means to process everything in the tree at the start
2899 * of the run (but not newly added entries), or it can be some target
2900 * number you'd like to process.
79787eaa
JM
2901 *
2902 * Returns 0 on success or if called with an aborted transaction
2903 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2904 */
2905int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 2906 unsigned long count)
c3e69d58 2907{
c79a70b1 2908 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
2909 struct rb_node *node;
2910 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2911 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2912 int ret;
2913 int run_all = count == (unsigned long)-1;
d9a0540a 2914 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 2915
79787eaa
JM
2916 /* We'll clean this up in btrfs_cleanup_transaction */
2917 if (trans->aborted)
2918 return 0;
2919
0b246afa 2920 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
2921 return 0;
2922
c3e69d58 2923 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2924 if (count == 0)
d7df2c79 2925 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2926
c3e69d58 2927again:
709c0486
AJ
2928#ifdef SCRAMBLE_DELAYED_REFS
2929 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2930#endif
d9a0540a 2931 trans->can_flush_pending_bgs = false;
0a1e458a 2932 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 2933 if (ret < 0) {
66642832 2934 btrfs_abort_transaction(trans, ret);
d7df2c79 2935 return ret;
eb099670 2936 }
c3e69d58 2937
56bec294 2938 if (run_all) {
d7df2c79 2939 if (!list_empty(&trans->new_bgs))
6c686b35 2940 btrfs_create_pending_block_groups(trans);
ea658bad 2941
d7df2c79 2942 spin_lock(&delayed_refs->lock);
c46effa6 2943 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2944 if (!node) {
2945 spin_unlock(&delayed_refs->lock);
56bec294 2946 goto out;
d7df2c79 2947 }
d278850e
JB
2948 head = rb_entry(node, struct btrfs_delayed_ref_head,
2949 href_node);
2950 refcount_inc(&head->refs);
2951 spin_unlock(&delayed_refs->lock);
e9d0b13b 2952
d278850e
JB
2953 /* Mutex was contended, block until it's released and retry. */
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
56bec294 2956
d278850e 2957 btrfs_put_delayed_ref_head(head);
d7df2c79 2958 cond_resched();
56bec294 2959 goto again;
5f39d397 2960 }
54aa1f4d 2961out:
d9a0540a 2962 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
2963 return 0;
2964}
2965
5d4f98a2 2966int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 2967 struct btrfs_fs_info *fs_info,
5d4f98a2 2968 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2969 int level, int is_data)
5d4f98a2
YZ
2970{
2971 struct btrfs_delayed_extent_op *extent_op;
2972 int ret;
2973
78a6184a 2974 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2975 if (!extent_op)
2976 return -ENOMEM;
2977
2978 extent_op->flags_to_set = flags;
35b3ad50
DS
2979 extent_op->update_flags = true;
2980 extent_op->update_key = false;
2981 extent_op->is_data = is_data ? true : false;
b1c79e09 2982 extent_op->level = level;
5d4f98a2 2983
0b246afa 2984 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 2985 num_bytes, extent_op);
5d4f98a2 2986 if (ret)
78a6184a 2987 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2988 return ret;
2989}
2990
e4c3b2dc 2991static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
2992 struct btrfs_path *path,
2993 u64 objectid, u64 offset, u64 bytenr)
2994{
2995 struct btrfs_delayed_ref_head *head;
2996 struct btrfs_delayed_ref_node *ref;
2997 struct btrfs_delayed_data_ref *data_ref;
2998 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 2999 struct btrfs_transaction *cur_trans;
0e0adbcf 3000 struct rb_node *node;
5d4f98a2
YZ
3001 int ret = 0;
3002
998ac6d2 3003 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3004 cur_trans = root->fs_info->running_transaction;
998ac6d2 3005 if (cur_trans)
3006 refcount_inc(&cur_trans->use_count);
3007 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3008 if (!cur_trans)
3009 return 0;
3010
3011 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3012 spin_lock(&delayed_refs->lock);
f72ad18e 3013 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3014 if (!head) {
3015 spin_unlock(&delayed_refs->lock);
998ac6d2 3016 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3017 return 0;
3018 }
5d4f98a2
YZ
3019
3020 if (!mutex_trylock(&head->mutex)) {
d278850e 3021 refcount_inc(&head->refs);
5d4f98a2
YZ
3022 spin_unlock(&delayed_refs->lock);
3023
b3b4aa74 3024 btrfs_release_path(path);
5d4f98a2 3025
8cc33e5c
DS
3026 /*
3027 * Mutex was contended, block until it's released and let
3028 * caller try again
3029 */
5d4f98a2
YZ
3030 mutex_lock(&head->mutex);
3031 mutex_unlock(&head->mutex);
d278850e 3032 btrfs_put_delayed_ref_head(head);
998ac6d2 3033 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3034 return -EAGAIN;
3035 }
d7df2c79 3036 spin_unlock(&delayed_refs->lock);
5d4f98a2 3037
d7df2c79 3038 spin_lock(&head->lock);
0e0adbcf
JB
3039 /*
3040 * XXX: We should replace this with a proper search function in the
3041 * future.
3042 */
3043 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3044 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3045 /* If it's a shared ref we know a cross reference exists */
3046 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3047 ret = 1;
3048 break;
3049 }
5d4f98a2 3050
d7df2c79 3051 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3052
d7df2c79
JB
3053 /*
3054 * If our ref doesn't match the one we're currently looking at
3055 * then we have a cross reference.
3056 */
3057 if (data_ref->root != root->root_key.objectid ||
3058 data_ref->objectid != objectid ||
3059 data_ref->offset != offset) {
3060 ret = 1;
3061 break;
3062 }
5d4f98a2 3063 }
d7df2c79 3064 spin_unlock(&head->lock);
5d4f98a2 3065 mutex_unlock(&head->mutex);
998ac6d2 3066 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3067 return ret;
3068}
3069
e4c3b2dc 3070static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3071 struct btrfs_path *path,
3072 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3073{
0b246afa
JM
3074 struct btrfs_fs_info *fs_info = root->fs_info;
3075 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3076 struct extent_buffer *leaf;
5d4f98a2
YZ
3077 struct btrfs_extent_data_ref *ref;
3078 struct btrfs_extent_inline_ref *iref;
3079 struct btrfs_extent_item *ei;
f321e491 3080 struct btrfs_key key;
5d4f98a2 3081 u32 item_size;
3de28d57 3082 int type;
be20aa9d 3083 int ret;
925baedd 3084
be20aa9d 3085 key.objectid = bytenr;
31840ae1 3086 key.offset = (u64)-1;
f321e491 3087 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3088
be20aa9d
CM
3089 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3090 if (ret < 0)
3091 goto out;
79787eaa 3092 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3093
3094 ret = -ENOENT;
3095 if (path->slots[0] == 0)
31840ae1 3096 goto out;
be20aa9d 3097
31840ae1 3098 path->slots[0]--;
f321e491 3099 leaf = path->nodes[0];
5d4f98a2 3100 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3101
5d4f98a2 3102 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3103 goto out;
f321e491 3104
5d4f98a2
YZ
3105 ret = 1;
3106 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5d4f98a2 3107 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3108
5d4f98a2
YZ
3109 if (item_size != sizeof(*ei) +
3110 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3111 goto out;
be20aa9d 3112
5d4f98a2
YZ
3113 if (btrfs_extent_generation(leaf, ei) <=
3114 btrfs_root_last_snapshot(&root->root_item))
3115 goto out;
3116
3117 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3118
3119 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3120 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3121 goto out;
3122
3123 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3124 if (btrfs_extent_refs(leaf, ei) !=
3125 btrfs_extent_data_ref_count(leaf, ref) ||
3126 btrfs_extent_data_ref_root(leaf, ref) !=
3127 root->root_key.objectid ||
3128 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3129 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3130 goto out;
3131
3132 ret = 0;
3133out:
3134 return ret;
3135}
3136
e4c3b2dc
LB
3137int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3138 u64 bytenr)
5d4f98a2
YZ
3139{
3140 struct btrfs_path *path;
3141 int ret;
3142 int ret2;
3143
3144 path = btrfs_alloc_path();
3145 if (!path)
9132c4ff 3146 return -ENOMEM;
5d4f98a2
YZ
3147
3148 do {
e4c3b2dc 3149 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3150 offset, bytenr);
3151 if (ret && ret != -ENOENT)
f321e491 3152 goto out;
80ff3856 3153
e4c3b2dc 3154 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3155 offset, bytenr);
3156 } while (ret2 == -EAGAIN);
3157
3158 if (ret2 && ret2 != -ENOENT) {
3159 ret = ret2;
3160 goto out;
f321e491 3161 }
5d4f98a2
YZ
3162
3163 if (ret != -ENOENT || ret2 != -ENOENT)
3164 ret = 0;
be20aa9d 3165out:
80ff3856 3166 btrfs_free_path(path);
f0486c68
YZ
3167 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3168 WARN_ON(ret > 0);
f321e491 3169 return ret;
be20aa9d 3170}
c5739bba 3171
5d4f98a2 3172static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3173 struct btrfs_root *root,
5d4f98a2 3174 struct extent_buffer *buf,
e339a6b0 3175 int full_backref, int inc)
31840ae1 3176{
0b246afa 3177 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3178 u64 bytenr;
5d4f98a2
YZ
3179 u64 num_bytes;
3180 u64 parent;
31840ae1 3181 u64 ref_root;
31840ae1 3182 u32 nritems;
31840ae1
ZY
3183 struct btrfs_key key;
3184 struct btrfs_file_extent_item *fi;
3185 int i;
3186 int level;
3187 int ret = 0;
2ff7e61e 3188 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3189 struct btrfs_root *,
b06c4bf5 3190 u64, u64, u64, u64, u64, u64);
31840ae1 3191
fccb84c9 3192
0b246afa 3193 if (btrfs_is_testing(fs_info))
faa2dbf0 3194 return 0;
fccb84c9 3195
31840ae1 3196 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3197 nritems = btrfs_header_nritems(buf);
3198 level = btrfs_header_level(buf);
3199
27cdeb70 3200 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3201 return 0;
31840ae1 3202
5d4f98a2
YZ
3203 if (inc)
3204 process_func = btrfs_inc_extent_ref;
3205 else
3206 process_func = btrfs_free_extent;
31840ae1 3207
5d4f98a2
YZ
3208 if (full_backref)
3209 parent = buf->start;
3210 else
3211 parent = 0;
3212
3213 for (i = 0; i < nritems; i++) {
31840ae1 3214 if (level == 0) {
5d4f98a2 3215 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3216 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3217 continue;
5d4f98a2 3218 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3219 struct btrfs_file_extent_item);
3220 if (btrfs_file_extent_type(buf, fi) ==
3221 BTRFS_FILE_EXTENT_INLINE)
3222 continue;
3223 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3224 if (bytenr == 0)
3225 continue;
5d4f98a2
YZ
3226
3227 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3228 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3229 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3230 parent, ref_root, key.objectid,
b06c4bf5 3231 key.offset);
31840ae1
ZY
3232 if (ret)
3233 goto fail;
3234 } else {
5d4f98a2 3235 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3236 num_bytes = fs_info->nodesize;
84f7d8e6 3237 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3238 parent, ref_root, level - 1, 0);
31840ae1
ZY
3239 if (ret)
3240 goto fail;
3241 }
3242 }
3243 return 0;
3244fail:
5d4f98a2
YZ
3245 return ret;
3246}
3247
3248int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3249 struct extent_buffer *buf, int full_backref)
5d4f98a2 3250{
e339a6b0 3251 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3252}
3253
3254int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3255 struct extent_buffer *buf, int full_backref)
5d4f98a2 3256{
e339a6b0 3257 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3258}
3259
9078a3e1 3260static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3261 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3262 struct btrfs_path *path,
3263 struct btrfs_block_group_cache *cache)
3264{
3265 int ret;
0b246afa 3266 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3267 unsigned long bi;
3268 struct extent_buffer *leaf;
9078a3e1 3269
9078a3e1 3270 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3271 if (ret) {
3272 if (ret > 0)
3273 ret = -ENOENT;
54aa1f4d 3274 goto fail;
df95e7f0 3275 }
5f39d397
CM
3276
3277 leaf = path->nodes[0];
3278 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3279 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3280 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3281fail:
24b89d08 3282 btrfs_release_path(path);
df95e7f0 3283 return ret;
9078a3e1
CM
3284
3285}
3286
4a8c9a62 3287static struct btrfs_block_group_cache *
2ff7e61e 3288next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3289 struct btrfs_block_group_cache *cache)
3290{
3291 struct rb_node *node;
292cbd51 3292
0b246afa 3293 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3294
3295 /* If our block group was removed, we need a full search. */
3296 if (RB_EMPTY_NODE(&cache->cache_node)) {
3297 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3298
0b246afa 3299 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3300 btrfs_put_block_group(cache);
0b246afa 3301 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3302 }
4a8c9a62
YZ
3303 node = rb_next(&cache->cache_node);
3304 btrfs_put_block_group(cache);
3305 if (node) {
3306 cache = rb_entry(node, struct btrfs_block_group_cache,
3307 cache_node);
11dfe35a 3308 btrfs_get_block_group(cache);
4a8c9a62
YZ
3309 } else
3310 cache = NULL;
0b246afa 3311 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3312 return cache;
3313}
3314
0af3d00b
JB
3315static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3316 struct btrfs_trans_handle *trans,
3317 struct btrfs_path *path)
3318{
0b246afa
JM
3319 struct btrfs_fs_info *fs_info = block_group->fs_info;
3320 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3321 struct inode *inode = NULL;
364ecf36 3322 struct extent_changeset *data_reserved = NULL;
0af3d00b 3323 u64 alloc_hint = 0;
2b20982e 3324 int dcs = BTRFS_DC_ERROR;
f8c269d7 3325 u64 num_pages = 0;
0af3d00b
JB
3326 int retries = 0;
3327 int ret = 0;
3328
3329 /*
3330 * If this block group is smaller than 100 megs don't bother caching the
3331 * block group.
3332 */
ee22184b 3333 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3334 spin_lock(&block_group->lock);
3335 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3336 spin_unlock(&block_group->lock);
3337 return 0;
3338 }
3339
0c0ef4bc
JB
3340 if (trans->aborted)
3341 return 0;
0af3d00b 3342again:
77ab86bf 3343 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3344 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3345 ret = PTR_ERR(inode);
b3b4aa74 3346 btrfs_release_path(path);
0af3d00b
JB
3347 goto out;
3348 }
3349
3350 if (IS_ERR(inode)) {
3351 BUG_ON(retries);
3352 retries++;
3353
3354 if (block_group->ro)
3355 goto out_free;
3356
77ab86bf
JM
3357 ret = create_free_space_inode(fs_info, trans, block_group,
3358 path);
0af3d00b
JB
3359 if (ret)
3360 goto out_free;
3361 goto again;
3362 }
3363
3364 /*
3365 * We want to set the generation to 0, that way if anything goes wrong
3366 * from here on out we know not to trust this cache when we load up next
3367 * time.
3368 */
3369 BTRFS_I(inode)->generation = 0;
3370 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3371 if (ret) {
3372 /*
3373 * So theoretically we could recover from this, simply set the
3374 * super cache generation to 0 so we know to invalidate the
3375 * cache, but then we'd have to keep track of the block groups
3376 * that fail this way so we know we _have_ to reset this cache
3377 * before the next commit or risk reading stale cache. So to
3378 * limit our exposure to horrible edge cases lets just abort the
3379 * transaction, this only happens in really bad situations
3380 * anyway.
3381 */
66642832 3382 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3383 goto out_put;
3384 }
0af3d00b
JB
3385 WARN_ON(ret);
3386
8e138e0d
JB
3387 /* We've already setup this transaction, go ahead and exit */
3388 if (block_group->cache_generation == trans->transid &&
3389 i_size_read(inode)) {
3390 dcs = BTRFS_DC_SETUP;
3391 goto out_put;
3392 }
3393
0af3d00b 3394 if (i_size_read(inode) > 0) {
2ff7e61e 3395 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3396 &fs_info->global_block_rsv);
7b61cd92
MX
3397 if (ret)
3398 goto out_put;
3399
77ab86bf 3400 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3401 if (ret)
3402 goto out_put;
3403 }
3404
3405 spin_lock(&block_group->lock);
cf7c1ef6 3406 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3407 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3408 /*
3409 * don't bother trying to write stuff out _if_
3410 * a) we're not cached,
1a79c1f2
LB
3411 * b) we're with nospace_cache mount option,
3412 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3413 */
2b20982e 3414 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3415 spin_unlock(&block_group->lock);
3416 goto out_put;
3417 }
3418 spin_unlock(&block_group->lock);
3419
2968b1f4
JB
3420 /*
3421 * We hit an ENOSPC when setting up the cache in this transaction, just
3422 * skip doing the setup, we've already cleared the cache so we're safe.
3423 */
3424 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3425 ret = -ENOSPC;
3426 goto out_put;
3427 }
3428
6fc823b1
JB
3429 /*
3430 * Try to preallocate enough space based on how big the block group is.
3431 * Keep in mind this has to include any pinned space which could end up
3432 * taking up quite a bit since it's not folded into the other space
3433 * cache.
3434 */
ee22184b 3435 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3436 if (!num_pages)
3437 num_pages = 1;
3438
0af3d00b 3439 num_pages *= 16;
09cbfeaf 3440 num_pages *= PAGE_SIZE;
0af3d00b 3441
364ecf36 3442 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3443 if (ret)
3444 goto out_put;
3445
3446 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3447 num_pages, num_pages,
3448 &alloc_hint);
2968b1f4
JB
3449 /*
3450 * Our cache requires contiguous chunks so that we don't modify a bunch
3451 * of metadata or split extents when writing the cache out, which means
3452 * we can enospc if we are heavily fragmented in addition to just normal
3453 * out of space conditions. So if we hit this just skip setting up any
3454 * other block groups for this transaction, maybe we'll unpin enough
3455 * space the next time around.
3456 */
2b20982e
JB
3457 if (!ret)
3458 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3459 else if (ret == -ENOSPC)
3460 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3461
0af3d00b
JB
3462out_put:
3463 iput(inode);
3464out_free:
b3b4aa74 3465 btrfs_release_path(path);
0af3d00b
JB
3466out:
3467 spin_lock(&block_group->lock);
e65cbb94 3468 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3469 block_group->cache_generation = trans->transid;
2b20982e 3470 block_group->disk_cache_state = dcs;
0af3d00b
JB
3471 spin_unlock(&block_group->lock);
3472
364ecf36 3473 extent_changeset_free(data_reserved);
0af3d00b
JB
3474 return ret;
3475}
3476
dcdf7f6d 3477int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3478 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3479{
3480 struct btrfs_block_group_cache *cache, *tmp;
3481 struct btrfs_transaction *cur_trans = trans->transaction;
3482 struct btrfs_path *path;
3483
3484 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3485 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3486 return 0;
3487
3488 path = btrfs_alloc_path();
3489 if (!path)
3490 return -ENOMEM;
3491
3492 /* Could add new block groups, use _safe just in case */
3493 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3494 dirty_list) {
3495 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3496 cache_save_setup(cache, trans, path);
3497 }
3498
3499 btrfs_free_path(path);
3500 return 0;
3501}
3502
1bbc621e
CM
3503/*
3504 * transaction commit does final block group cache writeback during a
3505 * critical section where nothing is allowed to change the FS. This is
3506 * required in order for the cache to actually match the block group,
3507 * but can introduce a lot of latency into the commit.
3508 *
3509 * So, btrfs_start_dirty_block_groups is here to kick off block group
3510 * cache IO. There's a chance we'll have to redo some of it if the
3511 * block group changes again during the commit, but it greatly reduces
3512 * the commit latency by getting rid of the easy block groups while
3513 * we're still allowing others to join the commit.
3514 */
21217054 3515int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3516{
21217054 3517 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3518 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3519 struct btrfs_transaction *cur_trans = trans->transaction;
3520 int ret = 0;
c9dc4c65 3521 int should_put;
1bbc621e
CM
3522 struct btrfs_path *path = NULL;
3523 LIST_HEAD(dirty);
3524 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3525 int num_started = 0;
1bbc621e
CM
3526 int loops = 0;
3527
3528 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3529 if (list_empty(&cur_trans->dirty_bgs)) {
3530 spin_unlock(&cur_trans->dirty_bgs_lock);
3531 return 0;
1bbc621e 3532 }
b58d1a9e 3533 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3534 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3535
1bbc621e 3536again:
1bbc621e
CM
3537 /*
3538 * make sure all the block groups on our dirty list actually
3539 * exist
3540 */
6c686b35 3541 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3542
3543 if (!path) {
3544 path = btrfs_alloc_path();
3545 if (!path)
3546 return -ENOMEM;
3547 }
3548
b58d1a9e
FM
3549 /*
3550 * cache_write_mutex is here only to save us from balance or automatic
3551 * removal of empty block groups deleting this block group while we are
3552 * writing out the cache
3553 */
3554 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3555 while (!list_empty(&dirty)) {
3556 cache = list_first_entry(&dirty,
3557 struct btrfs_block_group_cache,
3558 dirty_list);
1bbc621e
CM
3559 /*
3560 * this can happen if something re-dirties a block
3561 * group that is already under IO. Just wait for it to
3562 * finish and then do it all again
3563 */
3564 if (!list_empty(&cache->io_list)) {
3565 list_del_init(&cache->io_list);
afdb5718 3566 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3567 btrfs_put_block_group(cache);
3568 }
3569
3570
3571 /*
3572 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3573 * if it should update the cache_state. Don't delete
3574 * until after we wait.
3575 *
3576 * Since we're not running in the commit critical section
3577 * we need the dirty_bgs_lock to protect from update_block_group
3578 */
3579 spin_lock(&cur_trans->dirty_bgs_lock);
3580 list_del_init(&cache->dirty_list);
3581 spin_unlock(&cur_trans->dirty_bgs_lock);
3582
3583 should_put = 1;
3584
3585 cache_save_setup(cache, trans, path);
3586
3587 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3588 cache->io_ctl.inode = NULL;
0b246afa 3589 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3590 cache, path);
1bbc621e
CM
3591 if (ret == 0 && cache->io_ctl.inode) {
3592 num_started++;
3593 should_put = 0;
3594
3595 /*
45ae2c18
NB
3596 * The cache_write_mutex is protecting the
3597 * io_list, also refer to the definition of
3598 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3599 */
3600 list_add_tail(&cache->io_list, io);
3601 } else {
3602 /*
3603 * if we failed to write the cache, the
3604 * generation will be bad and life goes on
3605 */
3606 ret = 0;
3607 }
3608 }
ff1f8250 3609 if (!ret) {
2ff7e61e
JM
3610 ret = write_one_cache_group(trans, fs_info,
3611 path, cache);
ff1f8250
FM
3612 /*
3613 * Our block group might still be attached to the list
3614 * of new block groups in the transaction handle of some
3615 * other task (struct btrfs_trans_handle->new_bgs). This
3616 * means its block group item isn't yet in the extent
3617 * tree. If this happens ignore the error, as we will
3618 * try again later in the critical section of the
3619 * transaction commit.
3620 */
3621 if (ret == -ENOENT) {
3622 ret = 0;
3623 spin_lock(&cur_trans->dirty_bgs_lock);
3624 if (list_empty(&cache->dirty_list)) {
3625 list_add_tail(&cache->dirty_list,
3626 &cur_trans->dirty_bgs);
3627 btrfs_get_block_group(cache);
3628 }
3629 spin_unlock(&cur_trans->dirty_bgs_lock);
3630 } else if (ret) {
66642832 3631 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3632 }
3633 }
1bbc621e
CM
3634
3635 /* if its not on the io list, we need to put the block group */
3636 if (should_put)
3637 btrfs_put_block_group(cache);
3638
3639 if (ret)
3640 break;
b58d1a9e
FM
3641
3642 /*
3643 * Avoid blocking other tasks for too long. It might even save
3644 * us from writing caches for block groups that are going to be
3645 * removed.
3646 */
3647 mutex_unlock(&trans->transaction->cache_write_mutex);
3648 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3649 }
b58d1a9e 3650 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3651
3652 /*
3653 * go through delayed refs for all the stuff we've just kicked off
3654 * and then loop back (just once)
3655 */
c79a70b1 3656 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3657 if (!ret && loops == 0) {
3658 loops++;
3659 spin_lock(&cur_trans->dirty_bgs_lock);
3660 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3661 /*
3662 * dirty_bgs_lock protects us from concurrent block group
3663 * deletes too (not just cache_write_mutex).
3664 */
3665 if (!list_empty(&dirty)) {
3666 spin_unlock(&cur_trans->dirty_bgs_lock);
3667 goto again;
3668 }
1bbc621e 3669 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3670 } else if (ret < 0) {
2ff7e61e 3671 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3672 }
3673
3674 btrfs_free_path(path);
3675 return ret;
3676}
3677
3678int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3679 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3680{
3681 struct btrfs_block_group_cache *cache;
3682 struct btrfs_transaction *cur_trans = trans->transaction;
3683 int ret = 0;
3684 int should_put;
3685 struct btrfs_path *path;
3686 struct list_head *io = &cur_trans->io_bgs;
3687 int num_started = 0;
9078a3e1
CM
3688
3689 path = btrfs_alloc_path();
3690 if (!path)
3691 return -ENOMEM;
3692
ce93ec54 3693 /*
e44081ef
FM
3694 * Even though we are in the critical section of the transaction commit,
3695 * we can still have concurrent tasks adding elements to this
3696 * transaction's list of dirty block groups. These tasks correspond to
3697 * endio free space workers started when writeback finishes for a
3698 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3699 * allocate new block groups as a result of COWing nodes of the root
3700 * tree when updating the free space inode. The writeback for the space
3701 * caches is triggered by an earlier call to
3702 * btrfs_start_dirty_block_groups() and iterations of the following
3703 * loop.
3704 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3705 * delayed refs to make sure we have the best chance at doing this all
3706 * in one shot.
3707 */
e44081ef 3708 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3709 while (!list_empty(&cur_trans->dirty_bgs)) {
3710 cache = list_first_entry(&cur_trans->dirty_bgs,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
c9dc4c65
CM
3713
3714 /*
3715 * this can happen if cache_save_setup re-dirties a block
3716 * group that is already under IO. Just wait for it to
3717 * finish and then do it all again
3718 */
3719 if (!list_empty(&cache->io_list)) {
e44081ef 3720 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3721 list_del_init(&cache->io_list);
afdb5718 3722 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3723 btrfs_put_block_group(cache);
e44081ef 3724 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3725 }
3726
1bbc621e
CM
3727 /*
3728 * don't remove from the dirty list until after we've waited
3729 * on any pending IO
3730 */
ce93ec54 3731 list_del_init(&cache->dirty_list);
e44081ef 3732 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3733 should_put = 1;
3734
1bbc621e 3735 cache_save_setup(cache, trans, path);
c9dc4c65 3736
ce93ec54 3737 if (!ret)
c79a70b1 3738 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3739 (unsigned long) -1);
c9dc4c65
CM
3740
3741 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
0b246afa 3743 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3744 cache, path);
c9dc4c65
CM
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
1bbc621e 3748 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3749 } else {
3750 /*
3751 * if we failed to write the cache, the
3752 * generation will be bad and life goes on
3753 */
3754 ret = 0;
3755 }
3756 }
ff1f8250 3757 if (!ret) {
2ff7e61e
JM
3758 ret = write_one_cache_group(trans, fs_info,
3759 path, cache);
2bc0bb5f
FM
3760 /*
3761 * One of the free space endio workers might have
3762 * created a new block group while updating a free space
3763 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3764 * and hasn't released its transaction handle yet, in
3765 * which case the new block group is still attached to
3766 * its transaction handle and its creation has not
3767 * finished yet (no block group item in the extent tree
3768 * yet, etc). If this is the case, wait for all free
3769 * space endio workers to finish and retry. This is a
3770 * a very rare case so no need for a more efficient and
3771 * complex approach.
3772 */
3773 if (ret == -ENOENT) {
3774 wait_event(cur_trans->writer_wait,
3775 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3776 ret = write_one_cache_group(trans, fs_info,
3777 path, cache);
2bc0bb5f 3778 }
ff1f8250 3779 if (ret)
66642832 3780 btrfs_abort_transaction(trans, ret);
ff1f8250 3781 }
c9dc4c65
CM
3782
3783 /* if its not on the io list, we need to put the block group */
3784 if (should_put)
3785 btrfs_put_block_group(cache);
e44081ef 3786 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3787 }
e44081ef 3788 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3789
45ae2c18
NB
3790 /*
3791 * Refer to the definition of io_bgs member for details why it's safe
3792 * to use it without any locking
3793 */
1bbc621e
CM
3794 while (!list_empty(io)) {
3795 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3796 io_list);
3797 list_del_init(&cache->io_list);
afdb5718 3798 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3799 btrfs_put_block_group(cache);
3800 }
3801
9078a3e1 3802 btrfs_free_path(path);
ce93ec54 3803 return ret;
9078a3e1
CM
3804}
3805
2ff7e61e 3806int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3807{
3808 struct btrfs_block_group_cache *block_group;
3809 int readonly = 0;
3810
0b246afa 3811 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3812 if (!block_group || block_group->ro)
3813 readonly = 1;
3814 if (block_group)
fa9c0d79 3815 btrfs_put_block_group(block_group);
d2fb3437
YZ
3816 return readonly;
3817}
3818
f78c436c
FM
3819bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3820{
3821 struct btrfs_block_group_cache *bg;
3822 bool ret = true;
3823
3824 bg = btrfs_lookup_block_group(fs_info, bytenr);
3825 if (!bg)
3826 return false;
3827
3828 spin_lock(&bg->lock);
3829 if (bg->ro)
3830 ret = false;
3831 else
3832 atomic_inc(&bg->nocow_writers);
3833 spin_unlock(&bg->lock);
3834
3835 /* no put on block group, done by btrfs_dec_nocow_writers */
3836 if (!ret)
3837 btrfs_put_block_group(bg);
3838
3839 return ret;
3840
3841}
3842
3843void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3844{
3845 struct btrfs_block_group_cache *bg;
3846
3847 bg = btrfs_lookup_block_group(fs_info, bytenr);
3848 ASSERT(bg);
3849 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 3850 wake_up_var(&bg->nocow_writers);
f78c436c
FM
3851 /*
3852 * Once for our lookup and once for the lookup done by a previous call
3853 * to btrfs_inc_nocow_writers()
3854 */
3855 btrfs_put_block_group(bg);
3856 btrfs_put_block_group(bg);
3857}
3858
f78c436c
FM
3859void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
3860{
4625956a 3861 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
3862}
3863
6ab0a202
JM
3864static const char *alloc_name(u64 flags)
3865{
3866 switch (flags) {
3867 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3868 return "mixed";
3869 case BTRFS_BLOCK_GROUP_METADATA:
3870 return "metadata";
3871 case BTRFS_BLOCK_GROUP_DATA:
3872 return "data";
3873 case BTRFS_BLOCK_GROUP_SYSTEM:
3874 return "system";
3875 default:
3876 WARN_ON(1);
3877 return "invalid-combination";
3878 };
3879}
3880
4ca61683 3881static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
3882{
3883
3884 struct btrfs_space_info *space_info;
3885 int i;
3886 int ret;
3887
3888 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
3889 if (!space_info)
3890 return -ENOMEM;
3891
3892 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
3893 GFP_KERNEL);
3894 if (ret) {
3895 kfree(space_info);
3896 return ret;
3897 }
3898
3899 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3900 INIT_LIST_HEAD(&space_info->block_groups[i]);
3901 init_rwsem(&space_info->groups_sem);
3902 spin_lock_init(&space_info->lock);
3903 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3904 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3905 init_waitqueue_head(&space_info->wait);
3906 INIT_LIST_HEAD(&space_info->ro_bgs);
3907 INIT_LIST_HEAD(&space_info->tickets);
3908 INIT_LIST_HEAD(&space_info->priority_tickets);
3909
3910 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
3911 info->space_info_kobj, "%s",
3912 alloc_name(space_info->flags));
3913 if (ret) {
3914 percpu_counter_destroy(&space_info->total_bytes_pinned);
3915 kfree(space_info);
3916 return ret;
3917 }
3918
2be12ef7
NB
3919 list_add_rcu(&space_info->list, &info->space_info);
3920 if (flags & BTRFS_BLOCK_GROUP_DATA)
3921 info->data_sinfo = space_info;
3922
3923 return ret;
3924}
3925
d2006e6d 3926static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 3927 u64 total_bytes, u64 bytes_used,
e40edf2d 3928 u64 bytes_readonly,
593060d7
CM
3929 struct btrfs_space_info **space_info)
3930{
3931 struct btrfs_space_info *found;
b742bb82
YZ
3932 int factor;
3933
3934 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3935 BTRFS_BLOCK_GROUP_RAID10))
3936 factor = 2;
3937 else
3938 factor = 1;
593060d7
CM
3939
3940 found = __find_space_info(info, flags);
d2006e6d
NB
3941 ASSERT(found);
3942 spin_lock(&found->lock);
3943 found->total_bytes += total_bytes;
3944 found->disk_total += total_bytes * factor;
3945 found->bytes_used += bytes_used;
3946 found->disk_used += bytes_used * factor;
3947 found->bytes_readonly += bytes_readonly;
3948 if (total_bytes > 0)
3949 found->full = 0;
3950 space_info_add_new_bytes(info, found, total_bytes -
3951 bytes_used - bytes_readonly);
3952 spin_unlock(&found->lock);
3953 *space_info = found;
593060d7
CM
3954}
3955
8790d502
CM
3956static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3957{
899c81ea
ID
3958 u64 extra_flags = chunk_to_extended(flags) &
3959 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3960
de98ced9 3961 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3962 if (flags & BTRFS_BLOCK_GROUP_DATA)
3963 fs_info->avail_data_alloc_bits |= extra_flags;
3964 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3965 fs_info->avail_metadata_alloc_bits |= extra_flags;
3966 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3967 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3968 write_sequnlock(&fs_info->profiles_lock);
8790d502 3969}
593060d7 3970
fc67c450
ID
3971/*
3972 * returns target flags in extended format or 0 if restripe for this
3973 * chunk_type is not in progress
c6664b42 3974 *
dccdb07b 3975 * should be called with balance_lock held
fc67c450
ID
3976 */
3977static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3978{
3979 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3980 u64 target = 0;
3981
fc67c450
ID
3982 if (!bctl)
3983 return 0;
3984
3985 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3986 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3987 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3988 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3989 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3990 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3991 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3992 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3993 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3994 }
3995
3996 return target;
3997}
3998
a46d11a8
ID
3999/*
4000 * @flags: available profiles in extended format (see ctree.h)
4001 *
e4d8ec0f
ID
4002 * Returns reduced profile in chunk format. If profile changing is in
4003 * progress (either running or paused) picks the target profile (if it's
4004 * already available), otherwise falls back to plain reducing.
a46d11a8 4005 */
2ff7e61e 4006static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4007{
0b246afa 4008 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4009 u64 target;
9c170b26
ZL
4010 u64 raid_type;
4011 u64 allowed = 0;
a061fc8d 4012
fc67c450
ID
4013 /*
4014 * see if restripe for this chunk_type is in progress, if so
4015 * try to reduce to the target profile
4016 */
0b246afa
JM
4017 spin_lock(&fs_info->balance_lock);
4018 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4019 if (target) {
4020 /* pick target profile only if it's already available */
4021 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4022 spin_unlock(&fs_info->balance_lock);
fc67c450 4023 return extended_to_chunk(target);
e4d8ec0f
ID
4024 }
4025 }
0b246afa 4026 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4027
53b381b3 4028 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4029 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4030 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4031 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4032 }
4033 allowed &= flags;
4034
4035 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4036 allowed = BTRFS_BLOCK_GROUP_RAID6;
4037 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4038 allowed = BTRFS_BLOCK_GROUP_RAID5;
4039 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4040 allowed = BTRFS_BLOCK_GROUP_RAID10;
4041 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4042 allowed = BTRFS_BLOCK_GROUP_RAID1;
4043 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4044 allowed = BTRFS_BLOCK_GROUP_RAID0;
4045
4046 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4047
4048 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4049}
4050
2ff7e61e 4051static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4052{
de98ced9 4053 unsigned seq;
f8213bdc 4054 u64 flags;
de98ced9
MX
4055
4056 do {
f8213bdc 4057 flags = orig_flags;
0b246afa 4058 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4059
4060 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4061 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4062 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4063 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4064 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4065 flags |= fs_info->avail_metadata_alloc_bits;
4066 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4067
2ff7e61e 4068 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4069}
4070
1b86826d 4071static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4072{
0b246afa 4073 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4074 u64 flags;
53b381b3 4075 u64 ret;
9ed74f2d 4076
b742bb82
YZ
4077 if (data)
4078 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4079 else if (root == fs_info->chunk_root)
b742bb82 4080 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4081 else
b742bb82 4082 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4083
2ff7e61e 4084 ret = get_alloc_profile(fs_info, flags);
53b381b3 4085 return ret;
6a63209f 4086}
9ed74f2d 4087
1b86826d
JM
4088u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4089{
4090 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4091}
4092
4093u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4094{
4095 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4096}
4097
4098u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4099{
4100 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4101}
4102
4136135b
LB
4103static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4104 bool may_use_included)
4105{
4106 ASSERT(s_info);
4107 return s_info->bytes_used + s_info->bytes_reserved +
4108 s_info->bytes_pinned + s_info->bytes_readonly +
4109 (may_use_included ? s_info->bytes_may_use : 0);
4110}
4111
04f4f916 4112int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4113{
04f4f916 4114 struct btrfs_root *root = inode->root;
b4d7c3c9 4115 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4116 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4117 u64 used;
94b947b2 4118 int ret = 0;
c99f1b0c
ZL
4119 int need_commit = 2;
4120 int have_pinned_space;
6a63209f 4121
6a63209f 4122 /* make sure bytes are sectorsize aligned */
0b246afa 4123 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4124
9dced186 4125 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4126 need_commit = 0;
9dced186 4127 ASSERT(current->journal_info);
0af3d00b
JB
4128 }
4129
6a63209f
JB
4130again:
4131 /* make sure we have enough space to handle the data first */
4132 spin_lock(&data_sinfo->lock);
4136135b 4133 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4134
4135 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4136 struct btrfs_trans_handle *trans;
9ed74f2d 4137
6a63209f
JB
4138 /*
4139 * if we don't have enough free bytes in this space then we need
4140 * to alloc a new chunk.
