]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent-tree.c
btrfs: Remove fs_info from lookup_extent_backref
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent-tree.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570 4 */
c1d7c514 5
ec6b910f 6#include <linux/sched.h>
f361bf4a 7#include <linux/sched/signal.h>
edbd8d4e 8#include <linux/pagemap.h>
ec44a35c 9#include <linux/writeback.h>
21af804c 10#include <linux/blkdev.h>
b7a9f29f 11#include <linux/sort.h>
4184ea7f 12#include <linux/rcupdate.h>
817d52f8 13#include <linux/kthread.h>
5a0e3ad6 14#include <linux/slab.h>
dff51cd1 15#include <linux/ratelimit.h>
b150a4f1 16#include <linux/percpu_counter.h>
69fe2d75 17#include <linux/lockdep.h>
9678c543 18#include <linux/crc32c.h>
995946dd 19#include "tree-log.h"
fec577fb
CM
20#include "disk-io.h"
21#include "print-tree.h"
0b86a832 22#include "volumes.h"
53b381b3 23#include "raid56.h"
925baedd 24#include "locking.h"
fa9c0d79 25#include "free-space-cache.h"
1e144fb8 26#include "free-space-tree.h"
3fed40cc 27#include "math.h"
6ab0a202 28#include "sysfs.h"
fcebe456 29#include "qgroup.h"
fd708b81 30#include "ref-verify.h"
fec577fb 31
709c0486
AJ
32#undef SCRAMBLE_DELAYED_REFS
33
9e622d6b
MX
34/*
35 * control flags for do_chunk_alloc's force field
0e4f8f88
CM
36 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
37 * if we really need one.
38 *
0e4f8f88
CM
39 * CHUNK_ALLOC_LIMITED means to only try and allocate one
40 * if we have very few chunks already allocated. This is
41 * used as part of the clustering code to help make sure
42 * we have a good pool of storage to cluster in, without
43 * filling the FS with empty chunks
44 *
9e622d6b
MX
45 * CHUNK_ALLOC_FORCE means it must try to allocate one
46 *
0e4f8f88
CM
47 */
48enum {
49 CHUNK_ALLOC_NO_FORCE = 0,
9e622d6b
MX
50 CHUNK_ALLOC_LIMITED = 1,
51 CHUNK_ALLOC_FORCE = 2,
0e4f8f88
CM
52};
53
5d4f98a2 54static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 55 struct btrfs_fs_info *fs_info,
c682f9b3 56 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
57 u64 root_objectid, u64 owner_objectid,
58 u64 owner_offset, int refs_to_drop,
c682f9b3 59 struct btrfs_delayed_extent_op *extra_op);
5d4f98a2
YZ
60static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
61 struct extent_buffer *leaf,
62 struct btrfs_extent_item *ei);
63static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 64 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
65 u64 parent, u64 root_objectid,
66 u64 flags, u64 owner, u64 offset,
67 struct btrfs_key *ins, int ref_mod);
68static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 69 struct btrfs_delayed_ref_node *node,
21ebfbe7 70 struct btrfs_delayed_extent_op *extent_op);
6a63209f 71static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 72 struct btrfs_fs_info *fs_info, u64 flags,
698d0082 73 int force);
11833d66
YZ
74static int find_next_key(struct btrfs_path *path, int level,
75 struct btrfs_key *key);
ab8d0fc4
JM
76static void dump_space_info(struct btrfs_fs_info *fs_info,
77 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 78 int dump_block_groups);
5d80366e
JB
79static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
80 u64 num_bytes);
957780eb
JB
81static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
82 struct btrfs_space_info *space_info,
83 u64 num_bytes);
84static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
85 struct btrfs_space_info *space_info,
86 u64 num_bytes);
6a63209f 87
817d52f8
JB
88static noinline int
89block_group_cache_done(struct btrfs_block_group_cache *cache)
90{
91 smp_mb();
36cce922
JB
92 return cache->cached == BTRFS_CACHE_FINISHED ||
93 cache->cached == BTRFS_CACHE_ERROR;
817d52f8
JB
94}
95
0f9dd46c
JB
96static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
97{
98 return (cache->flags & bits) == bits;
99}
100
758f2dfc 101void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
11dfe35a
JB
102{
103 atomic_inc(&cache->count);
104}
105
106void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
107{
f0486c68
YZ
108 if (atomic_dec_and_test(&cache->count)) {
109 WARN_ON(cache->pinned > 0);
110 WARN_ON(cache->reserved > 0);
0966a7b1
QW
111
112 /*
113 * If not empty, someone is still holding mutex of
114 * full_stripe_lock, which can only be released by caller.
115 * And it will definitely cause use-after-free when caller
116 * tries to release full stripe lock.
117 *
118 * No better way to resolve, but only to warn.
119 */
120 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
34d52cb6 121 kfree(cache->free_space_ctl);
11dfe35a 122 kfree(cache);
f0486c68 123 }
11dfe35a
JB
124}
125
0f9dd46c
JB
126/*
127 * this adds the block group to the fs_info rb tree for the block group
128 * cache
129 */
b2950863 130static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
0f9dd46c
JB
131 struct btrfs_block_group_cache *block_group)
132{
133 struct rb_node **p;
134 struct rb_node *parent = NULL;
135 struct btrfs_block_group_cache *cache;
136
137 spin_lock(&info->block_group_cache_lock);
138 p = &info->block_group_cache_tree.rb_node;
139
140 while (*p) {
141 parent = *p;
142 cache = rb_entry(parent, struct btrfs_block_group_cache,
143 cache_node);
144 if (block_group->key.objectid < cache->key.objectid) {
145 p = &(*p)->rb_left;
146 } else if (block_group->key.objectid > cache->key.objectid) {
147 p = &(*p)->rb_right;
148 } else {
149 spin_unlock(&info->block_group_cache_lock);
150 return -EEXIST;
151 }
152 }
153
154 rb_link_node(&block_group->cache_node, parent, p);
155 rb_insert_color(&block_group->cache_node,
156 &info->block_group_cache_tree);
a1897fdd
LB
157
158 if (info->first_logical_byte > block_group->key.objectid)
159 info->first_logical_byte = block_group->key.objectid;
160
0f9dd46c
JB
161 spin_unlock(&info->block_group_cache_lock);
162
163 return 0;
164}
165
166/*
167 * This will return the block group at or after bytenr if contains is 0, else
168 * it will return the block group that contains the bytenr
169 */
170static struct btrfs_block_group_cache *
171block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
172 int contains)
173{
174 struct btrfs_block_group_cache *cache, *ret = NULL;
175 struct rb_node *n;
176 u64 end, start;
177
178 spin_lock(&info->block_group_cache_lock);
179 n = info->block_group_cache_tree.rb_node;
180
181 while (n) {
182 cache = rb_entry(n, struct btrfs_block_group_cache,
183 cache_node);
184 end = cache->key.objectid + cache->key.offset - 1;
185 start = cache->key.objectid;
186
187 if (bytenr < start) {
188 if (!contains && (!ret || start < ret->key.objectid))
189 ret = cache;
190 n = n->rb_left;
191 } else if (bytenr > start) {
192 if (contains && bytenr <= end) {
193 ret = cache;
194 break;
195 }
196 n = n->rb_right;
197 } else {
198 ret = cache;
199 break;
200 }
201 }
a1897fdd 202 if (ret) {
11dfe35a 203 btrfs_get_block_group(ret);
a1897fdd
LB
204 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
205 info->first_logical_byte = ret->key.objectid;
206 }
0f9dd46c
JB
207 spin_unlock(&info->block_group_cache_lock);
208
209 return ret;
210}
211
2ff7e61e 212static int add_excluded_extent(struct btrfs_fs_info *fs_info,
11833d66 213 u64 start, u64 num_bytes)
817d52f8 214{
11833d66 215 u64 end = start + num_bytes - 1;
0b246afa 216 set_extent_bits(&fs_info->freed_extents[0],
ceeb0ae7 217 start, end, EXTENT_UPTODATE);
0b246afa 218 set_extent_bits(&fs_info->freed_extents[1],
ceeb0ae7 219 start, end, EXTENT_UPTODATE);
11833d66
YZ
220 return 0;
221}
817d52f8 222
2ff7e61e 223static void free_excluded_extents(struct btrfs_fs_info *fs_info,
11833d66
YZ
224 struct btrfs_block_group_cache *cache)
225{
226 u64 start, end;
817d52f8 227
11833d66
YZ
228 start = cache->key.objectid;
229 end = start + cache->key.offset - 1;
230
0b246afa 231 clear_extent_bits(&fs_info->freed_extents[0],
91166212 232 start, end, EXTENT_UPTODATE);
0b246afa 233 clear_extent_bits(&fs_info->freed_extents[1],
91166212 234 start, end, EXTENT_UPTODATE);
817d52f8
JB
235}
236
2ff7e61e 237static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
11833d66 238 struct btrfs_block_group_cache *cache)
817d52f8 239{
817d52f8
JB
240 u64 bytenr;
241 u64 *logical;
242 int stripe_len;
243 int i, nr, ret;
244
06b2331f
YZ
245 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
246 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
247 cache->bytes_super += stripe_len;
2ff7e61e 248 ret = add_excluded_extent(fs_info, cache->key.objectid,
06b2331f 249 stripe_len);
835d974f
JB
250 if (ret)
251 return ret;
06b2331f
YZ
252 }
253
817d52f8
JB
254 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
255 bytenr = btrfs_sb_offset(i);
0b246afa 256 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
63a9c7b9 257 bytenr, &logical, &nr, &stripe_len);
835d974f
JB
258 if (ret)
259 return ret;
11833d66 260
817d52f8 261 while (nr--) {
51bf5f0b
JB
262 u64 start, len;
263
264 if (logical[nr] > cache->key.objectid +
265 cache->key.offset)
266 continue;
267
268 if (logical[nr] + stripe_len <= cache->key.objectid)
269 continue;
270
271 start = logical[nr];
272 if (start < cache->key.objectid) {
273 start = cache->key.objectid;
274 len = (logical[nr] + stripe_len) - start;
275 } else {
276 len = min_t(u64, stripe_len,
277 cache->key.objectid +
278 cache->key.offset - start);
279 }
280
281 cache->bytes_super += len;
2ff7e61e 282 ret = add_excluded_extent(fs_info, start, len);
835d974f
JB
283 if (ret) {
284 kfree(logical);
285 return ret;
286 }
817d52f8 287 }
11833d66 288
817d52f8
JB
289 kfree(logical);
290 }
817d52f8
JB
291 return 0;
292}
293
11833d66
YZ
294static struct btrfs_caching_control *
295get_caching_control(struct btrfs_block_group_cache *cache)
296{
297 struct btrfs_caching_control *ctl;
298
299 spin_lock(&cache->lock);
dde5abee
JB
300 if (!cache->caching_ctl) {
301 spin_unlock(&cache->lock);
11833d66
YZ
302 return NULL;
303 }
304
305 ctl = cache->caching_ctl;
1e4f4714 306 refcount_inc(&ctl->count);
11833d66
YZ
307 spin_unlock(&cache->lock);
308 return ctl;
309}
310
311static void put_caching_control(struct btrfs_caching_control *ctl)
312{
1e4f4714 313 if (refcount_dec_and_test(&ctl->count))
11833d66
YZ
314 kfree(ctl);
315}
316
d0bd4560 317#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 318static void fragment_free_space(struct btrfs_block_group_cache *block_group)
d0bd4560 319{
2ff7e61e 320 struct btrfs_fs_info *fs_info = block_group->fs_info;
d0bd4560
JB
321 u64 start = block_group->key.objectid;
322 u64 len = block_group->key.offset;
323 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
0b246afa 324 fs_info->nodesize : fs_info->sectorsize;
d0bd4560
JB
325 u64 step = chunk << 1;
326
327 while (len > chunk) {
328 btrfs_remove_free_space(block_group, start, chunk);
329 start += step;
330 if (len < step)
331 len = 0;
332 else
333 len -= step;
334 }
335}
336#endif
337
0f9dd46c
JB
338/*
339 * this is only called by cache_block_group, since we could have freed extents
340 * we need to check the pinned_extents for any extents that can't be used yet
341 * since their free space will be released as soon as the transaction commits.
342 */
a5ed9182 343u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
4457c1c7 344 u64 start, u64 end)
0f9dd46c 345{
4457c1c7 346 struct btrfs_fs_info *info = block_group->fs_info;
817d52f8 347 u64 extent_start, extent_end, size, total_added = 0;
0f9dd46c
JB
348 int ret;
349
350 while (start < end) {
11833d66 351 ret = find_first_extent_bit(info->pinned_extents, start,
0f9dd46c 352 &extent_start, &extent_end,
e6138876
JB
353 EXTENT_DIRTY | EXTENT_UPTODATE,
354 NULL);
0f9dd46c
JB
355 if (ret)
356 break;
357
06b2331f 358 if (extent_start <= start) {
0f9dd46c
JB
359 start = extent_end + 1;
360 } else if (extent_start > start && extent_start < end) {
361 size = extent_start - start;
817d52f8 362 total_added += size;
ea6a478e
JB
363 ret = btrfs_add_free_space(block_group, start,
364 size);
79787eaa 365 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
366 start = extent_end + 1;
367 } else {
368 break;
369 }
370 }
371
372 if (start < end) {
373 size = end - start;
817d52f8 374 total_added += size;
ea6a478e 375 ret = btrfs_add_free_space(block_group, start, size);
79787eaa 376 BUG_ON(ret); /* -ENOMEM or logic error */
0f9dd46c
JB
377 }
378
817d52f8 379 return total_added;
0f9dd46c
JB
380}
381
73fa48b6 382static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
e37c9e69 383{
0b246afa
JM
384 struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
385 struct btrfs_fs_info *fs_info = block_group->fs_info;
386 struct btrfs_root *extent_root = fs_info->extent_root;
e37c9e69 387 struct btrfs_path *path;
5f39d397 388 struct extent_buffer *leaf;
11833d66 389 struct btrfs_key key;
817d52f8 390 u64 total_found = 0;
11833d66
YZ
391 u64 last = 0;
392 u32 nritems;
73fa48b6 393 int ret;
d0bd4560 394 bool wakeup = true;
f510cfec 395
e37c9e69
CM
396 path = btrfs_alloc_path();
397 if (!path)
73fa48b6 398 return -ENOMEM;
7d7d6068 399
817d52f8 400 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
11833d66 401
d0bd4560
JB
402#ifdef CONFIG_BTRFS_DEBUG
403 /*
404 * If we're fragmenting we don't want to make anybody think we can
405 * allocate from this block group until we've had a chance to fragment
406 * the free space.
407 */
2ff7e61e 408 if (btrfs_should_fragment_free_space(block_group))
d0bd4560
JB
409 wakeup = false;
410#endif
5cd57b2c 411 /*
817d52f8
JB
412 * We don't want to deadlock with somebody trying to allocate a new
413 * extent for the extent root while also trying to search the extent
414 * root to add free space. So we skip locking and search the commit
415 * root, since its read-only
5cd57b2c
CM
416 */
417 path->skip_locking = 1;
817d52f8 418 path->search_commit_root = 1;
e4058b54 419 path->reada = READA_FORWARD;
817d52f8 420
e4404d6e 421 key.objectid = last;
e37c9e69 422 key.offset = 0;
11833d66 423 key.type = BTRFS_EXTENT_ITEM_KEY;
013f1b12 424
52ee28d2 425next:
11833d66 426 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
e37c9e69 427 if (ret < 0)
73fa48b6 428 goto out;
a512bbf8 429
11833d66
YZ
430 leaf = path->nodes[0];
431 nritems = btrfs_header_nritems(leaf);
432
d397712b 433 while (1) {
7841cb28 434 if (btrfs_fs_closing(fs_info) > 1) {
f25784b3 435 last = (u64)-1;
817d52f8 436 break;
f25784b3 437 }
817d52f8 438
11833d66
YZ
439 if (path->slots[0] < nritems) {
440 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
441 } else {
442 ret = find_next_key(path, 0, &key);
443 if (ret)
e37c9e69 444 break;
817d52f8 445
c9ea7b24 446 if (need_resched() ||
9e351cc8 447 rwsem_is_contended(&fs_info->commit_root_sem)) {
d0bd4560
JB
448 if (wakeup)
449 caching_ctl->progress = last;
ff5714cc 450 btrfs_release_path(path);
9e351cc8 451 up_read(&fs_info->commit_root_sem);
589d8ade 452 mutex_unlock(&caching_ctl->mutex);
11833d66 453 cond_resched();
73fa48b6
OS
454 mutex_lock(&caching_ctl->mutex);
455 down_read(&fs_info->commit_root_sem);
456 goto next;
589d8ade 457 }
0a3896d0
JB
458
459 ret = btrfs_next_leaf(extent_root, path);
460 if (ret < 0)
73fa48b6 461 goto out;
0a3896d0
JB
462 if (ret)
463 break;
589d8ade
JB
464 leaf = path->nodes[0];
465 nritems = btrfs_header_nritems(leaf);
466 continue;
11833d66 467 }
817d52f8 468
52ee28d2
LB
469 if (key.objectid < last) {
470 key.objectid = last;
471 key.offset = 0;
472 key.type = BTRFS_EXTENT_ITEM_KEY;
473
d0bd4560
JB
474 if (wakeup)
475 caching_ctl->progress = last;
52ee28d2
LB
476 btrfs_release_path(path);
477 goto next;
478 }
479
11833d66
YZ
480 if (key.objectid < block_group->key.objectid) {
481 path->slots[0]++;
817d52f8 482 continue;
e37c9e69 483 }
0f9dd46c 484
e37c9e69 485 if (key.objectid >= block_group->key.objectid +
0f9dd46c 486 block_group->key.offset)
e37c9e69 487 break;
7d7d6068 488
3173a18f
JB
489 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
490 key.type == BTRFS_METADATA_ITEM_KEY) {
4457c1c7 491 total_found += add_new_free_space(block_group, last,
817d52f8 492 key.objectid);
3173a18f
JB
493 if (key.type == BTRFS_METADATA_ITEM_KEY)
494 last = key.objectid +
da17066c 495 fs_info->nodesize;
3173a18f
JB
496 else
497 last = key.objectid + key.offset;
817d52f8 498
73fa48b6 499 if (total_found > CACHING_CTL_WAKE_UP) {
11833d66 500 total_found = 0;
d0bd4560
JB
501 if (wakeup)
502 wake_up(&caching_ctl->wait);
11833d66 503 }
817d52f8 504 }
e37c9e69
CM
505 path->slots[0]++;
506 }
817d52f8 507 ret = 0;
e37c9e69 508
4457c1c7 509 total_found += add_new_free_space(block_group, last,
817d52f8
JB
510 block_group->key.objectid +
511 block_group->key.offset);
11833d66 512 caching_ctl->progress = (u64)-1;
817d52f8 513
73fa48b6
OS
514out:
515 btrfs_free_path(path);
516 return ret;
517}
518
519static noinline void caching_thread(struct btrfs_work *work)
520{
521 struct btrfs_block_group_cache *block_group;
522 struct btrfs_fs_info *fs_info;
523 struct btrfs_caching_control *caching_ctl;
524 int ret;
525
526 caching_ctl = container_of(work, struct btrfs_caching_control, work);
527 block_group = caching_ctl->block_group;
528 fs_info = block_group->fs_info;
529
530 mutex_lock(&caching_ctl->mutex);
531 down_read(&fs_info->commit_root_sem);
532
1e144fb8
OS
533 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
534 ret = load_free_space_tree(caching_ctl);
535 else
536 ret = load_extent_tree_free(caching_ctl);
73fa48b6 537
817d52f8 538 spin_lock(&block_group->lock);
11833d66 539 block_group->caching_ctl = NULL;
73fa48b6 540 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
817d52f8 541 spin_unlock(&block_group->lock);
0f9dd46c 542
d0bd4560 543#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 544 if (btrfs_should_fragment_free_space(block_group)) {
d0bd4560
JB
545 u64 bytes_used;
546
547 spin_lock(&block_group->space_info->lock);
548 spin_lock(&block_group->lock);
549 bytes_used = block_group->key.offset -
550 btrfs_block_group_used(&block_group->item);
551 block_group->space_info->bytes_used += bytes_used >> 1;
552 spin_unlock(&block_group->lock);
553 spin_unlock(&block_group->space_info->lock);
2ff7e61e 554 fragment_free_space(block_group);
d0bd4560
JB
555 }
556#endif
557
558 caching_ctl->progress = (u64)-1;
11833d66 559
9e351cc8 560 up_read(&fs_info->commit_root_sem);
2ff7e61e 561 free_excluded_extents(fs_info, block_group);
11833d66 562 mutex_unlock(&caching_ctl->mutex);
73fa48b6 563
11833d66
YZ
564 wake_up(&caching_ctl->wait);
565
566 put_caching_control(caching_ctl);
11dfe35a 567 btrfs_put_block_group(block_group);
817d52f8
JB
568}
569
9d66e233 570static int cache_block_group(struct btrfs_block_group_cache *cache,
9d66e233 571 int load_cache_only)
817d52f8 572{
291c7d2f 573 DEFINE_WAIT(wait);
11833d66
YZ
574 struct btrfs_fs_info *fs_info = cache->fs_info;
575 struct btrfs_caching_control *caching_ctl;
817d52f8
JB
576 int ret = 0;
577
291c7d2f 578 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
79787eaa
JM
579 if (!caching_ctl)
580 return -ENOMEM;
291c7d2f
JB
581
582 INIT_LIST_HEAD(&caching_ctl->list);
583 mutex_init(&caching_ctl->mutex);
584 init_waitqueue_head(&caching_ctl->wait);
585 caching_ctl->block_group = cache;
586 caching_ctl->progress = cache->key.objectid;
1e4f4714 587 refcount_set(&caching_ctl->count, 1);
9e0af237
LB
588 btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
589 caching_thread, NULL, NULL);
291c7d2f
JB
590
591 spin_lock(&cache->lock);
592 /*
593 * This should be a rare occasion, but this could happen I think in the
594 * case where one thread starts to load the space cache info, and then
595 * some other thread starts a transaction commit which tries to do an
596 * allocation while the other thread is still loading the space cache
597 * info. The previous loop should have kept us from choosing this block
598 * group, but if we've moved to the state where we will wait on caching
599 * block groups we need to first check if we're doing a fast load here,
600 * so we can wait for it to finish, otherwise we could end up allocating
601 * from a block group who's cache gets evicted for one reason or
602 * another.
603 */
604 while (cache->cached == BTRFS_CACHE_FAST) {
605 struct btrfs_caching_control *ctl;
606
607 ctl = cache->caching_ctl;
1e4f4714 608 refcount_inc(&ctl->count);
291c7d2f
JB
609 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
610 spin_unlock(&cache->lock);
611
612 schedule();
613
614 finish_wait(&ctl->wait, &wait);
615 put_caching_control(ctl);
616 spin_lock(&cache->lock);
617 }
618
619 if (cache->cached != BTRFS_CACHE_NO) {
620 spin_unlock(&cache->lock);
621 kfree(caching_ctl);
11833d66 622 return 0;
291c7d2f
JB
623 }
624 WARN_ON(cache->caching_ctl);
625 cache->caching_ctl = caching_ctl;
626 cache->cached = BTRFS_CACHE_FAST;
627 spin_unlock(&cache->lock);
11833d66 628
d8953d69 629 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
cb83b7b8 630 mutex_lock(&caching_ctl->mutex);
9d66e233
JB
631 ret = load_free_space_cache(fs_info, cache);
632
633 spin_lock(&cache->lock);
634 if (ret == 1) {
291c7d2f 635 cache->caching_ctl = NULL;
9d66e233
JB
636 cache->cached = BTRFS_CACHE_FINISHED;
637 cache->last_byte_to_unpin = (u64)-1;
cb83b7b8 638 caching_ctl->progress = (u64)-1;
9d66e233 639 } else {
291c7d2f
JB
640 if (load_cache_only) {
641 cache->caching_ctl = NULL;
642 cache->cached = BTRFS_CACHE_NO;
643 } else {
644 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 645 cache->has_caching_ctl = 1;
291c7d2f 646 }
9d66e233
JB
647 }
648 spin_unlock(&cache->lock);
d0bd4560
JB
649#ifdef CONFIG_BTRFS_DEBUG
650 if (ret == 1 &&
2ff7e61e 651 btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
652 u64 bytes_used;
653
654 spin_lock(&cache->space_info->lock);
655 spin_lock(&cache->lock);
656 bytes_used = cache->key.offset -
657 btrfs_block_group_used(&cache->item);
658 cache->space_info->bytes_used += bytes_used >> 1;
659 spin_unlock(&cache->lock);
660 spin_unlock(&cache->space_info->lock);
2ff7e61e 661 fragment_free_space(cache);
d0bd4560
JB
662 }
663#endif
cb83b7b8
JB
664 mutex_unlock(&caching_ctl->mutex);
665
291c7d2f 666 wake_up(&caching_ctl->wait);
3c14874a 667 if (ret == 1) {
291c7d2f 668 put_caching_control(caching_ctl);
2ff7e61e 669 free_excluded_extents(fs_info, cache);
9d66e233 670 return 0;
3c14874a 671 }
291c7d2f
JB
672 } else {
673 /*
1e144fb8
OS
674 * We're either using the free space tree or no caching at all.
675 * Set cached to the appropriate value and wakeup any waiters.
291c7d2f
JB
676 */
677 spin_lock(&cache->lock);
678 if (load_cache_only) {
679 cache->caching_ctl = NULL;
680 cache->cached = BTRFS_CACHE_NO;
681 } else {
682 cache->cached = BTRFS_CACHE_STARTED;
4f69cb98 683 cache->has_caching_ctl = 1;
291c7d2f
JB
684 }
685 spin_unlock(&cache->lock);
686 wake_up(&caching_ctl->wait);
9d66e233
JB
687 }
688
291c7d2f
JB
689 if (load_cache_only) {
690 put_caching_control(caching_ctl);
11833d66 691 return 0;
817d52f8 692 }
817d52f8 693
9e351cc8 694 down_write(&fs_info->commit_root_sem);
1e4f4714 695 refcount_inc(&caching_ctl->count);
11833d66 696 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
9e351cc8 697 up_write(&fs_info->commit_root_sem);
11833d66 698
11dfe35a 699 btrfs_get_block_group(cache);
11833d66 700
e66f0bb1 701 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
817d52f8 702
ef8bbdfe 703 return ret;
e37c9e69
CM
704}
705
0f9dd46c
JB
706/*
707 * return the block group that starts at or after bytenr
708 */
d397712b
CM
709static struct btrfs_block_group_cache *
710btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
0ef3e66b 711{
e2c89907 712 return block_group_cache_tree_search(info, bytenr, 0);
0ef3e66b
CM
713}
714
0f9dd46c 715/*
9f55684c 716 * return the block group that contains the given bytenr
0f9dd46c 717 */
d397712b
CM
718struct btrfs_block_group_cache *btrfs_lookup_block_group(
719 struct btrfs_fs_info *info,
720 u64 bytenr)
be744175 721{
e2c89907 722 return block_group_cache_tree_search(info, bytenr, 1);
be744175 723}
0b86a832 724
0f9dd46c
JB
725static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
726 u64 flags)
6324fbf3 727{
0f9dd46c 728 struct list_head *head = &info->space_info;
0f9dd46c 729 struct btrfs_space_info *found;
4184ea7f 730
52ba6929 731 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
b742bb82 732
4184ea7f
CM
733 rcu_read_lock();
734 list_for_each_entry_rcu(found, head, list) {
67377734 735 if (found->flags & flags) {
4184ea7f 736 rcu_read_unlock();
0f9dd46c 737 return found;
4184ea7f 738 }
0f9dd46c 739 }
4184ea7f 740 rcu_read_unlock();
0f9dd46c 741 return NULL;
6324fbf3
CM
742}
743
0d9f824d 744static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
29d2b84c 745 bool metadata, u64 root_objectid)
0d9f824d
OS
746{
747 struct btrfs_space_info *space_info;
748 u64 flags;
749
29d2b84c 750 if (metadata) {
0d9f824d
OS
751 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
752 flags = BTRFS_BLOCK_GROUP_SYSTEM;
753 else
754 flags = BTRFS_BLOCK_GROUP_METADATA;
755 } else {
756 flags = BTRFS_BLOCK_GROUP_DATA;
757 }
758
759 space_info = __find_space_info(fs_info, flags);
55e8196a 760 ASSERT(space_info);
0d9f824d
OS
761 percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
762}
763
4184ea7f
CM
764/*
765 * after adding space to the filesystem, we need to clear the full flags
766 * on all the space infos.
767 */
768void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
769{
770 struct list_head *head = &info->space_info;
771 struct btrfs_space_info *found;
772
773 rcu_read_lock();
774 list_for_each_entry_rcu(found, head, list)
775 found->full = 0;
776 rcu_read_unlock();
777}
778
1a4ed8fd 779/* simple helper to search for an existing data extent at a given offset */
2ff7e61e 780int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
e02119d5
CM
781{
782 int ret;
783 struct btrfs_key key;
31840ae1 784 struct btrfs_path *path;
e02119d5 785
31840ae1 786 path = btrfs_alloc_path();
d8926bb3
MF
787 if (!path)
788 return -ENOMEM;
789
e02119d5
CM
790 key.objectid = start;
791 key.offset = len;
3173a18f 792 key.type = BTRFS_EXTENT_ITEM_KEY;
0b246afa 793 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
31840ae1 794 btrfs_free_path(path);
7bb86316
CM
795 return ret;
796}
797
a22285a6 798/*
3173a18f 799 * helper function to lookup reference count and flags of a tree block.
a22285a6
YZ
800 *
801 * the head node for delayed ref is used to store the sum of all the
802 * reference count modifications queued up in the rbtree. the head
803 * node may also store the extent flags to set. This way you can check
804 * to see what the reference count and extent flags would be if all of
805 * the delayed refs are not processed.
806 */
807int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2ff7e61e 808 struct btrfs_fs_info *fs_info, u64 bytenr,
3173a18f 809 u64 offset, int metadata, u64 *refs, u64 *flags)
a22285a6
YZ
810{
811 struct btrfs_delayed_ref_head *head;
812 struct btrfs_delayed_ref_root *delayed_refs;
813 struct btrfs_path *path;
814 struct btrfs_extent_item *ei;
815 struct extent_buffer *leaf;
816 struct btrfs_key key;
817 u32 item_size;
818 u64 num_refs;
819 u64 extent_flags;
820 int ret;
821
3173a18f
JB
822 /*
823 * If we don't have skinny metadata, don't bother doing anything
824 * different
825 */
0b246afa
JM
826 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
827 offset = fs_info->nodesize;
3173a18f
JB
828 metadata = 0;
829 }
830
a22285a6
YZ
831 path = btrfs_alloc_path();
832 if (!path)
833 return -ENOMEM;
834
a22285a6
YZ
835 if (!trans) {
836 path->skip_locking = 1;
837 path->search_commit_root = 1;
838 }
639eefc8
FDBM
839
840search_again:
841 key.objectid = bytenr;
842 key.offset = offset;
843 if (metadata)
844 key.type = BTRFS_METADATA_ITEM_KEY;
845 else
846 key.type = BTRFS_EXTENT_ITEM_KEY;
847
0b246afa 848 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
a22285a6
YZ
849 if (ret < 0)
850 goto out_free;
851
3173a18f 852 if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
74be9510
FDBM
853 if (path->slots[0]) {
854 path->slots[0]--;
855 btrfs_item_key_to_cpu(path->nodes[0], &key,
856 path->slots[0]);
857 if (key.objectid == bytenr &&
858 key.type == BTRFS_EXTENT_ITEM_KEY &&
0b246afa 859 key.offset == fs_info->nodesize)
74be9510
FDBM
860 ret = 0;
861 }
3173a18f
JB
862 }
863
a22285a6
YZ
864 if (ret == 0) {
865 leaf = path->nodes[0];
866 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
867 if (item_size >= sizeof(*ei)) {
868 ei = btrfs_item_ptr(leaf, path->slots[0],
869 struct btrfs_extent_item);
870 num_refs = btrfs_extent_refs(leaf, ei);
871 extent_flags = btrfs_extent_flags(leaf, ei);
872 } else {
873#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 struct btrfs_extent_item_v0 *ei0;
875 BUG_ON(item_size != sizeof(*ei0));
876 ei0 = btrfs_item_ptr(leaf, path->slots[0],
877 struct btrfs_extent_item_v0);
878 num_refs = btrfs_extent_refs_v0(leaf, ei0);
879 /* FIXME: this isn't correct for data */
880 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
881#else
882 BUG();
883#endif
884 }
885 BUG_ON(num_refs == 0);
886 } else {
887 num_refs = 0;
888 extent_flags = 0;
889 ret = 0;
890 }
891
892 if (!trans)
893 goto out;
894
895 delayed_refs = &trans->transaction->delayed_refs;
896 spin_lock(&delayed_refs->lock);
f72ad18e 897 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
a22285a6
YZ
898 if (head) {
899 if (!mutex_trylock(&head->mutex)) {
d278850e 900 refcount_inc(&head->refs);
a22285a6
YZ
901 spin_unlock(&delayed_refs->lock);
902
b3b4aa74 903 btrfs_release_path(path);
a22285a6 904
8cc33e5c
DS
905 /*
906 * Mutex was contended, block until it's released and try
907 * again
908 */
a22285a6
YZ
909 mutex_lock(&head->mutex);
910 mutex_unlock(&head->mutex);
d278850e 911 btrfs_put_delayed_ref_head(head);
639eefc8 912 goto search_again;
a22285a6 913 }
d7df2c79 914 spin_lock(&head->lock);
a22285a6
YZ
915 if (head->extent_op && head->extent_op->update_flags)
916 extent_flags |= head->extent_op->flags_to_set;
917 else
918 BUG_ON(num_refs == 0);
919
d278850e 920 num_refs += head->ref_mod;
d7df2c79 921 spin_unlock(&head->lock);
a22285a6
YZ
922 mutex_unlock(&head->mutex);
923 }
924 spin_unlock(&delayed_refs->lock);
925out:
926 WARN_ON(num_refs == 0);
927 if (refs)
928 *refs = num_refs;
929 if (flags)
930 *flags = extent_flags;
931out_free:
932 btrfs_free_path(path);
933 return ret;
934}
935
d8d5f3e1
CM
936/*
937 * Back reference rules. Back refs have three main goals:
938 *
939 * 1) differentiate between all holders of references to an extent so that
940 * when a reference is dropped we can make sure it was a valid reference
941 * before freeing the extent.
942 *
943 * 2) Provide enough information to quickly find the holders of an extent
944 * if we notice a given block is corrupted or bad.
945 *
946 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
947 * maintenance. This is actually the same as #2, but with a slightly
948 * different use case.
949 *
5d4f98a2
YZ
950 * There are two kinds of back refs. The implicit back refs is optimized
951 * for pointers in non-shared tree blocks. For a given pointer in a block,
952 * back refs of this kind provide information about the block's owner tree
953 * and the pointer's key. These information allow us to find the block by
954 * b-tree searching. The full back refs is for pointers in tree blocks not
955 * referenced by their owner trees. The location of tree block is recorded
956 * in the back refs. Actually the full back refs is generic, and can be
957 * used in all cases the implicit back refs is used. The major shortcoming
958 * of the full back refs is its overhead. Every time a tree block gets
959 * COWed, we have to update back refs entry for all pointers in it.
960 *
961 * For a newly allocated tree block, we use implicit back refs for
962 * pointers in it. This means most tree related operations only involve
963 * implicit back refs. For a tree block created in old transaction, the
964 * only way to drop a reference to it is COW it. So we can detect the
965 * event that tree block loses its owner tree's reference and do the
966 * back refs conversion.
967 *
01327610 968 * When a tree block is COWed through a tree, there are four cases:
5d4f98a2
YZ
969 *
970 * The reference count of the block is one and the tree is the block's
971 * owner tree. Nothing to do in this case.
972 *
973 * The reference count of the block is one and the tree is not the
974 * block's owner tree. In this case, full back refs is used for pointers
975 * in the block. Remove these full back refs, add implicit back refs for
976 * every pointers in the new block.
977 *
978 * The reference count of the block is greater than one and the tree is
979 * the block's owner tree. In this case, implicit back refs is used for
980 * pointers in the block. Add full back refs for every pointers in the
981 * block, increase lower level extents' reference counts. The original
982 * implicit back refs are entailed to the new block.
983 *
984 * The reference count of the block is greater than one and the tree is
985 * not the block's owner tree. Add implicit back refs for every pointer in
986 * the new block, increase lower level extents' reference count.
987 *
988 * Back Reference Key composing:
989 *
990 * The key objectid corresponds to the first byte in the extent,
991 * The key type is used to differentiate between types of back refs.
992 * There are different meanings of the key offset for different types
993 * of back refs.
994 *
d8d5f3e1
CM
995 * File extents can be referenced by:
996 *
997 * - multiple snapshots, subvolumes, or different generations in one subvol
31840ae1 998 * - different files inside a single subvolume
d8d5f3e1
CM
999 * - different offsets inside a file (bookend extents in file.c)
1000 *
5d4f98a2 1001 * The extent ref structure for the implicit back refs has fields for:
d8d5f3e1
CM
1002 *
1003 * - Objectid of the subvolume root
d8d5f3e1 1004 * - objectid of the file holding the reference
5d4f98a2
YZ
1005 * - original offset in the file
1006 * - how many bookend extents
d8d5f3e1 1007 *
5d4f98a2
YZ
1008 * The key offset for the implicit back refs is hash of the first
1009 * three fields.
d8d5f3e1 1010 *
5d4f98a2 1011 * The extent ref structure for the full back refs has field for:
d8d5f3e1 1012 *
5d4f98a2 1013 * - number of pointers in the tree leaf
d8d5f3e1 1014 *
5d4f98a2
YZ
1015 * The key offset for the implicit back refs is the first byte of
1016 * the tree leaf
d8d5f3e1 1017 *
5d4f98a2
YZ
1018 * When a file extent is allocated, The implicit back refs is used.
1019 * the fields are filled in:
d8d5f3e1 1020 *
5d4f98a2 1021 * (root_key.objectid, inode objectid, offset in file, 1)
d8d5f3e1 1022 *
5d4f98a2
YZ
1023 * When a file extent is removed file truncation, we find the
1024 * corresponding implicit back refs and check the following fields:
d8d5f3e1 1025 *
5d4f98a2 1026 * (btrfs_header_owner(leaf), inode objectid, offset in file)
d8d5f3e1 1027 *
5d4f98a2 1028 * Btree extents can be referenced by:
d8d5f3e1 1029 *
5d4f98a2 1030 * - Different subvolumes
d8d5f3e1 1031 *
5d4f98a2
YZ
1032 * Both the implicit back refs and the full back refs for tree blocks
1033 * only consist of key. The key offset for the implicit back refs is
1034 * objectid of block's owner tree. The key offset for the full back refs
1035 * is the first byte of parent block.
d8d5f3e1 1036 *
5d4f98a2
YZ
1037 * When implicit back refs is used, information about the lowest key and
1038 * level of the tree block are required. These information are stored in
1039 * tree block info structure.
d8d5f3e1 1040 */
31840ae1 1041
5d4f98a2
YZ
1042#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1043static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
87bde3cd 1044 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1045 struct btrfs_path *path,
1046 u64 owner, u32 extra_size)
7bb86316 1047{
87bde3cd 1048 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1049 struct btrfs_extent_item *item;
1050 struct btrfs_extent_item_v0 *ei0;
1051 struct btrfs_extent_ref_v0 *ref0;
1052 struct btrfs_tree_block_info *bi;
1053 struct extent_buffer *leaf;
7bb86316 1054 struct btrfs_key key;
5d4f98a2
YZ
1055 struct btrfs_key found_key;
1056 u32 new_size = sizeof(*item);
1057 u64 refs;
1058 int ret;
1059
1060 leaf = path->nodes[0];
1061 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1062
1063 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1064 ei0 = btrfs_item_ptr(leaf, path->slots[0],
1065 struct btrfs_extent_item_v0);
1066 refs = btrfs_extent_refs_v0(leaf, ei0);
1067
1068 if (owner == (u64)-1) {
1069 while (1) {
1070 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1071 ret = btrfs_next_leaf(root, path);
1072 if (ret < 0)
1073 return ret;
79787eaa 1074 BUG_ON(ret > 0); /* Corruption */
5d4f98a2
YZ
1075 leaf = path->nodes[0];
1076 }
1077 btrfs_item_key_to_cpu(leaf, &found_key,
1078 path->slots[0]);
1079 BUG_ON(key.objectid != found_key.objectid);
1080 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1081 path->slots[0]++;
1082 continue;
1083 }
1084 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1085 struct btrfs_extent_ref_v0);
1086 owner = btrfs_ref_objectid_v0(leaf, ref0);
1087 break;
1088 }
1089 }
b3b4aa74 1090 btrfs_release_path(path);
5d4f98a2
YZ
1091
1092 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1093 new_size += sizeof(*bi);
1094
1095 new_size -= sizeof(*ei0);
1096 ret = btrfs_search_slot(trans, root, &key, path,
1097 new_size + extra_size, 1);
1098 if (ret < 0)
1099 return ret;
79787eaa 1100 BUG_ON(ret); /* Corruption */
5d4f98a2 1101
87bde3cd 1102 btrfs_extend_item(fs_info, path, new_size);
5d4f98a2
YZ
1103
1104 leaf = path->nodes[0];
1105 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1106 btrfs_set_extent_refs(leaf, item, refs);
1107 /* FIXME: get real generation */
1108 btrfs_set_extent_generation(leaf, item, 0);
1109 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1110 btrfs_set_extent_flags(leaf, item,
1111 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1112 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1113 bi = (struct btrfs_tree_block_info *)(item + 1);
1114 /* FIXME: get first key of the block */
b159fa28 1115 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
5d4f98a2
YZ
1116 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1117 } else {
1118 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1119 }
1120 btrfs_mark_buffer_dirty(leaf);
1121 return 0;
1122}
1123#endif
1124
167ce953
LB
1125/*
1126 * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1127 * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1128 * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1129 */
1130int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1131 struct btrfs_extent_inline_ref *iref,
1132 enum btrfs_inline_ref_type is_data)
1133{
1134 int type = btrfs_extent_inline_ref_type(eb, iref);
64ecdb64 1135 u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
167ce953
LB
1136
1137 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1138 type == BTRFS_SHARED_BLOCK_REF_KEY ||
1139 type == BTRFS_SHARED_DATA_REF_KEY ||
1140 type == BTRFS_EXTENT_DATA_REF_KEY) {
1141 if (is_data == BTRFS_REF_TYPE_BLOCK) {
64ecdb64 1142 if (type == BTRFS_TREE_BLOCK_REF_KEY)
167ce953 1143 return type;
64ecdb64
LB
1144 if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1145 ASSERT(eb->fs_info);
1146 /*
1147 * Every shared one has parent tree
1148 * block, which must be aligned to
1149 * nodesize.
1150 */
1151 if (offset &&
1152 IS_ALIGNED(offset, eb->fs_info->nodesize))
1153 return type;
1154 }
167ce953 1155 } else if (is_data == BTRFS_REF_TYPE_DATA) {
64ecdb64 1156 if (type == BTRFS_EXTENT_DATA_REF_KEY)
167ce953 1157 return type;
64ecdb64
LB
1158 if (type == BTRFS_SHARED_DATA_REF_KEY) {
1159 ASSERT(eb->fs_info);
1160 /*
1161 * Every shared one has parent tree
1162 * block, which must be aligned to
1163 * nodesize.
1164 */
1165 if (offset &&
1166 IS_ALIGNED(offset, eb->fs_info->nodesize))
1167 return type;
1168 }
167ce953
LB
1169 } else {
1170 ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1171 return type;
1172 }
1173 }
1174
1175 btrfs_print_leaf((struct extent_buffer *)eb);
1176 btrfs_err(eb->fs_info, "eb %llu invalid extent inline ref type %d",
1177 eb->start, type);
1178 WARN_ON(1);
1179
1180 return BTRFS_REF_TYPE_INVALID;
1181}
1182
5d4f98a2
YZ
1183static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1184{
1185 u32 high_crc = ~(u32)0;
1186 u32 low_crc = ~(u32)0;
1187 __le64 lenum;
1188
1189 lenum = cpu_to_le64(root_objectid);
9678c543 1190 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
5d4f98a2 1191 lenum = cpu_to_le64(owner);
9678c543 1192 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2 1193 lenum = cpu_to_le64(offset);
9678c543 1194 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
5d4f98a2
YZ
1195
1196 return ((u64)high_crc << 31) ^ (u64)low_crc;
1197}
1198
1199static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1200 struct btrfs_extent_data_ref *ref)
1201{
1202 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1203 btrfs_extent_data_ref_objectid(leaf, ref),
1204 btrfs_extent_data_ref_offset(leaf, ref));
1205}
1206
1207static int match_extent_data_ref(struct extent_buffer *leaf,
1208 struct btrfs_extent_data_ref *ref,
1209 u64 root_objectid, u64 owner, u64 offset)
1210{
1211 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1212 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1213 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1214 return 0;
1215 return 1;
1216}
1217
1218static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1219 struct btrfs_path *path,
1220 u64 bytenr, u64 parent,
1221 u64 root_objectid,
1222 u64 owner, u64 offset)
1223{
bd1d53ef 1224 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2
YZ
1225 struct btrfs_key key;
1226 struct btrfs_extent_data_ref *ref;
31840ae1 1227 struct extent_buffer *leaf;
5d4f98a2 1228 u32 nritems;
74493f7a 1229 int ret;
5d4f98a2
YZ
1230 int recow;
1231 int err = -ENOENT;
74493f7a 1232
31840ae1 1233 key.objectid = bytenr;
5d4f98a2
YZ
1234 if (parent) {
1235 key.type = BTRFS_SHARED_DATA_REF_KEY;
1236 key.offset = parent;
1237 } else {
1238 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1239 key.offset = hash_extent_data_ref(root_objectid,
1240 owner, offset);
1241 }
1242again:
1243 recow = 0;
1244 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1245 if (ret < 0) {
1246 err = ret;
1247 goto fail;
1248 }
31840ae1 1249
5d4f98a2
YZ
1250 if (parent) {
1251 if (!ret)
1252 return 0;
1253#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1254 key.type = BTRFS_EXTENT_REF_V0_KEY;
b3b4aa74 1255 btrfs_release_path(path);
5d4f98a2
YZ
1256 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1257 if (ret < 0) {
1258 err = ret;
1259 goto fail;
1260 }
1261 if (!ret)
1262 return 0;
1263#endif
1264 goto fail;
31840ae1
ZY
1265 }
1266
1267 leaf = path->nodes[0];
5d4f98a2
YZ
1268 nritems = btrfs_header_nritems(leaf);
1269 while (1) {
1270 if (path->slots[0] >= nritems) {
1271 ret = btrfs_next_leaf(root, path);
1272 if (ret < 0)
1273 err = ret;
1274 if (ret)
1275 goto fail;
1276
1277 leaf = path->nodes[0];
1278 nritems = btrfs_header_nritems(leaf);
1279 recow = 1;
1280 }
1281
1282 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1283 if (key.objectid != bytenr ||
1284 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1285 goto fail;
1286
1287 ref = btrfs_item_ptr(leaf, path->slots[0],
1288 struct btrfs_extent_data_ref);
1289
1290 if (match_extent_data_ref(leaf, ref, root_objectid,
1291 owner, offset)) {
1292 if (recow) {
b3b4aa74 1293 btrfs_release_path(path);
5d4f98a2
YZ
1294 goto again;
1295 }
1296 err = 0;
1297 break;
1298 }
1299 path->slots[0]++;
31840ae1 1300 }
5d4f98a2
YZ
1301fail:
1302 return err;
31840ae1
ZY
1303}
1304
5d4f98a2 1305static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1306 struct btrfs_path *path,
1307 u64 bytenr, u64 parent,
1308 u64 root_objectid, u64 owner,
1309 u64 offset, int refs_to_add)
31840ae1 1310{
62b895af 1311 struct btrfs_root *root = trans->fs_info->extent_root;
31840ae1
ZY
1312 struct btrfs_key key;
1313 struct extent_buffer *leaf;
5d4f98a2 1314 u32 size;
31840ae1
ZY
1315 u32 num_refs;
1316 int ret;
74493f7a 1317
74493f7a 1318 key.objectid = bytenr;
5d4f98a2
YZ
1319 if (parent) {
1320 key.type = BTRFS_SHARED_DATA_REF_KEY;
1321 key.offset = parent;
1322 size = sizeof(struct btrfs_shared_data_ref);
1323 } else {
1324 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1325 key.offset = hash_extent_data_ref(root_objectid,
1326 owner, offset);
1327 size = sizeof(struct btrfs_extent_data_ref);
1328 }
74493f7a 1329
5d4f98a2
YZ
1330 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1331 if (ret && ret != -EEXIST)
1332 goto fail;
1333
1334 leaf = path->nodes[0];
1335 if (parent) {
1336 struct btrfs_shared_data_ref *ref;
31840ae1 1337 ref = btrfs_item_ptr(leaf, path->slots[0],
5d4f98a2
YZ
1338 struct btrfs_shared_data_ref);
1339 if (ret == 0) {
1340 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1341 } else {
1342 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1343 num_refs += refs_to_add;
1344 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
31840ae1 1345 }
5d4f98a2
YZ
1346 } else {
1347 struct btrfs_extent_data_ref *ref;
1348 while (ret == -EEXIST) {
1349 ref = btrfs_item_ptr(leaf, path->slots[0],
1350 struct btrfs_extent_data_ref);
1351 if (match_extent_data_ref(leaf, ref, root_objectid,
1352 owner, offset))
1353 break;
b3b4aa74 1354 btrfs_release_path(path);
5d4f98a2
YZ
1355 key.offset++;
1356 ret = btrfs_insert_empty_item(trans, root, path, &key,
1357 size);
1358 if (ret && ret != -EEXIST)
1359 goto fail;
31840ae1 1360
5d4f98a2
YZ
1361 leaf = path->nodes[0];
1362 }
1363 ref = btrfs_item_ptr(leaf, path->slots[0],
1364 struct btrfs_extent_data_ref);
1365 if (ret == 0) {
1366 btrfs_set_extent_data_ref_root(leaf, ref,
1367 root_objectid);
1368 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1369 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1370 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1371 } else {
1372 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1373 num_refs += refs_to_add;
1374 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
31840ae1 1375 }
31840ae1 1376 }
5d4f98a2
YZ
1377 btrfs_mark_buffer_dirty(leaf);
1378 ret = 0;
1379fail:
b3b4aa74 1380 btrfs_release_path(path);
7bb86316 1381 return ret;
74493f7a
CM
1382}
1383
5d4f98a2 1384static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
5d4f98a2 1385 struct btrfs_path *path,
fcebe456 1386 int refs_to_drop, int *last_ref)
31840ae1 1387{
5d4f98a2
YZ
1388 struct btrfs_key key;
1389 struct btrfs_extent_data_ref *ref1 = NULL;
1390 struct btrfs_shared_data_ref *ref2 = NULL;
31840ae1 1391 struct extent_buffer *leaf;
5d4f98a2 1392 u32 num_refs = 0;
31840ae1
ZY
1393 int ret = 0;
1394
1395 leaf = path->nodes[0];
5d4f98a2
YZ
1396 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1397
1398 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1399 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1400 struct btrfs_extent_data_ref);
1401 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1402 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1403 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1404 struct btrfs_shared_data_ref);
1405 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1406#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1407 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1408 struct btrfs_extent_ref_v0 *ref0;
1409 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1410 struct btrfs_extent_ref_v0);
1411 num_refs = btrfs_ref_count_v0(leaf, ref0);
1412#endif
1413 } else {
1414 BUG();
1415 }
1416
56bec294
CM
1417 BUG_ON(num_refs < refs_to_drop);
1418 num_refs -= refs_to_drop;
5d4f98a2 1419
31840ae1 1420 if (num_refs == 0) {
e9f6290d 1421 ret = btrfs_del_item(trans, trans->fs_info->extent_root, path);
fcebe456 1422 *last_ref = 1;
31840ae1 1423 } else {
5d4f98a2
YZ
1424 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1425 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1426 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1427 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1428#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1429 else {
1430 struct btrfs_extent_ref_v0 *ref0;
1431 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1432 struct btrfs_extent_ref_v0);
1433 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1434 }
1435#endif
31840ae1
ZY
1436 btrfs_mark_buffer_dirty(leaf);
1437 }
31840ae1
ZY
1438 return ret;
1439}
1440
9ed0dea0 1441static noinline u32 extent_data_ref_count(struct btrfs_path *path,
5d4f98a2 1442 struct btrfs_extent_inline_ref *iref)
15916de8 1443{
5d4f98a2
YZ
1444 struct btrfs_key key;
1445 struct extent_buffer *leaf;
1446 struct btrfs_extent_data_ref *ref1;
1447 struct btrfs_shared_data_ref *ref2;
1448 u32 num_refs = 0;
3de28d57 1449 int type;
5d4f98a2
YZ
1450
1451 leaf = path->nodes[0];
1452 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1453 if (iref) {
3de28d57
LB
1454 /*
1455 * If type is invalid, we should have bailed out earlier than
1456 * this call.
