]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: add missing discards when unpinning extents with -o discard
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
ec6b910f 18#include <linux/sched.h>
edbd8d4e 19#include <linux/pagemap.h>
ec44a35c 20#include <linux/writeback.h>
21af804c 21#include <linux/blkdev.h>
b7a9f29f 22#include <linux/sort.h>
4184ea7f 23#include <linux/rcupdate.h>
817d52f8 24#include <linux/kthread.h>
5a0e3ad6 25#include <linux/slab.h>
dff51cd1 26#include <linux/ratelimit.h>
b150a4f1 27#include <linux/percpu_counter.h>
74493f7a 28#include "hash.h"
995946dd 29#include "tree-log.h"
fec577fb
CM
30#include "disk-io.h"
31#include "print-tree.h"
0b86a832 32#include "volumes.h"
53b381b3 33#include "raid56.h"
925baedd 34#include "locking.h"
fa9c0d79 35#include "free-space-cache.h"
3fed40cc 36#include "math.h"
6ab0a202 37#include "sysfs.h"
fcebe456 38#include "qgroup.h"
fec577fb 39
709c0486
AJ
40#undef SCRAMBLE_DELAYED_REFS
41
9e622d6b
MX
42/*
43 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
44 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
45 * if we really need one.
46 *
0e4f8f88
CM
47 * CHUNK_ALLOC_LIMITED means to only try and allocate one
48 * if we have very few chunks already allocated. This is
49 * used as part of the clustering code to help make sure
50 * we have a good pool of storage to cluster in, without
51 * filling the FS with empty chunks
52 *
9e622d6b
MX
53 * CHUNK_ALLOC_FORCE means it must try to allocate one
54 *
0e4f8f88
CM
55 */
56enum {
57 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
58 CHUNK_ALLOC_LIMITED = 1,
59 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
60};
61
fb25e914
JB
62/*
63 * Control how reservations are dealt with.
64 *
65 * RESERVE_FREE - freeing a reservation.
66 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
67 * ENOSPC accounting
68 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
69 * bytes_may_use as the ENOSPC accounting is done elsewhere
70 */
71enum {
72 RESERVE_FREE = 0,
73 RESERVE_ALLOC = 1,
74 RESERVE_ALLOC_NO_ACCOUNT = 2,
75};
76
ce93ec54
JB
77static int update_block_group(struct btrfs_trans_handle *trans,
78 struct btrfs_root *root, u64 bytenr,
79 u64 num_bytes, int alloc);
5d4f98a2
YZ
80static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
81 struct btrfs_root *root,
c682f9b3 82 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
83 u64 root_objectid, u64 owner_objectid,
84 u64 owner_offset, int refs_to_drop,
c682f9b3 85 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
86static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
87 struct extent_buffer *leaf,
88 struct btrfs_extent_item *ei);
89static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, u64 owner, u64 offset,
93 struct btrfs_key *ins, int ref_mod);
94static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 u64 parent, u64 root_objectid,
97 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
98 int level, struct btrfs_key *ins,
99 int no_quota);
6a63209f 100static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082
JB
101 struct btrfs_root *extent_root, u64 flags,
102 int force);
11833d66
YZ
103static int find_next_key(struct btrfs_path *path, int level,
104 struct btrfs_key *key);
9ed74f2d
JB
105static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
106 int dump_block_groups);
fb25e914 107static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27
MX
108 u64 num_bytes, int reserve,
109 int delalloc);
5d80366e
JB
110static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
111 u64 num_bytes);
48a3b636
ES
112int btrfs_pin_extent(struct btrfs_root *root,
113 u64 bytenr, u64 num_bytes, int reserved);
6a63209f 114
817d52f8
JB
115static noinline int
116block_group_cache_done(struct btrfs_block_group_cache *cache)
117{
118 smp_mb();
36cce922
JB
119 return cache->cached == BTRFS_CACHE_FINISHED ||
120 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
121}
122
0f9dd46c
JB
123static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
124{
125 return (cache->flags & bits) == bits;
126}
127
62a45b60 128static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
129{
130 atomic_inc(&cache->count);
131}
132
133void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
134{
f0486c68
YZ
135 if (atomic_dec_and_test(&cache->count)) {
136 WARN_ON(cache->pinned > 0);
137 WARN_ON(cache->reserved > 0);
34d52cb6 138 kfree(cache->free_space_ctl);
11dfe35a 139 kfree(cache);
f0486c68 140 }
11dfe35a
JB
141}
142
0f9dd46c
JB
143/*
144 * this adds the block group to the fs_info rb tree for the block group
145 * cache
146 */
b2950863 147static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
148 struct btrfs_block_group_cache *block_group)
149{
150 struct rb_node **p;
151 struct rb_node *parent = NULL;
152 struct btrfs_block_group_cache *cache;
153
154 spin_lock(&info->block_group_cache_lock);
155 p = &info->block_group_cache_tree.rb_node;
156
157 while (*p) {
158 parent = *p;
159 cache = rb_entry(parent, struct btrfs_block_group_cache,
160 cache_node);
161 if (block_group->key.objectid < cache->key.objectid) {
162 p = &(*p)->rb_left;
163 } else if (block_group->key.objectid > cache->key.objectid) {
164 p = &(*p)->rb_right;
165 } else {
166 spin_unlock(&info->block_group_cache_lock);
167 return -EEXIST;
168 }
169 }
170
171 rb_link_node(&block_group->cache_node, parent, p);
172 rb_insert_color(&block_group->cache_node,
173 &info->block_group_cache_tree);
a1897fdd
LB
174
175 if (info->first_logical_byte > block_group->key.objectid)
176 info->first_logical_byte = block_group->key.objectid;
177
0f9dd46c
JB
178 spin_unlock(&info->block_group_cache_lock);
179
180 return 0;
181}
182
183/*
184 * This will return the block group at or after bytenr if contains is 0, else
185 * it will return the block group that contains the bytenr
186 */
187static struct btrfs_block_group_cache *
188block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
189 int contains)
190{
191 struct btrfs_block_group_cache *cache, *ret = NULL;
192 struct rb_node *n;
193 u64 end, start;
194
195 spin_lock(&info->block_group_cache_lock);
196 n = info->block_group_cache_tree.rb_node;
197
198 while (n) {
199 cache = rb_entry(n, struct btrfs_block_group_cache,
200 cache_node);
201 end = cache->key.objectid + cache->key.offset - 1;
202 start = cache->key.objectid;
203
204 if (bytenr < start) {
205 if (!contains && (!ret || start < ret->key.objectid))
206 ret = cache;
207 n = n->rb_left;
208 } else if (bytenr > start) {
209 if (contains && bytenr <= end) {
210 ret = cache;
211 break;
212 }
213 n = n->rb_right;
214 } else {
215 ret = cache;
216 break;
217 }
218 }
a1897fdd 219 if (ret) {
11dfe35a 220 btrfs_get_block_group(ret);
a1897fdd
LB
221 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
222 info->first_logical_byte = ret->key.objectid;
223 }
0f9dd46c
JB
224 spin_unlock(&info->block_group_cache_lock);
225
226 return ret;
227}
228
11833d66
YZ
229static int add_excluded_extent(struct btrfs_root *root,
230 u64 start, u64 num_bytes)
817d52f8 231{
11833d66
YZ
232 u64 end = start + num_bytes - 1;
233 set_extent_bits(&root->fs_info->freed_extents[0],
234 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 set_extent_bits(&root->fs_info->freed_extents[1],
236 start, end, EXTENT_UPTODATE, GFP_NOFS);
237 return 0;
238}
817d52f8 239
11833d66
YZ
240static void free_excluded_extents(struct btrfs_root *root,
241 struct btrfs_block_group_cache *cache)
242{
243 u64 start, end;
817d52f8 244
11833d66
YZ
245 start = cache->key.objectid;
246 end = start + cache->key.offset - 1;
247
248 clear_extent_bits(&root->fs_info->freed_extents[0],
249 start, end, EXTENT_UPTODATE, GFP_NOFS);
250 clear_extent_bits(&root->fs_info->freed_extents[1],
251 start, end, EXTENT_UPTODATE, GFP_NOFS);
817d52f8
JB
252}
253
11833d66
YZ
254static int exclude_super_stripes(struct btrfs_root *root,
255 struct btrfs_block_group_cache *cache)
817d52f8 256{
817d52f8
JB
257 u64 bytenr;
258 u64 *logical;
259 int stripe_len;
260 int i, nr, ret;
261
06b2331f
YZ
262 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
263 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
264 cache->bytes_super += stripe_len;
265 ret = add_excluded_extent(root, cache->key.objectid,
266 stripe_len);
835d974f
JB
267 if (ret)
268 return ret;
06b2331f
YZ
269 }
270
817d52f8
JB
271 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
272 bytenr = btrfs_sb_offset(i);
273 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
274 cache->key.objectid, bytenr,
275 0, &logical, &nr, &stripe_len);
835d974f
JB
276 if (ret)
277 return ret;
11833d66 278
817d52f8 279 while (nr--) {
51bf5f0b
JB
280 u64 start, len;
281
282 if (logical[nr] > cache->key.objectid +
283 cache->key.offset)
284 continue;
285
286 if (logical[nr] + stripe_len <= cache->key.objectid)
287 continue;
288
289 start = logical[nr];
290 if (start < cache->key.objectid) {
291 start = cache->key.objectid;
292 len = (logical[nr] + stripe_len) - start;
293 } else {
294 len = min_t(u64, stripe_len,
295 cache->key.objectid +
296 cache->key.offset - start);
297 }
298
299 cache->bytes_super += len;
300 ret = add_excluded_extent(root, start, len);
835d974f
JB
301 if (ret) {
302 kfree(logical);
303 return ret;
304 }
817d52f8 305 }
11833d66 306
817d52f8
JB
307 kfree(logical);
308 }
817d52f8
JB
309 return 0;
310}
311
11833d66
YZ
312static struct btrfs_caching_control *
313get_caching_control(struct btrfs_block_group_cache *cache)
314{
315 struct btrfs_caching_control *ctl;
316
317 spin_lock(&cache->lock);
dde5abee
JB
318 if (!cache->caching_ctl) {
319 spin_unlock(&cache->lock);
11833d66
YZ
320 return NULL;
321 }
322
323 ctl = cache->caching_ctl;
324 atomic_inc(&ctl->count);
325 spin_unlock(&cache->lock);
326 return ctl;
327}
328
329static void put_caching_control(struct btrfs_caching_control *ctl)
330{
331 if (atomic_dec_and_test(&ctl->count))
332 kfree(ctl);
333}
334
0f9dd46c
JB
335/*
336 * this is only called by cache_block_group, since we could have freed extents
337 * we need to check the pinned_extents for any extents that can't be used yet
338 * since their free space will be released as soon as the transaction commits.
339 */
817d52f8 340static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
0f9dd46c
JB
341 struct btrfs_fs_info *info, u64 start, u64 end)
342{
817d52f8 343 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
344 int ret;
345
346 while (start < end) {
11833d66 347 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 348 &extent_start, &extent_end,
e6138876
JB
349 EXTENT_DIRTY | EXTENT_UPTODATE,
350 NULL);
0f9dd46c
JB
351 if (ret)
352 break;
353
06b2331f 354 if (extent_start <= start) {
0f9dd46c
JB
355 start = extent_end + 1;
356 } else if (extent_start > start && extent_start < end) {
357 size = extent_start - start;
817d52f8 358 total_added += size;
ea6a478e
JB
359 ret = btrfs_add_free_space(block_group, start,
360 size);
79787eaa 361 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
362 start = extent_end + 1;
363 } else {
364 break;
365 }
366 }
367
368 if (start < end) {
369 size = end - start;
817d52f8 370 total_added += size;
ea6a478e 371 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 372 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
373 }
374
817d52f8 375 return total_added;
0f9dd46c
JB
376}
377
d458b054 378static noinline void caching_thread(struct btrfs_work *work)
e37c9e69 379{
bab39bf9
JB
380 struct btrfs_block_group_cache *block_group;
381 struct btrfs_fs_info *fs_info;
382 struct btrfs_caching_control *caching_ctl;
383 struct btrfs_root *extent_root;
e37c9e69 384 struct btrfs_path *path;
5f39d397 385 struct extent_buffer *leaf;
11833d66 386 struct btrfs_key key;
817d52f8 387 u64 total_found = 0;
11833d66
YZ
388 u64 last = 0;
389 u32 nritems;
36cce922 390 int ret = -ENOMEM;
f510cfec 391
bab39bf9
JB
392 caching_ctl = container_of(work, struct btrfs_caching_control, work);
393 block_group = caching_ctl->block_group;
394 fs_info = block_group->fs_info;
395 extent_root = fs_info->extent_root;
396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
bab39bf9 399 goto out;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
5cd57b2c 403 /*
817d52f8
JB
404 * We don't want to deadlock with somebody trying to allocate a new
405 * extent for the extent root while also trying to search the extent
406 * root to add free space. So we skip locking and search the commit
407 * root, since its read-only
5cd57b2c
CM
408 */
409 path->skip_locking = 1;
817d52f8 410 path->search_commit_root = 1;
026fd317 411 path->reada = 1;
817d52f8 412
e4404d6e 413 key.objectid = last;
e37c9e69 414 key.offset = 0;
11833d66 415 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 416again:
11833d66 417 mutex_lock(&caching_ctl->mutex);
013f1b12 418 /* need to make sure the commit_root doesn't disappear */
9e351cc8 419 down_read(&fs_info->commit_root_sem);
013f1b12 420
52ee28d2 421next:
11833d66 422 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 423 if (ret < 0)
ef8bbdfe 424 goto err;
a512bbf8 425
11833d66
YZ
426 leaf = path->nodes[0];
427 nritems = btrfs_header_nritems(leaf);
428
d397712b 429 while (1) {
7841cb28 430 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 431 last = (u64)-1;
817d52f8 432 break;
f25784b3 433 }
817d52f8 434
11833d66
YZ
435 if (path->slots[0] < nritems) {
436 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
437 } else {
438 ret = find_next_key(path, 0, &key);
439 if (ret)
e37c9e69 440 break;
817d52f8 441
c9ea7b24 442 if (need_resched() ||
9e351cc8 443 rwsem_is_contended(&fs_info->commit_root_sem)) {
589d8ade 444 caching_ctl->progress = last;
ff5714cc 445 btrfs_release_path(path);
9e351cc8 446 up_read(&fs_info->commit_root_sem);
589d8ade 447 mutex_unlock(&caching_ctl->mutex);
11833d66 448 cond_resched();
589d8ade
JB
449 goto again;
450 }
0a3896d0
JB
451
452 ret = btrfs_next_leaf(extent_root, path);
453 if (ret < 0)
454 goto err;
455 if (ret)
456 break;
589d8ade
JB
457 leaf = path->nodes[0];
458 nritems = btrfs_header_nritems(leaf);
459 continue;
11833d66 460 }
817d52f8 461
52ee28d2
LB
462 if (key.objectid < last) {
463 key.objectid = last;
464 key.offset = 0;
465 key.type = BTRFS_EXTENT_ITEM_KEY;
466
467 caching_ctl->progress = last;
468 btrfs_release_path(path);
469 goto next;
470 }
471
11833d66
YZ
472 if (key.objectid < block_group->key.objectid) {
473 path->slots[0]++;
817d52f8 474 continue;
e37c9e69 475 }
0f9dd46c 476
e37c9e69 477 if (key.objectid >= block_group->key.objectid +
0f9dd46c 478 block_group->key.offset)
e37c9e69 479 break;
7d7d6068 480
3173a18f
JB
481 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
482 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
483 total_found += add_new_free_space(block_group,
484 fs_info, last,
485 key.objectid);
3173a18f
JB
486 if (key.type == BTRFS_METADATA_ITEM_KEY)
487 last = key.objectid +
707e8a07 488 fs_info->tree_root->nodesize;
3173a18f
JB
489 else
490 last = key.objectid + key.offset;
817d52f8 491
11833d66
YZ
492 if (total_found > (1024 * 1024 * 2)) {
493 total_found = 0;
494 wake_up(&caching_ctl->wait);
495 }
817d52f8 496 }
e37c9e69
CM
497 path->slots[0]++;
498 }
817d52f8 499 ret = 0;
e37c9e69 500
817d52f8
JB
501 total_found += add_new_free_space(block_group, fs_info, last,
502 block_group->key.objectid +
503 block_group->key.offset);
11833d66 504 caching_ctl->progress = (u64)-1;
817d52f8
JB
505
506 spin_lock(&block_group->lock);
11833d66 507 block_group->caching_ctl = NULL;
817d52f8
JB
508 block_group->cached = BTRFS_CACHE_FINISHED;
509 spin_unlock(&block_group->lock);
0f9dd46c 510
54aa1f4d 511err:
e37c9e69 512 btrfs_free_path(path);
9e351cc8 513 up_read(&fs_info->commit_root_sem);
817d52f8 514
11833d66
YZ
515 free_excluded_extents(extent_root, block_group);
516
517 mutex_unlock(&caching_ctl->mutex);
bab39bf9 518out:
36cce922
JB
519 if (ret) {
520 spin_lock(&block_group->lock);
521 block_group->caching_ctl = NULL;
522 block_group->cached = BTRFS_CACHE_ERROR;
523 spin_unlock(&block_group->lock);
524 }
11833d66
YZ
525 wake_up(&caching_ctl->wait);
526
527 put_caching_control(caching_ctl);
11dfe35a 528 btrfs_put_block_group(block_group);
817d52f8
JB
529}
530
9d66e233 531static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 532 int load_cache_only)
817d52f8 533{
291c7d2f 534 DEFINE_WAIT(wait);
11833d66
YZ
535 struct btrfs_fs_info *fs_info = cache->fs_info;
536 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
537 int ret = 0;
538
291c7d2f 539 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
540 if (!caching_ctl)
541 return -ENOMEM;
291c7d2f
JB
542
543 INIT_LIST_HEAD(&caching_ctl->list);
544 mutex_init(&caching_ctl->mutex);
545 init_waitqueue_head(&caching_ctl->wait);
546 caching_ctl->block_group = cache;
547 caching_ctl->progress = cache->key.objectid;
548 atomic_set(&caching_ctl->count, 1);
9e0af237
LB
549 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
550 caching_thread, NULL, NULL);
291c7d2f
JB
551
552 spin_lock(&cache->lock);
553 /*
554 * This should be a rare occasion, but this could happen I think in the
555 * case where one thread starts to load the space cache info, and then
556 * some other thread starts a transaction commit which tries to do an
557 * allocation while the other thread is still loading the space cache
558 * info. The previous loop should have kept us from choosing this block
559 * group, but if we've moved to the state where we will wait on caching
560 * block groups we need to first check if we're doing a fast load here,
561 * so we can wait for it to finish, otherwise we could end up allocating
562 * from a block group who's cache gets evicted for one reason or
563 * another.
564 */
565 while (cache->cached == BTRFS_CACHE_FAST) {
566 struct btrfs_caching_control *ctl;
567
568 ctl = cache->caching_ctl;
569 atomic_inc(&ctl->count);
570 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
571 spin_unlock(&cache->lock);
572
573 schedule();
574
575 finish_wait(&ctl->wait, &wait);
576 put_caching_control(ctl);
577 spin_lock(&cache->lock);
578 }
579
580 if (cache->cached != BTRFS_CACHE_NO) {
581 spin_unlock(&cache->lock);
582 kfree(caching_ctl);
11833d66 583 return 0;
291c7d2f
JB
584 }
585 WARN_ON(cache->caching_ctl);
586 cache->caching_ctl = caching_ctl;
587 cache->cached = BTRFS_CACHE_FAST;
588 spin_unlock(&cache->lock);
11833d66 589
d53ba474 590 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
cb83b7b8 591 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
592 ret = load_free_space_cache(fs_info, cache);
593
594 spin_lock(&cache->lock);
595 if (ret == 1) {
291c7d2f 596 cache->caching_ctl = NULL;
9d66e233
JB
597 cache->cached = BTRFS_CACHE_FINISHED;
598 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 599 caching_ctl->progress = (u64)-1;
9d66e233 600 } else {
291c7d2f
JB
601 if (load_cache_only) {
602 cache->caching_ctl = NULL;
603 cache->cached = BTRFS_CACHE_NO;
604 } else {
605 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 606 cache->has_caching_ctl = 1;
291c7d2f 607 }
9d66e233
JB
608 }
609 spin_unlock(&cache->lock);
cb83b7b8
JB
610 mutex_unlock(&caching_ctl->mutex);
611
291c7d2f 612 wake_up(&caching_ctl->wait);
3c14874a 613 if (ret == 1) {
291c7d2f 614 put_caching_control(caching_ctl);
3c14874a 615 free_excluded_extents(fs_info->extent_root, cache);
9d66e233 616 return 0;
3c14874a 617 }
291c7d2f
JB
618 } else {
619 /*
620 * We are not going to do the fast caching, set cached to the
621 * appropriate value and wakeup any waiters.
622 */
623 spin_lock(&cache->lock);
624 if (load_cache_only) {
625 cache->caching_ctl = NULL;
626 cache->cached = BTRFS_CACHE_NO;
627 } else {
628 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 629 cache->has_caching_ctl = 1;
291c7d2f
JB
630 }
631 spin_unlock(&cache->lock);
632 wake_up(&caching_ctl->wait);
9d66e233
JB
633 }
634
291c7d2f
JB
635 if (load_cache_only) {
636 put_caching_control(caching_ctl);
11833d66 637 return 0;
817d52f8 638 }
817d52f8 639
9e351cc8 640 down_write(&fs_info->commit_root_sem);
291c7d2f 641 atomic_inc(&caching_ctl->count);
11833d66 642 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 643 up_write(&fs_info->commit_root_sem);
11833d66 644
11dfe35a 645 btrfs_get_block_group(cache);
11833d66 646
e66f0bb1 647 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 648
ef8bbdfe 649 return ret;
e37c9e69
CM
650}
651
0f9dd46c
JB
652/*
653 * return the block group that starts at or after bytenr
654 */
d397712b
CM
655static struct btrfs_block_group_cache *
656btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 657{
0f9dd46c 658 struct btrfs_block_group_cache *cache;
0ef3e66b 659
0f9dd46c 660 cache = block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b 661
0f9dd46c 662 return cache;
0ef3e66b
CM
663}
664
0f9dd46c 665/*
9f55684c 666 * return the block group that contains the given bytenr
0f9dd46c 667 */
d397712b
CM
668struct btrfs_block_group_cache *btrfs_lookup_block_group(
669 struct btrfs_fs_info *info,
670 u64 bytenr)
be744175 671{
0f9dd46c 672 struct btrfs_block_group_cache *cache;
be744175 673
0f9dd46c 674 cache = block_group_cache_tree_search(info, bytenr, 1);
96b5179d 675
0f9dd46c 676 return cache;
be744175 677}
0b86a832 678
0f9dd46c
JB
679static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
680 u64 flags)
6324fbf3 681{
0f9dd46c 682 struct list_head *head = &info->space_info;
0f9dd46c 683 struct btrfs_space_info *found;
4184ea7f 684
52ba6929 685 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 686
4184ea7f
CM
687 rcu_read_lock();
688 list_for_each_entry_rcu(found, head, list) {
67377734 689 if (found->flags & flags) {
4184ea7f 690 rcu_read_unlock();
0f9dd46c 691 return found;
4184ea7f 692 }
0f9dd46c 693 }
4184ea7f 694 rcu_read_unlock();
0f9dd46c 695 return NULL;
6324fbf3
CM
696}
697
4184ea7f
CM
698/*
699 * after adding space to the filesystem, we need to clear the full flags
700 * on all the space infos.
701 */
702void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
703{
704 struct list_head *head = &info->space_info;
705 struct btrfs_space_info *found;
706
707 rcu_read_lock();
708 list_for_each_entry_rcu(found, head, list)
709 found->full = 0;
710 rcu_read_unlock();
711}
712
1a4ed8fd
FM
713/* simple helper to search for an existing data extent at a given offset */
714int btrfs_lookup_data_extent(struct btrfs_root *root, u64 start, u64 len)
e02119d5
CM
715{
716 int ret;
717 struct btrfs_key key;
31840ae1 718 struct btrfs_path *path;
e02119d5 719
31840ae1 720 path = btrfs_alloc_path();
d8926bb3
MF
721 if (!path)
722 return -ENOMEM;
723
e02119d5
CM
724 key.objectid = start;
725 key.offset = len;
3173a18f 726 key.type = BTRFS_EXTENT_ITEM_KEY;
e02119d5
CM
727 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
728 0, 0);
31840ae1 729 btrfs_free_path(path);
7bb86316
CM
730 return ret;
731}
732
a22285a6 733/*
3173a18f 734 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
735 *
736 * the head node for delayed ref is used to store the sum of all the
737 * reference count modifications queued up in the rbtree. the head
738 * node may also store the extent flags to set. This way you can check
739 * to see what the reference count and extent flags would be if all of
740 * the delayed refs are not processed.
741 */
742int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
743 struct btrfs_root *root, u64 bytenr,
3173a18f 744 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
745{
746 struct btrfs_delayed_ref_head *head;
747 struct btrfs_delayed_ref_root *delayed_refs;
748 struct btrfs_path *path;
749 struct btrfs_extent_item *ei;
750 struct extent_buffer *leaf;
751 struct btrfs_key key;
752 u32 item_size;
753 u64 num_refs;
754 u64 extent_flags;
755 int ret;
756
3173a18f
JB
757 /*
758 * If we don't have skinny metadata, don't bother doing anything
759 * different
760 */
761 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA)) {
707e8a07 762 offset = root->nodesize;
3173a18f
JB
763 metadata = 0;
764 }
765
a22285a6
YZ
766 path = btrfs_alloc_path();
767 if (!path)
768 return -ENOMEM;
769
a22285a6
YZ
770 if (!trans) {
771 path->skip_locking = 1;
772 path->search_commit_root = 1;
773 }
639eefc8
FDBM
774
775search_again:
776 key.objectid = bytenr;
777 key.offset = offset;
778 if (metadata)
779 key.type = BTRFS_METADATA_ITEM_KEY;
780 else
781 key.type = BTRFS_EXTENT_ITEM_KEY;
782
a22285a6
YZ
783 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
784 &key, path, 0, 0);
785 if (ret < 0)
786 goto out_free;
787
3173a18f 788 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
789 if (path->slots[0]) {
790 path->slots[0]--;
791 btrfs_item_key_to_cpu(path->nodes[0], &key,
792 path->slots[0]);
793 if (key.objectid == bytenr &&
794 key.type == BTRFS_EXTENT_ITEM_KEY &&
707e8a07 795 key.offset == root->nodesize)
74be9510
FDBM
796 ret = 0;
797 }
3173a18f
JB
798 }
799
a22285a6
YZ
800 if (ret == 0) {
801 leaf = path->nodes[0];
802 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
803 if (item_size >= sizeof(*ei)) {
804 ei = btrfs_item_ptr(leaf, path->slots[0],
805 struct btrfs_extent_item);
806 num_refs = btrfs_extent_refs(leaf, ei);
807 extent_flags = btrfs_extent_flags(leaf, ei);
808 } else {
809#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
810 struct btrfs_extent_item_v0 *ei0;
811 BUG_ON(item_size != sizeof(*ei0));
812 ei0 = btrfs_item_ptr(leaf, path->slots[0],
813 struct btrfs_extent_item_v0);
814 num_refs = btrfs_extent_refs_v0(leaf, ei0);
815 /* FIXME: this isn't correct for data */
816 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
817#else
818 BUG();
819#endif
820 }
821 BUG_ON(num_refs == 0);
822 } else {
823 num_refs = 0;
824 extent_flags = 0;
825 ret = 0;
826 }
827
828 if (!trans)
829 goto out;
830
831 delayed_refs = &trans->transaction->delayed_refs;
832 spin_lock(&delayed_refs->lock);
833 head = btrfs_find_delayed_ref_head(trans, bytenr);
834 if (head) {
835 if (!mutex_trylock(&head->mutex)) {
836 atomic_inc(&head->node.refs);
837 spin_unlock(&delayed_refs->lock);
838
b3b4aa74 839 btrfs_release_path(path);
a22285a6 840
8cc33e5c
DS
841 /*
842 * Mutex was contended, block until it's released and try
843 * again
844 */
a22285a6
YZ
845 mutex_lock(&head->mutex);
846 mutex_unlock(&head->mutex);
847 btrfs_put_delayed_ref(&head->node);
639eefc8 848 goto search_again;
a22285a6 849 }
d7df2c79 850 spin_lock(&head->lock);
a22285a6
YZ
851 if (head->extent_op && head->extent_op->update_flags)
852 extent_flags |= head->extent_op->flags_to_set;
853 else
854 BUG_ON(num_refs == 0);
855
856 num_refs += head->node.ref_mod;
d7df2c79 857 spin_unlock(&head->lock);
a22285a6
YZ
858 mutex_unlock(&head->mutex);
859 }
860 spin_unlock(&delayed_refs->lock);
861out:
862 WARN_ON(num_refs == 0);
863 if (refs)
864 *refs = num_refs;
865 if (flags)
866 *flags = extent_flags;
867out_free:
868 btrfs_free_path(path);
869 return ret;
870}
871
d8d5f3e1
CM
872/*
873 * Back reference rules. Back refs have three main goals:
874 *
875 * 1) differentiate between all holders of references to an extent so that
876 * when a reference is dropped we can make sure it was a valid reference
877 * before freeing the extent.
878 *
879 * 2) Provide enough information to quickly find the holders of an extent
880 * if we notice a given block is corrupted or bad.
881 *
882 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
883 * maintenance. This is actually the same as #2, but with a slightly
884 * different use case.
885 *
5d4f98a2
YZ
886 * There are two kinds of back refs. The implicit back refs is optimized
887 * for pointers in non-shared tree blocks. For a given pointer in a block,
888 * back refs of this kind provide information about the block's owner tree
889 * and the pointer's key. These information allow us to find the block by
890 * b-tree searching. The full back refs is for pointers in tree blocks not
891 * referenced by their owner trees. The location of tree block is recorded
892 * in the back refs. Actually the full back refs is generic, and can be
893 * used in all cases the implicit back refs is used. The major shortcoming
894 * of the full back refs is its overhead. Every time a tree block gets
895 * COWed, we have to update back refs entry for all pointers in it.
896 *
897 * For a newly allocated tree block, we use implicit back refs for
898 * pointers in it. This means most tree related operations only involve
899 * implicit back refs. For a tree block created in old transaction, the
900 * only way to drop a reference to it is COW it. So we can detect the
901 * event that tree block loses its owner tree's reference and do the
902 * back refs conversion.
903 *
904 * When a tree block is COW'd through a tree, there are four cases:
905 *
906 * The reference count of the block is one and the tree is the block's
907 * owner tree. Nothing to do in this case.
908 *
909 * The reference count of the block is one and the tree is not the
910 * block's owner tree. In this case, full back refs is used for pointers
911 * in the block. Remove these full back refs, add implicit back refs for
912 * every pointers in the new block.
913 *
914 * The reference count of the block is greater than one and the tree is
915 * the block's owner tree. In this case, implicit back refs is used for
916 * pointers in the block. Add full back refs for every pointers in the
917 * block, increase lower level extents' reference counts. The original
918 * implicit back refs are entailed to the new block.
919 *
920 * The reference count of the block is greater than one and the tree is
921 * not the block's owner tree. Add implicit back refs for every pointer in
922 * the new block, increase lower level extents' reference count.
923 *
924 * Back Reference Key composing:
925 *
926 * The key objectid corresponds to the first byte in the extent,
927 * The key type is used to differentiate between types of back refs.
928 * There are different meanings of the key offset for different types
929 * of back refs.
930 *
d8d5f3e1
CM
931 * File extents can be referenced by:
932 *
933 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 934 * - different files inside a single subvolume
d8d5f3e1
CM
935 * - different offsets inside a file (bookend extents in file.c)
936 *
5d4f98a2 937 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
938 *
939 * - Objectid of the subvolume root
d8d5f3e1 940 * - objectid of the file holding the reference
5d4f98a2
YZ
941 * - original offset in the file
942 * - how many bookend extents
d8d5f3e1 943 *
5d4f98a2
YZ
944 * The key offset for the implicit back refs is hash of the first
945 * three fields.
d8d5f3e1 946 *
5d4f98a2 947 * The extent ref structure for the full back refs has field for:
d8d5f3e1 948 *
5d4f98a2 949 * - number of pointers in the tree leaf
d8d5f3e1 950 *
5d4f98a2
YZ
951 * The key offset for the implicit back refs is the first byte of
952 * the tree leaf
d8d5f3e1 953 *
5d4f98a2
YZ
954 * When a file extent is allocated, The implicit back refs is used.
955 * the fields are filled in:
d8d5f3e1 956 *
5d4f98a2 957 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 958 *
5d4f98a2
YZ
959 * When a file extent is removed file truncation, we find the
960 * corresponding implicit back refs and check the following fields:
d8d5f3e1 961 *
5d4f98a2 962 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 963 *
5d4f98a2 964 * Btree extents can be referenced by:
d8d5f3e1 965 *
5d4f98a2 966 * - Different subvolumes
d8d5f3e1 967 *
5d4f98a2
YZ
968 * Both the implicit back refs and the full back refs for tree blocks
969 * only consist of key. The key offset for the implicit back refs is
970 * objectid of block's owner tree. The key offset for the full back refs
971 * is the first byte of parent block.
d8d5f3e1 972 *
5d4f98a2
YZ
973 * When implicit back refs is used, information about the lowest key and
974 * level of the tree block are required. These information are stored in
975 * tree block info structure.
d8d5f3e1 976 */
31840ae1 977
5d4f98a2
YZ
978#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
979static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
980 struct btrfs_root *root,
981 struct btrfs_path *path,
982 u64 owner, u32 extra_size)
7bb86316 983{
5d4f98a2
YZ
984 struct btrfs_extent_item *item;
985 struct btrfs_extent_item_v0 *ei0;
986 struct btrfs_extent_ref_v0 *ref0;
987 struct btrfs_tree_block_info *bi;
988 struct extent_buffer *leaf;
7bb86316 989 struct btrfs_key key;
5d4f98a2
YZ
990 struct btrfs_key found_key;
991 u32 new_size = sizeof(*item);
992 u64 refs;
993 int ret;
994
995 leaf = path->nodes[0];
996 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
997
998 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
999 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_extent_item_v0);
1001 refs = btrfs_extent_refs_v0(leaf, ei0);
1002
1003 if (owner == (u64)-1) {
1004 while (1) {
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 return ret;
79787eaa 1009 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1010 leaf = path->nodes[0];
1011 }
1012 btrfs_item_key_to_cpu(leaf, &found_key,
1013 path->slots[0]);
1014 BUG_ON(key.objectid != found_key.objectid);
1015 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1016 path->slots[0]++;
1017 continue;
1018 }
1019 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1020 struct btrfs_extent_ref_v0);
1021 owner = btrfs_ref_objectid_v0(leaf, ref0);
1022 break;
1023 }
1024 }
b3b4aa74 1025 btrfs_release_path(path);
5d4f98a2
YZ
1026
1027 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1028 new_size += sizeof(*bi);
1029
1030 new_size -= sizeof(*ei0);
1031 ret = btrfs_search_slot(trans, root, &key, path,
1032 new_size + extra_size, 1);
1033 if (ret < 0)
1034 return ret;
79787eaa 1035 BUG_ON(ret); /* Corruption */
5d4f98a2 1036
4b90c680 1037 btrfs_extend_item(root, path, new_size);
5d4f98a2
YZ
1038
1039 leaf = path->nodes[0];
1040 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1041 btrfs_set_extent_refs(leaf, item, refs);
1042 /* FIXME: get real generation */
1043 btrfs_set_extent_generation(leaf, item, 0);
1044 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1045 btrfs_set_extent_flags(leaf, item,
1046 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1047 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1048 bi = (struct btrfs_tree_block_info *)(item + 1);
1049 /* FIXME: get first key of the block */
1050 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1051 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1052 } else {
1053 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1054 }
1055 btrfs_mark_buffer_dirty(leaf);
1056 return 0;
1057}
1058#endif
1059
1060static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1061{
1062 u32 high_crc = ~(u32)0;
1063 u32 low_crc = ~(u32)0;
1064 __le64 lenum;
1065
1066 lenum = cpu_to_le64(root_objectid);
14a958e6 1067 high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1068 lenum = cpu_to_le64(owner);
14a958e6 1069 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1070 lenum = cpu_to_le64(offset);
14a958e6 1071 low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1072
1073 return ((u64)high_crc << 31) ^ (u64)low_crc;
1074}
1075
1076static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1077 struct btrfs_extent_data_ref *ref)
1078{
1079 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1080 btrfs_extent_data_ref_objectid(leaf, ref),
1081 btrfs_extent_data_ref_offset(leaf, ref));
1082}
1083
1084static int match_extent_data_ref(struct extent_buffer *leaf,
1085 struct btrfs_extent_data_ref *ref,
1086 u64 root_objectid, u64 owner, u64 offset)
1087{
1088 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1089 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1090 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1091 return 0;
1092 return 1;
1093}
1094
1095static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1096 struct btrfs_root *root,
1097 struct btrfs_path *path,
1098 u64 bytenr, u64 parent,
1099 u64 root_objectid,
1100 u64 owner, u64 offset)
1101{
1102 struct btrfs_key key;
1103 struct btrfs_extent_data_ref *ref;
31840ae1 1104 struct extent_buffer *leaf;
5d4f98a2 1105 u32 nritems;
74493f7a 1106 int ret;
5d4f98a2
YZ
1107 int recow;
1108 int err = -ENOENT;
74493f7a 1109
31840ae1 1110 key.objectid = bytenr;
5d4f98a2
YZ
1111 if (parent) {
1112 key.type = BTRFS_SHARED_DATA_REF_KEY;
1113 key.offset = parent;
1114 } else {
1115 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1116 key.offset = hash_extent_data_ref(root_objectid,
1117 owner, offset);
1118 }
1119again:
1120 recow = 0;
1121 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1122 if (ret < 0) {
1123 err = ret;
1124 goto fail;
1125 }
31840ae1 1126
5d4f98a2
YZ
1127 if (parent) {
1128 if (!ret)
1129 return 0;
1130#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1131 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1132 btrfs_release_path(path);
5d4f98a2
YZ
1133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1134 if (ret < 0) {
1135 err = ret;
1136 goto fail;
1137 }
1138 if (!ret)
1139 return 0;
1140#endif
1141 goto fail;
31840ae1
ZY
1142 }
1143
1144 leaf = path->nodes[0];
5d4f98a2
YZ
1145 nritems = btrfs_header_nritems(leaf);
1146 while (1) {
1147 if (path->slots[0] >= nritems) {
1148 ret = btrfs_next_leaf(root, path);
1149 if (ret < 0)
1150 err = ret;
1151 if (ret)
1152 goto fail;
1153
1154 leaf = path->nodes[0];
1155 nritems = btrfs_header_nritems(leaf);
1156 recow = 1;
1157 }
1158
1159 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1160 if (key.objectid != bytenr ||
1161 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1162 goto fail;
1163
1164 ref = btrfs_item_ptr(leaf, path->slots[0],
1165 struct btrfs_extent_data_ref);
1166
1167 if (match_extent_data_ref(leaf, ref, root_objectid,
1168 owner, offset)) {
1169 if (recow) {
b3b4aa74 1170 btrfs_release_path(path);
5d4f98a2
YZ
1171 goto again;
1172 }
1173 err = 0;
1174 break;
1175 }
1176 path->slots[0]++;
31840ae1 1177 }
5d4f98a2
YZ
1178fail:
1179 return err;
31840ae1
ZY
1180}
1181
5d4f98a2
YZ
1182static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1183 struct btrfs_root *root,
1184 struct btrfs_path *path,
1185 u64 bytenr, u64 parent,
1186 u64 root_objectid, u64 owner,
1187 u64 offset, int refs_to_add)
31840ae1
ZY
1188{
1189 struct btrfs_key key;
1190 struct extent_buffer *leaf;
5d4f98a2 1191 u32 size;
31840ae1
ZY
1192 u32 num_refs;
1193 int ret;
74493f7a 1194
74493f7a 1195 key.objectid = bytenr;
5d4f98a2
YZ
1196 if (parent) {
1197 key.type = BTRFS_SHARED_DATA_REF_KEY;
1198 key.offset = parent;
1199 size = sizeof(struct btrfs_shared_data_ref);
1200 } else {
1201 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1202 key.offset = hash_extent_data_ref(root_objectid,
1203 owner, offset);
1204 size = sizeof(struct btrfs_extent_data_ref);
1205 }
74493f7a 1206
5d4f98a2
YZ
1207 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1208 if (ret && ret != -EEXIST)
1209 goto fail;
1210
1211 leaf = path->nodes[0];
1212 if (parent) {
1213 struct btrfs_shared_data_ref *ref;
31840ae1 1214 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1215 struct btrfs_shared_data_ref);
1216 if (ret == 0) {
1217 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1218 } else {
1219 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1220 num_refs += refs_to_add;
1221 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1222 }
5d4f98a2
YZ
1223 } else {
1224 struct btrfs_extent_data_ref *ref;
1225 while (ret == -EEXIST) {
1226 ref = btrfs_item_ptr(leaf, path->slots[0],
1227 struct btrfs_extent_data_ref);
1228 if (match_extent_data_ref(leaf, ref, root_objectid,
1229 owner, offset))
1230 break;
b3b4aa74 1231 btrfs_release_path(path);
5d4f98a2
YZ
1232 key.offset++;
1233 ret = btrfs_insert_empty_item(trans, root, path, &key,
1234 size);
1235 if (ret && ret != -EEXIST)
1236 goto fail;
31840ae1 1237
5d4f98a2
YZ
1238 leaf = path->nodes[0];
1239 }
1240 ref = btrfs_item_ptr(leaf, path->slots[0],
1241 struct btrfs_extent_data_ref);
1242 if (ret == 0) {
1243 btrfs_set_extent_data_ref_root(leaf, ref,
1244 root_objectid);
1245 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1246 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1247 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1248 } else {
1249 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1250 num_refs += refs_to_add;
1251 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1252 }
31840ae1 1253 }
5d4f98a2
YZ
1254 btrfs_mark_buffer_dirty(leaf);
1255 ret = 0;
1256fail:
b3b4aa74 1257 btrfs_release_path(path);
7bb86316 1258 return ret;
74493f7a
CM
1259}
1260
5d4f98a2
YZ
1261static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1262 struct btrfs_root *root,
1263 struct btrfs_path *path,
fcebe456 1264 int refs_to_drop, int *last_ref)
31840ae1 1265{
5d4f98a2
YZ
1266 struct btrfs_key key;
1267 struct btrfs_extent_data_ref *ref1 = NULL;
1268 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1269 struct extent_buffer *leaf;
5d4f98a2 1270 u32 num_refs = 0;
31840ae1
ZY
1271 int ret = 0;
1272
1273 leaf = path->nodes[0];
5d4f98a2
YZ
1274 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1275
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1277 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1278 struct btrfs_extent_data_ref);
1279 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1280 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1281 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1282 struct btrfs_shared_data_ref);
1283 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1284#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1285 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1286 struct btrfs_extent_ref_v0 *ref0;
1287 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_ref_v0);
1289 num_refs = btrfs_ref_count_v0(leaf, ref0);
1290#endif
1291 } else {
1292 BUG();
1293 }
1294
56bec294
CM
1295 BUG_ON(num_refs < refs_to_drop);
1296 num_refs -= refs_to_drop;
5d4f98a2 1297
31840ae1
ZY
1298 if (num_refs == 0) {
1299 ret = btrfs_del_item(trans, root, path);
fcebe456 1300 *last_ref = 1;
31840ae1 1301 } else {
5d4f98a2
YZ
1302 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1303 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1304 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1305 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1306#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1307 else {
1308 struct btrfs_extent_ref_v0 *ref0;
1309 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1310 struct btrfs_extent_ref_v0);
1311 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1312 }
1313#endif
31840ae1
ZY
1314 btrfs_mark_buffer_dirty(leaf);
1315 }
31840ae1
ZY
1316 return ret;
1317}
1318
5d4f98a2
YZ
1319static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1320 struct btrfs_path *path,
1321 struct btrfs_extent_inline_ref *iref)
15916de8 1322{
5d4f98a2
YZ
1323 struct btrfs_key key;
1324 struct extent_buffer *leaf;
1325 struct btrfs_extent_data_ref *ref1;
1326 struct btrfs_shared_data_ref *ref2;
1327 u32 num_refs = 0;
1328
1329 leaf = path->nodes[0];
1330 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1331 if (iref) {
1332 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1333 BTRFS_EXTENT_DATA_REF_KEY) {
1334 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1335 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1336 } else {
1337 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1338 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1339 }
1340 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1341 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1342 struct btrfs_extent_data_ref);
1343 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1344 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1345 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_shared_data_ref);
1347 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1348#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1349 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1350 struct btrfs_extent_ref_v0 *ref0;
1351 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1352 struct btrfs_extent_ref_v0);
1353 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1354#endif
5d4f98a2
YZ
1355 } else {
1356 WARN_ON(1);
1357 }
1358 return num_refs;
1359}
15916de8 1360
5d4f98a2
YZ
1361static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1362 struct btrfs_root *root,
1363 struct btrfs_path *path,
1364 u64 bytenr, u64 parent,
1365 u64 root_objectid)
1f3c79a2 1366{
5d4f98a2 1367 struct btrfs_key key;
1f3c79a2 1368 int ret;
1f3c79a2 1369
5d4f98a2
YZ
1370 key.objectid = bytenr;
1371 if (parent) {
1372 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1373 key.offset = parent;
1374 } else {
1375 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1376 key.offset = root_objectid;
1f3c79a2
LH
1377 }
1378
5d4f98a2
YZ
1379 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1380 if (ret > 0)
1381 ret = -ENOENT;
1382#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1383 if (ret == -ENOENT && parent) {
b3b4aa74 1384 btrfs_release_path(path);
5d4f98a2
YZ
1385 key.type = BTRFS_EXTENT_REF_V0_KEY;
1386 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1387 if (ret > 0)
1388 ret = -ENOENT;
1389 }
1f3c79a2 1390#endif
5d4f98a2 1391 return ret;
1f3c79a2
LH
1392}
1393
5d4f98a2
YZ
1394static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1395 struct btrfs_root *root,
1396 struct btrfs_path *path,
1397 u64 bytenr, u64 parent,
1398 u64 root_objectid)
31840ae1 1399{
5d4f98a2 1400 struct btrfs_key key;
31840ae1 1401 int ret;
31840ae1 1402
5d4f98a2
YZ
1403 key.objectid = bytenr;
1404 if (parent) {
1405 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1406 key.offset = parent;
1407 } else {
1408 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1409 key.offset = root_objectid;
1410 }
1411
1412 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
b3b4aa74 1413 btrfs_release_path(path);
31840ae1
ZY
1414 return ret;
1415}
1416
5d4f98a2 1417static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1418{
5d4f98a2
YZ
1419 int type;
1420 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1421 if (parent > 0)
1422 type = BTRFS_SHARED_BLOCK_REF_KEY;
1423 else
1424 type = BTRFS_TREE_BLOCK_REF_KEY;
1425 } else {
1426 if (parent > 0)
1427 type = BTRFS_SHARED_DATA_REF_KEY;
1428 else
1429 type = BTRFS_EXTENT_DATA_REF_KEY;
1430 }
1431 return type;
31840ae1 1432}
56bec294 1433
2c47e605
YZ
1434static int find_next_key(struct btrfs_path *path, int level,
1435 struct btrfs_key *key)
56bec294 1436
02217ed2 1437{
2c47e605 1438 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1439 if (!path->nodes[level])
1440 break;
5d4f98a2
YZ
1441 if (path->slots[level] + 1 >=
1442 btrfs_header_nritems(path->nodes[level]))
1443 continue;
1444 if (level == 0)
1445 btrfs_item_key_to_cpu(path->nodes[level], key,
1446 path->slots[level] + 1);
1447 else
1448 btrfs_node_key_to_cpu(path->nodes[level], key,
1449 path->slots[level] + 1);
1450 return 0;
1451 }
1452 return 1;
1453}
037e6390 1454
5d4f98a2
YZ
1455/*
1456 * look for inline back ref. if back ref is found, *ref_ret is set
1457 * to the address of inline back ref, and 0 is returned.