4141 */
b9fd47cd 4142 if (!data_sinfo->full) {
6a63209f 4143 u64 alloc_target;
9ed74f2d 4144
0e4f8f88 4145 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4146 spin_unlock(&data_sinfo->lock);
1174cade 4147
1b86826d 4148 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4149 /*
4150 * It is ugly that we don't call nolock join
4151 * transaction for the free space inode case here.
4152 * But it is safe because we only do the data space
4153 * reservation for the free space cache in the
4154 * transaction context, the common join transaction
4155 * just increase the counter of the current transaction
4156 * handler, doesn't try to acquire the trans_lock of
4157 * the fs.
4158 */
7a7eaa40 4159 trans = btrfs_join_transaction(root);
a22285a6
YZ
4160 if (IS_ERR(trans))
4161 return PTR_ERR(trans);
9ed74f2d 4162
01458828 4163 ret = do_chunk_alloc(trans, alloc_target,
0e4f8f88 4164 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4165 btrfs_end_transaction(trans);
d52a5b5f
MX
4166 if (ret < 0) {
4167 if (ret != -ENOSPC)
4168 return ret;
c99f1b0c
ZL
4169 else {
4170 have_pinned_space = 1;
d52a5b5f 4171 goto commit_trans;
c99f1b0c 4172 }
d52a5b5f 4173 }
9ed74f2d 4174
6a63209f
JB
4175 goto again;
4176 }
f2bb8f5c
JB
4177
4178 /*
b150a4f1 4179 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4180 * allocation, and no removed chunk in current transaction,
4181 * don't bother committing the transaction.
f2bb8f5c 4182 */
dec59fa3 4183 have_pinned_space = __percpu_counter_compare(
c99f1b0c 4184 &data_sinfo->total_bytes_pinned,
dec59fa3
EL
4185 used + bytes - data_sinfo->total_bytes,
4186 BTRFS_TOTAL_BYTES_PINNED_BATCH);
6a63209f 4187 spin_unlock(&data_sinfo->lock);
6a63209f 4188
4e06bdd6 4189 /* commit the current transaction and try again */
d52a5b5f 4190commit_trans:
92e2f7e3 4191 if (need_commit) {
c99f1b0c 4192 need_commit--;
b150a4f1 4193
e1746e83 4194 if (need_commit > 0) {
82b3e53b 4195 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4196 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4197 (u64)-1);
e1746e83 4198 }
9a4e7276 4199
7a7eaa40 4200 trans = btrfs_join_transaction(root);
a22285a6
YZ
4201 if (IS_ERR(trans))
4202 return PTR_ERR(trans);
c99f1b0c 4203 if (have_pinned_space >= 0 ||
3204d33c
JB
4204 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4205 &trans->transaction->flags) ||
c99f1b0c 4206 need_commit > 0) {
3a45bb20 4207 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4208 if (ret)
4209 return ret;
d7c15171 4210 /*
c2d6cb16
FM
4211 * The cleaner kthread might still be doing iput
4212 * operations. Wait for it to finish so that
4213 * more space is released.
d7c15171 4214 */
0b246afa
JM
4215 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4216 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4217 goto again;
4218 } else {
3a45bb20 4219 btrfs_end_transaction(trans);
94b947b2 4220 }
4e06bdd6 4221 }
9ed74f2d 4222
0b246afa 4223 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4224 "space_info:enospc",
4225 data_sinfo->flags, bytes, 1);
6a63209f
JB
4226 return -ENOSPC;
4227 }
4228 data_sinfo->bytes_may_use += bytes;
0b246afa 4229 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4230 data_sinfo->flags, bytes, 1);
6a63209f 4231 spin_unlock(&data_sinfo->lock);
6a63209f 4232
237c0e9f 4233 return ret;
9ed74f2d 4234}
6a63209f 4235
364ecf36
QW
4236int btrfs_check_data_free_space(struct inode *inode,
4237 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4238{
0b246afa 4239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4240 int ret;
4241
4242 /* align the range */
0b246afa
JM
4243 len = round_up(start + len, fs_info->sectorsize) -
4244 round_down(start, fs_info->sectorsize);
4245 start = round_down(start, fs_info->sectorsize);
4ceff079 4246
04f4f916 4247 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4248 if (ret < 0)
4249 return ret;
4250
1e5ec2e7 4251 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4252 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4253 if (ret < 0)
1e5ec2e7 4254 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4255 else
4256 ret = 0;
4ceff079
QW
4257 return ret;
4258}
4259
4ceff079
QW
4260/*
4261 * Called if we need to clear a data reservation for this inode
4262 * Normally in a error case.
4263 *
51773bec
QW
4264 * This one will *NOT* use accurate qgroup reserved space API, just for case
4265 * which we can't sleep and is sure it won't affect qgroup reserved space.
4266 * Like clear_bit_hook().
4ceff079 4267 */
51773bec
QW
4268void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4269 u64 len)
4ceff079 4270{
0b246afa 4271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4272 struct btrfs_space_info *data_sinfo;
4273
4274 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4275 len = round_up(start + len, fs_info->sectorsize) -
4276 round_down(start, fs_info->sectorsize);
4277 start = round_down(start, fs_info->sectorsize);
4ceff079 4278
0b246afa 4279 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4280 spin_lock(&data_sinfo->lock);
4281 if (WARN_ON(data_sinfo->bytes_may_use < len))
4282 data_sinfo->bytes_may_use = 0;
4283 else
4284 data_sinfo->bytes_may_use -= len;
0b246afa 4285 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4286 data_sinfo->flags, len, 0);
4287 spin_unlock(&data_sinfo->lock);
4288}
4289
51773bec
QW
4290/*
4291 * Called if we need to clear a data reservation for this inode
4292 * Normally in a error case.
4293 *
01327610 4294 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4295 * space framework.
4296 */
bc42bda2
QW
4297void btrfs_free_reserved_data_space(struct inode *inode,
4298 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4299{
0c476a5d
JM
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4301
4302 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4303 len = round_up(start + len, root->fs_info->sectorsize) -
4304 round_down(start, root->fs_info->sectorsize);
4305 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4306
51773bec 4307 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4308 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4309}
4310
97e728d4 4311static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4312{
97e728d4
JB
4313 struct list_head *head = &info->space_info;
4314 struct btrfs_space_info *found;
e3ccfa98 4315
97e728d4
JB
4316 rcu_read_lock();
4317 list_for_each_entry_rcu(found, head, list) {
4318 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4319 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4320 }
97e728d4 4321 rcu_read_unlock();
e3ccfa98
JB
4322}
4323
3c76cd84
MX
4324static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4325{
4326 return (global->size << 1);
4327}
4328
2ff7e61e 4329static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4330 struct btrfs_space_info *sinfo, int force)
32c00aff 4331{
0b246afa 4332 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4333 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4334 u64 thresh;
e3ccfa98 4335
0e4f8f88
CM
4336 if (force == CHUNK_ALLOC_FORCE)
4337 return 1;
4338
fb25e914
JB
4339 /*
4340 * We need to take into account the global rsv because for all intents
4341 * and purposes it's used space. Don't worry about locking the
4342 * global_rsv, it doesn't change except when the transaction commits.
4343 */
54338b5c 4344 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4345 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4346
0e4f8f88
CM
4347 /*
4348 * in limited mode, we want to have some free space up to
4349 * about 1% of the FS size.
4350 */
4351 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4352 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4353 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4354
8d8aafee 4355 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4356 return 1;
4357 }
0e4f8f88 4358
8d8aafee 4359 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4360 return 0;
424499db 4361 return 1;
32c00aff
JB
4362}
4363
2ff7e61e 4364static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4365{
4366 u64 num_dev;
4367
53b381b3
DW
4368 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4369 BTRFS_BLOCK_GROUP_RAID0 |
4370 BTRFS_BLOCK_GROUP_RAID5 |
4371 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4372 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4373 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4374 num_dev = 2;
4375 else
4376 num_dev = 1; /* DUP or single */
4377
39c2d7fa 4378 return num_dev;
15d1ff81
LB
4379}
4380
39c2d7fa
FM
4381/*
4382 * If @is_allocation is true, reserve space in the system space info necessary
4383 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4384 * removing a chunk.
4385 */
451a2c13 4386void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
15d1ff81 4387{
451a2c13 4388 struct btrfs_fs_info *fs_info = trans->fs_info;
15d1ff81
LB
4389 struct btrfs_space_info *info;
4390 u64 left;
4391 u64 thresh;
4fbcdf66 4392 int ret = 0;
39c2d7fa 4393 u64 num_devs;
4fbcdf66
FM
4394
4395 /*
4396 * Needed because we can end up allocating a system chunk and for an
4397 * atomic and race free space reservation in the chunk block reserve.
4398 */
a32bf9a3 4399 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4400
0b246afa 4401 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4402 spin_lock(&info->lock);
4136135b 4403 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4404 spin_unlock(&info->lock);
4405
2ff7e61e 4406 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4407
4408 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4409 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4410 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4411
0b246afa
JM
4412 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4413 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4414 left, thresh, type);
4415 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4416 }
4417
4418 if (left < thresh) {
1b86826d 4419 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4420
4fbcdf66
FM
4421 /*
4422 * Ignore failure to create system chunk. We might end up not
4423 * needing it, as we might not need to COW all nodes/leafs from
4424 * the paths we visit in the chunk tree (they were already COWed
4425 * or created in the current transaction for example).
4426 */
c216b203 4427 ret = btrfs_alloc_chunk(trans, flags);
4fbcdf66
FM
4428 }
4429
4430 if (!ret) {
0b246afa
JM
4431 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4432 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4433 thresh, BTRFS_RESERVE_NO_FLUSH);
4434 if (!ret)
4435 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4436 }
4437}
4438
28b737f6
LB
4439/*
4440 * If force is CHUNK_ALLOC_FORCE:
4441 * - return 1 if it successfully allocates a chunk,
4442 * - return errors including -ENOSPC otherwise.
4443 * If force is NOT CHUNK_ALLOC_FORCE:
4444 * - return 0 if it doesn't need to allocate a new chunk,
4445 * - return 1 if it successfully allocates a chunk,
4446 * - return errors including -ENOSPC otherwise.
4447 */
01458828
NB
4448static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
4449 int force)
9ed74f2d 4450{
01458828 4451 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 4452 struct btrfs_space_info *space_info;
6d74119f 4453 int wait_for_alloc = 0;
9ed74f2d 4454 int ret = 0;
9ed74f2d 4455
c6b305a8
JB
4456 /* Don't re-enter if we're already allocating a chunk */
4457 if (trans->allocating_chunk)
4458 return -ENOSPC;
4459
0b246afa 4460 space_info = __find_space_info(fs_info, flags);
dc2d3005 4461 ASSERT(space_info);
9ed74f2d 4462
6d74119f 4463again:
25179201 4464 spin_lock(&space_info->lock);
9e622d6b 4465 if (force < space_info->force_alloc)
0e4f8f88 4466 force = space_info->force_alloc;
25179201 4467 if (space_info->full) {
2ff7e61e 4468 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4469 ret = -ENOSPC;
4470 else
4471 ret = 0;
25179201 4472 spin_unlock(&space_info->lock);
09fb99a6 4473 return ret;
9ed74f2d
JB
4474 }
4475
2ff7e61e 4476 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4477 spin_unlock(&space_info->lock);
6d74119f
JB
4478 return 0;
4479 } else if (space_info->chunk_alloc) {
4480 wait_for_alloc = 1;
4481 } else {
4482 space_info->chunk_alloc = 1;
9ed74f2d 4483 }
0e4f8f88 4484
25179201 4485 spin_unlock(&space_info->lock);
9ed74f2d 4486
6d74119f
JB
4487 mutex_lock(&fs_info->chunk_mutex);
4488
4489 /*
4490 * The chunk_mutex is held throughout the entirety of a chunk
4491 * allocation, so once we've acquired the chunk_mutex we know that the
4492 * other guy is done and we need to recheck and see if we should
4493 * allocate.
4494 */
4495 if (wait_for_alloc) {
4496 mutex_unlock(&fs_info->chunk_mutex);
4497 wait_for_alloc = 0;
1e1c50a9 4498 cond_resched();
6d74119f
JB
4499 goto again;
4500 }
4501
c6b305a8
JB
4502 trans->allocating_chunk = true;
4503
67377734
JB
4504 /*
4505 * If we have mixed data/metadata chunks we want to make sure we keep
4506 * allocating mixed chunks instead of individual chunks.
4507 */
4508 if (btrfs_mixed_space_info(space_info))
4509 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4510
97e728d4
JB
4511 /*
4512 * if we're doing a data chunk, go ahead and make sure that
4513 * we keep a reasonable number of metadata chunks allocated in the
4514 * FS as well.
4515 */
9ed74f2d 4516 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4517 fs_info->data_chunk_allocations++;
4518 if (!(fs_info->data_chunk_allocations %
4519 fs_info->metadata_ratio))
4520 force_metadata_allocation(fs_info);
9ed74f2d
JB
4521 }
4522
15d1ff81
LB
4523 /*
4524 * Check if we have enough space in SYSTEM chunk because we may need
4525 * to update devices.
4526 */
451a2c13 4527 check_system_chunk(trans, flags);
15d1ff81 4528
c216b203 4529 ret = btrfs_alloc_chunk(trans, flags);
c6b305a8 4530 trans->allocating_chunk = false;
92b8e897 4531
9ed74f2d 4532 spin_lock(&space_info->lock);
57f1642e
NB
4533 if (ret < 0) {
4534 if (ret == -ENOSPC)
4535 space_info->full = 1;
4536 else
4537 goto out;
4538 } else {
424499db 4539 ret = 1;
57f1642e 4540 }
6d74119f 4541
0e4f8f88 4542 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4543out:
6d74119f 4544 space_info->chunk_alloc = 0;
9ed74f2d 4545 spin_unlock(&space_info->lock);
a25c75d5 4546 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4547 /*
4548 * When we allocate a new chunk we reserve space in the chunk block
4549 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4550 * add new nodes/leafs to it if we end up needing to do it when
4551 * inserting the chunk item and updating device items as part of the
4552 * second phase of chunk allocation, performed by
4553 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4554 * large number of new block groups to create in our transaction
4555 * handle's new_bgs list to avoid exhausting the chunk block reserve
4556 * in extreme cases - like having a single transaction create many new
4557 * block groups when starting to write out the free space caches of all
4558 * the block groups that were made dirty during the lifetime of the
4559 * transaction.
4560 */
d9a0540a 4561 if (trans->can_flush_pending_bgs &&
ee22184b 4562 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4563 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4564 btrfs_trans_release_chunk_metadata(trans);
4565 }
0f9dd46c 4566 return ret;
6324fbf3 4567}
9ed74f2d 4568
c1c4919b 4569static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4570 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4571 enum btrfs_reserve_flush_enum flush,
4572 bool system_chunk)
a80c8dcf 4573{
0b246afa 4574 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4575 u64 profile;
3c76cd84 4576 u64 space_size;
a80c8dcf
JB
4577 u64 avail;
4578 u64 used;
4579
957780eb
JB
4580 /* Don't overcommit when in mixed mode. */
4581 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4582 return 0;
4583
c1c4919b
JM
4584 if (system_chunk)
4585 profile = btrfs_system_alloc_profile(fs_info);
4586 else
4587 profile = btrfs_metadata_alloc_profile(fs_info);
4588
4136135b 4589 used = btrfs_space_info_used(space_info, false);
96f1bb57 4590
96f1bb57
JB
4591 /*
4592 * We only want to allow over committing if we have lots of actual space
4593 * free, but if we don't have enough space to handle the global reserve
4594 * space then we could end up having a real enospc problem when trying
4595 * to allocate a chunk or some other such important allocation.
4596 */
3c76cd84
MX
4597 spin_lock(&global_rsv->lock);
4598 space_size = calc_global_rsv_need_space(global_rsv);
4599 spin_unlock(&global_rsv->lock);
4600 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4601 return 0;
4602
4603 used += space_info->bytes_may_use;
a80c8dcf 4604
a5ed45f8 4605 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4606
4607 /*
4608 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4609 * space is actually useable. For raid56, the space info used
4610 * doesn't include the parity drive, so we don't have to
4611 * change the math
a80c8dcf
JB
4612 */
4613 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4614 BTRFS_BLOCK_GROUP_RAID1 |
4615 BTRFS_BLOCK_GROUP_RAID10))
4616 avail >>= 1;
4617
4618 /*
561c294d
MX
4619 * If we aren't flushing all things, let us overcommit up to
4620 * 1/2th of the space. If we can flush, don't let us overcommit
4621 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4622 */
08e007d2 4623 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4624 avail >>= 3;
a80c8dcf 4625 else
14575aef 4626 avail >>= 1;
a80c8dcf 4627
14575aef 4628 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4629 return 1;
4630 return 0;
4631}
4632
2ff7e61e 4633static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4634 unsigned long nr_pages, int nr_items)
da633a42 4635{
0b246afa 4636 struct super_block *sb = fs_info->sb;
da633a42 4637
925a6efb
JB
4638 if (down_read_trylock(&sb->s_umount)) {
4639 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4640 up_read(&sb->s_umount);
4641 } else {
da633a42
MX
4642 /*
4643 * We needn't worry the filesystem going from r/w to r/o though
4644 * we don't acquire ->s_umount mutex, because the filesystem
4645 * should guarantee the delalloc inodes list be empty after
4646 * the filesystem is readonly(all dirty pages are written to
4647 * the disk).
4648 */
82b3e53b 4649 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4650 if (!current->journal_info)
0b246afa 4651 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4652 }
4653}
4654
6374e57a 4655static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4656 u64 to_reclaim)
18cd8ea6
MX
4657{
4658 u64 bytes;
6374e57a 4659 u64 nr;
18cd8ea6 4660
2ff7e61e 4661 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4662 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4663 if (!nr)
4664 nr = 1;
4665 return nr;
4666}
4667
ee22184b 4668#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4669
9ed74f2d 4670/*
5da9d01b 4671 * shrink metadata reservation for delalloc
9ed74f2d 4672 */
c1c4919b
JM
4673static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4674 u64 orig, bool wait_ordered)
5da9d01b 4675{
0019f10d 4676 struct btrfs_space_info *space_info;
663350ac 4677 struct btrfs_trans_handle *trans;
f4c738c2 4678 u64 delalloc_bytes;
5da9d01b 4679 u64 max_reclaim;
6374e57a 4680 u64 items;
b1953bce 4681 long time_left;
d3ee29e3
MX
4682 unsigned long nr_pages;
4683 int loops;
5da9d01b 4684
c61a16a7 4685 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4686 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4687 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4688
663350ac 4689 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4690 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4691
963d678b 4692 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4693 &fs_info->delalloc_bytes);
f4c738c2 4694 if (delalloc_bytes == 0) {
fdb5effd 4695 if (trans)
f4c738c2 4696 return;
38c135af 4697 if (wait_ordered)
0b246afa 4698 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4699 return;
fdb5effd
JB
4700 }
4701
d3ee29e3 4702 loops = 0;
f4c738c2
JB
4703 while (delalloc_bytes && loops < 3) {
4704 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4705 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4706 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4707 /*
4708 * We need to wait for the async pages to actually start before
4709 * we do anything.
4710 */
0b246afa 4711 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4712 if (!max_reclaim)
4713 goto skip_async;
4714
4715 if (max_reclaim <= nr_pages)
4716 max_reclaim = 0;
4717 else
4718 max_reclaim -= nr_pages;
dea31f52 4719
0b246afa
JM
4720 wait_event(fs_info->async_submit_wait,
4721 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4722 (int)max_reclaim);
4723skip_async:
0019f10d 4724 spin_lock(&space_info->lock);
957780eb
JB
4725 if (list_empty(&space_info->tickets) &&
4726 list_empty(&space_info->priority_tickets)) {
4727 spin_unlock(&space_info->lock);
4728 break;
4729 }
0019f10d 4730 spin_unlock(&space_info->lock);
5da9d01b 4731
36e39c40 4732 loops++;
f104d044 4733 if (wait_ordered && !trans) {
0b246afa 4734 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4735 } else {
f4c738c2 4736 time_left = schedule_timeout_killable(1);
f104d044
JB
4737 if (time_left)
4738 break;
4739 }
963d678b 4740 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4741 &fs_info->delalloc_bytes);
5da9d01b 4742 }
5da9d01b
YZ
4743}
4744
996478ca
JB
4745struct reserve_ticket {
4746 u64 bytes;
4747 int error;
4748 struct list_head list;
4749 wait_queue_head_t wait;
4750};
4751
663350ac
JB
4752/**
4753 * maybe_commit_transaction - possibly commit the transaction if its ok to
4754 * @root - the root we're allocating for
4755 * @bytes - the number of bytes we want to reserve
4756 * @force - force the commit
8bb8ab2e 4757 *
663350ac
JB
4758 * This will check to make sure that committing the transaction will actually
4759 * get us somewhere and then commit the transaction if it does. Otherwise it
4760 * will return -ENOSPC.
8bb8ab2e 4761 */
0c9ab349 4762static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4763 struct btrfs_space_info *space_info)
663350ac 4764{
996478ca 4765 struct reserve_ticket *ticket = NULL;
0b246afa 4766 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4767 struct btrfs_trans_handle *trans;
996478ca 4768 u64 bytes;
663350ac
JB
4769
4770 trans = (struct btrfs_trans_handle *)current->journal_info;
4771 if (trans)
4772 return -EAGAIN;
4773
996478ca
JB
4774 spin_lock(&space_info->lock);
4775 if (!list_empty(&space_info->priority_tickets))
4776 ticket = list_first_entry(&space_info->priority_tickets,
4777 struct reserve_ticket, list);
4778 else if (!list_empty(&space_info->tickets))
4779 ticket = list_first_entry(&space_info->tickets,
4780 struct reserve_ticket, list);
4781 bytes = (ticket) ? ticket->bytes : 0;
4782 spin_unlock(&space_info->lock);
4783
4784 if (!bytes)
4785 return 0;
663350ac
JB
4786
4787 /* See if there is enough pinned space to make this reservation */
dec59fa3
EL
4788 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4789 bytes,
4790 BTRFS_TOTAL_BYTES_PINNED_BATCH) >= 0)
663350ac 4791 goto commit;
663350ac
JB
4792
4793 /*
4794 * See if there is some space in the delayed insertion reservation for
4795 * this reservation.
4796 */
4797 if (space_info != delayed_rsv->space_info)
4798 return -ENOSPC;
4799
4800 spin_lock(&delayed_rsv->lock);
996478ca
JB
4801 if (delayed_rsv->size > bytes)
4802 bytes = 0;
4803 else
4804 bytes -= delayed_rsv->size;
057aac3e
NB
4805 spin_unlock(&delayed_rsv->lock);
4806
dec59fa3
EL
4807 if (__percpu_counter_compare(&space_info->total_bytes_pinned,
4808 bytes,
4809 BTRFS_TOTAL_BYTES_PINNED_BATCH) < 0) {
663350ac
JB
4810 return -ENOSPC;
4811 }
663350ac
JB
4812
4813commit:
a9b3311e 4814 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4815 if (IS_ERR(trans))
4816 return -ENOSPC;
4817
3a45bb20 4818 return btrfs_commit_transaction(trans);
663350ac
JB
4819}
4820
e38ae7a0
NB
4821/*
4822 * Try to flush some data based on policy set by @state. This is only advisory
4823 * and may fail for various reasons. The caller is supposed to examine the
4824 * state of @space_info to detect the outcome.
4825 */
4826static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4827 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4828 int state)
96c3f433 4829{
a9b3311e 4830 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4831 struct btrfs_trans_handle *trans;
4832 int nr;
f4c738c2 4833 int ret = 0;
96c3f433
JB
4834
4835 switch (state) {
96c3f433
JB
4836 case FLUSH_DELAYED_ITEMS_NR:
4837 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4838 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4839 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4840 else
96c3f433 4841 nr = -1;
18cd8ea6 4842
96c3f433
JB
4843 trans = btrfs_join_transaction(root);
4844 if (IS_ERR(trans)) {
4845 ret = PTR_ERR(trans);
4846 break;
4847 }
e5c304e6 4848 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4849 btrfs_end_transaction(trans);
96c3f433 4850 break;
67b0fd63
JB
4851 case FLUSH_DELALLOC:
4852 case FLUSH_DELALLOC_WAIT:
7bdd6277 4853 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
4854 state == FLUSH_DELALLOC_WAIT);
4855 break;
ea658bad
JB
4856 case ALLOC_CHUNK:
4857 trans = btrfs_join_transaction(root);
4858 if (IS_ERR(trans)) {
4859 ret = PTR_ERR(trans);
4860 break;
4861 }
01458828 4862 ret = do_chunk_alloc(trans,
1b86826d 4863 btrfs_metadata_alloc_profile(fs_info),
ea658bad 4864 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4865 btrfs_end_transaction(trans);
eecba891 4866 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
4867 ret = 0;
4868 break;
96c3f433 4869 case COMMIT_TRANS:
996478ca 4870 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
4871 break;
4872 default:
4873 ret = -ENOSPC;
4874 break;
4875 }
4876
7bdd6277
NB
4877 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
4878 ret);
e38ae7a0 4879 return;
96c3f433 4880}
21c7e756
MX
4881
4882static inline u64
c1c4919b
JM
4883btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
4884 struct btrfs_space_info *space_info,
4885 bool system_chunk)
21c7e756 4886{
957780eb 4887 struct reserve_ticket *ticket;
21c7e756
MX
4888 u64 used;
4889 u64 expected;
957780eb 4890 u64 to_reclaim = 0;
21c7e756 4891
957780eb
JB
4892 list_for_each_entry(ticket, &space_info->tickets, list)
4893 to_reclaim += ticket->bytes;
4894 list_for_each_entry(ticket, &space_info->priority_tickets, list)
4895 to_reclaim += ticket->bytes;
4896 if (to_reclaim)
4897 return to_reclaim;
21c7e756 4898
e0af2484 4899 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
4900 if (can_overcommit(fs_info, space_info, to_reclaim,
4901 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
4902 return 0;
4903
0eee8a49
NB
4904 used = btrfs_space_info_used(space_info, true);
4905
c1c4919b
JM
4906 if (can_overcommit(fs_info, space_info, SZ_1M,
4907 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
4908 expected = div_factor_fine(space_info->total_bytes, 95);
4909 else
4910 expected = div_factor_fine(space_info->total_bytes, 90);
4911
4912 if (used > expected)
4913 to_reclaim = used - expected;
4914 else
4915 to_reclaim = 0;
4916 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4917 space_info->bytes_reserved);
21c7e756
MX
4918 return to_reclaim;
4919}
4920
c1c4919b
JM
4921static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
4922 struct btrfs_space_info *space_info,
4923 u64 used, bool system_chunk)
21c7e756 4924{
365c5313
JB
4925 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4926
4927 /* If we're just plain full then async reclaim just slows us down. */
baee8790 4928 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
4929 return 0;
4930
c1c4919b
JM
4931 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4932 system_chunk))
d38b349c
JB
4933 return 0;
4934
0b246afa
JM
4935 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
4936 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
4937}
4938
957780eb 4939static void wake_all_tickets(struct list_head *head)
21c7e756 4940{
957780eb 4941 struct reserve_ticket *ticket;
25ce459c 4942
957780eb
JB
4943 while (!list_empty(head)) {
4944 ticket = list_first_entry(head, struct reserve_ticket, list);
4945 list_del_init(&ticket->list);
4946 ticket->error = -ENOSPC;
4947 wake_up(&ticket->wait);
21c7e756 4948 }
21c7e756
MX
4949}
4950
957780eb
JB
4951/*
4952 * This is for normal flushers, we can wait all goddamned day if we want to. We
4953 * will loop and continuously try to flush as long as we are making progress.
4954 * We count progress as clearing off tickets each time we have to loop.
