]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
exfat: replace memcpy with structure assignment
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e 16#include "extent_io.h"
9c7d3a54 17#include "extent-io-tree.h"
d1310b2e 18#include "extent_map.h"
902b22f3
DW
19#include "ctree.h"
20#include "btrfs_inode.h"
4a54c8c1 21#include "volumes.h"
21adbd5c 22#include "check-integrity.h"
0b32f4bb 23#include "locking.h"
606686ee 24#include "rcu-string.h"
fe09e16c 25#include "backref.h"
6af49dbd 26#include "disk-io.h"
d1310b2e 27
d1310b2e
CM
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 30static struct bio_set btrfs_bioset;
d1310b2e 31
27a3507d
FM
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
6d49ba1b 37#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 38static LIST_HEAD(states);
d397712b 39static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 40
3fd63727
JB
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
6d49ba1b
ES
44{
45 unsigned long flags;
46
3fd63727 47 spin_lock_irqsave(lock, flags);
6d49ba1b 48 list_add(new, head);
3fd63727 49 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
50}
51
3fd63727
JB
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
6d49ba1b
ES
54{
55 unsigned long flags;
56
3fd63727 57 spin_lock_irqsave(lock, flags);
6d49ba1b 58 list_del(entry);
3fd63727 59 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
60}
61
3fd63727 62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 63{
6d49ba1b 64 struct extent_buffer *eb;
3fd63727 65 unsigned long flags;
6d49ba1b 66
8c38938c
JB
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
3fd63727
JB
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
8c38938c
JB
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
33ca832f
JB
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
3fd63727 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
6d49ba1b
ES
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
b7ac31b7 97 refcount_read(&state->refs));
6d49ba1b
ES
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
6d49ba1b 101}
8d599ae1 102
a5dee37d
JB
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 106 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 107{
65a680f6
NB
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
8d599ae1 120}
6d49ba1b 121#else
3fd63727
JB
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 124#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 126#endif
d1310b2e 127
d1310b2e
CM
128struct tree_entry {
129 u64 start;
130 u64 end;
d1310b2e
CM
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
771ed689
CM
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
ffbd517d
CM
139 unsigned int extent_locked:1;
140
70fd7614 141 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 142 unsigned int sync_io:1;
d1310b2e
CM
143};
144
57599c7e 145static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
57599c7e 152 return 0;
d38ed27f 153 if (set && (state->state & bits) == bits)
57599c7e 154 return 0;
fefdc557 155 if (!set && (state->state & bits) == 0)
57599c7e 156 return 0;
d38ed27f 157 changeset->bytes_changed += state->end - state->start + 1;
53d32359 158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 159 GFP_ATOMIC);
57599c7e 160 return ret;
d38ed27f
QW
161}
162
bb58eb9e
QW
163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165{
166 blk_status_t ret = 0;
bb58eb9e 167 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 173 mirror_num, bio_flags);
bb58eb9e
QW
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178}
179
3065976b
QW
180/* Cleanup unsubmitted bios */
181static void end_write_bio(struct extent_page_data *epd, int ret)
182{
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188}
189
f4340622
QW
190/*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 197{
f4340622 198 int ret = 0;
bb58eb9e 199
f4340622 200 if (epd->bio) {
bb58eb9e 201 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
bb58eb9e
QW
209 epd->bio = NULL;
210 }
f4340622 211 return ret;
bb58eb9e 212}
e2932ee0 213
6f0d04f8 214int __init extent_state_cache_init(void)
d1310b2e 215{
837e1972 216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 217 sizeof(struct extent_state), 0,
fba4b697 218 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
219 if (!extent_state_cache)
220 return -ENOMEM;
6f0d04f8
JB
221 return 0;
222}
d1310b2e 223
6f0d04f8
JB
224int __init extent_io_init(void)
225{
837e1972 226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 227 sizeof(struct extent_buffer), 0,
fba4b697 228 SLAB_MEM_SPREAD, NULL);
d1310b2e 229 if (!extent_buffer_cache)
6f0d04f8 230 return -ENOMEM;
9be3395b 231
8ac9f7c1
KO
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
9be3395b 235 goto free_buffer_cache;
b208c2f7 236
8ac9f7c1 237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
238 goto free_bioset;
239
d1310b2e
CM
240 return 0;
241
b208c2f7 242free_bioset:
8ac9f7c1 243 bioset_exit(&btrfs_bioset);
b208c2f7 244
9be3395b
CM
245free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
6f0d04f8
JB
248 return -ENOMEM;
249}
9be3395b 250
6f0d04f8
JB
251void __cold extent_state_cache_exit(void)
252{
253 btrfs_extent_state_leak_debug_check();
d1310b2e 254 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
255}
256
e67c718b 257void __cold extent_io_exit(void)
d1310b2e 258{
8c0a8537
KS
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
5598e900 264 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 265 bioset_exit(&btrfs_bioset);
d1310b2e
CM
266}
267
41a2ee75
JB
268/*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275static struct lock_class_key file_extent_tree_class;
276
c258d6e3 277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
d1310b2e 280{
c258d6e3 281 tree->fs_info = fs_info;
6bef4d31 282 tree->state = RB_ROOT;
d1310b2e
CM
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
70dec807 285 spin_lock_init(&tree->lock);
c6100a4b 286 tree->private_data = private_data;
43eb5f29 287 tree->owner = owner;
41a2ee75
JB
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 290}
d1310b2e 291
41e7acd3
NB
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
b2950863 321static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
322{
323 struct extent_state *state;
d1310b2e 324
3ba7ab22
MH
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 330 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 331 if (!state)
d1310b2e
CM
332 return state;
333 state->state = 0;
47dc196a 334 state->failrec = NULL;
27a3507d 335 RB_CLEAR_NODE(&state->rb_node);
3fd63727 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 337 refcount_set(&state->refs, 1);
d1310b2e 338 init_waitqueue_head(&state->wq);
143bede5 339 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
340 return state;
341}
d1310b2e 342
4845e44f 343void free_extent_state(struct extent_state *state)
d1310b2e 344{
d1310b2e
CM
345 if (!state)
346 return;
b7ac31b7 347 if (refcount_dec_and_test(&state->refs)) {
27a3507d 348 WARN_ON(extent_state_in_tree(state));
3fd63727 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 350 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
d1310b2e 354
f2071b21
FM
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
12cfbad9
FDBM
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
d1310b2e 361{
f2071b21 362 struct rb_node **p;
d397712b 363 struct rb_node *parent = NULL;
d1310b2e
CM
364 struct tree_entry *entry;
365
12cfbad9
FDBM
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
f2071b21 372 p = search_start ? &search_start : &root->rb_node;
d397712b 373 while (*p) {
d1310b2e
CM
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
12cfbad9 385do_insert:
d1310b2e
CM
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
8666e638
NB
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
80ea96b1 409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 410 struct rb_node **next_ret,
352646c7 411 struct rb_node **prev_ret,
12cfbad9
FDBM
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
d1310b2e 414{
80ea96b1 415 struct rb_root *root = &tree->state;
12cfbad9 416 struct rb_node **n = &root->rb_node;
d1310b2e
CM
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
12cfbad9
FDBM
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
425 prev_entry = entry;
426
427 if (offset < entry->start)
12cfbad9 428 n = &(*n)->rb_left;
d1310b2e 429 else if (offset > entry->end)
12cfbad9 430 n = &(*n)->rb_right;
d397712b 431 else
12cfbad9 432 return *n;
d1310b2e
CM
433 }
434
12cfbad9
FDBM
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
352646c7 440 if (next_ret) {
d1310b2e 441 orig_prev = prev;
d397712b 442 while (prev && offset > prev_entry->end) {
d1310b2e
CM
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
352646c7 446 *next_ret = prev;
d1310b2e
CM
447 prev = orig_prev;
448 }
449
352646c7 450 if (prev_ret) {
d1310b2e 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 452 while (prev && offset < prev_entry->start) {
d1310b2e
CM
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
352646c7 456 *prev_ret = prev;
d1310b2e
CM
457 }
458 return NULL;
459}
460
12cfbad9
FDBM
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
d1310b2e 466{
352646c7 467 struct rb_node *next= NULL;
d1310b2e 468 struct rb_node *ret;
70dec807 469
352646c7 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 471 if (!ret)
352646c7 472 return next;
d1310b2e
CM
473 return ret;
474}
475
12cfbad9
FDBM
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
d1310b2e
CM
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
1bf85046
JM
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
d1310b2e
CM
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
8882679e 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 498 return;
d1310b2e
CM
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
5c848198
NB
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
d1310b2e 509 state->start = other->start;
d1310b2e 510 rb_erase(&other->rb_node, &tree->state);
27a3507d 511 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
5c848198
NB
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
df98b6e2 524 state->end = other->end;
df98b6e2 525 rb_erase(&other->rb_node, &tree->state);
27a3507d 526 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 527 free_extent_state(other);
d1310b2e
CM
528 }
529 }
d1310b2e
CM
530}
531
3150b699 532static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
3150b699 535
d1310b2e
CM
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
548 struct rb_node ***p,
549 struct rb_node **parent,
d38ed27f 550 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
551{
552 struct rb_node *node;
553
2792237d
DS
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
d1310b2e
CM
559 state->start = start;
560 state->end = end;
9ed74f2d 561
d38ed27f 562 set_state_bits(tree, state, bits, changeset);
3150b699 563
f2071b21 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 570 found->start, found->end, start, end);
d1310b2e
CM
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
9ed74f2d 595
abbb55f4
NB
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 598
d1310b2e
CM
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
f2071b21
FM
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
d1310b2e 606 if (node) {
d1310b2e
CM
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
cdc6a395
LZ
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
d1310b2e
CM
622/*
623 * utility function to clear some bits in an extent state struct.
52042d8e 624 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
cdc6a395
LZ
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
fefdc557
QW
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
d1310b2e 633{
cdc6a395 634 struct extent_state *next;
9ee49a04 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 636 int ret;
d1310b2e 637
0ca1f7ce 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
a36bb5f9
NB
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
57599c7e
DS
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
32c00aff 649 state->state &= ~bits_to_clear;
d1310b2e
CM
650 if (wake)
651 wake_up(&state->wq);
0ca1f7ce 652 if (state->state == 0) {
cdc6a395 653 next = next_state(state);
27a3507d 654 if (extent_state_in_tree(state)) {
d1310b2e 655 rb_erase(&state->rb_node, &tree->state);
27a3507d 656 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
cdc6a395 663 next = next_state(state);
d1310b2e 664 }
cdc6a395 665 return next;
d1310b2e
CM
666}
667
8233767a
XG
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
48a3b636 677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 678{
05912a3c
DS
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
683}
684
d1310b2e
CM
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
6763af84 695 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 696 */
66b0c887 697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
701{
702 struct extent_state *state;
2c64c53d 703 struct extent_state *cached;
d1310b2e
CM
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
5c939df5 706 u64 last_end;
d1310b2e 707 int err;
2ac55d41 708 int clear = 0;
d1310b2e 709
a5dee37d 710 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 712
7ee9e440
JB
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
0ca1f7ce
YZ
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 718
8882679e 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 720 clear = 1;
d1310b2e 721again:
d0164adc 722 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
d1310b2e 730 prealloc = alloc_extent_state(mask);
d1310b2e
CM
731 }
732
cad321ad 733 spin_lock(&tree->lock);
2c64c53d
CM
734 if (cached_state) {
735 cached = *cached_state;
2ac55d41
JB
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
27a3507d
FM
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
2ac55d41 744 if (clear)
b7ac31b7 745 refcount_dec(&cached->refs);
2c64c53d 746 state = cached;
42daec29 747 goto hit_next;
2c64c53d 748 }
2ac55d41
JB
749 if (clear)
750 free_extent_state(cached);
2c64c53d 751 }
d1310b2e
CM
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
80ea96b1 756 node = tree_search(tree, start);
d1310b2e
CM
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 760hit_next:
d1310b2e
CM
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
5c939df5 764 last_end = state->end;
d1310b2e 765
0449314a 766 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
767 if (!(state->state & bits)) {
768 state = next_state(state);
0449314a 769 goto next;
cdc6a395 770 }
0449314a 771
d1310b2e
CM
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
8233767a
XG
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
d1310b2e 791 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
792 if (err)
793 extent_io_tree_panic(tree, err);
794
d1310b2e
CM
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
fefdc557
QW
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
d1ac6e41 801 goto next;
d1310b2e
CM
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
8233767a
XG
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
d1310b2e 814 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
815 if (err)
816 extent_io_tree_panic(tree, err);
817
d1310b2e
CM
818 if (wake)
819 wake_up(&state->wq);
42daec29 820
fefdc557 821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 822
d1310b2e
CM
823 prealloc = NULL;
824 goto out;
825 }
42daec29 826
fefdc557 827 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 828next:
5c939df5
YZ
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
cdc6a395 832 if (start <= end && state && !need_resched())
692e5759 833 goto hit_next;
d1310b2e
CM
834
835search_again:
836 if (start > end)
837 goto out;
cad321ad 838 spin_unlock(&tree->lock);
d0164adc 839 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
840 cond_resched();
841 goto again;
7ab5cb2a
DS
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
d1310b2e 850}
d1310b2e 851
143bede5
JM
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
641f5219
CH
854 __releases(tree->lock)
855 __acquires(tree->lock)
d1310b2e
CM
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 859 spin_unlock(&tree->lock);
d1310b2e 860 schedule();
cad321ad 861 spin_lock(&tree->lock);
d1310b2e 862 finish_wait(&state->wq, &wait);
d1310b2e
CM
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
41074888
DS
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
d1310b2e
CM
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
a5dee37d 876 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 877
cad321ad 878 spin_lock(&tree->lock);
d1310b2e
CM
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
80ea96b1 885 node = tree_search(tree, start);
c50d3e71 886process_node:
d1310b2e
CM
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
b7ac31b7 897 refcount_inc(&state->refs);
d1310b2e
CM
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
c50d3e71
FM
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
d1310b2e
CM
911 }
912out:
cad321ad 913 spin_unlock(&tree->lock);
d1310b2e 914}
d1310b2e 915
1bf85046 916static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 917 struct extent_state *state,
d38ed27f 918 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 919{
9ee49a04 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 921 int ret;
9ed74f2d 922
e06a1fc9
NB
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
0ca1f7ce 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
57599c7e
DS
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
0ca1f7ce 932 state->state |= bits_to_set;
d1310b2e
CM
933}
934
e38e2ed7
FM
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
9ee49a04 937 unsigned flags)
2c64c53d
CM
938{
939 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 940 if (!flags || (state->state & flags)) {
2c64c53d 941 *cached_ptr = state;
b7ac31b7 942 refcount_inc(&state->refs);
2c64c53d
CM
943 }
944 }
945}
946
e38e2ed7
FM
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
8882679e 951 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
952}
953
d1310b2e 954/*
1edbb734
CM
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 957 *
1edbb734
CM
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
d1310b2e 961 *
1edbb734 962 * [start, end] is inclusive This takes the tree lock.