1457 */
1458 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1459 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1460 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
5d4f98a2
YZ
1461 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1462 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1463 } else {
1464 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1465 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1466 }
1467 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1468 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1469 struct btrfs_extent_data_ref);
1470 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1471 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1472 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1473 struct btrfs_shared_data_ref);
1474 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1475#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1476 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1477 struct btrfs_extent_ref_v0 *ref0;
1478 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1479 struct btrfs_extent_ref_v0);
1480 num_refs = btrfs_ref_count_v0(leaf, ref0);
4b4e25f2 1481#endif
5d4f98a2
YZ
1482 } else {
1483 WARN_ON(1);
1484 }
1485 return num_refs;
1486}
15916de8 1487
5d4f98a2 1488static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1489 struct btrfs_path *path,
1490 u64 bytenr, u64 parent,
1491 u64 root_objectid)
1f3c79a2 1492{
b8582eea 1493 struct btrfs_root *root = trans->fs_info->extent_root;
5d4f98a2 1494 struct btrfs_key key;
1f3c79a2 1495 int ret;
1f3c79a2 1496
5d4f98a2
YZ
1497 key.objectid = bytenr;
1498 if (parent) {
1499 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1500 key.offset = parent;
1501 } else {
1502 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1503 key.offset = root_objectid;
1f3c79a2
LH
1504 }
1505
5d4f98a2
YZ
1506 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1507 if (ret > 0)
1508 ret = -ENOENT;
1509#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1510 if (ret == -ENOENT && parent) {
b3b4aa74 1511 btrfs_release_path(path);
5d4f98a2
YZ
1512 key.type = BTRFS_EXTENT_REF_V0_KEY;
1513 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1514 if (ret > 0)
1515 ret = -ENOENT;
1516 }
1f3c79a2 1517#endif
5d4f98a2 1518 return ret;
1f3c79a2
LH
1519}
1520
5d4f98a2 1521static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1522 struct btrfs_path *path,
1523 u64 bytenr, u64 parent,
1524 u64 root_objectid)
31840ae1 1525{
5d4f98a2 1526 struct btrfs_key key;
31840ae1 1527 int ret;
31840ae1 1528
5d4f98a2
YZ
1529 key.objectid = bytenr;
1530 if (parent) {
1531 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1532 key.offset = parent;
1533 } else {
1534 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1535 key.offset = root_objectid;
1536 }
1537
10728404 1538 ret = btrfs_insert_empty_item(trans, trans->fs_info->extent_root,
87bde3cd 1539 path, &key, 0);
b3b4aa74 1540 btrfs_release_path(path);
31840ae1
ZY
1541 return ret;
1542}
1543
5d4f98a2 1544static inline int extent_ref_type(u64 parent, u64 owner)
31840ae1 1545{
5d4f98a2
YZ
1546 int type;
1547 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1548 if (parent > 0)
1549 type = BTRFS_SHARED_BLOCK_REF_KEY;
1550 else
1551 type = BTRFS_TREE_BLOCK_REF_KEY;
1552 } else {
1553 if (parent > 0)
1554 type = BTRFS_SHARED_DATA_REF_KEY;
1555 else
1556 type = BTRFS_EXTENT_DATA_REF_KEY;
1557 }
1558 return type;
31840ae1 1559}
56bec294 1560
2c47e605
YZ
1561static int find_next_key(struct btrfs_path *path, int level,
1562 struct btrfs_key *key)
56bec294 1563
02217ed2 1564{
2c47e605 1565 for (; level < BTRFS_MAX_LEVEL; level++) {
5d4f98a2
YZ
1566 if (!path->nodes[level])
1567 break;
5d4f98a2
YZ
1568 if (path->slots[level] + 1 >=
1569 btrfs_header_nritems(path->nodes[level]))
1570 continue;
1571 if (level == 0)
1572 btrfs_item_key_to_cpu(path->nodes[level], key,
1573 path->slots[level] + 1);
1574 else
1575 btrfs_node_key_to_cpu(path->nodes[level], key,
1576 path->slots[level] + 1);
1577 return 0;
1578 }
1579 return 1;
1580}
037e6390 1581
5d4f98a2
YZ
1582/*
1583 * look for inline back ref. if back ref is found, *ref_ret is set
1584 * to the address of inline back ref, and 0 is returned.
1585 *
1586 * if back ref isn't found, *ref_ret is set to the address where it
1587 * should be inserted, and -ENOENT is returned.
1588 *
1589 * if insert is true and there are too many inline back refs, the path
1590 * points to the extent item, and -EAGAIN is returned.
1591 *
1592 * NOTE: inline back refs are ordered in the same way that back ref
1593 * items in the tree are ordered.
1594 */
1595static noinline_for_stack
1596int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1597 struct btrfs_path *path,
1598 struct btrfs_extent_inline_ref **ref_ret,
1599 u64 bytenr, u64 num_bytes,
1600 u64 parent, u64 root_objectid,
1601 u64 owner, u64 offset, int insert)
1602{
867cc1fb 1603 struct btrfs_fs_info *fs_info = trans->fs_info;
87bde3cd 1604 struct btrfs_root *root = fs_info->extent_root;
5d4f98a2
YZ
1605 struct btrfs_key key;
1606 struct extent_buffer *leaf;
1607 struct btrfs_extent_item *ei;
1608 struct btrfs_extent_inline_ref *iref;
1609 u64 flags;
1610 u64 item_size;
1611 unsigned long ptr;
1612 unsigned long end;
1613 int extra_size;
1614 int type;
1615 int want;
1616 int ret;
1617 int err = 0;
0b246afa 1618 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3de28d57 1619 int needed;
26b8003f 1620
db94535d 1621 key.objectid = bytenr;
31840ae1 1622 key.type = BTRFS_EXTENT_ITEM_KEY;
56bec294 1623 key.offset = num_bytes;
31840ae1 1624
5d4f98a2
YZ
1625 want = extent_ref_type(parent, owner);
1626 if (insert) {
1627 extra_size = btrfs_extent_inline_ref_size(want);
85d4198e 1628 path->keep_locks = 1;
5d4f98a2
YZ
1629 } else
1630 extra_size = -1;
3173a18f
JB
1631
1632 /*
16d1c062
NB
1633 * Owner is our level, so we can just add one to get the level for the
1634 * block we are interested in.
3173a18f
JB
1635 */
1636 if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1637 key.type = BTRFS_METADATA_ITEM_KEY;
1638 key.offset = owner;
1639 }
1640
1641again:
5d4f98a2 1642 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
b9473439 1643 if (ret < 0) {
5d4f98a2
YZ
1644 err = ret;
1645 goto out;
1646 }
3173a18f
JB
1647
1648 /*
1649 * We may be a newly converted file system which still has the old fat
1650 * extent entries for metadata, so try and see if we have one of those.
1651 */
1652 if (ret > 0 && skinny_metadata) {
1653 skinny_metadata = false;
1654 if (path->slots[0]) {
1655 path->slots[0]--;
1656 btrfs_item_key_to_cpu(path->nodes[0], &key,
1657 path->slots[0]);
1658 if (key.objectid == bytenr &&
1659 key.type == BTRFS_EXTENT_ITEM_KEY &&
1660 key.offset == num_bytes)
1661 ret = 0;
1662 }
1663 if (ret) {
9ce49a0b 1664 key.objectid = bytenr;
3173a18f
JB
1665 key.type = BTRFS_EXTENT_ITEM_KEY;
1666 key.offset = num_bytes;
1667 btrfs_release_path(path);
1668 goto again;
1669 }
1670 }
1671
79787eaa
JM
1672 if (ret && !insert) {
1673 err = -ENOENT;
1674 goto out;
fae7f21c 1675 } else if (WARN_ON(ret)) {
492104c8 1676 err = -EIO;
492104c8 1677 goto out;
79787eaa 1678 }
5d4f98a2
YZ
1679
1680 leaf = path->nodes[0];
1681 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1682#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1683 if (item_size < sizeof(*ei)) {
1684 if (!insert) {
1685 err = -ENOENT;
1686 goto out;
1687 }
87bde3cd 1688 ret = convert_extent_item_v0(trans, fs_info, path, owner,
5d4f98a2
YZ
1689 extra_size);
1690 if (ret < 0) {
1691 err = ret;
1692 goto out;
1693 }
1694 leaf = path->nodes[0];
1695 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1696 }
1697#endif
1698 BUG_ON(item_size < sizeof(*ei));
1699
5d4f98a2
YZ
1700 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1701 flags = btrfs_extent_flags(leaf, ei);
1702
1703 ptr = (unsigned long)(ei + 1);
1704 end = (unsigned long)ei + item_size;
1705
3173a18f 1706 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
5d4f98a2
YZ
1707 ptr += sizeof(struct btrfs_tree_block_info);
1708 BUG_ON(ptr > end);
5d4f98a2
YZ
1709 }
1710
3de28d57
LB
1711 if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1712 needed = BTRFS_REF_TYPE_DATA;
1713 else
1714 needed = BTRFS_REF_TYPE_BLOCK;
1715
5d4f98a2
YZ
1716 err = -ENOENT;
1717 while (1) {
1718 if (ptr >= end) {
1719 WARN_ON(ptr > end);
1720 break;
1721 }
1722 iref = (struct btrfs_extent_inline_ref *)ptr;
3de28d57
LB
1723 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1724 if (type == BTRFS_REF_TYPE_INVALID) {
1725 err = -EINVAL;
1726 goto out;
1727 }
1728
5d4f98a2
YZ
1729 if (want < type)
1730 break;
1731 if (want > type) {
1732 ptr += btrfs_extent_inline_ref_size(type);
1733 continue;
1734 }
1735
1736 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1737 struct btrfs_extent_data_ref *dref;
1738 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1739 if (match_extent_data_ref(leaf, dref, root_objectid,
1740 owner, offset)) {
1741 err = 0;
1742 break;
1743 }
1744 if (hash_extent_data_ref_item(leaf, dref) <
1745 hash_extent_data_ref(root_objectid, owner, offset))
1746 break;
1747 } else {
1748 u64 ref_offset;
1749 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1750 if (parent > 0) {
1751 if (parent == ref_offset) {
1752 err = 0;
1753 break;
1754 }
1755 if (ref_offset < parent)
1756 break;
1757 } else {
1758 if (root_objectid == ref_offset) {
1759 err = 0;
1760 break;
1761 }
1762 if (ref_offset < root_objectid)
1763 break;
1764 }
1765 }
1766 ptr += btrfs_extent_inline_ref_size(type);
1767 }
1768 if (err == -ENOENT && insert) {
1769 if (item_size + extra_size >=
1770 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1771 err = -EAGAIN;
1772 goto out;
1773 }
1774 /*
1775 * To add new inline back ref, we have to make sure
1776 * there is no corresponding back ref item.
1777 * For simplicity, we just do not add new inline back
1778 * ref if there is any kind of item for this block
1779 */
2c47e605
YZ
1780 if (find_next_key(path, 0, &key) == 0 &&
1781 key.objectid == bytenr &&
85d4198e 1782 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
5d4f98a2
YZ
1783 err = -EAGAIN;
1784 goto out;
1785 }
1786 }
1787 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1788out:
85d4198e 1789 if (insert) {
5d4f98a2
YZ
1790 path->keep_locks = 0;
1791 btrfs_unlock_up_safe(path, 1);
1792 }
1793 return err;
1794}
1795
1796/*
1797 * helper to add new inline back ref
1798 */
1799static noinline_for_stack
87bde3cd 1800void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
143bede5
JM
1801 struct btrfs_path *path,
1802 struct btrfs_extent_inline_ref *iref,
1803 u64 parent, u64 root_objectid,
1804 u64 owner, u64 offset, int refs_to_add,
1805 struct btrfs_delayed_extent_op *extent_op)
5d4f98a2
YZ
1806{
1807 struct extent_buffer *leaf;
1808 struct btrfs_extent_item *ei;
1809 unsigned long ptr;
1810 unsigned long end;
1811 unsigned long item_offset;
1812 u64 refs;
1813 int size;
1814 int type;
5d4f98a2
YZ
1815
1816 leaf = path->nodes[0];
1817 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1818 item_offset = (unsigned long)iref - (unsigned long)ei;
1819
1820 type = extent_ref_type(parent, owner);
1821 size = btrfs_extent_inline_ref_size(type);
1822
87bde3cd 1823 btrfs_extend_item(fs_info, path, size);
5d4f98a2
YZ
1824
1825 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1826 refs = btrfs_extent_refs(leaf, ei);
1827 refs += refs_to_add;
1828 btrfs_set_extent_refs(leaf, ei, refs);
1829 if (extent_op)
1830 __run_delayed_extent_op(extent_op, leaf, ei);
1831
1832 ptr = (unsigned long)ei + item_offset;
1833 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1834 if (ptr < end - size)
1835 memmove_extent_buffer(leaf, ptr + size, ptr,
1836 end - size - ptr);
1837
1838 iref = (struct btrfs_extent_inline_ref *)ptr;
1839 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1840 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1841 struct btrfs_extent_data_ref *dref;
1842 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1843 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1844 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1845 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1846 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1847 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1848 struct btrfs_shared_data_ref *sref;
1849 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1850 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1851 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1852 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1853 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1854 } else {
1855 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1856 }
1857 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1858}
1859
1860static int lookup_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1861 struct btrfs_path *path,
1862 struct btrfs_extent_inline_ref **ref_ret,
1863 u64 bytenr, u64 num_bytes, u64 parent,
1864 u64 root_objectid, u64 owner, u64 offset)
1865{
1866 int ret;
1867
867cc1fb
NB
1868 ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
1869 num_bytes, parent, root_objectid,
1870 owner, offset, 0);
5d4f98a2 1871 if (ret != -ENOENT)
54aa1f4d 1872 return ret;
5d4f98a2 1873
b3b4aa74 1874 btrfs_release_path(path);
5d4f98a2
YZ
1875 *ref_ret = NULL;
1876
1877 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
b8582eea
NB
1878 ret = lookup_tree_block_ref(trans, path, bytenr, parent,
1879 root_objectid);
5d4f98a2 1880 } else {
bd1d53ef
NB
1881 ret = lookup_extent_data_ref(trans, path, bytenr, parent,
1882 root_objectid, owner, offset);
b9473439 1883 }
5d4f98a2
YZ
1884 return ret;
1885}
31840ae1 1886
5d4f98a2
YZ
1887/*
1888 * helper to update/remove inline back ref
1889 */
1890static noinline_for_stack
61a18f1c 1891void update_inline_extent_backref(struct btrfs_path *path,
143bede5
JM
1892 struct btrfs_extent_inline_ref *iref,
1893 int refs_to_mod,
fcebe456
JB
1894 struct btrfs_delayed_extent_op *extent_op,
1895 int *last_ref)
5d4f98a2 1896{
61a18f1c
NB
1897 struct extent_buffer *leaf = path->nodes[0];
1898 struct btrfs_fs_info *fs_info = leaf->fs_info;
5d4f98a2
YZ
1899 struct btrfs_extent_item *ei;
1900 struct btrfs_extent_data_ref *dref = NULL;
1901 struct btrfs_shared_data_ref *sref = NULL;
1902 unsigned long ptr;
1903 unsigned long end;
1904 u32 item_size;
1905 int size;
1906 int type;
5d4f98a2
YZ
1907 u64 refs;
1908
5d4f98a2
YZ
1909 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1910 refs = btrfs_extent_refs(leaf, ei);
1911 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1912 refs += refs_to_mod;
1913 btrfs_set_extent_refs(leaf, ei, refs);
1914 if (extent_op)
1915 __run_delayed_extent_op(extent_op, leaf, ei);
1916
3de28d57
LB
1917 /*
1918 * If type is invalid, we should have bailed out after
1919 * lookup_inline_extent_backref().
1920 */
1921 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1922 ASSERT(type != BTRFS_REF_TYPE_INVALID);
5d4f98a2
YZ
1923
1924 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1925 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1926 refs = btrfs_extent_data_ref_count(leaf, dref);
1927 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1928 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1929 refs = btrfs_shared_data_ref_count(leaf, sref);
1930 } else {
1931 refs = 1;
1932 BUG_ON(refs_to_mod != -1);
56bec294 1933 }
31840ae1 1934
5d4f98a2
YZ
1935 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1936 refs += refs_to_mod;
1937
1938 if (refs > 0) {
1939 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1940 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1941 else
1942 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1943 } else {
fcebe456 1944 *last_ref = 1;
5d4f98a2
YZ
1945 size = btrfs_extent_inline_ref_size(type);
1946 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1947 ptr = (unsigned long)iref;
1948 end = (unsigned long)ei + item_size;
1949 if (ptr + size < end)
1950 memmove_extent_buffer(leaf, ptr, ptr + size,
1951 end - ptr - size);
1952 item_size -= size;
87bde3cd 1953 btrfs_truncate_item(fs_info, path, item_size, 1);
5d4f98a2
YZ
1954 }
1955 btrfs_mark_buffer_dirty(leaf);
5d4f98a2
YZ
1956}
1957
1958static noinline_for_stack
1959int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 1960 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
1961 struct btrfs_path *path,
1962 u64 bytenr, u64 num_bytes, u64 parent,
1963 u64 root_objectid, u64 owner,
1964 u64 offset, int refs_to_add,
1965 struct btrfs_delayed_extent_op *extent_op)
1966{
1967 struct btrfs_extent_inline_ref *iref;
1968 int ret;
1969
867cc1fb
NB
1970 ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
1971 num_bytes, parent, root_objectid,
1972 owner, offset, 1);
5d4f98a2
YZ
1973 if (ret == 0) {
1974 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
61a18f1c
NB
1975 update_inline_extent_backref(path, iref, refs_to_add,
1976 extent_op, NULL);
5d4f98a2 1977 } else if (ret == -ENOENT) {
87bde3cd 1978 setup_inline_extent_backref(fs_info, path, iref, parent,
143bede5
JM
1979 root_objectid, owner, offset,
1980 refs_to_add, extent_op);
1981 ret = 0;
771ed689 1982 }
5d4f98a2
YZ
1983 return ret;
1984}
31840ae1 1985
5d4f98a2 1986static int insert_extent_backref(struct btrfs_trans_handle *trans,
5d4f98a2
YZ
1987 struct btrfs_path *path,
1988 u64 bytenr, u64 parent, u64 root_objectid,
1989 u64 owner, u64 offset, int refs_to_add)
1990{
1991 int ret;
1992 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1993 BUG_ON(refs_to_add != 1);
10728404
NB
1994 ret = insert_tree_block_ref(trans, path, bytenr, parent,
1995 root_objectid);
5d4f98a2 1996 } else {
62b895af
NB
1997 ret = insert_extent_data_ref(trans, path, bytenr, parent,
1998 root_objectid, owner, offset,
1999 refs_to_add);
5d4f98a2
YZ
2000 }
2001 return ret;
2002}
56bec294 2003
5d4f98a2 2004static int remove_extent_backref(struct btrfs_trans_handle *trans,
87bde3cd 2005 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2006 struct btrfs_path *path,
2007 struct btrfs_extent_inline_ref *iref,
fcebe456 2008 int refs_to_drop, int is_data, int *last_ref)
5d4f98a2 2009{
143bede5 2010 int ret = 0;
b9473439 2011
5d4f98a2
YZ
2012 BUG_ON(!is_data && refs_to_drop != 1);
2013 if (iref) {
61a18f1c
NB
2014 update_inline_extent_backref(path, iref, -refs_to_drop, NULL,
2015 last_ref);
5d4f98a2 2016 } else if (is_data) {
e9f6290d 2017 ret = remove_extent_data_ref(trans, path, refs_to_drop,
fcebe456 2018 last_ref);
5d4f98a2 2019 } else {
fcebe456 2020 *last_ref = 1;
87bde3cd 2021 ret = btrfs_del_item(trans, fs_info->extent_root, path);
5d4f98a2
YZ
2022 }
2023 return ret;
2024}
2025
86557861 2026#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
d04c6b88
JM
2027static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2028 u64 *discarded_bytes)
5d4f98a2 2029{
86557861
JM
2030 int j, ret = 0;
2031 u64 bytes_left, end;
4d89d377 2032 u64 aligned_start = ALIGN(start, 1 << 9);
d04c6b88 2033
4d89d377
JM
2034 if (WARN_ON(start != aligned_start)) {
2035 len -= aligned_start - start;
2036 len = round_down(len, 1 << 9);
2037 start = aligned_start;
2038 }
d04c6b88 2039
4d89d377 2040 *discarded_bytes = 0;
86557861
JM
2041
2042 if (!len)
2043 return 0;
2044
2045 end = start + len;
2046 bytes_left = len;
2047
2048 /* Skip any superblocks on this device. */
2049 for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2050 u64 sb_start = btrfs_sb_offset(j);
2051 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2052 u64 size = sb_start - start;
2053
2054 if (!in_range(sb_start, start, bytes_left) &&
2055 !in_range(sb_end, start, bytes_left) &&
2056 !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2057 continue;
2058
2059 /*
2060 * Superblock spans beginning of range. Adjust start and
2061 * try again.
2062 */
2063 if (sb_start <= start) {
2064 start += sb_end - start;
2065 if (start > end) {
2066 bytes_left = 0;
2067 break;
2068 }
2069 bytes_left = end - start;
2070 continue;
2071 }
2072
2073 if (size) {
2074 ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2075 GFP_NOFS, 0);
2076 if (!ret)
2077 *discarded_bytes += size;
2078 else if (ret != -EOPNOTSUPP)
2079 return ret;
2080 }
2081
2082 start = sb_end;
2083 if (start > end) {
2084 bytes_left = 0;
2085 break;
2086 }
2087 bytes_left = end - start;
2088 }
2089
2090 if (bytes_left) {
2091 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
4d89d377
JM
2092 GFP_NOFS, 0);
2093 if (!ret)
86557861 2094 *discarded_bytes += bytes_left;
4d89d377 2095 }
d04c6b88 2096 return ret;
5d4f98a2 2097}
5d4f98a2 2098
2ff7e61e 2099int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
1edb647b 2100 u64 num_bytes, u64 *actual_bytes)
5d4f98a2 2101{
5d4f98a2 2102 int ret;
5378e607 2103 u64 discarded_bytes = 0;
a1d3c478 2104 struct btrfs_bio *bbio = NULL;
5d4f98a2 2105
e244a0ae 2106
2999241d
FM
2107 /*
2108 * Avoid races with device replace and make sure our bbio has devices
2109 * associated to its stripes that don't go away while we are discarding.
2110 */
0b246afa 2111 btrfs_bio_counter_inc_blocked(fs_info);
5d4f98a2 2112 /* Tell the block device(s) that the sectors can be discarded */
0b246afa
JM
2113 ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2114 &bbio, 0);
79787eaa 2115 /* Error condition is -ENOMEM */
5d4f98a2 2116 if (!ret) {
a1d3c478 2117 struct btrfs_bio_stripe *stripe = bbio->stripes;
5d4f98a2
YZ
2118 int i;
2119
5d4f98a2 2120
a1d3c478 2121 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
d04c6b88 2122 u64 bytes;
38b5f68e
AJ
2123 struct request_queue *req_q;
2124
627e0873
FM
2125 if (!stripe->dev->bdev) {
2126 ASSERT(btrfs_test_opt(fs_info, DEGRADED));
2127 continue;
2128 }
38b5f68e
AJ
2129 req_q = bdev_get_queue(stripe->dev->bdev);
2130 if (!blk_queue_discard(req_q))
d5e2003c
JB
2131 continue;
2132
5378e607
LD
2133 ret = btrfs_issue_discard(stripe->dev->bdev,
2134 stripe->physical,
d04c6b88
JM
2135 stripe->length,
2136 &bytes);
5378e607 2137 if (!ret)
d04c6b88 2138 discarded_bytes += bytes;
5378e607 2139 else if (ret != -EOPNOTSUPP)
79787eaa 2140 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
d5e2003c
JB
2141
2142 /*
2143 * Just in case we get back EOPNOTSUPP for some reason,
2144 * just ignore the return value so we don't screw up
2145 * people calling discard_extent.
2146 */
2147 ret = 0;
5d4f98a2 2148 }
6e9606d2 2149 btrfs_put_bbio(bbio);
5d4f98a2 2150 }
0b246afa 2151 btrfs_bio_counter_dec(fs_info);
5378e607
LD
2152
2153 if (actual_bytes)
2154 *actual_bytes = discarded_bytes;
2155
5d4f98a2 2156
53b381b3
DW
2157 if (ret == -EOPNOTSUPP)
2158 ret = 0;
5d4f98a2 2159 return ret;
5d4f98a2
YZ
2160}
2161
79787eaa 2162/* Can return -ENOMEM */
5d4f98a2 2163int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
84f7d8e6 2164 struct btrfs_root *root,
5d4f98a2 2165 u64 bytenr, u64 num_bytes, u64 parent,
b06c4bf5 2166 u64 root_objectid, u64 owner, u64 offset)
5d4f98a2 2167{
84f7d8e6 2168 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 2169 int old_ref_mod, new_ref_mod;
5d4f98a2 2170 int ret;
66d7e7f0 2171
5d4f98a2
YZ
2172 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2173 root_objectid == BTRFS_TREE_LOG_OBJECTID);
2174
fd708b81
JB
2175 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent, root_objectid,
2176 owner, offset, BTRFS_ADD_DELAYED_REF);
2177
5d4f98a2 2178 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 2179 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
2180 num_bytes, parent,
2181 root_objectid, (int)owner,
2182 BTRFS_ADD_DELAYED_REF, NULL,
d7eae340 2183 &old_ref_mod, &new_ref_mod);
5d4f98a2 2184 } else {
66d7e7f0 2185 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
2186 num_bytes, parent,
2187 root_objectid, owner, offset,
d7eae340
OS
2188 0, BTRFS_ADD_DELAYED_REF,
2189 &old_ref_mod, &new_ref_mod);
5d4f98a2 2190 }
d7eae340 2191
29d2b84c
NB
2192 if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0) {
2193 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
2194
2195 add_pinned_bytes(fs_info, -num_bytes, metadata, root_objectid);
2196 }
d7eae340 2197
5d4f98a2
YZ
2198 return ret;
2199}
2200
bd3c685e
NB
2201/*
2202 * __btrfs_inc_extent_ref - insert backreference for a given extent
2203 *
2204 * @trans: Handle of transaction
2205 *
2206 * @node: The delayed ref node used to get the bytenr/length for
2207 * extent whose references are incremented.
2208 *
2209 * @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
2210 * BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
2211 * bytenr of the parent block. Since new extents are always
2212 * created with indirect references, this will only be the case
2213 * when relocating a shared extent. In that case, root_objectid
2214 * will be BTRFS_TREE_RELOC_OBJECTID. Otheriwse, parent must
2215 * be 0
2216 *
2217 * @root_objectid: The id of the root where this modification has originated,
2218 * this can be either one of the well-known metadata trees or
2219 * the subvolume id which references this extent.
2220 *
2221 * @owner: For data extents it is the inode number of the owning file.
2222 * For metadata extents this parameter holds the level in the
2223 * tree of the extent.
2224 *
2225 * @offset: For metadata extents the offset is ignored and is currently
2226 * always passed as 0. For data extents it is the fileoffset
2227 * this extent belongs to.
2228 *
2229 * @refs_to_add Number of references to add
2230 *
2231 * @extent_op Pointer to a structure, holding information necessary when
2232 * updating a tree block's flags
2233 *
2234 */
5d4f98a2 2235static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2236 struct btrfs_fs_info *fs_info,
c682f9b3 2237 struct btrfs_delayed_ref_node *node,
5d4f98a2
YZ
2238 u64 parent, u64 root_objectid,
2239 u64 owner, u64 offset, int refs_to_add,
2240 struct btrfs_delayed_extent_op *extent_op)
2241{
2242 struct btrfs_path *path;
2243 struct extent_buffer *leaf;
2244 struct btrfs_extent_item *item;
fcebe456 2245 struct btrfs_key key;
c682f9b3
QW
2246 u64 bytenr = node->bytenr;
2247 u64 num_bytes = node->num_bytes;
5d4f98a2
YZ
2248 u64 refs;
2249 int ret;
5d4f98a2
YZ
2250
2251 path = btrfs_alloc_path();
2252 if (!path)
2253 return -ENOMEM;
2254
e4058b54 2255 path->reada = READA_FORWARD;
5d4f98a2
YZ
2256 path->leave_spinning = 1;
2257 /* this will setup the path even if it fails to insert the back ref */
87bde3cd
JM
2258 ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2259 num_bytes, parent, root_objectid,
2260 owner, offset,
5d4f98a2 2261 refs_to_add, extent_op);
0ed4792a 2262 if ((ret < 0 && ret != -EAGAIN) || !ret)
5d4f98a2 2263 goto out;
fcebe456
JB
2264
2265 /*
2266 * Ok we had -EAGAIN which means we didn't have space to insert and
2267 * inline extent ref, so just update the reference count and add a
2268 * normal backref.
2269 */
5d4f98a2 2270 leaf = path->nodes[0];
fcebe456 2271 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5d4f98a2
YZ
2272 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2273 refs = btrfs_extent_refs(leaf, item);
2274 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2275 if (extent_op)
2276 __run_delayed_extent_op(extent_op, leaf, item);
56bec294 2277
5d4f98a2 2278 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 2279 btrfs_release_path(path);
56bec294 2280
e4058b54 2281 path->reada = READA_FORWARD;
b9473439 2282 path->leave_spinning = 1;
56bec294 2283 /* now insert the actual backref */
37593410
NB
2284 ret = insert_extent_backref(trans, path, bytenr, parent, root_objectid,
2285 owner, offset, refs_to_add);
79787eaa 2286 if (ret)
66642832 2287 btrfs_abort_transaction(trans, ret);
5d4f98a2 2288out:
56bec294 2289 btrfs_free_path(path);
30d133fc 2290 return ret;
56bec294
CM
2291}
2292
5d4f98a2 2293static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2294 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2295 struct btrfs_delayed_ref_node *node,
2296 struct btrfs_delayed_extent_op *extent_op,
2297 int insert_reserved)
56bec294 2298{
5d4f98a2
YZ
2299 int ret = 0;
2300 struct btrfs_delayed_data_ref *ref;
2301 struct btrfs_key ins;
2302 u64 parent = 0;
2303 u64 ref_root = 0;
2304 u64 flags = 0;
2305
2306 ins.objectid = node->bytenr;
2307 ins.offset = node->num_bytes;
2308 ins.type = BTRFS_EXTENT_ITEM_KEY;
2309
2310 ref = btrfs_delayed_node_to_data_ref(node);
0b246afa 2311 trace_run_delayed_data_ref(fs_info, node, ref, node->action);
599c75ec 2312
5d4f98a2
YZ
2313 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2314 parent = ref->parent;
fcebe456 2315 ref_root = ref->root;
5d4f98a2
YZ
2316
2317 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2318 if (extent_op)
5d4f98a2 2319 flags |= extent_op->flags_to_set;
2ff7e61e 2320 ret = alloc_reserved_file_extent(trans, fs_info,
5d4f98a2
YZ
2321 parent, ref_root, flags,
2322 ref->objectid, ref->offset,
2323 &ins, node->ref_mod);
5d4f98a2 2324 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2325 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
5d4f98a2
YZ
2326 ref_root, ref->objectid,
2327 ref->offset, node->ref_mod,
c682f9b3 2328 extent_op);
5d4f98a2 2329 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2330 ret = __btrfs_free_extent(trans, fs_info, node, parent,
5d4f98a2
YZ
2331 ref_root, ref->objectid,
2332 ref->offset, node->ref_mod,
c682f9b3 2333 extent_op);
5d4f98a2
YZ
2334 } else {
2335 BUG();
2336 }
2337 return ret;
2338}
2339
2340static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2341 struct extent_buffer *leaf,
2342 struct btrfs_extent_item *ei)
2343{
2344 u64 flags = btrfs_extent_flags(leaf, ei);
2345 if (extent_op->update_flags) {
2346 flags |= extent_op->flags_to_set;
2347 btrfs_set_extent_flags(leaf, ei, flags);
2348 }
2349
2350 if (extent_op->update_key) {
2351 struct btrfs_tree_block_info *bi;
2352 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2353 bi = (struct btrfs_tree_block_info *)(ei + 1);
2354 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2355 }
2356}
2357
2358static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2ff7e61e 2359 struct btrfs_fs_info *fs_info,
d278850e 2360 struct btrfs_delayed_ref_head *head,
5d4f98a2
YZ
2361 struct btrfs_delayed_extent_op *extent_op)
2362{
2363 struct btrfs_key key;
2364 struct btrfs_path *path;
2365 struct btrfs_extent_item *ei;
2366 struct extent_buffer *leaf;
2367 u32 item_size;
56bec294 2368 int ret;
5d4f98a2 2369 int err = 0;
b1c79e09 2370 int metadata = !extent_op->is_data;
5d4f98a2 2371
79787eaa
JM
2372 if (trans->aborted)
2373 return 0;
2374
0b246afa 2375 if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3173a18f
JB
2376 metadata = 0;
2377
5d4f98a2
YZ
2378 path = btrfs_alloc_path();
2379 if (!path)
2380 return -ENOMEM;
2381
d278850e 2382 key.objectid = head->bytenr;
5d4f98a2 2383
3173a18f 2384 if (metadata) {
3173a18f 2385 key.type = BTRFS_METADATA_ITEM_KEY;
b1c79e09 2386 key.offset = extent_op->level;
3173a18f
JB
2387 } else {
2388 key.type = BTRFS_EXTENT_ITEM_KEY;
d278850e 2389 key.offset = head->num_bytes;
3173a18f
JB
2390 }
2391
2392again:
e4058b54 2393 path->reada = READA_FORWARD;
5d4f98a2 2394 path->leave_spinning = 1;
0b246afa 2395 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
5d4f98a2
YZ
2396 if (ret < 0) {
2397 err = ret;
2398 goto out;
2399 }
2400 if (ret > 0) {
3173a18f 2401 if (metadata) {
55994887
FDBM
2402 if (path->slots[0] > 0) {
2403 path->slots[0]--;
2404 btrfs_item_key_to_cpu(path->nodes[0], &key,
2405 path->slots[0]);
d278850e 2406 if (key.objectid == head->bytenr &&
55994887 2407 key.type == BTRFS_EXTENT_ITEM_KEY &&
d278850e 2408 key.offset == head->num_bytes)
55994887
FDBM
2409 ret = 0;
2410 }
2411 if (ret > 0) {
2412 btrfs_release_path(path);
2413 metadata = 0;
3173a18f 2414
d278850e
JB
2415 key.objectid = head->bytenr;
2416 key.offset = head->num_bytes;
55994887
FDBM
2417 key.type = BTRFS_EXTENT_ITEM_KEY;
2418 goto again;
2419 }
2420 } else {
2421 err = -EIO;
2422 goto out;
3173a18f 2423 }
5d4f98a2
YZ
2424 }
2425
2426 leaf = path->nodes[0];
2427 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2428#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2429 if (item_size < sizeof(*ei)) {
87bde3cd 2430 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
5d4f98a2
YZ
2431 if (ret < 0) {
2432 err = ret;
2433 goto out;
2434 }
2435 leaf = path->nodes[0];
2436 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2437 }
2438#endif
2439 BUG_ON(item_size < sizeof(*ei));
2440 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2441 __run_delayed_extent_op(extent_op, leaf, ei);
56bec294 2442
5d4f98a2
YZ
2443 btrfs_mark_buffer_dirty(leaf);
2444out:
2445 btrfs_free_path(path);
2446 return err;
56bec294
CM
2447}
2448
5d4f98a2 2449static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2450 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2451 struct btrfs_delayed_ref_node *node,
2452 struct btrfs_delayed_extent_op *extent_op,
2453 int insert_reserved)
56bec294
CM
2454{
2455 int ret = 0;
5d4f98a2 2456 struct btrfs_delayed_tree_ref *ref;
5d4f98a2
YZ
2457 u64 parent = 0;
2458 u64 ref_root = 0;
56bec294 2459
5d4f98a2 2460 ref = btrfs_delayed_node_to_tree_ref(node);
0b246afa 2461 trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
599c75ec 2462
5d4f98a2
YZ
2463 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2464 parent = ref->parent;
fcebe456 2465 ref_root = ref->root;
5d4f98a2 2466
02794222 2467 if (node->ref_mod != 1) {
2ff7e61e 2468 btrfs_err(fs_info,
02794222
LB
2469 "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2470 node->bytenr, node->ref_mod, node->action, ref_root,
2471 parent);
2472 return -EIO;
2473 }
5d4f98a2 2474 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
3173a18f 2475 BUG_ON(!extent_op || !extent_op->update_flags);
21ebfbe7 2476 ret = alloc_reserved_tree_block(trans, node, extent_op);
5d4f98a2 2477 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2ff7e61e 2478 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
c682f9b3
QW
2479 parent, ref_root,
2480 ref->level, 0, 1,
fcebe456 2481 extent_op);
5d4f98a2 2482 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2ff7e61e 2483 ret = __btrfs_free_extent(trans, fs_info, node,
c682f9b3
QW
2484 parent, ref_root,
2485 ref->level, 0, 1, extent_op);
5d4f98a2
YZ
2486 } else {
2487 BUG();
2488 }
56bec294
CM
2489 return ret;
2490}
2491
2492/* helper function to actually process a single delayed ref entry */
5d4f98a2 2493static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2ff7e61e 2494 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
2495 struct btrfs_delayed_ref_node *node,
2496 struct btrfs_delayed_extent_op *extent_op,
2497 int insert_reserved)
56bec294 2498{
79787eaa
JM
2499 int ret = 0;
2500
857cc2fc
JB
2501 if (trans->aborted) {
2502 if (insert_reserved)
2ff7e61e 2503 btrfs_pin_extent(fs_info, node->bytenr,
857cc2fc 2504 node->num_bytes, 1);
79787eaa 2505 return 0;
857cc2fc 2506 }
79787eaa 2507
5d4f98a2
YZ
2508 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2509 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2ff7e61e 2510 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2511 insert_reserved);
2512 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2513 node->type == BTRFS_SHARED_DATA_REF_KEY)
2ff7e61e 2514 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
5d4f98a2
YZ
2515 insert_reserved);
2516 else
2517 BUG();
2518 return ret;
56bec294
CM
2519}
2520
c6fc2454 2521static inline struct btrfs_delayed_ref_node *
56bec294
CM
2522select_delayed_ref(struct btrfs_delayed_ref_head *head)
2523{
cffc3374
FM
2524 struct btrfs_delayed_ref_node *ref;
2525
0e0adbcf 2526 if (RB_EMPTY_ROOT(&head->ref_tree))
c6fc2454 2527 return NULL;
d7df2c79 2528
cffc3374
FM
2529 /*
2530 * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2531 * This is to prevent a ref count from going down to zero, which deletes
2532 * the extent item from the extent tree, when there still are references
2533 * to add, which would fail because they would not find the extent item.
2534 */
1d57ee94
WX
2535 if (!list_empty(&head->ref_add_list))
2536 return list_first_entry(&head->ref_add_list,
2537 struct btrfs_delayed_ref_node, add_list);
2538
0e0adbcf
JB
2539 ref = rb_entry(rb_first(&head->ref_tree),
2540 struct btrfs_delayed_ref_node, ref_node);
1d57ee94
WX
2541 ASSERT(list_empty(&ref->add_list));
2542 return ref;
56bec294
CM
2543}
2544
2eadaa22
JB
2545static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
2546 struct btrfs_delayed_ref_head *head)
2547{
2548 spin_lock(&delayed_refs->lock);
2549 head->processing = 0;
2550 delayed_refs->num_heads_ready++;
2551 spin_unlock(&delayed_refs->lock);
2552 btrfs_delayed_ref_unlock(head);
2553}
2554
b00e6250
JB
2555static int cleanup_extent_op(struct btrfs_trans_handle *trans,
2556 struct btrfs_fs_info *fs_info,
2557 struct btrfs_delayed_ref_head *head)
2558{
2559 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
2560 int ret;
2561
2562 if (!extent_op)
2563 return 0;
2564 head->extent_op = NULL;
2565 if (head->must_insert_reserved) {
2566 btrfs_free_delayed_extent_op(extent_op);
2567 return 0;
2568 }
2569 spin_unlock(&head->lock);
d278850e 2570 ret = run_delayed_extent_op(trans, fs_info, head, extent_op);
b00e6250
JB
2571 btrfs_free_delayed_extent_op(extent_op);
2572 return ret ? ret : 1;
2573}
2574
194ab0bc
JB
2575static int cleanup_ref_head(struct btrfs_trans_handle *trans,
2576 struct btrfs_fs_info *fs_info,
2577 struct btrfs_delayed_ref_head *head)
2578{
2579 struct btrfs_delayed_ref_root *delayed_refs;
2580 int ret;
2581
2582 delayed_refs = &trans->transaction->delayed_refs;
2583
2584 ret = cleanup_extent_op(trans, fs_info, head);
2585 if (ret < 0) {
2586 unselect_delayed_ref_head(delayed_refs, head);
2587 btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
2588 return ret;
2589 } else if (ret) {
2590 return ret;
2591 }
2592
2593 /*
2594 * Need to drop our head ref lock and re-acquire the delayed ref lock
2595 * and then re-check to make sure nobody got added.
2596 */
2597 spin_unlock(&head->lock);
2598 spin_lock(&delayed_refs->lock);
2599 spin_lock(&head->lock);
0e0adbcf 2600 if (!RB_EMPTY_ROOT(&head->ref_tree) || head->extent_op) {
194ab0bc
JB
2601 spin_unlock(&head->lock);
2602 spin_unlock(&delayed_refs->lock);
2603 return 1;
2604 }
194ab0bc
JB
2605 delayed_refs->num_heads--;
2606 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 2607 RB_CLEAR_NODE(&head->href_node);
c1103f7a 2608 spin_unlock(&head->lock);
1e7a1421 2609 spin_unlock(&delayed_refs->lock);
c1103f7a
JB
2610 atomic_dec(&delayed_refs->num_entries);
2611
d278850e 2612 trace_run_delayed_ref_head(fs_info, head, 0);
c1103f7a
JB
2613
2614 if (head->total_ref_mod < 0) {
5e388e95
NB
2615 struct btrfs_space_info *space_info;
2616 u64 flags;
c1103f7a 2617
5e388e95
NB
2618 if (head->is_data)
2619 flags = BTRFS_BLOCK_GROUP_DATA;
2620 else if (head->is_system)
2621 flags = BTRFS_BLOCK_GROUP_SYSTEM;
2622 else
2623 flags = BTRFS_BLOCK_GROUP_METADATA;
2624 space_info = __find_space_info(fs_info, flags);
2625 ASSERT(space_info);
2626 percpu_counter_add(&space_info->total_bytes_pinned,
d278850e 2627 -head->num_bytes);
c1103f7a
JB
2628
2629 if (head->is_data) {
2630 spin_lock(&delayed_refs->lock);
d278850e 2631 delayed_refs->pending_csums -= head->num_bytes;
c1103f7a
JB
2632 spin_unlock(&delayed_refs->lock);
2633 }
2634 }
2635
2636 if (head->must_insert_reserved) {
d278850e
JB
2637 btrfs_pin_extent(fs_info, head->bytenr,
2638 head->num_bytes, 1);
c1103f7a 2639 if (head->is_data) {
d278850e
JB
2640 ret = btrfs_del_csums(trans, fs_info, head->bytenr,
2641 head->num_bytes);
c1103f7a
JB
2642 }
2643 }
2644
2645 /* Also free its reserved qgroup space */
2646 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2647 head->qgroup_reserved);
2648 btrfs_delayed_ref_unlock(head);
d278850e 2649 btrfs_put_delayed_ref_head(head);
194ab0bc
JB
2650 return 0;
2651}
2652
79787eaa
JM
2653/*
2654 * Returns 0 on success or if called with an already aborted transaction.
2655 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2656 */
d7df2c79 2657static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
d7df2c79 2658 unsigned long nr)
56bec294 2659{
0a1e458a 2660 struct btrfs_fs_info *fs_info = trans->fs_info;
56bec294
CM
2661 struct btrfs_delayed_ref_root *delayed_refs;
2662 struct btrfs_delayed_ref_node *ref;
2663 struct btrfs_delayed_ref_head *locked_ref = NULL;
5d4f98a2 2664 struct btrfs_delayed_extent_op *extent_op;
0a2b2a84 2665 ktime_t start = ktime_get();
56bec294 2666 int ret;
d7df2c79 2667 unsigned long count = 0;
0a2b2a84 2668 unsigned long actual_count = 0;
56bec294 2669 int must_insert_reserved = 0;
56bec294
CM
2670
2671 delayed_refs = &trans->transaction->delayed_refs;
56bec294
CM
2672 while (1) {
2673 if (!locked_ref) {
d7df2c79 2674 if (count >= nr)
56bec294 2675 break;
56bec294 2676
d7df2c79
JB
2677 spin_lock(&delayed_refs->lock);
2678 locked_ref = btrfs_select_ref_head(trans);
2679 if (!locked_ref) {
2680 spin_unlock(&delayed_refs->lock);
2681 break;
2682 }
c3e69d58
CM
2683
2684 /* grab the lock that says we are going to process
2685 * all the refs for this head */
2686 ret = btrfs_delayed_ref_lock(trans, locked_ref);
d7df2c79 2687 spin_unlock(&delayed_refs->lock);
c3e69d58
CM
2688 /*
2689 * we may have dropped the spin lock to get the head
2690 * mutex lock, and that might have given someone else
2691 * time to free the head. If that's true, it has been
2692 * removed from our list and we can move on.
2693 */
2694 if (ret == -EAGAIN) {
2695 locked_ref = NULL;
2696 count++;
2697 continue;
56bec294
CM
2698 }
2699 }
a28ec197 2700
2c3cf7d5
FM
2701 /*
2702 * We need to try and merge add/drops of the same ref since we
2703 * can run into issues with relocate dropping the implicit ref
2704 * and then it being added back again before the drop can
2705 * finish. If we merged anything we need to re-loop so we can
2706 * get a good ref.
2707 * Or we can get node references of the same type that weren't
2708 * merged when created due to bumps in the tree mod seq, and
2709 * we need to merge them to prevent adding an inline extent
2710 * backref before dropping it (triggering a BUG_ON at
2711 * insert_inline_extent_backref()).
2712 */
d7df2c79 2713 spin_lock(&locked_ref->lock);
be97f133 2714 btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
ae1e206b 2715
d1270cd9
AJ
2716 ref = select_delayed_ref(locked_ref);
2717
2718 if (ref && ref->seq &&
41d0bd3b 2719 btrfs_check_delayed_seq(fs_info, ref->seq)) {
d7df2c79 2720 spin_unlock(&locked_ref->lock);
2eadaa22 2721 unselect_delayed_ref_head(delayed_refs, locked_ref);
d7df2c79 2722 locked_ref = NULL;
d1270cd9 2723 cond_resched();
27a377db 2724 count++;
d1270cd9
AJ
2725 continue;
2726 }
2727
c1103f7a
JB
2728 /*
2729 * We're done processing refs in this ref_head, clean everything
2730 * up and move on to the next ref_head.
2731 */
56bec294 2732 if (!ref) {
194ab0bc
JB
2733 ret = cleanup_ref_head(trans, fs_info, locked_ref);
2734 if (ret > 0 ) {
b00e6250
JB
2735 /* We dropped our lock, we need to loop. */
2736 ret = 0;
d7df2c79 2737 continue;
194ab0bc
JB
2738 } else if (ret) {
2739 return ret;
5d4f98a2 2740 }
c1103f7a
JB
2741 locked_ref = NULL;
2742 count++;
2743 continue;
2744 }
02217ed2 2745
c1103f7a
JB
2746 actual_count++;
2747 ref->in_tree = 0;
0e0adbcf
JB
2748 rb_erase(&ref->ref_node, &locked_ref->ref_tree);
2749 RB_CLEAR_NODE(&ref->ref_node);
c1103f7a
JB
2750 if (!list_empty(&ref->add_list))
2751 list_del(&ref->add_list);
2752 /*
2753 * When we play the delayed ref, also correct the ref_mod on
2754 * head
2755 */
2756 switch (ref->action) {
2757 case BTRFS_ADD_DELAYED_REF:
2758 case BTRFS_ADD_DELAYED_EXTENT:
d278850e 2759 locked_ref->ref_mod -= ref->ref_mod;
c1103f7a
JB
2760 break;
2761 case BTRFS_DROP_DELAYED_REF:
d278850e 2762 locked_ref->ref_mod += ref->ref_mod;
c1103f7a
JB
2763 break;
2764 default:
2765 WARN_ON(1);
22cd2e7d 2766 }
1ce7a5ec
JB
2767 atomic_dec(&delayed_refs->num_entries);
2768
b00e6250
JB
2769 /*
2770 * Record the must-insert_reserved flag before we drop the spin
2771 * lock.
2772 */
2773 must_insert_reserved = locked_ref->must_insert_reserved;
2774 locked_ref->must_insert_reserved = 0;
2775
2776 extent_op = locked_ref->extent_op;
2777 locked_ref->extent_op = NULL;
d7df2c79 2778 spin_unlock(&locked_ref->lock);
925baedd 2779
2ff7e61e 2780 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
56bec294 2781 must_insert_reserved);
eb099670 2782
78a6184a 2783 btrfs_free_delayed_extent_op(extent_op);
79787eaa 2784 if (ret) {
2eadaa22 2785 unselect_delayed_ref_head(delayed_refs, locked_ref);
093486c4 2786 btrfs_put_delayed_ref(ref);
5d163e0e
JM
2787 btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2788 ret);
79787eaa
JM
2789 return ret;
2790 }
2791
093486c4
MX
2792 btrfs_put_delayed_ref(ref);
2793 count++;
c3e69d58 2794 cond_resched();
c3e69d58 2795 }
0a2b2a84
JB
2796
2797 /*
2798 * We don't want to include ref heads since we can have empty ref heads
2799 * and those will drastically skew our runtime down since we just do
2800 * accounting, no actual extent tree updates.
2801 */
2802 if (actual_count > 0) {
2803 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2804 u64 avg;
2805
2806 /*
2807 * We weigh the current average higher than our current runtime
2808 * to avoid large swings in the average.
2809 */
2810 spin_lock(&delayed_refs->lock);
2811 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
f8c269d7 2812 fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
0a2b2a84
JB
2813 spin_unlock(&delayed_refs->lock);
2814 }
d7df2c79 2815 return 0;
c3e69d58
CM
2816}
2817
709c0486
AJ
2818#ifdef SCRAMBLE_DELAYED_REFS
2819/*
2820 * Normally delayed refs get processed in ascending bytenr order. This
2821 * correlates in most cases to the order added. To expose dependencies on this
2822 * order, we start to process the tree in the middle instead of the beginning
2823 */
2824static u64 find_middle(struct rb_root *root)
2825{
2826 struct rb_node *n = root->rb_node;
2827 struct btrfs_delayed_ref_node *entry;
2828 int alt = 1;
2829 u64 middle;
2830 u64 first = 0, last = 0;
2831
2832 n = rb_first(root);
2833 if (n) {
2834 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2835 first = entry->bytenr;
2836 }
2837 n = rb_last(root);
2838 if (n) {
2839 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2840 last = entry->bytenr;
2841 }
2842 n = root->rb_node;
2843
2844 while (n) {
2845 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2846 WARN_ON(!entry->in_tree);
2847
2848 middle = entry->bytenr;
2849
2850 if (alt)
2851 n = n->rb_left;
2852 else
2853 n = n->rb_right;
2854
2855 alt = 1 - alt;
2856 }
2857 return middle;
2858}
2859#endif
2860
2ff7e61e 2861static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
1be41b78
JB
2862{
2863 u64 num_bytes;
2864
2865 num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2866 sizeof(struct btrfs_extent_inline_ref));
0b246afa 2867 if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1be41b78
JB
2868 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2869
2870 /*
2871 * We don't ever fill up leaves all the way so multiply by 2 just to be
01327610 2872 * closer to what we're really going to want to use.
1be41b78 2873 */
0b246afa 2874 return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
1be41b78
JB
2875}
2876
1262133b
JB
2877/*
2878 * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2879 * would require to store the csums for that many bytes.
2880 */
2ff7e61e 2881u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
1262133b
JB
2882{
2883 u64 csum_size;
2884 u64 num_csums_per_leaf;
2885 u64 num_csums;
2886
0b246afa 2887 csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
1262133b 2888 num_csums_per_leaf = div64_u64(csum_size,
0b246afa
JM
2889 (u64)btrfs_super_csum_size(fs_info->super_copy));
2890 num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
1262133b
JB
2891 num_csums += num_csums_per_leaf - 1;
2892 num_csums = div64_u64(num_csums, num_csums_per_leaf);
2893 return num_csums;
2894}
2895
0a2b2a84 2896int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2897 struct btrfs_fs_info *fs_info)
1be41b78
JB
2898{
2899 struct btrfs_block_rsv *global_rsv;
2900 u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
1262133b 2901 u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
165c8b02 2902 unsigned int num_dirty_bgs = trans->transaction->num_dirty_bgs;
cb723e49 2903 u64 num_bytes, num_dirty_bgs_bytes;
1be41b78
JB
2904 int ret = 0;
2905
0b246afa 2906 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2ff7e61e 2907 num_heads = heads_to_leaves(fs_info, num_heads);
1be41b78 2908 if (num_heads > 1)
0b246afa 2909 num_bytes += (num_heads - 1) * fs_info->nodesize;
1be41b78 2910 num_bytes <<= 1;
2ff7e61e
JM
2911 num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2912 fs_info->nodesize;
0b246afa 2913 num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
cb723e49 2914 num_dirty_bgs);
0b246afa 2915 global_rsv = &fs_info->global_block_rsv;
1be41b78
JB
2916
2917 /*
2918 * If we can't allocate any more chunks lets make sure we have _lots_ of
2919 * wiggle room since running delayed refs can create more delayed refs.
2920 */
cb723e49
JB
2921 if (global_rsv->space_info->full) {
2922 num_dirty_bgs_bytes <<= 1;
1be41b78 2923 num_bytes <<= 1;
cb723e49 2924 }
1be41b78
JB
2925
2926 spin_lock(&global_rsv->lock);
cb723e49 2927 if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
1be41b78
JB
2928 ret = 1;
2929 spin_unlock(&global_rsv->lock);
2930 return ret;
2931}
2932
0a2b2a84 2933int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2ff7e61e 2934 struct btrfs_fs_info *fs_info)
0a2b2a84 2935{
0a2b2a84
JB
2936 u64 num_entries =
2937 atomic_read(&trans->transaction->delayed_refs.num_entries);
2938 u64 avg_runtime;
a79b7d4b 2939 u64 val;
0a2b2a84
JB
2940
2941 smp_mb();
2942 avg_runtime = fs_info->avg_delayed_ref_runtime;
a79b7d4b 2943 val = num_entries * avg_runtime;
dc1a90c6 2944 if (val >= NSEC_PER_SEC)
0a2b2a84 2945 return 1;
a79b7d4b
CM
2946 if (val >= NSEC_PER_SEC / 2)
2947 return 2;
0a2b2a84 2948
2ff7e61e 2949 return btrfs_check_space_for_delayed_refs(trans, fs_info);
0a2b2a84
JB
2950}
2951
a79b7d4b
CM
2952struct async_delayed_refs {
2953 struct btrfs_root *root;
31b9655f 2954 u64 transid;
a79b7d4b
CM
2955 int count;
2956 int error;
2957 int sync;
2958 struct completion wait;
2959 struct btrfs_work work;
2960};
2961
2ff7e61e
JM
2962static inline struct async_delayed_refs *
2963to_async_delayed_refs(struct btrfs_work *work)
2964{
2965 return container_of(work, struct async_delayed_refs, work);
2966}
2967
a79b7d4b
CM
2968static void delayed_ref_async_start(struct btrfs_work *work)
2969{
2ff7e61e 2970 struct async_delayed_refs *async = to_async_delayed_refs(work);
a79b7d4b 2971 struct btrfs_trans_handle *trans;
2ff7e61e 2972 struct btrfs_fs_info *fs_info = async->root->fs_info;
a79b7d4b
CM
2973 int ret;
2974
0f873eca 2975 /* if the commit is already started, we don't need to wait here */
2ff7e61e 2976 if (btrfs_transaction_blocked(fs_info))
31b9655f 2977 goto done;
31b9655f 2978
0f873eca
CM
2979 trans = btrfs_join_transaction(async->root);
2980 if (IS_ERR(trans)) {
2981 async->error = PTR_ERR(trans);
a79b7d4b
CM
2982 goto done;
2983 }
2984
2985 /*
01327610 2986 * trans->sync means that when we call end_transaction, we won't
a79b7d4b
CM
2987 * wait on delayed refs
2988 */
2989 trans->sync = true;
0f873eca
CM
2990
2991 /* Don't bother flushing if we got into a different transaction */
2992 if (trans->transid > async->transid)
2993 goto end;
2994
c79a70b1 2995 ret = btrfs_run_delayed_refs(trans, async->count);
a79b7d4b
CM
2996 if (ret)
2997 async->error = ret;
0f873eca 2998end:
3a45bb20 2999 ret = btrfs_end_transaction(trans);
a79b7d4b
CM
3000 if (ret && !async->error)
3001 async->error = ret;
3002done:
3003 if (async->sync)
3004 complete(&async->wait);
3005 else
3006 kfree(async);
3007}
3008
2ff7e61e 3009int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
31b9655f 3010 unsigned long count, u64 transid, int wait)
a79b7d4b
CM
3011{
3012 struct async_delayed_refs *async;
3013 int ret;
3014
3015 async = kmalloc(sizeof(*async), GFP_NOFS);
3016 if (!async)
3017 return -ENOMEM;
3018
0b246afa 3019 async->root = fs_info->tree_root;
a79b7d4b
CM
3020 async->count = count;
3021 async->error = 0;
31b9655f 3022 async->transid = transid;
a79b7d4b
CM
3023 if (wait)
3024 async->sync = 1;
3025 else
3026 async->sync = 0;
3027 init_completion(&async->wait);
3028
9e0af237
LB
3029 btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3030 delayed_ref_async_start, NULL, NULL);
a79b7d4b 3031
0b246afa 3032 btrfs_queue_work(fs_info->extent_workers, &async->work);
a79b7d4b
CM
3033
3034 if (wait) {
3035 wait_for_completion(&async->wait);
3036 ret = async->error;
3037 kfree(async);
3038 return ret;
3039 }
3040 return 0;
3041}
3042
c3e69d58
CM
3043/*
3044 * this starts processing the delayed reference count updates and
3045 * extent insertions we have queued up so far. count can be
3046 * 0, which means to process everything in the tree at the start
3047 * of the run (but not newly added entries), or it can be some target
3048 * number you'd like to process.