4955 */
21c7e756
MX
4956static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4957{
4958 struct btrfs_fs_info *fs_info;
4959 struct btrfs_space_info *space_info;
4960 u64 to_reclaim;
4961 int flush_state;
957780eb 4962 int commit_cycles = 0;
ce129655 4963 u64 last_tickets_id;
21c7e756
MX
4964
4965 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4966 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4967
957780eb 4968 spin_lock(&space_info->lock);
c1c4919b
JM
4969 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
4970 false);
957780eb
JB
4971 if (!to_reclaim) {
4972 space_info->flush = 0;
4973 spin_unlock(&space_info->lock);
21c7e756 4974 return;
957780eb 4975 }
ce129655 4976 last_tickets_id = space_info->tickets_id;
957780eb 4977 spin_unlock(&space_info->lock);
21c7e756
MX
4978
4979 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 4980 do {
e38ae7a0 4981 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
4982 spin_lock(&space_info->lock);
4983 if (list_empty(&space_info->tickets)) {
4984 space_info->flush = 0;
4985 spin_unlock(&space_info->lock);
4986 return;
4987 }
c1c4919b
JM
4988 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
4989 space_info,
4990 false);
ce129655 4991 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
4992 flush_state++;
4993 } else {
ce129655 4994 last_tickets_id = space_info->tickets_id;
957780eb
JB
4995 flush_state = FLUSH_DELAYED_ITEMS_NR;
4996 if (commit_cycles)
4997 commit_cycles--;
4998 }
4999
5000 if (flush_state > COMMIT_TRANS) {
5001 commit_cycles++;
5002 if (commit_cycles > 2) {
5003 wake_all_tickets(&space_info->tickets);
5004 space_info->flush = 0;
5005 } else {
5006 flush_state = FLUSH_DELAYED_ITEMS_NR;
5007 }
5008 }
5009 spin_unlock(&space_info->lock);
5010 } while (flush_state <= COMMIT_TRANS);
5011}
5012
5013void btrfs_init_async_reclaim_work(struct work_struct *work)
5014{
5015 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5016}
5017
5018static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5019 struct btrfs_space_info *space_info,
5020 struct reserve_ticket *ticket)
5021{
5022 u64 to_reclaim;
5023 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5024
5025 spin_lock(&space_info->lock);
c1c4919b
JM
5026 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5027 false);
957780eb
JB
5028 if (!to_reclaim) {
5029 spin_unlock(&space_info->lock);
5030 return;
5031 }
5032 spin_unlock(&space_info->lock);
5033
21c7e756 5034 do {
7bdd6277 5035 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5036 flush_state++;
957780eb
JB
5037 spin_lock(&space_info->lock);
5038 if (ticket->bytes == 0) {
5039 spin_unlock(&space_info->lock);
21c7e756 5040 return;
957780eb
JB
5041 }
5042 spin_unlock(&space_info->lock);
5043
5044 /*
5045 * Priority flushers can't wait on delalloc without
5046 * deadlocking.
5047 */
5048 if (flush_state == FLUSH_DELALLOC ||
5049 flush_state == FLUSH_DELALLOC_WAIT)
5050 flush_state = ALLOC_CHUNK;
365c5313 5051 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5052}
5053
957780eb
JB
5054static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5055 struct btrfs_space_info *space_info,
5056 struct reserve_ticket *ticket, u64 orig_bytes)
5057
21c7e756 5058{
957780eb
JB
5059 DEFINE_WAIT(wait);
5060 int ret = 0;
5061
5062 spin_lock(&space_info->lock);
5063 while (ticket->bytes > 0 && ticket->error == 0) {
5064 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5065 if (ret) {
5066 ret = -EINTR;
5067 break;
5068 }
5069 spin_unlock(&space_info->lock);
5070
5071 schedule();
5072
5073 finish_wait(&ticket->wait, &wait);
5074 spin_lock(&space_info->lock);
5075 }
5076 if (!ret)
5077 ret = ticket->error;
5078 if (!list_empty(&ticket->list))
5079 list_del_init(&ticket->list);
5080 if (ticket->bytes && ticket->bytes < orig_bytes) {
5081 u64 num_bytes = orig_bytes - ticket->bytes;
5082 space_info->bytes_may_use -= num_bytes;
5083 trace_btrfs_space_reservation(fs_info, "space_info",
5084 space_info->flags, num_bytes, 0);
5085 }
5086 spin_unlock(&space_info->lock);
5087
5088 return ret;
21c7e756
MX
5089}
5090
4a92b1b8
JB
5091/**
5092 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5093 * @root - the root we're allocating for
957780eb 5094 * @space_info - the space info we want to allocate from
4a92b1b8 5095 * @orig_bytes - the number of bytes we want
48fc7f7e 5096 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5097 *
01327610 5098 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5099 * with the block_rsv. If there is not enough space it will make an attempt to
5100 * flush out space to make room. It will do this by flushing delalloc if
5101 * possible or committing the transaction. If flush is 0 then no attempts to
5102 * regain reservations will be made and this will fail if there is not enough
5103 * space already.
8bb8ab2e 5104 */
c1c4919b 5105static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5106 struct btrfs_space_info *space_info,
5107 u64 orig_bytes,
c1c4919b
JM
5108 enum btrfs_reserve_flush_enum flush,
5109 bool system_chunk)
9ed74f2d 5110{
957780eb 5111 struct reserve_ticket ticket;
2bf64758 5112 u64 used;
8bb8ab2e 5113 int ret = 0;
9ed74f2d 5114
957780eb 5115 ASSERT(orig_bytes);
8ca17f0f 5116 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5117
8bb8ab2e 5118 spin_lock(&space_info->lock);
fdb5effd 5119 ret = -ENOSPC;
4136135b 5120 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5121
8bb8ab2e 5122 /*
957780eb
JB
5123 * If we have enough space then hooray, make our reservation and carry
5124 * on. If not see if we can overcommit, and if we can, hooray carry on.
5125 * If not things get more complicated.
8bb8ab2e 5126 */
957780eb
JB
5127 if (used + orig_bytes <= space_info->total_bytes) {
5128 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5129 trace_btrfs_space_reservation(fs_info, "space_info",
5130 space_info->flags, orig_bytes, 1);
957780eb 5131 ret = 0;
c1c4919b
JM
5132 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5133 system_chunk)) {
44734ed1 5134 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5135 trace_btrfs_space_reservation(fs_info, "space_info",
5136 space_info->flags, orig_bytes, 1);
44734ed1 5137 ret = 0;
2bf64758
JB
5138 }
5139
8bb8ab2e 5140 /*
957780eb
JB
5141 * If we couldn't make a reservation then setup our reservation ticket
5142 * and kick the async worker if it's not already running.
08e007d2 5143 *
957780eb
JB
5144 * If we are a priority flusher then we just need to add our ticket to
5145 * the list and we will do our own flushing further down.
8bb8ab2e 5146 */
72bcd99d 5147 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5148 ticket.bytes = orig_bytes;
5149 ticket.error = 0;
5150 init_waitqueue_head(&ticket.wait);
5151 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5152 list_add_tail(&ticket.list, &space_info->tickets);
5153 if (!space_info->flush) {
5154 space_info->flush = 1;
0b246afa 5155 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5156 space_info->flags,
5157 orig_bytes, flush,
5158 "enospc");
957780eb 5159 queue_work(system_unbound_wq,
c1c4919b 5160 &fs_info->async_reclaim_work);
957780eb
JB
5161 }
5162 } else {
5163 list_add_tail(&ticket.list,
5164 &space_info->priority_tickets);
5165 }
21c7e756
MX
5166 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5167 used += orig_bytes;
f6acfd50
JB
5168 /*
5169 * We will do the space reservation dance during log replay,
5170 * which means we won't have fs_info->fs_root set, so don't do
5171 * the async reclaim as we will panic.
5172 */
0b246afa 5173 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5174 need_do_async_reclaim(fs_info, space_info,
5175 used, system_chunk) &&
0b246afa
JM
5176 !work_busy(&fs_info->async_reclaim_work)) {
5177 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5178 orig_bytes, flush, "preempt");
21c7e756 5179 queue_work(system_unbound_wq,
0b246afa 5180 &fs_info->async_reclaim_work);
f376df2b 5181 }
8bb8ab2e 5182 }
f0486c68 5183 spin_unlock(&space_info->lock);
08e007d2 5184 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5185 return ret;
f0486c68 5186
957780eb 5187 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5188 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5189 orig_bytes);
08e007d2 5190
957780eb 5191 ret = 0;
0b246afa 5192 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5193 spin_lock(&space_info->lock);
5194 if (ticket.bytes) {
5195 if (ticket.bytes < orig_bytes) {
5196 u64 num_bytes = orig_bytes - ticket.bytes;
5197 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5198 trace_btrfs_space_reservation(fs_info, "space_info",
5199 space_info->flags,
5200 num_bytes, 0);
08e007d2 5201
957780eb
JB
5202 }
5203 list_del_init(&ticket.list);
5204 ret = -ENOSPC;
5205 }
5206 spin_unlock(&space_info->lock);
5207 ASSERT(list_empty(&ticket.list));
5208 return ret;
5209}
8bb8ab2e 5210
957780eb
JB
5211/**
5212 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5213 * @root - the root we're allocating for
5214 * @block_rsv - the block_rsv we're allocating for
5215 * @orig_bytes - the number of bytes we want
5216 * @flush - whether or not we can flush to make our reservation
5217 *
5218 * This will reserve orgi_bytes number of bytes from the space info associated
5219 * with the block_rsv. If there is not enough space it will make an attempt to
5220 * flush out space to make room. It will do this by flushing delalloc if
5221 * possible or committing the transaction. If flush is 0 then no attempts to
5222 * regain reservations will be made and this will fail if there is not enough
5223 * space already.
5224 */
5225static int reserve_metadata_bytes(struct btrfs_root *root,
5226 struct btrfs_block_rsv *block_rsv,
5227 u64 orig_bytes,
5228 enum btrfs_reserve_flush_enum flush)
5229{
0b246afa
JM
5230 struct btrfs_fs_info *fs_info = root->fs_info;
5231 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5232 int ret;
c1c4919b 5233 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5234
c1c4919b
JM
5235 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5236 orig_bytes, flush, system_chunk);
5d80366e
JB
5237 if (ret == -ENOSPC &&
5238 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5239 if (block_rsv != global_rsv &&
5240 !block_rsv_use_bytes(global_rsv, orig_bytes))
5241 ret = 0;
5242 }
9a3daff3 5243 if (ret == -ENOSPC) {
0b246afa 5244 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5245 block_rsv->space_info->flags,
5246 orig_bytes, 1);
9a3daff3
NB
5247
5248 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5249 dump_space_info(fs_info, block_rsv->space_info,
5250 orig_bytes, 0);
5251 }
f0486c68
YZ
5252 return ret;
5253}
5254
79787eaa
JM
5255static struct btrfs_block_rsv *get_block_rsv(
5256 const struct btrfs_trans_handle *trans,
5257 const struct btrfs_root *root)
f0486c68 5258{
0b246afa 5259 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5260 struct btrfs_block_rsv *block_rsv = NULL;
5261
e9cf439f 5262 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5263 (root == fs_info->csum_root && trans->adding_csums) ||
5264 (root == fs_info->uuid_root))
f7a81ea4
SB
5265 block_rsv = trans->block_rsv;
5266
4c13d758 5267 if (!block_rsv)
f0486c68
YZ
5268 block_rsv = root->block_rsv;
5269
5270 if (!block_rsv)
0b246afa 5271 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5272
5273 return block_rsv;
5274}
5275
5276static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5277 u64 num_bytes)
5278{
5279 int ret = -ENOSPC;
5280 spin_lock(&block_rsv->lock);
5281 if (block_rsv->reserved >= num_bytes) {
5282 block_rsv->reserved -= num_bytes;
5283 if (block_rsv->reserved < block_rsv->size)
5284 block_rsv->full = 0;
5285 ret = 0;
5286 }
5287 spin_unlock(&block_rsv->lock);
5288 return ret;
5289}
5290
5291static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5292 u64 num_bytes, int update_size)
5293{
5294 spin_lock(&block_rsv->lock);
5295 block_rsv->reserved += num_bytes;
5296 if (update_size)
5297 block_rsv->size += num_bytes;
5298 else if (block_rsv->reserved >= block_rsv->size)
5299 block_rsv->full = 1;
5300 spin_unlock(&block_rsv->lock);
5301}
5302
d52be818
JB
5303int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5304 struct btrfs_block_rsv *dest, u64 num_bytes,
5305 int min_factor)
5306{
5307 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5308 u64 min_bytes;
5309
5310 if (global_rsv->space_info != dest->space_info)
5311 return -ENOSPC;
5312
5313 spin_lock(&global_rsv->lock);
5314 min_bytes = div_factor(global_rsv->size, min_factor);
5315 if (global_rsv->reserved < min_bytes + num_bytes) {
5316 spin_unlock(&global_rsv->lock);
5317 return -ENOSPC;
5318 }
5319 global_rsv->reserved -= num_bytes;
5320 if (global_rsv->reserved < global_rsv->size)
5321 global_rsv->full = 0;
5322 spin_unlock(&global_rsv->lock);
5323
5324 block_rsv_add_bytes(dest, num_bytes, 1);
5325 return 0;
5326}
5327
957780eb
JB
5328/*
5329 * This is for space we already have accounted in space_info->bytes_may_use, so
5330 * basically when we're returning space from block_rsv's.
5331 */
5332static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5333 struct btrfs_space_info *space_info,
5334 u64 num_bytes)
5335{
5336 struct reserve_ticket *ticket;
5337 struct list_head *head;
5338 u64 used;
5339 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5340 bool check_overcommit = false;
5341
5342 spin_lock(&space_info->lock);
5343 head = &space_info->priority_tickets;
5344
5345 /*
5346 * If we are over our limit then we need to check and see if we can
5347 * overcommit, and if we can't then we just need to free up our space
5348 * and not satisfy any requests.
5349 */
0eee8a49 5350 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5351 if (used - num_bytes >= space_info->total_bytes)
5352 check_overcommit = true;
5353again:
5354 while (!list_empty(head) && num_bytes) {
5355 ticket = list_first_entry(head, struct reserve_ticket,
5356 list);
5357 /*
5358 * We use 0 bytes because this space is already reserved, so
5359 * adding the ticket space would be a double count.
5360 */
5361 if (check_overcommit &&
c1c4919b 5362 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5363 break;
5364 if (num_bytes >= ticket->bytes) {
5365 list_del_init(&ticket->list);
5366 num_bytes -= ticket->bytes;
5367 ticket->bytes = 0;
ce129655 5368 space_info->tickets_id++;
957780eb
JB
5369 wake_up(&ticket->wait);
5370 } else {
5371 ticket->bytes -= num_bytes;
5372 num_bytes = 0;
5373 }
5374 }
5375
5376 if (num_bytes && head == &space_info->priority_tickets) {
5377 head = &space_info->tickets;
5378 flush = BTRFS_RESERVE_FLUSH_ALL;
5379 goto again;
5380 }
5381 space_info->bytes_may_use -= num_bytes;
5382 trace_btrfs_space_reservation(fs_info, "space_info",
5383 space_info->flags, num_bytes, 0);
5384 spin_unlock(&space_info->lock);
5385}
5386
5387/*
5388 * This is for newly allocated space that isn't accounted in
5389 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5390 * we use this helper.
5391 */
5392static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5393 struct btrfs_space_info *space_info,
5394 u64 num_bytes)
5395{
5396 struct reserve_ticket *ticket;
5397 struct list_head *head = &space_info->priority_tickets;
5398
5399again:
5400 while (!list_empty(head) && num_bytes) {
5401 ticket = list_first_entry(head, struct reserve_ticket,
5402 list);
5403 if (num_bytes >= ticket->bytes) {
5404 trace_btrfs_space_reservation(fs_info, "space_info",
5405 space_info->flags,
5406 ticket->bytes, 1);
5407 list_del_init(&ticket->list);
5408 num_bytes -= ticket->bytes;
5409 space_info->bytes_may_use += ticket->bytes;
5410 ticket->bytes = 0;
ce129655 5411 space_info->tickets_id++;
957780eb
JB
5412 wake_up(&ticket->wait);
5413 } else {
5414 trace_btrfs_space_reservation(fs_info, "space_info",
5415 space_info->flags,
5416 num_bytes, 1);
5417 space_info->bytes_may_use += num_bytes;
5418 ticket->bytes -= num_bytes;
5419 num_bytes = 0;
5420 }
5421 }
5422
5423 if (num_bytes && head == &space_info->priority_tickets) {
5424 head = &space_info->tickets;
5425 goto again;
5426 }
5427}
5428
69fe2d75 5429static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5430 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5431 struct btrfs_block_rsv *dest, u64 num_bytes,
5432 u64 *qgroup_to_release_ret)
f0486c68
YZ
5433{
5434 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5435 u64 qgroup_to_release = 0;
69fe2d75 5436 u64 ret;
f0486c68
YZ
5437
5438 spin_lock(&block_rsv->lock);
ff6bc37e 5439 if (num_bytes == (u64)-1) {
f0486c68 5440 num_bytes = block_rsv->size;
ff6bc37e
QW
5441 qgroup_to_release = block_rsv->qgroup_rsv_size;
5442 }
f0486c68
YZ
5443 block_rsv->size -= num_bytes;
5444 if (block_rsv->reserved >= block_rsv->size) {
5445 num_bytes = block_rsv->reserved - block_rsv->size;
5446 block_rsv->reserved = block_rsv->size;
5447 block_rsv->full = 1;
5448 } else {
5449 num_bytes = 0;
5450 }
ff6bc37e
QW
5451 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5452 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5453 block_rsv->qgroup_rsv_size;
5454 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5455 } else {
5456 qgroup_to_release = 0;
5457 }
f0486c68
YZ
5458 spin_unlock(&block_rsv->lock);
5459
69fe2d75 5460 ret = num_bytes;
f0486c68
YZ
5461 if (num_bytes > 0) {
5462 if (dest) {
e9e22899
JB
5463 spin_lock(&dest->lock);
5464 if (!dest->full) {
5465 u64 bytes_to_add;
5466
5467 bytes_to_add = dest->size - dest->reserved;
5468 bytes_to_add = min(num_bytes, bytes_to_add);
5469 dest->reserved += bytes_to_add;
5470 if (dest->reserved >= dest->size)
5471 dest->full = 1;
5472 num_bytes -= bytes_to_add;
5473 }
5474 spin_unlock(&dest->lock);
5475 }
957780eb
JB
5476 if (num_bytes)
5477 space_info_add_old_bytes(fs_info, space_info,
5478 num_bytes);
9ed74f2d 5479 }
ff6bc37e
QW
5480 if (qgroup_to_release_ret)
5481 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5482 return ret;
f0486c68 5483}
4e06bdd6 5484
25d609f8
JB
5485int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5486 struct btrfs_block_rsv *dst, u64 num_bytes,
5487 int update_size)
f0486c68
YZ
5488{
5489 int ret;
9ed74f2d 5490
f0486c68
YZ
5491 ret = block_rsv_use_bytes(src, num_bytes);
5492 if (ret)
5493 return ret;
9ed74f2d 5494
25d609f8 5495 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5496 return 0;
5497}
5498
66d8f3dd 5499void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5500{
f0486c68
YZ
5501 memset(rsv, 0, sizeof(*rsv));
5502 spin_lock_init(&rsv->lock);
66d8f3dd 5503 rsv->type = type;
f0486c68
YZ
5504}
5505
69fe2d75
JB
5506void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5507 struct btrfs_block_rsv *rsv,
5508 unsigned short type)
5509{
5510 btrfs_init_block_rsv(rsv, type);
5511 rsv->space_info = __find_space_info(fs_info,
5512 BTRFS_BLOCK_GROUP_METADATA);
5513}
5514
2ff7e61e 5515struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5516 unsigned short type)
f0486c68
YZ
5517{
5518 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5519
f0486c68
YZ
5520 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5521 if (!block_rsv)
5522 return NULL;
9ed74f2d 5523
69fe2d75 5524 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5525 return block_rsv;
5526}
9ed74f2d 5527
2ff7e61e 5528void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5529 struct btrfs_block_rsv *rsv)
5530{
2aaa6655
JB
5531 if (!rsv)
5532 return;
2ff7e61e 5533 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5534 kfree(rsv);
9ed74f2d
JB
5535}
5536
cdfb080e
CM
5537void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5538{
5539 kfree(rsv);
5540}
5541
08e007d2
MX
5542int btrfs_block_rsv_add(struct btrfs_root *root,
5543 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5544 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5545{
f0486c68 5546 int ret;
9ed74f2d 5547
f0486c68
YZ
5548 if (num_bytes == 0)
5549 return 0;
8bb8ab2e 5550
61b520a9 5551 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5552 if (!ret) {
5553 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5554 return 0;
5555 }
9ed74f2d 5556
f0486c68 5557 return ret;
f0486c68 5558}
9ed74f2d 5559
2ff7e61e 5560int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5561{
5562 u64 num_bytes = 0;
f0486c68 5563 int ret = -ENOSPC;
9ed74f2d 5564
f0486c68
YZ
5565 if (!block_rsv)
5566 return 0;
9ed74f2d 5567
f0486c68 5568 spin_lock(&block_rsv->lock);
36ba022a
JB
5569 num_bytes = div_factor(block_rsv->size, min_factor);
5570 if (block_rsv->reserved >= num_bytes)
5571 ret = 0;
5572 spin_unlock(&block_rsv->lock);
9ed74f2d 5573
36ba022a
JB
5574 return ret;
5575}
5576
08e007d2
MX
5577int btrfs_block_rsv_refill(struct btrfs_root *root,
5578 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5579 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5580{
5581 u64 num_bytes = 0;
5582 int ret = -ENOSPC;
5583
5584 if (!block_rsv)
5585 return 0;
5586
5587 spin_lock(&block_rsv->lock);
5588 num_bytes = min_reserved;
13553e52 5589 if (block_rsv->reserved >= num_bytes)
f0486c68 5590 ret = 0;
13553e52 5591 else
f0486c68 5592 num_bytes -= block_rsv->reserved;
f0486c68 5593 spin_unlock(&block_rsv->lock);
13553e52 5594
f0486c68
YZ
5595 if (!ret)
5596 return 0;
5597
aa38a711 5598 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5599 if (!ret) {
5600 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5601 return 0;
6a63209f 5602 }
9ed74f2d 5603
13553e52 5604 return ret;
f0486c68
YZ
5605}
5606
69fe2d75
JB
5607/**
5608 * btrfs_inode_rsv_refill - refill the inode block rsv.
5609 * @inode - the inode we are refilling.
5610 * @flush - the flusing restriction.
5611 *
5612 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5613 * block_rsv->size as the minimum size. We'll either refill the missing amount
5614 * or return if we already have enough space. This will also handle the resreve
5615 * tracepoint for the reserved amount.
5616 */
3f2dd7a0
QW
5617static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5618 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5619{
5620 struct btrfs_root *root = inode->root;
5621 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5622 u64 num_bytes = 0;
ff6bc37e 5623 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5624 int ret = -ENOSPC;
5625
5626 spin_lock(&block_rsv->lock);
5627 if (block_rsv->reserved < block_rsv->size)
5628 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5629 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5630 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5631 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5632 spin_unlock(&block_rsv->lock);
5633
5634 if (num_bytes == 0)
5635 return 0;
5636
ff6bc37e 5637 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5638 if (ret)
5639 return ret;
69fe2d75
JB
5640 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5641 if (!ret) {
5642 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5643 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5644 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5645
5646 /* Don't forget to increase qgroup_rsv_reserved */
5647 spin_lock(&block_rsv->lock);
5648 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5649 spin_unlock(&block_rsv->lock);
5650 } else
5651 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5652 return ret;
5653}
5654
5655/**
5656 * btrfs_inode_rsv_release - release any excessive reservation.
5657 * @inode - the inode we need to release from.
43b18595
QW
5658 * @qgroup_free - free or convert qgroup meta.
5659 * Unlike normal operation, qgroup meta reservation needs to know if we are
5660 * freeing qgroup reservation or just converting it into per-trans. Normally
5661 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5662 *
5663 * This is the same as btrfs_block_rsv_release, except that it handles the
5664 * tracepoint for the reservation.
5665 */
43b18595 5666static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5667{
5668 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5669 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5670 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5671 u64 released = 0;
ff6bc37e 5672 u64 qgroup_to_release = 0;
69fe2d75
JB
5673
5674 /*
5675 * Since we statically set the block_rsv->size we just want to say we
5676 * are releasing 0 bytes, and then we'll just get the reservation over
5677 * the size free'd.
5678 */
ff6bc37e
QW
5679 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5680 &qgroup_to_release);
69fe2d75
JB
5681 if (released > 0)
5682 trace_btrfs_space_reservation(fs_info, "delalloc",
5683 btrfs_ino(inode), released, 0);
43b18595 5684 if (qgroup_free)
ff6bc37e 5685 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5686 else
ff6bc37e
QW
5687 btrfs_qgroup_convert_reserved_meta(inode->root,
5688 qgroup_to_release);
69fe2d75
JB
5689}
5690
2ff7e61e 5691void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5692 struct btrfs_block_rsv *block_rsv,
5693 u64 num_bytes)
5694{
0b246afa
JM
5695 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5696
17504584 5697 if (global_rsv == block_rsv ||
f0486c68
YZ
5698 block_rsv->space_info != global_rsv->space_info)
5699 global_rsv = NULL;
ff6bc37e 5700 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5701}
5702
8929ecfa
YZ
5703static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5704{
5705 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5706 struct btrfs_space_info *sinfo = block_rsv->space_info;
5707 u64 num_bytes;
6a63209f 5708
ae2e4728
JB
5709 /*
5710 * The global block rsv is based on the size of the extent tree, the
5711 * checksum tree and the root tree. If the fs is empty we want to set
5712 * it to a minimal amount for safety.
5713 */
5714 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5715 btrfs_root_used(&fs_info->csum_root->root_item) +
5716 btrfs_root_used(&fs_info->tree_root->root_item);
5717 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5718
8929ecfa 5719 spin_lock(&sinfo->lock);
1f699d38 5720 spin_lock(&block_rsv->lock);
4e06bdd6 5721
ee22184b 5722 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5723
fb4b10e5 5724 if (block_rsv->reserved < block_rsv->size) {
4136135b 5725 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5726 if (sinfo->total_bytes > num_bytes) {
5727 num_bytes = sinfo->total_bytes - num_bytes;
5728 num_bytes = min(num_bytes,
5729 block_rsv->size - block_rsv->reserved);
5730 block_rsv->reserved += num_bytes;
5731 sinfo->bytes_may_use += num_bytes;
5732 trace_btrfs_space_reservation(fs_info, "space_info",
5733 sinfo->flags, num_bytes,
5734 1);
5735 }
5736 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5737 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5738 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5739 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5740 sinfo->flags, num_bytes, 0);
8929ecfa 5741 block_rsv->reserved = block_rsv->size;
8929ecfa 5742 }
182608c8 5743
fb4b10e5
JB
5744 if (block_rsv->reserved == block_rsv->size)
5745 block_rsv->full = 1;
5746 else
5747 block_rsv->full = 0;
5748
8929ecfa 5749 spin_unlock(&block_rsv->lock);
1f699d38 5750 spin_unlock(&sinfo->lock);
6a63209f
JB
5751}
5752
f0486c68 5753static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5754{
f0486c68 5755 struct btrfs_space_info *space_info;
6a63209f 5756
f0486c68
YZ
5757 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5758 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5759
f0486c68 5760 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5761 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5762 fs_info->trans_block_rsv.space_info = space_info;
5763 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5764 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5765
8929ecfa
YZ
5766 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5767 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5768 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5769 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5770 if (fs_info->quota_root)
5771 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5772 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5773
8929ecfa 5774 update_global_block_rsv(fs_info);
6a63209f
JB
5775}
5776
8929ecfa 5777static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5778{
8c2a3ca2 5779 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5780 (u64)-1, NULL);
8929ecfa
YZ
5781 WARN_ON(fs_info->trans_block_rsv.size > 0);
5782 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5783 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5784 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5785 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5786 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5787}
5788
6a63209f 5789
4fbcdf66
FM
5790/*
5791 * To be called after all the new block groups attached to the transaction
5792 * handle have been created (btrfs_create_pending_block_groups()).
5793 */
5794void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5795{
64b63580 5796 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5797
5798 if (!trans->chunk_bytes_reserved)
5799 return;
5800
5801 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5802
5803 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5804 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5805 trans->chunk_bytes_reserved = 0;
5806}
5807
d5c12070
MX
5808/*
5809 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5810 * root: the root of the parent directory
5811 * rsv: block reservation
5812 * items: the number of items that we need do reservation
5813 * qgroup_reserved: used to return the reserved size in qgroup
5814 *
5815 * This function is used to reserve the space for snapshot/subvolume
5816 * creation and deletion. Those operations are different with the
5817 * common file/directory operations, they change two fs/file trees
5818 * and root tree, the number of items that the qgroup reserves is
5819 * different with the free space reservation. So we can not use
01327610 5820 * the space reservation mechanism in start_transaction().
d5c12070
MX
5821 */
5822int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5823 struct btrfs_block_rsv *rsv,
5824 int items,
ee3441b4 5825 bool use_global_rsv)
a22285a6 5826{
d5c12070
MX
5827 u64 num_bytes;
5828 int ret;
0b246afa
JM
5829 struct btrfs_fs_info *fs_info = root->fs_info;
5830 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5831
0b246afa 5832 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5833 /* One for parent inode, two for dir entries */
0b246afa 5834 num_bytes = 3 * fs_info->nodesize;
733e03a0 5835 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
5836 if (ret)
5837 return ret;
5838 } else {
5839 num_bytes = 0;
5840 }
5841
0b246afa
JM
5842 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5843 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5844 BTRFS_BLOCK_GROUP_METADATA);
5845 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5846 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5847
5848 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5849 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 5850
c4c129db
GJ
5851 if (ret && num_bytes)
5852 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
d5c12070
MX
5853
5854 return ret;
5855}
5856
2ff7e61e 5857void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 5858 struct btrfs_block_rsv *rsv)
d5c12070 5859{
2ff7e61e 5860 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
5861}
5862
69fe2d75
JB
5863static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
5864 struct btrfs_inode *inode)
9e0baf60 5865{
69fe2d75
JB
5866 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5867 u64 reserve_size = 0;
ff6bc37e 5868 u64 qgroup_rsv_size = 0;
69fe2d75
JB
5869 u64 csum_leaves;
5870 unsigned outstanding_extents;
9e0baf60 5871
69fe2d75
JB
5872 lockdep_assert_held(&inode->lock);
5873 outstanding_extents = inode->outstanding_extents;
5874 if (outstanding_extents)
5875 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
5876 outstanding_extents + 1);
5877 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
5878 inode->csum_bytes);
5879 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
5880 csum_leaves);
ff6bc37e
QW
5881 /*
5882 * For qgroup rsv, the calculation is very simple:
5883 * account one nodesize for each outstanding extent
5884 *
5885 * This is overestimating in most cases.
5886 */
5887 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 5888
69fe2d75
JB
5889 spin_lock(&block_rsv->lock);
5890 block_rsv->size = reserve_size;
ff6bc37e 5891 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 5892 spin_unlock(&block_rsv->lock);
0ca1f7ce 5893}
c146afad 5894
9f3db423 5895int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 5896{
3ffbd68c 5897 struct btrfs_fs_info *fs_info = inode->root->fs_info;
69fe2d75 5898 unsigned nr_extents;
08e007d2 5899 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5900 int ret = 0;
c64c2bd8 5901 bool delalloc_lock = true;
6324fbf3 5902
c64c2bd8
JB
5903 /* If we are a free space inode we need to not flush since we will be in
5904 * the middle of a transaction commit. We also don't need the delalloc
5905 * mutex since we won't race with anybody. We need this mostly to make
5906 * lockdep shut its filthy mouth.
bac357dc
JB
5907 *
5908 * If we have a transaction open (can happen if we call truncate_block
5909 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
5910 */
5911 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5912 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 5913 delalloc_lock = false;
da07d4ab
NB
5914 } else {
5915 if (current->journal_info)
5916 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 5917
da07d4ab
NB
5918 if (btrfs_transaction_in_commit(fs_info))
5919 schedule_timeout(1);
5920 }
ec44a35c 5921
c64c2bd8 5922 if (delalloc_lock)
9f3db423 5923 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 5924
0b246afa 5925 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
5926
5927 /* Add our new extents and calculate the new rsv size. */
9f3db423 5928 spin_lock(&inode->lock);
69fe2d75 5929 nr_extents = count_max_extents(num_bytes);
8b62f87b 5930 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
5931 inode->csum_bytes += num_bytes;
5932 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5933 spin_unlock(&inode->lock);
57a45ced 5934
69fe2d75 5935 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 5936 if (unlikely(ret))
88e081bf 5937 goto out_fail;
25179201 5938
c64c2bd8 5939 if (delalloc_lock)
9f3db423 5940 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 5941 return 0;
88e081bf
WS
5942
5943out_fail:
9f3db423 5944 spin_lock(&inode->lock);
8b62f87b
JB
5945 nr_extents = count_max_extents(num_bytes);
5946 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
5947 inode->csum_bytes -= num_bytes;
5948 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 5949 spin_unlock(&inode->lock);
88e081bf 5950
43b18595 5951 btrfs_inode_rsv_release(inode, true);
88e081bf 5952 if (delalloc_lock)
9f3db423 5953 mutex_unlock(&inode->delalloc_mutex);
88e081bf 5954 return ret;
0ca1f7ce
YZ
5955}
5956
7709cde3
JB
5957/**
5958 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
5959 * @inode: the inode to release the reservation for.
5960 * @num_bytes: the number of bytes we are releasing.
43b18595 5961 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
5962 *
5963 * This will release the metadata reservation for an inode. This can be called
5964 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 5965 * reservations, or on error for the same reason.
7709cde3 5966 */
43b18595
QW
5967void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
5968 bool qgroup_free)
0ca1f7ce 5969{
3ffbd68c 5970 struct btrfs_fs_info *fs_info = inode->root->fs_info;
0ca1f7ce 5971
0b246afa 5972 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 5973 spin_lock(&inode->lock);
69fe2d75
JB
5974 inode->csum_bytes -= num_bytes;
5975 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 5976 spin_unlock(&inode->lock);
0ca1f7ce 5977
0b246afa 5978 if (btrfs_is_testing(fs_info))
6a3891c5
JB
5979 return;
5980
43b18595 5981 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
5982}
5983
8b62f87b
JB
5984/**
5985 * btrfs_delalloc_release_extents - release our outstanding_extents
5986 * @inode: the inode to balance the reservation for.