d1310b2e 963 */
1edbb734 964
3fbe5c02
JM
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 967 unsigned bits, unsigned exclusive_bits,
41074888 968 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 969 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
12cfbad9
FDBM
974 struct rb_node **p;
975 struct rb_node *parent;
d1310b2e 976 int err = 0;
d1310b2e
CM
977 u64 last_start;
978 u64 last_end;
42daec29 979
a5dee37d 980 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 982
d1310b2e 983again:
d0164adc 984 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
d1310b2e 992 prealloc = alloc_extent_state(mask);
d1310b2e
CM
993 }
994
cad321ad 995 spin_lock(&tree->lock);
9655d298
CM
996 if (cached_state && *cached_state) {
997 state = *cached_state;
df98b6e2 998 if (state->start <= start && state->end > start &&
27a3507d 999 extent_state_in_tree(state)) {
9655d298
CM
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
d1310b2e
CM
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
12cfbad9 1008 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1009 if (!node) {
8233767a
XG
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
12cfbad9 1012 err = insert_state(tree, prealloc, start, end,
d38ed27f 1013 &p, &parent, &bits, changeset);
c2d904e0
JM
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
c42ac0bc 1017 cache_state(prealloc, cached_state);
d1310b2e 1018 prealloc = NULL;
d1310b2e
CM
1019 goto out;
1020 }
d1310b2e 1021 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1022hit_next:
d1310b2e
CM
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1edbb734 1033 if (state->state & exclusive_bits) {
d1310b2e
CM
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
42daec29 1038
d38ed27f 1039 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1040 cache_state(state, cached_state);
d1310b2e 1041 merge_state(tree, state);
5c939df5
YZ
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
d1ac6e41
LB
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
d1310b2e
CM
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1edbb734 1069 if (state->state & exclusive_bits) {
d1310b2e
CM
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
8233767a 1074
55ffaabe
FM
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
8233767a
XG
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
d1310b2e 1087 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
d1310b2e
CM
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
d38ed27f 1095 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1096 cache_state(state, cached_state);
d1310b2e 1097 merge_state(tree, state);
5c939df5
YZ
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
d1ac6e41
LB
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
d1310b2e
CM
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
d397712b 1120 this_end = last_start - 1;
8233767a
XG
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
c7f895a2
XG
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
d1310b2e 1129 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1130 NULL, NULL, &bits, changeset);
c2d904e0
JM
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
9ed74f2d
JB
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
d1310b2e
CM
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1edbb734 1146 if (state->state & exclusive_bits) {
d1310b2e
CM
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
8233767a
XG
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
d1310b2e 1154 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1155 if (err)
1156 extent_io_tree_panic(tree, err);
d1310b2e 1157
d38ed27f 1158 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1159 cache_state(prealloc, cached_state);
d1310b2e
CM
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
b5a4ba14
DS
1165search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
d1310b2e
CM
1172
1173out:
cad321ad 1174 spin_unlock(&tree->lock);
d1310b2e
CM
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
d1310b2e 1180}
d1310b2e 1181
41074888 1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1183 unsigned bits, u64 * failed_start,
41074888 1184 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1185{
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1187 cached_state, mask, NULL);
3fbe5c02
JM
1188}
1189
1190
462d6fac 1191/**
10983f2e
LB
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
462d6fac
JB
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
e6138876 1199 * @cached_state: state that we're going to cache
462d6fac
JB
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
210aa277
DS
1206 *
1207 * All allocations are done with GFP_NOFS.
462d6fac
JB
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1210 unsigned bits, unsigned clear_bits,
210aa277 1211 struct extent_state **cached_state)
462d6fac
JB
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
12cfbad9
FDBM
1216 struct rb_node **p;
1217 struct rb_node *parent;
462d6fac
JB
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
c8fd3de7 1221 bool first_iteration = true;
462d6fac 1222
a5dee37d 1223 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
8d599ae1 1226
462d6fac 1227again:
210aa277 1228 if (!prealloc) {
c8fd3de7
FM
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
210aa277 1236 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1237 if (!prealloc && !first_iteration)
462d6fac
JB
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
e6138876
JB
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
27a3507d 1245 extent_state_in_tree(state)) {
e6138876
JB
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
462d6fac
JB
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
12cfbad9 1255 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
12cfbad9 1262 err = insert_state(tree, prealloc, start, end,
d38ed27f 1263 &p, &parent, &bits, NULL);
c2d904e0
JM
1264 if (err)
1265 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
462d6fac
JB
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
d38ed27f 1282 set_state_bits(tree, state, &bits, NULL);
e6138876 1283 cache_state(state, cached_state);
fefdc557 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1285 if (last_end == (u64)-1)
1286 goto out;
462d6fac 1287 start = last_end + 1;
d1ac6e41
LB
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
462d6fac
JB
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac 1316 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1317 if (err)
1318 extent_io_tree_panic(tree, err);
462d6fac
JB
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
d38ed27f 1323 set_state_bits(tree, state, &bits, NULL);
e6138876 1324 cache_state(state, cached_state);
fefdc557
QW
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
462d6fac
JB
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
d1ac6e41
LB
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
462d6fac
JB
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
462d6fac
JB
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1361 NULL, NULL, &bits, NULL);
c2d904e0
JM
1362 if (err)
1363 extent_io_tree_panic(tree, err);
e6138876 1364 cache_state(prealloc, cached_state);
462d6fac
JB
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
462d6fac
JB
1381
1382 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1383 if (err)
1384 extent_io_tree_panic(tree, err);
462d6fac 1385
d38ed27f 1386 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1387 cache_state(prealloc, cached_state);
fefdc557 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
462d6fac
JB
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
210aa277 1397 cond_resched();
c8fd3de7 1398 first_iteration = false;
462d6fac 1399 goto again;
462d6fac
JB
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
462d6fac
JB
1407}
1408
d1310b2e 1409/* wrappers around set/clear extent bit */
d38ed27f 1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1411 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
2c53b912 1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1422 changeset);
1423}
1424
4ca73656
NB
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427{
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430}
1431
fefdc557
QW
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
ae0f1625 1434 struct extent_state **cached)
fefdc557
QW
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1437 cached, GFP_NOFS, NULL);
fefdc557
QW
1438}
1439
fefdc557 1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1441 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
f734c44a 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1450 changeset);
1451}
1452
d352ac68
CM
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1edbb734 1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1458 struct extent_state **cached_state)
d1310b2e
CM
1459{
1460 int err;
1461 u64 failed_start;
9ee49a04 1462
d1310b2e 1463 while (1) {
ff13db41 1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1465 EXTENT_LOCKED, &failed_start,
d38ed27f 1466 cached_state, GFP_NOFS, NULL);
d0082371 1467 if (err == -EEXIST) {
d1310b2e
CM
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
d0082371 1470 } else
d1310b2e 1471 break;
d1310b2e
CM
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
d1310b2e 1476
d0082371 1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1478{
1479 int err;
1480 u64 failed_start;
1481
3fbe5c02 1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1483 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1487 EXTENT_LOCKED, 1, 0, NULL);
25179201 1488 return 0;
6643558d 1489 }
25179201
JB
1490 return 1;
1491}
25179201 1492
bd1fa4f0 1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1494{
09cbfeaf
KS
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
09cbfeaf 1503 put_page(page);
4adaa611
CM
1504 index++;
1505 }
4adaa611
CM
1506}
1507
f6311572 1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1509{
09cbfeaf
KS
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1517 __set_page_dirty_nobuffers(page);
8d38633c 1518 account_page_redirty(page);
09cbfeaf 1519 put_page(page);
4adaa611
CM
1520 index++;
1521 }
4adaa611
CM
1522}
1523
d352ac68
CM
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
48a3b636
ES
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1530 u64 start, unsigned bits)
d7fc640e
CM
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
d397712b 1540 if (!node)
d7fc640e 1541 goto out;
d7fc640e 1542
d397712b 1543 while (1) {
d7fc640e 1544 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1545 if (state->end >= start && (state->state & bits))
d7fc640e 1546 return state;
d397712b 1547
d7fc640e
CM
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
d7fc640e 1555
69261c4b
XG
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
477d7eaf 1561 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1564 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1565 struct extent_state **cached_state)
69261c4b
XG
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
e6138876
JB
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
27a3507d 1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1574 while ((state = next_state(state)) != NULL) {
e6138876
JB
1575 if (state->state & bits)
1576 goto got_it;
e6138876
JB
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
69261c4b 1586 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1587got_it:
69261c4b 1588 if (state) {
e38e2ed7 1589 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
e6138876 1594out:
69261c4b
XG
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
41a2ee75
JB
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634}
1635
45bfcfc1 1636/**
1eaebb34
NB
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
45bfcfc1
NB
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
45bfcfc1 1680 node = next;
45bfcfc1 1681 }
1eaebb34
NB
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
45bfcfc1 1686 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
45bfcfc1 1709 } else {
1eaebb34
NB
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
45bfcfc1
NB
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749out:
1750 spin_unlock(&tree->lock);
1751}
1752
d352ac68
CM
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
3522e903 1757 * true is returned if we find something, false if nothing was in the tree
d352ac68 1758 */
083e75e7
JB
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
3522e903 1766 bool found = false;
d1310b2e
CM
1767 u64 total_bytes = 0;
1768
cad321ad 1769 spin_lock(&tree->lock);
c8b97818 1770
d1310b2e
CM
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
80ea96b1 1775 node = tree_search(tree, cur_start);
2b114d1d 1776 if (!node) {
3522e903 1777 *end = (u64)-1;
d1310b2e
CM
1778 goto out;
1779 }
1780
d397712b 1781 while (1) {
d1310b2e 1782 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
c2a128d2 1792 if (!found) {
d1310b2e 1793 *start = state->start;
c2a128d2 1794 *cached_state = state;
b7ac31b7 1795 refcount_inc(&state->refs);
c2a128d2 1796 }
3522e903 1797 found = true;
d1310b2e
CM
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
d1310b2e 1801 total_bytes += state->end - state->start + 1;
7bf811a5 1802 if (total_bytes >= max_bytes)
573aecaf 1803 break;
573aecaf 1804 if (!node)
d1310b2e
CM
1805 break;
1806 }
1807out:
cad321ad 1808 spin_unlock(&tree->lock);
d1310b2e
CM
1809 return found;
1810}
1811
da2c7009
LB
1812static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
143bede5
JM
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
c8b97818 1820{
09cbfeaf
KS
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1823
76c0021d 1824 ASSERT(locked_page);
c8b97818 1825 if (index == locked_page->index && end_index == index)
143bede5 1826 return;
c8b97818 1827
76c0021d
LB
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
c8b97818
CM
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836{
09cbfeaf 1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1838 unsigned long index_ret = index;
09cbfeaf 1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1840 int ret;
c8b97818 1841
76c0021d 1842 ASSERT(locked_page);
c8b97818
CM
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
76c0021d
LB
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1851 return ret;
1852}
1853
1854/*
3522e903
LF
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1857 *
3522e903
LF
1858 * Return: true if we find something
1859 * false if nothing was in the tree
c8b97818 1860 */
ce9f967f 1861EXPORT_FOR_TESTS
3522e903 1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1863 struct page *locked_page, u64 *start,
917aacec 1864 u64 *end)
c8b97818 1865{
9978059b 1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1868 u64 delalloc_start;
1869 u64 delalloc_end;
3522e903 1870 bool found;
9655d298 1871 struct extent_state *cached_state = NULL;
c8b97818
CM
1872 int ret;
1873 int loops = 0;
1874
1875again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
083e75e7
JB
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
70b99e69 1881 if (!found || delalloc_end <= *start) {
c8b97818
CM
1882 *start = delalloc_start;
1883 *end = delalloc_end;
c2a128d2 1884 free_extent_state(cached_state);
3522e903 1885 return false;
c8b97818
CM
1886 }
1887
70b99e69
CM
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
d397712b 1893 if (delalloc_start < *start)
70b99e69 1894 delalloc_start = *start;
70b99e69 1895
c8b97818
CM
1896 /*
1897 * make sure to limit the number of pages we try to lock down
c8b97818 1898 */
7bf811a5
JB
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1901
c8b97818
CM
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
9bfd61d9 1905 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
9655d298 1910 free_extent_state(cached_state);
7d788742 1911 cached_state = NULL;
c8b97818 1912 if (!loops) {
09cbfeaf 1913 max_bytes = PAGE_SIZE;
c8b97818
CM
1914 loops = 1;
1915 goto again;
1916 } else {
3522e903 1917 found = false;
c8b97818
CM
1918 goto out_failed;
1919 }
1920 }
c8b97818
CM
1921
1922 /* step three, lock the state bits for the whole range */
ff13db41 1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1927 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1928 if (!ret) {
9655d298 1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1930 &cached_state);
c8b97818
CM
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
9655d298 1936 free_extent_state(cached_state);
c8b97818
CM
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939out_failed:
1940 return found;
1941}
1942
da2c7009
LB
1943static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1947{
873695b3 1948 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1949 unsigned long pages_locked = 0;
873695b3 1950 pgoff_t index = start_index;
c8b97818 1951 struct page *pages[16];
873695b3 1952 unsigned ret;
da2c7009 1953 int err = 0;
c8b97818 1954 int i;
771ed689 1955
da2c7009
LB
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
704de49d 1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1962 mapping_set_error(mapping, -EIO);
704de49d 1963
d397712b 1964 while (nr_pages > 0) {
873695b3 1965 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1974 err = -EAGAIN;
1975 goto out;
da2c7009 1976 }
8b62b72b 1977
da2c7009 1978 for (i = 0; i < ret; i++) {
c2790a2e 1979 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1980 SetPagePrivate2(pages[i]);
1981
1d53c9e6 1982 if (locked_page && pages[i] == locked_page) {
09cbfeaf 1983 put_page(pages[i]);
da2c7009 1984 pages_locked++;
c8b97818
CM
1985 continue;
1986 }
c2790a2e 1987 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1988 clear_page_dirty_for_io(pages[i]);
c2790a2e 1989 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1990 set_page_writeback(pages[i]);
704de49d
FM
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
c2790a2e 1993 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1994 end_page_writeback(pages[i]);
c2790a2e 1995 if (page_ops & PAGE_UNLOCK)
771ed689 1996 unlock_page(pages[i]);
da2c7009
LB
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
5909ca11
RK
2002 for (; i < ret; i++)
2003 put_page(pages[i]);
da2c7009
LB
2004 err = -EAGAIN;
2005 goto out;
2006 }
2007 }
09cbfeaf 2008 put_page(pages[i]);
da2c7009 2009 pages_locked++;
c8b97818
CM
2010 }
2011 nr_pages -= ret;
2012 index += ret;
2013 cond_resched();
2014 }
da2c7009
LB
2015out:
2016 if (err && index_ret)
2017 *index_ret = start_index + pages_locked - 1;
2018 return err;
c8b97818 2019}
c8b97818 2020
ad7ff17b 2021void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
74e9194a
NB
2022 struct page *locked_page,
2023 unsigned clear_bits,
2024 unsigned long page_ops)
873695b3 2025{
ad7ff17b 2026 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
873695b3 2027
ad7ff17b 2028 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
873695b3 2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 2030 page_ops, NULL);
873695b3
LB
2031}
2032
d352ac68
CM
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
d1310b2e
CM
2038u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 2040 unsigned bits, int contig)
d1310b2e
CM
2041{
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
ec29ed5b 2046 u64 last = 0;
d1310b2e
CM
2047 int found = 0;
2048
fae7f21c 2049 if (WARN_ON(search_end <= cur_start))
d1310b2e 2050 return 0;
d1310b2e 2051
cad321ad 2052 spin_lock(&tree->lock);
d1310b2e
CM
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
80ea96b1 2061 node = tree_search(tree, cur_start);
d397712b 2062 if (!node)
d1310b2e 2063 goto out;
d1310b2e 2064
d397712b 2065 while (1) {
d1310b2e
CM
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
ec29ed5b
CM
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
af60bed2 2077 *start = max(cur_start, state->start);
d1310b2e
CM
2078 found = 1;
2079 }
ec29ed5b
CM
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
d1310b2e
CM
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088out:
cad321ad 2089 spin_unlock(&tree->lock);
d1310b2e
CM
2090 return total_bytes;
2091}
b2950863 2092
d352ac68
CM
2093/*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
b3f167aa
JB
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
d1310b2e
CM
2099{
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
cad321ad 2104 spin_lock(&tree->lock);
d1310b2e
CM
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
80ea96b1 2109 node = tree_search(tree, start);
2b114d1d 2110 if (!node) {
d1310b2e
CM
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
47dc196a 2119 state->failrec = failrec;
d1310b2e 2120out:
cad321ad 2121 spin_unlock(&tree->lock);
d1310b2e
CM
2122 return ret;
2123}
2124
2279a270 2125struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
d1310b2e
CM
2126{
2127 struct rb_node *node;
2128 struct extent_state *state;
2279a270 2129 struct io_failure_record *failrec;
d1310b2e 2130
cad321ad 2131 spin_lock(&tree->lock);
d1310b2e
CM
2132 /*
2133 * this search will find all the extents that end after
2134 * our range starts.
