]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Drop fs_info parameter from add_delayed_data_ref
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info,
c682f9b3 56 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
c682f9b3 59 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 64 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 69 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
70 u64 parent, u64 root_objectid,
71 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 72 int level, struct btrfs_key *ins);
6a63209f 73static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 74 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 75 int force);
11833d66
YZ
76static int find_next_key(struct btrfs_path *path, int level,
77 struct btrfs_key *key);
ab8d0fc4
JM
78static void dump_space_info(struct btrfs_fs_info *fs_info,
79 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 80 int dump_block_groups);
5d80366e
JB
81static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
82 u64 num_bytes);
957780eb
JB
83static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
84 struct btrfs_space_info *space_info,
85 u64 num_bytes);
86static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
87 struct btrfs_space_info *space_info,
88 u64 num_bytes);
6a63209f 89
817d52f8
JB
90static noinline int
91block_group_cache_done(struct btrfs_block_group_cache *cache)
92{
93 smp_mb();
36cce922
JB
94 return cache->cached == BTRFS_CACHE_FINISHED ||
95 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
96}
97
0f9dd46c
JB
98static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
99{
100 return (cache->flags & bits) == bits;
101}
102
758f2dfc 103void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
104{
105 atomic_inc(&cache->count);
106}
107
108void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
109{
f0486c68
YZ
110 if (atomic_dec_and_test(&cache->count)) {
111 WARN_ON(cache->pinned > 0);
112 WARN_ON(cache->reserved > 0);
0966a7b1
QW
113
114 /*
115 * If not empty, someone is still holding mutex of
116 * full_stripe_lock, which can only be released by caller.
117 * And it will definitely cause use-after-free when caller
118 * tries to release full stripe lock.
119 *
120 * No better way to resolve, but only to warn.
121 */
122 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 123 kfree(cache->free_space_ctl);
11dfe35a 124 kfree(cache);
f0486c68 125 }
11dfe35a
JB
126}
127
0f9dd46c
JB
128/*
129 * this adds the block group to the fs_info rb tree for the block group
130 * cache
131 */
b2950863 132static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
133 struct btrfs_block_group_cache *block_group)
134{
135 struct rb_node **p;
136 struct rb_node *parent = NULL;
137 struct btrfs_block_group_cache *cache;
138
139 spin_lock(&info->block_group_cache_lock);
140 p = &info->block_group_cache_tree.rb_node;
141
142 while (*p) {
143 parent = *p;
144 cache = rb_entry(parent, struct btrfs_block_group_cache,
145 cache_node);
146 if (block_group->key.objectid < cache->key.objectid) {
147 p = &(*p)->rb_left;
148 } else if (block_group->key.objectid > cache->key.objectid) {
149 p = &(*p)->rb_right;
150 } else {
151 spin_unlock(&info->block_group_cache_lock);
152 return -EEXIST;
153 }
154 }
155
156 rb_link_node(&block_group->cache_node, parent, p);
157 rb_insert_color(&block_group->cache_node,
158 &info->block_group_cache_tree);
a1897fdd
LB
159
160 if (info->first_logical_byte > block_group->key.objectid)
161 info->first_logical_byte = block_group->key.objectid;
162
0f9dd46c
JB
163 spin_unlock(&info->block_group_cache_lock);
164
165 return 0;
166}
167
168/*
169 * This will return the block group at or after bytenr if contains is 0, else
170 * it will return the block group that contains the bytenr
171 */
172static struct btrfs_block_group_cache *
173block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
174 int contains)
175{
176 struct btrfs_block_group_cache *cache, *ret = NULL;
177 struct rb_node *n;
178 u64 end, start;
179
180 spin_lock(&info->block_group_cache_lock);
181 n = info->block_group_cache_tree.rb_node;
182
183 while (n) {
184 cache = rb_entry(n, struct btrfs_block_group_cache,
185 cache_node);
186 end = cache->key.objectid + cache->key.offset - 1;
187 start = cache->key.objectid;
188
189 if (bytenr < start) {
190 if (!contains && (!ret || start < ret->key.objectid))
191 ret = cache;
192 n = n->rb_left;
193 } else if (bytenr > start) {
194 if (contains && bytenr <= end) {
195 ret = cache;
196 break;
197 }
198 n = n->rb_right;
199 } else {
200 ret = cache;
201 break;
202 }
203 }
a1897fdd 204 if (ret) {
11dfe35a 205 btrfs_get_block_group(ret);
a1897fdd
LB
206 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
207 info->first_logical_byte = ret->key.objectid;
208 }
0f9dd46c
JB
209 spin_unlock(&info->block_group_cache_lock);
210
211 return ret;
212}
213
2ff7e61e 214static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 215 u64 start, u64 num_bytes)
817d52f8 216{
11833d66 217 u64 end = start + num_bytes - 1;
0b246afa 218 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 219 start, end, EXTENT_UPTODATE);
0b246afa 220 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 221 start, end, EXTENT_UPTODATE);
11833d66
YZ
222 return 0;
223}
817d52f8 224
2ff7e61e 225static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
226 struct btrfs_block_group_cache *cache)
227{
228 u64 start, end;
817d52f8 229
11833d66
YZ
230 start = cache->key.objectid;
231 end = start + cache->key.offset - 1;
232
0b246afa 233 clear_extent_bits(&fs_info->freed_extents[0],
91166212 234 start, end, EXTENT_UPTODATE);
0b246afa 235 clear_extent_bits(&fs_info->freed_extents[1],
91166212 236 start, end, EXTENT_UPTODATE);
817d52f8
JB
237}
238
2ff7e61e 239static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 240 struct btrfs_block_group_cache *cache)
817d52f8 241{
817d52f8
JB
242 u64 bytenr;
243 u64 *logical;
244 int stripe_len;
245 int i, nr, ret;
246
06b2331f
YZ
247 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
248 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
249 cache->bytes_super += stripe_len;
2ff7e61e 250 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 251 stripe_len);
835d974f
JB
252 if (ret)
253 return ret;
06b2331f
YZ
254 }
255
817d52f8
JB
256 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
257 bytenr = btrfs_sb_offset(i);
0b246afa 258 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
ab8d0fc4 259 bytenr, 0, &logical, &nr, &stripe_len);
835d974f
JB
260 if (ret)
261 return ret;
11833d66 262
817d52f8 263 while (nr--) {
51bf5f0b
JB
264 u64 start, len;
265
266 if (logical[nr] > cache->key.objectid +
267 cache->key.offset)
268 continue;
269
270 if (logical[nr] + stripe_len <= cache->key.objectid)
271 continue;
272
273 start = logical[nr];
274 if (start < cache->key.objectid) {
275 start = cache->key.objectid;
276 len = (logical[nr] + stripe_len) - start;
277 } else {
278 len = min_t(u64, stripe_len,
279 cache->key.objectid +
280 cache->key.offset - start);
281 }
282
283 cache->bytes_super += len;
2ff7e61e 284 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
285 if (ret) {
286 kfree(logical);
287 return ret;
288 }
817d52f8 289 }
11833d66 290
817d52f8
JB
291 kfree(logical);
292 }
817d52f8
JB
293 return 0;
294}
295
11833d66
YZ
296static struct btrfs_caching_control *
297get_caching_control(struct btrfs_block_group_cache *cache)
298{
299 struct btrfs_caching_control *ctl;
300
301 spin_lock(&cache->lock);
dde5abee
JB
302 if (!cache->caching_ctl) {
303 spin_unlock(&cache->lock);
11833d66
YZ
304 return NULL;
305 }
306
307 ctl = cache->caching_ctl;
1e4f4714 308 refcount_inc(&ctl->count);
11833d66
YZ
309 spin_unlock(&cache->lock);
310 return ctl;
311}
312
313static void put_caching_control(struct btrfs_caching_control *ctl)
314{
1e4f4714 315 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
316 kfree(ctl);
317}
318
d0bd4560 319#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 320static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 321{
2ff7e61e 322 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
323 u64 start = block_group->key.objectid;
324 u64 len = block_group->key.offset;
325 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 326 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
327 u64 step = chunk << 1;
328
329 while (len > chunk) {
330 btrfs_remove_free_space(block_group, start, chunk);
331 start += step;
332 if (len < step)
333 len = 0;
334 else
335 len -= step;
336 }
337}
338#endif
339
0f9dd46c
JB
340/*
341 * this is only called by cache_block_group, since we could have freed extents
342 * we need to check the pinned_extents for any extents that can't be used yet
343 * since their free space will be released as soon as the transaction commits.
344 */
a5ed9182
OS
345u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
346 struct btrfs_fs_info *info, u64 start, u64 end)
0f9dd46c 347{
817d52f8 348 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
349 int ret;
350
351 while (start < end) {
11833d66 352 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 353 &extent_start, &extent_end,
e6138876
JB
354 EXTENT_DIRTY | EXTENT_UPTODATE,
355 NULL);
0f9dd46c
JB
356 if (ret)
357 break;
358
06b2331f 359 if (extent_start <= start) {
0f9dd46c
JB
360 start = extent_end + 1;
361 } else if (extent_start > start && extent_start < end) {
362 size = extent_start - start;
817d52f8 363 total_added += size;
ea6a478e
JB
364 ret = btrfs_add_free_space(block_group, start,
365 size);
79787eaa 366 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
367 start = extent_end + 1;
368 } else {
369 break;
370 }
371 }
372
373 if (start < end) {
374 size = end - start;
817d52f8 375 total_added += size;
ea6a478e 376 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 377 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
378 }
379
817d52f8 380 return total_added;
0f9dd46c
JB
381}
382
73fa48b6 383static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 384{
0b246afa
JM
385 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
386 struct btrfs_fs_info *fs_info = block_group->fs_info;
387 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 388 struct btrfs_path *path;
5f39d397 389 struct extent_buffer *leaf;
11833d66 390 struct btrfs_key key;
817d52f8 391 u64 total_found = 0;
11833d66
YZ
392 u64 last = 0;
393 u32 nritems;
73fa48b6 394 int ret;
d0bd4560 395 bool wakeup = true;
f510cfec 396
e37c9e69
CM
397 path = btrfs_alloc_path();
398 if (!path)
73fa48b6 399 return -ENOMEM;
7d7d6068 400
817d52f8 401 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 402
d0bd4560
JB
403#ifdef CONFIG_BTRFS_DEBUG
404 /*
405 * If we're fragmenting we don't want to make anybody think we can
406 * allocate from this block group until we've had a chance to fragment
407 * the free space.
408 */
2ff7e61e 409 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
410 wakeup = false;
411#endif
5cd57b2c 412 /*
817d52f8
JB
413 * We don't want to deadlock with somebody trying to allocate a new
414 * extent for the extent root while also trying to search the extent
415 * root to add free space. So we skip locking and search the commit
416 * root, since its read-only
5cd57b2c
CM
417 */
418 path->skip_locking = 1;
817d52f8 419 path->search_commit_root = 1;
e4058b54 420 path->reada = READA_FORWARD;
817d52f8 421
e4404d6e 422 key.objectid = last;
e37c9e69 423 key.offset = 0;
11833d66 424 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 425
52ee28d2 426next:
11833d66 427 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 428 if (ret < 0)
73fa48b6 429 goto out;
a512bbf8 430
11833d66
YZ
431 leaf = path->nodes[0];
432 nritems = btrfs_header_nritems(leaf);
433
d397712b 434 while (1) {
7841cb28 435 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 436 last = (u64)-1;
817d52f8 437 break;
f25784b3 438 }
817d52f8 439
11833d66
YZ
440 if (path->slots[0] < nritems) {
441 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
442 } else {
443 ret = find_next_key(path, 0, &key);
444 if (ret)
e37c9e69 445 break;
817d52f8 446
c9ea7b24 447 if (need_resched() ||
9e351cc8 448 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
449 if (wakeup)
450 caching_ctl->progress = last;
ff5714cc 451 btrfs_release_path(path);
9e351cc8 452 up_read(&fs_info->commit_root_sem);
589d8ade 453 mutex_unlock(&caching_ctl->mutex);
11833d66 454 cond_resched();
73fa48b6
OS
455 mutex_lock(&caching_ctl->mutex);
456 down_read(&fs_info->commit_root_sem);
457 goto next;
589d8ade 458 }
0a3896d0
JB
459
460 ret = btrfs_next_leaf(extent_root, path);
461 if (ret < 0)
73fa48b6 462 goto out;
0a3896d0
JB
463 if (ret)
464 break;
589d8ade
JB
465 leaf = path->nodes[0];
466 nritems = btrfs_header_nritems(leaf);
467 continue;
11833d66 468 }
817d52f8 469
52ee28d2
LB
470 if (key.objectid < last) {
471 key.objectid = last;
472 key.offset = 0;
473 key.type = BTRFS_EXTENT_ITEM_KEY;
474
d0bd4560
JB
475 if (wakeup)
476 caching_ctl->progress = last;
52ee28d2
LB
477 btrfs_release_path(path);
478 goto next;
479 }
480
11833d66
YZ
481 if (key.objectid < block_group->key.objectid) {
482 path->slots[0]++;
817d52f8 483 continue;
e37c9e69 484 }
0f9dd46c 485
e37c9e69 486 if (key.objectid >= block_group->key.objectid +
0f9dd46c 487 block_group->key.offset)
e37c9e69 488 break;
7d7d6068 489
3173a18f
JB
490 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
491 key.type == BTRFS_METADATA_ITEM_KEY) {
817d52f8
JB
492 total_found += add_new_free_space(block_group,
493 fs_info, last,
494 key.objectid);
3173a18f
JB
495 if (key.type == BTRFS_METADATA_ITEM_KEY)
496 last = key.objectid +
da17066c 497 fs_info->nodesize;
3173a18f
JB
498 else
499 last = key.objectid + key.offset;
817d52f8 500
73fa48b6 501 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 502 total_found = 0;
d0bd4560
JB
503 if (wakeup)
504 wake_up(&caching_ctl->wait);
11833d66 505 }
817d52f8 506 }
e37c9e69
CM
507 path->slots[0]++;
508 }
817d52f8 509 ret = 0;
e37c9e69 510
817d52f8
JB
511 total_found += add_new_free_space(block_group, fs_info, last,
512 block_group->key.objectid +
513 block_group->key.offset);
11833d66 514 caching_ctl->progress = (u64)-1;
817d52f8 515
73fa48b6
OS
516out:
517 btrfs_free_path(path);
518 return ret;
519}
520
521static noinline void caching_thread(struct btrfs_work *work)
522{
523 struct btrfs_block_group_cache *block_group;
524 struct btrfs_fs_info *fs_info;
525 struct btrfs_caching_control *caching_ctl;
526 int ret;
527
528 caching_ctl = container_of(work, struct btrfs_caching_control, work);
529 block_group = caching_ctl->block_group;
530 fs_info = block_group->fs_info;
531
532 mutex_lock(&caching_ctl->mutex);
533 down_read(&fs_info->commit_root_sem);
534
1e144fb8
OS
535 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
536 ret = load_free_space_tree(caching_ctl);
537 else
538 ret = load_extent_tree_free(caching_ctl);
73fa48b6 539
817d52f8 540 spin_lock(&block_group->lock);
11833d66 541 block_group->caching_ctl = NULL;
73fa48b6 542 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 543 spin_unlock(&block_group->lock);
0f9dd46c 544
d0bd4560 545#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 546 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
547 u64 bytes_used;
548
549 spin_lock(&block_group->space_info->lock);
550 spin_lock(&block_group->lock);
551 bytes_used = block_group->key.offset -
552 btrfs_block_group_used(&block_group->item);
553 block_group->space_info->bytes_used += bytes_used >> 1;
554 spin_unlock(&block_group->lock);
555 spin_unlock(&block_group->space_info->lock);
2ff7e61e 556 fragment_free_space(block_group);
d0bd4560
JB
557 }
558#endif
559
560 caching_ctl->progress = (u64)-1;
11833d66 561
9e351cc8 562 up_read(&fs_info->commit_root_sem);
2ff7e61e 563 free_excluded_extents(fs_info, block_group);
11833d66 564 mutex_unlock(&caching_ctl->mutex);
73fa48b6 565
11833d66
YZ
566 wake_up(&caching_ctl->wait);
567
568 put_caching_control(caching_ctl);
11dfe35a 569 btrfs_put_block_group(block_group);
817d52f8
JB
570}
571
9d66e233 572static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 573 int load_cache_only)
817d52f8 574{
291c7d2f 575 DEFINE_WAIT(wait);
11833d66
YZ
576 struct btrfs_fs_info *fs_info = cache->fs_info;
577 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
578 int ret = 0;
579
291c7d2f 580 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
581 if (!caching_ctl)
582 return -ENOMEM;
291c7d2f
JB
583
584 INIT_LIST_HEAD(&caching_ctl->list);
585 mutex_init(&caching_ctl->mutex);
586 init_waitqueue_head(&caching_ctl->wait);
587 caching_ctl->block_group = cache;
588 caching_ctl->progress = cache->key.objectid;
1e4f4714 589 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
590 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
591 caching_thread, NULL, NULL);
291c7d2f
JB
592
593 spin_lock(&cache->lock);
594 /*
595 * This should be a rare occasion, but this could happen I think in the
596 * case where one thread starts to load the space cache info, and then
597 * some other thread starts a transaction commit which tries to do an
598 * allocation while the other thread is still loading the space cache
599 * info. The previous loop should have kept us from choosing this block
600 * group, but if we've moved to the state where we will wait on caching
601 * block groups we need to first check if we're doing a fast load here,
602 * so we can wait for it to finish, otherwise we could end up allocating
603 * from a block group who's cache gets evicted for one reason or
604 * another.
605 */
606 while (cache->cached == BTRFS_CACHE_FAST) {
607 struct btrfs_caching_control *ctl;
608
609 ctl = cache->caching_ctl;
1e4f4714 610 refcount_inc(&ctl->count);
291c7d2f
JB
611 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
612 spin_unlock(&cache->lock);
613
614 schedule();
615
616 finish_wait(&ctl->wait, &wait);
617 put_caching_control(ctl);
618 spin_lock(&cache->lock);
619 }
620
621 if (cache->cached != BTRFS_CACHE_NO) {
622 spin_unlock(&cache->lock);
623 kfree(caching_ctl);
11833d66 624 return 0;
291c7d2f
JB
625 }
626 WARN_ON(cache->caching_ctl);
627 cache->caching_ctl = caching_ctl;
628 cache->cached = BTRFS_CACHE_FAST;
629 spin_unlock(&cache->lock);
11833d66 630
d8953d69 631 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 632 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
633 ret = load_free_space_cache(fs_info, cache);
634
635 spin_lock(&cache->lock);
636 if (ret == 1) {
291c7d2f 637 cache->caching_ctl = NULL;
9d66e233
JB
638 cache->cached = BTRFS_CACHE_FINISHED;
639 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 640 caching_ctl->progress = (u64)-1;
9d66e233 641 } else {
291c7d2f
JB
642 if (load_cache_only) {
643 cache->caching_ctl = NULL;
644 cache->cached = BTRFS_CACHE_NO;
645 } else {
646 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 647 cache->has_caching_ctl = 1;
291c7d2f 648 }
9d66e233
JB
649 }
650 spin_unlock(&cache->lock);
d0bd4560
JB
651#ifdef CONFIG_BTRFS_DEBUG
652 if (ret == 1 &&
2ff7e61e 653 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
654 u64 bytes_used;
655
656 spin_lock(&cache->space_info->lock);
657 spin_lock(&cache->lock);
658 bytes_used = cache->key.offset -
659 btrfs_block_group_used(&cache->item);
660 cache->space_info->bytes_used += bytes_used >> 1;
661 spin_unlock(&cache->lock);
662 spin_unlock(&cache->space_info->lock);
2ff7e61e 663 fragment_free_space(cache);
d0bd4560
JB
664 }
665#endif
cb83b7b8
JB
666 mutex_unlock(&caching_ctl->mutex);
667
291c7d2f 668 wake_up(&caching_ctl->wait);
3c14874a 669 if (ret == 1) {
291c7d2f 670 put_caching_control(caching_ctl);
2ff7e61e 671 free_excluded_extents(fs_info, cache);
9d66e233 672 return 0;
3c14874a 673 }
291c7d2f
JB
674 } else {
675 /*
1e144fb8
OS
676 * We're either using the free space tree or no caching at all.
677 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
678 */
679 spin_lock(&cache->lock);
680 if (load_cache_only) {
681 cache->caching_ctl = NULL;
682 cache->cached = BTRFS_CACHE_NO;
683 } else {
684 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 685 cache->has_caching_ctl = 1;
291c7d2f
JB
686 }
687 spin_unlock(&cache->lock);
688 wake_up(&caching_ctl->wait);
9d66e233
JB
689 }
690
291c7d2f
JB
691 if (load_cache_only) {
692 put_caching_control(caching_ctl);
11833d66 693 return 0;
817d52f8 694 }
817d52f8 695
9e351cc8 696 down_write(&fs_info->commit_root_sem);
1e4f4714 697 refcount_inc(&caching_ctl->count);
11833d66 698 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 699 up_write(&fs_info->commit_root_sem);
11833d66 700
11dfe35a 701 btrfs_get_block_group(cache);
11833d66 702
e66f0bb1 703 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 704
ef8bbdfe 705 return ret;
e37c9e69
CM
706}
707
0f9dd46c
JB
708/*
709 * return the block group that starts at or after bytenr
710 */
d397712b
CM
711static struct btrfs_block_group_cache *
712btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 713{
e2c89907 714 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
715}
716
0f9dd46c 717/*
9f55684c 718 * return the block group that contains the given bytenr
0f9dd46c 719 */
d397712b
CM
720struct btrfs_block_group_cache *btrfs_lookup_block_group(
721 struct btrfs_fs_info *info,
722 u64 bytenr)
be744175 723{
e2c89907 724 return block_group_cache_tree_search(info, bytenr, 1);
be744175 725}
0b86a832 726
0f9dd46c
JB
727static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
728 u64 flags)
6324fbf3 729{
0f9dd46c 730 struct list_head *head = &info->space_info;
0f9dd46c 731 struct btrfs_space_info *found;
4184ea7f 732
52ba6929 733 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 734
4184ea7f
CM
735 rcu_read_lock();
736 list_for_each_entry_rcu(found, head, list) {
67377734 737 if (found->flags & flags) {
4184ea7f 738 rcu_read_unlock();
0f9dd46c 739 return found;
4184ea7f 740 }
0f9dd46c 741 }
4184ea7f 742 rcu_read_unlock();
0f9dd46c 743 return NULL;
6324fbf3
CM
744}
745
0d9f824d 746static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 747 bool metadata, u64 root_objectid)
0d9f824d
OS
748{
749 struct btrfs_space_info *space_info;
750 u64 flags;
751
29d2b84c 752 if (metadata) {
0d9f824d
OS
753 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
754 flags = BTRFS_BLOCK_GROUP_SYSTEM;
755 else
756 flags = BTRFS_BLOCK_GROUP_METADATA;
757 } else {
758 flags = BTRFS_BLOCK_GROUP_DATA;
759 }
760
761 space_info = __find_space_info(fs_info, flags);
55e8196a 762 ASSERT(space_info);
0d9f824d
OS
763 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
764}
765
4184ea7f
CM
766/*
767 * after adding space to the filesystem, we need to clear the full flags
768 * on all the space infos.
769 */
770void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
771{
772 struct list_head *head = &info->space_info;
773 struct btrfs_space_info *found;
774
775 rcu_read_lock();
776 list_for_each_entry_rcu(found, head, list)
777 found->full = 0;
778 rcu_read_unlock();
779}
780
1a4ed8fd 781/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 782int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
783{
784 int ret;
785 struct btrfs_key key;
31840ae1 786 struct btrfs_path *path;
e02119d5 787
31840ae1 788 path = btrfs_alloc_path();
d8926bb3
MF
789 if (!path)
790 return -ENOMEM;
791
e02119d5
CM
792 key.objectid = start;
793 key.offset = len;
3173a18f 794 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 795 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 796 btrfs_free_path(path);
7bb86316
CM
797 return ret;
798}
799
a22285a6 800/*
3173a18f 801 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
802 *
803 * the head node for delayed ref is used to store the sum of all the
804 * reference count modifications queued up in the rbtree. the head
805 * node may also store the extent flags to set. This way you can check
806 * to see what the reference count and extent flags would be if all of
807 * the delayed refs are not processed.
808 */
809int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 810 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 811 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
812{
813 struct btrfs_delayed_ref_head *head;
814 struct btrfs_delayed_ref_root *delayed_refs;
815 struct btrfs_path *path;
816 struct btrfs_extent_item *ei;
817 struct extent_buffer *leaf;
818 struct btrfs_key key;
819 u32 item_size;
820 u64 num_refs;
821 u64 extent_flags;
822 int ret;
823
3173a18f
JB
824 /*
825 * If we don't have skinny metadata, don't bother doing anything
826 * different
827 */
0b246afa
JM
828 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
829 offset = fs_info->nodesize;
3173a18f
JB
830 metadata = 0;
831 }
832
a22285a6
YZ
833 path = btrfs_alloc_path();
834 if (!path)
835 return -ENOMEM;
836
a22285a6
YZ
837 if (!trans) {
838 path->skip_locking = 1;
839 path->search_commit_root = 1;
840 }
639eefc8
FDBM
841
842search_again:
843 key.objectid = bytenr;
844 key.offset = offset;
845 if (metadata)
846 key.type = BTRFS_METADATA_ITEM_KEY;
847 else
848 key.type = BTRFS_EXTENT_ITEM_KEY;
849
0b246afa 850 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
851 if (ret < 0)
852 goto out_free;
853
3173a18f 854 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
855 if (path->slots[0]) {
856 path->slots[0]--;
857 btrfs_item_key_to_cpu(path->nodes[0], &key,
858 path->slots[0]);
859 if (key.objectid == bytenr &&
860 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 861 key.offset == fs_info->nodesize)
74be9510
FDBM
862 ret = 0;
863 }
3173a18f
JB
864 }
865
a22285a6
YZ
866 if (ret == 0) {
867 leaf = path->nodes[0];
868 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
869 if (item_size >= sizeof(*ei)) {
870 ei = btrfs_item_ptr(leaf, path->slots[0],
871 struct btrfs_extent_item);
872 num_refs = btrfs_extent_refs(leaf, ei);
873 extent_flags = btrfs_extent_flags(leaf, ei);
874 } else {
875#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
876 struct btrfs_extent_item_v0 *ei0;
877 BUG_ON(item_size != sizeof(*ei0));
878 ei0 = btrfs_item_ptr(leaf, path->slots[0],
879 struct btrfs_extent_item_v0);
880 num_refs = btrfs_extent_refs_v0(leaf, ei0);
881 /* FIXME: this isn't correct for data */
882 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
883#else
884 BUG();
885#endif
886 }
887 BUG_ON(num_refs == 0);
888 } else {
889 num_refs = 0;
890 extent_flags = 0;
891 ret = 0;
892 }
893
894 if (!trans)
895 goto out;
896
897 delayed_refs = &trans->transaction->delayed_refs;
898 spin_lock(&delayed_refs->lock);
f72ad18e 899 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
900 if (head) {
901 if (!mutex_trylock(&head->mutex)) {
d278850e 902 refcount_inc(&head->refs);
a22285a6
YZ
903 spin_unlock(&delayed_refs->lock);
904
b3b4aa74 905 btrfs_release_path(path);
a22285a6 906
8cc33e5c
DS
907 /*
908 * Mutex was contended, block until it's released and try
909 * again
910 */
a22285a6
YZ
911 mutex_lock(&head->mutex);
912 mutex_unlock(&head->mutex);
d278850e 913 btrfs_put_delayed_ref_head(head);
639eefc8 914 goto search_again;
a22285a6 915 }
d7df2c79 916 spin_lock(&head->lock);
a22285a6
YZ
917 if (head->extent_op && head->extent_op->update_flags)
918 extent_flags |= head->extent_op->flags_to_set;
919 else
920 BUG_ON(num_refs == 0);
921
d278850e 922 num_refs += head->ref_mod;
d7df2c79 923 spin_unlock(&head->lock);
a22285a6
YZ
924 mutex_unlock(&head->mutex);
925 }
926 spin_unlock(&delayed_refs->lock);
927out:
928 WARN_ON(num_refs == 0);
929 if (refs)
930 *refs = num_refs;
931 if (flags)
932 *flags = extent_flags;
933out_free:
934 btrfs_free_path(path);
935 return ret;
936}
937
d8d5f3e1
CM
938/*
939 * Back reference rules. Back refs have three main goals:
940 *
941 * 1) differentiate between all holders of references to an extent so that
942 * when a reference is dropped we can make sure it was a valid reference
943 * before freeing the extent.
944 *
945 * 2) Provide enough information to quickly find the holders of an extent
946 * if we notice a given block is corrupted or bad.
947 *
948 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
949 * maintenance. This is actually the same as #2, but with a slightly
950 * different use case.
951 *
5d4f98a2
YZ
952 * There are two kinds of back refs. The implicit back refs is optimized
953 * for pointers in non-shared tree blocks. For a given pointer in a block,
954 * back refs of this kind provide information about the block's owner tree
955 * and the pointer's key. These information allow us to find the block by
956 * b-tree searching. The full back refs is for pointers in tree blocks not
957 * referenced by their owner trees. The location of tree block is recorded
958 * in the back refs. Actually the full back refs is generic, and can be
959 * used in all cases the implicit back refs is used. The major shortcoming
960 * of the full back refs is its overhead. Every time a tree block gets
961 * COWed, we have to update back refs entry for all pointers in it.
962 *
963 * For a newly allocated tree block, we use implicit back refs for
964 * pointers in it. This means most tree related operations only involve
965 * implicit back refs. For a tree block created in old transaction, the
966 * only way to drop a reference to it is COW it. So we can detect the
967 * event that tree block loses its owner tree's reference and do the
968 * back refs conversion.
969 *
01327610 970 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
971 *
972 * The reference count of the block is one and the tree is the block's
973 * owner tree. Nothing to do in this case.
974 *
975 * The reference count of the block is one and the tree is not the
976 * block's owner tree. In this case, full back refs is used for pointers
977 * in the block. Remove these full back refs, add implicit back refs for
978 * every pointers in the new block.
979 *
980 * The reference count of the block is greater than one and the tree is
981 * the block's owner tree. In this case, implicit back refs is used for
982 * pointers in the block. Add full back refs for every pointers in the
983 * block, increase lower level extents' reference counts. The original
984 * implicit back refs are entailed to the new block.
985 *
986 * The reference count of the block is greater than one and the tree is
987 * not the block's owner tree. Add implicit back refs for every pointer in
988 * the new block, increase lower level extents' reference count.
989 *
990 * Back Reference Key composing:
991 *
992 * The key objectid corresponds to the first byte in the extent,
993 * The key type is used to differentiate between types of back refs.
994 * There are different meanings of the key offset for different types
995 * of back refs.
996 *
d8d5f3e1
CM
997 * File extents can be referenced by:
998 *
999 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 1000 * - different files inside a single subvolume
d8d5f3e1
CM
1001 * - different offsets inside a file (bookend extents in file.c)
1002 *
5d4f98a2 1003 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1004 *
1005 * - Objectid of the subvolume root
d8d5f3e1 1006 * - objectid of the file holding the reference
5d4f98a2
YZ
1007 * - original offset in the file
1008 * - how many bookend extents
d8d5f3e1 1009 *
5d4f98a2
YZ
1010 * The key offset for the implicit back refs is hash of the first
1011 * three fields.
d8d5f3e1 1012 *
5d4f98a2 1013 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1014 *
5d4f98a2 1015 * - number of pointers in the tree leaf
d8d5f3e1 1016 *
5d4f98a2
YZ
1017 * The key offset for the implicit back refs is the first byte of
1018 * the tree leaf
d8d5f3e1 1019 *
5d4f98a2
YZ
1020 * When a file extent is allocated, The implicit back refs is used.
1021 * the fields are filled in:
d8d5f3e1 1022 *
5d4f98a2 1023 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1024 *
5d4f98a2
YZ
1025 * When a file extent is removed file truncation, we find the
1026 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1027 *
5d4f98a2 1028 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1029 *
5d4f98a2 1030 * Btree extents can be referenced by:
d8d5f3e1 1031 *
5d4f98a2 1032 * - Different subvolumes
d8d5f3e1 1033 *
5d4f98a2
YZ
1034 * Both the implicit back refs and the full back refs for tree blocks
1035 * only consist of key. The key offset for the implicit back refs is
1036 * objectid of block's owner tree. The key offset for the full back refs
1037 * is the first byte of parent block.
d8d5f3e1 1038 *
5d4f98a2
YZ
1039 * When implicit back refs is used, information about the lowest key and
1040 * level of the tree block are required. These information are stored in
1041 * tree block info structure.
d8d5f3e1 1042 */
31840ae1 1043
5d4f98a2
YZ
1044#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1045static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1046 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1047 struct btrfs_path *path,
1048 u64 owner, u32 extra_size)
7bb86316 1049{
87bde3cd 1050 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1051 struct btrfs_extent_item *item;
1052 struct btrfs_extent_item_v0 *ei0;
1053 struct btrfs_extent_ref_v0 *ref0;
1054 struct btrfs_tree_block_info *bi;
1055 struct extent_buffer *leaf;
7bb86316 1056 struct btrfs_key key;
5d4f98a2
YZ
1057 struct btrfs_key found_key;
1058 u32 new_size = sizeof(*item);
1059 u64 refs;
1060 int ret;
1061
1062 leaf = path->nodes[0];
1063 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1064
1065 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1066 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1067 struct btrfs_extent_item_v0);
1068 refs = btrfs_extent_refs_v0(leaf, ei0);
1069
1070 if (owner == (u64)-1) {
1071 while (1) {
1072 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1073 ret = btrfs_next_leaf(root, path);
1074 if (ret < 0)
1075 return ret;
79787eaa 1076 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1077 leaf = path->nodes[0];
1078 }
1079 btrfs_item_key_to_cpu(leaf, &found_key,
1080 path->slots[0]);
1081 BUG_ON(key.objectid != found_key.objectid);
1082 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1083 path->slots[0]++;
1084 continue;
1085 }
1086 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1087 struct btrfs_extent_ref_v0);
1088 owner = btrfs_ref_objectid_v0(leaf, ref0);
1089 break;
1090 }
1091 }
b3b4aa74 1092 btrfs_release_path(path);
5d4f98a2
YZ
1093
1094 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1095 new_size += sizeof(*bi);
1096
1097 new_size -= sizeof(*ei0);
1098 ret = btrfs_search_slot(trans, root, &key, path,
1099 new_size + extra_size, 1);
1100 if (ret < 0)
1101 return ret;
79787eaa 1102 BUG_ON(ret); /* Corruption */
5d4f98a2 1103
87bde3cd 1104 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1105
1106 leaf = path->nodes[0];
1107 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1108 btrfs_set_extent_refs(leaf, item, refs);
1109 /* FIXME: get real generation */
1110 btrfs_set_extent_generation(leaf, item, 0);
1111 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1112 btrfs_set_extent_flags(leaf, item,
1113 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1114 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1115 bi = (struct btrfs_tree_block_info *)(item + 1);
1116 /* FIXME: get first key of the block */
b159fa28 1117 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1118 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1119 } else {
1120 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1121 }
1122 btrfs_mark_buffer_dirty(leaf);
1123 return 0;
1124}
1125#endif
1126
167ce953
LB
1127/*
1128 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1129 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1130 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1131 */
1132int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1133 struct btrfs_extent_inline_ref *iref,
1134 enum btrfs_inline_ref_type is_data)
1135{
1136 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1137 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1138
1139 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1140 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1141 type == BTRFS_SHARED_DATA_REF_KEY ||
1142 type == BTRFS_EXTENT_DATA_REF_KEY) {
1143 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1144 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1145 return type;
64ecdb64
LB
1146 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1147 ASSERT(eb->fs_info);
1148 /*
1149 * Every shared one has parent tree
1150 * block, which must be aligned to
1151 * nodesize.
1152 */
1153 if (offset &&
1154 IS_ALIGNED(offset, eb->fs_info->nodesize))
1155 return type;
1156 }
167ce953 1157 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1158 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1159 return type;
64ecdb64
LB
1160 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1161 ASSERT(eb->fs_info);
1162 /*
1163 * Every shared one has parent tree
1164 * block, which must be aligned to
1165 * nodesize.
1166 */
1167 if (offset &&
1168 IS_ALIGNED(offset, eb->fs_info->nodesize))
1169 return type;
1170 }
167ce953
LB
1171 } else {
1172 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1173 return type;
1174 }
1175 }
1176
1177 btrfs_print_leaf((struct extent_buffer *)eb);
1178 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1179 eb->start, type);
1180 WARN_ON(1);
1181
1182 return BTRFS_REF_TYPE_INVALID;
1183}
1184
5d4f98a2
YZ
1185static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1186{
1187 u32 high_crc = ~(u32)0;
1188 u32 low_crc = ~(u32)0;
1189 __le64 lenum;
1190
1191 lenum = cpu_to_le64(root_objectid);
9678c543 1192 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1193 lenum = cpu_to_le64(owner);
9678c543 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1195 lenum = cpu_to_le64(offset);
9678c543 1196 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1197
1198 return ((u64)high_crc << 31) ^ (u64)low_crc;
1199}
1200
1201static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1202 struct btrfs_extent_data_ref *ref)
1203{
1204 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1205 btrfs_extent_data_ref_objectid(leaf, ref),
1206 btrfs_extent_data_ref_offset(leaf, ref));
1207}
1208
1209static int match_extent_data_ref(struct extent_buffer *leaf,
1210 struct btrfs_extent_data_ref *ref,
1211 u64 root_objectid, u64 owner, u64 offset)
1212{
1213 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1214 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1215 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1216 return 0;
1217 return 1;
1218}
1219
1220static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1221 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1222 struct btrfs_path *path,
1223 u64 bytenr, u64 parent,
1224 u64 root_objectid,
1225 u64 owner, u64 offset)
1226{
87bde3cd 1227 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1228 struct btrfs_key key;
1229 struct btrfs_extent_data_ref *ref;
31840ae1 1230 struct extent_buffer *leaf;
5d4f98a2 1231 u32 nritems;
74493f7a 1232 int ret;
5d4f98a2
YZ
1233 int recow;
1234 int err = -ENOENT;
74493f7a 1235
31840ae1 1236 key.objectid = bytenr;
5d4f98a2
YZ
1237 if (parent) {
1238 key.type = BTRFS_SHARED_DATA_REF_KEY;
1239 key.offset = parent;
1240 } else {
1241 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1242 key.offset = hash_extent_data_ref(root_objectid,
1243 owner, offset);
1244 }
1245again:
1246 recow = 0;
1247 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1248 if (ret < 0) {
1249 err = ret;
1250 goto fail;
1251 }
31840ae1 1252
5d4f98a2
YZ
1253 if (parent) {
1254 if (!ret)
1255 return 0;
1256#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1257 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1258 btrfs_release_path(path);
5d4f98a2
YZ
1259 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1260 if (ret < 0) {
1261 err = ret;
1262 goto fail;
1263 }
1264 if (!ret)
1265 return 0;
1266#endif
1267 goto fail;
31840ae1
ZY
1268 }
1269
1270 leaf = path->nodes[0];
5d4f98a2
YZ
1271 nritems = btrfs_header_nritems(leaf);
1272 while (1) {
1273 if (path->slots[0] >= nritems) {
1274 ret = btrfs_next_leaf(root, path);
1275 if (ret < 0)
1276 err = ret;
1277 if (ret)
1278 goto fail;
1279
1280 leaf = path->nodes[0];
1281 nritems = btrfs_header_nritems(leaf);
1282 recow = 1;
1283 }
1284
1285 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1286 if (key.objectid != bytenr ||
1287 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1288 goto fail;
1289
1290 ref = btrfs_item_ptr(leaf, path->slots[0],
1291 struct btrfs_extent_data_ref);
1292
1293 if (match_extent_data_ref(leaf, ref, root_objectid,
1294 owner, offset)) {
1295 if (recow) {
b3b4aa74 1296 btrfs_release_path(path);
5d4f98a2
YZ
1297 goto again;
1298 }
1299 err = 0;
1300 break;
1301 }
1302 path->slots[0]++;
31840ae1 1303 }
5d4f98a2
YZ
1304fail:
1305 return err;
31840ae1
ZY
1306}
1307
5d4f98a2 1308static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1309 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1310 struct btrfs_path *path,
1311 u64 bytenr, u64 parent,
1312 u64 root_objectid, u64 owner,
1313 u64 offset, int refs_to_add)
31840ae1 1314{
87bde3cd 1315 struct btrfs_root *root = fs_info->extent_root;
31840ae1
ZY
1316 struct btrfs_key key;
1317 struct extent_buffer *leaf;
5d4f98a2 1318 u32 size;
31840ae1
ZY
1319 u32 num_refs;
1320 int ret;
74493f7a 1321
74493f7a 1322 key.objectid = bytenr;
5d4f98a2
YZ
1323 if (parent) {
1324 key.type = BTRFS_SHARED_DATA_REF_KEY;
1325 key.offset = parent;
1326 size = sizeof(struct btrfs_shared_data_ref);
1327 } else {
1328 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1329 key.offset = hash_extent_data_ref(root_objectid,
1330 owner, offset);
1331 size = sizeof(struct btrfs_extent_data_ref);
1332 }
74493f7a 1333
5d4f98a2
YZ
1334 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1335 if (ret && ret != -EEXIST)
1336 goto fail;
1337
1338 leaf = path->nodes[0];
1339 if (parent) {
1340 struct btrfs_shared_data_ref *ref;
31840ae1 1341 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1342 struct btrfs_shared_data_ref);
1343 if (ret == 0) {
1344 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1345 } else {
1346 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1347 num_refs += refs_to_add;
1348 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1349 }
5d4f98a2
YZ
1350 } else {
1351 struct btrfs_extent_data_ref *ref;
1352 while (ret == -EEXIST) {
1353 ref = btrfs_item_ptr(leaf, path->slots[0],
1354 struct btrfs_extent_data_ref);
1355 if (match_extent_data_ref(leaf, ref, root_objectid,
1356 owner, offset))
1357 break;
b3b4aa74 1358 btrfs_release_path(path);
5d4f98a2
YZ
1359 key.offset++;
1360 ret = btrfs_insert_empty_item(trans, root, path, &key,
1361 size);
1362 if (ret && ret != -EEXIST)
1363 goto fail;
31840ae1 1364
5d4f98a2
YZ
1365 leaf = path->nodes[0];
1366 }
1367 ref = btrfs_item_ptr(leaf, path->slots[0],
1368 struct btrfs_extent_data_ref);
1369 if (ret == 0) {
1370 btrfs_set_extent_data_ref_root(leaf, ref,
1371 root_objectid);
1372 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1373 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1374 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1375 } else {
1376 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1377 num_refs += refs_to_add;
1378 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1379 }
31840ae1 1380 }
5d4f98a2
YZ
1381 btrfs_mark_buffer_dirty(leaf);
1382 ret = 0;
1383fail:
b3b4aa74 1384 btrfs_release_path(path);
7bb86316 1385 return ret;
74493f7a
CM
1386}
1387
5d4f98a2 1388static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
87bde3cd 1389 struct btrfs_fs_info *fs_info,
5d4f98a2 1390 struct btrfs_path *path,
fcebe456 1391 int refs_to_drop, int *last_ref)
31840ae1 1392{
5d4f98a2
YZ
1393 struct btrfs_key key;
1394 struct btrfs_extent_data_ref *ref1 = NULL;
1395 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1396 struct extent_buffer *leaf;
5d4f98a2 1397 u32 num_refs = 0;
31840ae1
ZY
1398 int ret = 0;
1399
1400 leaf = path->nodes[0];
5d4f98a2
YZ
1401 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1402
1403 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1404 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1405 struct btrfs_extent_data_ref);
1406 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1407 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1408 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1409 struct btrfs_shared_data_ref);
1410 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1411#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1412 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1413 struct btrfs_extent_ref_v0 *ref0;
1414 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1415 struct btrfs_extent_ref_v0);
1416 num_refs = btrfs_ref_count_v0(leaf, ref0);
1417#endif
1418 } else {
1419 BUG();
1420 }
1421
56bec294
CM
1422 BUG_ON(num_refs < refs_to_drop);
1423 num_refs -= refs_to_drop;
5d4f98a2 1424
31840ae1 1425 if (num_refs == 0) {
87bde3cd 1426 ret = btrfs_del_item(trans, fs_info->extent_root, path);
fcebe456 1427 *last_ref = 1;
31840ae1 1428 } else {
5d4f98a2
YZ
1429 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1430 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1431 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1432 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1433#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1434 else {
1435 struct btrfs_extent_ref_v0 *ref0;
1436 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1437 struct btrfs_extent_ref_v0);
1438 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1439 }
1440#endif
31840ae1
ZY
1441 btrfs_mark_buffer_dirty(leaf);
1442 }
31840ae1
ZY
1443 return ret;
1444}
1445
9ed0dea0 1446static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1447 struct btrfs_extent_inline_ref *iref)
15916de8 1448{
5d4f98a2
YZ
1449 struct btrfs_key key;
1450 struct extent_buffer *leaf;
1451 struct btrfs_extent_data_ref *ref1;
1452 struct btrfs_shared_data_ref *ref2;
1453 u32 num_refs = 0;
3de28d57 1454 int type;
5d4f98a2
YZ
1455
1456 leaf = path->nodes[0];
1457 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1458 if (iref) {
3de28d57
LB
1459 /*
1460 * If type is invalid, we should have bailed out earlier than
1461 * this call.