5987 * @num_bytes: the number of bytes we originally reserved with
43b18595 5988 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
5989 *
5990 * When we reserve space we increase outstanding_extents for the extents we may
5991 * add. Once we've set the range as delalloc or created our ordered extents we
5992 * have outstanding_extents to track the real usage, so we use this to free our
5993 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
5994 * with btrfs_delalloc_reserve_metadata.
5995 */
43b18595
QW
5996void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
5997 bool qgroup_free)
8b62f87b 5998{
3ffbd68c 5999 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8b62f87b 6000 unsigned num_extents;
8b62f87b
JB
6001
6002 spin_lock(&inode->lock);
6003 num_extents = count_max_extents(num_bytes);
6004 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6005 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6006 spin_unlock(&inode->lock);
6007
8b62f87b
JB
6008 if (btrfs_is_testing(fs_info))
6009 return;
6010
43b18595 6011 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6012}
6013
1ada3a62 6014/**
7cf5b976 6015 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6016 * delalloc
6017 * @inode: inode we're writing to
6018 * @start: start range we are writing to
6019 * @len: how long the range we are writing to
364ecf36
QW
6020 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6021 * current reservation.
1ada3a62 6022 *
1ada3a62
QW
6023 * This will do the following things
6024 *
6025 * o reserve space in data space info for num bytes
6026 * and reserve precious corresponding qgroup space
6027 * (Done in check_data_free_space)
6028 *
6029 * o reserve space for metadata space, based on the number of outstanding
6030 * extents and how much csums will be needed
6031 * also reserve metadata space in a per root over-reserve method.
6032 * o add to the inodes->delalloc_bytes
6033 * o add it to the fs_info's delalloc inodes list.
6034 * (Above 3 all done in delalloc_reserve_metadata)
6035 *
6036 * Return 0 for success
6037 * Return <0 for error(-ENOSPC or -EQUOT)
6038 */
364ecf36
QW
6039int btrfs_delalloc_reserve_space(struct inode *inode,
6040 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6041{
6042 int ret;
6043
364ecf36 6044 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6045 if (ret < 0)
6046 return ret;
9f3db423 6047 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6048 if (ret < 0)
bc42bda2 6049 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6050 return ret;
6051}
6052
7709cde3 6053/**
7cf5b976 6054 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6055 * @inode: inode we're releasing space for
6056 * @start: start position of the space already reserved
6057 * @len: the len of the space already reserved
8b62f87b 6058 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6059 *
6060 * This function will release the metadata space that was not used and will
6061 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6062 * list if there are no delalloc bytes left.
6063 * Also it will handle the qgroup reserved space.
6064 */
bc42bda2 6065void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6066 struct extent_changeset *reserved,
43b18595 6067 u64 start, u64 len, bool qgroup_free)
1ada3a62 6068{
43b18595 6069 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6070 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6071}
6072
ce93ec54 6073static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6074 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6075 u64 num_bytes, int alloc)
9078a3e1 6076{
0af3d00b 6077 struct btrfs_block_group_cache *cache = NULL;
db94535d 6078 u64 total = num_bytes;
9078a3e1 6079 u64 old_val;
db94535d 6080 u64 byte_in_group;
0af3d00b 6081 int factor;
3e1ad54f 6082
5d4f98a2 6083 /* block accounting for super block */
eb73c1b7 6084 spin_lock(&info->delalloc_root_lock);
6c41761f 6085 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6086 if (alloc)
6087 old_val += num_bytes;
6088 else
6089 old_val -= num_bytes;
6c41761f 6090 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6091 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6092
d397712b 6093 while (total) {
db94535d 6094 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6095 if (!cache)
79787eaa 6096 return -ENOENT;
b742bb82
YZ
6097 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6098 BTRFS_BLOCK_GROUP_RAID1 |
6099 BTRFS_BLOCK_GROUP_RAID10))
6100 factor = 2;
6101 else
6102 factor = 1;
9d66e233
JB
6103 /*
6104 * If this block group has free space cache written out, we
6105 * need to make sure to load it if we are removing space. This
6106 * is because we need the unpinning stage to actually add the
6107 * space back to the block group, otherwise we will leak space.
6108 */
6109 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6110 cache_block_group(cache, 1);
0af3d00b 6111
db94535d
CM
6112 byte_in_group = bytenr - cache->key.objectid;
6113 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6114
25179201 6115 spin_lock(&cache->space_info->lock);
c286ac48 6116 spin_lock(&cache->lock);
0af3d00b 6117
6202df69 6118 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6119 cache->disk_cache_state < BTRFS_DC_CLEAR)
6120 cache->disk_cache_state = BTRFS_DC_CLEAR;
6121
9078a3e1 6122 old_val = btrfs_block_group_used(&cache->item);
db94535d 6123 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6124 if (alloc) {
db94535d 6125 old_val += num_bytes;
11833d66
YZ
6126 btrfs_set_block_group_used(&cache->item, old_val);
6127 cache->reserved -= num_bytes;
11833d66 6128 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6129 cache->space_info->bytes_used += num_bytes;
6130 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6131 spin_unlock(&cache->lock);
25179201 6132 spin_unlock(&cache->space_info->lock);
cd1bc465 6133 } else {
db94535d 6134 old_val -= num_bytes;
ae0ab003
FM
6135 btrfs_set_block_group_used(&cache->item, old_val);
6136 cache->pinned += num_bytes;
6137 cache->space_info->bytes_pinned += num_bytes;
6138 cache->space_info->bytes_used -= num_bytes;
6139 cache->space_info->disk_used -= num_bytes * factor;
6140 spin_unlock(&cache->lock);
6141 spin_unlock(&cache->space_info->lock);
47ab2a6c 6142
0b246afa 6143 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6144 cache->space_info->flags,
6145 num_bytes, 1);
dec59fa3
EL
6146 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6147 num_bytes,
6148 BTRFS_TOTAL_BYTES_PINNED_BATCH);
ae0ab003
FM
6149 set_extent_dirty(info->pinned_extents,
6150 bytenr, bytenr + num_bytes - 1,
6151 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6152 }
1bbc621e
CM
6153
6154 spin_lock(&trans->transaction->dirty_bgs_lock);
6155 if (list_empty(&cache->dirty_list)) {
6156 list_add_tail(&cache->dirty_list,
6157 &trans->transaction->dirty_bgs);
bece2e82 6158 trans->transaction->num_dirty_bgs++;
1bbc621e
CM
6159 btrfs_get_block_group(cache);
6160 }
6161 spin_unlock(&trans->transaction->dirty_bgs_lock);
6162
036a9348
FM
6163 /*
6164 * No longer have used bytes in this block group, queue it for
6165 * deletion. We do this after adding the block group to the
6166 * dirty list to avoid races between cleaner kthread and space
6167 * cache writeout.
6168 */
6169 if (!alloc && old_val == 0) {
6170 spin_lock(&info->unused_bgs_lock);
6171 if (list_empty(&cache->bg_list)) {
6172 btrfs_get_block_group(cache);
4ed0a7a3 6173 trace_btrfs_add_unused_block_group(cache);
036a9348
FM
6174 list_add_tail(&cache->bg_list,
6175 &info->unused_bgs);
6176 }
6177 spin_unlock(&info->unused_bgs_lock);
6178 }
6179
fa9c0d79 6180 btrfs_put_block_group(cache);
db94535d
CM
6181 total -= num_bytes;
6182 bytenr += num_bytes;
9078a3e1
CM
6183 }
6184 return 0;
6185}
6324fbf3 6186
2ff7e61e 6187static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6188{
0f9dd46c 6189 struct btrfs_block_group_cache *cache;
d2fb3437 6190 u64 bytenr;
0f9dd46c 6191
0b246afa
JM
6192 spin_lock(&fs_info->block_group_cache_lock);
6193 bytenr = fs_info->first_logical_byte;
6194 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6195
6196 if (bytenr < (u64)-1)
6197 return bytenr;
6198
0b246afa 6199 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6200 if (!cache)
a061fc8d 6201 return 0;
0f9dd46c 6202
d2fb3437 6203 bytenr = cache->key.objectid;
fa9c0d79 6204 btrfs_put_block_group(cache);
d2fb3437
YZ
6205
6206 return bytenr;
a061fc8d
CM
6207}
6208
2ff7e61e 6209static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6210 struct btrfs_block_group_cache *cache,
6211 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6212{
11833d66
YZ
6213 spin_lock(&cache->space_info->lock);
6214 spin_lock(&cache->lock);
6215 cache->pinned += num_bytes;
6216 cache->space_info->bytes_pinned += num_bytes;
6217 if (reserved) {
6218 cache->reserved -= num_bytes;
6219 cache->space_info->bytes_reserved -= num_bytes;
6220 }
6221 spin_unlock(&cache->lock);
6222 spin_unlock(&cache->space_info->lock);
68b38550 6223
0b246afa 6224 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6225 cache->space_info->flags, num_bytes, 1);
dec59fa3
EL
6226 percpu_counter_add_batch(&cache->space_info->total_bytes_pinned,
6227 num_bytes, BTRFS_TOTAL_BYTES_PINNED_BATCH);
0b246afa 6228 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6229 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6230 return 0;
6231}
68b38550 6232
f0486c68
YZ
6233/*
6234 * this function must be called within transaction
6235 */
2ff7e61e 6236int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6237 u64 bytenr, u64 num_bytes, int reserved)
6238{
6239 struct btrfs_block_group_cache *cache;
68b38550 6240
0b246afa 6241 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6242 BUG_ON(!cache); /* Logic error */
f0486c68 6243
2ff7e61e 6244 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6245
6246 btrfs_put_block_group(cache);
11833d66
YZ
6247 return 0;
6248}
6249
f0486c68 6250/*
e688b725
CM
6251 * this function must be called within transaction
6252 */
2ff7e61e 6253int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6254 u64 bytenr, u64 num_bytes)
6255{
6256 struct btrfs_block_group_cache *cache;
b50c6e25 6257 int ret;
e688b725 6258
0b246afa 6259 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6260 if (!cache)
6261 return -EINVAL;
e688b725
CM
6262
6263 /*
6264 * pull in the free space cache (if any) so that our pin
6265 * removes the free space from the cache. We have load_only set
6266 * to one because the slow code to read in the free extents does check
6267 * the pinned extents.
6268 */
f6373bf3 6269 cache_block_group(cache, 1);
e688b725 6270
2ff7e61e 6271 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6272
6273 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6274 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6275 btrfs_put_block_group(cache);
b50c6e25 6276 return ret;
e688b725
CM
6277}
6278
2ff7e61e
JM
6279static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6280 u64 start, u64 num_bytes)
8c2a1a30
JB
6281{
6282 int ret;
6283 struct btrfs_block_group_cache *block_group;
6284 struct btrfs_caching_control *caching_ctl;
6285
0b246afa 6286 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6287 if (!block_group)
6288 return -EINVAL;
6289
6290 cache_block_group(block_group, 0);
6291 caching_ctl = get_caching_control(block_group);
6292
6293 if (!caching_ctl) {
6294 /* Logic error */
6295 BUG_ON(!block_group_cache_done(block_group));
6296 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6297 } else {
6298 mutex_lock(&caching_ctl->mutex);
6299
6300 if (start >= caching_ctl->progress) {
2ff7e61e 6301 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6302 } else if (start + num_bytes <= caching_ctl->progress) {
6303 ret = btrfs_remove_free_space(block_group,
6304 start, num_bytes);
6305 } else {
6306 num_bytes = caching_ctl->progress - start;
6307 ret = btrfs_remove_free_space(block_group,
6308 start, num_bytes);
6309 if (ret)
6310 goto out_lock;
6311
6312 num_bytes = (start + num_bytes) -
6313 caching_ctl->progress;
6314 start = caching_ctl->progress;
2ff7e61e 6315 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6316 }
6317out_lock:
6318 mutex_unlock(&caching_ctl->mutex);
6319 put_caching_control(caching_ctl);
6320 }
6321 btrfs_put_block_group(block_group);
6322 return ret;
6323}
6324
2ff7e61e 6325int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6326 struct extent_buffer *eb)
6327{
6328 struct btrfs_file_extent_item *item;
6329 struct btrfs_key key;
6330 int found_type;
6331 int i;
b89311ef 6332 int ret = 0;
8c2a1a30 6333
2ff7e61e 6334 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6335 return 0;
6336
6337 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6338 btrfs_item_key_to_cpu(eb, &key, i);
6339 if (key.type != BTRFS_EXTENT_DATA_KEY)
6340 continue;
6341 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6342 found_type = btrfs_file_extent_type(eb, item);
6343 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6344 continue;
6345 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6346 continue;
6347 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6348 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6349 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6350 if (ret)
6351 break;
8c2a1a30
JB
6352 }
6353
b89311ef 6354 return ret;
8c2a1a30
JB
6355}
6356
9cfa3e34
FM
6357static void
6358btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6359{
6360 atomic_inc(&bg->reservations);
6361}
6362
6363void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6364 const u64 start)
6365{
6366 struct btrfs_block_group_cache *bg;
6367
6368 bg = btrfs_lookup_block_group(fs_info, start);
6369 ASSERT(bg);
6370 if (atomic_dec_and_test(&bg->reservations))
4625956a 6371 wake_up_var(&bg->reservations);
9cfa3e34
FM
6372 btrfs_put_block_group(bg);
6373}
6374
9cfa3e34
FM
6375void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6376{
6377 struct btrfs_space_info *space_info = bg->space_info;
6378
6379 ASSERT(bg->ro);
6380
6381 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6382 return;
6383
6384 /*
6385 * Our block group is read only but before we set it to read only,
6386 * some task might have had allocated an extent from it already, but it
6387 * has not yet created a respective ordered extent (and added it to a
6388 * root's list of ordered extents).
6389 * Therefore wait for any task currently allocating extents, since the
6390 * block group's reservations counter is incremented while a read lock
6391 * on the groups' semaphore is held and decremented after releasing
6392 * the read access on that semaphore and creating the ordered extent.
6393 */
6394 down_write(&space_info->groups_sem);
6395 up_write(&space_info->groups_sem);
6396
4625956a 6397 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6398}
6399
fb25e914 6400/**
4824f1f4 6401 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6402 * @cache: The cache we are manipulating
18513091
WX
6403 * @ram_bytes: The number of bytes of file content, and will be same to
6404 * @num_bytes except for the compress path.
fb25e914 6405 * @num_bytes: The number of bytes in question
e570fd27 6406 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6407 *
745699ef
XW
6408 * This is called by the allocator when it reserves space. If this is a
6409 * reservation and the block group has become read only we cannot make the
6410 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6411 */
4824f1f4 6412static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6413 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6414{
fb25e914 6415 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6416 int ret = 0;
79787eaa 6417
fb25e914
JB
6418 spin_lock(&space_info->lock);
6419 spin_lock(&cache->lock);
4824f1f4
WX
6420 if (cache->ro) {
6421 ret = -EAGAIN;
fb25e914 6422 } else {
4824f1f4
WX
6423 cache->reserved += num_bytes;
6424 space_info->bytes_reserved += num_bytes;
e570fd27 6425
18513091
WX
6426 trace_btrfs_space_reservation(cache->fs_info,
6427 "space_info", space_info->flags,
6428 ram_bytes, 0);
6429 space_info->bytes_may_use -= ram_bytes;
e570fd27 6430 if (delalloc)
4824f1f4 6431 cache->delalloc_bytes += num_bytes;
324ae4df 6432 }
fb25e914
JB
6433 spin_unlock(&cache->lock);
6434 spin_unlock(&space_info->lock);
f0486c68 6435 return ret;
324ae4df 6436}
9078a3e1 6437
4824f1f4
WX
6438/**
6439 * btrfs_free_reserved_bytes - update the block_group and space info counters
6440 * @cache: The cache we are manipulating
6441 * @num_bytes: The number of bytes in question
6442 * @delalloc: The blocks are allocated for the delalloc write
6443 *
6444 * This is called by somebody who is freeing space that was never actually used
6445 * on disk. For example if you reserve some space for a new leaf in transaction
6446 * A and before transaction A commits you free that leaf, you call this with
6447 * reserve set to 0 in order to clear the reservation.
6448 */
6449
6450static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6451 u64 num_bytes, int delalloc)
6452{
6453 struct btrfs_space_info *space_info = cache->space_info;
6454 int ret = 0;
6455
6456 spin_lock(&space_info->lock);
6457 spin_lock(&cache->lock);
6458 if (cache->ro)
6459 space_info->bytes_readonly += num_bytes;
6460 cache->reserved -= num_bytes;
6461 space_info->bytes_reserved -= num_bytes;
6462
6463 if (delalloc)
6464 cache->delalloc_bytes -= num_bytes;
6465 spin_unlock(&cache->lock);
6466 spin_unlock(&space_info->lock);
6467 return ret;
6468}
8b74c03e 6469void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6470{
11833d66
YZ
6471 struct btrfs_caching_control *next;
6472 struct btrfs_caching_control *caching_ctl;
6473 struct btrfs_block_group_cache *cache;
e8569813 6474
9e351cc8 6475 down_write(&fs_info->commit_root_sem);
25179201 6476
11833d66
YZ
6477 list_for_each_entry_safe(caching_ctl, next,
6478 &fs_info->caching_block_groups, list) {
6479 cache = caching_ctl->block_group;
6480 if (block_group_cache_done(cache)) {
6481 cache->last_byte_to_unpin = (u64)-1;
6482 list_del_init(&caching_ctl->list);
6483 put_caching_control(caching_ctl);
e8569813 6484 } else {
11833d66 6485 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6486 }
e8569813 6487 }
11833d66
YZ
6488
6489 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6490 fs_info->pinned_extents = &fs_info->freed_extents[1];
6491 else
6492 fs_info->pinned_extents = &fs_info->freed_extents[0];
6493
9e351cc8 6494 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6495
6496 update_global_block_rsv(fs_info);
e8569813
ZY
6497}
6498
c759c4e1
JB
6499/*
6500 * Returns the free cluster for the given space info and sets empty_cluster to
6501 * what it should be based on the mount options.
6502 */
6503static struct btrfs_free_cluster *
2ff7e61e
JM
6504fetch_cluster_info(struct btrfs_fs_info *fs_info,
6505 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6506{
6507 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6508
6509 *empty_cluster = 0;
6510 if (btrfs_mixed_space_info(space_info))
6511 return ret;
6512
c759c4e1 6513 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6514 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6515 if (btrfs_test_opt(fs_info, SSD))
6516 *empty_cluster = SZ_2M;
6517 else
ee22184b 6518 *empty_cluster = SZ_64K;
583b7231
HK
6519 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6520 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6521 *empty_cluster = SZ_2M;
0b246afa 6522 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6523 }
6524
6525 return ret;
6526}
6527
2ff7e61e
JM
6528static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6529 u64 start, u64 end,
678886bd 6530 const bool return_free_space)
ccd467d6 6531{
11833d66 6532 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6533 struct btrfs_space_info *space_info;
6534 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6535 struct btrfs_free_cluster *cluster = NULL;
11833d66 6536 u64 len;
c759c4e1
JB
6537 u64 total_unpinned = 0;
6538 u64 empty_cluster = 0;
7b398f8e 6539 bool readonly;
ccd467d6 6540
11833d66 6541 while (start <= end) {
7b398f8e 6542 readonly = false;
11833d66
YZ
6543 if (!cache ||
6544 start >= cache->key.objectid + cache->key.offset) {
6545 if (cache)
6546 btrfs_put_block_group(cache);
c759c4e1 6547 total_unpinned = 0;
11833d66 6548 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6549 BUG_ON(!cache); /* Logic error */
c759c4e1 6550
2ff7e61e 6551 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6552 cache->space_info,
6553 &empty_cluster);
6554 empty_cluster <<= 1;
11833d66
YZ
6555 }
6556
6557 len = cache->key.objectid + cache->key.offset - start;
6558 len = min(len, end + 1 - start);
6559
6560 if (start < cache->last_byte_to_unpin) {
6561 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6562 if (return_free_space)
6563 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6564 }
6565
f0486c68 6566 start += len;
c759c4e1 6567 total_unpinned += len;
7b398f8e 6568 space_info = cache->space_info;
f0486c68 6569
c759c4e1
JB
6570 /*
6571 * If this space cluster has been marked as fragmented and we've
6572 * unpinned enough in this block group to potentially allow a
6573 * cluster to be created inside of it go ahead and clear the
6574 * fragmented check.
6575 */
6576 if (cluster && cluster->fragmented &&
6577 total_unpinned > empty_cluster) {
6578 spin_lock(&cluster->lock);
6579 cluster->fragmented = 0;
6580 spin_unlock(&cluster->lock);
6581 }
6582
7b398f8e 6583 spin_lock(&space_info->lock);
11833d66
YZ
6584 spin_lock(&cache->lock);
6585 cache->pinned -= len;
7b398f8e 6586 space_info->bytes_pinned -= len;
c51e7bb1
JB
6587
6588 trace_btrfs_space_reservation(fs_info, "pinned",
6589 space_info->flags, len, 0);
4f4db217 6590 space_info->max_extent_size = 0;
dec59fa3
EL
6591 percpu_counter_add_batch(&space_info->total_bytes_pinned,
6592 -len, BTRFS_TOTAL_BYTES_PINNED_BATCH);
7b398f8e
JB
6593 if (cache->ro) {
6594 space_info->bytes_readonly += len;
6595 readonly = true;
6596 }
11833d66 6597 spin_unlock(&cache->lock);
957780eb
JB
6598 if (!readonly && return_free_space &&
6599 global_rsv->space_info == space_info) {
6600 u64 to_add = len;
92ac58ec 6601
7b398f8e
JB
6602 spin_lock(&global_rsv->lock);
6603 if (!global_rsv->full) {
957780eb
JB
6604 to_add = min(len, global_rsv->size -
6605 global_rsv->reserved);
6606 global_rsv->reserved += to_add;
6607 space_info->bytes_may_use += to_add;
7b398f8e
JB
6608 if (global_rsv->reserved >= global_rsv->size)
6609 global_rsv->full = 1;
957780eb
JB
6610 trace_btrfs_space_reservation(fs_info,
6611 "space_info",
6612 space_info->flags,
6613 to_add, 1);
6614 len -= to_add;
7b398f8e
JB
6615 }
6616 spin_unlock(&global_rsv->lock);
957780eb
JB
6617 /* Add to any tickets we may have */
6618 if (len)
6619 space_info_add_new_bytes(fs_info, space_info,
6620 len);
7b398f8e
JB
6621 }
6622 spin_unlock(&space_info->lock);
ccd467d6 6623 }
11833d66
YZ
6624
6625 if (cache)
6626 btrfs_put_block_group(cache);
ccd467d6
CM
6627 return 0;
6628}
6629
5ead2dd0 6630int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6631{
5ead2dd0 6632 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6633 struct btrfs_block_group_cache *block_group, *tmp;
6634 struct list_head *deleted_bgs;
11833d66 6635 struct extent_io_tree *unpin;
1a5bc167
CM
6636 u64 start;
6637 u64 end;
a28ec197 6638 int ret;
a28ec197 6639
11833d66
YZ
6640 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6641 unpin = &fs_info->freed_extents[1];
6642 else
6643 unpin = &fs_info->freed_extents[0];
6644
e33e17ee 6645 while (!trans->aborted) {
d4b450cd 6646 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6647 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6648 EXTENT_DIRTY, NULL);
d4b450cd
FM
6649 if (ret) {
6650 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6651 break;
d4b450cd 6652 }
1f3c79a2 6653
0b246afa 6654 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6655 ret = btrfs_discard_extent(fs_info, start,
5378e607 6656 end + 1 - start, NULL);
1f3c79a2 6657
af6f8f60 6658 clear_extent_dirty(unpin, start, end);
2ff7e61e 6659 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6660 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6661 cond_resched();
a28ec197 6662 }
817d52f8 6663
e33e17ee
JM
6664 /*
6665 * Transaction is finished. We don't need the lock anymore. We
6666 * do need to clean up the block groups in case of a transaction
6667 * abort.
6668 */
6669 deleted_bgs = &trans->transaction->deleted_bgs;
6670 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6671 u64 trimmed = 0;
6672
6673 ret = -EROFS;
6674 if (!trans->aborted)
2ff7e61e 6675 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6676 block_group->key.objectid,
6677 block_group->key.offset,
6678 &trimmed);
6679
6680 list_del_init(&block_group->bg_list);
6681 btrfs_put_block_group_trimming(block_group);
6682 btrfs_put_block_group(block_group);
6683
6684 if (ret) {
6685 const char *errstr = btrfs_decode_error(ret);
6686 btrfs_warn(fs_info,
913e1535 6687 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6688 ret, errstr);
6689 }
6690 }
6691
e20d96d6
CM
6692 return 0;
6693}
6694
5d4f98a2 6695static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
e72cb923
NB
6696 struct btrfs_delayed_ref_node *node, u64 parent,
6697 u64 root_objectid, u64 owner_objectid,
6698 u64 owner_offset, int refs_to_drop,
6699 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6700{
e72cb923 6701 struct btrfs_fs_info *info = trans->fs_info;
e2fa7227 6702 struct btrfs_key key;
5d4f98a2 6703 struct btrfs_path *path;
1261ec42 6704 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6705 struct extent_buffer *leaf;
5d4f98a2
YZ
6706 struct btrfs_extent_item *ei;
6707 struct btrfs_extent_inline_ref *iref;
a28ec197 6708 int ret;
5d4f98a2 6709 int is_data;
952fccac
CM
6710 int extent_slot = 0;
6711 int found_extent = 0;
6712 int num_to_del = 1;
5d4f98a2
YZ
6713 u32 item_size;
6714 u64 refs;
c682f9b3
QW
6715 u64 bytenr = node->bytenr;
6716 u64 num_bytes = node->num_bytes;
fcebe456 6717 int last_ref = 0;
0b246afa 6718 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6719
5caf2a00 6720 path = btrfs_alloc_path();
54aa1f4d
CM
6721 if (!path)
6722 return -ENOMEM;
5f26f772 6723
e4058b54 6724 path->reada = READA_FORWARD;
b9473439 6725 path->leave_spinning = 1;
5d4f98a2
YZ
6726
6727 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6728 BUG_ON(!is_data && refs_to_drop != 1);
6729
3173a18f 6730 if (is_data)
897ca819 6731 skinny_metadata = false;
3173a18f 6732
fbe4801b
NB
6733 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6734 parent, root_objectid, owner_objectid,
5d4f98a2 6735 owner_offset);
7bb86316 6736 if (ret == 0) {
952fccac 6737 extent_slot = path->slots[0];
5d4f98a2
YZ
6738 while (extent_slot >= 0) {
6739 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6740 extent_slot);
5d4f98a2 6741 if (key.objectid != bytenr)
952fccac 6742 break;
5d4f98a2
YZ
6743 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6744 key.offset == num_bytes) {
952fccac
CM
6745 found_extent = 1;
6746 break;
6747 }
3173a18f
JB
6748 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6749 key.offset == owner_objectid) {
6750 found_extent = 1;
6751 break;
6752 }
952fccac
CM
6753 if (path->slots[0] - extent_slot > 5)
6754 break;
5d4f98a2 6755 extent_slot--;
952fccac 6756 }
a79865c6 6757
31840ae1 6758 if (!found_extent) {
5d4f98a2 6759 BUG_ON(iref);
87cc7a8a 6760 ret = remove_extent_backref(trans, path, NULL,
87bde3cd 6761 refs_to_drop,
fcebe456 6762 is_data, &last_ref);
005d6427 6763 if (ret) {
66642832 6764 btrfs_abort_transaction(trans, ret);
005d6427
DS
6765 goto out;
6766 }
b3b4aa74 6767 btrfs_release_path(path);
b9473439 6768 path->leave_spinning = 1;
5d4f98a2
YZ
6769
6770 key.objectid = bytenr;
6771 key.type = BTRFS_EXTENT_ITEM_KEY;
6772 key.offset = num_bytes;
6773
3173a18f
JB
6774 if (!is_data && skinny_metadata) {
6775 key.type = BTRFS_METADATA_ITEM_KEY;
6776 key.offset = owner_objectid;
6777 }
6778
31840ae1
ZY
6779 ret = btrfs_search_slot(trans, extent_root,
6780 &key, path, -1, 1);
3173a18f
JB
6781 if (ret > 0 && skinny_metadata && path->slots[0]) {
6782 /*
6783 * Couldn't find our skinny metadata item,
6784 * see if we have ye olde extent item.
6785 */
6786 path->slots[0]--;
6787 btrfs_item_key_to_cpu(path->nodes[0], &key,
6788 path->slots[0]);
6789 if (key.objectid == bytenr &&
6790 key.type == BTRFS_EXTENT_ITEM_KEY &&
6791 key.offset == num_bytes)
6792 ret = 0;
6793 }
6794
6795 if (ret > 0 && skinny_metadata) {
6796 skinny_metadata = false;
9ce49a0b 6797 key.objectid = bytenr;
3173a18f
JB
6798 key.type = BTRFS_EXTENT_ITEM_KEY;
6799 key.offset = num_bytes;
6800 btrfs_release_path(path);
6801 ret = btrfs_search_slot(trans, extent_root,
6802 &key, path, -1, 1);
6803 }
6804
f3465ca4 6805 if (ret) {
5d163e0e
JM
6806 btrfs_err(info,
6807 "umm, got %d back from search, was looking for %llu",
6808 ret, bytenr);
b783e62d 6809 if (ret > 0)
a4f78750 6810 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6811 }
005d6427 6812 if (ret < 0) {
66642832 6813 btrfs_abort_transaction(trans, ret);
005d6427
DS
6814 goto out;
6815 }
31840ae1
ZY
6816 extent_slot = path->slots[0];
6817 }
fae7f21c 6818 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6819 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6820 btrfs_err(info,
6821 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6822 bytenr, parent, root_objectid, owner_objectid,
6823 owner_offset);
66642832 6824 btrfs_abort_transaction(trans, ret);
c4a050bb 6825 goto out;
79787eaa 6826 } else {
66642832 6827 btrfs_abort_transaction(trans, ret);
005d6427 6828 goto out;
7bb86316 6829 }
5f39d397
CM
6830
6831 leaf = path->nodes[0];
5d4f98a2 6832 item_size = btrfs_item_size_nr(leaf, extent_slot);
6d8ff4e4 6833 if (unlikely(item_size < sizeof(*ei))) {
ba3c2b19
NB
6834 ret = -EINVAL;
6835 btrfs_print_v0_err(info);
6836 btrfs_abort_transaction(trans, ret);
6837 goto out;
6838 }
952fccac 6839 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6840 struct btrfs_extent_item);
3173a18f
JB
6841 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6842 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6843 struct btrfs_tree_block_info *bi;
6844 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6845 bi = (struct btrfs_tree_block_info *)(ei + 1);
6846 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6847 }
56bec294 6848
5d4f98a2 6849 refs = btrfs_extent_refs(leaf, ei);
32b02538 6850 if (refs < refs_to_drop) {
5d163e0e
JM
6851 btrfs_err(info,
6852 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
6853 refs_to_drop, refs, bytenr);
32b02538 6854 ret = -EINVAL;
66642832 6855 btrfs_abort_transaction(trans, ret);
32b02538
JB
6856 goto out;
6857 }
56bec294 6858 refs -= refs_to_drop;
5f39d397 6859
5d4f98a2
YZ
6860 if (refs > 0) {
6861 if (extent_op)
6862 __run_delayed_extent_op(extent_op, leaf, ei);
6863 /*
6864 * In the case of inline back ref, reference count will
6865 * be updated by remove_extent_backref
952fccac 6866 */
5d4f98a2
YZ
6867 if (iref) {
6868 BUG_ON(!found_extent);
6869 } else {
6870 btrfs_set_extent_refs(leaf, ei, refs);
6871 btrfs_mark_buffer_dirty(leaf);
6872 }
6873 if (found_extent) {
87cc7a8a
NB
6874 ret = remove_extent_backref(trans, path, iref,
6875 refs_to_drop, is_data,
6876 &last_ref);
005d6427 6877 if (ret) {
66642832 6878 btrfs_abort_transaction(trans, ret);
005d6427
DS
6879 goto out;
6880 }
952fccac 6881 }
5d4f98a2 6882 } else {
5d4f98a2
YZ
6883 if (found_extent) {
6884 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 6885 extent_data_ref_count(path, iref));
5d4f98a2
YZ
6886 if (iref) {
6887 BUG_ON(path->slots[0] != extent_slot);
6888 } else {
6889 BUG_ON(path->slots[0] != extent_slot + 1);
6890 path->slots[0] = extent_slot;
6891 num_to_del = 2;
6892 }
78fae27e 6893 }
b9473439 6894
fcebe456 6895 last_ref = 1;
952fccac
CM
6896 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6897 num_to_del);
005d6427 6898 if (ret) {
66642832 6899 btrfs_abort_transaction(trans, ret);
005d6427
DS
6900 goto out;
6901 }
b3b4aa74 6902 btrfs_release_path(path);
21af804c 6903
5d4f98a2 6904 if (is_data) {
5b4aacef 6905 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 6906 if (ret) {
66642832 6907 btrfs_abort_transaction(trans, ret);
005d6427
DS
6908 goto out;
6909 }
459931ec
CM
6910 }
6911
e7355e50 6912 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 6913 if (ret) {
66642832 6914 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
6915 goto out;
6916 }
6917
0b246afa 6918 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 6919 if (ret) {
66642832 6920 btrfs_abort_transaction(trans, ret);
005d6427
DS
6921 goto out;
6922 }
a28ec197 6923 }
fcebe456
JB
6924 btrfs_release_path(path);
6925
79787eaa 6926out:
5caf2a00 6927 btrfs_free_path(path);
a28ec197
CM
6928 return ret;
6929}
6930
1887be66 6931/*
f0486c68 6932 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6933 * delayed ref for that extent as well. This searches the delayed ref tree for
6934 * a given extent, and if there are no other delayed refs to be processed, it
6935 * removes it from the tree.