79787eaa
JM
3049 *
3050 * Returns 0 on success or if called with an aborted transaction
3051 * Returns <0 on error and aborts the transaction
c3e69d58
CM
3052 */
3053int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
c79a70b1 3054 unsigned long count)
c3e69d58 3055{
c79a70b1 3056 struct btrfs_fs_info *fs_info = trans->fs_info;
c3e69d58
CM
3057 struct rb_node *node;
3058 struct btrfs_delayed_ref_root *delayed_refs;
c46effa6 3059 struct btrfs_delayed_ref_head *head;
c3e69d58
CM
3060 int ret;
3061 int run_all = count == (unsigned long)-1;
d9a0540a 3062 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
c3e69d58 3063
79787eaa
JM
3064 /* We'll clean this up in btrfs_cleanup_transaction */
3065 if (trans->aborted)
3066 return 0;
3067
0b246afa 3068 if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
511711af
CM
3069 return 0;
3070
c3e69d58 3071 delayed_refs = &trans->transaction->delayed_refs;
26455d33 3072 if (count == 0)
d7df2c79 3073 count = atomic_read(&delayed_refs->num_entries) * 2;
bb721703 3074
c3e69d58 3075again:
709c0486
AJ
3076#ifdef SCRAMBLE_DELAYED_REFS
3077 delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3078#endif
d9a0540a 3079 trans->can_flush_pending_bgs = false;
0a1e458a 3080 ret = __btrfs_run_delayed_refs(trans, count);
d7df2c79 3081 if (ret < 0) {
66642832 3082 btrfs_abort_transaction(trans, ret);
d7df2c79 3083 return ret;
eb099670 3084 }
c3e69d58 3085
56bec294 3086 if (run_all) {
d7df2c79 3087 if (!list_empty(&trans->new_bgs))
6c686b35 3088 btrfs_create_pending_block_groups(trans);
ea658bad 3089
d7df2c79 3090 spin_lock(&delayed_refs->lock);
c46effa6 3091 node = rb_first(&delayed_refs->href_root);
d7df2c79
JB
3092 if (!node) {
3093 spin_unlock(&delayed_refs->lock);
56bec294 3094 goto out;
d7df2c79 3095 }
d278850e
JB
3096 head = rb_entry(node, struct btrfs_delayed_ref_head,
3097 href_node);
3098 refcount_inc(&head->refs);
3099 spin_unlock(&delayed_refs->lock);
e9d0b13b 3100
d278850e
JB
3101 /* Mutex was contended, block until it's released and retry. */
3102 mutex_lock(&head->mutex);
3103 mutex_unlock(&head->mutex);
56bec294 3104
d278850e 3105 btrfs_put_delayed_ref_head(head);
d7df2c79 3106 cond_resched();
56bec294 3107 goto again;
5f39d397 3108 }
54aa1f4d 3109out:
d9a0540a 3110 trans->can_flush_pending_bgs = can_flush_pending_bgs;
a28ec197
CM
3111 return 0;
3112}
3113
5d4f98a2 3114int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2ff7e61e 3115 struct btrfs_fs_info *fs_info,
5d4f98a2 3116 u64 bytenr, u64 num_bytes, u64 flags,
b1c79e09 3117 int level, int is_data)
5d4f98a2
YZ
3118{
3119 struct btrfs_delayed_extent_op *extent_op;
3120 int ret;
3121
78a6184a 3122 extent_op = btrfs_alloc_delayed_extent_op();
5d4f98a2
YZ
3123 if (!extent_op)
3124 return -ENOMEM;
3125
3126 extent_op->flags_to_set = flags;
35b3ad50
DS
3127 extent_op->update_flags = true;
3128 extent_op->update_key = false;
3129 extent_op->is_data = is_data ? true : false;
b1c79e09 3130 extent_op->level = level;
5d4f98a2 3131
0b246afa 3132 ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
66d7e7f0 3133 num_bytes, extent_op);
5d4f98a2 3134 if (ret)
78a6184a 3135 btrfs_free_delayed_extent_op(extent_op);
5d4f98a2
YZ
3136 return ret;
3137}
3138
e4c3b2dc 3139static noinline int check_delayed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3140 struct btrfs_path *path,
3141 u64 objectid, u64 offset, u64 bytenr)
3142{
3143 struct btrfs_delayed_ref_head *head;
3144 struct btrfs_delayed_ref_node *ref;
3145 struct btrfs_delayed_data_ref *data_ref;
3146 struct btrfs_delayed_ref_root *delayed_refs;
e4c3b2dc 3147 struct btrfs_transaction *cur_trans;
0e0adbcf 3148 struct rb_node *node;
5d4f98a2
YZ
3149 int ret = 0;
3150
998ac6d2 3151 spin_lock(&root->fs_info->trans_lock);
e4c3b2dc 3152 cur_trans = root->fs_info->running_transaction;
998ac6d2 3153 if (cur_trans)
3154 refcount_inc(&cur_trans->use_count);
3155 spin_unlock(&root->fs_info->trans_lock);
e4c3b2dc
LB
3156 if (!cur_trans)
3157 return 0;
3158
3159 delayed_refs = &cur_trans->delayed_refs;
5d4f98a2 3160 spin_lock(&delayed_refs->lock);
f72ad18e 3161 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
d7df2c79
JB
3162 if (!head) {
3163 spin_unlock(&delayed_refs->lock);
998ac6d2 3164 btrfs_put_transaction(cur_trans);
d7df2c79
JB
3165 return 0;
3166 }
5d4f98a2
YZ
3167
3168 if (!mutex_trylock(&head->mutex)) {
d278850e 3169 refcount_inc(&head->refs);
5d4f98a2
YZ
3170 spin_unlock(&delayed_refs->lock);
3171
b3b4aa74 3172 btrfs_release_path(path);
5d4f98a2 3173
8cc33e5c
DS
3174 /*
3175 * Mutex was contended, block until it's released and let
3176 * caller try again
3177 */
5d4f98a2
YZ
3178 mutex_lock(&head->mutex);
3179 mutex_unlock(&head->mutex);
d278850e 3180 btrfs_put_delayed_ref_head(head);
998ac6d2 3181 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3182 return -EAGAIN;
3183 }
d7df2c79 3184 spin_unlock(&delayed_refs->lock);
5d4f98a2 3185
d7df2c79 3186 spin_lock(&head->lock);
0e0adbcf
JB
3187 /*
3188 * XXX: We should replace this with a proper search function in the
3189 * future.
3190 */
3191 for (node = rb_first(&head->ref_tree); node; node = rb_next(node)) {
3192 ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
d7df2c79
JB
3193 /* If it's a shared ref we know a cross reference exists */
3194 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3195 ret = 1;
3196 break;
3197 }
5d4f98a2 3198
d7df2c79 3199 data_ref = btrfs_delayed_node_to_data_ref(ref);
5d4f98a2 3200
d7df2c79
JB
3201 /*
3202 * If our ref doesn't match the one we're currently looking at
3203 * then we have a cross reference.
3204 */
3205 if (data_ref->root != root->root_key.objectid ||
3206 data_ref->objectid != objectid ||
3207 data_ref->offset != offset) {
3208 ret = 1;
3209 break;
3210 }
5d4f98a2 3211 }
d7df2c79 3212 spin_unlock(&head->lock);
5d4f98a2 3213 mutex_unlock(&head->mutex);
998ac6d2 3214 btrfs_put_transaction(cur_trans);
5d4f98a2
YZ
3215 return ret;
3216}
3217
e4c3b2dc 3218static noinline int check_committed_ref(struct btrfs_root *root,
5d4f98a2
YZ
3219 struct btrfs_path *path,
3220 u64 objectid, u64 offset, u64 bytenr)
be20aa9d 3221{
0b246afa
JM
3222 struct btrfs_fs_info *fs_info = root->fs_info;
3223 struct btrfs_root *extent_root = fs_info->extent_root;
f321e491 3224 struct extent_buffer *leaf;
5d4f98a2
YZ
3225 struct btrfs_extent_data_ref *ref;
3226 struct btrfs_extent_inline_ref *iref;
3227 struct btrfs_extent_item *ei;
f321e491 3228 struct btrfs_key key;
5d4f98a2 3229 u32 item_size;
3de28d57 3230 int type;
be20aa9d 3231 int ret;
925baedd 3232
be20aa9d 3233 key.objectid = bytenr;
31840ae1 3234 key.offset = (u64)-1;
f321e491 3235 key.type = BTRFS_EXTENT_ITEM_KEY;
be20aa9d 3236
be20aa9d
CM
3237 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3238 if (ret < 0)
3239 goto out;
79787eaa 3240 BUG_ON(ret == 0); /* Corruption */
80ff3856
YZ
3241
3242 ret = -ENOENT;
3243 if (path->slots[0] == 0)
31840ae1 3244 goto out;
be20aa9d 3245
31840ae1 3246 path->slots[0]--;
f321e491 3247 leaf = path->nodes[0];
5d4f98a2 3248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
be20aa9d 3249
5d4f98a2 3250 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
be20aa9d 3251 goto out;
f321e491 3252
5d4f98a2
YZ
3253 ret = 1;
3254 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3255#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3256 if (item_size < sizeof(*ei)) {
3257 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3258 goto out;
3259 }
3260#endif
3261 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
bd09835d 3262
5d4f98a2
YZ
3263 if (item_size != sizeof(*ei) +
3264 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3265 goto out;
be20aa9d 3266
5d4f98a2
YZ
3267 if (btrfs_extent_generation(leaf, ei) <=
3268 btrfs_root_last_snapshot(&root->root_item))
3269 goto out;
3270
3271 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3de28d57
LB
3272
3273 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3274 if (type != BTRFS_EXTENT_DATA_REF_KEY)
5d4f98a2
YZ
3275 goto out;
3276
3277 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3278 if (btrfs_extent_refs(leaf, ei) !=
3279 btrfs_extent_data_ref_count(leaf, ref) ||
3280 btrfs_extent_data_ref_root(leaf, ref) !=
3281 root->root_key.objectid ||
3282 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3283 btrfs_extent_data_ref_offset(leaf, ref) != offset)
3284 goto out;
3285
3286 ret = 0;
3287out:
3288 return ret;
3289}
3290
e4c3b2dc
LB
3291int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3292 u64 bytenr)
5d4f98a2
YZ
3293{
3294 struct btrfs_path *path;
3295 int ret;
3296 int ret2;
3297
3298 path = btrfs_alloc_path();
3299 if (!path)
9132c4ff 3300 return -ENOMEM;
5d4f98a2
YZ
3301
3302 do {
e4c3b2dc 3303 ret = check_committed_ref(root, path, objectid,
5d4f98a2
YZ
3304 offset, bytenr);
3305 if (ret && ret != -ENOENT)
f321e491 3306 goto out;
80ff3856 3307
e4c3b2dc 3308 ret2 = check_delayed_ref(root, path, objectid,
5d4f98a2
YZ
3309 offset, bytenr);
3310 } while (ret2 == -EAGAIN);
3311
3312 if (ret2 && ret2 != -ENOENT) {
3313 ret = ret2;
3314 goto out;
f321e491 3315 }
5d4f98a2
YZ
3316
3317 if (ret != -ENOENT || ret2 != -ENOENT)
3318 ret = 0;
be20aa9d 3319out:
80ff3856 3320 btrfs_free_path(path);
f0486c68
YZ
3321 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3322 WARN_ON(ret > 0);
f321e491 3323 return ret;
be20aa9d 3324}
c5739bba 3325
5d4f98a2 3326static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
b7a9f29f 3327 struct btrfs_root *root,
5d4f98a2 3328 struct extent_buffer *buf,
e339a6b0 3329 int full_backref, int inc)
31840ae1 3330{
0b246afa 3331 struct btrfs_fs_info *fs_info = root->fs_info;
31840ae1 3332 u64 bytenr;
5d4f98a2
YZ
3333 u64 num_bytes;
3334 u64 parent;
31840ae1 3335 u64 ref_root;
31840ae1 3336 u32 nritems;
31840ae1
ZY
3337 struct btrfs_key key;
3338 struct btrfs_file_extent_item *fi;
3339 int i;
3340 int level;
3341 int ret = 0;
2ff7e61e 3342 int (*process_func)(struct btrfs_trans_handle *,
84f7d8e6 3343 struct btrfs_root *,
b06c4bf5 3344 u64, u64, u64, u64, u64, u64);
31840ae1 3345
fccb84c9 3346
0b246afa 3347 if (btrfs_is_testing(fs_info))
faa2dbf0 3348 return 0;
fccb84c9 3349
31840ae1 3350 ref_root = btrfs_header_owner(buf);
31840ae1
ZY
3351 nritems = btrfs_header_nritems(buf);
3352 level = btrfs_header_level(buf);
3353
27cdeb70 3354 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
5d4f98a2 3355 return 0;
31840ae1 3356
5d4f98a2
YZ
3357 if (inc)
3358 process_func = btrfs_inc_extent_ref;
3359 else
3360 process_func = btrfs_free_extent;
31840ae1 3361
5d4f98a2
YZ
3362 if (full_backref)
3363 parent = buf->start;
3364 else
3365 parent = 0;
3366
3367 for (i = 0; i < nritems; i++) {
31840ae1 3368 if (level == 0) {
5d4f98a2 3369 btrfs_item_key_to_cpu(buf, &key, i);
962a298f 3370 if (key.type != BTRFS_EXTENT_DATA_KEY)
31840ae1 3371 continue;
5d4f98a2 3372 fi = btrfs_item_ptr(buf, i,
31840ae1
ZY
3373 struct btrfs_file_extent_item);
3374 if (btrfs_file_extent_type(buf, fi) ==
3375 BTRFS_FILE_EXTENT_INLINE)
3376 continue;
3377 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3378 if (bytenr == 0)
3379 continue;
5d4f98a2
YZ
3380
3381 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3382 key.offset -= btrfs_file_extent_offset(buf, fi);
84f7d8e6 3383 ret = process_func(trans, root, bytenr, num_bytes,
5d4f98a2 3384 parent, ref_root, key.objectid,
b06c4bf5 3385 key.offset);
31840ae1
ZY
3386 if (ret)
3387 goto fail;
3388 } else {
5d4f98a2 3389 bytenr = btrfs_node_blockptr(buf, i);
0b246afa 3390 num_bytes = fs_info->nodesize;
84f7d8e6 3391 ret = process_func(trans, root, bytenr, num_bytes,
b06c4bf5 3392 parent, ref_root, level - 1, 0);
31840ae1
ZY
3393 if (ret)
3394 goto fail;
3395 }
3396 }
3397 return 0;
3398fail:
5d4f98a2
YZ
3399 return ret;
3400}
3401
3402int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3403 struct extent_buffer *buf, int full_backref)
5d4f98a2 3404{
e339a6b0 3405 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
5d4f98a2
YZ
3406}
3407
3408int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
e339a6b0 3409 struct extent_buffer *buf, int full_backref)
5d4f98a2 3410{
e339a6b0 3411 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
31840ae1
ZY
3412}
3413
9078a3e1 3414static int write_one_cache_group(struct btrfs_trans_handle *trans,
2ff7e61e 3415 struct btrfs_fs_info *fs_info,
9078a3e1
CM
3416 struct btrfs_path *path,
3417 struct btrfs_block_group_cache *cache)
3418{
3419 int ret;
0b246afa 3420 struct btrfs_root *extent_root = fs_info->extent_root;
5f39d397
CM
3421 unsigned long bi;
3422 struct extent_buffer *leaf;
9078a3e1 3423
9078a3e1 3424 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
df95e7f0
JB
3425 if (ret) {
3426 if (ret > 0)
3427 ret = -ENOENT;
54aa1f4d 3428 goto fail;
df95e7f0 3429 }
5f39d397
CM
3430
3431 leaf = path->nodes[0];
3432 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3433 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3434 btrfs_mark_buffer_dirty(leaf);
54aa1f4d 3435fail:
24b89d08 3436 btrfs_release_path(path);
df95e7f0 3437 return ret;
9078a3e1
CM
3438
3439}
3440
4a8c9a62 3441static struct btrfs_block_group_cache *
2ff7e61e 3442next_block_group(struct btrfs_fs_info *fs_info,
4a8c9a62
YZ
3443 struct btrfs_block_group_cache *cache)
3444{
3445 struct rb_node *node;
292cbd51 3446
0b246afa 3447 spin_lock(&fs_info->block_group_cache_lock);
292cbd51
FM
3448
3449 /* If our block group was removed, we need a full search. */
3450 if (RB_EMPTY_NODE(&cache->cache_node)) {
3451 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3452
0b246afa 3453 spin_unlock(&fs_info->block_group_cache_lock);
292cbd51 3454 btrfs_put_block_group(cache);
0b246afa 3455 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
292cbd51 3456 }
4a8c9a62
YZ
3457 node = rb_next(&cache->cache_node);
3458 btrfs_put_block_group(cache);
3459 if (node) {
3460 cache = rb_entry(node, struct btrfs_block_group_cache,
3461 cache_node);
11dfe35a 3462 btrfs_get_block_group(cache);
4a8c9a62
YZ
3463 } else
3464 cache = NULL;
0b246afa 3465 spin_unlock(&fs_info->block_group_cache_lock);
4a8c9a62
YZ
3466 return cache;
3467}
3468
0af3d00b
JB
3469static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3470 struct btrfs_trans_handle *trans,
3471 struct btrfs_path *path)
3472{
0b246afa
JM
3473 struct btrfs_fs_info *fs_info = block_group->fs_info;
3474 struct btrfs_root *root = fs_info->tree_root;
0af3d00b 3475 struct inode *inode = NULL;
364ecf36 3476 struct extent_changeset *data_reserved = NULL;
0af3d00b 3477 u64 alloc_hint = 0;
2b20982e 3478 int dcs = BTRFS_DC_ERROR;
f8c269d7 3479 u64 num_pages = 0;
0af3d00b
JB
3480 int retries = 0;
3481 int ret = 0;
3482
3483 /*
3484 * If this block group is smaller than 100 megs don't bother caching the
3485 * block group.
3486 */
ee22184b 3487 if (block_group->key.offset < (100 * SZ_1M)) {
0af3d00b
JB
3488 spin_lock(&block_group->lock);
3489 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3490 spin_unlock(&block_group->lock);
3491 return 0;
3492 }
3493
0c0ef4bc
JB
3494 if (trans->aborted)
3495 return 0;
0af3d00b 3496again:
77ab86bf 3497 inode = lookup_free_space_inode(fs_info, block_group, path);
0af3d00b
JB
3498 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3499 ret = PTR_ERR(inode);
b3b4aa74 3500 btrfs_release_path(path);
0af3d00b
JB
3501 goto out;
3502 }
3503
3504 if (IS_ERR(inode)) {
3505 BUG_ON(retries);
3506 retries++;
3507
3508 if (block_group->ro)
3509 goto out_free;
3510
77ab86bf
JM
3511 ret = create_free_space_inode(fs_info, trans, block_group,
3512 path);
0af3d00b
JB
3513 if (ret)
3514 goto out_free;
3515 goto again;
3516 }
3517
3518 /*
3519 * We want to set the generation to 0, that way if anything goes wrong
3520 * from here on out we know not to trust this cache when we load up next
3521 * time.
3522 */
3523 BTRFS_I(inode)->generation = 0;
3524 ret = btrfs_update_inode(trans, root, inode);
0c0ef4bc
JB
3525 if (ret) {
3526 /*
3527 * So theoretically we could recover from this, simply set the
3528 * super cache generation to 0 so we know to invalidate the
3529 * cache, but then we'd have to keep track of the block groups
3530 * that fail this way so we know we _have_ to reset this cache
3531 * before the next commit or risk reading stale cache. So to
3532 * limit our exposure to horrible edge cases lets just abort the
3533 * transaction, this only happens in really bad situations
3534 * anyway.
3535 */
66642832 3536 btrfs_abort_transaction(trans, ret);
0c0ef4bc
JB
3537 goto out_put;
3538 }
0af3d00b
JB
3539 WARN_ON(ret);
3540
8e138e0d
JB
3541 /* We've already setup this transaction, go ahead and exit */
3542 if (block_group->cache_generation == trans->transid &&
3543 i_size_read(inode)) {
3544 dcs = BTRFS_DC_SETUP;
3545 goto out_put;
3546 }
3547
0af3d00b 3548 if (i_size_read(inode) > 0) {
2ff7e61e 3549 ret = btrfs_check_trunc_cache_free_space(fs_info,
0b246afa 3550 &fs_info->global_block_rsv);
7b61cd92
MX
3551 if (ret)
3552 goto out_put;
3553
77ab86bf 3554 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
0af3d00b
JB
3555 if (ret)
3556 goto out_put;
3557 }
3558
3559 spin_lock(&block_group->lock);
cf7c1ef6 3560 if (block_group->cached != BTRFS_CACHE_FINISHED ||
0b246afa 3561 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
cf7c1ef6
LB
3562 /*
3563 * don't bother trying to write stuff out _if_
3564 * a) we're not cached,
1a79c1f2
LB
3565 * b) we're with nospace_cache mount option,
3566 * c) we're with v2 space_cache (FREE_SPACE_TREE).
cf7c1ef6 3567 */
2b20982e 3568 dcs = BTRFS_DC_WRITTEN;
0af3d00b
JB
3569 spin_unlock(&block_group->lock);
3570 goto out_put;
3571 }
3572 spin_unlock(&block_group->lock);
3573
2968b1f4
JB
3574 /*
3575 * We hit an ENOSPC when setting up the cache in this transaction, just
3576 * skip doing the setup, we've already cleared the cache so we're safe.
3577 */
3578 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3579 ret = -ENOSPC;
3580 goto out_put;
3581 }
3582
6fc823b1
JB
3583 /*
3584 * Try to preallocate enough space based on how big the block group is.
3585 * Keep in mind this has to include any pinned space which could end up
3586 * taking up quite a bit since it's not folded into the other space
3587 * cache.
3588 */
ee22184b 3589 num_pages = div_u64(block_group->key.offset, SZ_256M);
0af3d00b
JB
3590 if (!num_pages)
3591 num_pages = 1;
3592
0af3d00b 3593 num_pages *= 16;
09cbfeaf 3594 num_pages *= PAGE_SIZE;
0af3d00b 3595
364ecf36 3596 ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
0af3d00b
JB
3597 if (ret)
3598 goto out_put;
3599
3600 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3601 num_pages, num_pages,
3602 &alloc_hint);
2968b1f4
JB
3603 /*
3604 * Our cache requires contiguous chunks so that we don't modify a bunch
3605 * of metadata or split extents when writing the cache out, which means
3606 * we can enospc if we are heavily fragmented in addition to just normal
3607 * out of space conditions. So if we hit this just skip setting up any
3608 * other block groups for this transaction, maybe we'll unpin enough
3609 * space the next time around.
3610 */
2b20982e
JB
3611 if (!ret)
3612 dcs = BTRFS_DC_SETUP;
2968b1f4
JB
3613 else if (ret == -ENOSPC)
3614 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
c09544e0 3615
0af3d00b
JB
3616out_put:
3617 iput(inode);
3618out_free:
b3b4aa74 3619 btrfs_release_path(path);
0af3d00b
JB
3620out:
3621 spin_lock(&block_group->lock);
e65cbb94 3622 if (!ret && dcs == BTRFS_DC_SETUP)
5b0e95bf 3623 block_group->cache_generation = trans->transid;
2b20982e 3624 block_group->disk_cache_state = dcs;
0af3d00b
JB
3625 spin_unlock(&block_group->lock);
3626
364ecf36 3627 extent_changeset_free(data_reserved);
0af3d00b
JB
3628 return ret;
3629}
3630
dcdf7f6d 3631int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2ff7e61e 3632 struct btrfs_fs_info *fs_info)
dcdf7f6d
JB
3633{
3634 struct btrfs_block_group_cache *cache, *tmp;
3635 struct btrfs_transaction *cur_trans = trans->transaction;
3636 struct btrfs_path *path;
3637
3638 if (list_empty(&cur_trans->dirty_bgs) ||
0b246afa 3639 !btrfs_test_opt(fs_info, SPACE_CACHE))
dcdf7f6d
JB
3640 return 0;
3641
3642 path = btrfs_alloc_path();
3643 if (!path)
3644 return -ENOMEM;
3645
3646 /* Could add new block groups, use _safe just in case */
3647 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3648 dirty_list) {
3649 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3650 cache_save_setup(cache, trans, path);
3651 }
3652
3653 btrfs_free_path(path);
3654 return 0;
3655}
3656
1bbc621e
CM
3657/*
3658 * transaction commit does final block group cache writeback during a
3659 * critical section where nothing is allowed to change the FS. This is
3660 * required in order for the cache to actually match the block group,
3661 * but can introduce a lot of latency into the commit.
3662 *
3663 * So, btrfs_start_dirty_block_groups is here to kick off block group
3664 * cache IO. There's a chance we'll have to redo some of it if the
3665 * block group changes again during the commit, but it greatly reduces
3666 * the commit latency by getting rid of the easy block groups while
3667 * we're still allowing others to join the commit.
3668 */
21217054 3669int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
9078a3e1 3670{
21217054 3671 struct btrfs_fs_info *fs_info = trans->fs_info;
4a8c9a62 3672 struct btrfs_block_group_cache *cache;
ce93ec54
JB
3673 struct btrfs_transaction *cur_trans = trans->transaction;
3674 int ret = 0;
c9dc4c65 3675 int should_put;
1bbc621e
CM
3676 struct btrfs_path *path = NULL;
3677 LIST_HEAD(dirty);
3678 struct list_head *io = &cur_trans->io_bgs;
c9dc4c65 3679 int num_started = 0;
1bbc621e
CM
3680 int loops = 0;
3681
3682 spin_lock(&cur_trans->dirty_bgs_lock);
b58d1a9e
FM
3683 if (list_empty(&cur_trans->dirty_bgs)) {
3684 spin_unlock(&cur_trans->dirty_bgs_lock);
3685 return 0;
1bbc621e 3686 }
b58d1a9e 3687 list_splice_init(&cur_trans->dirty_bgs, &dirty);
1bbc621e 3688 spin_unlock(&cur_trans->dirty_bgs_lock);
ce93ec54 3689
1bbc621e 3690again:
1bbc621e
CM
3691 /*
3692 * make sure all the block groups on our dirty list actually
3693 * exist
3694 */
6c686b35 3695 btrfs_create_pending_block_groups(trans);
1bbc621e
CM
3696
3697 if (!path) {
3698 path = btrfs_alloc_path();
3699 if (!path)
3700 return -ENOMEM;
3701 }
3702
b58d1a9e
FM
3703 /*
3704 * cache_write_mutex is here only to save us from balance or automatic
3705 * removal of empty block groups deleting this block group while we are
3706 * writing out the cache
3707 */
3708 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3709 while (!list_empty(&dirty)) {
3710 cache = list_first_entry(&dirty,
3711 struct btrfs_block_group_cache,
3712 dirty_list);
1bbc621e
CM
3713 /*
3714 * this can happen if something re-dirties a block
3715 * group that is already under IO. Just wait for it to
3716 * finish and then do it all again
3717 */
3718 if (!list_empty(&cache->io_list)) {
3719 list_del_init(&cache->io_list);
afdb5718 3720 btrfs_wait_cache_io(trans, cache, path);
1bbc621e
CM
3721 btrfs_put_block_group(cache);
3722 }
3723
3724
3725 /*
3726 * btrfs_wait_cache_io uses the cache->dirty_list to decide
3727 * if it should update the cache_state. Don't delete
3728 * until after we wait.
3729 *
3730 * Since we're not running in the commit critical section
3731 * we need the dirty_bgs_lock to protect from update_block_group
3732 */
3733 spin_lock(&cur_trans->dirty_bgs_lock);
3734 list_del_init(&cache->dirty_list);
3735 spin_unlock(&cur_trans->dirty_bgs_lock);
3736
3737 should_put = 1;
3738
3739 cache_save_setup(cache, trans, path);
3740
3741 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3742 cache->io_ctl.inode = NULL;
0b246afa 3743 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3744 cache, path);
1bbc621e
CM
3745 if (ret == 0 && cache->io_ctl.inode) {
3746 num_started++;
3747 should_put = 0;
3748
3749 /*
45ae2c18
NB
3750 * The cache_write_mutex is protecting the
3751 * io_list, also refer to the definition of
3752 * btrfs_transaction::io_bgs for more details
1bbc621e
CM
3753 */
3754 list_add_tail(&cache->io_list, io);
3755 } else {
3756 /*
3757 * if we failed to write the cache, the
3758 * generation will be bad and life goes on
3759 */
3760 ret = 0;
3761 }
3762 }
ff1f8250 3763 if (!ret) {
2ff7e61e
JM
3764 ret = write_one_cache_group(trans, fs_info,
3765 path, cache);
ff1f8250
FM
3766 /*
3767 * Our block group might still be attached to the list
3768 * of new block groups in the transaction handle of some
3769 * other task (struct btrfs_trans_handle->new_bgs). This
3770 * means its block group item isn't yet in the extent
3771 * tree. If this happens ignore the error, as we will
3772 * try again later in the critical section of the
3773 * transaction commit.
3774 */
3775 if (ret == -ENOENT) {
3776 ret = 0;
3777 spin_lock(&cur_trans->dirty_bgs_lock);
3778 if (list_empty(&cache->dirty_list)) {
3779 list_add_tail(&cache->dirty_list,
3780 &cur_trans->dirty_bgs);
3781 btrfs_get_block_group(cache);
3782 }
3783 spin_unlock(&cur_trans->dirty_bgs_lock);
3784 } else if (ret) {
66642832 3785 btrfs_abort_transaction(trans, ret);
ff1f8250
FM
3786 }
3787 }
1bbc621e
CM
3788
3789 /* if its not on the io list, we need to put the block group */
3790 if (should_put)
3791 btrfs_put_block_group(cache);
3792
3793 if (ret)
3794 break;
b58d1a9e
FM
3795
3796 /*
3797 * Avoid blocking other tasks for too long. It might even save
3798 * us from writing caches for block groups that are going to be
3799 * removed.
3800 */
3801 mutex_unlock(&trans->transaction->cache_write_mutex);
3802 mutex_lock(&trans->transaction->cache_write_mutex);
1bbc621e 3803 }
b58d1a9e 3804 mutex_unlock(&trans->transaction->cache_write_mutex);
1bbc621e
CM
3805
3806 /*
3807 * go through delayed refs for all the stuff we've just kicked off
3808 * and then loop back (just once)
3809 */
c79a70b1 3810 ret = btrfs_run_delayed_refs(trans, 0);
1bbc621e
CM
3811 if (!ret && loops == 0) {
3812 loops++;
3813 spin_lock(&cur_trans->dirty_bgs_lock);
3814 list_splice_init(&cur_trans->dirty_bgs, &dirty);
b58d1a9e
FM
3815 /*
3816 * dirty_bgs_lock protects us from concurrent block group
3817 * deletes too (not just cache_write_mutex).
3818 */
3819 if (!list_empty(&dirty)) {
3820 spin_unlock(&cur_trans->dirty_bgs_lock);
3821 goto again;
3822 }
1bbc621e 3823 spin_unlock(&cur_trans->dirty_bgs_lock);
c79a1751 3824 } else if (ret < 0) {
2ff7e61e 3825 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
1bbc621e
CM
3826 }
3827
3828 btrfs_free_path(path);
3829 return ret;
3830}
3831
3832int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2ff7e61e 3833 struct btrfs_fs_info *fs_info)
1bbc621e
CM
3834{
3835 struct btrfs_block_group_cache *cache;
3836 struct btrfs_transaction *cur_trans = trans->transaction;
3837 int ret = 0;
3838 int should_put;
3839 struct btrfs_path *path;
3840 struct list_head *io = &cur_trans->io_bgs;
3841 int num_started = 0;
9078a3e1
CM
3842
3843 path = btrfs_alloc_path();
3844 if (!path)
3845 return -ENOMEM;
3846
ce93ec54 3847 /*
e44081ef
FM
3848 * Even though we are in the critical section of the transaction commit,
3849 * we can still have concurrent tasks adding elements to this
3850 * transaction's list of dirty block groups. These tasks correspond to
3851 * endio free space workers started when writeback finishes for a
3852 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3853 * allocate new block groups as a result of COWing nodes of the root
3854 * tree when updating the free space inode. The writeback for the space
3855 * caches is triggered by an earlier call to
3856 * btrfs_start_dirty_block_groups() and iterations of the following
3857 * loop.
3858 * Also we want to do the cache_save_setup first and then run the
ce93ec54
JB
3859 * delayed refs to make sure we have the best chance at doing this all
3860 * in one shot.
3861 */
e44081ef 3862 spin_lock(&cur_trans->dirty_bgs_lock);
ce93ec54
JB
3863 while (!list_empty(&cur_trans->dirty_bgs)) {
3864 cache = list_first_entry(&cur_trans->dirty_bgs,
3865 struct btrfs_block_group_cache,
3866 dirty_list);
c9dc4c65
CM
3867
3868 /*
3869 * this can happen if cache_save_setup re-dirties a block
3870 * group that is already under IO. Just wait for it to
3871 * finish and then do it all again
3872 */
3873 if (!list_empty(&cache->io_list)) {
e44081ef 3874 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3875 list_del_init(&cache->io_list);
afdb5718 3876 btrfs_wait_cache_io(trans, cache, path);
c9dc4c65 3877 btrfs_put_block_group(cache);
e44081ef 3878 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3879 }
3880
1bbc621e
CM
3881 /*
3882 * don't remove from the dirty list until after we've waited
3883 * on any pending IO
3884 */
ce93ec54 3885 list_del_init(&cache->dirty_list);
e44081ef 3886 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65
CM
3887 should_put = 1;
3888
1bbc621e 3889 cache_save_setup(cache, trans, path);
c9dc4c65 3890
ce93ec54 3891 if (!ret)
c79a70b1 3892 ret = btrfs_run_delayed_refs(trans,
2ff7e61e 3893 (unsigned long) -1);
c9dc4c65
CM
3894
3895 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3896 cache->io_ctl.inode = NULL;
0b246afa 3897 ret = btrfs_write_out_cache(fs_info, trans,
5b4aacef 3898 cache, path);
c9dc4c65
CM
3899 if (ret == 0 && cache->io_ctl.inode) {
3900 num_started++;
3901 should_put = 0;
1bbc621e 3902 list_add_tail(&cache->io_list, io);
c9dc4c65
CM
3903 } else {
3904 /*
3905 * if we failed to write the cache, the
3906 * generation will be bad and life goes on
3907 */
3908 ret = 0;
3909 }
3910 }
ff1f8250 3911 if (!ret) {
2ff7e61e
JM
3912 ret = write_one_cache_group(trans, fs_info,
3913 path, cache);
2bc0bb5f
FM
3914 /*
3915 * One of the free space endio workers might have
3916 * created a new block group while updating a free space
3917 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3918 * and hasn't released its transaction handle yet, in
3919 * which case the new block group is still attached to
3920 * its transaction handle and its creation has not
3921 * finished yet (no block group item in the extent tree
3922 * yet, etc). If this is the case, wait for all free
3923 * space endio workers to finish and retry. This is a
3924 * a very rare case so no need for a more efficient and
3925 * complex approach.
3926 */
3927 if (ret == -ENOENT) {
3928 wait_event(cur_trans->writer_wait,
3929 atomic_read(&cur_trans->num_writers) == 1);
2ff7e61e
JM
3930 ret = write_one_cache_group(trans, fs_info,
3931 path, cache);
2bc0bb5f 3932 }
ff1f8250 3933 if (ret)
66642832 3934 btrfs_abort_transaction(trans, ret);
ff1f8250 3935 }
c9dc4c65
CM
3936
3937 /* if its not on the io list, we need to put the block group */
3938 if (should_put)
3939 btrfs_put_block_group(cache);
e44081ef 3940 spin_lock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3941 }
e44081ef 3942 spin_unlock(&cur_trans->dirty_bgs_lock);
c9dc4c65 3943
45ae2c18
NB
3944 /*
3945 * Refer to the definition of io_bgs member for details why it's safe
3946 * to use it without any locking
3947 */
1bbc621e
CM
3948 while (!list_empty(io)) {
3949 cache = list_first_entry(io, struct btrfs_block_group_cache,
c9dc4c65
CM
3950 io_list);
3951 list_del_init(&cache->io_list);
afdb5718 3952 btrfs_wait_cache_io(trans, cache, path);
0cb59c99
JB
3953 btrfs_put_block_group(cache);
3954 }
3955
9078a3e1 3956 btrfs_free_path(path);
ce93ec54 3957 return ret;
9078a3e1
CM
3958}
3959
2ff7e61e 3960int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
d2fb3437
YZ
3961{
3962 struct btrfs_block_group_cache *block_group;
3963 int readonly = 0;
3964
0b246afa 3965 block_group = btrfs_lookup_block_group(fs_info, bytenr);
d2fb3437
YZ
3966 if (!block_group || block_group->ro)
3967 readonly = 1;
3968 if (block_group)
fa9c0d79 3969 btrfs_put_block_group(block_group);
d2fb3437
YZ
3970 return readonly;
3971}
3972
f78c436c
FM
3973bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3974{
3975 struct btrfs_block_group_cache *bg;
3976 bool ret = true;
3977
3978 bg = btrfs_lookup_block_group(fs_info, bytenr);
3979 if (!bg)
3980 return false;
3981
3982 spin_lock(&bg->lock);
3983 if (bg->ro)
3984 ret = false;
3985 else
3986 atomic_inc(&bg->nocow_writers);
3987 spin_unlock(&bg->lock);
3988
3989 /* no put on block group, done by btrfs_dec_nocow_writers */
3990 if (!ret)
3991 btrfs_put_block_group(bg);
3992
3993 return ret;
3994
3995}
3996
3997void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3998{
3999 struct btrfs_block_group_cache *bg;
4000
4001 bg = btrfs_lookup_block_group(fs_info, bytenr);
4002 ASSERT(bg);
4003 if (atomic_dec_and_test(&bg->nocow_writers))
4625956a 4004 wake_up_var(&bg->nocow_writers);
f78c436c
FM
4005 /*
4006 * Once for our lookup and once for the lookup done by a previous call
4007 * to btrfs_inc_nocow_writers()
4008 */
4009 btrfs_put_block_group(bg);
4010 btrfs_put_block_group(bg);
4011}
4012
f78c436c
FM
4013void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4014{
4625956a 4015 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
f78c436c
FM
4016}
4017
6ab0a202
JM
4018static const char *alloc_name(u64 flags)
4019{
4020 switch (flags) {
4021 case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4022 return "mixed";
4023 case BTRFS_BLOCK_GROUP_METADATA:
4024 return "metadata";
4025 case BTRFS_BLOCK_GROUP_DATA:
4026 return "data";
4027 case BTRFS_BLOCK_GROUP_SYSTEM:
4028 return "system";
4029 default:
4030 WARN_ON(1);
4031 return "invalid-combination";
4032 };
4033}
4034
4ca61683 4035static int create_space_info(struct btrfs_fs_info *info, u64 flags)
2be12ef7
NB
4036{
4037
4038 struct btrfs_space_info *space_info;
4039 int i;
4040 int ret;
4041
4042 space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4043 if (!space_info)
4044 return -ENOMEM;
4045
4046 ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4047 GFP_KERNEL);
4048 if (ret) {
4049 kfree(space_info);
4050 return ret;
4051 }
4052
4053 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4054 INIT_LIST_HEAD(&space_info->block_groups[i]);
4055 init_rwsem(&space_info->groups_sem);
4056 spin_lock_init(&space_info->lock);
4057 space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4058 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4059 init_waitqueue_head(&space_info->wait);
4060 INIT_LIST_HEAD(&space_info->ro_bgs);
4061 INIT_LIST_HEAD(&space_info->tickets);
4062 INIT_LIST_HEAD(&space_info->priority_tickets);
4063
4064 ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4065 info->space_info_kobj, "%s",
4066 alloc_name(space_info->flags));
4067 if (ret) {
4068 percpu_counter_destroy(&space_info->total_bytes_pinned);
4069 kfree(space_info);
4070 return ret;
4071 }
4072
2be12ef7
NB
4073 list_add_rcu(&space_info->list, &info->space_info);
4074 if (flags & BTRFS_BLOCK_GROUP_DATA)
4075 info->data_sinfo = space_info;
4076
4077 return ret;
4078}
4079
d2006e6d 4080static void update_space_info(struct btrfs_fs_info *info, u64 flags,
593060d7 4081 u64 total_bytes, u64 bytes_used,
e40edf2d 4082 u64 bytes_readonly,
593060d7
CM
4083 struct btrfs_space_info **space_info)
4084{
4085 struct btrfs_space_info *found;
b742bb82
YZ
4086 int factor;
4087
4088 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4089 BTRFS_BLOCK_GROUP_RAID10))
4090 factor = 2;
4091 else
4092 factor = 1;
593060d7
CM
4093
4094 found = __find_space_info(info, flags);
d2006e6d
NB
4095 ASSERT(found);
4096 spin_lock(&found->lock);
4097 found->total_bytes += total_bytes;
4098 found->disk_total += total_bytes * factor;
4099 found->bytes_used += bytes_used;
4100 found->disk_used += bytes_used * factor;
4101 found->bytes_readonly += bytes_readonly;
4102 if (total_bytes > 0)
4103 found->full = 0;
4104 space_info_add_new_bytes(info, found, total_bytes -
4105 bytes_used - bytes_readonly);
4106 spin_unlock(&found->lock);
4107 *space_info = found;
593060d7
CM
4108}
4109
8790d502
CM
4110static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4111{
899c81ea
ID
4112 u64 extra_flags = chunk_to_extended(flags) &
4113 BTRFS_EXTENDED_PROFILE_MASK;
a46d11a8 4114
de98ced9 4115 write_seqlock(&fs_info->profiles_lock);
a46d11a8
ID
4116 if (flags & BTRFS_BLOCK_GROUP_DATA)
4117 fs_info->avail_data_alloc_bits |= extra_flags;
4118 if (flags & BTRFS_BLOCK_GROUP_METADATA)
4119 fs_info->avail_metadata_alloc_bits |= extra_flags;
4120 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4121 fs_info->avail_system_alloc_bits |= extra_flags;
de98ced9 4122 write_sequnlock(&fs_info->profiles_lock);
8790d502 4123}
593060d7 4124
fc67c450
ID
4125/*
4126 * returns target flags in extended format or 0 if restripe for this
4127 * chunk_type is not in progress
c6664b42 4128 *
dccdb07b 4129 * should be called with balance_lock held
fc67c450
ID
4130 */
4131static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4132{
4133 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4134 u64 target = 0;
4135
fc67c450
ID
4136 if (!bctl)
4137 return 0;
4138
4139 if (flags & BTRFS_BLOCK_GROUP_DATA &&
4140 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4141 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4142 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4143 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4144 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4145 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4146 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4147 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4148 }
4149
4150 return target;
4151}
4152
a46d11a8
ID
4153/*
4154 * @flags: available profiles in extended format (see ctree.h)
4155 *
e4d8ec0f
ID
4156 * Returns reduced profile in chunk format. If profile changing is in
4157 * progress (either running or paused) picks the target profile (if it's
4158 * already available), otherwise falls back to plain reducing.
a46d11a8 4159 */
2ff7e61e 4160static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c 4161{
0b246afa 4162 u64 num_devices = fs_info->fs_devices->rw_devices;
fc67c450 4163 u64 target;
9c170b26
ZL
4164 u64 raid_type;
4165 u64 allowed = 0;
a061fc8d 4166
fc67c450
ID
4167 /*
4168 * see if restripe for this chunk_type is in progress, if so
4169 * try to reduce to the target profile
4170 */
0b246afa
JM
4171 spin_lock(&fs_info->balance_lock);
4172 target = get_restripe_target(fs_info, flags);
fc67c450
ID
4173 if (target) {
4174 /* pick target profile only if it's already available */
4175 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
0b246afa 4176 spin_unlock(&fs_info->balance_lock);
fc67c450 4177 return extended_to_chunk(target);
e4d8ec0f
ID
4178 }
4179 }
0b246afa 4180 spin_unlock(&fs_info->balance_lock);
e4d8ec0f 4181
53b381b3 4182 /* First, mask out the RAID levels which aren't possible */
9c170b26
ZL
4183 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4184 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
41a6e891 4185 allowed |= btrfs_raid_array[raid_type].bg_flag;
9c170b26
ZL
4186 }
4187 allowed &= flags;
4188
4189 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4190 allowed = BTRFS_BLOCK_GROUP_RAID6;
4191 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4192 allowed = BTRFS_BLOCK_GROUP_RAID5;
4193 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4194 allowed = BTRFS_BLOCK_GROUP_RAID10;
4195 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4196 allowed = BTRFS_BLOCK_GROUP_RAID1;
4197 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4198 allowed = BTRFS_BLOCK_GROUP_RAID0;
4199
4200 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4201
4202 return extended_to_chunk(flags | allowed);
ec44a35c
CM
4203}
4204
2ff7e61e 4205static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
6a63209f 4206{
de98ced9 4207 unsigned seq;
f8213bdc 4208 u64 flags;
de98ced9
MX
4209
4210 do {
f8213bdc 4211 flags = orig_flags;
0b246afa 4212 seq = read_seqbegin(&fs_info->profiles_lock);
de98ced9
MX
4213
4214 if (flags & BTRFS_BLOCK_GROUP_DATA)
0b246afa 4215 flags |= fs_info->avail_data_alloc_bits;
de98ced9 4216 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
0b246afa 4217 flags |= fs_info->avail_system_alloc_bits;
de98ced9 4218 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
0b246afa
JM
4219 flags |= fs_info->avail_metadata_alloc_bits;
4220 } while (read_seqretry(&fs_info->profiles_lock, seq));
6fef8df1 4221
2ff7e61e 4222 return btrfs_reduce_alloc_profile(fs_info, flags);
6a63209f
JB
4223}
4224
1b86826d 4225static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
9ed74f2d 4226{
0b246afa 4227 struct btrfs_fs_info *fs_info = root->fs_info;
b742bb82 4228 u64 flags;
53b381b3 4229 u64 ret;
9ed74f2d 4230
b742bb82
YZ
4231 if (data)
4232 flags = BTRFS_BLOCK_GROUP_DATA;
0b246afa 4233 else if (root == fs_info->chunk_root)
b742bb82 4234 flags = BTRFS_BLOCK_GROUP_SYSTEM;
9ed74f2d 4235 else
b742bb82 4236 flags = BTRFS_BLOCK_GROUP_METADATA;
9ed74f2d 4237
2ff7e61e 4238 ret = get_alloc_profile(fs_info, flags);
53b381b3 4239 return ret;
6a63209f 4240}
9ed74f2d 4241
1b86826d
JM
4242u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4243{
4244 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4245}
4246
4247u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4248{
4249 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4250}
4251
4252u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4253{
4254 return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4255}
4256
4136135b
LB
4257static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4258 bool may_use_included)
4259{
4260 ASSERT(s_info);
4261 return s_info->bytes_used + s_info->bytes_reserved +
4262 s_info->bytes_pinned + s_info->bytes_readonly +
4263 (may_use_included ? s_info->bytes_may_use : 0);
4264}
4265
04f4f916 4266int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
6a63209f 4267{
04f4f916 4268 struct btrfs_root *root = inode->root;
b4d7c3c9 4269 struct btrfs_fs_info *fs_info = root->fs_info;
1174cade 4270 struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
ab6e2410 4271 u64 used;
94b947b2 4272 int ret = 0;
c99f1b0c
ZL
4273 int need_commit = 2;
4274 int have_pinned_space;
6a63209f 4275
6a63209f 4276 /* make sure bytes are sectorsize aligned */
0b246afa 4277 bytes = ALIGN(bytes, fs_info->sectorsize);
6a63209f 4278
9dced186 4279 if (btrfs_is_free_space_inode(inode)) {
c99f1b0c 4280 need_commit = 0;
9dced186 4281 ASSERT(current->journal_info);
0af3d00b
JB
4282 }
4283
6a63209f
JB
4284again:
4285 /* make sure we have enough space to handle the data first */
4286 spin_lock(&data_sinfo->lock);
4136135b 4287 used = btrfs_space_info_used(data_sinfo, true);
ab6e2410
JB
4288
4289 if (used + bytes > data_sinfo->total_bytes) {
4e06bdd6 4290 struct btrfs_trans_handle *trans;
9ed74f2d 4291
6a63209f
JB
4292 /*
4293 * if we don't have enough free bytes in this space then we need
4294 * to alloc a new chunk.
4295 */
b9fd47cd 4296 if (!data_sinfo->full) {
6a63209f 4297 u64 alloc_target;
9ed74f2d 4298
0e4f8f88 4299 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
6a63209f 4300 spin_unlock(&data_sinfo->lock);
1174cade 4301
1b86826d 4302 alloc_target = btrfs_data_alloc_profile(fs_info);
9dced186
MX
4303 /*
4304 * It is ugly that we don't call nolock join
4305 * transaction for the free space inode case here.
4306 * But it is safe because we only do the data space
4307 * reservation for the free space cache in the
4308 * transaction context, the common join transaction
4309 * just increase the counter of the current transaction
4310 * handler, doesn't try to acquire the trans_lock of
4311 * the fs.
4312 */
7a7eaa40 4313 trans = btrfs_join_transaction(root);
a22285a6
YZ
4314 if (IS_ERR(trans))
4315 return PTR_ERR(trans);
9ed74f2d 4316
2ff7e61e 4317 ret = do_chunk_alloc(trans, fs_info, alloc_target,
0e4f8f88 4318 CHUNK_ALLOC_NO_FORCE);
3a45bb20 4319 btrfs_end_transaction(trans);
d52a5b5f
MX
4320 if (ret < 0) {
4321 if (ret != -ENOSPC)
4322 return ret;
c99f1b0c
ZL
4323 else {
4324 have_pinned_space = 1;
d52a5b5f 4325 goto commit_trans;
c99f1b0c 4326 }
d52a5b5f 4327 }
9ed74f2d 4328
6a63209f
JB
4329 goto again;
4330 }
f2bb8f5c
JB
4331
4332 /*
b150a4f1 4333 * If we don't have enough pinned space to deal with this
94b947b2
ZL
4334 * allocation, and no removed chunk in current transaction,
4335 * don't bother committing the transaction.
f2bb8f5c 4336 */
c99f1b0c
ZL
4337 have_pinned_space = percpu_counter_compare(
4338 &data_sinfo->total_bytes_pinned,
4339 used + bytes - data_sinfo->total_bytes);
6a63209f 4340 spin_unlock(&data_sinfo->lock);
6a63209f 4341
4e06bdd6 4342 /* commit the current transaction and try again */
d52a5b5f 4343commit_trans:
92e2f7e3 4344 if (need_commit) {
c99f1b0c 4345 need_commit--;
b150a4f1 4346
e1746e83 4347 if (need_commit > 0) {
82b3e53b 4348 btrfs_start_delalloc_roots(fs_info, -1);
6374e57a 4349 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
0b246afa 4350 (u64)-1);
e1746e83 4351 }
9a4e7276 4352
7a7eaa40 4353 trans = btrfs_join_transaction(root);
a22285a6
YZ
4354 if (IS_ERR(trans))
4355 return PTR_ERR(trans);
c99f1b0c 4356 if (have_pinned_space >= 0 ||
3204d33c
JB
4357 test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4358 &trans->transaction->flags) ||
c99f1b0c 4359 need_commit > 0) {
3a45bb20 4360 ret = btrfs_commit_transaction(trans);
94b947b2
ZL
4361 if (ret)
4362 return ret;
d7c15171 4363 /*
c2d6cb16
FM
4364 * The cleaner kthread might still be doing iput
4365 * operations. Wait for it to finish so that
4366 * more space is released.
d7c15171 4367 */
0b246afa
JM
4368 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4369 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
94b947b2
ZL
4370 goto again;
4371 } else {
3a45bb20 4372 btrfs_end_transaction(trans);
94b947b2 4373 }
4e06bdd6 4374 }
9ed74f2d 4375
0b246afa 4376 trace_btrfs_space_reservation(fs_info,
cab45e22
JM
4377 "space_info:enospc",
4378 data_sinfo->flags, bytes, 1);
6a63209f
JB
4379 return -ENOSPC;
4380 }
4381 data_sinfo->bytes_may_use += bytes;
0b246afa 4382 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 4383 data_sinfo->flags, bytes, 1);
6a63209f 4384 spin_unlock(&data_sinfo->lock);
6a63209f 4385
237c0e9f 4386 return ret;
9ed74f2d 4387}
6a63209f 4388
364ecf36
QW
4389int btrfs_check_data_free_space(struct inode *inode,
4390 struct extent_changeset **reserved, u64 start, u64 len)
4ceff079 4391{
0b246afa 4392 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4393 int ret;
4394
4395 /* align the range */
0b246afa
JM
4396 len = round_up(start + len, fs_info->sectorsize) -
4397 round_down(start, fs_info->sectorsize);
4398 start = round_down(start, fs_info->sectorsize);
4ceff079 4399
04f4f916 4400 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4ceff079
QW
4401 if (ret < 0)
4402 return ret;
4403
1e5ec2e7 4404 /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
364ecf36 4405 ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
7bc329c1 4406 if (ret < 0)
1e5ec2e7 4407 btrfs_free_reserved_data_space_noquota(inode, start, len);
364ecf36
QW
4408 else
4409 ret = 0;
4ceff079
QW
4410 return ret;
4411}
4412
4ceff079
QW
4413/*
4414 * Called if we need to clear a data reservation for this inode
4415 * Normally in a error case.