2135 */
80ea96b1 2136 node = tree_search(tree, start);
2b114d1d 2137 if (!node) {
2279a270 2138 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2139 goto out;
2140 }
2141 state = rb_entry(node, struct extent_state, rb_node);
2142 if (state->start != start) {
2279a270 2143 failrec = ERR_PTR(-ENOENT);
d1310b2e
CM
2144 goto out;
2145 }
2279a270
NB
2146
2147 failrec = state->failrec;
d1310b2e 2148out:
cad321ad 2149 spin_unlock(&tree->lock);
2279a270 2150 return failrec;
d1310b2e
CM
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
70dec807 2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2160 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2161{
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
d1310b2e 2165
cad321ad 2166 spin_lock(&tree->lock);
27a3507d 2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2168 cached->end > start)
9655d298
CM
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
d1310b2e
CM
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
46562cec
CM
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
d1310b2e
CM
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
cad321ad 2205 spin_unlock(&tree->lock);
d1310b2e
CM
2206 return bitset;
2207}
d1310b2e
CM
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
143bede5 2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2214{
4eee4fa4 2215 u64 start = page_offset(page);
09cbfeaf 2216 u64 end = start + PAGE_SIZE - 1;
9655d298 2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2218 SetPageUptodate(page);
d1310b2e
CM
2219}
2220
7870d082
JB
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
4a54c8c1
JS
2224{
2225 int ret;
2226 int err = 0;
4a54c8c1 2227
47dc196a 2228 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
91166212 2231 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2232 if (ret)
2233 err = ret;
2234
7870d082 2235 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2236 rec->start + rec->len - 1,
91166212 2237 EXTENT_DAMAGED);
53b381b3
DW
2238 if (ret && !err)
2239 err = ret;
4a54c8c1
JS
2240
2241 kfree(rec);
2242 return err;
2243}
2244
4a54c8c1
JS
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
3ec706c8 2250 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
6ec656bc
JB
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2258{
2259 struct bio *bio;
2260 struct btrfs_device *dev;
4a54c8c1
JS
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
1751e8a6 2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2267 BUG_ON(!mirror_num);
2268
c5e4c3d7 2269 bio = btrfs_io_bio_alloc(1);
4f024f37 2270 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2271 map_length = length;
2272
b5de8d0d
FM
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2303 }
c725328c
LB
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2306 bio->bi_iter.bi_sector = sector;
c725328c 2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2308 btrfs_put_bbio(bbio);
ebbede42
AJ
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2311 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2312 bio_put(bio);
2313 return -EIO;
2314 }
74d46992 2315 bio_set_dev(bio, dev->bdev);
70fd7614 2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2317 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2318
4e49ea4a 2319 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2320 /* try to remap that extent elsewhere? */
b5de8d0d 2321 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2322 bio_put(bio);
442a4f63 2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2324 return -EIO;
2325 }
2326
b14af3b4
DS
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2329 ino, start,
1203b681 2330 rcu_str_deref(dev->name), sector);
b5de8d0d 2331 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2332 bio_put(bio);
2333 return 0;
2334}
2335
2b48966a 2336int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
ea466794 2337{
20a1fbf9 2338 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2339 u64 start = eb->start;
cc5e31a4 2340 int i, num_pages = num_extent_pages(eb);
d95603b2 2341 int ret = 0;
ea466794 2342
bc98a42c 2343 if (sb_rdonly(fs_info->sb))
908960c6
ID
2344 return -EROFS;
2345
ea466794 2346 for (i = 0; i < num_pages; i++) {
fb85fc9a 2347 struct page *p = eb->pages[i];
1203b681 2348
6ec656bc 2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2350 start - page_offset(p), mirror_num);
ea466794
JB
2351 if (ret)
2352 break;
09cbfeaf 2353 start += PAGE_SIZE;
ea466794
JB
2354 }
2355
2356 return ret;
2357}
2358
4a54c8c1
JS
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
7870d082
JB
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2367{
2368 u64 private;
4a54c8c1 2369 struct io_failure_record *failrec;
4a54c8c1
JS
2370 struct extent_state *state;
2371 int num_copies;
4a54c8c1 2372 int ret;
4a54c8c1
JS
2373
2374 private = 0;
7870d082
JB
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
4a54c8c1
JS
2377 if (!ret)
2378 return 0;
2379
2279a270
NB
2380 failrec = get_state_failrec(failure_tree, start);
2381 if (IS_ERR(failrec))
4a54c8c1
JS
2382 return 0;
2383
4a54c8c1
JS
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
ab8d0fc4
JM
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
4a54c8c1
JS
2391 goto out;
2392 }
bc98a42c 2393 if (sb_rdonly(fs_info->sb))
908960c6 2394 goto out;
4a54c8c1 2395
7870d082
JB
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2398 failrec->start,
2399 EXTENT_LOCKED);
7870d082 2400 spin_unlock(&io_tree->lock);
4a54c8c1 2401
883d0de4
MX
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
4a54c8c1 2406 if (num_copies > 1) {
7870d082
JB
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
4a54c8c1
JS
2410 }
2411 }
2412
2413out:
7870d082 2414 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2415
454ff3de 2416 return 0;
4a54c8c1
JS
2417}
2418
f612496b
MX
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
7ab7956e 2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2426{
7ab7956e 2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
47dc196a 2444 failrec = state->failrec;
f612496b
MX
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451}
2452
3526302f
NB
2453static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2454 u64 start, u64 end)
4a54c8c1 2455{
ab8d0fc4 2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2457 struct io_failure_record *failrec;
4a54c8c1 2458 struct extent_map *em;
4a54c8c1
JS
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2462 int ret;
4a54c8c1
JS
2463 u64 logical;
2464
2279a270 2465 failrec = get_state_failrec(failure_tree, start);
3526302f 2466 if (!IS_ERR(failrec)) {
ab8d0fc4
JM
2467 btrfs_debug(fs_info,
2468 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2469 failrec->logical, failrec->start, failrec->len,
2470 failrec->in_validation);
4a54c8c1
JS
2471 /*
2472 * when data can be on disk more than twice, add to failrec here
2473 * (e.g. with a list for failed_mirror) to make
2474 * clean_io_failure() clean all those errors at once.
2475 */
3526302f
NB
2476
2477 return failrec;
4a54c8c1 2478 }
2fe6303e 2479
3526302f
NB
2480 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2481 if (!failrec)
2482 return ERR_PTR(-ENOMEM);
2fe6303e 2483
3526302f
NB
2484 failrec->start = start;
2485 failrec->len = end - start + 1;
2486 failrec->this_mirror = 0;
2487 failrec->bio_flags = 0;
2488 failrec->in_validation = 0;
2489
2490 read_lock(&em_tree->lock);
2491 em = lookup_extent_mapping(em_tree, start, failrec->len);
2492 if (!em) {
2493 read_unlock(&em_tree->lock);
2494 kfree(failrec);
2495 return ERR_PTR(-EIO);
2496 }
2497
2498 if (em->start > start || em->start + em->len <= start) {
2499 free_extent_map(em);
2500 em = NULL;
2501 }
2502 read_unlock(&em_tree->lock);
2503 if (!em) {
2504 kfree(failrec);
2505 return ERR_PTR(-EIO);
2506 }
2507
2508 logical = start - em->start;
2509 logical = em->block_start + logical;
2510 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2511 logical = em->block_start;
2512 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2513 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2514 }
2515
2516 btrfs_debug(fs_info,
2517 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2518 logical, start, failrec->len);
2519
2520 failrec->logical = logical;
2521 free_extent_map(em);
2522
2523 /* Set the bits in the private failure tree */
2524 ret = set_extent_bits(failure_tree, start, end,
2525 EXTENT_LOCKED | EXTENT_DIRTY);
2526 if (ret >= 0) {
2527 ret = set_state_failrec(failure_tree, start, failrec);
2528 /* Set the bits in the inode's tree */
2529 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2530 } else if (ret < 0) {
2531 kfree(failrec);
2532 return ERR_PTR(ret);
2533 }
2534
2535 return failrec;
2fe6303e
MX
2536}
2537
ce06d3ec
OS
2538static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2539 struct io_failure_record *failrec,
2540 int failed_mirror)
2fe6303e 2541{
ab8d0fc4 2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2543 int num_copies;
2544
ab8d0fc4 2545 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2546 if (num_copies == 1) {
2547 /*
2548 * we only have a single copy of the data, so don't bother with
2549 * all the retry and error correction code that follows. no
2550 * matter what the error is, it is very likely to persist.
2551 */
ab8d0fc4
JM
2552 btrfs_debug(fs_info,
2553 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2554 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2555 return false;
4a54c8c1
JS
2556 }
2557
4a54c8c1
JS
2558 /*
2559 * there are two premises:
2560 * a) deliver good data to the caller
2561 * b) correct the bad sectors on disk
2562 */
c7333972 2563 if (needs_validation) {
4a54c8c1
JS
2564 /*
2565 * to fulfill b), we need to know the exact failing sectors, as
2566 * we don't want to rewrite any more than the failed ones. thus,
2567 * we need separate read requests for the failed bio
2568 *
2569 * if the following BUG_ON triggers, our validation request got
2570 * merged. we need separate requests for our algorithm to work.
2571 */
2572 BUG_ON(failrec->in_validation);
2573 failrec->in_validation = 1;
2574 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2575 } else {
2576 /*
2577 * we're ready to fulfill a) and b) alongside. get a good copy
2578 * of the failed sector and if we succeed, we have setup
2579 * everything for repair_io_failure to do the rest for us.
2580 */
2581 if (failrec->in_validation) {
2582 BUG_ON(failrec->this_mirror != failed_mirror);
2583 failrec->in_validation = 0;
2584 failrec->this_mirror = 0;
2585 }
2586 failrec->failed_mirror = failed_mirror;
2587 failrec->this_mirror++;
2588 if (failrec->this_mirror == failed_mirror)
2589 failrec->this_mirror++;
4a54c8c1
JS
2590 }
2591
facc8a22 2592 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2593 btrfs_debug(fs_info,
2594 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2595 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2596 return false;
4a54c8c1
JS
2597 }
2598
c3cfb656 2599 return true;
2fe6303e
MX
2600}
2601
c7333972 2602static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2fe6303e 2603{
c7333972 2604 u64 len = 0;
77d5d689 2605 const u32 blocksize = inode->i_sb->s_blocksize;
2fe6303e 2606
f337bd74
OS
2607 /*
2608 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2609 * I/O error. In this case, we already know exactly which sector was
2610 * bad, so we don't need to validate.
2611 */
2612 if (bio->bi_status == BLK_STS_OK)
2613 return false;
4a54c8c1 2614
c7333972
OS
2615 /*
2616 * We need to validate each sector individually if the failed I/O was
2617 * for multiple sectors.
77d5d689
OS
2618 *
2619 * There are a few possible bios that can end up here:
2620 * 1. A buffered read bio, which is not cloned.
2621 * 2. A direct I/O read bio, which is cloned.
2622 * 3. A (buffered or direct) repair bio, which is not cloned.
2623 *
2624 * For cloned bios (case 2), we can get the size from
2625 * btrfs_io_bio->iter; for non-cloned bios (cases 1 and 3), we can get
2626 * it from the bvecs.
c7333972 2627 */
77d5d689
OS
2628 if (bio_flagged(bio, BIO_CLONED)) {
2629 if (btrfs_io_bio(bio)->iter.bi_size > blocksize)
c7333972 2630 return true;
77d5d689
OS
2631 } else {
2632 struct bio_vec *bvec;
2633 int i;
facc8a22 2634
77d5d689
OS
2635 bio_for_each_bvec_all(bvec, bio, i) {
2636 len += bvec->bv_len;
2637 if (len > blocksize)
2638 return true;
2639 }
facc8a22 2640 }
c7333972 2641 return false;
2fe6303e
MX
2642}
2643
77d5d689
OS
2644blk_status_t btrfs_submit_read_repair(struct inode *inode,
2645 struct bio *failed_bio, u64 phy_offset,
2646 struct page *page, unsigned int pgoff,
2647 u64 start, u64 end, int failed_mirror,
2648 submit_bio_hook_t *submit_bio_hook)
2fe6303e
MX
2649{
2650 struct io_failure_record *failrec;
77d5d689 2651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2652 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2653 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
77d5d689
OS
2654 struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2655 const int icsum = phy_offset >> inode->i_sb->s_blocksize_bits;
c7333972 2656 bool need_validation;
77d5d689
OS
2657 struct bio *repair_bio;
2658 struct btrfs_io_bio *repair_io_bio;
4e4cbee9 2659 blk_status_t status;
2fe6303e 2660
77d5d689
OS
2661 btrfs_debug(fs_info,
2662 "repair read error: read error at %llu", start);
2fe6303e 2663
1f7ad75b 2664 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e 2665
3526302f
NB
2666 failrec = btrfs_get_io_failure_record(inode, start, end);
2667 if (IS_ERR(failrec))
2668 return errno_to_blk_status(PTR_ERR(failrec));
2fe6303e 2669
c7333972 2670 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2fe6303e 2671
c7333972 2672 if (!btrfs_check_repairable(inode, need_validation, failrec,
c3cfb656 2673 failed_mirror)) {
7870d082 2674 free_io_failure(failure_tree, tree, failrec);
77d5d689 2675 return BLK_STS_IOERR;
2fe6303e
MX
2676 }
2677
77d5d689
OS
2678 repair_bio = btrfs_io_bio_alloc(1);
2679 repair_io_bio = btrfs_io_bio(repair_bio);
2680 repair_bio->bi_opf = REQ_OP_READ;
c7333972 2681 if (need_validation)
77d5d689
OS
2682 repair_bio->bi_opf |= REQ_FAILFAST_DEV;
2683 repair_bio->bi_end_io = failed_bio->bi_end_io;
2684 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2685 repair_bio->bi_private = failed_bio->bi_private;
2fe6303e 2686
77d5d689
OS
2687 if (failed_io_bio->csum) {
2688 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2689
2690 repair_io_bio->csum = repair_io_bio->csum_inline;
2691 memcpy(repair_io_bio->csum,
2692 failed_io_bio->csum + csum_size * icsum, csum_size);
2693 }
2fe6303e 2694
77d5d689
OS
2695 bio_add_page(repair_bio, page, failrec->len, pgoff);
2696 repair_io_bio->logical = failrec->start;
2697 repair_io_bio->iter = repair_bio->bi_iter;
4a54c8c1 2698
ab8d0fc4 2699 btrfs_debug(btrfs_sb(inode->i_sb),
77d5d689
OS
2700"repair read error: submitting new read to mirror %d, in_validation=%d",
2701 failrec->this_mirror, failrec->in_validation);
4a54c8c1 2702
77d5d689
OS
2703 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2704 failrec->bio_flags);
4e4cbee9 2705 if (status) {
7870d082 2706 free_io_failure(failure_tree, tree, failrec);
77d5d689 2707 bio_put(repair_bio);
6c387ab2 2708 }
77d5d689 2709 return status;
4a54c8c1
JS
2710}
2711
d1310b2e
CM
2712/* lots and lots of room for performance fixes in the end_bio funcs */
2713
b5227c07 2714void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2715{
2716 int uptodate = (err == 0);
3e2426bd 2717 int ret = 0;
87826df0 2718
c629732d 2719 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2720
87826df0 2721 if (!uptodate) {
87826df0
JM
2722 ClearPageUptodate(page);
2723 SetPageError(page);
bff5baf8 2724 ret = err < 0 ? err : -EIO;
5dca6eea 2725 mapping_set_error(page->mapping, ret);
87826df0 2726 }
87826df0
JM
2727}
2728
d1310b2e
CM
2729/*
2730 * after a writepage IO is done, we need to:
2731 * clear the uptodate bits on error
2732 * clear the writeback bits in the extent tree for this IO
2733 * end_page_writeback if the page has no more pending IO
2734 *
2735 * Scheduling is not allowed, so the extent state tree is expected
2736 * to have one and only one object corresponding to this IO.