6936 */
6937static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 6938 u64 bytenr)
1887be66
CM
6939{
6940 struct btrfs_delayed_ref_head *head;
6941 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6942 int ret = 0;
1887be66
CM
6943
6944 delayed_refs = &trans->transaction->delayed_refs;
6945 spin_lock(&delayed_refs->lock);
f72ad18e 6946 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 6947 if (!head)
cf93da7b 6948 goto out_delayed_unlock;
1887be66 6949
d7df2c79 6950 spin_lock(&head->lock);
0e0adbcf 6951 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
6952 goto out;
6953
5d4f98a2
YZ
6954 if (head->extent_op) {
6955 if (!head->must_insert_reserved)
6956 goto out;
78a6184a 6957 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6958 head->extent_op = NULL;
6959 }
6960
1887be66
CM
6961 /*
6962 * waiting for the lock here would deadlock. If someone else has it
6963 * locked they are already in the process of dropping it anyway
6964 */
6965 if (!mutex_trylock(&head->mutex))
6966 goto out;
6967
6968 /*
6969 * at this point we have a head with no other entries. Go
6970 * ahead and process it.
6971 */
c46effa6 6972 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 6973 RB_CLEAR_NODE(&head->href_node);
d7df2c79 6974 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6975
6976 /*
6977 * we don't take a ref on the node because we're removing it from the
6978 * tree, so we just steal the ref the tree was holding.
6979 */
c3e69d58 6980 delayed_refs->num_heads--;
d7df2c79 6981 if (head->processing == 0)
c3e69d58 6982 delayed_refs->num_heads_ready--;
d7df2c79
JB
6983 head->processing = 0;
6984 spin_unlock(&head->lock);
1887be66
CM
6985 spin_unlock(&delayed_refs->lock);
6986
f0486c68
YZ
6987 BUG_ON(head->extent_op);
6988 if (head->must_insert_reserved)
6989 ret = 1;
6990
6991 mutex_unlock(&head->mutex);
d278850e 6992 btrfs_put_delayed_ref_head(head);
f0486c68 6993 return ret;
1887be66 6994out:
d7df2c79 6995 spin_unlock(&head->lock);
cf93da7b
CM
6996
6997out_delayed_unlock:
1887be66
CM
6998 spin_unlock(&delayed_refs->lock);
6999 return 0;
7000}
7001
f0486c68
YZ
7002void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7003 struct btrfs_root *root,
7004 struct extent_buffer *buf,
5581a51a 7005 u64 parent, int last_ref)
f0486c68 7006{
0b246afa 7007 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7008 int pin = 1;
f0486c68
YZ
7009 int ret;
7010
7011 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7012 int old_ref_mod, new_ref_mod;
7013
fd708b81
JB
7014 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7015 root->root_key.objectid,
7016 btrfs_header_level(buf), 0,
7017 BTRFS_DROP_DELAYED_REF);
44e1c47d 7018 ret = btrfs_add_delayed_tree_ref(trans, buf->start,
7be07912 7019 buf->len, parent,
0b246afa
JM
7020 root->root_key.objectid,
7021 btrfs_header_level(buf),
7be07912 7022 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7023 &old_ref_mod, &new_ref_mod);
79787eaa 7024 BUG_ON(ret); /* -ENOMEM */
d7eae340 7025 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7026 }
7027
0a16c7d7 7028 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7029 struct btrfs_block_group_cache *cache;
7030
f0486c68 7031 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7032 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7033 if (!ret)
37be25bc 7034 goto out;
f0486c68
YZ
7035 }
7036
4da8b76d 7037 pin = 0;
0b246afa 7038 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7039
f0486c68 7040 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7041 pin_down_extent(fs_info, cache, buf->start,
7042 buf->len, 1);
6219872d 7043 btrfs_put_block_group(cache);
37be25bc 7044 goto out;
f0486c68
YZ
7045 }
7046
7047 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7048
7049 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7050 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7051 btrfs_put_block_group(cache);
71ff6437 7052 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7053 }
7054out:
b150a4f1 7055 if (pin)
29d2b84c 7056 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7057 root->root_key.objectid);
7058
0a16c7d7
OS
7059 if (last_ref) {
7060 /*
7061 * Deleting the buffer, clear the corrupt flag since it doesn't
7062 * matter anymore.
7063 */
7064 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7065 }
f0486c68
YZ
7066}
7067
79787eaa 7068/* Can return -ENOMEM */
2ff7e61e 7069int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7070 struct btrfs_root *root,
66d7e7f0 7071 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7072 u64 owner, u64 offset)
925baedd 7073{
84f7d8e6 7074 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7075 int old_ref_mod, new_ref_mod;
925baedd
CM
7076 int ret;
7077
f5ee5c9a 7078 if (btrfs_is_testing(fs_info))
faa2dbf0 7079 return 0;
fccb84c9 7080
fd708b81
JB
7081 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7082 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7083 root_objectid, owner, offset,
7084 BTRFS_DROP_DELAYED_REF);
7085
56bec294
CM
7086 /*
7087 * tree log blocks never actually go into the extent allocation
7088 * tree, just update pinning info and exit early.
56bec294 7089 */
5d4f98a2
YZ
7090 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7091 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7092 /* unlocks the pinned mutex */
2ff7e61e 7093 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7094 old_ref_mod = new_ref_mod = 0;
56bec294 7095 ret = 0;
5d4f98a2 7096 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
44e1c47d 7097 ret = btrfs_add_delayed_tree_ref(trans, bytenr,
7be07912
OS
7098 num_bytes, parent,
7099 root_objectid, (int)owner,
7100 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7101 &old_ref_mod, &new_ref_mod);
5d4f98a2 7102 } else {
88a979c6 7103 ret = btrfs_add_delayed_data_ref(trans, bytenr,
7be07912
OS
7104 num_bytes, parent,
7105 root_objectid, owner, offset,
7106 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7107 &old_ref_mod, &new_ref_mod);
56bec294 7108 }
d7eae340 7109
29d2b84c
NB
7110 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7111 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7112
7113 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7114 }
d7eae340 7115
925baedd
CM
7116 return ret;
7117}
7118
817d52f8
JB
7119/*
7120 * when we wait for progress in the block group caching, its because
7121 * our allocation attempt failed at least once. So, we must sleep
7122 * and let some progress happen before we try again.
7123 *
7124 * This function will sleep at least once waiting for new free space to
7125 * show up, and then it will check the block group free space numbers
7126 * for our min num_bytes. Another option is to have it go ahead
7127 * and look in the rbtree for a free extent of a given size, but this
7128 * is a good start.
36cce922
JB
7129 *
7130 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7131 * any of the information in this block group.
817d52f8 7132 */
36cce922 7133static noinline void
817d52f8
JB
7134wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7135 u64 num_bytes)
7136{
11833d66 7137 struct btrfs_caching_control *caching_ctl;
817d52f8 7138
11833d66
YZ
7139 caching_ctl = get_caching_control(cache);
7140 if (!caching_ctl)
36cce922 7141 return;
817d52f8 7142
11833d66 7143 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7144 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7145
7146 put_caching_control(caching_ctl);
11833d66
YZ
7147}
7148
7149static noinline int
7150wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7151{
7152 struct btrfs_caching_control *caching_ctl;
36cce922 7153 int ret = 0;
11833d66
YZ
7154
7155 caching_ctl = get_caching_control(cache);
7156 if (!caching_ctl)
36cce922 7157 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7158
7159 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7160 if (cache->cached == BTRFS_CACHE_ERROR)
7161 ret = -EIO;
11833d66 7162 put_caching_control(caching_ctl);
36cce922 7163 return ret;
817d52f8
JB
7164}
7165
7166enum btrfs_loop_type {
285ff5af
JB
7167 LOOP_CACHING_NOWAIT = 0,
7168 LOOP_CACHING_WAIT = 1,
7169 LOOP_ALLOC_CHUNK = 2,
7170 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7171};
7172
e570fd27
MX
7173static inline void
7174btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7175 int delalloc)
7176{
7177 if (delalloc)
7178 down_read(&cache->data_rwsem);
7179}
7180
7181static inline void
7182btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7183 int delalloc)
7184{
7185 btrfs_get_block_group(cache);
7186 if (delalloc)
7187 down_read(&cache->data_rwsem);
7188}
7189
7190static struct btrfs_block_group_cache *
7191btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7192 struct btrfs_free_cluster *cluster,
7193 int delalloc)
7194{
89771cc9 7195 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7196
e570fd27 7197 spin_lock(&cluster->refill_lock);
6719afdc
GU
7198 while (1) {
7199 used_bg = cluster->block_group;
7200 if (!used_bg)
7201 return NULL;
7202
7203 if (used_bg == block_group)
e570fd27
MX
7204 return used_bg;
7205
6719afdc 7206 btrfs_get_block_group(used_bg);
e570fd27 7207
6719afdc
GU
7208 if (!delalloc)
7209 return used_bg;
e570fd27 7210
6719afdc
GU
7211 if (down_read_trylock(&used_bg->data_rwsem))
7212 return used_bg;
e570fd27 7213
6719afdc 7214 spin_unlock(&cluster->refill_lock);
e570fd27 7215
e321f8a8
LB
7216 /* We should only have one-level nested. */
7217 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7218
6719afdc
GU
7219 spin_lock(&cluster->refill_lock);
7220 if (used_bg == cluster->block_group)
7221 return used_bg;
e570fd27 7222
6719afdc
GU
7223 up_read(&used_bg->data_rwsem);
7224 btrfs_put_block_group(used_bg);
7225 }
e570fd27
MX
7226}
7227
7228static inline void
7229btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7230 int delalloc)
7231{
7232 if (delalloc)
7233 up_read(&cache->data_rwsem);
7234 btrfs_put_block_group(cache);
7235}
7236
fec577fb
CM
7237/*
7238 * walks the btree of allocated extents and find a hole of a given size.
7239 * The key ins is changed to record the hole:
a4820398 7240 * ins->objectid == start position
62e2749e 7241 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7242 * ins->offset == the size of the hole.
fec577fb 7243 * Any available blocks before search_start are skipped.
a4820398
MX
7244 *
7245 * If there is no suitable free space, we will record the max size of
7246 * the free space extent currently.
fec577fb 7247 */
87bde3cd 7248static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7249 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7250 u64 hint_byte, struct btrfs_key *ins,
7251 u64 flags, int delalloc)
fec577fb 7252{
80eb234a 7253 int ret = 0;
0b246afa 7254 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7255 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7256 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7257 u64 search_start = 0;
a4820398 7258 u64 max_extent_size = 0;
c759c4e1 7259 u64 empty_cluster = 0;
80eb234a 7260 struct btrfs_space_info *space_info;
fa9c0d79 7261 int loop = 0;
3e72ee88 7262 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7263 bool failed_cluster_refill = false;
1cdda9b8 7264 bool failed_alloc = false;
67377734 7265 bool use_cluster = true;
60d2adbb 7266 bool have_caching_bg = false;
13a0db5a 7267 bool orig_have_caching_bg = false;
a5e681d9 7268 bool full_search = false;
fec577fb 7269
0b246afa 7270 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7271 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7272 ins->objectid = 0;
7273 ins->offset = 0;
b1a4d965 7274
71ff6437 7275 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7276
0b246afa 7277 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7278 if (!space_info) {
0b246afa 7279 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7280 return -ENOSPC;
7281 }
2552d17e 7282
67377734 7283 /*
4f4db217
JB
7284 * If our free space is heavily fragmented we may not be able to make
7285 * big contiguous allocations, so instead of doing the expensive search
7286 * for free space, simply return ENOSPC with our max_extent_size so we
7287 * can go ahead and search for a more manageable chunk.
7288 *
7289 * If our max_extent_size is large enough for our allocation simply
7290 * disable clustering since we will likely not be able to find enough
7291 * space to create a cluster and induce latency trying.
67377734 7292 */
4f4db217
JB
7293 if (unlikely(space_info->max_extent_size)) {
7294 spin_lock(&space_info->lock);
7295 if (space_info->max_extent_size &&
7296 num_bytes > space_info->max_extent_size) {
7297 ins->offset = space_info->max_extent_size;
7298 spin_unlock(&space_info->lock);
7299 return -ENOSPC;
7300 } else if (space_info->max_extent_size) {
7301 use_cluster = false;
7302 }
7303 spin_unlock(&space_info->lock);
fa9c0d79 7304 }
0f9dd46c 7305
2ff7e61e 7306 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7307 if (last_ptr) {
fa9c0d79
CM
7308 spin_lock(&last_ptr->lock);
7309 if (last_ptr->block_group)
7310 hint_byte = last_ptr->window_start;
c759c4e1
JB
7311 if (last_ptr->fragmented) {
7312 /*
7313 * We still set window_start so we can keep track of the
7314 * last place we found an allocation to try and save
7315 * some time.
7316 */
7317 hint_byte = last_ptr->window_start;
7318 use_cluster = false;
7319 }
fa9c0d79 7320 spin_unlock(&last_ptr->lock);
239b14b3 7321 }
fa9c0d79 7322
2ff7e61e 7323 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7324 search_start = max(search_start, hint_byte);
2552d17e 7325 if (search_start == hint_byte) {
0b246afa 7326 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7327 /*
7328 * we don't want to use the block group if it doesn't match our
7329 * allocation bits, or if its not cached.
ccf0e725
JB
7330 *
7331 * However if we are re-searching with an ideal block group
7332 * picked out then we don't care that the block group is cached.
817d52f8 7333 */
b6919a58 7334 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7335 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7336 down_read(&space_info->groups_sem);
44fb5511
CM
7337 if (list_empty(&block_group->list) ||
7338 block_group->ro) {
7339 /*
7340 * someone is removing this block group,
7341 * we can't jump into the have_block_group
7342 * target because our list pointers are not
7343 * valid
7344 */
7345 btrfs_put_block_group(block_group);
7346 up_read(&space_info->groups_sem);
ccf0e725 7347 } else {
3e72ee88
QW
7348 index = btrfs_bg_flags_to_raid_index(
7349 block_group->flags);
e570fd27 7350 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7351 goto have_block_group;
ccf0e725 7352 }
2552d17e 7353 } else if (block_group) {
fa9c0d79 7354 btrfs_put_block_group(block_group);
2552d17e 7355 }
42e70e7a 7356 }
2552d17e 7357search:
60d2adbb 7358 have_caching_bg = false;
3e72ee88 7359 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7360 full_search = true;
80eb234a 7361 down_read(&space_info->groups_sem);
b742bb82
YZ
7362 list_for_each_entry(block_group, &space_info->block_groups[index],
7363 list) {
6226cb0a 7364 u64 offset;
817d52f8 7365 int cached;
8a1413a2 7366
14443937
JM
7367 /* If the block group is read-only, we can skip it entirely. */
7368 if (unlikely(block_group->ro))
7369 continue;
7370
e570fd27 7371 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7372 search_start = block_group->key.objectid;
42e70e7a 7373
83a50de9
CM
7374 /*
7375 * this can happen if we end up cycling through all the
7376 * raid types, but we want to make sure we only allocate
7377 * for the proper type.
7378 */
b6919a58 7379 if (!block_group_bits(block_group, flags)) {
bece2e82 7380 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7381 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7382 BTRFS_BLOCK_GROUP_RAID5 |
7383 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7384 BTRFS_BLOCK_GROUP_RAID10;
7385
7386 /*
7387 * if they asked for extra copies and this block group
7388 * doesn't provide them, bail. This does allow us to
7389 * fill raid0 from raid1.
7390 */
b6919a58 7391 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7392 goto loop;
7393 }
7394
2552d17e 7395have_block_group:
291c7d2f
JB
7396 cached = block_group_cache_done(block_group);
7397 if (unlikely(!cached)) {
a5e681d9 7398 have_caching_bg = true;
f6373bf3 7399 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7400 BUG_ON(ret < 0);
7401 ret = 0;
817d52f8
JB
7402 }
7403
36cce922
JB
7404 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7405 goto loop;
0f9dd46c 7406
0a24325e 7407 /*
062c05c4
AO
7408 * Ok we want to try and use the cluster allocator, so
7409 * lets look there
0a24325e 7410 */
c759c4e1 7411 if (last_ptr && use_cluster) {
215a63d1 7412 struct btrfs_block_group_cache *used_block_group;
8de972b4 7413 unsigned long aligned_cluster;
fa9c0d79
CM
7414 /*
7415 * the refill lock keeps out other
7416 * people trying to start a new cluster
7417 */
e570fd27
MX
7418 used_block_group = btrfs_lock_cluster(block_group,
7419 last_ptr,
7420 delalloc);
7421 if (!used_block_group)
44fb5511 7422 goto refill_cluster;
274bd4fb 7423
e570fd27
MX
7424 if (used_block_group != block_group &&
7425 (used_block_group->ro ||
7426 !block_group_bits(used_block_group, flags)))
7427 goto release_cluster;
44fb5511 7428
274bd4fb 7429 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7430 last_ptr,
7431 num_bytes,
7432 used_block_group->key.objectid,
7433 &max_extent_size);
fa9c0d79
CM
7434 if (offset) {
7435 /* we have a block, we're done */
7436 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7437 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7438 used_block_group,
7439 search_start, num_bytes);
215a63d1 7440 if (used_block_group != block_group) {
e570fd27
MX
7441 btrfs_release_block_group(block_group,
7442 delalloc);
215a63d1
MX
7443 block_group = used_block_group;
7444 }
fa9c0d79
CM
7445 goto checks;
7446 }
7447
274bd4fb 7448 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7449release_cluster:
062c05c4
AO
7450 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7451 * set up a new clusters, so lets just skip it
7452 * and let the allocator find whatever block
7453 * it can find. If we reach this point, we
7454 * will have tried the cluster allocator
7455 * plenty of times and not have found
7456 * anything, so we are likely way too
7457 * fragmented for the clustering stuff to find
a5f6f719
AO
7458 * anything.
7459 *
7460 * However, if the cluster is taken from the
7461 * current block group, release the cluster
7462 * first, so that we stand a better chance of
7463 * succeeding in the unclustered
7464 * allocation. */
7465 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7466 used_block_group != block_group) {
062c05c4 7467 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7468 btrfs_release_block_group(used_block_group,
7469 delalloc);
062c05c4
AO
7470 goto unclustered_alloc;
7471 }
7472
fa9c0d79
CM
7473 /*
7474 * this cluster didn't work out, free it and
7475 * start over
7476 */
7477 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7478
e570fd27
MX
7479 if (used_block_group != block_group)
7480 btrfs_release_block_group(used_block_group,
7481 delalloc);
7482refill_cluster:
a5f6f719
AO
7483 if (loop >= LOOP_NO_EMPTY_SIZE) {
7484 spin_unlock(&last_ptr->refill_lock);
7485 goto unclustered_alloc;
7486 }
7487
8de972b4
CM
7488 aligned_cluster = max_t(unsigned long,
7489 empty_cluster + empty_size,
7490 block_group->full_stripe_len);
7491
fa9c0d79 7492 /* allocate a cluster in this block group */
2ff7e61e 7493 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7494 last_ptr, search_start,
7495 num_bytes,
7496 aligned_cluster);
fa9c0d79
CM
7497 if (ret == 0) {
7498 /*
7499 * now pull our allocation out of this
7500 * cluster
7501 */
7502 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7503 last_ptr,
7504 num_bytes,
7505 search_start,
7506 &max_extent_size);
fa9c0d79
CM
7507 if (offset) {
7508 /* we found one, proceed */
7509 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7510 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7511 block_group, search_start,
7512 num_bytes);
fa9c0d79
CM
7513 goto checks;
7514 }
0a24325e
JB
7515 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7516 && !failed_cluster_refill) {
817d52f8
JB
7517 spin_unlock(&last_ptr->refill_lock);
7518
0a24325e 7519 failed_cluster_refill = true;
817d52f8
JB
7520 wait_block_group_cache_progress(block_group,
7521 num_bytes + empty_cluster + empty_size);
7522 goto have_block_group;
fa9c0d79 7523 }
817d52f8 7524
fa9c0d79
CM
7525 /*
7526 * at this point we either didn't find a cluster
7527 * or we weren't able to allocate a block from our
7528 * cluster. Free the cluster we've been trying
7529 * to use, and go to the next block group
7530 */
0a24325e 7531 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7532 spin_unlock(&last_ptr->refill_lock);
0a24325e 7533 goto loop;
fa9c0d79
CM
7534 }
7535
062c05c4 7536unclustered_alloc:
c759c4e1
JB
7537 /*
7538 * We are doing an unclustered alloc, set the fragmented flag so
7539 * we don't bother trying to setup a cluster again until we get
7540 * more space.
7541 */
7542 if (unlikely(last_ptr)) {
7543 spin_lock(&last_ptr->lock);
7544 last_ptr->fragmented = 1;
7545 spin_unlock(&last_ptr->lock);
7546 }
0c9b36e0
LB
7547 if (cached) {
7548 struct btrfs_free_space_ctl *ctl =
7549 block_group->free_space_ctl;
7550
7551 spin_lock(&ctl->tree_lock);
7552 if (ctl->free_space <
7553 num_bytes + empty_cluster + empty_size) {
7554 if (ctl->free_space > max_extent_size)
7555 max_extent_size = ctl->free_space;
7556 spin_unlock(&ctl->tree_lock);
7557 goto loop;
7558 }
7559 spin_unlock(&ctl->tree_lock);
a5f6f719 7560 }
a5f6f719 7561
6226cb0a 7562 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7563 num_bytes, empty_size,
7564 &max_extent_size);
1cdda9b8
JB
7565 /*
7566 * If we didn't find a chunk, and we haven't failed on this
7567 * block group before, and this block group is in the middle of
7568 * caching and we are ok with waiting, then go ahead and wait
7569 * for progress to be made, and set failed_alloc to true.
7570 *
7571 * If failed_alloc is true then we've already waited on this
7572 * block group once and should move on to the next block group.
7573 */
7574 if (!offset && !failed_alloc && !cached &&
7575 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7576 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7577 num_bytes + empty_size);
7578 failed_alloc = true;
817d52f8 7579 goto have_block_group;
1cdda9b8
JB
7580 } else if (!offset) {
7581 goto loop;
817d52f8 7582 }
fa9c0d79 7583checks:
0b246afa 7584 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7585
2552d17e
JB
7586 /* move on to the next group */
7587 if (search_start + num_bytes >
215a63d1
MX
7588 block_group->key.objectid + block_group->key.offset) {
7589 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7590 goto loop;
6226cb0a 7591 }
f5a31e16 7592
f0486c68 7593 if (offset < search_start)
215a63d1 7594 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7595 search_start - offset);
7596 BUG_ON(offset > search_start);
2552d17e 7597
18513091
WX
7598 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7599 num_bytes, delalloc);
f0486c68 7600 if (ret == -EAGAIN) {
215a63d1 7601 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7602 goto loop;
0f9dd46c 7603 }
9cfa3e34 7604 btrfs_inc_block_group_reservations(block_group);
0b86a832 7605
f0486c68 7606 /* we are all good, lets return */
2552d17e
JB
7607 ins->objectid = search_start;
7608 ins->offset = num_bytes;
d2fb3437 7609
3dca5c94 7610 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7611 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7612 break;
7613loop:
0a24325e 7614 failed_cluster_refill = false;
1cdda9b8 7615 failed_alloc = false;
3e72ee88
QW
7616 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7617 index);
e570fd27 7618 btrfs_release_block_group(block_group, delalloc);
14443937 7619 cond_resched();
2552d17e
JB
7620 }
7621 up_read(&space_info->groups_sem);
7622
13a0db5a 7623 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7624 && !orig_have_caching_bg)
7625 orig_have_caching_bg = true;
7626
60d2adbb
MX
7627 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7628 goto search;
7629
b742bb82
YZ
7630 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7631 goto search;
7632
285ff5af 7633 /*
ccf0e725
JB
7634 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7635 * caching kthreads as we move along
817d52f8
JB
7636 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7637 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7638 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7639 * again
fa9c0d79 7640 */
723bda20 7641 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7642 index = 0;
a5e681d9
JB
7643 if (loop == LOOP_CACHING_NOWAIT) {
7644 /*
7645 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7646 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7647 * full search through.
7648 */
13a0db5a 7649 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7650 loop = LOOP_CACHING_WAIT;
7651 else
7652 loop = LOOP_ALLOC_CHUNK;
7653 } else {
7654 loop++;
7655 }
7656
817d52f8 7657 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7658 struct btrfs_trans_handle *trans;
f017f15f
WS
7659 int exist = 0;
7660
7661 trans = current->journal_info;
7662 if (trans)
7663 exist = 1;
7664 else
7665 trans = btrfs_join_transaction(root);
00361589 7666
00361589
JB
7667 if (IS_ERR(trans)) {
7668 ret = PTR_ERR(trans);
7669 goto out;
7670 }
7671
01458828 7672 ret = do_chunk_alloc(trans, flags, CHUNK_ALLOC_FORCE);
a5e681d9
JB
7673
7674 /*
7675 * If we can't allocate a new chunk we've already looped
7676 * through at least once, move on to the NO_EMPTY_SIZE
7677 * case.
7678 */
7679 if (ret == -ENOSPC)
7680 loop = LOOP_NO_EMPTY_SIZE;
7681
ea658bad
JB
7682 /*
7683 * Do not bail out on ENOSPC since we
7684 * can do more things.
7685 */
00361589 7686 if (ret < 0 && ret != -ENOSPC)
66642832 7687 btrfs_abort_transaction(trans, ret);
00361589
JB
7688 else
7689 ret = 0;
f017f15f 7690 if (!exist)
3a45bb20 7691 btrfs_end_transaction(trans);
00361589 7692 if (ret)
ea658bad 7693 goto out;
2552d17e
JB
7694 }
7695
723bda20 7696 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7697 /*
7698 * Don't loop again if we already have no empty_size and
7699 * no empty_cluster.
7700 */
7701 if (empty_size == 0 &&
7702 empty_cluster == 0) {
7703 ret = -ENOSPC;
7704 goto out;
7705 }
723bda20
JB
7706 empty_size = 0;
7707 empty_cluster = 0;
fa9c0d79 7708 }
723bda20
JB
7709
7710 goto search;
2552d17e
JB
7711 } else if (!ins->objectid) {
7712 ret = -ENOSPC;
d82a6f1d 7713 } else if (ins->objectid) {
c759c4e1
JB
7714 if (!use_cluster && last_ptr) {
7715 spin_lock(&last_ptr->lock);
7716 last_ptr->window_start = ins->objectid;
7717 spin_unlock(&last_ptr->lock);
7718 }
80eb234a 7719 ret = 0;
be744175 7720 }
79787eaa 7721out:
4f4db217
JB
7722 if (ret == -ENOSPC) {
7723 spin_lock(&space_info->lock);
7724 space_info->max_extent_size = max_extent_size;
7725 spin_unlock(&space_info->lock);
a4820398 7726 ins->offset = max_extent_size;
4f4db217 7727 }
0f70abe2 7728 return ret;
fec577fb 7729}
ec44a35c 7730
ab8d0fc4
JM
7731static void dump_space_info(struct btrfs_fs_info *fs_info,
7732 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7733 int dump_block_groups)
0f9dd46c
JB
7734{
7735 struct btrfs_block_group_cache *cache;
b742bb82 7736 int index = 0;
0f9dd46c 7737
9ed74f2d 7738 spin_lock(&info->lock);
ab8d0fc4
JM
7739 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7740 info->flags,
4136135b
LB
7741 info->total_bytes - btrfs_space_info_used(info, true),
7742 info->full ? "" : "not ");
ab8d0fc4
JM
7743 btrfs_info(fs_info,
7744 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7745 info->total_bytes, info->bytes_used, info->bytes_pinned,
7746 info->bytes_reserved, info->bytes_may_use,
7747 info->bytes_readonly);
9ed74f2d
JB
7748 spin_unlock(&info->lock);
7749
7750 if (!dump_block_groups)
7751 return;
0f9dd46c 7752
80eb234a 7753 down_read(&info->groups_sem);
b742bb82
YZ
7754again:
7755 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7756 spin_lock(&cache->lock);
ab8d0fc4
JM
7757 btrfs_info(fs_info,
7758 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7759 cache->key.objectid, cache->key.offset,
7760 btrfs_block_group_used(&cache->item), cache->pinned,
7761 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7762 btrfs_dump_free_space(cache, bytes);
7763 spin_unlock(&cache->lock);
7764 }
b742bb82
YZ
7765 if (++index < BTRFS_NR_RAID_TYPES)
7766 goto again;
80eb234a 7767 up_read(&info->groups_sem);
0f9dd46c 7768}
e8569813 7769
6f47c706
NB
7770/*
7771 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7772 * hole that is at least as big as @num_bytes.
7773 *
7774 * @root - The root that will contain this extent
7775 *
7776 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7777 * is used for accounting purposes. This value differs
7778 * from @num_bytes only in the case of compressed extents.
7779 *
7780 * @num_bytes - Number of bytes to allocate on-disk.
7781 *
7782 * @min_alloc_size - Indicates the minimum amount of space that the
7783 * allocator should try to satisfy. In some cases
7784 * @num_bytes may be larger than what is required and if
7785 * the filesystem is fragmented then allocation fails.
7786 * However, the presence of @min_alloc_size gives a
7787 * chance to try and satisfy the smaller allocation.
7788 *
7789 * @empty_size - A hint that you plan on doing more COW. This is the
7790 * size in bytes the allocator should try to find free
7791 * next to the block it returns. This is just a hint and
7792 * may be ignored by the allocator.
7793 *
7794 * @hint_byte - Hint to the allocator to start searching above the byte
7795 * address passed. It might be ignored.
7796 *
7797 * @ins - This key is modified to record the found hole. It will
7798 * have the following values:
7799 * ins->objectid == start position
7800 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7801 * ins->offset == the size of the hole.
7802 *
7803 * @is_data - Boolean flag indicating whether an extent is
7804 * allocated for data (true) or metadata (false)
7805 *
7806 * @delalloc - Boolean flag indicating whether this allocation is for
7807 * delalloc or not. If 'true' data_rwsem of block groups
7808 * is going to be acquired.
7809 *
7810 *
7811 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7812 * case -ENOSPC is returned then @ins->offset will contain the size of the
7813 * largest available hole the allocator managed to find.