4416 *
51773bec
QW
4417 * This one will *NOT* use accurate qgroup reserved space API, just for case
4418 * which we can't sleep and is sure it won't affect qgroup reserved space.
4419 * Like clear_bit_hook().
4ceff079 4420 */
51773bec
QW
4421void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4422 u64 len)
4ceff079 4423{
0b246afa 4424 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4ceff079
QW
4425 struct btrfs_space_info *data_sinfo;
4426
4427 /* Make sure the range is aligned to sectorsize */
0b246afa
JM
4428 len = round_up(start + len, fs_info->sectorsize) -
4429 round_down(start, fs_info->sectorsize);
4430 start = round_down(start, fs_info->sectorsize);
4ceff079 4431
0b246afa 4432 data_sinfo = fs_info->data_sinfo;
4ceff079
QW
4433 spin_lock(&data_sinfo->lock);
4434 if (WARN_ON(data_sinfo->bytes_may_use < len))
4435 data_sinfo->bytes_may_use = 0;
4436 else
4437 data_sinfo->bytes_may_use -= len;
0b246afa 4438 trace_btrfs_space_reservation(fs_info, "space_info",
4ceff079
QW
4439 data_sinfo->flags, len, 0);
4440 spin_unlock(&data_sinfo->lock);
4441}
4442
51773bec
QW
4443/*
4444 * Called if we need to clear a data reservation for this inode
4445 * Normally in a error case.
4446 *
01327610 4447 * This one will handle the per-inode data rsv map for accurate reserved
51773bec
QW
4448 * space framework.
4449 */
bc42bda2
QW
4450void btrfs_free_reserved_data_space(struct inode *inode,
4451 struct extent_changeset *reserved, u64 start, u64 len)
51773bec 4452{
0c476a5d
JM
4453 struct btrfs_root *root = BTRFS_I(inode)->root;
4454
4455 /* Make sure the range is aligned to sectorsize */
da17066c
JM
4456 len = round_up(start + len, root->fs_info->sectorsize) -
4457 round_down(start, root->fs_info->sectorsize);
4458 start = round_down(start, root->fs_info->sectorsize);
0c476a5d 4459
51773bec 4460 btrfs_free_reserved_data_space_noquota(inode, start, len);
bc42bda2 4461 btrfs_qgroup_free_data(inode, reserved, start, len);
51773bec
QW
4462}
4463
97e728d4 4464static void force_metadata_allocation(struct btrfs_fs_info *info)
e3ccfa98 4465{
97e728d4
JB
4466 struct list_head *head = &info->space_info;
4467 struct btrfs_space_info *found;
e3ccfa98 4468
97e728d4
JB
4469 rcu_read_lock();
4470 list_for_each_entry_rcu(found, head, list) {
4471 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
0e4f8f88 4472 found->force_alloc = CHUNK_ALLOC_FORCE;
e3ccfa98 4473 }
97e728d4 4474 rcu_read_unlock();
e3ccfa98
JB
4475}
4476
3c76cd84
MX
4477static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4478{
4479 return (global->size << 1);
4480}
4481
2ff7e61e 4482static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
698d0082 4483 struct btrfs_space_info *sinfo, int force)
32c00aff 4484{
0b246afa 4485 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8d8aafee 4486 u64 bytes_used = btrfs_space_info_used(sinfo, false);
e5bc2458 4487 u64 thresh;
e3ccfa98 4488
0e4f8f88
CM
4489 if (force == CHUNK_ALLOC_FORCE)
4490 return 1;
4491
fb25e914
JB
4492 /*
4493 * We need to take into account the global rsv because for all intents
4494 * and purposes it's used space. Don't worry about locking the
4495 * global_rsv, it doesn't change except when the transaction commits.
4496 */
54338b5c 4497 if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
8d8aafee 4498 bytes_used += calc_global_rsv_need_space(global_rsv);
fb25e914 4499
0e4f8f88
CM
4500 /*
4501 * in limited mode, we want to have some free space up to
4502 * about 1% of the FS size.
4503 */
4504 if (force == CHUNK_ALLOC_LIMITED) {
0b246afa 4505 thresh = btrfs_super_total_bytes(fs_info->super_copy);
ee22184b 4506 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
0e4f8f88 4507
8d8aafee 4508 if (sinfo->total_bytes - bytes_used < thresh)
0e4f8f88
CM
4509 return 1;
4510 }
0e4f8f88 4511
8d8aafee 4512 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
14ed0ca6 4513 return 0;
424499db 4514 return 1;
32c00aff
JB
4515}
4516
2ff7e61e 4517static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4518{
4519 u64 num_dev;
4520
53b381b3
DW
4521 if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4522 BTRFS_BLOCK_GROUP_RAID0 |
4523 BTRFS_BLOCK_GROUP_RAID5 |
4524 BTRFS_BLOCK_GROUP_RAID6))
0b246afa 4525 num_dev = fs_info->fs_devices->rw_devices;
15d1ff81
LB
4526 else if (type & BTRFS_BLOCK_GROUP_RAID1)
4527 num_dev = 2;
4528 else
4529 num_dev = 1; /* DUP or single */
4530
39c2d7fa 4531 return num_dev;
15d1ff81
LB
4532}
4533
39c2d7fa
FM
4534/*
4535 * If @is_allocation is true, reserve space in the system space info necessary
4536 * for allocating a chunk, otherwise if it's false, reserve space necessary for
4537 * removing a chunk.
4538 */
4539void check_system_chunk(struct btrfs_trans_handle *trans,
2ff7e61e 4540 struct btrfs_fs_info *fs_info, u64 type)
15d1ff81
LB
4541{
4542 struct btrfs_space_info *info;
4543 u64 left;
4544 u64 thresh;
4fbcdf66 4545 int ret = 0;
39c2d7fa 4546 u64 num_devs;
4fbcdf66
FM
4547
4548 /*
4549 * Needed because we can end up allocating a system chunk and for an
4550 * atomic and race free space reservation in the chunk block reserve.
4551 */
a32bf9a3 4552 lockdep_assert_held(&fs_info->chunk_mutex);
15d1ff81 4553
0b246afa 4554 info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
15d1ff81 4555 spin_lock(&info->lock);
4136135b 4556 left = info->total_bytes - btrfs_space_info_used(info, true);
15d1ff81
LB
4557 spin_unlock(&info->lock);
4558
2ff7e61e 4559 num_devs = get_profile_num_devs(fs_info, type);
39c2d7fa
FM
4560
4561 /* num_devs device items to update and 1 chunk item to add or remove */
0b246afa
JM
4562 thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4563 btrfs_calc_trans_metadata_size(fs_info, 1);
39c2d7fa 4564
0b246afa
JM
4565 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4566 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4567 left, thresh, type);
4568 dump_space_info(fs_info, info, 0, 0);
15d1ff81
LB
4569 }
4570
4571 if (left < thresh) {
1b86826d 4572 u64 flags = btrfs_system_alloc_profile(fs_info);
15d1ff81 4573
4fbcdf66
FM
4574 /*
4575 * Ignore failure to create system chunk. We might end up not
4576 * needing it, as we might not need to COW all nodes/leafs from
4577 * the paths we visit in the chunk tree (they were already COWed
4578 * or created in the current transaction for example).
4579 */
2ff7e61e 4580 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4fbcdf66
FM
4581 }
4582
4583 if (!ret) {
0b246afa
JM
4584 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4585 &fs_info->chunk_block_rsv,
4fbcdf66
FM
4586 thresh, BTRFS_RESERVE_NO_FLUSH);
4587 if (!ret)
4588 trans->chunk_bytes_reserved += thresh;
15d1ff81
LB
4589 }
4590}
4591
28b737f6
LB
4592/*
4593 * If force is CHUNK_ALLOC_FORCE:
4594 * - return 1 if it successfully allocates a chunk,
4595 * - return errors including -ENOSPC otherwise.
4596 * If force is NOT CHUNK_ALLOC_FORCE:
4597 * - return 0 if it doesn't need to allocate a new chunk,
4598 * - return 1 if it successfully allocates a chunk,
4599 * - return errors including -ENOSPC otherwise.
4600 */
6324fbf3 4601static int do_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 4602 struct btrfs_fs_info *fs_info, u64 flags, int force)
9ed74f2d 4603{
6324fbf3 4604 struct btrfs_space_info *space_info;
6d74119f 4605 int wait_for_alloc = 0;
9ed74f2d 4606 int ret = 0;
9ed74f2d 4607
c6b305a8
JB
4608 /* Don't re-enter if we're already allocating a chunk */
4609 if (trans->allocating_chunk)
4610 return -ENOSPC;
4611
0b246afa 4612 space_info = __find_space_info(fs_info, flags);
dc2d3005 4613 ASSERT(space_info);
9ed74f2d 4614
6d74119f 4615again:
25179201 4616 spin_lock(&space_info->lock);
9e622d6b 4617 if (force < space_info->force_alloc)
0e4f8f88 4618 force = space_info->force_alloc;
25179201 4619 if (space_info->full) {
2ff7e61e 4620 if (should_alloc_chunk(fs_info, space_info, force))
09fb99a6
FDBM
4621 ret = -ENOSPC;
4622 else
4623 ret = 0;
25179201 4624 spin_unlock(&space_info->lock);
09fb99a6 4625 return ret;
9ed74f2d
JB
4626 }
4627
2ff7e61e 4628 if (!should_alloc_chunk(fs_info, space_info, force)) {
25179201 4629 spin_unlock(&space_info->lock);
6d74119f
JB
4630 return 0;
4631 } else if (space_info->chunk_alloc) {
4632 wait_for_alloc = 1;
4633 } else {
4634 space_info->chunk_alloc = 1;
9ed74f2d 4635 }
0e4f8f88 4636
25179201 4637 spin_unlock(&space_info->lock);
9ed74f2d 4638
6d74119f
JB
4639 mutex_lock(&fs_info->chunk_mutex);
4640
4641 /*
4642 * The chunk_mutex is held throughout the entirety of a chunk
4643 * allocation, so once we've acquired the chunk_mutex we know that the
4644 * other guy is done and we need to recheck and see if we should
4645 * allocate.
4646 */
4647 if (wait_for_alloc) {
4648 mutex_unlock(&fs_info->chunk_mutex);
4649 wait_for_alloc = 0;
1e1c50a9 4650 cond_resched();
6d74119f
JB
4651 goto again;
4652 }
4653
c6b305a8
JB
4654 trans->allocating_chunk = true;
4655
67377734
JB
4656 /*
4657 * If we have mixed data/metadata chunks we want to make sure we keep
4658 * allocating mixed chunks instead of individual chunks.
4659 */
4660 if (btrfs_mixed_space_info(space_info))
4661 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4662
97e728d4
JB
4663 /*
4664 * if we're doing a data chunk, go ahead and make sure that
4665 * we keep a reasonable number of metadata chunks allocated in the
4666 * FS as well.
4667 */
9ed74f2d 4668 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
97e728d4
JB
4669 fs_info->data_chunk_allocations++;
4670 if (!(fs_info->data_chunk_allocations %
4671 fs_info->metadata_ratio))
4672 force_metadata_allocation(fs_info);
9ed74f2d
JB
4673 }
4674
15d1ff81
LB
4675 /*
4676 * Check if we have enough space in SYSTEM chunk because we may need
4677 * to update devices.
4678 */
2ff7e61e 4679 check_system_chunk(trans, fs_info, flags);
15d1ff81 4680
2ff7e61e 4681 ret = btrfs_alloc_chunk(trans, fs_info, flags);
c6b305a8 4682 trans->allocating_chunk = false;
92b8e897 4683
9ed74f2d 4684 spin_lock(&space_info->lock);
57f1642e
NB
4685 if (ret < 0) {
4686 if (ret == -ENOSPC)
4687 space_info->full = 1;
4688 else
4689 goto out;
4690 } else {
424499db 4691 ret = 1;
57f1642e 4692 }
6d74119f 4693
0e4f8f88 4694 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
a81cb9a2 4695out:
6d74119f 4696 space_info->chunk_alloc = 0;
9ed74f2d 4697 spin_unlock(&space_info->lock);
a25c75d5 4698 mutex_unlock(&fs_info->chunk_mutex);
00d80e34
FM
4699 /*
4700 * When we allocate a new chunk we reserve space in the chunk block
4701 * reserve to make sure we can COW nodes/leafs in the chunk tree or
4702 * add new nodes/leafs to it if we end up needing to do it when
4703 * inserting the chunk item and updating device items as part of the
4704 * second phase of chunk allocation, performed by
4705 * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4706 * large number of new block groups to create in our transaction
4707 * handle's new_bgs list to avoid exhausting the chunk block reserve
4708 * in extreme cases - like having a single transaction create many new
4709 * block groups when starting to write out the free space caches of all
4710 * the block groups that were made dirty during the lifetime of the
4711 * transaction.
4712 */
d9a0540a 4713 if (trans->can_flush_pending_bgs &&
ee22184b 4714 trans->chunk_bytes_reserved >= (u64)SZ_2M) {
6c686b35 4715 btrfs_create_pending_block_groups(trans);
00d80e34
FM
4716 btrfs_trans_release_chunk_metadata(trans);
4717 }
0f9dd46c 4718 return ret;
6324fbf3 4719}
9ed74f2d 4720
c1c4919b 4721static int can_overcommit(struct btrfs_fs_info *fs_info,
a80c8dcf 4722 struct btrfs_space_info *space_info, u64 bytes,
c1c4919b
JM
4723 enum btrfs_reserve_flush_enum flush,
4724 bool system_chunk)
a80c8dcf 4725{
0b246afa 4726 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 4727 u64 profile;
3c76cd84 4728 u64 space_size;
a80c8dcf
JB
4729 u64 avail;
4730 u64 used;
4731
957780eb
JB
4732 /* Don't overcommit when in mixed mode. */
4733 if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4734 return 0;
4735
c1c4919b
JM
4736 if (system_chunk)
4737 profile = btrfs_system_alloc_profile(fs_info);
4738 else
4739 profile = btrfs_metadata_alloc_profile(fs_info);
4740
4136135b 4741 used = btrfs_space_info_used(space_info, false);
96f1bb57 4742
96f1bb57
JB
4743 /*
4744 * We only want to allow over committing if we have lots of actual space
4745 * free, but if we don't have enough space to handle the global reserve
4746 * space then we could end up having a real enospc problem when trying
4747 * to allocate a chunk or some other such important allocation.
4748 */
3c76cd84
MX
4749 spin_lock(&global_rsv->lock);
4750 space_size = calc_global_rsv_need_space(global_rsv);
4751 spin_unlock(&global_rsv->lock);
4752 if (used + space_size >= space_info->total_bytes)
96f1bb57
JB
4753 return 0;
4754
4755 used += space_info->bytes_may_use;
a80c8dcf 4756
a5ed45f8 4757 avail = atomic64_read(&fs_info->free_chunk_space);
a80c8dcf
JB
4758
4759 /*
4760 * If we have dup, raid1 or raid10 then only half of the free
53b381b3
DW
4761 * space is actually useable. For raid56, the space info used
4762 * doesn't include the parity drive, so we don't have to
4763 * change the math
a80c8dcf
JB
4764 */
4765 if (profile & (BTRFS_BLOCK_GROUP_DUP |
4766 BTRFS_BLOCK_GROUP_RAID1 |
4767 BTRFS_BLOCK_GROUP_RAID10))
4768 avail >>= 1;
4769
4770 /*
561c294d
MX
4771 * If we aren't flushing all things, let us overcommit up to
4772 * 1/2th of the space. If we can flush, don't let us overcommit
4773 * too much, let it overcommit up to 1/8 of the space.
a80c8dcf 4774 */
08e007d2 4775 if (flush == BTRFS_RESERVE_FLUSH_ALL)
14575aef 4776 avail >>= 3;
a80c8dcf 4777 else
14575aef 4778 avail >>= 1;
a80c8dcf 4779
14575aef 4780 if (used + bytes < space_info->total_bytes + avail)
a80c8dcf
JB
4781 return 1;
4782 return 0;
4783}
4784
2ff7e61e 4785static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
6c255e67 4786 unsigned long nr_pages, int nr_items)
da633a42 4787{
0b246afa 4788 struct super_block *sb = fs_info->sb;
da633a42 4789
925a6efb
JB
4790 if (down_read_trylock(&sb->s_umount)) {
4791 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4792 up_read(&sb->s_umount);
4793 } else {
da633a42
MX
4794 /*
4795 * We needn't worry the filesystem going from r/w to r/o though
4796 * we don't acquire ->s_umount mutex, because the filesystem
4797 * should guarantee the delalloc inodes list be empty after
4798 * the filesystem is readonly(all dirty pages are written to
4799 * the disk).
4800 */
82b3e53b 4801 btrfs_start_delalloc_roots(fs_info, nr_items);
98ad69cf 4802 if (!current->journal_info)
0b246afa 4803 btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
da633a42
MX
4804 }
4805}
4806
6374e57a 4807static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
2ff7e61e 4808 u64 to_reclaim)
18cd8ea6
MX
4809{
4810 u64 bytes;
6374e57a 4811 u64 nr;
18cd8ea6 4812
2ff7e61e 4813 bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
6374e57a 4814 nr = div64_u64(to_reclaim, bytes);
18cd8ea6
MX
4815 if (!nr)
4816 nr = 1;
4817 return nr;
4818}
4819
ee22184b 4820#define EXTENT_SIZE_PER_ITEM SZ_256K
c61a16a7 4821
9ed74f2d 4822/*
5da9d01b 4823 * shrink metadata reservation for delalloc
9ed74f2d 4824 */
c1c4919b
JM
4825static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4826 u64 orig, bool wait_ordered)
5da9d01b 4827{
0019f10d 4828 struct btrfs_space_info *space_info;
663350ac 4829 struct btrfs_trans_handle *trans;
f4c738c2 4830 u64 delalloc_bytes;
5da9d01b 4831 u64 max_reclaim;
6374e57a 4832 u64 items;
b1953bce 4833 long time_left;
d3ee29e3
MX
4834 unsigned long nr_pages;
4835 int loops;
5da9d01b 4836
c61a16a7 4837 /* Calc the number of the pages we need flush for space reservation */
2ff7e61e 4838 items = calc_reclaim_items_nr(fs_info, to_reclaim);
6374e57a 4839 to_reclaim = items * EXTENT_SIZE_PER_ITEM;
c61a16a7 4840
663350ac 4841 trans = (struct btrfs_trans_handle *)current->journal_info;
69fe2d75 4842 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
bf9022e0 4843
963d678b 4844 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4845 &fs_info->delalloc_bytes);
f4c738c2 4846 if (delalloc_bytes == 0) {
fdb5effd 4847 if (trans)
f4c738c2 4848 return;
38c135af 4849 if (wait_ordered)
0b246afa 4850 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f4c738c2 4851 return;
fdb5effd
JB
4852 }
4853
d3ee29e3 4854 loops = 0;
f4c738c2
JB
4855 while (delalloc_bytes && loops < 3) {
4856 max_reclaim = min(delalloc_bytes, to_reclaim);
09cbfeaf 4857 nr_pages = max_reclaim >> PAGE_SHIFT;
2ff7e61e 4858 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
dea31f52
JB
4859 /*
4860 * We need to wait for the async pages to actually start before
4861 * we do anything.
4862 */
0b246afa 4863 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
9f3a074d
MX
4864 if (!max_reclaim)
4865 goto skip_async;
4866
4867 if (max_reclaim <= nr_pages)
4868 max_reclaim = 0;
4869 else
4870 max_reclaim -= nr_pages;
dea31f52 4871
0b246afa
JM
4872 wait_event(fs_info->async_submit_wait,
4873 atomic_read(&fs_info->async_delalloc_pages) <=
9f3a074d
MX
4874 (int)max_reclaim);
4875skip_async:
0019f10d 4876 spin_lock(&space_info->lock);
957780eb
JB
4877 if (list_empty(&space_info->tickets) &&
4878 list_empty(&space_info->priority_tickets)) {
4879 spin_unlock(&space_info->lock);
4880 break;
4881 }
0019f10d 4882 spin_unlock(&space_info->lock);
5da9d01b 4883
36e39c40 4884 loops++;
f104d044 4885 if (wait_ordered && !trans) {
0b246afa 4886 btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
f104d044 4887 } else {
f4c738c2 4888 time_left = schedule_timeout_killable(1);
f104d044
JB
4889 if (time_left)
4890 break;
4891 }
963d678b 4892 delalloc_bytes = percpu_counter_sum_positive(
0b246afa 4893 &fs_info->delalloc_bytes);
5da9d01b 4894 }
5da9d01b
YZ
4895}
4896
996478ca
JB
4897struct reserve_ticket {
4898 u64 bytes;
4899 int error;
4900 struct list_head list;
4901 wait_queue_head_t wait;
4902};
4903
663350ac
JB
4904/**
4905 * maybe_commit_transaction - possibly commit the transaction if its ok to
4906 * @root - the root we're allocating for
4907 * @bytes - the number of bytes we want to reserve
4908 * @force - force the commit
8bb8ab2e 4909 *
663350ac
JB
4910 * This will check to make sure that committing the transaction will actually
4911 * get us somewhere and then commit the transaction if it does. Otherwise it
4912 * will return -ENOSPC.
8bb8ab2e 4913 */
0c9ab349 4914static int may_commit_transaction(struct btrfs_fs_info *fs_info,
996478ca 4915 struct btrfs_space_info *space_info)
663350ac 4916{
996478ca 4917 struct reserve_ticket *ticket = NULL;
0b246afa 4918 struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
663350ac 4919 struct btrfs_trans_handle *trans;
996478ca 4920 u64 bytes;
663350ac
JB
4921
4922 trans = (struct btrfs_trans_handle *)current->journal_info;
4923 if (trans)
4924 return -EAGAIN;
4925
996478ca
JB
4926 spin_lock(&space_info->lock);
4927 if (!list_empty(&space_info->priority_tickets))
4928 ticket = list_first_entry(&space_info->priority_tickets,
4929 struct reserve_ticket, list);
4930 else if (!list_empty(&space_info->tickets))
4931 ticket = list_first_entry(&space_info->tickets,
4932 struct reserve_ticket, list);
4933 bytes = (ticket) ? ticket->bytes : 0;
4934 spin_unlock(&space_info->lock);
4935
4936 if (!bytes)
4937 return 0;
663350ac
JB
4938
4939 /* See if there is enough pinned space to make this reservation */
b150a4f1 4940 if (percpu_counter_compare(&space_info->total_bytes_pinned,
0424c548 4941 bytes) >= 0)
663350ac 4942 goto commit;
663350ac
JB
4943
4944 /*
4945 * See if there is some space in the delayed insertion reservation for
4946 * this reservation.
4947 */
4948 if (space_info != delayed_rsv->space_info)
4949 return -ENOSPC;
4950
4951 spin_lock(&delayed_rsv->lock);
996478ca
JB
4952 if (delayed_rsv->size > bytes)
4953 bytes = 0;
4954 else
4955 bytes -= delayed_rsv->size;
057aac3e
NB
4956 spin_unlock(&delayed_rsv->lock);
4957
b150a4f1 4958 if (percpu_counter_compare(&space_info->total_bytes_pinned,
996478ca 4959 bytes) < 0) {
663350ac
JB
4960 return -ENOSPC;
4961 }
663350ac
JB
4962
4963commit:
a9b3311e 4964 trans = btrfs_join_transaction(fs_info->extent_root);
663350ac
JB
4965 if (IS_ERR(trans))
4966 return -ENOSPC;
4967
3a45bb20 4968 return btrfs_commit_transaction(trans);
663350ac
JB
4969}
4970
e38ae7a0
NB
4971/*
4972 * Try to flush some data based on policy set by @state. This is only advisory
4973 * and may fail for various reasons. The caller is supposed to examine the
4974 * state of @space_info to detect the outcome.
4975 */
4976static void flush_space(struct btrfs_fs_info *fs_info,
96c3f433 4977 struct btrfs_space_info *space_info, u64 num_bytes,
7bdd6277 4978 int state)
96c3f433 4979{
a9b3311e 4980 struct btrfs_root *root = fs_info->extent_root;
96c3f433
JB
4981 struct btrfs_trans_handle *trans;
4982 int nr;
f4c738c2 4983 int ret = 0;
96c3f433
JB
4984
4985 switch (state) {
96c3f433
JB
4986 case FLUSH_DELAYED_ITEMS_NR:
4987 case FLUSH_DELAYED_ITEMS:
18cd8ea6 4988 if (state == FLUSH_DELAYED_ITEMS_NR)
2ff7e61e 4989 nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
18cd8ea6 4990 else
96c3f433 4991 nr = -1;
18cd8ea6 4992
96c3f433
JB
4993 trans = btrfs_join_transaction(root);
4994 if (IS_ERR(trans)) {
4995 ret = PTR_ERR(trans);
4996 break;
4997 }
e5c304e6 4998 ret = btrfs_run_delayed_items_nr(trans, nr);
3a45bb20 4999 btrfs_end_transaction(trans);
96c3f433 5000 break;
67b0fd63
JB
5001 case FLUSH_DELALLOC:
5002 case FLUSH_DELALLOC_WAIT:
7bdd6277 5003 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
67b0fd63
JB
5004 state == FLUSH_DELALLOC_WAIT);
5005 break;
ea658bad
JB
5006 case ALLOC_CHUNK:
5007 trans = btrfs_join_transaction(root);
5008 if (IS_ERR(trans)) {
5009 ret = PTR_ERR(trans);
5010 break;
5011 }
2ff7e61e 5012 ret = do_chunk_alloc(trans, fs_info,
1b86826d 5013 btrfs_metadata_alloc_profile(fs_info),
ea658bad 5014 CHUNK_ALLOC_NO_FORCE);
3a45bb20 5015 btrfs_end_transaction(trans);
eecba891 5016 if (ret > 0 || ret == -ENOSPC)
ea658bad
JB
5017 ret = 0;
5018 break;
96c3f433 5019 case COMMIT_TRANS:
996478ca 5020 ret = may_commit_transaction(fs_info, space_info);
96c3f433
JB
5021 break;
5022 default:
5023 ret = -ENOSPC;
5024 break;
5025 }
5026
7bdd6277
NB
5027 trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5028 ret);
e38ae7a0 5029 return;
96c3f433 5030}
21c7e756
MX
5031
5032static inline u64
c1c4919b
JM
5033btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5034 struct btrfs_space_info *space_info,
5035 bool system_chunk)
21c7e756 5036{
957780eb 5037 struct reserve_ticket *ticket;
21c7e756
MX
5038 u64 used;
5039 u64 expected;
957780eb 5040 u64 to_reclaim = 0;
21c7e756 5041
957780eb
JB
5042 list_for_each_entry(ticket, &space_info->tickets, list)
5043 to_reclaim += ticket->bytes;
5044 list_for_each_entry(ticket, &space_info->priority_tickets, list)
5045 to_reclaim += ticket->bytes;
5046 if (to_reclaim)
5047 return to_reclaim;
21c7e756 5048
e0af2484 5049 to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
c1c4919b
JM
5050 if (can_overcommit(fs_info, space_info, to_reclaim,
5051 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
e0af2484
WX
5052 return 0;
5053
0eee8a49
NB
5054 used = btrfs_space_info_used(space_info, true);
5055
c1c4919b
JM
5056 if (can_overcommit(fs_info, space_info, SZ_1M,
5057 BTRFS_RESERVE_FLUSH_ALL, system_chunk))
21c7e756
MX
5058 expected = div_factor_fine(space_info->total_bytes, 95);
5059 else
5060 expected = div_factor_fine(space_info->total_bytes, 90);
5061
5062 if (used > expected)
5063 to_reclaim = used - expected;
5064 else
5065 to_reclaim = 0;
5066 to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5067 space_info->bytes_reserved);
21c7e756
MX
5068 return to_reclaim;
5069}
5070
c1c4919b
JM
5071static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5072 struct btrfs_space_info *space_info,
5073 u64 used, bool system_chunk)
21c7e756 5074{
365c5313
JB
5075 u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5076
5077 /* If we're just plain full then async reclaim just slows us down. */
baee8790 5078 if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
365c5313
JB
5079 return 0;
5080
c1c4919b
JM
5081 if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5082 system_chunk))
d38b349c
JB
5083 return 0;
5084
0b246afa
JM
5085 return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5086 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
21c7e756
MX
5087}
5088
957780eb 5089static void wake_all_tickets(struct list_head *head)
21c7e756 5090{
957780eb 5091 struct reserve_ticket *ticket;
25ce459c 5092
957780eb
JB
5093 while (!list_empty(head)) {
5094 ticket = list_first_entry(head, struct reserve_ticket, list);
5095 list_del_init(&ticket->list);
5096 ticket->error = -ENOSPC;
5097 wake_up(&ticket->wait);
21c7e756 5098 }
21c7e756
MX
5099}
5100
957780eb
JB
5101/*
5102 * This is for normal flushers, we can wait all goddamned day if we want to. We
5103 * will loop and continuously try to flush as long as we are making progress.
5104 * We count progress as clearing off tickets each time we have to loop.
5105 */
21c7e756
MX
5106static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5107{
5108 struct btrfs_fs_info *fs_info;
5109 struct btrfs_space_info *space_info;
5110 u64 to_reclaim;
5111 int flush_state;
957780eb 5112 int commit_cycles = 0;
ce129655 5113 u64 last_tickets_id;
21c7e756
MX
5114
5115 fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5116 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5117
957780eb 5118 spin_lock(&space_info->lock);
c1c4919b
JM
5119 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5120 false);
957780eb
JB
5121 if (!to_reclaim) {
5122 space_info->flush = 0;
5123 spin_unlock(&space_info->lock);
21c7e756 5124 return;
957780eb 5125 }
ce129655 5126 last_tickets_id = space_info->tickets_id;
957780eb 5127 spin_unlock(&space_info->lock);
21c7e756
MX
5128
5129 flush_state = FLUSH_DELAYED_ITEMS_NR;
957780eb 5130 do {
e38ae7a0 5131 flush_space(fs_info, space_info, to_reclaim, flush_state);
957780eb
JB
5132 spin_lock(&space_info->lock);
5133 if (list_empty(&space_info->tickets)) {
5134 space_info->flush = 0;
5135 spin_unlock(&space_info->lock);
5136 return;
5137 }
c1c4919b
JM
5138 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5139 space_info,
5140 false);
ce129655 5141 if (last_tickets_id == space_info->tickets_id) {
957780eb
JB
5142 flush_state++;
5143 } else {
ce129655 5144 last_tickets_id = space_info->tickets_id;
957780eb
JB
5145 flush_state = FLUSH_DELAYED_ITEMS_NR;
5146 if (commit_cycles)
5147 commit_cycles--;
5148 }
5149
5150 if (flush_state > COMMIT_TRANS) {
5151 commit_cycles++;
5152 if (commit_cycles > 2) {
5153 wake_all_tickets(&space_info->tickets);
5154 space_info->flush = 0;
5155 } else {
5156 flush_state = FLUSH_DELAYED_ITEMS_NR;
5157 }
5158 }
5159 spin_unlock(&space_info->lock);
5160 } while (flush_state <= COMMIT_TRANS);
5161}
5162
5163void btrfs_init_async_reclaim_work(struct work_struct *work)
5164{
5165 INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5166}
5167
5168static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5169 struct btrfs_space_info *space_info,
5170 struct reserve_ticket *ticket)
5171{
5172 u64 to_reclaim;
5173 int flush_state = FLUSH_DELAYED_ITEMS_NR;
5174
5175 spin_lock(&space_info->lock);
c1c4919b
JM
5176 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5177 false);
957780eb
JB
5178 if (!to_reclaim) {
5179 spin_unlock(&space_info->lock);
5180 return;
5181 }
5182 spin_unlock(&space_info->lock);
5183
21c7e756 5184 do {
7bdd6277 5185 flush_space(fs_info, space_info, to_reclaim, flush_state);
21c7e756 5186 flush_state++;
957780eb
JB
5187 spin_lock(&space_info->lock);
5188 if (ticket->bytes == 0) {
5189 spin_unlock(&space_info->lock);
21c7e756 5190 return;
957780eb
JB
5191 }
5192 spin_unlock(&space_info->lock);
5193
5194 /*
5195 * Priority flushers can't wait on delalloc without
5196 * deadlocking.
5197 */
5198 if (flush_state == FLUSH_DELALLOC ||
5199 flush_state == FLUSH_DELALLOC_WAIT)
5200 flush_state = ALLOC_CHUNK;
365c5313 5201 } while (flush_state < COMMIT_TRANS);
21c7e756
MX
5202}
5203
957780eb
JB
5204static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5205 struct btrfs_space_info *space_info,
5206 struct reserve_ticket *ticket, u64 orig_bytes)
5207
21c7e756 5208{
957780eb
JB
5209 DEFINE_WAIT(wait);
5210 int ret = 0;
5211
5212 spin_lock(&space_info->lock);
5213 while (ticket->bytes > 0 && ticket->error == 0) {
5214 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5215 if (ret) {
5216 ret = -EINTR;
5217 break;
5218 }
5219 spin_unlock(&space_info->lock);
5220
5221 schedule();
5222
5223 finish_wait(&ticket->wait, &wait);
5224 spin_lock(&space_info->lock);
5225 }
5226 if (!ret)
5227 ret = ticket->error;
5228 if (!list_empty(&ticket->list))
5229 list_del_init(&ticket->list);
5230 if (ticket->bytes && ticket->bytes < orig_bytes) {
5231 u64 num_bytes = orig_bytes - ticket->bytes;
5232 space_info->bytes_may_use -= num_bytes;
5233 trace_btrfs_space_reservation(fs_info, "space_info",
5234 space_info->flags, num_bytes, 0);
5235 }
5236 spin_unlock(&space_info->lock);
5237
5238 return ret;
21c7e756
MX
5239}
5240
4a92b1b8
JB
5241/**
5242 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5243 * @root - the root we're allocating for
957780eb 5244 * @space_info - the space info we want to allocate from
4a92b1b8 5245 * @orig_bytes - the number of bytes we want
48fc7f7e 5246 * @flush - whether or not we can flush to make our reservation
8bb8ab2e 5247 *
01327610 5248 * This will reserve orig_bytes number of bytes from the space info associated
4a92b1b8
JB
5249 * with the block_rsv. If there is not enough space it will make an attempt to
5250 * flush out space to make room. It will do this by flushing delalloc if
5251 * possible or committing the transaction. If flush is 0 then no attempts to
5252 * regain reservations will be made and this will fail if there is not enough
5253 * space already.
8bb8ab2e 5254 */
c1c4919b 5255static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
957780eb
JB
5256 struct btrfs_space_info *space_info,
5257 u64 orig_bytes,
c1c4919b
JM
5258 enum btrfs_reserve_flush_enum flush,
5259 bool system_chunk)
9ed74f2d 5260{
957780eb 5261 struct reserve_ticket ticket;
2bf64758 5262 u64 used;
8bb8ab2e 5263 int ret = 0;
9ed74f2d 5264
957780eb 5265 ASSERT(orig_bytes);
8ca17f0f 5266 ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
fdb5effd 5267
8bb8ab2e 5268 spin_lock(&space_info->lock);
fdb5effd 5269 ret = -ENOSPC;
4136135b 5270 used = btrfs_space_info_used(space_info, true);
9ed74f2d 5271
8bb8ab2e 5272 /*
957780eb
JB
5273 * If we have enough space then hooray, make our reservation and carry
5274 * on. If not see if we can overcommit, and if we can, hooray carry on.
5275 * If not things get more complicated.
8bb8ab2e 5276 */
957780eb
JB
5277 if (used + orig_bytes <= space_info->total_bytes) {
5278 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5279 trace_btrfs_space_reservation(fs_info, "space_info",
5280 space_info->flags, orig_bytes, 1);
957780eb 5281 ret = 0;
c1c4919b
JM
5282 } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5283 system_chunk)) {
44734ed1 5284 space_info->bytes_may_use += orig_bytes;
0b246afa
JM
5285 trace_btrfs_space_reservation(fs_info, "space_info",
5286 space_info->flags, orig_bytes, 1);
44734ed1 5287 ret = 0;
2bf64758
JB
5288 }
5289
8bb8ab2e 5290 /*
957780eb
JB
5291 * If we couldn't make a reservation then setup our reservation ticket
5292 * and kick the async worker if it's not already running.
08e007d2 5293 *
957780eb
JB
5294 * If we are a priority flusher then we just need to add our ticket to
5295 * the list and we will do our own flushing further down.
8bb8ab2e 5296 */
72bcd99d 5297 if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
957780eb
JB
5298 ticket.bytes = orig_bytes;
5299 ticket.error = 0;
5300 init_waitqueue_head(&ticket.wait);
5301 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5302 list_add_tail(&ticket.list, &space_info->tickets);
5303 if (!space_info->flush) {
5304 space_info->flush = 1;
0b246afa 5305 trace_btrfs_trigger_flush(fs_info,
f376df2b
JB
5306 space_info->flags,
5307 orig_bytes, flush,
5308 "enospc");
957780eb 5309 queue_work(system_unbound_wq,
c1c4919b 5310 &fs_info->async_reclaim_work);
957780eb
JB
5311 }
5312 } else {
5313 list_add_tail(&ticket.list,
5314 &space_info->priority_tickets);
5315 }
21c7e756
MX
5316 } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5317 used += orig_bytes;
f6acfd50
JB
5318 /*
5319 * We will do the space reservation dance during log replay,
5320 * which means we won't have fs_info->fs_root set, so don't do
5321 * the async reclaim as we will panic.
5322 */
0b246afa 5323 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
c1c4919b
JM
5324 need_do_async_reclaim(fs_info, space_info,
5325 used, system_chunk) &&
0b246afa
JM
5326 !work_busy(&fs_info->async_reclaim_work)) {
5327 trace_btrfs_trigger_flush(fs_info, space_info->flags,
5328 orig_bytes, flush, "preempt");
21c7e756 5329 queue_work(system_unbound_wq,
0b246afa 5330 &fs_info->async_reclaim_work);
f376df2b 5331 }
8bb8ab2e 5332 }
f0486c68 5333 spin_unlock(&space_info->lock);
08e007d2 5334 if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
957780eb 5335 return ret;
f0486c68 5336
957780eb 5337 if (flush == BTRFS_RESERVE_FLUSH_ALL)
0b246afa 5338 return wait_reserve_ticket(fs_info, space_info, &ticket,
957780eb 5339 orig_bytes);
08e007d2 5340
957780eb 5341 ret = 0;
0b246afa 5342 priority_reclaim_metadata_space(fs_info, space_info, &ticket);
957780eb
JB
5343 spin_lock(&space_info->lock);
5344 if (ticket.bytes) {
5345 if (ticket.bytes < orig_bytes) {
5346 u64 num_bytes = orig_bytes - ticket.bytes;
5347 space_info->bytes_may_use -= num_bytes;
0b246afa
JM
5348 trace_btrfs_space_reservation(fs_info, "space_info",
5349 space_info->flags,
5350 num_bytes, 0);
08e007d2 5351
957780eb
JB
5352 }
5353 list_del_init(&ticket.list);
5354 ret = -ENOSPC;
5355 }
5356 spin_unlock(&space_info->lock);
5357 ASSERT(list_empty(&ticket.list));
5358 return ret;
5359}
8bb8ab2e 5360
957780eb
JB
5361/**
5362 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5363 * @root - the root we're allocating for
5364 * @block_rsv - the block_rsv we're allocating for
5365 * @orig_bytes - the number of bytes we want
5366 * @flush - whether or not we can flush to make our reservation
5367 *
5368 * This will reserve orgi_bytes number of bytes from the space info associated
5369 * with the block_rsv. If there is not enough space it will make an attempt to
5370 * flush out space to make room. It will do this by flushing delalloc if
5371 * possible or committing the transaction. If flush is 0 then no attempts to
5372 * regain reservations will be made and this will fail if there is not enough
5373 * space already.
5374 */
5375static int reserve_metadata_bytes(struct btrfs_root *root,
5376 struct btrfs_block_rsv *block_rsv,
5377 u64 orig_bytes,
5378 enum btrfs_reserve_flush_enum flush)
5379{
0b246afa
JM
5380 struct btrfs_fs_info *fs_info = root->fs_info;
5381 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
957780eb 5382 int ret;
c1c4919b 5383 bool system_chunk = (root == fs_info->chunk_root);
957780eb 5384
c1c4919b
JM
5385 ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5386 orig_bytes, flush, system_chunk);
5d80366e
JB
5387 if (ret == -ENOSPC &&
5388 unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5d80366e
JB
5389 if (block_rsv != global_rsv &&
5390 !block_rsv_use_bytes(global_rsv, orig_bytes))
5391 ret = 0;
5392 }
9a3daff3 5393 if (ret == -ENOSPC) {
0b246afa 5394 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
957780eb
JB
5395 block_rsv->space_info->flags,
5396 orig_bytes, 1);
9a3daff3
NB
5397
5398 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG))
5399 dump_space_info(fs_info, block_rsv->space_info,
5400 orig_bytes, 0);
5401 }
f0486c68
YZ
5402 return ret;
5403}
5404
79787eaa
JM
5405static struct btrfs_block_rsv *get_block_rsv(
5406 const struct btrfs_trans_handle *trans,
5407 const struct btrfs_root *root)
f0486c68 5408{
0b246afa 5409 struct btrfs_fs_info *fs_info = root->fs_info;
4c13d758
JB
5410 struct btrfs_block_rsv *block_rsv = NULL;
5411
e9cf439f 5412 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa
JM
5413 (root == fs_info->csum_root && trans->adding_csums) ||
5414 (root == fs_info->uuid_root))
f7a81ea4
SB
5415 block_rsv = trans->block_rsv;
5416
4c13d758 5417 if (!block_rsv)
f0486c68
YZ
5418 block_rsv = root->block_rsv;
5419
5420 if (!block_rsv)
0b246afa 5421 block_rsv = &fs_info->empty_block_rsv;
f0486c68
YZ
5422
5423 return block_rsv;
5424}
5425
5426static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5427 u64 num_bytes)
5428{
5429 int ret = -ENOSPC;
5430 spin_lock(&block_rsv->lock);
5431 if (block_rsv->reserved >= num_bytes) {
5432 block_rsv->reserved -= num_bytes;
5433 if (block_rsv->reserved < block_rsv->size)
5434 block_rsv->full = 0;
5435 ret = 0;
5436 }
5437 spin_unlock(&block_rsv->lock);
5438 return ret;
5439}
5440
5441static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5442 u64 num_bytes, int update_size)
5443{
5444 spin_lock(&block_rsv->lock);
5445 block_rsv->reserved += num_bytes;
5446 if (update_size)
5447 block_rsv->size += num_bytes;
5448 else if (block_rsv->reserved >= block_rsv->size)
5449 block_rsv->full = 1;
5450 spin_unlock(&block_rsv->lock);
5451}
5452
d52be818
JB
5453int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5454 struct btrfs_block_rsv *dest, u64 num_bytes,
5455 int min_factor)
5456{
5457 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5458 u64 min_bytes;
5459
5460 if (global_rsv->space_info != dest->space_info)
5461 return -ENOSPC;
5462
5463 spin_lock(&global_rsv->lock);
5464 min_bytes = div_factor(global_rsv->size, min_factor);
5465 if (global_rsv->reserved < min_bytes + num_bytes) {
5466 spin_unlock(&global_rsv->lock);
5467 return -ENOSPC;
5468 }
5469 global_rsv->reserved -= num_bytes;
5470 if (global_rsv->reserved < global_rsv->size)
5471 global_rsv->full = 0;
5472 spin_unlock(&global_rsv->lock);
5473
5474 block_rsv_add_bytes(dest, num_bytes, 1);
5475 return 0;
5476}
5477
957780eb
JB
5478/*
5479 * This is for space we already have accounted in space_info->bytes_may_use, so
5480 * basically when we're returning space from block_rsv's.
5481 */
5482static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5483 struct btrfs_space_info *space_info,
5484 u64 num_bytes)
5485{
5486 struct reserve_ticket *ticket;
5487 struct list_head *head;
5488 u64 used;
5489 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5490 bool check_overcommit = false;
5491
5492 spin_lock(&space_info->lock);
5493 head = &space_info->priority_tickets;
5494
5495 /*
5496 * If we are over our limit then we need to check and see if we can
5497 * overcommit, and if we can't then we just need to free up our space
5498 * and not satisfy any requests.
5499 */
0eee8a49 5500 used = btrfs_space_info_used(space_info, true);
957780eb
JB
5501 if (used - num_bytes >= space_info->total_bytes)
5502 check_overcommit = true;
5503again:
5504 while (!list_empty(head) && num_bytes) {
5505 ticket = list_first_entry(head, struct reserve_ticket,
5506 list);
5507 /*
5508 * We use 0 bytes because this space is already reserved, so
5509 * adding the ticket space would be a double count.
5510 */
5511 if (check_overcommit &&
c1c4919b 5512 !can_overcommit(fs_info, space_info, 0, flush, false))
957780eb
JB
5513 break;
5514 if (num_bytes >= ticket->bytes) {
5515 list_del_init(&ticket->list);
5516 num_bytes -= ticket->bytes;
5517 ticket->bytes = 0;
ce129655 5518 space_info->tickets_id++;
957780eb
JB
5519 wake_up(&ticket->wait);
5520 } else {
5521 ticket->bytes -= num_bytes;
5522 num_bytes = 0;
5523 }
5524 }
5525
5526 if (num_bytes && head == &space_info->priority_tickets) {
5527 head = &space_info->tickets;
5528 flush = BTRFS_RESERVE_FLUSH_ALL;
5529 goto again;
5530 }
5531 space_info->bytes_may_use -= num_bytes;
5532 trace_btrfs_space_reservation(fs_info, "space_info",
5533 space_info->flags, num_bytes, 0);
5534 spin_unlock(&space_info->lock);
5535}
5536
5537/*
5538 * This is for newly allocated space that isn't accounted in
5539 * space_info->bytes_may_use yet. So if we allocate a chunk or unpin an extent
5540 * we use this helper.
5541 */
5542static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5543 struct btrfs_space_info *space_info,
5544 u64 num_bytes)
5545{
5546 struct reserve_ticket *ticket;
5547 struct list_head *head = &space_info->priority_tickets;
5548
5549again:
5550 while (!list_empty(head) && num_bytes) {
5551 ticket = list_first_entry(head, struct reserve_ticket,
5552 list);
5553 if (num_bytes >= ticket->bytes) {
5554 trace_btrfs_space_reservation(fs_info, "space_info",
5555 space_info->flags,
5556 ticket->bytes, 1);
5557 list_del_init(&ticket->list);
5558 num_bytes -= ticket->bytes;
5559 space_info->bytes_may_use += ticket->bytes;
5560 ticket->bytes = 0;
ce129655 5561 space_info->tickets_id++;
957780eb
JB
5562 wake_up(&ticket->wait);
5563 } else {
5564 trace_btrfs_space_reservation(fs_info, "space_info",
5565 space_info->flags,
5566 num_bytes, 1);
5567 space_info->bytes_may_use += num_bytes;
5568 ticket->bytes -= num_bytes;
5569 num_bytes = 0;
5570 }
5571 }
5572
5573 if (num_bytes && head == &space_info->priority_tickets) {
5574 head = &space_info->tickets;
5575 goto again;
5576 }
5577}
5578
69fe2d75 5579static u64 block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
8c2a3ca2 5580 struct btrfs_block_rsv *block_rsv,
ff6bc37e
QW
5581 struct btrfs_block_rsv *dest, u64 num_bytes,
5582 u64 *qgroup_to_release_ret)
f0486c68
YZ
5583{
5584 struct btrfs_space_info *space_info = block_rsv->space_info;
ff6bc37e 5585 u64 qgroup_to_release = 0;
69fe2d75 5586 u64 ret;
f0486c68
YZ
5587
5588 spin_lock(&block_rsv->lock);
ff6bc37e 5589 if (num_bytes == (u64)-1) {
f0486c68 5590 num_bytes = block_rsv->size;
ff6bc37e
QW
5591 qgroup_to_release = block_rsv->qgroup_rsv_size;
5592 }
f0486c68
YZ
5593 block_rsv->size -= num_bytes;
5594 if (block_rsv->reserved >= block_rsv->size) {
5595 num_bytes = block_rsv->reserved - block_rsv->size;
5596 block_rsv->reserved = block_rsv->size;
5597 block_rsv->full = 1;
5598 } else {
5599 num_bytes = 0;
5600 }
ff6bc37e
QW
5601 if (block_rsv->qgroup_rsv_reserved >= block_rsv->qgroup_rsv_size) {
5602 qgroup_to_release = block_rsv->qgroup_rsv_reserved -
5603 block_rsv->qgroup_rsv_size;
5604 block_rsv->qgroup_rsv_reserved = block_rsv->qgroup_rsv_size;
5605 } else {
5606 qgroup_to_release = 0;
5607 }
f0486c68
YZ
5608 spin_unlock(&block_rsv->lock);
5609
69fe2d75 5610 ret = num_bytes;
f0486c68
YZ
5611 if (num_bytes > 0) {
5612 if (dest) {
e9e22899
JB
5613 spin_lock(&dest->lock);
5614 if (!dest->full) {
5615 u64 bytes_to_add;
5616
5617 bytes_to_add = dest->size - dest->reserved;
5618 bytes_to_add = min(num_bytes, bytes_to_add);
5619 dest->reserved += bytes_to_add;
5620 if (dest->reserved >= dest->size)
5621 dest->full = 1;
5622 num_bytes -= bytes_to_add;
5623 }
5624 spin_unlock(&dest->lock);
5625 }
957780eb
JB
5626 if (num_bytes)
5627 space_info_add_old_bytes(fs_info, space_info,
5628 num_bytes);
9ed74f2d 5629 }
ff6bc37e
QW
5630 if (qgroup_to_release_ret)
5631 *qgroup_to_release_ret = qgroup_to_release;
69fe2d75 5632 return ret;
f0486c68 5633}
4e06bdd6 5634
25d609f8
JB
5635int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5636 struct btrfs_block_rsv *dst, u64 num_bytes,
5637 int update_size)
f0486c68
YZ
5638{
5639 int ret;
9ed74f2d 5640
f0486c68
YZ
5641 ret = block_rsv_use_bytes(src, num_bytes);
5642 if (ret)
5643 return ret;
9ed74f2d 5644
25d609f8 5645 block_rsv_add_bytes(dst, num_bytes, update_size);
9ed74f2d
JB
5646 return 0;
5647}
5648
66d8f3dd 5649void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
9ed74f2d 5650{
f0486c68
YZ
5651 memset(rsv, 0, sizeof(*rsv));
5652 spin_lock_init(&rsv->lock);
66d8f3dd 5653 rsv->type = type;
f0486c68
YZ
5654}
5655
69fe2d75
JB
5656void btrfs_init_metadata_block_rsv(struct btrfs_fs_info *fs_info,
5657 struct btrfs_block_rsv *rsv,
5658 unsigned short type)
5659{
5660 btrfs_init_block_rsv(rsv, type);
5661 rsv->space_info = __find_space_info(fs_info,
5662 BTRFS_BLOCK_GROUP_METADATA);
5663}
5664
2ff7e61e 5665struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
66d8f3dd 5666 unsigned short type)
f0486c68
YZ
5667{
5668 struct btrfs_block_rsv *block_rsv;
9ed74f2d 5669
f0486c68
YZ
5670 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5671 if (!block_rsv)
5672 return NULL;
9ed74f2d 5673
69fe2d75 5674 btrfs_init_metadata_block_rsv(fs_info, block_rsv, type);
f0486c68
YZ
5675 return block_rsv;
5676}
9ed74f2d 5677
2ff7e61e 5678void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5679 struct btrfs_block_rsv *rsv)
5680{
2aaa6655
JB
5681 if (!rsv)
5682 return;
2ff7e61e 5683 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
dabdb640 5684 kfree(rsv);
9ed74f2d
JB
5685}
5686
cdfb080e
CM
5687void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5688{
5689 kfree(rsv);
5690}
5691
08e007d2
MX
5692int btrfs_block_rsv_add(struct btrfs_root *root,
5693 struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5694 enum btrfs_reserve_flush_enum flush)
9ed74f2d 5695{
f0486c68 5696 int ret;
9ed74f2d 5697
f0486c68
YZ
5698 if (num_bytes == 0)
5699 return 0;
8bb8ab2e 5700
61b520a9 5701 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
f0486c68
YZ
5702 if (!ret) {
5703 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5704 return 0;
5705 }
9ed74f2d 5706
f0486c68 5707 return ret;
f0486c68 5708}
9ed74f2d 5709
2ff7e61e 5710int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
f0486c68
YZ
5711{
5712 u64 num_bytes = 0;
f0486c68 5713 int ret = -ENOSPC;
9ed74f2d 5714
f0486c68
YZ
5715 if (!block_rsv)
5716 return 0;
9ed74f2d 5717
f0486c68 5718 spin_lock(&block_rsv->lock);
36ba022a
JB
5719 num_bytes = div_factor(block_rsv->size, min_factor);
5720 if (block_rsv->reserved >= num_bytes)
5721 ret = 0;
5722 spin_unlock(&block_rsv->lock);
9ed74f2d 5723
36ba022a
JB
5724 return ret;
5725}
5726
08e007d2
MX
5727int btrfs_block_rsv_refill(struct btrfs_root *root,
5728 struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5729 enum btrfs_reserve_flush_enum flush)
36ba022a
JB
5730{
5731 u64 num_bytes = 0;
5732 int ret = -ENOSPC;
5733
5734 if (!block_rsv)
5735 return 0;
5736
5737 spin_lock(&block_rsv->lock);
5738 num_bytes = min_reserved;
13553e52 5739 if (block_rsv->reserved >= num_bytes)
f0486c68 5740 ret = 0;
13553e52 5741 else
f0486c68 5742 num_bytes -= block_rsv->reserved;
f0486c68 5743 spin_unlock(&block_rsv->lock);
13553e52 5744
f0486c68
YZ
5745 if (!ret)
5746 return 0;
5747
aa38a711 5748 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
dabdb640
JB
5749 if (!ret) {
5750 block_rsv_add_bytes(block_rsv, num_bytes, 0);
f0486c68 5751 return 0;
6a63209f 5752 }
9ed74f2d 5753
13553e52 5754 return ret;
f0486c68
YZ
5755}
5756
69fe2d75
JB
5757/**
5758 * btrfs_inode_rsv_refill - refill the inode block rsv.