1462 */
1463 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1464 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1465 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1466 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1467 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1468 } else {
1469 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1470 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1471 }
1472 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1473 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1474 struct btrfs_extent_data_ref);
1475 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1476 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1477 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1478 struct btrfs_shared_data_ref);
1479 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1480#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1481 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1482 struct btrfs_extent_ref_v0 *ref0;
1483 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1484 struct btrfs_extent_ref_v0);
1485 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1486#endif
5d4f98a2
YZ
1487 } else {
1488 WARN_ON(1);
1489 }
1490 return num_refs;
1491}
15916de8 1492
5d4f98a2 1493static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1494 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1495 struct btrfs_path *path,
1496 u64 bytenr, u64 parent,
1497 u64 root_objectid)
1f3c79a2 1498{
87bde3cd 1499 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2 1500 struct btrfs_key key;
1f3c79a2 1501 int ret;
1f3c79a2 1502
5d4f98a2
YZ
1503 key.objectid = bytenr;
1504 if (parent) {
1505 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1506 key.offset = parent;
1507 } else {
1508 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1509 key.offset = root_objectid;
1f3c79a2
LH
1510 }
1511
5d4f98a2
YZ
1512 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1513 if (ret > 0)
1514 ret = -ENOENT;
1515#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1516 if (ret == -ENOENT && parent) {
b3b4aa74 1517 btrfs_release_path(path);
5d4f98a2
YZ
1518 key.type = BTRFS_EXTENT_REF_V0_KEY;
1519 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1520 if (ret > 0)
1521 ret = -ENOENT;
1522 }
1f3c79a2 1523#endif
5d4f98a2 1524 return ret;
1f3c79a2
LH
1525}
1526
5d4f98a2 1527static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
87bde3cd 1528 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1529 struct btrfs_path *path,
1530 u64 bytenr, u64 parent,
1531 u64 root_objectid)
31840ae1 1532{
5d4f98a2 1533 struct btrfs_key key;
31840ae1 1534 int ret;
31840ae1 1535
5d4f98a2
YZ
1536 key.objectid = bytenr;
1537 if (parent) {
1538 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1539 key.offset = parent;
1540 } else {
1541 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1542 key.offset = root_objectid;
1543 }
1544
87bde3cd
JM
1545 ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1546 path, &key, 0);
b3b4aa74 1547 btrfs_release_path(path);
31840ae1
ZY
1548 return ret;
1549}
1550
5d4f98a2 1551static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1552{
5d4f98a2
YZ
1553 int type;
1554 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1555 if (parent > 0)
1556 type = BTRFS_SHARED_BLOCK_REF_KEY;
1557 else
1558 type = BTRFS_TREE_BLOCK_REF_KEY;
1559 } else {
1560 if (parent > 0)
1561 type = BTRFS_SHARED_DATA_REF_KEY;
1562 else
1563 type = BTRFS_EXTENT_DATA_REF_KEY;
1564 }
1565 return type;
31840ae1 1566}
56bec294 1567
2c47e605
YZ
1568static int find_next_key(struct btrfs_path *path, int level,
1569 struct btrfs_key *key)
56bec294 1570
02217ed2 1571{
2c47e605 1572 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1573 if (!path->nodes[level])
1574 break;
5d4f98a2
YZ
1575 if (path->slots[level] + 1 >=
1576 btrfs_header_nritems(path->nodes[level]))
1577 continue;
1578 if (level == 0)
1579 btrfs_item_key_to_cpu(path->nodes[level], key,
1580 path->slots[level] + 1);
1581 else
1582 btrfs_node_key_to_cpu(path->nodes[level], key,
1583 path->slots[level] + 1);
1584 return 0;
1585 }
1586 return 1;
1587}
037e6390 1588
5d4f98a2
YZ
1589/*
1590 * look for inline back ref. if back ref is found, *ref_ret is set
1591 * to the address of inline back ref, and 0 is returned.
1592 *
1593 * if back ref isn't found, *ref_ret is set to the address where it
1594 * should be inserted, and -ENOENT is returned.
1595 *
1596 * if insert is true and there are too many inline back refs, the path
1597 * points to the extent item, and -EAGAIN is returned.
1598 *
1599 * NOTE: inline back refs are ordered in the same way that back ref
1600 * items in the tree are ordered.
1601 */
1602static noinline_for_stack
1603int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1604 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1605 struct btrfs_path *path,
1606 struct btrfs_extent_inline_ref **ref_ret,
1607 u64 bytenr, u64 num_bytes,
1608 u64 parent, u64 root_objectid,
1609 u64 owner, u64 offset, int insert)
1610{
87bde3cd 1611 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1612 struct btrfs_key key;
1613 struct extent_buffer *leaf;
1614 struct btrfs_extent_item *ei;
1615 struct btrfs_extent_inline_ref *iref;
1616 u64 flags;
1617 u64 item_size;
1618 unsigned long ptr;
1619 unsigned long end;
1620 int extra_size;
1621 int type;
1622 int want;
1623 int ret;
1624 int err = 0;
0b246afa 1625 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1626 int needed;
26b8003f 1627
db94535d 1628 key.objectid = bytenr;
31840ae1 1629 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1630 key.offset = num_bytes;
31840ae1 1631
5d4f98a2
YZ
1632 want = extent_ref_type(parent, owner);
1633 if (insert) {
1634 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1635 path->keep_locks = 1;
5d4f98a2
YZ
1636 } else
1637 extra_size = -1;
3173a18f
JB
1638
1639 /*
1640 * Owner is our parent level, so we can just add one to get the level
1641 * for the block we are interested in.
1642 */
1643 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1644 key.type = BTRFS_METADATA_ITEM_KEY;
1645 key.offset = owner;
1646 }
1647
1648again:
5d4f98a2 1649 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1650 if (ret < 0) {
5d4f98a2
YZ
1651 err = ret;
1652 goto out;
1653 }
3173a18f
JB
1654
1655 /*
1656 * We may be a newly converted file system which still has the old fat
1657 * extent entries for metadata, so try and see if we have one of those.
1658 */
1659 if (ret > 0 && skinny_metadata) {
1660 skinny_metadata = false;
1661 if (path->slots[0]) {
1662 path->slots[0]--;
1663 btrfs_item_key_to_cpu(path->nodes[0], &key,
1664 path->slots[0]);
1665 if (key.objectid == bytenr &&
1666 key.type == BTRFS_EXTENT_ITEM_KEY &&
1667 key.offset == num_bytes)
1668 ret = 0;
1669 }
1670 if (ret) {
9ce49a0b 1671 key.objectid = bytenr;
3173a18f
JB
1672 key.type = BTRFS_EXTENT_ITEM_KEY;
1673 key.offset = num_bytes;
1674 btrfs_release_path(path);
1675 goto again;
1676 }
1677 }
1678
79787eaa
JM
1679 if (ret && !insert) {
1680 err = -ENOENT;
1681 goto out;
fae7f21c 1682 } else if (WARN_ON(ret)) {
492104c8 1683 err = -EIO;
492104c8 1684 goto out;
79787eaa 1685 }
5d4f98a2
YZ
1686
1687 leaf = path->nodes[0];
1688 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1689#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1690 if (item_size < sizeof(*ei)) {
1691 if (!insert) {
1692 err = -ENOENT;
1693 goto out;
1694 }
87bde3cd 1695 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1696 extra_size);
1697 if (ret < 0) {
1698 err = ret;
1699 goto out;
1700 }
1701 leaf = path->nodes[0];
1702 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1703 }
1704#endif
1705 BUG_ON(item_size < sizeof(*ei));
1706
5d4f98a2
YZ
1707 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1708 flags = btrfs_extent_flags(leaf, ei);
1709
1710 ptr = (unsigned long)(ei + 1);
1711 end = (unsigned long)ei + item_size;
1712
3173a18f 1713 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1714 ptr += sizeof(struct btrfs_tree_block_info);
1715 BUG_ON(ptr > end);
5d4f98a2
YZ
1716 }
1717
3de28d57
LB
1718 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1719 needed = BTRFS_REF_TYPE_DATA;
1720 else
1721 needed = BTRFS_REF_TYPE_BLOCK;
1722
5d4f98a2
YZ
1723 err = -ENOENT;
1724 while (1) {
1725 if (ptr >= end) {
1726 WARN_ON(ptr > end);
1727 break;
1728 }
1729 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1730 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1731 if (type == BTRFS_REF_TYPE_INVALID) {
1732 err = -EINVAL;
1733 goto out;
1734 }
1735
5d4f98a2
YZ
1736 if (want < type)
1737 break;
1738 if (want > type) {
1739 ptr += btrfs_extent_inline_ref_size(type);
1740 continue;
1741 }
1742
1743 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1744 struct btrfs_extent_data_ref *dref;
1745 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1746 if (match_extent_data_ref(leaf, dref, root_objectid,
1747 owner, offset)) {
1748 err = 0;
1749 break;
1750 }
1751 if (hash_extent_data_ref_item(leaf, dref) <
1752 hash_extent_data_ref(root_objectid, owner, offset))
1753 break;
1754 } else {
1755 u64 ref_offset;
1756 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1757 if (parent > 0) {
1758 if (parent == ref_offset) {
1759 err = 0;
1760 break;
1761 }
1762 if (ref_offset < parent)
1763 break;
1764 } else {
1765 if (root_objectid == ref_offset) {
1766 err = 0;
1767 break;
1768 }
1769 if (ref_offset < root_objectid)
1770 break;
1771 }
1772 }
1773 ptr += btrfs_extent_inline_ref_size(type);
1774 }
1775 if (err == -ENOENT && insert) {
1776 if (item_size + extra_size >=
1777 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1778 err = -EAGAIN;
1779 goto out;
1780 }
1781 /*
1782 * To add new inline back ref, we have to make sure
1783 * there is no corresponding back ref item.
1784 * For simplicity, we just do not add new inline back
1785 * ref if there is any kind of item for this block
1786 */
2c47e605
YZ
1787 if (find_next_key(path, 0, &key) == 0 &&
1788 key.objectid == bytenr &&
85d4198e 1789 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1790 err = -EAGAIN;
1791 goto out;
1792 }
1793 }
1794 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1795out:
85d4198e 1796 if (insert) {
5d4f98a2
YZ
1797 path->keep_locks = 0;
1798 btrfs_unlock_up_safe(path, 1);
1799 }
1800 return err;
1801}
1802
1803/*
1804 * helper to add new inline back ref
1805 */
1806static noinline_for_stack
87bde3cd 1807void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1808 struct btrfs_path *path,
1809 struct btrfs_extent_inline_ref *iref,
1810 u64 parent, u64 root_objectid,
1811 u64 owner, u64 offset, int refs_to_add,
1812 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1813{
1814 struct extent_buffer *leaf;
1815 struct btrfs_extent_item *ei;
1816 unsigned long ptr;
1817 unsigned long end;
1818 unsigned long item_offset;
1819 u64 refs;
1820 int size;
1821 int type;
5d4f98a2
YZ
1822
1823 leaf = path->nodes[0];
1824 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1825 item_offset = (unsigned long)iref - (unsigned long)ei;
1826
1827 type = extent_ref_type(parent, owner);
1828 size = btrfs_extent_inline_ref_size(type);
1829
87bde3cd 1830 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1831
1832 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1833 refs = btrfs_extent_refs(leaf, ei);
1834 refs += refs_to_add;
1835 btrfs_set_extent_refs(leaf, ei, refs);
1836 if (extent_op)
1837 __run_delayed_extent_op(extent_op, leaf, ei);
1838
1839 ptr = (unsigned long)ei + item_offset;
1840 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1841 if (ptr < end - size)
1842 memmove_extent_buffer(leaf, ptr + size, ptr,
1843 end - size - ptr);
1844
1845 iref = (struct btrfs_extent_inline_ref *)ptr;
1846 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1847 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1848 struct btrfs_extent_data_ref *dref;
1849 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1850 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1851 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1852 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1853 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1854 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1855 struct btrfs_shared_data_ref *sref;
1856 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1857 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1858 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1859 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1860 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1861 } else {
1862 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1863 }
1864 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1865}
1866
1867static int lookup_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1868 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1869 struct btrfs_path *path,
1870 struct btrfs_extent_inline_ref **ref_ret,
1871 u64 bytenr, u64 num_bytes, u64 parent,
1872 u64 root_objectid, u64 owner, u64 offset)
1873{
1874 int ret;
1875
87bde3cd 1876 ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
5d4f98a2
YZ
1877 bytenr, num_bytes, parent,
1878 root_objectid, owner, offset, 0);
1879 if (ret != -ENOENT)
54aa1f4d 1880 return ret;
5d4f98a2 1881
b3b4aa74 1882 btrfs_release_path(path);
5d4f98a2
YZ
1883 *ref_ret = NULL;
1884
1885 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
87bde3cd
JM
1886 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1887 parent, root_objectid);
5d4f98a2 1888 } else {
87bde3cd
JM
1889 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1890 parent, root_objectid, owner,
1891 offset);
b9473439 1892 }
5d4f98a2
YZ
1893 return ret;
1894}
31840ae1 1895
5d4f98a2
YZ
1896/*
1897 * helper to update/remove inline back ref
1898 */
1899static noinline_for_stack
87bde3cd 1900void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1901 struct btrfs_path *path,
1902 struct btrfs_extent_inline_ref *iref,
1903 int refs_to_mod,
fcebe456
JB
1904 struct btrfs_delayed_extent_op *extent_op,
1905 int *last_ref)
5d4f98a2
YZ
1906{
1907 struct extent_buffer *leaf;
1908 struct btrfs_extent_item *ei;
1909 struct btrfs_extent_data_ref *dref = NULL;
1910 struct btrfs_shared_data_ref *sref = NULL;
1911 unsigned long ptr;
1912 unsigned long end;
1913 u32 item_size;
1914 int size;
1915 int type;
5d4f98a2
YZ
1916 u64 refs;
1917
1918 leaf = path->nodes[0];
1919 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1920 refs = btrfs_extent_refs(leaf, ei);
1921 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1922 refs += refs_to_mod;
1923 btrfs_set_extent_refs(leaf, ei, refs);
1924 if (extent_op)
1925 __run_delayed_extent_op(extent_op, leaf, ei);
1926
3de28d57
LB
1927 /*
1928 * If type is invalid, we should have bailed out after
1929 * lookup_inline_extent_backref().
1930 */
1931 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1932 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1933
1934 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1935 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1936 refs = btrfs_extent_data_ref_count(leaf, dref);
1937 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1938 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1939 refs = btrfs_shared_data_ref_count(leaf, sref);
1940 } else {
1941 refs = 1;
1942 BUG_ON(refs_to_mod != -1);
56bec294 1943 }
31840ae1 1944
5d4f98a2
YZ
1945 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1946 refs += refs_to_mod;
1947
1948 if (refs > 0) {
1949 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1950 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1951 else
1952 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1953 } else {
fcebe456 1954 *last_ref = 1;
5d4f98a2
YZ
1955 size = btrfs_extent_inline_ref_size(type);
1956 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1957 ptr = (unsigned long)iref;
1958 end = (unsigned long)ei + item_size;
1959 if (ptr + size < end)
1960 memmove_extent_buffer(leaf, ptr, ptr + size,
1961 end - ptr - size);
1962 item_size -= size;
87bde3cd 1963 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1964 }
1965 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1966}
1967
1968static noinline_for_stack
1969int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1970 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1971 struct btrfs_path *path,
1972 u64 bytenr, u64 num_bytes, u64 parent,
1973 u64 root_objectid, u64 owner,
1974 u64 offset, int refs_to_add,
1975 struct btrfs_delayed_extent_op *extent_op)
1976{
1977 struct btrfs_extent_inline_ref *iref;
1978 int ret;
1979
87bde3cd 1980 ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
5d4f98a2
YZ
1981 bytenr, num_bytes, parent,
1982 root_objectid, owner, offset, 1);
1983 if (ret == 0) {
1984 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
87bde3cd 1985 update_inline_extent_backref(fs_info, path, iref,
fcebe456 1986 refs_to_add, extent_op, NULL);
5d4f98a2 1987 } else if (ret == -ENOENT) {
87bde3cd 1988 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1989 root_objectid, owner, offset,
1990 refs_to_add, extent_op);
1991 ret = 0;
771ed689 1992 }
5d4f98a2
YZ
1993 return ret;
1994}
31840ae1 1995
5d4f98a2 1996static int insert_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1997 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1998 struct btrfs_path *path,
1999 u64 bytenr, u64 parent, u64 root_objectid,
2000 u64 owner, u64 offset, int refs_to_add)
2001{
2002 int ret;
2003 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2004 BUG_ON(refs_to_add != 1);
87bde3cd 2005 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2006 parent, root_objectid);
2007 } else {
87bde3cd 2008 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
5d4f98a2
YZ
2009 parent, root_objectid,
2010 owner, offset, refs_to_add);
2011 }
2012 return ret;
2013}
56bec294 2014
5d4f98a2 2015static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2016 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2017 struct btrfs_path *path,
2018 struct btrfs_extent_inline_ref *iref,
fcebe456 2019 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2020{
143bede5 2021 int ret = 0;
b9473439 2022
5d4f98a2
YZ
2023 BUG_ON(!is_data && refs_to_drop != 1);
2024 if (iref) {
87bde3cd 2025 update_inline_extent_backref(fs_info, path, iref,
fcebe456 2026 -refs_to_drop, NULL, last_ref);
5d4f98a2 2027 } else if (is_data) {
87bde3cd 2028 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
fcebe456 2029 last_ref);
5d4f98a2 2030 } else {
fcebe456 2031 *last_ref = 1;
87bde3cd 2032 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2033 }
2034 return ret;
2035}
2036
86557861 2037#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2038static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2039 u64 *discarded_bytes)
5d4f98a2 2040{
86557861
JM
2041 int j, ret = 0;
2042 u64 bytes_left, end;
4d89d377 2043 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2044
4d89d377
JM
2045 if (WARN_ON(start != aligned_start)) {
2046 len -= aligned_start - start;
2047 len = round_down(len, 1 << 9);
2048 start = aligned_start;
2049 }
d04c6b88 2050
4d89d377 2051 *discarded_bytes = 0;
86557861
JM
2052
2053 if (!len)
2054 return 0;
2055
2056 end = start + len;
2057 bytes_left = len;
2058
2059 /* Skip any superblocks on this device. */
2060 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2061 u64 sb_start = btrfs_sb_offset(j);
2062 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2063 u64 size = sb_start - start;
2064
2065 if (!in_range(sb_start, start, bytes_left) &&
2066 !in_range(sb_end, start, bytes_left) &&
2067 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2068 continue;
2069
2070 /*
2071 * Superblock spans beginning of range. Adjust start and
2072 * try again.
2073 */
2074 if (sb_start <= start) {
2075 start += sb_end - start;
2076 if (start > end) {
2077 bytes_left = 0;
2078 break;
2079 }
2080 bytes_left = end - start;
2081 continue;
2082 }
2083
2084 if (size) {
2085 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2086 GFP_NOFS, 0);
2087 if (!ret)
2088 *discarded_bytes += size;
2089 else if (ret != -EOPNOTSUPP)
2090 return ret;
2091 }
2092
2093 start = sb_end;
2094 if (start > end) {
2095 bytes_left = 0;
2096 break;
2097 }
2098 bytes_left = end - start;
2099 }
2100
2101 if (bytes_left) {
2102 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2103 GFP_NOFS, 0);
2104 if (!ret)
86557861 2105 *discarded_bytes += bytes_left;
4d89d377 2106 }
d04c6b88 2107 return ret;
5d4f98a2 2108}
5d4f98a2 2109
2ff7e61e 2110int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2111 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2112{
5d4f98a2 2113 int ret;
5378e607 2114 u64 discarded_bytes = 0;
a1d3c478 2115 struct btrfs_bio *bbio = NULL;
5d4f98a2 2116
e244a0ae 2117
2999241d
FM
2118 /*
2119 * Avoid races with device replace and make sure our bbio has devices
2120 * associated to its stripes that don't go away while we are discarding.
2121 */
0b246afa 2122 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2123 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2124 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2125 &bbio, 0);
79787eaa 2126 /* Error condition is -ENOMEM */
5d4f98a2 2127 if (!ret) {
a1d3c478 2128 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2129 int i;
2130
5d4f98a2 2131
a1d3c478 2132 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2133 u64 bytes;
38b5f68e
AJ
2134 struct request_queue *req_q;
2135
627e0873
FM
2136 if (!stripe->dev->bdev) {
2137 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2138 continue;
2139 }
38b5f68e
AJ
2140 req_q = bdev_get_queue(stripe->dev->bdev);
2141 if (!blk_queue_discard(req_q))
d5e2003c
JB
2142 continue;
2143
5378e607
LD
2144 ret = btrfs_issue_discard(stripe->dev->bdev,
2145 stripe->physical,
d04c6b88
JM
2146 stripe->length,
2147 &bytes);
5378e607 2148 if (!ret)
d04c6b88 2149 discarded_bytes += bytes;
5378e607 2150 else if (ret != -EOPNOTSUPP)
79787eaa 2151 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2152
2153 /*
2154 * Just in case we get back EOPNOTSUPP for some reason,
2155 * just ignore the return value so we don't screw up
2156 * people calling discard_extent.
2157 */
2158 ret = 0;
5d4f98a2 2159 }
6e9606d2 2160 btrfs_put_bbio(bbio);
5d4f98a2 2161 }
0b246afa 2162 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2163
2164 if (actual_bytes)
2165 *actual_bytes = discarded_bytes;
2166
5d4f98a2 2167
53b381b3
DW
2168 if (ret == -EOPNOTSUPP)
2169 ret = 0;
5d4f98a2 2170 return ret;
5d4f98a2
YZ
2171}
2172
79787eaa 2173/* Can return -ENOMEM */
5d4f98a2 2174int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2175 struct btrfs_root *root,
5d4f98a2 2176 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2177 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2178{
84f7d8e6 2179 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2180 int old_ref_mod, new_ref_mod;
5d4f98a2 2181 int ret;
66d7e7f0 2182
5d4f98a2
YZ
2183 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2184 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2185
fd708b81
JB
2186 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2187 owner, offset, BTRFS_ADD_DELAYED_REF);
2188
5d4f98a2 2189 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2190 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2191 num_bytes, parent,
2192 root_objectid, (int)owner,
2193 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2194 &old_ref_mod, &new_ref_mod);
5d4f98a2 2195 } else {
66d7e7f0 2196 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2197 num_bytes, parent,
2198 root_objectid, owner, offset,
d7eae340
OS
2199 0, BTRFS_ADD_DELAYED_REF,
2200 &old_ref_mod, &new_ref_mod);
5d4f98a2 2201 }
d7eae340 2202
29d2b84c
NB
2203 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2204 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2205
2206 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2207 }
d7eae340 2208
5d4f98a2
YZ
2209 return ret;
2210}
2211
2212static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2213 struct btrfs_fs_info *fs_info,
c682f9b3 2214 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2215 u64 parent, u64 root_objectid,
2216 u64 owner, u64 offset, int refs_to_add,
2217 struct btrfs_delayed_extent_op *extent_op)
2218{
2219 struct btrfs_path *path;
2220 struct extent_buffer *leaf;
2221 struct btrfs_extent_item *item;
fcebe456 2222 struct btrfs_key key;
c682f9b3
QW
2223 u64 bytenr = node->bytenr;
2224 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2225 u64 refs;
2226 int ret;
5d4f98a2
YZ
2227
2228 path = btrfs_alloc_path();
2229 if (!path)
2230 return -ENOMEM;
2231
e4058b54 2232 path->reada = READA_FORWARD;
5d4f98a2
YZ
2233 path->leave_spinning = 1;
2234 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2235 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2236 num_bytes, parent, root_objectid,
2237 owner, offset,
5d4f98a2 2238 refs_to_add, extent_op);
0ed4792a 2239 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2240 goto out;
fcebe456
JB
2241
2242 /*
2243 * Ok we had -EAGAIN which means we didn't have space to insert and
2244 * inline extent ref, so just update the reference count and add a
2245 * normal backref.
2246 */
5d4f98a2 2247 leaf = path->nodes[0];
fcebe456 2248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2249 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2250 refs = btrfs_extent_refs(leaf, item);
2251 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2252 if (extent_op)
2253 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2254
5d4f98a2 2255 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2256 btrfs_release_path(path);
56bec294 2257
e4058b54 2258 path->reada = READA_FORWARD;
b9473439 2259 path->leave_spinning = 1;
56bec294 2260 /* now insert the actual backref */
87bde3cd
JM
2261 ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2262 root_objectid, owner, offset, refs_to_add);
79787eaa 2263 if (ret)
66642832 2264 btrfs_abort_transaction(trans, ret);
5d4f98a2 2265out:
56bec294 2266 btrfs_free_path(path);
30d133fc 2267 return ret;
56bec294
CM
2268}
2269
5d4f98a2 2270static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2271 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2272 struct btrfs_delayed_ref_node *node,
2273 struct btrfs_delayed_extent_op *extent_op,
2274 int insert_reserved)
56bec294 2275{
5d4f98a2
YZ
2276 int ret = 0;
2277 struct btrfs_delayed_data_ref *ref;
2278 struct btrfs_key ins;
2279 u64 parent = 0;
2280 u64 ref_root = 0;
2281 u64 flags = 0;
2282
2283 ins.objectid = node->bytenr;
2284 ins.offset = node->num_bytes;
2285 ins.type = BTRFS_EXTENT_ITEM_KEY;
2286
2287 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2288 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2289
5d4f98a2
YZ
2290 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2291 parent = ref->parent;
fcebe456 2292 ref_root = ref->root;
5d4f98a2
YZ
2293
2294 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2295 if (extent_op)
5d4f98a2 2296 flags |= extent_op->flags_to_set;
2ff7e61e 2297 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2298 parent, ref_root, flags,
2299 ref->objectid, ref->offset,
2300 &ins, node->ref_mod);
5d4f98a2 2301 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2302 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2303 ref_root, ref->objectid,
2304 ref->offset, node->ref_mod,
c682f9b3 2305 extent_op);
5d4f98a2 2306 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2307 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2308 ref_root, ref->objectid,
2309 ref->offset, node->ref_mod,
c682f9b3 2310 extent_op);
5d4f98a2
YZ
2311 } else {
2312 BUG();
2313 }
2314 return ret;
2315}
2316
2317static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2318 struct extent_buffer *leaf,
2319 struct btrfs_extent_item *ei)
2320{
2321 u64 flags = btrfs_extent_flags(leaf, ei);
2322 if (extent_op->update_flags) {
2323 flags |= extent_op->flags_to_set;
2324 btrfs_set_extent_flags(leaf, ei, flags);
2325 }
2326
2327 if (extent_op->update_key) {
2328 struct btrfs_tree_block_info *bi;
2329 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2330 bi = (struct btrfs_tree_block_info *)(ei + 1);
2331 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2332 }
2333}
2334
2335static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2336 struct btrfs_fs_info *fs_info,
d278850e 2337 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2338 struct btrfs_delayed_extent_op *extent_op)
2339{
2340 struct btrfs_key key;
2341 struct btrfs_path *path;
2342 struct btrfs_extent_item *ei;
2343 struct extent_buffer *leaf;
2344 u32 item_size;
56bec294 2345 int ret;
5d4f98a2 2346 int err = 0;
b1c79e09 2347 int metadata = !extent_op->is_data;
5d4f98a2 2348
79787eaa
JM
2349 if (trans->aborted)
2350 return 0;
2351
0b246afa 2352 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2353 metadata = 0;
2354
5d4f98a2
YZ
2355 path = btrfs_alloc_path();
2356 if (!path)
2357 return -ENOMEM;
2358
d278850e 2359 key.objectid = head->bytenr;
5d4f98a2 2360
3173a18f 2361 if (metadata) {
3173a18f 2362 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2363 key.offset = extent_op->level;
3173a18f
JB
2364 } else {
2365 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2366 key.offset = head->num_bytes;
3173a18f
JB
2367 }
2368
2369again:
e4058b54 2370 path->reada = READA_FORWARD;
5d4f98a2 2371 path->leave_spinning = 1;
0b246afa 2372 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2373 if (ret < 0) {
2374 err = ret;
2375 goto out;
2376 }
2377 if (ret > 0) {
3173a18f 2378 if (metadata) {
55994887
FDBM
2379 if (path->slots[0] > 0) {
2380 path->slots[0]--;
2381 btrfs_item_key_to_cpu(path->nodes[0], &key,
2382 path->slots[0]);
d278850e 2383 if (key.objectid == head->bytenr &&
55994887 2384 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2385 key.offset == head->num_bytes)
55994887
FDBM
2386 ret = 0;
2387 }
2388 if (ret > 0) {
2389 btrfs_release_path(path);
2390 metadata = 0;
3173a18f 2391
d278850e
JB
2392 key.objectid = head->bytenr;
2393 key.offset = head->num_bytes;
55994887
FDBM
2394 key.type = BTRFS_EXTENT_ITEM_KEY;
2395 goto again;
2396 }
2397 } else {
2398 err = -EIO;
2399 goto out;
3173a18f 2400 }
5d4f98a2
YZ
2401 }
2402
2403 leaf = path->nodes[0];
2404 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2405#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2406 if (item_size < sizeof(*ei)) {
87bde3cd 2407 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2408 if (ret < 0) {
2409 err = ret;
2410 goto out;
2411 }
2412 leaf = path->nodes[0];
2413 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414 }
2415#endif
2416 BUG_ON(item_size < sizeof(*ei));
2417 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2418 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2419
5d4f98a2
YZ
2420 btrfs_mark_buffer_dirty(leaf);
2421out:
2422 btrfs_free_path(path);
2423 return err;
56bec294
CM
2424}
2425
5d4f98a2 2426static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2427 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2428 struct btrfs_delayed_ref_node *node,
2429 struct btrfs_delayed_extent_op *extent_op,
2430 int insert_reserved)
56bec294
CM
2431{
2432 int ret = 0;
5d4f98a2
YZ
2433 struct btrfs_delayed_tree_ref *ref;
2434 struct btrfs_key ins;
2435 u64 parent = 0;
2436 u64 ref_root = 0;
0b246afa 2437 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
56bec294 2438
5d4f98a2 2439 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2440 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2441
5d4f98a2
YZ
2442 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2443 parent = ref->parent;
fcebe456 2444 ref_root = ref->root;
5d4f98a2 2445
3173a18f
JB
2446 ins.objectid = node->bytenr;
2447 if (skinny_metadata) {
2448 ins.offset = ref->level;
2449 ins.type = BTRFS_METADATA_ITEM_KEY;
2450 } else {
2451 ins.offset = node->num_bytes;
2452 ins.type = BTRFS_EXTENT_ITEM_KEY;
2453 }
2454
02794222 2455 if (node->ref_mod != 1) {
2ff7e61e 2456 btrfs_err(fs_info,
02794222
LB
2457 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2458 node->bytenr, node->ref_mod, node->action, ref_root,
2459 parent);
2460 return -EIO;
2461 }
5d4f98a2 2462 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2463 BUG_ON(!extent_op || !extent_op->update_flags);
2ff7e61e 2464 ret = alloc_reserved_tree_block(trans, fs_info,
5d4f98a2
YZ
2465 parent, ref_root,
2466 extent_op->flags_to_set,
2467 &extent_op->key,
b06c4bf5 2468 ref->level, &ins);
5d4f98a2 2469 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2470 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2471 parent, ref_root,
2472 ref->level, 0, 1,
fcebe456 2473 extent_op);
5d4f98a2 2474 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2475 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2476 parent, ref_root,
2477 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2478 } else {
2479 BUG();
2480 }
56bec294
CM
2481 return ret;
2482}
2483
2484/* helper function to actually process a single delayed ref entry */
5d4f98a2 2485static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2486 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2487 struct btrfs_delayed_ref_node *node,
2488 struct btrfs_delayed_extent_op *extent_op,
2489 int insert_reserved)
56bec294 2490{
79787eaa
JM
2491 int ret = 0;
2492
857cc2fc
JB
2493 if (trans->aborted) {
2494 if (insert_reserved)
2ff7e61e 2495 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2496 node->num_bytes, 1);
79787eaa 2497 return 0;
857cc2fc 2498 }
79787eaa 2499
5d4f98a2
YZ
2500 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2501 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2502 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2503 insert_reserved);
2504 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2505 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2506 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2507 insert_reserved);
2508 else
2509 BUG();
2510 return ret;
56bec294
CM
2511}
2512
c6fc2454 2513static inline struct btrfs_delayed_ref_node *
56bec294
CM
2514select_delayed_ref(struct btrfs_delayed_ref_head *head)
2515{
cffc3374
FM
2516 struct btrfs_delayed_ref_node *ref;
2517
0e0adbcf 2518 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2519 return NULL;
d7df2c79 2520
cffc3374
FM
2521 /*
2522 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2523 * This is to prevent a ref count from going down to zero, which deletes
2524 * the extent item from the extent tree, when there still are references
2525 * to add, which would fail because they would not find the extent item.
2526 */
1d57ee94
WX
2527 if (!list_empty(&head->ref_add_list))
2528 return list_first_entry(&head->ref_add_list,
2529 struct btrfs_delayed_ref_node, add_list);
2530
0e0adbcf
JB
2531 ref = rb_entry(rb_first(&head->ref_tree),
2532 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2533 ASSERT(list_empty(&ref->add_list));
2534 return ref;
56bec294
CM
2535}
2536
2eadaa22
JB
2537static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2538 struct btrfs_delayed_ref_head *head)
2539{
2540 spin_lock(&delayed_refs->lock);
2541 head->processing = 0;
2542 delayed_refs->num_heads_ready++;
2543 spin_unlock(&delayed_refs->lock);
2544 btrfs_delayed_ref_unlock(head);
2545}
2546
b00e6250
JB
2547static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2548 struct btrfs_fs_info *fs_info,
2549 struct btrfs_delayed_ref_head *head)
2550{
2551 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2552 int ret;
2553
2554 if (!extent_op)
2555 return 0;
2556 head->extent_op = NULL;
2557 if (head->must_insert_reserved) {
2558 btrfs_free_delayed_extent_op(extent_op);
2559 return 0;
2560 }
2561 spin_unlock(&head->lock);
d278850e 2562 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2563 btrfs_free_delayed_extent_op(extent_op);
2564 return ret ? ret : 1;
2565}
2566
194ab0bc
JB
2567static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2568 struct btrfs_fs_info *fs_info,
2569 struct btrfs_delayed_ref_head *head)
2570{
2571 struct btrfs_delayed_ref_root *delayed_refs;
2572 int ret;
2573
2574 delayed_refs = &trans->transaction->delayed_refs;
2575
2576 ret = cleanup_extent_op(trans, fs_info, head);
2577 if (ret < 0) {
2578 unselect_delayed_ref_head(delayed_refs, head);
2579 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2580 return ret;
2581 } else if (ret) {
2582 return ret;
2583 }
2584
2585 /*
2586 * Need to drop our head ref lock and re-acquire the delayed ref lock
2587 * and then re-check to make sure nobody got added.
2588 */
2589 spin_unlock(&head->lock);
2590 spin_lock(&delayed_refs->lock);
2591 spin_lock(&head->lock);
0e0adbcf 2592 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2593 spin_unlock(&head->lock);
2594 spin_unlock(&delayed_refs->lock);
2595 return 1;
2596 }
194ab0bc
JB
2597 delayed_refs->num_heads--;
2598 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2599 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2600 spin_unlock(&head->lock);
1e7a1421 2601 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2602 atomic_dec(&delayed_refs->num_entries);
2603
d278850e 2604 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2605
2606 if (head->total_ref_mod < 0) {
5e388e95
NB
2607 struct btrfs_space_info *space_info;
2608 u64 flags;
c1103f7a 2609
5e388e95
NB
2610 if (head->is_data)
2611 flags = BTRFS_BLOCK_GROUP_DATA;
2612 else if (head->is_system)
2613 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2614 else
2615 flags = BTRFS_BLOCK_GROUP_METADATA;
2616 space_info = __find_space_info(fs_info, flags);
2617 ASSERT(space_info);
2618 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2619 -head->num_bytes);
c1103f7a
JB
2620
2621 if (head->is_data) {
2622 spin_lock(&delayed_refs->lock);
d278850e 2623 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2624 spin_unlock(&delayed_refs->lock);
2625 }
2626 }
2627
2628 if (head->must_insert_reserved) {
d278850e
JB
2629 btrfs_pin_extent(fs_info, head->bytenr,
2630 head->num_bytes, 1);
c1103f7a 2631 if (head->is_data) {
d278850e
JB
2632 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2633 head->num_bytes);
c1103f7a
JB
2634 }
2635 }
2636
2637 /* Also free its reserved qgroup space */
2638 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2639 head->qgroup_reserved);
2640 btrfs_delayed_ref_unlock(head);
d278850e 2641 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2642 return 0;
2643}
2644
79787eaa
JM
2645/*
2646 * Returns 0 on success or if called with an already aborted transaction.
2647 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2648 */
d7df2c79 2649static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2650 unsigned long nr)
56bec294 2651{
0a1e458a 2652 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2653 struct btrfs_delayed_ref_root *delayed_refs;
2654 struct btrfs_delayed_ref_node *ref;
2655 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2656 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2657 ktime_t start = ktime_get();
56bec294 2658 int ret;
d7df2c79 2659 unsigned long count = 0;
0a2b2a84 2660 unsigned long actual_count = 0;
56bec294 2661 int must_insert_reserved = 0;
56bec294
CM
2662
2663 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2664 while (1) {
2665 if (!locked_ref) {
d7df2c79 2666 if (count >= nr)
56bec294 2667 break;
56bec294 2668
d7df2c79
JB
2669 spin_lock(&delayed_refs->lock);
2670 locked_ref = btrfs_select_ref_head(trans);
2671 if (!locked_ref) {
2672 spin_unlock(&delayed_refs->lock);
2673 break;
2674 }
c3e69d58
CM
2675
2676 /* grab the lock that says we are going to process
2677 * all the refs for this head */
2678 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2679 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2680 /*
2681 * we may have dropped the spin lock to get the head
2682 * mutex lock, and that might have given someone else
2683 * time to free the head. If that's true, it has been
2684 * removed from our list and we can move on.
2685 */
2686 if (ret == -EAGAIN) {
2687 locked_ref = NULL;
2688 count++;
2689 continue;
56bec294
CM
2690 }
2691 }
a28ec197 2692
2c3cf7d5
FM
2693 /*
2694 * We need to try and merge add/drops of the same ref since we
2695 * can run into issues with relocate dropping the implicit ref
2696 * and then it being added back again before the drop can
2697 * finish. If we merged anything we need to re-loop so we can
2698 * get a good ref.
2699 * Or we can get node references of the same type that weren't
2700 * merged when created due to bumps in the tree mod seq, and
2701 * we need to merge them to prevent adding an inline extent
2702 * backref before dropping it (triggering a BUG_ON at
2703 * insert_inline_extent_backref()).
2704 */
d7df2c79 2705 spin_lock(&locked_ref->lock);
2c3cf7d5
FM
2706 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2707 locked_ref);
ae1e206b 2708
d1270cd9
AJ
2709 /*
2710 * locked_ref is the head node, so we have to go one
2711 * node back for any delayed ref updates
2712 */
2713 ref = select_delayed_ref(locked_ref);
2714
2715 if (ref && ref->seq &&
41d0bd3b 2716 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2717 spin_unlock(&locked_ref->lock);
2eadaa22 2718 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2719 locked_ref = NULL;
d1270cd9 2720 cond_resched();
27a377db 2721 count++;
d1270cd9
AJ
2722 continue;
2723 }
2724
c1103f7a
JB
2725 /*
2726 * We're done processing refs in this ref_head, clean everything
2727 * up and move on to the next ref_head.
2728 */
56bec294 2729 if (!ref) {
194ab0bc
JB
2730 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2731 if (ret > 0 ) {
b00e6250
JB
2732 /* We dropped our lock, we need to loop. */
2733 ret = 0;
d7df2c79 2734 continue;
194ab0bc
JB
2735 } else if (ret) {
2736 return ret;
5d4f98a2 2737 }
c1103f7a
JB
2738 locked_ref = NULL;
2739 count++;
2740 continue;
2741 }
02217ed2 2742
c1103f7a
JB
2743 actual_count++;
2744 ref->in_tree = 0;
0e0adbcf
JB
2745 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2746 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2747 if (!list_empty(&ref->add_list))
2748 list_del(&ref->add_list);
2749 /*
2750 * When we play the delayed ref, also correct the ref_mod on
2751 * head
2752 */
2753 switch (ref->action) {
2754 case BTRFS_ADD_DELAYED_REF:
2755 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2756 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2757 break;
2758 case BTRFS_DROP_DELAYED_REF:
d278850e 2759 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2760 break;
2761 default:
2762 WARN_ON(1);
22cd2e7d 2763 }
1ce7a5ec
JB
2764 atomic_dec(&delayed_refs->num_entries);
2765
b00e6250
JB
2766 /*
2767 * Record the must-insert_reserved flag before we drop the spin
2768 * lock.
2769 */
2770 must_insert_reserved = locked_ref->must_insert_reserved;
2771 locked_ref->must_insert_reserved = 0;
2772
2773 extent_op = locked_ref->extent_op;
2774 locked_ref->extent_op = NULL;
d7df2c79 2775 spin_unlock(&locked_ref->lock);
925baedd 2776
2ff7e61e 2777 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2778 must_insert_reserved);
eb099670 2779
78a6184a 2780 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2781 if (ret) {
2eadaa22 2782 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2783 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2784 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2785 ret);
79787eaa
JM
2786 return ret;
2787 }
2788
093486c4
MX
2789 btrfs_put_delayed_ref(ref);
2790 count++;
c3e69d58 2791 cond_resched();
c3e69d58 2792 }
0a2b2a84
JB
2793
2794 /*
2795 * We don't want to include ref heads since we can have empty ref heads
2796 * and those will drastically skew our runtime down since we just do
2797 * accounting, no actual extent tree updates.
2798 */
2799 if (actual_count > 0) {
2800 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2801 u64 avg;
2802
2803 /*
2804 * We weigh the current average higher than our current runtime
2805 * to avoid large swings in the average.
2806 */
2807 spin_lock(&delayed_refs->lock);
2808 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2809 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2810 spin_unlock(&delayed_refs->lock);
2811 }
d7df2c79 2812 return 0;
c3e69d58
CM
2813}
2814
709c0486
AJ
2815#ifdef SCRAMBLE_DELAYED_REFS
2816/*
2817 * Normally delayed refs get processed in ascending bytenr order. This
2818 * correlates in most cases to the order added. To expose dependencies on this
2819 * order, we start to process the tree in the middle instead of the beginning
2820 */
2821static u64 find_middle(struct rb_root *root)
2822{
2823 struct rb_node *n = root->rb_node;
2824 struct btrfs_delayed_ref_node *entry;
2825 int alt = 1;
2826 u64 middle;
2827 u64 first = 0, last = 0;
2828
2829 n = rb_first(root);
2830 if (n) {
2831 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2832 first = entry->bytenr;
2833 }
2834 n = rb_last(root);
2835 if (n) {
2836 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2837 last = entry->bytenr;
2838 }
2839 n = root->rb_node;
2840
2841 while (n) {
2842 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2843 WARN_ON(!entry->in_tree);
2844
2845 middle = entry->bytenr;
2846
2847 if (alt)
2848 n = n->rb_left;
2849 else
2850 n = n->rb_right;
2851
2852 alt = 1 - alt;
2853 }
2854 return middle;
2855}
2856#endif
2857
2ff7e61e 2858static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2859{
2860 u64 num_bytes;
2861
2862 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2863 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2864 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2865 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2866
2867 /*
2868 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2869 * closer to what we're really going to want to use.
1be41b78 2870 */
0b246afa 2871 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2872}
2873
1262133b
JB
2874/*
2875 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2876 * would require to store the csums for that many bytes.
2877 */
2ff7e61e 2878u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2879{
2880 u64 csum_size;
2881 u64 num_csums_per_leaf;
2882 u64 num_csums;
2883
0b246afa 2884 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2885 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2886 (u64)btrfs_super_csum_size(fs_info->super_copy));
2887 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2888 num_csums += num_csums_per_leaf - 1;
2889 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2890 return num_csums;
2891}
2892
0a2b2a84 2893int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2894 struct btrfs_fs_info *fs_info)
1be41b78
JB
2895{
2896 struct btrfs_block_rsv *global_rsv;
2897 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2898 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2899 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2900 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2901 int ret = 0;
2902
0b246afa 2903 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2904 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2905 if (num_heads > 1)
0b246afa 2906 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2907 num_bytes <<= 1;
2ff7e61e
JM
2908 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2909 fs_info->nodesize;
0b246afa 2910 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2911 num_dirty_bgs);
0b246afa 2912 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2913
2914 /*
2915 * If we can't allocate any more chunks lets make sure we have _lots_ of
2916 * wiggle room since running delayed refs can create more delayed refs.