7814 */
18513091 7815int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7816 u64 num_bytes, u64 min_alloc_size,
7817 u64 empty_size, u64 hint_byte,
e570fd27 7818 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7819{
ab8d0fc4 7820 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 7821 bool final_tried = num_bytes == min_alloc_size;
b6919a58 7822 u64 flags;
fec577fb 7823 int ret;
925baedd 7824
1b86826d 7825 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 7826again:
0b246afa 7827 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 7828 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 7829 hint_byte, ins, flags, delalloc);
9cfa3e34 7830 if (!ret && !is_data) {
ab8d0fc4 7831 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 7832 } else if (ret == -ENOSPC) {
a4820398
MX
7833 if (!final_tried && ins->offset) {
7834 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 7835 num_bytes = round_down(num_bytes,
0b246afa 7836 fs_info->sectorsize);
9e622d6b 7837 num_bytes = max(num_bytes, min_alloc_size);
18513091 7838 ram_bytes = num_bytes;
9e622d6b
MX
7839 if (num_bytes == min_alloc_size)
7840 final_tried = true;
7841 goto again;
ab8d0fc4 7842 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
7843 struct btrfs_space_info *sinfo;
7844
ab8d0fc4 7845 sinfo = __find_space_info(fs_info, flags);
0b246afa 7846 btrfs_err(fs_info,
5d163e0e
JM
7847 "allocation failed flags %llu, wanted %llu",
7848 flags, num_bytes);
53804280 7849 if (sinfo)
ab8d0fc4 7850 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 7851 }
925baedd 7852 }
0f9dd46c
JB
7853
7854 return ret;
e6dcd2dc
CM
7855}
7856
2ff7e61e 7857static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
7858 u64 start, u64 len,
7859 int pin, int delalloc)
65b51a00 7860{
0f9dd46c 7861 struct btrfs_block_group_cache *cache;
1f3c79a2 7862 int ret = 0;
0f9dd46c 7863
0b246afa 7864 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 7865 if (!cache) {
0b246afa
JM
7866 btrfs_err(fs_info, "Unable to find block group for %llu",
7867 start);
0f9dd46c
JB
7868 return -ENOSPC;
7869 }
1f3c79a2 7870
e688b725 7871 if (pin)
2ff7e61e 7872 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 7873 else {
0b246afa 7874 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 7875 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 7876 btrfs_add_free_space(cache, start, len);
4824f1f4 7877 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 7878 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 7879 }
31193213 7880
fa9c0d79 7881 btrfs_put_block_group(cache);
e6dcd2dc
CM
7882 return ret;
7883}
7884
2ff7e61e 7885int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 7886 u64 start, u64 len, int delalloc)
e688b725 7887{
2ff7e61e 7888 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
7889}
7890
2ff7e61e 7891int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
7892 u64 start, u64 len)
7893{
2ff7e61e 7894 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
7895}
7896
5d4f98a2 7897static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
7898 u64 parent, u64 root_objectid,
7899 u64 flags, u64 owner, u64 offset,
7900 struct btrfs_key *ins, int ref_mod)
e6dcd2dc 7901{
ef89b824 7902 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7903 int ret;
e6dcd2dc 7904 struct btrfs_extent_item *extent_item;
5d4f98a2 7905 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7906 struct btrfs_path *path;
5d4f98a2
YZ
7907 struct extent_buffer *leaf;
7908 int type;
7909 u32 size;
26b8003f 7910
5d4f98a2
YZ
7911 if (parent > 0)
7912 type = BTRFS_SHARED_DATA_REF_KEY;
7913 else
7914 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7915
5d4f98a2 7916 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7917
7918 path = btrfs_alloc_path();
db5b493a
TI
7919 if (!path)
7920 return -ENOMEM;
47e4bb98 7921
b9473439 7922 path->leave_spinning = 1;
5d4f98a2
YZ
7923 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7924 ins, size);
79787eaa
JM
7925 if (ret) {
7926 btrfs_free_path(path);
7927 return ret;
7928 }
0f9dd46c 7929
5d4f98a2
YZ
7930 leaf = path->nodes[0];
7931 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7932 struct btrfs_extent_item);
5d4f98a2
YZ
7933 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7934 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7935 btrfs_set_extent_flags(leaf, extent_item,
7936 flags | BTRFS_EXTENT_FLAG_DATA);
7937
7938 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7939 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7940 if (parent > 0) {
7941 struct btrfs_shared_data_ref *ref;
7942 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7943 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7944 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7945 } else {
7946 struct btrfs_extent_data_ref *ref;
7947 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7948 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7949 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7950 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7951 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7952 }
47e4bb98
CM
7953
7954 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7955 btrfs_free_path(path);
f510cfec 7956
25a356d3 7957 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
7958 if (ret)
7959 return ret;
7960
6202df69 7961 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 7962 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7963 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7964 ins->objectid, ins->offset);
f5947066
CM
7965 BUG();
7966 }
71ff6437 7967 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
7968 return ret;
7969}
7970
5d4f98a2 7971static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 7972 struct btrfs_delayed_ref_node *node,
21ebfbe7 7973 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 7974{
9dcdbe01 7975 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 7976 int ret;
5d4f98a2 7977 struct btrfs_extent_item *extent_item;
4e6bd4e0 7978 struct btrfs_key extent_key;
5d4f98a2
YZ
7979 struct btrfs_tree_block_info *block_info;
7980 struct btrfs_extent_inline_ref *iref;
7981 struct btrfs_path *path;
7982 struct extent_buffer *leaf;
4e6bd4e0 7983 struct btrfs_delayed_tree_ref *ref;
3173a18f 7984 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 7985 u64 num_bytes;
21ebfbe7 7986 u64 flags = extent_op->flags_to_set;
0b246afa 7987 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 7988
4e6bd4e0
NB
7989 ref = btrfs_delayed_node_to_tree_ref(node);
7990
4e6bd4e0
NB
7991 extent_key.objectid = node->bytenr;
7992 if (skinny_metadata) {
7993 extent_key.offset = ref->level;
7994 extent_key.type = BTRFS_METADATA_ITEM_KEY;
7995 num_bytes = fs_info->nodesize;
7996 } else {
7997 extent_key.offset = node->num_bytes;
7998 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 7999 size += sizeof(*block_info);
4e6bd4e0
NB
8000 num_bytes = node->num_bytes;
8001 }
1c2308f8 8002
5d4f98a2 8003 path = btrfs_alloc_path();
857cc2fc 8004 if (!path) {
4e6bd4e0
NB
8005 btrfs_free_and_pin_reserved_extent(fs_info,
8006 extent_key.objectid,
0b246afa 8007 fs_info->nodesize);
d8926bb3 8008 return -ENOMEM;
857cc2fc 8009 }
56bec294 8010
5d4f98a2
YZ
8011 path->leave_spinning = 1;
8012 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8013 &extent_key, size);
79787eaa 8014 if (ret) {
dd825259 8015 btrfs_free_path(path);
4e6bd4e0
NB
8016 btrfs_free_and_pin_reserved_extent(fs_info,
8017 extent_key.objectid,
0b246afa 8018 fs_info->nodesize);
79787eaa
JM
8019 return ret;
8020 }
5d4f98a2
YZ
8021
8022 leaf = path->nodes[0];
8023 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8024 struct btrfs_extent_item);
8025 btrfs_set_extent_refs(leaf, extent_item, 1);
8026 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8027 btrfs_set_extent_flags(leaf, extent_item,
8028 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8029
3173a18f
JB
8030 if (skinny_metadata) {
8031 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8032 } else {
8033 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8034 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8035 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8036 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8037 }
5d4f98a2 8038
d4b20733 8039 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8040 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8041 btrfs_set_extent_inline_ref_type(leaf, iref,
8042 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8043 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8044 } else {
8045 btrfs_set_extent_inline_ref_type(leaf, iref,
8046 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8047 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8048 }
8049
8050 btrfs_mark_buffer_dirty(leaf);
8051 btrfs_free_path(path);
8052
4e6bd4e0
NB
8053 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8054 num_bytes);
1e144fb8
OS
8055 if (ret)
8056 return ret;
8057
4e6bd4e0 8058 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8059 fs_info->nodesize, 1);
79787eaa 8060 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8061 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8062 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8063 BUG();
8064 }
0be5dc67 8065
4e6bd4e0 8066 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8067 fs_info->nodesize);
5d4f98a2
YZ
8068 return ret;
8069}
8070
8071int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8072 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8073 u64 offset, u64 ram_bytes,
8074 struct btrfs_key *ins)
5d4f98a2
YZ
8075{
8076 int ret;
8077
84f7d8e6 8078 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8079
fd708b81
JB
8080 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8081 root->root_key.objectid, owner, offset,
8082 BTRFS_ADD_DELAYED_EXTENT);
8083
88a979c6 8084 ret = btrfs_add_delayed_data_ref(trans, ins->objectid,
84f7d8e6
JB
8085 ins->offset, 0,
8086 root->root_key.objectid, owner,
7be07912
OS
8087 offset, ram_bytes,
8088 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8089 return ret;
8090}
e02119d5
CM
8091
8092/*
8093 * this is used by the tree logging recovery code. It records that
8094 * an extent has been allocated and makes sure to clear the free
8095 * space cache bits as well
8096 */
5d4f98a2 8097int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
8098 u64 root_objectid, u64 owner, u64 offset,
8099 struct btrfs_key *ins)
e02119d5 8100{
61da2abf 8101 struct btrfs_fs_info *fs_info = trans->fs_info;
e02119d5
CM
8102 int ret;
8103 struct btrfs_block_group_cache *block_group;
ed7a6948 8104 struct btrfs_space_info *space_info;
11833d66 8105
8c2a1a30
JB
8106 /*
8107 * Mixed block groups will exclude before processing the log so we only
01327610 8108 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8109 */
0b246afa 8110 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8111 ret = __exclude_logged_extent(fs_info, ins->objectid,
8112 ins->offset);
b50c6e25 8113 if (ret)
8c2a1a30 8114 return ret;
11833d66
YZ
8115 }
8116
0b246afa 8117 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8118 if (!block_group)
8119 return -EINVAL;
8120
ed7a6948
WX
8121 space_info = block_group->space_info;
8122 spin_lock(&space_info->lock);
8123 spin_lock(&block_group->lock);
8124 space_info->bytes_reserved += ins->offset;
8125 block_group->reserved += ins->offset;
8126 spin_unlock(&block_group->lock);
8127 spin_unlock(&space_info->lock);
8128
ef89b824
NB
8129 ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
8130 offset, ins, 1);
b50c6e25 8131 btrfs_put_block_group(block_group);
e02119d5
CM
8132 return ret;
8133}
8134
48a3b636
ES
8135static struct extent_buffer *
8136btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
bc877d28 8137 u64 bytenr, int level, u64 owner)
65b51a00 8138{
0b246afa 8139 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8140 struct extent_buffer *buf;
8141
2ff7e61e 8142 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8143 if (IS_ERR(buf))
8144 return buf;
8145
85d4e461 8146 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8147 btrfs_tree_lock(buf);
7c302b49 8148 clean_tree_block(fs_info, buf);
3083ee2e 8149 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8150
8151 btrfs_set_lock_blocking(buf);
4db8c528 8152 set_extent_buffer_uptodate(buf);
b4ce94de 8153
bc877d28
NB
8154 memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
8155 btrfs_set_header_level(buf, level);
8156 btrfs_set_header_bytenr(buf, buf->start);
8157 btrfs_set_header_generation(buf, trans->transid);
8158 btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
8159 btrfs_set_header_owner(buf, owner);
8160 write_extent_buffer_fsid(buf, fs_info->fsid);
8161 write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
d0c803c4 8162 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8163 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8164 /*
8165 * we allow two log transactions at a time, use different
8166 * EXENT bit to differentiate dirty pages.
8167 */
656f30db 8168 if (buf->log_index == 0)
8cef4e16
YZ
8169 set_extent_dirty(&root->dirty_log_pages, buf->start,
8170 buf->start + buf->len - 1, GFP_NOFS);
8171 else
8172 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8173 buf->start + buf->len - 1);
d0c803c4 8174 } else {
656f30db 8175 buf->log_index = -1;
d0c803c4 8176 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8177 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8178 }
64c12921 8179 trans->dirty = true;
b4ce94de 8180 /* this returns a buffer locked for blocking */
65b51a00
CM
8181 return buf;
8182}
8183
f0486c68
YZ
8184static struct btrfs_block_rsv *
8185use_block_rsv(struct btrfs_trans_handle *trans,
8186 struct btrfs_root *root, u32 blocksize)
8187{
0b246afa 8188 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8189 struct btrfs_block_rsv *block_rsv;
0b246afa 8190 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8191 int ret;
d88033db 8192 bool global_updated = false;
f0486c68
YZ
8193
8194 block_rsv = get_block_rsv(trans, root);
8195
b586b323
MX
8196 if (unlikely(block_rsv->size == 0))
8197 goto try_reserve;
d88033db 8198again:
f0486c68
YZ
8199 ret = block_rsv_use_bytes(block_rsv, blocksize);
8200 if (!ret)
8201 return block_rsv;
8202
b586b323
MX
8203 if (block_rsv->failfast)
8204 return ERR_PTR(ret);
8205
d88033db
MX
8206 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8207 global_updated = true;
0b246afa 8208 update_global_block_rsv(fs_info);
d88033db
MX
8209 goto again;
8210 }
8211
0b246afa 8212 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8213 static DEFINE_RATELIMIT_STATE(_rs,
8214 DEFAULT_RATELIMIT_INTERVAL * 10,
8215 /*DEFAULT_RATELIMIT_BURST*/ 1);
8216 if (__ratelimit(&_rs))
8217 WARN(1, KERN_DEBUG
efe120a0 8218 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8219 }
8220try_reserve:
8221 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8222 BTRFS_RESERVE_NO_FLUSH);
8223 if (!ret)
8224 return block_rsv;
8225 /*
8226 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8227 * the global reserve if its space type is the same as the global
8228 * reservation.
b586b323 8229 */
5881cfc9
MX
8230 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8231 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8232 ret = block_rsv_use_bytes(global_rsv, blocksize);
8233 if (!ret)
8234 return global_rsv;
8235 }
8236 return ERR_PTR(ret);
f0486c68
YZ
8237}
8238
8c2a3ca2
JB
8239static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8240 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8241{
8242 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8243 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8244}
8245
fec577fb 8246/*
f0486c68 8247 * finds a free extent and does all the dirty work required for allocation
67b7859e 8248 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8249 */
4d75f8a9 8250struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8251 struct btrfs_root *root,
8252 u64 parent, u64 root_objectid,
8253 const struct btrfs_disk_key *key,
8254 int level, u64 hint,
8255 u64 empty_size)
fec577fb 8256{
0b246afa 8257 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8258 struct btrfs_key ins;
f0486c68 8259 struct btrfs_block_rsv *block_rsv;
5f39d397 8260 struct extent_buffer *buf;
67b7859e 8261 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8262 u64 flags = 0;
8263 int ret;
0b246afa
JM
8264 u32 blocksize = fs_info->nodesize;
8265 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8266
05653ef3 8267#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8268 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8269 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
bc877d28 8270 level, root_objectid);
faa2dbf0
JB
8271 if (!IS_ERR(buf))
8272 root->alloc_bytenr += blocksize;
8273 return buf;
8274 }
05653ef3 8275#endif
fccb84c9 8276
f0486c68
YZ
8277 block_rsv = use_block_rsv(trans, root, blocksize);
8278 if (IS_ERR(block_rsv))
8279 return ERR_CAST(block_rsv);
8280
18513091 8281 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8282 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8283 if (ret)
8284 goto out_unuse;
55c69072 8285
bc877d28
NB
8286 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
8287 root_objectid);
67b7859e
OS
8288 if (IS_ERR(buf)) {
8289 ret = PTR_ERR(buf);
8290 goto out_free_reserved;
8291 }
f0486c68
YZ
8292
8293 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8294 if (parent == 0)
8295 parent = ins.objectid;
8296 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8297 } else
8298 BUG_ON(parent > 0);
8299
8300 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8301 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8302 if (!extent_op) {
8303 ret = -ENOMEM;
8304 goto out_free_buf;
8305 }
f0486c68
YZ
8306 if (key)
8307 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8308 else
8309 memset(&extent_op->key, 0, sizeof(extent_op->key));
8310 extent_op->flags_to_set = flags;
35b3ad50
DS
8311 extent_op->update_key = skinny_metadata ? false : true;
8312 extent_op->update_flags = true;
8313 extent_op->is_data = false;
b1c79e09 8314 extent_op->level = level;
f0486c68 8315
fd708b81
JB
8316 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8317 root_objectid, level, 0,
8318 BTRFS_ADD_DELAYED_EXTENT);
44e1c47d 8319 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
7be07912
OS
8320 ins.offset, parent,
8321 root_objectid, level,
67b7859e 8322 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8323 extent_op, NULL, NULL);
67b7859e
OS
8324 if (ret)
8325 goto out_free_delayed;
f0486c68 8326 }
fec577fb 8327 return buf;
67b7859e
OS
8328
8329out_free_delayed:
8330 btrfs_free_delayed_extent_op(extent_op);
8331out_free_buf:
8332 free_extent_buffer(buf);
8333out_free_reserved:
2ff7e61e 8334 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8335out_unuse:
0b246afa 8336 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8337 return ERR_PTR(ret);
fec577fb 8338}
a28ec197 8339
2c47e605
YZ
8340struct walk_control {
8341 u64 refs[BTRFS_MAX_LEVEL];
8342 u64 flags[BTRFS_MAX_LEVEL];
8343 struct btrfs_key update_progress;
8344 int stage;
8345 int level;
8346 int shared_level;
8347 int update_ref;
8348 int keep_locks;
1c4850e2
YZ
8349 int reada_slot;
8350 int reada_count;
66d7e7f0 8351 int for_reloc;
2c47e605
YZ
8352};
8353
8354#define DROP_REFERENCE 1
8355#define UPDATE_BACKREF 2
8356
1c4850e2
YZ
8357static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8358 struct btrfs_root *root,
8359 struct walk_control *wc,
8360 struct btrfs_path *path)
6407bf6d 8361{
0b246afa 8362 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8363 u64 bytenr;
8364 u64 generation;
8365 u64 refs;
94fcca9f 8366 u64 flags;
5d4f98a2 8367 u32 nritems;
1c4850e2
YZ
8368 struct btrfs_key key;
8369 struct extent_buffer *eb;
6407bf6d 8370 int ret;
1c4850e2
YZ
8371 int slot;
8372 int nread = 0;
6407bf6d 8373
1c4850e2
YZ
8374 if (path->slots[wc->level] < wc->reada_slot) {
8375 wc->reada_count = wc->reada_count * 2 / 3;
8376 wc->reada_count = max(wc->reada_count, 2);
8377 } else {
8378 wc->reada_count = wc->reada_count * 3 / 2;
8379 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8380 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8381 }
7bb86316 8382
1c4850e2
YZ
8383 eb = path->nodes[wc->level];
8384 nritems = btrfs_header_nritems(eb);
bd56b302 8385
1c4850e2
YZ
8386 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8387 if (nread >= wc->reada_count)
8388 break;
bd56b302 8389
2dd3e67b 8390 cond_resched();
1c4850e2
YZ
8391 bytenr = btrfs_node_blockptr(eb, slot);
8392 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8393
1c4850e2
YZ
8394 if (slot == path->slots[wc->level])
8395 goto reada;
5d4f98a2 8396
1c4850e2
YZ
8397 if (wc->stage == UPDATE_BACKREF &&
8398 generation <= root->root_key.offset)
bd56b302
CM
8399 continue;
8400
94fcca9f 8401 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8402 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8403 wc->level - 1, 1, &refs,
8404 &flags);
79787eaa
JM
8405 /* We don't care about errors in readahead. */
8406 if (ret < 0)
8407 continue;
94fcca9f
YZ
8408 BUG_ON(refs == 0);
8409
1c4850e2 8410 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8411 if (refs == 1)
8412 goto reada;
bd56b302 8413
94fcca9f
YZ
8414 if (wc->level == 1 &&
8415 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8416 continue;
1c4850e2
YZ
8417 if (!wc->update_ref ||
8418 generation <= root->root_key.offset)
8419 continue;
8420 btrfs_node_key_to_cpu(eb, &key, slot);
8421 ret = btrfs_comp_cpu_keys(&key,
8422 &wc->update_progress);
8423 if (ret < 0)
8424 continue;
94fcca9f
YZ
8425 } else {
8426 if (wc->level == 1 &&
8427 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8428 continue;
6407bf6d 8429 }
1c4850e2 8430reada:
2ff7e61e 8431 readahead_tree_block(fs_info, bytenr);
1c4850e2 8432 nread++;
20524f02 8433 }
1c4850e2 8434 wc->reada_slot = slot;
20524f02 8435}
2c47e605 8436
f82d02d9 8437/*
2c016dc2 8438 * helper to process tree block while walking down the tree.
2c47e605 8439 *
2c47e605
YZ
8440 * when wc->stage == UPDATE_BACKREF, this function updates
8441 * back refs for pointers in the block.
8442 *
8443 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8444 */
2c47e605 8445static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8446 struct btrfs_root *root,
2c47e605 8447 struct btrfs_path *path,
94fcca9f 8448 struct walk_control *wc, int lookup_info)
f82d02d9 8449{
2ff7e61e 8450 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8451 int level = wc->level;
8452 struct extent_buffer *eb = path->nodes[level];
2c47e605 8453 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8454 int ret;
8455
2c47e605
YZ
8456 if (wc->stage == UPDATE_BACKREF &&
8457 btrfs_header_owner(eb) != root->root_key.objectid)
8458 return 1;
f82d02d9 8459
2c47e605
YZ
8460 /*
8461 * when reference count of tree block is 1, it won't increase
8462 * again. once full backref flag is set, we never clear it.
8463 */
94fcca9f
YZ
8464 if (lookup_info &&
8465 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8466 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8467 BUG_ON(!path->locks[level]);
2ff7e61e 8468 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8469 eb->start, level, 1,
2c47e605
YZ
8470 &wc->refs[level],
8471 &wc->flags[level]);
79787eaa
JM
8472 BUG_ON(ret == -ENOMEM);
8473 if (ret)
8474 return ret;
2c47e605
YZ
8475 BUG_ON(wc->refs[level] == 0);
8476 }
5d4f98a2 8477
2c47e605
YZ
8478 if (wc->stage == DROP_REFERENCE) {
8479 if (wc->refs[level] > 1)
8480 return 1;
f82d02d9 8481
2c47e605 8482 if (path->locks[level] && !wc->keep_locks) {
bd681513 8483 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8484 path->locks[level] = 0;
8485 }
8486 return 0;
8487 }
f82d02d9 8488
2c47e605
YZ
8489 /* wc->stage == UPDATE_BACKREF */
8490 if (!(wc->flags[level] & flag)) {
8491 BUG_ON(!path->locks[level]);
e339a6b0 8492 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8493 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8494 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8495 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8496 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8497 eb->len, flag,
8498 btrfs_header_level(eb), 0);
79787eaa 8499 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8500 wc->flags[level] |= flag;
8501 }
8502
8503 /*
8504 * the block is shared by multiple trees, so it's not good to
8505 * keep the tree lock
8506 */
8507 if (path->locks[level] && level > 0) {
bd681513 8508 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8509 path->locks[level] = 0;
8510 }
8511 return 0;
8512}
8513
1c4850e2 8514/*
2c016dc2 8515 * helper to process tree block pointer.
1c4850e2
YZ
8516 *
8517 * when wc->stage == DROP_REFERENCE, this function checks
8518 * reference count of the block pointed to. if the block
8519 * is shared and we need update back refs for the subtree
8520 * rooted at the block, this function changes wc->stage to
8521 * UPDATE_BACKREF. if the block is shared and there is no
8522 * need to update back, this function drops the reference
8523 * to the block.
8524 *
8525 * NOTE: return value 1 means we should stop walking down.
8526 */
8527static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8528 struct btrfs_root *root,
8529 struct btrfs_path *path,
94fcca9f 8530 struct walk_control *wc, int *lookup_info)
1c4850e2 8531{
0b246afa 8532 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8533 u64 bytenr;
8534 u64 generation;
8535 u64 parent;
8536 u32 blocksize;
8537 struct btrfs_key key;
581c1760 8538 struct btrfs_key first_key;
1c4850e2
YZ
8539 struct extent_buffer *next;
8540 int level = wc->level;
8541 int reada = 0;
8542 int ret = 0;
1152651a 8543 bool need_account = false;
1c4850e2
YZ
8544
8545 generation = btrfs_node_ptr_generation(path->nodes[level],
8546 path->slots[level]);
8547 /*
8548 * if the lower level block was created before the snapshot
8549 * was created, we know there is no need to update back refs
8550 * for the subtree
8551 */
8552 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8553 generation <= root->root_key.offset) {
8554 *lookup_info = 1;
1c4850e2 8555 return 1;
94fcca9f 8556 }
1c4850e2
YZ
8557
8558 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8559 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8560 path->slots[level]);
0b246afa 8561 blocksize = fs_info->nodesize;
1c4850e2 8562
0b246afa 8563 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8564 if (!next) {
2ff7e61e 8565 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8566 if (IS_ERR(next))
8567 return PTR_ERR(next);
8568
b2aaaa3b
JB
8569 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8570 level - 1);
1c4850e2
YZ
8571 reada = 1;
8572 }
8573 btrfs_tree_lock(next);
8574 btrfs_set_lock_blocking(next);
8575
2ff7e61e 8576 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8577 &wc->refs[level - 1],
8578 &wc->flags[level - 1]);
4867268c
JB
8579 if (ret < 0)
8580 goto out_unlock;
79787eaa 8581
c2cf52eb 8582 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8583 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8584 ret = -EIO;
8585 goto out_unlock;
c2cf52eb 8586 }
94fcca9f 8587 *lookup_info = 0;
1c4850e2 8588
94fcca9f 8589 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8590 if (wc->refs[level - 1] > 1) {
1152651a 8591 need_account = true;
94fcca9f
YZ
8592 if (level == 1 &&
8593 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8594 goto skip;
8595
1c4850e2
YZ
8596 if (!wc->update_ref ||
8597 generation <= root->root_key.offset)
8598 goto skip;
8599
8600 btrfs_node_key_to_cpu(path->nodes[level], &key,
8601 path->slots[level]);
8602 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8603 if (ret < 0)
8604 goto skip;
8605
8606 wc->stage = UPDATE_BACKREF;
8607 wc->shared_level = level - 1;
8608 }
94fcca9f
YZ
8609 } else {
8610 if (level == 1 &&
8611 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8612 goto skip;
1c4850e2
YZ
8613 }
8614
b9fab919 8615 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8616 btrfs_tree_unlock(next);
8617 free_extent_buffer(next);
8618 next = NULL;
94fcca9f 8619 *lookup_info = 1;
1c4850e2
YZ
8620 }
8621
8622 if (!next) {
8623 if (reada && level == 1)
8624 reada_walk_down(trans, root, wc, path);
581c1760
QW
8625 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8626 &first_key);
64c043de
LB
8627 if (IS_ERR(next)) {
8628 return PTR_ERR(next);
8629 } else if (!extent_buffer_uptodate(next)) {
416bc658 8630 free_extent_buffer(next);
97d9a8a4 8631 return -EIO;
416bc658 8632 }
1c4850e2
YZ
8633 btrfs_tree_lock(next);
8634 btrfs_set_lock_blocking(next);
8635 }
8636
8637 level--;
4867268c
JB
8638 ASSERT(level == btrfs_header_level(next));
8639 if (level != btrfs_header_level(next)) {
8640 btrfs_err(root->fs_info, "mismatched level");
8641 ret = -EIO;
8642 goto out_unlock;
8643 }
1c4850e2
YZ
8644 path->nodes[level] = next;
8645 path->slots[level] = 0;
bd681513 8646 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8647 wc->level = level;
8648 if (wc->level == 1)
8649 wc->reada_slot = 0;
8650 return 0;
8651skip:
8652 wc->refs[level - 1] = 0;
8653 wc->flags[level - 1] = 0;
94fcca9f
YZ
8654 if (wc->stage == DROP_REFERENCE) {
8655 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8656 parent = path->nodes[level]->start;
8657 } else {
4867268c 8658 ASSERT(root->root_key.objectid ==
94fcca9f 8659 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8660 if (root->root_key.objectid !=
8661 btrfs_header_owner(path->nodes[level])) {
8662 btrfs_err(root->fs_info,
8663 "mismatched block owner");
8664 ret = -EIO;
8665 goto out_unlock;
8666 }
94fcca9f
YZ
8667 parent = 0;
8668 }
1c4850e2 8669
1152651a 8670 if (need_account) {
33d1f05c
QW
8671 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8672 generation, level - 1);
1152651a 8673 if (ret) {
0b246afa 8674 btrfs_err_rl(fs_info,
5d163e0e
JM
8675 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8676 ret);
1152651a
MF
8677 }
8678 }
84f7d8e6 8679 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8680 parent, root->root_key.objectid,
8681 level - 1, 0);
4867268c
JB
8682 if (ret)
8683 goto out_unlock;
1c4850e2 8684 }
4867268c
JB
8685
8686 *lookup_info = 1;
8687 ret = 1;
8688
8689out_unlock:
1c4850e2
YZ
8690 btrfs_tree_unlock(next);
8691 free_extent_buffer(next);
4867268c
JB
8692
8693 return ret;
1c4850e2
YZ
8694}
8695
2c47e605 8696/*
2c016dc2 8697 * helper to process tree block while walking up the tree.
2c47e605
YZ
8698 *
8699 * when wc->stage == DROP_REFERENCE, this function drops
8700 * reference count on the block.
8701 *
8702 * when wc->stage == UPDATE_BACKREF, this function changes
8703 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8704 * to UPDATE_BACKREF previously while processing the block.
8705 *
8706 * NOTE: return value 1 means we should stop walking up.
8707 */
8708static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8709 struct btrfs_root *root,
8710 struct btrfs_path *path,
8711 struct walk_control *wc)
8712{
0b246afa 8713 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8714 int ret;
2c47e605
YZ
8715 int level = wc->level;
8716 struct extent_buffer *eb = path->nodes[level];
8717 u64 parent = 0;
8718
8719 if (wc->stage == UPDATE_BACKREF) {
8720 BUG_ON(wc->shared_level < level);
8721 if (level < wc->shared_level)
8722 goto out;
8723
2c47e605
YZ
8724 ret = find_next_key(path, level + 1, &wc->update_progress);
8725 if (ret > 0)
8726 wc->update_ref = 0;
8727
8728 wc->stage = DROP_REFERENCE;
8729 wc->shared_level = -1;
8730 path->slots[level] = 0;
8731
8732 /*
8733 * check reference count again if the block isn't locked.
8734 * we should start walking down the tree again if reference
8735 * count is one.
8736 */
8737 if (!path->locks[level]) {
8738 BUG_ON(level == 0);
8739 btrfs_tree_lock(eb);
8740 btrfs_set_lock_blocking(eb);
bd681513 8741 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8742
2ff7e61e 8743 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8744 eb->start, level, 1,
2c47e605
YZ
8745 &wc->refs[level],
8746 &wc->flags[level]);
79787eaa
JM
8747 if (ret < 0) {
8748 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8749 path->locks[level] = 0;
79787eaa
JM
8750 return ret;
8751 }
2c47e605
YZ
8752 BUG_ON(wc->refs[level] == 0);
8753 if (wc->refs[level] == 1) {
bd681513 8754 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8755 path->locks[level] = 0;
2c47e605
YZ
8756 return 1;
8757 }
f82d02d9 8758 }
2c47e605 8759 }
f82d02d9 8760
2c47e605
YZ
8761 /* wc->stage == DROP_REFERENCE */
8762 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8763
2c47e605
YZ
8764 if (wc->refs[level] == 1) {
8765 if (level == 0) {
8766 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8767 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8768 else
e339a6b0 8769 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8770 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8771 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8772 if (ret) {
0b246afa 8773 btrfs_err_rl(fs_info,
5d163e0e
JM
8774 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8775 ret);
1152651a 8776 }
2c47e605
YZ
8777 }
8778 /* make block locked assertion in clean_tree_block happy */
8779 if (!path->locks[level] &&
8780 btrfs_header_generation(eb) == trans->transid) {
8781 btrfs_tree_lock(eb);
8782 btrfs_set_lock_blocking(eb);
bd681513 8783 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8784 }
7c302b49 8785 clean_tree_block(fs_info, eb);
2c47e605
YZ
8786 }
8787
8788 if (eb == root->node) {
8789 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8790 parent = eb->start;
8791 else
8792 BUG_ON(root->root_key.objectid !=
8793 btrfs_header_owner(eb));
8794 } else {
8795 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8796 parent = path->nodes[level + 1]->start;
8797 else
8798 BUG_ON(root->root_key.objectid !=
8799 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8800 }
f82d02d9 8801
5581a51a 8802 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8803out:
8804 wc->refs[level] = 0;
8805 wc->flags[level] = 0;
f0486c68 8806 return 0;
2c47e605
YZ
8807}
8808
8809static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8810 struct btrfs_root *root,
8811 struct btrfs_path *path,
8812 struct walk_control *wc)
8813{
2c47e605 8814 int level = wc->level;
94fcca9f 8815 int lookup_info = 1;
2c47e605
YZ
8816 int ret;
8817
8818 while (level >= 0) {
94fcca9f 8819 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8820 if (ret > 0)
8821 break;
8822
8823 if (level == 0)
8824 break;
8825
7a7965f8
YZ
8826 if (path->slots[level] >=
8827 btrfs_header_nritems(path->nodes[level]))
8828 break;
8829
94fcca9f 8830 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8831 if (ret > 0) {
8832 path->slots[level]++;
8833 continue;
90d2c51d
MX
8834 } else if (ret < 0)
8835 return ret;
1c4850e2 8836 level = wc->level;
f82d02d9 8837 }
f82d02d9
YZ
8838 return 0;
8839}
8840
d397712b 8841static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8842 struct btrfs_root *root,
f82d02d9 8843 struct btrfs_path *path,
2c47e605 8844 struct walk_control *wc, int max_level)
20524f02 8845{
2c47e605 8846 int level = wc->level;
20524f02 8847 int ret;
9f3a7427 8848
2c47e605
YZ
8849 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8850 while (level < max_level && path->nodes[level]) {
8851 wc->level = level;
8852 if (path->slots[level] + 1 <
8853 btrfs_header_nritems(path->nodes[level])) {
8854 path->slots[level]++;
20524f02
CM
8855 return 0;
8856 } else {
2c47e605
YZ
8857 ret = walk_up_proc(trans, root, path, wc);
8858 if (ret > 0)
8859 return 0;
bd56b302 8860
2c47e605 8861 if (path->locks[level]) {
bd681513
CM
8862 btrfs_tree_unlock_rw(path->nodes[level],
8863 path->locks[level]);
2c47e605 8864 path->locks[level] = 0;
f82d02d9 8865 }
2c47e605
YZ
8866 free_extent_buffer(path->nodes[level]);
8867 path->nodes[level] = NULL;
8868 level++;
20524f02
CM
8869 }
8870 }
8871 return 1;
8872}
8873
9aca1d51 8874/*
2c47e605
YZ
8875 * drop a subvolume tree.
8876 *
8877 * this function traverses the tree freeing any blocks that only
8878 * referenced by the tree.
8879 *
8880 * when a shared tree block is found. this function decreases its
8881 * reference count by one. if update_ref is true, this function
8882 * also make sure backrefs for the shared block and all lower level
8883 * blocks are properly updated.