5759 * @inode - the inode we are refilling.
5760 * @flush - the flusing restriction.
5761 *
5762 * Essentially the same as btrfs_block_rsv_refill, except it uses the
5763 * block_rsv->size as the minimum size. We'll either refill the missing amount
5764 * or return if we already have enough space. This will also handle the resreve
5765 * tracepoint for the reserved amount.
5766 */
3f2dd7a0
QW
5767static int btrfs_inode_rsv_refill(struct btrfs_inode *inode,
5768 enum btrfs_reserve_flush_enum flush)
69fe2d75
JB
5769{
5770 struct btrfs_root *root = inode->root;
5771 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5772 u64 num_bytes = 0;
ff6bc37e 5773 u64 qgroup_num_bytes = 0;
69fe2d75
JB
5774 int ret = -ENOSPC;
5775
5776 spin_lock(&block_rsv->lock);
5777 if (block_rsv->reserved < block_rsv->size)
5778 num_bytes = block_rsv->size - block_rsv->reserved;
ff6bc37e
QW
5779 if (block_rsv->qgroup_rsv_reserved < block_rsv->qgroup_rsv_size)
5780 qgroup_num_bytes = block_rsv->qgroup_rsv_size -
5781 block_rsv->qgroup_rsv_reserved;
69fe2d75
JB
5782 spin_unlock(&block_rsv->lock);
5783
5784 if (num_bytes == 0)
5785 return 0;
5786
ff6bc37e 5787 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_num_bytes, true);
43b18595
QW
5788 if (ret)
5789 return ret;
69fe2d75
JB
5790 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5791 if (!ret) {
5792 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5793 trace_btrfs_space_reservation(root->fs_info, "delalloc",
5794 btrfs_ino(inode), num_bytes, 1);
ff6bc37e
QW
5795
5796 /* Don't forget to increase qgroup_rsv_reserved */
5797 spin_lock(&block_rsv->lock);
5798 block_rsv->qgroup_rsv_reserved += qgroup_num_bytes;
5799 spin_unlock(&block_rsv->lock);
5800 } else
5801 btrfs_qgroup_free_meta_prealloc(root, qgroup_num_bytes);
69fe2d75
JB
5802 return ret;
5803}
5804
5805/**
5806 * btrfs_inode_rsv_release - release any excessive reservation.
5807 * @inode - the inode we need to release from.
43b18595
QW
5808 * @qgroup_free - free or convert qgroup meta.
5809 * Unlike normal operation, qgroup meta reservation needs to know if we are
5810 * freeing qgroup reservation or just converting it into per-trans. Normally
5811 * @qgroup_free is true for error handling, and false for normal release.
69fe2d75
JB
5812 *
5813 * This is the same as btrfs_block_rsv_release, except that it handles the
5814 * tracepoint for the reservation.
5815 */
43b18595 5816static void btrfs_inode_rsv_release(struct btrfs_inode *inode, bool qgroup_free)
69fe2d75
JB
5817{
5818 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5819 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5820 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
5821 u64 released = 0;
ff6bc37e 5822 u64 qgroup_to_release = 0;
69fe2d75
JB
5823
5824 /*
5825 * Since we statically set the block_rsv->size we just want to say we
5826 * are releasing 0 bytes, and then we'll just get the reservation over
5827 * the size free'd.
5828 */
ff6bc37e
QW
5829 released = block_rsv_release_bytes(fs_info, block_rsv, global_rsv, 0,
5830 &qgroup_to_release);
69fe2d75
JB
5831 if (released > 0)
5832 trace_btrfs_space_reservation(fs_info, "delalloc",
5833 btrfs_ino(inode), released, 0);
43b18595 5834 if (qgroup_free)
ff6bc37e 5835 btrfs_qgroup_free_meta_prealloc(inode->root, qgroup_to_release);
43b18595 5836 else
ff6bc37e
QW
5837 btrfs_qgroup_convert_reserved_meta(inode->root,
5838 qgroup_to_release);
69fe2d75
JB
5839}
5840
2ff7e61e 5841void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
f0486c68
YZ
5842 struct btrfs_block_rsv *block_rsv,
5843 u64 num_bytes)
5844{
0b246afa
JM
5845 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5846
17504584 5847 if (global_rsv == block_rsv ||
f0486c68
YZ
5848 block_rsv->space_info != global_rsv->space_info)
5849 global_rsv = NULL;
ff6bc37e 5850 block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes, NULL);
6a63209f
JB
5851}
5852
8929ecfa
YZ
5853static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5854{
5855 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5856 struct btrfs_space_info *sinfo = block_rsv->space_info;
5857 u64 num_bytes;
6a63209f 5858
ae2e4728
JB
5859 /*
5860 * The global block rsv is based on the size of the extent tree, the
5861 * checksum tree and the root tree. If the fs is empty we want to set
5862 * it to a minimal amount for safety.
5863 */
5864 num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5865 btrfs_root_used(&fs_info->csum_root->root_item) +
5866 btrfs_root_used(&fs_info->tree_root->root_item);
5867 num_bytes = max_t(u64, num_bytes, SZ_16M);
33b4d47f 5868
8929ecfa 5869 spin_lock(&sinfo->lock);
1f699d38 5870 spin_lock(&block_rsv->lock);
4e06bdd6 5871
ee22184b 5872 block_rsv->size = min_t(u64, num_bytes, SZ_512M);
4e06bdd6 5873
fb4b10e5 5874 if (block_rsv->reserved < block_rsv->size) {
4136135b 5875 num_bytes = btrfs_space_info_used(sinfo, true);
fb4b10e5
JB
5876 if (sinfo->total_bytes > num_bytes) {
5877 num_bytes = sinfo->total_bytes - num_bytes;
5878 num_bytes = min(num_bytes,
5879 block_rsv->size - block_rsv->reserved);
5880 block_rsv->reserved += num_bytes;
5881 sinfo->bytes_may_use += num_bytes;
5882 trace_btrfs_space_reservation(fs_info, "space_info",
5883 sinfo->flags, num_bytes,
5884 1);
5885 }
5886 } else if (block_rsv->reserved > block_rsv->size) {
8929ecfa 5887 num_bytes = block_rsv->reserved - block_rsv->size;
fb25e914 5888 sinfo->bytes_may_use -= num_bytes;
8c2a3ca2 5889 trace_btrfs_space_reservation(fs_info, "space_info",
2bcc0328 5890 sinfo->flags, num_bytes, 0);
8929ecfa 5891 block_rsv->reserved = block_rsv->size;
8929ecfa 5892 }
182608c8 5893
fb4b10e5
JB
5894 if (block_rsv->reserved == block_rsv->size)
5895 block_rsv->full = 1;
5896 else
5897 block_rsv->full = 0;
5898
8929ecfa 5899 spin_unlock(&block_rsv->lock);
1f699d38 5900 spin_unlock(&sinfo->lock);
6a63209f
JB
5901}
5902
f0486c68 5903static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5904{
f0486c68 5905 struct btrfs_space_info *space_info;
6a63209f 5906
f0486c68
YZ
5907 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5908 fs_info->chunk_block_rsv.space_info = space_info;
6a63209f 5909
f0486c68 5910 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
8929ecfa 5911 fs_info->global_block_rsv.space_info = space_info;
f0486c68
YZ
5912 fs_info->trans_block_rsv.space_info = space_info;
5913 fs_info->empty_block_rsv.space_info = space_info;
6d668dda 5914 fs_info->delayed_block_rsv.space_info = space_info;
f0486c68 5915
8929ecfa
YZ
5916 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5917 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5918 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5919 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3a6cad90
SB
5920 if (fs_info->quota_root)
5921 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
f0486c68 5922 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
8929ecfa 5923
8929ecfa 5924 update_global_block_rsv(fs_info);
6a63209f
JB
5925}
5926
8929ecfa 5927static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
6a63209f 5928{
8c2a3ca2 5929 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
ff6bc37e 5930 (u64)-1, NULL);
8929ecfa
YZ
5931 WARN_ON(fs_info->trans_block_rsv.size > 0);
5932 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5933 WARN_ON(fs_info->chunk_block_rsv.size > 0);
5934 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
6d668dda
JB
5935 WARN_ON(fs_info->delayed_block_rsv.size > 0);
5936 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
fcb80c2a
JB
5937}
5938
6a63209f 5939
4fbcdf66
FM
5940/*
5941 * To be called after all the new block groups attached to the transaction
5942 * handle have been created (btrfs_create_pending_block_groups()).
5943 */
5944void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5945{
64b63580 5946 struct btrfs_fs_info *fs_info = trans->fs_info;
4fbcdf66
FM
5947
5948 if (!trans->chunk_bytes_reserved)
5949 return;
5950
5951 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5952
5953 block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
ff6bc37e 5954 trans->chunk_bytes_reserved, NULL);
4fbcdf66
FM
5955 trans->chunk_bytes_reserved = 0;
5956}
5957
d5c12070
MX
5958/*
5959 * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5960 * root: the root of the parent directory
5961 * rsv: block reservation
5962 * items: the number of items that we need do reservation
5963 * qgroup_reserved: used to return the reserved size in qgroup
5964 *
5965 * This function is used to reserve the space for snapshot/subvolume
5966 * creation and deletion. Those operations are different with the
5967 * common file/directory operations, they change two fs/file trees
5968 * and root tree, the number of items that the qgroup reserves is
5969 * different with the free space reservation. So we can not use
01327610 5970 * the space reservation mechanism in start_transaction().
d5c12070
MX
5971 */
5972int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5973 struct btrfs_block_rsv *rsv,
5974 int items,
ee3441b4 5975 bool use_global_rsv)
a22285a6 5976{
d5c12070
MX
5977 u64 num_bytes;
5978 int ret;
0b246afa
JM
5979 struct btrfs_fs_info *fs_info = root->fs_info;
5980 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
d5c12070 5981
0b246afa 5982 if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
d5c12070 5983 /* One for parent inode, two for dir entries */
0b246afa 5984 num_bytes = 3 * fs_info->nodesize;
733e03a0 5985 ret = btrfs_qgroup_reserve_meta_prealloc(root, num_bytes, true);
d5c12070
MX
5986 if (ret)
5987 return ret;
5988 } else {
5989 num_bytes = 0;
5990 }
5991
0b246afa
JM
5992 num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5993 rsv->space_info = __find_space_info(fs_info,
d5c12070
MX
5994 BTRFS_BLOCK_GROUP_METADATA);
5995 ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5996 BTRFS_RESERVE_FLUSH_ALL);
ee3441b4
JM
5997
5998 if (ret == -ENOSPC && use_global_rsv)
25d609f8 5999 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
ee3441b4 6000
c4c129db
GJ
6001 if (ret && num_bytes)
6002 btrfs_qgroup_free_meta_prealloc(root, num_bytes);
d5c12070
MX
6003
6004 return ret;
6005}
6006
2ff7e61e 6007void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
7775c818 6008 struct btrfs_block_rsv *rsv)
d5c12070 6009{
2ff7e61e 6010 btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
97e728d4
JB
6011}
6012
69fe2d75
JB
6013static void btrfs_calculate_inode_block_rsv_size(struct btrfs_fs_info *fs_info,
6014 struct btrfs_inode *inode)
9e0baf60 6015{
69fe2d75
JB
6016 struct btrfs_block_rsv *block_rsv = &inode->block_rsv;
6017 u64 reserve_size = 0;
ff6bc37e 6018 u64 qgroup_rsv_size = 0;
69fe2d75
JB
6019 u64 csum_leaves;
6020 unsigned outstanding_extents;
9e0baf60 6021
69fe2d75
JB
6022 lockdep_assert_held(&inode->lock);
6023 outstanding_extents = inode->outstanding_extents;
6024 if (outstanding_extents)
6025 reserve_size = btrfs_calc_trans_metadata_size(fs_info,
6026 outstanding_extents + 1);
6027 csum_leaves = btrfs_csum_bytes_to_leaves(fs_info,
6028 inode->csum_bytes);
6029 reserve_size += btrfs_calc_trans_metadata_size(fs_info,
6030 csum_leaves);
ff6bc37e
QW
6031 /*
6032 * For qgroup rsv, the calculation is very simple:
6033 * account one nodesize for each outstanding extent
6034 *
6035 * This is overestimating in most cases.
6036 */
6037 qgroup_rsv_size = outstanding_extents * fs_info->nodesize;
9e0baf60 6038
69fe2d75
JB
6039 spin_lock(&block_rsv->lock);
6040 block_rsv->size = reserve_size;
ff6bc37e 6041 block_rsv->qgroup_rsv_size = qgroup_rsv_size;
69fe2d75 6042 spin_unlock(&block_rsv->lock);
0ca1f7ce 6043}
c146afad 6044
9f3db423 6045int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
0ca1f7ce 6046{
9f3db423 6047 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
69fe2d75 6048 unsigned nr_extents;
08e007d2 6049 enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
eb6b88d9 6050 int ret = 0;
c64c2bd8 6051 bool delalloc_lock = true;
6324fbf3 6052
c64c2bd8
JB
6053 /* If we are a free space inode we need to not flush since we will be in
6054 * the middle of a transaction commit. We also don't need the delalloc
6055 * mutex since we won't race with anybody. We need this mostly to make
6056 * lockdep shut its filthy mouth.
bac357dc
JB
6057 *
6058 * If we have a transaction open (can happen if we call truncate_block
6059 * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
c64c2bd8
JB
6060 */
6061 if (btrfs_is_free_space_inode(inode)) {
08e007d2 6062 flush = BTRFS_RESERVE_NO_FLUSH;
c64c2bd8 6063 delalloc_lock = false;
da07d4ab
NB
6064 } else {
6065 if (current->journal_info)
6066 flush = BTRFS_RESERVE_FLUSH_LIMIT;
c09544e0 6067
da07d4ab
NB
6068 if (btrfs_transaction_in_commit(fs_info))
6069 schedule_timeout(1);
6070 }
ec44a35c 6071
c64c2bd8 6072 if (delalloc_lock)
9f3db423 6073 mutex_lock(&inode->delalloc_mutex);
c64c2bd8 6074
0b246afa 6075 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
69fe2d75
JB
6076
6077 /* Add our new extents and calculate the new rsv size. */
9f3db423 6078 spin_lock(&inode->lock);
69fe2d75 6079 nr_extents = count_max_extents(num_bytes);
8b62f87b 6080 btrfs_mod_outstanding_extents(inode, nr_extents);
69fe2d75
JB
6081 inode->csum_bytes += num_bytes;
6082 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6083 spin_unlock(&inode->lock);
57a45ced 6084
69fe2d75 6085 ret = btrfs_inode_rsv_refill(inode, flush);
43b18595 6086 if (unlikely(ret))
88e081bf 6087 goto out_fail;
25179201 6088
c64c2bd8 6089 if (delalloc_lock)
9f3db423 6090 mutex_unlock(&inode->delalloc_mutex);
0ca1f7ce 6091 return 0;
88e081bf
WS
6092
6093out_fail:
9f3db423 6094 spin_lock(&inode->lock);
8b62f87b
JB
6095 nr_extents = count_max_extents(num_bytes);
6096 btrfs_mod_outstanding_extents(inode, -nr_extents);
69fe2d75
JB
6097 inode->csum_bytes -= num_bytes;
6098 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
9f3db423 6099 spin_unlock(&inode->lock);
88e081bf 6100
43b18595 6101 btrfs_inode_rsv_release(inode, true);
88e081bf 6102 if (delalloc_lock)
9f3db423 6103 mutex_unlock(&inode->delalloc_mutex);
88e081bf 6104 return ret;
0ca1f7ce
YZ
6105}
6106
7709cde3
JB
6107/**
6108 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
8b62f87b
JB
6109 * @inode: the inode to release the reservation for.
6110 * @num_bytes: the number of bytes we are releasing.
43b18595 6111 * @qgroup_free: free qgroup reservation or convert it to per-trans reservation
7709cde3
JB
6112 *
6113 * This will release the metadata reservation for an inode. This can be called
6114 * once we complete IO for a given set of bytes to release their metadata
8b62f87b 6115 * reservations, or on error for the same reason.
7709cde3 6116 */
43b18595
QW
6117void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes,
6118 bool qgroup_free)
0ca1f7ce 6119{
691fa059 6120 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0ca1f7ce 6121
0b246afa 6122 num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
691fa059 6123 spin_lock(&inode->lock);
69fe2d75
JB
6124 inode->csum_bytes -= num_bytes;
6125 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
691fa059 6126 spin_unlock(&inode->lock);
0ca1f7ce 6127
0b246afa 6128 if (btrfs_is_testing(fs_info))
6a3891c5
JB
6129 return;
6130
43b18595 6131 btrfs_inode_rsv_release(inode, qgroup_free);
0ca1f7ce
YZ
6132}
6133
8b62f87b
JB
6134/**
6135 * btrfs_delalloc_release_extents - release our outstanding_extents
6136 * @inode: the inode to balance the reservation for.
6137 * @num_bytes: the number of bytes we originally reserved with
43b18595 6138 * @qgroup_free: do we need to free qgroup meta reservation or convert them.
8b62f87b
JB
6139 *
6140 * When we reserve space we increase outstanding_extents for the extents we may
6141 * add. Once we've set the range as delalloc or created our ordered extents we
6142 * have outstanding_extents to track the real usage, so we use this to free our
6143 * temporarily tracked outstanding_extents. This _must_ be used in conjunction
6144 * with btrfs_delalloc_reserve_metadata.
6145 */
43b18595
QW
6146void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes,
6147 bool qgroup_free)
8b62f87b
JB
6148{
6149 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6150 unsigned num_extents;
8b62f87b
JB
6151
6152 spin_lock(&inode->lock);
6153 num_extents = count_max_extents(num_bytes);
6154 btrfs_mod_outstanding_extents(inode, -num_extents);
69fe2d75 6155 btrfs_calculate_inode_block_rsv_size(fs_info, inode);
8b62f87b
JB
6156 spin_unlock(&inode->lock);
6157
8b62f87b
JB
6158 if (btrfs_is_testing(fs_info))
6159 return;
6160
43b18595 6161 btrfs_inode_rsv_release(inode, qgroup_free);
8b62f87b
JB
6162}
6163
1ada3a62 6164/**
7cf5b976 6165 * btrfs_delalloc_reserve_space - reserve data and metadata space for
1ada3a62
QW
6166 * delalloc
6167 * @inode: inode we're writing to
6168 * @start: start range we are writing to
6169 * @len: how long the range we are writing to
364ecf36
QW
6170 * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6171 * current reservation.
1ada3a62 6172 *
1ada3a62
QW
6173 * This will do the following things
6174 *
6175 * o reserve space in data space info for num bytes
6176 * and reserve precious corresponding qgroup space
6177 * (Done in check_data_free_space)
6178 *
6179 * o reserve space for metadata space, based on the number of outstanding
6180 * extents and how much csums will be needed
6181 * also reserve metadata space in a per root over-reserve method.
6182 * o add to the inodes->delalloc_bytes
6183 * o add it to the fs_info's delalloc inodes list.
6184 * (Above 3 all done in delalloc_reserve_metadata)
6185 *
6186 * Return 0 for success
6187 * Return <0 for error(-ENOSPC or -EQUOT)
6188 */
364ecf36
QW
6189int btrfs_delalloc_reserve_space(struct inode *inode,
6190 struct extent_changeset **reserved, u64 start, u64 len)
1ada3a62
QW
6191{
6192 int ret;
6193
364ecf36 6194 ret = btrfs_check_data_free_space(inode, reserved, start, len);
1ada3a62
QW
6195 if (ret < 0)
6196 return ret;
9f3db423 6197 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
1ada3a62 6198 if (ret < 0)
bc42bda2 6199 btrfs_free_reserved_data_space(inode, *reserved, start, len);
1ada3a62
QW
6200 return ret;
6201}
6202
7709cde3 6203/**
7cf5b976 6204 * btrfs_delalloc_release_space - release data and metadata space for delalloc
1ada3a62
QW
6205 * @inode: inode we're releasing space for
6206 * @start: start position of the space already reserved
6207 * @len: the len of the space already reserved
8b62f87b 6208 * @release_bytes: the len of the space we consumed or didn't use
1ada3a62
QW
6209 *
6210 * This function will release the metadata space that was not used and will
6211 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6212 * list if there are no delalloc bytes left.
6213 * Also it will handle the qgroup reserved space.
6214 */
bc42bda2 6215void btrfs_delalloc_release_space(struct inode *inode,
8b62f87b 6216 struct extent_changeset *reserved,
43b18595 6217 u64 start, u64 len, bool qgroup_free)
1ada3a62 6218{
43b18595 6219 btrfs_delalloc_release_metadata(BTRFS_I(inode), len, qgroup_free);
bc42bda2 6220 btrfs_free_reserved_data_space(inode, reserved, start, len);
6324fbf3
CM
6221}
6222
ce93ec54 6223static int update_block_group(struct btrfs_trans_handle *trans,
6202df69 6224 struct btrfs_fs_info *info, u64 bytenr,
ce93ec54 6225 u64 num_bytes, int alloc)
9078a3e1 6226{
0af3d00b 6227 struct btrfs_block_group_cache *cache = NULL;
db94535d 6228 u64 total = num_bytes;
9078a3e1 6229 u64 old_val;
db94535d 6230 u64 byte_in_group;
0af3d00b 6231 int factor;
3e1ad54f 6232
5d4f98a2 6233 /* block accounting for super block */
eb73c1b7 6234 spin_lock(&info->delalloc_root_lock);
6c41761f 6235 old_val = btrfs_super_bytes_used(info->super_copy);
5d4f98a2
YZ
6236 if (alloc)
6237 old_val += num_bytes;
6238 else
6239 old_val -= num_bytes;
6c41761f 6240 btrfs_set_super_bytes_used(info->super_copy, old_val);
eb73c1b7 6241 spin_unlock(&info->delalloc_root_lock);
5d4f98a2 6242
d397712b 6243 while (total) {
db94535d 6244 cache = btrfs_lookup_block_group(info, bytenr);
f3465ca4 6245 if (!cache)
79787eaa 6246 return -ENOENT;
b742bb82
YZ
6247 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6248 BTRFS_BLOCK_GROUP_RAID1 |
6249 BTRFS_BLOCK_GROUP_RAID10))
6250 factor = 2;
6251 else
6252 factor = 1;
9d66e233
JB
6253 /*
6254 * If this block group has free space cache written out, we
6255 * need to make sure to load it if we are removing space. This
6256 * is because we need the unpinning stage to actually add the
6257 * space back to the block group, otherwise we will leak space.
6258 */
6259 if (!alloc && cache->cached == BTRFS_CACHE_NO)
f6373bf3 6260 cache_block_group(cache, 1);
0af3d00b 6261
db94535d
CM
6262 byte_in_group = bytenr - cache->key.objectid;
6263 WARN_ON(byte_in_group > cache->key.offset);
9078a3e1 6264
25179201 6265 spin_lock(&cache->space_info->lock);
c286ac48 6266 spin_lock(&cache->lock);
0af3d00b 6267
6202df69 6268 if (btrfs_test_opt(info, SPACE_CACHE) &&
0af3d00b
JB
6269 cache->disk_cache_state < BTRFS_DC_CLEAR)
6270 cache->disk_cache_state = BTRFS_DC_CLEAR;
6271
9078a3e1 6272 old_val = btrfs_block_group_used(&cache->item);
db94535d 6273 num_bytes = min(total, cache->key.offset - byte_in_group);
cd1bc465 6274 if (alloc) {
db94535d 6275 old_val += num_bytes;
11833d66
YZ
6276 btrfs_set_block_group_used(&cache->item, old_val);
6277 cache->reserved -= num_bytes;
11833d66 6278 cache->space_info->bytes_reserved -= num_bytes;
b742bb82
YZ
6279 cache->space_info->bytes_used += num_bytes;
6280 cache->space_info->disk_used += num_bytes * factor;
c286ac48 6281 spin_unlock(&cache->lock);
25179201 6282 spin_unlock(&cache->space_info->lock);
cd1bc465 6283 } else {
db94535d 6284 old_val -= num_bytes;
ae0ab003
FM
6285 btrfs_set_block_group_used(&cache->item, old_val);
6286 cache->pinned += num_bytes;
6287 cache->space_info->bytes_pinned += num_bytes;
6288 cache->space_info->bytes_used -= num_bytes;
6289 cache->space_info->disk_used -= num_bytes * factor;
6290 spin_unlock(&cache->lock);
6291 spin_unlock(&cache->space_info->lock);
47ab2a6c 6292
0b246afa 6293 trace_btrfs_space_reservation(info, "pinned",
c51e7bb1
JB
6294 cache->space_info->flags,
6295 num_bytes, 1);
d7eae340
OS
6296 percpu_counter_add(&cache->space_info->total_bytes_pinned,
6297 num_bytes);
ae0ab003
FM
6298 set_extent_dirty(info->pinned_extents,
6299 bytenr, bytenr + num_bytes - 1,
6300 GFP_NOFS | __GFP_NOFAIL);
cd1bc465 6301 }
1bbc621e
CM
6302
6303 spin_lock(&trans->transaction->dirty_bgs_lock);
6304 if (list_empty(&cache->dirty_list)) {
6305 list_add_tail(&cache->dirty_list,
6306 &trans->transaction->dirty_bgs);
bece2e82 6307 trans->transaction->num_dirty_bgs++;
1bbc621e
CM
6308 btrfs_get_block_group(cache);
6309 }
6310 spin_unlock(&trans->transaction->dirty_bgs_lock);
6311
036a9348
FM
6312 /*
6313 * No longer have used bytes in this block group, queue it for
6314 * deletion. We do this after adding the block group to the
6315 * dirty list to avoid races between cleaner kthread and space
6316 * cache writeout.
6317 */
6318 if (!alloc && old_val == 0) {
6319 spin_lock(&info->unused_bgs_lock);
6320 if (list_empty(&cache->bg_list)) {
6321 btrfs_get_block_group(cache);
4ed0a7a3 6322 trace_btrfs_add_unused_block_group(cache);
036a9348
FM
6323 list_add_tail(&cache->bg_list,
6324 &info->unused_bgs);
6325 }
6326 spin_unlock(&info->unused_bgs_lock);
6327 }
6328
fa9c0d79 6329 btrfs_put_block_group(cache);
db94535d
CM
6330 total -= num_bytes;
6331 bytenr += num_bytes;
9078a3e1
CM
6332 }
6333 return 0;
6334}
6324fbf3 6335
2ff7e61e 6336static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
a061fc8d 6337{
0f9dd46c 6338 struct btrfs_block_group_cache *cache;
d2fb3437 6339 u64 bytenr;
0f9dd46c 6340
0b246afa
JM
6341 spin_lock(&fs_info->block_group_cache_lock);
6342 bytenr = fs_info->first_logical_byte;
6343 spin_unlock(&fs_info->block_group_cache_lock);
a1897fdd
LB
6344
6345 if (bytenr < (u64)-1)
6346 return bytenr;
6347
0b246afa 6348 cache = btrfs_lookup_first_block_group(fs_info, search_start);
0f9dd46c 6349 if (!cache)
a061fc8d 6350 return 0;
0f9dd46c 6351
d2fb3437 6352 bytenr = cache->key.objectid;
fa9c0d79 6353 btrfs_put_block_group(cache);
d2fb3437
YZ
6354
6355 return bytenr;
a061fc8d
CM
6356}
6357
2ff7e61e 6358static int pin_down_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6359 struct btrfs_block_group_cache *cache,
6360 u64 bytenr, u64 num_bytes, int reserved)
324ae4df 6361{
11833d66
YZ
6362 spin_lock(&cache->space_info->lock);
6363 spin_lock(&cache->lock);
6364 cache->pinned += num_bytes;
6365 cache->space_info->bytes_pinned += num_bytes;
6366 if (reserved) {
6367 cache->reserved -= num_bytes;
6368 cache->space_info->bytes_reserved -= num_bytes;
6369 }
6370 spin_unlock(&cache->lock);
6371 spin_unlock(&cache->space_info->lock);
68b38550 6372
0b246afa 6373 trace_btrfs_space_reservation(fs_info, "pinned",
c51e7bb1 6374 cache->space_info->flags, num_bytes, 1);
4da8b76d 6375 percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
0b246afa 6376 set_extent_dirty(fs_info->pinned_extents, bytenr,
f0486c68
YZ
6377 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6378 return 0;
6379}
68b38550 6380
f0486c68
YZ
6381/*
6382 * this function must be called within transaction
6383 */
2ff7e61e 6384int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
f0486c68
YZ
6385 u64 bytenr, u64 num_bytes, int reserved)
6386{
6387 struct btrfs_block_group_cache *cache;
68b38550 6388
0b246afa 6389 cache = btrfs_lookup_block_group(fs_info, bytenr);
79787eaa 6390 BUG_ON(!cache); /* Logic error */
f0486c68 6391
2ff7e61e 6392 pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
f0486c68
YZ
6393
6394 btrfs_put_block_group(cache);
11833d66
YZ
6395 return 0;
6396}
6397
f0486c68 6398/*
e688b725
CM
6399 * this function must be called within transaction
6400 */
2ff7e61e 6401int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
e688b725
CM
6402 u64 bytenr, u64 num_bytes)
6403{
6404 struct btrfs_block_group_cache *cache;
b50c6e25 6405 int ret;
e688b725 6406
0b246afa 6407 cache = btrfs_lookup_block_group(fs_info, bytenr);
b50c6e25
JB
6408 if (!cache)
6409 return -EINVAL;
e688b725
CM
6410
6411 /*
6412 * pull in the free space cache (if any) so that our pin
6413 * removes the free space from the cache. We have load_only set
6414 * to one because the slow code to read in the free extents does check
6415 * the pinned extents.
6416 */
f6373bf3 6417 cache_block_group(cache, 1);
e688b725 6418
2ff7e61e 6419 pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
e688b725
CM
6420
6421 /* remove us from the free space cache (if we're there at all) */
b50c6e25 6422 ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
e688b725 6423 btrfs_put_block_group(cache);
b50c6e25 6424 return ret;
e688b725
CM
6425}
6426
2ff7e61e
JM
6427static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6428 u64 start, u64 num_bytes)
8c2a1a30
JB
6429{
6430 int ret;
6431 struct btrfs_block_group_cache *block_group;
6432 struct btrfs_caching_control *caching_ctl;
6433
0b246afa 6434 block_group = btrfs_lookup_block_group(fs_info, start);
8c2a1a30
JB
6435 if (!block_group)
6436 return -EINVAL;
6437
6438 cache_block_group(block_group, 0);
6439 caching_ctl = get_caching_control(block_group);
6440
6441 if (!caching_ctl) {
6442 /* Logic error */
6443 BUG_ON(!block_group_cache_done(block_group));
6444 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6445 } else {
6446 mutex_lock(&caching_ctl->mutex);
6447
6448 if (start >= caching_ctl->progress) {
2ff7e61e 6449 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6450 } else if (start + num_bytes <= caching_ctl->progress) {
6451 ret = btrfs_remove_free_space(block_group,
6452 start, num_bytes);
6453 } else {
6454 num_bytes = caching_ctl->progress - start;
6455 ret = btrfs_remove_free_space(block_group,
6456 start, num_bytes);
6457 if (ret)
6458 goto out_lock;
6459
6460 num_bytes = (start + num_bytes) -
6461 caching_ctl->progress;
6462 start = caching_ctl->progress;
2ff7e61e 6463 ret = add_excluded_extent(fs_info, start, num_bytes);
8c2a1a30
JB
6464 }
6465out_lock:
6466 mutex_unlock(&caching_ctl->mutex);
6467 put_caching_control(caching_ctl);
6468 }
6469 btrfs_put_block_group(block_group);
6470 return ret;
6471}
6472
2ff7e61e 6473int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
8c2a1a30
JB
6474 struct extent_buffer *eb)
6475{
6476 struct btrfs_file_extent_item *item;
6477 struct btrfs_key key;
6478 int found_type;
6479 int i;
b89311ef 6480 int ret = 0;
8c2a1a30 6481
2ff7e61e 6482 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
8c2a1a30
JB
6483 return 0;
6484
6485 for (i = 0; i < btrfs_header_nritems(eb); i++) {
6486 btrfs_item_key_to_cpu(eb, &key, i);
6487 if (key.type != BTRFS_EXTENT_DATA_KEY)
6488 continue;
6489 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6490 found_type = btrfs_file_extent_type(eb, item);
6491 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6492 continue;
6493 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6494 continue;
6495 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6496 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
b89311ef
GJ
6497 ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
6498 if (ret)
6499 break;
8c2a1a30
JB
6500 }
6501
b89311ef 6502 return ret;
8c2a1a30
JB
6503}
6504
9cfa3e34
FM
6505static void
6506btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6507{
6508 atomic_inc(&bg->reservations);
6509}
6510
6511void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6512 const u64 start)
6513{
6514 struct btrfs_block_group_cache *bg;
6515
6516 bg = btrfs_lookup_block_group(fs_info, start);
6517 ASSERT(bg);
6518 if (atomic_dec_and_test(&bg->reservations))
4625956a 6519 wake_up_var(&bg->reservations);
9cfa3e34
FM
6520 btrfs_put_block_group(bg);
6521}
6522
9cfa3e34
FM
6523void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6524{
6525 struct btrfs_space_info *space_info = bg->space_info;
6526
6527 ASSERT(bg->ro);
6528
6529 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6530 return;
6531
6532 /*
6533 * Our block group is read only but before we set it to read only,
6534 * some task might have had allocated an extent from it already, but it
6535 * has not yet created a respective ordered extent (and added it to a
6536 * root's list of ordered extents).
6537 * Therefore wait for any task currently allocating extents, since the
6538 * block group's reservations counter is incremented while a read lock
6539 * on the groups' semaphore is held and decremented after releasing
6540 * the read access on that semaphore and creating the ordered extent.
6541 */
6542 down_write(&space_info->groups_sem);
6543 up_write(&space_info->groups_sem);
6544
4625956a 6545 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
9cfa3e34
FM
6546}
6547
fb25e914 6548/**
4824f1f4 6549 * btrfs_add_reserved_bytes - update the block_group and space info counters
fb25e914 6550 * @cache: The cache we are manipulating
18513091
WX
6551 * @ram_bytes: The number of bytes of file content, and will be same to
6552 * @num_bytes except for the compress path.
fb25e914 6553 * @num_bytes: The number of bytes in question
e570fd27 6554 * @delalloc: The blocks are allocated for the delalloc write
fb25e914 6555 *
745699ef
XW
6556 * This is called by the allocator when it reserves space. If this is a
6557 * reservation and the block group has become read only we cannot make the
6558 * reservation and return -EAGAIN, otherwise this function always succeeds.
f0486c68 6559 */
4824f1f4 6560static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
18513091 6561 u64 ram_bytes, u64 num_bytes, int delalloc)
11833d66 6562{
fb25e914 6563 struct btrfs_space_info *space_info = cache->space_info;
f0486c68 6564 int ret = 0;
79787eaa 6565
fb25e914
JB
6566 spin_lock(&space_info->lock);
6567 spin_lock(&cache->lock);
4824f1f4
WX
6568 if (cache->ro) {
6569 ret = -EAGAIN;
fb25e914 6570 } else {
4824f1f4
WX
6571 cache->reserved += num_bytes;
6572 space_info->bytes_reserved += num_bytes;
e570fd27 6573
18513091
WX
6574 trace_btrfs_space_reservation(cache->fs_info,
6575 "space_info", space_info->flags,
6576 ram_bytes, 0);
6577 space_info->bytes_may_use -= ram_bytes;
e570fd27 6578 if (delalloc)
4824f1f4 6579 cache->delalloc_bytes += num_bytes;
324ae4df 6580 }
fb25e914
JB
6581 spin_unlock(&cache->lock);
6582 spin_unlock(&space_info->lock);
f0486c68 6583 return ret;
324ae4df 6584}
9078a3e1 6585
4824f1f4
WX
6586/**
6587 * btrfs_free_reserved_bytes - update the block_group and space info counters
6588 * @cache: The cache we are manipulating
6589 * @num_bytes: The number of bytes in question
6590 * @delalloc: The blocks are allocated for the delalloc write
6591 *
6592 * This is called by somebody who is freeing space that was never actually used
6593 * on disk. For example if you reserve some space for a new leaf in transaction
6594 * A and before transaction A commits you free that leaf, you call this with
6595 * reserve set to 0 in order to clear the reservation.
6596 */
6597
6598static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6599 u64 num_bytes, int delalloc)
6600{
6601 struct btrfs_space_info *space_info = cache->space_info;
6602 int ret = 0;
6603
6604 spin_lock(&space_info->lock);
6605 spin_lock(&cache->lock);
6606 if (cache->ro)
6607 space_info->bytes_readonly += num_bytes;
6608 cache->reserved -= num_bytes;
6609 space_info->bytes_reserved -= num_bytes;
6610
6611 if (delalloc)
6612 cache->delalloc_bytes -= num_bytes;
6613 spin_unlock(&cache->lock);
6614 spin_unlock(&space_info->lock);
6615 return ret;
6616}
8b74c03e 6617void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
e8569813 6618{
11833d66
YZ
6619 struct btrfs_caching_control *next;
6620 struct btrfs_caching_control *caching_ctl;
6621 struct btrfs_block_group_cache *cache;
e8569813 6622
9e351cc8 6623 down_write(&fs_info->commit_root_sem);
25179201 6624
11833d66
YZ
6625 list_for_each_entry_safe(caching_ctl, next,
6626 &fs_info->caching_block_groups, list) {
6627 cache = caching_ctl->block_group;
6628 if (block_group_cache_done(cache)) {
6629 cache->last_byte_to_unpin = (u64)-1;
6630 list_del_init(&caching_ctl->list);
6631 put_caching_control(caching_ctl);
e8569813 6632 } else {
11833d66 6633 cache->last_byte_to_unpin = caching_ctl->progress;
e8569813 6634 }
e8569813 6635 }
11833d66
YZ
6636
6637 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6638 fs_info->pinned_extents = &fs_info->freed_extents[1];
6639 else
6640 fs_info->pinned_extents = &fs_info->freed_extents[0];
6641
9e351cc8 6642 up_write(&fs_info->commit_root_sem);
8929ecfa
YZ
6643
6644 update_global_block_rsv(fs_info);
e8569813
ZY
6645}
6646
c759c4e1
JB
6647/*
6648 * Returns the free cluster for the given space info and sets empty_cluster to
6649 * what it should be based on the mount options.
6650 */
6651static struct btrfs_free_cluster *
2ff7e61e
JM
6652fetch_cluster_info(struct btrfs_fs_info *fs_info,
6653 struct btrfs_space_info *space_info, u64 *empty_cluster)
c759c4e1
JB
6654{
6655 struct btrfs_free_cluster *ret = NULL;
c759c4e1
JB
6656
6657 *empty_cluster = 0;
6658 if (btrfs_mixed_space_info(space_info))
6659 return ret;
6660
c759c4e1 6661 if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
0b246afa 6662 ret = &fs_info->meta_alloc_cluster;
583b7231
HK
6663 if (btrfs_test_opt(fs_info, SSD))
6664 *empty_cluster = SZ_2M;
6665 else
ee22184b 6666 *empty_cluster = SZ_64K;
583b7231
HK
6667 } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6668 btrfs_test_opt(fs_info, SSD_SPREAD)) {
6669 *empty_cluster = SZ_2M;
0b246afa 6670 ret = &fs_info->data_alloc_cluster;
c759c4e1
JB
6671 }
6672
6673 return ret;
6674}
6675
2ff7e61e
JM
6676static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6677 u64 start, u64 end,
678886bd 6678 const bool return_free_space)
ccd467d6 6679{
11833d66 6680 struct btrfs_block_group_cache *cache = NULL;
7b398f8e
JB
6681 struct btrfs_space_info *space_info;
6682 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
c759c4e1 6683 struct btrfs_free_cluster *cluster = NULL;
11833d66 6684 u64 len;
c759c4e1
JB
6685 u64 total_unpinned = 0;
6686 u64 empty_cluster = 0;
7b398f8e 6687 bool readonly;
ccd467d6 6688
11833d66 6689 while (start <= end) {
7b398f8e 6690 readonly = false;
11833d66
YZ
6691 if (!cache ||
6692 start >= cache->key.objectid + cache->key.offset) {
6693 if (cache)
6694 btrfs_put_block_group(cache);
c759c4e1 6695 total_unpinned = 0;
11833d66 6696 cache = btrfs_lookup_block_group(fs_info, start);
79787eaa 6697 BUG_ON(!cache); /* Logic error */
c759c4e1 6698
2ff7e61e 6699 cluster = fetch_cluster_info(fs_info,
c759c4e1
JB
6700 cache->space_info,
6701 &empty_cluster);
6702 empty_cluster <<= 1;
11833d66
YZ
6703 }
6704
6705 len = cache->key.objectid + cache->key.offset - start;
6706 len = min(len, end + 1 - start);
6707
6708 if (start < cache->last_byte_to_unpin) {
6709 len = min(len, cache->last_byte_to_unpin - start);
678886bd
FM
6710 if (return_free_space)
6711 btrfs_add_free_space(cache, start, len);
11833d66
YZ
6712 }
6713
f0486c68 6714 start += len;
c759c4e1 6715 total_unpinned += len;
7b398f8e 6716 space_info = cache->space_info;
f0486c68 6717
c759c4e1
JB
6718 /*
6719 * If this space cluster has been marked as fragmented and we've
6720 * unpinned enough in this block group to potentially allow a
6721 * cluster to be created inside of it go ahead and clear the
6722 * fragmented check.
6723 */
6724 if (cluster && cluster->fragmented &&
6725 total_unpinned > empty_cluster) {
6726 spin_lock(&cluster->lock);
6727 cluster->fragmented = 0;
6728 spin_unlock(&cluster->lock);
6729 }
6730
7b398f8e 6731 spin_lock(&space_info->lock);
11833d66
YZ
6732 spin_lock(&cache->lock);
6733 cache->pinned -= len;
7b398f8e 6734 space_info->bytes_pinned -= len;
c51e7bb1
JB
6735
6736 trace_btrfs_space_reservation(fs_info, "pinned",
6737 space_info->flags, len, 0);
4f4db217 6738 space_info->max_extent_size = 0;
d288db5d 6739 percpu_counter_add(&space_info->total_bytes_pinned, -len);
7b398f8e
JB
6740 if (cache->ro) {
6741 space_info->bytes_readonly += len;
6742 readonly = true;
6743 }
11833d66 6744 spin_unlock(&cache->lock);
957780eb
JB
6745 if (!readonly && return_free_space &&
6746 global_rsv->space_info == space_info) {
6747 u64 to_add = len;
92ac58ec 6748
7b398f8e
JB
6749 spin_lock(&global_rsv->lock);
6750 if (!global_rsv->full) {
957780eb
JB
6751 to_add = min(len, global_rsv->size -
6752 global_rsv->reserved);
6753 global_rsv->reserved += to_add;
6754 space_info->bytes_may_use += to_add;
7b398f8e
JB
6755 if (global_rsv->reserved >= global_rsv->size)
6756 global_rsv->full = 1;
957780eb
JB
6757 trace_btrfs_space_reservation(fs_info,
6758 "space_info",
6759 space_info->flags,
6760 to_add, 1);
6761 len -= to_add;
7b398f8e
JB
6762 }
6763 spin_unlock(&global_rsv->lock);
957780eb
JB
6764 /* Add to any tickets we may have */
6765 if (len)
6766 space_info_add_new_bytes(fs_info, space_info,
6767 len);
7b398f8e
JB
6768 }
6769 spin_unlock(&space_info->lock);
ccd467d6 6770 }
11833d66
YZ
6771
6772 if (cache)
6773 btrfs_put_block_group(cache);
ccd467d6
CM
6774 return 0;
6775}
6776
5ead2dd0 6777int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
a28ec197 6778{
5ead2dd0 6779 struct btrfs_fs_info *fs_info = trans->fs_info;
e33e17ee
JM
6780 struct btrfs_block_group_cache *block_group, *tmp;
6781 struct list_head *deleted_bgs;
11833d66 6782 struct extent_io_tree *unpin;
1a5bc167
CM
6783 u64 start;
6784 u64 end;
a28ec197 6785 int ret;
a28ec197 6786
11833d66
YZ
6787 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6788 unpin = &fs_info->freed_extents[1];
6789 else
6790 unpin = &fs_info->freed_extents[0];
6791
e33e17ee 6792 while (!trans->aborted) {
d4b450cd 6793 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1a5bc167 6794 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 6795 EXTENT_DIRTY, NULL);
d4b450cd
FM
6796 if (ret) {
6797 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
a28ec197 6798 break;
d4b450cd 6799 }
1f3c79a2 6800
0b246afa 6801 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 6802 ret = btrfs_discard_extent(fs_info, start,
5378e607 6803 end + 1 - start, NULL);
1f3c79a2 6804
af6f8f60 6805 clear_extent_dirty(unpin, start, end);
2ff7e61e 6806 unpin_extent_range(fs_info, start, end, true);
d4b450cd 6807 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
b9473439 6808 cond_resched();
a28ec197 6809 }
817d52f8 6810
e33e17ee
JM
6811 /*
6812 * Transaction is finished. We don't need the lock anymore. We
6813 * do need to clean up the block groups in case of a transaction
6814 * abort.
6815 */
6816 deleted_bgs = &trans->transaction->deleted_bgs;
6817 list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6818 u64 trimmed = 0;
6819
6820 ret = -EROFS;
6821 if (!trans->aborted)
2ff7e61e 6822 ret = btrfs_discard_extent(fs_info,
e33e17ee
JM
6823 block_group->key.objectid,
6824 block_group->key.offset,
6825 &trimmed);
6826
6827 list_del_init(&block_group->bg_list);
6828 btrfs_put_block_group_trimming(block_group);
6829 btrfs_put_block_group(block_group);
6830
6831 if (ret) {
6832 const char *errstr = btrfs_decode_error(ret);
6833 btrfs_warn(fs_info,
913e1535 6834 "discard failed while removing blockgroup: errno=%d %s",
e33e17ee
JM
6835 ret, errstr);
6836 }
6837 }
6838
e20d96d6
CM
6839 return 0;
6840}
6841
5d4f98a2 6842static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
2ff7e61e 6843 struct btrfs_fs_info *info,
c682f9b3 6844 struct btrfs_delayed_ref_node *node, u64 parent,
5d4f98a2
YZ
6845 u64 root_objectid, u64 owner_objectid,
6846 u64 owner_offset, int refs_to_drop,
c682f9b3 6847 struct btrfs_delayed_extent_op *extent_op)
a28ec197 6848{
e2fa7227 6849 struct btrfs_key key;
5d4f98a2 6850 struct btrfs_path *path;
1261ec42 6851 struct btrfs_root *extent_root = info->extent_root;
5f39d397 6852 struct extent_buffer *leaf;
5d4f98a2
YZ
6853 struct btrfs_extent_item *ei;
6854 struct btrfs_extent_inline_ref *iref;
a28ec197 6855 int ret;
5d4f98a2 6856 int is_data;
952fccac
CM
6857 int extent_slot = 0;
6858 int found_extent = 0;
6859 int num_to_del = 1;
5d4f98a2
YZ
6860 u32 item_size;
6861 u64 refs;
c682f9b3
QW
6862 u64 bytenr = node->bytenr;
6863 u64 num_bytes = node->num_bytes;
fcebe456 6864 int last_ref = 0;
0b246afa 6865 bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
037e6390 6866
5caf2a00 6867 path = btrfs_alloc_path();
54aa1f4d
CM
6868 if (!path)
6869 return -ENOMEM;
5f26f772 6870
e4058b54 6871 path->reada = READA_FORWARD;
b9473439 6872 path->leave_spinning = 1;
5d4f98a2
YZ
6873
6874 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6875 BUG_ON(!is_data && refs_to_drop != 1);
6876
3173a18f 6877 if (is_data)
897ca819 6878 skinny_metadata = false;
3173a18f 6879
fbe4801b
NB
6880 ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
6881 parent, root_objectid, owner_objectid,
5d4f98a2 6882 owner_offset);
7bb86316 6883 if (ret == 0) {
952fccac 6884 extent_slot = path->slots[0];
5d4f98a2
YZ
6885 while (extent_slot >= 0) {
6886 btrfs_item_key_to_cpu(path->nodes[0], &key,
952fccac 6887 extent_slot);
5d4f98a2 6888 if (key.objectid != bytenr)
952fccac 6889 break;
5d4f98a2
YZ
6890 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6891 key.offset == num_bytes) {
952fccac
CM
6892 found_extent = 1;
6893 break;
6894 }
3173a18f
JB
6895 if (key.type == BTRFS_METADATA_ITEM_KEY &&
6896 key.offset == owner_objectid) {
6897 found_extent = 1;
6898 break;
6899 }
952fccac
CM
6900 if (path->slots[0] - extent_slot > 5)
6901 break;
5d4f98a2 6902 extent_slot--;
952fccac 6903 }
5d4f98a2
YZ
6904#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6905 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
6906 if (found_extent && item_size < sizeof(*ei))
6907 found_extent = 0;
6908#endif
31840ae1 6909 if (!found_extent) {
5d4f98a2 6910 BUG_ON(iref);
87bde3cd
JM
6911 ret = remove_extent_backref(trans, info, path, NULL,
6912 refs_to_drop,
fcebe456 6913 is_data, &last_ref);
005d6427 6914 if (ret) {
66642832 6915 btrfs_abort_transaction(trans, ret);
005d6427
DS
6916 goto out;
6917 }
b3b4aa74 6918 btrfs_release_path(path);
b9473439 6919 path->leave_spinning = 1;
5d4f98a2
YZ
6920
6921 key.objectid = bytenr;
6922 key.type = BTRFS_EXTENT_ITEM_KEY;
6923 key.offset = num_bytes;
6924
3173a18f
JB
6925 if (!is_data && skinny_metadata) {
6926 key.type = BTRFS_METADATA_ITEM_KEY;
6927 key.offset = owner_objectid;
6928 }
6929
31840ae1
ZY
6930 ret = btrfs_search_slot(trans, extent_root,
6931 &key, path, -1, 1);
3173a18f
JB
6932 if (ret > 0 && skinny_metadata && path->slots[0]) {
6933 /*
6934 * Couldn't find our skinny metadata item,
6935 * see if we have ye olde extent item.
6936 */
6937 path->slots[0]--;
6938 btrfs_item_key_to_cpu(path->nodes[0], &key,
6939 path->slots[0]);
6940 if (key.objectid == bytenr &&
6941 key.type == BTRFS_EXTENT_ITEM_KEY &&
6942 key.offset == num_bytes)
6943 ret = 0;
6944 }
6945
6946 if (ret > 0 && skinny_metadata) {
6947 skinny_metadata = false;
9ce49a0b 6948 key.objectid = bytenr;
3173a18f
JB
6949 key.type = BTRFS_EXTENT_ITEM_KEY;
6950 key.offset = num_bytes;
6951 btrfs_release_path(path);
6952 ret = btrfs_search_slot(trans, extent_root,
6953 &key, path, -1, 1);
6954 }
6955
f3465ca4 6956 if (ret) {
5d163e0e
JM
6957 btrfs_err(info,
6958 "umm, got %d back from search, was looking for %llu",
6959 ret, bytenr);
b783e62d 6960 if (ret > 0)
a4f78750 6961 btrfs_print_leaf(path->nodes[0]);
f3465ca4 6962 }
005d6427 6963 if (ret < 0) {
66642832 6964 btrfs_abort_transaction(trans, ret);
005d6427
DS
6965 goto out;
6966 }
31840ae1
ZY
6967 extent_slot = path->slots[0];
6968 }
fae7f21c 6969 } else if (WARN_ON(ret == -ENOENT)) {
a4f78750 6970 btrfs_print_leaf(path->nodes[0]);
c2cf52eb
SK
6971 btrfs_err(info,
6972 "unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
c1c9ff7c
GU
6973 bytenr, parent, root_objectid, owner_objectid,
6974 owner_offset);
66642832 6975 btrfs_abort_transaction(trans, ret);
c4a050bb 6976 goto out;
79787eaa 6977 } else {
66642832 6978 btrfs_abort_transaction(trans, ret);
005d6427 6979 goto out;
7bb86316 6980 }
5f39d397
CM
6981
6982 leaf = path->nodes[0];
5d4f98a2
YZ
6983 item_size = btrfs_item_size_nr(leaf, extent_slot);
6984#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
6985 if (item_size < sizeof(*ei)) {
6986 BUG_ON(found_extent || extent_slot != path->slots[0]);
87bde3cd
JM
6987 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
6988 0);
005d6427 6989 if (ret < 0) {
66642832 6990 btrfs_abort_transaction(trans, ret);
005d6427
DS
6991 goto out;
6992 }
5d4f98a2 6993
b3b4aa74 6994 btrfs_release_path(path);
5d4f98a2
YZ
6995 path->leave_spinning = 1;
6996
6997 key.objectid = bytenr;
6998 key.type = BTRFS_EXTENT_ITEM_KEY;
6999 key.offset = num_bytes;
7000
7001 ret = btrfs_search_slot(trans, extent_root, &key, path,
7002 -1, 1);
7003 if (ret) {
5d163e0e
JM
7004 btrfs_err(info,
7005 "umm, got %d back from search, was looking for %llu",
c1c9ff7c 7006 ret, bytenr);
a4f78750 7007 btrfs_print_leaf(path->nodes[0]);
5d4f98a2 7008 }
005d6427 7009 if (ret < 0) {
66642832 7010 btrfs_abort_transaction(trans, ret);
005d6427
DS
7011 goto out;
7012 }
7013
5d4f98a2
YZ
7014 extent_slot = path->slots[0];
7015 leaf = path->nodes[0];
7016 item_size = btrfs_item_size_nr(leaf, extent_slot);
7017 }
7018#endif
7019 BUG_ON(item_size < sizeof(*ei));
952fccac 7020 ei = btrfs_item_ptr(leaf, extent_slot,
123abc88 7021 struct btrfs_extent_item);
3173a18f
JB
7022 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7023 key.type == BTRFS_EXTENT_ITEM_KEY) {
5d4f98a2
YZ
7024 struct btrfs_tree_block_info *bi;
7025 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7026 bi = (struct btrfs_tree_block_info *)(ei + 1);
7027 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7028 }
56bec294 7029
5d4f98a2 7030 refs = btrfs_extent_refs(leaf, ei);
32b02538 7031 if (refs < refs_to_drop) {
5d163e0e
JM
7032 btrfs_err(info,
7033 "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7034 refs_to_drop, refs, bytenr);
32b02538 7035 ret = -EINVAL;
66642832 7036 btrfs_abort_transaction(trans, ret);
32b02538
JB
7037 goto out;
7038 }
56bec294 7039 refs -= refs_to_drop;
5f39d397 7040
5d4f98a2
YZ
7041 if (refs > 0) {
7042 if (extent_op)
7043 __run_delayed_extent_op(extent_op, leaf, ei);
7044 /*
7045 * In the case of inline back ref, reference count will
7046 * be updated by remove_extent_backref
952fccac 7047 */
5d4f98a2
YZ
7048 if (iref) {
7049 BUG_ON(!found_extent);
7050 } else {
7051 btrfs_set_extent_refs(leaf, ei, refs);
7052 btrfs_mark_buffer_dirty(leaf);
7053 }
7054 if (found_extent) {
87bde3cd 7055 ret = remove_extent_backref(trans, info, path,
5d4f98a2 7056 iref, refs_to_drop,
fcebe456 7057 is_data, &last_ref);
005d6427 7058 if (ret) {
66642832 7059 btrfs_abort_transaction(trans, ret);
005d6427
DS
7060 goto out;
7061 }
952fccac 7062 }
5d4f98a2 7063 } else {
5d4f98a2
YZ
7064 if (found_extent) {
7065 BUG_ON(is_data && refs_to_drop !=
9ed0dea0 7066 extent_data_ref_count(path, iref));
5d4f98a2
YZ
7067 if (iref) {
7068 BUG_ON(path->slots[0] != extent_slot);
7069 } else {
7070 BUG_ON(path->slots[0] != extent_slot + 1);
7071 path->slots[0] = extent_slot;
7072 num_to_del = 2;
7073 }
78fae27e 7074 }
b9473439 7075
fcebe456 7076 last_ref = 1;
952fccac
CM
7077 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7078 num_to_del);
005d6427 7079 if (ret) {
66642832 7080 btrfs_abort_transaction(trans, ret);
005d6427
DS
7081 goto out;
7082 }
b3b4aa74 7083 btrfs_release_path(path);
21af804c 7084
5d4f98a2 7085 if (is_data) {
5b4aacef 7086 ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
005d6427 7087 if (ret) {
66642832 7088 btrfs_abort_transaction(trans, ret);
005d6427
DS
7089 goto out;
7090 }
459931ec
CM
7091 }
7092
e7355e50 7093 ret = add_to_free_space_tree(trans, bytenr, num_bytes);
1e144fb8 7094 if (ret) {
66642832 7095 btrfs_abort_transaction(trans, ret);
1e144fb8
OS
7096 goto out;
7097 }
7098
0b246afa 7099 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
005d6427 7100 if (ret) {
66642832 7101 btrfs_abort_transaction(trans, ret);
005d6427
DS
7102 goto out;
7103 }
a28ec197 7104 }
fcebe456
JB
7105 btrfs_release_path(path);
7106
79787eaa 7107out:
5caf2a00 7108 btrfs_free_path(path);
a28ec197
CM
7109 return ret;
7110}
7111
1887be66 7112/*
f0486c68 7113 * when we free an block, it is possible (and likely) that we free the last
1887be66
CM
7114 * delayed ref for that extent as well. This searches the delayed ref tree for
7115 * a given extent, and if there are no other delayed refs to be processed, it
7116 * removes it from the tree.