2737 */
4246a0b6 2738static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2739{
4e4cbee9 2740 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2741 struct bio_vec *bvec;
d1310b2e
CM
2742 u64 start;
2743 u64 end;
6dc4f100 2744 struct bvec_iter_all iter_all;
d1310b2e 2745
c09abff8 2746 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2747 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2748 struct page *page = bvec->bv_page;
0b246afa
JM
2749 struct inode *inode = page->mapping->host;
2750 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2751
17a5adcc
AO
2752 /* We always issue full-page reads, but if some block
2753 * in a page fails to read, blk_update_request() will
2754 * advance bv_offset and adjust bv_len to compensate.
2755 * Print a warning for nonzero offsets, and an error
2756 * if they don't add up to a full page. */
09cbfeaf
KS
2757 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2758 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2759 btrfs_err(fs_info,
efe120a0
FH
2760 "partial page write in btrfs with offset %u and length %u",
2761 bvec->bv_offset, bvec->bv_len);
2762 else
0b246afa 2763 btrfs_info(fs_info,
5d163e0e 2764 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2765 bvec->bv_offset, bvec->bv_len);
2766 }
d1310b2e 2767
17a5adcc
AO
2768 start = page_offset(page);
2769 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2770
4e4cbee9 2771 end_extent_writepage(page, error, start, end);
17a5adcc 2772 end_page_writeback(page);
2c30c71b 2773 }
2b1f55b0 2774
d1310b2e 2775 bio_put(bio);
d1310b2e
CM
2776}
2777
883d0de4
MX
2778static void
2779endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2780 int uptodate)
2781{
2782 struct extent_state *cached = NULL;
2783 u64 end = start + len - 1;
2784
2785 if (uptodate && tree->track_uptodate)
2786 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2787 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2788}
2789
d1310b2e
CM
2790/*
2791 * after a readpage IO is done, we need to:
2792 * clear the uptodate bits on error
2793 * set the uptodate bits if things worked
2794 * set the page up to date if all extents in the tree are uptodate
2795 * clear the lock bit in the extent tree
2796 * unlock the page if there are no other extents locked for it
2797 *
2798 * Scheduling is not allowed, so the extent state tree is expected
2799 * to have one and only one object corresponding to this IO.
2800 */
4246a0b6 2801static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2802{
2c30c71b 2803 struct bio_vec *bvec;
4e4cbee9 2804 int uptodate = !bio->bi_status;
facc8a22 2805 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2806 struct extent_io_tree *tree, *failure_tree;
facc8a22 2807 u64 offset = 0;
d1310b2e
CM
2808 u64 start;
2809 u64 end;
facc8a22 2810 u64 len;
883d0de4
MX
2811 u64 extent_start = 0;
2812 u64 extent_len = 0;
5cf1ab56 2813 int mirror;
d1310b2e 2814 int ret;
6dc4f100 2815 struct bvec_iter_all iter_all;
d1310b2e 2816
c09abff8 2817 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2818 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2819 struct page *page = bvec->bv_page;
a71754fc 2820 struct inode *inode = page->mapping->host;
ab8d0fc4 2821 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2822 bool data_inode = btrfs_ino(BTRFS_I(inode))
2823 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2824
ab8d0fc4
JM
2825 btrfs_debug(fs_info,
2826 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2827 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2828 io_bio->mirror_num);
a71754fc 2829 tree = &BTRFS_I(inode)->io_tree;
7870d082 2830 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2831
17a5adcc
AO
2832 /* We always issue full-page reads, but if some block
2833 * in a page fails to read, blk_update_request() will
2834 * advance bv_offset and adjust bv_len to compensate.
2835 * Print a warning for nonzero offsets, and an error
2836 * if they don't add up to a full page. */
09cbfeaf
KS
2837 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2838 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2839 btrfs_err(fs_info,
2840 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2841 bvec->bv_offset, bvec->bv_len);
2842 else
ab8d0fc4
JM
2843 btrfs_info(fs_info,
2844 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2845 bvec->bv_offset, bvec->bv_len);
2846 }
d1310b2e 2847
17a5adcc
AO
2848 start = page_offset(page);
2849 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2850 len = bvec->bv_len;
d1310b2e 2851
9be3395b 2852 mirror = io_bio->mirror_num;
78e62c02 2853 if (likely(uptodate)) {
facc8a22
MX
2854 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2855 page, start, end,
2856 mirror);
5ee0844d 2857 if (ret)
d1310b2e 2858 uptodate = 0;
5ee0844d 2859 else
7870d082
JB
2860 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2861 failure_tree, tree, start,
2862 page,
2863 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2864 }
ea466794 2865
f2a09da9
MX
2866 if (likely(uptodate))
2867 goto readpage_ok;
2868
78e62c02 2869 if (data_inode) {
9d0d1c8b 2870
f4a8e656 2871 /*
78e62c02
NB
2872 * The generic bio_readpage_error handles errors the
2873 * following way: If possible, new read requests are
2874 * created and submitted and will end up in
2875 * end_bio_extent_readpage as well (if we're lucky,
2876 * not in the !uptodate case). In that case it returns
2877 * 0 and we just go on with the next page in our bio.
2878 * If it can't handle the error it will return -EIO and
2879 * we remain responsible for that page.
f4a8e656 2880 */
77d5d689
OS
2881 if (!btrfs_submit_read_repair(inode, bio, offset, page,
2882 start - page_offset(page),
2883 start, end, mirror,
2884 tree->ops->submit_bio_hook)) {
78e62c02
NB
2885 uptodate = !bio->bi_status;
2886 offset += len;
2887 continue;
2888 }
2889 } else {
2890 struct extent_buffer *eb;
2891
2892 eb = (struct extent_buffer *)page->private;
2893 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2894 eb->read_mirror = mirror;
2895 atomic_dec(&eb->io_pages);
2896 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2897 &eb->bflags))
2898 btree_readahead_hook(eb, -EIO);
7e38326f 2899 }
f2a09da9 2900readpage_ok:
883d0de4 2901 if (likely(uptodate)) {
a71754fc 2902 loff_t i_size = i_size_read(inode);
09cbfeaf 2903 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2904 unsigned off;
a71754fc
JB
2905
2906 /* Zero out the end if this page straddles i_size */
7073017a 2907 off = offset_in_page(i_size);
a583c026 2908 if (page->index == end_index && off)
09cbfeaf 2909 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2910 SetPageUptodate(page);
70dec807 2911 } else {
17a5adcc
AO
2912 ClearPageUptodate(page);
2913 SetPageError(page);
70dec807 2914 }
17a5adcc 2915 unlock_page(page);
facc8a22 2916 offset += len;
883d0de4
MX
2917
2918 if (unlikely(!uptodate)) {
2919 if (extent_len) {
2920 endio_readpage_release_extent(tree,
2921 extent_start,
2922 extent_len, 1);
2923 extent_start = 0;
2924 extent_len = 0;
2925 }
2926 endio_readpage_release_extent(tree, start,
2927 end - start + 1, 0);
2928 } else if (!extent_len) {
2929 extent_start = start;
2930 extent_len = end + 1 - start;
2931 } else if (extent_start + extent_len == start) {
2932 extent_len += end + 1 - start;
2933 } else {
2934 endio_readpage_release_extent(tree, extent_start,
2935 extent_len, uptodate);
2936 extent_start = start;
2937 extent_len = end + 1 - start;
2938 }
2c30c71b 2939 }
d1310b2e 2940
883d0de4
MX
2941 if (extent_len)
2942 endio_readpage_release_extent(tree, extent_start, extent_len,
2943 uptodate);
b3a0dd50 2944 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2945 bio_put(bio);
d1310b2e
CM
2946}
2947
9be3395b 2948/*
184f999e
DS
2949 * Initialize the members up to but not including 'bio'. Use after allocating a
2950 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2951 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2952 */
184f999e 2953static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2954{
184f999e
DS
2955 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2956}
d1310b2e 2957
9be3395b 2958/*
6e707bcd
DS
2959 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2960 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2961 * for the appropriate container_of magic
9be3395b 2962 */
e749af44 2963struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2964{
2965 struct bio *bio;
d1310b2e 2966
8ac9f7c1 2967 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2968 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2969 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2970 return bio;
2971}
2972
8b6c1d56 2973struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2974{
23ea8e5a
MX
2975 struct btrfs_io_bio *btrfs_bio;
2976 struct bio *new;
9be3395b 2977
6e707bcd 2978 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2979 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2980 btrfs_bio = btrfs_io_bio(new);
184f999e 2981 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2982 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2983 return new;
2984}
9be3395b 2985
c5e4c3d7 2986struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2987{
facc8a22
MX
2988 struct bio *bio;
2989
6e707bcd 2990 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2991 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2992 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2993 return bio;
9be3395b
CM
2994}
2995
e477094f 2996struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2997{
2998 struct bio *bio;
2999 struct btrfs_io_bio *btrfs_bio;
3000
3001 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3002 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3003 ASSERT(bio);
3004
3005 btrfs_bio = btrfs_io_bio(bio);
184f999e 3006 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
3007
3008 bio_trim(bio, offset >> 9, size >> 9);
17347cec 3009 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
3010 return bio;
3011}
9be3395b 3012
4b81ba48
DS
3013/*
3014 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3015 * @wbc: optional writeback control for io accounting
3016 * @page: page to add to the bio
3017 * @pg_offset: offset of the new bio or to check whether we are adding
3018 * a contiguous page to the previous one
3019 * @size: portion of page that we want to write
3020 * @offset: starting offset in the page
5c2b1fd7 3021 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3022 * @end_io_func: end_io callback for new bio
3023 * @mirror_num: desired mirror to read/write
3024 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3025 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3026 */
0ceb34bf 3027static int submit_extent_page(unsigned int opf,
da2f0f74 3028 struct writeback_control *wbc,
6273b7f8 3029 struct page *page, u64 offset,
6c5a4e2c 3030 size_t size, unsigned long pg_offset,
d1310b2e 3031 struct bio **bio_ret,
f188591e 3032 bio_end_io_t end_io_func,
c8b97818
CM
3033 int mirror_num,
3034 unsigned long prev_bio_flags,
005efedf
FM
3035 unsigned long bio_flags,
3036 bool force_bio_submit)
d1310b2e
CM
3037{
3038 int ret = 0;
3039 struct bio *bio;
09cbfeaf 3040 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 3041 sector_t sector = offset >> 9;
0ceb34bf 3042 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
d1310b2e 3043
5c2b1fd7
DS
3044 ASSERT(bio_ret);
3045
3046 if (*bio_ret) {
0c8508a6
DS
3047 bool contig;
3048 bool can_merge = true;
3049
d1310b2e 3050 bio = *bio_ret;
0c8508a6 3051 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 3052 contig = bio->bi_iter.bi_sector == sector;
c8b97818 3053 else
f73a1c7d 3054 contig = bio_end_sector(bio) == sector;
c8b97818 3055
da12fe54
NB
3056 ASSERT(tree->ops);
3057 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
3058 can_merge = false;
3059
3060 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 3061 force_bio_submit ||
6c5a4e2c 3062 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 3063 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
3064 if (ret < 0) {
3065 *bio_ret = NULL;
79787eaa 3066 return ret;
289454ad 3067 }
d1310b2e
CM
3068 bio = NULL;
3069 } else {
da2f0f74 3070 if (wbc)
34e51a5e 3071 wbc_account_cgroup_owner(wbc, page, page_size);
d1310b2e
CM
3072 return 0;
3073 }
3074 }
c8b97818 3075
e749af44 3076 bio = btrfs_bio_alloc(offset);
6c5a4e2c 3077 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
3078 bio->bi_end_io = end_io_func;
3079 bio->bi_private = tree;
e6959b93 3080 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 3081 bio->bi_opf = opf;
da2f0f74 3082 if (wbc) {
429aebc0
DS
3083 struct block_device *bdev;
3084
3085 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3086 bio_set_dev(bio, bdev);
da2f0f74 3087 wbc_init_bio(wbc, bio);
34e51a5e 3088 wbc_account_cgroup_owner(wbc, page, page_size);
da2f0f74 3089 }
70dec807 3090
5c2b1fd7 3091 *bio_ret = bio;
d1310b2e
CM
3092
3093 return ret;
3094}
3095
48a3b636
ES
3096static void attach_extent_buffer_page(struct extent_buffer *eb,
3097 struct page *page)
d1310b2e 3098{
d1b89bc0
GJ
3099 if (!PagePrivate(page))
3100 attach_page_private(page, eb);
3101 else
4f2de97a 3102 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3103}
3104
4f2de97a 3105void set_page_extent_mapped(struct page *page)
d1310b2e 3106{
d1b89bc0
GJ
3107 if (!PagePrivate(page))
3108 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
d1310b2e
CM
3109}
3110
125bac01
MX
3111static struct extent_map *