1458 *
1459 * if back ref isn't found, *ref_ret is set to the address where it
1460 * should be inserted, and -ENOENT is returned.
1461 *
1462 * if insert is true and there are too many inline back refs, the path
1463 * points to the extent item, and -EAGAIN is returned.
1464 *
1465 * NOTE: inline back refs are ordered in the same way that back ref
1466 * items in the tree are ordered.
1467 */
1468static noinline_for_stack
1469int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1470 struct btrfs_root *root,
1471 struct btrfs_path *path,
1472 struct btrfs_extent_inline_ref **ref_ret,
1473 u64 bytenr, u64 num_bytes,
1474 u64 parent, u64 root_objectid,
1475 u64 owner, u64 offset, int insert)
1476{
1477 struct btrfs_key key;
1478 struct extent_buffer *leaf;
1479 struct btrfs_extent_item *ei;
1480 struct btrfs_extent_inline_ref *iref;
1481 u64 flags;
1482 u64 item_size;
1483 unsigned long ptr;
1484 unsigned long end;
1485 int extra_size;
1486 int type;
1487 int want;
1488 int ret;
1489 int err = 0;
3173a18f
JB
1490 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
1491 SKINNY_METADATA);
26b8003f 1492
db94535d 1493 key.objectid = bytenr;
31840ae1 1494 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1495 key.offset = num_bytes;
31840ae1 1496
5d4f98a2
YZ
1497 want = extent_ref_type(parent, owner);
1498 if (insert) {
1499 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1500 path->keep_locks = 1;
5d4f98a2
YZ
1501 } else
1502 extra_size = -1;
3173a18f
JB
1503
1504 /*
1505 * Owner is our parent level, so we can just add one to get the level
1506 * for the block we are interested in.
1507 */
1508 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1509 key.type = BTRFS_METADATA_ITEM_KEY;
1510 key.offset = owner;
1511 }
1512
1513again:
5d4f98a2 1514 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1515 if (ret < 0) {
5d4f98a2
YZ
1516 err = ret;
1517 goto out;
1518 }
3173a18f
JB
1519
1520 /*
1521 * We may be a newly converted file system which still has the old fat
1522 * extent entries for metadata, so try and see if we have one of those.
1523 */
1524 if (ret > 0 && skinny_metadata) {
1525 skinny_metadata = false;
1526 if (path->slots[0]) {
1527 path->slots[0]--;
1528 btrfs_item_key_to_cpu(path->nodes[0], &key,
1529 path->slots[0]);
1530 if (key.objectid == bytenr &&
1531 key.type == BTRFS_EXTENT_ITEM_KEY &&
1532 key.offset == num_bytes)
1533 ret = 0;
1534 }
1535 if (ret) {
9ce49a0b 1536 key.objectid = bytenr;
3173a18f
JB
1537 key.type = BTRFS_EXTENT_ITEM_KEY;
1538 key.offset = num_bytes;
1539 btrfs_release_path(path);
1540 goto again;
1541 }
1542 }
1543
79787eaa
JM
1544 if (ret && !insert) {
1545 err = -ENOENT;
1546 goto out;
fae7f21c 1547 } else if (WARN_ON(ret)) {
492104c8 1548 err = -EIO;
492104c8 1549 goto out;
79787eaa 1550 }
5d4f98a2
YZ
1551
1552 leaf = path->nodes[0];
1553 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1554#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1555 if (item_size < sizeof(*ei)) {
1556 if (!insert) {
1557 err = -ENOENT;
1558 goto out;
1559 }
1560 ret = convert_extent_item_v0(trans, root, path, owner,
1561 extra_size);
1562 if (ret < 0) {
1563 err = ret;
1564 goto out;
1565 }
1566 leaf = path->nodes[0];
1567 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1568 }
1569#endif
1570 BUG_ON(item_size < sizeof(*ei));
1571
5d4f98a2
YZ
1572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1573 flags = btrfs_extent_flags(leaf, ei);
1574
1575 ptr = (unsigned long)(ei + 1);
1576 end = (unsigned long)ei + item_size;
1577
3173a18f 1578 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1579 ptr += sizeof(struct btrfs_tree_block_info);
1580 BUG_ON(ptr > end);
5d4f98a2
YZ
1581 }
1582
1583 err = -ENOENT;
1584 while (1) {
1585 if (ptr >= end) {
1586 WARN_ON(ptr > end);
1587 break;
1588 }
1589 iref = (struct btrfs_extent_inline_ref *)ptr;
1590 type = btrfs_extent_inline_ref_type(leaf, iref);
1591 if (want < type)
1592 break;
1593 if (want > type) {
1594 ptr += btrfs_extent_inline_ref_size(type);
1595 continue;
1596 }
1597
1598 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1599 struct btrfs_extent_data_ref *dref;
1600 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1601 if (match_extent_data_ref(leaf, dref, root_objectid,
1602 owner, offset)) {
1603 err = 0;
1604 break;
1605 }
1606 if (hash_extent_data_ref_item(leaf, dref) <
1607 hash_extent_data_ref(root_objectid, owner, offset))
1608 break;
1609 } else {
1610 u64 ref_offset;
1611 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1612 if (parent > 0) {
1613 if (parent == ref_offset) {
1614 err = 0;
1615 break;
1616 }
1617 if (ref_offset < parent)
1618 break;
1619 } else {
1620 if (root_objectid == ref_offset) {
1621 err = 0;
1622 break;
1623 }
1624 if (ref_offset < root_objectid)
1625 break;
1626 }
1627 }
1628 ptr += btrfs_extent_inline_ref_size(type);
1629 }
1630 if (err == -ENOENT && insert) {
1631 if (item_size + extra_size >=
1632 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1633 err = -EAGAIN;
1634 goto out;
1635 }
1636 /*
1637 * To add new inline back ref, we have to make sure
1638 * there is no corresponding back ref item.
1639 * For simplicity, we just do not add new inline back
1640 * ref if there is any kind of item for this block
1641 */
2c47e605
YZ
1642 if (find_next_key(path, 0, &key) == 0 &&
1643 key.objectid == bytenr &&
85d4198e 1644 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1645 err = -EAGAIN;
1646 goto out;
1647 }
1648 }
1649 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1650out:
85d4198e 1651 if (insert) {
5d4f98a2
YZ
1652 path->keep_locks = 0;
1653 btrfs_unlock_up_safe(path, 1);
1654 }
1655 return err;
1656}
1657
1658/*
1659 * helper to add new inline back ref
1660 */
1661static noinline_for_stack
fd279fae 1662void setup_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1663 struct btrfs_path *path,
1664 struct btrfs_extent_inline_ref *iref,
1665 u64 parent, u64 root_objectid,
1666 u64 owner, u64 offset, int refs_to_add,
1667 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1668{
1669 struct extent_buffer *leaf;
1670 struct btrfs_extent_item *ei;
1671 unsigned long ptr;
1672 unsigned long end;
1673 unsigned long item_offset;
1674 u64 refs;
1675 int size;
1676 int type;
5d4f98a2
YZ
1677
1678 leaf = path->nodes[0];
1679 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1680 item_offset = (unsigned long)iref - (unsigned long)ei;
1681
1682 type = extent_ref_type(parent, owner);
1683 size = btrfs_extent_inline_ref_size(type);
1684
4b90c680 1685 btrfs_extend_item(root, path, size);
5d4f98a2
YZ
1686
1687 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1688 refs = btrfs_extent_refs(leaf, ei);
1689 refs += refs_to_add;
1690 btrfs_set_extent_refs(leaf, ei, refs);
1691 if (extent_op)
1692 __run_delayed_extent_op(extent_op, leaf, ei);
1693
1694 ptr = (unsigned long)ei + item_offset;
1695 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1696 if (ptr < end - size)
1697 memmove_extent_buffer(leaf, ptr + size, ptr,
1698 end - size - ptr);
1699
1700 iref = (struct btrfs_extent_inline_ref *)ptr;
1701 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1702 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1703 struct btrfs_extent_data_ref *dref;
1704 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1705 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1706 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1707 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1708 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1709 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1710 struct btrfs_shared_data_ref *sref;
1711 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1712 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1713 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1714 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1715 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1716 } else {
1717 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1718 }
1719 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1720}
1721
1722static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1723 struct btrfs_root *root,
1724 struct btrfs_path *path,
1725 struct btrfs_extent_inline_ref **ref_ret,
1726 u64 bytenr, u64 num_bytes, u64 parent,
1727 u64 root_objectid, u64 owner, u64 offset)
1728{
1729 int ret;
1730
1731 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1732 bytenr, num_bytes, parent,
1733 root_objectid, owner, offset, 0);
1734 if (ret != -ENOENT)
54aa1f4d 1735 return ret;
5d4f98a2 1736
b3b4aa74 1737 btrfs_release_path(path);
5d4f98a2
YZ
1738 *ref_ret = NULL;
1739
1740 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1741 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1742 root_objectid);
1743 } else {
1744 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1745 root_objectid, owner, offset);
b9473439 1746 }
5d4f98a2
YZ
1747 return ret;
1748}
31840ae1 1749
5d4f98a2
YZ
1750/*
1751 * helper to update/remove inline back ref
1752 */
1753static noinline_for_stack
afe5fea7 1754void update_inline_extent_backref(struct btrfs_root *root,
143bede5
JM
1755 struct btrfs_path *path,
1756 struct btrfs_extent_inline_ref *iref,
1757 int refs_to_mod,
fcebe456
JB
1758 struct btrfs_delayed_extent_op *extent_op,
1759 int *last_ref)
5d4f98a2
YZ
1760{
1761 struct extent_buffer *leaf;
1762 struct btrfs_extent_item *ei;
1763 struct btrfs_extent_data_ref *dref = NULL;
1764 struct btrfs_shared_data_ref *sref = NULL;
1765 unsigned long ptr;
1766 unsigned long end;
1767 u32 item_size;
1768 int size;
1769 int type;
5d4f98a2
YZ
1770 u64 refs;
1771
1772 leaf = path->nodes[0];
1773 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1774 refs = btrfs_extent_refs(leaf, ei);
1775 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1776 refs += refs_to_mod;
1777 btrfs_set_extent_refs(leaf, ei, refs);
1778 if (extent_op)
1779 __run_delayed_extent_op(extent_op, leaf, ei);
1780
1781 type = btrfs_extent_inline_ref_type(leaf, iref);
1782
1783 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1784 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1785 refs = btrfs_extent_data_ref_count(leaf, dref);
1786 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1787 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1788 refs = btrfs_shared_data_ref_count(leaf, sref);
1789 } else {
1790 refs = 1;
1791 BUG_ON(refs_to_mod != -1);
56bec294 1792 }
31840ae1 1793
5d4f98a2
YZ
1794 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1795 refs += refs_to_mod;
1796
1797 if (refs > 0) {
1798 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1799 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1800 else
1801 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1802 } else {
fcebe456 1803 *last_ref = 1;
5d4f98a2
YZ
1804 size = btrfs_extent_inline_ref_size(type);
1805 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1806 ptr = (unsigned long)iref;
1807 end = (unsigned long)ei + item_size;
1808 if (ptr + size < end)
1809 memmove_extent_buffer(leaf, ptr, ptr + size,
1810 end - ptr - size);
1811 item_size -= size;
afe5fea7 1812 btrfs_truncate_item(root, path, item_size, 1);
5d4f98a2
YZ
1813 }
1814 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1815}
1816
1817static noinline_for_stack
1818int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1819 struct btrfs_root *root,
1820 struct btrfs_path *path,
1821 u64 bytenr, u64 num_bytes, u64 parent,
1822 u64 root_objectid, u64 owner,
1823 u64 offset, int refs_to_add,
1824 struct btrfs_delayed_extent_op *extent_op)
1825{
1826 struct btrfs_extent_inline_ref *iref;
1827 int ret;
1828
1829 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1830 bytenr, num_bytes, parent,
1831 root_objectid, owner, offset, 1);
1832 if (ret == 0) {
1833 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
afe5fea7 1834 update_inline_extent_backref(root, path, iref,
fcebe456 1835 refs_to_add, extent_op, NULL);
5d4f98a2 1836 } else if (ret == -ENOENT) {
fd279fae 1837 setup_inline_extent_backref(root, path, iref, parent,
143bede5
JM
1838 root_objectid, owner, offset,
1839 refs_to_add, extent_op);
1840 ret = 0;
771ed689 1841 }
5d4f98a2
YZ
1842 return ret;
1843}
31840ae1 1844
5d4f98a2
YZ
1845static int insert_extent_backref(struct btrfs_trans_handle *trans,
1846 struct btrfs_root *root,
1847 struct btrfs_path *path,
1848 u64 bytenr, u64 parent, u64 root_objectid,
1849 u64 owner, u64 offset, int refs_to_add)
1850{
1851 int ret;
1852 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1853 BUG_ON(refs_to_add != 1);
1854 ret = insert_tree_block_ref(trans, root, path, bytenr,
1855 parent, root_objectid);
1856 } else {
1857 ret = insert_extent_data_ref(trans, root, path, bytenr,
1858 parent, root_objectid,
1859 owner, offset, refs_to_add);
1860 }
1861 return ret;
1862}
56bec294 1863
5d4f98a2
YZ
1864static int remove_extent_backref(struct btrfs_trans_handle *trans,
1865 struct btrfs_root *root,
1866 struct btrfs_path *path,
1867 struct btrfs_extent_inline_ref *iref,
fcebe456 1868 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 1869{
143bede5 1870 int ret = 0;
b9473439 1871
5d4f98a2
YZ
1872 BUG_ON(!is_data && refs_to_drop != 1);
1873 if (iref) {
afe5fea7 1874 update_inline_extent_backref(root, path, iref,
fcebe456 1875 -refs_to_drop, NULL, last_ref);
5d4f98a2 1876 } else if (is_data) {
fcebe456
JB
1877 ret = remove_extent_data_ref(trans, root, path, refs_to_drop,
1878 last_ref);
5d4f98a2 1879 } else {
fcebe456 1880 *last_ref = 1;
5d4f98a2
YZ
1881 ret = btrfs_del_item(trans, root, path);
1882 }
1883 return ret;
1884}
1885
86557861 1886#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
1887static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
1888 u64 *discarded_bytes)
5d4f98a2 1889{
86557861
JM
1890 int j, ret = 0;
1891 u64 bytes_left, end;
4d89d377 1892 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 1893
4d89d377
JM
1894 if (WARN_ON(start != aligned_start)) {
1895 len -= aligned_start - start;
1896 len = round_down(len, 1 << 9);
1897 start = aligned_start;
1898 }
d04c6b88 1899
4d89d377 1900 *discarded_bytes = 0;
86557861
JM
1901
1902 if (!len)
1903 return 0;
1904
1905 end = start + len;
1906 bytes_left = len;
1907
1908 /* Skip any superblocks on this device. */
1909 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
1910 u64 sb_start = btrfs_sb_offset(j);
1911 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
1912 u64 size = sb_start - start;
1913
1914 if (!in_range(sb_start, start, bytes_left) &&
1915 !in_range(sb_end, start, bytes_left) &&
1916 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
1917 continue;
1918
1919 /*
1920 * Superblock spans beginning of range. Adjust start and
1921 * try again.
1922 */
1923 if (sb_start <= start) {
1924 start += sb_end - start;
1925 if (start > end) {
1926 bytes_left = 0;
1927 break;
1928 }
1929 bytes_left = end - start;
1930 continue;
1931 }
1932
1933 if (size) {
1934 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
1935 GFP_NOFS, 0);
1936 if (!ret)
1937 *discarded_bytes += size;
1938 else if (ret != -EOPNOTSUPP)
1939 return ret;
1940 }
1941
1942 start = sb_end;
1943 if (start > end) {
1944 bytes_left = 0;
1945 break;
1946 }
1947 bytes_left = end - start;
1948 }
1949
1950 if (bytes_left) {
1951 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
1952 GFP_NOFS, 0);
1953 if (!ret)
86557861 1954 *discarded_bytes += bytes_left;
4d89d377 1955 }
d04c6b88 1956 return ret;
5d4f98a2 1957}
5d4f98a2 1958
1edb647b
FM
1959int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1960 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 1961{
5d4f98a2 1962 int ret;
5378e607 1963 u64 discarded_bytes = 0;
a1d3c478 1964 struct btrfs_bio *bbio = NULL;
5d4f98a2 1965
e244a0ae 1966
5d4f98a2 1967 /* Tell the block device(s) that the sectors can be discarded */
3ec706c8 1968 ret = btrfs_map_block(root->fs_info, REQ_DISCARD,
a1d3c478 1969 bytenr, &num_bytes, &bbio, 0);
79787eaa 1970 /* Error condition is -ENOMEM */
5d4f98a2 1971 if (!ret) {
a1d3c478 1972 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
1973 int i;
1974
5d4f98a2 1975
a1d3c478 1976 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 1977 u64 bytes;
d5e2003c
JB
1978 if (!stripe->dev->can_discard)
1979 continue;
1980
5378e607
LD
1981 ret = btrfs_issue_discard(stripe->dev->bdev,
1982 stripe->physical,
d04c6b88
JM
1983 stripe->length,
1984 &bytes);
5378e607 1985 if (!ret)
d04c6b88 1986 discarded_bytes += bytes;
5378e607 1987 else if (ret != -EOPNOTSUPP)
79787eaa 1988 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
1989
1990 /*
1991 * Just in case we get back EOPNOTSUPP for some reason,
1992 * just ignore the return value so we don't screw up
1993 * people calling discard_extent.
1994 */
1995 ret = 0;
5d4f98a2 1996 }
6e9606d2 1997 btrfs_put_bbio(bbio);
5d4f98a2 1998 }
5378e607
LD
1999
2000 if (actual_bytes)
2001 *actual_bytes = discarded_bytes;
2002
5d4f98a2 2003
53b381b3
DW
2004 if (ret == -EOPNOTSUPP)
2005 ret = 0;
5d4f98a2 2006 return ret;
5d4f98a2
YZ
2007}
2008
79787eaa 2009/* Can return -ENOMEM */
5d4f98a2
YZ
2010int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2011 struct btrfs_root *root,
2012 u64 bytenr, u64 num_bytes, u64 parent,
fcebe456
JB
2013 u64 root_objectid, u64 owner, u64 offset,
2014 int no_quota)
5d4f98a2
YZ
2015{
2016 int ret;
66d7e7f0
AJ
2017 struct btrfs_fs_info *fs_info = root->fs_info;
2018
5d4f98a2
YZ
2019 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2020 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2021
2022 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
2023 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2024 num_bytes,
5d4f98a2 2025 parent, root_objectid, (int)owner,
fcebe456 2026 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2 2027 } else {
66d7e7f0
AJ
2028 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2029 num_bytes,
5d4f98a2 2030 parent, root_objectid, owner, offset,
fcebe456 2031 BTRFS_ADD_DELAYED_REF, NULL, no_quota);
5d4f98a2
YZ
2032 }
2033 return ret;
2034}
2035
2036static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2037 struct btrfs_root *root,
c682f9b3 2038 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2039 u64 parent, u64 root_objectid,
2040 u64 owner, u64 offset, int refs_to_add,
2041 struct btrfs_delayed_extent_op *extent_op)
2042{
fcebe456 2043 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
2044 struct btrfs_path *path;
2045 struct extent_buffer *leaf;
2046 struct btrfs_extent_item *item;
fcebe456 2047 struct btrfs_key key;
c682f9b3
QW
2048 u64 bytenr = node->bytenr;
2049 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2050 u64 refs;
2051 int ret;
c682f9b3 2052 int no_quota = node->no_quota;
5d4f98a2
YZ
2053
2054 path = btrfs_alloc_path();
2055 if (!path)
2056 return -ENOMEM;
2057
fcebe456
JB
2058 if (!is_fstree(root_objectid) || !root->fs_info->quota_enabled)
2059 no_quota = 1;
2060
5d4f98a2
YZ
2061 path->reada = 1;
2062 path->leave_spinning = 1;
2063 /* this will setup the path even if it fails to insert the back ref */
fcebe456
JB
2064 ret = insert_inline_extent_backref(trans, fs_info->extent_root, path,
2065 bytenr, num_bytes, parent,
5d4f98a2
YZ
2066 root_objectid, owner, offset,
2067 refs_to_add, extent_op);
0ed4792a 2068 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2069 goto out;
fcebe456
JB
2070
2071 /*
2072 * Ok we had -EAGAIN which means we didn't have space to insert and
2073 * inline extent ref, so just update the reference count and add a
2074 * normal backref.
2075 */
5d4f98a2 2076 leaf = path->nodes[0];
fcebe456 2077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2078 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2079 refs = btrfs_extent_refs(leaf, item);
2080 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2081 if (extent_op)
2082 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2083
5d4f98a2 2084 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2085 btrfs_release_path(path);
56bec294
CM
2086
2087 path->reada = 1;
b9473439 2088 path->leave_spinning = 1;
56bec294
CM
2089 /* now insert the actual backref */
2090 ret = insert_extent_backref(trans, root->fs_info->extent_root,
5d4f98a2
YZ
2091 path, bytenr, parent, root_objectid,
2092 owner, offset, refs_to_add);
79787eaa
JM
2093 if (ret)
2094 btrfs_abort_transaction(trans, root, ret);
5d4f98a2 2095out:
56bec294 2096 btrfs_free_path(path);
30d133fc 2097 return ret;
56bec294
CM
2098}
2099
5d4f98a2
YZ
2100static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2101 struct btrfs_root *root,
2102 struct btrfs_delayed_ref_node *node,
2103 struct btrfs_delayed_extent_op *extent_op,
2104 int insert_reserved)
56bec294 2105{
5d4f98a2
YZ
2106 int ret = 0;
2107 struct btrfs_delayed_data_ref *ref;
2108 struct btrfs_key ins;
2109 u64 parent = 0;
2110 u64 ref_root = 0;
2111 u64 flags = 0;
2112
2113 ins.objectid = node->bytenr;
2114 ins.offset = node->num_bytes;
2115 ins.type = BTRFS_EXTENT_ITEM_KEY;
2116
2117 ref = btrfs_delayed_node_to_data_ref(node);
599c75ec
LB
2118 trace_run_delayed_data_ref(node, ref, node->action);
2119
5d4f98a2
YZ
2120 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2121 parent = ref->parent;
fcebe456 2122 ref_root = ref->root;
5d4f98a2
YZ
2123
2124 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2125 if (extent_op)
5d4f98a2 2126 flags |= extent_op->flags_to_set;
5d4f98a2
YZ
2127 ret = alloc_reserved_file_extent(trans, root,
2128 parent, ref_root, flags,
2129 ref->objectid, ref->offset,
2130 &ins, node->ref_mod);
5d4f98a2 2131 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3 2132 ret = __btrfs_inc_extent_ref(trans, root, node, parent,
5d4f98a2
YZ
2133 ref_root, ref->objectid,
2134 ref->offset, node->ref_mod,
c682f9b3 2135 extent_op);
5d4f98a2 2136 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3 2137 ret = __btrfs_free_extent(trans, root, node, parent,
5d4f98a2
YZ
2138 ref_root, ref->objectid,
2139 ref->offset, node->ref_mod,
c682f9b3 2140 extent_op);
5d4f98a2
YZ
2141 } else {
2142 BUG();
2143 }
2144 return ret;
2145}
2146
2147static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2148 struct extent_buffer *leaf,
2149 struct btrfs_extent_item *ei)
2150{
2151 u64 flags = btrfs_extent_flags(leaf, ei);
2152 if (extent_op->update_flags) {
2153 flags |= extent_op->flags_to_set;
2154 btrfs_set_extent_flags(leaf, ei, flags);
2155 }
2156
2157 if (extent_op->update_key) {
2158 struct btrfs_tree_block_info *bi;
2159 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2160 bi = (struct btrfs_tree_block_info *)(ei + 1);
2161 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2162 }
2163}
2164
2165static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2166 struct btrfs_root *root,
2167 struct btrfs_delayed_ref_node *node,
2168 struct btrfs_delayed_extent_op *extent_op)
2169{
2170 struct btrfs_key key;
2171 struct btrfs_path *path;
2172 struct btrfs_extent_item *ei;
2173 struct extent_buffer *leaf;
2174 u32 item_size;
56bec294 2175 int ret;
5d4f98a2 2176 int err = 0;
b1c79e09 2177 int metadata = !extent_op->is_data;
5d4f98a2 2178
79787eaa
JM
2179 if (trans->aborted)
2180 return 0;
2181
3173a18f
JB
2182 if (metadata && !btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2183 metadata = 0;
2184
5d4f98a2
YZ
2185 path = btrfs_alloc_path();
2186 if (!path)
2187 return -ENOMEM;
2188
2189 key.objectid = node->bytenr;
5d4f98a2 2190
3173a18f 2191 if (metadata) {
3173a18f 2192 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2193 key.offset = extent_op->level;
3173a18f
JB
2194 } else {
2195 key.type = BTRFS_EXTENT_ITEM_KEY;
2196 key.offset = node->num_bytes;
2197 }
2198
2199again:
5d4f98a2
YZ
2200 path->reada = 1;
2201 path->leave_spinning = 1;
2202 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2203 path, 0, 1);
2204 if (ret < 0) {
2205 err = ret;
2206 goto out;
2207 }
2208 if (ret > 0) {
3173a18f 2209 if (metadata) {
55994887
FDBM
2210 if (path->slots[0] > 0) {
2211 path->slots[0]--;
2212 btrfs_item_key_to_cpu(path->nodes[0], &key,
2213 path->slots[0]);
2214 if (key.objectid == node->bytenr &&
2215 key.type == BTRFS_EXTENT_ITEM_KEY &&
2216 key.offset == node->num_bytes)
2217 ret = 0;
2218 }
2219 if (ret > 0) {
2220 btrfs_release_path(path);
2221 metadata = 0;
3173a18f 2222
55994887
FDBM
2223 key.objectid = node->bytenr;
2224 key.offset = node->num_bytes;
2225 key.type = BTRFS_EXTENT_ITEM_KEY;
2226 goto again;
2227 }
2228 } else {
2229 err = -EIO;
2230 goto out;
3173a18f 2231 }
5d4f98a2
YZ
2232 }
2233
2234 leaf = path->nodes[0];
2235 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2236#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2237 if (item_size < sizeof(*ei)) {
2238 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2239 path, (u64)-1, 0);
2240 if (ret < 0) {
2241 err = ret;
2242 goto out;
2243 }
2244 leaf = path->nodes[0];
2245 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2246 }
2247#endif
2248 BUG_ON(item_size < sizeof(*ei));
2249 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2251
5d4f98a2
YZ
2252 btrfs_mark_buffer_dirty(leaf);
2253out:
2254 btrfs_free_path(path);
2255 return err;
56bec294
CM
2256}
2257
5d4f98a2
YZ
2258static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2259 struct btrfs_root *root,
2260 struct btrfs_delayed_ref_node *node,
2261 struct btrfs_delayed_extent_op *extent_op,
2262 int insert_reserved)
56bec294
CM
2263{
2264 int ret = 0;
5d4f98a2
YZ
2265 struct btrfs_delayed_tree_ref *ref;
2266 struct btrfs_key ins;
2267 u64 parent = 0;
2268 u64 ref_root = 0;
3173a18f
JB
2269 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
2270 SKINNY_METADATA);
56bec294 2271
5d4f98a2 2272 ref = btrfs_delayed_node_to_tree_ref(node);
599c75ec
LB
2273 trace_run_delayed_tree_ref(node, ref, node->action);
2274
5d4f98a2
YZ
2275 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2276 parent = ref->parent;
fcebe456 2277 ref_root = ref->root;
5d4f98a2 2278
3173a18f
JB
2279 ins.objectid = node->bytenr;
2280 if (skinny_metadata) {
2281 ins.offset = ref->level;
2282 ins.type = BTRFS_METADATA_ITEM_KEY;
2283 } else {
2284 ins.offset = node->num_bytes;
2285 ins.type = BTRFS_EXTENT_ITEM_KEY;
2286 }
2287
5d4f98a2
YZ
2288 BUG_ON(node->ref_mod != 1);
2289 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2290 BUG_ON(!extent_op || !extent_op->update_flags);
5d4f98a2
YZ
2291 ret = alloc_reserved_tree_block(trans, root,
2292 parent, ref_root,
2293 extent_op->flags_to_set,
2294 &extent_op->key,
fcebe456
JB
2295 ref->level, &ins,
2296 node->no_quota);
5d4f98a2 2297 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
c682f9b3
QW
2298 ret = __btrfs_inc_extent_ref(trans, root, node,
2299 parent, ref_root,
2300 ref->level, 0, 1,
fcebe456 2301 extent_op);
5d4f98a2 2302 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
c682f9b3
QW
2303 ret = __btrfs_free_extent(trans, root, node,
2304 parent, ref_root,
2305 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2306 } else {
2307 BUG();
2308 }
56bec294
CM
2309 return ret;
2310}
2311
2312/* helper function to actually process a single delayed ref entry */
5d4f98a2
YZ
2313static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2314 struct btrfs_root *root,
2315 struct btrfs_delayed_ref_node *node,
2316 struct btrfs_delayed_extent_op *extent_op,
2317 int insert_reserved)
56bec294 2318{
79787eaa
JM
2319 int ret = 0;
2320
857cc2fc
JB
2321 if (trans->aborted) {
2322 if (insert_reserved)
2323 btrfs_pin_extent(root, node->bytenr,
2324 node->num_bytes, 1);
79787eaa 2325 return 0;
857cc2fc 2326 }
79787eaa 2327
5d4f98a2 2328 if (btrfs_delayed_ref_is_head(node)) {
56bec294
CM
2329 struct btrfs_delayed_ref_head *head;
2330 /*
2331 * we've hit the end of the chain and we were supposed
2332 * to insert this extent into the tree. But, it got
2333 * deleted before we ever needed to insert it, so all
2334 * we have to do is clean up the accounting
2335 */
5d4f98a2
YZ
2336 BUG_ON(extent_op);
2337 head = btrfs_delayed_node_to_head(node);
599c75ec
LB
2338 trace_run_delayed_ref_head(node, head, node->action);
2339
56bec294 2340 if (insert_reserved) {
f0486c68
YZ
2341 btrfs_pin_extent(root, node->bytenr,
2342 node->num_bytes, 1);
5d4f98a2
YZ
2343 if (head->is_data) {
2344 ret = btrfs_del_csums(trans, root,
2345 node->bytenr,
2346 node->num_bytes);
5d4f98a2 2347 }
56bec294 2348 }
79787eaa 2349 return ret;
56bec294
CM
2350 }
2351
5d4f98a2
YZ
2352 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2353 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2354 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2355 insert_reserved);
2356 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2357 node->type == BTRFS_SHARED_DATA_REF_KEY)
2358 ret = run_delayed_data_ref(trans, root, node, extent_op,
2359 insert_reserved);
2360 else
2361 BUG();
2362 return ret;
56bec294
CM
2363}
2364
c6fc2454 2365static inline struct btrfs_delayed_ref_node *
56bec294
CM
2366select_delayed_ref(struct btrfs_delayed_ref_head *head)
2367{
cffc3374
FM
2368 struct btrfs_delayed_ref_node *ref;
2369
c6fc2454
QW
2370 if (list_empty(&head->ref_list))
2371 return NULL;
d7df2c79 2372
cffc3374
FM
2373 /*
2374 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2375 * This is to prevent a ref count from going down to zero, which deletes
2376 * the extent item from the extent tree, when there still are references
2377 * to add, which would fail because they would not find the extent item.
2378 */
2379 list_for_each_entry(ref, &head->ref_list, list) {
2380 if (ref->action == BTRFS_ADD_DELAYED_REF)
2381 return ref;
2382 }
2383
c6fc2454
QW
2384 return list_entry(head->ref_list.next, struct btrfs_delayed_ref_node,
2385 list);
56bec294
CM
2386}
2387
79787eaa
JM
2388/*
2389 * Returns 0 on success or if called with an already aborted transaction.
2390 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2391 */
d7df2c79
JB
2392static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2393 struct btrfs_root *root,
2394 unsigned long nr)
56bec294 2395{
56bec294
CM
2396 struct btrfs_delayed_ref_root *delayed_refs;
2397 struct btrfs_delayed_ref_node *ref;
2398 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2399 struct btrfs_delayed_extent_op *extent_op;
097b8a7c 2400 struct btrfs_fs_info *fs_info = root->fs_info;
0a2b2a84 2401 ktime_t start = ktime_get();
56bec294 2402 int ret;
d7df2c79 2403 unsigned long count = 0;
0a2b2a84 2404 unsigned long actual_count = 0;
56bec294 2405 int must_insert_reserved = 0;
56bec294
CM
2406
2407 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2408 while (1) {
2409 if (!locked_ref) {
d7df2c79 2410 if (count >= nr)
56bec294 2411 break;
56bec294 2412
d7df2c79
JB
2413 spin_lock(&delayed_refs->lock);
2414 locked_ref = btrfs_select_ref_head(trans);
2415 if (!locked_ref) {
2416 spin_unlock(&delayed_refs->lock);
2417 break;
2418 }
c3e69d58
CM
2419
2420 /* grab the lock that says we are going to process
2421 * all the refs for this head */
2422 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2423 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2424 /*
2425 * we may have dropped the spin lock to get the head
2426 * mutex lock, and that might have given someone else
2427 * time to free the head. If that's true, it has been
2428 * removed from our list and we can move on.
2429 */
2430 if (ret == -EAGAIN) {
2431 locked_ref = NULL;
2432 count++;
2433 continue;
56bec294
CM
2434 }
2435 }
a28ec197 2436
d7df2c79 2437 spin_lock(&locked_ref->lock);
ae1e206b 2438
d1270cd9
AJ
2439 /*
2440 * locked_ref is the head node, so we have to go one
2441 * node back for any delayed ref updates
2442 */
2443 ref = select_delayed_ref(locked_ref);
2444
2445 if (ref && ref->seq &&
097b8a7c 2446 btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
d7df2c79 2447 spin_unlock(&locked_ref->lock);
093486c4 2448 btrfs_delayed_ref_unlock(locked_ref);
d7df2c79
JB
2449 spin_lock(&delayed_refs->lock);
2450 locked_ref->processing = 0;
d1270cd9
AJ
2451 delayed_refs->num_heads_ready++;
2452 spin_unlock(&delayed_refs->lock);
d7df2c79 2453 locked_ref = NULL;
d1270cd9 2454 cond_resched();
27a377db 2455 count++;
d1270cd9
AJ
2456 continue;
2457 }
2458
56bec294
CM
2459 /*
2460 * record the must insert reserved flag before we
2461 * drop the spin lock.
2462 */
2463 must_insert_reserved = locked_ref->must_insert_reserved;
2464 locked_ref->must_insert_reserved = 0;
7bb86316 2465
5d4f98a2
YZ
2466 extent_op = locked_ref->extent_op;
2467 locked_ref->extent_op = NULL;
2468
56bec294 2469 if (!ref) {
d7df2c79
JB
2470
2471
56bec294
CM
2472 /* All delayed refs have been processed, Go ahead
2473 * and send the head node to run_one_delayed_ref,
2474 * so that any accounting fixes can happen
2475 */
2476 ref = &locked_ref->node;
5d4f98a2
YZ
2477
2478 if (extent_op && must_insert_reserved) {
78a6184a 2479 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2480 extent_op = NULL;
2481 }
2482
2483 if (extent_op) {
d7df2c79 2484 spin_unlock(&locked_ref->lock);
5d4f98a2
YZ
2485 ret = run_delayed_extent_op(trans, root,
2486 ref, extent_op);
78a6184a 2487 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2 2488
79787eaa 2489 if (ret) {
857cc2fc
JB
2490 /*
2491 * Need to reset must_insert_reserved if
2492 * there was an error so the abort stuff
2493 * can cleanup the reserved space
2494 * properly.
2495 */
2496 if (must_insert_reserved)
2497 locked_ref->must_insert_reserved = 1;
d7df2c79 2498 locked_ref->processing = 0;
c2cf52eb 2499 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
093486c4 2500 btrfs_delayed_ref_unlock(locked_ref);
79787eaa
JM
2501 return ret;
2502 }
d7df2c79 2503 continue;
5d4f98a2 2504 }
02217ed2 2505
d7df2c79
JB
2506 /*
2507 * Need to drop our head ref lock and re-aqcuire the
2508 * delayed ref lock and then re-check to make sure
2509 * nobody got added.
2510 */
2511 spin_unlock(&locked_ref->lock);
2512 spin_lock(&delayed_refs->lock);
2513 spin_lock(&locked_ref->lock);
c6fc2454 2514 if (!list_empty(&locked_ref->ref_list) ||
573a0755 2515 locked_ref->extent_op) {
d7df2c79
JB
2516 spin_unlock(&locked_ref->lock);
2517 spin_unlock(&delayed_refs->lock);
2518 continue;
2519 }
2520 ref->in_tree = 0;
2521 delayed_refs->num_heads--;
c46effa6
LB
2522 rb_erase(&locked_ref->href_node,
2523 &delayed_refs->href_root);
d7df2c79
JB
2524 spin_unlock(&delayed_refs->lock);
2525 } else {
0a2b2a84 2526 actual_count++;
d7df2c79 2527 ref->in_tree = 0;
c6fc2454 2528 list_del(&ref->list);
c46effa6 2529 }
d7df2c79
JB
2530 atomic_dec(&delayed_refs->num_entries);
2531
093486c4 2532 if (!btrfs_delayed_ref_is_head(ref)) {
22cd2e7d
AJ
2533 /*
2534 * when we play the delayed ref, also correct the
2535 * ref_mod on head
2536 */
2537 switch (ref->action) {
2538 case BTRFS_ADD_DELAYED_REF:
2539 case BTRFS_ADD_DELAYED_EXTENT:
2540 locked_ref->node.ref_mod -= ref->ref_mod;
2541 break;
2542 case BTRFS_DROP_DELAYED_REF:
2543 locked_ref->node.ref_mod += ref->ref_mod;
2544 break;
2545 default:
2546 WARN_ON(1);
2547 }
2548 }
d7df2c79 2549 spin_unlock(&locked_ref->lock);
925baedd 2550
5d4f98a2 2551 ret = run_one_delayed_ref(trans, root, ref, extent_op,
56bec294 2552 must_insert_reserved);
eb099670 2553
78a6184a 2554 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2555 if (ret) {
d7df2c79 2556 locked_ref->processing = 0;
093486c4
MX
2557 btrfs_delayed_ref_unlock(locked_ref);
2558 btrfs_put_delayed_ref(ref);
c2cf52eb 2559 btrfs_debug(fs_info, "run_one_delayed_ref returned %d", ret);
79787eaa
JM
2560 return ret;
2561 }
2562
093486c4
MX
2563 /*
2564 * If this node is a head, that means all the refs in this head
2565 * have been dealt with, and we will pick the next head to deal
2566 * with, so we must unlock the head and drop it from the cluster
2567 * list before we release it.
2568 */
2569 if (btrfs_delayed_ref_is_head(ref)) {
1262133b
JB
2570 if (locked_ref->is_data &&
2571 locked_ref->total_ref_mod < 0) {
2572 spin_lock(&delayed_refs->lock);
2573 delayed_refs->pending_csums -= ref->num_bytes;
2574 spin_unlock(&delayed_refs->lock);
2575 }
093486c4
MX
2576 btrfs_delayed_ref_unlock(locked_ref);
2577 locked_ref = NULL;
2578 }
2579 btrfs_put_delayed_ref(ref);
2580 count++;
c3e69d58 2581 cond_resched();
c3e69d58 2582 }
0a2b2a84
JB
2583
2584 /*
2585 * We don't want to include ref heads since we can have empty ref heads
2586 * and those will drastically skew our runtime down since we just do
2587 * accounting, no actual extent tree updates.
2588 */
2589 if (actual_count > 0) {
2590 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2591 u64 avg;
2592
2593 /*
2594 * We weigh the current average higher than our current runtime
2595 * to avoid large swings in the average.
2596 */
2597 spin_lock(&delayed_refs->lock);
2598 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2599 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2600 spin_unlock(&delayed_refs->lock);
2601 }
d7df2c79 2602 return 0;
c3e69d58
CM
2603}
2604
709c0486
AJ
2605#ifdef SCRAMBLE_DELAYED_REFS
2606/*
2607 * Normally delayed refs get processed in ascending bytenr order. This
2608 * correlates in most cases to the order added. To expose dependencies on this
2609 * order, we start to process the tree in the middle instead of the beginning
2610 */
2611static u64 find_middle(struct rb_root *root)
2612{
2613 struct rb_node *n = root->rb_node;
2614 struct btrfs_delayed_ref_node *entry;
2615 int alt = 1;
2616 u64 middle;
2617 u64 first = 0, last = 0;
2618
2619 n = rb_first(root);
2620 if (n) {
2621 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2622 first = entry->bytenr;
2623 }
2624 n = rb_last(root);
2625 if (n) {
2626 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2627 last = entry->bytenr;
2628 }
2629 n = root->rb_node;
2630
2631 while (n) {
2632 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2633 WARN_ON(!entry->in_tree);
2634
2635 middle = entry->bytenr;
2636
2637 if (alt)
2638 n = n->rb_left;
2639 else
2640 n = n->rb_right;
2641
2642 alt = 1 - alt;
2643 }
2644 return middle;
2645}
2646#endif
2647
1be41b78
JB
2648static inline u64 heads_to_leaves(struct btrfs_root *root, u64 heads)
2649{
2650 u64 num_bytes;
2651
2652 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2653 sizeof(struct btrfs_extent_inline_ref));
2654 if (!btrfs_fs_incompat(root->fs_info, SKINNY_METADATA))
2655 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2656
2657 /*
2658 * We don't ever fill up leaves all the way so multiply by 2 just to be
2659 * closer to what we're really going to want to ouse.
2660 */
f8c269d7 2661 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(root));
1be41b78
JB
2662}
2663
1262133b
JB
2664/*
2665 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2666 * would require to store the csums for that many bytes.
2667 */
28f75a0e 2668u64 btrfs_csum_bytes_to_leaves(struct btrfs_root *root, u64 csum_bytes)
1262133b
JB
2669{
2670 u64 csum_size;
2671 u64 num_csums_per_leaf;
2672 u64 num_csums;
2673
2674 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
2675 num_csums_per_leaf = div64_u64(csum_size,
2676 (u64)btrfs_super_csum_size(root->fs_info->super_copy));
2677 num_csums = div64_u64(csum_bytes, root->sectorsize);
2678 num_csums += num_csums_per_leaf - 1;
2679 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2680 return num_csums;
2681}
2682
0a2b2a84 2683int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
1be41b78
JB
2684 struct btrfs_root *root)
2685{
2686 struct btrfs_block_rsv *global_rsv;
2687 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2688 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
cb723e49
JB
2689 u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2690 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2691 int ret = 0;
2692
2693 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
2694 num_heads = heads_to_leaves(root, num_heads);
2695 if (num_heads > 1)
707e8a07 2696 num_bytes += (num_heads - 1) * root->nodesize;
1be41b78 2697 num_bytes <<= 1;
28f75a0e 2698 num_bytes += btrfs_csum_bytes_to_leaves(root, csum_bytes) * root->nodesize;
cb723e49
JB
2699 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(root,
2700 num_dirty_bgs);
1be41b78
JB
2701 global_rsv = &root->fs_info->global_block_rsv;
2702
2703 /*
2704 * If we can't allocate any more chunks lets make sure we have _lots_ of
2705 * wiggle room since running delayed refs can create more delayed refs.
2706 */
cb723e49
JB
2707 if (global_rsv->space_info->full) {
2708 num_dirty_bgs_bytes <<= 1;
1be41b78 2709 num_bytes <<= 1;
cb723e49 2710 }
1be41b78
JB
2711
2712 spin_lock(&global_rsv->lock);
cb723e49 2713 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2714 ret = 1;
2715 spin_unlock(&global_rsv->lock);
2716 return ret;
2717}
2718
0a2b2a84
JB
2719int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root)
2721{
2722 struct btrfs_fs_info *fs_info = root->fs_info;
2723 u64 num_entries =
2724 atomic_read(&trans->transaction->delayed_refs.num_entries);
2725 u64 avg_runtime;
a79b7d4b 2726 u64 val;
0a2b2a84
JB
2727
2728 smp_mb();
2729 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2730 val = num_entries * avg_runtime;
0a2b2a84
JB
2731 if (num_entries * avg_runtime >= NSEC_PER_SEC)
2732 return 1;
a79b7d4b
CM
2733 if (val >= NSEC_PER_SEC / 2)
2734 return 2;
0a2b2a84
JB
2735
2736 return btrfs_check_space_for_delayed_refs(trans, root);
2737}
2738
a79b7d4b
CM
2739struct async_delayed_refs {
2740 struct btrfs_root *root;
2741 int count;
2742 int error;
2743 int sync;
2744 struct completion wait;
2745 struct btrfs_work work;
2746};
2747
2748static void delayed_ref_async_start(struct btrfs_work *work)
2749{
2750 struct async_delayed_refs *async;
2751 struct btrfs_trans_handle *trans;
2752 int ret;
2753
2754 async = container_of(work, struct async_delayed_refs, work);
2755
2756 trans = btrfs_join_transaction(async->root);
2757 if (IS_ERR(trans)) {
2758 async->error = PTR_ERR(trans);
2759 goto done;
2760 }
2761
2762 /*
2763 * trans->sync means that when we call end_transaciton, we won't
2764 * wait on delayed refs
2765 */
2766 trans->sync = true;
2767 ret = btrfs_run_delayed_refs(trans, async->root, async->count);
2768 if (ret)
2769 async->error = ret;
2770
2771 ret = btrfs_end_transaction(trans, async->root);
2772 if (ret && !async->error)
2773 async->error = ret;
2774done:
2775 if (async->sync)
2776 complete(&async->wait);
2777 else
2778 kfree(async);
2779}
2780
2781int btrfs_async_run_delayed_refs(struct btrfs_root *root,
2782 unsigned long count, int wait)
2783{
2784 struct async_delayed_refs *async;
2785 int ret;
2786
2787 async = kmalloc(sizeof(*async), GFP_NOFS);
2788 if (!async)
2789 return -ENOMEM;
2790
2791 async->root = root->fs_info->tree_root;
2792 async->count = count;
2793 async->error = 0;
2794 if (wait)
2795 async->sync = 1;
2796 else
2797 async->sync = 0;
2798 init_completion(&async->wait);
2799
9e0af237
LB
2800 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
2801 delayed_ref_async_start, NULL, NULL);
a79b7d4b
CM
2802
2803 btrfs_queue_work(root->fs_info->extent_workers, &async->work);
2804
2805 if (wait) {
2806 wait_for_completion(&async->wait);
2807 ret = async->error;
2808 kfree(async);
2809 return ret;
2810 }
2811 return 0;
2812}
2813
c3e69d58
CM
2814/*
2815 * this starts processing the delayed reference count updates and
2816 * extent insertions we have queued up so far. count can be
2817 * 0, which means to process everything in the tree at the start
2818 * of the run (but not newly added entries), or it can be some target
2819 * number you'd like to process.