2917 */
cb723e49
JB
2918 if (global_rsv->space_info->full) {
2919 num_dirty_bgs_bytes <<= 1;
1be41b78 2920 num_bytes <<= 1;
cb723e49 2921 }
1be41b78
JB
2922
2923 spin_lock(&global_rsv->lock);
cb723e49 2924 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2925 ret = 1;
2926 spin_unlock(&global_rsv->lock);
2927 return ret;
2928}
2929
0a2b2a84 2930int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2931 struct btrfs_fs_info *fs_info)
0a2b2a84 2932{
0a2b2a84
JB
2933 u64 num_entries =
2934 atomic_read(&trans->transaction->delayed_refs.num_entries);
2935 u64 avg_runtime;
a79b7d4b 2936 u64 val;
0a2b2a84
JB
2937
2938 smp_mb();
2939 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2940 val = num_entries * avg_runtime;
dc1a90c6 2941 if (val >= NSEC_PER_SEC)
0a2b2a84 2942 return 1;
a79b7d4b
CM
2943 if (val >= NSEC_PER_SEC / 2)
2944 return 2;
0a2b2a84 2945
2ff7e61e 2946 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2947}
2948
a79b7d4b
CM
2949struct async_delayed_refs {
2950 struct btrfs_root *root;
31b9655f 2951 u64 transid;
a79b7d4b
CM
2952 int count;
2953 int error;
2954 int sync;
2955 struct completion wait;
2956 struct btrfs_work work;
2957};
2958
2ff7e61e
JM
2959static inline struct async_delayed_refs *
2960to_async_delayed_refs(struct btrfs_work *work)
2961{
2962 return container_of(work, struct async_delayed_refs, work);
2963}
2964
a79b7d4b
CM
2965static void delayed_ref_async_start(struct btrfs_work *work)
2966{
2ff7e61e 2967 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2968 struct btrfs_trans_handle *trans;
2ff7e61e 2969 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2970 int ret;
2971
0f873eca 2972 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2973 if (btrfs_transaction_blocked(fs_info))
31b9655f 2974 goto done;
31b9655f 2975
0f873eca
CM
2976 trans = btrfs_join_transaction(async->root);
2977 if (IS_ERR(trans)) {
2978 async->error = PTR_ERR(trans);
a79b7d4b
CM
2979 goto done;
2980 }
2981
2982 /*
01327610 2983 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2984 * wait on delayed refs
2985 */
2986 trans->sync = true;
0f873eca
CM
2987
2988 /* Don't bother flushing if we got into a different transaction */
2989 if (trans->transid > async->transid)
2990 goto end;
2991
c79a70b1 2992 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2993 if (ret)
2994 async->error = ret;
0f873eca 2995end:
3a45bb20 2996 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
2997 if (ret && !async->error)
2998 async->error = ret;
2999done:
3000 if (async->sync)
3001 complete(&async->wait);
3002 else
3003 kfree(async);
3004}
3005
2ff7e61e 3006int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3007 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3008{
3009 struct async_delayed_refs *async;
3010 int ret;
3011
3012 async = kmalloc(sizeof(*async), GFP_NOFS);
3013 if (!async)
3014 return -ENOMEM;
3015
0b246afa 3016 async->root = fs_info->tree_root;
a79b7d4b
CM
3017 async->count = count;
3018 async->error = 0;
31b9655f 3019 async->transid = transid;
a79b7d4b
CM
3020 if (wait)
3021 async->sync = 1;
3022 else
3023 async->sync = 0;
3024 init_completion(&async->wait);
3025
9e0af237
LB
3026 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3027 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3028
0b246afa 3029 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3030
3031 if (wait) {
3032 wait_for_completion(&async->wait);
3033 ret = async->error;
3034 kfree(async);
3035 return ret;
3036 }
3037 return 0;
3038}
3039
c3e69d58
CM
3040/*
3041 * this starts processing the delayed reference count updates and
3042 * extent insertions we have queued up so far. count can be
3043 * 0, which means to process everything in the tree at the start
3044 * of the run (but not newly added entries), or it can be some target
3045 * number you'd like to process.
79787eaa
JM
3046 *
3047 * Returns 0 on success or if called with an aborted transaction
3048 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3049 */
3050int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3051 unsigned long count)
c3e69d58 3052{
c79a70b1 3053 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3054 struct rb_node *node;
3055 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3056 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3057 int ret;
3058 int run_all = count == (unsigned long)-1;
d9a0540a 3059 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3060
79787eaa
JM
3061 /* We'll clean this up in btrfs_cleanup_transaction */
3062 if (trans->aborted)
3063 return 0;
3064
0b246afa 3065 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3066 return 0;
3067
c3e69d58 3068 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3069 if (count == 0)
d7df2c79 3070 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3071
c3e69d58 3072again:
709c0486
AJ
3073#ifdef SCRAMBLE_DELAYED_REFS
3074 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3075#endif
d9a0540a 3076 trans->can_flush_pending_bgs = false;
0a1e458a 3077 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3078 if (ret < 0) {
66642832 3079 btrfs_abort_transaction(trans, ret);
d7df2c79 3080 return ret;
eb099670 3081 }
c3e69d58 3082
56bec294 3083 if (run_all) {
d7df2c79 3084 if (!list_empty(&trans->new_bgs))
6c686b35 3085 btrfs_create_pending_block_groups(trans);
ea658bad 3086
d7df2c79 3087 spin_lock(&delayed_refs->lock);
c46effa6 3088 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3089 if (!node) {
3090 spin_unlock(&delayed_refs->lock);
56bec294 3091 goto out;
d7df2c79 3092 }
d278850e
JB
3093 head = rb_entry(node, struct btrfs_delayed_ref_head,
3094 href_node);
3095 refcount_inc(&head->refs);
3096 spin_unlock(&delayed_refs->lock);
e9d0b13b 3097
d278850e
JB
3098 /* Mutex was contended, block until it's released and retry. */
3099 mutex_lock(&head->mutex);
3100 mutex_unlock(&head->mutex);
56bec294 3101
d278850e 3102 btrfs_put_delayed_ref_head(head);
d7df2c79 3103 cond_resched();
56bec294 3104 goto again;
5f39d397 3105 }
54aa1f4d 3106out:
d9a0540a 3107 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3108 return 0;
3109}
3110
5d4f98a2 3111int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3112 struct btrfs_fs_info *fs_info,
5d4f98a2 3113 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3114 int level, int is_data)
5d4f98a2
YZ
3115{
3116 struct btrfs_delayed_extent_op *extent_op;
3117 int ret;
3118
78a6184a 3119 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3120 if (!extent_op)
3121 return -ENOMEM;
3122
3123 extent_op->flags_to_set = flags;
35b3ad50
DS
3124 extent_op->update_flags = true;
3125 extent_op->update_key = false;
3126 extent_op->is_data = is_data ? true : false;
b1c79e09 3127 extent_op->level = level;
5d4f98a2 3128
0b246afa 3129 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3130 num_bytes, extent_op);
5d4f98a2 3131 if (ret)
78a6184a 3132 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3133 return ret;
3134}
3135
e4c3b2dc 3136static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3137 struct btrfs_path *path,
3138 u64 objectid, u64 offset, u64 bytenr)
3139{
3140 struct btrfs_delayed_ref_head *head;
3141 struct btrfs_delayed_ref_node *ref;
3142 struct btrfs_delayed_data_ref *data_ref;
3143 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3144 struct btrfs_transaction *cur_trans;
0e0adbcf 3145 struct rb_node *node;
5d4f98a2
YZ
3146 int ret = 0;
3147
998ac6d2 3148 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3149 cur_trans = root->fs_info->running_transaction;
998ac6d2 3150 if (cur_trans)
3151 refcount_inc(&cur_trans->use_count);
3152 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3153 if (!cur_trans)
3154 return 0;
3155
3156 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3157 spin_lock(&delayed_refs->lock);
f72ad18e 3158 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3159 if (!head) {
3160 spin_unlock(&delayed_refs->lock);
998ac6d2 3161 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3162 return 0;
3163 }
5d4f98a2
YZ
3164
3165 if (!mutex_trylock(&head->mutex)) {
d278850e 3166 refcount_inc(&head->refs);
5d4f98a2
YZ
3167 spin_unlock(&delayed_refs->lock);
3168
b3b4aa74 3169 btrfs_release_path(path);
5d4f98a2 3170
8cc33e5c
DS
3171 /*
3172 * Mutex was contended, block until it's released and let
3173 * caller try again
3174 */
5d4f98a2
YZ
3175 mutex_lock(&head->mutex);
3176 mutex_unlock(&head->mutex);
d278850e 3177 btrfs_put_delayed_ref_head(head);
998ac6d2 3178 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3179 return -EAGAIN;
3180 }
d7df2c79 3181 spin_unlock(&delayed_refs->lock);
5d4f98a2 3182
d7df2c79 3183 spin_lock(&head->lock);
0e0adbcf
JB
3184 /*
3185 * XXX: We should replace this with a proper search function in the
3186 * future.
3187 */
3188 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3189 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3190 /* If it's a shared ref we know a cross reference exists */
3191 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3192 ret = 1;
3193 break;
3194 }
5d4f98a2 3195
d7df2c79 3196 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3197
d7df2c79
JB
3198 /*
3199 * If our ref doesn't match the one we're currently looking at
3200 * then we have a cross reference.
3201 */
3202 if (data_ref->root != root->root_key.objectid ||
3203 data_ref->objectid != objectid ||
3204 data_ref->offset != offset) {
3205 ret = 1;
3206 break;
3207 }
5d4f98a2 3208 }
d7df2c79 3209 spin_unlock(&head->lock);
5d4f98a2 3210 mutex_unlock(&head->mutex);
998ac6d2 3211 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3212 return ret;
3213}
3214
e4c3b2dc 3215static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3216 struct btrfs_path *path,
3217 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3218{
0b246afa
JM
3219 struct btrfs_fs_info *fs_info = root->fs_info;
3220 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3221 struct extent_buffer *leaf;
5d4f98a2
YZ
3222 struct btrfs_extent_data_ref *ref;
3223 struct btrfs_extent_inline_ref *iref;
3224 struct btrfs_extent_item *ei;
f321e491 3225 struct btrfs_key key;
5d4f98a2 3226 u32 item_size;
3de28d57 3227 int type;
be20aa9d 3228 int ret;
925baedd 3229
be20aa9d 3230 key.objectid = bytenr;
31840ae1 3231 key.offset = (u64)-1;
f321e491 3232 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3233
be20aa9d
CM
3234 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3235 if (ret < 0)
3236 goto out;
79787eaa 3237 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3238
3239 ret = -ENOENT;
3240 if (path->slots[0] == 0)
31840ae1 3241 goto out;
be20aa9d 3242
31840ae1 3243 path->slots[0]--;
f321e491 3244 leaf = path->nodes[0];
5d4f98a2 3245 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3246
5d4f98a2 3247 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3248 goto out;
f321e491 3249
5d4f98a2
YZ
3250 ret = 1;
3251 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3252#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3253 if (item_size < sizeof(*ei)) {
3254 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3255 goto out;
3256 }
3257#endif
3258 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3259
5d4f98a2
YZ
3260 if (item_size != sizeof(*ei) +
3261 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3262 goto out;
be20aa9d 3263
5d4f98a2
YZ
3264 if (btrfs_extent_generation(leaf, ei) <=
3265 btrfs_root_last_snapshot(&root->root_item))
3266 goto out;
3267
3268 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3269
3270 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3271 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3272 goto out;
3273
3274 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3275 if (btrfs_extent_refs(leaf, ei) !=
3276 btrfs_extent_data_ref_count(leaf, ref) ||
3277 btrfs_extent_data_ref_root(leaf, ref) !=
3278 root->root_key.objectid ||
3279 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3280 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3281 goto out;
3282
3283 ret = 0;
3284out:
3285 return ret;
3286}
3287
e4c3b2dc
LB
3288int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3289 u64 bytenr)
5d4f98a2
YZ
3290{
3291 struct btrfs_path *path;
3292 int ret;
3293 int ret2;
3294
3295 path = btrfs_alloc_path();
3296 if (!path)
3297 return -ENOENT;
3298
3299 do {
e4c3b2dc 3300 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3301 offset, bytenr);
3302 if (ret && ret != -ENOENT)
f321e491 3303 goto out;
80ff3856 3304
e4c3b2dc 3305 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3306 offset, bytenr);
3307 } while (ret2 == -EAGAIN);
3308
3309 if (ret2 && ret2 != -ENOENT) {
3310 ret = ret2;
3311 goto out;
f321e491 3312 }
5d4f98a2
YZ
3313
3314 if (ret != -ENOENT || ret2 != -ENOENT)
3315 ret = 0;
be20aa9d 3316out:
80ff3856 3317 btrfs_free_path(path);
f0486c68
YZ
3318 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3319 WARN_ON(ret > 0);
f321e491 3320 return ret;
be20aa9d 3321}
c5739bba 3322
5d4f98a2 3323static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3324 struct btrfs_root *root,
5d4f98a2 3325 struct extent_buffer *buf,
e339a6b0 3326 int full_backref, int inc)
31840ae1 3327{
0b246afa 3328 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3329 u64 bytenr;
5d4f98a2
YZ
3330 u64 num_bytes;
3331 u64 parent;
31840ae1 3332 u64 ref_root;
31840ae1 3333 u32 nritems;
31840ae1
ZY
3334 struct btrfs_key key;
3335 struct btrfs_file_extent_item *fi;
3336 int i;
3337 int level;
3338 int ret = 0;
2ff7e61e 3339 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3340 struct btrfs_root *,
b06c4bf5 3341 u64, u64, u64, u64, u64, u64);
31840ae1 3342
fccb84c9 3343
0b246afa 3344 if (btrfs_is_testing(fs_info))
faa2dbf0 3345 return 0;
fccb84c9 3346
31840ae1 3347 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3348 nritems = btrfs_header_nritems(buf);
3349 level = btrfs_header_level(buf);
3350
27cdeb70 3351 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3352 return 0;
31840ae1 3353
5d4f98a2
YZ
3354 if (inc)
3355 process_func = btrfs_inc_extent_ref;
3356 else
3357 process_func = btrfs_free_extent;
31840ae1 3358
5d4f98a2
YZ
3359 if (full_backref)
3360 parent = buf->start;
3361 else
3362 parent = 0;
3363
3364 for (i = 0; i < nritems; i++) {
31840ae1 3365 if (level == 0) {
5d4f98a2 3366 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3367 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3368 continue;
5d4f98a2 3369 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3370 struct btrfs_file_extent_item);
3371 if (btrfs_file_extent_type(buf, fi) ==
3372 BTRFS_FILE_EXTENT_INLINE)
3373 continue;
3374 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3375 if (bytenr == 0)
3376 continue;
5d4f98a2
YZ
3377
3378 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3379 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3380 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3381 parent, ref_root, key.objectid,
b06c4bf5 3382 key.offset);
31840ae1
ZY
3383 if (ret)
3384 goto fail;
3385 } else {
5d4f98a2 3386 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3387 num_bytes = fs_info->nodesize;
84f7d8e6 3388 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3389 parent, ref_root, level - 1, 0);
31840ae1
ZY
3390 if (ret)
3391 goto fail;
3392 }
3393 }
3394 return 0;
3395fail:
5d4f98a2
YZ
3396 return ret;
3397}
3398
3399int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3400 struct extent_buffer *buf, int full_backref)
5d4f98a2 3401{
e339a6b0 3402 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3403}
3404
3405int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3406 struct extent_buffer *buf, int full_backref)
5d4f98a2 3407{
e339a6b0 3408 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3409}
3410
9078a3e1 3411static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3412 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3413 struct btrfs_path *path,
3414 struct btrfs_block_group_cache *cache)
3415{
3416 int ret;
0b246afa 3417 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3418 unsigned long bi;
3419 struct extent_buffer *leaf;
9078a3e1 3420
9078a3e1 3421 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3422 if (ret) {
3423 if (ret > 0)
3424 ret = -ENOENT;
54aa1f4d 3425 goto fail;
df95e7f0 3426 }
5f39d397
CM
3427
3428 leaf = path->nodes[0];
3429 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3430 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3431 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3432fail:
24b89d08 3433 btrfs_release_path(path);
df95e7f0 3434 return ret;
9078a3e1
CM
3435
3436}
3437
4a8c9a62 3438static struct btrfs_block_group_cache *
2ff7e61e 3439next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3440 struct btrfs_block_group_cache *cache)
3441{
3442 struct rb_node *node;
292cbd51 3443
0b246afa 3444 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3445
3446 /* If our block group was removed, we need a full search. */
3447 if (RB_EMPTY_NODE(&cache->cache_node)) {
3448 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3449
0b246afa 3450 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3451 btrfs_put_block_group(cache);
0b246afa 3452 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3453 }
4a8c9a62
YZ
3454 node = rb_next(&cache->cache_node);
3455 btrfs_put_block_group(cache);
3456 if (node) {
3457 cache = rb_entry(node, struct btrfs_block_group_cache,
3458 cache_node);
11dfe35a 3459 btrfs_get_block_group(cache);
4a8c9a62
YZ
3460 } else
3461 cache = NULL;
0b246afa 3462 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3463 return cache;
3464}
3465
0af3d00b
JB
3466static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3467 struct btrfs_trans_handle *trans,
3468 struct btrfs_path *path)
3469{
0b246afa
JM
3470 struct btrfs_fs_info *fs_info = block_group->fs_info;
3471 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3472 struct inode *inode = NULL;
364ecf36 3473 struct extent_changeset *data_reserved = NULL;
0af3d00b 3474 u64 alloc_hint = 0;
2b20982e 3475 int dcs = BTRFS_DC_ERROR;
f8c269d7 3476 u64 num_pages = 0;
0af3d00b
JB
3477 int retries = 0;
3478 int ret = 0;
3479
3480 /*
3481 * If this block group is smaller than 100 megs don't bother caching the
3482 * block group.
3483 */
ee22184b 3484 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3485 spin_lock(&block_group->lock);
3486 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3487 spin_unlock(&block_group->lock);
3488 return 0;
3489 }
3490
0c0ef4bc
JB
3491 if (trans->aborted)
3492 return 0;
0af3d00b 3493again:
77ab86bf 3494 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3495 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3496 ret = PTR_ERR(inode);
b3b4aa74 3497 btrfs_release_path(path);
0af3d00b
JB
3498 goto out;
3499 }
3500
3501 if (IS_ERR(inode)) {
3502 BUG_ON(retries);
3503 retries++;
3504
3505 if (block_group->ro)
3506 goto out_free;
3507
77ab86bf
JM
3508 ret = create_free_space_inode(fs_info, trans, block_group,
3509 path);
0af3d00b
JB
3510 if (ret)
3511 goto out_free;
3512 goto again;
3513 }
3514
3515 /*
3516 * We want to set the generation to 0, that way if anything goes wrong
3517 * from here on out we know not to trust this cache when we load up next
3518 * time.
3519 */
3520 BTRFS_I(inode)->generation = 0;
3521 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3522 if (ret) {
3523 /*
3524 * So theoretically we could recover from this, simply set the
3525 * super cache generation to 0 so we know to invalidate the
3526 * cache, but then we'd have to keep track of the block groups
3527 * that fail this way so we know we _have_ to reset this cache
3528 * before the next commit or risk reading stale cache. So to
3529 * limit our exposure to horrible edge cases lets just abort the
3530 * transaction, this only happens in really bad situations
3531 * anyway.
3532 */
66642832 3533 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3534 goto out_put;
3535 }
0af3d00b
JB
3536 WARN_ON(ret);
3537
8e138e0d
JB
3538 /* We've already setup this transaction, go ahead and exit */
3539 if (block_group->cache_generation == trans->transid &&
3540 i_size_read(inode)) {
3541 dcs = BTRFS_DC_SETUP;
3542 goto out_put;
3543 }
3544
0af3d00b 3545 if (i_size_read(inode) > 0) {
2ff7e61e 3546 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3547 &fs_info->global_block_rsv);
7b61cd92
MX
3548 if (ret)
3549 goto out_put;
3550
77ab86bf 3551 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3552 if (ret)
3553 goto out_put;
3554 }
3555
3556 spin_lock(&block_group->lock);
cf7c1ef6 3557 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3558 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3559 /*
3560 * don't bother trying to write stuff out _if_
3561 * a) we're not cached,
1a79c1f2
LB
3562 * b) we're with nospace_cache mount option,
3563 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3564 */
2b20982e 3565 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3566 spin_unlock(&block_group->lock);
3567 goto out_put;
3568 }
3569 spin_unlock(&block_group->lock);
3570
2968b1f4
JB
3571 /*
3572 * We hit an ENOSPC when setting up the cache in this transaction, just
3573 * skip doing the setup, we've already cleared the cache so we're safe.
3574 */
3575 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3576 ret = -ENOSPC;
3577 goto out_put;
3578 }
3579
6fc823b1
JB
3580 /*
3581 * Try to preallocate enough space based on how big the block group is.
3582 * Keep in mind this has to include any pinned space which could end up
3583 * taking up quite a bit since it's not folded into the other space
3584 * cache.
3585 */
ee22184b 3586 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3587 if (!num_pages)
3588 num_pages = 1;
3589
0af3d00b 3590 num_pages *= 16;
09cbfeaf 3591 num_pages *= PAGE_SIZE;
0af3d00b 3592
364ecf36 3593 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3594 if (ret)
3595 goto out_put;
3596
3597 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3598 num_pages, num_pages,
3599 &alloc_hint);
2968b1f4
JB
3600 /*
3601 * Our cache requires contiguous chunks so that we don't modify a bunch
3602 * of metadata or split extents when writing the cache out, which means
3603 * we can enospc if we are heavily fragmented in addition to just normal
3604 * out of space conditions. So if we hit this just skip setting up any
3605 * other block groups for this transaction, maybe we'll unpin enough
3606 * space the next time around.
3607 */
2b20982e
JB
3608 if (!ret)
3609 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3610 else if (ret == -ENOSPC)
3611 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3612
0af3d00b
JB
3613out_put:
3614 iput(inode);
3615out_free:
b3b4aa74 3616 btrfs_release_path(path);
0af3d00b
JB
3617out:
3618 spin_lock(&block_group->lock);
e65cbb94 3619 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3620 block_group->cache_generation = trans->transid;
2b20982e 3621 block_group->disk_cache_state = dcs;
0af3d00b
JB
3622 spin_unlock(&block_group->lock);
3623
364ecf36 3624 extent_changeset_free(data_reserved);
0af3d00b
JB
3625 return ret;
3626}
3627
dcdf7f6d 3628int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3629 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3630{
3631 struct btrfs_block_group_cache *cache, *tmp;
3632 struct btrfs_transaction *cur_trans = trans->transaction;
3633 struct btrfs_path *path;
3634
3635 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3636 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3637 return 0;
3638
3639 path = btrfs_alloc_path();
3640 if (!path)
3641 return -ENOMEM;
3642
3643 /* Could add new block groups, use _safe just in case */
3644 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3645 dirty_list) {
3646 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3647 cache_save_setup(cache, trans, path);
3648 }
3649
3650 btrfs_free_path(path);
3651 return 0;
3652}
3653
1bbc621e
CM
3654/*
3655 * transaction commit does final block group cache writeback during a
3656 * critical section where nothing is allowed to change the FS. This is
3657 * required in order for the cache to actually match the block group,
3658 * but can introduce a lot of latency into the commit.
3659 *
3660 * So, btrfs_start_dirty_block_groups is here to kick off block group
3661 * cache IO. There's a chance we'll have to redo some of it if the
3662 * block group changes again during the commit, but it greatly reduces
3663 * the commit latency by getting rid of the easy block groups while
3664 * we're still allowing others to join the commit.
3665 */
21217054 3666int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3667{
21217054 3668 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3669 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3670 struct btrfs_transaction *cur_trans = trans->transaction;
3671 int ret = 0;
c9dc4c65 3672 int should_put;
1bbc621e
CM
3673 struct btrfs_path *path = NULL;
3674 LIST_HEAD(dirty);
3675 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3676 int num_started = 0;
1bbc621e
CM
3677 int loops = 0;
3678
3679 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3680 if (list_empty(&cur_trans->dirty_bgs)) {
3681 spin_unlock(&cur_trans->dirty_bgs_lock);
3682 return 0;
1bbc621e 3683 }
b58d1a9e 3684 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3685 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3686
1bbc621e 3687again:
1bbc621e
CM
3688 /*
3689 * make sure all the block groups on our dirty list actually
3690 * exist
3691 */
6c686b35 3692 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3693
3694 if (!path) {
3695 path = btrfs_alloc_path();
3696 if (!path)
3697 return -ENOMEM;
3698 }
3699
b58d1a9e
FM
3700 /*
3701 * cache_write_mutex is here only to save us from balance or automatic
3702 * removal of empty block groups deleting this block group while we are
3703 * writing out the cache
3704 */
3705 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3706 while (!list_empty(&dirty)) {
3707 cache = list_first_entry(&dirty,
3708 struct btrfs_block_group_cache,
3709 dirty_list);
1bbc621e
CM
3710 /*
3711 * this can happen if something re-dirties a block
3712 * group that is already under IO. Just wait for it to
3713 * finish and then do it all again
3714 */
3715 if (!list_empty(&cache->io_list)) {
3716 list_del_init(&cache->io_list);
afdb5718 3717 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3718 btrfs_put_block_group(cache);
3719 }
3720
3721
3722 /*
3723 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3724 * if it should update the cache_state. Don't delete
3725 * until after we wait.
3726 *
3727 * Since we're not running in the commit critical section
3728 * we need the dirty_bgs_lock to protect from update_block_group
3729 */
3730 spin_lock(&cur_trans->dirty_bgs_lock);
3731 list_del_init(&cache->dirty_list);
3732 spin_unlock(&cur_trans->dirty_bgs_lock);
3733
3734 should_put = 1;
3735
3736 cache_save_setup(cache, trans, path);
3737
3738 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3739 cache->io_ctl.inode = NULL;
0b246afa 3740 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3741 cache, path);
1bbc621e
CM
3742 if (ret == 0 && cache->io_ctl.inode) {
3743 num_started++;
3744 should_put = 0;
3745
3746 /*
45ae2c18
NB
3747 * The cache_write_mutex is protecting the
3748 * io_list, also refer to the definition of
3749 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3750 */
3751 list_add_tail(&cache->io_list, io);
3752 } else {
3753 /*
3754 * if we failed to write the cache, the
3755 * generation will be bad and life goes on
3756 */
3757 ret = 0;
3758 }
3759 }
ff1f8250 3760 if (!ret) {
2ff7e61e
JM
3761 ret = write_one_cache_group(trans, fs_info,
3762 path, cache);
ff1f8250
FM
3763 /*
3764 * Our block group might still be attached to the list
3765 * of new block groups in the transaction handle of some
3766 * other task (struct btrfs_trans_handle->new_bgs). This
3767 * means its block group item isn't yet in the extent
3768 * tree. If this happens ignore the error, as we will
3769 * try again later in the critical section of the
3770 * transaction commit.
3771 */
3772 if (ret == -ENOENT) {
3773 ret = 0;
3774 spin_lock(&cur_trans->dirty_bgs_lock);
3775 if (list_empty(&cache->dirty_list)) {
3776 list_add_tail(&cache->dirty_list,
3777 &cur_trans->dirty_bgs);
3778 btrfs_get_block_group(cache);
3779 }
3780 spin_unlock(&cur_trans->dirty_bgs_lock);
3781 } else if (ret) {
66642832 3782 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3783 }
3784 }
1bbc621e
CM
3785
3786 /* if its not on the io list, we need to put the block group */
3787 if (should_put)
3788 btrfs_put_block_group(cache);
3789
3790 if (ret)
3791 break;
b58d1a9e
FM
3792
3793 /*
3794 * Avoid blocking other tasks for too long. It might even save
3795 * us from writing caches for block groups that are going to be
3796 * removed.
3797 */
3798 mutex_unlock(&trans->transaction->cache_write_mutex);
3799 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3800 }
b58d1a9e 3801 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3802
3803 /*
3804 * go through delayed refs for all the stuff we've just kicked off
3805 * and then loop back (just once)
3806 */
c79a70b1 3807 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3808 if (!ret && loops == 0) {
3809 loops++;
3810 spin_lock(&cur_trans->dirty_bgs_lock);
3811 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3812 /*
3813 * dirty_bgs_lock protects us from concurrent block group
3814 * deletes too (not just cache_write_mutex).
3815 */
3816 if (!list_empty(&dirty)) {
3817 spin_unlock(&cur_trans->dirty_bgs_lock);
3818 goto again;
3819 }
1bbc621e 3820 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3821 } else if (ret < 0) {
2ff7e61e 3822 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3823 }
3824
3825 btrfs_free_path(path);
3826 return ret;
3827}
3828
3829int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3830 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3831{
3832 struct btrfs_block_group_cache *cache;
3833 struct btrfs_transaction *cur_trans = trans->transaction;
3834 int ret = 0;
3835 int should_put;
3836 struct btrfs_path *path;
3837 struct list_head *io = &cur_trans->io_bgs;
3838 int num_started = 0;
9078a3e1
CM
3839
3840 path = btrfs_alloc_path();
3841 if (!path)
3842 return -ENOMEM;
3843
ce93ec54 3844 /*
e44081ef
FM
3845 * Even though we are in the critical section of the transaction commit,
3846 * we can still have concurrent tasks adding elements to this
3847 * transaction's list of dirty block groups. These tasks correspond to
3848 * endio free space workers started when writeback finishes for a
3849 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3850 * allocate new block groups as a result of COWing nodes of the root
3851 * tree when updating the free space inode. The writeback for the space
3852 * caches is triggered by an earlier call to
3853 * btrfs_start_dirty_block_groups() and iterations of the following
3854 * loop.
3855 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3856 * delayed refs to make sure we have the best chance at doing this all
3857 * in one shot.
3858 */
e44081ef 3859 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3860 while (!list_empty(&cur_trans->dirty_bgs)) {
3861 cache = list_first_entry(&cur_trans->dirty_bgs,
3862 struct btrfs_block_group_cache,
3863 dirty_list);
c9dc4c65
CM
3864
3865 /*
3866 * this can happen if cache_save_setup re-dirties a block
3867 * group that is already under IO. Just wait for it to
3868 * finish and then do it all again
3869 */
3870 if (!list_empty(&cache->io_list)) {
e44081ef 3871 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3872 list_del_init(&cache->io_list);
afdb5718 3873 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3874 btrfs_put_block_group(cache);
e44081ef 3875 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3876 }
3877
1bbc621e
CM
3878 /*
3879 * don't remove from the dirty list until after we've waited
3880 * on any pending IO
3881 */
ce93ec54 3882 list_del_init(&cache->dirty_list);
e44081ef 3883 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3884 should_put = 1;
3885
1bbc621e 3886 cache_save_setup(cache, trans, path);
c9dc4c65 3887
ce93ec54 3888 if (!ret)
c79a70b1 3889 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3890 (unsigned long) -1);
c9dc4c65
CM
3891
3892 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3893 cache->io_ctl.inode = NULL;
0b246afa 3894 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3895 cache, path);
c9dc4c65
CM
3896 if (ret == 0 && cache->io_ctl.inode) {
3897 num_started++;
3898 should_put = 0;
1bbc621e 3899 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3900 } else {
3901 /*
3902 * if we failed to write the cache, the
3903 * generation will be bad and life goes on
3904 */
3905 ret = 0;
3906 }
3907 }
ff1f8250 3908 if (!ret) {
2ff7e61e
JM
3909 ret = write_one_cache_group(trans, fs_info,
3910 path, cache);
2bc0bb5f
FM
3911 /*
3912 * One of the free space endio workers might have
3913 * created a new block group while updating a free space
3914 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3915 * and hasn't released its transaction handle yet, in
3916 * which case the new block group is still attached to
3917 * its transaction handle and its creation has not
3918 * finished yet (no block group item in the extent tree
3919 * yet, etc). If this is the case, wait for all free
3920 * space endio workers to finish and retry. This is a
3921 * a very rare case so no need for a more efficient and
3922 * complex approach.
3923 */
3924 if (ret == -ENOENT) {
3925 wait_event(cur_trans->writer_wait,
3926 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3927 ret = write_one_cache_group(trans, fs_info,
3928 path, cache);
2bc0bb5f 3929 }
ff1f8250 3930 if (ret)
66642832 3931 btrfs_abort_transaction(trans, ret);
ff1f8250 3932 }
c9dc4c65
CM
3933
3934 /* if its not on the io list, we need to put the block group */
3935 if (should_put)
3936 btrfs_put_block_group(cache);
e44081ef 3937 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3938 }
e44081ef 3939 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3940
45ae2c18
NB
3941 /*
3942 * Refer to the definition of io_bgs member for details why it's safe
3943 * to use it without any locking
3944 */
1bbc621e
CM
3945 while (!list_empty(io)) {
3946 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3947 io_list);
3948 list_del_init(&cache->io_list);
afdb5718 3949 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3950 btrfs_put_block_group(cache);
3951 }
3952
9078a3e1 3953 btrfs_free_path(path);
ce93ec54 3954 return ret;
9078a3e1
CM
3955}
3956
2ff7e61e 3957int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3958{
3959 struct btrfs_block_group_cache *block_group;
3960 int readonly = 0;
3961
0b246afa 3962 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3963 if (!block_group || block_group->ro)
3964 readonly = 1;
3965 if (block_group)
fa9c0d79 3966 btrfs_put_block_group(block_group);
d2fb3437
YZ
3967 return readonly;
3968}
3969
f78c436c
FM
3970bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3971{
3972 struct btrfs_block_group_cache *bg;
3973 bool ret = true;
3974
3975 bg = btrfs_lookup_block_group(fs_info, bytenr);
3976 if (!bg)
3977 return false;
3978
3979 spin_lock(&bg->lock);
3980 if (bg->ro)
3981 ret = false;
3982 else
3983 atomic_inc(&bg->nocow_writers);
3984 spin_unlock(&bg->lock);
3985
3986 /* no put on block group, done by btrfs_dec_nocow_writers */
3987 if (!ret)
3988 btrfs_put_block_group(bg);
3989
3990 return ret;
3991
3992}
3993
3994void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3995{
3996 struct btrfs_block_group_cache *bg;
3997
3998 bg = btrfs_lookup_block_group(fs_info, bytenr);
3999 ASSERT(bg);
4000 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 4001 wake_up_var(&bg->nocow_writers);
f78c436c
FM
4002 /*
4003 * Once for our lookup and once for the lookup done by a previous call
4004 * to btrfs_inc_nocow_writers()
4005 */
4006 btrfs_put_block_group(bg);
4007 btrfs_put_block_group(bg);
4008}
4009
f78c436c
FM
4010void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4011{
4625956a 4012 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
4013}
4014
6ab0a202
JM
4015static const char *alloc_name(u64 flags)
4016{
4017 switch (flags) {
4018 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4019 return "mixed";
4020 case BTRFS_BLOCK_GROUP_METADATA:
4021 return "metadata";
4022 case BTRFS_BLOCK_GROUP_DATA:
4023 return "data";
4024 case BTRFS_BLOCK_GROUP_SYSTEM:
4025 return "system";
4026 default:
4027 WARN_ON(1);
4028 return "invalid-combination";
4029 };
4030}
4031
2be12ef7
NB
4032static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4033 struct btrfs_space_info **new)
4034{
4035
4036 struct btrfs_space_info *space_info;
4037 int i;
4038 int ret;
4039
4040 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4041 if (!space_info)
4042 return -ENOMEM;
4043
4044 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4045 GFP_KERNEL);
4046 if (ret) {
4047 kfree(space_info);
4048 return ret;
4049 }
4050
4051 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4052 INIT_LIST_HEAD(&space_info->block_groups[i]);
4053 init_rwsem(&space_info->groups_sem);
4054 spin_lock_init(&space_info->lock);
4055 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4056 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4057 init_waitqueue_head(&space_info->wait);
4058 INIT_LIST_HEAD(&space_info->ro_bgs);
4059 INIT_LIST_HEAD(&space_info->tickets);
4060 INIT_LIST_HEAD(&space_info->priority_tickets);
4061
4062 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4063 info->space_info_kobj, "%s",
4064 alloc_name(space_info->flags));
4065 if (ret) {
4066 percpu_counter_destroy(&space_info->total_bytes_pinned);
4067 kfree(space_info);
4068 return ret;
4069 }
4070
4071 *new = space_info;
4072 list_add_rcu(&space_info->list, &info->space_info);
4073 if (flags & BTRFS_BLOCK_GROUP_DATA)
4074 info->data_sinfo = space_info;
4075
4076 return ret;
4077}
4078
d2006e6d 4079static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4080 u64 total_bytes, u64 bytes_used,
e40edf2d 4081 u64 bytes_readonly,
593060d7
CM
4082 struct btrfs_space_info **space_info)
4083{
4084 struct btrfs_space_info *found;
b742bb82
YZ
4085 int factor;
4086
4087 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4088 BTRFS_BLOCK_GROUP_RAID10))
4089 factor = 2;
4090 else
4091 factor = 1;
593060d7
CM
4092
4093 found = __find_space_info(info, flags);
d2006e6d
NB
4094 ASSERT(found);
4095 spin_lock(&found->lock);
4096 found->total_bytes += total_bytes;
4097 found->disk_total += total_bytes * factor;
4098 found->bytes_used += bytes_used;
4099 found->disk_used += bytes_used * factor;
4100 found->bytes_readonly += bytes_readonly;
4101 if (total_bytes > 0)
4102 found->full = 0;
4103 space_info_add_new_bytes(info, found, total_bytes -
4104 bytes_used - bytes_readonly);
4105 spin_unlock(&found->lock);
4106 *space_info = found;
593060d7
CM
4107}
4108
8790d502
CM
4109static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4110{
899c81ea
ID
4111 u64 extra_flags = chunk_to_extended(flags) &
4112 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4113
de98ced9 4114 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4115 if (flags & BTRFS_BLOCK_GROUP_DATA)
4116 fs_info->avail_data_alloc_bits |= extra_flags;
4117 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4118 fs_info->avail_metadata_alloc_bits |= extra_flags;
4119 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4120 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4121 write_sequnlock(&fs_info->profiles_lock);
8790d502 4122}
593060d7 4123
fc67c450
ID
4124/*
4125 * returns target flags in extended format or 0 if restripe for this
4126 * chunk_type is not in progress
c6664b42
ID
4127 *
4128 * should be called with either volume_mutex or balance_lock held
fc67c450
ID
4129 */
4130static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4131{
4132 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4133 u64 target = 0;
4134
fc67c450
ID
4135 if (!bctl)
4136 return 0;
4137
4138 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4139 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4140 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4141 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4142 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4143 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4144 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4145 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4146 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4147 }
4148
4149 return target;
4150}
4151
a46d11a8
ID
4152/*
4153 * @flags: available profiles in extended format (see ctree.h)
4154 *
e4d8ec0f
ID
4155 * Returns reduced profile in chunk format. If profile changing is in
4156 * progress (either running or paused) picks the target profile (if it's
4157 * already available), otherwise falls back to plain reducing.
a46d11a8 4158 */
2ff7e61e 4159static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4160{
0b246afa 4161 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4162 u64 target;
9c170b26
ZL
4163 u64 raid_type;
4164 u64 allowed = 0;
a061fc8d 4165
fc67c450
ID
4166 /*
4167 * see if restripe for this chunk_type is in progress, if so
4168 * try to reduce to the target profile
4169 */
0b246afa
JM
4170 spin_lock(&fs_info->balance_lock);
4171 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4172 if (target) {
4173 /* pick target profile only if it's already available */
4174 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4175 spin_unlock(&fs_info->balance_lock);
fc67c450 4176 return extended_to_chunk(target);
e4d8ec0f
ID
4177 }
4178 }
0b246afa 4179 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4180
53b381b3 4181 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4182 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4183 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4184 allowed |= btrfs_raid_group[raid_type];
4185 }
4186 allowed &= flags;
4187
4188 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4189 allowed = BTRFS_BLOCK_GROUP_RAID6;
4190 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4191 allowed = BTRFS_BLOCK_GROUP_RAID5;
4192 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4193 allowed = BTRFS_BLOCK_GROUP_RAID10;
4194 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4195 allowed = BTRFS_BLOCK_GROUP_RAID1;
4196 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4197 allowed = BTRFS_BLOCK_GROUP_RAID0;
4198
4199 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4200
4201 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4202}
4203
2ff7e61e 4204static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4205{
de98ced9 4206 unsigned seq;
f8213bdc 4207 u64 flags;
de98ced9
MX
4208
4209 do {
f8213bdc 4210 flags = orig_flags;
0b246afa 4211 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4212
4213 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4214 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4215 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4216 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4217 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4218 flags |= fs_info->avail_metadata_alloc_bits;
4219 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4220
2ff7e61e 4221 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4222}
4223
1b86826d 4224static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4225{
0b246afa 4226 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4227 u64 flags;
53b381b3 4228 u64 ret;
9ed74f2d 4229
b742bb82
YZ
4230 if (data)
4231 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4232 else if (root == fs_info->chunk_root)
b742bb82 4233 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4234 else
b742bb82 4235 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4236
2ff7e61e 4237 ret = get_alloc_profile(fs_info, flags);
53b381b3 4238 return ret;
6a63209f 4239}
9ed74f2d 4240
1b86826d
JM
4241u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4242{
4243 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4244}
4245
4246u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4247{
4248 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4249}
4250
4251u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4252{
4253 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4254}
4255
4136135b
LB
4256static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4257 bool may_use_included)
4258{
4259 ASSERT(s_info);
4260 return s_info->bytes_used + s_info->bytes_reserved +
4261 s_info->bytes_pinned + s_info->bytes_readonly +
4262 (may_use_included ? s_info->bytes_may_use : 0);
4263}
4264
04f4f916 4265int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4266{
04f4f916 4267 struct btrfs_root *root = inode->root;
b4d7c3c9 4268 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4269 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4270 u64 used;
94b947b2 4271 int ret = 0;
c99f1b0c
ZL
4272 int need_commit = 2;
4273 int have_pinned_space;
6a63209f 4274
6a63209f 4275 /* make sure bytes are sectorsize aligned */
0b246afa 4276 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4277
9dced186 4278 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4279 need_commit = 0;
9dced186 4280 ASSERT(current->journal_info);
0af3d00b
JB
4281 }
4282
6a63209f
JB
4283again:
4284 /* make sure we have enough space to handle the data first */
4285 spin_lock(&data_sinfo->lock);
4136135b 4286 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4287
4288 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4289 struct btrfs_trans_handle *trans;
9ed74f2d 4290
6a63209f
JB
4291 /*
4292 * if we don't have enough free bytes in this space then we need
4293 * to alloc a new chunk.
4294 */
b9fd47cd 4295 if (!data_sinfo->full) {
6a63209f 4296 u64 alloc_target;
9ed74f2d 4297
0e4f8f88 4298 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4299 spin_unlock(&data_sinfo->lock);
1174cade 4300
1b86826d 4301 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4302 /*
4303 * It is ugly that we don't call nolock join
4304 * transaction for the free space inode case here.
4305 * But it is safe because we only do the data space
4306 * reservation for the free space cache in the
4307 * transaction context, the common join transaction
4308 * just increase the counter of the current transaction
4309 * handler, doesn't try to acquire the trans_lock of
4310 * the fs.
4311 */
7a7eaa40 4312 trans = btrfs_join_transaction(root);
a22285a6
YZ
4313 if (IS_ERR(trans))
4314 return PTR_ERR(trans);
9ed74f2d 4315
2ff7e61e 4316 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4317 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4318 btrfs_end_transaction(trans);
d52a5b5f
MX
4319 if (ret < 0) {
4320 if (ret != -ENOSPC)
4321 return ret;
c99f1b0c
ZL
4322 else {
4323 have_pinned_space = 1;
d52a5b5f 4324 goto commit_trans;
c99f1b0c 4325 }
d52a5b5f 4326 }
9ed74f2d 4327
6a63209f
JB
4328 goto again;
4329 }
f2bb8f5c
JB
4330
4331 /*
b150a4f1 4332 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4333 * allocation, and no removed chunk in current transaction,
4334 * don't bother committing the transaction.
f2bb8f5c 4335 */
c99f1b0c
ZL
4336 have_pinned_space = percpu_counter_compare(
4337 &data_sinfo->total_bytes_pinned,
4338 used + bytes - data_sinfo->total_bytes);
6a63209f 4339 spin_unlock(&data_sinfo->lock);
6a63209f 4340
4e06bdd6 4341 /* commit the current transaction and try again */
d52a5b5f 4342commit_trans:
92e2f7e3 4343 if (need_commit) {
c99f1b0c 4344 need_commit--;
b150a4f1 4345
e1746e83
ZL
4346 if (need_commit > 0) {
4347 btrfs_start_delalloc_roots(fs_info, 0, -1);
6374e57a 4348 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4349 (u64)-1);
e1746e83 4350 }
9a4e7276 4351
7a7eaa40 4352 trans = btrfs_join_transaction(root);
a22285a6
YZ
4353 if (IS_ERR(trans))
4354 return PTR_ERR(trans);
c99f1b0c 4355 if (have_pinned_space >= 0 ||
3204d33c
JB
4356 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4357 &trans->transaction->flags) ||
c99f1b0c 4358 need_commit > 0) {
3a45bb20 4359 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4360 if (ret)
4361 return ret;
d7c15171 4362 /*
c2d6cb16
FM
4363 * The cleaner kthread might still be doing iput
4364 * operations. Wait for it to finish so that
4365 * more space is released.
d7c15171 4366 */
0b246afa
JM
4367 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4368 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4369 goto again;
4370 } else {
3a45bb20 4371 btrfs_end_transaction(trans);
94b947b2 4372 }
4e06bdd6 4373 }
9ed74f2d 4374
0b246afa 4375 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4376 "space_info:enospc",
4377 data_sinfo->flags, bytes, 1);
6a63209f
JB
4378 return -ENOSPC;
4379 }
4380 data_sinfo->bytes_may_use += bytes;
0b246afa 4381 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4382 data_sinfo->flags, bytes, 1);
6a63209f 4383 spin_unlock(&data_sinfo->lock);
6a63209f 4384
237c0e9f 4385 return ret;
9ed74f2d 4386}
6a63209f 4387
364ecf36
QW
4388int btrfs_check_data_free_space(struct inode *inode,
4389 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4390{
0b246afa 4391 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4392 int ret;
4393
4394 /* align the range */
0b246afa
JM
4395 len = round_up(start + len, fs_info->sectorsize) -
4396 round_down(start, fs_info->sectorsize);
4397 start = round_down(start, fs_info->sectorsize);
4ceff079 4398
04f4f916 4399 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4400 if (ret < 0)
4401 return ret;
4402
1e5ec2e7 4403 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4404 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4405 if (ret < 0)
1e5ec2e7 4406 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4407 else
4408 ret = 0;
4ceff079
QW
4409 return ret;
4410}
4411
4ceff079
QW
4412/*
4413 * Called if we need to clear a data reservation for this inode
4414 * Normally in a error case.