3112__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3113 u64 start, u64 len, get_extent_t *get_extent,
3114 struct extent_map **em_cached)
3115{
3116 struct extent_map *em;
3117
3118 if (em_cached && *em_cached) {
3119 em = *em_cached;
cbc0e928 3120 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3121 start < extent_map_end(em)) {
490b54d6 3122 refcount_inc(&em->refs);
125bac01
MX
3123 return em;
3124 }
3125
3126 free_extent_map(em);
3127 *em_cached = NULL;
3128 }
3129
39b07b5d 3130 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3131 if (em_cached && !IS_ERR_OR_NULL(em)) {
3132 BUG_ON(*em_cached);
490b54d6 3133 refcount_inc(&em->refs);
125bac01
MX
3134 *em_cached = em;
3135 }
3136 return em;
3137}
d1310b2e
CM
3138/*
3139 * basic readpage implementation. Locked extent state structs are inserted
3140 * into the tree that are removed when the IO is done (by the end_io
3141 * handlers)
79787eaa 3142 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3143 * return 0 on success, otherwise return error
d1310b2e 3144 */
f657a31c 3145static int __do_readpage(struct page *page,
9974090b 3146 get_extent_t *get_extent,
125bac01 3147 struct extent_map **em_cached,
9974090b 3148 struct bio **bio, int mirror_num,
f1c77c55 3149 unsigned long *bio_flags, unsigned int read_flags,
005efedf 3150 u64 *prev_em_start)
d1310b2e
CM
3151{
3152 struct inode *inode = page->mapping->host;
4eee4fa4 3153 u64 start = page_offset(page);
8eec8296 3154 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3155 u64 cur = start;
3156 u64 extent_offset;
3157 u64 last_byte = i_size_read(inode);
3158 u64 block_start;
3159 u64 cur_end;
d1310b2e 3160 struct extent_map *em;
baf863b9 3161 int ret = 0;
d1310b2e 3162 int nr = 0;
306e16ce 3163 size_t pg_offset = 0;
d1310b2e 3164 size_t iosize;
c8b97818 3165 size_t disk_io_size;
d1310b2e 3166 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3167 unsigned long this_bio_flag = 0;
f657a31c 3168 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3169
d1310b2e
CM
3170 set_page_extent_mapped(page);
3171
90a887c9
DM
3172 if (!PageUptodate(page)) {
3173 if (cleancache_get_page(page) == 0) {
3174 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3175 unlock_extent(tree, start, end);
90a887c9
DM
3176 goto out;
3177 }
3178 }
3179
09cbfeaf 3180 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3181 char *userpage;
7073017a 3182 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3183
3184 if (zero_offset) {
09cbfeaf 3185 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3186 userpage = kmap_atomic(page);
c8b97818
CM
3187 memset(userpage + zero_offset, 0, iosize);
3188 flush_dcache_page(page);
7ac687d9 3189 kunmap_atomic(userpage);
c8b97818
CM
3190 }
3191 }
d1310b2e 3192 while (cur <= end) {
005efedf 3193 bool force_bio_submit = false;
6273b7f8 3194 u64 offset;
c8f2f24b 3195
d1310b2e
CM
3196 if (cur >= last_byte) {
3197 char *userpage;
507903b8
AJ
3198 struct extent_state *cached = NULL;
3199
09cbfeaf 3200 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3201 userpage = kmap_atomic(page);
306e16ce 3202 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3203 flush_dcache_page(page);
7ac687d9 3204 kunmap_atomic(userpage);
d1310b2e 3205 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3206 &cached, GFP_NOFS);
7f042a83 3207 unlock_extent_cached(tree, cur,
e43bbe5e 3208 cur + iosize - 1, &cached);
d1310b2e
CM
3209 break;
3210 }
125bac01
MX
3211 em = __get_extent_map(inode, page, pg_offset, cur,
3212 end - cur + 1, get_extent, em_cached);
c704005d 3213 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3214 SetPageError(page);
7f042a83 3215 unlock_extent(tree, cur, end);
d1310b2e
CM
3216 break;
3217 }
d1310b2e
CM
3218 extent_offset = cur - em->start;
3219 BUG_ON(extent_map_end(em) <= cur);
3220 BUG_ON(end < cur);
3221
261507a0 3222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3223 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3224 extent_set_compress_type(&this_bio_flag,
3225 em->compress_type);
3226 }
c8b97818 3227
d1310b2e
CM
3228 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3229 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3230 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3231 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3232 disk_io_size = em->block_len;
6273b7f8 3233 offset = em->block_start;
c8b97818 3234 } else {
6273b7f8 3235 offset = em->block_start + extent_offset;
c8b97818
CM
3236 disk_io_size = iosize;
3237 }
d1310b2e 3238 block_start = em->block_start;
d899e052
YZ
3239 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3240 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3241
3242 /*
3243 * If we have a file range that points to a compressed extent
3244 * and it's followed by a consecutive file range that points to
3245 * to the same compressed extent (possibly with a different
3246 * offset and/or length, so it either points to the whole extent
3247 * or only part of it), we must make sure we do not submit a
3248 * single bio to populate the pages for the 2 ranges because
3249 * this makes the compressed extent read zero out the pages
3250 * belonging to the 2nd range. Imagine the following scenario:
3251 *
3252 * File layout
3253 * [0 - 8K] [8K - 24K]
3254 * | |
3255 * | |
3256 * points to extent X, points to extent X,
3257 * offset 4K, length of 8K offset 0, length 16K
3258 *
3259 * [extent X, compressed length = 4K uncompressed length = 16K]
3260 *
3261 * If the bio to read the compressed extent covers both ranges,
3262 * it will decompress extent X into the pages belonging to the
3263 * first range and then it will stop, zeroing out the remaining
3264 * pages that belong to the other range that points to extent X.
3265 * So here we make sure we submit 2 bios, one for the first
3266 * range and another one for the third range. Both will target
3267 * the same physical extent from disk, but we can't currently
3268 * make the compressed bio endio callback populate the pages
3269 * for both ranges because each compressed bio is tightly
3270 * coupled with a single extent map, and each range can have
3271 * an extent map with a different offset value relative to the
3272 * uncompressed data of our extent and different lengths. This
3273 * is a corner case so we prioritize correctness over
3274 * non-optimal behavior (submitting 2 bios for the same extent).
3275 */
3276 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3277 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3278 *prev_em_start != em->start)
005efedf
FM
3279 force_bio_submit = true;
3280
3281 if (prev_em_start)
8e928218 3282 *prev_em_start = em->start;
005efedf 3283
d1310b2e
CM
3284 free_extent_map(em);
3285 em = NULL;
3286
3287 /* we've found a hole, just zero and go on */
3288 if (block_start == EXTENT_MAP_HOLE) {
3289 char *userpage;
507903b8
AJ
3290 struct extent_state *cached = NULL;
3291
7ac687d9 3292 userpage = kmap_atomic(page);
306e16ce 3293 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3294 flush_dcache_page(page);
7ac687d9 3295 kunmap_atomic(userpage);
d1310b2e
CM
3296
3297 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3298 &cached, GFP_NOFS);
7f042a83 3299 unlock_extent_cached(tree, cur,
e43bbe5e 3300 cur + iosize - 1, &cached);
d1310b2e 3301 cur = cur + iosize;
306e16ce 3302 pg_offset += iosize;
d1310b2e
CM
3303 continue;
3304 }
3305 /* the get_extent function already copied into the page */
9655d298
CM
3306 if (test_range_bit(tree, cur, cur_end,
3307 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3308 check_page_uptodate(tree, page);
7f042a83 3309 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3310 cur = cur + iosize;
306e16ce 3311 pg_offset += iosize;
d1310b2e
CM
3312 continue;
3313 }
70dec807
CM
3314 /* we have an inline extent but it didn't get marked up
3315 * to date. Error out
3316 */
3317 if (block_start == EXTENT_MAP_INLINE) {
3318 SetPageError(page);
7f042a83 3319 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3320 cur = cur + iosize;
306e16ce 3321 pg_offset += iosize;
70dec807
CM
3322 continue;
3323 }
d1310b2e 3324
0ceb34bf 3325 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
6273b7f8 3326 page, offset, disk_io_size,
fa17ed06 3327 pg_offset, bio,
c8b97818
CM
3328 end_bio_extent_readpage, mirror_num,
3329 *bio_flags,
005efedf
FM
3330 this_bio_flag,
3331 force_bio_submit);
c8f2f24b
JB
3332 if (!ret) {
3333 nr++;
3334 *bio_flags = this_bio_flag;
3335 } else {
d1310b2e 3336 SetPageError(page);
7f042a83 3337 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3338 goto out;
edd33c99 3339 }
d1310b2e 3340 cur = cur + iosize;
306e16ce 3341 pg_offset += iosize;
d1310b2e 3342 }
90a887c9 3343out:
d1310b2e
CM
3344 if (!nr) {
3345 if (!PageError(page))
3346 SetPageUptodate(page);
3347 unlock_page(page);
3348 }
baf863b9 3349 return ret;
d1310b2e
CM
3350}
3351
b6660e80 3352static inline void contiguous_readpages(struct page *pages[], int nr_pages,
9974090b 3353 u64 start, u64 end,
125bac01 3354 struct extent_map **em_cached,
d3fac6ba 3355 struct bio **bio,
1f7ad75b 3356 unsigned long *bio_flags,
808f80b4 3357 u64 *prev_em_start)
9974090b 3358{
23d31bd4 3359 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3360 int index;
3361
b272ae22 3362 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3363
3364 for (index = 0; index < nr_pages; index++) {
f657a31c 3365 __do_readpage(pages[index], btrfs_get_extent, em_cached,
5e9d3982 3366 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3367 put_page(pages[index]);
9974090b
MX
3368 }
3369}
3370
0d44fea7 3371static int __extent_read_full_page(struct page *page,
9974090b
MX
3372 get_extent_t *get_extent,
3373 struct bio **bio, int mirror_num,
f1c77c55
DS
3374 unsigned long *bio_flags,
3375 unsigned int read_flags)
9974090b 3376{
23d31bd4 3377 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
9974090b 3378 u64 start = page_offset(page);
09cbfeaf 3379 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3380 int ret;
3381
b272ae22 3382 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b 3383
f657a31c 3384 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3385 bio_flags, read_flags, NULL);
9974090b
MX
3386 return ret;
3387}
3388
71ad38b4
DS
3389int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3390 int mirror_num)
d1310b2e
CM
3391{
3392 struct bio *bio = NULL;
c8b97818 3393 unsigned long bio_flags = 0;
d1310b2e
CM
3394 int ret;
3395
0d44fea7 3396 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
1f7ad75b 3397 &bio_flags, 0);
d1310b2e 3398 if (bio)
1f7ad75b 3399 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3400 return ret;
3401}
d1310b2e 3402
3d4b9496 3403static void update_nr_written(struct writeback_control *wbc,
a9132667 3404 unsigned long nr_written)
11c8349b
CM
3405{
3406 wbc->nr_to_write -= nr_written;
11c8349b
CM
3407}
3408
d1310b2e 3409/*
40f76580
CM
3410 * helper for __extent_writepage, doing all of the delayed allocation setup.
3411 *
5eaad97a 3412 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3413 * to write the page (copy into inline extent). In this case the IO has
3414 * been started and the page is already unlocked.
3415 *
3416 * This returns 0 if all went well (page still locked)
3417 * This returns < 0 if there were errors (page still locked)
d1310b2e 3418 */
cd4c0bf9 3419static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
8cc0237a
NB
3420 struct page *page, struct writeback_control *wbc,
3421 u64 delalloc_start, unsigned long *nr_written)
40f76580 3422{
09cbfeaf 3423 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3424 bool found;
40f76580
CM
3425 u64 delalloc_to_write = 0;
3426 u64 delalloc_end = 0;
3427 int ret;
3428 int page_started = 0;
3429
40f76580
CM
3430
3431 while (delalloc_end < page_end) {
cd4c0bf9 3432 found = find_lock_delalloc_range(&inode->vfs_inode, page,
40f76580 3433 &delalloc_start,
917aacec 3434 &delalloc_end);
3522e903 3435 if (!found) {
40f76580
CM
3436 delalloc_start = delalloc_end + 1;
3437 continue;
3438 }
cd4c0bf9 3439 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
5eaad97a 3440 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3441 if (ret) {
3442 SetPageError(page);
5eaad97a
NB
3443 /*
3444 * btrfs_run_delalloc_range should return < 0 for error
3445 * but just in case, we use > 0 here meaning the IO is
3446 * started, so we don't want to return > 0 unless
3447 * things are going well.
40f76580 3448 */
b69d1ee9 3449 return ret < 0 ? ret : -EIO;
40f76580
CM
3450 }
3451 /*
ea1754a0
KS
3452 * delalloc_end is already one less than the total length, so
3453 * we don't subtract one from PAGE_SIZE
40f76580
CM
3454 */
3455 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3456 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3457 delalloc_start = delalloc_end + 1;
3458 }
3459 if (wbc->nr_to_write < delalloc_to_write) {
3460 int thresh = 8192;
3461
3462 if (delalloc_to_write < thresh * 2)
3463 thresh = delalloc_to_write;
3464 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3465 thresh);
3466 }
3467
3468 /* did the fill delalloc function already unlock and start
3469 * the IO?
3470 */
3471 if (page_started) {
3472 /*
3473 * we've unlocked the page, so we can't update
3474 * the mapping's writeback index, just update
3475 * nr_to_write.
3476 */
3477 wbc->nr_to_write -= *nr_written;
3478 return 1;
3479 }
3480
b69d1ee9 3481 return 0;
40f76580
CM
3482}
3483
3484/*
3485 * helper for __extent_writepage. This calls the writepage start hooks,
3486 * and does the loop to map the page into extents and bios.