79787eaa
JM
2820 *
2821 * Returns 0 on success or if called with an aborted transaction
2822 * Returns <0 on error and aborts the transaction
c3e69d58
CM
2823 */
2824int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2825 struct btrfs_root *root, unsigned long count)
2826{
2827 struct rb_node *node;
2828 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 2829 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
2830 int ret;
2831 int run_all = count == (unsigned long)-1;
c3e69d58 2832
79787eaa
JM
2833 /* We'll clean this up in btrfs_cleanup_transaction */
2834 if (trans->aborted)
2835 return 0;
2836
c3e69d58
CM
2837 if (root == root->fs_info->extent_root)
2838 root = root->fs_info->tree_root;
2839
2840 delayed_refs = &trans->transaction->delayed_refs;
26455d33 2841 if (count == 0)
d7df2c79 2842 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 2843
c3e69d58 2844again:
709c0486
AJ
2845#ifdef SCRAMBLE_DELAYED_REFS
2846 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
2847#endif
d7df2c79
JB
2848 ret = __btrfs_run_delayed_refs(trans, root, count);
2849 if (ret < 0) {
2850 btrfs_abort_transaction(trans, root, ret);
2851 return ret;
eb099670 2852 }
c3e69d58 2853
56bec294 2854 if (run_all) {
d7df2c79 2855 if (!list_empty(&trans->new_bgs))
ea658bad 2856 btrfs_create_pending_block_groups(trans, root);
ea658bad 2857
d7df2c79 2858 spin_lock(&delayed_refs->lock);
c46effa6 2859 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
2860 if (!node) {
2861 spin_unlock(&delayed_refs->lock);
56bec294 2862 goto out;
d7df2c79 2863 }
c3e69d58 2864 count = (unsigned long)-1;
e9d0b13b 2865
56bec294 2866 while (node) {
c46effa6
LB
2867 head = rb_entry(node, struct btrfs_delayed_ref_head,
2868 href_node);
2869 if (btrfs_delayed_ref_is_head(&head->node)) {
2870 struct btrfs_delayed_ref_node *ref;
5caf2a00 2871
c46effa6 2872 ref = &head->node;
56bec294
CM
2873 atomic_inc(&ref->refs);
2874
2875 spin_unlock(&delayed_refs->lock);
8cc33e5c
DS
2876 /*
2877 * Mutex was contended, block until it's
2878 * released and try again
2879 */
56bec294
CM
2880 mutex_lock(&head->mutex);
2881 mutex_unlock(&head->mutex);
2882
2883 btrfs_put_delayed_ref(ref);
1887be66 2884 cond_resched();
56bec294 2885 goto again;
c46effa6
LB
2886 } else {
2887 WARN_ON(1);
56bec294
CM
2888 }
2889 node = rb_next(node);
2890 }
2891 spin_unlock(&delayed_refs->lock);
d7df2c79 2892 cond_resched();
56bec294 2893 goto again;
5f39d397 2894 }
54aa1f4d 2895out:
edf39272 2896 assert_qgroups_uptodate(trans);
a28ec197
CM
2897 return 0;
2898}
2899
5d4f98a2
YZ
2900int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2901 struct btrfs_root *root,
2902 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 2903 int level, int is_data)
5d4f98a2
YZ
2904{
2905 struct btrfs_delayed_extent_op *extent_op;
2906 int ret;
2907
78a6184a 2908 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
2909 if (!extent_op)
2910 return -ENOMEM;
2911
2912 extent_op->flags_to_set = flags;
2913 extent_op->update_flags = 1;
2914 extent_op->update_key = 0;
2915 extent_op->is_data = is_data ? 1 : 0;
b1c79e09 2916 extent_op->level = level;
5d4f98a2 2917
66d7e7f0
AJ
2918 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2919 num_bytes, extent_op);
5d4f98a2 2920 if (ret)
78a6184a 2921 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
2922 return ret;
2923}
2924
2925static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2926 struct btrfs_root *root,
2927 struct btrfs_path *path,
2928 u64 objectid, u64 offset, u64 bytenr)
2929{
2930 struct btrfs_delayed_ref_head *head;
2931 struct btrfs_delayed_ref_node *ref;
2932 struct btrfs_delayed_data_ref *data_ref;
2933 struct btrfs_delayed_ref_root *delayed_refs;
5d4f98a2
YZ
2934 int ret = 0;
2935
5d4f98a2
YZ
2936 delayed_refs = &trans->transaction->delayed_refs;
2937 spin_lock(&delayed_refs->lock);
2938 head = btrfs_find_delayed_ref_head(trans, bytenr);
d7df2c79
JB
2939 if (!head) {
2940 spin_unlock(&delayed_refs->lock);
2941 return 0;
2942 }
5d4f98a2
YZ
2943
2944 if (!mutex_trylock(&head->mutex)) {
2945 atomic_inc(&head->node.refs);
2946 spin_unlock(&delayed_refs->lock);
2947
b3b4aa74 2948 btrfs_release_path(path);
5d4f98a2 2949
8cc33e5c
DS
2950 /*
2951 * Mutex was contended, block until it's released and let
2952 * caller try again
2953 */
5d4f98a2
YZ
2954 mutex_lock(&head->mutex);
2955 mutex_unlock(&head->mutex);
2956 btrfs_put_delayed_ref(&head->node);
2957 return -EAGAIN;
2958 }
d7df2c79 2959 spin_unlock(&delayed_refs->lock);
5d4f98a2 2960
d7df2c79 2961 spin_lock(&head->lock);
c6fc2454 2962 list_for_each_entry(ref, &head->ref_list, list) {
d7df2c79
JB
2963 /* If it's a shared ref we know a cross reference exists */
2964 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
2965 ret = 1;
2966 break;
2967 }
5d4f98a2 2968
d7df2c79 2969 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 2970
d7df2c79
JB
2971 /*
2972 * If our ref doesn't match the one we're currently looking at
2973 * then we have a cross reference.
2974 */
2975 if (data_ref->root != root->root_key.objectid ||
2976 data_ref->objectid != objectid ||
2977 data_ref->offset != offset) {
2978 ret = 1;
2979 break;
2980 }
5d4f98a2 2981 }
d7df2c79 2982 spin_unlock(&head->lock);
5d4f98a2 2983 mutex_unlock(&head->mutex);
5d4f98a2
YZ
2984 return ret;
2985}
2986
2987static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2988 struct btrfs_root *root,
2989 struct btrfs_path *path,
2990 u64 objectid, u64 offset, u64 bytenr)
be20aa9d
CM
2991{
2992 struct btrfs_root *extent_root = root->fs_info->extent_root;
f321e491 2993 struct extent_buffer *leaf;
5d4f98a2
YZ
2994 struct btrfs_extent_data_ref *ref;
2995 struct btrfs_extent_inline_ref *iref;
2996 struct btrfs_extent_item *ei;
f321e491 2997 struct btrfs_key key;
5d4f98a2 2998 u32 item_size;
be20aa9d 2999 int ret;
925baedd 3000
be20aa9d 3001 key.objectid = bytenr;
31840ae1 3002 key.offset = (u64)-1;
f321e491 3003 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3004
be20aa9d
CM
3005 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3006 if (ret < 0)
3007 goto out;
79787eaa 3008 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3009
3010 ret = -ENOENT;
3011 if (path->slots[0] == 0)
31840ae1 3012 goto out;
be20aa9d 3013
31840ae1 3014 path->slots[0]--;
f321e491 3015 leaf = path->nodes[0];
5d4f98a2 3016 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3017
5d4f98a2 3018 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3019 goto out;
f321e491 3020
5d4f98a2
YZ
3021 ret = 1;
3022 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3023#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3024 if (item_size < sizeof(*ei)) {
3025 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3026 goto out;
3027 }
3028#endif
3029 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3030
5d4f98a2
YZ
3031 if (item_size != sizeof(*ei) +
3032 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3033 goto out;
be20aa9d 3034
5d4f98a2
YZ
3035 if (btrfs_extent_generation(leaf, ei) <=
3036 btrfs_root_last_snapshot(&root->root_item))
3037 goto out;
3038
3039 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3040 if (btrfs_extent_inline_ref_type(leaf, iref) !=
3041 BTRFS_EXTENT_DATA_REF_KEY)
3042 goto out;
3043
3044 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3045 if (btrfs_extent_refs(leaf, ei) !=
3046 btrfs_extent_data_ref_count(leaf, ref) ||
3047 btrfs_extent_data_ref_root(leaf, ref) !=
3048 root->root_key.objectid ||
3049 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3050 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3051 goto out;
3052
3053 ret = 0;
3054out:
3055 return ret;
3056}
3057
3058int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
3059 struct btrfs_root *root,
3060 u64 objectid, u64 offset, u64 bytenr)
3061{
3062 struct btrfs_path *path;
3063 int ret;
3064 int ret2;
3065
3066 path = btrfs_alloc_path();
3067 if (!path)
3068 return -ENOENT;
3069
3070 do {
3071 ret = check_committed_ref(trans, root, path, objectid,
3072 offset, bytenr);
3073 if (ret && ret != -ENOENT)
f321e491 3074 goto out;
80ff3856 3075
5d4f98a2
YZ
3076 ret2 = check_delayed_ref(trans, root, path, objectid,
3077 offset, bytenr);
3078 } while (ret2 == -EAGAIN);
3079
3080 if (ret2 && ret2 != -ENOENT) {
3081 ret = ret2;
3082 goto out;
f321e491 3083 }
5d4f98a2
YZ
3084
3085 if (ret != -ENOENT || ret2 != -ENOENT)
3086 ret = 0;
be20aa9d 3087out:
80ff3856 3088 btrfs_free_path(path);
f0486c68
YZ
3089 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3090 WARN_ON(ret > 0);
f321e491 3091 return ret;
be20aa9d 3092}
c5739bba 3093
5d4f98a2 3094static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3095 struct btrfs_root *root,
5d4f98a2 3096 struct extent_buffer *buf,
e339a6b0 3097 int full_backref, int inc)
31840ae1
ZY
3098{
3099 u64 bytenr;
5d4f98a2
YZ
3100 u64 num_bytes;
3101 u64 parent;
31840ae1 3102 u64 ref_root;
31840ae1 3103 u32 nritems;
31840ae1
ZY
3104 struct btrfs_key key;
3105 struct btrfs_file_extent_item *fi;
3106 int i;
3107 int level;
3108 int ret = 0;
31840ae1 3109 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
66d7e7f0 3110 u64, u64, u64, u64, u64, u64, int);
31840ae1 3111
fccb84c9
DS
3112
3113 if (btrfs_test_is_dummy_root(root))
faa2dbf0 3114 return 0;
fccb84c9 3115
31840ae1 3116 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3117 nritems = btrfs_header_nritems(buf);
3118 level = btrfs_header_level(buf);
3119
27cdeb70 3120 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3121 return 0;
31840ae1 3122
5d4f98a2
YZ
3123 if (inc)
3124 process_func = btrfs_inc_extent_ref;
3125 else
3126 process_func = btrfs_free_extent;
31840ae1 3127
5d4f98a2
YZ
3128 if (full_backref)
3129 parent = buf->start;
3130 else
3131 parent = 0;
3132
3133 for (i = 0; i < nritems; i++) {
31840ae1 3134 if (level == 0) {
5d4f98a2 3135 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3136 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3137 continue;
5d4f98a2 3138 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3139 struct btrfs_file_extent_item);
3140 if (btrfs_file_extent_type(buf, fi) ==
3141 BTRFS_FILE_EXTENT_INLINE)
3142 continue;
3143 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3144 if (bytenr == 0)
3145 continue;
5d4f98a2
YZ
3146
3147 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3148 key.offset -= btrfs_file_extent_offset(buf, fi);
3149 ret = process_func(trans, root, bytenr, num_bytes,
3150 parent, ref_root, key.objectid,
e339a6b0 3151 key.offset, 1);
31840ae1
ZY
3152 if (ret)
3153 goto fail;
3154 } else {
5d4f98a2 3155 bytenr = btrfs_node_blockptr(buf, i);
707e8a07 3156 num_bytes = root->nodesize;
5d4f98a2 3157 ret = process_func(trans, root, bytenr, num_bytes,
66d7e7f0 3158 parent, ref_root, level - 1, 0,
e339a6b0 3159 1);
31840ae1
ZY
3160 if (ret)
3161 goto fail;
3162 }
3163 }
3164 return 0;
3165fail:
5d4f98a2
YZ
3166 return ret;
3167}
3168
3169int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3170 struct extent_buffer *buf, int full_backref)
5d4f98a2 3171{
e339a6b0 3172 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3173}
3174
3175int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3176 struct extent_buffer *buf, int full_backref)
5d4f98a2 3177{
e339a6b0 3178 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3179}
3180
9078a3e1
CM
3181static int write_one_cache_group(struct btrfs_trans_handle *trans,
3182 struct btrfs_root *root,
3183 struct btrfs_path *path,
3184 struct btrfs_block_group_cache *cache)
3185{
3186 int ret;
9078a3e1 3187 struct btrfs_root *extent_root = root->fs_info->extent_root;
5f39d397
CM
3188 unsigned long bi;
3189 struct extent_buffer *leaf;
9078a3e1 3190
9078a3e1 3191 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3192 if (ret) {
3193 if (ret > 0)
3194 ret = -ENOENT;
54aa1f4d 3195 goto fail;
df95e7f0 3196 }
5f39d397
CM
3197
3198 leaf = path->nodes[0];
3199 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3200 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3201 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3202fail:
24b89d08 3203 btrfs_release_path(path);
df95e7f0 3204 return ret;
9078a3e1
CM
3205
3206}
3207
4a8c9a62
YZ
3208static struct btrfs_block_group_cache *
3209next_block_group(struct btrfs_root *root,
3210 struct btrfs_block_group_cache *cache)
3211{
3212 struct rb_node *node;
292cbd51 3213
4a8c9a62 3214 spin_lock(&root->fs_info->block_group_cache_lock);
292cbd51
FM
3215
3216 /* If our block group was removed, we need a full search. */
3217 if (RB_EMPTY_NODE(&cache->cache_node)) {
3218 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3219
3220 spin_unlock(&root->fs_info->block_group_cache_lock);
3221 btrfs_put_block_group(cache);
3222 cache = btrfs_lookup_first_block_group(root->fs_info,
3223 next_bytenr);
3224 return cache;
3225 }
4a8c9a62
YZ
3226 node = rb_next(&cache->cache_node);
3227 btrfs_put_block_group(cache);
3228 if (node) {
3229 cache = rb_entry(node, struct btrfs_block_group_cache,
3230 cache_node);
11dfe35a 3231 btrfs_get_block_group(cache);
4a8c9a62
YZ
3232 } else
3233 cache = NULL;
3234 spin_unlock(&root->fs_info->block_group_cache_lock);
3235 return cache;
3236}
3237
0af3d00b
JB
3238static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3239 struct btrfs_trans_handle *trans,
3240 struct btrfs_path *path)
3241{
3242 struct btrfs_root *root = block_group->fs_info->tree_root;
3243 struct inode *inode = NULL;
3244 u64 alloc_hint = 0;
2b20982e 3245 int dcs = BTRFS_DC_ERROR;
f8c269d7 3246 u64 num_pages = 0;
0af3d00b
JB
3247 int retries = 0;
3248 int ret = 0;
3249
3250 /*
3251 * If this block group is smaller than 100 megs don't bother caching the
3252 * block group.
3253 */
3254 if (block_group->key.offset < (100 * 1024 * 1024)) {
3255 spin_lock(&block_group->lock);
3256 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3257 spin_unlock(&block_group->lock);
3258 return 0;
3259 }
3260
0c0ef4bc
JB
3261 if (trans->aborted)
3262 return 0;
0af3d00b
JB
3263again:
3264 inode = lookup_free_space_inode(root, block_group, path);
3265 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3266 ret = PTR_ERR(inode);
b3b4aa74 3267 btrfs_release_path(path);
0af3d00b
JB
3268 goto out;
3269 }
3270
3271 if (IS_ERR(inode)) {
3272 BUG_ON(retries);
3273 retries++;
3274
3275 if (block_group->ro)
3276 goto out_free;
3277
3278 ret = create_free_space_inode(root, trans, block_group, path);
3279 if (ret)
3280 goto out_free;
3281 goto again;
3282 }
3283
5b0e95bf
JB
3284 /* We've already setup this transaction, go ahead and exit */
3285 if (block_group->cache_generation == trans->transid &&
3286 i_size_read(inode)) {
3287 dcs = BTRFS_DC_SETUP;
3288 goto out_put;
3289 }
3290
0af3d00b
JB
3291 /*
3292 * We want to set the generation to 0, that way if anything goes wrong
3293 * from here on out we know not to trust this cache when we load up next
3294 * time.
3295 */
3296 BTRFS_I(inode)->generation = 0;
3297 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3298 if (ret) {
3299 /*
3300 * So theoretically we could recover from this, simply set the
3301 * super cache generation to 0 so we know to invalidate the
3302 * cache, but then we'd have to keep track of the block groups
3303 * that fail this way so we know we _have_ to reset this cache
3304 * before the next commit or risk reading stale cache. So to
3305 * limit our exposure to horrible edge cases lets just abort the
3306 * transaction, this only happens in really bad situations
3307 * anyway.
3308 */
3309 btrfs_abort_transaction(trans, root, ret);
3310 goto out_put;
3311 }
0af3d00b
JB
3312 WARN_ON(ret);
3313
3314 if (i_size_read(inode) > 0) {
7b61cd92
MX
3315 ret = btrfs_check_trunc_cache_free_space(root,
3316 &root->fs_info->global_block_rsv);
3317 if (ret)
3318 goto out_put;
3319
1bbc621e 3320 ret = btrfs_truncate_free_space_cache(root, trans, NULL, inode);
0af3d00b
JB
3321 if (ret)
3322 goto out_put;
3323 }
3324
3325 spin_lock(&block_group->lock);
cf7c1ef6 3326 if (block_group->cached != BTRFS_CACHE_FINISHED ||
e4c88f00 3327 !btrfs_test_opt(root, SPACE_CACHE)) {
cf7c1ef6
LB
3328 /*
3329 * don't bother trying to write stuff out _if_
3330 * a) we're not cached,
3331 * b) we're with nospace_cache mount option.
3332 */
2b20982e 3333 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3334 spin_unlock(&block_group->lock);
3335 goto out_put;
3336 }
3337 spin_unlock(&block_group->lock);
3338
6fc823b1
JB
3339 /*
3340 * Try to preallocate enough space based on how big the block group is.
3341 * Keep in mind this has to include any pinned space which could end up
3342 * taking up quite a bit since it's not folded into the other space
3343 * cache.
3344 */
f8c269d7 3345 num_pages = div_u64(block_group->key.offset, 256 * 1024 * 1024);
0af3d00b
JB
3346 if (!num_pages)
3347 num_pages = 1;
3348
0af3d00b
JB
3349 num_pages *= 16;
3350 num_pages *= PAGE_CACHE_SIZE;
3351
e2d1f923 3352 ret = btrfs_check_data_free_space(inode, num_pages, num_pages);
0af3d00b
JB
3353 if (ret)
3354 goto out_put;
3355
3356 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3357 num_pages, num_pages,
3358 &alloc_hint);
2b20982e
JB
3359 if (!ret)
3360 dcs = BTRFS_DC_SETUP;
0af3d00b 3361 btrfs_free_reserved_data_space(inode, num_pages);
c09544e0 3362
0af3d00b
JB
3363out_put:
3364 iput(inode);
3365out_free:
b3b4aa74 3366 btrfs_release_path(path);
0af3d00b
JB
3367out:
3368 spin_lock(&block_group->lock);
e65cbb94 3369 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3370 block_group->cache_generation = trans->transid;
2b20982e 3371 block_group->disk_cache_state = dcs;
0af3d00b
JB
3372 spin_unlock(&block_group->lock);
3373
3374 return ret;
3375}
3376
dcdf7f6d
JB
3377int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3378 struct btrfs_root *root)
3379{
3380 struct btrfs_block_group_cache *cache, *tmp;
3381 struct btrfs_transaction *cur_trans = trans->transaction;
3382 struct btrfs_path *path;
3383
3384 if (list_empty(&cur_trans->dirty_bgs) ||
3385 !btrfs_test_opt(root, SPACE_CACHE))
3386 return 0;
3387
3388 path = btrfs_alloc_path();
3389 if (!path)
3390 return -ENOMEM;
3391
3392 /* Could add new block groups, use _safe just in case */
3393 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3394 dirty_list) {
3395 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3396 cache_save_setup(cache, trans, path);
3397 }
3398
3399 btrfs_free_path(path);
3400 return 0;
3401}
3402
1bbc621e
CM
3403/*
3404 * transaction commit does final block group cache writeback during a
3405 * critical section where nothing is allowed to change the FS. This is
3406 * required in order for the cache to actually match the block group,
3407 * but can introduce a lot of latency into the commit.
3408 *
3409 * So, btrfs_start_dirty_block_groups is here to kick off block group
3410 * cache IO. There's a chance we'll have to redo some of it if the
3411 * block group changes again during the commit, but it greatly reduces
3412 * the commit latency by getting rid of the easy block groups while
3413 * we're still allowing others to join the commit.
3414 */
3415int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
96b5179d 3416 struct btrfs_root *root)
9078a3e1 3417{
4a8c9a62 3418 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3419 struct btrfs_transaction *cur_trans = trans->transaction;
3420 int ret = 0;
c9dc4c65 3421 int should_put;
1bbc621e
CM
3422 struct btrfs_path *path = NULL;
3423 LIST_HEAD(dirty);
3424 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3425 int num_started = 0;
1bbc621e
CM
3426 int loops = 0;
3427
3428 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3429 if (list_empty(&cur_trans->dirty_bgs)) {
3430 spin_unlock(&cur_trans->dirty_bgs_lock);
3431 return 0;
1bbc621e 3432 }
b58d1a9e 3433 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3434 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3435
1bbc621e 3436again:
1bbc621e
CM
3437 /*
3438 * make sure all the block groups on our dirty list actually
3439 * exist
3440 */
3441 btrfs_create_pending_block_groups(trans, root);
3442
3443 if (!path) {
3444 path = btrfs_alloc_path();
3445 if (!path)
3446 return -ENOMEM;
3447 }
3448
b58d1a9e
FM
3449 /*
3450 * cache_write_mutex is here only to save us from balance or automatic
3451 * removal of empty block groups deleting this block group while we are
3452 * writing out the cache
3453 */
3454 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3455 while (!list_empty(&dirty)) {
3456 cache = list_first_entry(&dirty,
3457 struct btrfs_block_group_cache,
3458 dirty_list);
1bbc621e
CM
3459 /*
3460 * this can happen if something re-dirties a block
3461 * group that is already under IO. Just wait for it to
3462 * finish and then do it all again
3463 */
3464 if (!list_empty(&cache->io_list)) {
3465 list_del_init(&cache->io_list);
3466 btrfs_wait_cache_io(root, trans, cache,
3467 &cache->io_ctl, path,
3468 cache->key.objectid);
3469 btrfs_put_block_group(cache);
3470 }
3471
3472
3473 /*
3474 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3475 * if it should update the cache_state. Don't delete
3476 * until after we wait.
3477 *
3478 * Since we're not running in the commit critical section
3479 * we need the dirty_bgs_lock to protect from update_block_group
3480 */
3481 spin_lock(&cur_trans->dirty_bgs_lock);
3482 list_del_init(&cache->dirty_list);
3483 spin_unlock(&cur_trans->dirty_bgs_lock);
3484
3485 should_put = 1;
3486
3487 cache_save_setup(cache, trans, path);
3488
3489 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3490 cache->io_ctl.inode = NULL;
3491 ret = btrfs_write_out_cache(root, trans, cache, path);
3492 if (ret == 0 && cache->io_ctl.inode) {
3493 num_started++;
3494 should_put = 0;
3495
3496 /*
3497 * the cache_write_mutex is protecting
3498 * the io_list
3499 */
3500 list_add_tail(&cache->io_list, io);
3501 } else {
3502 /*
3503 * if we failed to write the cache, the
3504 * generation will be bad and life goes on
3505 */
3506 ret = 0;
3507 }
3508 }
ff1f8250 3509 if (!ret) {
1bbc621e 3510 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3511 /*
3512 * Our block group might still be attached to the list
3513 * of new block groups in the transaction handle of some
3514 * other task (struct btrfs_trans_handle->new_bgs). This
3515 * means its block group item isn't yet in the extent
3516 * tree. If this happens ignore the error, as we will
3517 * try again later in the critical section of the
3518 * transaction commit.
3519 */
3520 if (ret == -ENOENT) {
3521 ret = 0;
3522 spin_lock(&cur_trans->dirty_bgs_lock);
3523 if (list_empty(&cache->dirty_list)) {
3524 list_add_tail(&cache->dirty_list,
3525 &cur_trans->dirty_bgs);
3526 btrfs_get_block_group(cache);
3527 }
3528 spin_unlock(&cur_trans->dirty_bgs_lock);
3529 } else if (ret) {
3530 btrfs_abort_transaction(trans, root, ret);
3531 }
3532 }
1bbc621e
CM
3533
3534 /* if its not on the io list, we need to put the block group */
3535 if (should_put)
3536 btrfs_put_block_group(cache);
3537
3538 if (ret)
3539 break;
b58d1a9e
FM
3540
3541 /*
3542 * Avoid blocking other tasks for too long. It might even save
3543 * us from writing caches for block groups that are going to be
3544 * removed.
3545 */
3546 mutex_unlock(&trans->transaction->cache_write_mutex);
3547 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3548 }
b58d1a9e 3549 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3550
3551 /*
3552 * go through delayed refs for all the stuff we've just kicked off
3553 * and then loop back (just once)
3554 */
3555 ret = btrfs_run_delayed_refs(trans, root, 0);
3556 if (!ret && loops == 0) {
3557 loops++;
3558 spin_lock(&cur_trans->dirty_bgs_lock);
3559 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3560 /*
3561 * dirty_bgs_lock protects us from concurrent block group
3562 * deletes too (not just cache_write_mutex).
3563 */
3564 if (!list_empty(&dirty)) {
3565 spin_unlock(&cur_trans->dirty_bgs_lock);
3566 goto again;
3567 }
1bbc621e 3568 spin_unlock(&cur_trans->dirty_bgs_lock);
1bbc621e
CM
3569 }
3570
3571 btrfs_free_path(path);
3572 return ret;
3573}
3574
3575int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3576 struct btrfs_root *root)
3577{
3578 struct btrfs_block_group_cache *cache;
3579 struct btrfs_transaction *cur_trans = trans->transaction;
3580 int ret = 0;
3581 int should_put;
3582 struct btrfs_path *path;
3583 struct list_head *io = &cur_trans->io_bgs;
3584 int num_started = 0;
9078a3e1
CM
3585
3586 path = btrfs_alloc_path();
3587 if (!path)
3588 return -ENOMEM;
3589
ce93ec54
JB
3590 /*
3591 * We don't need the lock here since we are protected by the transaction
3592 * commit. We want to do the cache_save_setup first and then run the
3593 * delayed refs to make sure we have the best chance at doing this all
3594 * in one shot.
3595 */
3596 while (!list_empty(&cur_trans->dirty_bgs)) {
3597 cache = list_first_entry(&cur_trans->dirty_bgs,
3598 struct btrfs_block_group_cache,
3599 dirty_list);
c9dc4c65
CM
3600
3601 /*
3602 * this can happen if cache_save_setup re-dirties a block
3603 * group that is already under IO. Just wait for it to
3604 * finish and then do it all again
3605 */
3606 if (!list_empty(&cache->io_list)) {
3607 list_del_init(&cache->io_list);
3608 btrfs_wait_cache_io(root, trans, cache,
3609 &cache->io_ctl, path,
3610 cache->key.objectid);
3611 btrfs_put_block_group(cache);
c9dc4c65
CM
3612 }
3613
1bbc621e
CM
3614 /*
3615 * don't remove from the dirty list until after we've waited
3616 * on any pending IO
3617 */
ce93ec54 3618 list_del_init(&cache->dirty_list);
c9dc4c65
CM
3619 should_put = 1;
3620
1bbc621e 3621 cache_save_setup(cache, trans, path);
c9dc4c65 3622
ce93ec54 3623 if (!ret)
c9dc4c65
CM
3624 ret = btrfs_run_delayed_refs(trans, root, (unsigned long) -1);
3625
3626 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3627 cache->io_ctl.inode = NULL;
3628 ret = btrfs_write_out_cache(root, trans, cache, path);
3629 if (ret == 0 && cache->io_ctl.inode) {
3630 num_started++;
3631 should_put = 0;
1bbc621e 3632 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3633 } else {
3634 /*
3635 * if we failed to write the cache, the
3636 * generation will be bad and life goes on
3637 */
3638 ret = 0;
3639 }
3640 }
ff1f8250 3641 if (!ret) {
ce93ec54 3642 ret = write_one_cache_group(trans, root, path, cache);
ff1f8250
FM
3643 if (ret)
3644 btrfs_abort_transaction(trans, root, ret);
3645 }
c9dc4c65
CM
3646
3647 /* if its not on the io list, we need to put the block group */
3648 if (should_put)
3649 btrfs_put_block_group(cache);
3650 }
3651
1bbc621e
CM
3652 while (!list_empty(io)) {
3653 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3654 io_list);
3655 list_del_init(&cache->io_list);
c9dc4c65
CM
3656 btrfs_wait_cache_io(root, trans, cache,
3657 &cache->io_ctl, path, cache->key.objectid);
0cb59c99
JB
3658 btrfs_put_block_group(cache);
3659 }
3660
9078a3e1 3661 btrfs_free_path(path);
ce93ec54 3662 return ret;
9078a3e1
CM
3663}
3664
d2fb3437
YZ
3665int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3666{
3667 struct btrfs_block_group_cache *block_group;
3668 int readonly = 0;
3669
3670 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3671 if (!block_group || block_group->ro)
3672 readonly = 1;
3673 if (block_group)
fa9c0d79 3674 btrfs_put_block_group(block_group);
d2fb3437
YZ
3675 return readonly;
3676}
3677
6ab0a202
JM
3678static const char *alloc_name(u64 flags)
3679{
3680 switch (flags) {
3681 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
3682 return "mixed";
3683 case BTRFS_BLOCK_GROUP_METADATA:
3684 return "metadata";
3685 case BTRFS_BLOCK_GROUP_DATA:
3686 return "data";
3687 case BTRFS_BLOCK_GROUP_SYSTEM:
3688 return "system";
3689 default:
3690 WARN_ON(1);
3691 return "invalid-combination";
3692 };
3693}
3694
593060d7
CM
3695static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3696 u64 total_bytes, u64 bytes_used,
3697 struct btrfs_space_info **space_info)
3698{
3699 struct btrfs_space_info *found;
b742bb82
YZ
3700 int i;
3701 int factor;
b150a4f1 3702 int ret;
b742bb82
YZ
3703
3704 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3705 BTRFS_BLOCK_GROUP_RAID10))
3706 factor = 2;
3707 else
3708 factor = 1;
593060d7
CM
3709
3710 found = __find_space_info(info, flags);
3711 if (found) {
25179201 3712 spin_lock(&found->lock);
593060d7 3713 found->total_bytes += total_bytes;
89a55897 3714 found->disk_total += total_bytes * factor;
593060d7 3715 found->bytes_used += bytes_used;
b742bb82 3716 found->disk_used += bytes_used * factor;
2e6e5183
FM
3717 if (total_bytes > 0)
3718 found->full = 0;
25179201 3719 spin_unlock(&found->lock);
593060d7
CM
3720 *space_info = found;
3721 return 0;
3722 }
c146afad 3723 found = kzalloc(sizeof(*found), GFP_NOFS);
593060d7
CM
3724 if (!found)
3725 return -ENOMEM;
3726
908c7f19 3727 ret = percpu_counter_init(&found->total_bytes_pinned, 0, GFP_KERNEL);
b150a4f1
JB
3728 if (ret) {
3729 kfree(found);
3730 return ret;
3731 }
3732
c1895442 3733 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
b742bb82 3734 INIT_LIST_HEAD(&found->block_groups[i]);
80eb234a 3735 init_rwsem(&found->groups_sem);
0f9dd46c 3736 spin_lock_init(&found->lock);
52ba6929 3737 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
593060d7 3738 found->total_bytes = total_bytes;
89a55897 3739 found->disk_total = total_bytes * factor;
593060d7 3740 found->bytes_used = bytes_used;
b742bb82 3741 found->disk_used = bytes_used * factor;
593060d7 3742 found->bytes_pinned = 0;
e8569813 3743 found->bytes_reserved = 0;
c146afad 3744 found->bytes_readonly = 0;
f0486c68 3745 found->bytes_may_use = 0;
2e6e5183
FM
3746 if (total_bytes > 0)
3747 found->full = 0;
3748 else
3749 found->full = 1;
0e4f8f88 3750 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
6d74119f 3751 found->chunk_alloc = 0;
fdb5effd
JB
3752 found->flush = 0;
3753 init_waitqueue_head(&found->wait);
633c0aad 3754 INIT_LIST_HEAD(&found->ro_bgs);
6ab0a202
JM
3755
3756 ret = kobject_init_and_add(&found->kobj, &space_info_ktype,
3757 info->space_info_kobj, "%s",
3758 alloc_name(found->flags));
3759 if (ret) {
3760 kfree(found);
3761 return ret;
3762 }
3763
593060d7 3764 *space_info = found;
4184ea7f 3765 list_add_rcu(&found->list, &info->space_info);
b4d7c3c9
LZ
3766 if (flags & BTRFS_BLOCK_GROUP_DATA)
3767 info->data_sinfo = found;
6ab0a202
JM
3768
3769 return ret;
593060d7
CM
3770}
3771
8790d502
CM
3772static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3773{
899c81ea
ID
3774 u64 extra_flags = chunk_to_extended(flags) &
3775 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 3776
de98ced9 3777 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
3778 if (flags & BTRFS_BLOCK_GROUP_DATA)
3779 fs_info->avail_data_alloc_bits |= extra_flags;
3780 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3781 fs_info->avail_metadata_alloc_bits |= extra_flags;
3782 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3783 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 3784 write_sequnlock(&fs_info->profiles_lock);
8790d502 3785}
593060d7 3786
fc67c450
ID
3787/*
3788 * returns target flags in extended format or 0 if restripe for this
3789 * chunk_type is not in progress
c6664b42
ID
3790 *
3791 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
3792 */
3793static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3794{
3795 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3796 u64 target = 0;
3797
fc67c450
ID
3798 if (!bctl)
3799 return 0;
3800
3801 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3802 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3803 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3804 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3805 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3806 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3807 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3808 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3809 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3810 }
3811
3812 return target;
3813}
3814
a46d11a8
ID
3815/*
3816 * @flags: available profiles in extended format (see ctree.h)
3817 *
e4d8ec0f
ID
3818 * Returns reduced profile in chunk format. If profile changing is in
3819 * progress (either running or paused) picks the target profile (if it's
3820 * already available), otherwise falls back to plain reducing.
a46d11a8 3821 */
48a3b636 3822static u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
ec44a35c 3823{
95669976 3824 u64 num_devices = root->fs_info->fs_devices->rw_devices;
fc67c450 3825 u64 target;
53b381b3 3826 u64 tmp;
a061fc8d 3827
fc67c450
ID
3828 /*
3829 * see if restripe for this chunk_type is in progress, if so
3830 * try to reduce to the target profile
3831 */
e4d8ec0f 3832 spin_lock(&root->fs_info->balance_lock);
fc67c450
ID
3833 target = get_restripe_target(root->fs_info, flags);
3834 if (target) {
3835 /* pick target profile only if it's already available */
3836 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
e4d8ec0f 3837 spin_unlock(&root->fs_info->balance_lock);
fc67c450 3838 return extended_to_chunk(target);
e4d8ec0f
ID
3839 }
3840 }
3841 spin_unlock(&root->fs_info->balance_lock);
3842
53b381b3 3843 /* First, mask out the RAID levels which aren't possible */
a061fc8d 3844 if (num_devices == 1)
53b381b3
DW
3845 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0 |
3846 BTRFS_BLOCK_GROUP_RAID5);
3847 if (num_devices < 3)
3848 flags &= ~BTRFS_BLOCK_GROUP_RAID6;
a061fc8d
CM
3849 if (num_devices < 4)
3850 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3851
53b381b3
DW
3852 tmp = flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3853 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID5 |
3854 BTRFS_BLOCK_GROUP_RAID6 | BTRFS_BLOCK_GROUP_RAID10);
3855 flags &= ~tmp;
ec44a35c 3856
53b381b3
DW
3857 if (tmp & BTRFS_BLOCK_GROUP_RAID6)
3858 tmp = BTRFS_BLOCK_GROUP_RAID6;
3859 else if (tmp & BTRFS_BLOCK_GROUP_RAID5)
3860 tmp = BTRFS_BLOCK_GROUP_RAID5;
3861 else if (tmp & BTRFS_BLOCK_GROUP_RAID10)
3862 tmp = BTRFS_BLOCK_GROUP_RAID10;
3863 else if (tmp & BTRFS_BLOCK_GROUP_RAID1)
3864 tmp = BTRFS_BLOCK_GROUP_RAID1;
3865 else if (tmp & BTRFS_BLOCK_GROUP_RAID0)
3866 tmp = BTRFS_BLOCK_GROUP_RAID0;
a46d11a8 3867
53b381b3 3868 return extended_to_chunk(flags | tmp);
ec44a35c
CM
3869}
3870
f8213bdc 3871static u64 get_alloc_profile(struct btrfs_root *root, u64 orig_flags)
6a63209f 3872{
de98ced9 3873 unsigned seq;
f8213bdc 3874 u64 flags;
de98ced9
MX
3875
3876 do {
f8213bdc 3877 flags = orig_flags;
de98ced9
MX
3878 seq = read_seqbegin(&root->fs_info->profiles_lock);
3879
3880 if (flags & BTRFS_BLOCK_GROUP_DATA)
3881 flags |= root->fs_info->avail_data_alloc_bits;
3882 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3883 flags |= root->fs_info->avail_system_alloc_bits;
3884 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3885 flags |= root->fs_info->avail_metadata_alloc_bits;
3886 } while (read_seqretry(&root->fs_info->profiles_lock, seq));
6fef8df1 3887
b742bb82 3888 return btrfs_reduce_alloc_profile(root, flags);
6a63209f
JB
3889}
3890
6d07bcec 3891u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
9ed74f2d 3892{
b742bb82 3893 u64 flags;
53b381b3 3894 u64 ret;
9ed74f2d 3895
b742bb82
YZ
3896 if (data)
3897 flags = BTRFS_BLOCK_GROUP_DATA;
3898 else if (root == root->fs_info->chunk_root)
3899 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 3900 else
b742bb82 3901 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 3902
53b381b3
DW
3903 ret = get_alloc_profile(root, flags);
3904 return ret;
6a63209f 3905}
9ed74f2d 3906
6a63209f 3907/*
6a63209f
JB
3908 * This will check the space that the inode allocates from to make sure we have
3909 * enough space for bytes.
6a63209f 3910 */
e2d1f923 3911int btrfs_check_data_free_space(struct inode *inode, u64 bytes, u64 write_bytes)
6a63209f 3912{
6a63209f 3913 struct btrfs_space_info *data_sinfo;
0ca1f7ce 3914 struct btrfs_root *root = BTRFS_I(inode)->root;
b4d7c3c9 3915 struct btrfs_fs_info *fs_info = root->fs_info;
ab6e2410 3916 u64 used;
94b947b2 3917 int ret = 0;
c99f1b0c
ZL
3918 int need_commit = 2;
3919 int have_pinned_space;
6a63209f 3920
6a63209f 3921 /* make sure bytes are sectorsize aligned */
fda2832f 3922 bytes = ALIGN(bytes, root->sectorsize);
6a63209f 3923
9dced186 3924 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 3925 need_commit = 0;
9dced186 3926 ASSERT(current->journal_info);
0af3d00b
JB
3927 }
3928
b4d7c3c9 3929 data_sinfo = fs_info->data_sinfo;
33b4d47f
CM
3930 if (!data_sinfo)
3931 goto alloc;
9ed74f2d 3932
6a63209f
JB
3933again:
3934 /* make sure we have enough space to handle the data first */
3935 spin_lock(&data_sinfo->lock);
8929ecfa
YZ
3936 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3937 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3938 data_sinfo->bytes_may_use;
ab6e2410
JB
3939
3940 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 3941 struct btrfs_trans_handle *trans;
9ed74f2d 3942
6a63209f
JB
3943 /*
3944 * if we don't have enough free bytes in this space then we need
3945 * to alloc a new chunk.
3946 */
b9fd47cd 3947 if (!data_sinfo->full) {
6a63209f 3948 u64 alloc_target;
9ed74f2d 3949
0e4f8f88 3950 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 3951 spin_unlock(&data_sinfo->lock);
33b4d47f 3952alloc:
6a63209f 3953 alloc_target = btrfs_get_alloc_profile(root, 1);
9dced186
MX
3954 /*
3955 * It is ugly that we don't call nolock join
3956 * transaction for the free space inode case here.
3957 * But it is safe because we only do the data space
3958 * reservation for the free space cache in the
3959 * transaction context, the common join transaction
3960 * just increase the counter of the current transaction
3961 * handler, doesn't try to acquire the trans_lock of
3962 * the fs.
3963 */
7a7eaa40 3964 trans = btrfs_join_transaction(root);
a22285a6
YZ
3965 if (IS_ERR(trans))
3966 return PTR_ERR(trans);
9ed74f2d 3967
6a63209f 3968 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
0e4f8f88
CM
3969 alloc_target,
3970 CHUNK_ALLOC_NO_FORCE);
6a63209f 3971 btrfs_end_transaction(trans, root);
d52a5b5f
MX
3972 if (ret < 0) {
3973 if (ret != -ENOSPC)
3974 return ret;
c99f1b0c
ZL
3975 else {
3976 have_pinned_space = 1;
d52a5b5f 3977 goto commit_trans;
c99f1b0c 3978 }
d52a5b5f 3979 }
9ed74f2d 3980
b4d7c3c9
LZ
3981 if (!data_sinfo)
3982 data_sinfo = fs_info->data_sinfo;
3983
6a63209f
JB
3984 goto again;
3985 }
f2bb8f5c
JB
3986
3987 /*
b150a4f1 3988 * If we don't have enough pinned space to deal with this
94b947b2
ZL
3989 * allocation, and no removed chunk in current transaction,
3990 * don't bother committing the transaction.
f2bb8f5c 3991 */
c99f1b0c
ZL
3992 have_pinned_space = percpu_counter_compare(
3993 &data_sinfo->total_bytes_pinned,
3994 used + bytes - data_sinfo->total_bytes);
6a63209f 3995 spin_unlock(&data_sinfo->lock);
6a63209f 3996
4e06bdd6 3997 /* commit the current transaction and try again */
d52a5b5f 3998commit_trans:
c99f1b0c 3999 if (need_commit &&
a4abeea4 4000 !atomic_read(&root->fs_info->open_ioctl_trans)) {
c99f1b0c 4001 need_commit--;
b150a4f1 4002
9a4e7276
ZL
4003 if (need_commit > 0)
4004 btrfs_wait_ordered_roots(fs_info, -1);
4005
7a7eaa40 4006 trans = btrfs_join_transaction(root);
a22285a6
YZ
4007 if (IS_ERR(trans))
4008 return PTR_ERR(trans);
c99f1b0c
ZL
4009 if (have_pinned_space >= 0 ||
4010 trans->transaction->have_free_bgs ||
4011 need_commit > 0) {
94b947b2
ZL
4012 ret = btrfs_commit_transaction(trans, root);
4013 if (ret)
4014 return ret;
d7c15171
ZL
4015 /*
4016 * make sure that all running delayed iput are
4017 * done
4018 */
4019 down_write(&root->fs_info->delayed_iput_sem);
4020 up_write(&root->fs_info->delayed_iput_sem);
94b947b2
ZL
4021 goto again;
4022 } else {
4023 btrfs_end_transaction(trans, root);
4024 }
4e06bdd6 4025 }
9ed74f2d 4026
cab45e22
JM
4027 trace_btrfs_space_reservation(root->fs_info,
4028 "space_info:enospc",
4029 data_sinfo->flags, bytes, 1);
6a63209f
JB
4030 return -ENOSPC;
4031 }
e2d1f923 4032 ret = btrfs_qgroup_reserve(root, write_bytes);
237c0e9f
DY
4033 if (ret)
4034 goto out;
6a63209f 4035 data_sinfo->bytes_may_use += bytes;
8c2a3ca2 4036 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4037 data_sinfo->flags, bytes, 1);
237c0e9f 4038out:
6a63209f 4039 spin_unlock(&data_sinfo->lock);
6a63209f 4040
237c0e9f 4041 return ret;
9ed74f2d 4042}
6a63209f 4043
6a63209f 4044/*
fb25e914 4045 * Called if we need to clear a data reservation for this inode.
6a63209f 4046 */
0ca1f7ce 4047void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
e3ccfa98 4048{
0ca1f7ce 4049 struct btrfs_root *root = BTRFS_I(inode)->root;
6a63209f 4050 struct btrfs_space_info *data_sinfo;
e3ccfa98 4051
6a63209f 4052 /* make sure bytes are sectorsize aligned */
fda2832f 4053 bytes = ALIGN(bytes, root->sectorsize);
e3ccfa98 4054
b4d7c3c9 4055 data_sinfo = root->fs_info->data_sinfo;
6a63209f 4056 spin_lock(&data_sinfo->lock);
7ee9e440 4057 WARN_ON(data_sinfo->bytes_may_use < bytes);
6a63209f 4058 data_sinfo->bytes_may_use -= bytes;
8c2a3ca2 4059 trace_btrfs_space_reservation(root->fs_info, "space_info",
2bcc0328 4060 data_sinfo->flags, bytes, 0);
6a63209f 4061 spin_unlock(&data_sinfo->lock);
e3ccfa98
JB
4062}
4063
97e728d4 4064static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4065{
97e728d4
JB
4066 struct list_head *head = &info->space_info;
4067 struct btrfs_space_info *found;
e3ccfa98 4068
97e728d4
JB
4069 rcu_read_lock();
4070 list_for_each_entry_rcu(found, head, list) {
4071 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4072 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4073 }
97e728d4 4074 rcu_read_unlock();
e3ccfa98
JB
4075}
4076
3c76cd84
MX
4077static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4078{
4079 return (global->size << 1);
4080}
4081
e5bc2458 4082static int should_alloc_chunk(struct btrfs_root *root,
698d0082 4083 struct btrfs_space_info *sinfo, int force)
32c00aff 4084{
fb25e914 4085 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
424499db 4086 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
0e4f8f88 4087 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
e5bc2458 4088 u64 thresh;
e3ccfa98 4089
0e4f8f88
CM
4090 if (force == CHUNK_ALLOC_FORCE)
4091 return 1;
4092
fb25e914
JB
4093 /*
4094 * We need to take into account the global rsv because for all intents
4095 * and purposes it's used space. Don't worry about locking the
4096 * global_rsv, it doesn't change except when the transaction commits.
4097 */
54338b5c 4098 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
3c76cd84 4099 num_allocated += calc_global_rsv_need_space(global_rsv);
fb25e914 4100
0e4f8f88
CM
4101 /*
4102 * in limited mode, we want to have some free space up to
4103 * about 1% of the FS size.