4415 *
51773bec
QW
4416 * This one will *NOT* use accurate qgroup reserved space API, just for case
4417 * which we can't sleep and is sure it won't affect qgroup reserved space.
4418 * Like clear_bit_hook().
4ceff079 4419 */
51773bec
QW
4420void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4421 u64 len)
4ceff079 4422{
0b246afa 4423 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4424 struct btrfs_space_info *data_sinfo;
4425
4426 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4427 len = round_up(start + len, fs_info->sectorsize) -
4428 round_down(start, fs_info->sectorsize);
4429 start = round_down(start, fs_info->sectorsize);
4ceff079 4430
0b246afa 4431 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4432 spin_lock(&data_sinfo->lock);
4433 if (WARN_ON(data_sinfo->bytes_may_use < len))
4434 data_sinfo->bytes_may_use = 0;
4435 else
4436 data_sinfo->bytes_may_use -= len;
0b246afa 4437 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4438 data_sinfo->flags, len, 0);
4439 spin_unlock(&data_sinfo->lock);
4440}
4441
51773bec
QW
4442/*
4443 * Called if we need to clear a data reservation for this inode
4444 * Normally in a error case.
4445 *
01327610 4446 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4447 * space framework.
4448 */
bc42bda2
QW
4449void btrfs_free_reserved_data_space(struct inode *inode,
4450 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4451{
0c476a5d
JM
4452 struct btrfs_root *root = BTRFS_I(inode)->root;
4453
4454 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4455 len = round_up(start + len, root->fs_info->sectorsize) -
4456 round_down(start, root->fs_info->sectorsize);
4457 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4458
51773bec 4459 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4460 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4461}
4462
97e728d4 4463static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4464{
97e728d4
JB
4465 struct list_head *head = &info->space_info;
4466 struct btrfs_space_info *found;
e3ccfa98 4467
97e728d4
JB
4468 rcu_read_lock();
4469 list_for_each_entry_rcu(found, head, list) {
4470 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4471 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4472 }
97e728d4 4473 rcu_read_unlock();
e3ccfa98
JB
4474}
4475
3c76cd84
MX
4476static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4477{
4478 return (global->size << 1);
4479}
4480
2ff7e61e 4481static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4482 struct btrfs_space_info *sinfo, int force)
32c00aff 4483{
0b246afa 4484 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4485 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4486 u64 thresh;
e3ccfa98 4487
0e4f8f88
CM
4488 if (force == CHUNK_ALLOC_FORCE)
4489 return 1;
4490
fb25e914
JB
4491 /*
4492 * We need to take into account the global rsv because for all intents
4493 * and purposes it's used space. Don't worry about locking the
4494 * global_rsv, it doesn't change except when the transaction commits.
4495 */
54338b5c 4496 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4497 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4498
0e4f8f88
CM
4499 /*
4500 * in limited mode, we want to have some free space up to
4501 * about 1% of the FS size.
4502 */
4503 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4504 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4505 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4506
8d8aafee 4507 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4508 return 1;
4509 }
0e4f8f88 4510
8d8aafee 4511 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4512 return 0;
424499db 4513 return 1;
32c00aff
JB
4514}
4515
2ff7e61e 4516static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4517{
4518 u64 num_dev;
4519
53b381b3
DW
4520 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4521 BTRFS_BLOCK_GROUP_RAID0 |
4522 BTRFS_BLOCK_GROUP_RAID5 |
4523 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4524 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4525 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4526 num_dev = 2;
4527 else
4528 num_dev = 1; /* DUP or single */
4529
39c2d7fa 4530 return num_dev;
15d1ff81
LB
4531}
4532
39c2d7fa
FM
4533/*
4534 * If @is_allocation is true, reserve space in the system space info necessary
4535 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4536 * removing a chunk.
4537 */
4538void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4539 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4540{
4541 struct btrfs_space_info *info;
4542 u64 left;
4543 u64 thresh;
4fbcdf66 4544 int ret = 0;
39c2d7fa 4545 u64 num_devs;
4fbcdf66
FM
4546
4547 /*
4548 * Needed because we can end up allocating a system chunk and for an
4549 * atomic and race free space reservation in the chunk block reserve.
4550 */
a32bf9a3 4551 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4552
0b246afa 4553 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4554 spin_lock(&info->lock);
4136135b 4555 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4556 spin_unlock(&info->lock);
4557
2ff7e61e 4558 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4559
4560 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4561 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4562 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4563
0b246afa
JM
4564 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4565 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4566 left, thresh, type);
4567 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4568 }
4569
4570 if (left < thresh) {
1b86826d 4571 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4572
4fbcdf66
FM
4573 /*
4574 * Ignore failure to create system chunk. We might end up not
4575 * needing it, as we might not need to COW all nodes/leafs from
4576 * the paths we visit in the chunk tree (they were already COWed
4577 * or created in the current transaction for example).
4578 */
2ff7e61e 4579 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4580 }
4581
4582 if (!ret) {
0b246afa
JM
4583 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4584 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4585 thresh, BTRFS_RESERVE_NO_FLUSH);
4586 if (!ret)
4587 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4588 }
4589}
4590
28b737f6
LB
4591/*
4592 * If force is CHUNK_ALLOC_FORCE:
4593 * - return 1 if it successfully allocates a chunk,
4594 * - return errors including -ENOSPC otherwise.
4595 * If force is NOT CHUNK_ALLOC_FORCE:
4596 * - return 0 if it doesn't need to allocate a new chunk,
4597 * - return 1 if it successfully allocates a chunk,
4598 * - return errors including -ENOSPC otherwise.
4599 */
6324fbf3 4600static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4601 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4602{
6324fbf3 4603 struct btrfs_space_info *space_info;
6d74119f 4604 int wait_for_alloc = 0;
9ed74f2d 4605 int ret = 0;
9ed74f2d 4606
c6b305a8
JB
4607 /* Don't re-enter if we're already allocating a chunk */
4608 if (trans->allocating_chunk)
4609 return -ENOSPC;
4610
0b246afa 4611 space_info = __find_space_info(fs_info, flags);
dc2d3005 4612 ASSERT(space_info);
9ed74f2d 4613
6d74119f 4614again:
25179201 4615 spin_lock(&space_info->lock);
9e622d6b 4616 if (force < space_info->force_alloc)
0e4f8f88 4617 force = space_info->force_alloc;
25179201 4618 if (space_info->full) {
2ff7e61e 4619 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4620 ret = -ENOSPC;
4621 else
4622 ret = 0;
25179201 4623 spin_unlock(&space_info->lock);
09fb99a6 4624 return ret;
9ed74f2d
JB
4625 }
4626
2ff7e61e 4627 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4628 spin_unlock(&space_info->lock);
6d74119f
JB
4629 return 0;
4630 } else if (space_info->chunk_alloc) {
4631 wait_for_alloc = 1;
4632 } else {
4633 space_info->chunk_alloc = 1;
9ed74f2d 4634 }
0e4f8f88 4635
25179201 4636 spin_unlock(&space_info->lock);
9ed74f2d 4637
6d74119f
JB
4638 mutex_lock(&fs_info->chunk_mutex);
4639
4640 /*
4641 * The chunk_mutex is held throughout the entirety of a chunk
4642 * allocation, so once we've acquired the chunk_mutex we know that the
4643 * other guy is done and we need to recheck and see if we should
4644 * allocate.
4645 */
4646 if (wait_for_alloc) {
4647 mutex_unlock(&fs_info->chunk_mutex);
4648 wait_for_alloc = 0;
1e1c50a9 4649 cond_resched();
6d74119f
JB
4650 goto again;
4651 }
4652
c6b305a8
JB
4653 trans->allocating_chunk = true;
4654
67377734
JB
4655 /*
4656 * If we have mixed data/metadata chunks we want to make sure we keep
4657 * allocating mixed chunks instead of individual chunks.
4658 */
4659 if (btrfs_mixed_space_info(space_info))
4660 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4661
97e728d4
JB
4662 /*
4663 * if we're doing a data chunk, go ahead and make sure that
4664 * we keep a reasonable number of metadata chunks allocated in the
4665 * FS as well.
4666 */
9ed74f2d 4667 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4668 fs_info->data_chunk_allocations++;
4669 if (!(fs_info->data_chunk_allocations %
4670 fs_info->metadata_ratio))
4671 force_metadata_allocation(fs_info);
9ed74f2d
JB
4672 }
4673
15d1ff81
LB
4674 /*
4675 * Check if we have enough space in SYSTEM chunk because we may need
4676 * to update devices.
4677 */
2ff7e61e 4678 check_system_chunk(trans, fs_info, flags);
15d1ff81 4679
2ff7e61e 4680 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4681 trans->allocating_chunk = false;
92b8e897 4682
9ed74f2d 4683 spin_lock(&space_info->lock);
57f1642e
NB
4684 if (ret < 0) {
4685 if (ret == -ENOSPC)
4686 space_info->full = 1;
4687 else
4688 goto out;
4689 } else {
424499db 4690 ret = 1;
57f1642e 4691 }
6d74119f 4692
0e4f8f88 4693 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4694out:
6d74119f 4695 space_info->chunk_alloc = 0;
9ed74f2d 4696 spin_unlock(&space_info->lock);
a25c75d5 4697 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4698 /*
4699 * When we allocate a new chunk we reserve space in the chunk block
4700 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4701 * add new nodes/leafs to it if we end up needing to do it when
4702 * inserting the chunk item and updating device items as part of the
4703 * second phase of chunk allocation, performed by
4704 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4705 * large number of new block groups to create in our transaction
4706 * handle's new_bgs list to avoid exhausting the chunk block reserve
4707 * in extreme cases - like having a single transaction create many new
4708 * block groups when starting to write out the free space caches of all
4709 * the block groups that were made dirty during the lifetime of the
4710 * transaction.
4711 */
d9a0540a 4712 if (trans->can_flush_pending_bgs &&
ee22184b 4713 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4714 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4715 btrfs_trans_release_chunk_metadata(trans);
4716 }
0f9dd46c 4717 return ret;
6324fbf3 4718}
9ed74f2d 4719
c1c4919b 4720static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4721 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4722 enum btrfs_reserve_flush_enum flush,
4723 bool system_chunk)
a80c8dcf 4724{
0b246afa 4725 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4726 u64 profile;
3c76cd84 4727 u64 space_size;
a80c8dcf
JB
4728 u64 avail;
4729 u64 used;
4730
957780eb
JB
4731 /* Don't overcommit when in mixed mode. */
4732 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4733 return 0;
4734
c1c4919b
JM
4735 if (system_chunk)
4736 profile = btrfs_system_alloc_profile(fs_info);
4737 else
4738 profile = btrfs_metadata_alloc_profile(fs_info);
4739
4136135b 4740 used = btrfs_space_info_used(space_info, false);
96f1bb57 4741
96f1bb57
JB
4742 /*
4743 * We only want to allow over committing if we have lots of actual space
4744 * free, but if we don't have enough space to handle the global reserve
4745 * space then we could end up having a real enospc problem when trying
4746 * to allocate a chunk or some other such important allocation.
4747 */
3c76cd84
MX
4748 spin_lock(&global_rsv->lock);
4749 space_size = calc_global_rsv_need_space(global_rsv);
4750 spin_unlock(&global_rsv->lock);
4751 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4752 return 0;
4753
4754 used += space_info->bytes_may_use;
a80c8dcf 4755
a5ed45f8 4756 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4757
4758 /*
4759 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4760 * space is actually useable. For raid56, the space info used
4761 * doesn't include the parity drive, so we don't have to
4762 * change the math
a80c8dcf
JB
4763 */
4764 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4765 BTRFS_BLOCK_GROUP_RAID1 |
4766 BTRFS_BLOCK_GROUP_RAID10))
4767 avail >>= 1;
4768
4769 /*
561c294d
MX
4770 * If we aren't flushing all things, let us overcommit up to
4771 * 1/2th of the space. If we can flush, don't let us overcommit
4772 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4773 */
08e007d2 4774 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4775 avail >>= 3;
a80c8dcf 4776 else
14575aef 4777 avail >>= 1;
a80c8dcf 4778
14575aef 4779 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4780 return 1;
4781 return 0;
4782}
4783
2ff7e61e 4784static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4785 unsigned long nr_pages, int nr_items)
da633a42 4786{
0b246afa 4787 struct super_block *sb = fs_info->sb;
da633a42 4788
925a6efb
JB
4789 if (down_read_trylock(&sb->s_umount)) {
4790 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4791 up_read(&sb->s_umount);
4792 } else {
da633a42
MX
4793 /*
4794 * We needn't worry the filesystem going from r/w to r/o though
4795 * we don't acquire ->s_umount mutex, because the filesystem
4796 * should guarantee the delalloc inodes list be empty after
4797 * the filesystem is readonly(all dirty pages are written to
4798 * the disk).
4799 */
0b246afa 4800 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
98ad69cf 4801 if (!current->journal_info)
0b246afa 4802 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4803 }
4804}
4805
6374e57a 4806static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4807 u64 to_reclaim)
18cd8ea6
MX
4808{
4809 u64 bytes;
6374e57a 4810 u64 nr;
18cd8ea6 4811
2ff7e61e 4812 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4813 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4814 if (!nr)
4815 nr = 1;
4816 return nr;
4817}
4818
ee22184b 4819#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4820
9ed74f2d 4821/*
5da9d01b 4822 * shrink metadata reservation for delalloc
9ed74f2d 4823 */
c1c4919b
JM
4824static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4825 u64 orig, bool wait_ordered)
5da9d01b 4826{
0019f10d 4827 struct btrfs_space_info *space_info;
663350ac 4828 struct btrfs_trans_handle *trans;
f4c738c2 4829 u64 delalloc_bytes;
5da9d01b 4830 u64 max_reclaim;
6374e57a 4831 u64 items;
b1953bce 4832 long time_left;
d3ee29e3
MX
4833 unsigned long nr_pages;
4834 int loops;
5da9d01b 4835
c61a16a7 4836 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4837 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4838 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4839
663350ac 4840 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4841 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4842
963d678b 4843 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4844 &fs_info->delalloc_bytes);
f4c738c2 4845 if (delalloc_bytes == 0) {
fdb5effd 4846 if (trans)
f4c738c2 4847 return;
38c135af 4848 if (wait_ordered)
0b246afa 4849 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4850 return;
fdb5effd
JB
4851 }
4852
d3ee29e3 4853 loops = 0;
f4c738c2
JB
4854 while (delalloc_bytes && loops < 3) {
4855 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4856 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4857 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4858 /*
4859 * We need to wait for the async pages to actually start before
4860 * we do anything.
4861 */
0b246afa 4862 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4863 if (!max_reclaim)
4864 goto skip_async;
4865
4866 if (max_reclaim <= nr_pages)
4867 max_reclaim = 0;
4868 else
4869 max_reclaim -= nr_pages;
dea31f52 4870
0b246afa
JM
4871 wait_event(fs_info->async_submit_wait,
4872 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4873 (int)max_reclaim);
4874skip_async:
0019f10d 4875 spin_lock(&space_info->lock);
957780eb
JB
4876 if (list_empty(&space_info->tickets) &&
4877 list_empty(&space_info->priority_tickets)) {
4878 spin_unlock(&space_info->lock);
4879 break;
4880 }
0019f10d 4881 spin_unlock(&space_info->lock);
5da9d01b 4882
36e39c40 4883 loops++;
f104d044 4884 if (wait_ordered && !trans) {
0b246afa 4885 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4886 } else {
f4c738c2 4887 time_left = schedule_timeout_killable(1);
f104d044
JB
4888 if (time_left)
4889 break;
4890 }
963d678b 4891 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4892 &fs_info->delalloc_bytes);
5da9d01b 4893 }
5da9d01b
YZ
4894}
4895
996478ca
JB
4896struct reserve_ticket {
4897 u64 bytes;
4898 int error;
4899 struct list_head list;
4900 wait_queue_head_t wait;
4901};
4902
663350ac
JB
4903/**
4904 * maybe_commit_transaction - possibly commit the transaction if its ok to
4905 * @root - the root we're allocating for
4906 * @bytes - the number of bytes we want to reserve
4907 * @force - force the commit
8bb8ab2e 4908 *
663350ac
JB
4909 * This will check to make sure that committing the transaction will actually
4910 * get us somewhere and then commit the transaction if it does. Otherwise it
4911 * will return -ENOSPC.
8bb8ab2e 4912 */
0c9ab349 4913static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4914 struct btrfs_space_info *space_info)
663350ac 4915{
996478ca 4916 struct reserve_ticket *ticket = NULL;
0b246afa 4917 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4918 struct btrfs_trans_handle *trans;
996478ca 4919 u64 bytes;
663350ac
JB
4920
4921 trans = (struct btrfs_trans_handle *)current->journal_info;
4922 if (trans)
4923 return -EAGAIN;
4924
996478ca
JB
4925 spin_lock(&space_info->lock);
4926 if (!list_empty(&space_info->priority_tickets))
4927 ticket = list_first_entry(&space_info->priority_tickets,
4928 struct reserve_ticket, list);
4929 else if (!list_empty(&space_info->tickets))
4930 ticket = list_first_entry(&space_info->tickets,
4931 struct reserve_ticket, list);
4932 bytes = (ticket) ? ticket->bytes : 0;
4933 spin_unlock(&space_info->lock);
4934
4935 if (!bytes)
4936 return 0;
663350ac
JB
4937
4938 /* See if there is enough pinned space to make this reservation */
b150a4f1 4939 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4940 bytes) >= 0)
663350ac 4941 goto commit;
663350ac
JB
4942
4943 /*
4944 * See if there is some space in the delayed insertion reservation for
4945 * this reservation.
4946 */
4947 if (space_info != delayed_rsv->space_info)
4948 return -ENOSPC;
4949
4950 spin_lock(&delayed_rsv->lock);
996478ca
JB
4951 if (delayed_rsv->size > bytes)
4952 bytes = 0;
4953 else
4954 bytes -= delayed_rsv->size;
057aac3e
NB
4955 spin_unlock(&delayed_rsv->lock);
4956
b150a4f1 4957 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4958 bytes) < 0) {
663350ac
JB
4959 return -ENOSPC;
4960 }
663350ac
JB
4961
4962commit:
a9b3311e 4963 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4964 if (IS_ERR(trans))
4965 return -ENOSPC;
4966
3a45bb20 4967 return btrfs_commit_transaction(trans);
663350ac
JB
4968}
4969
e38ae7a0
NB
4970/*
4971 * Try to flush some data based on policy set by @state. This is only advisory
4972 * and may fail for various reasons. The caller is supposed to examine the
4973 * state of @space_info to detect the outcome.
4974 */
4975static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4976 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4977 int state)
96c3f433 4978{
a9b3311e 4979 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4980 struct btrfs_trans_handle *trans;
4981 int nr;
f4c738c2 4982 int ret = 0;
96c3f433
JB
4983
4984 switch (state) {
96c3f433
JB
4985 case FLUSH_DELAYED_ITEMS_NR:
4986 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4987 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4988 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4989 else
96c3f433 4990 nr = -1;
18cd8ea6 4991
96c3f433
JB
4992 trans = btrfs_join_transaction(root);
4993 if (IS_ERR(trans)) {
4994 ret = PTR_ERR(trans);
4995 break;
4996 }
e5c304e6 4997 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4998 btrfs_end_transaction(trans);
96c3f433 4999 break;
67b0fd63
JB
5000 case FLUSH_DELALLOC:
5001 case FLUSH_DELALLOC_WAIT:
7bdd6277 5002 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5003 state == FLUSH_DELALLOC_WAIT);
5004 break;
ea658bad
JB
5005 case ALLOC_CHUNK:
5006 trans = btrfs_join_transaction(root);
5007 if (IS_ERR(trans)) {
5008 ret = PTR_ERR(trans);
5009 break;
5010 }
2ff7e61e 5011 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5012 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5013 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5014 btrfs_end_transaction(trans);
eecba891 5015 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5016 ret = 0;
5017 break;
96c3f433 5018 case COMMIT_TRANS:
996478ca 5019 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5020 break;
5021 default:
5022 ret = -ENOSPC;
5023 break;
5024 }
5025
7bdd6277
NB
5026 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5027 ret);
e38ae7a0 5028 return;
96c3f433 5029}
21c7e756
MX
5030
5031static inline u64
c1c4919b
JM
5032btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5033 struct btrfs_space_info *space_info,
5034 bool system_chunk)
21c7e756 5035{
957780eb 5036 struct reserve_ticket *ticket;
21c7e756
MX
5037 u64 used;
5038 u64 expected;
957780eb 5039 u64 to_reclaim = 0;
21c7e756 5040
957780eb
JB
5041 list_for_each_entry(ticket, &space_info->tickets, list)
5042 to_reclaim += ticket->bytes;
5043 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5044 to_reclaim += ticket->bytes;
5045 if (to_reclaim)
5046 return to_reclaim;
21c7e756 5047
e0af2484 5048 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5049 if (can_overcommit(fs_info, space_info, to_reclaim,
5050 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5051 return 0;
5052
0eee8a49
NB
5053 used = btrfs_space_info_used(space_info, true);
5054
c1c4919b
JM
5055 if (can_overcommit(fs_info, space_info, SZ_1M,
5056 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5057 expected = div_factor_fine(space_info->total_bytes, 95);
5058 else
5059 expected = div_factor_fine(space_info->total_bytes, 90);
5060
5061 if (used > expected)
5062 to_reclaim = used - expected;
5063 else
5064 to_reclaim = 0;
5065 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5066 space_info->bytes_reserved);
21c7e756
MX
5067 return to_reclaim;
5068}
5069
c1c4919b
JM
5070static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5071 struct btrfs_space_info *space_info,
5072 u64 used, bool system_chunk)
21c7e756 5073{
365c5313
JB
5074 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5075
5076 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5077 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5078 return 0;
5079
c1c4919b
JM
5080 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5081 system_chunk))
d38b349c
JB
5082 return 0;
5083
0b246afa
JM
5084 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5085 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5086}
5087
957780eb 5088static void wake_all_tickets(struct list_head *head)
21c7e756 5089{
957780eb 5090 struct reserve_ticket *ticket;
25ce459c 5091
957780eb
JB
5092 while (!list_empty(head)) {
5093 ticket = list_first_entry(head, struct reserve_ticket, list);
5094 list_del_init(&ticket->list);
5095 ticket->error = -ENOSPC;
5096 wake_up(&ticket->wait);
21c7e756 5097 }
21c7e756
MX
5098}
5099
957780eb
JB
5100/*
5101 * This is for normal flushers, we can wait all goddamned day if we want to. We
5102 * will loop and continuously try to flush as long as we are making progress.
5103 * We count progress as clearing off tickets each time we have to loop.
5104 */
21c7e756
MX
5105static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5106{
5107 struct btrfs_fs_info *fs_info;
5108 struct btrfs_space_info *space_info;
5109 u64 to_reclaim;
5110 int flush_state;
957780eb 5111 int commit_cycles = 0;
ce129655 5112 u64 last_tickets_id;
21c7e756
MX
5113
5114 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5115 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5116
957780eb 5117 spin_lock(&space_info->lock);
c1c4919b
JM
5118 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5119 false);
957780eb
JB
5120 if (!to_reclaim) {
5121 space_info->flush = 0;
5122 spin_unlock(&space_info->lock);
21c7e756 5123 return;
957780eb 5124 }
ce129655 5125 last_tickets_id = space_info->tickets_id;
957780eb 5126 spin_unlock(&space_info->lock);
21c7e756
MX
5127
5128 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5129 do {
e38ae7a0 5130 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5131 spin_lock(&space_info->lock);
5132 if (list_empty(&space_info->tickets)) {
5133 space_info->flush = 0;
5134 spin_unlock(&space_info->lock);
5135 return;
5136 }
c1c4919b
JM
5137 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5138 space_info,
5139 false);
ce129655 5140 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5141 flush_state++;
5142 } else {
ce129655 5143 last_tickets_id = space_info->tickets_id;
957780eb
JB
5144 flush_state = FLUSH_DELAYED_ITEMS_NR;
5145 if (commit_cycles)
5146 commit_cycles--;
5147 }
5148
5149 if (flush_state > COMMIT_TRANS) {
5150 commit_cycles++;
5151 if (commit_cycles > 2) {
5152 wake_all_tickets(&space_info->tickets);
5153 space_info->flush = 0;
5154 } else {
5155 flush_state = FLUSH_DELAYED_ITEMS_NR;
5156 }
5157 }
5158 spin_unlock(&space_info->lock);
5159 } while (flush_state <= COMMIT_TRANS);
5160}
5161
5162void btrfs_init_async_reclaim_work(struct work_struct *work)
5163{
5164 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5165}
5166
5167static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5168 struct btrfs_space_info *space_info,
5169 struct reserve_ticket *ticket)
5170{
5171 u64 to_reclaim;
5172 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5173
5174 spin_lock(&space_info->lock);
c1c4919b
JM
5175 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5176 false);
957780eb
JB
5177 if (!to_reclaim) {
5178 spin_unlock(&space_info->lock);
5179 return;
5180 }
5181 spin_unlock(&space_info->lock);
5182
21c7e756 5183 do {
7bdd6277 5184 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5185 flush_state++;
957780eb
JB
5186 spin_lock(&space_info->lock);
5187 if (ticket->bytes == 0) {
5188 spin_unlock(&space_info->lock);
21c7e756 5189 return;
957780eb
JB
5190 }
5191 spin_unlock(&space_info->lock);
5192
5193 /*
5194 * Priority flushers can't wait on delalloc without
5195 * deadlocking.
5196 */
5197 if (flush_state == FLUSH_DELALLOC ||
5198 flush_state == FLUSH_DELALLOC_WAIT)
5199 flush_state = ALLOC_CHUNK;
365c5313 5200 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5201}
5202
957780eb
JB
5203static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5204 struct btrfs_space_info *space_info,
5205 struct reserve_ticket *ticket, u64 orig_bytes)
5206
21c7e756 5207{
957780eb
JB
5208 DEFINE_WAIT(wait);
5209 int ret = 0;
5210
5211 spin_lock(&space_info->lock);
5212 while (ticket->bytes > 0 && ticket->error == 0) {
5213 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5214 if (ret) {
5215 ret = -EINTR;
5216 break;
5217 }
5218 spin_unlock(&space_info->lock);
5219
5220 schedule();
5221
5222 finish_wait(&ticket->wait, &wait);
5223 spin_lock(&space_info->lock);
5224 }
5225 if (!ret)
5226 ret = ticket->error;
5227 if (!list_empty(&ticket->list))
5228 list_del_init(&ticket->list);
5229 if (ticket->bytes && ticket->bytes < orig_bytes) {
5230 u64 num_bytes = orig_bytes - ticket->bytes;
5231 space_info->bytes_may_use -= num_bytes;
5232 trace_btrfs_space_reservation(fs_info, "space_info",
5233 space_info->flags, num_bytes, 0);
5234 }
5235 spin_unlock(&space_info->lock);
5236
5237 return ret;
21c7e756
MX
5238}
5239
4a92b1b8
JB
5240/**
5241 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5242 * @root - the root we're allocating for
957780eb 5243 * @space_info - the space info we want to allocate from
4a92b1b8 5244 * @orig_bytes - the number of bytes we want
48fc7f7e 5245 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5246 *
01327610 5247 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5248 * with the block_rsv. If there is not enough space it will make an attempt to
5249 * flush out space to make room. It will do this by flushing delalloc if
5250 * possible or committing the transaction. If flush is 0 then no attempts to
5251 * regain reservations will be made and this will fail if there is not enough
5252 * space already.
8bb8ab2e 5253 */
c1c4919b 5254static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5255 struct btrfs_space_info *space_info,
5256 u64 orig_bytes,
c1c4919b
JM
5257 enum btrfs_reserve_flush_enum flush,
5258 bool system_chunk)
9ed74f2d 5259{
957780eb 5260 struct reserve_ticket ticket;
2bf64758 5261 u64 used;
8bb8ab2e 5262 int ret = 0;
9ed74f2d 5263
957780eb 5264 ASSERT(orig_bytes);
8ca17f0f 5265 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5266
8bb8ab2e 5267 spin_lock(&space_info->lock);
fdb5effd 5268 ret = -ENOSPC;
4136135b 5269 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5270
8bb8ab2e 5271 /*
957780eb
JB
5272 * If we have enough space then hooray, make our reservation and carry
5273 * on. If not see if we can overcommit, and if we can, hooray carry on.
5274 * If not things get more complicated.
8bb8ab2e 5275 */
957780eb
JB
5276 if (used + orig_bytes <= space_info->total_bytes) {
5277 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5278 trace_btrfs_space_reservation(fs_info, "space_info",
5279 space_info->flags, orig_bytes, 1);
957780eb 5280 ret = 0;
c1c4919b
JM
5281 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5282 system_chunk)) {
44734ed1 5283 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5284 trace_btrfs_space_reservation(fs_info, "space_info",
5285 space_info->flags, orig_bytes, 1);
44734ed1 5286 ret = 0;
2bf64758
JB
5287 }
5288
8bb8ab2e 5289 /*
957780eb
JB
5290 * If we couldn't make a reservation then setup our reservation ticket
5291 * and kick the async worker if it's not already running.
08e007d2 5292 *
957780eb
JB
5293 * If we are a priority flusher then we just need to add our ticket to
5294 * the list and we will do our own flushing further down.
8bb8ab2e 5295 */
72bcd99d 5296 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5297 ticket.bytes = orig_bytes;
5298 ticket.error = 0;
5299 init_waitqueue_head(&ticket.wait);
5300 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5301 list_add_tail(&ticket.list, &space_info->tickets);
5302 if (!space_info->flush) {
5303 space_info->flush = 1;
0b246afa 5304 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5305 space_info->flags,
5306 orig_bytes, flush,
5307 "enospc");
957780eb 5308 queue_work(system_unbound_wq,
c1c4919b 5309 &fs_info->async_reclaim_work);
957780eb
JB
5310 }
5311 } else {
5312 list_add_tail(&ticket.list,
5313 &space_info->priority_tickets);
5314 }
21c7e756
MX
5315 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5316 used += orig_bytes;
f6acfd50
JB
5317 /*
5318 * We will do the space reservation dance during log replay,
5319 * which means we won't have fs_info->fs_root set, so don't do
5320 * the async reclaim as we will panic.
5321 */
0b246afa 5322 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5323 need_do_async_reclaim(fs_info, space_info,
5324 used, system_chunk) &&
0b246afa
JM
5325 !work_busy(&fs_info->async_reclaim_work)) {
5326 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5327 orig_bytes, flush, "preempt");
21c7e756 5328 queue_work(system_unbound_wq,
0b246afa 5329 &fs_info->async_reclaim_work);
f376df2b 5330 }
8bb8ab2e 5331 }
f0486c68 5332 spin_unlock(&space_info->lock);
08e007d2 5333 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5334 return ret;
f0486c68 5335
957780eb 5336 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5337 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5338 orig_bytes);
08e007d2 5339
957780eb 5340 ret = 0;
0b246afa 5341 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5342 spin_lock(&space_info->lock);
5343 if (ticket.bytes) {
5344 if (ticket.bytes < orig_bytes) {
5345 u64 num_bytes = orig_bytes - ticket.bytes;
5346 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5347 trace_btrfs_space_reservation(fs_info, "space_info",
5348 space_info->flags,
5349 num_bytes, 0);
08e007d2 5350
957780eb
JB
5351 }
5352 list_del_init(&ticket.list);
5353 ret = -ENOSPC;
5354 }
5355 spin_unlock(&space_info->lock);
5356 ASSERT(list_empty(&ticket.list));
5357 return ret;
5358}
8bb8ab2e 5359
957780eb
JB
5360/**
5361 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5362 * @root - the root we're allocating for
5363 * @block_rsv - the block_rsv we're allocating for
5364 * @orig_bytes - the number of bytes we want
5365 * @flush - whether or not we can flush to make our reservation
5366 *
5367 * This will reserve orgi_bytes number of bytes from the space info associated
5368 * with the block_rsv. If there is not enough space it will make an attempt to
5369 * flush out space to make room. It will do this by flushing delalloc if
5370 * possible or committing the transaction. If flush is 0 then no attempts to
5371 * regain reservations will be made and this will fail if there is not enough
5372 * space already.
5373 */
5374static int reserve_metadata_bytes(struct btrfs_root *root,
5375 struct btrfs_block_rsv *block_rsv,
5376 u64 orig_bytes,
5377 enum btrfs_reserve_flush_enum flush)
5378{
0b246afa
JM
5379 struct btrfs_fs_info *fs_info = root->fs_info;
5380 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5381 int ret;
c1c4919b 5382 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5383
c1c4919b
JM
5384 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5385 orig_bytes, flush, system_chunk);
5d80366e
JB
5386 if (ret == -ENOSPC &&
5387 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5388 if (block_rsv != global_rsv &&
5389 !block_rsv_use_bytes(global_rsv, orig_bytes))
5390 ret = 0;
5391 }
9a3daff3 5392 if (ret == -ENOSPC) {
0b246afa 5393 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5394 block_rsv->space_info->flags,
5395 orig_bytes, 1);
9a3daff3
NB
5396
5397 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5398 dump_space_info(fs_info, block_rsv->space_info,
5399 orig_bytes, 0);
5400 }
f0486c68
YZ
5401 return ret;
5402}
5403
79787eaa
JM
5404static struct btrfs_block_rsv *get_block_rsv(
5405 const struct btrfs_trans_handle *trans,
5406 const struct btrfs_root *root)
f0486c68 5407{
0b246afa 5408 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5409 struct btrfs_block_rsv *block_rsv = NULL;
5410
e9cf439f 5411 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5412 (root == fs_info->csum_root && trans->adding_csums) ||
5413 (root == fs_info->uuid_root))
f7a81ea4
SB
5414 block_rsv = trans->block_rsv;
5415
4c13d758 5416 if (!block_rsv)
f0486c68
YZ
5417 block_rsv = root->block_rsv;
5418
5419 if (!block_rsv)
0b246afa 5420 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5421
5422 return block_rsv;
5423}
5424
5425static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5426 u64 num_bytes)
5427{
5428 int ret = -ENOSPC;
5429 spin_lock(&block_rsv->lock);
5430 if (block_rsv->reserved >= num_bytes) {
5431 block_rsv->reserved -= num_bytes;
5432 if (block_rsv->reserved < block_rsv->size)
5433 block_rsv->full = 0;
5434 ret = 0;
5435 }
5436 spin_unlock(&block_rsv->lock);
5437 return ret;
5438}
5439
5440static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5441 u64 num_bytes, int update_size)
5442{
5443 spin_lock(&block_rsv->lock);
5444 block_rsv->reserved += num_bytes;
5445 if (update_size)
5446 block_rsv->size += num_bytes;
5447 else if (block_rsv->reserved >= block_rsv->size)
5448 block_rsv->full = 1;
5449 spin_unlock(&block_rsv->lock);
5450}
5451
d52be818
JB
5452int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5453 struct btrfs_block_rsv *dest, u64 num_bytes,
5454 int min_factor)
5455{
5456 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5457 u64 min_bytes;
5458
5459 if (global_rsv->space_info != dest->space_info)
5460 return -ENOSPC;
5461
5462 spin_lock(&global_rsv->lock);
5463 min_bytes = div_factor(global_rsv->size, min_factor);
5464 if (global_rsv->reserved < min_bytes + num_bytes) {
5465 spin_unlock(&global_rsv->lock);
5466 return -ENOSPC;
5467 }
5468 global_rsv->reserved -= num_bytes;
5469 if (global_rsv->reserved < global_rsv->size)
5470 global_rsv->full = 0;
5471 spin_unlock(&global_rsv->lock);
5472
5473 block_rsv_add_bytes(dest, num_bytes, 1);
5474 return 0;
5475}
5476
957780eb
JB
5477/*
5478 * This is for space we already have accounted in space_info->bytes_may_use, so
5479 * basically when we're returning space from block_rsv's.
5480 */
5481static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5482 struct btrfs_space_info *space_info,
5483 u64 num_bytes)
5484{
5485 struct reserve_ticket *ticket;
5486 struct list_head *head;
5487 u64 used;
5488 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5489 bool check_overcommit = false;
5490
5491 spin_lock(&space_info->lock);
5492 head = &space_info->priority_tickets;
5493
5494 /*
5495 * If we are over our limit then we need to check and see if we can
5496 * overcommit, and if we can't then we just need to free up our space
5497 * and not satisfy any requests.
5498 */
0eee8a49 5499 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5500 if (used - num_bytes >= space_info->total_bytes)
5501 check_overcommit = true;
5502again:
5503 while (!list_empty(head) && num_bytes) {
5504 ticket = list_first_entry(head, struct reserve_ticket,
5505 list);
5506 /*
5507 * We use 0 bytes because this space is already reserved, so
5508 * adding the ticket space would be a double count.
5509 */
5510 if (check_overcommit &&
c1c4919b 5511 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5512 break;
5513 if (num_bytes >= ticket->bytes) {
5514 list_del_init(&ticket->list);
5515 num_bytes -= ticket->bytes;
5516 ticket->bytes = 0;
ce129655 5517 space_info->tickets_id++;
957780eb
JB
5518 wake_up(&ticket->wait);
5519 } else {
5520 ticket->bytes -= num_bytes;
5521 num_bytes = 0;
5522 }
5523 }
5524
5525 if (num_bytes && head == &space_info->priority_tickets) {
5526 head = &space_info->tickets;
5527 flush = BTRFS_RESERVE_FLUSH_ALL;
5528 goto again;
5529 }
5530 space_info->bytes_may_use -= num_bytes;
5531 trace_btrfs_space_reservation(fs_info, "space_info",
5532 space_info->flags, num_bytes, 0);
5533 spin_unlock(&space_info->lock);
5534}
5535
5536/*
5537 * This is for newly allocated space that isn't accounted in
5538 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5539 * we use this helper.
5540 */
5541static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5542 struct btrfs_space_info *space_info,
5543 u64 num_bytes)
5544{
5545 struct reserve_ticket *ticket;
5546 struct list_head *head = &space_info->priority_tickets;
5547
5548again:
5549 while (!list_empty(head) && num_bytes) {
5550 ticket = list_first_entry(head, struct reserve_ticket,
5551 list);
5552 if (num_bytes >= ticket->bytes) {
5553 trace_btrfs_space_reservation(fs_info, "space_info",
5554 space_info->flags,
5555 ticket->bytes, 1);
5556 list_del_init(&ticket->list);
5557 num_bytes -= ticket->bytes;
5558 space_info->bytes_may_use += ticket->bytes;
5559 ticket->bytes = 0;
ce129655 5560 space_info->tickets_id++;
957780eb
JB
5561 wake_up(&ticket->wait);
5562 } else {
5563 trace_btrfs_space_reservation(fs_info, "space_info",
5564 space_info->flags,
5565 num_bytes, 1);
5566 space_info->bytes_may_use += num_bytes;
5567 ticket->bytes -= num_bytes;
5568 num_bytes = 0;
5569 }
5570 }
5571
5572 if (num_bytes && head == &space_info->priority_tickets) {
5573 head = &space_info->tickets;
5574 goto again;
5575 }
5576}
5577
69fe2d75 5578static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5579 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5580 struct btrfs_block_rsv *dest, u64 num_bytes,
5581 u64 *qgroup_to_release_ret)
f0486c68
YZ
5582{
5583 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5584 u64 qgroup_to_release = 0;
69fe2d75 5585 u64 ret;
f0486c68
YZ
5586
5587 spin_lock(&block_rsv->lock);
ff6bc37e 5588 if (num_bytes == (u64)-1) {
f0486c68 5589 num_bytes = block_rsv->size;
ff6bc37e
QW
5590 qgroup_to_release = block_rsv->qgroup_rsv_size;
5591 }
f0486c68
YZ
5592 block_rsv->size -= num_bytes;
5593 if (block_rsv->reserved >= block_rsv->size) {
5594 num_bytes = block_rsv->reserved - block_rsv->size;
5595 block_rsv->reserved = block_rsv->size;
5596 block_rsv->full = 1;
5597 } else {
5598 num_bytes = 0;
5599 }
ff6bc37e
QW
5600 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5601 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5602 block_rsv->qgroup_rsv_size;
5603 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5604 } else {
5605 qgroup_to_release = 0;
5606 }
f0486c68
YZ
5607 spin_unlock(&block_rsv->lock);
5608
69fe2d75 5609 ret = num_bytes;
f0486c68
YZ
5610 if (num_bytes > 0) {
5611 if (dest) {
e9e22899
JB
5612 spin_lock(&dest->lock);
5613 if (!dest->full) {
5614 u64 bytes_to_add;
5615
5616 bytes_to_add = dest->size - dest->reserved;
5617 bytes_to_add = min(num_bytes, bytes_to_add);
5618 dest->reserved += bytes_to_add;
5619 if (dest->reserved >= dest->size)
5620 dest->full = 1;
5621 num_bytes -= bytes_to_add;
5622 }
5623 spin_unlock(&dest->lock);
5624 }
957780eb
JB
5625 if (num_bytes)
5626 space_info_add_old_bytes(fs_info, space_info,
5627 num_bytes);
9ed74f2d 5628 }
ff6bc37e
QW
5629 if (qgroup_to_release_ret)
5630 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5631 return ret;
f0486c68 5632}
4e06bdd6 5633
25d609f8
JB
5634int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5635 struct btrfs_block_rsv *dst, u64 num_bytes,
5636 int update_size)
f0486c68
YZ
5637{
5638 int ret;
9ed74f2d 5639
f0486c68
YZ
5640 ret = block_rsv_use_bytes(src, num_bytes);
5641 if (ret)
5642 return ret;
9ed74f2d 5643
25d609f8 5644 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5645 return 0;
5646}
5647
66d8f3dd 5648void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5649{
f0486c68
YZ
5650 memset(rsv, 0, sizeof(*rsv));
5651 spin_lock_init(&rsv->lock);
66d8f3dd 5652 rsv->type = type;
f0486c68
YZ
5653}
5654
69fe2d75
JB
5655void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5656 struct btrfs_block_rsv *rsv,
5657 unsigned short type)
5658{
5659 btrfs_init_block_rsv(rsv, type);
5660 rsv->space_info = __find_space_info(fs_info,
5661 BTRFS_BLOCK_GROUP_METADATA);
5662}
5663
2ff7e61e 5664struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5665 unsigned short type)
f0486c68
YZ
5666{
5667 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5668
f0486c68
YZ
5669 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5670 if (!block_rsv)
5671 return NULL;
9ed74f2d 5672
69fe2d75 5673 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5674 return block_rsv;
5675}
9ed74f2d 5676
2ff7e61e 5677void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5678 struct btrfs_block_rsv *rsv)
5679{
2aaa6655
JB
5680 if (!rsv)
5681 return;
2ff7e61e 5682 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5683 kfree(rsv);
9ed74f2d
JB
5684}
5685
cdfb080e
CM
5686void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5687{
5688 kfree(rsv);
5689}
5690
08e007d2
MX
5691int btrfs_block_rsv_add(struct btrfs_root *root,
5692 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5693 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5694{
f0486c68 5695 int ret;
9ed74f2d 5696
f0486c68
YZ
5697 if (num_bytes == 0)
5698 return 0;
8bb8ab2e 5699
61b520a9 5700 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5701 if (!ret) {
5702 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5703 return 0;
5704 }
9ed74f2d 5705
f0486c68 5706 return ret;
f0486c68 5707}
9ed74f2d 5708
2ff7e61e 5709int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5710{
5711 u64 num_bytes = 0;
f0486c68 5712 int ret = -ENOSPC;
9ed74f2d 5713
f0486c68
YZ
5714 if (!block_rsv)
5715 return 0;
9ed74f2d 5716
f0486c68 5717 spin_lock(&block_rsv->lock);
36ba022a
JB
5718 num_bytes = div_factor(block_rsv->size, min_factor);
5719 if (block_rsv->reserved >= num_bytes)
5720 ret = 0;
5721 spin_unlock(&block_rsv->lock);
9ed74f2d 5722
36ba022a
JB
5723 return ret;
5724}
5725
08e007d2
MX
5726int btrfs_block_rsv_refill(struct btrfs_root *root,
5727 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5728 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5729{
5730 u64 num_bytes = 0;
5731 int ret = -ENOSPC;
5732
5733 if (!block_rsv)
5734 return 0;
5735
5736 spin_lock(&block_rsv->lock);
5737 num_bytes = min_reserved;
13553e52 5738 if (block_rsv->reserved >= num_bytes)
f0486c68 5739 ret = 0;
13553e52 5740 else
f0486c68 5741 num_bytes -= block_rsv->reserved;
f0486c68 5742 spin_unlock(&block_rsv->lock);
13553e52 5743
f0486c68
YZ
5744 if (!ret)
5745 return 0;
5746
aa38a711 5747 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5748 if (!ret) {
5749 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5750 return 0;
6a63209f 5751 }
9ed74f2d 5752
13553e52 5753 return ret;
f0486c68
YZ
5754}
5755
69fe2d75
JB
5756/**
5757 * btrfs_inode_rsv_refill - refill the inode block rsv.