3487 *
3488 * We return 1 if the IO is started and the page is unlocked,
3489 * 0 if all went well (page still locked)
3490 * < 0 if there were errors (page still locked)
3491 */
d4580fe2 3492static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
40f76580
CM
3493 struct page *page,
3494 struct writeback_control *wbc,
3495 struct extent_page_data *epd,
3496 loff_t i_size,
3497 unsigned long nr_written,
57e5ffeb 3498 int *nr_ret)
d1310b2e 3499{
d4580fe2 3500 struct extent_io_tree *tree = &inode->io_tree;
4eee4fa4 3501 u64 start = page_offset(page);
09cbfeaf 3502 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3503 u64 end;
3504 u64 cur = start;
3505 u64 extent_offset;
d1310b2e
CM
3506 u64 block_start;
3507 u64 iosize;
d1310b2e 3508 struct extent_map *em;
7f3c74fb 3509 size_t pg_offset = 0;
d1310b2e 3510 size_t blocksize;
40f76580
CM
3511 int ret = 0;
3512 int nr = 0;
57e5ffeb 3513 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3514 bool compressed;
c8b97818 3515
d75855b4
NB
3516 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3517 if (ret) {
3518 /* Fixup worker will requeue */
5ab58055 3519 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3520 update_nr_written(wbc, nr_written);
3521 unlock_page(page);
3522 return 1;
247e743c
CM
3523 }
3524
11c8349b
CM
3525 /*
3526 * we don't want to touch the inode after unlocking the page,
3527 * so we update the mapping writeback index now
3528 */
3d4b9496 3529 update_nr_written(wbc, nr_written + 1);
771ed689 3530
d1310b2e 3531 end = page_end;
d4580fe2 3532 blocksize = inode->vfs_inode.i_sb->s_blocksize;
d1310b2e
CM
3533
3534 while (cur <= end) {
40f76580 3535 u64 em_end;
6273b7f8 3536 u64 offset;
58409edd 3537
40f76580 3538 if (cur >= i_size) {
7087a9d8 3539 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3540 page_end, 1);
d1310b2e
CM
3541 break;
3542 }
d4580fe2 3543 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
c704005d 3544 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3545 SetPageError(page);
61391d56 3546 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3547 break;
3548 }
3549
3550 extent_offset = cur - em->start;
40f76580
CM
3551 em_end = extent_map_end(em);
3552 BUG_ON(em_end <= cur);
d1310b2e 3553 BUG_ON(end < cur);
40f76580 3554 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3555 iosize = ALIGN(iosize, blocksize);
6273b7f8 3556 offset = em->block_start + extent_offset;
d1310b2e 3557 block_start = em->block_start;
c8b97818 3558 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3559 free_extent_map(em);
3560 em = NULL;
3561
c8b97818
CM
3562 /*
3563 * compressed and inline extents are written through other
3564 * paths in the FS
3565 */
3566 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3567 block_start == EXTENT_MAP_INLINE) {
c8b04030 3568 if (compressed)
c8b97818 3569 nr++;
c8b04030
OS
3570 else
3571 btrfs_writepage_endio_finish_ordered(page, cur,
3572 cur + iosize - 1, 1);
c8b97818 3573 cur += iosize;
7f3c74fb 3574 pg_offset += iosize;
d1310b2e
CM
3575 continue;
3576 }
c8b97818 3577
5cdc84bf 3578 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd 3579 if (!PageWriteback(page)) {
d4580fe2 3580 btrfs_err(inode->root->fs_info,
58409edd
DS
3581 "page %lu not writeback, cur %llu end %llu",
3582 page->index, cur, end);
d1310b2e 3583 }
7f3c74fb 3584
0ceb34bf 3585 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
6273b7f8 3586 page, offset, iosize, pg_offset,
fa17ed06 3587 &epd->bio,
58409edd
DS
3588 end_bio_extent_writepage,
3589 0, 0, 0, false);
fe01aa65 3590 if (ret) {
58409edd 3591 SetPageError(page);
fe01aa65
TK
3592 if (PageWriteback(page))
3593 end_page_writeback(page);
3594 }
d1310b2e 3595
d1310b2e 3596 cur = cur + iosize;
7f3c74fb 3597 pg_offset += iosize;
d1310b2e
CM
3598 nr++;
3599 }
40f76580 3600 *nr_ret = nr;
40f76580
CM
3601 return ret;
3602}
3603
3604/*
3605 * the writepage semantics are similar to regular writepage. extent
3606 * records are inserted to lock ranges in the tree, and as dirty areas
3607 * are found, they are marked writeback. Then the lock bits are removed
3608 * and the end_io handler clears the writeback ranges
3065976b
QW
3609 *
3610 * Return 0 if everything goes well.
3611 * Return <0 for error.
40f76580
CM
3612 */
3613static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3614 struct extent_page_data *epd)
40f76580
CM
3615{
3616 struct inode *inode = page->mapping->host;
40f76580 3617 u64 start = page_offset(page);
09cbfeaf 3618 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3619 int ret;
3620 int nr = 0;
eb70d222 3621 size_t pg_offset;
40f76580 3622 loff_t i_size = i_size_read(inode);
09cbfeaf 3623 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3624 unsigned long nr_written = 0;
3625
40f76580
CM
3626 trace___extent_writepage(page, inode, wbc);
3627
3628 WARN_ON(!PageLocked(page));
3629
3630 ClearPageError(page);
3631
7073017a 3632 pg_offset = offset_in_page(i_size);
40f76580
CM
3633 if (page->index > end_index ||
3634 (page->index == end_index && !pg_offset)) {
09cbfeaf 3635 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3636 unlock_page(page);
3637 return 0;
3638 }
3639
3640 if (page->index == end_index) {
3641 char *userpage;
3642
3643 userpage = kmap_atomic(page);
3644 memset(userpage + pg_offset, 0,
09cbfeaf 3645 PAGE_SIZE - pg_offset);
40f76580
CM
3646 kunmap_atomic(userpage);
3647 flush_dcache_page(page);
3648 }
3649
40f76580
CM
3650 set_page_extent_mapped(page);
3651
7789a55a 3652 if (!epd->extent_locked) {
cd4c0bf9
NB
3653 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
3654 &nr_written);
7789a55a 3655 if (ret == 1)
169d2c87 3656 return 0;
7789a55a
NB
3657 if (ret)
3658 goto done;
3659 }
40f76580 3660
d4580fe2
NB
3661 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
3662 nr_written, &nr);
40f76580 3663 if (ret == 1)
169d2c87 3664 return 0;
40f76580 3665
d1310b2e
CM
3666done:
3667 if (nr == 0) {
3668 /* make sure the mapping tag for page dirty gets cleared */
3669 set_page_writeback(page);
3670 end_page_writeback(page);
3671 }
61391d56
FM
3672 if (PageError(page)) {
3673 ret = ret < 0 ? ret : -EIO;
3674 end_extent_writepage(page, ret, start, page_end);
3675 }
d1310b2e 3676 unlock_page(page);
3065976b 3677 ASSERT(ret <= 0);
40f76580 3678 return ret;
d1310b2e
CM
3679}
3680
fd8b2b61 3681void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3682{
74316201
N
3683 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3684 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3685}
3686
18dfa711
FM
3687static void end_extent_buffer_writeback(struct extent_buffer *eb)
3688{
3689 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3690 smp_mb__after_atomic();
3691 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3692}
3693
2e3c2513
QW
3694/*
3695 * Lock eb pages and flush the bio if we can't the locks
3696 *
3697 * Return 0 if nothing went wrong
3698 * Return >0 is same as 0, except bio is not submitted
3699 * Return <0 if something went wrong, no page is locked
3700 */
9df76fb5 3701static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3702 struct extent_page_data *epd)
0b32f4bb 3703{
9df76fb5 3704 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3705 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3706 int flush = 0;
3707 int ret = 0;
3708
3709 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3710 ret = flush_write_bio(epd);
2e3c2513
QW
3711 if (ret < 0)
3712 return ret;
3713 flush = 1;
0b32f4bb
JB
3714 btrfs_tree_lock(eb);
3715 }
3716
3717 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3718 btrfs_tree_unlock(eb);
3719 if (!epd->sync_io)
3720 return 0;
3721 if (!flush) {
f4340622 3722 ret = flush_write_bio(epd);
2e3c2513
QW
3723 if (ret < 0)
3724 return ret;
0b32f4bb
JB
3725 flush = 1;
3726 }
a098d8e8
CM
3727 while (1) {
3728 wait_on_extent_buffer_writeback(eb);
3729 btrfs_tree_lock(eb);
3730 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3731 break;
0b32f4bb 3732 btrfs_tree_unlock(eb);
0b32f4bb
JB
3733 }
3734 }
3735
51561ffe
JB
3736 /*
3737 * We need to do this to prevent races in people who check if the eb is
3738 * under IO since we can end up having no IO bits set for a short period
3739 * of time.
3740 */
3741 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3742 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3743 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3744 spin_unlock(&eb->refs_lock);
0b32f4bb 3745 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3746 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3747 -eb->len,
3748 fs_info->dirty_metadata_batch);
0b32f4bb 3749 ret = 1;
51561ffe
JB
3750 } else {
3751 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3752 }
3753
3754 btrfs_tree_unlock(eb);
3755
3756 if (!ret)
3757 return ret;
3758
65ad0104 3759 num_pages = num_extent_pages(eb);
0b32f4bb 3760 for (i = 0; i < num_pages; i++) {
fb85fc9a 3761 struct page *p = eb->pages[i];
0b32f4bb
JB
3762
3763 if (!trylock_page(p)) {
3764 if (!flush) {
18dfa711
FM
3765 int err;
3766
3767 err = flush_write_bio(epd);
3768 if (err < 0) {
3769 ret = err;
2e3c2513
QW
3770 failed_page_nr = i;
3771 goto err_unlock;
3772 }
0b32f4bb
JB
3773 flush = 1;
3774 }
3775 lock_page(p);
3776 }
3777 }
3778
3779 return ret;
2e3c2513
QW
3780err_unlock:
3781 /* Unlock already locked pages */
3782 for (i = 0; i < failed_page_nr; i++)
3783 unlock_page(eb->pages[i]);
18dfa711
FM
3784 /*
3785 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3786 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3787 * be made and undo everything done before.
3788 */
3789 btrfs_tree_lock(eb);
3790 spin_lock(&eb->refs_lock);
3791 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3792 end_extent_buffer_writeback(eb);
3793 spin_unlock(&eb->refs_lock);
3794 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3795 fs_info->dirty_metadata_batch);
3796 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3797 btrfs_tree_unlock(eb);
2e3c2513 3798 return ret;
0b32f4bb
JB
3799}
3800
656f30db
FM
3801static void set_btree_ioerr(struct page *page)
3802{
3803 struct extent_buffer *eb = (struct extent_buffer *)page->private;
eb5b64f1 3804 struct btrfs_fs_info *fs_info;
656f30db
FM
3805
3806 SetPageError(page);
3807 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3808 return;
3809
eb5b64f1
DZ
3810 /*
3811 * If we error out, we should add back the dirty_metadata_bytes
3812 * to make it consistent.
3813 */
3814 fs_info = eb->fs_info;
3815 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3816 eb->len, fs_info->dirty_metadata_batch);
3817
656f30db
FM
3818 /*
3819 * If writeback for a btree extent that doesn't belong to a log tree
3820 * failed, increment the counter transaction->eb_write_errors.
3821 * We do this because while the transaction is running and before it's
3822 * committing (when we call filemap_fdata[write|wait]_range against
3823 * the btree inode), we might have
3824 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3825 * returns an error or an error happens during writeback, when we're
3826 * committing the transaction we wouldn't know about it, since the pages
3827 * can be no longer dirty nor marked anymore for writeback (if a
3828 * subsequent modification to the extent buffer didn't happen before the
3829 * transaction commit), which makes filemap_fdata[write|wait]_range not
3830 * able to find the pages tagged with SetPageError at transaction
3831 * commit time. So if this happens we must abort the transaction,
3832 * otherwise we commit a super block with btree roots that point to
3833 * btree nodes/leafs whose content on disk is invalid - either garbage
3834 * or the content of some node/leaf from a past generation that got
3835 * cowed or deleted and is no longer valid.
3836 *
3837 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3838 * not be enough - we need to distinguish between log tree extents vs
3839 * non-log tree extents, and the next filemap_fdatawait_range() call
3840 * will catch and clear such errors in the mapping - and that call might
3841 * be from a log sync and not from a transaction commit. Also, checking
3842 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3843 * not done and would not be reliable - the eb might have been released
3844 * from memory and reading it back again means that flag would not be
3845 * set (since it's a runtime flag, not persisted on disk).
3846 *
3847 * Using the flags below in the btree inode also makes us achieve the
3848 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3849 * writeback for all dirty pages and before filemap_fdatawait_range()
3850 * is called, the writeback for all dirty pages had already finished
3851 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3852 * filemap_fdatawait_range() would return success, as it could not know
3853 * that writeback errors happened (the pages were no longer tagged for
3854 * writeback).
3855 */
3856 switch (eb->log_index) {
3857 case -1:
afcdd129 3858 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3859 break;
3860 case 0:
afcdd129 3861 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3862 break;
3863 case 1:
afcdd129 3864 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3865 break;
3866 default:
3867 BUG(); /* unexpected, logic error */
3868 }
3869}
3870
4246a0b6 3871static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3872{
2c30c71b 3873 struct bio_vec *bvec;
0b32f4bb 3874 struct extent_buffer *eb;
2b070cfe 3875 int done;
6dc4f100 3876 struct bvec_iter_all iter_all;
0b32f4bb 3877
c09abff8 3878 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3879 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3880 struct page *page = bvec->bv_page;
3881
0b32f4bb
JB
3882 eb = (struct extent_buffer *)page->private;
3883 BUG_ON(!eb);
3884 done = atomic_dec_and_test(&eb->io_pages);
3885
4e4cbee9 3886 if (bio->bi_status ||
4246a0b6 3887 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3888 ClearPageUptodate(page);
656f30db 3889 set_btree_ioerr(page);
0b32f4bb
JB
3890 }
3891
3892 end_page_writeback(page);
3893
3894 if (!done)
3895 continue;
3896
3897 end_extent_buffer_writeback(eb);
2c30c71b 3898 }
0b32f4bb
JB
3899
3900 bio_put(bio);
0b32f4bb
JB
3901}
3902
0e378df1 3903static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3904 struct writeback_control *wbc,
3905 struct extent_page_data *epd)
3906{
0b32f4bb 3907 u64 offset = eb->start;
851cd173 3908 u32 nritems;
cc5e31a4 3909 int i, num_pages;
851cd173 3910 unsigned long start, end;
ff40adf7 3911 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3912 int ret = 0;
0b32f4bb 3913
656f30db 3914 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3915 num_pages = num_extent_pages(eb);
0b32f4bb 3916 atomic_set(&eb->io_pages, num_pages);
de0022b9 3917
851cd173
LB
3918 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3919 nritems = btrfs_header_nritems(eb);
3eb548ee 3920 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3921 end = btrfs_node_key_ptr_offset(nritems);
3922
b159fa28 3923 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3924 } else {
3925 /*
3926 * leaf:
3927 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3928 */
3929 start = btrfs_item_nr_offset(nritems);
8f881e8c 3930 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3931 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3932 }
3933
0b32f4bb 3934 for (i = 0; i < num_pages; i++) {
fb85fc9a 3935 struct page *p = eb->pages[i];
0b32f4bb
JB
3936
3937 clear_page_dirty_for_io(p);
3938 set_page_writeback(p);
0ceb34bf 3939 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
fa17ed06 3940 p, offset, PAGE_SIZE, 0,
c2df8bb4 3941 &epd->bio,
1f7ad75b 3942 end_bio_extent_buffer_writepage,
18fdc679 3943 0, 0, 0, false);
0b32f4bb 3944 if (ret) {
656f30db 3945 set_btree_ioerr(p);
fe01aa65
TK
3946 if (PageWriteback(p))
3947 end_page_writeback(p);
0b32f4bb
JB
3948 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3949 end_extent_buffer_writeback(eb);
3950 ret = -EIO;
3951 break;
3952 }
09cbfeaf 3953 offset += PAGE_SIZE;
3d4b9496 3954 update_nr_written(wbc, 1);
0b32f4bb
JB
3955 unlock_page(p);
3956 }
3957
3958 if (unlikely(ret)) {
3959 for (; i < num_pages; i++) {
bbf65cf0 3960 struct page *p = eb->pages[i];
81465028 3961 clear_page_dirty_for_io(p);
0b32f4bb
JB
3962 unlock_page(p);
3963 }
3964 }
3965
3966 return ret;
3967}
3968
3969int btree_write_cache_pages(struct address_space *mapping,
3970 struct writeback_control *wbc)
3971{
0b32f4bb
JB
3972 struct extent_buffer *eb, *prev_eb = NULL;
3973 struct extent_page_data epd = {
3974 .bio = NULL,
0b32f4bb
JB
3975 .extent_locked = 0,
3976 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3977 };
b3ff8f1d 3978 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
3979 int ret = 0;
3980 int done = 0;
3981 int nr_to_write_done = 0;
3982 struct pagevec pvec;
3983 int nr_pages;
3984 pgoff_t index;
3985 pgoff_t end; /* Inclusive */
3986 int scanned = 0;
10bbd235 3987 xa_mark_t tag;
0b32f4bb 3988
86679820 3989 pagevec_init(&pvec);
0b32f4bb
JB
3990 if (wbc->range_cyclic) {
3991 index = mapping->writeback_index; /* Start from prev offset */
3992 end = -1;
556755a8
JB
3993 /*
3994 * Start from the beginning does not need to cycle over the
3995 * range, mark it as scanned.