4104 */
4105 if (force == CHUNK_ALLOC_LIMITED) {
6c41761f 4106 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
0e4f8f88
CM
4107 thresh = max_t(u64, 64 * 1024 * 1024,
4108 div_factor_fine(thresh, 1));
4109
4110 if (num_bytes - num_allocated < thresh)
4111 return 1;
4112 }
0e4f8f88 4113
698d0082 4114 if (num_allocated + 2 * 1024 * 1024 < div_factor(num_bytes, 8))
14ed0ca6 4115 return 0;
424499db 4116 return 1;
32c00aff
JB
4117}
4118
39c2d7fa 4119static u64 get_profile_num_devs(struct btrfs_root *root, u64 type)
15d1ff81
LB
4120{
4121 u64 num_dev;
4122
53b381b3
DW
4123 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4124 BTRFS_BLOCK_GROUP_RAID0 |
4125 BTRFS_BLOCK_GROUP_RAID5 |
4126 BTRFS_BLOCK_GROUP_RAID6))
15d1ff81
LB
4127 num_dev = root->fs_info->fs_devices->rw_devices;
4128 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4129 num_dev = 2;
4130 else
4131 num_dev = 1; /* DUP or single */
4132
39c2d7fa 4133 return num_dev;
15d1ff81
LB
4134}
4135
39c2d7fa
FM
4136/*
4137 * If @is_allocation is true, reserve space in the system space info necessary
4138 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4139 * removing a chunk.
4140 */
4141void check_system_chunk(struct btrfs_trans_handle *trans,
4142 struct btrfs_root *root,
4617ea3a 4143 u64 type)
15d1ff81
LB
4144{
4145 struct btrfs_space_info *info;
4146 u64 left;
4147 u64 thresh;
4fbcdf66 4148 int ret = 0;
39c2d7fa 4149 u64 num_devs;
4fbcdf66
FM
4150
4151 /*
4152 * Needed because we can end up allocating a system chunk and for an
4153 * atomic and race free space reservation in the chunk block reserve.
4154 */
4155 ASSERT(mutex_is_locked(&root->fs_info->chunk_mutex));
15d1ff81
LB
4156
4157 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4158 spin_lock(&info->lock);
4159 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
4fbcdf66
FM
4160 info->bytes_reserved - info->bytes_readonly -
4161 info->bytes_may_use;
15d1ff81
LB
4162 spin_unlock(&info->lock);
4163
39c2d7fa
FM
4164 num_devs = get_profile_num_devs(root, type);
4165
4166 /* num_devs device items to update and 1 chunk item to add or remove */
4617ea3a
FM
4167 thresh = btrfs_calc_trunc_metadata_size(root, num_devs) +
4168 btrfs_calc_trans_metadata_size(root, 1);
39c2d7fa 4169
15d1ff81 4170 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
c2cf52eb
SK
4171 btrfs_info(root->fs_info, "left=%llu, need=%llu, flags=%llu",
4172 left, thresh, type);
15d1ff81
LB
4173 dump_space_info(info, 0, 0);
4174 }
4175
4176 if (left < thresh) {
4177 u64 flags;
4178
4179 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
4fbcdf66
FM
4180 /*
4181 * Ignore failure to create system chunk. We might end up not
4182 * needing it, as we might not need to COW all nodes/leafs from
4183 * the paths we visit in the chunk tree (they were already COWed
4184 * or created in the current transaction for example).
4185 */
4186 ret = btrfs_alloc_chunk(trans, root, flags);
4187 }
4188
4189 if (!ret) {
4190 ret = btrfs_block_rsv_add(root->fs_info->chunk_root,
4191 &root->fs_info->chunk_block_rsv,
4192 thresh, BTRFS_RESERVE_NO_FLUSH);
4193 if (!ret)
4194 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4195 }
4196}
4197
6324fbf3 4198static int do_chunk_alloc(struct btrfs_trans_handle *trans,
698d0082 4199 struct btrfs_root *extent_root, u64 flags, int force)
9ed74f2d 4200{
6324fbf3 4201 struct btrfs_space_info *space_info;
97e728d4 4202 struct btrfs_fs_info *fs_info = extent_root->fs_info;
6d74119f 4203 int wait_for_alloc = 0;
9ed74f2d 4204 int ret = 0;
9ed74f2d 4205
c6b305a8
JB
4206 /* Don't re-enter if we're already allocating a chunk */
4207 if (trans->allocating_chunk)
4208 return -ENOSPC;
4209
6324fbf3 4210 space_info = __find_space_info(extent_root->fs_info, flags);
593060d7
CM
4211 if (!space_info) {
4212 ret = update_space_info(extent_root->fs_info, flags,
4213 0, 0, &space_info);
79787eaa 4214 BUG_ON(ret); /* -ENOMEM */
9ed74f2d 4215 }
79787eaa 4216 BUG_ON(!space_info); /* Logic error */
9ed74f2d 4217
6d74119f 4218again:
25179201 4219 spin_lock(&space_info->lock);
9e622d6b 4220 if (force < space_info->force_alloc)
0e4f8f88 4221 force = space_info->force_alloc;
25179201 4222 if (space_info->full) {
09fb99a6
FDBM
4223 if (should_alloc_chunk(extent_root, space_info, force))
4224 ret = -ENOSPC;
4225 else
4226 ret = 0;
25179201 4227 spin_unlock(&space_info->lock);
09fb99a6 4228 return ret;
9ed74f2d
JB
4229 }
4230
698d0082 4231 if (!should_alloc_chunk(extent_root, space_info, force)) {
25179201 4232 spin_unlock(&space_info->lock);
6d74119f
JB
4233 return 0;
4234 } else if (space_info->chunk_alloc) {
4235 wait_for_alloc = 1;
4236 } else {
4237 space_info->chunk_alloc = 1;
9ed74f2d 4238 }
0e4f8f88 4239
25179201 4240 spin_unlock(&space_info->lock);
9ed74f2d 4241
6d74119f
JB
4242 mutex_lock(&fs_info->chunk_mutex);
4243
4244 /*
4245 * The chunk_mutex is held throughout the entirety of a chunk
4246 * allocation, so once we've acquired the chunk_mutex we know that the
4247 * other guy is done and we need to recheck and see if we should
4248 * allocate.
4249 */
4250 if (wait_for_alloc) {
4251 mutex_unlock(&fs_info->chunk_mutex);
4252 wait_for_alloc = 0;
4253 goto again;
4254 }
4255
c6b305a8
JB
4256 trans->allocating_chunk = true;
4257
67377734
JB
4258 /*
4259 * If we have mixed data/metadata chunks we want to make sure we keep
4260 * allocating mixed chunks instead of individual chunks.
4261 */
4262 if (btrfs_mixed_space_info(space_info))
4263 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4264
97e728d4
JB
4265 /*
4266 * if we're doing a data chunk, go ahead and make sure that
4267 * we keep a reasonable number of metadata chunks allocated in the
4268 * FS as well.
4269 */
9ed74f2d 4270 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4271 fs_info->data_chunk_allocations++;
4272 if (!(fs_info->data_chunk_allocations %
4273 fs_info->metadata_ratio))
4274 force_metadata_allocation(fs_info);
9ed74f2d
JB
4275 }
4276
15d1ff81
LB
4277 /*
4278 * Check if we have enough space in SYSTEM chunk because we may need
4279 * to update devices.
4280 */
4617ea3a 4281 check_system_chunk(trans, extent_root, flags);
15d1ff81 4282
2b82032c 4283 ret = btrfs_alloc_chunk(trans, extent_root, flags);
c6b305a8 4284 trans->allocating_chunk = false;
92b8e897 4285
9ed74f2d 4286 spin_lock(&space_info->lock);
a81cb9a2
AO
4287 if (ret < 0 && ret != -ENOSPC)
4288 goto out;
9ed74f2d 4289 if (ret)
6324fbf3 4290 space_info->full = 1;
424499db
YZ
4291 else
4292 ret = 1;
6d74119f 4293
0e4f8f88 4294 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4295out:
6d74119f 4296 space_info->chunk_alloc = 0;
9ed74f2d 4297 spin_unlock(&space_info->lock);
a25c75d5 4298 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4299 /*
4300 * When we allocate a new chunk we reserve space in the chunk block
4301 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4302 * add new nodes/leafs to it if we end up needing to do it when
4303 * inserting the chunk item and updating device items as part of the
4304 * second phase of chunk allocation, performed by
4305 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4306 * large number of new block groups to create in our transaction
4307 * handle's new_bgs list to avoid exhausting the chunk block reserve
4308 * in extreme cases - like having a single transaction create many new
4309 * block groups when starting to write out the free space caches of all
4310 * the block groups that were made dirty during the lifetime of the
4311 * transaction.
4312 */
4313 if (trans->chunk_bytes_reserved >= (2 * 1024 * 1024ull)) {
4314 btrfs_create_pending_block_groups(trans, trans->root);
4315 btrfs_trans_release_chunk_metadata(trans);
4316 }
0f9dd46c 4317 return ret;
6324fbf3 4318}
9ed74f2d 4319
a80c8dcf
JB
4320static int can_overcommit(struct btrfs_root *root,
4321 struct btrfs_space_info *space_info, u64 bytes,
08e007d2 4322 enum btrfs_reserve_flush_enum flush)
a80c8dcf 4323{
96f1bb57 4324 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
a80c8dcf 4325 u64 profile = btrfs_get_alloc_profile(root, 0);
3c76cd84 4326 u64 space_size;
a80c8dcf
JB
4327 u64 avail;
4328 u64 used;
4329
4330 used = space_info->bytes_used + space_info->bytes_reserved +
96f1bb57
JB
4331 space_info->bytes_pinned + space_info->bytes_readonly;
4332
96f1bb57
JB
4333 /*
4334 * We only want to allow over committing if we have lots of actual space
4335 * free, but if we don't have enough space to handle the global reserve
4336 * space then we could end up having a real enospc problem when trying
4337 * to allocate a chunk or some other such important allocation.
4338 */
3c76cd84
MX
4339 spin_lock(&global_rsv->lock);
4340 space_size = calc_global_rsv_need_space(global_rsv);
4341 spin_unlock(&global_rsv->lock);
4342 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4343 return 0;
4344
4345 used += space_info->bytes_may_use;
a80c8dcf
JB
4346
4347 spin_lock(&root->fs_info->free_chunk_lock);
4348 avail = root->fs_info->free_chunk_space;
4349 spin_unlock(&root->fs_info->free_chunk_lock);
4350
4351 /*
4352 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4353 * space is actually useable. For raid56, the space info used
4354 * doesn't include the parity drive, so we don't have to
4355 * change the math
a80c8dcf
JB
4356 */
4357 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4358 BTRFS_BLOCK_GROUP_RAID1 |
4359 BTRFS_BLOCK_GROUP_RAID10))
4360 avail >>= 1;
4361
4362 /*
561c294d
MX
4363 * If we aren't flushing all things, let us overcommit up to
4364 * 1/2th of the space. If we can flush, don't let us overcommit
4365 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4366 */
08e007d2 4367 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4368 avail >>= 3;
a80c8dcf 4369 else
14575aef 4370 avail >>= 1;
a80c8dcf 4371
14575aef 4372 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4373 return 1;
4374 return 0;
4375}
4376
48a3b636 4377static void btrfs_writeback_inodes_sb_nr(struct btrfs_root *root,
6c255e67 4378 unsigned long nr_pages, int nr_items)
da633a42
MX
4379{
4380 struct super_block *sb = root->fs_info->sb;
da633a42 4381
925a6efb
JB
4382 if (down_read_trylock(&sb->s_umount)) {
4383 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4384 up_read(&sb->s_umount);
4385 } else {
da633a42
MX
4386 /*
4387 * We needn't worry the filesystem going from r/w to r/o though
4388 * we don't acquire ->s_umount mutex, because the filesystem
4389 * should guarantee the delalloc inodes list be empty after
4390 * the filesystem is readonly(all dirty pages are written to
4391 * the disk).
4392 */
6c255e67 4393 btrfs_start_delalloc_roots(root->fs_info, 0, nr_items);
98ad69cf 4394 if (!current->journal_info)
6c255e67 4395 btrfs_wait_ordered_roots(root->fs_info, nr_items);
da633a42
MX
4396 }
4397}
4398
18cd8ea6
MX
4399static inline int calc_reclaim_items_nr(struct btrfs_root *root, u64 to_reclaim)
4400{
4401 u64 bytes;
4402 int nr;
4403
4404 bytes = btrfs_calc_trans_metadata_size(root, 1);
4405 nr = (int)div64_u64(to_reclaim, bytes);
4406 if (!nr)
4407 nr = 1;
4408 return nr;
4409}
4410
c61a16a7
MX
4411#define EXTENT_SIZE_PER_ITEM (256 * 1024)
4412
9ed74f2d 4413/*
5da9d01b 4414 * shrink metadata reservation for delalloc
9ed74f2d 4415 */
f4c738c2
JB
4416static void shrink_delalloc(struct btrfs_root *root, u64 to_reclaim, u64 orig,
4417 bool wait_ordered)
5da9d01b 4418{
0ca1f7ce 4419 struct btrfs_block_rsv *block_rsv;
0019f10d 4420 struct btrfs_space_info *space_info;
663350ac 4421 struct btrfs_trans_handle *trans;
f4c738c2 4422 u64 delalloc_bytes;
5da9d01b 4423 u64 max_reclaim;
b1953bce 4424 long time_left;
d3ee29e3
MX
4425 unsigned long nr_pages;
4426 int loops;
b0244199 4427 int items;
08e007d2 4428 enum btrfs_reserve_flush_enum flush;
5da9d01b 4429
c61a16a7 4430 /* Calc the number of the pages we need flush for space reservation */
b0244199
MX
4431 items = calc_reclaim_items_nr(root, to_reclaim);
4432 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4433
663350ac 4434 trans = (struct btrfs_trans_handle *)current->journal_info;
0ca1f7ce 4435 block_rsv = &root->fs_info->delalloc_block_rsv;
0019f10d 4436 space_info = block_rsv->space_info;
bf9022e0 4437
963d678b
MX
4438 delalloc_bytes = percpu_counter_sum_positive(
4439 &root->fs_info->delalloc_bytes);
f4c738c2 4440 if (delalloc_bytes == 0) {
fdb5effd 4441 if (trans)
f4c738c2 4442 return;
38c135af 4443 if (wait_ordered)
b0244199 4444 btrfs_wait_ordered_roots(root->fs_info, items);
f4c738c2 4445 return;
fdb5effd
JB
4446 }
4447
d3ee29e3 4448 loops = 0;
f4c738c2
JB
4449 while (delalloc_bytes && loops < 3) {
4450 max_reclaim = min(delalloc_bytes, to_reclaim);
4451 nr_pages = max_reclaim >> PAGE_CACHE_SHIFT;
6c255e67 4452 btrfs_writeback_inodes_sb_nr(root, nr_pages, items);
dea31f52
JB
4453 /*
4454 * We need to wait for the async pages to actually start before
4455 * we do anything.
4456 */
9f3a074d
MX
4457 max_reclaim = atomic_read(&root->fs_info->async_delalloc_pages);
4458 if (!max_reclaim)
4459 goto skip_async;
4460
4461 if (max_reclaim <= nr_pages)
4462 max_reclaim = 0;
4463 else
4464 max_reclaim -= nr_pages;
dea31f52 4465
9f3a074d
MX
4466 wait_event(root->fs_info->async_submit_wait,
4467 atomic_read(&root->fs_info->async_delalloc_pages) <=
4468 (int)max_reclaim);
4469skip_async:
08e007d2
MX
4470 if (!trans)
4471 flush = BTRFS_RESERVE_FLUSH_ALL;
4472 else
4473 flush = BTRFS_RESERVE_NO_FLUSH;
0019f10d 4474 spin_lock(&space_info->lock);
08e007d2 4475 if (can_overcommit(root, space_info, orig, flush)) {
f4c738c2
JB
4476 spin_unlock(&space_info->lock);
4477 break;
4478 }
0019f10d 4479 spin_unlock(&space_info->lock);
5da9d01b 4480
36e39c40 4481 loops++;
f104d044 4482 if (wait_ordered && !trans) {
b0244199 4483 btrfs_wait_ordered_roots(root->fs_info, items);
f104d044 4484 } else {
f4c738c2 4485 time_left = schedule_timeout_killable(1);
f104d044
JB
4486 if (time_left)
4487 break;
4488 }
963d678b
MX
4489 delalloc_bytes = percpu_counter_sum_positive(
4490 &root->fs_info->delalloc_bytes);
5da9d01b 4491 }
5da9d01b
YZ
4492}
4493
663350ac
JB
4494/**
4495 * maybe_commit_transaction - possibly commit the transaction if its ok to
4496 * @root - the root we're allocating for
4497 * @bytes - the number of bytes we want to reserve
4498 * @force - force the commit
8bb8ab2e 4499 *
663350ac
JB
4500 * This will check to make sure that committing the transaction will actually
4501 * get us somewhere and then commit the transaction if it does. Otherwise it
4502 * will return -ENOSPC.
8bb8ab2e 4503 */
663350ac
JB
4504static int may_commit_transaction(struct btrfs_root *root,
4505 struct btrfs_space_info *space_info,
4506 u64 bytes, int force)
4507{
4508 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
4509 struct btrfs_trans_handle *trans;
4510
4511 trans = (struct btrfs_trans_handle *)current->journal_info;
4512 if (trans)
4513 return -EAGAIN;
4514
4515 if (force)
4516 goto commit;
4517
4518 /* See if there is enough pinned space to make this reservation */
b150a4f1 4519 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4520 bytes) >= 0)
663350ac 4521 goto commit;
663350ac
JB
4522
4523 /*
4524 * See if there is some space in the delayed insertion reservation for
4525 * this reservation.
4526 */
4527 if (space_info != delayed_rsv->space_info)
4528 return -ENOSPC;
4529
4530 spin_lock(&delayed_rsv->lock);
b150a4f1
JB
4531 if (percpu_counter_compare(&space_info->total_bytes_pinned,
4532 bytes - delayed_rsv->size) >= 0) {
663350ac
JB
4533 spin_unlock(&delayed_rsv->lock);
4534 return -ENOSPC;
4535 }
4536 spin_unlock(&delayed_rsv->lock);
4537
4538commit:
4539 trans = btrfs_join_transaction(root);
4540 if (IS_ERR(trans))
4541 return -ENOSPC;
4542
4543 return btrfs_commit_transaction(trans, root);
4544}
4545
96c3f433 4546enum flush_state {
67b0fd63
JB
4547 FLUSH_DELAYED_ITEMS_NR = 1,
4548 FLUSH_DELAYED_ITEMS = 2,
4549 FLUSH_DELALLOC = 3,
4550 FLUSH_DELALLOC_WAIT = 4,
ea658bad
JB
4551 ALLOC_CHUNK = 5,
4552 COMMIT_TRANS = 6,
96c3f433
JB
4553};
4554
4555static int flush_space(struct btrfs_root *root,
4556 struct btrfs_space_info *space_info, u64 num_bytes,
4557 u64 orig_bytes, int state)
4558{
4559 struct btrfs_trans_handle *trans;
4560 int nr;
f4c738c2 4561 int ret = 0;
96c3f433
JB
4562
4563 switch (state) {
96c3f433
JB
4564 case FLUSH_DELAYED_ITEMS_NR:
4565 case FLUSH_DELAYED_ITEMS:
18cd8ea6
MX
4566 if (state == FLUSH_DELAYED_ITEMS_NR)
4567 nr = calc_reclaim_items_nr(root, num_bytes) * 2;
4568 else
96c3f433 4569 nr = -1;
18cd8ea6 4570
96c3f433
JB
4571 trans = btrfs_join_transaction(root);
4572 if (IS_ERR(trans)) {
4573 ret = PTR_ERR(trans);
4574 break;
4575 }
4576 ret = btrfs_run_delayed_items_nr(trans, root, nr);
4577 btrfs_end_transaction(trans, root);
4578 break;
67b0fd63
JB
4579 case FLUSH_DELALLOC:
4580 case FLUSH_DELALLOC_WAIT:
24af7dd1 4581 shrink_delalloc(root, num_bytes * 2, orig_bytes,
67b0fd63
JB
4582 state == FLUSH_DELALLOC_WAIT);
4583 break;
ea658bad
JB
4584 case ALLOC_CHUNK:
4585 trans = btrfs_join_transaction(root);
4586 if (IS_ERR(trans)) {
4587 ret = PTR_ERR(trans);
4588 break;
4589 }
4590 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
ea658bad
JB
4591 btrfs_get_alloc_profile(root, 0),
4592 CHUNK_ALLOC_NO_FORCE);
4593 btrfs_end_transaction(trans, root);
4594 if (ret == -ENOSPC)
4595 ret = 0;
4596 break;
96c3f433
JB
4597 case COMMIT_TRANS:
4598 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
4599 break;
4600 default:
4601 ret = -ENOSPC;
4602 break;
4603 }
4604
4605 return ret;
4606}
21c7e756
MX
4607
4608static inline u64
4609btrfs_calc_reclaim_metadata_size(struct btrfs_root *root,
4610 struct btrfs_space_info *space_info)
4611{
4612 u64 used;
4613 u64 expected;
4614 u64 to_reclaim;
4615
4616 to_reclaim = min_t(u64, num_online_cpus() * 1024 * 1024,
4617 16 * 1024 * 1024);
4618 spin_lock(&space_info->lock);
4619 if (can_overcommit(root, space_info, to_reclaim,
4620 BTRFS_RESERVE_FLUSH_ALL)) {
4621 to_reclaim = 0;
4622 goto out;
4623 }
4624
4625 used = space_info->bytes_used + space_info->bytes_reserved +
4626 space_info->bytes_pinned + space_info->bytes_readonly +
4627 space_info->bytes_may_use;
4628 if (can_overcommit(root, space_info, 1024 * 1024,
4629 BTRFS_RESERVE_FLUSH_ALL))
4630 expected = div_factor_fine(space_info->total_bytes, 95);
4631 else
4632 expected = div_factor_fine(space_info->total_bytes, 90);
4633
4634 if (used > expected)
4635 to_reclaim = used - expected;
4636 else
4637 to_reclaim = 0;
4638 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
4639 space_info->bytes_reserved);
4640out:
4641 spin_unlock(&space_info->lock);
4642
4643 return to_reclaim;
4644}
4645
4646static inline int need_do_async_reclaim(struct btrfs_space_info *space_info,
4647 struct btrfs_fs_info *fs_info, u64 used)
4648{
365c5313
JB
4649 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
4650
4651 /* If we're just plain full then async reclaim just slows us down. */
4652 if (space_info->bytes_used >= thresh)
4653 return 0;
4654
4655 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
21c7e756
MX
4656 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
4657}
4658
4659static int btrfs_need_do_async_reclaim(struct btrfs_space_info *space_info,
25ce459c
LB
4660 struct btrfs_fs_info *fs_info,
4661 int flush_state)
21c7e756
MX
4662{
4663 u64 used;
4664
4665 spin_lock(&space_info->lock);
25ce459c
LB
4666 /*
4667 * We run out of space and have not got any free space via flush_space,
4668 * so don't bother doing async reclaim.
4669 */
4670 if (flush_state > COMMIT_TRANS && space_info->full) {
4671 spin_unlock(&space_info->lock);
4672 return 0;
4673 }
4674
21c7e756
MX
4675 used = space_info->bytes_used + space_info->bytes_reserved +
4676 space_info->bytes_pinned + space_info->bytes_readonly +
4677 space_info->bytes_may_use;
4678 if (need_do_async_reclaim(space_info, fs_info, used)) {
4679 spin_unlock(&space_info->lock);
4680 return 1;
4681 }
4682 spin_unlock(&space_info->lock);
4683
4684 return 0;
4685}
4686
4687static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
4688{
4689 struct btrfs_fs_info *fs_info;
4690 struct btrfs_space_info *space_info;
4691 u64 to_reclaim;
4692 int flush_state;
4693
4694 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
4695 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4696
4697 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info->fs_root,
4698 space_info);
4699 if (!to_reclaim)
4700 return;
4701
4702 flush_state = FLUSH_DELAYED_ITEMS_NR;
4703 do {
4704 flush_space(fs_info->fs_root, space_info, to_reclaim,
4705 to_reclaim, flush_state);
4706 flush_state++;
25ce459c
LB
4707 if (!btrfs_need_do_async_reclaim(space_info, fs_info,
4708 flush_state))
21c7e756 4709 return;
365c5313 4710 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
4711}
4712
4713void btrfs_init_async_reclaim_work(struct work_struct *work)
4714{
4715 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
4716}
4717
4a92b1b8
JB
4718/**
4719 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
4720 * @root - the root we're allocating for
4721 * @block_rsv - the block_rsv we're allocating for
4722 * @orig_bytes - the number of bytes we want
48fc7f7e 4723 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 4724 *
4a92b1b8
JB
4725 * This will reserve orgi_bytes number of bytes from the space info associated
4726 * with the block_rsv. If there is not enough space it will make an attempt to
4727 * flush out space to make room. It will do this by flushing delalloc if
4728 * possible or committing the transaction. If flush is 0 then no attempts to
4729 * regain reservations will be made and this will fail if there is not enough
4730 * space already.
8bb8ab2e 4731 */
4a92b1b8 4732static int reserve_metadata_bytes(struct btrfs_root *root,
8bb8ab2e 4733 struct btrfs_block_rsv *block_rsv,
08e007d2
MX
4734 u64 orig_bytes,
4735 enum btrfs_reserve_flush_enum flush)
9ed74f2d 4736{
f0486c68 4737 struct btrfs_space_info *space_info = block_rsv->space_info;
2bf64758 4738 u64 used;
8bb8ab2e 4739 u64 num_bytes = orig_bytes;
67b0fd63 4740 int flush_state = FLUSH_DELAYED_ITEMS_NR;
8bb8ab2e 4741 int ret = 0;
fdb5effd 4742 bool flushing = false;
9ed74f2d 4743
8bb8ab2e 4744again:
fdb5effd 4745 ret = 0;
8bb8ab2e 4746 spin_lock(&space_info->lock);
fdb5effd 4747 /*
08e007d2
MX
4748 * We only want to wait if somebody other than us is flushing and we
4749 * are actually allowed to flush all things.
fdb5effd 4750 */
08e007d2
MX
4751 while (flush == BTRFS_RESERVE_FLUSH_ALL && !flushing &&
4752 space_info->flush) {
fdb5effd
JB
4753 spin_unlock(&space_info->lock);
4754 /*
4755 * If we have a trans handle we can't wait because the flusher
4756 * may have to commit the transaction, which would mean we would
4757 * deadlock since we are waiting for the flusher to finish, but
4758 * hold the current transaction open.
4759 */
663350ac 4760 if (current->journal_info)
fdb5effd 4761 return -EAGAIN;
b9688bb8
AJ
4762 ret = wait_event_killable(space_info->wait, !space_info->flush);
4763 /* Must have been killed, return */
4764 if (ret)
fdb5effd
JB
4765 return -EINTR;
4766
4767 spin_lock(&space_info->lock);
4768 }
4769
4770 ret = -ENOSPC;
2bf64758
JB
4771 used = space_info->bytes_used + space_info->bytes_reserved +
4772 space_info->bytes_pinned + space_info->bytes_readonly +
4773 space_info->bytes_may_use;
9ed74f2d 4774
8bb8ab2e
JB
4775 /*
4776 * The idea here is that we've not already over-reserved the block group
4777 * then we can go ahead and save our reservation first and then start
4778 * flushing if we need to. Otherwise if we've already overcommitted
4779 * lets start flushing stuff first and then come back and try to make
4780 * our reservation.
4781 */
2bf64758
JB
4782 if (used <= space_info->total_bytes) {
4783 if (used + orig_bytes <= space_info->total_bytes) {
fb25e914 4784 space_info->bytes_may_use += orig_bytes;
8c2a3ca2 4785 trace_btrfs_space_reservation(root->fs_info,
2bcc0328 4786 "space_info", space_info->flags, orig_bytes, 1);
8bb8ab2e
JB
4787 ret = 0;
4788 } else {
4789 /*
4790 * Ok set num_bytes to orig_bytes since we aren't
4791 * overocmmitted, this way we only try and reclaim what
4792 * we need.
4793 */
4794 num_bytes = orig_bytes;
4795 }
4796 } else {
4797 /*
4798 * Ok we're over committed, set num_bytes to the overcommitted
4799 * amount plus the amount of bytes that we need for this
4800 * reservation.
4801 */
2bf64758 4802 num_bytes = used - space_info->total_bytes +
96c3f433 4803 (orig_bytes * 2);
8bb8ab2e 4804 }
9ed74f2d 4805
44734ed1
JB
4806 if (ret && can_overcommit(root, space_info, orig_bytes, flush)) {
4807 space_info->bytes_may_use += orig_bytes;
4808 trace_btrfs_space_reservation(root->fs_info, "space_info",
4809 space_info->flags, orig_bytes,
4810 1);
4811 ret = 0;
2bf64758
JB
4812 }
4813
8bb8ab2e
JB
4814 /*
4815 * Couldn't make our reservation, save our place so while we're trying
4816 * to reclaim space we can actually use it instead of somebody else
4817 * stealing it from us.
08e007d2
MX
4818 *
4819 * We make the other tasks wait for the flush only when we can flush
4820 * all things.
8bb8ab2e 4821 */
72bcd99d 4822 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
fdb5effd
JB
4823 flushing = true;
4824 space_info->flush = 1;
21c7e756
MX
4825 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
4826 used += orig_bytes;
f6acfd50
JB
4827 /*
4828 * We will do the space reservation dance during log replay,
4829 * which means we won't have fs_info->fs_root set, so don't do
4830 * the async reclaim as we will panic.
4831 */
4832 if (!root->fs_info->log_root_recovering &&
4833 need_do_async_reclaim(space_info, root->fs_info, used) &&
21c7e756
MX
4834 !work_busy(&root->fs_info->async_reclaim_work))
4835 queue_work(system_unbound_wq,
4836 &root->fs_info->async_reclaim_work);
8bb8ab2e 4837 }
f0486c68 4838 spin_unlock(&space_info->lock);
9ed74f2d 4839
08e007d2 4840 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
8bb8ab2e 4841 goto out;
f0486c68 4842
96c3f433
JB
4843 ret = flush_space(root, space_info, num_bytes, orig_bytes,
4844 flush_state);
4845 flush_state++;
08e007d2
MX
4846
4847 /*
4848 * If we are FLUSH_LIMIT, we can not flush delalloc, or the deadlock
4849 * would happen. So skip delalloc flush.
4850 */
4851 if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4852 (flush_state == FLUSH_DELALLOC ||
4853 flush_state == FLUSH_DELALLOC_WAIT))
4854 flush_state = ALLOC_CHUNK;
4855
96c3f433 4856 if (!ret)
8bb8ab2e 4857 goto again;
08e007d2
MX
4858 else if (flush == BTRFS_RESERVE_FLUSH_LIMIT &&
4859 flush_state < COMMIT_TRANS)
4860 goto again;
4861 else if (flush == BTRFS_RESERVE_FLUSH_ALL &&
4862 flush_state <= COMMIT_TRANS)
8bb8ab2e
JB
4863 goto again;
4864
4865out:
5d80366e
JB
4866 if (ret == -ENOSPC &&
4867 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
4868 struct btrfs_block_rsv *global_rsv =
4869 &root->fs_info->global_block_rsv;
4870
4871 if (block_rsv != global_rsv &&
4872 !block_rsv_use_bytes(global_rsv, orig_bytes))
4873 ret = 0;
4874 }
cab45e22
JM
4875 if (ret == -ENOSPC)
4876 trace_btrfs_space_reservation(root->fs_info,
4877 "space_info:enospc",
4878 space_info->flags, orig_bytes, 1);
fdb5effd 4879 if (flushing) {
8bb8ab2e 4880 spin_lock(&space_info->lock);
fdb5effd
JB
4881 space_info->flush = 0;
4882 wake_up_all(&space_info->wait);
8bb8ab2e 4883 spin_unlock(&space_info->lock);
f0486c68 4884 }
f0486c68
YZ
4885 return ret;
4886}
4887
79787eaa
JM
4888static struct btrfs_block_rsv *get_block_rsv(
4889 const struct btrfs_trans_handle *trans,
4890 const struct btrfs_root *root)
f0486c68 4891{
4c13d758
JB
4892 struct btrfs_block_rsv *block_rsv = NULL;
4893
27cdeb70 4894 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0e721106
JB
4895 block_rsv = trans->block_rsv;
4896
4897 if (root == root->fs_info->csum_root && trans->adding_csums)
f0486c68 4898 block_rsv = trans->block_rsv;
4c13d758 4899
f7a81ea4
SB
4900 if (root == root->fs_info->uuid_root)
4901 block_rsv = trans->block_rsv;
4902
4c13d758 4903 if (!block_rsv)
f0486c68
YZ
4904 block_rsv = root->block_rsv;
4905
4906 if (!block_rsv)
4907 block_rsv = &root->fs_info->empty_block_rsv;
4908
4909 return block_rsv;
4910}
4911
4912static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
4913 u64 num_bytes)
4914{
4915 int ret = -ENOSPC;
4916 spin_lock(&block_rsv->lock);
4917 if (block_rsv->reserved >= num_bytes) {
4918 block_rsv->reserved -= num_bytes;
4919 if (block_rsv->reserved < block_rsv->size)
4920 block_rsv->full = 0;
4921 ret = 0;
4922 }
4923 spin_unlock(&block_rsv->lock);
4924 return ret;
4925}
4926
4927static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
4928 u64 num_bytes, int update_size)
4929{
4930 spin_lock(&block_rsv->lock);
4931 block_rsv->reserved += num_bytes;
4932 if (update_size)
4933 block_rsv->size += num_bytes;
4934 else if (block_rsv->reserved >= block_rsv->size)
4935 block_rsv->full = 1;
4936 spin_unlock(&block_rsv->lock);
4937}
4938
d52be818
JB
4939int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
4940 struct btrfs_block_rsv *dest, u64 num_bytes,
4941 int min_factor)
4942{
4943 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4944 u64 min_bytes;
4945
4946 if (global_rsv->space_info != dest->space_info)
4947 return -ENOSPC;
4948
4949 spin_lock(&global_rsv->lock);
4950 min_bytes = div_factor(global_rsv->size, min_factor);
4951 if (global_rsv->reserved < min_bytes + num_bytes) {
4952 spin_unlock(&global_rsv->lock);
4953 return -ENOSPC;
4954 }
4955 global_rsv->reserved -= num_bytes;
4956 if (global_rsv->reserved < global_rsv->size)
4957 global_rsv->full = 0;
4958 spin_unlock(&global_rsv->lock);
4959
4960 block_rsv_add_bytes(dest, num_bytes, 1);
4961 return 0;
4962}
4963
8c2a3ca2
JB
4964static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
4965 struct btrfs_block_rsv *block_rsv,
62a45b60 4966 struct btrfs_block_rsv *dest, u64 num_bytes)
f0486c68
YZ
4967{
4968 struct btrfs_space_info *space_info = block_rsv->space_info;
4969
4970 spin_lock(&block_rsv->lock);
4971 if (num_bytes == (u64)-1)
4972 num_bytes = block_rsv->size;
4973 block_rsv->size -= num_bytes;
4974 if (block_rsv->reserved >= block_rsv->size) {
4975 num_bytes = block_rsv->reserved - block_rsv->size;
4976 block_rsv->reserved = block_rsv->size;
4977 block_rsv->full = 1;
4978 } else {
4979 num_bytes = 0;
4980 }
4981 spin_unlock(&block_rsv->lock);
4982
4983 if (num_bytes > 0) {
4984 if (dest) {
e9e22899
JB
4985 spin_lock(&dest->lock);
4986 if (!dest->full) {
4987 u64 bytes_to_add;
4988
4989 bytes_to_add = dest->size - dest->reserved;
4990 bytes_to_add = min(num_bytes, bytes_to_add);
4991 dest->reserved += bytes_to_add;
4992 if (dest->reserved >= dest->size)
4993 dest->full = 1;
4994 num_bytes -= bytes_to_add;
4995 }
4996 spin_unlock(&dest->lock);
4997 }
4998 if (num_bytes) {
f0486c68 4999 spin_lock(&space_info->lock);
fb25e914 5000 space_info->bytes_may_use -= num_bytes;
8c2a3ca2 5001 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5002 space_info->flags, num_bytes, 0);
f0486c68 5003 spin_unlock(&space_info->lock);
4e06bdd6 5004 }
9ed74f2d 5005 }
f0486c68 5006}
4e06bdd6 5007
f0486c68
YZ
5008static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
5009 struct btrfs_block_rsv *dst, u64 num_bytes)
5010{
5011 int ret;
9ed74f2d 5012
f0486c68
YZ
5013 ret = block_rsv_use_bytes(src, num_bytes);
5014 if (ret)
5015 return ret;
9ed74f2d 5016
f0486c68 5017 block_rsv_add_bytes(dst, num_bytes, 1);
9ed74f2d
JB
5018 return 0;
5019}
5020
66d8f3dd 5021void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5022{
f0486c68
YZ
5023 memset(rsv, 0, sizeof(*rsv));
5024 spin_lock_init(&rsv->lock);
66d8f3dd 5025 rsv->type = type;
f0486c68
YZ
5026}
5027
66d8f3dd
MX
5028struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root,
5029 unsigned short type)
f0486c68
YZ
5030{
5031 struct btrfs_block_rsv *block_rsv;
5032 struct btrfs_fs_info *fs_info = root->fs_info;
9ed74f2d 5033
f0486c68
YZ
5034 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5035 if (!block_rsv)
5036 return NULL;
9ed74f2d 5037
66d8f3dd 5038 btrfs_init_block_rsv(block_rsv, type);
f0486c68
YZ
5039 block_rsv->space_info = __find_space_info(fs_info,
5040 BTRFS_BLOCK_GROUP_METADATA);
f0486c68
YZ
5041 return block_rsv;
5042}
9ed74f2d 5043
f0486c68
YZ
5044void btrfs_free_block_rsv(struct btrfs_root *root,
5045 struct btrfs_block_rsv *rsv)
5046{
2aaa6655
JB
5047 if (!rsv)
5048 return;
dabdb640
JB
5049 btrfs_block_rsv_release(root, rsv, (u64)-1);
5050 kfree(rsv);
9ed74f2d
JB
5051}
5052
cdfb080e
CM
5053void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5054{
5055 kfree(rsv);
5056}
5057
08e007d2
MX
5058int btrfs_block_rsv_add(struct btrfs_root *root,
5059 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5060 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5061{
f0486c68 5062 int ret;
9ed74f2d 5063
f0486c68
YZ
5064 if (num_bytes == 0)
5065 return 0;
8bb8ab2e 5066
61b520a9 5067 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5068 if (!ret) {
5069 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5070 return 0;
5071 }
9ed74f2d 5072
f0486c68 5073 return ret;
f0486c68 5074}
9ed74f2d 5075
4a92b1b8 5076int btrfs_block_rsv_check(struct btrfs_root *root,
36ba022a 5077 struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5078{
5079 u64 num_bytes = 0;
f0486c68 5080 int ret = -ENOSPC;
9ed74f2d 5081
f0486c68
YZ
5082 if (!block_rsv)
5083 return 0;
9ed74f2d 5084
f0486c68 5085 spin_lock(&block_rsv->lock);
36ba022a
JB
5086 num_bytes = div_factor(block_rsv->size, min_factor);
5087 if (block_rsv->reserved >= num_bytes)
5088 ret = 0;
5089 spin_unlock(&block_rsv->lock);
9ed74f2d 5090
36ba022a
JB
5091 return ret;
5092}
5093
08e007d2
MX
5094int btrfs_block_rsv_refill(struct btrfs_root *root,
5095 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5096 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5097{
5098 u64 num_bytes = 0;
5099 int ret = -ENOSPC;
5100
5101 if (!block_rsv)
5102 return 0;
5103
5104 spin_lock(&block_rsv->lock);
5105 num_bytes = min_reserved;
13553e52 5106 if (block_rsv->reserved >= num_bytes)
f0486c68 5107 ret = 0;
13553e52 5108 else
f0486c68 5109 num_bytes -= block_rsv->reserved;
f0486c68 5110 spin_unlock(&block_rsv->lock);
13553e52 5111
f0486c68
YZ
5112 if (!ret)
5113 return 0;
5114
aa38a711 5115 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5116 if (!ret) {
5117 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5118 return 0;
6a63209f 5119 }
9ed74f2d 5120
13553e52 5121 return ret;
f0486c68
YZ
5122}
5123
5124int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
5125 struct btrfs_block_rsv *dst_rsv,
5126 u64 num_bytes)
5127{
5128 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
5129}
5130
5131void btrfs_block_rsv_release(struct btrfs_root *root,
5132 struct btrfs_block_rsv *block_rsv,
5133 u64 num_bytes)
5134{
5135 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
17504584 5136 if (global_rsv == block_rsv ||
f0486c68
YZ
5137 block_rsv->space_info != global_rsv->space_info)
5138 global_rsv = NULL;
8c2a3ca2
JB
5139 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
5140 num_bytes);
6a63209f
JB
5141}
5142
5143/*
8929ecfa
YZ
5144 * helper to calculate size of global block reservation.
5145 * the desired value is sum of space used by extent tree,
5146 * checksum tree and root tree
6a63209f 5147 */
8929ecfa 5148static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
6a63209f 5149{
8929ecfa
YZ
5150 struct btrfs_space_info *sinfo;
5151 u64 num_bytes;
5152 u64 meta_used;
5153 u64 data_used;
6c41761f 5154 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
6a63209f 5155
8929ecfa
YZ
5156 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
5157 spin_lock(&sinfo->lock);
5158 data_used = sinfo->bytes_used;
5159 spin_unlock(&sinfo->lock);
33b4d47f 5160
8929ecfa
YZ
5161 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5162 spin_lock(&sinfo->lock);
6d48755d
JB
5163 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
5164 data_used = 0;
8929ecfa
YZ
5165 meta_used = sinfo->bytes_used;
5166 spin_unlock(&sinfo->lock);
ab6e2410 5167
8929ecfa
YZ
5168 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
5169 csum_size * 2;
f8c269d7 5170 num_bytes += div_u64(data_used + meta_used, 50);
4e06bdd6 5171
8929ecfa 5172 if (num_bytes * 3 > meta_used)
f8c269d7 5173 num_bytes = div_u64(meta_used, 3);
ab6e2410 5174
707e8a07 5175 return ALIGN(num_bytes, fs_info->extent_root->nodesize << 10);
8929ecfa 5176}
6a63209f 5177
8929ecfa
YZ
5178static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5179{
5180 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5181 struct btrfs_space_info *sinfo = block_rsv->space_info;
5182 u64 num_bytes;
6a63209f 5183
8929ecfa 5184 num_bytes = calc_global_metadata_size(fs_info);
33b4d47f 5185
8929ecfa 5186 spin_lock(&sinfo->lock);
1f699d38 5187 spin_lock(&block_rsv->lock);
4e06bdd6 5188
fdf30d1c 5189 block_rsv->size = min_t(u64, num_bytes, 512 * 1024 * 1024);
4e06bdd6 5190
8929ecfa 5191 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
6d48755d
JB
5192 sinfo->bytes_reserved + sinfo->bytes_readonly +
5193 sinfo->bytes_may_use;
8929ecfa
YZ
5194
5195 if (sinfo->total_bytes > num_bytes) {
5196 num_bytes = sinfo->total_bytes - num_bytes;
5197 block_rsv->reserved += num_bytes;
fb25e914 5198 sinfo->bytes_may_use += num_bytes;
8c2a3ca2 5199 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5200 sinfo->flags, num_bytes, 1);
6a63209f 5201 }
6a63209f 5202
8929ecfa
YZ
5203 if (block_rsv->reserved >= block_rsv->size) {
5204 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5205 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5206 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5207 sinfo->flags, num_bytes, 0);
8929ecfa
YZ
5208 block_rsv->reserved = block_rsv->size;
5209 block_rsv->full = 1;
5210 }
182608c8 5211
8929ecfa 5212 spin_unlock(&block_rsv->lock);
1f699d38 5213 spin_unlock(&sinfo->lock);
6a63209f
JB
5214}
5215
f0486c68 5216static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5217{
f0486c68 5218 struct btrfs_space_info *space_info;
6a63209f 5219
f0486c68
YZ
5220 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5221 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5222
f0486c68 5223 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5224 fs_info->global_block_rsv.space_info = space_info;
8929ecfa 5225 fs_info->delalloc_block_rsv.space_info = space_info;
f0486c68
YZ
5226 fs_info->trans_block_rsv.space_info = space_info;
5227 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5228 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5229
8929ecfa
YZ
5230 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5231 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5232 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5233 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5234 if (fs_info->quota_root)
5235 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5236 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5237
8929ecfa 5238 update_global_block_rsv(fs_info);
6a63209f
JB
5239}
5240
8929ecfa 5241static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5242{
8c2a3ca2
JB
5243 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5244 (u64)-1);
8929ecfa
YZ
5245 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5246 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5247 WARN_ON(fs_info->trans_block_rsv.size > 0);
5248 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5249 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5250 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5251 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5252 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5253}
5254
a22285a6
YZ
5255void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5256 struct btrfs_root *root)
6a63209f 5257{
0e721106
JB
5258 if (!trans->block_rsv)
5259 return;
5260
a22285a6
YZ
5261 if (!trans->bytes_reserved)
5262 return;
6a63209f 5263
e77266e4 5264 trace_btrfs_space_reservation(root->fs_info, "transaction",
2bcc0328 5265 trans->transid, trans->bytes_reserved, 0);
b24e03db 5266 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
a22285a6
YZ
5267 trans->bytes_reserved = 0;
5268}
6a63209f 5269
4fbcdf66
FM
5270/*
5271 * To be called after all the new block groups attached to the transaction
5272 * handle have been created (btrfs_create_pending_block_groups()).
5273 */
5274void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5275{
5276 struct btrfs_fs_info *fs_info = trans->root->fs_info;
5277
5278 if (!trans->chunk_bytes_reserved)
5279 return;
5280
5281 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5282
5283 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5284 trans->chunk_bytes_reserved);
5285 trans->chunk_bytes_reserved = 0;
5286}
5287
79787eaa 5288/* Can only return 0 or -ENOSPC */
d68fc57b
YZ
5289int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5290 struct inode *inode)
5291{
5292 struct btrfs_root *root = BTRFS_I(inode)->root;
5293 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
5294 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5295
5296 /*
fcb80c2a
JB
5297 * We need to hold space in order to delete our orphan item once we've
5298 * added it, so this takes the reservation so we can release it later
5299 * when we are truly done with the orphan item.
d68fc57b 5300 */
ff5714cc 5301 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5302 trace_btrfs_space_reservation(root->fs_info, "orphan",
5303 btrfs_ino(inode), num_bytes, 1);
d68fc57b 5304 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
6a63209f
JB
5305}
5306
d68fc57b 5307void btrfs_orphan_release_metadata(struct inode *inode)
97e728d4 5308{
d68fc57b 5309 struct btrfs_root *root = BTRFS_I(inode)->root;
ff5714cc 5310 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
8c2a3ca2
JB
5311 trace_btrfs_space_reservation(root->fs_info, "orphan",
5312 btrfs_ino(inode), num_bytes, 0);
d68fc57b
YZ
5313 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
5314}
97e728d4 5315
d5c12070
MX
5316/*
5317 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5318 * root: the root of the parent directory
5319 * rsv: block reservation
5320 * items: the number of items that we need do reservation
5321 * qgroup_reserved: used to return the reserved size in qgroup
5322 *
5323 * This function is used to reserve the space for snapshot/subvolume
5324 * creation and deletion. Those operations are different with the
5325 * common file/directory operations, they change two fs/file trees
5326 * and root tree, the number of items that the qgroup reserves is
5327 * different with the free space reservation. So we can not use
5328 * the space reseravtion mechanism in start_transaction().