7117 */
7118static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
2ff7e61e 7119 u64 bytenr)
1887be66
CM
7120{
7121 struct btrfs_delayed_ref_head *head;
7122 struct btrfs_delayed_ref_root *delayed_refs;
f0486c68 7123 int ret = 0;
1887be66
CM
7124
7125 delayed_refs = &trans->transaction->delayed_refs;
7126 spin_lock(&delayed_refs->lock);
f72ad18e 7127 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1887be66 7128 if (!head)
cf93da7b 7129 goto out_delayed_unlock;
1887be66 7130
d7df2c79 7131 spin_lock(&head->lock);
0e0adbcf 7132 if (!RB_EMPTY_ROOT(&head->ref_tree))
1887be66
CM
7133 goto out;
7134
5d4f98a2
YZ
7135 if (head->extent_op) {
7136 if (!head->must_insert_reserved)
7137 goto out;
78a6184a 7138 btrfs_free_delayed_extent_op(head->extent_op);
5d4f98a2
YZ
7139 head->extent_op = NULL;
7140 }
7141
1887be66
CM
7142 /*
7143 * waiting for the lock here would deadlock. If someone else has it
7144 * locked they are already in the process of dropping it anyway
7145 */
7146 if (!mutex_trylock(&head->mutex))
7147 goto out;
7148
7149 /*
7150 * at this point we have a head with no other entries. Go
7151 * ahead and process it.
7152 */
c46effa6 7153 rb_erase(&head->href_node, &delayed_refs->href_root);
d278850e 7154 RB_CLEAR_NODE(&head->href_node);
d7df2c79 7155 atomic_dec(&delayed_refs->num_entries);
1887be66
CM
7156
7157 /*
7158 * we don't take a ref on the node because we're removing it from the
7159 * tree, so we just steal the ref the tree was holding.
7160 */
c3e69d58 7161 delayed_refs->num_heads--;
d7df2c79 7162 if (head->processing == 0)
c3e69d58 7163 delayed_refs->num_heads_ready--;
d7df2c79
JB
7164 head->processing = 0;
7165 spin_unlock(&head->lock);
1887be66
CM
7166 spin_unlock(&delayed_refs->lock);
7167
f0486c68
YZ
7168 BUG_ON(head->extent_op);
7169 if (head->must_insert_reserved)
7170 ret = 1;
7171
7172 mutex_unlock(&head->mutex);
d278850e 7173 btrfs_put_delayed_ref_head(head);
f0486c68 7174 return ret;
1887be66 7175out:
d7df2c79 7176 spin_unlock(&head->lock);
cf93da7b
CM
7177
7178out_delayed_unlock:
1887be66
CM
7179 spin_unlock(&delayed_refs->lock);
7180 return 0;
7181}
7182
f0486c68
YZ
7183void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7184 struct btrfs_root *root,
7185 struct extent_buffer *buf,
5581a51a 7186 u64 parent, int last_ref)
f0486c68 7187{
0b246afa 7188 struct btrfs_fs_info *fs_info = root->fs_info;
b150a4f1 7189 int pin = 1;
f0486c68
YZ
7190 int ret;
7191
7192 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
d7eae340
OS
7193 int old_ref_mod, new_ref_mod;
7194
fd708b81
JB
7195 btrfs_ref_tree_mod(root, buf->start, buf->len, parent,
7196 root->root_key.objectid,
7197 btrfs_header_level(buf), 0,
7198 BTRFS_DROP_DELAYED_REF);
7be07912
OS
7199 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7200 buf->len, parent,
0b246afa
JM
7201 root->root_key.objectid,
7202 btrfs_header_level(buf),
7be07912 7203 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7204 &old_ref_mod, &new_ref_mod);
79787eaa 7205 BUG_ON(ret); /* -ENOMEM */
d7eae340 7206 pin = old_ref_mod >= 0 && new_ref_mod < 0;
f0486c68
YZ
7207 }
7208
0a16c7d7 7209 if (last_ref && btrfs_header_generation(buf) == trans->transid) {
6219872d
FM
7210 struct btrfs_block_group_cache *cache;
7211
f0486c68 7212 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
2ff7e61e 7213 ret = check_ref_cleanup(trans, buf->start);
f0486c68 7214 if (!ret)
37be25bc 7215 goto out;
f0486c68
YZ
7216 }
7217
4da8b76d 7218 pin = 0;
0b246afa 7219 cache = btrfs_lookup_block_group(fs_info, buf->start);
6219872d 7220
f0486c68 7221 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
2ff7e61e
JM
7222 pin_down_extent(fs_info, cache, buf->start,
7223 buf->len, 1);
6219872d 7224 btrfs_put_block_group(cache);
37be25bc 7225 goto out;
f0486c68
YZ
7226 }
7227
7228 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7229
7230 btrfs_add_free_space(cache, buf->start, buf->len);
4824f1f4 7231 btrfs_free_reserved_bytes(cache, buf->len, 0);
6219872d 7232 btrfs_put_block_group(cache);
71ff6437 7233 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
f0486c68
YZ
7234 }
7235out:
b150a4f1 7236 if (pin)
29d2b84c 7237 add_pinned_bytes(fs_info, buf->len, true,
b150a4f1
JB
7238 root->root_key.objectid);
7239
0a16c7d7
OS
7240 if (last_ref) {
7241 /*
7242 * Deleting the buffer, clear the corrupt flag since it doesn't
7243 * matter anymore.
7244 */
7245 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7246 }
f0486c68
YZ
7247}
7248
79787eaa 7249/* Can return -ENOMEM */
2ff7e61e 7250int btrfs_free_extent(struct btrfs_trans_handle *trans,
84f7d8e6 7251 struct btrfs_root *root,
66d7e7f0 7252 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
b06c4bf5 7253 u64 owner, u64 offset)
925baedd 7254{
84f7d8e6 7255 struct btrfs_fs_info *fs_info = root->fs_info;
d7eae340 7256 int old_ref_mod, new_ref_mod;
925baedd
CM
7257 int ret;
7258
f5ee5c9a 7259 if (btrfs_is_testing(fs_info))
faa2dbf0 7260 return 0;
fccb84c9 7261
fd708b81
JB
7262 if (root_objectid != BTRFS_TREE_LOG_OBJECTID)
7263 btrfs_ref_tree_mod(root, bytenr, num_bytes, parent,
7264 root_objectid, owner, offset,
7265 BTRFS_DROP_DELAYED_REF);
7266
56bec294
CM
7267 /*
7268 * tree log blocks never actually go into the extent allocation
7269 * tree, just update pinning info and exit early.
56bec294 7270 */
5d4f98a2
YZ
7271 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7272 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
b9473439 7273 /* unlocks the pinned mutex */
2ff7e61e 7274 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
d7eae340 7275 old_ref_mod = new_ref_mod = 0;
56bec294 7276 ret = 0;
5d4f98a2 7277 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
66d7e7f0 7278 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7be07912
OS
7279 num_bytes, parent,
7280 root_objectid, (int)owner,
7281 BTRFS_DROP_DELAYED_REF, NULL,
d7eae340 7282 &old_ref_mod, &new_ref_mod);
5d4f98a2 7283 } else {
66d7e7f0 7284 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7be07912
OS
7285 num_bytes, parent,
7286 root_objectid, owner, offset,
7287 0, BTRFS_DROP_DELAYED_REF,
d7eae340 7288 &old_ref_mod, &new_ref_mod);
56bec294 7289 }
d7eae340 7290
29d2b84c
NB
7291 if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0) {
7292 bool metadata = owner < BTRFS_FIRST_FREE_OBJECTID;
7293
7294 add_pinned_bytes(fs_info, num_bytes, metadata, root_objectid);
7295 }
d7eae340 7296
925baedd
CM
7297 return ret;
7298}
7299
817d52f8
JB
7300/*
7301 * when we wait for progress in the block group caching, its because
7302 * our allocation attempt failed at least once. So, we must sleep
7303 * and let some progress happen before we try again.
7304 *
7305 * This function will sleep at least once waiting for new free space to
7306 * show up, and then it will check the block group free space numbers
7307 * for our min num_bytes. Another option is to have it go ahead
7308 * and look in the rbtree for a free extent of a given size, but this
7309 * is a good start.
36cce922
JB
7310 *
7311 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7312 * any of the information in this block group.
817d52f8 7313 */
36cce922 7314static noinline void
817d52f8
JB
7315wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7316 u64 num_bytes)
7317{
11833d66 7318 struct btrfs_caching_control *caching_ctl;
817d52f8 7319
11833d66
YZ
7320 caching_ctl = get_caching_control(cache);
7321 if (!caching_ctl)
36cce922 7322 return;
817d52f8 7323
11833d66 7324 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
34d52cb6 7325 (cache->free_space_ctl->free_space >= num_bytes));
11833d66
YZ
7326
7327 put_caching_control(caching_ctl);
11833d66
YZ
7328}
7329
7330static noinline int
7331wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7332{
7333 struct btrfs_caching_control *caching_ctl;
36cce922 7334 int ret = 0;
11833d66
YZ
7335
7336 caching_ctl = get_caching_control(cache);
7337 if (!caching_ctl)
36cce922 7338 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
11833d66
YZ
7339
7340 wait_event(caching_ctl->wait, block_group_cache_done(cache));
36cce922
JB
7341 if (cache->cached == BTRFS_CACHE_ERROR)
7342 ret = -EIO;
11833d66 7343 put_caching_control(caching_ctl);
36cce922 7344 return ret;
817d52f8
JB
7345}
7346
7347enum btrfs_loop_type {
285ff5af
JB
7348 LOOP_CACHING_NOWAIT = 0,
7349 LOOP_CACHING_WAIT = 1,
7350 LOOP_ALLOC_CHUNK = 2,
7351 LOOP_NO_EMPTY_SIZE = 3,
817d52f8
JB
7352};
7353
e570fd27
MX
7354static inline void
7355btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7356 int delalloc)
7357{
7358 if (delalloc)
7359 down_read(&cache->data_rwsem);
7360}
7361
7362static inline void
7363btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7364 int delalloc)
7365{
7366 btrfs_get_block_group(cache);
7367 if (delalloc)
7368 down_read(&cache->data_rwsem);
7369}
7370
7371static struct btrfs_block_group_cache *
7372btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7373 struct btrfs_free_cluster *cluster,
7374 int delalloc)
7375{
89771cc9 7376 struct btrfs_block_group_cache *used_bg = NULL;
6719afdc 7377
e570fd27 7378 spin_lock(&cluster->refill_lock);
6719afdc
GU
7379 while (1) {
7380 used_bg = cluster->block_group;
7381 if (!used_bg)
7382 return NULL;
7383
7384 if (used_bg == block_group)
e570fd27
MX
7385 return used_bg;
7386
6719afdc 7387 btrfs_get_block_group(used_bg);
e570fd27 7388
6719afdc
GU
7389 if (!delalloc)
7390 return used_bg;
e570fd27 7391
6719afdc
GU
7392 if (down_read_trylock(&used_bg->data_rwsem))
7393 return used_bg;
e570fd27 7394
6719afdc 7395 spin_unlock(&cluster->refill_lock);
e570fd27 7396
e321f8a8
LB
7397 /* We should only have one-level nested. */
7398 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
e570fd27 7399
6719afdc
GU
7400 spin_lock(&cluster->refill_lock);
7401 if (used_bg == cluster->block_group)
7402 return used_bg;
e570fd27 7403
6719afdc
GU
7404 up_read(&used_bg->data_rwsem);
7405 btrfs_put_block_group(used_bg);
7406 }
e570fd27
MX
7407}
7408
7409static inline void
7410btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7411 int delalloc)
7412{
7413 if (delalloc)
7414 up_read(&cache->data_rwsem);
7415 btrfs_put_block_group(cache);
7416}
7417
fec577fb
CM
7418/*
7419 * walks the btree of allocated extents and find a hole of a given size.
7420 * The key ins is changed to record the hole:
a4820398 7421 * ins->objectid == start position
62e2749e 7422 * ins->flags = BTRFS_EXTENT_ITEM_KEY
a4820398 7423 * ins->offset == the size of the hole.
fec577fb 7424 * Any available blocks before search_start are skipped.
a4820398
MX
7425 *
7426 * If there is no suitable free space, we will record the max size of
7427 * the free space extent currently.
fec577fb 7428 */
87bde3cd 7429static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
18513091
WX
7430 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7431 u64 hint_byte, struct btrfs_key *ins,
7432 u64 flags, int delalloc)
fec577fb 7433{
80eb234a 7434 int ret = 0;
0b246afa 7435 struct btrfs_root *root = fs_info->extent_root;
fa9c0d79 7436 struct btrfs_free_cluster *last_ptr = NULL;
80eb234a 7437 struct btrfs_block_group_cache *block_group = NULL;
81c9ad23 7438 u64 search_start = 0;
a4820398 7439 u64 max_extent_size = 0;
c759c4e1 7440 u64 empty_cluster = 0;
80eb234a 7441 struct btrfs_space_info *space_info;
fa9c0d79 7442 int loop = 0;
3e72ee88 7443 int index = btrfs_bg_flags_to_raid_index(flags);
0a24325e 7444 bool failed_cluster_refill = false;
1cdda9b8 7445 bool failed_alloc = false;
67377734 7446 bool use_cluster = true;
60d2adbb 7447 bool have_caching_bg = false;
13a0db5a 7448 bool orig_have_caching_bg = false;
a5e681d9 7449 bool full_search = false;
fec577fb 7450
0b246afa 7451 WARN_ON(num_bytes < fs_info->sectorsize);
962a298f 7452 ins->type = BTRFS_EXTENT_ITEM_KEY;
80eb234a
JB
7453 ins->objectid = 0;
7454 ins->offset = 0;
b1a4d965 7455
71ff6437 7456 trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
3f7de037 7457
0b246afa 7458 space_info = __find_space_info(fs_info, flags);
1b1d1f66 7459 if (!space_info) {
0b246afa 7460 btrfs_err(fs_info, "No space info for %llu", flags);
1b1d1f66
JB
7461 return -ENOSPC;
7462 }
2552d17e 7463
67377734 7464 /*
4f4db217
JB
7465 * If our free space is heavily fragmented we may not be able to make
7466 * big contiguous allocations, so instead of doing the expensive search
7467 * for free space, simply return ENOSPC with our max_extent_size so we
7468 * can go ahead and search for a more manageable chunk.
7469 *
7470 * If our max_extent_size is large enough for our allocation simply
7471 * disable clustering since we will likely not be able to find enough
7472 * space to create a cluster and induce latency trying.
67377734 7473 */
4f4db217
JB
7474 if (unlikely(space_info->max_extent_size)) {
7475 spin_lock(&space_info->lock);
7476 if (space_info->max_extent_size &&
7477 num_bytes > space_info->max_extent_size) {
7478 ins->offset = space_info->max_extent_size;
7479 spin_unlock(&space_info->lock);
7480 return -ENOSPC;
7481 } else if (space_info->max_extent_size) {
7482 use_cluster = false;
7483 }
7484 spin_unlock(&space_info->lock);
fa9c0d79 7485 }
0f9dd46c 7486
2ff7e61e 7487 last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
239b14b3 7488 if (last_ptr) {
fa9c0d79
CM
7489 spin_lock(&last_ptr->lock);
7490 if (last_ptr->block_group)
7491 hint_byte = last_ptr->window_start;
c759c4e1
JB
7492 if (last_ptr->fragmented) {
7493 /*
7494 * We still set window_start so we can keep track of the
7495 * last place we found an allocation to try and save
7496 * some time.
7497 */
7498 hint_byte = last_ptr->window_start;
7499 use_cluster = false;
7500 }
fa9c0d79 7501 spin_unlock(&last_ptr->lock);
239b14b3 7502 }
fa9c0d79 7503
2ff7e61e 7504 search_start = max(search_start, first_logical_byte(fs_info, 0));
239b14b3 7505 search_start = max(search_start, hint_byte);
2552d17e 7506 if (search_start == hint_byte) {
0b246afa 7507 block_group = btrfs_lookup_block_group(fs_info, search_start);
817d52f8
JB
7508 /*
7509 * we don't want to use the block group if it doesn't match our
7510 * allocation bits, or if its not cached.
ccf0e725
JB
7511 *
7512 * However if we are re-searching with an ideal block group
7513 * picked out then we don't care that the block group is cached.
817d52f8 7514 */
b6919a58 7515 if (block_group && block_group_bits(block_group, flags) &&
285ff5af 7516 block_group->cached != BTRFS_CACHE_NO) {
2552d17e 7517 down_read(&space_info->groups_sem);
44fb5511
CM
7518 if (list_empty(&block_group->list) ||
7519 block_group->ro) {
7520 /*
7521 * someone is removing this block group,
7522 * we can't jump into the have_block_group
7523 * target because our list pointers are not
7524 * valid
7525 */
7526 btrfs_put_block_group(block_group);
7527 up_read(&space_info->groups_sem);
ccf0e725 7528 } else {
3e72ee88
QW
7529 index = btrfs_bg_flags_to_raid_index(
7530 block_group->flags);
e570fd27 7531 btrfs_lock_block_group(block_group, delalloc);
44fb5511 7532 goto have_block_group;
ccf0e725 7533 }
2552d17e 7534 } else if (block_group) {
fa9c0d79 7535 btrfs_put_block_group(block_group);
2552d17e 7536 }
42e70e7a 7537 }
2552d17e 7538search:
60d2adbb 7539 have_caching_bg = false;
3e72ee88 7540 if (index == 0 || index == btrfs_bg_flags_to_raid_index(flags))
a5e681d9 7541 full_search = true;
80eb234a 7542 down_read(&space_info->groups_sem);
b742bb82
YZ
7543 list_for_each_entry(block_group, &space_info->block_groups[index],
7544 list) {
6226cb0a 7545 u64 offset;
817d52f8 7546 int cached;
8a1413a2 7547
14443937
JM
7548 /* If the block group is read-only, we can skip it entirely. */
7549 if (unlikely(block_group->ro))
7550 continue;
7551
e570fd27 7552 btrfs_grab_block_group(block_group, delalloc);
2552d17e 7553 search_start = block_group->key.objectid;
42e70e7a 7554
83a50de9
CM
7555 /*
7556 * this can happen if we end up cycling through all the
7557 * raid types, but we want to make sure we only allocate
7558 * for the proper type.
7559 */
b6919a58 7560 if (!block_group_bits(block_group, flags)) {
bece2e82 7561 u64 extra = BTRFS_BLOCK_GROUP_DUP |
83a50de9 7562 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
7563 BTRFS_BLOCK_GROUP_RAID5 |
7564 BTRFS_BLOCK_GROUP_RAID6 |
83a50de9
CM
7565 BTRFS_BLOCK_GROUP_RAID10;
7566
7567 /*
7568 * if they asked for extra copies and this block group
7569 * doesn't provide them, bail. This does allow us to
7570 * fill raid0 from raid1.
7571 */
b6919a58 7572 if ((flags & extra) && !(block_group->flags & extra))
83a50de9
CM
7573 goto loop;
7574 }
7575
2552d17e 7576have_block_group:
291c7d2f
JB
7577 cached = block_group_cache_done(block_group);
7578 if (unlikely(!cached)) {
a5e681d9 7579 have_caching_bg = true;
f6373bf3 7580 ret = cache_block_group(block_group, 0);
1d4284bd
CM
7581 BUG_ON(ret < 0);
7582 ret = 0;
817d52f8
JB
7583 }
7584
36cce922
JB
7585 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7586 goto loop;
0f9dd46c 7587
0a24325e 7588 /*
062c05c4
AO
7589 * Ok we want to try and use the cluster allocator, so
7590 * lets look there
0a24325e 7591 */
c759c4e1 7592 if (last_ptr && use_cluster) {
215a63d1 7593 struct btrfs_block_group_cache *used_block_group;
8de972b4 7594 unsigned long aligned_cluster;
fa9c0d79
CM
7595 /*
7596 * the refill lock keeps out other
7597 * people trying to start a new cluster
7598 */
e570fd27
MX
7599 used_block_group = btrfs_lock_cluster(block_group,
7600 last_ptr,
7601 delalloc);
7602 if (!used_block_group)
44fb5511 7603 goto refill_cluster;
274bd4fb 7604
e570fd27
MX
7605 if (used_block_group != block_group &&
7606 (used_block_group->ro ||
7607 !block_group_bits(used_block_group, flags)))
7608 goto release_cluster;
44fb5511 7609
274bd4fb 7610 offset = btrfs_alloc_from_cluster(used_block_group,
a4820398
MX
7611 last_ptr,
7612 num_bytes,
7613 used_block_group->key.objectid,
7614 &max_extent_size);
fa9c0d79
CM
7615 if (offset) {
7616 /* we have a block, we're done */
7617 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7618 trace_btrfs_reserve_extent_cluster(
89d4346a
MX
7619 used_block_group,
7620 search_start, num_bytes);
215a63d1 7621 if (used_block_group != block_group) {
e570fd27
MX
7622 btrfs_release_block_group(block_group,
7623 delalloc);
215a63d1
MX
7624 block_group = used_block_group;
7625 }
fa9c0d79
CM
7626 goto checks;
7627 }
7628
274bd4fb 7629 WARN_ON(last_ptr->block_group != used_block_group);
e570fd27 7630release_cluster:
062c05c4
AO
7631 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7632 * set up a new clusters, so lets just skip it
7633 * and let the allocator find whatever block
7634 * it can find. If we reach this point, we
7635 * will have tried the cluster allocator
7636 * plenty of times and not have found
7637 * anything, so we are likely way too
7638 * fragmented for the clustering stuff to find
a5f6f719
AO
7639 * anything.
7640 *
7641 * However, if the cluster is taken from the
7642 * current block group, release the cluster
7643 * first, so that we stand a better chance of
7644 * succeeding in the unclustered
7645 * allocation. */
7646 if (loop >= LOOP_NO_EMPTY_SIZE &&
e570fd27 7647 used_block_group != block_group) {
062c05c4 7648 spin_unlock(&last_ptr->refill_lock);
e570fd27
MX
7649 btrfs_release_block_group(used_block_group,
7650 delalloc);
062c05c4
AO
7651 goto unclustered_alloc;
7652 }
7653
fa9c0d79
CM
7654 /*
7655 * this cluster didn't work out, free it and
7656 * start over
7657 */
7658 btrfs_return_cluster_to_free_space(NULL, last_ptr);
7659
e570fd27
MX
7660 if (used_block_group != block_group)
7661 btrfs_release_block_group(used_block_group,
7662 delalloc);
7663refill_cluster:
a5f6f719
AO
7664 if (loop >= LOOP_NO_EMPTY_SIZE) {
7665 spin_unlock(&last_ptr->refill_lock);
7666 goto unclustered_alloc;
7667 }
7668
8de972b4
CM
7669 aligned_cluster = max_t(unsigned long,
7670 empty_cluster + empty_size,
7671 block_group->full_stripe_len);
7672
fa9c0d79 7673 /* allocate a cluster in this block group */
2ff7e61e 7674 ret = btrfs_find_space_cluster(fs_info, block_group,
00361589
JB
7675 last_ptr, search_start,
7676 num_bytes,
7677 aligned_cluster);
fa9c0d79
CM
7678 if (ret == 0) {
7679 /*
7680 * now pull our allocation out of this
7681 * cluster
7682 */
7683 offset = btrfs_alloc_from_cluster(block_group,
a4820398
MX
7684 last_ptr,
7685 num_bytes,
7686 search_start,
7687 &max_extent_size);
fa9c0d79
CM
7688 if (offset) {
7689 /* we found one, proceed */
7690 spin_unlock(&last_ptr->refill_lock);
3dca5c94 7691 trace_btrfs_reserve_extent_cluster(
3f7de037
JB
7692 block_group, search_start,
7693 num_bytes);
fa9c0d79
CM
7694 goto checks;
7695 }
0a24325e
JB
7696 } else if (!cached && loop > LOOP_CACHING_NOWAIT
7697 && !failed_cluster_refill) {
817d52f8
JB
7698 spin_unlock(&last_ptr->refill_lock);
7699
0a24325e 7700 failed_cluster_refill = true;
817d52f8
JB
7701 wait_block_group_cache_progress(block_group,
7702 num_bytes + empty_cluster + empty_size);
7703 goto have_block_group;
fa9c0d79 7704 }
817d52f8 7705
fa9c0d79
CM
7706 /*
7707 * at this point we either didn't find a cluster
7708 * or we weren't able to allocate a block from our
7709 * cluster. Free the cluster we've been trying
7710 * to use, and go to the next block group
7711 */
0a24325e 7712 btrfs_return_cluster_to_free_space(NULL, last_ptr);
fa9c0d79 7713 spin_unlock(&last_ptr->refill_lock);
0a24325e 7714 goto loop;
fa9c0d79
CM
7715 }
7716
062c05c4 7717unclustered_alloc:
c759c4e1
JB
7718 /*
7719 * We are doing an unclustered alloc, set the fragmented flag so
7720 * we don't bother trying to setup a cluster again until we get
7721 * more space.
7722 */
7723 if (unlikely(last_ptr)) {
7724 spin_lock(&last_ptr->lock);
7725 last_ptr->fragmented = 1;
7726 spin_unlock(&last_ptr->lock);
7727 }
0c9b36e0
LB
7728 if (cached) {
7729 struct btrfs_free_space_ctl *ctl =
7730 block_group->free_space_ctl;
7731
7732 spin_lock(&ctl->tree_lock);
7733 if (ctl->free_space <
7734 num_bytes + empty_cluster + empty_size) {
7735 if (ctl->free_space > max_extent_size)
7736 max_extent_size = ctl->free_space;
7737 spin_unlock(&ctl->tree_lock);
7738 goto loop;
7739 }
7740 spin_unlock(&ctl->tree_lock);
a5f6f719 7741 }
a5f6f719 7742
6226cb0a 7743 offset = btrfs_find_space_for_alloc(block_group, search_start,
a4820398
MX
7744 num_bytes, empty_size,
7745 &max_extent_size);
1cdda9b8
JB
7746 /*
7747 * If we didn't find a chunk, and we haven't failed on this
7748 * block group before, and this block group is in the middle of
7749 * caching and we are ok with waiting, then go ahead and wait
7750 * for progress to be made, and set failed_alloc to true.
7751 *
7752 * If failed_alloc is true then we've already waited on this
7753 * block group once and should move on to the next block group.
7754 */
7755 if (!offset && !failed_alloc && !cached &&
7756 loop > LOOP_CACHING_NOWAIT) {
817d52f8 7757 wait_block_group_cache_progress(block_group,
1cdda9b8
JB
7758 num_bytes + empty_size);
7759 failed_alloc = true;
817d52f8 7760 goto have_block_group;
1cdda9b8
JB
7761 } else if (!offset) {
7762 goto loop;
817d52f8 7763 }
fa9c0d79 7764checks:
0b246afa 7765 search_start = ALIGN(offset, fs_info->stripesize);
25179201 7766
2552d17e
JB
7767 /* move on to the next group */
7768 if (search_start + num_bytes >
215a63d1
MX
7769 block_group->key.objectid + block_group->key.offset) {
7770 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7771 goto loop;
6226cb0a 7772 }
f5a31e16 7773
f0486c68 7774 if (offset < search_start)
215a63d1 7775 btrfs_add_free_space(block_group, offset,
f0486c68
YZ
7776 search_start - offset);
7777 BUG_ON(offset > search_start);
2552d17e 7778
18513091
WX
7779 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7780 num_bytes, delalloc);
f0486c68 7781 if (ret == -EAGAIN) {
215a63d1 7782 btrfs_add_free_space(block_group, offset, num_bytes);
2552d17e 7783 goto loop;
0f9dd46c 7784 }
9cfa3e34 7785 btrfs_inc_block_group_reservations(block_group);
0b86a832 7786
f0486c68 7787 /* we are all good, lets return */
2552d17e
JB
7788 ins->objectid = search_start;
7789 ins->offset = num_bytes;
d2fb3437 7790
3dca5c94 7791 trace_btrfs_reserve_extent(block_group, search_start, num_bytes);
e570fd27 7792 btrfs_release_block_group(block_group, delalloc);
2552d17e
JB
7793 break;
7794loop:
0a24325e 7795 failed_cluster_refill = false;
1cdda9b8 7796 failed_alloc = false;
3e72ee88
QW
7797 BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
7798 index);
e570fd27 7799 btrfs_release_block_group(block_group, delalloc);
14443937 7800 cond_resched();
2552d17e
JB
7801 }
7802 up_read(&space_info->groups_sem);
7803
13a0db5a 7804 if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7805 && !orig_have_caching_bg)
7806 orig_have_caching_bg = true;
7807
60d2adbb
MX
7808 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7809 goto search;
7810
b742bb82
YZ
7811 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7812 goto search;
7813
285ff5af 7814 /*
ccf0e725
JB
7815 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7816 * caching kthreads as we move along
817d52f8
JB
7817 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7818 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7819 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7820 * again
fa9c0d79 7821 */
723bda20 7822 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
b742bb82 7823 index = 0;
a5e681d9
JB
7824 if (loop == LOOP_CACHING_NOWAIT) {
7825 /*
7826 * We want to skip the LOOP_CACHING_WAIT step if we
01327610 7827 * don't have any uncached bgs and we've already done a
a5e681d9
JB
7828 * full search through.
7829 */
13a0db5a 7830 if (orig_have_caching_bg || !full_search)
a5e681d9
JB
7831 loop = LOOP_CACHING_WAIT;
7832 else
7833 loop = LOOP_ALLOC_CHUNK;
7834 } else {
7835 loop++;
7836 }
7837
817d52f8 7838 if (loop == LOOP_ALLOC_CHUNK) {
00361589 7839 struct btrfs_trans_handle *trans;
f017f15f
WS
7840 int exist = 0;
7841
7842 trans = current->journal_info;
7843 if (trans)
7844 exist = 1;
7845 else
7846 trans = btrfs_join_transaction(root);
00361589 7847
00361589
JB
7848 if (IS_ERR(trans)) {
7849 ret = PTR_ERR(trans);
7850 goto out;
7851 }
7852
2ff7e61e 7853 ret = do_chunk_alloc(trans, fs_info, flags,
ea658bad 7854 CHUNK_ALLOC_FORCE);
a5e681d9
JB
7855
7856 /*
7857 * If we can't allocate a new chunk we've already looped
7858 * through at least once, move on to the NO_EMPTY_SIZE
7859 * case.
7860 */
7861 if (ret == -ENOSPC)
7862 loop = LOOP_NO_EMPTY_SIZE;
7863
ea658bad
JB
7864 /*
7865 * Do not bail out on ENOSPC since we
7866 * can do more things.
7867 */
00361589 7868 if (ret < 0 && ret != -ENOSPC)
66642832 7869 btrfs_abort_transaction(trans, ret);
00361589
JB
7870 else
7871 ret = 0;
f017f15f 7872 if (!exist)
3a45bb20 7873 btrfs_end_transaction(trans);
00361589 7874 if (ret)
ea658bad 7875 goto out;
2552d17e
JB
7876 }
7877
723bda20 7878 if (loop == LOOP_NO_EMPTY_SIZE) {
a5e681d9
JB
7879 /*
7880 * Don't loop again if we already have no empty_size and
7881 * no empty_cluster.
7882 */
7883 if (empty_size == 0 &&
7884 empty_cluster == 0) {
7885 ret = -ENOSPC;
7886 goto out;
7887 }
723bda20
JB
7888 empty_size = 0;
7889 empty_cluster = 0;
fa9c0d79 7890 }
723bda20
JB
7891
7892 goto search;
2552d17e
JB
7893 } else if (!ins->objectid) {
7894 ret = -ENOSPC;
d82a6f1d 7895 } else if (ins->objectid) {
c759c4e1
JB
7896 if (!use_cluster && last_ptr) {
7897 spin_lock(&last_ptr->lock);
7898 last_ptr->window_start = ins->objectid;
7899 spin_unlock(&last_ptr->lock);
7900 }
80eb234a 7901 ret = 0;
be744175 7902 }
79787eaa 7903out:
4f4db217
JB
7904 if (ret == -ENOSPC) {
7905 spin_lock(&space_info->lock);
7906 space_info->max_extent_size = max_extent_size;
7907 spin_unlock(&space_info->lock);
a4820398 7908 ins->offset = max_extent_size;
4f4db217 7909 }
0f70abe2 7910 return ret;
fec577fb 7911}
ec44a35c 7912
ab8d0fc4
JM
7913static void dump_space_info(struct btrfs_fs_info *fs_info,
7914 struct btrfs_space_info *info, u64 bytes,
9ed74f2d 7915 int dump_block_groups)
0f9dd46c
JB
7916{
7917 struct btrfs_block_group_cache *cache;
b742bb82 7918 int index = 0;
0f9dd46c 7919
9ed74f2d 7920 spin_lock(&info->lock);
ab8d0fc4
JM
7921 btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
7922 info->flags,
4136135b
LB
7923 info->total_bytes - btrfs_space_info_used(info, true),
7924 info->full ? "" : "not ");
ab8d0fc4
JM
7925 btrfs_info(fs_info,
7926 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
7927 info->total_bytes, info->bytes_used, info->bytes_pinned,
7928 info->bytes_reserved, info->bytes_may_use,
7929 info->bytes_readonly);
9ed74f2d
JB
7930 spin_unlock(&info->lock);
7931
7932 if (!dump_block_groups)
7933 return;
0f9dd46c 7934
80eb234a 7935 down_read(&info->groups_sem);
b742bb82
YZ
7936again:
7937 list_for_each_entry(cache, &info->block_groups[index], list) {
0f9dd46c 7938 spin_lock(&cache->lock);
ab8d0fc4
JM
7939 btrfs_info(fs_info,
7940 "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
7941 cache->key.objectid, cache->key.offset,
7942 btrfs_block_group_used(&cache->item), cache->pinned,
7943 cache->reserved, cache->ro ? "[readonly]" : "");
0f9dd46c
JB
7944 btrfs_dump_free_space(cache, bytes);
7945 spin_unlock(&cache->lock);
7946 }
b742bb82
YZ
7947 if (++index < BTRFS_NR_RAID_TYPES)
7948 goto again;
80eb234a 7949 up_read(&info->groups_sem);
0f9dd46c 7950}
e8569813 7951
6f47c706
NB
7952/*
7953 * btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
7954 * hole that is at least as big as @num_bytes.
7955 *
7956 * @root - The root that will contain this extent
7957 *
7958 * @ram_bytes - The amount of space in ram that @num_bytes take. This
7959 * is used for accounting purposes. This value differs
7960 * from @num_bytes only in the case of compressed extents.
7961 *
7962 * @num_bytes - Number of bytes to allocate on-disk.
7963 *
7964 * @min_alloc_size - Indicates the minimum amount of space that the
7965 * allocator should try to satisfy. In some cases
7966 * @num_bytes may be larger than what is required and if
7967 * the filesystem is fragmented then allocation fails.
7968 * However, the presence of @min_alloc_size gives a
7969 * chance to try and satisfy the smaller allocation.
7970 *
7971 * @empty_size - A hint that you plan on doing more COW. This is the
7972 * size in bytes the allocator should try to find free
7973 * next to the block it returns. This is just a hint and
7974 * may be ignored by the allocator.
7975 *
7976 * @hint_byte - Hint to the allocator to start searching above the byte
7977 * address passed. It might be ignored.
7978 *
7979 * @ins - This key is modified to record the found hole. It will
7980 * have the following values:
7981 * ins->objectid == start position
7982 * ins->flags = BTRFS_EXTENT_ITEM_KEY
7983 * ins->offset == the size of the hole.
7984 *
7985 * @is_data - Boolean flag indicating whether an extent is
7986 * allocated for data (true) or metadata (false)
7987 *
7988 * @delalloc - Boolean flag indicating whether this allocation is for
7989 * delalloc or not. If 'true' data_rwsem of block groups
7990 * is going to be acquired.
7991 *
7992 *
7993 * Returns 0 when an allocation succeeded or < 0 when an error occurred. In
7994 * case -ENOSPC is returned then @ins->offset will contain the size of the
7995 * largest available hole the allocator managed to find.
7996 */
18513091 7997int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
11833d66
YZ
7998 u64 num_bytes, u64 min_alloc_size,
7999 u64 empty_size, u64 hint_byte,
e570fd27 8000 struct btrfs_key *ins, int is_data, int delalloc)
fec577fb 8001{
ab8d0fc4 8002 struct btrfs_fs_info *fs_info = root->fs_info;
36af4e07 8003 bool final_tried = num_bytes == min_alloc_size;
b6919a58 8004 u64 flags;
fec577fb 8005 int ret;
925baedd 8006
1b86826d 8007 flags = get_alloc_profile_by_root(root, is_data);
98d20f67 8008again:
0b246afa 8009 WARN_ON(num_bytes < fs_info->sectorsize);
87bde3cd 8010 ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
18513091 8011 hint_byte, ins, flags, delalloc);
9cfa3e34 8012 if (!ret && !is_data) {
ab8d0fc4 8013 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
9cfa3e34 8014 } else if (ret == -ENOSPC) {
a4820398
MX
8015 if (!final_tried && ins->offset) {
8016 num_bytes = min(num_bytes >> 1, ins->offset);
da17066c 8017 num_bytes = round_down(num_bytes,
0b246afa 8018 fs_info->sectorsize);
9e622d6b 8019 num_bytes = max(num_bytes, min_alloc_size);
18513091 8020 ram_bytes = num_bytes;
9e622d6b
MX
8021 if (num_bytes == min_alloc_size)
8022 final_tried = true;
8023 goto again;
ab8d0fc4 8024 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
9e622d6b
MX
8025 struct btrfs_space_info *sinfo;
8026
ab8d0fc4 8027 sinfo = __find_space_info(fs_info, flags);
0b246afa 8028 btrfs_err(fs_info,
5d163e0e
JM
8029 "allocation failed flags %llu, wanted %llu",
8030 flags, num_bytes);
53804280 8031 if (sinfo)
ab8d0fc4 8032 dump_space_info(fs_info, sinfo, num_bytes, 1);
9e622d6b 8033 }
925baedd 8034 }
0f9dd46c
JB
8035
8036 return ret;
e6dcd2dc
CM
8037}
8038
2ff7e61e 8039static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27
MX
8040 u64 start, u64 len,
8041 int pin, int delalloc)
65b51a00 8042{
0f9dd46c 8043 struct btrfs_block_group_cache *cache;
1f3c79a2 8044 int ret = 0;
0f9dd46c 8045
0b246afa 8046 cache = btrfs_lookup_block_group(fs_info, start);
0f9dd46c 8047 if (!cache) {
0b246afa
JM
8048 btrfs_err(fs_info, "Unable to find block group for %llu",
8049 start);
0f9dd46c
JB
8050 return -ENOSPC;
8051 }
1f3c79a2 8052
e688b725 8053 if (pin)
2ff7e61e 8054 pin_down_extent(fs_info, cache, start, len, 1);
e688b725 8055 else {
0b246afa 8056 if (btrfs_test_opt(fs_info, DISCARD))
2ff7e61e 8057 ret = btrfs_discard_extent(fs_info, start, len, NULL);
e688b725 8058 btrfs_add_free_space(cache, start, len);
4824f1f4 8059 btrfs_free_reserved_bytes(cache, len, delalloc);
71ff6437 8060 trace_btrfs_reserved_extent_free(fs_info, start, len);
e688b725 8061 }
31193213 8062
fa9c0d79 8063 btrfs_put_block_group(cache);
e6dcd2dc
CM
8064 return ret;
8065}
8066
2ff7e61e 8067int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
e570fd27 8068 u64 start, u64 len, int delalloc)
e688b725 8069{
2ff7e61e 8070 return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
e688b725
CM
8071}
8072
2ff7e61e 8073int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
e688b725
CM
8074 u64 start, u64 len)
8075{
2ff7e61e 8076 return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
e688b725
CM
8077}
8078
5d4f98a2 8079static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8080 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8081 u64 parent, u64 root_objectid,
8082 u64 flags, u64 owner, u64 offset,
8083 struct btrfs_key *ins, int ref_mod)
e6dcd2dc
CM
8084{
8085 int ret;
e6dcd2dc 8086 struct btrfs_extent_item *extent_item;
5d4f98a2 8087 struct btrfs_extent_inline_ref *iref;
e6dcd2dc 8088 struct btrfs_path *path;
5d4f98a2
YZ
8089 struct extent_buffer *leaf;
8090 int type;
8091 u32 size;
26b8003f 8092
5d4f98a2
YZ
8093 if (parent > 0)
8094 type = BTRFS_SHARED_DATA_REF_KEY;
8095 else
8096 type = BTRFS_EXTENT_DATA_REF_KEY;
58176a96 8097
5d4f98a2 8098 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
7bb86316
CM
8099
8100 path = btrfs_alloc_path();
db5b493a
TI
8101 if (!path)
8102 return -ENOMEM;
47e4bb98 8103
b9473439 8104 path->leave_spinning = 1;
5d4f98a2
YZ
8105 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8106 ins, size);
79787eaa
JM
8107 if (ret) {
8108 btrfs_free_path(path);
8109 return ret;
8110 }
0f9dd46c 8111
5d4f98a2
YZ
8112 leaf = path->nodes[0];
8113 extent_item = btrfs_item_ptr(leaf, path->slots[0],
47e4bb98 8114 struct btrfs_extent_item);
5d4f98a2
YZ
8115 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8116 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8117 btrfs_set_extent_flags(leaf, extent_item,
8118 flags | BTRFS_EXTENT_FLAG_DATA);
8119
8120 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8121 btrfs_set_extent_inline_ref_type(leaf, iref, type);
8122 if (parent > 0) {
8123 struct btrfs_shared_data_ref *ref;
8124 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8125 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8126 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8127 } else {
8128 struct btrfs_extent_data_ref *ref;
8129 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8130 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8131 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8132 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8133 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8134 }
47e4bb98
CM
8135
8136 btrfs_mark_buffer_dirty(path->nodes[0]);
7bb86316 8137 btrfs_free_path(path);
f510cfec 8138
25a356d3 8139 ret = remove_from_free_space_tree(trans, ins->objectid, ins->offset);
1e144fb8
OS
8140 if (ret)
8141 return ret;
8142
6202df69 8143 ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
79787eaa 8144 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8145 btrfs_err(fs_info, "update block group failed for %llu %llu",
c1c9ff7c 8146 ins->objectid, ins->offset);
f5947066
CM
8147 BUG();
8148 }
71ff6437 8149 trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
e6dcd2dc
CM
8150 return ret;
8151}
8152
5d4f98a2 8153static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
4e6bd4e0 8154 struct btrfs_delayed_ref_node *node,
21ebfbe7 8155 struct btrfs_delayed_extent_op *extent_op)
e6dcd2dc 8156{
9dcdbe01 8157 struct btrfs_fs_info *fs_info = trans->fs_info;
e6dcd2dc 8158 int ret;
5d4f98a2 8159 struct btrfs_extent_item *extent_item;
4e6bd4e0 8160 struct btrfs_key extent_key;
5d4f98a2
YZ
8161 struct btrfs_tree_block_info *block_info;
8162 struct btrfs_extent_inline_ref *iref;
8163 struct btrfs_path *path;
8164 struct extent_buffer *leaf;
4e6bd4e0 8165 struct btrfs_delayed_tree_ref *ref;
3173a18f 8166 u32 size = sizeof(*extent_item) + sizeof(*iref);
4e6bd4e0 8167 u64 num_bytes;
21ebfbe7 8168 u64 flags = extent_op->flags_to_set;
0b246afa 8169 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3173a18f 8170
4e6bd4e0
NB
8171 ref = btrfs_delayed_node_to_tree_ref(node);
8172
4e6bd4e0
NB
8173 extent_key.objectid = node->bytenr;
8174 if (skinny_metadata) {
8175 extent_key.offset = ref->level;
8176 extent_key.type = BTRFS_METADATA_ITEM_KEY;
8177 num_bytes = fs_info->nodesize;
8178 } else {
8179 extent_key.offset = node->num_bytes;
8180 extent_key.type = BTRFS_EXTENT_ITEM_KEY;
3173a18f 8181 size += sizeof(*block_info);
4e6bd4e0
NB
8182 num_bytes = node->num_bytes;
8183 }
1c2308f8 8184
5d4f98a2 8185 path = btrfs_alloc_path();
857cc2fc 8186 if (!path) {
4e6bd4e0
NB
8187 btrfs_free_and_pin_reserved_extent(fs_info,
8188 extent_key.objectid,
0b246afa 8189 fs_info->nodesize);
d8926bb3 8190 return -ENOMEM;
857cc2fc 8191 }
56bec294 8192
5d4f98a2
YZ
8193 path->leave_spinning = 1;
8194 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
4e6bd4e0 8195 &extent_key, size);
79787eaa 8196 if (ret) {
dd825259 8197 btrfs_free_path(path);
4e6bd4e0
NB
8198 btrfs_free_and_pin_reserved_extent(fs_info,
8199 extent_key.objectid,
0b246afa 8200 fs_info->nodesize);
79787eaa
JM
8201 return ret;
8202 }
5d4f98a2
YZ
8203
8204 leaf = path->nodes[0];
8205 extent_item = btrfs_item_ptr(leaf, path->slots[0],
8206 struct btrfs_extent_item);
8207 btrfs_set_extent_refs(leaf, extent_item, 1);
8208 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8209 btrfs_set_extent_flags(leaf, extent_item,
8210 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5d4f98a2 8211
3173a18f
JB
8212 if (skinny_metadata) {
8213 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8214 } else {
8215 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
21ebfbe7 8216 btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
4e6bd4e0 8217 btrfs_set_tree_block_level(leaf, block_info, ref->level);
3173a18f
JB
8218 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8219 }
5d4f98a2 8220
d4b20733 8221 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
5d4f98a2
YZ
8222 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8223 btrfs_set_extent_inline_ref_type(leaf, iref,
8224 BTRFS_SHARED_BLOCK_REF_KEY);
d4b20733 8225 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
5d4f98a2
YZ
8226 } else {
8227 btrfs_set_extent_inline_ref_type(leaf, iref,
8228 BTRFS_TREE_BLOCK_REF_KEY);
4e6bd4e0 8229 btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
5d4f98a2
YZ
8230 }
8231
8232 btrfs_mark_buffer_dirty(leaf);
8233 btrfs_free_path(path);
8234
4e6bd4e0
NB
8235 ret = remove_from_free_space_tree(trans, extent_key.objectid,
8236 num_bytes);
1e144fb8
OS
8237 if (ret)
8238 return ret;
8239
4e6bd4e0 8240 ret = update_block_group(trans, fs_info, extent_key.objectid,
6202df69 8241 fs_info->nodesize, 1);
79787eaa 8242 if (ret) { /* -ENOENT, logic error */
c2cf52eb 8243 btrfs_err(fs_info, "update block group failed for %llu %llu",
4e6bd4e0 8244 extent_key.objectid, extent_key.offset);
5d4f98a2
YZ
8245 BUG();
8246 }
0be5dc67 8247
4e6bd4e0 8248 trace_btrfs_reserved_extent_alloc(fs_info, extent_key.objectid,
0b246afa 8249 fs_info->nodesize);
5d4f98a2
YZ
8250 return ret;
8251}
8252
8253int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
84f7d8e6 8254 struct btrfs_root *root, u64 owner,
5846a3c2
QW
8255 u64 offset, u64 ram_bytes,
8256 struct btrfs_key *ins)
5d4f98a2 8257{
84f7d8e6 8258 struct btrfs_fs_info *fs_info = root->fs_info;
5d4f98a2
YZ
8259 int ret;
8260
84f7d8e6 8261 BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
5d4f98a2 8262
fd708b81
JB
8263 btrfs_ref_tree_mod(root, ins->objectid, ins->offset, 0,
8264 root->root_key.objectid, owner, offset,
8265 BTRFS_ADD_DELAYED_EXTENT);
8266
0b246afa 8267 ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
84f7d8e6
JB
8268 ins->offset, 0,
8269 root->root_key.objectid, owner,
7be07912
OS
8270 offset, ram_bytes,
8271 BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
e6dcd2dc
CM
8272 return ret;
8273}
e02119d5
CM
8274
8275/*
8276 * this is used by the tree logging recovery code. It records that
8277 * an extent has been allocated and makes sure to clear the free
8278 * space cache bits as well
8279 */
5d4f98a2 8280int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2ff7e61e 8281 struct btrfs_fs_info *fs_info,
5d4f98a2
YZ
8282 u64 root_objectid, u64 owner, u64 offset,
8283 struct btrfs_key *ins)
e02119d5
CM
8284{
8285 int ret;
8286 struct btrfs_block_group_cache *block_group;
ed7a6948 8287 struct btrfs_space_info *space_info;
11833d66 8288
8c2a1a30
JB
8289 /*
8290 * Mixed block groups will exclude before processing the log so we only
01327610 8291 * need to do the exclude dance if this fs isn't mixed.
8c2a1a30 8292 */
0b246afa 8293 if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
2ff7e61e
JM
8294 ret = __exclude_logged_extent(fs_info, ins->objectid,
8295 ins->offset);
b50c6e25 8296 if (ret)
8c2a1a30 8297 return ret;
11833d66
YZ
8298 }
8299
0b246afa 8300 block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8c2a1a30
JB
8301 if (!block_group)
8302 return -EINVAL;
8303
ed7a6948
WX
8304 space_info = block_group->space_info;
8305 spin_lock(&space_info->lock);
8306 spin_lock(&block_group->lock);
8307 space_info->bytes_reserved += ins->offset;
8308 block_group->reserved += ins->offset;
8309 spin_unlock(&block_group->lock);
8310 spin_unlock(&space_info->lock);
8311
2ff7e61e 8312 ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
5d4f98a2 8313 0, owner, offset, ins, 1);
b50c6e25 8314 btrfs_put_block_group(block_group);
e02119d5
CM
8315 return ret;
8316}
8317
48a3b636
ES
8318static struct extent_buffer *
8319btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
fe864576 8320 u64 bytenr, int level)
65b51a00 8321{
0b246afa 8322 struct btrfs_fs_info *fs_info = root->fs_info;
65b51a00
CM
8323 struct extent_buffer *buf;
8324
2ff7e61e 8325 buf = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8326 if (IS_ERR(buf))
8327 return buf;
8328
65b51a00 8329 btrfs_set_header_generation(buf, trans->transid);
85d4e461 8330 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
65b51a00 8331 btrfs_tree_lock(buf);
7c302b49 8332 clean_tree_block(fs_info, buf);
3083ee2e 8333 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
b4ce94de
CM
8334
8335 btrfs_set_lock_blocking(buf);
4db8c528 8336 set_extent_buffer_uptodate(buf);
b4ce94de 8337
d0c803c4 8338 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
656f30db 8339 buf->log_index = root->log_transid % 2;
8cef4e16
YZ
8340 /*
8341 * we allow two log transactions at a time, use different
8342 * EXENT bit to differentiate dirty pages.