3996 */
3997 scanned = (index == 0);
0b32f4bb 3998 } else {
09cbfeaf
KS
3999 index = wbc->range_start >> PAGE_SHIFT;
4000 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4001 scanned = 1;
4002 }
4003 if (wbc->sync_mode == WB_SYNC_ALL)
4004 tag = PAGECACHE_TAG_TOWRITE;
4005 else
4006 tag = PAGECACHE_TAG_DIRTY;
4007retry:
4008 if (wbc->sync_mode == WB_SYNC_ALL)
4009 tag_pages_for_writeback(mapping, index, end);
4010 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4011 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4012 tag))) {
0b32f4bb
JB
4013 unsigned i;
4014
0b32f4bb
JB
4015 for (i = 0; i < nr_pages; i++) {
4016 struct page *page = pvec.pages[i];
4017
4018 if (!PagePrivate(page))
4019 continue;
4020
b5bae261
JB
4021 spin_lock(&mapping->private_lock);
4022 if (!PagePrivate(page)) {
4023 spin_unlock(&mapping->private_lock);
4024 continue;
4025 }
4026
0b32f4bb 4027 eb = (struct extent_buffer *)page->private;
b5bae261
JB
4028
4029 /*
4030 * Shouldn't happen and normally this would be a BUG_ON
4031 * but no sense in crashing the users box for something
4032 * we can survive anyway.
4033 */
fae7f21c 4034 if (WARN_ON(!eb)) {
b5bae261 4035 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
4036 continue;
4037 }
4038
b5bae261
JB
4039 if (eb == prev_eb) {
4040 spin_unlock(&mapping->private_lock);
0b32f4bb 4041 continue;
b5bae261 4042 }
0b32f4bb 4043
b5bae261
JB
4044 ret = atomic_inc_not_zero(&eb->refs);
4045 spin_unlock(&mapping->private_lock);
4046 if (!ret)
0b32f4bb 4047 continue;
0b32f4bb
JB
4048
4049 prev_eb = eb;
9df76fb5 4050 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
4051 if (!ret) {
4052 free_extent_buffer(eb);
4053 continue;
0607eb1d
FM
4054 } else if (ret < 0) {
4055 done = 1;
4056 free_extent_buffer(eb);
4057 break;
0b32f4bb
JB
4058 }
4059
0ab02063 4060 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
4061 if (ret) {
4062 done = 1;
4063 free_extent_buffer(eb);
4064 break;
4065 }
4066 free_extent_buffer(eb);
4067
4068 /*
4069 * the filesystem may choose to bump up nr_to_write.
4070 * We have to make sure to honor the new nr_to_write
4071 * at any time
4072 */
4073 nr_to_write_done = wbc->nr_to_write <= 0;
4074 }
4075 pagevec_release(&pvec);
4076 cond_resched();
4077 }
4078 if (!scanned && !done) {
4079 /*
4080 * We hit the last page and there is more work to be done: wrap
4081 * back to the start of the file
4082 */
4083 scanned = 1;
4084 index = 0;
4085 goto retry;
4086 }
2b952eea
QW
4087 ASSERT(ret <= 0);
4088 if (ret < 0) {
4089 end_write_bio(&epd, ret);
4090 return ret;
4091 }
b3ff8f1d
QW
4092 /*
4093 * If something went wrong, don't allow any metadata write bio to be
4094 * submitted.
4095 *
4096 * This would prevent use-after-free if we had dirty pages not
4097 * cleaned up, which can still happen by fuzzed images.
4098 *
4099 * - Bad extent tree
4100 * Allowing existing tree block to be allocated for other trees.
4101 *
4102 * - Log tree operations
4103 * Exiting tree blocks get allocated to log tree, bumps its
4104 * generation, then get cleaned in tree re-balance.
4105 * Such tree block will not be written back, since it's clean,
4106 * thus no WRITTEN flag set.
4107 * And after log writes back, this tree block is not traced by
4108 * any dirty extent_io_tree.
4109 *
4110 * - Offending tree block gets re-dirtied from its original owner
4111 * Since it has bumped generation, no WRITTEN flag, it can be
4112 * reused without COWing. This tree block will not be traced
4113 * by btrfs_transaction::dirty_pages.
4114 *
4115 * Now such dirty tree block will not be cleaned by any dirty
4116 * extent io tree. Thus we don't want to submit such wild eb
4117 * if the fs already has error.
4118 */
4119 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4120 ret = flush_write_bio(&epd);
4121 } else {
fbabd4a3 4122 ret = -EROFS;
b3ff8f1d
QW
4123 end_write_bio(&epd, ret);
4124 }
0b32f4bb
JB
4125 return ret;
4126}
4127
d1310b2e 4128/**
4bef0848 4129 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4130 * @mapping: address space structure to write
4131 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4132 * @data: data passed to __extent_writepage function
d1310b2e
CM
4133 *
4134 * If a page is already under I/O, write_cache_pages() skips it, even
4135 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4136 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4137 * and msync() need to guarantee that all the data which was dirty at the time
4138 * the call was made get new I/O started against them. If wbc->sync_mode is
4139 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4140 * existing IO to complete.
4141 */
4242b64a 4142static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4143 struct writeback_control *wbc,
aab6e9ed 4144 struct extent_page_data *epd)
d1310b2e 4145{
7fd1a3f7 4146 struct inode *inode = mapping->host;
d1310b2e
CM
4147 int ret = 0;
4148 int done = 0;
f85d7d6c 4149 int nr_to_write_done = 0;
d1310b2e
CM
4150 struct pagevec pvec;
4151 int nr_pages;
4152 pgoff_t index;
4153 pgoff_t end; /* Inclusive */
a9132667
LB
4154 pgoff_t done_index;
4155 int range_whole = 0;
d1310b2e 4156 int scanned = 0;
10bbd235 4157 xa_mark_t tag;
d1310b2e 4158
7fd1a3f7
JB
4159 /*
4160 * We have to hold onto the inode so that ordered extents can do their
4161 * work when the IO finishes. The alternative to this is failing to add
4162 * an ordered extent if the igrab() fails there and that is a huge pain
4163 * to deal with, so instead just hold onto the inode throughout the
4164 * writepages operation. If it fails here we are freeing up the inode
4165 * anyway and we'd rather not waste our time writing out stuff that is
4166 * going to be truncated anyway.
4167 */
4168 if (!igrab(inode))
4169 return 0;
4170
86679820 4171 pagevec_init(&pvec);
d1310b2e
CM
4172 if (wbc->range_cyclic) {
4173 index = mapping->writeback_index; /* Start from prev offset */
4174 end = -1;
556755a8
JB
4175 /*
4176 * Start from the beginning does not need to cycle over the
4177 * range, mark it as scanned.
4178 */
4179 scanned = (index == 0);
d1310b2e 4180 } else {
09cbfeaf
KS
4181 index = wbc->range_start >> PAGE_SHIFT;
4182 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4183 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4184 range_whole = 1;
d1310b2e
CM
4185 scanned = 1;
4186 }
3cd24c69
EL
4187
4188 /*
4189 * We do the tagged writepage as long as the snapshot flush bit is set
4190 * and we are the first one who do the filemap_flush() on this inode.
4191 *
4192 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4193 * not race in and drop the bit.
4194 */
4195 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4196 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4197 &BTRFS_I(inode)->runtime_flags))
4198 wbc->tagged_writepages = 1;
4199
4200 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4201 tag = PAGECACHE_TAG_TOWRITE;
4202 else
4203 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4204retry:
3cd24c69 4205 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4206 tag_pages_for_writeback(mapping, index, end);
a9132667 4207 done_index = index;
f85d7d6c 4208 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4209 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4210 &index, end, tag))) {
d1310b2e
CM
4211 unsigned i;
4212
d1310b2e
CM
4213 for (i = 0; i < nr_pages; i++) {
4214 struct page *page = pvec.pages[i];
4215
f7bddf1e 4216 done_index = page->index + 1;
d1310b2e 4217 /*
b93b0163
MW
4218 * At this point we hold neither the i_pages lock nor
4219 * the page lock: the page may be truncated or
4220 * invalidated (changing page->mapping to NULL),
4221 * or even swizzled back from swapper_space to
4222 * tmpfs file mapping
d1310b2e 4223 */
c8f2f24b 4224 if (!trylock_page(page)) {
f4340622
QW
4225 ret = flush_write_bio(epd);
4226 BUG_ON(ret < 0);
c8f2f24b 4227 lock_page(page);
01d658f2 4228 }
d1310b2e
CM
4229
4230 if (unlikely(page->mapping != mapping)) {
4231 unlock_page(page);
4232 continue;
4233 }
4234
d2c3f4f6 4235 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4236 if (PageWriteback(page)) {
4237 ret = flush_write_bio(epd);
4238 BUG_ON(ret < 0);
4239 }
d1310b2e 4240 wait_on_page_writeback(page);
d2c3f4f6 4241 }
d1310b2e
CM
4242
4243 if (PageWriteback(page) ||
4244 !clear_page_dirty_for_io(page)) {
4245 unlock_page(page);
4246 continue;
4247 }
4248
aab6e9ed 4249 ret = __extent_writepage(page, wbc, epd);
a9132667 4250 if (ret < 0) {
a9132667
LB
4251 done = 1;
4252 break;
4253 }
f85d7d6c
CM
4254
4255 /*
4256 * the filesystem may choose to bump up nr_to_write.
4257 * We have to make sure to honor the new nr_to_write
4258 * at any time
4259 */
4260 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4261 }
4262 pagevec_release(&pvec);
4263 cond_resched();
4264 }
894b36e3 4265 if (!scanned && !done) {
d1310b2e
CM
4266 /*
4267 * We hit the last page and there is more work to be done: wrap
4268 * back to the start of the file
4269 */
4270 scanned = 1;
4271 index = 0;
42ffb0bf
JB
4272
4273 /*
4274 * If we're looping we could run into a page that is locked by a
4275 * writer and that writer could be waiting on writeback for a
4276 * page in our current bio, and thus deadlock, so flush the
4277 * write bio here.
4278 */
4279 ret = flush_write_bio(epd);
4280 if (!ret)
4281 goto retry;
d1310b2e 4282 }
a9132667
LB
4283
4284 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4285 mapping->writeback_index = done_index;
4286
7fd1a3f7 4287 btrfs_add_delayed_iput(inode);
894b36e3 4288 return ret;
d1310b2e 4289}
d1310b2e 4290
0a9b0e53 4291int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4292{
4293 int ret;
d1310b2e
CM
4294 struct extent_page_data epd = {
4295 .bio = NULL,
771ed689 4296 .extent_locked = 0,
ffbd517d 4297 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4298 };
d1310b2e 4299
d1310b2e 4300 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4301 ASSERT(ret <= 0);
4302 if (ret < 0) {
4303 end_write_bio(&epd, ret);
4304 return ret;
4305 }
d1310b2e 4306
3065976b
QW
4307 ret = flush_write_bio(&epd);
4308 ASSERT(ret <= 0);
d1310b2e
CM
4309 return ret;
4310}
d1310b2e 4311
5e3ee236 4312int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4313 int mode)
4314{
4315 int ret = 0;
4316 struct address_space *mapping = inode->i_mapping;
4317 struct page *page;
09cbfeaf
KS
4318 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4319 PAGE_SHIFT;
771ed689
CM
4320
4321 struct extent_page_data epd = {
4322 .bio = NULL,
771ed689 4323 .extent_locked = 1,
ffbd517d 4324 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4325 };
4326 struct writeback_control wbc_writepages = {
771ed689 4327 .sync_mode = mode,
771ed689
CM
4328 .nr_to_write = nr_pages * 2,
4329 .range_start = start,
4330 .range_end = end + 1,
ec39f769
CM
4331 /* We're called from an async helper function */
4332 .punt_to_cgroup = 1,
4333 .no_cgroup_owner = 1,
771ed689
CM
4334 };
4335
dbb70bec 4336 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 4337 while (start <= end) {
09cbfeaf 4338 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4339 if (clear_page_dirty_for_io(page))
4340 ret = __extent_writepage(page, &wbc_writepages, &epd);
4341 else {
7087a9d8 4342 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4343 start + PAGE_SIZE - 1, 1);
771ed689
CM
4344 unlock_page(page);
4345 }
09cbfeaf
KS
4346 put_page(page);
4347 start += PAGE_SIZE;
771ed689
CM
4348 }
4349
02c6db4f 4350 ASSERT(ret <= 0);
dbb70bec
CM
4351 if (ret == 0)
4352 ret = flush_write_bio(&epd);
4353 else
02c6db4f 4354 end_write_bio(&epd, ret);
dbb70bec
CM
4355
4356 wbc_detach_inode(&wbc_writepages);
771ed689
CM
4357 return ret;
4358}
d1310b2e 4359
8ae225a8 4360int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4361 struct writeback_control *wbc)
4362{
4363 int ret = 0;
4364 struct extent_page_data epd = {
4365 .bio = NULL,
771ed689 4366 .extent_locked = 0,
ffbd517d 4367 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4368 };
4369
935db853 4370 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4371 ASSERT(ret <= 0);
4372 if (ret < 0) {
4373 end_write_bio(&epd, ret);
4374 return ret;
4375 }
4376 ret = flush_write_bio(&epd);
d1310b2e
CM
4377 return ret;
4378}
d1310b2e 4379
ba206a02 4380void extent_readahead(struct readahead_control *rac)
d1310b2e
CM
4381{
4382 struct bio *bio = NULL;
c8b97818 4383 unsigned long bio_flags = 0;
67c9684f 4384 struct page *pagepool[16];
125bac01 4385 struct extent_map *em_cached = NULL;
808f80b4 4386 u64 prev_em_start = (u64)-1;
ba206a02 4387 int nr;
d1310b2e 4388
ba206a02
MWO
4389 while ((nr = readahead_page_batch(rac, pagepool))) {
4390 u64 contig_start = page_offset(pagepool[0]);
4391 u64 contig_end = page_offset(pagepool[nr - 1]) + PAGE_SIZE - 1;
e65ef21e 4392
ba206a02 4393 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
e65ef21e 4394
ba206a02
MWO
4395 contiguous_readpages(pagepool, nr, contig_start, contig_end,
4396 &em_cached, &bio, &bio_flags, &prev_em_start);
d1310b2e 4397 }
67c9684f 4398
125bac01
MX
4399 if (em_cached)
4400 free_extent_map(em_cached);
4401
ba206a02
MWO
4402 if (bio) {
4403 if (submit_one_bio(bio, 0, bio_flags))
4404 return;
4405 }
d1310b2e 4406}
d1310b2e
CM
4407
4408/*
4409 * basic invalidatepage code, this waits on any locked or writeback
4410 * ranges corresponding to the page, and then deletes any extent state
4411 * records from the tree
4412 */
4413int extent_invalidatepage(struct extent_io_tree *tree,
4414 struct page *page, unsigned long offset)
4415{
2ac55d41 4416 struct extent_state *cached_state = NULL;
4eee4fa4 4417 u64 start = page_offset(page);
09cbfeaf 4418 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4419 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4420
fda2832f 4421 start += ALIGN(offset, blocksize);
d1310b2e
CM
4422 if (start > end)
4423 return 0;
4424
ff13db41 4425 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4426 wait_on_page_writeback(page);
e182163d
OS
4427 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4428 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4429 return 0;
4430}
d1310b2e 4431
7b13b7b1
CM
4432/*
4433 * a helper for releasepage, this tests for areas of the page that
4434 * are locked or under IO and drops the related state bits if it is safe
4435 * to drop the page.