5329 */
5330int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5331 struct btrfs_block_rsv *rsv,
5332 int items,
ee3441b4
JM
5333 u64 *qgroup_reserved,
5334 bool use_global_rsv)
a22285a6 5335{
d5c12070
MX
5336 u64 num_bytes;
5337 int ret;
ee3441b4 5338 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
d5c12070
MX
5339
5340 if (root->fs_info->quota_enabled) {
5341 /* One for parent inode, two for dir entries */
707e8a07 5342 num_bytes = 3 * root->nodesize;
d5c12070
MX
5343 ret = btrfs_qgroup_reserve(root, num_bytes);
5344 if (ret)
5345 return ret;
5346 } else {
5347 num_bytes = 0;
5348 }
5349
5350 *qgroup_reserved = num_bytes;
5351
5352 num_bytes = btrfs_calc_trans_metadata_size(root, items);
5353 rsv->space_info = __find_space_info(root->fs_info,
5354 BTRFS_BLOCK_GROUP_METADATA);
5355 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5356 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5357
5358 if (ret == -ENOSPC && use_global_rsv)
5359 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes);
5360
d5c12070
MX
5361 if (ret) {
5362 if (*qgroup_reserved)
5363 btrfs_qgroup_free(root, *qgroup_reserved);
5364 }
5365
5366 return ret;
5367}
5368
5369void btrfs_subvolume_release_metadata(struct btrfs_root *root,
5370 struct btrfs_block_rsv *rsv,
5371 u64 qgroup_reserved)
5372{
5373 btrfs_block_rsv_release(root, rsv, (u64)-1);
97e728d4
JB
5374}
5375
7709cde3
JB
5376/**
5377 * drop_outstanding_extent - drop an outstanding extent
5378 * @inode: the inode we're dropping the extent for
dcab6a3b 5379 * @num_bytes: the number of bytes we're relaseing.
7709cde3
JB
5380 *
5381 * This is called when we are freeing up an outstanding extent, either called
5382 * after an error or after an extent is written. This will return the number of
5383 * reserved extents that need to be freed. This must be called with
5384 * BTRFS_I(inode)->lock held.
5385 */
dcab6a3b 5386static unsigned drop_outstanding_extent(struct inode *inode, u64 num_bytes)
9e0baf60 5387{
7fd2ae21 5388 unsigned drop_inode_space = 0;
9e0baf60 5389 unsigned dropped_extents = 0;
dcab6a3b 5390 unsigned num_extents = 0;
9e0baf60 5391
dcab6a3b
JB
5392 num_extents = (unsigned)div64_u64(num_bytes +
5393 BTRFS_MAX_EXTENT_SIZE - 1,
5394 BTRFS_MAX_EXTENT_SIZE);
5395 ASSERT(num_extents);
5396 ASSERT(BTRFS_I(inode)->outstanding_extents >= num_extents);
5397 BTRFS_I(inode)->outstanding_extents -= num_extents;
9e0baf60 5398
7fd2ae21 5399 if (BTRFS_I(inode)->outstanding_extents == 0 &&
72ac3c0d
JB
5400 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5401 &BTRFS_I(inode)->runtime_flags))
7fd2ae21 5402 drop_inode_space = 1;
7fd2ae21 5403
9e0baf60
JB
5404 /*
5405 * If we have more or the same amount of outsanding extents than we have
5406 * reserved then we need to leave the reserved extents count alone.
5407 */
5408 if (BTRFS_I(inode)->outstanding_extents >=
5409 BTRFS_I(inode)->reserved_extents)
7fd2ae21 5410 return drop_inode_space;
9e0baf60
JB
5411
5412 dropped_extents = BTRFS_I(inode)->reserved_extents -
5413 BTRFS_I(inode)->outstanding_extents;
5414 BTRFS_I(inode)->reserved_extents -= dropped_extents;
7fd2ae21 5415 return dropped_extents + drop_inode_space;
9e0baf60
JB
5416}
5417
7709cde3
JB
5418/**
5419 * calc_csum_metadata_size - return the amount of metada space that must be
5420 * reserved/free'd for the given bytes.
5421 * @inode: the inode we're manipulating
5422 * @num_bytes: the number of bytes in question
5423 * @reserve: 1 if we are reserving space, 0 if we are freeing space
5424 *
5425 * This adjusts the number of csum_bytes in the inode and then returns the
5426 * correct amount of metadata that must either be reserved or freed. We
5427 * calculate how many checksums we can fit into one leaf and then divide the
5428 * number of bytes that will need to be checksumed by this value to figure out
5429 * how many checksums will be required. If we are adding bytes then the number
5430 * may go up and we will return the number of additional bytes that must be
5431 * reserved. If it is going down we will return the number of bytes that must
5432 * be freed.
5433 *
5434 * This must be called with BTRFS_I(inode)->lock held.
5435 */
5436static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
5437 int reserve)
6324fbf3 5438{
7709cde3 5439 struct btrfs_root *root = BTRFS_I(inode)->root;
1262133b 5440 u64 old_csums, num_csums;
7709cde3
JB
5441
5442 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
5443 BTRFS_I(inode)->csum_bytes == 0)
5444 return 0;
5445
28f75a0e 5446 old_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5447 if (reserve)
5448 BTRFS_I(inode)->csum_bytes += num_bytes;
5449 else
5450 BTRFS_I(inode)->csum_bytes -= num_bytes;
28f75a0e 5451 num_csums = btrfs_csum_bytes_to_leaves(root, BTRFS_I(inode)->csum_bytes);
7709cde3
JB
5452
5453 /* No change, no need to reserve more */
5454 if (old_csums == num_csums)
5455 return 0;
5456
5457 if (reserve)
5458 return btrfs_calc_trans_metadata_size(root,
5459 num_csums - old_csums);
5460
5461 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
0ca1f7ce 5462}
c146afad 5463
0ca1f7ce
YZ
5464int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
5465{
5466 struct btrfs_root *root = BTRFS_I(inode)->root;
5467 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
9e0baf60 5468 u64 to_reserve = 0;
660d3f6c 5469 u64 csum_bytes;
9e0baf60 5470 unsigned nr_extents = 0;
660d3f6c 5471 int extra_reserve = 0;
08e007d2 5472 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 5473 int ret = 0;
c64c2bd8 5474 bool delalloc_lock = true;
88e081bf
WS
5475 u64 to_free = 0;
5476 unsigned dropped;
6324fbf3 5477
c64c2bd8
JB
5478 /* If we are a free space inode we need to not flush since we will be in
5479 * the middle of a transaction commit. We also don't need the delalloc
5480 * mutex since we won't race with anybody. We need this mostly to make
5481 * lockdep shut its filthy mouth.
5482 */
5483 if (btrfs_is_free_space_inode(inode)) {
08e007d2 5484 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8
JB
5485 delalloc_lock = false;
5486 }
c09544e0 5487
08e007d2
MX
5488 if (flush != BTRFS_RESERVE_NO_FLUSH &&
5489 btrfs_transaction_in_commit(root->fs_info))
0ca1f7ce 5490 schedule_timeout(1);
ec44a35c 5491
c64c2bd8
JB
5492 if (delalloc_lock)
5493 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
5494
0ca1f7ce 5495 num_bytes = ALIGN(num_bytes, root->sectorsize);
8bb8ab2e 5496
9e0baf60 5497 spin_lock(&BTRFS_I(inode)->lock);
6a41dd09
JB
5498 nr_extents = (unsigned)div64_u64(num_bytes +
5499 BTRFS_MAX_EXTENT_SIZE - 1,
5500 BTRFS_MAX_EXTENT_SIZE);
5501 BTRFS_I(inode)->outstanding_extents += nr_extents;
5502 nr_extents = 0;
9e0baf60
JB
5503
5504 if (BTRFS_I(inode)->outstanding_extents >
660d3f6c 5505 BTRFS_I(inode)->reserved_extents)
9e0baf60
JB
5506 nr_extents = BTRFS_I(inode)->outstanding_extents -
5507 BTRFS_I(inode)->reserved_extents;
57a45ced 5508
7fd2ae21
JB
5509 /*
5510 * Add an item to reserve for updating the inode when we complete the
5511 * delalloc io.
5512 */
72ac3c0d
JB
5513 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5514 &BTRFS_I(inode)->runtime_flags)) {
7fd2ae21 5515 nr_extents++;
660d3f6c 5516 extra_reserve = 1;
593060d7 5517 }
7fd2ae21
JB
5518
5519 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
7709cde3 5520 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
660d3f6c 5521 csum_bytes = BTRFS_I(inode)->csum_bytes;
9e0baf60 5522 spin_unlock(&BTRFS_I(inode)->lock);
57a45ced 5523
88e081bf 5524 if (root->fs_info->quota_enabled) {
237c0e9f 5525 ret = btrfs_qgroup_reserve(root, nr_extents * root->nodesize);
88e081bf
WS
5526 if (ret)
5527 goto out_fail;
5528 }
c5567237 5529
88e081bf
WS
5530 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
5531 if (unlikely(ret)) {
5532 if (root->fs_info->quota_enabled)
237c0e9f 5533 btrfs_qgroup_free(root, nr_extents * root->nodesize);
88e081bf 5534 goto out_fail;
9e0baf60 5535 }
25179201 5536
660d3f6c
JB
5537 spin_lock(&BTRFS_I(inode)->lock);
5538 if (extra_reserve) {
72ac3c0d
JB
5539 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
5540 &BTRFS_I(inode)->runtime_flags);
660d3f6c
JB
5541 nr_extents--;
5542 }
5543 BTRFS_I(inode)->reserved_extents += nr_extents;
5544 spin_unlock(&BTRFS_I(inode)->lock);
c64c2bd8
JB
5545
5546 if (delalloc_lock)
5547 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
660d3f6c 5548
8c2a3ca2 5549 if (to_reserve)
67871254 5550 trace_btrfs_space_reservation(root->fs_info, "delalloc",
8c2a3ca2 5551 btrfs_ino(inode), to_reserve, 1);
0ca1f7ce
YZ
5552 block_rsv_add_bytes(block_rsv, to_reserve, 1);
5553
0ca1f7ce 5554 return 0;
88e081bf
WS
5555
5556out_fail:
5557 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5558 dropped = drop_outstanding_extent(inode, num_bytes);
88e081bf
WS
5559 /*
5560 * If the inodes csum_bytes is the same as the original
5561 * csum_bytes then we know we haven't raced with any free()ers
5562 * so we can just reduce our inodes csum bytes and carry on.
88e081bf 5563 */
f4881bc7 5564 if (BTRFS_I(inode)->csum_bytes == csum_bytes) {
88e081bf 5565 calc_csum_metadata_size(inode, num_bytes, 0);
f4881bc7
JB
5566 } else {
5567 u64 orig_csum_bytes = BTRFS_I(inode)->csum_bytes;
5568 u64 bytes;
5569
5570 /*
5571 * This is tricky, but first we need to figure out how much we
5572 * free'd from any free-ers that occured during this
5573 * reservation, so we reset ->csum_bytes to the csum_bytes
5574 * before we dropped our lock, and then call the free for the
5575 * number of bytes that were freed while we were trying our
5576 * reservation.
5577 */
5578 bytes = csum_bytes - BTRFS_I(inode)->csum_bytes;
5579 BTRFS_I(inode)->csum_bytes = csum_bytes;
5580 to_free = calc_csum_metadata_size(inode, bytes, 0);
5581
5582
5583 /*
5584 * Now we need to see how much we would have freed had we not
5585 * been making this reservation and our ->csum_bytes were not
5586 * artificially inflated.
5587 */
5588 BTRFS_I(inode)->csum_bytes = csum_bytes - num_bytes;
5589 bytes = csum_bytes - orig_csum_bytes;
5590 bytes = calc_csum_metadata_size(inode, bytes, 0);
5591
5592 /*
5593 * Now reset ->csum_bytes to what it should be. If bytes is
5594 * more than to_free then we would have free'd more space had we
5595 * not had an artificially high ->csum_bytes, so we need to free
5596 * the remainder. If bytes is the same or less then we don't
5597 * need to do anything, the other free-ers did the correct
5598 * thing.
5599 */
5600 BTRFS_I(inode)->csum_bytes = orig_csum_bytes - num_bytes;
5601 if (bytes > to_free)
5602 to_free = bytes - to_free;
5603 else
5604 to_free = 0;
5605 }
88e081bf 5606 spin_unlock(&BTRFS_I(inode)->lock);
e2d1f923 5607 if (dropped)
88e081bf
WS
5608 to_free += btrfs_calc_trans_metadata_size(root, dropped);
5609
5610 if (to_free) {
5611 btrfs_block_rsv_release(root, block_rsv, to_free);
5612 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5613 btrfs_ino(inode), to_free, 0);
5614 }
5615 if (delalloc_lock)
5616 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
5617 return ret;
0ca1f7ce
YZ
5618}
5619
7709cde3
JB
5620/**
5621 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
5622 * @inode: the inode to release the reservation for
5623 * @num_bytes: the number of bytes we're releasing
5624 *
5625 * This will release the metadata reservation for an inode. This can be called
5626 * once we complete IO for a given set of bytes to release their metadata
5627 * reservations.
5628 */
0ca1f7ce
YZ
5629void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
5630{
5631 struct btrfs_root *root = BTRFS_I(inode)->root;
9e0baf60
JB
5632 u64 to_free = 0;
5633 unsigned dropped;
0ca1f7ce
YZ
5634
5635 num_bytes = ALIGN(num_bytes, root->sectorsize);
7709cde3 5636 spin_lock(&BTRFS_I(inode)->lock);
dcab6a3b 5637 dropped = drop_outstanding_extent(inode, num_bytes);
97e728d4 5638
0934856d
MX
5639 if (num_bytes)
5640 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
7709cde3 5641 spin_unlock(&BTRFS_I(inode)->lock);
9e0baf60
JB
5642 if (dropped > 0)
5643 to_free += btrfs_calc_trans_metadata_size(root, dropped);
0ca1f7ce 5644
6a3891c5
JB
5645 if (btrfs_test_is_dummy_root(root))
5646 return;
5647
8c2a3ca2
JB
5648 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5649 btrfs_ino(inode), to_free, 0);
c5567237 5650
0ca1f7ce
YZ
5651 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
5652 to_free);
5653}
5654
7709cde3
JB
5655/**
5656 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
5657 * @inode: inode we're writing to
5658 * @num_bytes: the number of bytes we want to allocate
5659 *
5660 * This will do the following things
5661 *
5662 * o reserve space in the data space info for num_bytes
5663 * o reserve space in the metadata space info based on number of outstanding
5664 * extents and how much csums will be needed
5665 * o add to the inodes ->delalloc_bytes
5666 * o add it to the fs_info's delalloc inodes list.
5667 *
5668 * This will return 0 for success and -ENOSPC if there is no space left.
5669 */
0ca1f7ce
YZ
5670int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
5671{
5672 int ret;
5673
e2d1f923 5674 ret = btrfs_check_data_free_space(inode, num_bytes, num_bytes);
d397712b 5675 if (ret)
0ca1f7ce
YZ
5676 return ret;
5677
5678 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
5679 if (ret) {
5680 btrfs_free_reserved_data_space(inode, num_bytes);
5681 return ret;
5682 }
5683
5684 return 0;
5685}
5686
7709cde3
JB
5687/**
5688 * btrfs_delalloc_release_space - release data and metadata space for delalloc
5689 * @inode: inode we're releasing space for
5690 * @num_bytes: the number of bytes we want to free up
5691 *
5692 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
5693 * called in the case that we don't need the metadata AND data reservations
5694 * anymore. So if there is an error or we insert an inline extent.
5695 *
5696 * This function will release the metadata space that was not used and will
5697 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
5698 * list if there are no delalloc bytes left.
5699 */
0ca1f7ce
YZ
5700void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
5701{
5702 btrfs_delalloc_release_metadata(inode, num_bytes);
5703 btrfs_free_reserved_data_space(inode, num_bytes);
6324fbf3
CM
5704}
5705
ce93ec54
JB
5706static int update_block_group(struct btrfs_trans_handle *trans,
5707 struct btrfs_root *root, u64 bytenr,
5708 u64 num_bytes, int alloc)
9078a3e1 5709{
0af3d00b 5710 struct btrfs_block_group_cache *cache = NULL;
9078a3e1 5711 struct btrfs_fs_info *info = root->fs_info;
db94535d 5712 u64 total = num_bytes;
9078a3e1 5713 u64 old_val;
db94535d 5714 u64 byte_in_group;
0af3d00b 5715 int factor;
3e1ad54f 5716
5d4f98a2 5717 /* block accounting for super block */
eb73c1b7 5718 spin_lock(&info->delalloc_root_lock);
6c41761f 5719 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
5720 if (alloc)
5721 old_val += num_bytes;
5722 else
5723 old_val -= num_bytes;
6c41761f 5724 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 5725 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 5726
d397712b 5727 while (total) {
db94535d 5728 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 5729 if (!cache)
79787eaa 5730 return -ENOENT;
b742bb82
YZ
5731 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
5732 BTRFS_BLOCK_GROUP_RAID1 |
5733 BTRFS_BLOCK_GROUP_RAID10))
5734 factor = 2;
5735 else
5736 factor = 1;
9d66e233
JB
5737 /*
5738 * If this block group has free space cache written out, we
5739 * need to make sure to load it if we are removing space. This
5740 * is because we need the unpinning stage to actually add the
5741 * space back to the block group, otherwise we will leak space.
5742 */
5743 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 5744 cache_block_group(cache, 1);
0af3d00b 5745
db94535d
CM
5746 byte_in_group = bytenr - cache->key.objectid;
5747 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 5748
25179201 5749 spin_lock(&cache->space_info->lock);
c286ac48 5750 spin_lock(&cache->lock);
0af3d00b 5751
73bc1876 5752 if (btrfs_test_opt(root, SPACE_CACHE) &&
0af3d00b
JB
5753 cache->disk_cache_state < BTRFS_DC_CLEAR)
5754 cache->disk_cache_state = BTRFS_DC_CLEAR;
5755
9078a3e1 5756 old_val = btrfs_block_group_used(&cache->item);
db94535d 5757 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 5758 if (alloc) {
db94535d 5759 old_val += num_bytes;
11833d66
YZ
5760 btrfs_set_block_group_used(&cache->item, old_val);
5761 cache->reserved -= num_bytes;
11833d66 5762 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
5763 cache->space_info->bytes_used += num_bytes;
5764 cache->space_info->disk_used += num_bytes * factor;
c286ac48 5765 spin_unlock(&cache->lock);
25179201 5766 spin_unlock(&cache->space_info->lock);
cd1bc465 5767 } else {
db94535d 5768 old_val -= num_bytes;
ae0ab003
FM
5769 btrfs_set_block_group_used(&cache->item, old_val);
5770 cache->pinned += num_bytes;
5771 cache->space_info->bytes_pinned += num_bytes;
5772 cache->space_info->bytes_used -= num_bytes;
5773 cache->space_info->disk_used -= num_bytes * factor;
5774 spin_unlock(&cache->lock);
5775 spin_unlock(&cache->space_info->lock);
47ab2a6c 5776
ae0ab003
FM
5777 set_extent_dirty(info->pinned_extents,
5778 bytenr, bytenr + num_bytes - 1,
5779 GFP_NOFS | __GFP_NOFAIL);
47ab2a6c
JB
5780 /*
5781 * No longer have used bytes in this block group, queue
5782 * it for deletion.
5783 */
5784 if (old_val == 0) {
5785 spin_lock(&info->unused_bgs_lock);
5786 if (list_empty(&cache->bg_list)) {
5787 btrfs_get_block_group(cache);
5788 list_add_tail(&cache->bg_list,
5789 &info->unused_bgs);
5790 }
5791 spin_unlock(&info->unused_bgs_lock);
5792 }
cd1bc465 5793 }
1bbc621e
CM
5794
5795 spin_lock(&trans->transaction->dirty_bgs_lock);
5796 if (list_empty(&cache->dirty_list)) {
5797 list_add_tail(&cache->dirty_list,
5798 &trans->transaction->dirty_bgs);
5799 trans->transaction->num_dirty_bgs++;
5800 btrfs_get_block_group(cache);
5801 }
5802 spin_unlock(&trans->transaction->dirty_bgs_lock);
5803
fa9c0d79 5804 btrfs_put_block_group(cache);
db94535d
CM
5805 total -= num_bytes;
5806 bytenr += num_bytes;
9078a3e1
CM
5807 }
5808 return 0;
5809}
6324fbf3 5810
a061fc8d
CM
5811static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
5812{
0f9dd46c 5813 struct btrfs_block_group_cache *cache;
d2fb3437 5814 u64 bytenr;
0f9dd46c 5815
a1897fdd
LB
5816 spin_lock(&root->fs_info->block_group_cache_lock);
5817 bytenr = root->fs_info->first_logical_byte;
5818 spin_unlock(&root->fs_info->block_group_cache_lock);
5819
5820 if (bytenr < (u64)-1)
5821 return bytenr;
5822
0f9dd46c
JB
5823 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
5824 if (!cache)
a061fc8d 5825 return 0;
0f9dd46c 5826
d2fb3437 5827 bytenr = cache->key.objectid;
fa9c0d79 5828 btrfs_put_block_group(cache);
d2fb3437
YZ
5829
5830 return bytenr;
a061fc8d
CM
5831}
5832
f0486c68
YZ
5833static int pin_down_extent(struct btrfs_root *root,
5834 struct btrfs_block_group_cache *cache,
5835 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 5836{
11833d66
YZ
5837 spin_lock(&cache->space_info->lock);
5838 spin_lock(&cache->lock);
5839 cache->pinned += num_bytes;
5840 cache->space_info->bytes_pinned += num_bytes;
5841 if (reserved) {
5842 cache->reserved -= num_bytes;
5843 cache->space_info->bytes_reserved -= num_bytes;
5844 }
5845 spin_unlock(&cache->lock);
5846 spin_unlock(&cache->space_info->lock);
68b38550 5847
f0486c68
YZ
5848 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
5849 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
e2d1f923 5850 if (reserved)
0be5dc67 5851 trace_btrfs_reserved_extent_free(root, bytenr, num_bytes);
f0486c68
YZ
5852 return 0;
5853}
68b38550 5854
f0486c68
YZ
5855/*
5856 * this function must be called within transaction
5857 */
5858int btrfs_pin_extent(struct btrfs_root *root,
5859 u64 bytenr, u64 num_bytes, int reserved)
5860{
5861 struct btrfs_block_group_cache *cache;
68b38550 5862
f0486c68 5863 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
79787eaa 5864 BUG_ON(!cache); /* Logic error */
f0486c68
YZ
5865
5866 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
5867
5868 btrfs_put_block_group(cache);
11833d66
YZ
5869 return 0;
5870}
5871
f0486c68 5872/*
e688b725
CM
5873 * this function must be called within transaction
5874 */
dcfac415 5875int btrfs_pin_extent_for_log_replay(struct btrfs_root *root,
e688b725
CM
5876 u64 bytenr, u64 num_bytes)
5877{
5878 struct btrfs_block_group_cache *cache;
b50c6e25 5879 int ret;
e688b725
CM
5880
5881 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
b50c6e25
JB
5882 if (!cache)
5883 return -EINVAL;
e688b725
CM
5884
5885 /*
5886 * pull in the free space cache (if any) so that our pin
5887 * removes the free space from the cache. We have load_only set
5888 * to one because the slow code to read in the free extents does check
5889 * the pinned extents.
5890 */
f6373bf3 5891 cache_block_group(cache, 1);
e688b725
CM
5892
5893 pin_down_extent(root, cache, bytenr, num_bytes, 0);
5894
5895 /* remove us from the free space cache (if we're there at all) */
b50c6e25 5896 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 5897 btrfs_put_block_group(cache);
b50c6e25 5898 return ret;
e688b725
CM
5899}
5900
8c2a1a30
JB
5901static int __exclude_logged_extent(struct btrfs_root *root, u64 start, u64 num_bytes)
5902{
5903 int ret;
5904 struct btrfs_block_group_cache *block_group;
5905 struct btrfs_caching_control *caching_ctl;
5906
5907 block_group = btrfs_lookup_block_group(root->fs_info, start);
5908 if (!block_group)
5909 return -EINVAL;
5910
5911 cache_block_group(block_group, 0);
5912 caching_ctl = get_caching_control(block_group);
5913
5914 if (!caching_ctl) {
5915 /* Logic error */
5916 BUG_ON(!block_group_cache_done(block_group));
5917 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5918 } else {
5919 mutex_lock(&caching_ctl->mutex);
5920
5921 if (start >= caching_ctl->progress) {
5922 ret = add_excluded_extent(root, start, num_bytes);
5923 } else if (start + num_bytes <= caching_ctl->progress) {
5924 ret = btrfs_remove_free_space(block_group,
5925 start, num_bytes);
5926 } else {
5927 num_bytes = caching_ctl->progress - start;
5928 ret = btrfs_remove_free_space(block_group,
5929 start, num_bytes);
5930 if (ret)
5931 goto out_lock;
5932
5933 num_bytes = (start + num_bytes) -
5934 caching_ctl->progress;
5935 start = caching_ctl->progress;
5936 ret = add_excluded_extent(root, start, num_bytes);
5937 }
5938out_lock:
5939 mutex_unlock(&caching_ctl->mutex);
5940 put_caching_control(caching_ctl);
5941 }
5942 btrfs_put_block_group(block_group);
5943 return ret;
5944}
5945
5946int btrfs_exclude_logged_extents(struct btrfs_root *log,
5947 struct extent_buffer *eb)
5948{
5949 struct btrfs_file_extent_item *item;
5950 struct btrfs_key key;
5951 int found_type;
5952 int i;
5953
5954 if (!btrfs_fs_incompat(log->fs_info, MIXED_GROUPS))
5955 return 0;
5956
5957 for (i = 0; i < btrfs_header_nritems(eb); i++) {
5958 btrfs_item_key_to_cpu(eb, &key, i);
5959 if (key.type != BTRFS_EXTENT_DATA_KEY)
5960 continue;
5961 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
5962 found_type = btrfs_file_extent_type(eb, item);
5963 if (found_type == BTRFS_FILE_EXTENT_INLINE)
5964 continue;
5965 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
5966 continue;
5967 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
5968 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
5969 __exclude_logged_extent(log, key.objectid, key.offset);
5970 }
5971
5972 return 0;
5973}
5974
fb25e914
JB
5975/**
5976 * btrfs_update_reserved_bytes - update the block_group and space info counters
5977 * @cache: The cache we are manipulating
5978 * @num_bytes: The number of bytes in question
5979 * @reserve: One of the reservation enums
e570fd27 5980 * @delalloc: The blocks are allocated for the delalloc write
fb25e914
JB
5981 *
5982 * This is called by the allocator when it reserves space, or by somebody who is
5983 * freeing space that was never actually used on disk. For example if you
5984 * reserve some space for a new leaf in transaction A and before transaction A
5985 * commits you free that leaf, you call this with reserve set to 0 in order to
5986 * clear the reservation.
5987 *
5988 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
5989 * ENOSPC accounting. For data we handle the reservation through clearing the
5990 * delalloc bits in the io_tree. We have to do this since we could end up
5991 * allocating less disk space for the amount of data we have reserved in the
5992 * case of compression.
5993 *
5994 * If this is a reservation and the block group has become read only we cannot
5995 * make the reservation and return -EAGAIN, otherwise this function always
5996 * succeeds.
f0486c68 5997 */
fb25e914 5998static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
e570fd27 5999 u64 num_bytes, int reserve, int delalloc)
11833d66 6000{
fb25e914 6001 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6002 int ret = 0;
79787eaa 6003
fb25e914
JB
6004 spin_lock(&space_info->lock);
6005 spin_lock(&cache->lock);
6006 if (reserve != RESERVE_FREE) {
f0486c68
YZ
6007 if (cache->ro) {
6008 ret = -EAGAIN;
6009 } else {
fb25e914
JB
6010 cache->reserved += num_bytes;
6011 space_info->bytes_reserved += num_bytes;
6012 if (reserve == RESERVE_ALLOC) {
8c2a3ca2 6013 trace_btrfs_space_reservation(cache->fs_info,
2bcc0328
LB
6014 "space_info", space_info->flags,
6015 num_bytes, 0);
fb25e914
JB
6016 space_info->bytes_may_use -= num_bytes;
6017 }
e570fd27
MX
6018
6019 if (delalloc)
6020 cache->delalloc_bytes += num_bytes;
f0486c68 6021 }
fb25e914
JB
6022 } else {
6023 if (cache->ro)
6024 space_info->bytes_readonly += num_bytes;
6025 cache->reserved -= num_bytes;
6026 space_info->bytes_reserved -= num_bytes;
e570fd27
MX
6027
6028 if (delalloc)
6029 cache->delalloc_bytes -= num_bytes;
324ae4df 6030 }
fb25e914
JB
6031 spin_unlock(&cache->lock);
6032 spin_unlock(&space_info->lock);
f0486c68 6033 return ret;
324ae4df 6034}
9078a3e1 6035
143bede5 6036void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6037 struct btrfs_root *root)
e8569813 6038{
e8569813 6039 struct btrfs_fs_info *fs_info = root->fs_info;
11833d66
YZ
6040 struct btrfs_caching_control *next;
6041 struct btrfs_caching_control *caching_ctl;
6042 struct btrfs_block_group_cache *cache;
e8569813 6043
9e351cc8 6044 down_write(&fs_info->commit_root_sem);
25179201 6045
11833d66
YZ
6046 list_for_each_entry_safe(caching_ctl, next,
6047 &fs_info->caching_block_groups, list) {
6048 cache = caching_ctl->block_group;
6049 if (block_group_cache_done(cache)) {
6050 cache->last_byte_to_unpin = (u64)-1;
6051 list_del_init(&caching_ctl->list);
6052 put_caching_control(caching_ctl);
e8569813 6053 } else {
11833d66 6054 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6055 }
e8569813 6056 }
11833d66
YZ
6057
6058 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6059 fs_info->pinned_extents = &fs_info->freed_extents[1];
6060 else
6061 fs_info->pinned_extents = &fs_info->freed_extents[0];
6062
9e351cc8 6063 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6064
6065 update_global_block_rsv(fs_info);
e8569813
ZY
6066}
6067
678886bd
FM
6068static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end,
6069 const bool return_free_space)
ccd467d6 6070{
11833d66
YZ
6071 struct btrfs_fs_info *fs_info = root->fs_info;
6072 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6073 struct btrfs_space_info *space_info;
6074 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
11833d66 6075 u64 len;
7b398f8e 6076 bool readonly;
ccd467d6 6077
11833d66 6078 while (start <= end) {
7b398f8e 6079 readonly = false;
11833d66
YZ
6080 if (!cache ||
6081 start >= cache->key.objectid + cache->key.offset) {
6082 if (cache)
6083 btrfs_put_block_group(cache);
6084 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6085 BUG_ON(!cache); /* Logic error */
11833d66
YZ
6086 }
6087
6088 len = cache->key.objectid + cache->key.offset - start;
6089 len = min(len, end + 1 - start);
6090
6091 if (start < cache->last_byte_to_unpin) {
6092 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6093 if (return_free_space)
6094 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6095 }
6096
f0486c68 6097 start += len;
7b398f8e 6098 space_info = cache->space_info;
f0486c68 6099
7b398f8e 6100 spin_lock(&space_info->lock);
11833d66
YZ
6101 spin_lock(&cache->lock);
6102 cache->pinned -= len;
7b398f8e 6103 space_info->bytes_pinned -= len;
d288db5d 6104 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6105 if (cache->ro) {
6106 space_info->bytes_readonly += len;
6107 readonly = true;
6108 }
11833d66 6109 spin_unlock(&cache->lock);
7b398f8e
JB
6110 if (!readonly && global_rsv->space_info == space_info) {
6111 spin_lock(&global_rsv->lock);
6112 if (!global_rsv->full) {
6113 len = min(len, global_rsv->size -
6114 global_rsv->reserved);
6115 global_rsv->reserved += len;
6116 space_info->bytes_may_use += len;
6117 if (global_rsv->reserved >= global_rsv->size)
6118 global_rsv->full = 1;
6119 }
6120 spin_unlock(&global_rsv->lock);
6121 }
6122 spin_unlock(&space_info->lock);
ccd467d6 6123 }
11833d66
YZ
6124
6125 if (cache)
6126 btrfs_put_block_group(cache);
ccd467d6
CM
6127 return 0;
6128}
6129
6130int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
11833d66 6131 struct btrfs_root *root)
a28ec197 6132{
11833d66 6133 struct btrfs_fs_info *fs_info = root->fs_info;
e33e17ee
JM
6134 struct btrfs_block_group_cache *block_group, *tmp;
6135 struct list_head *deleted_bgs;
11833d66 6136 struct extent_io_tree *unpin;
1a5bc167
CM
6137 u64 start;
6138 u64 end;
a28ec197 6139 int ret;
a28ec197 6140
11833d66
YZ
6141 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6142 unpin = &fs_info->freed_extents[1];
6143 else
6144 unpin = &fs_info->freed_extents[0];
6145
e33e17ee 6146 while (!trans->aborted) {
d4b450cd 6147 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6148 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6149 EXTENT_DIRTY, NULL);
d4b450cd
FM
6150 if (ret) {
6151 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6152 break;
d4b450cd 6153 }
1f3c79a2 6154
5378e607
LD
6155 if (btrfs_test_opt(root, DISCARD))
6156 ret = btrfs_discard_extent(root, start,
6157 end + 1 - start, NULL);
1f3c79a2 6158
1a5bc167 6159 clear_extent_dirty(unpin, start, end, GFP_NOFS);
678886bd 6160 unpin_extent_range(root, start, end, true);
d4b450cd 6161 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6162 cond_resched();
a28ec197 6163 }
817d52f8 6164
e33e17ee
JM
6165 /*
6166 * Transaction is finished. We don't need the lock anymore. We
6167 * do need to clean up the block groups in case of a transaction
6168 * abort.
6169 */
6170 deleted_bgs = &trans->transaction->deleted_bgs;
6171 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6172 u64 trimmed = 0;
6173
6174 ret = -EROFS;
6175 if (!trans->aborted)
6176 ret = btrfs_discard_extent(root,
6177 block_group->key.objectid,
6178 block_group->key.offset,
6179 &trimmed);
6180
6181 list_del_init(&block_group->bg_list);
6182 btrfs_put_block_group_trimming(block_group);
6183 btrfs_put_block_group(block_group);
6184
6185 if (ret) {
6186 const char *errstr = btrfs_decode_error(ret);
6187 btrfs_warn(fs_info,
6188 "Discard failed while removing blockgroup: errno=%d %s\n",
6189 ret, errstr);
6190 }
6191 }
6192
e20d96d6
CM
6193 return 0;
6194}
6195
b150a4f1
JB
6196static void add_pinned_bytes(struct btrfs_fs_info *fs_info, u64 num_bytes,
6197 u64 owner, u64 root_objectid)
6198{
6199 struct btrfs_space_info *space_info;
6200 u64 flags;
6201
6202 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
6203 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
6204 flags = BTRFS_BLOCK_GROUP_SYSTEM;
6205 else
6206 flags = BTRFS_BLOCK_GROUP_METADATA;
6207 } else {
6208 flags = BTRFS_BLOCK_GROUP_DATA;
6209 }
6210
6211 space_info = __find_space_info(fs_info, flags);
6212 BUG_ON(!space_info); /* Logic bug */
6213 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
6214}
6215
6216
5d4f98a2
YZ
6217static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6218 struct btrfs_root *root,
c682f9b3 6219 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6220 u64 root_objectid, u64 owner_objectid,
6221 u64 owner_offset, int refs_to_drop,
c682f9b3 6222 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6223{
e2fa7227 6224 struct btrfs_key key;
5d4f98a2 6225 struct btrfs_path *path;
1261ec42
CM
6226 struct btrfs_fs_info *info = root->fs_info;
6227 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6228 struct extent_buffer *leaf;
5d4f98a2
YZ
6229 struct btrfs_extent_item *ei;
6230 struct btrfs_extent_inline_ref *iref;
a28ec197 6231 int ret;
5d4f98a2 6232 int is_data;
952fccac
CM
6233 int extent_slot = 0;
6234 int found_extent = 0;
6235 int num_to_del = 1;
c682f9b3 6236 int no_quota = node->no_quota;
5d4f98a2
YZ
6237 u32 item_size;
6238 u64 refs;
c682f9b3
QW
6239 u64 bytenr = node->bytenr;
6240 u64 num_bytes = node->num_bytes;
fcebe456 6241 int last_ref = 0;
3173a18f
JB
6242 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
6243 SKINNY_METADATA);
037e6390 6244
fcebe456
JB
6245 if (!info->quota_enabled || !is_fstree(root_objectid))
6246 no_quota = 1;
6247
5caf2a00 6248 path = btrfs_alloc_path();
54aa1f4d
CM
6249 if (!path)
6250 return -ENOMEM;
5f26f772 6251
3c12ac72 6252 path->reada = 1;
b9473439 6253 path->leave_spinning = 1;
5d4f98a2
YZ
6254
6255 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6256 BUG_ON(!is_data && refs_to_drop != 1);
6257
3173a18f
JB
6258 if (is_data)
6259 skinny_metadata = 0;
6260
5d4f98a2
YZ
6261 ret = lookup_extent_backref(trans, extent_root, path, &iref,
6262 bytenr, num_bytes, parent,
6263 root_objectid, owner_objectid,
6264 owner_offset);
7bb86316 6265 if (ret == 0) {
952fccac 6266 extent_slot = path->slots[0];
5d4f98a2
YZ
6267 while (extent_slot >= 0) {
6268 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6269 extent_slot);
5d4f98a2 6270 if (key.objectid != bytenr)
952fccac 6271 break;
5d4f98a2
YZ
6272 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6273 key.offset == num_bytes) {
952fccac
CM
6274 found_extent = 1;
6275 break;
6276 }
3173a18f
JB
6277 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6278 key.offset == owner_objectid) {
6279 found_extent = 1;
6280 break;
6281 }
952fccac
CM
6282 if (path->slots[0] - extent_slot > 5)
6283 break;
5d4f98a2 6284 extent_slot--;
952fccac 6285 }
5d4f98a2
YZ
6286#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6287 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6288 if (found_extent && item_size < sizeof(*ei))
6289 found_extent = 0;
6290#endif
31840ae1 6291 if (!found_extent) {
5d4f98a2 6292 BUG_ON(iref);
56bec294 6293 ret = remove_extent_backref(trans, extent_root, path,
5d4f98a2 6294 NULL, refs_to_drop,
fcebe456 6295 is_data, &last_ref);
005d6427
DS
6296 if (ret) {
6297 btrfs_abort_transaction(trans, extent_root, ret);
6298 goto out;
6299 }
b3b4aa74 6300 btrfs_release_path(path);
b9473439 6301 path->leave_spinning = 1;
5d4f98a2
YZ
6302
6303 key.objectid = bytenr;
6304 key.type = BTRFS_EXTENT_ITEM_KEY;
6305 key.offset = num_bytes;
6306
3173a18f
JB
6307 if (!is_data && skinny_metadata) {
6308 key.type = BTRFS_METADATA_ITEM_KEY;
6309 key.offset = owner_objectid;
6310 }
6311
31840ae1
ZY
6312 ret = btrfs_search_slot(trans, extent_root,
6313 &key, path, -1, 1);
3173a18f
JB
6314 if (ret > 0 && skinny_metadata && path->slots[0]) {
6315 /*
6316 * Couldn't find our skinny metadata item,
6317 * see if we have ye olde extent item.
6318 */
6319 path->slots[0]--;
6320 btrfs_item_key_to_cpu(path->nodes[0], &key,
6321 path->slots[0]);
6322 if (key.objectid == bytenr &&
6323 key.type == BTRFS_EXTENT_ITEM_KEY &&
6324 key.offset == num_bytes)
6325 ret = 0;
6326 }
6327
6328 if (ret > 0 && skinny_metadata) {
6329 skinny_metadata = false;
9ce49a0b 6330 key.objectid = bytenr;
3173a18f
JB
6331 key.type = BTRFS_EXTENT_ITEM_KEY;
6332 key.offset = num_bytes;
6333 btrfs_release_path(path);
6334 ret = btrfs_search_slot(trans, extent_root,
6335 &key, path, -1, 1);
6336 }
6337
f3465ca4 6338 if (ret) {
c2cf52eb 6339 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6340 ret, bytenr);
b783e62d
JB
6341 if (ret > 0)
6342 btrfs_print_leaf(extent_root,
6343 path->nodes[0]);
f3465ca4 6344 }
005d6427
DS
6345 if (ret < 0) {
6346 btrfs_abort_transaction(trans, extent_root, ret);
6347 goto out;
6348 }
31840ae1
ZY
6349 extent_slot = path->slots[0];
6350 }
fae7f21c 6351 } else if (WARN_ON(ret == -ENOENT)) {
7bb86316 6352 btrfs_print_leaf(extent_root, path->nodes[0]);
c2cf52eb
SK
6353 btrfs_err(info,
6354 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6355 bytenr, parent, root_objectid, owner_objectid,
6356 owner_offset);
c4a050bb
JB
6357 btrfs_abort_transaction(trans, extent_root, ret);
6358 goto out;
79787eaa 6359 } else {
005d6427
DS
6360 btrfs_abort_transaction(trans, extent_root, ret);
6361 goto out;
7bb86316 6362 }
5f39d397
CM
6363
6364 leaf = path->nodes[0];
5d4f98a2
YZ
6365 item_size = btrfs_item_size_nr(leaf, extent_slot);
6366#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6367 if (item_size < sizeof(*ei)) {
6368 BUG_ON(found_extent || extent_slot != path->slots[0]);
6369 ret = convert_extent_item_v0(trans, extent_root, path,
6370 owner_objectid, 0);
005d6427
DS
6371 if (ret < 0) {
6372 btrfs_abort_transaction(trans, extent_root, ret);
6373 goto out;
6374 }
5d4f98a2 6375
b3b4aa74 6376 btrfs_release_path(path);
5d4f98a2
YZ
6377 path->leave_spinning = 1;
6378
6379 key.objectid = bytenr;
6380 key.type = BTRFS_EXTENT_ITEM_KEY;
6381 key.offset = num_bytes;
6382
6383 ret = btrfs_search_slot(trans, extent_root, &key, path,
6384 -1, 1);
6385 if (ret) {
c2cf52eb 6386 btrfs_err(info, "umm, got %d back from search, was looking for %llu",
c1c9ff7c 6387 ret, bytenr);
5d4f98a2
YZ
6388 btrfs_print_leaf(extent_root, path->nodes[0]);
6389 }
005d6427
DS
6390 if (ret < 0) {
6391 btrfs_abort_transaction(trans, extent_root, ret);
6392 goto out;
6393 }
6394
5d4f98a2
YZ
6395 extent_slot = path->slots[0];
6396 leaf = path->nodes[0];
6397 item_size = btrfs_item_size_nr(leaf, extent_slot);
6398 }
6399#endif
6400 BUG_ON(item_size < sizeof(*ei));
952fccac 6401 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 6402 struct btrfs_extent_item);
3173a18f
JB
6403 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
6404 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
6405 struct btrfs_tree_block_info *bi;
6406 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
6407 bi = (struct btrfs_tree_block_info *)(ei + 1);
6408 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
6409 }
56bec294 6410
5d4f98a2 6411 refs = btrfs_extent_refs(leaf, ei);
32b02538
JB
6412 if (refs < refs_to_drop) {
6413 btrfs_err(info, "trying to drop %d refs but we only have %Lu "
351fd353 6414 "for bytenr %Lu", refs_to_drop, refs, bytenr);
32b02538
JB
6415 ret = -EINVAL;
6416 btrfs_abort_transaction(trans, extent_root, ret);
6417 goto out;
6418 }
56bec294 6419 refs -= refs_to_drop;
5f39d397 6420
5d4f98a2
YZ
6421 if (refs > 0) {
6422 if (extent_op)
6423 __run_delayed_extent_op(extent_op, leaf, ei);
6424 /*
6425 * In the case of inline back ref, reference count will
6426 * be updated by remove_extent_backref
952fccac 6427 */
5d4f98a2
YZ
6428 if (iref) {
6429 BUG_ON(!found_extent);
6430 } else {
6431 btrfs_set_extent_refs(leaf, ei, refs);
6432 btrfs_mark_buffer_dirty(leaf);
6433 }
6434 if (found_extent) {
6435 ret = remove_extent_backref(trans, extent_root, path,
6436 iref, refs_to_drop,
fcebe456 6437 is_data, &last_ref);
005d6427
DS
6438 if (ret) {
6439 btrfs_abort_transaction(trans, extent_root, ret);
6440 goto out;
6441 }
952fccac 6442 }
b150a4f1
JB
6443 add_pinned_bytes(root->fs_info, -num_bytes, owner_objectid,
6444 root_objectid);
5d4f98a2 6445 } else {
5d4f98a2
YZ
6446 if (found_extent) {
6447 BUG_ON(is_data && refs_to_drop !=
6448 extent_data_ref_count(root, path, iref));
6449 if (iref) {
6450 BUG_ON(path->slots[0] != extent_slot);
6451 } else {
6452 BUG_ON(path->slots[0] != extent_slot + 1);
6453 path->slots[0] = extent_slot;
6454 num_to_del = 2;
6455 }
78fae27e 6456 }
b9473439 6457
fcebe456 6458 last_ref = 1;
952fccac
CM
6459 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
6460 num_to_del);
005d6427
DS
6461 if (ret) {
6462 btrfs_abort_transaction(trans, extent_root, ret);
6463 goto out;
6464 }
b3b4aa74 6465 btrfs_release_path(path);
21af804c 6466
5d4f98a2 6467 if (is_data) {
459931ec 6468 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
005d6427
DS
6469 if (ret) {
6470 btrfs_abort_transaction(trans, extent_root, ret);
6471 goto out;
6472 }
459931ec
CM
6473 }
6474
ce93ec54 6475 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
005d6427
DS
6476 if (ret) {
6477 btrfs_abort_transaction(trans, extent_root, ret);
6478 goto out;
6479 }
a28ec197 6480 }
fcebe456
JB
6481 btrfs_release_path(path);
6482
79787eaa 6483out:
5caf2a00 6484 btrfs_free_path(path);
a28ec197
CM
6485 return ret;
6486}
6487
1887be66 6488/*
f0486c68 6489 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
6490 * delayed ref for that extent as well. This searches the delayed ref tree for
6491 * a given extent, and if there are no other delayed refs to be processed, it
6492 * removes it from the tree.
6493 */
6494static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
6495 struct btrfs_root *root, u64 bytenr)
6496{
6497 struct btrfs_delayed_ref_head *head;
6498 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 6499 int ret = 0;
1887be66
CM
6500
6501 delayed_refs = &trans->transaction->delayed_refs;
6502 spin_lock(&delayed_refs->lock);
6503 head = btrfs_find_delayed_ref_head(trans, bytenr);
6504 if (!head)
cf93da7b 6505 goto out_delayed_unlock;
1887be66 6506
d7df2c79 6507 spin_lock(&head->lock);
c6fc2454 6508 if (!list_empty(&head->ref_list))
1887be66
CM
6509 goto out;
6510
5d4f98a2
YZ
6511 if (head->extent_op) {
6512 if (!head->must_insert_reserved)
6513 goto out;
78a6184a 6514 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
6515 head->extent_op = NULL;
6516 }
6517
1887be66
CM
6518 /*
6519 * waiting for the lock here would deadlock. If someone else has it
6520 * locked they are already in the process of dropping it anyway
6521 */
6522 if (!mutex_trylock(&head->mutex))
6523 goto out;
6524
6525 /*
6526 * at this point we have a head with no other entries. Go
6527 * ahead and process it.