5758 * @inode - the inode we are refilling.
5759 * @flush - the flusing restriction.
5760 *
5761 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5762 * block_rsv->size as the minimum size. We'll either refill the missing amount
5763 * or return if we already have enough space. This will also handle the resreve
5764 * tracepoint for the reserved amount.
5765 */
3f2dd7a0
QW
5766static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5767 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5768{
5769 struct btrfs_root *root = inode->root;
5770 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5771 u64 num_bytes = 0;
ff6bc37e 5772 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5773 int ret = -ENOSPC;
5774
5775 spin_lock(&block_rsv->lock);
5776 if (block_rsv->reserved < block_rsv->size)
5777 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5778 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5779 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5780 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5781 spin_unlock(&block_rsv->lock);
5782
5783 if (num_bytes == 0)
5784 return 0;
5785
ff6bc37e 5786 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5787 if (ret)
5788 return ret;
69fe2d75
JB
5789 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5790 if (!ret) {
5791 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5792 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5793 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5794
5795 /* Don't forget to increase qgroup_rsv_reserved */
5796 spin_lock(&block_rsv->lock);
5797 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5798 spin_unlock(&block_rsv->lock);
5799 } else
5800 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5801 return ret;
5802}
5803
5804/**
5805 * btrfs_inode_rsv_release - release any excessive reservation.
5806 * @inode - the inode we need to release from.
43b18595
QW
5807 * @qgroup_free - free or convert qgroup meta.
5808 * Unlike normal operation, qgroup meta reservation needs to know if we are
5809 * freeing qgroup reservation or just converting it into per-trans. Normally
5810 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5811 *
5812 * This is the same as btrfs_block_rsv_release, except that it handles the
5813 * tracepoint for the reservation.
5814 */
43b18595 5815static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5816{
5817 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5818 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5819 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5820 u64 released = 0;
ff6bc37e 5821 u64 qgroup_to_release = 0;
69fe2d75
JB
5822
5823 /*
5824 * Since we statically set the block_rsv->size we just want to say we
5825 * are releasing 0 bytes, and then we'll just get the reservation over
5826 * the size free'd.
5827 */
ff6bc37e
QW
5828 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5829 &qgroup_to_release);
69fe2d75
JB
5830 if (released > 0)
5831 trace_btrfs_space_reservation(fs_info, "delalloc",
5832 btrfs_ino(inode), released, 0);
43b18595 5833 if (qgroup_free)
ff6bc37e 5834 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5835 else
ff6bc37e
QW
5836 btrfs_qgroup_convert_reserved_meta(inode->root,
5837 qgroup_to_release);
69fe2d75
JB
5838}
5839
2ff7e61e 5840void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5841 struct btrfs_block_rsv *block_rsv,
5842 u64 num_bytes)
5843{
0b246afa
JM
5844 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5845
17504584 5846 if (global_rsv == block_rsv ||
f0486c68
YZ
5847 block_rsv->space_info != global_rsv->space_info)
5848 global_rsv = NULL;
ff6bc37e 5849 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5850}
5851
8929ecfa
YZ
5852static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5853{
5854 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5855 struct btrfs_space_info *sinfo = block_rsv->space_info;
5856 u64 num_bytes;
6a63209f 5857
ae2e4728
JB
5858 /*
5859 * The global block rsv is based on the size of the extent tree, the
5860 * checksum tree and the root tree. If the fs is empty we want to set
5861 * it to a minimal amount for safety.
5862 */
5863 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5864 btrfs_root_used(&fs_info->csum_root->root_item) +
5865 btrfs_root_used(&fs_info->tree_root->root_item);
5866 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5867
8929ecfa 5868 spin_lock(&sinfo->lock);
1f699d38 5869 spin_lock(&block_rsv->lock);
4e06bdd6 5870
ee22184b 5871 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5872
fb4b10e5 5873 if (block_rsv->reserved < block_rsv->size) {
4136135b 5874 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5875 if (sinfo->total_bytes > num_bytes) {
5876 num_bytes = sinfo->total_bytes - num_bytes;
5877 num_bytes = min(num_bytes,
5878 block_rsv->size - block_rsv->reserved);
5879 block_rsv->reserved += num_bytes;
5880 sinfo->bytes_may_use += num_bytes;
5881 trace_btrfs_space_reservation(fs_info, "space_info",
5882 sinfo->flags, num_bytes,
5883 1);
5884 }
5885 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5886 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5887 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5888 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5889 sinfo->flags, num_bytes, 0);
8929ecfa 5890 block_rsv->reserved = block_rsv->size;
8929ecfa 5891 }
182608c8 5892
fb4b10e5
JB
5893 if (block_rsv->reserved == block_rsv->size)
5894 block_rsv->full = 1;
5895 else
5896 block_rsv->full = 0;
5897
8929ecfa 5898 spin_unlock(&block_rsv->lock);
1f699d38 5899 spin_unlock(&sinfo->lock);
6a63209f
JB
5900}
5901
f0486c68 5902static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5903{
f0486c68 5904 struct btrfs_space_info *space_info;
6a63209f 5905
f0486c68
YZ
5906 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5907 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5908
f0486c68 5909 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5910 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5911 fs_info->trans_block_rsv.space_info = space_info;
5912 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5913 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5914
8929ecfa
YZ
5915 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5916 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5917 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5918 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5919 if (fs_info->quota_root)
5920 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5921 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5922
8929ecfa 5923 update_global_block_rsv(fs_info);
6a63209f
JB
5924}
5925
8929ecfa 5926static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5927{
8c2a3ca2 5928 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5929 (u64)-1, NULL);
8929ecfa
YZ
5930 WARN_ON(fs_info->trans_block_rsv.size > 0);
5931 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5932 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5933 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5934 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5935 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5936}
5937
6a63209f 5938
4fbcdf66
FM
5939/*
5940 * To be called after all the new block groups attached to the transaction
5941 * handle have been created (btrfs_create_pending_block_groups()).
5942 */
5943void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5944{
64b63580 5945 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5946
5947 if (!trans->chunk_bytes_reserved)
5948 return;
5949
5950 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5951
5952 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5953 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5954 trans->chunk_bytes_reserved = 0;
5955}
5956
79787eaa 5957/* Can only return 0 or -ENOSPC */
d68fc57b 5958int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
8ed7a2a0 5959 struct btrfs_inode *inode)
d68fc57b 5960{
8ed7a2a0
NB
5961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5962 struct btrfs_root *root = inode->root;
40acc3ee
JB
5963 /*
5964 * We always use trans->block_rsv here as we will have reserved space
5965 * for our orphan when starting the transaction, using get_block_rsv()
5966 * here will sometimes make us choose the wrong block rsv as we could be
5967 * doing a reloc inode for a non refcounted root.
5968 */
5969 struct btrfs_block_rsv *src_rsv = trans->block_rsv;
d68fc57b
YZ
5970 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5971
5972 /*
fcb80c2a
JB
5973 * We need to hold space in order to delete our orphan item once we've
5974 * added it, so this takes the reservation so we can release it later
5975 * when we are truly done with the orphan item.
d68fc57b 5976 */
0b246afa
JM
5977 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5978
9678c543 5979 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
8ed7a2a0 5980 num_bytes, 1);
25d609f8 5981 return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
6a63209f
JB
5982}
5983
703b391a 5984void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
97e728d4 5985{
703b391a
NB
5986 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5987 struct btrfs_root *root = inode->root;
0b246afa
JM
5988 u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5989
703b391a
NB
5990 trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5991 num_bytes, 0);
2ff7e61e 5992 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
d68fc57b 5993}
97e728d4 5994
d5c12070
MX
5995/*
5996 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5997 * root: the root of the parent directory
5998 * rsv: block reservation
5999 * items: the number of items that we need do reservation
6000 * qgroup_reserved: used to return the reserved size in qgroup
6001 *
6002 * This function is used to reserve the space for snapshot/subvolume
6003 * creation and deletion. Those operations are different with the
6004 * common file/directory operations, they change two fs/file trees
6005 * and root tree, the number of items that the qgroup reserves is
6006 * different with the free space reservation. So we can not use
01327610 6007 * the space reservation mechanism in start_transaction().
d5c12070
MX
6008 */
6009int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
6010 struct btrfs_block_rsv *rsv,
6011 int items,
ee3441b4
JM
6012 u64 *qgroup_reserved,
6013 bool use_global_rsv)
a22285a6 6014{
d5c12070
MX
6015 u64 num_bytes;
6016 int ret;
0b246afa
JM
6017 struct btrfs_fs_info *fs_info = root->fs_info;
6018 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 6019
0b246afa 6020 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 6021 /* One for parent inode, two for dir entries */
0b246afa 6022 num_bytes = 3 * fs_info->nodesize;
733e03a0 6023 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
6024 if (ret)
6025 return ret;
6026 } else {
6027 num_bytes = 0;
6028 }
6029
6030 *qgroup_reserved = num_bytes;
6031
0b246afa
JM
6032 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
6033 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
6034 BTRFS_BLOCK_GROUP_METADATA);
6035 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
6036 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
6037
6038 if (ret == -ENOSPC && use_global_rsv)
25d609f8 6039 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6040
7174109c 6041 if (ret && *qgroup_reserved)
733e03a0 6042 btrfs_qgroup_free_meta_prealloc(root, *qgroup_reserved);
d5c12070
MX
6043
6044 return ret;
6045}
6046
2ff7e61e 6047void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6048 struct btrfs_block_rsv *rsv)
d5c12070 6049{
2ff7e61e 6050 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6051}
6052
69fe2d75
JB
6053static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6054 struct btrfs_inode *inode)
9e0baf60 6055{
69fe2d75
JB
6056 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6057 u64 reserve_size = 0;
ff6bc37e 6058 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6059 u64 csum_leaves;
6060 unsigned outstanding_extents;
9e0baf60 6061
69fe2d75
JB
6062 lockdep_assert_held(&inode->lock);
6063 outstanding_extents = inode->outstanding_extents;
6064 if (outstanding_extents)
6065 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6066 outstanding_extents + 1);
6067 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6068 inode->csum_bytes);
6069 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6070 csum_leaves);
ff6bc37e
QW
6071 /*
6072 * For qgroup rsv, the calculation is very simple:
6073 * account one nodesize for each outstanding extent
6074 *
6075 * This is overestimating in most cases.
6076 */
6077 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6078
69fe2d75
JB
6079 spin_lock(&block_rsv->lock);
6080 block_rsv->size = reserve_size;
ff6bc37e 6081 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6082 spin_unlock(&block_rsv->lock);
0ca1f7ce 6083}
c146afad 6084
9f3db423 6085int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6086{
9f3db423 6087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6088 unsigned nr_extents;
08e007d2 6089 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6090 int ret = 0;
c64c2bd8 6091 bool delalloc_lock = true;
6324fbf3 6092
c64c2bd8
JB
6093 /* If we are a free space inode we need to not flush since we will be in
6094 * the middle of a transaction commit. We also don't need the delalloc
6095 * mutex since we won't race with anybody. We need this mostly to make
6096 * lockdep shut its filthy mouth.
bac357dc
JB
6097 *
6098 * If we have a transaction open (can happen if we call truncate_block
6099 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6100 */
6101 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6102 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6103 delalloc_lock = false;
da07d4ab
NB
6104 } else {
6105 if (current->journal_info)
6106 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6107
da07d4ab
NB
6108 if (btrfs_transaction_in_commit(fs_info))
6109 schedule_timeout(1);
6110 }
ec44a35c 6111
c64c2bd8 6112 if (delalloc_lock)
9f3db423 6113 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6114
0b246afa 6115 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6116
6117 /* Add our new extents and calculate the new rsv size. */
9f3db423 6118 spin_lock(&inode->lock);
69fe2d75 6119 nr_extents = count_max_extents(num_bytes);
8b62f87b 6120 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6121 inode->csum_bytes += num_bytes;
6122 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6123 spin_unlock(&inode->lock);
57a45ced 6124
69fe2d75 6125 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6126 if (unlikely(ret))
88e081bf 6127 goto out_fail;
25179201 6128
c64c2bd8 6129 if (delalloc_lock)
9f3db423 6130 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6131 return 0;
88e081bf
WS
6132
6133out_fail:
9f3db423 6134 spin_lock(&inode->lock);
8b62f87b
JB
6135 nr_extents = count_max_extents(num_bytes);
6136 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6137 inode->csum_bytes -= num_bytes;
6138 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6139 spin_unlock(&inode->lock);
88e081bf 6140
43b18595 6141 btrfs_inode_rsv_release(inode, true);
88e081bf 6142 if (delalloc_lock)
9f3db423 6143 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6144 return ret;
0ca1f7ce
YZ
6145}
6146
7709cde3
JB
6147/**
6148 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6149 * @inode: the inode to release the reservation for.
6150 * @num_bytes: the number of bytes we are releasing.
43b18595 6151 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6152 *
6153 * This will release the metadata reservation for an inode. This can be called
6154 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6155 * reservations, or on error for the same reason.
7709cde3 6156 */
43b18595
QW
6157void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6158 bool qgroup_free)
0ca1f7ce 6159{
691fa059 6160 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6161
0b246afa 6162 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6163 spin_lock(&inode->lock);
69fe2d75
JB
6164 inode->csum_bytes -= num_bytes;
6165 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6166 spin_unlock(&inode->lock);
0ca1f7ce 6167
0b246afa 6168 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6169 return;
6170
43b18595 6171 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6172}
6173
8b62f87b
JB
6174/**
6175 * btrfs_delalloc_release_extents - release our outstanding_extents
6176 * @inode: the inode to balance the reservation for.
6177 * @num_bytes: the number of bytes we originally reserved with
43b18595 6178 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6179 *
6180 * When we reserve space we increase outstanding_extents for the extents we may
6181 * add. Once we've set the range as delalloc or created our ordered extents we
6182 * have outstanding_extents to track the real usage, so we use this to free our
6183 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6184 * with btrfs_delalloc_reserve_metadata.
6185 */
43b18595
QW
6186void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6187 bool qgroup_free)
8b62f87b
JB
6188{
6189 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6190 unsigned num_extents;
8b62f87b
JB
6191
6192 spin_lock(&inode->lock);
6193 num_extents = count_max_extents(num_bytes);
6194 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6195 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6196 spin_unlock(&inode->lock);
6197
8b62f87b
JB
6198 if (btrfs_is_testing(fs_info))
6199 return;
6200
43b18595 6201 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6202}
6203
1ada3a62 6204/**
7cf5b976 6205 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6206 * delalloc
6207 * @inode: inode we're writing to
6208 * @start: start range we are writing to
6209 * @len: how long the range we are writing to
364ecf36
QW
6210 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6211 * current reservation.
1ada3a62 6212 *
1ada3a62
QW
6213 * This will do the following things
6214 *
6215 * o reserve space in data space info for num bytes
6216 * and reserve precious corresponding qgroup space
6217 * (Done in check_data_free_space)
6218 *
6219 * o reserve space for metadata space, based on the number of outstanding
6220 * extents and how much csums will be needed
6221 * also reserve metadata space in a per root over-reserve method.
6222 * o add to the inodes->delalloc_bytes
6223 * o add it to the fs_info's delalloc inodes list.
6224 * (Above 3 all done in delalloc_reserve_metadata)
6225 *
6226 * Return 0 for success
6227 * Return <0 for error(-ENOSPC or -EQUOT)
6228 */
364ecf36
QW
6229int btrfs_delalloc_reserve_space(struct inode *inode,
6230 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6231{
6232 int ret;
6233
364ecf36 6234 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6235 if (ret < 0)
6236 return ret;
9f3db423 6237 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6238 if (ret < 0)
bc42bda2 6239 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6240 return ret;
6241}
6242
7709cde3 6243/**
7cf5b976 6244 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6245 * @inode: inode we're releasing space for
6246 * @start: start position of the space already reserved
6247 * @len: the len of the space already reserved
8b62f87b 6248 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6249 *
6250 * This function will release the metadata space that was not used and will
6251 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6252 * list if there are no delalloc bytes left.
6253 * Also it will handle the qgroup reserved space.
6254 */
bc42bda2 6255void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6256 struct extent_changeset *reserved,
43b18595 6257 u64 start, u64 len, bool qgroup_free)
1ada3a62 6258{
43b18595 6259 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6260 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6261}
6262
ce93ec54 6263static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6264 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6265 u64 num_bytes, int alloc)
9078a3e1 6266{
0af3d00b 6267 struct btrfs_block_group_cache *cache = NULL;
db94535d 6268 u64 total = num_bytes;
9078a3e1 6269 u64 old_val;
db94535d 6270 u64 byte_in_group;
0af3d00b 6271 int factor;
3e1ad54f 6272
5d4f98a2 6273 /* block accounting for super block */
eb73c1b7 6274 spin_lock(&info->delalloc_root_lock);
6c41761f 6275 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6276 if (alloc)
6277 old_val += num_bytes;
6278 else
6279 old_val -= num_bytes;
6c41761f 6280 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6281 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6282
d397712b 6283 while (total) {
db94535d 6284 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6285 if (!cache)
79787eaa 6286 return -ENOENT;
b742bb82
YZ
6287 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6288 BTRFS_BLOCK_GROUP_RAID1 |
6289 BTRFS_BLOCK_GROUP_RAID10))
6290 factor = 2;
6291 else
6292 factor = 1;
9d66e233
JB
6293 /*
6294 * If this block group has free space cache written out, we
6295 * need to make sure to load it if we are removing space. This
6296 * is because we need the unpinning stage to actually add the
6297 * space back to the block group, otherwise we will leak space.
6298 */
6299 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6300 cache_block_group(cache, 1);
0af3d00b 6301
db94535d
CM
6302 byte_in_group = bytenr - cache->key.objectid;
6303 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6304
25179201 6305 spin_lock(&cache->space_info->lock);
c286ac48 6306 spin_lock(&cache->lock);
0af3d00b 6307
6202df69 6308 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6309 cache->disk_cache_state < BTRFS_DC_CLEAR)
6310 cache->disk_cache_state = BTRFS_DC_CLEAR;
6311
9078a3e1 6312 old_val = btrfs_block_group_used(&cache->item);
db94535d 6313 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6314 if (alloc) {
db94535d 6315 old_val += num_bytes;
11833d66
YZ
6316 btrfs_set_block_group_used(&cache->item, old_val);
6317 cache->reserved -= num_bytes;
11833d66 6318 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6319 cache->space_info->bytes_used += num_bytes;
6320 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6321 spin_unlock(&cache->lock);
25179201 6322 spin_unlock(&cache->space_info->lock);
cd1bc465 6323 } else {
db94535d 6324 old_val -= num_bytes;
ae0ab003
FM
6325 btrfs_set_block_group_used(&cache->item, old_val);
6326 cache->pinned += num_bytes;
6327 cache->space_info->bytes_pinned += num_bytes;
6328 cache->space_info->bytes_used -= num_bytes;
6329 cache->space_info->disk_used -= num_bytes * factor;
6330 spin_unlock(&cache->lock);
6331 spin_unlock(&cache->space_info->lock);
47ab2a6c 6332
0b246afa 6333 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6334 cache->space_info->flags,
6335 num_bytes, 1);
d7eae340
OS
6336 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6337 num_bytes);
ae0ab003
FM
6338 set_extent_dirty(info->pinned_extents,
6339 bytenr, bytenr + num_bytes - 1,
6340 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6341 }
1bbc621e
CM
6342
6343 spin_lock(&trans->transaction->dirty_bgs_lock);
6344 if (list_empty(&cache->dirty_list)) {
6345 list_add_tail(&cache->dirty_list,
6346 &trans->transaction->dirty_bgs);
6347 trans->transaction->num_dirty_bgs++;
6348 btrfs_get_block_group(cache);
6349 }
6350 spin_unlock(&trans->transaction->dirty_bgs_lock);
6351
036a9348
FM
6352 /*
6353 * No longer have used bytes in this block group, queue it for
6354 * deletion. We do this after adding the block group to the
6355 * dirty list to avoid races between cleaner kthread and space
6356 * cache writeout.
6357 */
6358 if (!alloc && old_val == 0) {
6359 spin_lock(&info->unused_bgs_lock);
6360 if (list_empty(&cache->bg_list)) {
6361 btrfs_get_block_group(cache);
6362 list_add_tail(&cache->bg_list,
6363 &info->unused_bgs);
6364 }
6365 spin_unlock(&info->unused_bgs_lock);
6366 }
6367
fa9c0d79 6368 btrfs_put_block_group(cache);
db94535d
CM
6369 total -= num_bytes;
6370 bytenr += num_bytes;
9078a3e1
CM
6371 }
6372 return 0;
6373}
6324fbf3 6374
2ff7e61e 6375static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6376{
0f9dd46c 6377 struct btrfs_block_group_cache *cache;
d2fb3437 6378 u64 bytenr;
0f9dd46c 6379
0b246afa
JM
6380 spin_lock(&fs_info->block_group_cache_lock);
6381 bytenr = fs_info->first_logical_byte;
6382 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6383
6384 if (bytenr < (u64)-1)
6385 return bytenr;
6386
0b246afa 6387 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6388 if (!cache)
a061fc8d 6389 return 0;
0f9dd46c 6390
d2fb3437 6391 bytenr = cache->key.objectid;
fa9c0d79 6392 btrfs_put_block_group(cache);
d2fb3437
YZ
6393
6394 return bytenr;
a061fc8d
CM
6395}
6396
2ff7e61e 6397static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6398 struct btrfs_block_group_cache *cache,
6399 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6400{
11833d66
YZ
6401 spin_lock(&cache->space_info->lock);
6402 spin_lock(&cache->lock);
6403 cache->pinned += num_bytes;
6404 cache->space_info->bytes_pinned += num_bytes;
6405 if (reserved) {
6406 cache->reserved -= num_bytes;
6407 cache->space_info->bytes_reserved -= num_bytes;
6408 }
6409 spin_unlock(&cache->lock);
6410 spin_unlock(&cache->space_info->lock);
68b38550 6411
0b246afa 6412 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6413 cache->space_info->flags, num_bytes, 1);
4da8b76d 6414 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6415 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6416 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6417 return 0;
6418}
68b38550 6419
f0486c68
YZ
6420/*
6421 * this function must be called within transaction
6422 */
2ff7e61e 6423int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6424 u64 bytenr, u64 num_bytes, int reserved)
6425{
6426 struct btrfs_block_group_cache *cache;
68b38550 6427
0b246afa 6428 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6429 BUG_ON(!cache); /* Logic error */
f0486c68 6430
2ff7e61e 6431 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6432
6433 btrfs_put_block_group(cache);
11833d66
YZ
6434 return 0;
6435}
6436
f0486c68 6437/*
e688b725
CM
6438 * this function must be called within transaction
6439 */
2ff7e61e 6440int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6441 u64 bytenr, u64 num_bytes)
6442{
6443 struct btrfs_block_group_cache *cache;
b50c6e25 6444 int ret;
e688b725 6445
0b246afa 6446 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6447 if (!cache)
6448 return -EINVAL;
e688b725
CM
6449
6450 /*
6451 * pull in the free space cache (if any) so that our pin
6452 * removes the free space from the cache. We have load_only set
6453 * to one because the slow code to read in the free extents does check
6454 * the pinned extents.
6455 */
f6373bf3 6456 cache_block_group(cache, 1);
e688b725 6457
2ff7e61e 6458 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6459
6460 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6461 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6462 btrfs_put_block_group(cache);
b50c6e25 6463 return ret;
e688b725
CM
6464}
6465
2ff7e61e
JM
6466static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6467 u64 start, u64 num_bytes)
8c2a1a30
JB
6468{
6469 int ret;
6470 struct btrfs_block_group_cache *block_group;
6471 struct btrfs_caching_control *caching_ctl;
6472
0b246afa 6473 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6474 if (!block_group)
6475 return -EINVAL;
6476
6477 cache_block_group(block_group, 0);
6478 caching_ctl = get_caching_control(block_group);
6479
6480 if (!caching_ctl) {
6481 /* Logic error */
6482 BUG_ON(!block_group_cache_done(block_group));
6483 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6484 } else {
6485 mutex_lock(&caching_ctl->mutex);
6486
6487 if (start >= caching_ctl->progress) {
2ff7e61e 6488 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6489 } else if (start + num_bytes <= caching_ctl->progress) {
6490 ret = btrfs_remove_free_space(block_group,
6491 start, num_bytes);
6492 } else {
6493 num_bytes = caching_ctl->progress - start;
6494 ret = btrfs_remove_free_space(block_group,
6495 start, num_bytes);
6496 if (ret)
6497 goto out_lock;
6498
6499 num_bytes = (start + num_bytes) -
6500 caching_ctl->progress;
6501 start = caching_ctl->progress;
2ff7e61e 6502 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6503 }
6504out_lock:
6505 mutex_unlock(&caching_ctl->mutex);
6506 put_caching_control(caching_ctl);
6507 }
6508 btrfs_put_block_group(block_group);
6509 return ret;
6510}
6511
2ff7e61e 6512int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6513 struct extent_buffer *eb)
6514{
6515 struct btrfs_file_extent_item *item;
6516 struct btrfs_key key;
6517 int found_type;
6518 int i;
6519
2ff7e61e 6520 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6521 return 0;
6522
6523 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6524 btrfs_item_key_to_cpu(eb, &key, i);
6525 if (key.type != BTRFS_EXTENT_DATA_KEY)
6526 continue;
6527 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6528 found_type = btrfs_file_extent_type(eb, item);
6529 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6530 continue;
6531 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6532 continue;
6533 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6534 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
2ff7e61e 6535 __exclude_logged_extent(fs_info, key.objectid, key.offset);
8c2a1a30
JB
6536 }
6537
6538 return 0;
6539}
6540
9cfa3e34
FM
6541static void
6542btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6543{
6544 atomic_inc(&bg->reservations);
6545}
6546
6547void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6548 const u64 start)
6549{
6550 struct btrfs_block_group_cache *bg;
6551
6552 bg = btrfs_lookup_block_group(fs_info, start);
6553 ASSERT(bg);
6554 if (atomic_dec_and_test(&bg->reservations))
4625956a 6555 wake_up_var(&bg->reservations);
9cfa3e34
FM
6556 btrfs_put_block_group(bg);
6557}
6558
9cfa3e34
FM
6559void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6560{
6561 struct btrfs_space_info *space_info = bg->space_info;
6562
6563 ASSERT(bg->ro);
6564
6565 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6566 return;
6567
6568 /*
6569 * Our block group is read only but before we set it to read only,
6570 * some task might have had allocated an extent from it already, but it
6571 * has not yet created a respective ordered extent (and added it to a
6572 * root's list of ordered extents).
6573 * Therefore wait for any task currently allocating extents, since the
6574 * block group's reservations counter is incremented while a read lock
6575 * on the groups' semaphore is held and decremented after releasing
6576 * the read access on that semaphore and creating the ordered extent.
6577 */
6578 down_write(&space_info->groups_sem);
6579 up_write(&space_info->groups_sem);
6580
4625956a 6581 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6582}
6583
fb25e914 6584/**
4824f1f4 6585 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6586 * @cache: The cache we are manipulating
18513091
WX
6587 * @ram_bytes: The number of bytes of file content, and will be same to
6588 * @num_bytes except for the compress path.
fb25e914 6589 * @num_bytes: The number of bytes in question
e570fd27 6590 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6591 *
745699ef
XW
6592 * This is called by the allocator when it reserves space. If this is a
6593 * reservation and the block group has become read only we cannot make the
6594 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6595 */
4824f1f4 6596static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6597 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6598{
fb25e914 6599 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6600 int ret = 0;
79787eaa 6601
fb25e914
JB
6602 spin_lock(&space_info->lock);
6603 spin_lock(&cache->lock);
4824f1f4
WX
6604 if (cache->ro) {
6605 ret = -EAGAIN;
fb25e914 6606 } else {
4824f1f4
WX
6607 cache->reserved += num_bytes;
6608 space_info->bytes_reserved += num_bytes;
e570fd27 6609
18513091
WX
6610 trace_btrfs_space_reservation(cache->fs_info,
6611 "space_info", space_info->flags,
6612 ram_bytes, 0);
6613 space_info->bytes_may_use -= ram_bytes;
e570fd27 6614 if (delalloc)
4824f1f4 6615 cache->delalloc_bytes += num_bytes;
324ae4df 6616 }
fb25e914
JB
6617 spin_unlock(&cache->lock);
6618 spin_unlock(&space_info->lock);
f0486c68 6619 return ret;
324ae4df 6620}
9078a3e1 6621
4824f1f4
WX
6622/**
6623 * btrfs_free_reserved_bytes - update the block_group and space info counters
6624 * @cache: The cache we are manipulating
6625 * @num_bytes: The number of bytes in question
6626 * @delalloc: The blocks are allocated for the delalloc write
6627 *
6628 * This is called by somebody who is freeing space that was never actually used
6629 * on disk. For example if you reserve some space for a new leaf in transaction
6630 * A and before transaction A commits you free that leaf, you call this with
6631 * reserve set to 0 in order to clear the reservation.
6632 */
6633
6634static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6635 u64 num_bytes, int delalloc)
6636{
6637 struct btrfs_space_info *space_info = cache->space_info;
6638 int ret = 0;
6639
6640 spin_lock(&space_info->lock);
6641 spin_lock(&cache->lock);
6642 if (cache->ro)
6643 space_info->bytes_readonly += num_bytes;
6644 cache->reserved -= num_bytes;
6645 space_info->bytes_reserved -= num_bytes;
6646
6647 if (delalloc)
6648 cache->delalloc_bytes -= num_bytes;
6649 spin_unlock(&cache->lock);
6650 spin_unlock(&space_info->lock);
6651 return ret;
6652}
8b74c03e 6653void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6654{
11833d66
YZ
6655 struct btrfs_caching_control *next;
6656 struct btrfs_caching_control *caching_ctl;
6657 struct btrfs_block_group_cache *cache;
e8569813 6658
9e351cc8 6659 down_write(&fs_info->commit_root_sem);
25179201 6660
11833d66
YZ
6661 list_for_each_entry_safe(caching_ctl, next,
6662 &fs_info->caching_block_groups, list) {
6663 cache = caching_ctl->block_group;
6664 if (block_group_cache_done(cache)) {
6665 cache->last_byte_to_unpin = (u64)-1;
6666 list_del_init(&caching_ctl->list);
6667 put_caching_control(caching_ctl);
e8569813 6668 } else {
11833d66 6669 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6670 }
e8569813 6671 }
11833d66
YZ
6672
6673 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6674 fs_info->pinned_extents = &fs_info->freed_extents[1];
6675 else
6676 fs_info->pinned_extents = &fs_info->freed_extents[0];
6677
9e351cc8 6678 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6679
6680 update_global_block_rsv(fs_info);
e8569813
ZY
6681}
6682
c759c4e1
JB
6683/*
6684 * Returns the free cluster for the given space info and sets empty_cluster to
6685 * what it should be based on the mount options.
6686 */
6687static struct btrfs_free_cluster *
2ff7e61e
JM
6688fetch_cluster_info(struct btrfs_fs_info *fs_info,
6689 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6690{
6691 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6692
6693 *empty_cluster = 0;
6694 if (btrfs_mixed_space_info(space_info))
6695 return ret;
6696
c759c4e1 6697 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6698 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6699 if (btrfs_test_opt(fs_info, SSD))
6700 *empty_cluster = SZ_2M;
6701 else
ee22184b 6702 *empty_cluster = SZ_64K;
583b7231
HK
6703 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6704 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6705 *empty_cluster = SZ_2M;
0b246afa 6706 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6707 }
6708
6709 return ret;
6710}
6711
2ff7e61e
JM
6712static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6713 u64 start, u64 end,
678886bd 6714 const bool return_free_space)
ccd467d6 6715{
11833d66 6716 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6717 struct btrfs_space_info *space_info;
6718 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6719 struct btrfs_free_cluster *cluster = NULL;
11833d66 6720 u64 len;
c759c4e1
JB
6721 u64 total_unpinned = 0;
6722 u64 empty_cluster = 0;
7b398f8e 6723 bool readonly;
ccd467d6 6724
11833d66 6725 while (start <= end) {
7b398f8e 6726 readonly = false;
11833d66
YZ
6727 if (!cache ||
6728 start >= cache->key.objectid + cache->key.offset) {
6729 if (cache)
6730 btrfs_put_block_group(cache);
c759c4e1 6731 total_unpinned = 0;
11833d66 6732 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6733 BUG_ON(!cache); /* Logic error */
c759c4e1 6734
2ff7e61e 6735 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6736 cache->space_info,
6737 &empty_cluster);
6738 empty_cluster <<= 1;
11833d66
YZ
6739 }
6740
6741 len = cache->key.objectid + cache->key.offset - start;
6742 len = min(len, end + 1 - start);
6743
6744 if (start < cache->last_byte_to_unpin) {
6745 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6746 if (return_free_space)
6747 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6748 }
6749
f0486c68 6750 start += len;
c759c4e1 6751 total_unpinned += len;
7b398f8e 6752 space_info = cache->space_info;
f0486c68 6753
c759c4e1
JB
6754 /*
6755 * If this space cluster has been marked as fragmented and we've
6756 * unpinned enough in this block group to potentially allow a
6757 * cluster to be created inside of it go ahead and clear the
6758 * fragmented check.
6759 */
6760 if (cluster && cluster->fragmented &&
6761 total_unpinned > empty_cluster) {
6762 spin_lock(&cluster->lock);
6763 cluster->fragmented = 0;
6764 spin_unlock(&cluster->lock);
6765 }
6766
7b398f8e 6767 spin_lock(&space_info->lock);
11833d66
YZ
6768 spin_lock(&cache->lock);
6769 cache->pinned -= len;
7b398f8e 6770 space_info->bytes_pinned -= len;
c51e7bb1
JB
6771
6772 trace_btrfs_space_reservation(fs_info, "pinned",
6773 space_info->flags, len, 0);
4f4db217 6774 space_info->max_extent_size = 0;
d288db5d 6775 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6776 if (cache->ro) {
6777 space_info->bytes_readonly += len;
6778 readonly = true;
6779 }
11833d66 6780 spin_unlock(&cache->lock);
957780eb
JB
6781 if (!readonly && return_free_space &&
6782 global_rsv->space_info == space_info) {
6783 u64 to_add = len;
92ac58ec 6784
7b398f8e
JB
6785 spin_lock(&global_rsv->lock);
6786 if (!global_rsv->full) {
957780eb
JB
6787 to_add = min(len, global_rsv->size -
6788 global_rsv->reserved);
6789 global_rsv->reserved += to_add;
6790 space_info->bytes_may_use += to_add;
7b398f8e
JB
6791 if (global_rsv->reserved >= global_rsv->size)
6792 global_rsv->full = 1;
957780eb
JB
6793 trace_btrfs_space_reservation(fs_info,
6794 "space_info",
6795 space_info->flags,
6796 to_add, 1);
6797 len -= to_add;
7b398f8e
JB
6798 }
6799 spin_unlock(&global_rsv->lock);
957780eb
JB
6800 /* Add to any tickets we may have */
6801 if (len)
6802 space_info_add_new_bytes(fs_info, space_info,
6803 len);
7b398f8e
JB
6804 }
6805 spin_unlock(&space_info->lock);
ccd467d6 6806 }
11833d66
YZ
6807
6808 if (cache)
6809 btrfs_put_block_group(cache);
ccd467d6
CM
6810 return 0;
6811}
6812
5ead2dd0 6813int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6814{
5ead2dd0 6815 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6816 struct btrfs_block_group_cache *block_group, *tmp;
6817 struct list_head *deleted_bgs;
11833d66 6818 struct extent_io_tree *unpin;
1a5bc167
CM
6819 u64 start;
6820 u64 end;
a28ec197 6821 int ret;
a28ec197 6822
11833d66
YZ
6823 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6824 unpin = &fs_info->freed_extents[1];
6825 else
6826 unpin = &fs_info->freed_extents[0];
6827
e33e17ee 6828 while (!trans->aborted) {
d4b450cd 6829 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6830 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6831 EXTENT_DIRTY, NULL);
d4b450cd
FM
6832 if (ret) {
6833 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6834 break;
d4b450cd 6835 }
1f3c79a2 6836
0b246afa 6837 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6838 ret = btrfs_discard_extent(fs_info, start,
5378e607 6839 end + 1 - start, NULL);
1f3c79a2 6840
af6f8f60 6841 clear_extent_dirty(unpin, start, end);
2ff7e61e 6842 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6843 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6844 cond_resched();
a28ec197 6845 }
817d52f8 6846
e33e17ee
JM
6847 /*
6848 * Transaction is finished. We don't need the lock anymore. We
6849 * do need to clean up the block groups in case of a transaction
6850 * abort.
6851 */
6852 deleted_bgs = &trans->transaction->deleted_bgs;
6853 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6854 u64 trimmed = 0;
6855
6856 ret = -EROFS;
6857 if (!trans->aborted)
2ff7e61e 6858 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6859 block_group->key.objectid,
6860 block_group->key.offset,
6861 &trimmed);
6862
6863 list_del_init(&block_group->bg_list);
6864 btrfs_put_block_group_trimming(block_group);
6865 btrfs_put_block_group(block_group);
6866
6867 if (ret) {
6868 const char *errstr = btrfs_decode_error(ret);
6869 btrfs_warn(fs_info,
913e1535 6870 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6871 ret, errstr);
6872 }
6873 }
6874
e20d96d6
CM
6875 return 0;
6876}
6877
5d4f98a2 6878static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6879 struct btrfs_fs_info *info,
c682f9b3 6880 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6881 u64 root_objectid, u64 owner_objectid,
6882 u64 owner_offset, int refs_to_drop,
c682f9b3 6883 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6884{
e2fa7227 6885 struct btrfs_key key;
5d4f98a2 6886 struct btrfs_path *path;
1261ec42 6887 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6888 struct extent_buffer *leaf;
5d4f98a2
YZ
6889 struct btrfs_extent_item *ei;
6890 struct btrfs_extent_inline_ref *iref;
a28ec197 6891 int ret;
5d4f98a2 6892 int is_data;
952fccac
CM
6893 int extent_slot = 0;
6894 int found_extent = 0;
6895 int num_to_del = 1;
5d4f98a2
YZ
6896 u32 item_size;
6897 u64 refs;
c682f9b3
QW
6898 u64 bytenr = node->bytenr;
6899 u64 num_bytes = node->num_bytes;
fcebe456 6900 int last_ref = 0;
0b246afa 6901 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6902
5caf2a00 6903 path = btrfs_alloc_path();
54aa1f4d
CM
6904 if (!path)
6905 return -ENOMEM;
5f26f772 6906
e4058b54 6907 path->reada = READA_FORWARD;
b9473439 6908 path->leave_spinning = 1;
5d4f98a2
YZ
6909
6910 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6911 BUG_ON(!is_data && refs_to_drop != 1);
6912
3173a18f 6913 if (is_data)
897ca819 6914 skinny_metadata = false;
3173a18f 6915
87bde3cd 6916 ret = lookup_extent_backref(trans, info, path, &iref,
5d4f98a2
YZ
6917 bytenr, num_bytes, parent,
6918 root_objectid, owner_objectid,
6919 owner_offset);
7bb86316 6920 if (ret == 0) {
952fccac 6921 extent_slot = path->slots[0];
5d4f98a2
YZ
6922 while (extent_slot >= 0) {
6923 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6924 extent_slot);
5d4f98a2 6925 if (key.objectid != bytenr)
952fccac 6926 break;
5d4f98a2
YZ
6927 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6928 key.offset == num_bytes) {
952fccac
CM
6929 found_extent = 1;
6930 break;
6931 }
3173a18f
JB
6932 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6933 key.offset == owner_objectid) {
6934 found_extent = 1;
6935 break;
6936 }
952fccac
CM
6937 if (path->slots[0] - extent_slot > 5)
6938 break;
5d4f98a2 6939 extent_slot--;
952fccac 6940 }
5d4f98a2
YZ
6941#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6942 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6943 if (found_extent && item_size < sizeof(*ei))
6944 found_extent = 0;
6945#endif
31840ae1 6946 if (!found_extent) {
5d4f98a2 6947 BUG_ON(iref);
87bde3cd
JM
6948 ret = remove_extent_backref(trans, info, path, NULL,
6949 refs_to_drop,
fcebe456 6950 is_data, &last_ref);
005d6427 6951 if (ret) {
66642832 6952 btrfs_abort_transaction(trans, ret);
005d6427
DS
6953 goto out;
6954 }
b3b4aa74 6955 btrfs_release_path(path);
b9473439 6956 path->leave_spinning = 1;
5d4f98a2
YZ
6957
6958 key.objectid = bytenr;
6959 key.type = BTRFS_EXTENT_ITEM_KEY;
6960 key.offset = num_bytes;
6961
3173a18f
JB
6962 if (!is_data && skinny_metadata) {
6963 key.type = BTRFS_METADATA_ITEM_KEY;
6964 key.offset = owner_objectid;
6965 }
6966
31840ae1
ZY
6967 ret = btrfs_search_slot(trans, extent_root,
6968 &key, path, -1, 1);
3173a18f
JB
6969 if (ret > 0 && skinny_metadata && path->slots[0]) {
6970 /*
6971 * Couldn't find our skinny metadata item,
6972 * see if we have ye olde extent item.