8343 */
656f30db 8344 if (buf->log_index == 0)
8cef4e16
YZ
8345 set_extent_dirty(&root->dirty_log_pages, buf->start,
8346 buf->start + buf->len - 1, GFP_NOFS);
8347 else
8348 set_extent_new(&root->dirty_log_pages, buf->start,
3744dbeb 8349 buf->start + buf->len - 1);
d0c803c4 8350 } else {
656f30db 8351 buf->log_index = -1;
d0c803c4 8352 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
65b51a00 8353 buf->start + buf->len - 1, GFP_NOFS);
d0c803c4 8354 }
64c12921 8355 trans->dirty = true;
b4ce94de 8356 /* this returns a buffer locked for blocking */
65b51a00
CM
8357 return buf;
8358}
8359
f0486c68
YZ
8360static struct btrfs_block_rsv *
8361use_block_rsv(struct btrfs_trans_handle *trans,
8362 struct btrfs_root *root, u32 blocksize)
8363{
0b246afa 8364 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8365 struct btrfs_block_rsv *block_rsv;
0b246afa 8366 struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
f0486c68 8367 int ret;
d88033db 8368 bool global_updated = false;
f0486c68
YZ
8369
8370 block_rsv = get_block_rsv(trans, root);
8371
b586b323
MX
8372 if (unlikely(block_rsv->size == 0))
8373 goto try_reserve;
d88033db 8374again:
f0486c68
YZ
8375 ret = block_rsv_use_bytes(block_rsv, blocksize);
8376 if (!ret)
8377 return block_rsv;
8378
b586b323
MX
8379 if (block_rsv->failfast)
8380 return ERR_PTR(ret);
8381
d88033db
MX
8382 if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8383 global_updated = true;
0b246afa 8384 update_global_block_rsv(fs_info);
d88033db
MX
8385 goto again;
8386 }
8387
0b246afa 8388 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
b586b323
MX
8389 static DEFINE_RATELIMIT_STATE(_rs,
8390 DEFAULT_RATELIMIT_INTERVAL * 10,
8391 /*DEFAULT_RATELIMIT_BURST*/ 1);
8392 if (__ratelimit(&_rs))
8393 WARN(1, KERN_DEBUG
efe120a0 8394 "BTRFS: block rsv returned %d\n", ret);
b586b323
MX
8395 }
8396try_reserve:
8397 ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8398 BTRFS_RESERVE_NO_FLUSH);
8399 if (!ret)
8400 return block_rsv;
8401 /*
8402 * If we couldn't reserve metadata bytes try and use some from
5881cfc9
MX
8403 * the global reserve if its space type is the same as the global
8404 * reservation.
b586b323 8405 */
5881cfc9
MX
8406 if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8407 block_rsv->space_info == global_rsv->space_info) {
b586b323
MX
8408 ret = block_rsv_use_bytes(global_rsv, blocksize);
8409 if (!ret)
8410 return global_rsv;
8411 }
8412 return ERR_PTR(ret);
f0486c68
YZ
8413}
8414
8c2a3ca2
JB
8415static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8416 struct btrfs_block_rsv *block_rsv, u32 blocksize)
f0486c68
YZ
8417{
8418 block_rsv_add_bytes(block_rsv, blocksize, 0);
ff6bc37e 8419 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0, NULL);
f0486c68
YZ
8420}
8421
fec577fb 8422/*
f0486c68 8423 * finds a free extent and does all the dirty work required for allocation
67b7859e 8424 * returns the tree buffer or an ERR_PTR on error.
fec577fb 8425 */
4d75f8a9 8426struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
310712b2
OS
8427 struct btrfs_root *root,
8428 u64 parent, u64 root_objectid,
8429 const struct btrfs_disk_key *key,
8430 int level, u64 hint,
8431 u64 empty_size)
fec577fb 8432{
0b246afa 8433 struct btrfs_fs_info *fs_info = root->fs_info;
e2fa7227 8434 struct btrfs_key ins;
f0486c68 8435 struct btrfs_block_rsv *block_rsv;
5f39d397 8436 struct extent_buffer *buf;
67b7859e 8437 struct btrfs_delayed_extent_op *extent_op;
f0486c68
YZ
8438 u64 flags = 0;
8439 int ret;
0b246afa
JM
8440 u32 blocksize = fs_info->nodesize;
8441 bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
fec577fb 8442
05653ef3 8443#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
0b246afa 8444 if (btrfs_is_testing(fs_info)) {
faa2dbf0 8445 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
fe864576 8446 level);
faa2dbf0
JB
8447 if (!IS_ERR(buf))
8448 root->alloc_bytenr += blocksize;
8449 return buf;
8450 }
05653ef3 8451#endif
fccb84c9 8452
f0486c68
YZ
8453 block_rsv = use_block_rsv(trans, root, blocksize);
8454 if (IS_ERR(block_rsv))
8455 return ERR_CAST(block_rsv);
8456
18513091 8457 ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
e570fd27 8458 empty_size, hint, &ins, 0, 0);
67b7859e
OS
8459 if (ret)
8460 goto out_unuse;
55c69072 8461
fe864576 8462 buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
67b7859e
OS
8463 if (IS_ERR(buf)) {
8464 ret = PTR_ERR(buf);
8465 goto out_free_reserved;
8466 }
f0486c68
YZ
8467
8468 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8469 if (parent == 0)
8470 parent = ins.objectid;
8471 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8472 } else
8473 BUG_ON(parent > 0);
8474
8475 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
78a6184a 8476 extent_op = btrfs_alloc_delayed_extent_op();
67b7859e
OS
8477 if (!extent_op) {
8478 ret = -ENOMEM;
8479 goto out_free_buf;
8480 }
f0486c68
YZ
8481 if (key)
8482 memcpy(&extent_op->key, key, sizeof(extent_op->key));
8483 else
8484 memset(&extent_op->key, 0, sizeof(extent_op->key));
8485 extent_op->flags_to_set = flags;
35b3ad50
DS
8486 extent_op->update_key = skinny_metadata ? false : true;
8487 extent_op->update_flags = true;
8488 extent_op->is_data = false;
b1c79e09 8489 extent_op->level = level;
f0486c68 8490
fd708b81
JB
8491 btrfs_ref_tree_mod(root, ins.objectid, ins.offset, parent,
8492 root_objectid, level, 0,
8493 BTRFS_ADD_DELAYED_EXTENT);
7be07912
OS
8494 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8495 ins.offset, parent,
8496 root_objectid, level,
67b7859e 8497 BTRFS_ADD_DELAYED_EXTENT,
7be07912 8498 extent_op, NULL, NULL);
67b7859e
OS
8499 if (ret)
8500 goto out_free_delayed;
f0486c68 8501 }
fec577fb 8502 return buf;
67b7859e
OS
8503
8504out_free_delayed:
8505 btrfs_free_delayed_extent_op(extent_op);
8506out_free_buf:
8507 free_extent_buffer(buf);
8508out_free_reserved:
2ff7e61e 8509 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
67b7859e 8510out_unuse:
0b246afa 8511 unuse_block_rsv(fs_info, block_rsv, blocksize);
67b7859e 8512 return ERR_PTR(ret);
fec577fb 8513}
a28ec197 8514
2c47e605
YZ
8515struct walk_control {
8516 u64 refs[BTRFS_MAX_LEVEL];
8517 u64 flags[BTRFS_MAX_LEVEL];
8518 struct btrfs_key update_progress;
8519 int stage;
8520 int level;
8521 int shared_level;
8522 int update_ref;
8523 int keep_locks;
1c4850e2
YZ
8524 int reada_slot;
8525 int reada_count;
66d7e7f0 8526 int for_reloc;
2c47e605
YZ
8527};
8528
8529#define DROP_REFERENCE 1
8530#define UPDATE_BACKREF 2
8531
1c4850e2
YZ
8532static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8533 struct btrfs_root *root,
8534 struct walk_control *wc,
8535 struct btrfs_path *path)
6407bf6d 8536{
0b246afa 8537 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8538 u64 bytenr;
8539 u64 generation;
8540 u64 refs;
94fcca9f 8541 u64 flags;
5d4f98a2 8542 u32 nritems;
1c4850e2
YZ
8543 struct btrfs_key key;
8544 struct extent_buffer *eb;
6407bf6d 8545 int ret;
1c4850e2
YZ
8546 int slot;
8547 int nread = 0;
6407bf6d 8548
1c4850e2
YZ
8549 if (path->slots[wc->level] < wc->reada_slot) {
8550 wc->reada_count = wc->reada_count * 2 / 3;
8551 wc->reada_count = max(wc->reada_count, 2);
8552 } else {
8553 wc->reada_count = wc->reada_count * 3 / 2;
8554 wc->reada_count = min_t(int, wc->reada_count,
0b246afa 8555 BTRFS_NODEPTRS_PER_BLOCK(fs_info));
1c4850e2 8556 }
7bb86316 8557
1c4850e2
YZ
8558 eb = path->nodes[wc->level];
8559 nritems = btrfs_header_nritems(eb);
bd56b302 8560
1c4850e2
YZ
8561 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8562 if (nread >= wc->reada_count)
8563 break;
bd56b302 8564
2dd3e67b 8565 cond_resched();
1c4850e2
YZ
8566 bytenr = btrfs_node_blockptr(eb, slot);
8567 generation = btrfs_node_ptr_generation(eb, slot);
2dd3e67b 8568
1c4850e2
YZ
8569 if (slot == path->slots[wc->level])
8570 goto reada;
5d4f98a2 8571
1c4850e2
YZ
8572 if (wc->stage == UPDATE_BACKREF &&
8573 generation <= root->root_key.offset)
bd56b302
CM
8574 continue;
8575
94fcca9f 8576 /* We don't lock the tree block, it's OK to be racy here */
2ff7e61e 8577 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
3173a18f
JB
8578 wc->level - 1, 1, &refs,
8579 &flags);
79787eaa
JM
8580 /* We don't care about errors in readahead. */
8581 if (ret < 0)
8582 continue;
94fcca9f
YZ
8583 BUG_ON(refs == 0);
8584
1c4850e2 8585 if (wc->stage == DROP_REFERENCE) {
1c4850e2
YZ
8586 if (refs == 1)
8587 goto reada;
bd56b302 8588
94fcca9f
YZ
8589 if (wc->level == 1 &&
8590 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8591 continue;
1c4850e2
YZ
8592 if (!wc->update_ref ||
8593 generation <= root->root_key.offset)
8594 continue;
8595 btrfs_node_key_to_cpu(eb, &key, slot);
8596 ret = btrfs_comp_cpu_keys(&key,
8597 &wc->update_progress);
8598 if (ret < 0)
8599 continue;
94fcca9f
YZ
8600 } else {
8601 if (wc->level == 1 &&
8602 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8603 continue;
6407bf6d 8604 }
1c4850e2 8605reada:
2ff7e61e 8606 readahead_tree_block(fs_info, bytenr);
1c4850e2 8607 nread++;
20524f02 8608 }
1c4850e2 8609 wc->reada_slot = slot;
20524f02 8610}
2c47e605 8611
f82d02d9 8612/*
2c016dc2 8613 * helper to process tree block while walking down the tree.
2c47e605 8614 *
2c47e605
YZ
8615 * when wc->stage == UPDATE_BACKREF, this function updates
8616 * back refs for pointers in the block.
8617 *
8618 * NOTE: return value 1 means we should stop walking down.
f82d02d9 8619 */
2c47e605 8620static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5d4f98a2 8621 struct btrfs_root *root,
2c47e605 8622 struct btrfs_path *path,
94fcca9f 8623 struct walk_control *wc, int lookup_info)
f82d02d9 8624{
2ff7e61e 8625 struct btrfs_fs_info *fs_info = root->fs_info;
2c47e605
YZ
8626 int level = wc->level;
8627 struct extent_buffer *eb = path->nodes[level];
2c47e605 8628 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
f82d02d9
YZ
8629 int ret;
8630
2c47e605
YZ
8631 if (wc->stage == UPDATE_BACKREF &&
8632 btrfs_header_owner(eb) != root->root_key.objectid)
8633 return 1;
f82d02d9 8634
2c47e605
YZ
8635 /*
8636 * when reference count of tree block is 1, it won't increase
8637 * again. once full backref flag is set, we never clear it.
8638 */
94fcca9f
YZ
8639 if (lookup_info &&
8640 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8641 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
2c47e605 8642 BUG_ON(!path->locks[level]);
2ff7e61e 8643 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8644 eb->start, level, 1,
2c47e605
YZ
8645 &wc->refs[level],
8646 &wc->flags[level]);
79787eaa
JM
8647 BUG_ON(ret == -ENOMEM);
8648 if (ret)
8649 return ret;
2c47e605
YZ
8650 BUG_ON(wc->refs[level] == 0);
8651 }
5d4f98a2 8652
2c47e605
YZ
8653 if (wc->stage == DROP_REFERENCE) {
8654 if (wc->refs[level] > 1)
8655 return 1;
f82d02d9 8656
2c47e605 8657 if (path->locks[level] && !wc->keep_locks) {
bd681513 8658 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8659 path->locks[level] = 0;
8660 }
8661 return 0;
8662 }
f82d02d9 8663
2c47e605
YZ
8664 /* wc->stage == UPDATE_BACKREF */
8665 if (!(wc->flags[level] & flag)) {
8666 BUG_ON(!path->locks[level]);
e339a6b0 8667 ret = btrfs_inc_ref(trans, root, eb, 1);
79787eaa 8668 BUG_ON(ret); /* -ENOMEM */
e339a6b0 8669 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8670 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8671 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
b1c79e09
JB
8672 eb->len, flag,
8673 btrfs_header_level(eb), 0);
79787eaa 8674 BUG_ON(ret); /* -ENOMEM */
2c47e605
YZ
8675 wc->flags[level] |= flag;
8676 }
8677
8678 /*
8679 * the block is shared by multiple trees, so it's not good to
8680 * keep the tree lock
8681 */
8682 if (path->locks[level] && level > 0) {
bd681513 8683 btrfs_tree_unlock_rw(eb, path->locks[level]);
2c47e605
YZ
8684 path->locks[level] = 0;
8685 }
8686 return 0;
8687}
8688
1c4850e2 8689/*
2c016dc2 8690 * helper to process tree block pointer.
1c4850e2
YZ
8691 *
8692 * when wc->stage == DROP_REFERENCE, this function checks
8693 * reference count of the block pointed to. if the block
8694 * is shared and we need update back refs for the subtree
8695 * rooted at the block, this function changes wc->stage to
8696 * UPDATE_BACKREF. if the block is shared and there is no
8697 * need to update back, this function drops the reference
8698 * to the block.
8699 *
8700 * NOTE: return value 1 means we should stop walking down.
8701 */
8702static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8703 struct btrfs_root *root,
8704 struct btrfs_path *path,
94fcca9f 8705 struct walk_control *wc, int *lookup_info)
1c4850e2 8706{
0b246afa 8707 struct btrfs_fs_info *fs_info = root->fs_info;
1c4850e2
YZ
8708 u64 bytenr;
8709 u64 generation;
8710 u64 parent;
8711 u32 blocksize;
8712 struct btrfs_key key;
581c1760 8713 struct btrfs_key first_key;
1c4850e2
YZ
8714 struct extent_buffer *next;
8715 int level = wc->level;
8716 int reada = 0;
8717 int ret = 0;
1152651a 8718 bool need_account = false;
1c4850e2
YZ
8719
8720 generation = btrfs_node_ptr_generation(path->nodes[level],
8721 path->slots[level]);
8722 /*
8723 * if the lower level block was created before the snapshot
8724 * was created, we know there is no need to update back refs
8725 * for the subtree
8726 */
8727 if (wc->stage == UPDATE_BACKREF &&
94fcca9f
YZ
8728 generation <= root->root_key.offset) {
8729 *lookup_info = 1;
1c4850e2 8730 return 1;
94fcca9f 8731 }
1c4850e2
YZ
8732
8733 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
581c1760
QW
8734 btrfs_node_key_to_cpu(path->nodes[level], &first_key,
8735 path->slots[level]);
0b246afa 8736 blocksize = fs_info->nodesize;
1c4850e2 8737
0b246afa 8738 next = find_extent_buffer(fs_info, bytenr);
1c4850e2 8739 if (!next) {
2ff7e61e 8740 next = btrfs_find_create_tree_block(fs_info, bytenr);
c871b0f2
LB
8741 if (IS_ERR(next))
8742 return PTR_ERR(next);
8743
b2aaaa3b
JB
8744 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8745 level - 1);
1c4850e2
YZ
8746 reada = 1;
8747 }
8748 btrfs_tree_lock(next);
8749 btrfs_set_lock_blocking(next);
8750
2ff7e61e 8751 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
94fcca9f
YZ
8752 &wc->refs[level - 1],
8753 &wc->flags[level - 1]);
4867268c
JB
8754 if (ret < 0)
8755 goto out_unlock;
79787eaa 8756
c2cf52eb 8757 if (unlikely(wc->refs[level - 1] == 0)) {
0b246afa 8758 btrfs_err(fs_info, "Missing references.");
4867268c
JB
8759 ret = -EIO;
8760 goto out_unlock;
c2cf52eb 8761 }
94fcca9f 8762 *lookup_info = 0;
1c4850e2 8763
94fcca9f 8764 if (wc->stage == DROP_REFERENCE) {
1c4850e2 8765 if (wc->refs[level - 1] > 1) {
1152651a 8766 need_account = true;
94fcca9f
YZ
8767 if (level == 1 &&
8768 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8769 goto skip;
8770
1c4850e2
YZ
8771 if (!wc->update_ref ||
8772 generation <= root->root_key.offset)
8773 goto skip;
8774
8775 btrfs_node_key_to_cpu(path->nodes[level], &key,
8776 path->slots[level]);
8777 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8778 if (ret < 0)
8779 goto skip;
8780
8781 wc->stage = UPDATE_BACKREF;
8782 wc->shared_level = level - 1;
8783 }
94fcca9f
YZ
8784 } else {
8785 if (level == 1 &&
8786 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8787 goto skip;
1c4850e2
YZ
8788 }
8789
b9fab919 8790 if (!btrfs_buffer_uptodate(next, generation, 0)) {
1c4850e2
YZ
8791 btrfs_tree_unlock(next);
8792 free_extent_buffer(next);
8793 next = NULL;
94fcca9f 8794 *lookup_info = 1;
1c4850e2
YZ
8795 }
8796
8797 if (!next) {
8798 if (reada && level == 1)
8799 reada_walk_down(trans, root, wc, path);
581c1760
QW
8800 next = read_tree_block(fs_info, bytenr, generation, level - 1,
8801 &first_key);
64c043de
LB
8802 if (IS_ERR(next)) {
8803 return PTR_ERR(next);
8804 } else if (!extent_buffer_uptodate(next)) {
416bc658 8805 free_extent_buffer(next);
97d9a8a4 8806 return -EIO;
416bc658 8807 }
1c4850e2
YZ
8808 btrfs_tree_lock(next);
8809 btrfs_set_lock_blocking(next);
8810 }
8811
8812 level--;
4867268c
JB
8813 ASSERT(level == btrfs_header_level(next));
8814 if (level != btrfs_header_level(next)) {
8815 btrfs_err(root->fs_info, "mismatched level");
8816 ret = -EIO;
8817 goto out_unlock;
8818 }
1c4850e2
YZ
8819 path->nodes[level] = next;
8820 path->slots[level] = 0;
bd681513 8821 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
1c4850e2
YZ
8822 wc->level = level;
8823 if (wc->level == 1)
8824 wc->reada_slot = 0;
8825 return 0;
8826skip:
8827 wc->refs[level - 1] = 0;
8828 wc->flags[level - 1] = 0;
94fcca9f
YZ
8829 if (wc->stage == DROP_REFERENCE) {
8830 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8831 parent = path->nodes[level]->start;
8832 } else {
4867268c 8833 ASSERT(root->root_key.objectid ==
94fcca9f 8834 btrfs_header_owner(path->nodes[level]));
4867268c
JB
8835 if (root->root_key.objectid !=
8836 btrfs_header_owner(path->nodes[level])) {
8837 btrfs_err(root->fs_info,
8838 "mismatched block owner");
8839 ret = -EIO;
8840 goto out_unlock;
8841 }
94fcca9f
YZ
8842 parent = 0;
8843 }
1c4850e2 8844
1152651a 8845 if (need_account) {
33d1f05c
QW
8846 ret = btrfs_qgroup_trace_subtree(trans, root, next,
8847 generation, level - 1);
1152651a 8848 if (ret) {
0b246afa 8849 btrfs_err_rl(fs_info,
5d163e0e
JM
8850 "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8851 ret);
1152651a
MF
8852 }
8853 }
84f7d8e6 8854 ret = btrfs_free_extent(trans, root, bytenr, blocksize,
2ff7e61e
JM
8855 parent, root->root_key.objectid,
8856 level - 1, 0);
4867268c
JB
8857 if (ret)
8858 goto out_unlock;
1c4850e2 8859 }
4867268c
JB
8860
8861 *lookup_info = 1;
8862 ret = 1;
8863
8864out_unlock:
1c4850e2
YZ
8865 btrfs_tree_unlock(next);
8866 free_extent_buffer(next);
4867268c
JB
8867
8868 return ret;
1c4850e2
YZ
8869}
8870
2c47e605 8871/*
2c016dc2 8872 * helper to process tree block while walking up the tree.
2c47e605
YZ
8873 *
8874 * when wc->stage == DROP_REFERENCE, this function drops
8875 * reference count on the block.
8876 *
8877 * when wc->stage == UPDATE_BACKREF, this function changes
8878 * wc->stage back to DROP_REFERENCE if we changed wc->stage
8879 * to UPDATE_BACKREF previously while processing the block.
8880 *
8881 * NOTE: return value 1 means we should stop walking up.
8882 */
8883static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8884 struct btrfs_root *root,
8885 struct btrfs_path *path,
8886 struct walk_control *wc)
8887{
0b246afa 8888 struct btrfs_fs_info *fs_info = root->fs_info;
f0486c68 8889 int ret;
2c47e605
YZ
8890 int level = wc->level;
8891 struct extent_buffer *eb = path->nodes[level];
8892 u64 parent = 0;
8893
8894 if (wc->stage == UPDATE_BACKREF) {
8895 BUG_ON(wc->shared_level < level);
8896 if (level < wc->shared_level)
8897 goto out;
8898
2c47e605
YZ
8899 ret = find_next_key(path, level + 1, &wc->update_progress);
8900 if (ret > 0)
8901 wc->update_ref = 0;
8902
8903 wc->stage = DROP_REFERENCE;
8904 wc->shared_level = -1;
8905 path->slots[level] = 0;
8906
8907 /*
8908 * check reference count again if the block isn't locked.
8909 * we should start walking down the tree again if reference
8910 * count is one.
8911 */
8912 if (!path->locks[level]) {
8913 BUG_ON(level == 0);
8914 btrfs_tree_lock(eb);
8915 btrfs_set_lock_blocking(eb);
bd681513 8916 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8917
2ff7e61e 8918 ret = btrfs_lookup_extent_info(trans, fs_info,
3173a18f 8919 eb->start, level, 1,
2c47e605
YZ
8920 &wc->refs[level],
8921 &wc->flags[level]);
79787eaa
JM
8922 if (ret < 0) {
8923 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8924 path->locks[level] = 0;
79787eaa
JM
8925 return ret;
8926 }
2c47e605
YZ
8927 BUG_ON(wc->refs[level] == 0);
8928 if (wc->refs[level] == 1) {
bd681513 8929 btrfs_tree_unlock_rw(eb, path->locks[level]);
3268a246 8930 path->locks[level] = 0;
2c47e605
YZ
8931 return 1;
8932 }
f82d02d9 8933 }
2c47e605 8934 }
f82d02d9 8935
2c47e605
YZ
8936 /* wc->stage == DROP_REFERENCE */
8937 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
5d4f98a2 8938
2c47e605
YZ
8939 if (wc->refs[level] == 1) {
8940 if (level == 0) {
8941 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
e339a6b0 8942 ret = btrfs_dec_ref(trans, root, eb, 1);
2c47e605 8943 else
e339a6b0 8944 ret = btrfs_dec_ref(trans, root, eb, 0);
79787eaa 8945 BUG_ON(ret); /* -ENOMEM */
2ff7e61e 8946 ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
1152651a 8947 if (ret) {
0b246afa 8948 btrfs_err_rl(fs_info,
5d163e0e
JM
8949 "error %d accounting leaf items. Quota is out of sync, rescan required.",
8950 ret);
1152651a 8951 }
2c47e605
YZ
8952 }
8953 /* make block locked assertion in clean_tree_block happy */
8954 if (!path->locks[level] &&
8955 btrfs_header_generation(eb) == trans->transid) {
8956 btrfs_tree_lock(eb);
8957 btrfs_set_lock_blocking(eb);
bd681513 8958 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 8959 }
7c302b49 8960 clean_tree_block(fs_info, eb);
2c47e605
YZ
8961 }
8962
8963 if (eb == root->node) {
8964 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8965 parent = eb->start;
8966 else
8967 BUG_ON(root->root_key.objectid !=
8968 btrfs_header_owner(eb));
8969 } else {
8970 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
8971 parent = path->nodes[level + 1]->start;
8972 else
8973 BUG_ON(root->root_key.objectid !=
8974 btrfs_header_owner(path->nodes[level + 1]));
f82d02d9 8975 }
f82d02d9 8976
5581a51a 8977 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
2c47e605
YZ
8978out:
8979 wc->refs[level] = 0;
8980 wc->flags[level] = 0;
f0486c68 8981 return 0;
2c47e605
YZ
8982}
8983
8984static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
8985 struct btrfs_root *root,
8986 struct btrfs_path *path,
8987 struct walk_control *wc)
8988{
2c47e605 8989 int level = wc->level;
94fcca9f 8990 int lookup_info = 1;
2c47e605
YZ
8991 int ret;
8992
8993 while (level >= 0) {
94fcca9f 8994 ret = walk_down_proc(trans, root, path, wc, lookup_info);
2c47e605
YZ
8995 if (ret > 0)
8996 break;
8997
8998 if (level == 0)
8999 break;
9000
7a7965f8
YZ
9001 if (path->slots[level] >=
9002 btrfs_header_nritems(path->nodes[level]))
9003 break;
9004
94fcca9f 9005 ret = do_walk_down(trans, root, path, wc, &lookup_info);
1c4850e2
YZ
9006 if (ret > 0) {
9007 path->slots[level]++;
9008 continue;
90d2c51d
MX
9009 } else if (ret < 0)
9010 return ret;
1c4850e2 9011 level = wc->level;
f82d02d9 9012 }
f82d02d9
YZ
9013 return 0;
9014}
9015
d397712b 9016static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
98ed5174 9017 struct btrfs_root *root,
f82d02d9 9018 struct btrfs_path *path,
2c47e605 9019 struct walk_control *wc, int max_level)
20524f02 9020{
2c47e605 9021 int level = wc->level;
20524f02 9022 int ret;
9f3a7427 9023
2c47e605
YZ
9024 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9025 while (level < max_level && path->nodes[level]) {
9026 wc->level = level;
9027 if (path->slots[level] + 1 <
9028 btrfs_header_nritems(path->nodes[level])) {
9029 path->slots[level]++;
20524f02
CM
9030 return 0;
9031 } else {
2c47e605
YZ
9032 ret = walk_up_proc(trans, root, path, wc);
9033 if (ret > 0)
9034 return 0;
bd56b302 9035
2c47e605 9036 if (path->locks[level]) {
bd681513
CM
9037 btrfs_tree_unlock_rw(path->nodes[level],
9038 path->locks[level]);
2c47e605 9039 path->locks[level] = 0;
f82d02d9 9040 }
2c47e605
YZ
9041 free_extent_buffer(path->nodes[level]);
9042 path->nodes[level] = NULL;
9043 level++;
20524f02
CM
9044 }
9045 }
9046 return 1;
9047}
9048
9aca1d51 9049/*
2c47e605
YZ
9050 * drop a subvolume tree.
9051 *
9052 * this function traverses the tree freeing any blocks that only
9053 * referenced by the tree.
9054 *
9055 * when a shared tree block is found. this function decreases its
9056 * reference count by one. if update_ref is true, this function
9057 * also make sure backrefs for the shared block and all lower level
9058 * blocks are properly updated.
9d1a2a3a
DS
9059 *
9060 * If called with for_reloc == 0, may exit early with -EAGAIN
9aca1d51 9061 */
2c536799 9062int btrfs_drop_snapshot(struct btrfs_root *root,
66d7e7f0
AJ
9063 struct btrfs_block_rsv *block_rsv, int update_ref,
9064 int for_reloc)
20524f02 9065{
ab8d0fc4 9066 struct btrfs_fs_info *fs_info = root->fs_info;
5caf2a00 9067 struct btrfs_path *path;
2c47e605 9068 struct btrfs_trans_handle *trans;
ab8d0fc4 9069 struct btrfs_root *tree_root = fs_info->tree_root;
9f3a7427 9070 struct btrfs_root_item *root_item = &root->root_item;
2c47e605
YZ
9071 struct walk_control *wc;
9072 struct btrfs_key key;
9073 int err = 0;
9074 int ret;
9075 int level;
d29a9f62 9076 bool root_dropped = false;
20524f02 9077
ab8d0fc4 9078 btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
1152651a 9079
5caf2a00 9080 path = btrfs_alloc_path();
cb1b69f4
TI
9081 if (!path) {
9082 err = -ENOMEM;
9083 goto out;
9084 }
20524f02 9085
2c47e605 9086 wc = kzalloc(sizeof(*wc), GFP_NOFS);
38a1a919
MF
9087 if (!wc) {
9088 btrfs_free_path(path);
cb1b69f4
TI
9089 err = -ENOMEM;
9090 goto out;
38a1a919 9091 }
2c47e605 9092
a22285a6 9093 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9094 if (IS_ERR(trans)) {
9095 err = PTR_ERR(trans);
9096 goto out_free;
9097 }
98d5dc13 9098
3fd0a558
YZ
9099 if (block_rsv)
9100 trans->block_rsv = block_rsv;
2c47e605 9101
9f3a7427 9102 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2c47e605 9103 level = btrfs_header_level(root->node);
5d4f98a2
YZ
9104 path->nodes[level] = btrfs_lock_root_node(root);
9105 btrfs_set_lock_blocking(path->nodes[level]);
9f3a7427 9106 path->slots[level] = 0;
bd681513 9107 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9108 memset(&wc->update_progress, 0,
9109 sizeof(wc->update_progress));
9f3a7427 9110 } else {
9f3a7427 9111 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2c47e605
YZ
9112 memcpy(&wc->update_progress, &key,
9113 sizeof(wc->update_progress));
9114
6702ed49 9115 level = root_item->drop_level;
2c47e605 9116 BUG_ON(level == 0);
6702ed49 9117 path->lowest_level = level;
2c47e605
YZ
9118 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9119 path->lowest_level = 0;
9120 if (ret < 0) {
9121 err = ret;
79787eaa 9122 goto out_end_trans;
9f3a7427 9123 }
1c4850e2 9124 WARN_ON(ret > 0);
2c47e605 9125
7d9eb12c
CM
9126 /*
9127 * unlock our path, this is safe because only this
9128 * function is allowed to delete this snapshot
9129 */
5d4f98a2 9130 btrfs_unlock_up_safe(path, 0);
2c47e605
YZ
9131
9132 level = btrfs_header_level(root->node);
9133 while (1) {
9134 btrfs_tree_lock(path->nodes[level]);
9135 btrfs_set_lock_blocking(path->nodes[level]);
fec386ac 9136 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605 9137
2ff7e61e 9138 ret = btrfs_lookup_extent_info(trans, fs_info,
2c47e605 9139 path->nodes[level]->start,
3173a18f 9140 level, 1, &wc->refs[level],
2c47e605 9141 &wc->flags[level]);
79787eaa
JM
9142 if (ret < 0) {
9143 err = ret;
9144 goto out_end_trans;
9145 }
2c47e605
YZ
9146 BUG_ON(wc->refs[level] == 0);
9147
9148 if (level == root_item->drop_level)
9149 break;
9150
9151 btrfs_tree_unlock(path->nodes[level]);
fec386ac 9152 path->locks[level] = 0;
2c47e605
YZ
9153 WARN_ON(wc->refs[level] != 1);
9154 level--;
9155 }
9f3a7427 9156 }
2c47e605
YZ
9157
9158 wc->level = level;
9159 wc->shared_level = -1;
9160 wc->stage = DROP_REFERENCE;
9161 wc->update_ref = update_ref;
9162 wc->keep_locks = 0;
66d7e7f0 9163 wc->for_reloc = for_reloc;
0b246afa 9164 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
2c47e605 9165
d397712b 9166 while (1) {
9d1a2a3a 9167
2c47e605
YZ
9168 ret = walk_down_tree(trans, root, path, wc);
9169 if (ret < 0) {
9170 err = ret;
20524f02 9171 break;
2c47e605 9172 }
9aca1d51 9173
2c47e605
YZ
9174 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9175 if (ret < 0) {
9176 err = ret;
20524f02 9177 break;
2c47e605
YZ
9178 }
9179
9180 if (ret > 0) {
9181 BUG_ON(wc->stage != DROP_REFERENCE);
e7a84565
CM
9182 break;
9183 }
2c47e605
YZ
9184
9185 if (wc->stage == DROP_REFERENCE) {
9186 level = wc->level;
9187 btrfs_node_key(path->nodes[level],
9188 &root_item->drop_progress,
9189 path->slots[level]);
9190 root_item->drop_level = level;
9191 }
9192
9193 BUG_ON(wc->level == 0);
3a45bb20 9194 if (btrfs_should_end_transaction(trans) ||
2ff7e61e 9195 (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
2c47e605
YZ
9196 ret = btrfs_update_root(trans, tree_root,
9197 &root->root_key,
9198 root_item);
79787eaa 9199 if (ret) {
66642832 9200 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9201 err = ret;
9202 goto out_end_trans;
9203 }
2c47e605 9204
3a45bb20 9205 btrfs_end_transaction_throttle(trans);
2ff7e61e 9206 if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
ab8d0fc4
JM
9207 btrfs_debug(fs_info,
9208 "drop snapshot early exit");
3c8f2422
JB
9209 err = -EAGAIN;
9210 goto out_free;
9211 }
9212
a22285a6 9213 trans = btrfs_start_transaction(tree_root, 0);
79787eaa
JM
9214 if (IS_ERR(trans)) {
9215 err = PTR_ERR(trans);
9216 goto out_free;
9217 }
3fd0a558
YZ
9218 if (block_rsv)
9219 trans->block_rsv = block_rsv;
c3e69d58 9220 }
20524f02 9221 }
b3b4aa74 9222 btrfs_release_path(path);
79787eaa
JM
9223 if (err)
9224 goto out_end_trans;
2c47e605 9225
1cd5447e 9226 ret = btrfs_del_root(trans, fs_info, &root->root_key);
79787eaa 9227 if (ret) {
66642832 9228 btrfs_abort_transaction(trans, ret);
e19182c0 9229 err = ret;
79787eaa
JM
9230 goto out_end_trans;
9231 }
2c47e605 9232
76dda93c 9233 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
cb517eab
MX
9234 ret = btrfs_find_root(tree_root, &root->root_key, path,
9235 NULL, NULL);
79787eaa 9236 if (ret < 0) {
66642832 9237 btrfs_abort_transaction(trans, ret);
79787eaa
JM
9238 err = ret;
9239 goto out_end_trans;
9240 } else if (ret > 0) {
84cd948c
JB
9241 /* if we fail to delete the orphan item this time
9242 * around, it'll get picked up the next time.
9243 *
9244 * The most common failure here is just -ENOENT.
9245 */
9246 btrfs_del_orphan_item(trans, tree_root,
9247 root->root_key.objectid);
76dda93c
YZ
9248 }
9249 }
9250
27cdeb70 9251 if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
2b9dbef2 9252 btrfs_add_dropped_root(trans, root);
76dda93c
YZ
9253 } else {
9254 free_extent_buffer(root->node);
9255 free_extent_buffer(root->commit_root);
b0feb9d9 9256 btrfs_put_fs_root(root);
76dda93c 9257 }
d29a9f62 9258 root_dropped = true;
79787eaa 9259out_end_trans:
3a45bb20 9260 btrfs_end_transaction_throttle(trans);
79787eaa 9261out_free:
2c47e605 9262 kfree(wc);
5caf2a00 9263 btrfs_free_path(path);
cb1b69f4 9264out:
d29a9f62
JB
9265 /*
9266 * So if we need to stop dropping the snapshot for whatever reason we
9267 * need to make sure to add it back to the dead root list so that we
9268 * keep trying to do the work later. This also cleans up roots if we
9269 * don't have it in the radix (like when we recover after a power fail
9270 * or unmount) so we don't leak memory.
9271 */
897ca819 9272 if (!for_reloc && !root_dropped)
d29a9f62 9273 btrfs_add_dead_root(root);
90515e7f 9274 if (err && err != -EAGAIN)
ab8d0fc4 9275 btrfs_handle_fs_error(fs_info, err, NULL);
2c536799 9276 return err;
20524f02 9277}
9078a3e1 9278
2c47e605
YZ
9279/*
9280 * drop subtree rooted at tree block 'node'.
9281 *
9282 * NOTE: this function will unlock and release tree block 'node'
66d7e7f0 9283 * only used by relocation code
2c47e605 9284 */
f82d02d9
YZ
9285int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9286 struct btrfs_root *root,
9287 struct extent_buffer *node,
9288 struct extent_buffer *parent)
9289{
0b246afa 9290 struct btrfs_fs_info *fs_info = root->fs_info;
f82d02d9 9291 struct btrfs_path *path;
2c47e605 9292 struct walk_control *wc;
f82d02d9
YZ
9293 int level;
9294 int parent_level;
9295 int ret = 0;
9296 int wret;
9297
2c47e605
YZ
9298 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9299
f82d02d9 9300 path = btrfs_alloc_path();
db5b493a
TI
9301 if (!path)
9302 return -ENOMEM;
f82d02d9 9303
2c47e605 9304 wc = kzalloc(sizeof(*wc), GFP_NOFS);
db5b493a
TI
9305 if (!wc) {
9306 btrfs_free_path(path);
9307 return -ENOMEM;
9308 }
2c47e605 9309
b9447ef8 9310 btrfs_assert_tree_locked(parent);
f82d02d9
YZ
9311 parent_level = btrfs_header_level(parent);
9312 extent_buffer_get(parent);
9313 path->nodes[parent_level] = parent;
9314 path->slots[parent_level] = btrfs_header_nritems(parent);
9315
b9447ef8 9316 btrfs_assert_tree_locked(node);
f82d02d9 9317 level = btrfs_header_level(node);
f82d02d9
YZ
9318 path->nodes[level] = node;
9319 path->slots[level] = 0;
bd681513 9320 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
2c47e605
YZ
9321
9322 wc->refs[parent_level] = 1;
9323 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9324 wc->level = level;
9325 wc->shared_level = -1;
9326 wc->stage = DROP_REFERENCE;
9327 wc->update_ref = 0;
9328 wc->keep_locks = 1;
66d7e7f0 9329 wc->for_reloc = 1;
0b246afa 9330 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
f82d02d9
YZ
9331
9332 while (1) {
2c47e605
YZ
9333 wret = walk_down_tree(trans, root, path, wc);
9334 if (wret < 0) {
f82d02d9 9335 ret = wret;
f82d02d9 9336 break;
2c47e605 9337 }
f82d02d9 9338
2c47e605 9339 wret = walk_up_tree(trans, root, path, wc, parent_level);
f82d02d9
YZ
9340 if (wret < 0)
9341 ret = wret;
9342 if (wret != 0)
9343 break;
9344 }
9345
2c47e605 9346 kfree(wc);
f82d02d9
YZ
9347 btrfs_free_path(path);
9348 return ret;
9349}
9350
6202df69 9351static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
ec44a35c
CM
9352{
9353 u64 num_devices;
fc67c450 9354 u64 stripped;
e4d8ec0f 9355
fc67c450
ID
9356 /*
9357 * if restripe for this chunk_type is on pick target profile and
9358 * return, otherwise do the usual balance
9359 */
6202df69 9360 stripped = get_restripe_target(fs_info, flags);
fc67c450
ID
9361 if (stripped)
9362 return extended_to_chunk(stripped);
e4d8ec0f 9363
6202df69 9364 num_devices = fs_info->fs_devices->rw_devices;
cd02dca5 9365
fc67c450 9366 stripped = BTRFS_BLOCK_GROUP_RAID0 |
53b381b3 9367 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
fc67c450
ID
9368 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9369
ec44a35c
CM
9370 if (num_devices == 1) {
9371 stripped |= BTRFS_BLOCK_GROUP_DUP;
9372 stripped = flags & ~stripped;
9373
9374 /* turn raid0 into single device chunks */
9375 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9376 return stripped;
9377
9378 /* turn mirroring into duplication */
9379 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9380 BTRFS_BLOCK_GROUP_RAID10))
9381 return stripped | BTRFS_BLOCK_GROUP_DUP;
ec44a35c
CM
9382 } else {
9383 /* they already had raid on here, just return */
ec44a35c
CM
9384 if (flags & stripped)
9385 return flags;
9386
9387 stripped |= BTRFS_BLOCK_GROUP_DUP;
9388 stripped = flags & ~stripped;
9389
9390 /* switch duplicated blocks with raid1 */
9391 if (flags & BTRFS_BLOCK_GROUP_DUP)
9392 return stripped | BTRFS_BLOCK_GROUP_RAID1;
9393
e3176ca2 9394 /* this is drive concat, leave it alone */
ec44a35c 9395 }
e3176ca2 9396
ec44a35c
CM
9397 return flags;
9398}
9399
868f401a 9400static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
0ef3e66b 9401{
f0486c68
YZ
9402 struct btrfs_space_info *sinfo = cache->space_info;
9403 u64 num_bytes;
199c36ea 9404 u64 min_allocable_bytes;
f0486c68 9405 int ret = -ENOSPC;
0ef3e66b 9406
199c36ea
MX
9407 /*
9408 * We need some metadata space and system metadata space for
9409 * allocating chunks in some corner cases until we force to set
9410 * it to be readonly.
9411 */
9412 if ((sinfo->flags &
9413 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9414 !force)
ee22184b 9415 min_allocable_bytes = SZ_1M;
199c36ea
MX
9416 else
9417 min_allocable_bytes = 0;
9418
f0486c68
YZ
9419 spin_lock(&sinfo->lock);
9420 spin_lock(&cache->lock);
61cfea9b
W
9421
9422 if (cache->ro) {
868f401a 9423 cache->ro++;
61cfea9b
W
9424 ret = 0;
9425 goto out;
9426 }
9427
f0486c68
YZ
9428 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9429 cache->bytes_super - btrfs_block_group_used(&cache->item);
9430
4136135b 9431 if (btrfs_space_info_used(sinfo, true) + num_bytes +
37be25bc 9432 min_allocable_bytes <= sinfo->total_bytes) {
f0486c68 9433 sinfo->bytes_readonly += num_bytes;
868f401a 9434 cache->ro++;
633c0aad 9435 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
f0486c68
YZ
9436 ret = 0;
9437 }
61cfea9b 9438out:
f0486c68
YZ
9439 spin_unlock(&cache->lock);
9440 spin_unlock(&sinfo->lock);
9441 return ret;
9442}
7d9eb12c 9443
5e00f193 9444int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
f0486c68 9445 struct btrfs_block_group_cache *cache)
c286ac48 9446
f0486c68
YZ
9447{
9448 struct btrfs_trans_handle *trans;
9449 u64 alloc_flags;
9450 int ret;
7d9eb12c 9451
1bbc621e 9452again:
5e00f193 9453 trans = btrfs_join_transaction(fs_info->extent_root);
79787eaa
JM
9454 if (IS_ERR(trans))
9455 return PTR_ERR(trans);
5d4f98a2 9456
1bbc621e
CM
9457 /*
9458 * we're not allowed to set block groups readonly after the dirty
9459 * block groups cache has started writing. If it already started,
9460 * back off and let this transaction commit
9461 */
0b246afa 9462 mutex_lock(&fs_info->ro_block_group_mutex);
3204d33c 9463 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
1bbc621e
CM
9464 u64 transid = trans->transid;
9465
0b246afa 9466 mutex_unlock(&fs_info->ro_block_group_mutex);
3a45bb20 9467 btrfs_end_transaction(trans);
1bbc621e 9468
2ff7e61e 9469 ret = btrfs_wait_for_commit(fs_info, transid);
1bbc621e
CM
9470 if (ret)
9471 return ret;
9472 goto again;
9473 }
9474
153c35b6
CM
9475 /*
9476 * if we are changing raid levels, try to allocate a corresponding
9477 * block group with the new raid level.
9478 */
0b246afa 9479 alloc_flags = update_block_group_flags(fs_info, cache->flags);
153c35b6 9480 if (alloc_flags != cache->flags) {
2ff7e61e 9481 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
153c35b6
CM
9482 CHUNK_ALLOC_FORCE);
9483 /*
9484 * ENOSPC is allowed here, we may have enough space
9485 * already allocated at the new raid level to
9486 * carry on
9487 */
9488 if (ret == -ENOSPC)
9489 ret = 0;
9490 if (ret < 0)
9491 goto out;
9492 }
1bbc621e 9493
868f401a 9494 ret = inc_block_group_ro(cache, 0);
f0486c68
YZ
9495 if (!ret)
9496 goto out;
2ff7e61e
JM
9497 alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9498 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
0e4f8f88 9499 CHUNK_ALLOC_FORCE);
f0486c68
YZ
9500 if (ret < 0)
9501 goto out;
868f401a 9502 ret = inc_block_group_ro(cache, 0);
f0486c68 9503out:
2f081088 9504 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
0b246afa 9505 alloc_flags = update_block_group_flags(fs_info, cache->flags);
34441361 9506 mutex_lock(&fs_info->chunk_mutex);
2ff7e61e 9507 check_system_chunk(trans, fs_info, alloc_flags);
34441361 9508 mutex_unlock(&fs_info->chunk_mutex);
2f081088 9509 }
0b246afa 9510 mutex_unlock(&fs_info->ro_block_group_mutex);
2f081088 9511
3a45bb20 9512 btrfs_end_transaction(trans);
f0486c68
YZ
9513 return ret;
9514}
5d4f98a2 9515
c87f08ca 9516int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2ff7e61e 9517 struct btrfs_fs_info *fs_info, u64 type)
c87f08ca 9518{
2ff7e61e
JM
9519 u64 alloc_flags = get_alloc_profile(fs_info, type);
9520
9521 return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
c87f08ca
CM
9522}
9523
6d07bcec
MX
9524/*
9525 * helper to account the unused space of all the readonly block group in the
633c0aad 9526 * space_info. takes mirrors into account.
6d07bcec 9527 */
633c0aad 9528u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6d07bcec
MX
9529{
9530 struct btrfs_block_group_cache *block_group;
9531 u64 free_bytes = 0;
9532 int factor;
9533
01327610 9534 /* It's df, we don't care if it's racy */
633c0aad
JB
9535 if (list_empty(&sinfo->ro_bgs))
9536 return 0;
9537
9538 spin_lock(&sinfo->lock);
9539 list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
6d07bcec
MX
9540 spin_lock(&block_group->lock);
9541
9542 if (!block_group->ro) {
9543 spin_unlock(&block_group->lock);
9544 continue;
9545 }
9546
9547 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9548 BTRFS_BLOCK_GROUP_RAID10 |
9549 BTRFS_BLOCK_GROUP_DUP))
9550 factor = 2;
9551 else
9552 factor = 1;
9553
9554 free_bytes += (block_group->key.offset -
9555 btrfs_block_group_used(&block_group->item)) *
9556 factor;
9557
9558 spin_unlock(&block_group->lock);
9559 }
6d07bcec
MX
9560 spin_unlock(&sinfo->lock);
9561
9562 return free_bytes;
9563}
9564
2ff7e61e 9565void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
5d4f98a2 9566{
f0486c68
YZ
9567 struct btrfs_space_info *sinfo = cache->space_info;
9568 u64 num_bytes;
9569
9570 BUG_ON(!cache->ro);
9571
9572 spin_lock(&sinfo->lock);
9573 spin_lock(&cache->lock);
868f401a
Z
9574 if (!--cache->ro) {
9575 num_bytes = cache->key.offset - cache->reserved -
9576 cache->pinned - cache->bytes_super -
9577 btrfs_block_group_used(&cache->item);
9578 sinfo->bytes_readonly -= num_bytes;
9579 list_del_init(&cache->ro_list);
9580 }
f0486c68
YZ
9581 spin_unlock(&cache->lock);
9582 spin_unlock(&sinfo->lock);
5d4f98a2
YZ
9583}
9584
ba1bf481
JB
9585/*
9586 * checks to see if its even possible to relocate this block group.
9587 *
9588 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9589 * ok to go ahead and try.
9590 */
6bccf3ab 9591int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
1a40e23b 9592{
6bccf3ab 9593 struct btrfs_root *root = fs_info->extent_root;
ba1bf481
JB
9594 struct btrfs_block_group_cache *block_group;
9595 struct btrfs_space_info *space_info;
0b246afa 9596 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
ba1bf481 9597 struct btrfs_device *device;
6df9a95e 9598 struct btrfs_trans_handle *trans;
cdcb725c 9599 u64 min_free;
6719db6a
JB
9600 u64 dev_min = 1;
9601 u64 dev_nr = 0;
4a5e98f5 9602 u64 target;
0305bc27 9603 int debug;
cdcb725c 9604 int index;
ba1bf481
JB
9605 int full = 0;
9606 int ret = 0;
1a40e23b 9607
0b246afa 9608 debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
0305bc27 9609
0b246afa 9610 block_group = btrfs_lookup_block_group(fs_info, bytenr);
1a40e23b 9611
ba1bf481 9612 /* odd, couldn't find the block group, leave it alone */
0305bc27
QW
9613 if (!block_group) {
9614 if (debug)
0b246afa 9615 btrfs_warn(fs_info,
0305bc27
QW
9616 "can't find block group for bytenr %llu",
9617 bytenr);
ba1bf481 9618 return -1;
0305bc27 9619 }
1a40e23b 9620
cdcb725c 9621 min_free = btrfs_block_group_used(&block_group->item);
9622
ba1bf481 9623 /* no bytes used, we're good */
cdcb725c 9624 if (!min_free)
1a40e23b
ZY
9625 goto out;
9626
ba1bf481
JB
9627 space_info = block_group->space_info;
9628 spin_lock(&space_info->lock);
17d217fe 9629
ba1bf481 9630 full = space_info->full;
17d217fe 9631
ba1bf481
JB
9632 /*
9633 * if this is the last block group we have in this space, we can't
7ce618db
CM
9634 * relocate it unless we're able to allocate a new chunk below.
9635 *
9636 * Otherwise, we need to make sure we have room in the space to handle
9637 * all of the extents from this block group. If we can, we're good
ba1bf481 9638 */
7ce618db 9639 if ((space_info->total_bytes != block_group->key.offset) &&
4136135b
LB
9640 (btrfs_space_info_used(space_info, false) + min_free <
9641 space_info->total_bytes)) {
ba1bf481
JB
9642 spin_unlock(&space_info->lock);
9643 goto out;
17d217fe 9644 }
ba1bf481 9645 spin_unlock(&space_info->lock);
ea8c2819 9646
ba1bf481
JB
9647 /*
9648 * ok we don't have enough space, but maybe we have free space on our
9649 * devices to allocate new chunks for relocation, so loop through our
4a5e98f5
ID
9650 * alloc devices and guess if we have enough space. if this block
9651 * group is going to be restriped, run checks against the target
9652 * profile instead of the current one.
ba1bf481
JB
9653 */
9654 ret = -1;
ea8c2819 9655
cdcb725c 9656 /*
9657 * index:
9658 * 0: raid10
9659 * 1: raid1
9660 * 2: dup
9661 * 3: raid0
9662 * 4: single
9663 */
0b246afa 9664 target = get_restripe_target(fs_info, block_group->flags);
4a5e98f5 9665 if (target) {
3e72ee88 9666 index = btrfs_bg_flags_to_raid_index(extended_to_chunk(target));
4a5e98f5
ID
9667 } else {
9668 /*
9669 * this is just a balance, so if we were marked as full
9670 * we know there is no space for a new chunk
9671 */
0305bc27
QW
9672 if (full) {
9673 if (debug)
0b246afa
JM
9674 btrfs_warn(fs_info,
9675 "no space to alloc new chunk for block group %llu",
9676 block_group->key.objectid);
4a5e98f5 9677 goto out;
0305bc27 9678 }
4a5e98f5 9679
3e72ee88 9680 index = btrfs_bg_flags_to_raid_index(block_group->flags);
4a5e98f5
ID
9681 }
9682
e6ec716f 9683 if (index == BTRFS_RAID_RAID10) {
cdcb725c 9684 dev_min = 4;
6719db6a
JB
9685 /* Divide by 2 */
9686 min_free >>= 1;
e6ec716f 9687 } else if (index == BTRFS_RAID_RAID1) {
cdcb725c 9688 dev_min = 2;
e6ec716f 9689 } else if (index == BTRFS_RAID_DUP) {
6719db6a
JB
9690 /* Multiply by 2 */
9691 min_free <<= 1;
e6ec716f 9692 } else if (index == BTRFS_RAID_RAID0) {
cdcb725c 9693 dev_min = fs_devices->rw_devices;
47c5713f 9694 min_free = div64_u64(min_free, dev_min);
cdcb725c 9695 }
9696
6df9a95e
JB
9697 /* We need to do this so that we can look at pending chunks */
9698 trans = btrfs_join_transaction(root);
9699 if (IS_ERR(trans)) {
9700 ret = PTR_ERR(trans);
9701 goto out;
9702 }
9703
0b246afa 9704 mutex_lock(&fs_info->chunk_mutex);
ba1bf481 9705 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7bfc837d 9706 u64 dev_offset;
56bec294 9707
ba1bf481
JB
9708 /*
9709 * check to make sure we can actually find a chunk with enough
9710 * space to fit our block group in.
9711 */
63a212ab 9712 if (device->total_bytes > device->bytes_used + min_free &&
401e29c1 9713 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6df9a95e 9714 ret = find_free_dev_extent(trans, device, min_free,
7bfc837d 9715 &dev_offset, NULL);
ba1bf481 9716 if (!ret)
cdcb725c 9717 dev_nr++;
9718
9719 if (dev_nr >= dev_min)
73e48b27 9720 break;
cdcb725c 9721
ba1bf481 9722 ret = -1;
725c8463 9723 }
edbd8d4e 9724 }
0305bc27 9725 if (debug && ret == -1)
0b246afa
JM
9726 btrfs_warn(fs_info,
9727 "no space to allocate a new chunk for block group %llu",
9728 block_group->key.objectid);
9729 mutex_unlock(&fs_info->chunk_mutex);
3a45bb20 9730 btrfs_end_transaction(trans);
edbd8d4e 9731out:
ba1bf481 9732 btrfs_put_block_group(block_group);
edbd8d4e
CM
9733 return ret;
9734}
9735
6bccf3ab
JM
9736static int find_first_block_group(struct btrfs_fs_info *fs_info,
9737 struct btrfs_path *path,
9738 struct btrfs_key *key)
0b86a832 9739{
6bccf3ab 9740 struct btrfs_root *root = fs_info->extent_root;
925baedd 9741 int ret = 0;
0b86a832
CM
9742 struct btrfs_key found_key;
9743 struct extent_buffer *leaf;
9744 int slot;
edbd8d4e 9745
0b86a832
CM
9746 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9747 if (ret < 0)
925baedd
CM
9748 goto out;
9749
d397712b 9750 while (1) {
0b86a832 9751 slot = path->slots[0];
edbd8d4e 9752 leaf = path->nodes[0];
0b86a832
CM
9753 if (slot >= btrfs_header_nritems(leaf)) {
9754 ret = btrfs_next_leaf(root, path);
9755 if (ret == 0)
9756 continue;
9757 if (ret < 0)
925baedd 9758 goto out;
0b86a832 9759 break;
edbd8d4e 9760 }
0b86a832 9761 btrfs_item_key_to_cpu(leaf, &found_key, slot);
edbd8d4e 9762
0b86a832 9763 if (found_key.objectid >= key->objectid &&
925baedd 9764 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6fb37b75
LB
9765 struct extent_map_tree *em_tree;
9766 struct extent_map *em;
9767
9768 em_tree = &root->fs_info->mapping_tree.map_tree;
9769 read_lock(&em_tree->lock);
9770 em = lookup_extent_mapping(em_tree, found_key.objectid,
9771 found_key.offset);
9772 read_unlock(&em_tree->lock);
9773 if (!em) {
0b246afa 9774 btrfs_err(fs_info,
6fb37b75
LB
9775 "logical %llu len %llu found bg but no related chunk",
9776 found_key.objectid, found_key.offset);
9777 ret = -ENOENT;
9778 } else {
9779 ret = 0;
9780 }
187ee58c 9781 free_extent_map(em);
925baedd
CM
9782 goto out;
9783 }
0b86a832 9784 path->slots[0]++;
edbd8d4e 9785 }
925baedd 9786out:
0b86a832 9787 return ret;
edbd8d4e
CM
9788}
9789
0af3d00b
JB
9790void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9791{
9792 struct btrfs_block_group_cache *block_group;
9793 u64 last = 0;
9794
9795 while (1) {
9796 struct inode *inode;
9797
9798 block_group = btrfs_lookup_first_block_group(info, last);
9799 while (block_group) {
9800 spin_lock(&block_group->lock);
9801 if (block_group->iref)
9802 break;
9803 spin_unlock(&block_group->lock);
2ff7e61e 9804 block_group = next_block_group(info, block_group);
0af3d00b
JB
9805 }
9806 if (!block_group) {
9807 if (last == 0)
9808 break;
9809 last = 0;
9810 continue;
9811 }
9812
9813 inode = block_group->inode;
9814 block_group->iref = 0;
9815 block_group->inode = NULL;
9816 spin_unlock(&block_group->lock);
f3bca802 9817 ASSERT(block_group->io_ctl.inode == NULL);
0af3d00b
JB
9818 iput(inode);
9819 last = block_group->key.objectid + block_group->key.offset;
9820 btrfs_put_block_group(block_group);
9821 }
9822}
9823
5cdd7db6
FM
9824/*
9825 * Must be called only after stopping all workers, since we could have block
9826 * group caching kthreads running, and therefore they could race with us if we
9827 * freed the block groups before stopping them.