6528 */
6529 head->node.in_tree = 0;
c46effa6 6530 rb_erase(&head->href_node, &delayed_refs->href_root);
c3e69d58 6531
d7df2c79 6532 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
6533
6534 /*
6535 * we don't take a ref on the node because we're removing it from the
6536 * tree, so we just steal the ref the tree was holding.
6537 */
c3e69d58 6538 delayed_refs->num_heads--;
d7df2c79 6539 if (head->processing == 0)
c3e69d58 6540 delayed_refs->num_heads_ready--;
d7df2c79
JB
6541 head->processing = 0;
6542 spin_unlock(&head->lock);
1887be66
CM
6543 spin_unlock(&delayed_refs->lock);
6544
f0486c68
YZ
6545 BUG_ON(head->extent_op);
6546 if (head->must_insert_reserved)
6547 ret = 1;
6548
6549 mutex_unlock(&head->mutex);
1887be66 6550 btrfs_put_delayed_ref(&head->node);
f0486c68 6551 return ret;
1887be66 6552out:
d7df2c79 6553 spin_unlock(&head->lock);
cf93da7b
CM
6554
6555out_delayed_unlock:
1887be66
CM
6556 spin_unlock(&delayed_refs->lock);
6557 return 0;
6558}
6559
f0486c68
YZ
6560void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
6561 struct btrfs_root *root,
6562 struct extent_buffer *buf,
5581a51a 6563 u64 parent, int last_ref)
f0486c68 6564{
b150a4f1 6565 int pin = 1;
f0486c68
YZ
6566 int ret;
6567
6568 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
66d7e7f0
AJ
6569 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6570 buf->start, buf->len,
6571 parent, root->root_key.objectid,
6572 btrfs_header_level(buf),
5581a51a 6573 BTRFS_DROP_DELAYED_REF, NULL, 0);
79787eaa 6574 BUG_ON(ret); /* -ENOMEM */
f0486c68
YZ
6575 }
6576
6577 if (!last_ref)
6578 return;
6579
f0486c68 6580 if (btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
6581 struct btrfs_block_group_cache *cache;
6582
f0486c68
YZ
6583 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
6584 ret = check_ref_cleanup(trans, root, buf->start);
6585 if (!ret)
37be25bc 6586 goto out;
f0486c68
YZ
6587 }
6588
6219872d
FM
6589 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
6590
f0486c68
YZ
6591 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
6592 pin_down_extent(root, cache, buf->start, buf->len, 1);
6219872d 6593 btrfs_put_block_group(cache);
37be25bc 6594 goto out;
f0486c68
YZ
6595 }
6596
6597 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
6598
6599 btrfs_add_free_space(cache, buf->start, buf->len);
e570fd27 6600 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE, 0);
6219872d 6601 btrfs_put_block_group(cache);
0be5dc67 6602 trace_btrfs_reserved_extent_free(root, buf->start, buf->len);
b150a4f1 6603 pin = 0;
f0486c68
YZ
6604 }
6605out:
b150a4f1
JB
6606 if (pin)
6607 add_pinned_bytes(root->fs_info, buf->len,
6608 btrfs_header_level(buf),
6609 root->root_key.objectid);
6610
a826d6dc
JB
6611 /*
6612 * Deleting the buffer, clear the corrupt flag since it doesn't matter
6613 * anymore.
6614 */
6615 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
f0486c68
YZ
6616}
6617
79787eaa 6618/* Can return -ENOMEM */
66d7e7f0
AJ
6619int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
6620 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
fcebe456 6621 u64 owner, u64 offset, int no_quota)
925baedd
CM
6622{
6623 int ret;
66d7e7f0 6624 struct btrfs_fs_info *fs_info = root->fs_info;
925baedd 6625
fccb84c9 6626 if (btrfs_test_is_dummy_root(root))
faa2dbf0 6627 return 0;
fccb84c9 6628
b150a4f1
JB
6629 add_pinned_bytes(root->fs_info, num_bytes, owner, root_objectid);
6630
56bec294
CM
6631 /*
6632 * tree log blocks never actually go into the extent allocation
6633 * tree, just update pinning info and exit early.
56bec294 6634 */
5d4f98a2
YZ
6635 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
6636 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 6637 /* unlocks the pinned mutex */
11833d66 6638 btrfs_pin_extent(root, bytenr, num_bytes, 1);
56bec294 6639 ret = 0;
5d4f98a2 6640 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0
AJ
6641 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
6642 num_bytes,
5d4f98a2 6643 parent, root_objectid, (int)owner,
fcebe456 6644 BTRFS_DROP_DELAYED_REF, NULL, no_quota);
5d4f98a2 6645 } else {
66d7e7f0
AJ
6646 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
6647 num_bytes,
6648 parent, root_objectid, owner,
6649 offset, BTRFS_DROP_DELAYED_REF,
fcebe456 6650 NULL, no_quota);
56bec294 6651 }
925baedd
CM
6652 return ret;
6653}
6654
817d52f8
JB
6655/*
6656 * when we wait for progress in the block group caching, its because
6657 * our allocation attempt failed at least once. So, we must sleep
6658 * and let some progress happen before we try again.
6659 *
6660 * This function will sleep at least once waiting for new free space to
6661 * show up, and then it will check the block group free space numbers
6662 * for our min num_bytes. Another option is to have it go ahead
6663 * and look in the rbtree for a free extent of a given size, but this
6664 * is a good start.
36cce922
JB
6665 *
6666 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
6667 * any of the information in this block group.
817d52f8 6668 */
36cce922 6669static noinline void
817d52f8
JB
6670wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
6671 u64 num_bytes)
6672{
11833d66 6673 struct btrfs_caching_control *caching_ctl;
817d52f8 6674
11833d66
YZ
6675 caching_ctl = get_caching_control(cache);
6676 if (!caching_ctl)
36cce922 6677 return;
817d52f8 6678
11833d66 6679 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 6680 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
6681
6682 put_caching_control(caching_ctl);
11833d66
YZ
6683}
6684
6685static noinline int
6686wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
6687{
6688 struct btrfs_caching_control *caching_ctl;
36cce922 6689 int ret = 0;
11833d66
YZ
6690
6691 caching_ctl = get_caching_control(cache);
6692 if (!caching_ctl)
36cce922 6693 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
6694
6695 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
6696 if (cache->cached == BTRFS_CACHE_ERROR)
6697 ret = -EIO;
11833d66 6698 put_caching_control(caching_ctl);
36cce922 6699 return ret;
817d52f8
JB
6700}
6701
31e50229 6702int __get_raid_index(u64 flags)
b742bb82 6703{
7738a53a 6704 if (flags & BTRFS_BLOCK_GROUP_RAID10)
e6ec716f 6705 return BTRFS_RAID_RAID10;
7738a53a 6706 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
e6ec716f 6707 return BTRFS_RAID_RAID1;
7738a53a 6708 else if (flags & BTRFS_BLOCK_GROUP_DUP)
e6ec716f 6709 return BTRFS_RAID_DUP;
7738a53a 6710 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
e6ec716f 6711 return BTRFS_RAID_RAID0;
53b381b3 6712 else if (flags & BTRFS_BLOCK_GROUP_RAID5)
e942f883 6713 return BTRFS_RAID_RAID5;
53b381b3 6714 else if (flags & BTRFS_BLOCK_GROUP_RAID6)
e942f883 6715 return BTRFS_RAID_RAID6;
7738a53a 6716
e942f883 6717 return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
b742bb82
YZ
6718}
6719
6ab0a202 6720int get_block_group_index(struct btrfs_block_group_cache *cache)
7738a53a 6721{
31e50229 6722 return __get_raid_index(cache->flags);
7738a53a
ID
6723}
6724
6ab0a202
JM
6725static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
6726 [BTRFS_RAID_RAID10] = "raid10",
6727 [BTRFS_RAID_RAID1] = "raid1",
6728 [BTRFS_RAID_DUP] = "dup",
6729 [BTRFS_RAID_RAID0] = "raid0",
6730 [BTRFS_RAID_SINGLE] = "single",
6731 [BTRFS_RAID_RAID5] = "raid5",
6732 [BTRFS_RAID_RAID6] = "raid6",
6733};
6734
1b8e5df6 6735static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
6736{
6737 if (type >= BTRFS_NR_RAID_TYPES)
6738 return NULL;
6739
6740 return btrfs_raid_type_names[type];
6741}
6742
817d52f8 6743enum btrfs_loop_type {
285ff5af
JB
6744 LOOP_CACHING_NOWAIT = 0,
6745 LOOP_CACHING_WAIT = 1,
6746 LOOP_ALLOC_CHUNK = 2,
6747 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
6748};
6749
e570fd27
MX
6750static inline void
6751btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
6752 int delalloc)
6753{
6754 if (delalloc)
6755 down_read(&cache->data_rwsem);
6756}
6757
6758static inline void
6759btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
6760 int delalloc)
6761{
6762 btrfs_get_block_group(cache);
6763 if (delalloc)
6764 down_read(&cache->data_rwsem);
6765}
6766
6767static struct btrfs_block_group_cache *
6768btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
6769 struct btrfs_free_cluster *cluster,
6770 int delalloc)
6771{
6772 struct btrfs_block_group_cache *used_bg;
6773 bool locked = false;
6774again:
6775 spin_lock(&cluster->refill_lock);
6776 if (locked) {
6777 if (used_bg == cluster->block_group)
6778 return used_bg;
6779
6780 up_read(&used_bg->data_rwsem);
6781 btrfs_put_block_group(used_bg);
6782 }
6783
6784 used_bg = cluster->block_group;
6785 if (!used_bg)
6786 return NULL;
6787
6788 if (used_bg == block_group)
6789 return used_bg;
6790
6791 btrfs_get_block_group(used_bg);
6792
6793 if (!delalloc)
6794 return used_bg;
6795
6796 if (down_read_trylock(&used_bg->data_rwsem))
6797 return used_bg;
6798
6799 spin_unlock(&cluster->refill_lock);
6800 down_read(&used_bg->data_rwsem);
6801 locked = true;
6802 goto again;
6803}
6804
6805static inline void
6806btrfs_release_block_group(struct btrfs_block_group_cache *cache,
6807 int delalloc)
6808{
6809 if (delalloc)
6810 up_read(&cache->data_rwsem);
6811 btrfs_put_block_group(cache);
6812}
6813
fec577fb
CM
6814/*
6815 * walks the btree of allocated extents and find a hole of a given size.
6816 * The key ins is changed to record the hole:
a4820398 6817 * ins->objectid == start position
62e2749e 6818 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 6819 * ins->offset == the size of the hole.
fec577fb 6820 * Any available blocks before search_start are skipped.
a4820398
MX
6821 *
6822 * If there is no suitable free space, we will record the max size of
6823 * the free space extent currently.
fec577fb 6824 */
00361589 6825static noinline int find_free_extent(struct btrfs_root *orig_root,
98ed5174 6826 u64 num_bytes, u64 empty_size,
98ed5174 6827 u64 hint_byte, struct btrfs_key *ins,
e570fd27 6828 u64 flags, int delalloc)
fec577fb 6829{
80eb234a 6830 int ret = 0;
d397712b 6831 struct btrfs_root *root = orig_root->fs_info->extent_root;
fa9c0d79 6832 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 6833 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 6834 u64 search_start = 0;
a4820398 6835 u64 max_extent_size = 0;
239b14b3 6836 int empty_cluster = 2 * 1024 * 1024;
80eb234a 6837 struct btrfs_space_info *space_info;
fa9c0d79 6838 int loop = 0;
b6919a58
DS
6839 int index = __get_raid_index(flags);
6840 int alloc_type = (flags & BTRFS_BLOCK_GROUP_DATA) ?
fb25e914 6841 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
0a24325e 6842 bool failed_cluster_refill = false;
1cdda9b8 6843 bool failed_alloc = false;
67377734 6844 bool use_cluster = true;
60d2adbb 6845 bool have_caching_bg = false;
fec577fb 6846
db94535d 6847 WARN_ON(num_bytes < root->sectorsize);
962a298f 6848 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
6849 ins->objectid = 0;
6850 ins->offset = 0;
b1a4d965 6851
b6919a58 6852 trace_find_free_extent(orig_root, num_bytes, empty_size, flags);
3f7de037 6853
b6919a58 6854 space_info = __find_space_info(root->fs_info, flags);
1b1d1f66 6855 if (!space_info) {
b6919a58 6856 btrfs_err(root->fs_info, "No space info for %llu", flags);
1b1d1f66
JB
6857 return -ENOSPC;
6858 }
2552d17e 6859
67377734
JB
6860 /*
6861 * If the space info is for both data and metadata it means we have a
6862 * small filesystem and we can't use the clustering stuff.
6863 */
6864 if (btrfs_mixed_space_info(space_info))
6865 use_cluster = false;
6866
b6919a58 6867 if (flags & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
fa9c0d79 6868 last_ptr = &root->fs_info->meta_alloc_cluster;
536ac8ae
CM
6869 if (!btrfs_test_opt(root, SSD))
6870 empty_cluster = 64 * 1024;
239b14b3
CM
6871 }
6872
b6919a58 6873 if ((flags & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
67377734 6874 btrfs_test_opt(root, SSD)) {
fa9c0d79
CM
6875 last_ptr = &root->fs_info->data_alloc_cluster;
6876 }
0f9dd46c 6877
239b14b3 6878 if (last_ptr) {
fa9c0d79
CM
6879 spin_lock(&last_ptr->lock);
6880 if (last_ptr->block_group)
6881 hint_byte = last_ptr->window_start;
6882 spin_unlock(&last_ptr->lock);
239b14b3 6883 }
fa9c0d79 6884
a061fc8d 6885 search_start = max(search_start, first_logical_byte(root, 0));
239b14b3 6886 search_start = max(search_start, hint_byte);
0b86a832 6887
817d52f8 6888 if (!last_ptr)
fa9c0d79 6889 empty_cluster = 0;
fa9c0d79 6890
2552d17e 6891 if (search_start == hint_byte) {
2552d17e
JB
6892 block_group = btrfs_lookup_block_group(root->fs_info,
6893 search_start);
817d52f8
JB
6894 /*
6895 * we don't want to use the block group if it doesn't match our
6896 * allocation bits, or if its not cached.
ccf0e725
JB
6897 *
6898 * However if we are re-searching with an ideal block group
6899 * picked out then we don't care that the block group is cached.
817d52f8 6900 */
b6919a58 6901 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 6902 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 6903 down_read(&space_info->groups_sem);
44fb5511
CM
6904 if (list_empty(&block_group->list) ||
6905 block_group->ro) {
6906 /*
6907 * someone is removing this block group,
6908 * we can't jump into the have_block_group
6909 * target because our list pointers are not
6910 * valid
6911 */
6912 btrfs_put_block_group(block_group);
6913 up_read(&space_info->groups_sem);
ccf0e725 6914 } else {
b742bb82 6915 index = get_block_group_index(block_group);
e570fd27 6916 btrfs_lock_block_group(block_group, delalloc);
44fb5511 6917 goto have_block_group;
ccf0e725 6918 }
2552d17e 6919 } else if (block_group) {
fa9c0d79 6920 btrfs_put_block_group(block_group);
2552d17e 6921 }
42e70e7a 6922 }
2552d17e 6923search:
60d2adbb 6924 have_caching_bg = false;
80eb234a 6925 down_read(&space_info->groups_sem);
b742bb82
YZ
6926 list_for_each_entry(block_group, &space_info->block_groups[index],
6927 list) {
6226cb0a 6928 u64 offset;
817d52f8 6929 int cached;
8a1413a2 6930
e570fd27 6931 btrfs_grab_block_group(block_group, delalloc);
2552d17e 6932 search_start = block_group->key.objectid;
42e70e7a 6933
83a50de9
CM
6934 /*
6935 * this can happen if we end up cycling through all the
6936 * raid types, but we want to make sure we only allocate
6937 * for the proper type.
6938 */
b6919a58 6939 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
6940 u64 extra = BTRFS_BLOCK_GROUP_DUP |
6941 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
6942 BTRFS_BLOCK_GROUP_RAID5 |
6943 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
6944 BTRFS_BLOCK_GROUP_RAID10;
6945
6946 /*
6947 * if they asked for extra copies and this block group
6948 * doesn't provide them, bail. This does allow us to
6949 * fill raid0 from raid1.
6950 */
b6919a58 6951 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
6952 goto loop;
6953 }
6954
2552d17e 6955have_block_group:
291c7d2f
JB
6956 cached = block_group_cache_done(block_group);
6957 if (unlikely(!cached)) {
f6373bf3 6958 ret = cache_block_group(block_group, 0);
1d4284bd
CM
6959 BUG_ON(ret < 0);
6960 ret = 0;
817d52f8
JB
6961 }
6962
36cce922
JB
6963 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
6964 goto loop;
ea6a478e 6965 if (unlikely(block_group->ro))
2552d17e 6966 goto loop;
0f9dd46c 6967
0a24325e 6968 /*
062c05c4
AO
6969 * Ok we want to try and use the cluster allocator, so
6970 * lets look there
0a24325e 6971 */
062c05c4 6972 if (last_ptr) {
215a63d1 6973 struct btrfs_block_group_cache *used_block_group;
8de972b4 6974 unsigned long aligned_cluster;
fa9c0d79
CM
6975 /*
6976 * the refill lock keeps out other
6977 * people trying to start a new cluster
6978 */
e570fd27
MX
6979 used_block_group = btrfs_lock_cluster(block_group,
6980 last_ptr,
6981 delalloc);
6982 if (!used_block_group)
44fb5511 6983 goto refill_cluster;
274bd4fb 6984
e570fd27
MX
6985 if (used_block_group != block_group &&
6986 (used_block_group->ro ||
6987 !block_group_bits(used_block_group, flags)))
6988 goto release_cluster;
44fb5511 6989
274bd4fb 6990 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
6991 last_ptr,
6992 num_bytes,
6993 used_block_group->key.objectid,
6994 &max_extent_size);
fa9c0d79
CM
6995 if (offset) {
6996 /* we have a block, we're done */
6997 spin_unlock(&last_ptr->refill_lock);
3f7de037 6998 trace_btrfs_reserve_extent_cluster(root,
89d4346a
MX
6999 used_block_group,
7000 search_start, num_bytes);
215a63d1 7001 if (used_block_group != block_group) {
e570fd27
MX
7002 btrfs_release_block_group(block_group,
7003 delalloc);
215a63d1
MX
7004 block_group = used_block_group;
7005 }
fa9c0d79
CM
7006 goto checks;
7007 }
7008
274bd4fb 7009 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7010release_cluster:
062c05c4
AO
7011 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7012 * set up a new clusters, so lets just skip it
7013 * and let the allocator find whatever block
7014 * it can find. If we reach this point, we
7015 * will have tried the cluster allocator
7016 * plenty of times and not have found
7017 * anything, so we are likely way too
7018 * fragmented for the clustering stuff to find
a5f6f719
AO
7019 * anything.
7020 *
7021 * However, if the cluster is taken from the
7022 * current block group, release the cluster
7023 * first, so that we stand a better chance of
7024 * succeeding in the unclustered
7025 * allocation. */
7026 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7027 used_block_group != block_group) {
062c05c4 7028 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7029 btrfs_release_block_group(used_block_group,
7030 delalloc);
062c05c4
AO
7031 goto unclustered_alloc;
7032 }
7033
fa9c0d79
CM
7034 /*
7035 * this cluster didn't work out, free it and
7036 * start over
7037 */
7038 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7039
e570fd27
MX
7040 if (used_block_group != block_group)
7041 btrfs_release_block_group(used_block_group,
7042 delalloc);
7043refill_cluster:
a5f6f719
AO
7044 if (loop >= LOOP_NO_EMPTY_SIZE) {
7045 spin_unlock(&last_ptr->refill_lock);
7046 goto unclustered_alloc;
7047 }
7048
8de972b4
CM
7049 aligned_cluster = max_t(unsigned long,
7050 empty_cluster + empty_size,
7051 block_group->full_stripe_len);
7052
fa9c0d79 7053 /* allocate a cluster in this block group */
00361589
JB
7054 ret = btrfs_find_space_cluster(root, block_group,
7055 last_ptr, search_start,
7056 num_bytes,
7057 aligned_cluster);
fa9c0d79
CM
7058 if (ret == 0) {
7059 /*
7060 * now pull our allocation out of this
7061 * cluster
7062 */
7063 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7064 last_ptr,
7065 num_bytes,
7066 search_start,
7067 &max_extent_size);
fa9c0d79
CM
7068 if (offset) {
7069 /* we found one, proceed */
7070 spin_unlock(&last_ptr->refill_lock);
3f7de037
JB
7071 trace_btrfs_reserve_extent_cluster(root,
7072 block_group, search_start,
7073 num_bytes);
fa9c0d79
CM
7074 goto checks;
7075 }
0a24325e
JB
7076 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7077 && !failed_cluster_refill) {
817d52f8
JB
7078 spin_unlock(&last_ptr->refill_lock);
7079
0a24325e 7080 failed_cluster_refill = true;
817d52f8
JB
7081 wait_block_group_cache_progress(block_group,
7082 num_bytes + empty_cluster + empty_size);
7083 goto have_block_group;
fa9c0d79 7084 }
817d52f8 7085
fa9c0d79
CM
7086 /*
7087 * at this point we either didn't find a cluster
7088 * or we weren't able to allocate a block from our
7089 * cluster. Free the cluster we've been trying
7090 * to use, and go to the next block group
7091 */
0a24325e 7092 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7093 spin_unlock(&last_ptr->refill_lock);
0a24325e 7094 goto loop;
fa9c0d79
CM
7095 }
7096
062c05c4 7097unclustered_alloc:
a5f6f719
AO
7098 spin_lock(&block_group->free_space_ctl->tree_lock);
7099 if (cached &&
7100 block_group->free_space_ctl->free_space <
7101 num_bytes + empty_cluster + empty_size) {
a4820398
MX
7102 if (block_group->free_space_ctl->free_space >
7103 max_extent_size)
7104 max_extent_size =
7105 block_group->free_space_ctl->free_space;
a5f6f719
AO
7106 spin_unlock(&block_group->free_space_ctl->tree_lock);
7107 goto loop;
7108 }
7109 spin_unlock(&block_group->free_space_ctl->tree_lock);
7110
6226cb0a 7111 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7112 num_bytes, empty_size,
7113 &max_extent_size);
1cdda9b8
JB
7114 /*
7115 * If we didn't find a chunk, and we haven't failed on this
7116 * block group before, and this block group is in the middle of
7117 * caching and we are ok with waiting, then go ahead and wait
7118 * for progress to be made, and set failed_alloc to true.
7119 *
7120 * If failed_alloc is true then we've already waited on this
7121 * block group once and should move on to the next block group.
7122 */
7123 if (!offset && !failed_alloc && !cached &&
7124 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7125 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7126 num_bytes + empty_size);
7127 failed_alloc = true;
817d52f8 7128 goto have_block_group;
1cdda9b8 7129 } else if (!offset) {
60d2adbb
MX
7130 if (!cached)
7131 have_caching_bg = true;
1cdda9b8 7132 goto loop;
817d52f8 7133 }
fa9c0d79 7134checks:
4e54b17a 7135 search_start = ALIGN(offset, root->stripesize);
25179201 7136
2552d17e
JB
7137 /* move on to the next group */
7138 if (search_start + num_bytes >
215a63d1
MX
7139 block_group->key.objectid + block_group->key.offset) {
7140 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7141 goto loop;
6226cb0a 7142 }
f5a31e16 7143
f0486c68 7144 if (offset < search_start)
215a63d1 7145 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7146 search_start - offset);
7147 BUG_ON(offset > search_start);
2552d17e 7148
215a63d1 7149 ret = btrfs_update_reserved_bytes(block_group, num_bytes,
e570fd27 7150 alloc_type, delalloc);
f0486c68 7151 if (ret == -EAGAIN) {
215a63d1 7152 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7153 goto loop;
0f9dd46c 7154 }
0b86a832 7155
f0486c68 7156 /* we are all good, lets return */
2552d17e
JB
7157 ins->objectid = search_start;
7158 ins->offset = num_bytes;
d2fb3437 7159
3f7de037
JB
7160 trace_btrfs_reserve_extent(orig_root, block_group,
7161 search_start, num_bytes);
e570fd27 7162 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7163 break;
7164loop:
0a24325e 7165 failed_cluster_refill = false;
1cdda9b8 7166 failed_alloc = false;
b742bb82 7167 BUG_ON(index != get_block_group_index(block_group));
e570fd27 7168 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7169 }
7170 up_read(&space_info->groups_sem);
7171
60d2adbb
MX
7172 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7173 goto search;
7174
b742bb82
YZ
7175 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7176 goto search;
7177
285ff5af 7178 /*
ccf0e725
JB
7179 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7180 * caching kthreads as we move along
817d52f8
JB
7181 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7182 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7183 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7184 * again
fa9c0d79 7185 */
723bda20 7186 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7187 index = 0;
723bda20 7188 loop++;
817d52f8 7189 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7190 struct btrfs_trans_handle *trans;
f017f15f
WS
7191 int exist = 0;
7192
7193 trans = current->journal_info;
7194 if (trans)
7195 exist = 1;
7196 else
7197 trans = btrfs_join_transaction(root);
00361589 7198
00361589
JB
7199 if (IS_ERR(trans)) {
7200 ret = PTR_ERR(trans);
7201 goto out;
7202 }
7203
b6919a58 7204 ret = do_chunk_alloc(trans, root, flags,
ea658bad
JB
7205 CHUNK_ALLOC_FORCE);
7206 /*
7207 * Do not bail out on ENOSPC since we
7208 * can do more things.
7209 */
00361589 7210 if (ret < 0 && ret != -ENOSPC)
ea658bad
JB
7211 btrfs_abort_transaction(trans,
7212 root, ret);
00361589
JB
7213 else
7214 ret = 0;
f017f15f
WS
7215 if (!exist)
7216 btrfs_end_transaction(trans, root);
00361589 7217 if (ret)
ea658bad 7218 goto out;
2552d17e
JB
7219 }
7220
723bda20
JB
7221 if (loop == LOOP_NO_EMPTY_SIZE) {
7222 empty_size = 0;
7223 empty_cluster = 0;
fa9c0d79 7224 }
723bda20
JB
7225
7226 goto search;
2552d17e
JB
7227 } else if (!ins->objectid) {
7228 ret = -ENOSPC;
d82a6f1d 7229 } else if (ins->objectid) {
80eb234a 7230 ret = 0;
be744175 7231 }
79787eaa 7232out:
a4820398
MX
7233 if (ret == -ENOSPC)
7234 ins->offset = max_extent_size;
0f70abe2 7235 return ret;
fec577fb 7236}
ec44a35c 7237
9ed74f2d
JB
7238static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
7239 int dump_block_groups)
0f9dd46c
JB
7240{
7241 struct btrfs_block_group_cache *cache;
b742bb82 7242 int index = 0;
0f9dd46c 7243
9ed74f2d 7244 spin_lock(&info->lock);
efe120a0 7245 printk(KERN_INFO "BTRFS: space_info %llu has %llu free, is %sfull\n",
c1c9ff7c
GU
7246 info->flags,
7247 info->total_bytes - info->bytes_used - info->bytes_pinned -
7248 info->bytes_reserved - info->bytes_readonly,
d397712b 7249 (info->full) ? "" : "not ");
efe120a0 7250 printk(KERN_INFO "BTRFS: space_info total=%llu, used=%llu, pinned=%llu, "
8929ecfa 7251 "reserved=%llu, may_use=%llu, readonly=%llu\n",
c1c9ff7c
GU
7252 info->total_bytes, info->bytes_used, info->bytes_pinned,
7253 info->bytes_reserved, info->bytes_may_use,
7254 info->bytes_readonly);
9ed74f2d
JB
7255 spin_unlock(&info->lock);
7256
7257 if (!dump_block_groups)
7258 return;
0f9dd46c 7259
80eb234a 7260 down_read(&info->groups_sem);
b742bb82
YZ
7261again:
7262 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7263 spin_lock(&cache->lock);
efe120a0
FH
7264 printk(KERN_INFO "BTRFS: "
7265 "block group %llu has %llu bytes, "
7266 "%llu used %llu pinned %llu reserved %s\n",
c1c9ff7c
GU
7267 cache->key.objectid, cache->key.offset,
7268 btrfs_block_group_used(&cache->item), cache->pinned,
7269 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7270 btrfs_dump_free_space(cache, bytes);
7271 spin_unlock(&cache->lock);
7272 }
b742bb82
YZ
7273 if (++index < BTRFS_NR_RAID_TYPES)
7274 goto again;
80eb234a 7275 up_read(&info->groups_sem);
0f9dd46c 7276}
e8569813 7277
00361589 7278int btrfs_reserve_extent(struct btrfs_root *root,
11833d66
YZ
7279 u64 num_bytes, u64 min_alloc_size,
7280 u64 empty_size, u64 hint_byte,
e570fd27 7281 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 7282{
9e622d6b 7283 bool final_tried = false;
b6919a58 7284 u64 flags;
fec577fb 7285 int ret;
925baedd 7286
b6919a58 7287 flags = btrfs_get_alloc_profile(root, is_data);
98d20f67 7288again:
db94535d 7289 WARN_ON(num_bytes < root->sectorsize);
00361589 7290 ret = find_free_extent(root, num_bytes, empty_size, hint_byte, ins,
e570fd27 7291 flags, delalloc);
3b951516 7292
9e622d6b 7293 if (ret == -ENOSPC) {
a4820398
MX
7294 if (!final_tried && ins->offset) {
7295 num_bytes = min(num_bytes >> 1, ins->offset);
24542bf7 7296 num_bytes = round_down(num_bytes, root->sectorsize);
9e622d6b 7297 num_bytes = max(num_bytes, min_alloc_size);
9e622d6b
MX
7298 if (num_bytes == min_alloc_size)
7299 final_tried = true;
7300 goto again;
7301 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7302 struct btrfs_space_info *sinfo;
7303
b6919a58 7304 sinfo = __find_space_info(root->fs_info, flags);
c2cf52eb 7305 btrfs_err(root->fs_info, "allocation failed flags %llu, wanted %llu",
c1c9ff7c 7306 flags, num_bytes);
53804280
JM
7307 if (sinfo)
7308 dump_space_info(sinfo, num_bytes, 1);
9e622d6b 7309 }
925baedd 7310 }
0f9dd46c
JB
7311
7312 return ret;
e6dcd2dc
CM
7313}
7314
e688b725 7315static int __btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27
MX
7316 u64 start, u64 len,
7317 int pin, int delalloc)
65b51a00 7318{
0f9dd46c 7319 struct btrfs_block_group_cache *cache;
1f3c79a2 7320 int ret = 0;
0f9dd46c 7321
0f9dd46c
JB
7322 cache = btrfs_lookup_block_group(root->fs_info, start);
7323 if (!cache) {
c2cf52eb 7324 btrfs_err(root->fs_info, "Unable to find block group for %llu",
c1c9ff7c 7325 start);
0f9dd46c
JB
7326 return -ENOSPC;
7327 }
1f3c79a2 7328
e688b725
CM
7329 if (pin)
7330 pin_down_extent(root, cache, start, len, 1);
7331 else {
dcc82f47
FM
7332 if (btrfs_test_opt(root, DISCARD))
7333 ret = btrfs_discard_extent(root, start, len, NULL);
e688b725 7334 btrfs_add_free_space(cache, start, len);
e570fd27 7335 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE, delalloc);
e688b725 7336 }
31193213 7337
fa9c0d79 7338 btrfs_put_block_group(cache);
817d52f8 7339
1abe9b8a 7340 trace_btrfs_reserved_extent_free(root, start, len);
7341
e6dcd2dc
CM
7342 return ret;
7343}
7344
e688b725 7345int btrfs_free_reserved_extent(struct btrfs_root *root,
e570fd27 7346 u64 start, u64 len, int delalloc)
e688b725 7347{
e570fd27 7348 return __btrfs_free_reserved_extent(root, start, len, 0, delalloc);
e688b725
CM
7349}
7350
7351int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
7352 u64 start, u64 len)
7353{
e570fd27 7354 return __btrfs_free_reserved_extent(root, start, len, 1, 0);
e688b725
CM
7355}
7356
5d4f98a2
YZ
7357static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7358 struct btrfs_root *root,
7359 u64 parent, u64 root_objectid,
7360 u64 flags, u64 owner, u64 offset,
7361 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
7362{
7363 int ret;
5d4f98a2 7364 struct btrfs_fs_info *fs_info = root->fs_info;
e6dcd2dc 7365 struct btrfs_extent_item *extent_item;
5d4f98a2 7366 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 7367 struct btrfs_path *path;
5d4f98a2
YZ
7368 struct extent_buffer *leaf;
7369 int type;
7370 u32 size;
26b8003f 7371
5d4f98a2
YZ
7372 if (parent > 0)
7373 type = BTRFS_SHARED_DATA_REF_KEY;
7374 else
7375 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 7376
5d4f98a2 7377 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
7378
7379 path = btrfs_alloc_path();
db5b493a
TI
7380 if (!path)
7381 return -ENOMEM;
47e4bb98 7382
b9473439 7383 path->leave_spinning = 1;
5d4f98a2
YZ
7384 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7385 ins, size);
79787eaa
JM
7386 if (ret) {
7387 btrfs_free_path(path);
7388 return ret;
7389 }
0f9dd46c 7390
5d4f98a2
YZ
7391 leaf = path->nodes[0];
7392 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 7393 struct btrfs_extent_item);
5d4f98a2
YZ
7394 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
7395 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7396 btrfs_set_extent_flags(leaf, extent_item,
7397 flags | BTRFS_EXTENT_FLAG_DATA);
7398
7399 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
7400 btrfs_set_extent_inline_ref_type(leaf, iref, type);
7401 if (parent > 0) {
7402 struct btrfs_shared_data_ref *ref;
7403 ref = (struct btrfs_shared_data_ref *)(iref + 1);
7404 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7405 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
7406 } else {
7407 struct btrfs_extent_data_ref *ref;
7408 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
7409 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
7410 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
7411 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
7412 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
7413 }
47e4bb98
CM
7414
7415 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 7416 btrfs_free_path(path);
f510cfec 7417
ce93ec54 7418 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
79787eaa 7419 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7420 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7421 ins->objectid, ins->offset);
f5947066
CM
7422 BUG();
7423 }
0be5dc67 7424 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
e6dcd2dc
CM
7425 return ret;
7426}
7427
5d4f98a2
YZ
7428static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
7429 struct btrfs_root *root,
7430 u64 parent, u64 root_objectid,
7431 u64 flags, struct btrfs_disk_key *key,
fcebe456
JB
7432 int level, struct btrfs_key *ins,
7433 int no_quota)
e6dcd2dc
CM
7434{
7435 int ret;
5d4f98a2
YZ
7436 struct btrfs_fs_info *fs_info = root->fs_info;
7437 struct btrfs_extent_item *extent_item;
7438 struct btrfs_tree_block_info *block_info;
7439 struct btrfs_extent_inline_ref *iref;
7440 struct btrfs_path *path;
7441 struct extent_buffer *leaf;
3173a18f 7442 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 7443 u64 num_bytes = ins->offset;
3173a18f
JB
7444 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7445 SKINNY_METADATA);
7446
7447 if (!skinny_metadata)
7448 size += sizeof(*block_info);
1c2308f8 7449
5d4f98a2 7450 path = btrfs_alloc_path();
857cc2fc
JB
7451 if (!path) {
7452 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7453 root->nodesize);
d8926bb3 7454 return -ENOMEM;
857cc2fc 7455 }
56bec294 7456
5d4f98a2
YZ
7457 path->leave_spinning = 1;
7458 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
7459 ins, size);
79787eaa 7460 if (ret) {
dd825259 7461 btrfs_free_path(path);
857cc2fc 7462 btrfs_free_and_pin_reserved_extent(root, ins->objectid,
707e8a07 7463 root->nodesize);
79787eaa
JM
7464 return ret;
7465 }
5d4f98a2
YZ
7466
7467 leaf = path->nodes[0];
7468 extent_item = btrfs_item_ptr(leaf, path->slots[0],
7469 struct btrfs_extent_item);
7470 btrfs_set_extent_refs(leaf, extent_item, 1);
7471 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
7472 btrfs_set_extent_flags(leaf, extent_item,
7473 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 7474
3173a18f
JB
7475 if (skinny_metadata) {
7476 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
707e8a07 7477 num_bytes = root->nodesize;
3173a18f
JB
7478 } else {
7479 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
7480 btrfs_set_tree_block_key(leaf, block_info, key);
7481 btrfs_set_tree_block_level(leaf, block_info, level);
7482 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
7483 }
5d4f98a2 7484
5d4f98a2
YZ
7485 if (parent > 0) {
7486 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
7487 btrfs_set_extent_inline_ref_type(leaf, iref,
7488 BTRFS_SHARED_BLOCK_REF_KEY);
7489 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
7490 } else {
7491 btrfs_set_extent_inline_ref_type(leaf, iref,
7492 BTRFS_TREE_BLOCK_REF_KEY);
7493 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
7494 }
7495
7496 btrfs_mark_buffer_dirty(leaf);
7497 btrfs_free_path(path);
7498
ce93ec54
JB
7499 ret = update_block_group(trans, root, ins->objectid, root->nodesize,
7500 1);
79787eaa 7501 if (ret) { /* -ENOENT, logic error */
c2cf52eb 7502 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 7503 ins->objectid, ins->offset);
5d4f98a2
YZ
7504 BUG();
7505 }
0be5dc67 7506
707e8a07 7507 trace_btrfs_reserved_extent_alloc(root, ins->objectid, root->nodesize);
5d4f98a2
YZ
7508 return ret;
7509}
7510
7511int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
7512 struct btrfs_root *root,
7513 u64 root_objectid, u64 owner,
7514 u64 offset, struct btrfs_key *ins)
7515{
7516 int ret;
7517
7518 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
7519
66d7e7f0
AJ
7520 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
7521 ins->offset, 0,
7522 root_objectid, owner, offset,
7523 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
e6dcd2dc
CM
7524 return ret;
7525}
e02119d5
CM
7526
7527/*
7528 * this is used by the tree logging recovery code. It records that
7529 * an extent has been allocated and makes sure to clear the free
7530 * space cache bits as well
7531 */
5d4f98a2
YZ
7532int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
7533 struct btrfs_root *root,
7534 u64 root_objectid, u64 owner, u64 offset,
7535 struct btrfs_key *ins)
e02119d5
CM
7536{
7537 int ret;
7538 struct btrfs_block_group_cache *block_group;
11833d66 7539
8c2a1a30
JB
7540 /*
7541 * Mixed block groups will exclude before processing the log so we only
7542 * need to do the exlude dance if this fs isn't mixed.
7543 */
7544 if (!btrfs_fs_incompat(root->fs_info, MIXED_GROUPS)) {
7545 ret = __exclude_logged_extent(root, ins->objectid, ins->offset);
b50c6e25 7546 if (ret)
8c2a1a30 7547 return ret;
11833d66
YZ
7548 }
7549
8c2a1a30
JB
7550 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
7551 if (!block_group)
7552 return -EINVAL;
7553
fb25e914 7554 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
e570fd27 7555 RESERVE_ALLOC_NO_ACCOUNT, 0);
79787eaa 7556 BUG_ON(ret); /* logic error */
5d4f98a2
YZ
7557 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
7558 0, owner, offset, ins, 1);
b50c6e25 7559 btrfs_put_block_group(block_group);
e02119d5
CM
7560 return ret;
7561}
7562
48a3b636
ES
7563static struct extent_buffer *
7564btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 7565 u64 bytenr, int level)
65b51a00
CM
7566{
7567 struct extent_buffer *buf;
7568
a83fffb7 7569 buf = btrfs_find_create_tree_block(root, bytenr);
65b51a00
CM
7570 if (!buf)
7571 return ERR_PTR(-ENOMEM);
7572 btrfs_set_header_generation(buf, trans->transid);
85d4e461 7573 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 7574 btrfs_tree_lock(buf);
01d58472 7575 clean_tree_block(trans, root->fs_info, buf);
3083ee2e 7576 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
7577
7578 btrfs_set_lock_blocking(buf);
65b51a00 7579 btrfs_set_buffer_uptodate(buf);
b4ce94de 7580
d0c803c4 7581 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 7582 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
7583 /*
7584 * we allow two log transactions at a time, use different
7585 * EXENT bit to differentiate dirty pages.
7586 */
656f30db 7587 if (buf->log_index == 0)
8cef4e16
YZ
7588 set_extent_dirty(&root->dirty_log_pages, buf->start,
7589 buf->start + buf->len - 1, GFP_NOFS);
7590 else
7591 set_extent_new(&root->dirty_log_pages, buf->start,
7592 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7593 } else {
656f30db 7594 buf->log_index = -1;
d0c803c4 7595 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 7596 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 7597 }
65b51a00 7598 trans->blocks_used++;
b4ce94de 7599 /* this returns a buffer locked for blocking */
65b51a00
CM
7600 return buf;
7601}
7602
f0486c68
YZ
7603static struct btrfs_block_rsv *
7604use_block_rsv(struct btrfs_trans_handle *trans,
7605 struct btrfs_root *root, u32 blocksize)
7606{
7607 struct btrfs_block_rsv *block_rsv;
68a82277 7608 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
f0486c68 7609 int ret;
d88033db 7610 bool global_updated = false;
f0486c68
YZ
7611
7612 block_rsv = get_block_rsv(trans, root);
7613
b586b323
MX
7614 if (unlikely(block_rsv->size == 0))
7615 goto try_reserve;
d88033db 7616again:
f0486c68
YZ
7617 ret = block_rsv_use_bytes(block_rsv, blocksize);
7618 if (!ret)
7619 return block_rsv;
7620
b586b323
MX
7621 if (block_rsv->failfast)
7622 return ERR_PTR(ret);
7623
d88033db
MX
7624 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
7625 global_updated = true;
7626 update_global_block_rsv(root->fs_info);
7627 goto again;
7628 }
7629
b586b323
MX
7630 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
7631 static DEFINE_RATELIMIT_STATE(_rs,
7632 DEFAULT_RATELIMIT_INTERVAL * 10,
7633 /*DEFAULT_RATELIMIT_BURST*/ 1);
7634 if (__ratelimit(&_rs))
7635 WARN(1, KERN_DEBUG
efe120a0 7636 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
7637 }
7638try_reserve:
7639 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
7640 BTRFS_RESERVE_NO_FLUSH);
7641 if (!ret)
7642 return block_rsv;
7643 /*
7644 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
7645 * the global reserve if its space type is the same as the global
7646 * reservation.
b586b323 7647 */
5881cfc9
MX
7648 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
7649 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
7650 ret = block_rsv_use_bytes(global_rsv, blocksize);
7651 if (!ret)
7652 return global_rsv;
7653 }
7654 return ERR_PTR(ret);
f0486c68
YZ
7655}
7656
8c2a3ca2
JB
7657static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
7658 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
7659{
7660 block_rsv_add_bytes(block_rsv, blocksize, 0);
8c2a3ca2 7661 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
f0486c68
YZ
7662}
7663
fec577fb 7664/*
f0486c68
YZ
7665 * finds a free extent and does all the dirty work required for allocation
7666 * returns the key for the extent through ins, and a tree buffer for
7667 * the first block of the extent through buf.
7668 *
67b7859e 7669 * returns the tree buffer or an ERR_PTR on error.
fec577fb 7670 */
4d75f8a9
DS
7671struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
7672 struct btrfs_root *root,
5d4f98a2
YZ
7673 u64 parent, u64 root_objectid,
7674 struct btrfs_disk_key *key, int level,
5581a51a 7675 u64 hint, u64 empty_size)
fec577fb 7676{
e2fa7227 7677 struct btrfs_key ins;
f0486c68 7678 struct btrfs_block_rsv *block_rsv;
5f39d397 7679 struct extent_buffer *buf;
67b7859e 7680 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
7681 u64 flags = 0;
7682 int ret;
4d75f8a9 7683 u32 blocksize = root->nodesize;
3173a18f
JB
7684 bool skinny_metadata = btrfs_fs_incompat(root->fs_info,
7685 SKINNY_METADATA);
fec577fb 7686
fccb84c9 7687 if (btrfs_test_is_dummy_root(root)) {
faa2dbf0 7688 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 7689 level);
faa2dbf0
JB
7690 if (!IS_ERR(buf))
7691 root->alloc_bytenr += blocksize;
7692 return buf;
7693 }
fccb84c9 7694
f0486c68
YZ
7695 block_rsv = use_block_rsv(trans, root, blocksize);
7696 if (IS_ERR(block_rsv))
7697 return ERR_CAST(block_rsv);
7698
00361589 7699 ret = btrfs_reserve_extent(root, blocksize, blocksize,
e570fd27 7700 empty_size, hint, &ins, 0, 0);
67b7859e
OS
7701 if (ret)
7702 goto out_unuse;
55c69072 7703
fe864576 7704 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
7705 if (IS_ERR(buf)) {
7706 ret = PTR_ERR(buf);
7707 goto out_free_reserved;
7708 }
f0486c68
YZ
7709
7710 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
7711 if (parent == 0)
7712 parent = ins.objectid;
7713 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
7714 } else
7715 BUG_ON(parent > 0);
7716
7717 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 7718 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
7719 if (!extent_op) {
7720 ret = -ENOMEM;
7721 goto out_free_buf;
7722 }
f0486c68
YZ
7723 if (key)
7724 memcpy(&extent_op->key, key, sizeof(extent_op->key));
7725 else
7726 memset(&extent_op->key, 0, sizeof(extent_op->key));
7727 extent_op->flags_to_set = flags;
3173a18f
JB
7728 if (skinny_metadata)
7729 extent_op->update_key = 0;
7730 else
7731 extent_op->update_key = 1;
f0486c68
YZ
7732 extent_op->update_flags = 1;
7733 extent_op->is_data = 0;
b1c79e09 7734 extent_op->level = level;
f0486c68 7735
66d7e7f0 7736 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
67b7859e
OS
7737 ins.objectid, ins.offset,
7738 parent, root_objectid, level,
7739 BTRFS_ADD_DELAYED_EXTENT,
7740 extent_op, 0);
7741 if (ret)
7742 goto out_free_delayed;
f0486c68 7743 }
fec577fb 7744 return buf;
67b7859e
OS
7745
7746out_free_delayed:
7747 btrfs_free_delayed_extent_op(extent_op);
7748out_free_buf:
7749 free_extent_buffer(buf);
7750out_free_reserved:
7751 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 0);
7752out_unuse:
7753 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
7754 return ERR_PTR(ret);
fec577fb 7755}
a28ec197 7756
2c47e605
YZ
7757struct walk_control {
7758 u64 refs[BTRFS_MAX_LEVEL];
7759 u64 flags[BTRFS_MAX_LEVEL];
7760 struct btrfs_key update_progress;
7761 int stage;
7762 int level;
7763 int shared_level;
7764 int update_ref;
7765 int keep_locks;
1c4850e2
YZ
7766 int reada_slot;
7767 int reada_count;
66d7e7f0 7768 int for_reloc;
2c47e605
YZ
7769};
7770
7771#define DROP_REFERENCE 1
7772#define UPDATE_BACKREF 2
7773
1c4850e2
YZ
7774static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
7775 struct btrfs_root *root,
7776 struct walk_control *wc,
7777 struct btrfs_path *path)
6407bf6d 7778{
1c4850e2
YZ
7779 u64 bytenr;
7780 u64 generation;
7781 u64 refs;
94fcca9f 7782 u64 flags;
5d4f98a2 7783 u32 nritems;
1c4850e2
YZ
7784 u32 blocksize;
7785 struct btrfs_key key;
7786 struct extent_buffer *eb;
6407bf6d 7787 int ret;
1c4850e2
YZ
7788 int slot;
7789 int nread = 0;
6407bf6d 7790
1c4850e2
YZ
7791 if (path->slots[wc->level] < wc->reada_slot) {
7792 wc->reada_count = wc->reada_count * 2 / 3;
7793 wc->reada_count = max(wc->reada_count, 2);
7794 } else {
7795 wc->reada_count = wc->reada_count * 3 / 2;
7796 wc->reada_count = min_t(int, wc->reada_count,
7797 BTRFS_NODEPTRS_PER_BLOCK(root));
7798 }
7bb86316 7799
1c4850e2
YZ
7800 eb = path->nodes[wc->level];
7801 nritems = btrfs_header_nritems(eb);
707e8a07 7802 blocksize = root->nodesize;
bd56b302 7803
1c4850e2
YZ
7804 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
7805 if (nread >= wc->reada_count)
7806 break;
bd56b302 7807
2dd3e67b 7808 cond_resched();
1c4850e2
YZ
7809 bytenr = btrfs_node_blockptr(eb, slot);
7810 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 7811
1c4850e2
YZ
7812 if (slot == path->slots[wc->level])
7813 goto reada;
5d4f98a2 7814
1c4850e2
YZ
7815 if (wc->stage == UPDATE_BACKREF &&
7816 generation <= root->root_key.offset)
bd56b302
CM
7817 continue;
7818
94fcca9f 7819 /* We don't lock the tree block, it's OK to be racy here */
3173a18f
JB
7820 ret = btrfs_lookup_extent_info(trans, root, bytenr,
7821 wc->level - 1, 1, &refs,
7822 &flags);
79787eaa
JM
7823 /* We don't care about errors in readahead. */
7824 if (ret < 0)
7825 continue;
94fcca9f
YZ
7826 BUG_ON(refs == 0);
7827
1c4850e2 7828 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
7829 if (refs == 1)
7830 goto reada;
bd56b302 7831
94fcca9f
YZ
7832 if (wc->level == 1 &&
7833 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7834 continue;
1c4850e2
YZ
7835 if (!wc->update_ref ||
7836 generation <= root->root_key.offset)
7837 continue;
7838 btrfs_node_key_to_cpu(eb, &key, slot);
7839 ret = btrfs_comp_cpu_keys(&key,
7840 &wc->update_progress);
7841 if (ret < 0)
7842 continue;
94fcca9f
YZ
7843 } else {
7844 if (wc->level == 1 &&
7845 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
7846 continue;
6407bf6d 7847 }
1c4850e2 7848reada:
d3e46fea 7849 readahead_tree_block(root, bytenr);
1c4850e2 7850 nread++;
20524f02 7851 }
1c4850e2 7852 wc->reada_slot = slot;
20524f02 7853}
2c47e605 7854
0ed4792a
QW
7855/*
7856 * TODO: Modify related function to add related node/leaf to dirty_extent_root,
7857 * for later qgroup accounting.