6973 */
6974 path->slots[0]--;
6975 btrfs_item_key_to_cpu(path->nodes[0], &key,
6976 path->slots[0]);
6977 if (key.objectid == bytenr &&
6978 key.type == BTRFS_EXTENT_ITEM_KEY &&
6979 key.offset == num_bytes)
6980 ret = 0;
6981 }
6982
6983 if (ret > 0 && skinny_metadata) {
6984 skinny_metadata = false;
9ce49a0b 6985 key.objectid = bytenr;
3173a18f
JB
6986 key.type = BTRFS_EXTENT_ITEM_KEY;
6987 key.offset = num_bytes;
6988 btrfs_release_path(path);
6989 ret = btrfs_search_slot(trans, extent_root,
6990 &key, path, -1, 1);
6991 }
6992
f3465ca4 6993 if (ret) {
5d163e0e
JM
6994 btrfs_err(info,
6995 "umm, got %d back from search, was looking for %llu",
6996 ret, bytenr);
b783e62d 6997 if (ret > 0)
a4f78750 6998 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6999 }
005d6427 7000 if (ret < 0) {
66642832 7001 btrfs_abort_transaction(trans, ret);
005d6427
DS
7002 goto out;
7003 }
31840ae1
ZY
7004 extent_slot = path->slots[0];
7005 }
fae7f21c 7006 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 7007 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
7008 btrfs_err(info,
7009 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
7010 bytenr, parent, root_objectid, owner_objectid,
7011 owner_offset);
66642832 7012 btrfs_abort_transaction(trans, ret);
c4a050bb 7013 goto out;
79787eaa 7014 } else {
66642832 7015 btrfs_abort_transaction(trans, ret);
005d6427 7016 goto out;
7bb86316 7017 }
5f39d397
CM
7018
7019 leaf = path->nodes[0];
5d4f98a2
YZ
7020 item_size = btrfs_item_size_nr(leaf, extent_slot);
7021#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7022 if (item_size < sizeof(*ei)) {
7023 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
7024 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7025 0);
005d6427 7026 if (ret < 0) {
66642832 7027 btrfs_abort_transaction(trans, ret);
005d6427
DS
7028 goto out;
7029 }
5d4f98a2 7030
b3b4aa74 7031 btrfs_release_path(path);
5d4f98a2
YZ
7032 path->leave_spinning = 1;
7033
7034 key.objectid = bytenr;
7035 key.type = BTRFS_EXTENT_ITEM_KEY;
7036 key.offset = num_bytes;
7037
7038 ret = btrfs_search_slot(trans, extent_root, &key, path,
7039 -1, 1);
7040 if (ret) {
5d163e0e
JM
7041 btrfs_err(info,
7042 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7043 ret, bytenr);
a4f78750 7044 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7045 }
005d6427 7046 if (ret < 0) {
66642832 7047 btrfs_abort_transaction(trans, ret);
005d6427
DS
7048 goto out;
7049 }
7050
5d4f98a2
YZ
7051 extent_slot = path->slots[0];
7052 leaf = path->nodes[0];
7053 item_size = btrfs_item_size_nr(leaf, extent_slot);
7054 }
7055#endif
7056 BUG_ON(item_size < sizeof(*ei));
952fccac 7057 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7058 struct btrfs_extent_item);
3173a18f
JB
7059 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7060 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7061 struct btrfs_tree_block_info *bi;
7062 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7063 bi = (struct btrfs_tree_block_info *)(ei + 1);
7064 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7065 }
56bec294 7066
5d4f98a2 7067 refs = btrfs_extent_refs(leaf, ei);
32b02538 7068 if (refs < refs_to_drop) {
5d163e0e
JM
7069 btrfs_err(info,
7070 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7071 refs_to_drop, refs, bytenr);
32b02538 7072 ret = -EINVAL;
66642832 7073 btrfs_abort_transaction(trans, ret);
32b02538
JB
7074 goto out;
7075 }
56bec294 7076 refs -= refs_to_drop;
5f39d397 7077
5d4f98a2
YZ
7078 if (refs > 0) {
7079 if (extent_op)
7080 __run_delayed_extent_op(extent_op, leaf, ei);
7081 /*
7082 * In the case of inline back ref, reference count will
7083 * be updated by remove_extent_backref
952fccac 7084 */
5d4f98a2
YZ
7085 if (iref) {
7086 BUG_ON(!found_extent);
7087 } else {
7088 btrfs_set_extent_refs(leaf, ei, refs);
7089 btrfs_mark_buffer_dirty(leaf);
7090 }
7091 if (found_extent) {
87bde3cd 7092 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7093 iref, refs_to_drop,
fcebe456 7094 is_data, &last_ref);
005d6427 7095 if (ret) {
66642832 7096 btrfs_abort_transaction(trans, ret);
005d6427
DS
7097 goto out;
7098 }
952fccac 7099 }
5d4f98a2 7100 } else {
5d4f98a2
YZ
7101 if (found_extent) {
7102 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7103 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7104 if (iref) {
7105 BUG_ON(path->slots[0] != extent_slot);
7106 } else {
7107 BUG_ON(path->slots[0] != extent_slot + 1);
7108 path->slots[0] = extent_slot;
7109 num_to_del = 2;
7110 }
78fae27e 7111 }
b9473439 7112
fcebe456 7113 last_ref = 1;
952fccac
CM
7114 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7115 num_to_del);
005d6427 7116 if (ret) {
66642832 7117 btrfs_abort_transaction(trans, ret);
005d6427
DS
7118 goto out;
7119 }
b3b4aa74 7120 btrfs_release_path(path);
21af804c 7121
5d4f98a2 7122 if (is_data) {
5b4aacef 7123 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7124 if (ret) {
66642832 7125 btrfs_abort_transaction(trans, ret);
005d6427
DS
7126 goto out;
7127 }
459931ec
CM
7128 }
7129
0b246afa 7130 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
1e144fb8 7131 if (ret) {
66642832 7132 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7133 goto out;
7134 }
7135
0b246afa 7136 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7137 if (ret) {
66642832 7138 btrfs_abort_transaction(trans, ret);
005d6427
DS
7139 goto out;
7140 }
a28ec197 7141 }
fcebe456
JB
7142 btrfs_release_path(path);
7143
79787eaa 7144out:
5caf2a00 7145 btrfs_free_path(path);
a28ec197
CM
7146 return ret;
7147}
7148
1887be66 7149/*
f0486c68 7150 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7151 * delayed ref for that extent as well. This searches the delayed ref tree for
7152 * a given extent, and if there are no other delayed refs to be processed, it
7153 * removes it from the tree.
7154 */
7155static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7156 u64 bytenr)
1887be66
CM
7157{
7158 struct btrfs_delayed_ref_head *head;
7159 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7160 int ret = 0;
1887be66
CM
7161
7162 delayed_refs = &trans->transaction->delayed_refs;
7163 spin_lock(&delayed_refs->lock);
f72ad18e 7164 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7165 if (!head)
cf93da7b 7166 goto out_delayed_unlock;
1887be66 7167
d7df2c79 7168 spin_lock(&head->lock);
0e0adbcf 7169 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7170 goto out;
7171
5d4f98a2
YZ
7172 if (head->extent_op) {
7173 if (!head->must_insert_reserved)
7174 goto out;
78a6184a 7175 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7176 head->extent_op = NULL;
7177 }
7178
1887be66
CM
7179 /*
7180 * waiting for the lock here would deadlock. If someone else has it
7181 * locked they are already in the process of dropping it anyway
7182 */
7183 if (!mutex_trylock(&head->mutex))
7184 goto out;
7185
7186 /*
7187 * at this point we have a head with no other entries. Go
7188 * ahead and process it.
7189 */
c46effa6 7190 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7191 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7192 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7193
7194 /*
7195 * we don't take a ref on the node because we're removing it from the
7196 * tree, so we just steal the ref the tree was holding.
7197 */
c3e69d58 7198 delayed_refs->num_heads--;
d7df2c79 7199 if (head->processing == 0)
c3e69d58 7200 delayed_refs->num_heads_ready--;
d7df2c79
JB
7201 head->processing = 0;
7202 spin_unlock(&head->lock);
1887be66
CM
7203 spin_unlock(&delayed_refs->lock);
7204
f0486c68
YZ
7205 BUG_ON(head->extent_op);
7206 if (head->must_insert_reserved)
7207 ret = 1;
7208
7209 mutex_unlock(&head->mutex);
d278850e 7210 btrfs_put_delayed_ref_head(head);
f0486c68 7211 return ret;
1887be66 7212out:
d7df2c79 7213 spin_unlock(&head->lock);
cf93da7b
CM
7214
7215out_delayed_unlock:
1887be66
CM
7216 spin_unlock(&delayed_refs->lock);
7217 return 0;
7218}
7219
f0486c68
YZ
7220void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7221 struct btrfs_root *root,
7222 struct extent_buffer *buf,
5581a51a 7223 u64 parent, int last_ref)
f0486c68 7224{
0b246afa 7225 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7226 int pin = 1;
f0486c68
YZ
7227 int ret;
7228
7229 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7230 int old_ref_mod, new_ref_mod;
7231
fd708b81
JB
7232 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7233 root->root_key.objectid,
7234 btrfs_header_level(buf), 0,
7235 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7236 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7237 buf->len, parent,
0b246afa
JM
7238 root->root_key.objectid,
7239 btrfs_header_level(buf),
7be07912 7240 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7241 &old_ref_mod, &new_ref_mod);
79787eaa 7242 BUG_ON(ret); /* -ENOMEM */
d7eae340 7243 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7244 }
7245
0a16c7d7 7246 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7247 struct btrfs_block_group_cache *cache;
7248
f0486c68 7249 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7250 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7251 if (!ret)
37be25bc 7252 goto out;
f0486c68
YZ
7253 }
7254
4da8b76d 7255 pin = 0;
0b246afa 7256 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7257
f0486c68 7258 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7259 pin_down_extent(fs_info, cache, buf->start,
7260 buf->len, 1);
6219872d 7261 btrfs_put_block_group(cache);
37be25bc 7262 goto out;
f0486c68
YZ
7263 }
7264
7265 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7266
7267 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7268 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7269 btrfs_put_block_group(cache);
71ff6437 7270 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7271 }
7272out:
b150a4f1 7273 if (pin)
29d2b84c 7274 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7275 root->root_key.objectid);
7276
0a16c7d7
OS
7277 if (last_ref) {
7278 /*
7279 * Deleting the buffer, clear the corrupt flag since it doesn't
7280 * matter anymore.
7281 */
7282 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7283 }
f0486c68
YZ
7284}
7285
79787eaa 7286/* Can return -ENOMEM */
2ff7e61e 7287int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7288 struct btrfs_root *root,
66d7e7f0 7289 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7290 u64 owner, u64 offset)
925baedd 7291{
84f7d8e6 7292 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7293 int old_ref_mod, new_ref_mod;
925baedd
CM
7294 int ret;
7295
f5ee5c9a 7296 if (btrfs_is_testing(fs_info))
faa2dbf0 7297 return 0;
fccb84c9 7298
fd708b81
JB
7299 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7300 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7301 root_objectid, owner, offset,
7302 BTRFS_DROP_DELAYED_REF);
7303
56bec294
CM
7304 /*
7305 * tree log blocks never actually go into the extent allocation
7306 * tree, just update pinning info and exit early.
56bec294 7307 */
5d4f98a2
YZ
7308 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7309 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7310 /* unlocks the pinned mutex */
2ff7e61e 7311 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7312 old_ref_mod = new_ref_mod = 0;
56bec294 7313 ret = 0;
5d4f98a2 7314 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7315 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7316 num_bytes, parent,
7317 root_objectid, (int)owner,
7318 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7319 &old_ref_mod, &new_ref_mod);
5d4f98a2 7320 } else {
66d7e7f0 7321 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7322 num_bytes, parent,
7323 root_objectid, owner, offset,
7324 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7325 &old_ref_mod, &new_ref_mod);
56bec294 7326 }
d7eae340 7327
29d2b84c
NB
7328 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7329 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7330
7331 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7332 }
d7eae340 7333
925baedd
CM
7334 return ret;
7335}
7336
817d52f8
JB
7337/*
7338 * when we wait for progress in the block group caching, its because
7339 * our allocation attempt failed at least once. So, we must sleep
7340 * and let some progress happen before we try again.
7341 *
7342 * This function will sleep at least once waiting for new free space to
7343 * show up, and then it will check the block group free space numbers
7344 * for our min num_bytes. Another option is to have it go ahead
7345 * and look in the rbtree for a free extent of a given size, but this
7346 * is a good start.
36cce922
JB
7347 *
7348 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7349 * any of the information in this block group.
817d52f8 7350 */
36cce922 7351static noinline void
817d52f8
JB
7352wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7353 u64 num_bytes)
7354{
11833d66 7355 struct btrfs_caching_control *caching_ctl;
817d52f8 7356
11833d66
YZ
7357 caching_ctl = get_caching_control(cache);
7358 if (!caching_ctl)
36cce922 7359 return;
817d52f8 7360
11833d66 7361 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7362 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7363
7364 put_caching_control(caching_ctl);
11833d66
YZ
7365}
7366
7367static noinline int
7368wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7369{
7370 struct btrfs_caching_control *caching_ctl;
36cce922 7371 int ret = 0;
11833d66
YZ
7372
7373 caching_ctl = get_caching_control(cache);
7374 if (!caching_ctl)
36cce922 7375 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7376
7377 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7378 if (cache->cached == BTRFS_CACHE_ERROR)
7379 ret = -EIO;
11833d66 7380 put_caching_control(caching_ctl);
36cce922 7381 return ret;
817d52f8
JB
7382}
7383
6ab0a202
JM
7384static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7385 [BTRFS_RAID_RAID10] = "raid10",
7386 [BTRFS_RAID_RAID1] = "raid1",
7387 [BTRFS_RAID_DUP] = "dup",
7388 [BTRFS_RAID_RAID0] = "raid0",
7389 [BTRFS_RAID_SINGLE] = "single",
7390 [BTRFS_RAID_RAID5] = "raid5",
7391 [BTRFS_RAID_RAID6] = "raid6",
7392};
7393
1b8e5df6 7394static const char *get_raid_name(enum btrfs_raid_types type)
6ab0a202
JM
7395{
7396 if (type >= BTRFS_NR_RAID_TYPES)
7397 return NULL;
7398
7399 return btrfs_raid_type_names[type];
7400}
7401
817d52f8 7402enum btrfs_loop_type {
285ff5af
JB
7403 LOOP_CACHING_NOWAIT = 0,
7404 LOOP_CACHING_WAIT = 1,
7405 LOOP_ALLOC_CHUNK = 2,
7406 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7407};
7408
e570fd27
MX
7409static inline void
7410btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7411 int delalloc)
7412{
7413 if (delalloc)
7414 down_read(&cache->data_rwsem);
7415}
7416
7417static inline void
7418btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7419 int delalloc)
7420{
7421 btrfs_get_block_group(cache);
7422 if (delalloc)
7423 down_read(&cache->data_rwsem);
7424}
7425
7426static struct btrfs_block_group_cache *
7427btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7428 struct btrfs_free_cluster *cluster,
7429 int delalloc)
7430{
89771cc9 7431 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7432
e570fd27 7433 spin_lock(&cluster->refill_lock);
6719afdc
GU
7434 while (1) {
7435 used_bg = cluster->block_group;
7436 if (!used_bg)
7437 return NULL;
7438
7439 if (used_bg == block_group)
e570fd27
MX
7440 return used_bg;
7441
6719afdc 7442 btrfs_get_block_group(used_bg);
e570fd27 7443
6719afdc
GU
7444 if (!delalloc)
7445 return used_bg;
e570fd27 7446
6719afdc
GU
7447 if (down_read_trylock(&used_bg->data_rwsem))
7448 return used_bg;
e570fd27 7449
6719afdc 7450 spin_unlock(&cluster->refill_lock);
e570fd27 7451
e321f8a8
LB
7452 /* We should only have one-level nested. */
7453 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7454
6719afdc
GU
7455 spin_lock(&cluster->refill_lock);
7456 if (used_bg == cluster->block_group)
7457 return used_bg;
e570fd27 7458
6719afdc
GU
7459 up_read(&used_bg->data_rwsem);
7460 btrfs_put_block_group(used_bg);
7461 }
e570fd27
MX
7462}
7463
7464static inline void
7465btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7466 int delalloc)
7467{
7468 if (delalloc)
7469 up_read(&cache->data_rwsem);
7470 btrfs_put_block_group(cache);
7471}
7472
fec577fb
CM
7473/*
7474 * walks the btree of allocated extents and find a hole of a given size.
7475 * The key ins is changed to record the hole:
a4820398 7476 * ins->objectid == start position
62e2749e 7477 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7478 * ins->offset == the size of the hole.
fec577fb 7479 * Any available blocks before search_start are skipped.
a4820398
MX
7480 *
7481 * If there is no suitable free space, we will record the max size of
7482 * the free space extent currently.
fec577fb 7483 */
87bde3cd 7484static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7485 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7486 u64 hint_byte, struct btrfs_key *ins,
7487 u64 flags, int delalloc)
fec577fb 7488{
80eb234a 7489 int ret = 0;
0b246afa 7490 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7491 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7492 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7493 u64 search_start = 0;
a4820398 7494 u64 max_extent_size = 0;
c759c4e1 7495 u64 empty_cluster = 0;
80eb234a 7496 struct btrfs_space_info *space_info;
fa9c0d79 7497 int loop = 0;
3e72ee88 7498 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7499 bool failed_cluster_refill = false;
1cdda9b8 7500 bool failed_alloc = false;
67377734 7501 bool use_cluster = true;
60d2adbb 7502 bool have_caching_bg = false;
13a0db5a 7503 bool orig_have_caching_bg = false;
a5e681d9 7504 bool full_search = false;
fec577fb 7505
0b246afa 7506 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7507 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7508 ins->objectid = 0;
7509 ins->offset = 0;
b1a4d965 7510
71ff6437 7511 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7512
0b246afa 7513 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7514 if (!space_info) {
0b246afa 7515 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7516 return -ENOSPC;
7517 }
2552d17e 7518
67377734 7519 /*
4f4db217
JB
7520 * If our free space is heavily fragmented we may not be able to make
7521 * big contiguous allocations, so instead of doing the expensive search
7522 * for free space, simply return ENOSPC with our max_extent_size so we
7523 * can go ahead and search for a more manageable chunk.
7524 *
7525 * If our max_extent_size is large enough for our allocation simply
7526 * disable clustering since we will likely not be able to find enough
7527 * space to create a cluster and induce latency trying.
67377734 7528 */
4f4db217
JB
7529 if (unlikely(space_info->max_extent_size)) {
7530 spin_lock(&space_info->lock);
7531 if (space_info->max_extent_size &&
7532 num_bytes > space_info->max_extent_size) {
7533 ins->offset = space_info->max_extent_size;
7534 spin_unlock(&space_info->lock);
7535 return -ENOSPC;
7536 } else if (space_info->max_extent_size) {
7537 use_cluster = false;
7538 }
7539 spin_unlock(&space_info->lock);
fa9c0d79 7540 }
0f9dd46c 7541
2ff7e61e 7542 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7543 if (last_ptr) {
fa9c0d79
CM
7544 spin_lock(&last_ptr->lock);
7545 if (last_ptr->block_group)
7546 hint_byte = last_ptr->window_start;
c759c4e1
JB
7547 if (last_ptr->fragmented) {
7548 /*
7549 * We still set window_start so we can keep track of the
7550 * last place we found an allocation to try and save
7551 * some time.
7552 */
7553 hint_byte = last_ptr->window_start;
7554 use_cluster = false;
7555 }
fa9c0d79 7556 spin_unlock(&last_ptr->lock);
239b14b3 7557 }
fa9c0d79 7558
2ff7e61e 7559 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7560 search_start = max(search_start, hint_byte);
2552d17e 7561 if (search_start == hint_byte) {
0b246afa 7562 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7563 /*
7564 * we don't want to use the block group if it doesn't match our
7565 * allocation bits, or if its not cached.
ccf0e725
JB
7566 *
7567 * However if we are re-searching with an ideal block group
7568 * picked out then we don't care that the block group is cached.
817d52f8 7569 */
b6919a58 7570 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7571 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7572 down_read(&space_info->groups_sem);
44fb5511
CM
7573 if (list_empty(&block_group->list) ||
7574 block_group->ro) {
7575 /*
7576 * someone is removing this block group,
7577 * we can't jump into the have_block_group
7578 * target because our list pointers are not
7579 * valid
7580 */
7581 btrfs_put_block_group(block_group);
7582 up_read(&space_info->groups_sem);
ccf0e725 7583 } else {
3e72ee88
QW
7584 index = btrfs_bg_flags_to_raid_index(
7585 block_group->flags);
e570fd27 7586 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7587 goto have_block_group;
ccf0e725 7588 }
2552d17e 7589 } else if (block_group) {
fa9c0d79 7590 btrfs_put_block_group(block_group);
2552d17e 7591 }
42e70e7a 7592 }
2552d17e 7593search:
60d2adbb 7594 have_caching_bg = false;
3e72ee88 7595 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7596 full_search = true;
80eb234a 7597 down_read(&space_info->groups_sem);
b742bb82
YZ
7598 list_for_each_entry(block_group, &space_info->block_groups[index],
7599 list) {
6226cb0a 7600 u64 offset;
817d52f8 7601 int cached;
8a1413a2 7602
14443937
JM
7603 /* If the block group is read-only, we can skip it entirely. */
7604 if (unlikely(block_group->ro))
7605 continue;
7606
e570fd27 7607 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7608 search_start = block_group->key.objectid;
42e70e7a 7609
83a50de9
CM
7610 /*
7611 * this can happen if we end up cycling through all the
7612 * raid types, but we want to make sure we only allocate
7613 * for the proper type.
7614 */
b6919a58 7615 if (!block_group_bits(block_group, flags)) {
83a50de9
CM
7616 u64 extra = BTRFS_BLOCK_GROUP_DUP |
7617 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7618 BTRFS_BLOCK_GROUP_RAID5 |
7619 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7620 BTRFS_BLOCK_GROUP_RAID10;
7621
7622 /*
7623 * if they asked for extra copies and this block group
7624 * doesn't provide them, bail. This does allow us to
7625 * fill raid0 from raid1.
7626 */
b6919a58 7627 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7628 goto loop;
7629 }
7630
2552d17e 7631have_block_group:
291c7d2f
JB
7632 cached = block_group_cache_done(block_group);
7633 if (unlikely(!cached)) {
a5e681d9 7634 have_caching_bg = true;
f6373bf3 7635 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7636 BUG_ON(ret < 0);
7637 ret = 0;
817d52f8
JB
7638 }
7639
36cce922
JB
7640 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7641 goto loop;
0f9dd46c 7642
0a24325e 7643 /*
062c05c4
AO
7644 * Ok we want to try and use the cluster allocator, so
7645 * lets look there
0a24325e 7646 */
c759c4e1 7647 if (last_ptr && use_cluster) {
215a63d1 7648 struct btrfs_block_group_cache *used_block_group;
8de972b4 7649 unsigned long aligned_cluster;
fa9c0d79
CM
7650 /*
7651 * the refill lock keeps out other
7652 * people trying to start a new cluster
7653 */
e570fd27
MX
7654 used_block_group = btrfs_lock_cluster(block_group,
7655 last_ptr,
7656 delalloc);
7657 if (!used_block_group)
44fb5511 7658 goto refill_cluster;
274bd4fb 7659
e570fd27
MX
7660 if (used_block_group != block_group &&
7661 (used_block_group->ro ||
7662 !block_group_bits(used_block_group, flags)))
7663 goto release_cluster;
44fb5511 7664
274bd4fb 7665 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7666 last_ptr,
7667 num_bytes,
7668 used_block_group->key.objectid,
7669 &max_extent_size);
fa9c0d79
CM
7670 if (offset) {
7671 /* we have a block, we're done */
7672 spin_unlock(&last_ptr->refill_lock);
71ff6437 7673 trace_btrfs_reserve_extent_cluster(fs_info,
89d4346a
MX
7674 used_block_group,
7675 search_start, num_bytes);
215a63d1 7676 if (used_block_group != block_group) {
e570fd27
MX
7677 btrfs_release_block_group(block_group,
7678 delalloc);
215a63d1
MX
7679 block_group = used_block_group;
7680 }
fa9c0d79
CM
7681 goto checks;
7682 }
7683
274bd4fb 7684 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7685release_cluster:
062c05c4
AO
7686 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7687 * set up a new clusters, so lets just skip it
7688 * and let the allocator find whatever block
7689 * it can find. If we reach this point, we
7690 * will have tried the cluster allocator
7691 * plenty of times and not have found
7692 * anything, so we are likely way too
7693 * fragmented for the clustering stuff to find
a5f6f719
AO
7694 * anything.
7695 *
7696 * However, if the cluster is taken from the
7697 * current block group, release the cluster
7698 * first, so that we stand a better chance of
7699 * succeeding in the unclustered
7700 * allocation. */
7701 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7702 used_block_group != block_group) {
062c05c4 7703 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7704 btrfs_release_block_group(used_block_group,
7705 delalloc);
062c05c4
AO
7706 goto unclustered_alloc;
7707 }
7708
fa9c0d79
CM
7709 /*
7710 * this cluster didn't work out, free it and
7711 * start over
7712 */
7713 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7714
e570fd27
MX
7715 if (used_block_group != block_group)
7716 btrfs_release_block_group(used_block_group,
7717 delalloc);
7718refill_cluster:
a5f6f719
AO
7719 if (loop >= LOOP_NO_EMPTY_SIZE) {
7720 spin_unlock(&last_ptr->refill_lock);
7721 goto unclustered_alloc;
7722 }
7723
8de972b4
CM
7724 aligned_cluster = max_t(unsigned long,
7725 empty_cluster + empty_size,
7726 block_group->full_stripe_len);
7727
fa9c0d79 7728 /* allocate a cluster in this block group */
2ff7e61e 7729 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7730 last_ptr, search_start,
7731 num_bytes,
7732 aligned_cluster);
fa9c0d79
CM
7733 if (ret == 0) {
7734 /*
7735 * now pull our allocation out of this
7736 * cluster
7737 */
7738 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7739 last_ptr,
7740 num_bytes,
7741 search_start,
7742 &max_extent_size);
fa9c0d79
CM
7743 if (offset) {
7744 /* we found one, proceed */
7745 spin_unlock(&last_ptr->refill_lock);
71ff6437 7746 trace_btrfs_reserve_extent_cluster(fs_info,
3f7de037
JB
7747 block_group, search_start,
7748 num_bytes);
fa9c0d79
CM
7749 goto checks;
7750 }
0a24325e
JB
7751 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7752 && !failed_cluster_refill) {
817d52f8
JB
7753 spin_unlock(&last_ptr->refill_lock);
7754
0a24325e 7755 failed_cluster_refill = true;
817d52f8
JB
7756 wait_block_group_cache_progress(block_group,
7757 num_bytes + empty_cluster + empty_size);
7758 goto have_block_group;
fa9c0d79 7759 }
817d52f8 7760
fa9c0d79
CM
7761 /*
7762 * at this point we either didn't find a cluster
7763 * or we weren't able to allocate a block from our
7764 * cluster. Free the cluster we've been trying
7765 * to use, and go to the next block group
7766 */
0a24325e 7767 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7768 spin_unlock(&last_ptr->refill_lock);
0a24325e 7769 goto loop;
fa9c0d79
CM
7770 }
7771
062c05c4 7772unclustered_alloc:
c759c4e1
JB
7773 /*
7774 * We are doing an unclustered alloc, set the fragmented flag so
7775 * we don't bother trying to setup a cluster again until we get
7776 * more space.
7777 */
7778 if (unlikely(last_ptr)) {
7779 spin_lock(&last_ptr->lock);
7780 last_ptr->fragmented = 1;
7781 spin_unlock(&last_ptr->lock);
7782 }
0c9b36e0
LB
7783 if (cached) {
7784 struct btrfs_free_space_ctl *ctl =
7785 block_group->free_space_ctl;
7786
7787 spin_lock(&ctl->tree_lock);
7788 if (ctl->free_space <
7789 num_bytes + empty_cluster + empty_size) {
7790 if (ctl->free_space > max_extent_size)
7791 max_extent_size = ctl->free_space;
7792 spin_unlock(&ctl->tree_lock);
7793 goto loop;
7794 }
7795 spin_unlock(&ctl->tree_lock);
a5f6f719 7796 }
a5f6f719 7797
6226cb0a 7798 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7799 num_bytes, empty_size,
7800 &max_extent_size);
1cdda9b8
JB
7801 /*
7802 * If we didn't find a chunk, and we haven't failed on this
7803 * block group before, and this block group is in the middle of
7804 * caching and we are ok with waiting, then go ahead and wait
7805 * for progress to be made, and set failed_alloc to true.
7806 *
7807 * If failed_alloc is true then we've already waited on this
7808 * block group once and should move on to the next block group.
7809 */
7810 if (!offset && !failed_alloc && !cached &&
7811 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7812 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7813 num_bytes + empty_size);
7814 failed_alloc = true;
817d52f8 7815 goto have_block_group;
1cdda9b8
JB
7816 } else if (!offset) {
7817 goto loop;
817d52f8 7818 }
fa9c0d79 7819checks:
0b246afa 7820 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7821
2552d17e
JB
7822 /* move on to the next group */
7823 if (search_start + num_bytes >
215a63d1
MX
7824 block_group->key.objectid + block_group->key.offset) {
7825 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7826 goto loop;
6226cb0a 7827 }
f5a31e16 7828
f0486c68 7829 if (offset < search_start)
215a63d1 7830 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7831 search_start - offset);
7832 BUG_ON(offset > search_start);
2552d17e 7833
18513091
WX
7834 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7835 num_bytes, delalloc);
f0486c68 7836 if (ret == -EAGAIN) {
215a63d1 7837 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7838 goto loop;
0f9dd46c 7839 }
9cfa3e34 7840 btrfs_inc_block_group_reservations(block_group);
0b86a832 7841
f0486c68 7842 /* we are all good, lets return */
2552d17e
JB
7843 ins->objectid = search_start;
7844 ins->offset = num_bytes;
d2fb3437 7845
71ff6437 7846 trace_btrfs_reserve_extent(fs_info, block_group,
3f7de037 7847 search_start, num_bytes);
e570fd27 7848 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7849 break;
7850loop:
0a24325e 7851 failed_cluster_refill = false;
1cdda9b8 7852 failed_alloc = false;
3e72ee88
QW
7853 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7854 index);
e570fd27 7855 btrfs_release_block_group(block_group, delalloc);
14443937 7856 cond_resched();
2552d17e
JB
7857 }
7858 up_read(&space_info->groups_sem);
7859
13a0db5a 7860 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7861 && !orig_have_caching_bg)
7862 orig_have_caching_bg = true;
7863
60d2adbb
MX
7864 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7865 goto search;
7866
b742bb82
YZ
7867 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7868 goto search;
7869
285ff5af 7870 /*
ccf0e725
JB
7871 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7872 * caching kthreads as we move along
817d52f8
JB
7873 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7874 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7875 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7876 * again
fa9c0d79 7877 */
723bda20 7878 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7879 index = 0;
a5e681d9
JB
7880 if (loop == LOOP_CACHING_NOWAIT) {
7881 /*
7882 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7883 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7884 * full search through.
7885 */
13a0db5a 7886 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7887 loop = LOOP_CACHING_WAIT;
7888 else
7889 loop = LOOP_ALLOC_CHUNK;
7890 } else {
7891 loop++;
7892 }
7893
817d52f8 7894 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7895 struct btrfs_trans_handle *trans;
f017f15f
WS
7896 int exist = 0;
7897
7898 trans = current->journal_info;
7899 if (trans)
7900 exist = 1;
7901 else
7902 trans = btrfs_join_transaction(root);
00361589 7903
00361589
JB
7904 if (IS_ERR(trans)) {
7905 ret = PTR_ERR(trans);
7906 goto out;
7907 }
7908
2ff7e61e 7909 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7910 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7911
7912 /*
7913 * If we can't allocate a new chunk we've already looped
7914 * through at least once, move on to the NO_EMPTY_SIZE
7915 * case.
7916 */
7917 if (ret == -ENOSPC)
7918 loop = LOOP_NO_EMPTY_SIZE;
7919
ea658bad
JB
7920 /*
7921 * Do not bail out on ENOSPC since we
7922 * can do more things.
7923 */
00361589 7924 if (ret < 0 && ret != -ENOSPC)
66642832 7925 btrfs_abort_transaction(trans, ret);
00361589
JB
7926 else
7927 ret = 0;
f017f15f 7928 if (!exist)
3a45bb20 7929 btrfs_end_transaction(trans);
00361589 7930 if (ret)
ea658bad 7931 goto out;
2552d17e
JB
7932 }
7933
723bda20 7934 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7935 /*
7936 * Don't loop again if we already have no empty_size and
7937 * no empty_cluster.
7938 */
7939 if (empty_size == 0 &&
7940 empty_cluster == 0) {
7941 ret = -ENOSPC;
7942 goto out;
7943 }
723bda20
JB
7944 empty_size = 0;
7945 empty_cluster = 0;
fa9c0d79 7946 }
723bda20
JB
7947
7948 goto search;
2552d17e
JB
7949 } else if (!ins->objectid) {
7950 ret = -ENOSPC;
d82a6f1d 7951 } else if (ins->objectid) {
c759c4e1
JB
7952 if (!use_cluster && last_ptr) {
7953 spin_lock(&last_ptr->lock);
7954 last_ptr->window_start = ins->objectid;
7955 spin_unlock(&last_ptr->lock);
7956 }
80eb234a 7957 ret = 0;
be744175 7958 }
79787eaa 7959out:
4f4db217
JB
7960 if (ret == -ENOSPC) {
7961 spin_lock(&space_info->lock);
7962 space_info->max_extent_size = max_extent_size;
7963 spin_unlock(&space_info->lock);
a4820398 7964 ins->offset = max_extent_size;
4f4db217 7965 }
0f70abe2 7966 return ret;
fec577fb 7967}
ec44a35c 7968
ab8d0fc4
JM
7969static void dump_space_info(struct btrfs_fs_info *fs_info,
7970 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7971 int dump_block_groups)
0f9dd46c
JB
7972{
7973 struct btrfs_block_group_cache *cache;
b742bb82 7974 int index = 0;
0f9dd46c 7975
9ed74f2d 7976 spin_lock(&info->lock);
ab8d0fc4
JM
7977 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7978 info->flags,
4136135b
LB
7979 info->total_bytes - btrfs_space_info_used(info, true),
7980 info->full ? "" : "not ");
ab8d0fc4
JM
7981 btrfs_info(fs_info,
7982 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7983 info->total_bytes, info->bytes_used, info->bytes_pinned,
7984 info->bytes_reserved, info->bytes_may_use,
7985 info->bytes_readonly);
9ed74f2d
JB
7986 spin_unlock(&info->lock);
7987
7988 if (!dump_block_groups)
7989 return;
0f9dd46c 7990
80eb234a 7991 down_read(&info->groups_sem);
b742bb82
YZ
7992again:
7993 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7994 spin_lock(&cache->lock);
ab8d0fc4
JM
7995 btrfs_info(fs_info,
7996 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7997 cache->key.objectid, cache->key.offset,
7998 btrfs_block_group_used(&cache->item), cache->pinned,
7999 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
8000 btrfs_dump_free_space(cache, bytes);
8001 spin_unlock(&cache->lock);
8002 }
b742bb82
YZ
8003 if (++index < BTRFS_NR_RAID_TYPES)
8004 goto again;
80eb234a 8005 up_read(&info->groups_sem);
0f9dd46c 8006}
e8569813 8007
6f47c706
NB
8008/*
8009 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
8010 * hole that is at least as big as @num_bytes.
8011 *
8012 * @root - The root that will contain this extent
8013 *
8014 * @ram_bytes - The amount of space in ram that @num_bytes take. This
8015 * is used for accounting purposes. This value differs
8016 * from @num_bytes only in the case of compressed extents.
8017 *
8018 * @num_bytes - Number of bytes to allocate on-disk.
8019 *
8020 * @min_alloc_size - Indicates the minimum amount of space that the
8021 * allocator should try to satisfy. In some cases
8022 * @num_bytes may be larger than what is required and if
8023 * the filesystem is fragmented then allocation fails.
8024 * However, the presence of @min_alloc_size gives a
8025 * chance to try and satisfy the smaller allocation.
8026 *
8027 * @empty_size - A hint that you plan on doing more COW. This is the
8028 * size in bytes the allocator should try to find free
8029 * next to the block it returns. This is just a hint and
8030 * may be ignored by the allocator.
8031 *
8032 * @hint_byte - Hint to the allocator to start searching above the byte
8033 * address passed. It might be ignored.
8034 *
8035 * @ins - This key is modified to record the found hole. It will
8036 * have the following values:
8037 * ins->objectid == start position
8038 * ins->flags = BTRFS_EXTENT_ITEM_KEY
8039 * ins->offset == the size of the hole.
8040 *
8041 * @is_data - Boolean flag indicating whether an extent is
8042 * allocated for data (true) or metadata (false)
8043 *
8044 * @delalloc - Boolean flag indicating whether this allocation is for
8045 * delalloc or not. If 'true' data_rwsem of block groups
8046 * is going to be acquired.
8047 *
8048 *
8049 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
8050 * case -ENOSPC is returned then @ins->offset will contain the size of the
8051 * largest available hole the allocator managed to find.
8052 */
18513091 8053int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
8054 u64 num_bytes, u64 min_alloc_size,
8055 u64 empty_size, u64 hint_byte,
e570fd27 8056 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8057{
ab8d0fc4 8058 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8059 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8060 u64 flags;
fec577fb 8061 int ret;
925baedd 8062
1b86826d 8063 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8064again:
0b246afa 8065 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8066 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8067 hint_byte, ins, flags, delalloc);
9cfa3e34 8068 if (!ret && !is_data) {
ab8d0fc4 8069 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8070 } else if (ret == -ENOSPC) {
a4820398
MX
8071 if (!final_tried && ins->offset) {
8072 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8073 num_bytes = round_down(num_bytes,
0b246afa 8074 fs_info->sectorsize);
9e622d6b 8075 num_bytes = max(num_bytes, min_alloc_size);
18513091 8076 ram_bytes = num_bytes;
9e622d6b
MX
8077 if (num_bytes == min_alloc_size)
8078 final_tried = true;
8079 goto again;
ab8d0fc4 8080 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8081 struct btrfs_space_info *sinfo;
8082
ab8d0fc4 8083 sinfo = __find_space_info(fs_info, flags);
0b246afa 8084 btrfs_err(fs_info,
5d163e0e
JM
8085 "allocation failed flags %llu, wanted %llu",
8086 flags, num_bytes);
53804280 8087 if (sinfo)
ab8d0fc4 8088 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8089 }
925baedd 8090 }
0f9dd46c
JB
8091
8092 return ret;
e6dcd2dc
CM
8093}
8094
2ff7e61e 8095static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8096 u64 start, u64 len,
8097 int pin, int delalloc)
65b51a00 8098{
0f9dd46c 8099 struct btrfs_block_group_cache *cache;
1f3c79a2 8100 int ret = 0;
0f9dd46c 8101
0b246afa 8102 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8103 if (!cache) {
0b246afa
JM
8104 btrfs_err(fs_info, "Unable to find block group for %llu",
8105 start);
0f9dd46c
JB
8106 return -ENOSPC;
8107 }
1f3c79a2 8108
e688b725 8109 if (pin)
2ff7e61e 8110 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8111 else {
0b246afa 8112 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8113 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8114 btrfs_add_free_space(cache, start, len);
4824f1f4 8115 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8116 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8117 }
31193213 8118
fa9c0d79 8119 btrfs_put_block_group(cache);
e6dcd2dc
CM
8120 return ret;
8121}
8122
2ff7e61e 8123int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8124 u64 start, u64 len, int delalloc)
e688b725 8125{
2ff7e61e 8126 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8127}
8128
2ff7e61e 8129int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8130 u64 start, u64 len)
8131{
2ff7e61e 8132 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8133}
8134
5d4f98a2 8135static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8136 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8137 u64 parent, u64 root_objectid,
8138 u64 flags, u64 owner, u64 offset,
8139 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8140{
8141 int ret;
e6dcd2dc 8142 struct btrfs_extent_item *extent_item;
5d4f98a2 8143 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8144 struct btrfs_path *path;
5d4f98a2
YZ
8145 struct extent_buffer *leaf;
8146 int type;
8147 u32 size;
26b8003f 8148
5d4f98a2
YZ
8149 if (parent > 0)
8150 type = BTRFS_SHARED_DATA_REF_KEY;
8151 else
8152 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8153
5d4f98a2 8154 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8155
8156 path = btrfs_alloc_path();
db5b493a
TI
8157 if (!path)
8158 return -ENOMEM;
47e4bb98 8159
b9473439 8160 path->leave_spinning = 1;
5d4f98a2
YZ
8161 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8162 ins, size);
79787eaa
JM
8163 if (ret) {
8164 btrfs_free_path(path);
8165 return ret;
8166 }
0f9dd46c 8167
5d4f98a2
YZ
8168 leaf = path->nodes[0];
8169 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8170 struct btrfs_extent_item);
5d4f98a2
YZ
8171 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8172 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8173 btrfs_set_extent_flags(leaf, extent_item,
8174 flags | BTRFS_EXTENT_FLAG_DATA);
8175
8176 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8177 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8178 if (parent > 0) {
8179 struct btrfs_shared_data_ref *ref;
8180 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8181 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8182 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8183 } else {
8184 struct btrfs_extent_data_ref *ref;
8185 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8186 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8187 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8188 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8189 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8190 }
47e4bb98
CM
8191
8192 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8193 btrfs_free_path(path);
f510cfec 8194
1e144fb8
OS
8195 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8196 ins->offset);
8197 if (ret)
8198 return ret;
8199
6202df69 8200 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8201 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8202 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8203 ins->objectid, ins->offset);
f5947066
CM
8204 BUG();
8205 }
71ff6437 8206 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8207 return ret;
8208}
8209
5d4f98a2 8210static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
2ff7e61e 8211 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8212 u64 parent, u64 root_objectid,
8213 u64 flags, struct btrfs_disk_key *key,
b06c4bf5 8214 int level, struct btrfs_key *ins)
e6dcd2dc
CM
8215{
8216 int ret;
5d4f98a2
YZ
8217 struct btrfs_extent_item *extent_item;
8218 struct btrfs_tree_block_info *block_info;
8219 struct btrfs_extent_inline_ref *iref;
8220 struct btrfs_path *path;
8221 struct extent_buffer *leaf;
3173a18f 8222 u32 size = sizeof(*extent_item) + sizeof(*iref);
fcebe456 8223 u64 num_bytes = ins->offset;
0b246afa 8224 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f
JB
8225
8226 if (!skinny_metadata)
8227 size += sizeof(*block_info);
1c2308f8 8228
5d4f98a2 8229 path = btrfs_alloc_path();
857cc2fc 8230 if (!path) {
2ff7e61e 8231 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8232 fs_info->nodesize);
d8926bb3 8233 return -ENOMEM;
857cc2fc 8234 }
56bec294 8235
5d4f98a2
YZ
8236 path->leave_spinning = 1;
8237 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8238 ins, size);
79787eaa 8239 if (ret) {
dd825259 8240 btrfs_free_path(path);
2ff7e61e 8241 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
0b246afa 8242 fs_info->nodesize);
79787eaa
JM
8243 return ret;
8244 }
5d4f98a2
YZ
8245
8246 leaf = path->nodes[0];
8247 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8248 struct btrfs_extent_item);
8249 btrfs_set_extent_refs(leaf, extent_item, 1);
8250 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8251 btrfs_set_extent_flags(leaf, extent_item,
8252 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8253
3173a18f
JB
8254 if (skinny_metadata) {
8255 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
0b246afa 8256 num_bytes = fs_info->nodesize;
3173a18f
JB
8257 } else {
8258 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8259 btrfs_set_tree_block_key(leaf, block_info, key);
8260 btrfs_set_tree_block_level(leaf, block_info, level);
8261 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8262 }
5d4f98a2 8263
5d4f98a2
YZ
8264 if (parent > 0) {
8265 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8266 btrfs_set_extent_inline_ref_type(leaf, iref,
8267 BTRFS_SHARED_BLOCK_REF_KEY);
8268 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8269 } else {
8270 btrfs_set_extent_inline_ref_type(leaf, iref,
8271 BTRFS_TREE_BLOCK_REF_KEY);
8272 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8273 }
8274
8275 btrfs_mark_buffer_dirty(leaf);
8276 btrfs_free_path(path);
8277
1e144fb8
OS
8278 ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8279 num_bytes);
8280 if (ret)
8281 return ret;
8282
6202df69
JM
8283 ret = update_block_group(trans, fs_info, ins->objectid,
8284 fs_info->nodesize, 1);
79787eaa 8285 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8286 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8287 ins->objectid, ins->offset);
5d4f98a2
YZ
8288 BUG();
8289 }
0be5dc67 8290
71ff6437 8291 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
0b246afa 8292 fs_info->nodesize);
5d4f98a2
YZ
8293 return ret;
8294}
8295
8296int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8297 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8298 u64 offset, u64 ram_bytes,
8299 struct btrfs_key *ins)
5d4f98a2 8300{
84f7d8e6 8301 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8302 int ret;
8303
84f7d8e6 8304 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8305
fd708b81
JB
8306 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8307 root->root_key.objectid, owner, offset,
8308 BTRFS_ADD_DELAYED_EXTENT);
8309
0b246afa 8310 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8311 ins->offset, 0,
8312 root->root_key.objectid, owner,
7be07912
OS
8313 offset, ram_bytes,
8314 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8315 return ret;
8316}
e02119d5
CM
8317
8318/*
8319 * this is used by the tree logging recovery code. It records that
8320 * an extent has been allocated and makes sure to clear the free
8321 * space cache bits as well
8322 */
5d4f98a2 8323int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8324 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8325 u64 root_objectid, u64 owner, u64 offset,
8326 struct btrfs_key *ins)
e02119d5
CM
8327{
8328 int ret;
8329 struct btrfs_block_group_cache *block_group;
ed7a6948 8330 struct btrfs_space_info *space_info;
11833d66 8331
8c2a1a30
JB
8332 /*
8333 * Mixed block groups will exclude before processing the log so we only
01327610 8334 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8335 */
0b246afa 8336 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8337 ret = __exclude_logged_extent(fs_info, ins->objectid,
8338 ins->offset);
b50c6e25 8339 if (ret)
8c2a1a30 8340 return ret;
11833d66
YZ
8341 }
8342
0b246afa 8343 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8344 if (!block_group)
8345 return -EINVAL;
8346
ed7a6948
WX
8347 space_info = block_group->space_info;
8348 spin_lock(&space_info->lock);
8349 spin_lock(&block_group->lock);
8350 space_info->bytes_reserved += ins->offset;
8351 block_group->reserved += ins->offset;
8352 spin_unlock(&block_group->lock);
8353 spin_unlock(&space_info->lock);
8354
2ff7e61e 8355 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8356 0, owner, offset, ins, 1);
b50c6e25 8357 btrfs_put_block_group(block_group);
e02119d5
CM
8358 return ret;
8359}
8360
48a3b636
ES
8361static struct extent_buffer *
8362btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8363 u64 bytenr, int level)
65b51a00 8364{
0b246afa 8365 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8366 struct extent_buffer *buf;
8367
2ff7e61e 8368 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8369 if (IS_ERR(buf))
8370 return buf;
8371
65b51a00 8372 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8373 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8374 btrfs_tree_lock(buf);
7c302b49 8375 clean_tree_block(fs_info, buf);
3083ee2e 8376 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8377
8378 btrfs_set_lock_blocking(buf);
4db8c528 8379 set_extent_buffer_uptodate(buf);
b4ce94de 8380
d0c803c4 8381 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8382 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8383 /*
8384 * we allow two log transactions at a time, use different
8385 * EXENT bit to differentiate dirty pages.