9d1a2a3a
DS
8884 *
8885 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8886 */
2c536799 8887int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8888 struct btrfs_block_rsv *block_rsv, int update_ref,
8889 int for_reloc)
20524f02 8890{
ab8d0fc4 8891 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 8892 struct btrfs_path *path;
2c47e605 8893 struct btrfs_trans_handle *trans;
ab8d0fc4 8894 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 8895 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8896 struct walk_control *wc;
8897 struct btrfs_key key;
8898 int err = 0;
8899 int ret;
8900 int level;
d29a9f62 8901 bool root_dropped = false;
20524f02 8902
ab8d0fc4 8903 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 8904
5caf2a00 8905 path = btrfs_alloc_path();
cb1b69f4
TI
8906 if (!path) {
8907 err = -ENOMEM;
8908 goto out;
8909 }
20524f02 8910
2c47e605 8911 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8912 if (!wc) {
8913 btrfs_free_path(path);
cb1b69f4
TI
8914 err = -ENOMEM;
8915 goto out;
38a1a919 8916 }
2c47e605 8917
a22285a6 8918 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8919 if (IS_ERR(trans)) {
8920 err = PTR_ERR(trans);
8921 goto out_free;
8922 }
98d5dc13 8923
3fd0a558
YZ
8924 if (block_rsv)
8925 trans->block_rsv = block_rsv;
2c47e605 8926
9f3a7427 8927 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8928 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8929 path->nodes[level] = btrfs_lock_root_node(root);
8930 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8931 path->slots[level] = 0;
bd681513 8932 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8933 memset(&wc->update_progress, 0,
8934 sizeof(wc->update_progress));
9f3a7427 8935 } else {
9f3a7427 8936 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8937 memcpy(&wc->update_progress, &key,
8938 sizeof(wc->update_progress));
8939
6702ed49 8940 level = root_item->drop_level;
2c47e605 8941 BUG_ON(level == 0);
6702ed49 8942 path->lowest_level = level;
2c47e605
YZ
8943 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8944 path->lowest_level = 0;
8945 if (ret < 0) {
8946 err = ret;
79787eaa 8947 goto out_end_trans;
9f3a7427 8948 }
1c4850e2 8949 WARN_ON(ret > 0);
2c47e605 8950
7d9eb12c
CM
8951 /*
8952 * unlock our path, this is safe because only this
8953 * function is allowed to delete this snapshot
8954 */
5d4f98a2 8955 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8956
8957 level = btrfs_header_level(root->node);
8958 while (1) {
8959 btrfs_tree_lock(path->nodes[level]);
8960 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8961 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8962
2ff7e61e 8963 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 8964 path->nodes[level]->start,
3173a18f 8965 level, 1, &wc->refs[level],
2c47e605 8966 &wc->flags[level]);
79787eaa
JM
8967 if (ret < 0) {
8968 err = ret;
8969 goto out_end_trans;
8970 }
2c47e605
YZ
8971 BUG_ON(wc->refs[level] == 0);
8972
8973 if (level == root_item->drop_level)
8974 break;
8975
8976 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8977 path->locks[level] = 0;
2c47e605
YZ
8978 WARN_ON(wc->refs[level] != 1);
8979 level--;
8980 }
9f3a7427 8981 }
2c47e605
YZ
8982
8983 wc->level = level;
8984 wc->shared_level = -1;
8985 wc->stage = DROP_REFERENCE;
8986 wc->update_ref = update_ref;
8987 wc->keep_locks = 0;
66d7e7f0 8988 wc->for_reloc = for_reloc;
0b246afa 8989 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 8990
d397712b 8991 while (1) {
9d1a2a3a 8992
2c47e605
YZ
8993 ret = walk_down_tree(trans, root, path, wc);
8994 if (ret < 0) {
8995 err = ret;
20524f02 8996 break;
2c47e605 8997 }
9aca1d51 8998
2c47e605
YZ
8999 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9000 if (ret < 0) {
9001 err = ret;
20524f02 9002 break;
2c47e605
YZ
9003 }
9004
9005 if (ret > 0) {
9006 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9007 break;
9008 }
2c47e605
YZ
9009
9010 if (wc->stage == DROP_REFERENCE) {
9011 level = wc->level;
9012 btrfs_node_key(path->nodes[level],
9013 &root_item->drop_progress,
9014 path->slots[level]);
9015 root_item->drop_level = level;
9016 }
9017
9018 BUG_ON(wc->level == 0);
3a45bb20 9019 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9020 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9021 ret = btrfs_update_root(trans, tree_root,
9022 &root->root_key,
9023 root_item);
79787eaa 9024 if (ret) {
66642832 9025 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9026 err = ret;
9027 goto out_end_trans;
9028 }
2c47e605 9029
3a45bb20 9030 btrfs_end_transaction_throttle(trans);
2ff7e61e 9031 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9032 btrfs_debug(fs_info,
9033 "drop snapshot early exit");
3c8f2422
JB
9034 err = -EAGAIN;
9035 goto out_free;
9036 }
9037
a22285a6 9038 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9039 if (IS_ERR(trans)) {
9040 err = PTR_ERR(trans);
9041 goto out_free;
9042 }
3fd0a558
YZ
9043 if (block_rsv)
9044 trans->block_rsv = block_rsv;
c3e69d58 9045 }
20524f02 9046 }
b3b4aa74 9047 btrfs_release_path(path);
79787eaa
JM
9048 if (err)
9049 goto out_end_trans;
2c47e605 9050
1cd5447e 9051 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9052 if (ret) {
66642832 9053 btrfs_abort_transaction(trans, ret);
e19182c0 9054 err = ret;
79787eaa
JM
9055 goto out_end_trans;
9056 }
2c47e605 9057
76dda93c 9058 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9059 ret = btrfs_find_root(tree_root, &root->root_key, path,
9060 NULL, NULL);
79787eaa 9061 if (ret < 0) {
66642832 9062 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9063 err = ret;
9064 goto out_end_trans;
9065 } else if (ret > 0) {
84cd948c
JB
9066 /* if we fail to delete the orphan item this time
9067 * around, it'll get picked up the next time.
9068 *
9069 * The most common failure here is just -ENOENT.
9070 */
9071 btrfs_del_orphan_item(trans, tree_root,
9072 root->root_key.objectid);
76dda93c
YZ
9073 }
9074 }
9075
27cdeb70 9076 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9077 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9078 } else {
9079 free_extent_buffer(root->node);
9080 free_extent_buffer(root->commit_root);
b0feb9d9 9081 btrfs_put_fs_root(root);
76dda93c 9082 }
d29a9f62 9083 root_dropped = true;
79787eaa 9084out_end_trans:
3a45bb20 9085 btrfs_end_transaction_throttle(trans);
79787eaa 9086out_free:
2c47e605 9087 kfree(wc);
5caf2a00 9088 btrfs_free_path(path);
cb1b69f4 9089out:
d29a9f62
JB
9090 /*
9091 * So if we need to stop dropping the snapshot for whatever reason we
9092 * need to make sure to add it back to the dead root list so that we
9093 * keep trying to do the work later. This also cleans up roots if we
9094 * don't have it in the radix (like when we recover after a power fail
9095 * or unmount) so we don't leak memory.
9096 */
897ca819 9097 if (!for_reloc && !root_dropped)
d29a9f62 9098 btrfs_add_dead_root(root);
90515e7f 9099 if (err && err != -EAGAIN)
ab8d0fc4 9100 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9101 return err;
20524f02 9102}
9078a3e1 9103
2c47e605
YZ
9104/*
9105 * drop subtree rooted at tree block 'node'.
9106 *
9107 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9108 * only used by relocation code
2c47e605 9109 */
f82d02d9
YZ
9110int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9111 struct btrfs_root *root,
9112 struct extent_buffer *node,
9113 struct extent_buffer *parent)
9114{
0b246afa 9115 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9116 struct btrfs_path *path;
2c47e605 9117 struct walk_control *wc;
f82d02d9
YZ
9118 int level;
9119 int parent_level;
9120 int ret = 0;
9121 int wret;
9122
2c47e605
YZ
9123 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9124
f82d02d9 9125 path = btrfs_alloc_path();
db5b493a
TI
9126 if (!path)
9127 return -ENOMEM;
f82d02d9 9128
2c47e605 9129 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9130 if (!wc) {
9131 btrfs_free_path(path);
9132 return -ENOMEM;
9133 }
2c47e605 9134
b9447ef8 9135 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9136 parent_level = btrfs_header_level(parent);
9137 extent_buffer_get(parent);
9138 path->nodes[parent_level] = parent;
9139 path->slots[parent_level] = btrfs_header_nritems(parent);
9140
b9447ef8 9141 btrfs_assert_tree_locked(node);
f82d02d9 9142 level = btrfs_header_level(node);
f82d02d9
YZ
9143 path->nodes[level] = node;
9144 path->slots[level] = 0;
bd681513 9145 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9146
9147 wc->refs[parent_level] = 1;
9148 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9149 wc->level = level;
9150 wc->shared_level = -1;
9151 wc->stage = DROP_REFERENCE;
9152 wc->update_ref = 0;
9153 wc->keep_locks = 1;
66d7e7f0 9154 wc->for_reloc = 1;
0b246afa 9155 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9156
9157 while (1) {
2c47e605
YZ
9158 wret = walk_down_tree(trans, root, path, wc);
9159 if (wret < 0) {
f82d02d9 9160 ret = wret;
f82d02d9 9161 break;
2c47e605 9162 }
f82d02d9 9163
2c47e605 9164 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9165 if (wret < 0)
9166 ret = wret;
9167 if (wret != 0)
9168 break;
9169 }
9170
2c47e605 9171 kfree(wc);
f82d02d9
YZ
9172 btrfs_free_path(path);
9173 return ret;
9174}
9175
6202df69 9176static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9177{
9178 u64 num_devices;
fc67c450 9179 u64 stripped;
e4d8ec0f 9180
fc67c450
ID
9181 /*
9182 * if restripe for this chunk_type is on pick target profile and
9183 * return, otherwise do the usual balance
9184 */
6202df69 9185 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9186 if (stripped)
9187 return extended_to_chunk(stripped);
e4d8ec0f 9188
6202df69 9189 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9190
fc67c450 9191 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9192 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9193 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9194
ec44a35c
CM
9195 if (num_devices == 1) {
9196 stripped |= BTRFS_BLOCK_GROUP_DUP;
9197 stripped = flags & ~stripped;
9198
9199 /* turn raid0 into single device chunks */
9200 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9201 return stripped;
9202
9203 /* turn mirroring into duplication */
9204 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9205 BTRFS_BLOCK_GROUP_RAID10))
9206 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9207 } else {
9208 /* they already had raid on here, just return */
ec44a35c
CM
9209 if (flags & stripped)
9210 return flags;
9211
9212 stripped |= BTRFS_BLOCK_GROUP_DUP;
9213 stripped = flags & ~stripped;
9214
9215 /* switch duplicated blocks with raid1 */
9216 if (flags & BTRFS_BLOCK_GROUP_DUP)
9217 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9218
e3176ca2 9219 /* this is drive concat, leave it alone */
ec44a35c 9220 }
e3176ca2 9221
ec44a35c
CM
9222 return flags;
9223}
9224
868f401a 9225static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9226{
f0486c68
YZ
9227 struct btrfs_space_info *sinfo = cache->space_info;
9228 u64 num_bytes;
199c36ea 9229 u64 min_allocable_bytes;
f0486c68 9230 int ret = -ENOSPC;
0ef3e66b 9231
199c36ea
MX
9232 /*
9233 * We need some metadata space and system metadata space for
9234 * allocating chunks in some corner cases until we force to set
9235 * it to be readonly.
9236 */
9237 if ((sinfo->flags &
9238 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9239 !force)
ee22184b 9240 min_allocable_bytes = SZ_1M;
199c36ea
MX
9241 else
9242 min_allocable_bytes = 0;
9243
f0486c68
YZ
9244 spin_lock(&sinfo->lock);
9245 spin_lock(&cache->lock);
61cfea9b
W
9246
9247 if (cache->ro) {
868f401a 9248 cache->ro++;
61cfea9b
W
9249 ret = 0;
9250 goto out;
9251 }
9252
f0486c68
YZ
9253 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9254 cache->bytes_super - btrfs_block_group_used(&cache->item);
9255
4136135b 9256 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9257 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9258 sinfo->bytes_readonly += num_bytes;
868f401a 9259 cache->ro++;
633c0aad 9260 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9261 ret = 0;
9262 }
61cfea9b 9263out:
f0486c68
YZ
9264 spin_unlock(&cache->lock);
9265 spin_unlock(&sinfo->lock);
9266 return ret;
9267}
7d9eb12c 9268
c83488af 9269int btrfs_inc_block_group_ro(struct btrfs_block_group_cache *cache)
c286ac48 9270
f0486c68 9271{
c83488af 9272 struct btrfs_fs_info *fs_info = cache->fs_info;
f0486c68
YZ
9273 struct btrfs_trans_handle *trans;
9274 u64 alloc_flags;
9275 int ret;
7d9eb12c 9276
1bbc621e 9277again:
5e00f193 9278 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9279 if (IS_ERR(trans))
9280 return PTR_ERR(trans);
5d4f98a2 9281
1bbc621e
CM
9282 /*
9283 * we're not allowed to set block groups readonly after the dirty
9284 * block groups cache has started writing. If it already started,
9285 * back off and let this transaction commit
9286 */
0b246afa 9287 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9288 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9289 u64 transid = trans->transid;
9290
0b246afa 9291 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9292 btrfs_end_transaction(trans);
1bbc621e 9293
2ff7e61e 9294 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9295 if (ret)
9296 return ret;
9297 goto again;
9298 }
9299
153c35b6
CM
9300 /*
9301 * if we are changing raid levels, try to allocate a corresponding
9302 * block group with the new raid level.
9303 */
0b246afa 9304 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9305 if (alloc_flags != cache->flags) {
01458828 9306 ret = do_chunk_alloc(trans, alloc_flags,
153c35b6
CM
9307 CHUNK_ALLOC_FORCE);
9308 /*
9309 * ENOSPC is allowed here, we may have enough space
9310 * already allocated at the new raid level to
9311 * carry on
9312 */
9313 if (ret == -ENOSPC)
9314 ret = 0;
9315 if (ret < 0)
9316 goto out;
9317 }
1bbc621e 9318
868f401a 9319 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9320 if (!ret)
9321 goto out;
2ff7e61e 9322 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
01458828 9323 ret = do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
f0486c68
YZ
9324 if (ret < 0)
9325 goto out;
868f401a 9326 ret = inc_block_group_ro(cache, 0);
f0486c68 9327out:
2f081088 9328 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9329 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9330 mutex_lock(&fs_info->chunk_mutex);
451a2c13 9331 check_system_chunk(trans, alloc_flags);
34441361 9332 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9333 }
0b246afa 9334 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9335
3a45bb20 9336 btrfs_end_transaction(trans);
f0486c68
YZ
9337 return ret;
9338}
5d4f98a2 9339
43a7e99d 9340int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
c87f08ca 9341{
43a7e99d 9342 u64 alloc_flags = get_alloc_profile(trans->fs_info, type);
2ff7e61e 9343
01458828 9344 return do_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9345}
9346
6d07bcec
MX
9347/*
9348 * helper to account the unused space of all the readonly block group in the
633c0aad 9349 * space_info. takes mirrors into account.
6d07bcec 9350 */
633c0aad 9351u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9352{
9353 struct btrfs_block_group_cache *block_group;
9354 u64 free_bytes = 0;
9355 int factor;
9356
01327610 9357 /* It's df, we don't care if it's racy */
633c0aad
JB
9358 if (list_empty(&sinfo->ro_bgs))
9359 return 0;
9360
9361 spin_lock(&sinfo->lock);
9362 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9363 spin_lock(&block_group->lock);
9364
9365 if (!block_group->ro) {
9366 spin_unlock(&block_group->lock);
9367 continue;
9368 }
9369
9370 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9371 BTRFS_BLOCK_GROUP_RAID10 |
9372 BTRFS_BLOCK_GROUP_DUP))
9373 factor = 2;
9374 else
9375 factor = 1;
9376
9377 free_bytes += (block_group->key.offset -
9378 btrfs_block_group_used(&block_group->item)) *
9379 factor;
9380
9381 spin_unlock(&block_group->lock);
9382 }
6d07bcec
MX
9383 spin_unlock(&sinfo->lock);
9384
9385 return free_bytes;
9386}
9387
2ff7e61e 9388void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9389{
f0486c68
YZ
9390 struct btrfs_space_info *sinfo = cache->space_info;
9391 u64 num_bytes;
9392
9393 BUG_ON(!cache->ro);
9394
9395 spin_lock(&sinfo->lock);
9396 spin_lock(&cache->lock);
868f401a
Z
9397 if (!--cache->ro) {
9398 num_bytes = cache->key.offset - cache->reserved -
9399 cache->pinned - cache->bytes_super -
9400 btrfs_block_group_used(&cache->item);
9401 sinfo->bytes_readonly -= num_bytes;
9402 list_del_init(&cache->ro_list);
9403 }
f0486c68
YZ
9404 spin_unlock(&cache->lock);
9405 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9406}
9407
ba1bf481
JB
9408/*
9409 * checks to see if its even possible to relocate this block group.
9410 *
9411 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9412 * ok to go ahead and try.
9413 */
6bccf3ab 9414int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9415{
6bccf3ab 9416 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9417 struct btrfs_block_group_cache *block_group;
9418 struct btrfs_space_info *space_info;
0b246afa 9419 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9420 struct btrfs_device *device;
6df9a95e 9421 struct btrfs_trans_handle *trans;
cdcb725c 9422 u64 min_free;
6719db6a
JB
9423 u64 dev_min = 1;
9424 u64 dev_nr = 0;
4a5e98f5 9425 u64 target;
0305bc27 9426 int debug;
cdcb725c 9427 int index;
ba1bf481
JB
9428 int full = 0;
9429 int ret = 0;
1a40e23b 9430
0b246afa 9431 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9432
0b246afa 9433 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9434
ba1bf481 9435 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9436 if (!block_group) {
9437 if (debug)
0b246afa 9438 btrfs_warn(fs_info,
0305bc27
QW
9439 "can't find block group for bytenr %llu",
9440 bytenr);
ba1bf481 9441 return -1;
0305bc27 9442 }
1a40e23b 9443
cdcb725c 9444 min_free = btrfs_block_group_used(&block_group->item);
9445
ba1bf481 9446 /* no bytes used, we're good */
cdcb725c 9447 if (!min_free)
1a40e23b
ZY
9448 goto out;
9449
ba1bf481
JB
9450 space_info = block_group->space_info;
9451 spin_lock(&space_info->lock);
17d217fe 9452
ba1bf481 9453 full = space_info->full;
17d217fe 9454
ba1bf481
JB
9455 /*
9456 * if this is the last block group we have in this space, we can't
7ce618db
CM
9457 * relocate it unless we're able to allocate a new chunk below.
9458 *
9459 * Otherwise, we need to make sure we have room in the space to handle
9460 * all of the extents from this block group. If we can, we're good
ba1bf481 9461 */
7ce618db 9462 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9463 (btrfs_space_info_used(space_info, false) + min_free <
9464 space_info->total_bytes)) {
ba1bf481
JB
9465 spin_unlock(&space_info->lock);
9466 goto out;
17d217fe 9467 }
ba1bf481 9468 spin_unlock(&space_info->lock);
ea8c2819 9469
ba1bf481
JB
9470 /*
9471 * ok we don't have enough space, but maybe we have free space on our
9472 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9473 * alloc devices and guess if we have enough space. if this block
9474 * group is going to be restriped, run checks against the target
9475 * profile instead of the current one.
ba1bf481
JB
9476 */
9477 ret = -1;
ea8c2819 9478
cdcb725c 9479 /*
9480 * index:
9481 * 0: raid10
9482 * 1: raid1
9483 * 2: dup
9484 * 3: raid0
9485 * 4: single
9486 */
0b246afa 9487 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9488 if (target) {
3e72ee88 9489 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9490 } else {
9491 /*
9492 * this is just a balance, so if we were marked as full
9493 * we know there is no space for a new chunk
9494 */
0305bc27
QW
9495 if (full) {
9496 if (debug)
0b246afa
JM
9497 btrfs_warn(fs_info,
9498 "no space to alloc new chunk for block group %llu",
9499 block_group->key.objectid);
4a5e98f5 9500 goto out;
0305bc27 9501 }
4a5e98f5 9502
3e72ee88 9503 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9504 }
9505
e6ec716f 9506 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9507 dev_min = 4;
6719db6a
JB
9508 /* Divide by 2 */
9509 min_free >>= 1;
e6ec716f 9510 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9511 dev_min = 2;
e6ec716f 9512 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9513 /* Multiply by 2 */
9514 min_free <<= 1;
e6ec716f 9515 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9516 dev_min = fs_devices->rw_devices;
47c5713f 9517 min_free = div64_u64(min_free, dev_min);
cdcb725c 9518 }
9519
6df9a95e
JB
9520 /* We need to do this so that we can look at pending chunks */
9521 trans = btrfs_join_transaction(root);
9522 if (IS_ERR(trans)) {
9523 ret = PTR_ERR(trans);
9524 goto out;
9525 }
9526
0b246afa 9527 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9528 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9529 u64 dev_offset;
56bec294 9530
ba1bf481
JB
9531 /*
9532 * check to make sure we can actually find a chunk with enough
9533 * space to fit our block group in.
9534 */
63a212ab 9535 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9536 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9537 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9538 &dev_offset, NULL);
ba1bf481 9539 if (!ret)
cdcb725c 9540 dev_nr++;
9541
9542 if (dev_nr >= dev_min)
73e48b27 9543 break;
cdcb725c 9544
ba1bf481 9545 ret = -1;
725c8463 9546 }
edbd8d4e 9547 }
0305bc27 9548 if (debug && ret == -1)
0b246afa
JM
9549 btrfs_warn(fs_info,
9550 "no space to allocate a new chunk for block group %llu",
9551 block_group->key.objectid);
9552 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9553 btrfs_end_transaction(trans);
edbd8d4e 9554out:
ba1bf481 9555 btrfs_put_block_group(block_group);
edbd8d4e
CM
9556 return ret;
9557}
9558
6bccf3ab
JM
9559static int find_first_block_group(struct btrfs_fs_info *fs_info,
9560 struct btrfs_path *path,
9561 struct btrfs_key *key)
0b86a832 9562{
6bccf3ab 9563 struct btrfs_root *root = fs_info->extent_root;
925baedd 9564 int ret = 0;
0b86a832
CM
9565 struct btrfs_key found_key;
9566 struct extent_buffer *leaf;
9567 int slot;
edbd8d4e 9568
0b86a832
CM
9569 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9570 if (ret < 0)
925baedd
CM
9571 goto out;
9572
d397712b 9573 while (1) {
0b86a832 9574 slot = path->slots[0];
edbd8d4e 9575 leaf = path->nodes[0];
0b86a832
CM
9576 if (slot >= btrfs_header_nritems(leaf)) {
9577 ret = btrfs_next_leaf(root, path);
9578 if (ret == 0)
9579 continue;
9580 if (ret < 0)
925baedd 9581 goto out;
0b86a832 9582 break;
edbd8d4e 9583 }
0b86a832 9584 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9585
0b86a832 9586 if (found_key.objectid >= key->objectid &&
925baedd 9587 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9588 struct extent_map_tree *em_tree;
9589 struct extent_map *em;
9590
9591 em_tree = &root->fs_info->mapping_tree.map_tree;
9592 read_lock(&em_tree->lock);
9593 em = lookup_extent_mapping(em_tree, found_key.objectid,
9594 found_key.offset);
9595 read_unlock(&em_tree->lock);
9596 if (!em) {
0b246afa 9597 btrfs_err(fs_info,
6fb37b75
LB
9598 "logical %llu len %llu found bg but no related chunk",
9599 found_key.objectid, found_key.offset);
9600 ret = -ENOENT;
9601 } else {
9602 ret = 0;
9603 }
187ee58c 9604 free_extent_map(em);
925baedd
CM
9605 goto out;
9606 }
0b86a832 9607 path->slots[0]++;
edbd8d4e 9608 }
925baedd 9609out:
0b86a832 9610 return ret;
edbd8d4e
CM
9611}
9612
0af3d00b
JB
9613void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9614{
9615 struct btrfs_block_group_cache *block_group;
9616 u64 last = 0;
9617
9618 while (1) {
9619 struct inode *inode;
9620
9621 block_group = btrfs_lookup_first_block_group(info, last);
9622 while (block_group) {
9623 spin_lock(&block_group->lock);
9624 if (block_group->iref)
9625 break;
9626 spin_unlock(&block_group->lock);
2ff7e61e 9627 block_group = next_block_group(info, block_group);
0af3d00b
JB
9628 }
9629 if (!block_group) {
9630 if (last == 0)
9631 break;
9632 last = 0;
9633 continue;
9634 }
9635
9636 inode = block_group->inode;
9637 block_group->iref = 0;
9638 block_group->inode = NULL;
9639 spin_unlock(&block_group->lock);
f3bca802 9640 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9641 iput(inode);
9642 last = block_group->key.objectid + block_group->key.offset;
9643 btrfs_put_block_group(block_group);
9644 }
9645}
9646
5cdd7db6
FM
9647/*
9648 * Must be called only after stopping all workers, since we could have block
9649 * group caching kthreads running, and therefore they could race with us if we
9650 * freed the block groups before stopping them.
9651 */
1a40e23b
ZY
9652int btrfs_free_block_groups(struct btrfs_fs_info *info)
9653{
9654 struct btrfs_block_group_cache *block_group;
4184ea7f 9655 struct btrfs_space_info *space_info;
11833d66 9656 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9657 struct rb_node *n;
9658
9e351cc8 9659 down_write(&info->commit_root_sem);
11833d66
YZ
9660 while (!list_empty(&info->caching_block_groups)) {
9661 caching_ctl = list_entry(info->caching_block_groups.next,
9662 struct btrfs_caching_control, list);
9663 list_del(&caching_ctl->list);
9664 put_caching_control(caching_ctl);
9665 }
9e351cc8 9666 up_write(&info->commit_root_sem);
11833d66 9667
47ab2a6c
JB
9668 spin_lock(&info->unused_bgs_lock);
9669 while (!list_empty(&info->unused_bgs)) {
9670 block_group = list_first_entry(&info->unused_bgs,
9671 struct btrfs_block_group_cache,
9672 bg_list);
9673 list_del_init(&block_group->bg_list);
9674 btrfs_put_block_group(block_group);
9675 }
9676 spin_unlock(&info->unused_bgs_lock);
9677
1a40e23b
ZY
9678 spin_lock(&info->block_group_cache_lock);
9679 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9680 block_group = rb_entry(n, struct btrfs_block_group_cache,
9681 cache_node);
1a40e23b
ZY
9682 rb_erase(&block_group->cache_node,
9683 &info->block_group_cache_tree);
01eacb27 9684 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9685 spin_unlock(&info->block_group_cache_lock);
9686
80eb234a 9687 down_write(&block_group->space_info->groups_sem);
1a40e23b 9688 list_del(&block_group->list);
80eb234a 9689 up_write(&block_group->space_info->groups_sem);
d2fb3437 9690
3c14874a
JB
9691 /*
9692 * We haven't cached this block group, which means we could
9693 * possibly have excluded extents on this block group.
9694 */
36cce922
JB
9695 if (block_group->cached == BTRFS_CACHE_NO ||
9696 block_group->cached == BTRFS_CACHE_ERROR)
9e715da8 9697 free_excluded_extents(block_group);
3c14874a 9698
817d52f8 9699 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9700 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9701 ASSERT(list_empty(&block_group->dirty_list));
9702 ASSERT(list_empty(&block_group->io_list));
9703 ASSERT(list_empty(&block_group->bg_list));
9704 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9705 btrfs_put_block_group(block_group);
d899e052
YZ
9706
9707 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9708 }
9709 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9710
9711 /* now that all the block groups are freed, go through and
9712 * free all the space_info structs. This is only called during
9713 * the final stages of unmount, and so we know nobody is
9714 * using them. We call synchronize_rcu() once before we start,
9715 * just to be on the safe side.
9716 */
9717 synchronize_rcu();
9718
8929ecfa
YZ
9719 release_global_block_rsv(info);
9720
67871254 9721 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9722 int i;
9723
4184ea7f
CM
9724 space_info = list_entry(info->space_info.next,
9725 struct btrfs_space_info,
9726 list);
d555b6c3
JB
9727
9728 /*
9729 * Do not hide this behind enospc_debug, this is actually
9730 * important and indicates a real bug if this happens.
9731 */
9732 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9733 space_info->bytes_reserved > 0 ||
d555b6c3 9734 space_info->bytes_may_use > 0))
ab8d0fc4 9735 dump_space_info(info, space_info, 0, 0);
4184ea7f 9736 list_del(&space_info->list);
6ab0a202
JM
9737 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9738 struct kobject *kobj;
c1895442
JM
9739 kobj = space_info->block_group_kobjs[i];
9740 space_info->block_group_kobjs[i] = NULL;
9741 if (kobj) {
6ab0a202
JM
9742 kobject_del(kobj);
9743 kobject_put(kobj);
9744 }
9745 }
9746 kobject_del(&space_info->kobj);
9747 kobject_put(&space_info->kobj);
4184ea7f 9748 }
1a40e23b
ZY
9749 return 0;
9750}
9751
75cb379d
JM
9752/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9753void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9754{
9755 struct btrfs_space_info *space_info;
9756 struct raid_kobject *rkobj;
9757 LIST_HEAD(list);
9758 int index;
9759 int ret = 0;
9760
9761 spin_lock(&fs_info->pending_raid_kobjs_lock);
9762 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9763 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9764
9765 list_for_each_entry(rkobj, &list, list) {
9766 space_info = __find_space_info(fs_info, rkobj->flags);
9767 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9768
9769 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9770 "%s", get_raid_name(index));
9771 if (ret) {
9772 kobject_put(&rkobj->kobj);
9773 break;
9774 }
9775 }
9776 if (ret)
9777 btrfs_warn(fs_info,
9778 "failed to add kobject for block cache, ignoring");
9779}
9780
c434d21c 9781static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9782{
c434d21c 9783 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9784 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9785 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9786 bool first = false;
b742bb82
YZ
9787
9788 down_write(&space_info->groups_sem);
ed55b6ac
JM
9789 if (list_empty(&space_info->block_groups[index]))
9790 first = true;
9791 list_add_tail(&cache->list, &space_info->block_groups[index]);
9792 up_write(&space_info->groups_sem);
9793
9794 if (first) {
75cb379d
JM
9795 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9796 if (!rkobj) {
9797 btrfs_warn(cache->fs_info,
9798 "couldn't alloc memory for raid level kobject");
9799 return;
6ab0a202 9800 }
75cb379d
JM
9801 rkobj->flags = cache->flags;
9802 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9803
9804 spin_lock(&fs_info->pending_raid_kobjs_lock);
9805 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9806 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9807 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9808 }
b742bb82
YZ
9809}
9810
920e4a58 9811static struct btrfs_block_group_cache *
2ff7e61e
JM
9812btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9813 u64 start, u64 size)
920e4a58
MX
9814{
9815 struct btrfs_block_group_cache *cache;
9816
9817 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9818 if (!cache)
9819 return NULL;
9820
9821 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9822 GFP_NOFS);
9823 if (!cache->free_space_ctl) {
9824 kfree(cache);
9825 return NULL;
9826 }
9827
9828 cache->key.objectid = start;
9829 cache->key.offset = size;
9830 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9831
0b246afa 9832 cache->fs_info = fs_info;
e4ff5fb5 9833 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
9834 set_free_space_tree_thresholds(cache);
9835
920e4a58
MX
9836 atomic_set(&cache->count, 1);
9837 spin_lock_init(&cache->lock);
e570fd27 9838 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9839 INIT_LIST_HEAD(&cache->list);
9840 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9841 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9842 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9843 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9844 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9845 btrfs_init_free_space_ctl(cache);
04216820 9846 atomic_set(&cache->trimming, 0);
a5ed9182 9847 mutex_init(&cache->free_space_lock);
0966a7b1 9848 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
9849
9850 return cache;
9851}
9852
5b4aacef 9853int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
9854{
9855 struct btrfs_path *path;
9856 int ret;
9078a3e1 9857 struct btrfs_block_group_cache *cache;
6324fbf3 9858 struct btrfs_space_info *space_info;
9078a3e1
CM
9859 struct btrfs_key key;
9860 struct btrfs_key found_key;
5f39d397 9861 struct extent_buffer *leaf;
0af3d00b
JB
9862 int need_clear = 0;
9863 u64 cache_gen;
49303381
LB
9864 u64 feature;
9865 int mixed;
9866
9867 feature = btrfs_super_incompat_flags(info->super_copy);
9868 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 9869
9078a3e1 9870 key.objectid = 0;
0b86a832 9871 key.offset = 0;
962a298f 9872 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9873 path = btrfs_alloc_path();
9874 if (!path)
9875 return -ENOMEM;
e4058b54 9876 path->reada = READA_FORWARD;
9078a3e1 9877
0b246afa
JM
9878 cache_gen = btrfs_super_cache_generation(info->super_copy);
9879 if (btrfs_test_opt(info, SPACE_CACHE) &&
9880 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 9881 need_clear = 1;
0b246afa 9882 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 9883 need_clear = 1;
0af3d00b 9884
d397712b 9885 while (1) {
6bccf3ab 9886 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
9887 if (ret > 0)
9888 break;
0b86a832
CM
9889 if (ret != 0)
9890 goto error;
920e4a58 9891
5f39d397
CM
9892 leaf = path->nodes[0];
9893 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 9894
2ff7e61e 9895 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 9896 found_key.offset);
9078a3e1 9897 if (!cache) {
0b86a832 9898 ret = -ENOMEM;
f0486c68 9899 goto error;
9078a3e1 9900 }
96303081 9901
cf7c1ef6
LB
9902 if (need_clear) {
9903 /*
9904 * When we mount with old space cache, we need to
9905 * set BTRFS_DC_CLEAR and set dirty flag.