9828 */
1a40e23b
ZY
9829int btrfs_free_block_groups(struct btrfs_fs_info *info)
9830{
9831 struct btrfs_block_group_cache *block_group;
4184ea7f 9832 struct btrfs_space_info *space_info;
11833d66 9833 struct btrfs_caching_control *caching_ctl;
1a40e23b
ZY
9834 struct rb_node *n;
9835
9e351cc8 9836 down_write(&info->commit_root_sem);
11833d66
YZ
9837 while (!list_empty(&info->caching_block_groups)) {
9838 caching_ctl = list_entry(info->caching_block_groups.next,
9839 struct btrfs_caching_control, list);
9840 list_del(&caching_ctl->list);
9841 put_caching_control(caching_ctl);
9842 }
9e351cc8 9843 up_write(&info->commit_root_sem);
11833d66 9844
47ab2a6c
JB
9845 spin_lock(&info->unused_bgs_lock);
9846 while (!list_empty(&info->unused_bgs)) {
9847 block_group = list_first_entry(&info->unused_bgs,
9848 struct btrfs_block_group_cache,
9849 bg_list);
9850 list_del_init(&block_group->bg_list);
9851 btrfs_put_block_group(block_group);
9852 }
9853 spin_unlock(&info->unused_bgs_lock);
9854
1a40e23b
ZY
9855 spin_lock(&info->block_group_cache_lock);
9856 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9857 block_group = rb_entry(n, struct btrfs_block_group_cache,
9858 cache_node);
1a40e23b
ZY
9859 rb_erase(&block_group->cache_node,
9860 &info->block_group_cache_tree);
01eacb27 9861 RB_CLEAR_NODE(&block_group->cache_node);
d899e052
YZ
9862 spin_unlock(&info->block_group_cache_lock);
9863
80eb234a 9864 down_write(&block_group->space_info->groups_sem);
1a40e23b 9865 list_del(&block_group->list);
80eb234a 9866 up_write(&block_group->space_info->groups_sem);
d2fb3437 9867
3c14874a
JB
9868 /*
9869 * We haven't cached this block group, which means we could
9870 * possibly have excluded extents on this block group.
9871 */
36cce922
JB
9872 if (block_group->cached == BTRFS_CACHE_NO ||
9873 block_group->cached == BTRFS_CACHE_ERROR)
2ff7e61e 9874 free_excluded_extents(info, block_group);
3c14874a 9875
817d52f8 9876 btrfs_remove_free_space_cache(block_group);
5cdd7db6 9877 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
f3bca802
LB
9878 ASSERT(list_empty(&block_group->dirty_list));
9879 ASSERT(list_empty(&block_group->io_list));
9880 ASSERT(list_empty(&block_group->bg_list));
9881 ASSERT(atomic_read(&block_group->count) == 1);
11dfe35a 9882 btrfs_put_block_group(block_group);
d899e052
YZ
9883
9884 spin_lock(&info->block_group_cache_lock);
1a40e23b
ZY
9885 }
9886 spin_unlock(&info->block_group_cache_lock);
4184ea7f
CM
9887
9888 /* now that all the block groups are freed, go through and
9889 * free all the space_info structs. This is only called during
9890 * the final stages of unmount, and so we know nobody is
9891 * using them. We call synchronize_rcu() once before we start,
9892 * just to be on the safe side.
9893 */
9894 synchronize_rcu();
9895
8929ecfa
YZ
9896 release_global_block_rsv(info);
9897
67871254 9898 while (!list_empty(&info->space_info)) {
6ab0a202
JM
9899 int i;
9900
4184ea7f
CM
9901 space_info = list_entry(info->space_info.next,
9902 struct btrfs_space_info,
9903 list);
d555b6c3
JB
9904
9905 /*
9906 * Do not hide this behind enospc_debug, this is actually
9907 * important and indicates a real bug if this happens.
9908 */
9909 if (WARN_ON(space_info->bytes_pinned > 0 ||
b069e0c3 9910 space_info->bytes_reserved > 0 ||
d555b6c3 9911 space_info->bytes_may_use > 0))
ab8d0fc4 9912 dump_space_info(info, space_info, 0, 0);
4184ea7f 9913 list_del(&space_info->list);
6ab0a202
JM
9914 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
9915 struct kobject *kobj;
c1895442
JM
9916 kobj = space_info->block_group_kobjs[i];
9917 space_info->block_group_kobjs[i] = NULL;
9918 if (kobj) {
6ab0a202
JM
9919 kobject_del(kobj);
9920 kobject_put(kobj);
9921 }
9922 }
9923 kobject_del(&space_info->kobj);
9924 kobject_put(&space_info->kobj);
4184ea7f 9925 }
1a40e23b
ZY
9926 return 0;
9927}
9928
75cb379d
JM
9929/* link_block_group will queue up kobjects to add when we're reclaim-safe */
9930void btrfs_add_raid_kobjects(struct btrfs_fs_info *fs_info)
9931{
9932 struct btrfs_space_info *space_info;
9933 struct raid_kobject *rkobj;
9934 LIST_HEAD(list);
9935 int index;
9936 int ret = 0;
9937
9938 spin_lock(&fs_info->pending_raid_kobjs_lock);
9939 list_splice_init(&fs_info->pending_raid_kobjs, &list);
9940 spin_unlock(&fs_info->pending_raid_kobjs_lock);
9941
9942 list_for_each_entry(rkobj, &list, list) {
9943 space_info = __find_space_info(fs_info, rkobj->flags);
9944 index = btrfs_bg_flags_to_raid_index(rkobj->flags);
9945
9946 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
9947 "%s", get_raid_name(index));
9948 if (ret) {
9949 kobject_put(&rkobj->kobj);
9950 break;
9951 }
9952 }
9953 if (ret)
9954 btrfs_warn(fs_info,
9955 "failed to add kobject for block cache, ignoring");
9956}
9957
c434d21c 9958static void link_block_group(struct btrfs_block_group_cache *cache)
b742bb82 9959{
c434d21c 9960 struct btrfs_space_info *space_info = cache->space_info;
75cb379d 9961 struct btrfs_fs_info *fs_info = cache->fs_info;
3e72ee88 9962 int index = btrfs_bg_flags_to_raid_index(cache->flags);
ed55b6ac 9963 bool first = false;
b742bb82
YZ
9964
9965 down_write(&space_info->groups_sem);
ed55b6ac
JM
9966 if (list_empty(&space_info->block_groups[index]))
9967 first = true;
9968 list_add_tail(&cache->list, &space_info->block_groups[index]);
9969 up_write(&space_info->groups_sem);
9970
9971 if (first) {
75cb379d
JM
9972 struct raid_kobject *rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
9973 if (!rkobj) {
9974 btrfs_warn(cache->fs_info,
9975 "couldn't alloc memory for raid level kobject");
9976 return;
6ab0a202 9977 }
75cb379d
JM
9978 rkobj->flags = cache->flags;
9979 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
9980
9981 spin_lock(&fs_info->pending_raid_kobjs_lock);
9982 list_add_tail(&rkobj->list, &fs_info->pending_raid_kobjs);
9983 spin_unlock(&fs_info->pending_raid_kobjs_lock);
c1895442 9984 space_info->block_group_kobjs[index] = &rkobj->kobj;
6ab0a202 9985 }
b742bb82
YZ
9986}
9987
920e4a58 9988static struct btrfs_block_group_cache *
2ff7e61e
JM
9989btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
9990 u64 start, u64 size)
920e4a58
MX
9991{
9992 struct btrfs_block_group_cache *cache;
9993
9994 cache = kzalloc(sizeof(*cache), GFP_NOFS);
9995 if (!cache)
9996 return NULL;
9997
9998 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
9999 GFP_NOFS);
10000 if (!cache->free_space_ctl) {
10001 kfree(cache);
10002 return NULL;
10003 }
10004
10005 cache->key.objectid = start;
10006 cache->key.offset = size;
10007 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10008
0b246afa 10009 cache->fs_info = fs_info;
e4ff5fb5 10010 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1e144fb8
OS
10011 set_free_space_tree_thresholds(cache);
10012
920e4a58
MX
10013 atomic_set(&cache->count, 1);
10014 spin_lock_init(&cache->lock);
e570fd27 10015 init_rwsem(&cache->data_rwsem);
920e4a58
MX
10016 INIT_LIST_HEAD(&cache->list);
10017 INIT_LIST_HEAD(&cache->cluster_list);
47ab2a6c 10018 INIT_LIST_HEAD(&cache->bg_list);
633c0aad 10019 INIT_LIST_HEAD(&cache->ro_list);
ce93ec54 10020 INIT_LIST_HEAD(&cache->dirty_list);
c9dc4c65 10021 INIT_LIST_HEAD(&cache->io_list);
920e4a58 10022 btrfs_init_free_space_ctl(cache);
04216820 10023 atomic_set(&cache->trimming, 0);
a5ed9182 10024 mutex_init(&cache->free_space_lock);
0966a7b1 10025 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
920e4a58
MX
10026
10027 return cache;
10028}
10029
5b4aacef 10030int btrfs_read_block_groups(struct btrfs_fs_info *info)
9078a3e1
CM
10031{
10032 struct btrfs_path *path;
10033 int ret;
9078a3e1 10034 struct btrfs_block_group_cache *cache;
6324fbf3 10035 struct btrfs_space_info *space_info;
9078a3e1
CM
10036 struct btrfs_key key;
10037 struct btrfs_key found_key;
5f39d397 10038 struct extent_buffer *leaf;
0af3d00b
JB
10039 int need_clear = 0;
10040 u64 cache_gen;
49303381
LB
10041 u64 feature;
10042 int mixed;
10043
10044 feature = btrfs_super_incompat_flags(info->super_copy);
10045 mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
96b5179d 10046
9078a3e1 10047 key.objectid = 0;
0b86a832 10048 key.offset = 0;
962a298f 10049 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
9078a3e1
CM
10050 path = btrfs_alloc_path();
10051 if (!path)
10052 return -ENOMEM;
e4058b54 10053 path->reada = READA_FORWARD;
9078a3e1 10054
0b246afa
JM
10055 cache_gen = btrfs_super_cache_generation(info->super_copy);
10056 if (btrfs_test_opt(info, SPACE_CACHE) &&
10057 btrfs_super_generation(info->super_copy) != cache_gen)
0af3d00b 10058 need_clear = 1;
0b246afa 10059 if (btrfs_test_opt(info, CLEAR_CACHE))
88c2ba3b 10060 need_clear = 1;
0af3d00b 10061
d397712b 10062 while (1) {
6bccf3ab 10063 ret = find_first_block_group(info, path, &key);
b742bb82
YZ
10064 if (ret > 0)
10065 break;
0b86a832
CM
10066 if (ret != 0)
10067 goto error;
920e4a58 10068
5f39d397
CM
10069 leaf = path->nodes[0];
10070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
920e4a58 10071
2ff7e61e 10072 cache = btrfs_create_block_group_cache(info, found_key.objectid,
920e4a58 10073 found_key.offset);
9078a3e1 10074 if (!cache) {
0b86a832 10075 ret = -ENOMEM;
f0486c68 10076 goto error;
9078a3e1 10077 }
96303081 10078
cf7c1ef6
LB
10079 if (need_clear) {
10080 /*
10081 * When we mount with old space cache, we need to
10082 * set BTRFS_DC_CLEAR and set dirty flag.
10083 *
10084 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10085 * truncate the old free space cache inode and
10086 * setup a new one.
10087 * b) Setting 'dirty flag' makes sure that we flush
10088 * the new space cache info onto disk.
10089 */
0b246afa 10090 if (btrfs_test_opt(info, SPACE_CACHE))
ce93ec54 10091 cache->disk_cache_state = BTRFS_DC_CLEAR;
cf7c1ef6 10092 }
0af3d00b 10093
5f39d397
CM
10094 read_extent_buffer(leaf, &cache->item,
10095 btrfs_item_ptr_offset(leaf, path->slots[0]),
10096 sizeof(cache->item));
920e4a58 10097 cache->flags = btrfs_block_group_flags(&cache->item);
49303381
LB
10098 if (!mixed &&
10099 ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10100 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10101 btrfs_err(info,
10102"bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10103 cache->key.objectid);
10104 ret = -EINVAL;
10105 goto error;
10106 }
0b86a832 10107
9078a3e1 10108 key.objectid = found_key.objectid + found_key.offset;
b3b4aa74 10109 btrfs_release_path(path);
34d52cb6 10110
3c14874a
JB
10111 /*
10112 * We need to exclude the super stripes now so that the space
10113 * info has super bytes accounted for, otherwise we'll think
10114 * we have more space than we actually do.
10115 */
2ff7e61e 10116 ret = exclude_super_stripes(info, cache);
835d974f
JB
10117 if (ret) {
10118 /*
10119 * We may have excluded something, so call this just in
10120 * case.
10121 */
2ff7e61e 10122 free_excluded_extents(info, cache);
920e4a58 10123 btrfs_put_block_group(cache);
835d974f
JB
10124 goto error;
10125 }
3c14874a 10126
817d52f8
JB
10127 /*
10128 * check for two cases, either we are full, and therefore
10129 * don't need to bother with the caching work since we won't
10130 * find any space, or we are empty, and we can just add all
10131 * the space in and be done with it. This saves us _alot_ of
10132 * time, particularly in the full case.
10133 */
10134 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
11833d66 10135 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10136 cache->cached = BTRFS_CACHE_FINISHED;
2ff7e61e 10137 free_excluded_extents(info, cache);
817d52f8 10138 } else if (btrfs_block_group_used(&cache->item) == 0) {
11833d66 10139 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10140 cache->cached = BTRFS_CACHE_FINISHED;
4457c1c7 10141 add_new_free_space(cache, found_key.objectid,
817d52f8
JB
10142 found_key.objectid +
10143 found_key.offset);
2ff7e61e 10144 free_excluded_extents(info, cache);
817d52f8 10145 }
96b5179d 10146
0b246afa 10147 ret = btrfs_add_block_group_cache(info, cache);
8c579fe7
JB
10148 if (ret) {
10149 btrfs_remove_free_space_cache(cache);
10150 btrfs_put_block_group(cache);
10151 goto error;
10152 }
10153
0b246afa 10154 trace_btrfs_add_block_group(info, cache, 0);
d2006e6d
NB
10155 update_space_info(info, cache->flags, found_key.offset,
10156 btrfs_block_group_used(&cache->item),
10157 cache->bytes_super, &space_info);
8c579fe7 10158
6324fbf3 10159 cache->space_info = space_info;
1b2da372 10160
c434d21c 10161 link_block_group(cache);
0f9dd46c 10162
0b246afa 10163 set_avail_alloc_bits(info, cache->flags);
2ff7e61e 10164 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
868f401a 10165 inc_block_group_ro(cache, 1);
47ab2a6c
JB
10166 } else if (btrfs_block_group_used(&cache->item) == 0) {
10167 spin_lock(&info->unused_bgs_lock);
10168 /* Should always be true but just in case. */
10169 if (list_empty(&cache->bg_list)) {
10170 btrfs_get_block_group(cache);
4ed0a7a3 10171 trace_btrfs_add_unused_block_group(cache);
47ab2a6c
JB
10172 list_add_tail(&cache->bg_list,
10173 &info->unused_bgs);
10174 }
10175 spin_unlock(&info->unused_bgs_lock);
10176 }
9078a3e1 10177 }
b742bb82 10178
0b246afa 10179 list_for_each_entry_rcu(space_info, &info->space_info, list) {
2ff7e61e 10180 if (!(get_alloc_profile(info, space_info->flags) &
b742bb82
YZ
10181 (BTRFS_BLOCK_GROUP_RAID10 |
10182 BTRFS_BLOCK_GROUP_RAID1 |
53b381b3
DW
10183 BTRFS_BLOCK_GROUP_RAID5 |
10184 BTRFS_BLOCK_GROUP_RAID6 |
b742bb82
YZ
10185 BTRFS_BLOCK_GROUP_DUP)))
10186 continue;
10187 /*
10188 * avoid allocating from un-mirrored block group if there are
10189 * mirrored block groups.
10190 */
1095cc0d 10191 list_for_each_entry(cache,
10192 &space_info->block_groups[BTRFS_RAID_RAID0],
10193 list)
868f401a 10194 inc_block_group_ro(cache, 1);
1095cc0d 10195 list_for_each_entry(cache,
10196 &space_info->block_groups[BTRFS_RAID_SINGLE],
10197 list)
868f401a 10198 inc_block_group_ro(cache, 1);
9078a3e1 10199 }
f0486c68 10200
75cb379d 10201 btrfs_add_raid_kobjects(info);
f0486c68 10202 init_global_block_rsv(info);
0b86a832
CM
10203 ret = 0;
10204error:
9078a3e1 10205 btrfs_free_path(path);
0b86a832 10206 return ret;
9078a3e1 10207}
6324fbf3 10208
6c686b35 10209void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
ea658bad 10210{
6c686b35 10211 struct btrfs_fs_info *fs_info = trans->fs_info;
ea658bad 10212 struct btrfs_block_group_cache *block_group, *tmp;
0b246afa 10213 struct btrfs_root *extent_root = fs_info->extent_root;
ea658bad
JB
10214 struct btrfs_block_group_item item;
10215 struct btrfs_key key;
10216 int ret = 0;
d9a0540a 10217 bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
ea658bad 10218
d9a0540a 10219 trans->can_flush_pending_bgs = false;
47ab2a6c 10220 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
ea658bad 10221 if (ret)
c92f6be3 10222 goto next;
ea658bad
JB
10223
10224 spin_lock(&block_group->lock);
10225 memcpy(&item, &block_group->item, sizeof(item));
10226 memcpy(&key, &block_group->key, sizeof(key));
10227 spin_unlock(&block_group->lock);
10228
10229 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10230 sizeof(item));
10231 if (ret)
66642832 10232 btrfs_abort_transaction(trans, ret);
0b246afa
JM
10233 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10234 key.offset);
6df9a95e 10235 if (ret)
66642832 10236 btrfs_abort_transaction(trans, ret);
e4e0711c 10237 add_block_group_free_space(trans, block_group);
1e144fb8 10238 /* already aborted the transaction if it failed. */
c92f6be3
FM
10239next:
10240 list_del_init(&block_group->bg_list);
ea658bad 10241 }
d9a0540a 10242 trans->can_flush_pending_bgs = can_flush_pending_bgs;
ea658bad
JB
10243}
10244
6324fbf3 10245int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2ff7e61e 10246 struct btrfs_fs_info *fs_info, u64 bytes_used,
0174484d 10247 u64 type, u64 chunk_offset, u64 size)
6324fbf3 10248{
6324fbf3 10249 struct btrfs_block_group_cache *cache;
0b246afa 10250 int ret;
6324fbf3 10251
0b246afa 10252 btrfs_set_log_full_commit(fs_info, trans);
e02119d5 10253
2ff7e61e 10254 cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
0f9dd46c
JB
10255 if (!cache)
10256 return -ENOMEM;
34d52cb6 10257
6324fbf3 10258 btrfs_set_block_group_used(&cache->item, bytes_used);
0174484d
NB
10259 btrfs_set_block_group_chunk_objectid(&cache->item,
10260 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
6324fbf3
CM
10261 btrfs_set_block_group_flags(&cache->item, type);
10262
920e4a58 10263 cache->flags = type;
11833d66 10264 cache->last_byte_to_unpin = (u64)-1;
817d52f8 10265 cache->cached = BTRFS_CACHE_FINISHED;
1e144fb8 10266 cache->needs_free_space = 1;
2ff7e61e 10267 ret = exclude_super_stripes(fs_info, cache);
835d974f
JB
10268 if (ret) {
10269 /*
10270 * We may have excluded something, so call this just in
10271 * case.
10272 */
2ff7e61e 10273 free_excluded_extents(fs_info, cache);
920e4a58 10274 btrfs_put_block_group(cache);
835d974f
JB
10275 return ret;
10276 }
96303081 10277
4457c1c7 10278 add_new_free_space(cache, chunk_offset, chunk_offset + size);
817d52f8 10279
2ff7e61e 10280 free_excluded_extents(fs_info, cache);
11833d66 10281
d0bd4560 10282#ifdef CONFIG_BTRFS_DEBUG
2ff7e61e 10283 if (btrfs_should_fragment_free_space(cache)) {
d0bd4560
JB
10284 u64 new_bytes_used = size - bytes_used;
10285
10286 bytes_used += new_bytes_used >> 1;
2ff7e61e 10287 fragment_free_space(cache);
d0bd4560
JB
10288 }
10289#endif
2e6e5183 10290 /*
2be12ef7
NB
10291 * Ensure the corresponding space_info object is created and
10292 * assigned to our block group. We want our bg to be added to the rbtree
10293 * with its ->space_info set.
2e6e5183 10294 */
2be12ef7 10295 cache->space_info = __find_space_info(fs_info, cache->flags);
dc2d3005 10296 ASSERT(cache->space_info);
2e6e5183 10297
0b246afa 10298 ret = btrfs_add_block_group_cache(fs_info, cache);
8c579fe7
JB
10299 if (ret) {
10300 btrfs_remove_free_space_cache(cache);
10301 btrfs_put_block_group(cache);
10302 return ret;
10303 }
10304
2e6e5183
FM
10305 /*
10306 * Now that our block group has its ->space_info set and is inserted in
10307 * the rbtree, update the space info's counters.
10308 */
0b246afa 10309 trace_btrfs_add_block_group(fs_info, cache, 1);
d2006e6d 10310 update_space_info(fs_info, cache->flags, size, bytes_used,
e40edf2d 10311 cache->bytes_super, &cache->space_info);
0b246afa 10312 update_global_block_rsv(fs_info);
1b2da372 10313
c434d21c 10314 link_block_group(cache);
6324fbf3 10315
47ab2a6c 10316 list_add_tail(&cache->bg_list, &trans->new_bgs);
6324fbf3 10317
0b246afa 10318 set_avail_alloc_bits(fs_info, type);
6324fbf3
CM
10319 return 0;
10320}
1a40e23b 10321
10ea00f5
ID
10322static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10323{
899c81ea
ID
10324 u64 extra_flags = chunk_to_extended(flags) &
10325 BTRFS_EXTENDED_PROFILE_MASK;
10ea00f5 10326
de98ced9 10327 write_seqlock(&fs_info->profiles_lock);
10ea00f5
ID
10328 if (flags & BTRFS_BLOCK_GROUP_DATA)
10329 fs_info->avail_data_alloc_bits &= ~extra_flags;
10330 if (flags & BTRFS_BLOCK_GROUP_METADATA)
10331 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10332 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10333 fs_info->avail_system_alloc_bits &= ~extra_flags;
de98ced9 10334 write_sequnlock(&fs_info->profiles_lock);
10ea00f5
ID
10335}
10336
1a40e23b 10337int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
6bccf3ab 10338 struct btrfs_fs_info *fs_info, u64 group_start,
04216820 10339 struct extent_map *em)
1a40e23b 10340{
6bccf3ab 10341 struct btrfs_root *root = fs_info->extent_root;
1a40e23b
ZY
10342 struct btrfs_path *path;
10343 struct btrfs_block_group_cache *block_group;
44fb5511 10344 struct btrfs_free_cluster *cluster;
0b246afa 10345 struct btrfs_root *tree_root = fs_info->tree_root;
1a40e23b 10346 struct btrfs_key key;
0af3d00b 10347 struct inode *inode;
c1895442 10348 struct kobject *kobj = NULL;
1a40e23b 10349 int ret;
10ea00f5 10350 int index;
89a55897 10351 int factor;
4f69cb98 10352 struct btrfs_caching_control *caching_ctl = NULL;
04216820 10353 bool remove_em;
1a40e23b 10354
6bccf3ab 10355 block_group = btrfs_lookup_block_group(fs_info, group_start);
1a40e23b 10356 BUG_ON(!block_group);
c146afad 10357 BUG_ON(!block_group->ro);
1a40e23b 10358
4ed0a7a3 10359 trace_btrfs_remove_block_group(block_group);
9f7c43c9 10360 /*
10361 * Free the reserved super bytes from this block group before
10362 * remove it.
10363 */
2ff7e61e 10364 free_excluded_extents(fs_info, block_group);
fd708b81
JB
10365 btrfs_free_ref_tree_range(fs_info, block_group->key.objectid,
10366 block_group->key.offset);
9f7c43c9 10367
1a40e23b 10368 memcpy(&key, &block_group->key, sizeof(key));
3e72ee88 10369 index = btrfs_bg_flags_to_raid_index(block_group->flags);
89a55897
JB
10370 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10371 BTRFS_BLOCK_GROUP_RAID1 |
10372 BTRFS_BLOCK_GROUP_RAID10))
10373 factor = 2;
10374 else
10375 factor = 1;
1a40e23b 10376
44fb5511 10377 /* make sure this block group isn't part of an allocation cluster */
0b246afa 10378 cluster = &fs_info->data_alloc_cluster;
44fb5511
CM
10379 spin_lock(&cluster->refill_lock);
10380 btrfs_return_cluster_to_free_space(block_group, cluster);
10381 spin_unlock(&cluster->refill_lock);
10382
10383 /*
10384 * make sure this block group isn't part of a metadata
10385 * allocation cluster
10386 */
0b246afa 10387 cluster = &fs_info->meta_alloc_cluster;
44fb5511
CM
10388 spin_lock(&cluster->refill_lock);
10389 btrfs_return_cluster_to_free_space(block_group, cluster);
10390 spin_unlock(&cluster->refill_lock);
10391
1a40e23b 10392 path = btrfs_alloc_path();
d8926bb3
MF
10393 if (!path) {
10394 ret = -ENOMEM;
10395 goto out;
10396 }
1a40e23b 10397
1bbc621e
CM
10398 /*
10399 * get the inode first so any iput calls done for the io_list
10400 * aren't the final iput (no unlinks allowed now)
10401 */
77ab86bf 10402 inode = lookup_free_space_inode(fs_info, block_group, path);
1bbc621e
CM
10403
10404 mutex_lock(&trans->transaction->cache_write_mutex);
10405 /*
10406 * make sure our free spache cache IO is done before remove the
10407 * free space inode
10408 */
10409 spin_lock(&trans->transaction->dirty_bgs_lock);
10410 if (!list_empty(&block_group->io_list)) {
10411 list_del_init(&block_group->io_list);
10412
10413 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10414
10415 spin_unlock(&trans->transaction->dirty_bgs_lock);
afdb5718 10416 btrfs_wait_cache_io(trans, block_group, path);
1bbc621e
CM
10417 btrfs_put_block_group(block_group);
10418 spin_lock(&trans->transaction->dirty_bgs_lock);
10419 }
10420
10421 if (!list_empty(&block_group->dirty_list)) {
10422 list_del_init(&block_group->dirty_list);
10423 btrfs_put_block_group(block_group);
10424 }
10425 spin_unlock(&trans->transaction->dirty_bgs_lock);
10426 mutex_unlock(&trans->transaction->cache_write_mutex);
10427
0af3d00b 10428 if (!IS_ERR(inode)) {
73f2e545 10429 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
79787eaa
JM
10430 if (ret) {
10431 btrfs_add_delayed_iput(inode);
10432 goto out;
10433 }
0af3d00b
JB
10434 clear_nlink(inode);
10435 /* One for the block groups ref */
10436 spin_lock(&block_group->lock);
10437 if (block_group->iref) {
10438 block_group->iref = 0;
10439 block_group->inode = NULL;
10440 spin_unlock(&block_group->lock);
10441 iput(inode);
10442 } else {
10443 spin_unlock(&block_group->lock);
10444 }
10445 /* One for our lookup ref */
455757c3 10446 btrfs_add_delayed_iput(inode);
0af3d00b
JB
10447 }
10448
10449 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10450 key.offset = block_group->key.objectid;
10451 key.type = 0;
10452
10453 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10454 if (ret < 0)
10455 goto out;
10456 if (ret > 0)
b3b4aa74 10457 btrfs_release_path(path);
0af3d00b
JB
10458 if (ret == 0) {
10459 ret = btrfs_del_item(trans, tree_root, path);
10460 if (ret)
10461 goto out;
b3b4aa74 10462 btrfs_release_path(path);
0af3d00b
JB
10463 }
10464
0b246afa 10465 spin_lock(&fs_info->block_group_cache_lock);
1a40e23b 10466 rb_erase(&block_group->cache_node,
0b246afa 10467 &fs_info->block_group_cache_tree);
292cbd51 10468 RB_CLEAR_NODE(&block_group->cache_node);
a1897fdd 10469
0b246afa
JM
10470 if (fs_info->first_logical_byte == block_group->key.objectid)
10471 fs_info->first_logical_byte = (u64)-1;
10472 spin_unlock(&fs_info->block_group_cache_lock);
817d52f8 10473
80eb234a 10474 down_write(&block_group->space_info->groups_sem);
44fb5511
CM
10475 /*
10476 * we must use list_del_init so people can check to see if they
10477 * are still on the list after taking the semaphore
10478 */
10479 list_del_init(&block_group->list);
6ab0a202 10480 if (list_empty(&block_group->space_info->block_groups[index])) {
c1895442
JM
10481 kobj = block_group->space_info->block_group_kobjs[index];
10482 block_group->space_info->block_group_kobjs[index] = NULL;
0b246afa 10483 clear_avail_alloc_bits(fs_info, block_group->flags);
6ab0a202 10484 }
80eb234a 10485 up_write(&block_group->space_info->groups_sem);
c1895442
JM
10486 if (kobj) {
10487 kobject_del(kobj);
10488 kobject_put(kobj);
10489 }
1a40e23b 10490
4f69cb98
FM
10491 if (block_group->has_caching_ctl)
10492 caching_ctl = get_caching_control(block_group);
817d52f8 10493 if (block_group->cached == BTRFS_CACHE_STARTED)
11833d66 10494 wait_block_group_cache_done(block_group);
4f69cb98 10495 if (block_group->has_caching_ctl) {
0b246afa 10496 down_write(&fs_info->commit_root_sem);
4f69cb98
FM
10497 if (!caching_ctl) {
10498 struct btrfs_caching_control *ctl;
10499
10500 list_for_each_entry(ctl,
0b246afa 10501 &fs_info->caching_block_groups, list)
4f69cb98
FM
10502 if (ctl->block_group == block_group) {
10503 caching_ctl = ctl;
1e4f4714 10504 refcount_inc(&caching_ctl->count);
4f69cb98
FM
10505 break;
10506 }
10507 }
10508 if (caching_ctl)
10509 list_del_init(&caching_ctl->list);
0b246afa 10510 up_write(&fs_info->commit_root_sem);
4f69cb98
FM
10511 if (caching_ctl) {
10512 /* Once for the caching bgs list and once for us. */
10513 put_caching_control(caching_ctl);
10514 put_caching_control(caching_ctl);
10515 }
10516 }
817d52f8 10517
ce93ec54
JB
10518 spin_lock(&trans->transaction->dirty_bgs_lock);
10519 if (!list_empty(&block_group->dirty_list)) {
1bbc621e
CM
10520 WARN_ON(1);
10521 }
10522 if (!list_empty(&block_group->io_list)) {
10523 WARN_ON(1);
ce93ec54
JB
10524 }
10525 spin_unlock(&trans->transaction->dirty_bgs_lock);
817d52f8
JB
10526 btrfs_remove_free_space_cache(block_group);
10527
c146afad 10528 spin_lock(&block_group->space_info->lock);
75c68e9f 10529 list_del_init(&block_group->ro_list);
18d018ad 10530
0b246afa 10531 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
18d018ad
ZL
10532 WARN_ON(block_group->space_info->total_bytes
10533 < block_group->key.offset);
10534 WARN_ON(block_group->space_info->bytes_readonly
10535 < block_group->key.offset);
10536 WARN_ON(block_group->space_info->disk_total
10537 < block_group->key.offset * factor);
10538 }
c146afad
YZ
10539 block_group->space_info->total_bytes -= block_group->key.offset;
10540 block_group->space_info->bytes_readonly -= block_group->key.offset;
89a55897 10541 block_group->space_info->disk_total -= block_group->key.offset * factor;
18d018ad 10542
c146afad 10543 spin_unlock(&block_group->space_info->lock);
283bb197 10544
0af3d00b
JB
10545 memcpy(&key, &block_group->key, sizeof(key));
10546
34441361 10547 mutex_lock(&fs_info->chunk_mutex);
495e64f4
FM
10548 if (!list_empty(&em->list)) {
10549 /* We're in the transaction->pending_chunks list. */
10550 free_extent_map(em);
10551 }
04216820
FM
10552 spin_lock(&block_group->lock);
10553 block_group->removed = 1;
10554 /*
10555 * At this point trimming can't start on this block group, because we
10556 * removed the block group from the tree fs_info->block_group_cache_tree
10557 * so no one can't find it anymore and even if someone already got this
10558 * block group before we removed it from the rbtree, they have already
10559 * incremented block_group->trimming - if they didn't, they won't find
10560 * any free space entries because we already removed them all when we
10561 * called btrfs_remove_free_space_cache().
10562 *
10563 * And we must not remove the extent map from the fs_info->mapping_tree
10564 * to prevent the same logical address range and physical device space
10565 * ranges from being reused for a new block group. This is because our
10566 * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10567 * completely transactionless, so while it is trimming a range the
10568 * currently running transaction might finish and a new one start,
10569 * allowing for new block groups to be created that can reuse the same
10570 * physical device locations unless we take this special care.
e33e17ee
JM
10571 *
10572 * There may also be an implicit trim operation if the file system
10573 * is mounted with -odiscard. The same protections must remain
10574 * in place until the extents have been discarded completely when
10575 * the transaction commit has completed.
04216820
FM
10576 */
10577 remove_em = (atomic_read(&block_group->trimming) == 0);
10578 /*
10579 * Make sure a trimmer task always sees the em in the pinned_chunks list
10580 * if it sees block_group->removed == 1 (needs to lock block_group->lock
10581 * before checking block_group->removed).
10582 */
10583 if (!remove_em) {
10584 /*
10585 * Our em might be in trans->transaction->pending_chunks which
10586 * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10587 * and so is the fs_info->pinned_chunks list.
10588 *
10589 * So at this point we must be holding the chunk_mutex to avoid
10590 * any races with chunk allocation (more specifically at
10591 * volumes.c:contains_pending_extent()), to ensure it always
10592 * sees the em, either in the pending_chunks list or in the
10593 * pinned_chunks list.
10594 */
0b246afa 10595 list_move_tail(&em->list, &fs_info->pinned_chunks);
04216820
FM
10596 }
10597 spin_unlock(&block_group->lock);
04216820
FM
10598
10599 if (remove_em) {
10600 struct extent_map_tree *em_tree;
10601
0b246afa 10602 em_tree = &fs_info->mapping_tree.map_tree;
04216820 10603 write_lock(&em_tree->lock);
8dbcd10f
FM
10604 /*
10605 * The em might be in the pending_chunks list, so make sure the
10606 * chunk mutex is locked, since remove_extent_mapping() will
10607 * delete us from that list.
10608 */
04216820
FM
10609 remove_extent_mapping(em_tree, em);
10610 write_unlock(&em_tree->lock);
10611 /* once for the tree */
10612 free_extent_map(em);
10613 }
10614
34441361 10615 mutex_unlock(&fs_info->chunk_mutex);
8dbcd10f 10616
f3f72779 10617 ret = remove_block_group_free_space(trans, block_group);
1e144fb8
OS
10618 if (ret)
10619 goto out;
10620
fa9c0d79
CM
10621 btrfs_put_block_group(block_group);
10622 btrfs_put_block_group(block_group);
1a40e23b
ZY
10623
10624 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10625 if (ret > 0)
10626 ret = -EIO;
10627 if (ret < 0)
10628 goto out;
10629
10630 ret = btrfs_del_item(trans, root, path);
10631out:
10632 btrfs_free_path(path);
10633 return ret;
10634}
acce952b 10635
8eab77ff 10636struct btrfs_trans_handle *
7fd01182
FM
10637btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10638 const u64 chunk_offset)
8eab77ff 10639{
7fd01182
FM
10640 struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10641 struct extent_map *em;
10642 struct map_lookup *map;
10643 unsigned int num_items;
10644
10645 read_lock(&em_tree->lock);
10646 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10647 read_unlock(&em_tree->lock);
10648 ASSERT(em && em->start == chunk_offset);
10649
8eab77ff 10650 /*
7fd01182
FM
10651 * We need to reserve 3 + N units from the metadata space info in order
10652 * to remove a block group (done at btrfs_remove_chunk() and at
10653 * btrfs_remove_block_group()), which are used for:
10654 *
8eab77ff
FM
10655 * 1 unit for adding the free space inode's orphan (located in the tree
10656 * of tree roots).
7fd01182
FM
10657 * 1 unit for deleting the block group item (located in the extent
10658 * tree).
10659 * 1 unit for deleting the free space item (located in tree of tree
10660 * roots).
10661 * N units for deleting N device extent items corresponding to each
10662 * stripe (located in the device tree).
10663 *
10664 * In order to remove a block group we also need to reserve units in the
10665 * system space info in order to update the chunk tree (update one or
10666 * more device items and remove one chunk item), but this is done at
10667 * btrfs_remove_chunk() through a call to check_system_chunk().
8eab77ff 10668 */
95617d69 10669 map = em->map_lookup;
7fd01182
FM
10670 num_items = 3 + map->num_stripes;
10671 free_extent_map(em);
10672
8eab77ff 10673 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
7fd01182 10674 num_items, 1);
8eab77ff
FM
10675}
10676
47ab2a6c
JB
10677/*
10678 * Process the unused_bgs list and remove any that don't have any allocated
10679 * space inside of them.
10680 */
10681void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10682{
10683 struct btrfs_block_group_cache *block_group;
10684 struct btrfs_space_info *space_info;
47ab2a6c
JB
10685 struct btrfs_trans_handle *trans;
10686 int ret = 0;
10687
afcdd129 10688 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
47ab2a6c
JB
10689 return;
10690
10691 spin_lock(&fs_info->unused_bgs_lock);
10692 while (!list_empty(&fs_info->unused_bgs)) {
10693 u64 start, end;
e33e17ee 10694 int trimming;
47ab2a6c
JB
10695
10696 block_group = list_first_entry(&fs_info->unused_bgs,
10697 struct btrfs_block_group_cache,
10698 bg_list);
47ab2a6c 10699 list_del_init(&block_group->bg_list);
aefbe9a6
ZL
10700
10701 space_info = block_group->space_info;
10702
47ab2a6c
JB
10703 if (ret || btrfs_mixed_space_info(space_info)) {
10704 btrfs_put_block_group(block_group);
10705 continue;
10706 }
10707 spin_unlock(&fs_info->unused_bgs_lock);
10708
d5f2e33b 10709 mutex_lock(&fs_info->delete_unused_bgs_mutex);
67c5e7d4 10710
47ab2a6c
JB
10711 /* Don't want to race with allocators so take the groups_sem */
10712 down_write(&space_info->groups_sem);
10713 spin_lock(&block_group->lock);
10714 if (block_group->reserved ||
10715 btrfs_block_group_used(&block_group->item) ||
19c4d2f9 10716 block_group->ro ||
aefbe9a6 10717 list_is_singular(&block_group->list)) {
47ab2a6c
JB
10718 /*
10719 * We want to bail if we made new allocations or have
10720 * outstanding allocations in this block group. We do
10721 * the ro check in case balance is currently acting on
10722 * this block group.
10723 */
4ed0a7a3 10724 trace_btrfs_skip_unused_block_group(block_group);
47ab2a6c
JB
10725 spin_unlock(&block_group->lock);
10726 up_write(&space_info->groups_sem);
10727 goto next;
10728 }
10729 spin_unlock(&block_group->lock);
10730
10731 /* We don't want to force the issue, only flip if it's ok. */
868f401a 10732 ret = inc_block_group_ro(block_group, 0);
47ab2a6c
JB
10733 up_write(&space_info->groups_sem);
10734 if (ret < 0) {
10735 ret = 0;
10736 goto next;
10737 }
10738
10739 /*
10740 * Want to do this before we do anything else so we can recover
10741 * properly if we fail to join the transaction.
10742 */
7fd01182
FM
10743 trans = btrfs_start_trans_remove_block_group(fs_info,
10744 block_group->key.objectid);
47ab2a6c 10745 if (IS_ERR(trans)) {
2ff7e61e 10746 btrfs_dec_block_group_ro(block_group);
47ab2a6c
JB
10747 ret = PTR_ERR(trans);
10748 goto next;
10749 }
10750
10751 /*
10752 * We could have pending pinned extents for this block group,
10753 * just delete them, we don't care about them anymore.
10754 */
10755 start = block_group->key.objectid;
10756 end = start + block_group->key.offset - 1;
d4b450cd
FM
10757 /*
10758 * Hold the unused_bg_unpin_mutex lock to avoid racing with
10759 * btrfs_finish_extent_commit(). If we are at transaction N,
10760 * another task might be running finish_extent_commit() for the
10761 * previous transaction N - 1, and have seen a range belonging
10762 * to the block group in freed_extents[] before we were able to
10763 * clear the whole block group range from freed_extents[]. This
10764 * means that task can lookup for the block group after we
10765 * unpinned it from freed_extents[] and removed it, leading to
10766 * a BUG_ON() at btrfs_unpin_extent_range().
10767 */
10768 mutex_lock(&fs_info->unused_bg_unpin_mutex);
758eb51e 10769 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
91166212 10770 EXTENT_DIRTY);
758eb51e 10771 if (ret) {
d4b450cd 10772 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10773 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10774 goto end_trans;
10775 }
10776 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
91166212 10777 EXTENT_DIRTY);
758eb51e 10778 if (ret) {
d4b450cd 10779 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
2ff7e61e 10780 btrfs_dec_block_group_ro(block_group);
758eb51e
FM
10781 goto end_trans;
10782 }
d4b450cd 10783 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
47ab2a6c
JB
10784
10785 /* Reset pinned so btrfs_put_block_group doesn't complain */
c30666d4
ZL
10786 spin_lock(&space_info->lock);
10787 spin_lock(&block_group->lock);
10788
10789 space_info->bytes_pinned -= block_group->pinned;
10790 space_info->bytes_readonly += block_group->pinned;
10791 percpu_counter_add(&space_info->total_bytes_pinned,
10792 -block_group->pinned);
47ab2a6c
JB
10793 block_group->pinned = 0;
10794
c30666d4
ZL
10795 spin_unlock(&block_group->lock);
10796 spin_unlock(&space_info->lock);
10797
e33e17ee 10798 /* DISCARD can flip during remount */
0b246afa 10799 trimming = btrfs_test_opt(fs_info, DISCARD);
e33e17ee
JM
10800
10801 /* Implicit trim during transaction commit. */
10802 if (trimming)
10803 btrfs_get_block_group_trimming(block_group);
10804
47ab2a6c
JB
10805 /*
10806 * Btrfs_remove_chunk will abort the transaction if things go
10807 * horribly wrong.
10808 */
5b4aacef 10809 ret = btrfs_remove_chunk(trans, fs_info,
47ab2a6c 10810 block_group->key.objectid);
e33e17ee
JM
10811
10812 if (ret) {
10813 if (trimming)
10814 btrfs_put_block_group_trimming(block_group);
10815 goto end_trans;
10816 }
10817
10818 /*
10819 * If we're not mounted with -odiscard, we can just forget
10820 * about this block group. Otherwise we'll need to wait
10821 * until transaction commit to do the actual discard.
10822 */
10823 if (trimming) {
348a0013
FM
10824 spin_lock(&fs_info->unused_bgs_lock);
10825 /*
10826 * A concurrent scrub might have added us to the list
10827 * fs_info->unused_bgs, so use a list_move operation
10828 * to add the block group to the deleted_bgs list.
10829 */
e33e17ee
JM
10830 list_move(&block_group->bg_list,
10831 &trans->transaction->deleted_bgs);
348a0013 10832 spin_unlock(&fs_info->unused_bgs_lock);
e33e17ee
JM
10833 btrfs_get_block_group(block_group);
10834 }
758eb51e 10835end_trans:
3a45bb20 10836 btrfs_end_transaction(trans);
47ab2a6c 10837next:
d5f2e33b 10838 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
47ab2a6c
JB
10839 btrfs_put_block_group(block_group);
10840 spin_lock(&fs_info->unused_bgs_lock);
10841 }
10842 spin_unlock(&fs_info->unused_bgs_lock);
10843}
10844
c59021f8 10845int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
10846{
1aba86d6 10847 struct btrfs_super_block *disk_super;
10848 u64 features;
10849 u64 flags;
10850 int mixed = 0;
c59021f8 10851 int ret;
10852
6c41761f 10853 disk_super = fs_info->super_copy;
1aba86d6 10854 if (!btrfs_super_root(disk_super))
0dc924c5 10855 return -EINVAL;
c59021f8 10856
1aba86d6 10857 features = btrfs_super_incompat_flags(disk_super);
10858 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
10859 mixed = 1;
c59021f8 10860
1aba86d6 10861 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4ca61683 10862 ret = create_space_info(fs_info, flags);
c59021f8 10863 if (ret)
1aba86d6 10864 goto out;
c59021f8 10865
1aba86d6 10866 if (mixed) {
10867 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
4ca61683 10868 ret = create_space_info(fs_info, flags);
1aba86d6 10869 } else {
10870 flags = BTRFS_BLOCK_GROUP_METADATA;
4ca61683 10871 ret = create_space_info(fs_info, flags);
1aba86d6 10872 if (ret)
10873 goto out;
10874
10875 flags = BTRFS_BLOCK_GROUP_DATA;
4ca61683 10876 ret = create_space_info(fs_info, flags);
1aba86d6 10877 }
10878out:
c59021f8 10879 return ret;
10880}
10881
2ff7e61e
JM
10882int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
10883 u64 start, u64 end)
acce952b 10884{
2ff7e61e 10885 return unpin_extent_range(fs_info, start, end, false);
acce952b 10886}
10887
499f377f
JM
10888/*
10889 * It used to be that old block groups would be left around forever.
10890 * Iterating over them would be enough to trim unused space. Since we
10891 * now automatically remove them, we also need to iterate over unallocated
10892 * space.
10893 *
10894 * We don't want a transaction for this since the discard may take a
10895 * substantial amount of time. We don't require that a transaction be
10896 * running, but we do need to take a running transaction into account
10897 * to ensure that we're not discarding chunks that were released in
10898 * the current transaction.
10899 *
10900 * Holding the chunks lock will prevent other threads from allocating
10901 * or releasing chunks, but it won't prevent a running transaction
10902 * from committing and releasing the memory that the pending chunks
10903 * list head uses. For that, we need to take a reference to the
10904 * transaction.
10905 */
10906static int btrfs_trim_free_extents(struct btrfs_device *device,
10907 u64 minlen, u64 *trimmed)
10908{
10909 u64 start = 0, len = 0;
10910 int ret;
10911
10912 *trimmed = 0;
10913
10914 /* Not writeable = nothing to do. */
ebbede42 10915 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
499f377f
JM
10916 return 0;
10917
10918 /* No free space = nothing to do. */
10919 if (device->total_bytes <= device->bytes_used)
10920 return 0;
10921
10922 ret = 0;
10923
10924 while (1) {
fb456252 10925 struct btrfs_fs_info *fs_info = device->fs_info;
499f377f
JM
10926 struct btrfs_transaction *trans;
10927 u64 bytes;
10928
10929 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
10930 if (ret)
10931 return ret;
10932
10933 down_read(&fs_info->commit_root_sem);
10934
10935 spin_lock(&fs_info->trans_lock);
10936 trans = fs_info->running_transaction;
10937 if (trans)
9b64f57d 10938 refcount_inc(&trans->use_count);
499f377f
JM
10939 spin_unlock(&fs_info->trans_lock);
10940
10941 ret = find_free_dev_extent_start(trans, device, minlen, start,
10942 &start, &len);
10943 if (trans)
10944 btrfs_put_transaction(trans);
10945
10946 if (ret) {
10947 up_read(&fs_info->commit_root_sem);
10948 mutex_unlock(&fs_info->chunk_mutex);
10949 if (ret == -ENOSPC)
10950 ret = 0;
10951 break;
10952 }
10953
10954 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
10955 up_read(&fs_info->commit_root_sem);
10956 mutex_unlock(&fs_info->chunk_mutex);
10957
10958 if (ret)
10959 break;
10960
10961 start += len;
10962 *trimmed += bytes;
10963
10964 if (fatal_signal_pending(current)) {
10965 ret = -ERESTARTSYS;
10966 break;
10967 }
10968
10969 cond_resched();
10970 }
10971
10972 return ret;
10973}
10974
2ff7e61e 10975int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
f7039b1d 10976{
f7039b1d 10977 struct btrfs_block_group_cache *cache = NULL;
499f377f
JM
10978 struct btrfs_device *device;
10979 struct list_head *devices;
f7039b1d
LD
10980 u64 group_trimmed;
10981 u64 start;
10982 u64 end;
10983 u64 trimmed = 0;
2cac13e4 10984 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
f7039b1d
LD
10985 int ret = 0;
10986
2cac13e4
LB
10987 /*
10988 * try to trim all FS space, our block group may start from non-zero.
10989 */
10990 if (range->len == total_bytes)
10991 cache = btrfs_lookup_first_block_group(fs_info, range->start);
10992 else
10993 cache = btrfs_lookup_block_group(fs_info, range->start);
f7039b1d
LD
10994
10995 while (cache) {
10996 if (cache->key.objectid >= (range->start + range->len)) {
10997 btrfs_put_block_group(cache);
10998 break;
10999 }
11000
11001 start = max(range->start, cache->key.objectid);
11002 end = min(range->start + range->len,
11003 cache->key.objectid + cache->key.offset);
11004
11005 if (end - start >= range->minlen) {
11006 if (!block_group_cache_done(cache)) {
f6373bf3 11007 ret = cache_block_group(cache, 0);
1be41b78
JB
11008 if (ret) {
11009 btrfs_put_block_group(cache);
11010 break;
11011 }
11012 ret = wait_block_group_cache_done(cache);
11013 if (ret) {
11014 btrfs_put_block_group(cache);
11015 break;
11016 }
f7039b1d
LD
11017 }
11018 ret = btrfs_trim_block_group(cache,
11019 &group_trimmed,
11020 start,
11021 end,
11022 range->minlen);
11023
11024 trimmed += group_trimmed;
11025 if (ret) {
11026 btrfs_put_block_group(cache);
11027 break;
11028 }
11029 }
11030
2ff7e61e 11031 cache = next_block_group(fs_info, cache);
f7039b1d
LD
11032 }
11033
0b246afa
JM
11034 mutex_lock(&fs_info->fs_devices->device_list_mutex);
11035 devices = &fs_info->fs_devices->alloc_list;
499f377f
JM
11036 list_for_each_entry(device, devices, dev_alloc_list) {
11037 ret = btrfs_trim_free_extents(device, range->minlen,
11038 &group_trimmed);
11039 if (ret)
11040 break;
11041
11042 trimmed += group_trimmed;
11043 }
0b246afa 11044 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
499f377f 11045
f7039b1d
LD
11046 range->len = trimmed;
11047 return ret;
11048}
8257b2dc
MX
11049
11050/*
ea14b57f 11051 * btrfs_{start,end}_write_no_snapshotting() are similar to
9ea24bbe
FM
11052 * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11053 * data into the page cache through nocow before the subvolume is snapshoted,
11054 * but flush the data into disk after the snapshot creation, or to prevent
ea14b57f 11055 * operations while snapshotting is ongoing and that cause the snapshot to be
9ea24bbe 11056 * inconsistent (writes followed by expanding truncates for example).
8257b2dc 11057 */
ea14b57f 11058void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
8257b2dc
MX
11059{
11060 percpu_counter_dec(&root->subv_writers->counter);
093258e6 11061 cond_wake_up(&root->subv_writers->wait);
8257b2dc
MX
11062}
11063
ea14b57f 11064int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
8257b2dc 11065{
ea14b57f 11066 if (atomic_read(&root->will_be_snapshotted))
8257b2dc
MX
11067 return 0;
11068
11069 percpu_counter_inc(&root->subv_writers->counter);
11070 /*
11071 * Make sure counter is updated before we check for snapshot creation.
11072 */
11073 smp_mb();
ea14b57f
DS
11074 if (atomic_read(&root->will_be_snapshotted)) {
11075 btrfs_end_write_no_snapshotting(root);
8257b2dc
MX
11076 return 0;
11077 }
11078 return 1;
11079}
0bc19f90 11080
0bc19f90
ZL
11081void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11082{
11083 while (true) {
11084 int ret;
11085
ea14b57f 11086 ret = btrfs_start_write_no_snapshotting(root);
0bc19f90
ZL
11087 if (ret)
11088 break;
4625956a
PZ
11089 wait_var_event(&root->will_be_snapshotted,
11090 !atomic_read(&root->will_be_snapshotted));
0bc19f90
ZL
11091 }
11092}