8386 */
656f30db 8387 if (buf->log_index == 0)
8cef4e16
YZ
8388 set_extent_dirty(&root->dirty_log_pages, buf->start,
8389 buf->start + buf->len - 1, GFP_NOFS);
8390 else
8391 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8392 buf->start + buf->len - 1);
d0c803c4 8393 } else {
656f30db 8394 buf->log_index = -1;
d0c803c4 8395 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8396 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8397 }
64c12921 8398 trans->dirty = true;
b4ce94de 8399 /* this returns a buffer locked for blocking */
65b51a00
CM
8400 return buf;
8401}
8402
f0486c68
YZ
8403static struct btrfs_block_rsv *
8404use_block_rsv(struct btrfs_trans_handle *trans,
8405 struct btrfs_root *root, u32 blocksize)
8406{
0b246afa 8407 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8408 struct btrfs_block_rsv *block_rsv;
0b246afa 8409 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8410 int ret;
d88033db 8411 bool global_updated = false;
f0486c68
YZ
8412
8413 block_rsv = get_block_rsv(trans, root);
8414
b586b323
MX
8415 if (unlikely(block_rsv->size == 0))
8416 goto try_reserve;
d88033db 8417again:
f0486c68
YZ
8418 ret = block_rsv_use_bytes(block_rsv, blocksize);
8419 if (!ret)
8420 return block_rsv;
8421
b586b323
MX
8422 if (block_rsv->failfast)
8423 return ERR_PTR(ret);
8424
d88033db
MX
8425 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8426 global_updated = true;
0b246afa 8427 update_global_block_rsv(fs_info);
d88033db
MX
8428 goto again;
8429 }
8430
0b246afa 8431 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8432 static DEFINE_RATELIMIT_STATE(_rs,
8433 DEFAULT_RATELIMIT_INTERVAL * 10,
8434 /*DEFAULT_RATELIMIT_BURST*/ 1);
8435 if (__ratelimit(&_rs))
8436 WARN(1, KERN_DEBUG
efe120a0 8437 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8438 }
8439try_reserve:
8440 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8441 BTRFS_RESERVE_NO_FLUSH);
8442 if (!ret)
8443 return block_rsv;
8444 /*
8445 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8446 * the global reserve if its space type is the same as the global
8447 * reservation.
b586b323 8448 */
5881cfc9
MX
8449 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8450 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8451 ret = block_rsv_use_bytes(global_rsv, blocksize);
8452 if (!ret)
8453 return global_rsv;
8454 }
8455 return ERR_PTR(ret);
f0486c68
YZ
8456}
8457
8c2a3ca2
JB
8458static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8459 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8460{
8461 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8462 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8463}
8464
fec577fb 8465/*
f0486c68 8466 * finds a free extent and does all the dirty work required for allocation
67b7859e 8467 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8468 */
4d75f8a9 8469struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8470 struct btrfs_root *root,
8471 u64 parent, u64 root_objectid,
8472 const struct btrfs_disk_key *key,
8473 int level, u64 hint,
8474 u64 empty_size)
fec577fb 8475{
0b246afa 8476 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8477 struct btrfs_key ins;
f0486c68 8478 struct btrfs_block_rsv *block_rsv;
5f39d397 8479 struct extent_buffer *buf;
67b7859e 8480 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8481 u64 flags = 0;
8482 int ret;
0b246afa
JM
8483 u32 blocksize = fs_info->nodesize;
8484 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8485
05653ef3 8486#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8487 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8488 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8489 level);
faa2dbf0
JB
8490 if (!IS_ERR(buf))
8491 root->alloc_bytenr += blocksize;
8492 return buf;
8493 }
05653ef3 8494#endif
fccb84c9 8495
f0486c68
YZ
8496 block_rsv = use_block_rsv(trans, root, blocksize);
8497 if (IS_ERR(block_rsv))
8498 return ERR_CAST(block_rsv);
8499
18513091 8500 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8501 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8502 if (ret)
8503 goto out_unuse;
55c69072 8504
fe864576 8505 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8506 if (IS_ERR(buf)) {
8507 ret = PTR_ERR(buf);
8508 goto out_free_reserved;
8509 }
f0486c68
YZ
8510
8511 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8512 if (parent == 0)
8513 parent = ins.objectid;
8514 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8515 } else
8516 BUG_ON(parent > 0);
8517
8518 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8519 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8520 if (!extent_op) {
8521 ret = -ENOMEM;
8522 goto out_free_buf;
8523 }
f0486c68
YZ
8524 if (key)
8525 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8526 else
8527 memset(&extent_op->key, 0, sizeof(extent_op->key));
8528 extent_op->flags_to_set = flags;
35b3ad50
DS
8529 extent_op->update_key = skinny_metadata ? false : true;
8530 extent_op->update_flags = true;
8531 extent_op->is_data = false;
b1c79e09 8532 extent_op->level = level;
f0486c68 8533
fd708b81
JB
8534 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8535 root_objectid, level, 0,
8536 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8537 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8538 ins.offset, parent,
8539 root_objectid, level,
67b7859e 8540 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8541 extent_op, NULL, NULL);
67b7859e
OS
8542 if (ret)
8543 goto out_free_delayed;
f0486c68 8544 }
fec577fb 8545 return buf;
67b7859e
OS
8546
8547out_free_delayed:
8548 btrfs_free_delayed_extent_op(extent_op);
8549out_free_buf:
8550 free_extent_buffer(buf);
8551out_free_reserved:
2ff7e61e 8552 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8553out_unuse:
0b246afa 8554 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8555 return ERR_PTR(ret);
fec577fb 8556}
a28ec197 8557
2c47e605
YZ
8558struct walk_control {
8559 u64 refs[BTRFS_MAX_LEVEL];
8560 u64 flags[BTRFS_MAX_LEVEL];
8561 struct btrfs_key update_progress;
8562 int stage;
8563 int level;
8564 int shared_level;
8565 int update_ref;
8566 int keep_locks;
1c4850e2
YZ
8567 int reada_slot;
8568 int reada_count;
66d7e7f0 8569 int for_reloc;
2c47e605
YZ
8570};
8571
8572#define DROP_REFERENCE 1
8573#define UPDATE_BACKREF 2
8574
1c4850e2
YZ
8575static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8576 struct btrfs_root *root,
8577 struct walk_control *wc,
8578 struct btrfs_path *path)
6407bf6d 8579{
0b246afa 8580 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8581 u64 bytenr;
8582 u64 generation;
8583 u64 refs;
94fcca9f 8584 u64 flags;
5d4f98a2 8585 u32 nritems;
1c4850e2
YZ
8586 struct btrfs_key key;
8587 struct extent_buffer *eb;
6407bf6d 8588 int ret;
1c4850e2
YZ
8589 int slot;
8590 int nread = 0;
6407bf6d 8591
1c4850e2
YZ
8592 if (path->slots[wc->level] < wc->reada_slot) {
8593 wc->reada_count = wc->reada_count * 2 / 3;
8594 wc->reada_count = max(wc->reada_count, 2);
8595 } else {
8596 wc->reada_count = wc->reada_count * 3 / 2;
8597 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8598 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8599 }
7bb86316 8600
1c4850e2
YZ
8601 eb = path->nodes[wc->level];
8602 nritems = btrfs_header_nritems(eb);
bd56b302 8603
1c4850e2
YZ
8604 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8605 if (nread >= wc->reada_count)
8606 break;
bd56b302 8607
2dd3e67b 8608 cond_resched();
1c4850e2
YZ
8609 bytenr = btrfs_node_blockptr(eb, slot);
8610 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8611
1c4850e2
YZ
8612 if (slot == path->slots[wc->level])
8613 goto reada;
5d4f98a2 8614
1c4850e2
YZ
8615 if (wc->stage == UPDATE_BACKREF &&
8616 generation <= root->root_key.offset)
bd56b302
CM
8617 continue;
8618
94fcca9f 8619 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8620 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8621 wc->level - 1, 1, &refs,
8622 &flags);
79787eaa
JM
8623 /* We don't care about errors in readahead. */
8624 if (ret < 0)
8625 continue;
94fcca9f
YZ
8626 BUG_ON(refs == 0);
8627
1c4850e2 8628 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8629 if (refs == 1)
8630 goto reada;
bd56b302 8631
94fcca9f
YZ
8632 if (wc->level == 1 &&
8633 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8634 continue;
1c4850e2
YZ
8635 if (!wc->update_ref ||
8636 generation <= root->root_key.offset)
8637 continue;
8638 btrfs_node_key_to_cpu(eb, &key, slot);
8639 ret = btrfs_comp_cpu_keys(&key,
8640 &wc->update_progress);
8641 if (ret < 0)
8642 continue;
94fcca9f
YZ
8643 } else {
8644 if (wc->level == 1 &&
8645 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8646 continue;
6407bf6d 8647 }
1c4850e2 8648reada:
2ff7e61e 8649 readahead_tree_block(fs_info, bytenr);
1c4850e2 8650 nread++;
20524f02 8651 }
1c4850e2 8652 wc->reada_slot = slot;
20524f02 8653}
2c47e605 8654
f82d02d9 8655/*
2c016dc2 8656 * helper to process tree block while walking down the tree.
2c47e605 8657 *
2c47e605
YZ
8658 * when wc->stage == UPDATE_BACKREF, this function updates
8659 * back refs for pointers in the block.
8660 *
8661 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8662 */
2c47e605 8663static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8664 struct btrfs_root *root,
2c47e605 8665 struct btrfs_path *path,
94fcca9f 8666 struct walk_control *wc, int lookup_info)
f82d02d9 8667{
2ff7e61e 8668 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8669 int level = wc->level;
8670 struct extent_buffer *eb = path->nodes[level];
2c47e605 8671 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8672 int ret;
8673
2c47e605
YZ
8674 if (wc->stage == UPDATE_BACKREF &&
8675 btrfs_header_owner(eb) != root->root_key.objectid)
8676 return 1;
f82d02d9 8677
2c47e605
YZ
8678 /*
8679 * when reference count of tree block is 1, it won't increase
8680 * again. once full backref flag is set, we never clear it.
8681 */
94fcca9f
YZ
8682 if (lookup_info &&
8683 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8684 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8685 BUG_ON(!path->locks[level]);
2ff7e61e 8686 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8687 eb->start, level, 1,
2c47e605
YZ
8688 &wc->refs[level],
8689 &wc->flags[level]);
79787eaa
JM
8690 BUG_ON(ret == -ENOMEM);
8691 if (ret)
8692 return ret;
2c47e605
YZ
8693 BUG_ON(wc->refs[level] == 0);
8694 }
5d4f98a2 8695
2c47e605
YZ
8696 if (wc->stage == DROP_REFERENCE) {
8697 if (wc->refs[level] > 1)
8698 return 1;
f82d02d9 8699
2c47e605 8700 if (path->locks[level] && !wc->keep_locks) {
bd681513 8701 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8702 path->locks[level] = 0;
8703 }
8704 return 0;
8705 }
f82d02d9 8706
2c47e605
YZ
8707 /* wc->stage == UPDATE_BACKREF */
8708 if (!(wc->flags[level] & flag)) {
8709 BUG_ON(!path->locks[level]);
e339a6b0 8710 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8711 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8712 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8713 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8714 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8715 eb->len, flag,
8716 btrfs_header_level(eb), 0);
79787eaa 8717 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8718 wc->flags[level] |= flag;
8719 }
8720
8721 /*
8722 * the block is shared by multiple trees, so it's not good to
8723 * keep the tree lock
8724 */
8725 if (path->locks[level] && level > 0) {
bd681513 8726 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8727 path->locks[level] = 0;
8728 }
8729 return 0;
8730}
8731
1c4850e2 8732/*
2c016dc2 8733 * helper to process tree block pointer.
1c4850e2
YZ
8734 *
8735 * when wc->stage == DROP_REFERENCE, this function checks
8736 * reference count of the block pointed to. if the block
8737 * is shared and we need update back refs for the subtree
8738 * rooted at the block, this function changes wc->stage to
8739 * UPDATE_BACKREF. if the block is shared and there is no
8740 * need to update back, this function drops the reference
8741 * to the block.
8742 *
8743 * NOTE: return value 1 means we should stop walking down.
8744 */
8745static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8746 struct btrfs_root *root,
8747 struct btrfs_path *path,
94fcca9f 8748 struct walk_control *wc, int *lookup_info)
1c4850e2 8749{
0b246afa 8750 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8751 u64 bytenr;
8752 u64 generation;
8753 u64 parent;
8754 u32 blocksize;
8755 struct btrfs_key key;
581c1760 8756 struct btrfs_key first_key;
1c4850e2
YZ
8757 struct extent_buffer *next;
8758 int level = wc->level;
8759 int reada = 0;
8760 int ret = 0;
1152651a 8761 bool need_account = false;
1c4850e2
YZ
8762
8763 generation = btrfs_node_ptr_generation(path->nodes[level],
8764 path->slots[level]);
8765 /*
8766 * if the lower level block was created before the snapshot
8767 * was created, we know there is no need to update back refs
8768 * for the subtree
8769 */
8770 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8771 generation <= root->root_key.offset) {
8772 *lookup_info = 1;
1c4850e2 8773 return 1;
94fcca9f 8774 }
1c4850e2
YZ
8775
8776 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8777 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8778 path->slots[level]);
0b246afa 8779 blocksize = fs_info->nodesize;
1c4850e2 8780
0b246afa 8781 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8782 if (!next) {
2ff7e61e 8783 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8784 if (IS_ERR(next))
8785 return PTR_ERR(next);
8786
b2aaaa3b
JB
8787 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8788 level - 1);
1c4850e2
YZ
8789 reada = 1;
8790 }
8791 btrfs_tree_lock(next);
8792 btrfs_set_lock_blocking(next);
8793
2ff7e61e 8794 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8795 &wc->refs[level - 1],
8796 &wc->flags[level - 1]);
4867268c
JB
8797 if (ret < 0)
8798 goto out_unlock;
79787eaa 8799
c2cf52eb 8800 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8801 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8802 ret = -EIO;
8803 goto out_unlock;
c2cf52eb 8804 }
94fcca9f 8805 *lookup_info = 0;
1c4850e2 8806
94fcca9f 8807 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8808 if (wc->refs[level - 1] > 1) {
1152651a 8809 need_account = true;
94fcca9f
YZ
8810 if (level == 1 &&
8811 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8812 goto skip;
8813
1c4850e2
YZ
8814 if (!wc->update_ref ||
8815 generation <= root->root_key.offset)
8816 goto skip;
8817
8818 btrfs_node_key_to_cpu(path->nodes[level], &key,
8819 path->slots[level]);
8820 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8821 if (ret < 0)
8822 goto skip;
8823
8824 wc->stage = UPDATE_BACKREF;
8825 wc->shared_level = level - 1;
8826 }
94fcca9f
YZ
8827 } else {
8828 if (level == 1 &&
8829 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8830 goto skip;
1c4850e2
YZ
8831 }
8832
b9fab919 8833 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8834 btrfs_tree_unlock(next);
8835 free_extent_buffer(next);
8836 next = NULL;
94fcca9f 8837 *lookup_info = 1;
1c4850e2
YZ
8838 }
8839
8840 if (!next) {
8841 if (reada && level == 1)
8842 reada_walk_down(trans, root, wc, path);
581c1760
QW
8843 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8844 &first_key);
64c043de
LB
8845 if (IS_ERR(next)) {
8846 return PTR_ERR(next);
8847 } else if (!extent_buffer_uptodate(next)) {
416bc658 8848 free_extent_buffer(next);
97d9a8a4 8849 return -EIO;
416bc658 8850 }
1c4850e2
YZ
8851 btrfs_tree_lock(next);
8852 btrfs_set_lock_blocking(next);
8853 }
8854
8855 level--;
4867268c
JB
8856 ASSERT(level == btrfs_header_level(next));
8857 if (level != btrfs_header_level(next)) {
8858 btrfs_err(root->fs_info, "mismatched level");
8859 ret = -EIO;
8860 goto out_unlock;
8861 }
1c4850e2
YZ
8862 path->nodes[level] = next;
8863 path->slots[level] = 0;
bd681513 8864 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8865 wc->level = level;
8866 if (wc->level == 1)
8867 wc->reada_slot = 0;
8868 return 0;
8869skip:
8870 wc->refs[level - 1] = 0;
8871 wc->flags[level - 1] = 0;
94fcca9f
YZ
8872 if (wc->stage == DROP_REFERENCE) {
8873 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8874 parent = path->nodes[level]->start;
8875 } else {
4867268c 8876 ASSERT(root->root_key.objectid ==
94fcca9f 8877 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8878 if (root->root_key.objectid !=
8879 btrfs_header_owner(path->nodes[level])) {
8880 btrfs_err(root->fs_info,
8881 "mismatched block owner");
8882 ret = -EIO;
8883 goto out_unlock;
8884 }
94fcca9f
YZ
8885 parent = 0;
8886 }
1c4850e2 8887
1152651a 8888 if (need_account) {
33d1f05c
QW
8889 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8890 generation, level - 1);
1152651a 8891 if (ret) {
0b246afa 8892 btrfs_err_rl(fs_info,
5d163e0e
JM
8893 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8894 ret);
1152651a
MF
8895 }
8896 }
84f7d8e6 8897 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8898 parent, root->root_key.objectid,
8899 level - 1, 0);
4867268c
JB
8900 if (ret)
8901 goto out_unlock;
1c4850e2 8902 }
4867268c
JB
8903
8904 *lookup_info = 1;
8905 ret = 1;
8906
8907out_unlock:
1c4850e2
YZ
8908 btrfs_tree_unlock(next);
8909 free_extent_buffer(next);
4867268c
JB
8910
8911 return ret;
1c4850e2
YZ
8912}
8913
2c47e605 8914/*
2c016dc2 8915 * helper to process tree block while walking up the tree.
2c47e605
YZ
8916 *
8917 * when wc->stage == DROP_REFERENCE, this function drops
8918 * reference count on the block.
8919 *
8920 * when wc->stage == UPDATE_BACKREF, this function changes
8921 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8922 * to UPDATE_BACKREF previously while processing the block.
8923 *
8924 * NOTE: return value 1 means we should stop walking up.
8925 */
8926static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8927 struct btrfs_root *root,
8928 struct btrfs_path *path,
8929 struct walk_control *wc)
8930{
0b246afa 8931 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8932 int ret;
2c47e605
YZ
8933 int level = wc->level;
8934 struct extent_buffer *eb = path->nodes[level];
8935 u64 parent = 0;
8936
8937 if (wc->stage == UPDATE_BACKREF) {
8938 BUG_ON(wc->shared_level < level);
8939 if (level < wc->shared_level)
8940 goto out;
8941
2c47e605
YZ
8942 ret = find_next_key(path, level + 1, &wc->update_progress);
8943 if (ret > 0)
8944 wc->update_ref = 0;
8945
8946 wc->stage = DROP_REFERENCE;
8947 wc->shared_level = -1;
8948 path->slots[level] = 0;
8949
8950 /*
8951 * check reference count again if the block isn't locked.
8952 * we should start walking down the tree again if reference
8953 * count is one.
8954 */
8955 if (!path->locks[level]) {
8956 BUG_ON(level == 0);
8957 btrfs_tree_lock(eb);
8958 btrfs_set_lock_blocking(eb);
bd681513 8959 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8960
2ff7e61e 8961 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8962 eb->start, level, 1,
2c47e605
YZ
8963 &wc->refs[level],
8964 &wc->flags[level]);
79787eaa
JM
8965 if (ret < 0) {
8966 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8967 path->locks[level] = 0;
79787eaa
JM
8968 return ret;
8969 }
2c47e605
YZ
8970 BUG_ON(wc->refs[level] == 0);
8971 if (wc->refs[level] == 1) {
bd681513 8972 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8973 path->locks[level] = 0;
2c47e605
YZ
8974 return 1;
8975 }
f82d02d9 8976 }
2c47e605 8977 }
f82d02d9 8978
2c47e605
YZ
8979 /* wc->stage == DROP_REFERENCE */
8980 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8981
2c47e605
YZ
8982 if (wc->refs[level] == 1) {
8983 if (level == 0) {
8984 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8985 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8986 else
e339a6b0 8987 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8988 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8989 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8990 if (ret) {
0b246afa 8991 btrfs_err_rl(fs_info,
5d163e0e
JM
8992 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8993 ret);
1152651a 8994 }
2c47e605
YZ
8995 }
8996 /* make block locked assertion in clean_tree_block happy */
8997 if (!path->locks[level] &&
8998 btrfs_header_generation(eb) == trans->transid) {
8999 btrfs_tree_lock(eb);
9000 btrfs_set_lock_blocking(eb);
bd681513 9001 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9002 }
7c302b49 9003 clean_tree_block(fs_info, eb);
2c47e605
YZ
9004 }
9005
9006 if (eb == root->node) {
9007 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9008 parent = eb->start;
9009 else
9010 BUG_ON(root->root_key.objectid !=
9011 btrfs_header_owner(eb));
9012 } else {
9013 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9014 parent = path->nodes[level + 1]->start;
9015 else
9016 BUG_ON(root->root_key.objectid !=
9017 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 9018 }
f82d02d9 9019
5581a51a 9020 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
9021out:
9022 wc->refs[level] = 0;
9023 wc->flags[level] = 0;
f0486c68 9024 return 0;
2c47e605
YZ
9025}
9026
9027static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9028 struct btrfs_root *root,
9029 struct btrfs_path *path,
9030 struct walk_control *wc)
9031{
2c47e605 9032 int level = wc->level;
94fcca9f 9033 int lookup_info = 1;
2c47e605
YZ
9034 int ret;
9035
9036 while (level >= 0) {
94fcca9f 9037 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
9038 if (ret > 0)
9039 break;
9040
9041 if (level == 0)
9042 break;
9043
7a7965f8
YZ
9044 if (path->slots[level] >=
9045 btrfs_header_nritems(path->nodes[level]))
9046 break;
9047
94fcca9f 9048 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9049 if (ret > 0) {
9050 path->slots[level]++;
9051 continue;
90d2c51d
MX
9052 } else if (ret < 0)
9053 return ret;
1c4850e2 9054 level = wc->level;
f82d02d9 9055 }
f82d02d9
YZ
9056 return 0;
9057}
9058
d397712b 9059static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9060 struct btrfs_root *root,
f82d02d9 9061 struct btrfs_path *path,
2c47e605 9062 struct walk_control *wc, int max_level)
20524f02 9063{
2c47e605 9064 int level = wc->level;
20524f02 9065 int ret;
9f3a7427 9066
2c47e605
YZ
9067 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9068 while (level < max_level && path->nodes[level]) {
9069 wc->level = level;
9070 if (path->slots[level] + 1 <
9071 btrfs_header_nritems(path->nodes[level])) {
9072 path->slots[level]++;
20524f02
CM
9073 return 0;
9074 } else {
2c47e605
YZ
9075 ret = walk_up_proc(trans, root, path, wc);
9076 if (ret > 0)
9077 return 0;
bd56b302 9078
2c47e605 9079 if (path->locks[level]) {
bd681513
CM
9080 btrfs_tree_unlock_rw(path->nodes[level],
9081 path->locks[level]);
2c47e605 9082 path->locks[level] = 0;
f82d02d9 9083 }
2c47e605
YZ
9084 free_extent_buffer(path->nodes[level]);
9085 path->nodes[level] = NULL;
9086 level++;
20524f02
CM
9087 }
9088 }
9089 return 1;
9090}
9091
9aca1d51 9092/*
2c47e605
YZ
9093 * drop a subvolume tree.
9094 *
9095 * this function traverses the tree freeing any blocks that only
9096 * referenced by the tree.
9097 *
9098 * when a shared tree block is found. this function decreases its
9099 * reference count by one. if update_ref is true, this function
9100 * also make sure backrefs for the shared block and all lower level
9101 * blocks are properly updated.
9d1a2a3a
DS
9102 *
9103 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9104 */
2c536799 9105int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9106 struct btrfs_block_rsv *block_rsv, int update_ref,
9107 int for_reloc)
20524f02 9108{
ab8d0fc4 9109 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9110 struct btrfs_path *path;
2c47e605 9111 struct btrfs_trans_handle *trans;
ab8d0fc4 9112 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9113 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9114 struct walk_control *wc;
9115 struct btrfs_key key;
9116 int err = 0;
9117 int ret;
9118 int level;
d29a9f62 9119 bool root_dropped = false;
20524f02 9120
ab8d0fc4 9121 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9122
5caf2a00 9123 path = btrfs_alloc_path();
cb1b69f4
TI
9124 if (!path) {
9125 err = -ENOMEM;
9126 goto out;
9127 }
20524f02 9128
2c47e605 9129 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9130 if (!wc) {
9131 btrfs_free_path(path);
cb1b69f4
TI
9132 err = -ENOMEM;
9133 goto out;
38a1a919 9134 }
2c47e605 9135
a22285a6 9136 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9137 if (IS_ERR(trans)) {
9138 err = PTR_ERR(trans);
9139 goto out_free;
9140 }
98d5dc13 9141
3fd0a558
YZ
9142 if (block_rsv)
9143 trans->block_rsv = block_rsv;
2c47e605 9144
9f3a7427 9145 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9146 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9147 path->nodes[level] = btrfs_lock_root_node(root);
9148 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9149 path->slots[level] = 0;
bd681513 9150 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9151 memset(&wc->update_progress, 0,
9152 sizeof(wc->update_progress));
9f3a7427 9153 } else {
9f3a7427 9154 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9155 memcpy(&wc->update_progress, &key,
9156 sizeof(wc->update_progress));
9157
6702ed49 9158 level = root_item->drop_level;
2c47e605 9159 BUG_ON(level == 0);
6702ed49 9160 path->lowest_level = level;
2c47e605
YZ
9161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9162 path->lowest_level = 0;
9163 if (ret < 0) {
9164 err = ret;
79787eaa 9165 goto out_end_trans;
9f3a7427 9166 }
1c4850e2 9167 WARN_ON(ret > 0);
2c47e605 9168
7d9eb12c
CM
9169 /*
9170 * unlock our path, this is safe because only this
9171 * function is allowed to delete this snapshot
9172 */
5d4f98a2 9173 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9174
9175 level = btrfs_header_level(root->node);
9176 while (1) {
9177 btrfs_tree_lock(path->nodes[level]);
9178 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9179 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9180
2ff7e61e 9181 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9182 path->nodes[level]->start,
3173a18f 9183 level, 1, &wc->refs[level],
2c47e605 9184 &wc->flags[level]);
79787eaa
JM
9185 if (ret < 0) {
9186 err = ret;
9187 goto out_end_trans;
9188 }
2c47e605
YZ
9189 BUG_ON(wc->refs[level] == 0);
9190
9191 if (level == root_item->drop_level)
9192 break;
9193
9194 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9195 path->locks[level] = 0;
2c47e605
YZ
9196 WARN_ON(wc->refs[level] != 1);
9197 level--;
9198 }
9f3a7427 9199 }
2c47e605
YZ
9200
9201 wc->level = level;
9202 wc->shared_level = -1;
9203 wc->stage = DROP_REFERENCE;
9204 wc->update_ref = update_ref;
9205 wc->keep_locks = 0;
66d7e7f0 9206 wc->for_reloc = for_reloc;
0b246afa 9207 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9208
d397712b 9209 while (1) {
9d1a2a3a 9210
2c47e605
YZ
9211 ret = walk_down_tree(trans, root, path, wc);
9212 if (ret < 0) {
9213 err = ret;
20524f02 9214 break;
2c47e605 9215 }
9aca1d51 9216
2c47e605
YZ
9217 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9218 if (ret < 0) {
9219 err = ret;
20524f02 9220 break;
2c47e605
YZ
9221 }
9222
9223 if (ret > 0) {
9224 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9225 break;
9226 }
2c47e605
YZ
9227
9228 if (wc->stage == DROP_REFERENCE) {
9229 level = wc->level;
9230 btrfs_node_key(path->nodes[level],
9231 &root_item->drop_progress,
9232 path->slots[level]);
9233 root_item->drop_level = level;
9234 }
9235
9236 BUG_ON(wc->level == 0);
3a45bb20 9237 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9238 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9239 ret = btrfs_update_root(trans, tree_root,
9240 &root->root_key,
9241 root_item);
79787eaa 9242 if (ret) {
66642832 9243 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9244 err = ret;
9245 goto out_end_trans;
9246 }
2c47e605 9247
3a45bb20 9248 btrfs_end_transaction_throttle(trans);
2ff7e61e 9249 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9250 btrfs_debug(fs_info,
9251 "drop snapshot early exit");
3c8f2422
JB
9252 err = -EAGAIN;
9253 goto out_free;
9254 }
9255
a22285a6 9256 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9257 if (IS_ERR(trans)) {
9258 err = PTR_ERR(trans);
9259 goto out_free;
9260 }
3fd0a558
YZ
9261 if (block_rsv)
9262 trans->block_rsv = block_rsv;
c3e69d58 9263 }
20524f02 9264 }
b3b4aa74 9265 btrfs_release_path(path);
79787eaa
JM
9266 if (err)
9267 goto out_end_trans;
2c47e605 9268
1cd5447e 9269 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9270 if (ret) {
66642832 9271 btrfs_abort_transaction(trans, ret);
e19182c0 9272 err = ret;
79787eaa
JM
9273 goto out_end_trans;
9274 }
2c47e605 9275
76dda93c 9276 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9277 ret = btrfs_find_root(tree_root, &root->root_key, path,
9278 NULL, NULL);
79787eaa 9279 if (ret < 0) {
66642832 9280 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9281 err = ret;
9282 goto out_end_trans;
9283 } else if (ret > 0) {
84cd948c
JB
9284 /* if we fail to delete the orphan item this time
9285 * around, it'll get picked up the next time.
9286 *
9287 * The most common failure here is just -ENOENT.
9288 */
9289 btrfs_del_orphan_item(trans, tree_root,
9290 root->root_key.objectid);
76dda93c
YZ
9291 }
9292 }
9293
27cdeb70 9294 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9295 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9296 } else {
9297 free_extent_buffer(root->node);
9298 free_extent_buffer(root->commit_root);
b0feb9d9 9299 btrfs_put_fs_root(root);
76dda93c 9300 }
d29a9f62 9301 root_dropped = true;
79787eaa 9302out_end_trans:
3a45bb20 9303 btrfs_end_transaction_throttle(trans);
79787eaa 9304out_free:
2c47e605 9305 kfree(wc);
5caf2a00 9306 btrfs_free_path(path);
cb1b69f4 9307out:
d29a9f62
JB
9308 /*
9309 * So if we need to stop dropping the snapshot for whatever reason we
9310 * need to make sure to add it back to the dead root list so that we
9311 * keep trying to do the work later. This also cleans up roots if we
9312 * don't have it in the radix (like when we recover after a power fail
9313 * or unmount) so we don't leak memory.
9314 */
897ca819 9315 if (!for_reloc && !root_dropped)
d29a9f62 9316 btrfs_add_dead_root(root);
90515e7f 9317 if (err && err != -EAGAIN)
ab8d0fc4 9318 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9319 return err;
20524f02 9320}
9078a3e1 9321
2c47e605
YZ
9322/*
9323 * drop subtree rooted at tree block 'node'.
9324 *
9325 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9326 * only used by relocation code
2c47e605 9327 */
f82d02d9
YZ
9328int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9329 struct btrfs_root *root,
9330 struct extent_buffer *node,
9331 struct extent_buffer *parent)
9332{
0b246afa 9333 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9334 struct btrfs_path *path;
2c47e605 9335 struct walk_control *wc;
f82d02d9
YZ
9336 int level;
9337 int parent_level;
9338 int ret = 0;
9339 int wret;
9340
2c47e605
YZ
9341 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9342
f82d02d9 9343 path = btrfs_alloc_path();
db5b493a
TI
9344 if (!path)
9345 return -ENOMEM;
f82d02d9 9346
2c47e605 9347 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9348 if (!wc) {
9349 btrfs_free_path(path);
9350 return -ENOMEM;
9351 }
2c47e605 9352
b9447ef8 9353 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9354 parent_level = btrfs_header_level(parent);
9355 extent_buffer_get(parent);
9356 path->nodes[parent_level] = parent;
9357 path->slots[parent_level] = btrfs_header_nritems(parent);
9358
b9447ef8 9359 btrfs_assert_tree_locked(node);
f82d02d9 9360 level = btrfs_header_level(node);
f82d02d9
YZ
9361 path->nodes[level] = node;
9362 path->slots[level] = 0;
bd681513 9363 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9364
9365 wc->refs[parent_level] = 1;
9366 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9367 wc->level = level;
9368 wc->shared_level = -1;
9369 wc->stage = DROP_REFERENCE;
9370 wc->update_ref = 0;
9371 wc->keep_locks = 1;
66d7e7f0 9372 wc->for_reloc = 1;
0b246afa 9373 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9374
9375 while (1) {
2c47e605
YZ
9376 wret = walk_down_tree(trans, root, path, wc);
9377 if (wret < 0) {
f82d02d9 9378 ret = wret;
f82d02d9 9379 break;
2c47e605 9380 }
f82d02d9 9381
2c47e605 9382 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9383 if (wret < 0)
9384 ret = wret;
9385 if (wret != 0)
9386 break;
9387 }
9388
2c47e605 9389 kfree(wc);
f82d02d9
YZ
9390 btrfs_free_path(path);
9391 return ret;
9392}
9393
6202df69 9394static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9395{
9396 u64 num_devices;
fc67c450 9397 u64 stripped;
e4d8ec0f 9398
fc67c450
ID
9399 /*
9400 * if restripe for this chunk_type is on pick target profile and
9401 * return, otherwise do the usual balance
9402 */
6202df69 9403 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9404 if (stripped)
9405 return extended_to_chunk(stripped);
e4d8ec0f 9406
6202df69 9407 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9408
fc67c450 9409 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9410 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9411 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9412
ec44a35c
CM
9413 if (num_devices == 1) {
9414 stripped |= BTRFS_BLOCK_GROUP_DUP;
9415 stripped = flags & ~stripped;
9416
9417 /* turn raid0 into single device chunks */
9418 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9419 return stripped;
9420
9421 /* turn mirroring into duplication */
9422 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9423 BTRFS_BLOCK_GROUP_RAID10))
9424 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9425 } else {
9426 /* they already had raid on here, just return */
ec44a35c
CM
9427 if (flags & stripped)
9428 return flags;
9429
9430 stripped |= BTRFS_BLOCK_GROUP_DUP;
9431 stripped = flags & ~stripped;
9432
9433 /* switch duplicated blocks with raid1 */
9434 if (flags & BTRFS_BLOCK_GROUP_DUP)
9435 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9436
e3176ca2 9437 /* this is drive concat, leave it alone */
ec44a35c 9438 }
e3176ca2 9439
ec44a35c
CM
9440 return flags;
9441}
9442
868f401a 9443static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9444{
f0486c68
YZ
9445 struct btrfs_space_info *sinfo = cache->space_info;
9446 u64 num_bytes;
199c36ea 9447 u64 min_allocable_bytes;
f0486c68 9448 int ret = -ENOSPC;
0ef3e66b 9449
199c36ea
MX
9450 /*
9451 * We need some metadata space and system metadata space for
9452 * allocating chunks in some corner cases until we force to set
9453 * it to be readonly.
9454 */
9455 if ((sinfo->flags &
9456 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9457 !force)
ee22184b 9458 min_allocable_bytes = SZ_1M;
199c36ea
MX
9459 else
9460 min_allocable_bytes = 0;
9461
f0486c68
YZ
9462 spin_lock(&sinfo->lock);
9463 spin_lock(&cache->lock);
61cfea9b
W
9464
9465 if (cache->ro) {
868f401a 9466 cache->ro++;
61cfea9b
W
9467 ret = 0;
9468 goto out;
9469 }
9470
f0486c68
YZ
9471 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9472 cache->bytes_super - btrfs_block_group_used(&cache->item);
9473
4136135b 9474 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9475 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9476 sinfo->bytes_readonly += num_bytes;
868f401a 9477 cache->ro++;
633c0aad 9478 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9479 ret = 0;
9480 }
61cfea9b 9481out:
f0486c68
YZ
9482 spin_unlock(&cache->lock);
9483 spin_unlock(&sinfo->lock);
9484 return ret;
9485}
7d9eb12c 9486
5e00f193 9487int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9488 struct btrfs_block_group_cache *cache)
c286ac48 9489
f0486c68
YZ
9490{
9491 struct btrfs_trans_handle *trans;
9492 u64 alloc_flags;
9493 int ret;
7d9eb12c 9494
1bbc621e 9495again:
5e00f193 9496 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9497 if (IS_ERR(trans))
9498 return PTR_ERR(trans);
5d4f98a2 9499
1bbc621e
CM
9500 /*
9501 * we're not allowed to set block groups readonly after the dirty
9502 * block groups cache has started writing. If it already started,
9503 * back off and let this transaction commit
9504 */
0b246afa 9505 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9506 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9507 u64 transid = trans->transid;
9508
0b246afa 9509 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9510 btrfs_end_transaction(trans);
1bbc621e 9511
2ff7e61e 9512 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9513 if (ret)
9514 return ret;
9515 goto again;
9516 }
9517
153c35b6
CM
9518 /*
9519 * if we are changing raid levels, try to allocate a corresponding
9520 * block group with the new raid level.
9521 */
0b246afa 9522 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9523 if (alloc_flags != cache->flags) {
2ff7e61e 9524 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9525 CHUNK_ALLOC_FORCE);
9526 /*
9527 * ENOSPC is allowed here, we may have enough space
9528 * already allocated at the new raid level to
9529 * carry on
9530 */
9531 if (ret == -ENOSPC)
9532 ret = 0;
9533 if (ret < 0)
9534 goto out;
9535 }
1bbc621e 9536
868f401a 9537 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9538 if (!ret)
9539 goto out;
2ff7e61e
JM
9540 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9541 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9542 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9543 if (ret < 0)
9544 goto out;
868f401a 9545 ret = inc_block_group_ro(cache, 0);
f0486c68 9546out:
2f081088 9547 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9548 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9549 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9550 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9551 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9552 }
0b246afa 9553 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9554
3a45bb20 9555 btrfs_end_transaction(trans);
f0486c68
YZ
9556 return ret;
9557}
5d4f98a2 9558
c87f08ca 9559int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9560 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9561{
2ff7e61e
JM
9562 u64 alloc_flags = get_alloc_profile(fs_info, type);
9563
9564 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9565}
9566
6d07bcec
MX
9567/*
9568 * helper to account the unused space of all the readonly block group in the
633c0aad 9569 * space_info. takes mirrors into account.
6d07bcec 9570 */
633c0aad 9571u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9572{
9573 struct btrfs_block_group_cache *block_group;
9574 u64 free_bytes = 0;
9575 int factor;
9576
01327610 9577 /* It's df, we don't care if it's racy */
633c0aad
JB
9578 if (list_empty(&sinfo->ro_bgs))
9579 return 0;
9580
9581 spin_lock(&sinfo->lock);
9582 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9583 spin_lock(&block_group->lock);
9584
9585 if (!block_group->ro) {
9586 spin_unlock(&block_group->lock);
9587 continue;
9588 }
9589
9590 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9591 BTRFS_BLOCK_GROUP_RAID10 |
9592 BTRFS_BLOCK_GROUP_DUP))
9593 factor = 2;
9594 else
9595 factor = 1;
9596
9597 free_bytes += (block_group->key.offset -
9598 btrfs_block_group_used(&block_group->item)) *
9599 factor;
9600
9601 spin_unlock(&block_group->lock);
9602 }
6d07bcec
MX
9603 spin_unlock(&sinfo->lock);
9604
9605 return free_bytes;
9606}
9607
2ff7e61e 9608void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9609{
f0486c68
YZ
9610 struct btrfs_space_info *sinfo = cache->space_info;
9611 u64 num_bytes;
9612
9613 BUG_ON(!cache->ro);
9614
9615 spin_lock(&sinfo->lock);
9616 spin_lock(&cache->lock);
868f401a
Z
9617 if (!--cache->ro) {
9618 num_bytes = cache->key.offset - cache->reserved -
9619 cache->pinned - cache->bytes_super -
9620 btrfs_block_group_used(&cache->item);
9621 sinfo->bytes_readonly -= num_bytes;
9622 list_del_init(&cache->ro_list);
9623 }
f0486c68
YZ
9624 spin_unlock(&cache->lock);
9625 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9626}
9627
ba1bf481
JB
9628/*
9629 * checks to see if its even possible to relocate this block group.
9630 *
9631 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9632 * ok to go ahead and try.
9633 */
6bccf3ab 9634int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9635{
6bccf3ab 9636 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9637 struct btrfs_block_group_cache *block_group;
9638 struct btrfs_space_info *space_info;
0b246afa 9639 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9640 struct btrfs_device *device;
6df9a95e 9641 struct btrfs_trans_handle *trans;
cdcb725c 9642 u64 min_free;
6719db6a
JB
9643 u64 dev_min = 1;
9644 u64 dev_nr = 0;
4a5e98f5 9645 u64 target;
0305bc27 9646 int debug;
cdcb725c 9647 int index;
ba1bf481
JB
9648 int full = 0;
9649 int ret = 0;
1a40e23b 9650
0b246afa 9651 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9652
0b246afa 9653 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9654
ba1bf481 9655 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9656 if (!block_group) {
9657 if (debug)
0b246afa 9658 btrfs_warn(fs_info,
0305bc27
QW
9659 "can't find block group for bytenr %llu",
9660 bytenr);
ba1bf481 9661 return -1;
0305bc27 9662 }
1a40e23b 9663
cdcb725c 9664 min_free = btrfs_block_group_used(&block_group->item);
9665
ba1bf481 9666 /* no bytes used, we're good */
cdcb725c 9667 if (!min_free)
1a40e23b
ZY
9668 goto out;
9669
ba1bf481
JB
9670 space_info = block_group->space_info;
9671 spin_lock(&space_info->lock);
17d217fe 9672
ba1bf481 9673 full = space_info->full;
17d217fe 9674
ba1bf481
JB
9675 /*
9676 * if this is the last block group we have in this space, we can't
7ce618db
CM
9677 * relocate it unless we're able to allocate a new chunk below.
9678 *
9679 * Otherwise, we need to make sure we have room in the space to handle
9680 * all of the extents from this block group. If we can, we're good
ba1bf481 9681 */
7ce618db 9682 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9683 (btrfs_space_info_used(space_info, false) + min_free <
9684 space_info->total_bytes)) {
ba1bf481
JB
9685 spin_unlock(&space_info->lock);
9686 goto out;
17d217fe 9687 }
ba1bf481 9688 spin_unlock(&space_info->lock);
ea8c2819 9689
ba1bf481
JB
9690 /*
9691 * ok we don't have enough space, but maybe we have free space on our
9692 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9693 * alloc devices and guess if we have enough space. if this block
9694 * group is going to be restriped, run checks against the target
9695 * profile instead of the current one.
ba1bf481
JB
9696 */
9697 ret = -1;
ea8c2819 9698
cdcb725c 9699 /*
9700 * index:
9701 * 0: raid10
9702 * 1: raid1
9703 * 2: dup
9704 * 3: raid0
9705 * 4: single
9706 */
0b246afa 9707 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9708 if (target) {
3e72ee88 9709 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9710 } else {
9711 /*
9712 * this is just a balance, so if we were marked as full
9713 * we know there is no space for a new chunk
9714 */
0305bc27
QW
9715 if (full) {
9716 if (debug)
0b246afa
JM
9717 btrfs_warn(fs_info,
9718 "no space to alloc new chunk for block group %llu",
9719 block_group->key.objectid);
4a5e98f5 9720 goto out;
0305bc27 9721 }
4a5e98f5 9722
3e72ee88 9723 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9724 }
9725
e6ec716f 9726 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9727 dev_min = 4;
6719db6a
JB
9728 /* Divide by 2 */
9729 min_free >>= 1;
e6ec716f 9730 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9731 dev_min = 2;
e6ec716f 9732 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9733 /* Multiply by 2 */
9734 min_free <<= 1;
e6ec716f 9735 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9736 dev_min = fs_devices->rw_devices;
47c5713f 9737 min_free = div64_u64(min_free, dev_min);
cdcb725c 9738 }
9739
6df9a95e
JB
9740 /* We need to do this so that we can look at pending chunks */
9741 trans = btrfs_join_transaction(root);
9742 if (IS_ERR(trans)) {
9743 ret = PTR_ERR(trans);
9744 goto out;
9745 }
9746
0b246afa 9747 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9748 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9749 u64 dev_offset;
56bec294 9750
ba1bf481
JB
9751 /*
9752 * check to make sure we can actually find a chunk with enough
9753 * space to fit our block group in.