9906 *
9907 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9908 * truncate the old free space cache inode and
9909 * setup a new one.
9910 * b) Setting 'dirty flag' makes sure that we flush
9911 * the new space cache info onto disk.
9912 */
0b246afa 9913 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 9914 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9915 }
0af3d00b 9916
5f39d397
CM
9917 read_extent_buffer(leaf, &cache->item,
9918 btrfs_item_ptr_offset(leaf, path->slots[0]),
9919 sizeof(cache->item));
920e4a58 9920 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
9921 if (!mixed &&
9922 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
9923 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
9924 btrfs_err(info,
9925"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
9926 cache->key.objectid);
9927 ret = -EINVAL;
9928 goto error;
9929 }
0b86a832 9930
9078a3e1 9931 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9932 btrfs_release_path(path);
34d52cb6 9933
3c14874a
JB
9934 /*
9935 * We need to exclude the super stripes now so that the space
9936 * info has super bytes accounted for, otherwise we'll think
9937 * we have more space than we actually do.
9938 */
3c4da657 9939 ret = exclude_super_stripes(cache);
835d974f
JB
9940 if (ret) {
9941 /*
9942 * We may have excluded something, so call this just in
9943 * case.
9944 */
9e715da8 9945 free_excluded_extents(cache);
920e4a58 9946 btrfs_put_block_group(cache);
835d974f
JB
9947 goto error;
9948 }
3c14874a 9949
817d52f8
JB
9950 /*
9951 * check for two cases, either we are full, and therefore
9952 * don't need to bother with the caching work since we won't
9953 * find any space, or we are empty, and we can just add all
9954 * the space in and be done with it. This saves us _alot_ of
9955 * time, particularly in the full case.
9956 */
9957 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9958 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9959 cache->cached = BTRFS_CACHE_FINISHED;
9e715da8 9960 free_excluded_extents(cache);
817d52f8 9961 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9962 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9963 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 9964 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
9965 found_key.objectid +
9966 found_key.offset);
9e715da8 9967 free_excluded_extents(cache);
817d52f8 9968 }
96b5179d 9969
0b246afa 9970 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
9971 if (ret) {
9972 btrfs_remove_free_space_cache(cache);
9973 btrfs_put_block_group(cache);
9974 goto error;
9975 }
9976
0b246afa 9977 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
9978 update_space_info(info, cache->flags, found_key.offset,
9979 btrfs_block_group_used(&cache->item),
9980 cache->bytes_super, &space_info);
8c579fe7 9981
6324fbf3 9982 cache->space_info = space_info;
1b2da372 9983
c434d21c 9984 link_block_group(cache);
0f9dd46c 9985
0b246afa 9986 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 9987 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 9988 inc_block_group_ro(cache, 1);
47ab2a6c
JB
9989 } else if (btrfs_block_group_used(&cache->item) == 0) {
9990 spin_lock(&info->unused_bgs_lock);
9991 /* Should always be true but just in case. */
9992 if (list_empty(&cache->bg_list)) {
9993 btrfs_get_block_group(cache);
4ed0a7a3 9994 trace_btrfs_add_unused_block_group(cache);
47ab2a6c
JB
9995 list_add_tail(&cache->bg_list,
9996 &info->unused_bgs);
9997 }
9998 spin_unlock(&info->unused_bgs_lock);
9999 }
9078a3e1 10000 }
b742bb82 10001
0b246afa 10002 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10003 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10004 (BTRFS_BLOCK_GROUP_RAID10 |
10005 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10006 BTRFS_BLOCK_GROUP_RAID5 |
10007 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10008 BTRFS_BLOCK_GROUP_DUP)))
10009 continue;
10010 /*
10011 * avoid allocating from un-mirrored block group if there are
10012 * mirrored block groups.
10013 */
1095cc0d 10014 list_for_each_entry(cache,
10015 &space_info->block_groups[BTRFS_RAID_RAID0],
10016 list)
868f401a 10017 inc_block_group_ro(cache, 1);
1095cc0d 10018 list_for_each_entry(cache,
10019 &space_info->block_groups[BTRFS_RAID_SINGLE],
10020 list)
868f401a 10021 inc_block_group_ro(cache, 1);
9078a3e1 10022 }
f0486c68 10023
75cb379d 10024 btrfs_add_raid_kobjects(info);
f0486c68 10025 init_global_block_rsv(info);
0b86a832
CM
10026 ret = 0;
10027error:
9078a3e1 10028 btrfs_free_path(path);
0b86a832 10029 return ret;
9078a3e1 10030}
6324fbf3 10031
6c686b35 10032void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10033{
6c686b35 10034 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10035 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10036 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10037 struct btrfs_block_group_item item;
10038 struct btrfs_key key;
10039 int ret = 0;
d9a0540a 10040 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10041
d9a0540a 10042 trans->can_flush_pending_bgs = false;
47ab2a6c 10043 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10044 if (ret)
c92f6be3 10045 goto next;
ea658bad
JB
10046
10047 spin_lock(&block_group->lock);
10048 memcpy(&item, &block_group->item, sizeof(item));
10049 memcpy(&key, &block_group->key, sizeof(key));
10050 spin_unlock(&block_group->lock);
10051
10052 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10053 sizeof(item));
10054 if (ret)
66642832 10055 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10056 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10057 key.offset);
6df9a95e 10058 if (ret)
66642832 10059 btrfs_abort_transaction(trans, ret);
e4e0711c 10060 add_block_group_free_space(trans, block_group);
1e144fb8 10061 /* already aborted the transaction if it failed. */
c92f6be3
FM
10062next:
10063 list_del_init(&block_group->bg_list);
ea658bad 10064 }
d9a0540a 10065 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10066}
10067
e7e02096 10068int btrfs_make_block_group(struct btrfs_trans_handle *trans, u64 bytes_used,
0174484d 10069 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10070{
e7e02096 10071 struct btrfs_fs_info *fs_info = trans->fs_info;
6324fbf3 10072 struct btrfs_block_group_cache *cache;
0b246afa 10073 int ret;
6324fbf3 10074
0b246afa 10075 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10076
2ff7e61e 10077 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10078 if (!cache)
10079 return -ENOMEM;
34d52cb6 10080
6324fbf3 10081 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10082 btrfs_set_block_group_chunk_objectid(&cache->item,
10083 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10084 btrfs_set_block_group_flags(&cache->item, type);
10085
920e4a58 10086 cache->flags = type;
11833d66 10087 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10088 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10089 cache->needs_free_space = 1;
3c4da657 10090 ret = exclude_super_stripes(cache);
835d974f
JB
10091 if (ret) {
10092 /*
10093 * We may have excluded something, so call this just in
10094 * case.
10095 */
9e715da8 10096 free_excluded_extents(cache);
920e4a58 10097 btrfs_put_block_group(cache);
835d974f
JB
10098 return ret;
10099 }
96303081 10100
4457c1c7 10101 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10102
9e715da8 10103 free_excluded_extents(cache);
11833d66 10104
d0bd4560 10105#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10106 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10107 u64 new_bytes_used = size - bytes_used;
10108
10109 bytes_used += new_bytes_used >> 1;
2ff7e61e 10110 fragment_free_space(cache);
d0bd4560
JB
10111 }
10112#endif
2e6e5183 10113 /*
2be12ef7
NB
10114 * Ensure the corresponding space_info object is created and
10115 * assigned to our block group. We want our bg to be added to the rbtree
10116 * with its ->space_info set.
2e6e5183 10117 */
2be12ef7 10118 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10119 ASSERT(cache->space_info);
2e6e5183 10120
0b246afa 10121 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10122 if (ret) {
10123 btrfs_remove_free_space_cache(cache);
10124 btrfs_put_block_group(cache);
10125 return ret;
10126 }
10127
2e6e5183
FM
10128 /*
10129 * Now that our block group has its ->space_info set and is inserted in
10130 * the rbtree, update the space info's counters.
10131 */
0b246afa 10132 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10133 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10134 cache->bytes_super, &cache->space_info);
0b246afa 10135 update_global_block_rsv(fs_info);
1b2da372 10136
c434d21c 10137 link_block_group(cache);
6324fbf3 10138
47ab2a6c 10139 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10140
0b246afa 10141 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10142 return 0;
10143}
1a40e23b 10144
10ea00f5
ID
10145static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10146{
899c81ea
ID
10147 u64 extra_flags = chunk_to_extended(flags) &
10148 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10149
de98ced9 10150 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10151 if (flags & BTRFS_BLOCK_GROUP_DATA)
10152 fs_info->avail_data_alloc_bits &= ~extra_flags;
10153 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10154 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10155 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10156 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10157 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10158}
10159
1a40e23b 10160int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
5a98ec01 10161 u64 group_start, struct extent_map *em)
1a40e23b 10162{
5a98ec01 10163 struct btrfs_fs_info *fs_info = trans->fs_info;
6bccf3ab 10164 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10165 struct btrfs_path *path;
10166 struct btrfs_block_group_cache *block_group;
44fb5511 10167 struct btrfs_free_cluster *cluster;
0b246afa 10168 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10169 struct btrfs_key key;
0af3d00b 10170 struct inode *inode;
c1895442 10171 struct kobject *kobj = NULL;
1a40e23b 10172 int ret;
10ea00f5 10173 int index;
89a55897 10174 int factor;
4f69cb98 10175 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10176 bool remove_em;
1a40e23b 10177
6bccf3ab 10178 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10179 BUG_ON(!block_group);
c146afad 10180 BUG_ON(!block_group->ro);
1a40e23b 10181
4ed0a7a3 10182 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10183 /*
10184 * Free the reserved super bytes from this block group before
10185 * remove it.
10186 */
9e715da8 10187 free_excluded_extents(block_group);
fd708b81
JB
10188 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10189 block_group->key.offset);
9f7c43c9 10190
1a40e23b 10191 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10192 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10193 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10194 BTRFS_BLOCK_GROUP_RAID1 |
10195 BTRFS_BLOCK_GROUP_RAID10))
10196 factor = 2;
10197 else
10198 factor = 1;
1a40e23b 10199
44fb5511 10200 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10201 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10202 spin_lock(&cluster->refill_lock);
10203 btrfs_return_cluster_to_free_space(block_group, cluster);
10204 spin_unlock(&cluster->refill_lock);
10205
10206 /*
10207 * make sure this block group isn't part of a metadata
10208 * allocation cluster
10209 */
0b246afa 10210 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10211 spin_lock(&cluster->refill_lock);
10212 btrfs_return_cluster_to_free_space(block_group, cluster);
10213 spin_unlock(&cluster->refill_lock);
10214
1a40e23b 10215 path = btrfs_alloc_path();
d8926bb3
MF
10216 if (!path) {
10217 ret = -ENOMEM;
10218 goto out;
10219 }
1a40e23b 10220
1bbc621e
CM
10221 /*
10222 * get the inode first so any iput calls done for the io_list
10223 * aren't the final iput (no unlinks allowed now)
10224 */
77ab86bf 10225 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10226
10227 mutex_lock(&trans->transaction->cache_write_mutex);
10228 /*
10229 * make sure our free spache cache IO is done before remove the
10230 * free space inode
10231 */
10232 spin_lock(&trans->transaction->dirty_bgs_lock);
10233 if (!list_empty(&block_group->io_list)) {
10234 list_del_init(&block_group->io_list);
10235
10236 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10237
10238 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10239 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10240 btrfs_put_block_group(block_group);
10241 spin_lock(&trans->transaction->dirty_bgs_lock);
10242 }
10243
10244 if (!list_empty(&block_group->dirty_list)) {
10245 list_del_init(&block_group->dirty_list);
10246 btrfs_put_block_group(block_group);
10247 }
10248 spin_unlock(&trans->transaction->dirty_bgs_lock);
10249 mutex_unlock(&trans->transaction->cache_write_mutex);
10250
0af3d00b 10251 if (!IS_ERR(inode)) {
73f2e545 10252 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10253 if (ret) {
10254 btrfs_add_delayed_iput(inode);
10255 goto out;
10256 }
0af3d00b
JB
10257 clear_nlink(inode);
10258 /* One for the block groups ref */
10259 spin_lock(&block_group->lock);
10260 if (block_group->iref) {
10261 block_group->iref = 0;
10262 block_group->inode = NULL;
10263 spin_unlock(&block_group->lock);
10264 iput(inode);
10265 } else {
10266 spin_unlock(&block_group->lock);
10267 }
10268 /* One for our lookup ref */
455757c3 10269 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10270 }
10271
10272 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10273 key.offset = block_group->key.objectid;
10274 key.type = 0;
10275
10276 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10277 if (ret < 0)
10278 goto out;
10279 if (ret > 0)
b3b4aa74 10280 btrfs_release_path(path);
0af3d00b
JB
10281 if (ret == 0) {
10282 ret = btrfs_del_item(trans, tree_root, path);
10283 if (ret)
10284 goto out;
b3b4aa74 10285 btrfs_release_path(path);
0af3d00b
JB
10286 }
10287
0b246afa 10288 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10289 rb_erase(&block_group->cache_node,
0b246afa 10290 &fs_info->block_group_cache_tree);
292cbd51 10291 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10292
0b246afa
JM
10293 if (fs_info->first_logical_byte == block_group->key.objectid)
10294 fs_info->first_logical_byte = (u64)-1;
10295 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10296
80eb234a 10297 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10298 /*
10299 * we must use list_del_init so people can check to see if they
10300 * are still on the list after taking the semaphore
10301 */
10302 list_del_init(&block_group->list);
6ab0a202 10303 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10304 kobj = block_group->space_info->block_group_kobjs[index];
10305 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10306 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10307 }
80eb234a 10308 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10309 if (kobj) {
10310 kobject_del(kobj);
10311 kobject_put(kobj);
10312 }
1a40e23b 10313
4f69cb98
FM
10314 if (block_group->has_caching_ctl)
10315 caching_ctl = get_caching_control(block_group);
817d52f8 10316 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10317 wait_block_group_cache_done(block_group);
4f69cb98 10318 if (block_group->has_caching_ctl) {
0b246afa 10319 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10320 if (!caching_ctl) {
10321 struct btrfs_caching_control *ctl;
10322
10323 list_for_each_entry(ctl,
0b246afa 10324 &fs_info->caching_block_groups, list)
4f69cb98
FM
10325 if (ctl->block_group == block_group) {
10326 caching_ctl = ctl;
1e4f4714 10327 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10328 break;
10329 }
10330 }
10331 if (caching_ctl)
10332 list_del_init(&caching_ctl->list);
0b246afa 10333 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10334 if (caching_ctl) {
10335 /* Once for the caching bgs list and once for us. */
10336 put_caching_control(caching_ctl);
10337 put_caching_control(caching_ctl);
10338 }
10339 }
817d52f8 10340
ce93ec54
JB
10341 spin_lock(&trans->transaction->dirty_bgs_lock);
10342 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10343 WARN_ON(1);
10344 }
10345 if (!list_empty(&block_group->io_list)) {
10346 WARN_ON(1);
ce93ec54
JB
10347 }
10348 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10349 btrfs_remove_free_space_cache(block_group);
10350
c146afad 10351 spin_lock(&block_group->space_info->lock);
75c68e9f 10352 list_del_init(&block_group->ro_list);
18d018ad 10353
0b246afa 10354 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10355 WARN_ON(block_group->space_info->total_bytes
10356 < block_group->key.offset);
10357 WARN_ON(block_group->space_info->bytes_readonly
10358 < block_group->key.offset);
10359 WARN_ON(block_group->space_info->disk_total
10360 < block_group->key.offset * factor);
10361 }
c146afad
YZ
10362 block_group->space_info->total_bytes -= block_group->key.offset;
10363 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10364 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10365
c146afad 10366 spin_unlock(&block_group->space_info->lock);
283bb197 10367
0af3d00b
JB
10368 memcpy(&key, &block_group->key, sizeof(key));
10369
34441361 10370 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10371 if (!list_empty(&em->list)) {
10372 /* We're in the transaction->pending_chunks list. */
10373 free_extent_map(em);
10374 }
04216820
FM
10375 spin_lock(&block_group->lock);
10376 block_group->removed = 1;
10377 /*
10378 * At this point trimming can't start on this block group, because we
10379 * removed the block group from the tree fs_info->block_group_cache_tree
10380 * so no one can't find it anymore and even if someone already got this
10381 * block group before we removed it from the rbtree, they have already
10382 * incremented block_group->trimming - if they didn't, they won't find
10383 * any free space entries because we already removed them all when we
10384 * called btrfs_remove_free_space_cache().
10385 *
10386 * And we must not remove the extent map from the fs_info->mapping_tree
10387 * to prevent the same logical address range and physical device space
10388 * ranges from being reused for a new block group. This is because our
10389 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10390 * completely transactionless, so while it is trimming a range the
10391 * currently running transaction might finish and a new one start,
10392 * allowing for new block groups to be created that can reuse the same
10393 * physical device locations unless we take this special care.
e33e17ee
JM
10394 *
10395 * There may also be an implicit trim operation if the file system
10396 * is mounted with -odiscard. The same protections must remain
10397 * in place until the extents have been discarded completely when
10398 * the transaction commit has completed.
04216820
FM
10399 */
10400 remove_em = (atomic_read(&block_group->trimming) == 0);
10401 /*
10402 * Make sure a trimmer task always sees the em in the pinned_chunks list
10403 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10404 * before checking block_group->removed).
10405 */
10406 if (!remove_em) {
10407 /*
10408 * Our em might be in trans->transaction->pending_chunks which
10409 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10410 * and so is the fs_info->pinned_chunks list.
10411 *
10412 * So at this point we must be holding the chunk_mutex to avoid
10413 * any races with chunk allocation (more specifically at
10414 * volumes.c:contains_pending_extent()), to ensure it always
10415 * sees the em, either in the pending_chunks list or in the
10416 * pinned_chunks list.
10417 */
0b246afa 10418 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10419 }
10420 spin_unlock(&block_group->lock);
04216820
FM
10421
10422 if (remove_em) {
10423 struct extent_map_tree *em_tree;
10424
0b246afa 10425 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10426 write_lock(&em_tree->lock);
8dbcd10f
FM
10427 /*
10428 * The em might be in the pending_chunks list, so make sure the
10429 * chunk mutex is locked, since remove_extent_mapping() will
10430 * delete us from that list.
10431 */
04216820
FM
10432 remove_extent_mapping(em_tree, em);
10433 write_unlock(&em_tree->lock);
10434 /* once for the tree */
10435 free_extent_map(em);
10436 }
10437
34441361 10438 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10439
f3f72779 10440 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10441 if (ret)
10442 goto out;
10443
fa9c0d79
CM
10444 btrfs_put_block_group(block_group);
10445 btrfs_put_block_group(block_group);
1a40e23b
ZY
10446
10447 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10448 if (ret > 0)
10449 ret = -EIO;
10450 if (ret < 0)
10451 goto out;
10452
10453 ret = btrfs_del_item(trans, root, path);
10454out:
10455 btrfs_free_path(path);
10456 return ret;
10457}
acce952b 10458
8eab77ff 10459struct btrfs_trans_handle *
7fd01182
FM
10460btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10461 const u64 chunk_offset)
8eab77ff 10462{
7fd01182
FM
10463 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10464 struct extent_map *em;
10465 struct map_lookup *map;
10466 unsigned int num_items;
10467
10468 read_lock(&em_tree->lock);
10469 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10470 read_unlock(&em_tree->lock);
10471 ASSERT(em && em->start == chunk_offset);
10472
8eab77ff 10473 /*
7fd01182
FM
10474 * We need to reserve 3 + N units from the metadata space info in order
10475 * to remove a block group (done at btrfs_remove_chunk() and at
10476 * btrfs_remove_block_group()), which are used for:
10477 *
8eab77ff
FM
10478 * 1 unit for adding the free space inode's orphan (located in the tree
10479 * of tree roots).
7fd01182
FM
10480 * 1 unit for deleting the block group item (located in the extent
10481 * tree).
10482 * 1 unit for deleting the free space item (located in tree of tree
10483 * roots).
10484 * N units for deleting N device extent items corresponding to each
10485 * stripe (located in the device tree).
10486 *
10487 * In order to remove a block group we also need to reserve units in the
10488 * system space info in order to update the chunk tree (update one or
10489 * more device items and remove one chunk item), but this is done at
10490 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10491 */
95617d69 10492 map = em->map_lookup;
7fd01182
FM
10493 num_items = 3 + map->num_stripes;
10494 free_extent_map(em);
10495
8eab77ff 10496 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10497 num_items, 1);
8eab77ff
FM
10498}
10499
47ab2a6c
JB
10500/*
10501 * Process the unused_bgs list and remove any that don't have any allocated
10502 * space inside of them.
10503 */
10504void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10505{
10506 struct btrfs_block_group_cache *block_group;
10507 struct btrfs_space_info *space_info;
47ab2a6c
JB
10508 struct btrfs_trans_handle *trans;
10509 int ret = 0;
10510
afcdd129 10511 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10512 return;
10513
10514 spin_lock(&fs_info->unused_bgs_lock);
10515 while (!list_empty(&fs_info->unused_bgs)) {
10516 u64 start, end;
e33e17ee 10517 int trimming;
47ab2a6c
JB
10518
10519 block_group = list_first_entry(&fs_info->unused_bgs,
10520 struct btrfs_block_group_cache,
10521 bg_list);
47ab2a6c 10522 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10523
10524 space_info = block_group->space_info;
10525
47ab2a6c
JB
10526 if (ret || btrfs_mixed_space_info(space_info)) {
10527 btrfs_put_block_group(block_group);
10528 continue;
10529 }
10530 spin_unlock(&fs_info->unused_bgs_lock);
10531
d5f2e33b 10532 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10533
47ab2a6c
JB
10534 /* Don't want to race with allocators so take the groups_sem */
10535 down_write(&space_info->groups_sem);
10536 spin_lock(&block_group->lock);
43794446 10537 if (block_group->reserved || block_group->pinned ||
47ab2a6c 10538 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10539 block_group->ro ||
aefbe9a6 10540 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10541 /*
10542 * We want to bail if we made new allocations or have
10543 * outstanding allocations in this block group. We do
10544 * the ro check in case balance is currently acting on
10545 * this block group.
10546 */
4ed0a7a3 10547 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10548 spin_unlock(&block_group->lock);
10549 up_write(&space_info->groups_sem);
10550 goto next;
10551 }
10552 spin_unlock(&block_group->lock);
10553
10554 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10555 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10556 up_write(&space_info->groups_sem);
10557 if (ret < 0) {
10558 ret = 0;
10559 goto next;
10560 }
10561
10562 /*
10563 * Want to do this before we do anything else so we can recover
10564 * properly if we fail to join the transaction.
10565 */
7fd01182
FM
10566 trans = btrfs_start_trans_remove_block_group(fs_info,
10567 block_group->key.objectid);
47ab2a6c 10568 if (IS_ERR(trans)) {
2ff7e61e 10569 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10570 ret = PTR_ERR(trans);
10571 goto next;
10572 }
10573
10574 /*
10575 * We could have pending pinned extents for this block group,
10576 * just delete them, we don't care about them anymore.
10577 */
10578 start = block_group->key.objectid;
10579 end = start + block_group->key.offset - 1;
d4b450cd
FM
10580 /*
10581 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10582 * btrfs_finish_extent_commit(). If we are at transaction N,
10583 * another task might be running finish_extent_commit() for the
10584 * previous transaction N - 1, and have seen a range belonging
10585 * to the block group in freed_extents[] before we were able to
10586 * clear the whole block group range from freed_extents[]. This
10587 * means that task can lookup for the block group after we
10588 * unpinned it from freed_extents[] and removed it, leading to
10589 * a BUG_ON() at btrfs_unpin_extent_range().
10590 */
10591 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10592 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10593 EXTENT_DIRTY);
758eb51e 10594 if (ret) {
d4b450cd 10595 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10596 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10597 goto end_trans;
10598 }
10599 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10600 EXTENT_DIRTY);
758eb51e 10601 if (ret) {
d4b450cd 10602 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10603 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10604 goto end_trans;
10605 }
d4b450cd 10606 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10607
10608 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10609 spin_lock(&space_info->lock);
10610 spin_lock(&block_group->lock);
10611
10612 space_info->bytes_pinned -= block_group->pinned;
10613 space_info->bytes_readonly += block_group->pinned;
dec59fa3
EL
10614 percpu_counter_add_batch(&space_info->total_bytes_pinned,
10615 -block_group->pinned,
10616 BTRFS_TOTAL_BYTES_PINNED_BATCH);
47ab2a6c
JB
10617 block_group->pinned = 0;
10618
c30666d4
ZL
10619 spin_unlock(&block_group->lock);
10620 spin_unlock(&space_info->lock);
10621
e33e17ee 10622 /* DISCARD can flip during remount */
0b246afa 10623 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10624
10625 /* Implicit trim during transaction commit. */
10626 if (trimming)
10627 btrfs_get_block_group_trimming(block_group);
10628
47ab2a6c
JB
10629 /*
10630 * Btrfs_remove_chunk will abort the transaction if things go
10631 * horribly wrong.
10632 */
5b4aacef 10633 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10634 block_group->key.objectid);
e33e17ee
JM
10635
10636 if (ret) {
10637 if (trimming)
10638 btrfs_put_block_group_trimming(block_group);
10639 goto end_trans;
10640 }
10641
10642 /*
10643 * If we're not mounted with -odiscard, we can just forget
10644 * about this block group. Otherwise we'll need to wait
10645 * until transaction commit to do the actual discard.
10646 */
10647 if (trimming) {
348a0013
FM
10648 spin_lock(&fs_info->unused_bgs_lock);
10649 /*
10650 * A concurrent scrub might have added us to the list
10651 * fs_info->unused_bgs, so use a list_move operation
10652 * to add the block group to the deleted_bgs list.
10653 */
e33e17ee
JM
10654 list_move(&block_group->bg_list,
10655 &trans->transaction->deleted_bgs);
348a0013 10656 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10657 btrfs_get_block_group(block_group);
10658 }
758eb51e 10659end_trans:
3a45bb20 10660 btrfs_end_transaction(trans);
47ab2a6c 10661next:
d5f2e33b 10662 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10663 btrfs_put_block_group(block_group);
10664 spin_lock(&fs_info->unused_bgs_lock);
10665 }
10666 spin_unlock(&fs_info->unused_bgs_lock);
10667}
10668
c59021f8 10669int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10670{
1aba86d6 10671 struct btrfs_super_block *disk_super;
10672 u64 features;
10673 u64 flags;
10674 int mixed = 0;
c59021f8 10675 int ret;
10676
6c41761f 10677 disk_super = fs_info->super_copy;
1aba86d6 10678 if (!btrfs_super_root(disk_super))
0dc924c5 10679 return -EINVAL;
c59021f8 10680
1aba86d6 10681 features = btrfs_super_incompat_flags(disk_super);
10682 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10683 mixed = 1;
c59021f8 10684
1aba86d6 10685 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 10686 ret = create_space_info(fs_info, flags);
c59021f8 10687 if (ret)
1aba86d6 10688 goto out;
c59021f8 10689
1aba86d6 10690 if (mixed) {
10691 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 10692 ret = create_space_info(fs_info, flags);
1aba86d6 10693 } else {
10694 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 10695 ret = create_space_info(fs_info, flags);
1aba86d6 10696 if (ret)
10697 goto out;
10698
10699 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 10700 ret = create_space_info(fs_info, flags);
1aba86d6 10701 }
10702out:
c59021f8 10703 return ret;
10704}
10705
2ff7e61e
JM
10706int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10707 u64 start, u64 end)
acce952b 10708{
2ff7e61e 10709 return unpin_extent_range(fs_info, start, end, false);
acce952b 10710}
10711
499f377f
JM
10712/*
10713 * It used to be that old block groups would be left around forever.
10714 * Iterating over them would be enough to trim unused space. Since we
10715 * now automatically remove them, we also need to iterate over unallocated
10716 * space.
10717 *
10718 * We don't want a transaction for this since the discard may take a
10719 * substantial amount of time. We don't require that a transaction be
10720 * running, but we do need to take a running transaction into account
10721 * to ensure that we're not discarding chunks that were released in
10722 * the current transaction.
10723 *
10724 * Holding the chunks lock will prevent other threads from allocating
10725 * or releasing chunks, but it won't prevent a running transaction
10726 * from committing and releasing the memory that the pending chunks
10727 * list head uses. For that, we need to take a reference to the
10728 * transaction.
10729 */
10730static int btrfs_trim_free_extents(struct btrfs_device *device,
10731 u64 minlen, u64 *trimmed)
10732{
10733 u64 start = 0, len = 0;
10734 int ret;
10735
10736 *trimmed = 0;
10737
10738 /* Not writeable = nothing to do. */
ebbede42 10739 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10740 return 0;
10741
10742 /* No free space = nothing to do. */
10743 if (device->total_bytes <= device->bytes_used)
10744 return 0;
10745
10746 ret = 0;
10747
10748 while (1) {
fb456252 10749 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10750 struct btrfs_transaction *trans;
10751 u64 bytes;
10752
10753 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10754 if (ret)
10755 return ret;
10756
10757 down_read(&fs_info->commit_root_sem);
10758
10759 spin_lock(&fs_info->trans_lock);
10760 trans = fs_info->running_transaction;
10761 if (trans)
9b64f57d 10762 refcount_inc(&trans->use_count);
499f377f
JM
10763 spin_unlock(&fs_info->trans_lock);
10764
10765 ret = find_free_dev_extent_start(trans, device, minlen, start,
10766 &start, &len);
10767 if (trans)
10768 btrfs_put_transaction(trans);
10769
10770 if (ret) {
10771 up_read(&fs_info->commit_root_sem);
10772 mutex_unlock(&fs_info->chunk_mutex);
10773 if (ret == -ENOSPC)
10774 ret = 0;
10775 break;
10776 }
10777
10778 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10779 up_read(&fs_info->commit_root_sem);
10780 mutex_unlock(&fs_info->chunk_mutex);
10781
10782 if (ret)
10783 break;
10784
10785 start += len;
10786 *trimmed += bytes;
10787
10788 if (fatal_signal_pending(current)) {
10789 ret = -ERESTARTSYS;
10790 break;
10791 }
10792
10793 cond_resched();
10794 }
10795
10796 return ret;
10797}
10798
2ff7e61e 10799int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10800{
f7039b1d 10801 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10802 struct btrfs_device *device;
10803 struct list_head *devices;
f7039b1d
LD
10804 u64 group_trimmed;
10805 u64 start;
10806 u64 end;
10807 u64 trimmed = 0;
2cac13e4 10808 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10809 int ret = 0;
10810
2cac13e4
LB
10811 /*
10812 * try to trim all FS space, our block group may start from non-zero.
10813 */
10814 if (range->len == total_bytes)
10815 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10816 else
10817 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10818
10819 while (cache) {
10820 if (cache->key.objectid >= (range->start + range->len)) {
10821 btrfs_put_block_group(cache);
10822 break;
10823 }
10824
10825 start = max(range->start, cache->key.objectid);
10826 end = min(range->start + range->len,
10827 cache->key.objectid + cache->key.offset);
10828
10829 if (end - start >= range->minlen) {
10830 if (!block_group_cache_done(cache)) {
f6373bf3 10831 ret = cache_block_group(cache, 0);
1be41b78
JB
10832 if (ret) {
10833 btrfs_put_block_group(cache);
10834 break;
10835 }
10836 ret = wait_block_group_cache_done(cache);
10837 if (ret) {
10838 btrfs_put_block_group(cache);
10839 break;
10840 }
f7039b1d
LD
10841 }
10842 ret = btrfs_trim_block_group(cache,
10843 &group_trimmed,
10844 start,
10845 end,
10846 range->minlen);
10847
10848 trimmed += group_trimmed;
10849 if (ret) {
10850 btrfs_put_block_group(cache);
10851 break;
10852 }
10853 }
10854
2ff7e61e 10855 cache = next_block_group(fs_info, cache);
f7039b1d
LD
10856 }
10857
0b246afa
JM
10858 mutex_lock(&fs_info->fs_devices->device_list_mutex);
10859 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
10860 list_for_each_entry(device, devices, dev_alloc_list) {
10861 ret = btrfs_trim_free_extents(device, range->minlen,
10862 &group_trimmed);
10863 if (ret)
10864 break;
10865
10866 trimmed += group_trimmed;
10867 }
0b246afa 10868 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 10869
f7039b1d
LD
10870 range->len = trimmed;
10871 return ret;
10872}
8257b2dc
MX
10873
10874/*
ea14b57f 10875 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
10876 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10877 * data into the page cache through nocow before the subvolume is snapshoted,
10878 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 10879 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 10880 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10881 */
ea14b57f 10882void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
10883{
10884 percpu_counter_dec(&root->subv_writers->counter);
093258e6 10885 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
10886}
10887
ea14b57f 10888int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 10889{
ea14b57f 10890 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
10891 return 0;
10892
10893 percpu_counter_inc(&root->subv_writers->counter);
10894 /*
10895 * Make sure counter is updated before we check for snapshot creation.
10896 */
10897 smp_mb();
ea14b57f
DS
10898 if (atomic_read(&root->will_be_snapshotted)) {
10899 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
10900 return 0;
10901 }
10902 return 1;
10903}
0bc19f90 10904
0bc19f90
ZL
10905void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
10906{
10907 while (true) {
10908 int ret;
10909
ea14b57f 10910 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
10911 if (ret)
10912 break;
4625956a
PZ
10913 wait_var_event(&root->will_be_snapshotted,
10914 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
10915 }
10916}