7858 *
7859 * Current, this function does nothing.
7860 */
1152651a
MF
7861static int account_leaf_items(struct btrfs_trans_handle *trans,
7862 struct btrfs_root *root,
7863 struct extent_buffer *eb)
7864{
7865 int nr = btrfs_header_nritems(eb);
0ed4792a 7866 int i, extent_type;
1152651a
MF
7867 struct btrfs_key key;
7868 struct btrfs_file_extent_item *fi;
7869 u64 bytenr, num_bytes;
7870
7871 for (i = 0; i < nr; i++) {
7872 btrfs_item_key_to_cpu(eb, &key, i);
7873
7874 if (key.type != BTRFS_EXTENT_DATA_KEY)
7875 continue;
7876
7877 fi = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
7878 /* filter out non qgroup-accountable extents */
7879 extent_type = btrfs_file_extent_type(eb, fi);
7880
7881 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
7882 continue;
7883
7884 bytenr = btrfs_file_extent_disk_bytenr(eb, fi);
7885 if (!bytenr)
7886 continue;
7887
7888 num_bytes = btrfs_file_extent_disk_num_bytes(eb, fi);
1152651a
MF
7889 }
7890 return 0;
7891}
7892
7893/*
7894 * Walk up the tree from the bottom, freeing leaves and any interior
7895 * nodes which have had all slots visited. If a node (leaf or
7896 * interior) is freed, the node above it will have it's slot
7897 * incremented. The root node will never be freed.
7898 *
7899 * At the end of this function, we should have a path which has all
7900 * slots incremented to the next position for a search. If we need to
7901 * read a new node it will be NULL and the node above it will have the
7902 * correct slot selected for a later read.
7903 *
7904 * If we increment the root nodes slot counter past the number of
7905 * elements, 1 is returned to signal completion of the search.
7906 */
7907static int adjust_slots_upwards(struct btrfs_root *root,
7908 struct btrfs_path *path, int root_level)
7909{
7910 int level = 0;
7911 int nr, slot;
7912 struct extent_buffer *eb;
7913
7914 if (root_level == 0)
7915 return 1;
7916
7917 while (level <= root_level) {
7918 eb = path->nodes[level];
7919 nr = btrfs_header_nritems(eb);
7920 path->slots[level]++;
7921 slot = path->slots[level];
7922 if (slot >= nr || level == 0) {
7923 /*
7924 * Don't free the root - we will detect this
7925 * condition after our loop and return a
7926 * positive value for caller to stop walking the tree.
7927 */
7928 if (level != root_level) {
7929 btrfs_tree_unlock_rw(eb, path->locks[level]);
7930 path->locks[level] = 0;
7931
7932 free_extent_buffer(eb);
7933 path->nodes[level] = NULL;
7934 path->slots[level] = 0;
7935 }
7936 } else {
7937 /*
7938 * We have a valid slot to walk back down
7939 * from. Stop here so caller can process these
7940 * new nodes.
7941 */
7942 break;
7943 }
7944
7945 level++;
7946 }
7947
7948 eb = path->nodes[root_level];
7949 if (path->slots[root_level] >= btrfs_header_nritems(eb))
7950 return 1;
7951
7952 return 0;
7953}
7954
7955/*
7956 * root_eb is the subtree root and is locked before this function is called.
0ed4792a
QW
7957 * TODO: Modify this function to mark all (including complete shared node)
7958 * to dirty_extent_root to allow it get accounted in qgroup.
1152651a
MF
7959 */
7960static int account_shared_subtree(struct btrfs_trans_handle *trans,
7961 struct btrfs_root *root,
7962 struct extent_buffer *root_eb,
7963 u64 root_gen,
7964 int root_level)
7965{
7966 int ret = 0;
7967 int level;
7968 struct extent_buffer *eb = root_eb;
7969 struct btrfs_path *path = NULL;
7970
7971 BUG_ON(root_level < 0 || root_level > BTRFS_MAX_LEVEL);
7972 BUG_ON(root_eb == NULL);
7973
7974 if (!root->fs_info->quota_enabled)
7975 return 0;
7976
7977 if (!extent_buffer_uptodate(root_eb)) {
7978 ret = btrfs_read_buffer(root_eb, root_gen);
7979 if (ret)
7980 goto out;
7981 }
7982
7983 if (root_level == 0) {
7984 ret = account_leaf_items(trans, root, root_eb);
7985 goto out;
7986 }
7987
7988 path = btrfs_alloc_path();
7989 if (!path)
7990 return -ENOMEM;
7991
7992 /*
7993 * Walk down the tree. Missing extent blocks are filled in as
7994 * we go. Metadata is accounted every time we read a new
7995 * extent block.
7996 *
7997 * When we reach a leaf, we account for file extent items in it,
7998 * walk back up the tree (adjusting slot pointers as we go)
7999 * and restart the search process.
8000 */
8001 extent_buffer_get(root_eb); /* For path */
8002 path->nodes[root_level] = root_eb;
8003 path->slots[root_level] = 0;
8004 path->locks[root_level] = 0; /* so release_path doesn't try to unlock */
8005walk_down:
8006 level = root_level;
8007 while (level >= 0) {
8008 if (path->nodes[level] == NULL) {
1152651a
MF
8009 int parent_slot;
8010 u64 child_gen;
8011 u64 child_bytenr;
8012
8013 /* We need to get child blockptr/gen from
8014 * parent before we can read it. */
8015 eb = path->nodes[level + 1];
8016 parent_slot = path->slots[level + 1];
8017 child_bytenr = btrfs_node_blockptr(eb, parent_slot);
8018 child_gen = btrfs_node_ptr_generation(eb, parent_slot);
8019
ce86cd59 8020 eb = read_tree_block(root, child_bytenr, child_gen);
64c043de
LB
8021 if (IS_ERR(eb)) {
8022 ret = PTR_ERR(eb);
8023 goto out;
8024 } else if (!extent_buffer_uptodate(eb)) {
8635eda9 8025 free_extent_buffer(eb);
64c043de 8026 ret = -EIO;
1152651a
MF
8027 goto out;
8028 }
8029
8030 path->nodes[level] = eb;
8031 path->slots[level] = 0;
8032
8033 btrfs_tree_read_lock(eb);
8034 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
8035 path->locks[level] = BTRFS_READ_LOCK_BLOCKING;
1152651a
MF
8036 }
8037
8038 if (level == 0) {
8039 ret = account_leaf_items(trans, root, path->nodes[level]);
8040 if (ret)
8041 goto out;
8042
8043 /* Nonzero return here means we completed our search */
8044 ret = adjust_slots_upwards(root, path, root_level);
8045 if (ret)
8046 break;
8047
8048 /* Restart search with new slots */
8049 goto walk_down;
8050 }
8051
8052 level--;
8053 }
8054
8055 ret = 0;
8056out:
8057 btrfs_free_path(path);
8058
8059 return ret;
8060}
8061
f82d02d9 8062/*
2c016dc2 8063 * helper to process tree block while walking down the tree.
2c47e605 8064 *
2c47e605
YZ
8065 * when wc->stage == UPDATE_BACKREF, this function updates
8066 * back refs for pointers in the block.
8067 *
8068 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8069 */
2c47e605 8070static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8071 struct btrfs_root *root,
2c47e605 8072 struct btrfs_path *path,
94fcca9f 8073 struct walk_control *wc, int lookup_info)
f82d02d9 8074{
2c47e605
YZ
8075 int level = wc->level;
8076 struct extent_buffer *eb = path->nodes[level];
2c47e605 8077 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8078 int ret;
8079
2c47e605
YZ
8080 if (wc->stage == UPDATE_BACKREF &&
8081 btrfs_header_owner(eb) != root->root_key.objectid)
8082 return 1;
f82d02d9 8083
2c47e605
YZ
8084 /*
8085 * when reference count of tree block is 1, it won't increase
8086 * again. once full backref flag is set, we never clear it.
8087 */
94fcca9f
YZ
8088 if (lookup_info &&
8089 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8090 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605
YZ
8091 BUG_ON(!path->locks[level]);
8092 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8093 eb->start, level, 1,
2c47e605
YZ
8094 &wc->refs[level],
8095 &wc->flags[level]);
79787eaa
JM
8096 BUG_ON(ret == -ENOMEM);
8097 if (ret)
8098 return ret;
2c47e605
YZ
8099 BUG_ON(wc->refs[level] == 0);
8100 }
5d4f98a2 8101
2c47e605
YZ
8102 if (wc->stage == DROP_REFERENCE) {
8103 if (wc->refs[level] > 1)
8104 return 1;
f82d02d9 8105
2c47e605 8106 if (path->locks[level] && !wc->keep_locks) {
bd681513 8107 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8108 path->locks[level] = 0;
8109 }
8110 return 0;
8111 }
f82d02d9 8112
2c47e605
YZ
8113 /* wc->stage == UPDATE_BACKREF */
8114 if (!(wc->flags[level] & flag)) {
8115 BUG_ON(!path->locks[level]);
e339a6b0 8116 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8117 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8118 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8119 BUG_ON(ret); /* -ENOMEM */
2c47e605 8120 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
b1c79e09
JB
8121 eb->len, flag,
8122 btrfs_header_level(eb), 0);
79787eaa 8123 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8124 wc->flags[level] |= flag;
8125 }
8126
8127 /*
8128 * the block is shared by multiple trees, so it's not good to
8129 * keep the tree lock
8130 */
8131 if (path->locks[level] && level > 0) {
bd681513 8132 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8133 path->locks[level] = 0;
8134 }
8135 return 0;
8136}
8137
1c4850e2 8138/*
2c016dc2 8139 * helper to process tree block pointer.
1c4850e2
YZ
8140 *
8141 * when wc->stage == DROP_REFERENCE, this function checks
8142 * reference count of the block pointed to. if the block
8143 * is shared and we need update back refs for the subtree
8144 * rooted at the block, this function changes wc->stage to
8145 * UPDATE_BACKREF. if the block is shared and there is no
8146 * need to update back, this function drops the reference
8147 * to the block.
8148 *
8149 * NOTE: return value 1 means we should stop walking down.
8150 */
8151static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8152 struct btrfs_root *root,
8153 struct btrfs_path *path,
94fcca9f 8154 struct walk_control *wc, int *lookup_info)
1c4850e2
YZ
8155{
8156 u64 bytenr;
8157 u64 generation;
8158 u64 parent;
8159 u32 blocksize;
8160 struct btrfs_key key;
8161 struct extent_buffer *next;
8162 int level = wc->level;
8163 int reada = 0;
8164 int ret = 0;
1152651a 8165 bool need_account = false;
1c4850e2
YZ
8166
8167 generation = btrfs_node_ptr_generation(path->nodes[level],
8168 path->slots[level]);
8169 /*
8170 * if the lower level block was created before the snapshot
8171 * was created, we know there is no need to update back refs
8172 * for the subtree
8173 */
8174 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8175 generation <= root->root_key.offset) {
8176 *lookup_info = 1;
1c4850e2 8177 return 1;
94fcca9f 8178 }
1c4850e2
YZ
8179
8180 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
707e8a07 8181 blocksize = root->nodesize;
1c4850e2 8182
01d58472 8183 next = btrfs_find_tree_block(root->fs_info, bytenr);
1c4850e2 8184 if (!next) {
a83fffb7 8185 next = btrfs_find_create_tree_block(root, bytenr);
90d2c51d
MX
8186 if (!next)
8187 return -ENOMEM;
b2aaaa3b
JB
8188 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8189 level - 1);
1c4850e2
YZ
8190 reada = 1;
8191 }
8192 btrfs_tree_lock(next);
8193 btrfs_set_lock_blocking(next);
8194
3173a18f 8195 ret = btrfs_lookup_extent_info(trans, root, bytenr, level - 1, 1,
94fcca9f
YZ
8196 &wc->refs[level - 1],
8197 &wc->flags[level - 1]);
79787eaa
JM
8198 if (ret < 0) {
8199 btrfs_tree_unlock(next);
8200 return ret;
8201 }
8202
c2cf52eb
SK
8203 if (unlikely(wc->refs[level - 1] == 0)) {
8204 btrfs_err(root->fs_info, "Missing references.");
8205 BUG();
8206 }
94fcca9f 8207 *lookup_info = 0;
1c4850e2 8208
94fcca9f 8209 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8210 if (wc->refs[level - 1] > 1) {
1152651a 8211 need_account = true;
94fcca9f
YZ
8212 if (level == 1 &&
8213 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8214 goto skip;
8215
1c4850e2
YZ
8216 if (!wc->update_ref ||
8217 generation <= root->root_key.offset)
8218 goto skip;
8219
8220 btrfs_node_key_to_cpu(path->nodes[level], &key,
8221 path->slots[level]);
8222 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8223 if (ret < 0)
8224 goto skip;
8225
8226 wc->stage = UPDATE_BACKREF;
8227 wc->shared_level = level - 1;
8228 }
94fcca9f
YZ
8229 } else {
8230 if (level == 1 &&
8231 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8232 goto skip;
1c4850e2
YZ
8233 }
8234
b9fab919 8235 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8236 btrfs_tree_unlock(next);
8237 free_extent_buffer(next);
8238 next = NULL;
94fcca9f 8239 *lookup_info = 1;
1c4850e2
YZ
8240 }
8241
8242 if (!next) {
8243 if (reada && level == 1)
8244 reada_walk_down(trans, root, wc, path);
ce86cd59 8245 next = read_tree_block(root, bytenr, generation);
64c043de
LB
8246 if (IS_ERR(next)) {
8247 return PTR_ERR(next);
8248 } else if (!extent_buffer_uptodate(next)) {
416bc658 8249 free_extent_buffer(next);
97d9a8a4 8250 return -EIO;
416bc658 8251 }
1c4850e2
YZ
8252 btrfs_tree_lock(next);
8253 btrfs_set_lock_blocking(next);
8254 }
8255
8256 level--;
8257 BUG_ON(level != btrfs_header_level(next));
8258 path->nodes[level] = next;
8259 path->slots[level] = 0;
bd681513 8260 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8261 wc->level = level;
8262 if (wc->level == 1)
8263 wc->reada_slot = 0;
8264 return 0;
8265skip:
8266 wc->refs[level - 1] = 0;
8267 wc->flags[level - 1] = 0;
94fcca9f
YZ
8268 if (wc->stage == DROP_REFERENCE) {
8269 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8270 parent = path->nodes[level]->start;
8271 } else {
8272 BUG_ON(root->root_key.objectid !=
8273 btrfs_header_owner(path->nodes[level]));
8274 parent = 0;
8275 }
1c4850e2 8276
1152651a
MF
8277 if (need_account) {
8278 ret = account_shared_subtree(trans, root, next,
8279 generation, level - 1);
8280 if (ret) {
8281 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8282 "%d accounting shared subtree. Quota "
8283 "is out of sync, rescan required.\n",
8284 root->fs_info->sb->s_id, ret);
8285 }
8286 }
94fcca9f 8287 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
66d7e7f0 8288 root->root_key.objectid, level - 1, 0, 0);
79787eaa 8289 BUG_ON(ret); /* -ENOMEM */
1c4850e2 8290 }
1c4850e2
YZ
8291 btrfs_tree_unlock(next);
8292 free_extent_buffer(next);
94fcca9f 8293 *lookup_info = 1;
1c4850e2
YZ
8294 return 1;
8295}
8296
2c47e605 8297/*
2c016dc2 8298 * helper to process tree block while walking up the tree.
2c47e605
YZ
8299 *
8300 * when wc->stage == DROP_REFERENCE, this function drops
8301 * reference count on the block.
8302 *
8303 * when wc->stage == UPDATE_BACKREF, this function changes
8304 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8305 * to UPDATE_BACKREF previously while processing the block.
8306 *
8307 * NOTE: return value 1 means we should stop walking up.
8308 */
8309static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8310 struct btrfs_root *root,
8311 struct btrfs_path *path,
8312 struct walk_control *wc)
8313{
f0486c68 8314 int ret;
2c47e605
YZ
8315 int level = wc->level;
8316 struct extent_buffer *eb = path->nodes[level];
8317 u64 parent = 0;
8318
8319 if (wc->stage == UPDATE_BACKREF) {
8320 BUG_ON(wc->shared_level < level);
8321 if (level < wc->shared_level)
8322 goto out;
8323
2c47e605
YZ
8324 ret = find_next_key(path, level + 1, &wc->update_progress);
8325 if (ret > 0)
8326 wc->update_ref = 0;
8327
8328 wc->stage = DROP_REFERENCE;
8329 wc->shared_level = -1;
8330 path->slots[level] = 0;
8331
8332 /*
8333 * check reference count again if the block isn't locked.
8334 * we should start walking down the tree again if reference
8335 * count is one.
8336 */
8337 if (!path->locks[level]) {
8338 BUG_ON(level == 0);
8339 btrfs_tree_lock(eb);
8340 btrfs_set_lock_blocking(eb);
bd681513 8341 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8342
8343 ret = btrfs_lookup_extent_info(trans, root,
3173a18f 8344 eb->start, level, 1,
2c47e605
YZ
8345 &wc->refs[level],
8346 &wc->flags[level]);
79787eaa
JM
8347 if (ret < 0) {
8348 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8349 path->locks[level] = 0;
79787eaa
JM
8350 return ret;
8351 }
2c47e605
YZ
8352 BUG_ON(wc->refs[level] == 0);
8353 if (wc->refs[level] == 1) {
bd681513 8354 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8355 path->locks[level] = 0;
2c47e605
YZ
8356 return 1;
8357 }
f82d02d9 8358 }
2c47e605 8359 }
f82d02d9 8360
2c47e605
YZ
8361 /* wc->stage == DROP_REFERENCE */
8362 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8363
2c47e605
YZ
8364 if (wc->refs[level] == 1) {
8365 if (level == 0) {
8366 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8367 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8368 else
e339a6b0 8369 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8370 BUG_ON(ret); /* -ENOMEM */
1152651a
MF
8371 ret = account_leaf_items(trans, root, eb);
8372 if (ret) {
8373 printk_ratelimited(KERN_ERR "BTRFS: %s Error "
8374 "%d accounting leaf items. Quota "
8375 "is out of sync, rescan required.\n",
8376 root->fs_info->sb->s_id, ret);
8377 }
2c47e605
YZ
8378 }
8379 /* make block locked assertion in clean_tree_block happy */
8380 if (!path->locks[level] &&
8381 btrfs_header_generation(eb) == trans->transid) {
8382 btrfs_tree_lock(eb);
8383 btrfs_set_lock_blocking(eb);
bd681513 8384 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8385 }
01d58472 8386 clean_tree_block(trans, root->fs_info, eb);
2c47e605
YZ
8387 }
8388
8389 if (eb == root->node) {
8390 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8391 parent = eb->start;
8392 else
8393 BUG_ON(root->root_key.objectid !=
8394 btrfs_header_owner(eb));
8395 } else {
8396 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8397 parent = path->nodes[level + 1]->start;
8398 else
8399 BUG_ON(root->root_key.objectid !=
8400 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8401 }
f82d02d9 8402
5581a51a 8403 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8404out:
8405 wc->refs[level] = 0;
8406 wc->flags[level] = 0;
f0486c68 8407 return 0;
2c47e605
YZ
8408}
8409
8410static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8411 struct btrfs_root *root,
8412 struct btrfs_path *path,
8413 struct walk_control *wc)
8414{
2c47e605 8415 int level = wc->level;
94fcca9f 8416 int lookup_info = 1;
2c47e605
YZ
8417 int ret;
8418
8419 while (level >= 0) {
94fcca9f 8420 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8421 if (ret > 0)
8422 break;
8423
8424 if (level == 0)
8425 break;
8426
7a7965f8
YZ
8427 if (path->slots[level] >=
8428 btrfs_header_nritems(path->nodes[level]))
8429 break;
8430
94fcca9f 8431 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
8432 if (ret > 0) {
8433 path->slots[level]++;
8434 continue;
90d2c51d
MX
8435 } else if (ret < 0)
8436 return ret;
1c4850e2 8437 level = wc->level;
f82d02d9 8438 }
f82d02d9
YZ
8439 return 0;
8440}
8441
d397712b 8442static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 8443 struct btrfs_root *root,
f82d02d9 8444 struct btrfs_path *path,
2c47e605 8445 struct walk_control *wc, int max_level)
20524f02 8446{
2c47e605 8447 int level = wc->level;
20524f02 8448 int ret;
9f3a7427 8449
2c47e605
YZ
8450 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
8451 while (level < max_level && path->nodes[level]) {
8452 wc->level = level;
8453 if (path->slots[level] + 1 <
8454 btrfs_header_nritems(path->nodes[level])) {
8455 path->slots[level]++;
20524f02
CM
8456 return 0;
8457 } else {
2c47e605
YZ
8458 ret = walk_up_proc(trans, root, path, wc);
8459 if (ret > 0)
8460 return 0;
bd56b302 8461
2c47e605 8462 if (path->locks[level]) {
bd681513
CM
8463 btrfs_tree_unlock_rw(path->nodes[level],
8464 path->locks[level]);
2c47e605 8465 path->locks[level] = 0;
f82d02d9 8466 }
2c47e605
YZ
8467 free_extent_buffer(path->nodes[level]);
8468 path->nodes[level] = NULL;
8469 level++;
20524f02
CM
8470 }
8471 }
8472 return 1;
8473}
8474
9aca1d51 8475/*
2c47e605
YZ
8476 * drop a subvolume tree.
8477 *
8478 * this function traverses the tree freeing any blocks that only
8479 * referenced by the tree.
8480 *
8481 * when a shared tree block is found. this function decreases its
8482 * reference count by one. if update_ref is true, this function
8483 * also make sure backrefs for the shared block and all lower level
8484 * blocks are properly updated.
9d1a2a3a
DS
8485 *
8486 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 8487 */
2c536799 8488int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
8489 struct btrfs_block_rsv *block_rsv, int update_ref,
8490 int for_reloc)
20524f02 8491{
5caf2a00 8492 struct btrfs_path *path;
2c47e605
YZ
8493 struct btrfs_trans_handle *trans;
8494 struct btrfs_root *tree_root = root->fs_info->tree_root;
9f3a7427 8495 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
8496 struct walk_control *wc;
8497 struct btrfs_key key;
8498 int err = 0;
8499 int ret;
8500 int level;
d29a9f62 8501 bool root_dropped = false;
20524f02 8502
1152651a
MF
8503 btrfs_debug(root->fs_info, "Drop subvolume %llu", root->objectid);
8504
5caf2a00 8505 path = btrfs_alloc_path();
cb1b69f4
TI
8506 if (!path) {
8507 err = -ENOMEM;
8508 goto out;
8509 }
20524f02 8510
2c47e605 8511 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
8512 if (!wc) {
8513 btrfs_free_path(path);
cb1b69f4
TI
8514 err = -ENOMEM;
8515 goto out;
38a1a919 8516 }
2c47e605 8517
a22285a6 8518 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8519 if (IS_ERR(trans)) {
8520 err = PTR_ERR(trans);
8521 goto out_free;
8522 }
98d5dc13 8523
3fd0a558
YZ
8524 if (block_rsv)
8525 trans->block_rsv = block_rsv;
2c47e605 8526
9f3a7427 8527 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 8528 level = btrfs_header_level(root->node);
5d4f98a2
YZ
8529 path->nodes[level] = btrfs_lock_root_node(root);
8530 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 8531 path->slots[level] = 0;
bd681513 8532 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8533 memset(&wc->update_progress, 0,
8534 sizeof(wc->update_progress));
9f3a7427 8535 } else {
9f3a7427 8536 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
8537 memcpy(&wc->update_progress, &key,
8538 sizeof(wc->update_progress));
8539
6702ed49 8540 level = root_item->drop_level;
2c47e605 8541 BUG_ON(level == 0);
6702ed49 8542 path->lowest_level = level;
2c47e605
YZ
8543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
8544 path->lowest_level = 0;
8545 if (ret < 0) {
8546 err = ret;
79787eaa 8547 goto out_end_trans;
9f3a7427 8548 }
1c4850e2 8549 WARN_ON(ret > 0);
2c47e605 8550
7d9eb12c
CM
8551 /*
8552 * unlock our path, this is safe because only this
8553 * function is allowed to delete this snapshot
8554 */
5d4f98a2 8555 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
8556
8557 level = btrfs_header_level(root->node);
8558 while (1) {
8559 btrfs_tree_lock(path->nodes[level]);
8560 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 8561 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8562
8563 ret = btrfs_lookup_extent_info(trans, root,
8564 path->nodes[level]->start,
3173a18f 8565 level, 1, &wc->refs[level],
2c47e605 8566 &wc->flags[level]);
79787eaa
JM
8567 if (ret < 0) {
8568 err = ret;
8569 goto out_end_trans;
8570 }
2c47e605
YZ
8571 BUG_ON(wc->refs[level] == 0);
8572
8573 if (level == root_item->drop_level)
8574 break;
8575
8576 btrfs_tree_unlock(path->nodes[level]);
fec386ac 8577 path->locks[level] = 0;
2c47e605
YZ
8578 WARN_ON(wc->refs[level] != 1);
8579 level--;
8580 }
9f3a7427 8581 }
2c47e605
YZ
8582
8583 wc->level = level;
8584 wc->shared_level = -1;
8585 wc->stage = DROP_REFERENCE;
8586 wc->update_ref = update_ref;
8587 wc->keep_locks = 0;
66d7e7f0 8588 wc->for_reloc = for_reloc;
1c4850e2 8589 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
2c47e605 8590
d397712b 8591 while (1) {
9d1a2a3a 8592
2c47e605
YZ
8593 ret = walk_down_tree(trans, root, path, wc);
8594 if (ret < 0) {
8595 err = ret;
20524f02 8596 break;
2c47e605 8597 }
9aca1d51 8598
2c47e605
YZ
8599 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
8600 if (ret < 0) {
8601 err = ret;
20524f02 8602 break;
2c47e605
YZ
8603 }
8604
8605 if (ret > 0) {
8606 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
8607 break;
8608 }
2c47e605
YZ
8609
8610 if (wc->stage == DROP_REFERENCE) {
8611 level = wc->level;
8612 btrfs_node_key(path->nodes[level],
8613 &root_item->drop_progress,
8614 path->slots[level]);
8615 root_item->drop_level = level;
8616 }
8617
8618 BUG_ON(wc->level == 0);
3c8f2422
JB
8619 if (btrfs_should_end_transaction(trans, tree_root) ||
8620 (!for_reloc && btrfs_need_cleaner_sleep(root))) {
2c47e605
YZ
8621 ret = btrfs_update_root(trans, tree_root,
8622 &root->root_key,
8623 root_item);
79787eaa
JM
8624 if (ret) {
8625 btrfs_abort_transaction(trans, tree_root, ret);
8626 err = ret;
8627 goto out_end_trans;
8628 }
2c47e605 8629
3fd0a558 8630 btrfs_end_transaction_throttle(trans, tree_root);
3c8f2422 8631 if (!for_reloc && btrfs_need_cleaner_sleep(root)) {
efe120a0 8632 pr_debug("BTRFS: drop snapshot early exit\n");
3c8f2422
JB
8633 err = -EAGAIN;
8634 goto out_free;
8635 }
8636
a22285a6 8637 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
8638 if (IS_ERR(trans)) {
8639 err = PTR_ERR(trans);
8640 goto out_free;
8641 }
3fd0a558
YZ
8642 if (block_rsv)
8643 trans->block_rsv = block_rsv;
c3e69d58 8644 }
20524f02 8645 }
b3b4aa74 8646 btrfs_release_path(path);
79787eaa
JM
8647 if (err)
8648 goto out_end_trans;
2c47e605
YZ
8649
8650 ret = btrfs_del_root(trans, tree_root, &root->root_key);
79787eaa
JM
8651 if (ret) {
8652 btrfs_abort_transaction(trans, tree_root, ret);
8653 goto out_end_trans;
8654 }
2c47e605 8655
76dda93c 8656 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
8657 ret = btrfs_find_root(tree_root, &root->root_key, path,
8658 NULL, NULL);
79787eaa
JM
8659 if (ret < 0) {
8660 btrfs_abort_transaction(trans, tree_root, ret);
8661 err = ret;
8662 goto out_end_trans;
8663 } else if (ret > 0) {
84cd948c
JB
8664 /* if we fail to delete the orphan item this time
8665 * around, it'll get picked up the next time.
8666 *
8667 * The most common failure here is just -ENOENT.
8668 */
8669 btrfs_del_orphan_item(trans, tree_root,
8670 root->root_key.objectid);
76dda93c
YZ
8671 }
8672 }
8673
27cdeb70 8674 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
cb517eab 8675 btrfs_drop_and_free_fs_root(tree_root->fs_info, root);
76dda93c
YZ
8676 } else {
8677 free_extent_buffer(root->node);
8678 free_extent_buffer(root->commit_root);
b0feb9d9 8679 btrfs_put_fs_root(root);
76dda93c 8680 }
d29a9f62 8681 root_dropped = true;
79787eaa 8682out_end_trans:
3fd0a558 8683 btrfs_end_transaction_throttle(trans, tree_root);
79787eaa 8684out_free:
2c47e605 8685 kfree(wc);
5caf2a00 8686 btrfs_free_path(path);
cb1b69f4 8687out:
d29a9f62
JB
8688 /*
8689 * So if we need to stop dropping the snapshot for whatever reason we
8690 * need to make sure to add it back to the dead root list so that we
8691 * keep trying to do the work later. This also cleans up roots if we
8692 * don't have it in the radix (like when we recover after a power fail
8693 * or unmount) so we don't leak memory.
8694 */
b37b39cd 8695 if (!for_reloc && root_dropped == false)
d29a9f62 8696 btrfs_add_dead_root(root);
90515e7f 8697 if (err && err != -EAGAIN)
cb1b69f4 8698 btrfs_std_error(root->fs_info, err);
2c536799 8699 return err;
20524f02 8700}
9078a3e1 8701
2c47e605
YZ
8702/*
8703 * drop subtree rooted at tree block 'node'.
8704 *
8705 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 8706 * only used by relocation code
2c47e605 8707 */
f82d02d9
YZ
8708int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
8709 struct btrfs_root *root,
8710 struct extent_buffer *node,
8711 struct extent_buffer *parent)
8712{
8713 struct btrfs_path *path;
2c47e605 8714 struct walk_control *wc;
f82d02d9
YZ
8715 int level;
8716 int parent_level;
8717 int ret = 0;
8718 int wret;
8719
2c47e605
YZ
8720 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
8721
f82d02d9 8722 path = btrfs_alloc_path();
db5b493a
TI
8723 if (!path)
8724 return -ENOMEM;
f82d02d9 8725
2c47e605 8726 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
8727 if (!wc) {
8728 btrfs_free_path(path);
8729 return -ENOMEM;
8730 }
2c47e605 8731
b9447ef8 8732 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
8733 parent_level = btrfs_header_level(parent);
8734 extent_buffer_get(parent);
8735 path->nodes[parent_level] = parent;
8736 path->slots[parent_level] = btrfs_header_nritems(parent);
8737
b9447ef8 8738 btrfs_assert_tree_locked(node);
f82d02d9 8739 level = btrfs_header_level(node);
f82d02d9
YZ
8740 path->nodes[level] = node;
8741 path->slots[level] = 0;
bd681513 8742 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
8743
8744 wc->refs[parent_level] = 1;
8745 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8746 wc->level = level;
8747 wc->shared_level = -1;
8748 wc->stage = DROP_REFERENCE;
8749 wc->update_ref = 0;
8750 wc->keep_locks = 1;
66d7e7f0 8751 wc->for_reloc = 1;
1c4850e2 8752 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
f82d02d9
YZ
8753
8754 while (1) {
2c47e605
YZ
8755 wret = walk_down_tree(trans, root, path, wc);
8756 if (wret < 0) {
f82d02d9 8757 ret = wret;
f82d02d9 8758 break;
2c47e605 8759 }
f82d02d9 8760
2c47e605 8761 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
8762 if (wret < 0)
8763 ret = wret;
8764 if (wret != 0)
8765 break;
8766 }
8767
2c47e605 8768 kfree(wc);
f82d02d9
YZ
8769 btrfs_free_path(path);
8770 return ret;
8771}
8772
ec44a35c
CM
8773static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
8774{
8775 u64 num_devices;
fc67c450 8776 u64 stripped;
e4d8ec0f 8777
fc67c450
ID
8778 /*
8779 * if restripe for this chunk_type is on pick target profile and
8780 * return, otherwise do the usual balance
8781 */
8782 stripped = get_restripe_target(root->fs_info, flags);
8783 if (stripped)
8784 return extended_to_chunk(stripped);
e4d8ec0f 8785
95669976 8786 num_devices = root->fs_info->fs_devices->rw_devices;
cd02dca5 8787
fc67c450 8788 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 8789 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
8790 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
8791
ec44a35c
CM
8792 if (num_devices == 1) {
8793 stripped |= BTRFS_BLOCK_GROUP_DUP;
8794 stripped = flags & ~stripped;
8795
8796 /* turn raid0 into single device chunks */
8797 if (flags & BTRFS_BLOCK_GROUP_RAID0)
8798 return stripped;
8799
8800 /* turn mirroring into duplication */
8801 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
8802 BTRFS_BLOCK_GROUP_RAID10))
8803 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
8804 } else {
8805 /* they already had raid on here, just return */
ec44a35c
CM
8806 if (flags & stripped)
8807 return flags;
8808
8809 stripped |= BTRFS_BLOCK_GROUP_DUP;
8810 stripped = flags & ~stripped;
8811
8812 /* switch duplicated blocks with raid1 */
8813 if (flags & BTRFS_BLOCK_GROUP_DUP)
8814 return stripped | BTRFS_BLOCK_GROUP_RAID1;
8815
e3176ca2 8816 /* this is drive concat, leave it alone */
ec44a35c 8817 }
e3176ca2 8818
ec44a35c
CM
8819 return flags;
8820}
8821
199c36ea 8822static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 8823{
f0486c68
YZ
8824 struct btrfs_space_info *sinfo = cache->space_info;
8825 u64 num_bytes;
199c36ea 8826 u64 min_allocable_bytes;
f0486c68 8827 int ret = -ENOSPC;
0ef3e66b 8828
c286ac48 8829
199c36ea
MX
8830 /*
8831 * We need some metadata space and system metadata space for
8832 * allocating chunks in some corner cases until we force to set
8833 * it to be readonly.
8834 */
8835 if ((sinfo->flags &
8836 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
8837 !force)
8838 min_allocable_bytes = 1 * 1024 * 1024;
8839 else
8840 min_allocable_bytes = 0;
8841
f0486c68
YZ
8842 spin_lock(&sinfo->lock);
8843 spin_lock(&cache->lock);
61cfea9b
W
8844
8845 if (cache->ro) {
8846 ret = 0;
8847 goto out;
8848 }
8849
f0486c68
YZ
8850 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
8851 cache->bytes_super - btrfs_block_group_used(&cache->item);
8852
8853 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
37be25bc
JB
8854 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
8855 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 8856 sinfo->bytes_readonly += num_bytes;
f0486c68 8857 cache->ro = 1;
633c0aad 8858 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
8859 ret = 0;
8860 }
61cfea9b 8861out:
f0486c68
YZ
8862 spin_unlock(&cache->lock);
8863 spin_unlock(&sinfo->lock);
8864 return ret;
8865}
7d9eb12c 8866
f0486c68
YZ
8867int btrfs_set_block_group_ro(struct btrfs_root *root,
8868 struct btrfs_block_group_cache *cache)
c286ac48 8869
f0486c68
YZ
8870{
8871 struct btrfs_trans_handle *trans;
8872 u64 alloc_flags;
8873 int ret;
7d9eb12c 8874
f0486c68 8875 BUG_ON(cache->ro);
0ef3e66b 8876
1bbc621e 8877again:
ff5714cc 8878 trans = btrfs_join_transaction(root);
79787eaa
JM
8879 if (IS_ERR(trans))
8880 return PTR_ERR(trans);
5d4f98a2 8881
1bbc621e
CM
8882 /*
8883 * we're not allowed to set block groups readonly after the dirty
8884 * block groups cache has started writing. If it already started,
8885 * back off and let this transaction commit
8886 */
8887 mutex_lock(&root->fs_info->ro_block_group_mutex);
8888 if (trans->transaction->dirty_bg_run) {
8889 u64 transid = trans->transid;
8890
8891 mutex_unlock(&root->fs_info->ro_block_group_mutex);
8892 btrfs_end_transaction(trans, root);
8893
8894 ret = btrfs_wait_for_commit(root, transid);
8895 if (ret)
8896 return ret;
8897 goto again;
8898 }
8899
153c35b6
CM
8900 /*
8901 * if we are changing raid levels, try to allocate a corresponding
8902 * block group with the new raid level.
8903 */
8904 alloc_flags = update_block_group_flags(root, cache->flags);
8905 if (alloc_flags != cache->flags) {
8906 ret = do_chunk_alloc(trans, root, alloc_flags,
8907 CHUNK_ALLOC_FORCE);
8908 /*
8909 * ENOSPC is allowed here, we may have enough space
8910 * already allocated at the new raid level to
8911 * carry on
8912 */
8913 if (ret == -ENOSPC)
8914 ret = 0;
8915 if (ret < 0)
8916 goto out;
8917 }
1bbc621e 8918
199c36ea 8919 ret = set_block_group_ro(cache, 0);
f0486c68
YZ
8920 if (!ret)
8921 goto out;
8922 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
698d0082 8923 ret = do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8924 CHUNK_ALLOC_FORCE);
f0486c68
YZ
8925 if (ret < 0)
8926 goto out;
199c36ea 8927 ret = set_block_group_ro(cache, 0);
f0486c68 8928out:
2f081088
SL
8929 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
8930 alloc_flags = update_block_group_flags(root, cache->flags);
a9629596 8931 lock_chunks(root->fs_info->chunk_root);
4617ea3a 8932 check_system_chunk(trans, root, alloc_flags);
a9629596 8933 unlock_chunks(root->fs_info->chunk_root);
2f081088 8934 }
1bbc621e 8935 mutex_unlock(&root->fs_info->ro_block_group_mutex);
2f081088 8936
f0486c68
YZ
8937 btrfs_end_transaction(trans, root);
8938 return ret;
8939}
5d4f98a2 8940
c87f08ca
CM
8941int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
8942 struct btrfs_root *root, u64 type)
8943{
8944 u64 alloc_flags = get_alloc_profile(root, type);
698d0082 8945 return do_chunk_alloc(trans, root, alloc_flags,
0e4f8f88 8946 CHUNK_ALLOC_FORCE);
c87f08ca
CM
8947}
8948
6d07bcec
MX
8949/*
8950 * helper to account the unused space of all the readonly block group in the
633c0aad 8951 * space_info. takes mirrors into account.
6d07bcec 8952 */
633c0aad 8953u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
8954{
8955 struct btrfs_block_group_cache *block_group;
8956 u64 free_bytes = 0;
8957 int factor;
8958
633c0aad
JB
8959 /* It's df, we don't care if it's racey */
8960 if (list_empty(&sinfo->ro_bgs))
8961 return 0;
8962
8963 spin_lock(&sinfo->lock);
8964 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
8965 spin_lock(&block_group->lock);
8966
8967 if (!block_group->ro) {
8968 spin_unlock(&block_group->lock);
8969 continue;
8970 }
8971
8972 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
8973 BTRFS_BLOCK_GROUP_RAID10 |
8974 BTRFS_BLOCK_GROUP_DUP))
8975 factor = 2;
8976 else
8977 factor = 1;
8978
8979 free_bytes += (block_group->key.offset -
8980 btrfs_block_group_used(&block_group->item)) *
8981 factor;
8982
8983 spin_unlock(&block_group->lock);
8984 }
6d07bcec
MX
8985 spin_unlock(&sinfo->lock);
8986
8987 return free_bytes;
8988}
8989
143bede5 8990void btrfs_set_block_group_rw(struct btrfs_root *root,
f0486c68 8991 struct btrfs_block_group_cache *cache)
5d4f98a2 8992{
f0486c68
YZ
8993 struct btrfs_space_info *sinfo = cache->space_info;
8994 u64 num_bytes;
8995
8996 BUG_ON(!cache->ro);
8997
8998 spin_lock(&sinfo->lock);
8999 spin_lock(&cache->lock);
9000 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9001 cache->bytes_super - btrfs_block_group_used(&cache->item);
9002 sinfo->bytes_readonly -= num_bytes;
9003 cache->ro = 0;
633c0aad 9004 list_del_init(&cache->ro_list);
f0486c68
YZ
9005 spin_unlock(&cache->lock);
9006 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9007}
9008
ba1bf481
JB
9009/*
9010 * checks to see if its even possible to relocate this block group.
9011 *
9012 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9013 * ok to go ahead and try.
9014 */
9015int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
1a40e23b 9016{
ba1bf481
JB
9017 struct btrfs_block_group_cache *block_group;
9018 struct btrfs_space_info *space_info;
9019 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
9020 struct btrfs_device *device;
6df9a95e 9021 struct btrfs_trans_handle *trans;
cdcb725c 9022 u64 min_free;
6719db6a
JB
9023 u64 dev_min = 1;
9024 u64 dev_nr = 0;
4a5e98f5 9025 u64 target;
cdcb725c 9026 int index;
ba1bf481
JB
9027 int full = 0;
9028 int ret = 0;
1a40e23b 9029
ba1bf481 9030 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
1a40e23b 9031
ba1bf481
JB
9032 /* odd, couldn't find the block group, leave it alone */
9033 if (!block_group)
9034 return -1;
1a40e23b 9035
cdcb725c 9036 min_free = btrfs_block_group_used(&block_group->item);
9037
ba1bf481 9038 /* no bytes used, we're good */
cdcb725c 9039 if (!min_free)
1a40e23b
ZY
9040 goto out;
9041
ba1bf481
JB
9042 space_info = block_group->space_info;
9043 spin_lock(&space_info->lock);
17d217fe 9044
ba1bf481 9045 full = space_info->full;
17d217fe 9046
ba1bf481
JB
9047 /*
9048 * if this is the last block group we have in this space, we can't
7ce618db
CM
9049 * relocate it unless we're able to allocate a new chunk below.
9050 *
9051 * Otherwise, we need to make sure we have room in the space to handle
9052 * all of the extents from this block group. If we can, we're good
ba1bf481 9053 */
7ce618db 9054 if ((space_info->total_bytes != block_group->key.offset) &&
cdcb725c 9055 (space_info->bytes_used + space_info->bytes_reserved +
9056 space_info->bytes_pinned + space_info->bytes_readonly +
9057 min_free < space_info->total_bytes)) {
ba1bf481
JB
9058 spin_unlock(&space_info->lock);
9059 goto out;
17d217fe 9060 }
ba1bf481 9061 spin_unlock(&space_info->lock);
ea8c2819 9062
ba1bf481
JB
9063 /*
9064 * ok we don't have enough space, but maybe we have free space on our
9065 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9066 * alloc devices and guess if we have enough space. if this block
9067 * group is going to be restriped, run checks against the target
9068 * profile instead of the current one.
ba1bf481
JB
9069 */
9070 ret = -1;
ea8c2819 9071
cdcb725c 9072 /*
9073 * index:
9074 * 0: raid10
9075 * 1: raid1
9076 * 2: dup
9077 * 3: raid0
9078 * 4: single
9079 */
4a5e98f5
ID
9080 target = get_restripe_target(root->fs_info, block_group->flags);
9081 if (target) {
31e50229 9082 index = __get_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9083 } else {
9084 /*
9085 * this is just a balance, so if we were marked as full
9086 * we know there is no space for a new chunk
9087 */
9088 if (full)
9089 goto out;
9090
9091 index = get_block_group_index(block_group);
9092 }
9093
e6ec716f 9094 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9095 dev_min = 4;
6719db6a
JB
9096 /* Divide by 2 */
9097 min_free >>= 1;
e6ec716f 9098 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9099 dev_min = 2;
e6ec716f 9100 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9101 /* Multiply by 2 */
9102 min_free <<= 1;
e6ec716f 9103 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9104 dev_min = fs_devices->rw_devices;
47c5713f 9105 min_free = div64_u64(min_free, dev_min);
cdcb725c 9106 }
9107
6df9a95e
JB
9108 /* We need to do this so that we can look at pending chunks */
9109 trans = btrfs_join_transaction(root);
9110 if (IS_ERR(trans)) {
9111 ret = PTR_ERR(trans);
9112 goto out;
9113 }
9114
ba1bf481
JB
9115 mutex_lock(&root->fs_info->chunk_mutex);
9116 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9117 u64 dev_offset;
56bec294 9118
ba1bf481
JB
9119 /*
9120 * check to make sure we can actually find a chunk with enough
9121 * space to fit our block group in.