9754 */
63a212ab 9755 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9756 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9757 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9758 &dev_offset, NULL);
ba1bf481 9759 if (!ret)
cdcb725c 9760 dev_nr++;
9761
9762 if (dev_nr >= dev_min)
73e48b27 9763 break;
cdcb725c 9764
ba1bf481 9765 ret = -1;
725c8463 9766 }
edbd8d4e 9767 }
0305bc27 9768 if (debug && ret == -1)
0b246afa
JM
9769 btrfs_warn(fs_info,
9770 "no space to allocate a new chunk for block group %llu",
9771 block_group->key.objectid);
9772 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9773 btrfs_end_transaction(trans);
edbd8d4e 9774out:
ba1bf481 9775 btrfs_put_block_group(block_group);
edbd8d4e
CM
9776 return ret;
9777}
9778
6bccf3ab
JM
9779static int find_first_block_group(struct btrfs_fs_info *fs_info,
9780 struct btrfs_path *path,
9781 struct btrfs_key *key)
0b86a832 9782{
6bccf3ab 9783 struct btrfs_root *root = fs_info->extent_root;
925baedd 9784 int ret = 0;
0b86a832
CM
9785 struct btrfs_key found_key;
9786 struct extent_buffer *leaf;
9787 int slot;
edbd8d4e 9788
0b86a832
CM
9789 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9790 if (ret < 0)
925baedd
CM
9791 goto out;
9792
d397712b 9793 while (1) {
0b86a832 9794 slot = path->slots[0];
edbd8d4e 9795 leaf = path->nodes[0];
0b86a832
CM
9796 if (slot >= btrfs_header_nritems(leaf)) {
9797 ret = btrfs_next_leaf(root, path);
9798 if (ret == 0)
9799 continue;
9800 if (ret < 0)
925baedd 9801 goto out;
0b86a832 9802 break;
edbd8d4e 9803 }
0b86a832 9804 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9805
0b86a832 9806 if (found_key.objectid >= key->objectid &&
925baedd 9807 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9808 struct extent_map_tree *em_tree;
9809 struct extent_map *em;
9810
9811 em_tree = &root->fs_info->mapping_tree.map_tree;
9812 read_lock(&em_tree->lock);
9813 em = lookup_extent_mapping(em_tree, found_key.objectid,
9814 found_key.offset);
9815 read_unlock(&em_tree->lock);
9816 if (!em) {
0b246afa 9817 btrfs_err(fs_info,
6fb37b75
LB
9818 "logical %llu len %llu found bg but no related chunk",
9819 found_key.objectid, found_key.offset);
9820 ret = -ENOENT;
9821 } else {
9822 ret = 0;
9823 }
187ee58c 9824 free_extent_map(em);
925baedd
CM
9825 goto out;
9826 }
0b86a832 9827 path->slots[0]++;
edbd8d4e 9828 }
925baedd 9829out:
0b86a832 9830 return ret;
edbd8d4e
CM
9831}
9832
0af3d00b
JB
9833void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9834{
9835 struct btrfs_block_group_cache *block_group;
9836 u64 last = 0;
9837
9838 while (1) {
9839 struct inode *inode;
9840
9841 block_group = btrfs_lookup_first_block_group(info, last);
9842 while (block_group) {
9843 spin_lock(&block_group->lock);
9844 if (block_group->iref)
9845 break;
9846 spin_unlock(&block_group->lock);
2ff7e61e 9847 block_group = next_block_group(info, block_group);
0af3d00b
JB
9848 }
9849 if (!block_group) {
9850 if (last == 0)
9851 break;
9852 last = 0;
9853 continue;
9854 }
9855
9856 inode = block_group->inode;
9857 block_group->iref = 0;
9858 block_group->inode = NULL;
9859 spin_unlock(&block_group->lock);
f3bca802 9860 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9861 iput(inode);
9862 last = block_group->key.objectid + block_group->key.offset;
9863 btrfs_put_block_group(block_group);
9864 }
9865}
9866
5cdd7db6
FM
9867/*
9868 * Must be called only after stopping all workers, since we could have block
9869 * group caching kthreads running, and therefore they could race with us if we
9870 * freed the block groups before stopping them.
9871 */
1a40e23b
ZY
9872int btrfs_free_block_groups(struct btrfs_fs_info *info)
9873{
9874 struct btrfs_block_group_cache *block_group;
4184ea7f 9875 struct btrfs_space_info *space_info;
11833d66 9876 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9877 struct rb_node *n;
9878
9e351cc8 9879 down_write(&info->commit_root_sem);
11833d66
YZ
9880 while (!list_empty(&info->caching_block_groups)) {
9881 caching_ctl = list_entry(info->caching_block_groups.next,
9882 struct btrfs_caching_control, list);
9883 list_del(&caching_ctl->list);
9884 put_caching_control(caching_ctl);
9885 }
9e351cc8 9886 up_write(&info->commit_root_sem);
11833d66 9887
47ab2a6c
JB
9888 spin_lock(&info->unused_bgs_lock);
9889 while (!list_empty(&info->unused_bgs)) {
9890 block_group = list_first_entry(&info->unused_bgs,
9891 struct btrfs_block_group_cache,
9892 bg_list);
9893 list_del_init(&block_group->bg_list);
9894 btrfs_put_block_group(block_group);
9895 }
9896 spin_unlock(&info->unused_bgs_lock);
9897
1a40e23b
ZY
9898 spin_lock(&info->block_group_cache_lock);
9899 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9900 block_group = rb_entry(n, struct btrfs_block_group_cache,
9901 cache_node);
1a40e23b
ZY
9902 rb_erase(&block_group->cache_node,
9903 &info->block_group_cache_tree);
01eacb27 9904 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9905 spin_unlock(&info->block_group_cache_lock);
9906
80eb234a 9907 down_write(&block_group->space_info->groups_sem);
1a40e23b 9908 list_del(&block_group->list);
80eb234a 9909 up_write(&block_group->space_info->groups_sem);
d2fb3437 9910
3c14874a
JB
9911 /*
9912 * We haven't cached this block group, which means we could
9913 * possibly have excluded extents on this block group.
9914 */
36cce922
JB
9915 if (block_group->cached == BTRFS_CACHE_NO ||
9916 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9917 free_excluded_extents(info, block_group);
3c14874a 9918
817d52f8 9919 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9920 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9921 ASSERT(list_empty(&block_group->dirty_list));
9922 ASSERT(list_empty(&block_group->io_list));
9923 ASSERT(list_empty(&block_group->bg_list));
9924 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9925 btrfs_put_block_group(block_group);
d899e052
YZ
9926
9927 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9928 }
9929 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9930
9931 /* now that all the block groups are freed, go through and
9932 * free all the space_info structs. This is only called during
9933 * the final stages of unmount, and so we know nobody is
9934 * using them. We call synchronize_rcu() once before we start,
9935 * just to be on the safe side.
9936 */
9937 synchronize_rcu();
9938
8929ecfa
YZ
9939 release_global_block_rsv(info);
9940
67871254 9941 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9942 int i;
9943
4184ea7f
CM
9944 space_info = list_entry(info->space_info.next,
9945 struct btrfs_space_info,
9946 list);
d555b6c3
JB
9947
9948 /*
9949 * Do not hide this behind enospc_debug, this is actually
9950 * important and indicates a real bug if this happens.
9951 */
9952 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9953 space_info->bytes_reserved > 0 ||
d555b6c3 9954 space_info->bytes_may_use > 0))
ab8d0fc4 9955 dump_space_info(info, space_info, 0, 0);
4184ea7f 9956 list_del(&space_info->list);
6ab0a202
JM
9957 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9958 struct kobject *kobj;
c1895442
JM
9959 kobj = space_info->block_group_kobjs[i];
9960 space_info->block_group_kobjs[i] = NULL;
9961 if (kobj) {
6ab0a202
JM
9962 kobject_del(kobj);
9963 kobject_put(kobj);
9964 }
9965 }
9966 kobject_del(&space_info->kobj);
9967 kobject_put(&space_info->kobj);
4184ea7f 9968 }
1a40e23b
ZY
9969 return 0;
9970}
9971
75cb379d
JM
9972/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9973void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9974{
9975 struct btrfs_space_info *space_info;
9976 struct raid_kobject *rkobj;
9977 LIST_HEAD(list);
9978 int index;
9979 int ret = 0;
9980
9981 spin_lock(&fs_info->pending_raid_kobjs_lock);
9982 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9983 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9984
9985 list_for_each_entry(rkobj, &list, list) {
9986 space_info = __find_space_info(fs_info, rkobj->flags);
9987 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9988
9989 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9990 "%s", get_raid_name(index));
9991 if (ret) {
9992 kobject_put(&rkobj->kobj);
9993 break;
9994 }
9995 }
9996 if (ret)
9997 btrfs_warn(fs_info,
9998 "failed to add kobject for block cache, ignoring");
9999}
10000
c434d21c 10001static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 10002{
c434d21c 10003 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 10004 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 10005 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 10006 bool first = false;
b742bb82
YZ
10007
10008 down_write(&space_info->groups_sem);
ed55b6ac
JM
10009 if (list_empty(&space_info->block_groups[index]))
10010 first = true;
10011 list_add_tail(&cache->list, &space_info->block_groups[index]);
10012 up_write(&space_info->groups_sem);
10013
10014 if (first) {
75cb379d
JM
10015 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10016 if (!rkobj) {
10017 btrfs_warn(cache->fs_info,
10018 "couldn't alloc memory for raid level kobject");
10019 return;
6ab0a202 10020 }
75cb379d
JM
10021 rkobj->flags = cache->flags;
10022 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10023
10024 spin_lock(&fs_info->pending_raid_kobjs_lock);
10025 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
10026 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 10027 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 10028 }
b742bb82
YZ
10029}
10030
920e4a58 10031static struct btrfs_block_group_cache *
2ff7e61e
JM
10032btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10033 u64 start, u64 size)
920e4a58
MX
10034{
10035 struct btrfs_block_group_cache *cache;
10036
10037 cache = kzalloc(sizeof(*cache), GFP_NOFS);
10038 if (!cache)
10039 return NULL;
10040
10041 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10042 GFP_NOFS);
10043 if (!cache->free_space_ctl) {
10044 kfree(cache);
10045 return NULL;
10046 }
10047
10048 cache->key.objectid = start;
10049 cache->key.offset = size;
10050 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10051
0b246afa 10052 cache->fs_info = fs_info;
e4ff5fb5 10053 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10054 set_free_space_tree_thresholds(cache);
10055
920e4a58
MX
10056 atomic_set(&cache->count, 1);
10057 spin_lock_init(&cache->lock);
e570fd27 10058 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10059 INIT_LIST_HEAD(&cache->list);
10060 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10061 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10062 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10063 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10064 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10065 btrfs_init_free_space_ctl(cache);
04216820 10066 atomic_set(&cache->trimming, 0);
a5ed9182 10067 mutex_init(&cache->free_space_lock);
0966a7b1 10068 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10069
10070 return cache;
10071}
10072
5b4aacef 10073int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10074{
10075 struct btrfs_path *path;
10076 int ret;
9078a3e1 10077 struct btrfs_block_group_cache *cache;
6324fbf3 10078 struct btrfs_space_info *space_info;
9078a3e1
CM
10079 struct btrfs_key key;
10080 struct btrfs_key found_key;
5f39d397 10081 struct extent_buffer *leaf;
0af3d00b
JB
10082 int need_clear = 0;
10083 u64 cache_gen;
49303381
LB
10084 u64 feature;
10085 int mixed;
10086
10087 feature = btrfs_super_incompat_flags(info->super_copy);
10088 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10089
9078a3e1 10090 key.objectid = 0;
0b86a832 10091 key.offset = 0;
962a298f 10092 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10093 path = btrfs_alloc_path();
10094 if (!path)
10095 return -ENOMEM;
e4058b54 10096 path->reada = READA_FORWARD;
9078a3e1 10097
0b246afa
JM
10098 cache_gen = btrfs_super_cache_generation(info->super_copy);
10099 if (btrfs_test_opt(info, SPACE_CACHE) &&
10100 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10101 need_clear = 1;
0b246afa 10102 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10103 need_clear = 1;
0af3d00b 10104
d397712b 10105 while (1) {
6bccf3ab 10106 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10107 if (ret > 0)
10108 break;
0b86a832
CM
10109 if (ret != 0)
10110 goto error;
920e4a58 10111
5f39d397
CM
10112 leaf = path->nodes[0];
10113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10114
2ff7e61e 10115 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10116 found_key.offset);
9078a3e1 10117 if (!cache) {
0b86a832 10118 ret = -ENOMEM;
f0486c68 10119 goto error;
9078a3e1 10120 }
96303081 10121
cf7c1ef6
LB
10122 if (need_clear) {
10123 /*
10124 * When we mount with old space cache, we need to
10125 * set BTRFS_DC_CLEAR and set dirty flag.
10126 *
10127 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10128 * truncate the old free space cache inode and
10129 * setup a new one.
10130 * b) Setting 'dirty flag' makes sure that we flush
10131 * the new space cache info onto disk.
10132 */
0b246afa 10133 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10134 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10135 }
0af3d00b 10136
5f39d397
CM
10137 read_extent_buffer(leaf, &cache->item,
10138 btrfs_item_ptr_offset(leaf, path->slots[0]),
10139 sizeof(cache->item));
920e4a58 10140 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10141 if (!mixed &&
10142 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10143 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10144 btrfs_err(info,
10145"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10146 cache->key.objectid);
10147 ret = -EINVAL;
10148 goto error;
10149 }
0b86a832 10150
9078a3e1 10151 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10152 btrfs_release_path(path);
34d52cb6 10153
3c14874a
JB
10154 /*
10155 * We need to exclude the super stripes now so that the space
10156 * info has super bytes accounted for, otherwise we'll think
10157 * we have more space than we actually do.
10158 */
2ff7e61e 10159 ret = exclude_super_stripes(info, cache);
835d974f
JB
10160 if (ret) {
10161 /*
10162 * We may have excluded something, so call this just in
10163 * case.
10164 */
2ff7e61e 10165 free_excluded_extents(info, cache);
920e4a58 10166 btrfs_put_block_group(cache);
835d974f
JB
10167 goto error;
10168 }
3c14874a 10169
817d52f8
JB
10170 /*
10171 * check for two cases, either we are full, and therefore
10172 * don't need to bother with the caching work since we won't
10173 * find any space, or we are empty, and we can just add all
10174 * the space in and be done with it. This saves us _alot_ of
10175 * time, particularly in the full case.
10176 */
10177 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10178 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10179 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10180 free_excluded_extents(info, cache);
817d52f8 10181 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10182 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10183 cache->cached = BTRFS_CACHE_FINISHED;
0b246afa 10184 add_new_free_space(cache, info,
817d52f8
JB
10185 found_key.objectid,
10186 found_key.objectid +
10187 found_key.offset);
2ff7e61e 10188 free_excluded_extents(info, cache);
817d52f8 10189 }
96b5179d 10190
0b246afa 10191 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10192 if (ret) {
10193 btrfs_remove_free_space_cache(cache);
10194 btrfs_put_block_group(cache);
10195 goto error;
10196 }
10197
0b246afa 10198 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10199 update_space_info(info, cache->flags, found_key.offset,
10200 btrfs_block_group_used(&cache->item),
10201 cache->bytes_super, &space_info);
8c579fe7 10202
6324fbf3 10203 cache->space_info = space_info;
1b2da372 10204
c434d21c 10205 link_block_group(cache);
0f9dd46c 10206
0b246afa 10207 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10208 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10209 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10210 } else if (btrfs_block_group_used(&cache->item) == 0) {
10211 spin_lock(&info->unused_bgs_lock);
10212 /* Should always be true but just in case. */
10213 if (list_empty(&cache->bg_list)) {
10214 btrfs_get_block_group(cache);
10215 list_add_tail(&cache->bg_list,
10216 &info->unused_bgs);
10217 }
10218 spin_unlock(&info->unused_bgs_lock);
10219 }
9078a3e1 10220 }
b742bb82 10221
0b246afa 10222 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10223 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10224 (BTRFS_BLOCK_GROUP_RAID10 |
10225 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10226 BTRFS_BLOCK_GROUP_RAID5 |
10227 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10228 BTRFS_BLOCK_GROUP_DUP)))
10229 continue;
10230 /*
10231 * avoid allocating from un-mirrored block group if there are
10232 * mirrored block groups.
10233 */
1095cc0d 10234 list_for_each_entry(cache,
10235 &space_info->block_groups[BTRFS_RAID_RAID0],
10236 list)
868f401a 10237 inc_block_group_ro(cache, 1);
1095cc0d 10238 list_for_each_entry(cache,
10239 &space_info->block_groups[BTRFS_RAID_SINGLE],
10240 list)
868f401a 10241 inc_block_group_ro(cache, 1);
9078a3e1 10242 }
f0486c68 10243
75cb379d 10244 btrfs_add_raid_kobjects(info);
f0486c68 10245 init_global_block_rsv(info);
0b86a832
CM
10246 ret = 0;
10247error:
9078a3e1 10248 btrfs_free_path(path);
0b86a832 10249 return ret;
9078a3e1 10250}
6324fbf3 10251
6c686b35 10252void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10253{
6c686b35 10254 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10255 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10256 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10257 struct btrfs_block_group_item item;
10258 struct btrfs_key key;
10259 int ret = 0;
d9a0540a 10260 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10261
d9a0540a 10262 trans->can_flush_pending_bgs = false;
47ab2a6c 10263 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10264 if (ret)
c92f6be3 10265 goto next;
ea658bad
JB
10266
10267 spin_lock(&block_group->lock);
10268 memcpy(&item, &block_group->item, sizeof(item));
10269 memcpy(&key, &block_group->key, sizeof(key));
10270 spin_unlock(&block_group->lock);
10271
10272 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10273 sizeof(item));
10274 if (ret)
66642832 10275 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10276 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10277 key.offset);
6df9a95e 10278 if (ret)
66642832 10279 btrfs_abort_transaction(trans, ret);
0b246afa 10280 add_block_group_free_space(trans, fs_info, block_group);
1e144fb8 10281 /* already aborted the transaction if it failed. */
c92f6be3
FM
10282next:
10283 list_del_init(&block_group->bg_list);
ea658bad 10284 }
d9a0540a 10285 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10286}
10287
6324fbf3 10288int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10289 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10290 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10291{
6324fbf3 10292 struct btrfs_block_group_cache *cache;
0b246afa 10293 int ret;
6324fbf3 10294
0b246afa 10295 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10296
2ff7e61e 10297 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10298 if (!cache)
10299 return -ENOMEM;
34d52cb6 10300
6324fbf3 10301 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10302 btrfs_set_block_group_chunk_objectid(&cache->item,
10303 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10304 btrfs_set_block_group_flags(&cache->item, type);
10305
920e4a58 10306 cache->flags = type;
11833d66 10307 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10308 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10309 cache->needs_free_space = 1;
2ff7e61e 10310 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10311 if (ret) {
10312 /*
10313 * We may have excluded something, so call this just in
10314 * case.
10315 */
2ff7e61e 10316 free_excluded_extents(fs_info, cache);
920e4a58 10317 btrfs_put_block_group(cache);
835d974f
JB
10318 return ret;
10319 }
96303081 10320
0b246afa 10321 add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
817d52f8 10322
2ff7e61e 10323 free_excluded_extents(fs_info, cache);
11833d66 10324
d0bd4560 10325#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10326 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10327 u64 new_bytes_used = size - bytes_used;
10328
10329 bytes_used += new_bytes_used >> 1;
2ff7e61e 10330 fragment_free_space(cache);
d0bd4560
JB
10331 }
10332#endif
2e6e5183 10333 /*
2be12ef7
NB
10334 * Ensure the corresponding space_info object is created and
10335 * assigned to our block group. We want our bg to be added to the rbtree
10336 * with its ->space_info set.
2e6e5183 10337 */
2be12ef7 10338 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10339 ASSERT(cache->space_info);
2e6e5183 10340
0b246afa 10341 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10342 if (ret) {
10343 btrfs_remove_free_space_cache(cache);
10344 btrfs_put_block_group(cache);
10345 return ret;
10346 }
10347
2e6e5183
FM
10348 /*
10349 * Now that our block group has its ->space_info set and is inserted in
10350 * the rbtree, update the space info's counters.
10351 */
0b246afa 10352 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10353 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10354 cache->bytes_super, &cache->space_info);
0b246afa 10355 update_global_block_rsv(fs_info);
1b2da372 10356
c434d21c 10357 link_block_group(cache);
6324fbf3 10358
47ab2a6c 10359 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10360
0b246afa 10361 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10362 return 0;
10363}
1a40e23b 10364
10ea00f5
ID
10365static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10366{
899c81ea
ID
10367 u64 extra_flags = chunk_to_extended(flags) &
10368 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10369
de98ced9 10370 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10371 if (flags & BTRFS_BLOCK_GROUP_DATA)
10372 fs_info->avail_data_alloc_bits &= ~extra_flags;
10373 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10374 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10375 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10376 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10377 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10378}
10379
1a40e23b 10380int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10381 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10382 struct extent_map *em)
1a40e23b 10383{
6bccf3ab 10384 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10385 struct btrfs_path *path;
10386 struct btrfs_block_group_cache *block_group;
44fb5511 10387 struct btrfs_free_cluster *cluster;
0b246afa 10388 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10389 struct btrfs_key key;
0af3d00b 10390 struct inode *inode;
c1895442 10391 struct kobject *kobj = NULL;
1a40e23b 10392 int ret;
10ea00f5 10393 int index;
89a55897 10394 int factor;
4f69cb98 10395 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10396 bool remove_em;
1a40e23b 10397
6bccf3ab 10398 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10399 BUG_ON(!block_group);
c146afad 10400 BUG_ON(!block_group->ro);
1a40e23b 10401
9f7c43c9 10402 /*
10403 * Free the reserved super bytes from this block group before
10404 * remove it.
10405 */
2ff7e61e 10406 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10407 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10408 block_group->key.offset);
9f7c43c9 10409
1a40e23b 10410 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10411 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10412 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10413 BTRFS_BLOCK_GROUP_RAID1 |
10414 BTRFS_BLOCK_GROUP_RAID10))
10415 factor = 2;
10416 else
10417 factor = 1;
1a40e23b 10418
44fb5511 10419 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10420 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10421 spin_lock(&cluster->refill_lock);
10422 btrfs_return_cluster_to_free_space(block_group, cluster);
10423 spin_unlock(&cluster->refill_lock);
10424
10425 /*
10426 * make sure this block group isn't part of a metadata
10427 * allocation cluster
10428 */
0b246afa 10429 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10430 spin_lock(&cluster->refill_lock);
10431 btrfs_return_cluster_to_free_space(block_group, cluster);
10432 spin_unlock(&cluster->refill_lock);
10433
1a40e23b 10434 path = btrfs_alloc_path();
d8926bb3
MF
10435 if (!path) {
10436 ret = -ENOMEM;
10437 goto out;
10438 }
1a40e23b 10439
1bbc621e
CM
10440 /*
10441 * get the inode first so any iput calls done for the io_list
10442 * aren't the final iput (no unlinks allowed now)
10443 */
77ab86bf 10444 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10445
10446 mutex_lock(&trans->transaction->cache_write_mutex);
10447 /*
10448 * make sure our free spache cache IO is done before remove the
10449 * free space inode
10450 */
10451 spin_lock(&trans->transaction->dirty_bgs_lock);
10452 if (!list_empty(&block_group->io_list)) {
10453 list_del_init(&block_group->io_list);
10454
10455 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10456
10457 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10458 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10459 btrfs_put_block_group(block_group);
10460 spin_lock(&trans->transaction->dirty_bgs_lock);
10461 }
10462
10463 if (!list_empty(&block_group->dirty_list)) {
10464 list_del_init(&block_group->dirty_list);
10465 btrfs_put_block_group(block_group);
10466 }
10467 spin_unlock(&trans->transaction->dirty_bgs_lock);
10468 mutex_unlock(&trans->transaction->cache_write_mutex);
10469
0af3d00b 10470 if (!IS_ERR(inode)) {
73f2e545 10471 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10472 if (ret) {
10473 btrfs_add_delayed_iput(inode);
10474 goto out;
10475 }
0af3d00b
JB
10476 clear_nlink(inode);
10477 /* One for the block groups ref */
10478 spin_lock(&block_group->lock);
10479 if (block_group->iref) {
10480 block_group->iref = 0;
10481 block_group->inode = NULL;
10482 spin_unlock(&block_group->lock);
10483 iput(inode);
10484 } else {
10485 spin_unlock(&block_group->lock);
10486 }
10487 /* One for our lookup ref */
455757c3 10488 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10489 }
10490
10491 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10492 key.offset = block_group->key.objectid;
10493 key.type = 0;
10494
10495 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10496 if (ret < 0)
10497 goto out;
10498 if (ret > 0)
b3b4aa74 10499 btrfs_release_path(path);
0af3d00b
JB
10500 if (ret == 0) {
10501 ret = btrfs_del_item(trans, tree_root, path);
10502 if (ret)
10503 goto out;
b3b4aa74 10504 btrfs_release_path(path);
0af3d00b
JB
10505 }
10506
0b246afa 10507 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10508 rb_erase(&block_group->cache_node,
0b246afa 10509 &fs_info->block_group_cache_tree);
292cbd51 10510 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10511
0b246afa
JM
10512 if (fs_info->first_logical_byte == block_group->key.objectid)
10513 fs_info->first_logical_byte = (u64)-1;
10514 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10515
80eb234a 10516 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10517 /*
10518 * we must use list_del_init so people can check to see if they
10519 * are still on the list after taking the semaphore
10520 */
10521 list_del_init(&block_group->list);
6ab0a202 10522 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10523 kobj = block_group->space_info->block_group_kobjs[index];
10524 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10525 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10526 }
80eb234a 10527 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10528 if (kobj) {
10529 kobject_del(kobj);
10530 kobject_put(kobj);
10531 }
1a40e23b 10532
4f69cb98
FM
10533 if (block_group->has_caching_ctl)
10534 caching_ctl = get_caching_control(block_group);
817d52f8 10535 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10536 wait_block_group_cache_done(block_group);
4f69cb98 10537 if (block_group->has_caching_ctl) {
0b246afa 10538 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10539 if (!caching_ctl) {
10540 struct btrfs_caching_control *ctl;
10541
10542 list_for_each_entry(ctl,
0b246afa 10543 &fs_info->caching_block_groups, list)
4f69cb98
FM
10544 if (ctl->block_group == block_group) {
10545 caching_ctl = ctl;
1e4f4714 10546 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10547 break;
10548 }
10549 }
10550 if (caching_ctl)
10551 list_del_init(&caching_ctl->list);
0b246afa 10552 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10553 if (caching_ctl) {
10554 /* Once for the caching bgs list and once for us. */
10555 put_caching_control(caching_ctl);
10556 put_caching_control(caching_ctl);
10557 }
10558 }
817d52f8 10559
ce93ec54
JB
10560 spin_lock(&trans->transaction->dirty_bgs_lock);
10561 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10562 WARN_ON(1);
10563 }
10564 if (!list_empty(&block_group->io_list)) {
10565 WARN_ON(1);
ce93ec54
JB
10566 }
10567 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10568 btrfs_remove_free_space_cache(block_group);
10569
c146afad 10570 spin_lock(&block_group->space_info->lock);
75c68e9f 10571 list_del_init(&block_group->ro_list);
18d018ad 10572
0b246afa 10573 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10574 WARN_ON(block_group->space_info->total_bytes
10575 < block_group->key.offset);
10576 WARN_ON(block_group->space_info->bytes_readonly
10577 < block_group->key.offset);
10578 WARN_ON(block_group->space_info->disk_total
10579 < block_group->key.offset * factor);
10580 }
c146afad
YZ
10581 block_group->space_info->total_bytes -= block_group->key.offset;
10582 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10583 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10584
c146afad 10585 spin_unlock(&block_group->space_info->lock);
283bb197 10586
0af3d00b
JB
10587 memcpy(&key, &block_group->key, sizeof(key));
10588
34441361 10589 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10590 if (!list_empty(&em->list)) {
10591 /* We're in the transaction->pending_chunks list. */
10592 free_extent_map(em);
10593 }
04216820
FM
10594 spin_lock(&block_group->lock);
10595 block_group->removed = 1;
10596 /*
10597 * At this point trimming can't start on this block group, because we
10598 * removed the block group from the tree fs_info->block_group_cache_tree
10599 * so no one can't find it anymore and even if someone already got this
10600 * block group before we removed it from the rbtree, they have already
10601 * incremented block_group->trimming - if they didn't, they won't find
10602 * any free space entries because we already removed them all when we
10603 * called btrfs_remove_free_space_cache().
10604 *
10605 * And we must not remove the extent map from the fs_info->mapping_tree
10606 * to prevent the same logical address range and physical device space
10607 * ranges from being reused for a new block group. This is because our
10608 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10609 * completely transactionless, so while it is trimming a range the
10610 * currently running transaction might finish and a new one start,
10611 * allowing for new block groups to be created that can reuse the same
10612 * physical device locations unless we take this special care.
e33e17ee
JM
10613 *
10614 * There may also be an implicit trim operation if the file system
10615 * is mounted with -odiscard. The same protections must remain
10616 * in place until the extents have been discarded completely when
10617 * the transaction commit has completed.
04216820
FM
10618 */
10619 remove_em = (atomic_read(&block_group->trimming) == 0);
10620 /*
10621 * Make sure a trimmer task always sees the em in the pinned_chunks list
10622 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10623 * before checking block_group->removed).
10624 */
10625 if (!remove_em) {
10626 /*
10627 * Our em might be in trans->transaction->pending_chunks which
10628 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10629 * and so is the fs_info->pinned_chunks list.
10630 *
10631 * So at this point we must be holding the chunk_mutex to avoid
10632 * any races with chunk allocation (more specifically at
10633 * volumes.c:contains_pending_extent()), to ensure it always
10634 * sees the em, either in the pending_chunks list or in the
10635 * pinned_chunks list.
10636 */
0b246afa 10637 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10638 }
10639 spin_unlock(&block_group->lock);
04216820
FM
10640
10641 if (remove_em) {
10642 struct extent_map_tree *em_tree;
10643
0b246afa 10644 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10645 write_lock(&em_tree->lock);
8dbcd10f
FM
10646 /*
10647 * The em might be in the pending_chunks list, so make sure the
10648 * chunk mutex is locked, since remove_extent_mapping() will
10649 * delete us from that list.
10650 */
04216820
FM
10651 remove_extent_mapping(em_tree, em);
10652 write_unlock(&em_tree->lock);
10653 /* once for the tree */
10654 free_extent_map(em);
10655 }
10656
34441361 10657 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10658
0b246afa 10659 ret = remove_block_group_free_space(trans, fs_info, block_group);
1e144fb8
OS
10660 if (ret)
10661 goto out;
10662
fa9c0d79
CM
10663 btrfs_put_block_group(block_group);
10664 btrfs_put_block_group(block_group);
1a40e23b
ZY
10665
10666 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10667 if (ret > 0)
10668 ret = -EIO;
10669 if (ret < 0)
10670 goto out;
10671
10672 ret = btrfs_del_item(trans, root, path);
10673out:
10674 btrfs_free_path(path);
10675 return ret;
10676}
acce952b 10677
8eab77ff 10678struct btrfs_trans_handle *
7fd01182
FM
10679btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10680 const u64 chunk_offset)
8eab77ff 10681{
7fd01182
FM
10682 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10683 struct extent_map *em;
10684 struct map_lookup *map;
10685 unsigned int num_items;
10686
10687 read_lock(&em_tree->lock);
10688 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10689 read_unlock(&em_tree->lock);
10690 ASSERT(em && em->start == chunk_offset);
10691
8eab77ff 10692 /*
7fd01182
FM
10693 * We need to reserve 3 + N units from the metadata space info in order
10694 * to remove a block group (done at btrfs_remove_chunk() and at
10695 * btrfs_remove_block_group()), which are used for:
10696 *
8eab77ff
FM
10697 * 1 unit for adding the free space inode's orphan (located in the tree
10698 * of tree roots).
7fd01182
FM
10699 * 1 unit for deleting the block group item (located in the extent
10700 * tree).
10701 * 1 unit for deleting the free space item (located in tree of tree
10702 * roots).
10703 * N units for deleting N device extent items corresponding to each
10704 * stripe (located in the device tree).
10705 *
10706 * In order to remove a block group we also need to reserve units in the
10707 * system space info in order to update the chunk tree (update one or
10708 * more device items and remove one chunk item), but this is done at
10709 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10710 */
95617d69 10711 map = em->map_lookup;
7fd01182
FM
10712 num_items = 3 + map->num_stripes;
10713 free_extent_map(em);
10714
8eab77ff 10715 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10716 num_items, 1);
8eab77ff
FM
10717}
10718
47ab2a6c
JB
10719/*
10720 * Process the unused_bgs list and remove any that don't have any allocated
10721 * space inside of them.
10722 */
10723void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10724{
10725 struct btrfs_block_group_cache *block_group;
10726 struct btrfs_space_info *space_info;
47ab2a6c
JB
10727 struct btrfs_trans_handle *trans;
10728 int ret = 0;
10729
afcdd129 10730 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10731 return;
10732
10733 spin_lock(&fs_info->unused_bgs_lock);
10734 while (!list_empty(&fs_info->unused_bgs)) {
10735 u64 start, end;
e33e17ee 10736 int trimming;
47ab2a6c
JB
10737
10738 block_group = list_first_entry(&fs_info->unused_bgs,
10739 struct btrfs_block_group_cache,
10740 bg_list);
47ab2a6c 10741 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10742
10743 space_info = block_group->space_info;
10744
47ab2a6c
JB
10745 if (ret || btrfs_mixed_space_info(space_info)) {
10746 btrfs_put_block_group(block_group);
10747 continue;
10748 }
10749 spin_unlock(&fs_info->unused_bgs_lock);
10750
d5f2e33b 10751 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10752
47ab2a6c
JB
10753 /* Don't want to race with allocators so take the groups_sem */
10754 down_write(&space_info->groups_sem);
10755 spin_lock(&block_group->lock);
10756 if (block_group->reserved ||
10757 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10758 block_group->ro ||
aefbe9a6 10759 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10760 /*
10761 * We want to bail if we made new allocations or have
10762 * outstanding allocations in this block group. We do
10763 * the ro check in case balance is currently acting on
10764 * this block group.
10765 */
10766 spin_unlock(&block_group->lock);
10767 up_write(&space_info->groups_sem);
10768 goto next;
10769 }
10770 spin_unlock(&block_group->lock);
10771
10772 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10773 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10774 up_write(&space_info->groups_sem);
10775 if (ret < 0) {
10776 ret = 0;
10777 goto next;
10778 }
10779
10780 /*
10781 * Want to do this before we do anything else so we can recover
10782 * properly if we fail to join the transaction.
10783 */
7fd01182
FM
10784 trans = btrfs_start_trans_remove_block_group(fs_info,
10785 block_group->key.objectid);
47ab2a6c 10786 if (IS_ERR(trans)) {
2ff7e61e 10787 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10788 ret = PTR_ERR(trans);
10789 goto next;
10790 }
10791
10792 /*
10793 * We could have pending pinned extents for this block group,
10794 * just delete them, we don't care about them anymore.
10795 */
10796 start = block_group->key.objectid;
10797 end = start + block_group->key.offset - 1;
d4b450cd
FM
10798 /*
10799 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10800 * btrfs_finish_extent_commit(). If we are at transaction N,
10801 * another task might be running finish_extent_commit() for the
10802 * previous transaction N - 1, and have seen a range belonging
10803 * to the block group in freed_extents[] before we were able to
10804 * clear the whole block group range from freed_extents[]. This
10805 * means that task can lookup for the block group after we
10806 * unpinned it from freed_extents[] and removed it, leading to
10807 * a BUG_ON() at btrfs_unpin_extent_range().
10808 */
10809 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10810 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10811 EXTENT_DIRTY);
758eb51e 10812 if (ret) {
d4b450cd 10813 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10814 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10815 goto end_trans;
10816 }
10817 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10818 EXTENT_DIRTY);
758eb51e 10819 if (ret) {
d4b450cd 10820 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10821 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10822 goto end_trans;
10823 }
d4b450cd 10824 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10825
10826 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10827 spin_lock(&space_info->lock);
10828 spin_lock(&block_group->lock);
10829
10830 space_info->bytes_pinned -= block_group->pinned;
10831 space_info->bytes_readonly += block_group->pinned;
10832 percpu_counter_add(&space_info->total_bytes_pinned,
10833 -block_group->pinned);
47ab2a6c
JB
10834 block_group->pinned = 0;
10835
c30666d4
ZL
10836 spin_unlock(&block_group->lock);
10837 spin_unlock(&space_info->lock);
10838
e33e17ee 10839 /* DISCARD can flip during remount */
0b246afa 10840 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10841
10842 /* Implicit trim during transaction commit. */
10843 if (trimming)
10844 btrfs_get_block_group_trimming(block_group);
10845
47ab2a6c
JB
10846 /*
10847 * Btrfs_remove_chunk will abort the transaction if things go
10848 * horribly wrong.
10849 */
5b4aacef 10850 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10851 block_group->key.objectid);
e33e17ee
JM
10852
10853 if (ret) {
10854 if (trimming)
10855 btrfs_put_block_group_trimming(block_group);
10856 goto end_trans;
10857 }
10858
10859 /*
10860 * If we're not mounted with -odiscard, we can just forget
10861 * about this block group. Otherwise we'll need to wait
10862 * until transaction commit to do the actual discard.
10863 */
10864 if (trimming) {
348a0013
FM
10865 spin_lock(&fs_info->unused_bgs_lock);
10866 /*
10867 * A concurrent scrub might have added us to the list
10868 * fs_info->unused_bgs, so use a list_move operation
10869 * to add the block group to the deleted_bgs list.
10870 */
e33e17ee
JM
10871 list_move(&block_group->bg_list,
10872 &trans->transaction->deleted_bgs);
348a0013 10873 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10874 btrfs_get_block_group(block_group);
10875 }
758eb51e 10876end_trans:
3a45bb20 10877 btrfs_end_transaction(trans);
47ab2a6c 10878next:
d5f2e33b 10879 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10880 btrfs_put_block_group(block_group);
10881 spin_lock(&fs_info->unused_bgs_lock);
10882 }
10883 spin_unlock(&fs_info->unused_bgs_lock);
10884}
10885
c59021f8 10886int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10887{
10888 struct btrfs_space_info *space_info;
1aba86d6 10889 struct btrfs_super_block *disk_super;
10890 u64 features;
10891 u64 flags;
10892 int mixed = 0;
c59021f8 10893 int ret;
10894
6c41761f 10895 disk_super = fs_info->super_copy;
1aba86d6 10896 if (!btrfs_super_root(disk_super))
0dc924c5 10897 return -EINVAL;
c59021f8 10898
1aba86d6 10899 features = btrfs_super_incompat_flags(disk_super);
10900 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10901 mixed = 1;
c59021f8 10902
1aba86d6 10903 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2be12ef7 10904 ret = create_space_info(fs_info, flags, &space_info);
c59021f8 10905 if (ret)
1aba86d6 10906 goto out;
c59021f8 10907
1aba86d6 10908 if (mixed) {
10909 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10910 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10911 } else {
10912 flags = BTRFS_BLOCK_GROUP_METADATA;
2be12ef7 10913 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10914 if (ret)
10915 goto out;
10916
10917 flags = BTRFS_BLOCK_GROUP_DATA;
2be12ef7 10918 ret = create_space_info(fs_info, flags, &space_info);
1aba86d6 10919 }
10920out:
c59021f8 10921 return ret;
10922}
10923
2ff7e61e
JM
10924int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10925 u64 start, u64 end)
acce952b 10926{
2ff7e61e 10927 return unpin_extent_range(fs_info, start, end, false);
acce952b 10928}
10929
499f377f
JM
10930/*
10931 * It used to be that old block groups would be left around forever.
10932 * Iterating over them would be enough to trim unused space. Since we
10933 * now automatically remove them, we also need to iterate over unallocated
10934 * space.
10935 *
10936 * We don't want a transaction for this since the discard may take a
10937 * substantial amount of time. We don't require that a transaction be
10938 * running, but we do need to take a running transaction into account
10939 * to ensure that we're not discarding chunks that were released in
10940 * the current transaction.
10941 *
10942 * Holding the chunks lock will prevent other threads from allocating
10943 * or releasing chunks, but it won't prevent a running transaction
10944 * from committing and releasing the memory that the pending chunks
10945 * list head uses. For that, we need to take a reference to the
10946 * transaction.
10947 */
10948static int btrfs_trim_free_extents(struct btrfs_device *device,
10949 u64 minlen, u64 *trimmed)
10950{
10951 u64 start = 0, len = 0;
10952 int ret;
10953
10954 *trimmed = 0;
10955
10956 /* Not writeable = nothing to do. */
ebbede42 10957 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10958 return 0;
10959
10960 /* No free space = nothing to do. */
10961 if (device->total_bytes <= device->bytes_used)
10962 return 0;
10963
10964 ret = 0;
10965
10966 while (1) {
fb456252 10967 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10968 struct btrfs_transaction *trans;
10969 u64 bytes;
10970
10971 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10972 if (ret)
10973 return ret;
10974
10975 down_read(&fs_info->commit_root_sem);
10976
10977 spin_lock(&fs_info->trans_lock);
10978 trans = fs_info->running_transaction;
10979 if (trans)
9b64f57d 10980 refcount_inc(&trans->use_count);
499f377f
JM
10981 spin_unlock(&fs_info->trans_lock);
10982
10983 ret = find_free_dev_extent_start(trans, device, minlen, start,
10984 &start, &len);
10985 if (trans)
10986 btrfs_put_transaction(trans);
10987
10988 if (ret) {
10989 up_read(&fs_info->commit_root_sem);
10990 mutex_unlock(&fs_info->chunk_mutex);
10991 if (ret == -ENOSPC)
10992 ret = 0;
10993 break;
10994 }
10995
10996 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10997 up_read(&fs_info->commit_root_sem);
10998 mutex_unlock(&fs_info->chunk_mutex);
10999
11000 if (ret)
11001 break;
11002
11003 start += len;
11004 *trimmed += bytes;
11005
11006 if (fatal_signal_pending(current)) {
11007 ret = -ERESTARTSYS;
11008 break;
11009 }
11010
11011 cond_resched();
11012 }
11013
11014 return ret;
11015}
11016
2ff7e61e 11017int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 11018{
f7039b1d 11019 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
11020 struct btrfs_device *device;
11021 struct list_head *devices;
f7039b1d
LD
11022 u64 group_trimmed;
11023 u64 start;
11024 u64 end;
11025 u64 trimmed = 0;
2cac13e4 11026 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
11027 int ret = 0;
11028
2cac13e4
LB
11029 /*
11030 * try to trim all FS space, our block group may start from non-zero.
11031 */
11032 if (range->len == total_bytes)
11033 cache = btrfs_lookup_first_block_group(fs_info, range->start);
11034 else
11035 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
11036
11037 while (cache) {
11038 if (cache->key.objectid >= (range->start + range->len)) {
11039 btrfs_put_block_group(cache);
11040 break;
11041 }
11042
11043 start = max(range->start, cache->key.objectid);
11044 end = min(range->start + range->len,
11045 cache->key.objectid + cache->key.offset);
11046
11047 if (end - start >= range->minlen) {
11048 if (!block_group_cache_done(cache)) {
f6373bf3 11049 ret = cache_block_group(cache, 0);
1be41b78
JB
11050 if (ret) {
11051 btrfs_put_block_group(cache);
11052 break;
11053 }
11054 ret = wait_block_group_cache_done(cache);
11055 if (ret) {
11056 btrfs_put_block_group(cache);
11057 break;
11058 }
f7039b1d
LD
11059 }
11060 ret = btrfs_trim_block_group(cache,
11061 &group_trimmed,
11062 start,
11063 end,
11064 range->minlen);
11065
11066 trimmed += group_trimmed;
11067 if (ret) {
11068 btrfs_put_block_group(cache);
11069 break;
11070 }
11071 }
11072
2ff7e61e 11073 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11074 }
11075
0b246afa
JM
11076 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11077 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11078 list_for_each_entry(device, devices, dev_alloc_list) {
11079 ret = btrfs_trim_free_extents(device, range->minlen,
11080 &group_trimmed);
11081 if (ret)
11082 break;
11083
11084 trimmed += group_trimmed;
11085 }
0b246afa 11086 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11087
f7039b1d
LD
11088 range->len = trimmed;
11089 return ret;
11090}
8257b2dc
MX
11091
11092/*
ea14b57f 11093 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11094 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11095 * data into the page cache through nocow before the subvolume is snapshoted,
11096 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11097 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11098 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11099 */
ea14b57f 11100void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11101{
11102 percpu_counter_dec(&root->subv_writers->counter);
11103 /*
a83342aa 11104 * Make sure counter is updated before we wake up waiters.
8257b2dc
MX
11105 */
11106 smp_mb();
11107 if (waitqueue_active(&root->subv_writers->wait))
11108 wake_up(&root->subv_writers->wait);
11109}
11110
ea14b57f 11111int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11112{
ea14b57f 11113 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11114 return 0;
11115
11116 percpu_counter_inc(&root->subv_writers->counter);
11117 /*
11118 * Make sure counter is updated before we check for snapshot creation.
11119 */
11120 smp_mb();
ea14b57f
DS
11121 if (atomic_read(&root->will_be_snapshotted)) {
11122 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11123 return 0;
11124 }
11125 return 1;
11126}
0bc19f90 11127
0bc19f90
ZL
11128void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11129{
11130 while (true) {
11131 int ret;
11132
ea14b57f 11133 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11134 if (ret)
11135 break;
4625956a
PZ
11136 wait_var_event(&root->will_be_snapshotted,
11137 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11138 }
11139}