9122 */
63a212ab
SB
9123 if (device->total_bytes > device->bytes_used + min_free &&
9124 !device->is_tgtdev_for_dev_replace) {
6df9a95e 9125 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9126 &dev_offset, NULL);
ba1bf481 9127 if (!ret)
cdcb725c 9128 dev_nr++;
9129
9130 if (dev_nr >= dev_min)
73e48b27 9131 break;
cdcb725c 9132
ba1bf481 9133 ret = -1;
725c8463 9134 }
edbd8d4e 9135 }
ba1bf481 9136 mutex_unlock(&root->fs_info->chunk_mutex);
6df9a95e 9137 btrfs_end_transaction(trans, root);
edbd8d4e 9138out:
ba1bf481 9139 btrfs_put_block_group(block_group);
edbd8d4e
CM
9140 return ret;
9141}
9142
b2950863
CH
9143static int find_first_block_group(struct btrfs_root *root,
9144 struct btrfs_path *path, struct btrfs_key *key)
0b86a832 9145{
925baedd 9146 int ret = 0;
0b86a832
CM
9147 struct btrfs_key found_key;
9148 struct extent_buffer *leaf;
9149 int slot;
edbd8d4e 9150
0b86a832
CM
9151 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9152 if (ret < 0)
925baedd
CM
9153 goto out;
9154
d397712b 9155 while (1) {
0b86a832 9156 slot = path->slots[0];
edbd8d4e 9157 leaf = path->nodes[0];
0b86a832
CM
9158 if (slot >= btrfs_header_nritems(leaf)) {
9159 ret = btrfs_next_leaf(root, path);
9160 if (ret == 0)
9161 continue;
9162 if (ret < 0)
925baedd 9163 goto out;
0b86a832 9164 break;
edbd8d4e 9165 }
0b86a832 9166 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9167
0b86a832 9168 if (found_key.objectid >= key->objectid &&
925baedd
CM
9169 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9170 ret = 0;
9171 goto out;
9172 }
0b86a832 9173 path->slots[0]++;
edbd8d4e 9174 }
925baedd 9175out:
0b86a832 9176 return ret;
edbd8d4e
CM
9177}
9178
0af3d00b
JB
9179void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9180{
9181 struct btrfs_block_group_cache *block_group;
9182 u64 last = 0;
9183
9184 while (1) {
9185 struct inode *inode;
9186
9187 block_group = btrfs_lookup_first_block_group(info, last);
9188 while (block_group) {
9189 spin_lock(&block_group->lock);
9190 if (block_group->iref)
9191 break;
9192 spin_unlock(&block_group->lock);
9193 block_group = next_block_group(info->tree_root,
9194 block_group);
9195 }
9196 if (!block_group) {
9197 if (last == 0)
9198 break;
9199 last = 0;
9200 continue;
9201 }
9202
9203 inode = block_group->inode;
9204 block_group->iref = 0;
9205 block_group->inode = NULL;
9206 spin_unlock(&block_group->lock);
9207 iput(inode);
9208 last = block_group->key.objectid + block_group->key.offset;
9209 btrfs_put_block_group(block_group);
9210 }
9211}
9212
1a40e23b
ZY
9213int btrfs_free_block_groups(struct btrfs_fs_info *info)
9214{
9215 struct btrfs_block_group_cache *block_group;
4184ea7f 9216 struct btrfs_space_info *space_info;
11833d66 9217 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9218 struct rb_node *n;
9219
9e351cc8 9220 down_write(&info->commit_root_sem);
11833d66
YZ
9221 while (!list_empty(&info->caching_block_groups)) {
9222 caching_ctl = list_entry(info->caching_block_groups.next,
9223 struct btrfs_caching_control, list);
9224 list_del(&caching_ctl->list);
9225 put_caching_control(caching_ctl);
9226 }
9e351cc8 9227 up_write(&info->commit_root_sem);
11833d66 9228
47ab2a6c
JB
9229 spin_lock(&info->unused_bgs_lock);
9230 while (!list_empty(&info->unused_bgs)) {
9231 block_group = list_first_entry(&info->unused_bgs,
9232 struct btrfs_block_group_cache,
9233 bg_list);
9234 list_del_init(&block_group->bg_list);
9235 btrfs_put_block_group(block_group);
9236 }
9237 spin_unlock(&info->unused_bgs_lock);
9238
1a40e23b
ZY
9239 spin_lock(&info->block_group_cache_lock);
9240 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9241 block_group = rb_entry(n, struct btrfs_block_group_cache,
9242 cache_node);
1a40e23b
ZY
9243 rb_erase(&block_group->cache_node,
9244 &info->block_group_cache_tree);
01eacb27 9245 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9246 spin_unlock(&info->block_group_cache_lock);
9247
80eb234a 9248 down_write(&block_group->space_info->groups_sem);
1a40e23b 9249 list_del(&block_group->list);
80eb234a 9250 up_write(&block_group->space_info->groups_sem);
d2fb3437 9251
817d52f8 9252 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9253 wait_block_group_cache_done(block_group);
817d52f8 9254
3c14874a
JB
9255 /*
9256 * We haven't cached this block group, which means we could
9257 * possibly have excluded extents on this block group.
9258 */
36cce922
JB
9259 if (block_group->cached == BTRFS_CACHE_NO ||
9260 block_group->cached == BTRFS_CACHE_ERROR)
3c14874a
JB
9261 free_excluded_extents(info->extent_root, block_group);
9262
817d52f8 9263 btrfs_remove_free_space_cache(block_group);
11dfe35a 9264 btrfs_put_block_group(block_group);
d899e052
YZ
9265
9266 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9267 }
9268 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9269
9270 /* now that all the block groups are freed, go through and
9271 * free all the space_info structs. This is only called during
9272 * the final stages of unmount, and so we know nobody is
9273 * using them. We call synchronize_rcu() once before we start,
9274 * just to be on the safe side.
9275 */
9276 synchronize_rcu();
9277
8929ecfa
YZ
9278 release_global_block_rsv(info);
9279
67871254 9280 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9281 int i;
9282
4184ea7f
CM
9283 space_info = list_entry(info->space_info.next,
9284 struct btrfs_space_info,
9285 list);
b069e0c3 9286 if (btrfs_test_opt(info->tree_root, ENOSPC_DEBUG)) {
fae7f21c 9287 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9288 space_info->bytes_reserved > 0 ||
fae7f21c 9289 space_info->bytes_may_use > 0)) {
b069e0c3
DS
9290 dump_space_info(space_info, 0, 0);
9291 }
f0486c68 9292 }
4184ea7f 9293 list_del(&space_info->list);
6ab0a202
JM
9294 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9295 struct kobject *kobj;
c1895442
JM
9296 kobj = space_info->block_group_kobjs[i];
9297 space_info->block_group_kobjs[i] = NULL;
9298 if (kobj) {
6ab0a202
JM
9299 kobject_del(kobj);
9300 kobject_put(kobj);
9301 }
9302 }
9303 kobject_del(&space_info->kobj);
9304 kobject_put(&space_info->kobj);
4184ea7f 9305 }
1a40e23b
ZY
9306 return 0;
9307}
9308
b742bb82
YZ
9309static void __link_block_group(struct btrfs_space_info *space_info,
9310 struct btrfs_block_group_cache *cache)
9311{
9312 int index = get_block_group_index(cache);
ed55b6ac 9313 bool first = false;
b742bb82
YZ
9314
9315 down_write(&space_info->groups_sem);
ed55b6ac
JM
9316 if (list_empty(&space_info->block_groups[index]))
9317 first = true;
9318 list_add_tail(&cache->list, &space_info->block_groups[index]);
9319 up_write(&space_info->groups_sem);
9320
9321 if (first) {
c1895442 9322 struct raid_kobject *rkobj;
6ab0a202
JM
9323 int ret;
9324
c1895442
JM
9325 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9326 if (!rkobj)
9327 goto out_err;
9328 rkobj->raid_type = index;
9329 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9330 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9331 "%s", get_raid_name(index));
6ab0a202 9332 if (ret) {
c1895442
JM
9333 kobject_put(&rkobj->kobj);
9334 goto out_err;
6ab0a202 9335 }
c1895442 9336 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9337 }
c1895442
JM
9338
9339 return;
9340out_err:
9341 pr_warn("BTRFS: failed to add kobject for block cache. ignoring.\n");
b742bb82
YZ
9342}
9343
920e4a58
MX
9344static struct btrfs_block_group_cache *
9345btrfs_create_block_group_cache(struct btrfs_root *root, u64 start, u64 size)
9346{
9347 struct btrfs_block_group_cache *cache;
9348
9349 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9350 if (!cache)
9351 return NULL;
9352
9353 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9354 GFP_NOFS);
9355 if (!cache->free_space_ctl) {
9356 kfree(cache);
9357 return NULL;
9358 }
9359
9360 cache->key.objectid = start;
9361 cache->key.offset = size;
9362 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9363
9364 cache->sectorsize = root->sectorsize;
9365 cache->fs_info = root->fs_info;
9366 cache->full_stripe_len = btrfs_full_stripe_len(root,
9367 &root->fs_info->mapping_tree,
9368 start);
9369 atomic_set(&cache->count, 1);
9370 spin_lock_init(&cache->lock);
e570fd27 9371 init_rwsem(&cache->data_rwsem);
920e4a58
MX
9372 INIT_LIST_HEAD(&cache->list);
9373 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 9374 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 9375 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 9376 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 9377 INIT_LIST_HEAD(&cache->io_list);
920e4a58 9378 btrfs_init_free_space_ctl(cache);
04216820 9379 atomic_set(&cache->trimming, 0);
920e4a58
MX
9380
9381 return cache;
9382}
9383
9078a3e1
CM
9384int btrfs_read_block_groups(struct btrfs_root *root)
9385{
9386 struct btrfs_path *path;
9387 int ret;
9078a3e1 9388 struct btrfs_block_group_cache *cache;
be744175 9389 struct btrfs_fs_info *info = root->fs_info;
6324fbf3 9390 struct btrfs_space_info *space_info;
9078a3e1
CM
9391 struct btrfs_key key;
9392 struct btrfs_key found_key;
5f39d397 9393 struct extent_buffer *leaf;
0af3d00b
JB
9394 int need_clear = 0;
9395 u64 cache_gen;
96b5179d 9396
be744175 9397 root = info->extent_root;
9078a3e1 9398 key.objectid = 0;
0b86a832 9399 key.offset = 0;
962a298f 9400 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
9401 path = btrfs_alloc_path();
9402 if (!path)
9403 return -ENOMEM;
026fd317 9404 path->reada = 1;
9078a3e1 9405
6c41761f 9406 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
73bc1876 9407 if (btrfs_test_opt(root, SPACE_CACHE) &&
6c41761f 9408 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
0af3d00b 9409 need_clear = 1;
88c2ba3b
JB
9410 if (btrfs_test_opt(root, CLEAR_CACHE))
9411 need_clear = 1;
0af3d00b 9412
d397712b 9413 while (1) {
0b86a832 9414 ret = find_first_block_group(root, path, &key);
b742bb82
YZ
9415 if (ret > 0)
9416 break;
0b86a832
CM
9417 if (ret != 0)
9418 goto error;
920e4a58 9419
5f39d397
CM
9420 leaf = path->nodes[0];
9421 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58
MX
9422
9423 cache = btrfs_create_block_group_cache(root, found_key.objectid,
9424 found_key.offset);
9078a3e1 9425 if (!cache) {
0b86a832 9426 ret = -ENOMEM;
f0486c68 9427 goto error;
9078a3e1 9428 }
96303081 9429
cf7c1ef6
LB
9430 if (need_clear) {
9431 /*
9432 * When we mount with old space cache, we need to
9433 * set BTRFS_DC_CLEAR and set dirty flag.
9434 *
9435 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
9436 * truncate the old free space cache inode and
9437 * setup a new one.
9438 * b) Setting 'dirty flag' makes sure that we flush
9439 * the new space cache info onto disk.
9440 */
cf7c1ef6 9441 if (btrfs_test_opt(root, SPACE_CACHE))
ce93ec54 9442 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 9443 }
0af3d00b 9444
5f39d397
CM
9445 read_extent_buffer(leaf, &cache->item,
9446 btrfs_item_ptr_offset(leaf, path->slots[0]),
9447 sizeof(cache->item));
920e4a58 9448 cache->flags = btrfs_block_group_flags(&cache->item);
0b86a832 9449
9078a3e1 9450 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 9451 btrfs_release_path(path);
34d52cb6 9452
3c14874a
JB
9453 /*
9454 * We need to exclude the super stripes now so that the space
9455 * info has super bytes accounted for, otherwise we'll think
9456 * we have more space than we actually do.
9457 */
835d974f
JB
9458 ret = exclude_super_stripes(root, cache);
9459 if (ret) {
9460 /*
9461 * We may have excluded something, so call this just in
9462 * case.
9463 */
9464 free_excluded_extents(root, cache);
920e4a58 9465 btrfs_put_block_group(cache);
835d974f
JB
9466 goto error;
9467 }
3c14874a 9468
817d52f8
JB
9469 /*
9470 * check for two cases, either we are full, and therefore
9471 * don't need to bother with the caching work since we won't
9472 * find any space, or we are empty, and we can just add all
9473 * the space in and be done with it. This saves us _alot_ of
9474 * time, particularly in the full case.
9475 */
9476 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 9477 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9478 cache->cached = BTRFS_CACHE_FINISHED;
1b2da372 9479 free_excluded_extents(root, cache);
817d52f8 9480 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 9481 cache->last_byte_to_unpin = (u64)-1;
817d52f8
JB
9482 cache->cached = BTRFS_CACHE_FINISHED;
9483 add_new_free_space(cache, root->fs_info,
9484 found_key.objectid,
9485 found_key.objectid +
9486 found_key.offset);
11833d66 9487 free_excluded_extents(root, cache);
817d52f8 9488 }
96b5179d 9489
8c579fe7
JB
9490 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9491 if (ret) {
9492 btrfs_remove_free_space_cache(cache);
9493 btrfs_put_block_group(cache);
9494 goto error;
9495 }
9496
6324fbf3
CM
9497 ret = update_space_info(info, cache->flags, found_key.offset,
9498 btrfs_block_group_used(&cache->item),
9499 &space_info);
8c579fe7
JB
9500 if (ret) {
9501 btrfs_remove_free_space_cache(cache);
9502 spin_lock(&info->block_group_cache_lock);
9503 rb_erase(&cache->cache_node,
9504 &info->block_group_cache_tree);
01eacb27 9505 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9506 spin_unlock(&info->block_group_cache_lock);
9507 btrfs_put_block_group(cache);
9508 goto error;
9509 }
9510
6324fbf3 9511 cache->space_info = space_info;
1b2da372 9512 spin_lock(&cache->space_info->lock);
f0486c68 9513 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9514 spin_unlock(&cache->space_info->lock);
9515
b742bb82 9516 __link_block_group(space_info, cache);
0f9dd46c 9517
75ccf47d 9518 set_avail_alloc_bits(root->fs_info, cache->flags);
47ab2a6c 9519 if (btrfs_chunk_readonly(root, cache->key.objectid)) {
199c36ea 9520 set_block_group_ro(cache, 1);
47ab2a6c
JB
9521 } else if (btrfs_block_group_used(&cache->item) == 0) {
9522 spin_lock(&info->unused_bgs_lock);
9523 /* Should always be true but just in case. */
9524 if (list_empty(&cache->bg_list)) {
9525 btrfs_get_block_group(cache);
9526 list_add_tail(&cache->bg_list,
9527 &info->unused_bgs);
9528 }
9529 spin_unlock(&info->unused_bgs_lock);
9530 }
9078a3e1 9531 }
b742bb82
YZ
9532
9533 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
9534 if (!(get_alloc_profile(root, space_info->flags) &
9535 (BTRFS_BLOCK_GROUP_RAID10 |
9536 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
9537 BTRFS_BLOCK_GROUP_RAID5 |
9538 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
9539 BTRFS_BLOCK_GROUP_DUP)))
9540 continue;
9541 /*
9542 * avoid allocating from un-mirrored block group if there are
9543 * mirrored block groups.
9544 */
1095cc0d 9545 list_for_each_entry(cache,
9546 &space_info->block_groups[BTRFS_RAID_RAID0],
9547 list)
199c36ea 9548 set_block_group_ro(cache, 1);
1095cc0d 9549 list_for_each_entry(cache,
9550 &space_info->block_groups[BTRFS_RAID_SINGLE],
9551 list)
199c36ea 9552 set_block_group_ro(cache, 1);
9078a3e1 9553 }
f0486c68
YZ
9554
9555 init_global_block_rsv(info);
0b86a832
CM
9556 ret = 0;
9557error:
9078a3e1 9558 btrfs_free_path(path);
0b86a832 9559 return ret;
9078a3e1 9560}
6324fbf3 9561
ea658bad
JB
9562void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
9563 struct btrfs_root *root)
9564{
9565 struct btrfs_block_group_cache *block_group, *tmp;
9566 struct btrfs_root *extent_root = root->fs_info->extent_root;
9567 struct btrfs_block_group_item item;
9568 struct btrfs_key key;
9569 int ret = 0;
9570
47ab2a6c 9571 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 9572 if (ret)
c92f6be3 9573 goto next;
ea658bad
JB
9574
9575 spin_lock(&block_group->lock);
9576 memcpy(&item, &block_group->item, sizeof(item));
9577 memcpy(&key, &block_group->key, sizeof(key));
9578 spin_unlock(&block_group->lock);
9579
9580 ret = btrfs_insert_item(trans, extent_root, &key, &item,
9581 sizeof(item));
9582 if (ret)
9583 btrfs_abort_transaction(trans, extent_root, ret);
6df9a95e
JB
9584 ret = btrfs_finish_chunk_alloc(trans, extent_root,
9585 key.objectid, key.offset);
9586 if (ret)
9587 btrfs_abort_transaction(trans, extent_root, ret);
c92f6be3
FM
9588next:
9589 list_del_init(&block_group->bg_list);
ea658bad
JB
9590 }
9591}
9592
6324fbf3
CM
9593int btrfs_make_block_group(struct btrfs_trans_handle *trans,
9594 struct btrfs_root *root, u64 bytes_used,
e17cade2 9595 u64 type, u64 chunk_objectid, u64 chunk_offset,
6324fbf3
CM
9596 u64 size)
9597{
9598 int ret;
6324fbf3
CM
9599 struct btrfs_root *extent_root;
9600 struct btrfs_block_group_cache *cache;
6324fbf3
CM
9601
9602 extent_root = root->fs_info->extent_root;
6324fbf3 9603
995946dd 9604 btrfs_set_log_full_commit(root->fs_info, trans);
e02119d5 9605
920e4a58 9606 cache = btrfs_create_block_group_cache(root, chunk_offset, size);
0f9dd46c
JB
9607 if (!cache)
9608 return -ENOMEM;
34d52cb6 9609
6324fbf3 9610 btrfs_set_block_group_used(&cache->item, bytes_used);
6324fbf3 9611 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
6324fbf3
CM
9612 btrfs_set_block_group_flags(&cache->item, type);
9613
920e4a58 9614 cache->flags = type;
11833d66 9615 cache->last_byte_to_unpin = (u64)-1;
817d52f8 9616 cache->cached = BTRFS_CACHE_FINISHED;
835d974f
JB
9617 ret = exclude_super_stripes(root, cache);
9618 if (ret) {
9619 /*
9620 * We may have excluded something, so call this just in
9621 * case.
9622 */
9623 free_excluded_extents(root, cache);
920e4a58 9624 btrfs_put_block_group(cache);
835d974f
JB
9625 return ret;
9626 }
96303081 9627
817d52f8
JB
9628 add_new_free_space(cache, root->fs_info, chunk_offset,
9629 chunk_offset + size);
9630
11833d66
YZ
9631 free_excluded_extents(root, cache);
9632
2e6e5183
FM
9633 /*
9634 * Call to ensure the corresponding space_info object is created and
9635 * assigned to our block group, but don't update its counters just yet.
9636 * We want our bg to be added to the rbtree with its ->space_info set.
9637 */
9638 ret = update_space_info(root->fs_info, cache->flags, 0, 0,
9639 &cache->space_info);
9640 if (ret) {
9641 btrfs_remove_free_space_cache(cache);
9642 btrfs_put_block_group(cache);
9643 return ret;
9644 }
9645
8c579fe7
JB
9646 ret = btrfs_add_block_group_cache(root->fs_info, cache);
9647 if (ret) {
9648 btrfs_remove_free_space_cache(cache);
9649 btrfs_put_block_group(cache);
9650 return ret;
9651 }
9652
2e6e5183
FM
9653 /*
9654 * Now that our block group has its ->space_info set and is inserted in
9655 * the rbtree, update the space info's counters.
9656 */
6324fbf3
CM
9657 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
9658 &cache->space_info);
8c579fe7
JB
9659 if (ret) {
9660 btrfs_remove_free_space_cache(cache);
9661 spin_lock(&root->fs_info->block_group_cache_lock);
9662 rb_erase(&cache->cache_node,
9663 &root->fs_info->block_group_cache_tree);
01eacb27 9664 RB_CLEAR_NODE(&cache->cache_node);
8c579fe7
JB
9665 spin_unlock(&root->fs_info->block_group_cache_lock);
9666 btrfs_put_block_group(cache);
9667 return ret;
9668 }
c7c144db 9669 update_global_block_rsv(root->fs_info);
1b2da372
JB
9670
9671 spin_lock(&cache->space_info->lock);
f0486c68 9672 cache->space_info->bytes_readonly += cache->bytes_super;
1b2da372
JB
9673 spin_unlock(&cache->space_info->lock);
9674
b742bb82 9675 __link_block_group(cache->space_info, cache);
6324fbf3 9676
47ab2a6c 9677 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 9678
d18a2c44 9679 set_avail_alloc_bits(extent_root->fs_info, type);
925baedd 9680
6324fbf3
CM
9681 return 0;
9682}
1a40e23b 9683
10ea00f5
ID
9684static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
9685{
899c81ea
ID
9686 u64 extra_flags = chunk_to_extended(flags) &
9687 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 9688
de98ced9 9689 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
9690 if (flags & BTRFS_BLOCK_GROUP_DATA)
9691 fs_info->avail_data_alloc_bits &= ~extra_flags;
9692 if (flags & BTRFS_BLOCK_GROUP_METADATA)
9693 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
9694 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
9695 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 9696 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
9697}
9698
1a40e23b 9699int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
04216820
FM
9700 struct btrfs_root *root, u64 group_start,
9701 struct extent_map *em)
1a40e23b
ZY
9702{
9703 struct btrfs_path *path;
9704 struct btrfs_block_group_cache *block_group;
44fb5511 9705 struct btrfs_free_cluster *cluster;
0af3d00b 9706 struct btrfs_root *tree_root = root->fs_info->tree_root;
1a40e23b 9707 struct btrfs_key key;
0af3d00b 9708 struct inode *inode;
c1895442 9709 struct kobject *kobj = NULL;
1a40e23b 9710 int ret;
10ea00f5 9711 int index;
89a55897 9712 int factor;
4f69cb98 9713 struct btrfs_caching_control *caching_ctl = NULL;
04216820 9714 bool remove_em;
1a40e23b 9715
1a40e23b
ZY
9716 root = root->fs_info->extent_root;
9717
9718 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
9719 BUG_ON(!block_group);
c146afad 9720 BUG_ON(!block_group->ro);
1a40e23b 9721
9f7c43c9 9722 /*
9723 * Free the reserved super bytes from this block group before
9724 * remove it.
9725 */
9726 free_excluded_extents(root, block_group);
9727
1a40e23b 9728 memcpy(&key, &block_group->key, sizeof(key));
10ea00f5 9729 index = get_block_group_index(block_group);
89a55897
JB
9730 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
9731 BTRFS_BLOCK_GROUP_RAID1 |
9732 BTRFS_BLOCK_GROUP_RAID10))
9733 factor = 2;
9734 else
9735 factor = 1;
1a40e23b 9736
44fb5511
CM
9737 /* make sure this block group isn't part of an allocation cluster */
9738 cluster = &root->fs_info->data_alloc_cluster;
9739 spin_lock(&cluster->refill_lock);
9740 btrfs_return_cluster_to_free_space(block_group, cluster);
9741 spin_unlock(&cluster->refill_lock);
9742
9743 /*
9744 * make sure this block group isn't part of a metadata
9745 * allocation cluster
9746 */
9747 cluster = &root->fs_info->meta_alloc_cluster;
9748 spin_lock(&cluster->refill_lock);
9749 btrfs_return_cluster_to_free_space(block_group, cluster);
9750 spin_unlock(&cluster->refill_lock);
9751
1a40e23b 9752 path = btrfs_alloc_path();
d8926bb3
MF
9753 if (!path) {
9754 ret = -ENOMEM;
9755 goto out;
9756 }
1a40e23b 9757
1bbc621e
CM
9758 /*
9759 * get the inode first so any iput calls done for the io_list
9760 * aren't the final iput (no unlinks allowed now)
9761 */
10b2f34d 9762 inode = lookup_free_space_inode(tree_root, block_group, path);
1bbc621e
CM
9763
9764 mutex_lock(&trans->transaction->cache_write_mutex);
9765 /*
9766 * make sure our free spache cache IO is done before remove the
9767 * free space inode
9768 */
9769 spin_lock(&trans->transaction->dirty_bgs_lock);
9770 if (!list_empty(&block_group->io_list)) {
9771 list_del_init(&block_group->io_list);
9772
9773 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
9774
9775 spin_unlock(&trans->transaction->dirty_bgs_lock);
9776 btrfs_wait_cache_io(root, trans, block_group,
9777 &block_group->io_ctl, path,
9778 block_group->key.objectid);
9779 btrfs_put_block_group(block_group);
9780 spin_lock(&trans->transaction->dirty_bgs_lock);
9781 }
9782
9783 if (!list_empty(&block_group->dirty_list)) {
9784 list_del_init(&block_group->dirty_list);
9785 btrfs_put_block_group(block_group);
9786 }
9787 spin_unlock(&trans->transaction->dirty_bgs_lock);
9788 mutex_unlock(&trans->transaction->cache_write_mutex);
9789
0af3d00b 9790 if (!IS_ERR(inode)) {
b532402e 9791 ret = btrfs_orphan_add(trans, inode);
79787eaa
JM
9792 if (ret) {
9793 btrfs_add_delayed_iput(inode);
9794 goto out;
9795 }
0af3d00b
JB
9796 clear_nlink(inode);
9797 /* One for the block groups ref */
9798 spin_lock(&block_group->lock);
9799 if (block_group->iref) {
9800 block_group->iref = 0;
9801 block_group->inode = NULL;
9802 spin_unlock(&block_group->lock);
9803 iput(inode);
9804 } else {
9805 spin_unlock(&block_group->lock);
9806 }
9807 /* One for our lookup ref */
455757c3 9808 btrfs_add_delayed_iput(inode);
0af3d00b
JB
9809 }
9810
9811 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
9812 key.offset = block_group->key.objectid;
9813 key.type = 0;
9814
9815 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
9816 if (ret < 0)
9817 goto out;
9818 if (ret > 0)
b3b4aa74 9819 btrfs_release_path(path);
0af3d00b
JB
9820 if (ret == 0) {
9821 ret = btrfs_del_item(trans, tree_root, path);
9822 if (ret)
9823 goto out;
b3b4aa74 9824 btrfs_release_path(path);
0af3d00b
JB
9825 }
9826
3dfdb934 9827 spin_lock(&root->fs_info->block_group_cache_lock);
1a40e23b
ZY
9828 rb_erase(&block_group->cache_node,
9829 &root->fs_info->block_group_cache_tree);
292cbd51 9830 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd
LB
9831
9832 if (root->fs_info->first_logical_byte == block_group->key.objectid)
9833 root->fs_info->first_logical_byte = (u64)-1;
3dfdb934 9834 spin_unlock(&root->fs_info->block_group_cache_lock);
817d52f8 9835
80eb234a 9836 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
9837 /*
9838 * we must use list_del_init so people can check to see if they
9839 * are still on the list after taking the semaphore
9840 */
9841 list_del_init(&block_group->list);
6ab0a202 9842 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
9843 kobj = block_group->space_info->block_group_kobjs[index];
9844 block_group->space_info->block_group_kobjs[index] = NULL;
10ea00f5 9845 clear_avail_alloc_bits(root->fs_info, block_group->flags);
6ab0a202 9846 }
80eb234a 9847 up_write(&block_group->space_info->groups_sem);
c1895442
JM
9848 if (kobj) {
9849 kobject_del(kobj);
9850 kobject_put(kobj);
9851 }
1a40e23b 9852
4f69cb98
FM
9853 if (block_group->has_caching_ctl)
9854 caching_ctl = get_caching_control(block_group);
817d52f8 9855 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 9856 wait_block_group_cache_done(block_group);
4f69cb98
FM
9857 if (block_group->has_caching_ctl) {
9858 down_write(&root->fs_info->commit_root_sem);
9859 if (!caching_ctl) {
9860 struct btrfs_caching_control *ctl;
9861
9862 list_for_each_entry(ctl,
9863 &root->fs_info->caching_block_groups, list)
9864 if (ctl->block_group == block_group) {
9865 caching_ctl = ctl;
9866 atomic_inc(&caching_ctl->count);
9867 break;
9868 }
9869 }
9870 if (caching_ctl)
9871 list_del_init(&caching_ctl->list);
9872 up_write(&root->fs_info->commit_root_sem);
9873 if (caching_ctl) {
9874 /* Once for the caching bgs list and once for us. */
9875 put_caching_control(caching_ctl);
9876 put_caching_control(caching_ctl);
9877 }
9878 }
817d52f8 9879
ce93ec54
JB
9880 spin_lock(&trans->transaction->dirty_bgs_lock);
9881 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
9882 WARN_ON(1);
9883 }
9884 if (!list_empty(&block_group->io_list)) {
9885 WARN_ON(1);
ce93ec54
JB
9886 }
9887 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
9888 btrfs_remove_free_space_cache(block_group);
9889
c146afad 9890 spin_lock(&block_group->space_info->lock);
75c68e9f 9891 list_del_init(&block_group->ro_list);
18d018ad
ZL
9892
9893 if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
9894 WARN_ON(block_group->space_info->total_bytes
9895 < block_group->key.offset);
9896 WARN_ON(block_group->space_info->bytes_readonly
9897 < block_group->key.offset);
9898 WARN_ON(block_group->space_info->disk_total
9899 < block_group->key.offset * factor);
9900 }
c146afad
YZ
9901 block_group->space_info->total_bytes -= block_group->key.offset;
9902 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 9903 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 9904
c146afad 9905 spin_unlock(&block_group->space_info->lock);
283bb197 9906
0af3d00b
JB
9907 memcpy(&key, &block_group->key, sizeof(key));
9908
04216820 9909 lock_chunks(root);
495e64f4
FM
9910 if (!list_empty(&em->list)) {
9911 /* We're in the transaction->pending_chunks list. */
9912 free_extent_map(em);
9913 }
04216820
FM
9914 spin_lock(&block_group->lock);
9915 block_group->removed = 1;
9916 /*
9917 * At this point trimming can't start on this block group, because we
9918 * removed the block group from the tree fs_info->block_group_cache_tree
9919 * so no one can't find it anymore and even if someone already got this
9920 * block group before we removed it from the rbtree, they have already
9921 * incremented block_group->trimming - if they didn't, they won't find
9922 * any free space entries because we already removed them all when we
9923 * called btrfs_remove_free_space_cache().
9924 *
9925 * And we must not remove the extent map from the fs_info->mapping_tree
9926 * to prevent the same logical address range and physical device space
9927 * ranges from being reused for a new block group. This is because our
9928 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
9929 * completely transactionless, so while it is trimming a range the
9930 * currently running transaction might finish and a new one start,
9931 * allowing for new block groups to be created that can reuse the same
9932 * physical device locations unless we take this special care.
e33e17ee
JM
9933 *
9934 * There may also be an implicit trim operation if the file system
9935 * is mounted with -odiscard. The same protections must remain
9936 * in place until the extents have been discarded completely when
9937 * the transaction commit has completed.
04216820
FM
9938 */
9939 remove_em = (atomic_read(&block_group->trimming) == 0);
9940 /*
9941 * Make sure a trimmer task always sees the em in the pinned_chunks list
9942 * if it sees block_group->removed == 1 (needs to lock block_group->lock
9943 * before checking block_group->removed).
9944 */
9945 if (!remove_em) {
9946 /*
9947 * Our em might be in trans->transaction->pending_chunks which
9948 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
9949 * and so is the fs_info->pinned_chunks list.
9950 *
9951 * So at this point we must be holding the chunk_mutex to avoid
9952 * any races with chunk allocation (more specifically at
9953 * volumes.c:contains_pending_extent()), to ensure it always
9954 * sees the em, either in the pending_chunks list or in the
9955 * pinned_chunks list.
9956 */
9957 list_move_tail(&em->list, &root->fs_info->pinned_chunks);
9958 }
9959 spin_unlock(&block_group->lock);
04216820
FM
9960
9961 if (remove_em) {
9962 struct extent_map_tree *em_tree;
9963
9964 em_tree = &root->fs_info->mapping_tree.map_tree;
9965 write_lock(&em_tree->lock);
8dbcd10f
FM
9966 /*
9967 * The em might be in the pending_chunks list, so make sure the
9968 * chunk mutex is locked, since remove_extent_mapping() will
9969 * delete us from that list.
9970 */
04216820
FM
9971 remove_extent_mapping(em_tree, em);
9972 write_unlock(&em_tree->lock);
9973 /* once for the tree */
9974 free_extent_map(em);
9975 }
9976
8dbcd10f
FM
9977 unlock_chunks(root);
9978
fa9c0d79
CM
9979 btrfs_put_block_group(block_group);
9980 btrfs_put_block_group(block_group);
1a40e23b
ZY
9981
9982 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
9983 if (ret > 0)
9984 ret = -EIO;
9985 if (ret < 0)
9986 goto out;
9987
9988 ret = btrfs_del_item(trans, root, path);
9989out:
9990 btrfs_free_path(path);
9991 return ret;
9992}
acce952b 9993
47ab2a6c
JB
9994/*
9995 * Process the unused_bgs list and remove any that don't have any allocated
9996 * space inside of them.
9997 */
9998void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
9999{
10000 struct btrfs_block_group_cache *block_group;
10001 struct btrfs_space_info *space_info;
10002 struct btrfs_root *root = fs_info->extent_root;
10003 struct btrfs_trans_handle *trans;
10004 int ret = 0;
10005
10006 if (!fs_info->open)
10007 return;
10008
10009 spin_lock(&fs_info->unused_bgs_lock);
10010 while (!list_empty(&fs_info->unused_bgs)) {
10011 u64 start, end;
e33e17ee 10012 int trimming;
47ab2a6c
JB
10013
10014 block_group = list_first_entry(&fs_info->unused_bgs,
10015 struct btrfs_block_group_cache,
10016 bg_list);
10017 space_info = block_group->space_info;
10018 list_del_init(&block_group->bg_list);
10019 if (ret || btrfs_mixed_space_info(space_info)) {
10020 btrfs_put_block_group(block_group);
10021 continue;
10022 }
10023 spin_unlock(&fs_info->unused_bgs_lock);
10024
67c5e7d4
FM
10025 mutex_lock(&root->fs_info->delete_unused_bgs_mutex);
10026
47ab2a6c
JB
10027 /* Don't want to race with allocators so take the groups_sem */
10028 down_write(&space_info->groups_sem);
10029 spin_lock(&block_group->lock);
10030 if (block_group->reserved ||
10031 btrfs_block_group_used(&block_group->item) ||
10032 block_group->ro) {
10033 /*
10034 * We want to bail if we made new allocations or have
10035 * outstanding allocations in this block group. We do
10036 * the ro check in case balance is currently acting on
10037 * this block group.
10038 */
10039 spin_unlock(&block_group->lock);
10040 up_write(&space_info->groups_sem);
10041 goto next;
10042 }
10043 spin_unlock(&block_group->lock);
10044
10045 /* We don't want to force the issue, only flip if it's ok. */
10046 ret = set_block_group_ro(block_group, 0);
10047 up_write(&space_info->groups_sem);
10048 if (ret < 0) {
10049 ret = 0;
10050 goto next;
10051 }
10052
10053 /*
10054 * Want to do this before we do anything else so we can recover
10055 * properly if we fail to join the transaction.
10056 */
3d84be79
FL
10057 /* 1 for btrfs_orphan_reserve_metadata() */
10058 trans = btrfs_start_transaction(root, 1);
47ab2a6c
JB
10059 if (IS_ERR(trans)) {
10060 btrfs_set_block_group_rw(root, block_group);
10061 ret = PTR_ERR(trans);
10062 goto next;
10063 }
10064
10065 /*
10066 * We could have pending pinned extents for this block group,
10067 * just delete them, we don't care about them anymore.
10068 */
10069 start = block_group->key.objectid;
10070 end = start + block_group->key.offset - 1;
d4b450cd
FM
10071 /*
10072 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10073 * btrfs_finish_extent_commit(). If we are at transaction N,
10074 * another task might be running finish_extent_commit() for the
10075 * previous transaction N - 1, and have seen a range belonging
10076 * to the block group in freed_extents[] before we were able to
10077 * clear the whole block group range from freed_extents[]. This
10078 * means that task can lookup for the block group after we
10079 * unpinned it from freed_extents[] and removed it, leading to
10080 * a BUG_ON() at btrfs_unpin_extent_range().
10081 */
10082 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10083 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
47ab2a6c 10084 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10085 if (ret) {
d4b450cd 10086 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10087 btrfs_set_block_group_rw(root, block_group);
10088 goto end_trans;
10089 }
10090 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
47ab2a6c 10091 EXTENT_DIRTY, GFP_NOFS);
758eb51e 10092 if (ret) {
d4b450cd 10093 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
758eb51e
FM
10094 btrfs_set_block_group_rw(root, block_group);
10095 goto end_trans;
10096 }
d4b450cd 10097 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10098
10099 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10100 spin_lock(&space_info->lock);
10101 spin_lock(&block_group->lock);
10102
10103 space_info->bytes_pinned -= block_group->pinned;
10104 space_info->bytes_readonly += block_group->pinned;
10105 percpu_counter_add(&space_info->total_bytes_pinned,
10106 -block_group->pinned);
47ab2a6c
JB
10107 block_group->pinned = 0;
10108
c30666d4
ZL
10109 spin_unlock(&block_group->lock);
10110 spin_unlock(&space_info->lock);
10111
e33e17ee
JM
10112 /* DISCARD can flip during remount */
10113 trimming = btrfs_test_opt(root, DISCARD);
10114
10115 /* Implicit trim during transaction commit. */
10116 if (trimming)
10117 btrfs_get_block_group_trimming(block_group);
10118
47ab2a6c
JB
10119 /*
10120 * Btrfs_remove_chunk will abort the transaction if things go
10121 * horribly wrong.
10122 */
10123 ret = btrfs_remove_chunk(trans, root,
10124 block_group->key.objectid);
e33e17ee
JM
10125
10126 if (ret) {
10127 if (trimming)
10128 btrfs_put_block_group_trimming(block_group);
10129 goto end_trans;
10130 }
10131
10132 /*
10133 * If we're not mounted with -odiscard, we can just forget
10134 * about this block group. Otherwise we'll need to wait
10135 * until transaction commit to do the actual discard.
10136 */
10137 if (trimming) {
10138 WARN_ON(!list_empty(&block_group->bg_list));
10139 spin_lock(&trans->transaction->deleted_bgs_lock);
10140 list_move(&block_group->bg_list,
10141 &trans->transaction->deleted_bgs);
10142 spin_unlock(&trans->transaction->deleted_bgs_lock);
10143 btrfs_get_block_group(block_group);
10144 }
758eb51e 10145end_trans:
47ab2a6c
JB
10146 btrfs_end_transaction(trans, root);
10147next:
67c5e7d4 10148 mutex_unlock(&root->fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10149 btrfs_put_block_group(block_group);
10150 spin_lock(&fs_info->unused_bgs_lock);
10151 }
10152 spin_unlock(&fs_info->unused_bgs_lock);
10153}
10154
c59021f8 10155int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10156{
10157 struct btrfs_space_info *space_info;
1aba86d6 10158 struct btrfs_super_block *disk_super;
10159 u64 features;
10160 u64 flags;
10161 int mixed = 0;
c59021f8 10162 int ret;
10163
6c41761f 10164 disk_super = fs_info->super_copy;
1aba86d6 10165 if (!btrfs_super_root(disk_super))
10166 return 1;
c59021f8 10167
1aba86d6 10168 features = btrfs_super_incompat_flags(disk_super);
10169 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10170 mixed = 1;
c59021f8 10171
1aba86d6 10172 flags = BTRFS_BLOCK_GROUP_SYSTEM;
10173 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
c59021f8 10174 if (ret)
1aba86d6 10175 goto out;
c59021f8 10176
1aba86d6 10177 if (mixed) {
10178 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
10179 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10180 } else {
10181 flags = BTRFS_BLOCK_GROUP_METADATA;
10182 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10183 if (ret)
10184 goto out;
10185
10186 flags = BTRFS_BLOCK_GROUP_DATA;
10187 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
10188 }
10189out:
c59021f8 10190 return ret;
10191}
10192
acce952b 10193int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
10194{
678886bd 10195 return unpin_extent_range(root, start, end, false);
acce952b 10196}
10197
499f377f
JM
10198/*
10199 * It used to be that old block groups would be left around forever.
10200 * Iterating over them would be enough to trim unused space. Since we
10201 * now automatically remove them, we also need to iterate over unallocated
10202 * space.
10203 *
10204 * We don't want a transaction for this since the discard may take a
10205 * substantial amount of time. We don't require that a transaction be
10206 * running, but we do need to take a running transaction into account
10207 * to ensure that we're not discarding chunks that were released in
10208 * the current transaction.
10209 *
10210 * Holding the chunks lock will prevent other threads from allocating
10211 * or releasing chunks, but it won't prevent a running transaction
10212 * from committing and releasing the memory that the pending chunks
10213 * list head uses. For that, we need to take a reference to the
10214 * transaction.
10215 */
10216static int btrfs_trim_free_extents(struct btrfs_device *device,
10217 u64 minlen, u64 *trimmed)
10218{
10219 u64 start = 0, len = 0;
10220 int ret;
10221
10222 *trimmed = 0;
10223
10224 /* Not writeable = nothing to do. */
10225 if (!device->writeable)
10226 return 0;
10227
10228 /* No free space = nothing to do. */
10229 if (device->total_bytes <= device->bytes_used)
10230 return 0;
10231
10232 ret = 0;
10233
10234 while (1) {
10235 struct btrfs_fs_info *fs_info = device->dev_root->fs_info;
10236 struct btrfs_transaction *trans;
10237 u64 bytes;
10238
10239 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10240 if (ret)
10241 return ret;
10242
10243 down_read(&fs_info->commit_root_sem);
10244
10245 spin_lock(&fs_info->trans_lock);
10246 trans = fs_info->running_transaction;
10247 if (trans)
10248 atomic_inc(&trans->use_count);
10249 spin_unlock(&fs_info->trans_lock);
10250
10251 ret = find_free_dev_extent_start(trans, device, minlen, start,
10252 &start, &len);
10253 if (trans)
10254 btrfs_put_transaction(trans);
10255
10256 if (ret) {
10257 up_read(&fs_info->commit_root_sem);
10258 mutex_unlock(&fs_info->chunk_mutex);
10259 if (ret == -ENOSPC)
10260 ret = 0;
10261 break;
10262 }
10263
10264 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10265 up_read(&fs_info->commit_root_sem);
10266 mutex_unlock(&fs_info->chunk_mutex);
10267
10268 if (ret)
10269 break;
10270
10271 start += len;
10272 *trimmed += bytes;
10273
10274 if (fatal_signal_pending(current)) {
10275 ret = -ERESTARTSYS;
10276 break;
10277 }
10278
10279 cond_resched();
10280 }
10281
10282 return ret;
10283}
10284
f7039b1d
LD
10285int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
10286{
10287 struct btrfs_fs_info *fs_info = root->fs_info;
10288 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10289 struct btrfs_device *device;
10290 struct list_head *devices;
f7039b1d
LD
10291 u64 group_trimmed;
10292 u64 start;
10293 u64 end;
10294 u64 trimmed = 0;
2cac13e4 10295 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10296 int ret = 0;
10297
2cac13e4
LB
10298 /*
10299 * try to trim all FS space, our block group may start from non-zero.
10300 */
10301 if (range->len == total_bytes)
10302 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10303 else
10304 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10305
10306 while (cache) {
10307 if (cache->key.objectid >= (range->start + range->len)) {
10308 btrfs_put_block_group(cache);
10309 break;
10310 }
10311
10312 start = max(range->start, cache->key.objectid);
10313 end = min(range->start + range->len,
10314 cache->key.objectid + cache->key.offset);
10315
10316 if (end - start >= range->minlen) {
10317 if (!block_group_cache_done(cache)) {
f6373bf3 10318 ret = cache_block_group(cache, 0);
1be41b78
JB
10319 if (ret) {
10320 btrfs_put_block_group(cache);
10321 break;
10322 }
10323 ret = wait_block_group_cache_done(cache);
10324 if (ret) {
10325 btrfs_put_block_group(cache);
10326 break;
10327 }
f7039b1d
LD
10328 }
10329 ret = btrfs_trim_block_group(cache,
10330 &group_trimmed,
10331 start,
10332 end,
10333 range->minlen);
10334
10335 trimmed += group_trimmed;
10336 if (ret) {
10337 btrfs_put_block_group(cache);
10338 break;
10339 }
10340 }
10341
10342 cache = next_block_group(fs_info->tree_root, cache);
10343 }
10344
499f377f
JM
10345 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
10346 devices = &root->fs_info->fs_devices->alloc_list;
10347 list_for_each_entry(device, devices, dev_alloc_list) {
10348 ret = btrfs_trim_free_extents(device, range->minlen,
10349 &group_trimmed);
10350 if (ret)
10351 break;
10352
10353 trimmed += group_trimmed;
10354 }
10355 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
10356
f7039b1d
LD
10357 range->len = trimmed;
10358 return ret;
10359}
8257b2dc
MX
10360
10361/*
9ea24bbe
FM
10362 * btrfs_{start,end}_write_no_snapshoting() are similar to
10363 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
10364 * data into the page cache through nocow before the subvolume is snapshoted,
10365 * but flush the data into disk after the snapshot creation, or to prevent
10366 * operations while snapshoting is ongoing and that cause the snapshot to be
10367 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 10368 */
9ea24bbe 10369void btrfs_end_write_no_snapshoting(struct btrfs_root *root)
8257b2dc
MX
10370{
10371 percpu_counter_dec(&root->subv_writers->counter);
10372 /*
10373 * Make sure counter is updated before we wake up
10374 * waiters.
10375 */
10376 smp_mb();
10377 if (waitqueue_active(&root->subv_writers->wait))
10378 wake_up(&root->subv_writers->wait);
10379}
10380
9ea24bbe 10381int btrfs_start_write_no_snapshoting(struct btrfs_root *root)
8257b2dc 10382{
ee39b432 10383 if (atomic_read(&root->will_be_snapshoted))
8257b2dc
MX
10384 return 0;
10385
10386 percpu_counter_inc(&root->subv_writers->counter);
10387 /*
10388 * Make sure counter is updated before we check for snapshot creation.
10389 */
10390 smp_mb();
ee39b432 10391 if (atomic_read(&root->will_be_snapshoted)) {
9ea24bbe 10392 btrfs_end_write_no_snapshoting(root);
8257b2dc
MX
10393 return 0;
10394 }
10395 return 1;
10396}