4436 */
29c68b2d 4437static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4438 struct page *page, gfp_t mask)
7b13b7b1 4439{
4eee4fa4 4440 u64 start = page_offset(page);
09cbfeaf 4441 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4442 int ret = 1;
4443
8882679e 4444 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4445 ret = 0;
8882679e 4446 } else {
11ef160f
CM
4447 /*
4448 * at this point we can safely clear everything except the
4449 * locked bit and the nodatasum bit
4450 */
66b0c887 4451 ret = __clear_extent_bit(tree, start, end,
11ef160f 4452 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4453 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4454
4455 /* if clear_extent_bit failed for enomem reasons,
4456 * we can't allow the release to continue.
4457 */
4458 if (ret < 0)
4459 ret = 0;
4460 else
4461 ret = 1;
7b13b7b1
CM
4462 }
4463 return ret;
4464}
7b13b7b1 4465
d1310b2e
CM
4466/*
4467 * a helper for releasepage. As long as there are no locked extents
4468 * in the range corresponding to the page, both state records and extent
4469 * map records are removed
4470 */
477a30ba 4471int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4472{
4473 struct extent_map *em;
4eee4fa4 4474 u64 start = page_offset(page);
09cbfeaf 4475 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4476 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4477 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4478 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4479
d0164adc 4480 if (gfpflags_allow_blocking(mask) &&
ee22184b 4481 page->mapping->host->i_size > SZ_16M) {
39b5637f 4482 u64 len;
70dec807 4483 while (start <= end) {
fbc2bd7e
FM
4484 struct btrfs_fs_info *fs_info;
4485 u64 cur_gen;
4486
39b5637f 4487 len = end - start + 1;
890871be 4488 write_lock(&map->lock);
39b5637f 4489 em = lookup_extent_mapping(map, start, len);
285190d9 4490 if (!em) {
890871be 4491 write_unlock(&map->lock);
70dec807
CM
4492 break;
4493 }
7f3c74fb
CM
4494 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4495 em->start != start) {
890871be 4496 write_unlock(&map->lock);
70dec807
CM
4497 free_extent_map(em);
4498 break;
4499 }
3d6448e6
FM
4500 if (test_range_bit(tree, em->start,
4501 extent_map_end(em) - 1,
4502 EXTENT_LOCKED, 0, NULL))
4503 goto next;
4504 /*
4505 * If it's not in the list of modified extents, used
4506 * by a fast fsync, we can remove it. If it's being
4507 * logged we can safely remove it since fsync took an
4508 * extra reference on the em.
4509 */
4510 if (list_empty(&em->list) ||
fbc2bd7e
FM
4511 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
4512 goto remove_em;
4513 /*
4514 * If it's in the list of modified extents, remove it
4515 * only if its generation is older then the current one,
4516 * in which case we don't need it for a fast fsync.
4517 * Otherwise don't remove it, we could be racing with an
4518 * ongoing fast fsync that could miss the new extent.
4519 */
4520 fs_info = btrfs_inode->root->fs_info;
4521 spin_lock(&fs_info->trans_lock);
4522 cur_gen = fs_info->generation;
4523 spin_unlock(&fs_info->trans_lock);
4524 if (em->generation >= cur_gen)
4525 goto next;
4526remove_em:
5e548b32
FM
4527 /*
4528 * We only remove extent maps that are not in the list of
4529 * modified extents or that are in the list but with a
4530 * generation lower then the current generation, so there
4531 * is no need to set the full fsync flag on the inode (it
4532 * hurts the fsync performance for workloads with a data
4533 * size that exceeds or is close to the system's memory).
4534 */
fbc2bd7e
FM
4535 remove_extent_mapping(map, em);
4536 /* once for the rb tree */
4537 free_extent_map(em);
3d6448e6 4538next:
70dec807 4539 start = extent_map_end(em);
890871be 4540 write_unlock(&map->lock);
70dec807
CM
4541
4542 /* once for us */
d1310b2e 4543 free_extent_map(em);
9f47eb54
PM
4544
4545 cond_resched(); /* Allow large-extent preemption. */
d1310b2e 4546 }
d1310b2e 4547 }
29c68b2d 4548 return try_release_extent_state(tree, page, mask);
d1310b2e 4549}
d1310b2e 4550
ec29ed5b
CM
4551/*
4552 * helper function for fiemap, which doesn't want to see any holes.
4553 * This maps until we find something past 'last'
4554 */
4555static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4556 u64 offset, u64 last)
ec29ed5b 4557{
da17066c 4558 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4559 struct extent_map *em;
4560 u64 len;
4561
4562 if (offset >= last)
4563 return NULL;
4564
67871254 4565 while (1) {
ec29ed5b
CM
4566 len = last - offset;
4567 if (len == 0)
4568 break;
fda2832f 4569 len = ALIGN(len, sectorsize);
4ab47a8d 4570 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4571 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4572 return em;
4573
4574 /* if this isn't a hole return it */
4a2d25cd 4575 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4576 return em;
ec29ed5b
CM
4577
4578 /* this is a hole, advance to the next extent */
4579 offset = extent_map_end(em);
4580 free_extent_map(em);
4581 if (offset >= last)
4582 break;
4583 }
4584 return NULL;
4585}
4586
4751832d
QW
4587/*
4588 * To cache previous fiemap extent
4589 *
4590 * Will be used for merging fiemap extent
4591 */
4592struct fiemap_cache {
4593 u64 offset;
4594 u64 phys;
4595 u64 len;
4596 u32 flags;
4597 bool cached;
4598};
4599
4600/*
4601 * Helper to submit fiemap extent.
4602 *
4603 * Will try to merge current fiemap extent specified by @offset, @phys,
4604 * @len and @flags with cached one.
4605 * And only when we fails to merge, cached one will be submitted as
4606 * fiemap extent.
4607 *
4608 * Return value is the same as fiemap_fill_next_extent().
4609 */
4610static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4611 struct fiemap_cache *cache,
4612 u64 offset, u64 phys, u64 len, u32 flags)
4613{
4614 int ret = 0;
4615
4616 if (!cache->cached)
4617 goto assign;
4618
4619 /*
4620 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4621 * fiemap extent won't overlap with cached one.
4751832d
QW
4622 * Not recoverable.
4623 *
4624 * NOTE: Physical address can overlap, due to compression
4625 */
4626 if (cache->offset + cache->len > offset) {
4627 WARN_ON(1);
4628 return -EINVAL;
4629 }
4630
4631 /*
4632 * Only merges fiemap extents if
4633 * 1) Their logical addresses are continuous
4634 *
4635 * 2) Their physical addresses are continuous
4636 * So truly compressed (physical size smaller than logical size)
4637 * extents won't get merged with each other
4638 *
4639 * 3) Share same flags except FIEMAP_EXTENT_LAST
4640 * So regular extent won't get merged with prealloc extent
4641 */
4642 if (cache->offset + cache->len == offset &&
4643 cache->phys + cache->len == phys &&
4644 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4645 (flags & ~FIEMAP_EXTENT_LAST)) {
4646 cache->len += len;
4647 cache->flags |= flags;
4648 goto try_submit_last;
4649 }
4650
4651 /* Not mergeable, need to submit cached one */
4652 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4653 cache->len, cache->flags);
4654 cache->cached = false;
4655 if (ret)
4656 return ret;
4657assign:
4658 cache->cached = true;
4659 cache->offset = offset;
4660 cache->phys = phys;
4661 cache->len = len;
4662 cache->flags = flags;
4663try_submit_last:
4664 if (cache->flags & FIEMAP_EXTENT_LAST) {
4665 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4666 cache->phys, cache->len, cache->flags);
4667 cache->cached = false;
4668 }
4669 return ret;
4670}
4671
4672/*
848c23b7 4673 * Emit last fiemap cache
4751832d 4674 *
848c23b7
QW
4675 * The last fiemap cache may still be cached in the following case:
4676 * 0 4k 8k
4677 * |<- Fiemap range ->|
4678 * |<------------ First extent ----------->|
4679 *
4680 * In this case, the first extent range will be cached but not emitted.
4681 * So we must emit it before ending extent_fiemap().
4751832d 4682 */
5c5aff98 4683static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4684 struct fiemap_cache *cache)
4751832d
QW
4685{
4686 int ret;
4687
4688 if (!cache->cached)
4689 return 0;
4690
4751832d
QW
4691 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4692 cache->len, cache->flags);
4693 cache->cached = false;
4694 if (ret > 0)
4695 ret = 0;
4696 return ret;
4697}
4698
1506fcc8 4699int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
bab16e21 4700 u64 start, u64 len)
1506fcc8 4701{
975f84fe 4702 int ret = 0;
1506fcc8
YS
4703 u64 off = start;
4704 u64 max = start + len;
4705 u32 flags = 0;
975f84fe
JB
4706 u32 found_type;
4707 u64 last;
ec29ed5b 4708 u64 last_for_get_extent = 0;
1506fcc8 4709 u64 disko = 0;
ec29ed5b 4710 u64 isize = i_size_read(inode);
975f84fe 4711 struct btrfs_key found_key;
1506fcc8 4712 struct extent_map *em = NULL;
2ac55d41 4713 struct extent_state *cached_state = NULL;
975f84fe 4714 struct btrfs_path *path;
dc046b10 4715 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4716 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4717 struct ulist *roots;
4718 struct ulist *tmp_ulist;
1506fcc8 4719 int end = 0;
ec29ed5b
CM
4720 u64 em_start = 0;
4721 u64 em_len = 0;
4722 u64 em_end = 0;
1506fcc8
YS
4723
4724 if (len == 0)
4725 return -EINVAL;
4726
975f84fe
JB
4727 path = btrfs_alloc_path();
4728 if (!path)
4729 return -ENOMEM;
4730 path->leave_spinning = 1;
4731
5911c8fe
DS
4732 roots = ulist_alloc(GFP_KERNEL);
4733 tmp_ulist = ulist_alloc(GFP_KERNEL);
4734 if (!roots || !tmp_ulist) {
4735 ret = -ENOMEM;
4736 goto out_free_ulist;
4737 }
4738
da17066c
JM
4739 start = round_down(start, btrfs_inode_sectorsize(inode));
4740 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4741
ec29ed5b
CM
4742 /*
4743 * lookup the last file extent. We're not using i_size here
4744 * because there might be preallocation past i_size
4745 */
f85b7379
DS
4746 ret = btrfs_lookup_file_extent(NULL, root, path,
4747 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe 4748 if (ret < 0) {
5911c8fe 4749 goto out_free_ulist;
2d324f59
LB
4750 } else {
4751 WARN_ON(!ret);
4752 if (ret == 1)
4753 ret = 0;
975f84fe 4754 }
2d324f59 4755
975f84fe 4756 path->slots[0]--;
975f84fe 4757 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4758 found_type = found_key.type;
975f84fe 4759
ec29ed5b 4760 /* No extents, but there might be delalloc bits */
4a0cc7ca 4761 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4762 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4763 /* have to trust i_size as the end */
4764 last = (u64)-1;
4765 last_for_get_extent = isize;
4766 } else {
4767 /*
4768 * remember the start of the last extent. There are a
4769 * bunch of different factors that go into the length of the
4770 * extent, so its much less complex to remember where it started
4771 */
4772 last = found_key.offset;
4773 last_for_get_extent = last + 1;
975f84fe 4774 }
fe09e16c 4775 btrfs_release_path(path);
975f84fe 4776
ec29ed5b
CM
4777 /*
4778 * we might have some extents allocated but more delalloc past those
4779 * extents. so, we trust isize unless the start of the last extent is
4780 * beyond isize
4781 */
4782 if (last < isize) {
4783 last = (u64)-1;
4784 last_for_get_extent = isize;
4785 }
4786
ff13db41 4787 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4788 &cached_state);
ec29ed5b 4789
e3350e16 4790 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4791 if (!em)
4792 goto out;
4793 if (IS_ERR(em)) {
4794 ret = PTR_ERR(em);
4795 goto out;
4796 }
975f84fe 4797
1506fcc8 4798 while (!end) {
b76bb701 4799 u64 offset_in_extent = 0;
ea8efc74
CM
4800
4801 /* break if the extent we found is outside the range */
4802 if (em->start >= max || extent_map_end(em) < off)
4803 break;
4804
4805 /*
4806 * get_extent may return an extent that starts before our
4807 * requested range. We have to make sure the ranges
4808 * we return to fiemap always move forward and don't
4809 * overlap, so adjust the offsets here
4810 */
4811 em_start = max(em->start, off);
1506fcc8 4812
ea8efc74
CM
4813 /*
4814 * record the offset from the start of the extent
b76bb701
JB
4815 * for adjusting the disk offset below. Only do this if the
4816 * extent isn't compressed since our in ram offset may be past
4817 * what we have actually allocated on disk.
ea8efc74 4818 */
b76bb701
JB
4819 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4820 offset_in_extent = em_start - em->start;
ec29ed5b 4821 em_end = extent_map_end(em);
ea8efc74 4822 em_len = em_end - em_start;
1506fcc8 4823 flags = 0;
f0986318
FM
4824 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4825 disko = em->block_start + offset_in_extent;
4826 else
4827 disko = 0;
1506fcc8 4828
ea8efc74
CM
4829 /*
4830 * bump off for our next call to get_extent
4831 */
4832 off = extent_map_end(em);
4833 if (off >= max)
4834 end = 1;
4835
93dbfad7 4836 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4837 end = 1;
4838 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4839 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4840 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4841 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4842 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4843 flags |= (FIEMAP_EXTENT_DELALLOC |
4844 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4845 } else if (fieinfo->fi_extents_max) {
4846 u64 bytenr = em->block_start -
4847 (em->start - em->orig_start);
fe09e16c 4848
fe09e16c
LB
4849 /*
4850 * As btrfs supports shared space, this information
4851 * can be exported to userspace tools via
dc046b10
JB
4852 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4853 * then we're just getting a count and we can skip the
4854 * lookup stuff.
fe09e16c 4855 */
bb739cf0
EN
4856 ret = btrfs_check_shared(root,
4857 btrfs_ino(BTRFS_I(inode)),
5911c8fe 4858 bytenr, roots, tmp_ulist);
dc046b10 4859 if (ret < 0)
fe09e16c 4860 goto out_free;
dc046b10 4861 if (ret)
fe09e16c 4862 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4863 ret = 0;
1506fcc8
YS
4864 }
4865 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4866 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4867 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4868 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4869
1506fcc8
YS
4870 free_extent_map(em);
4871 em = NULL;
ec29ed5b
CM
4872 if ((em_start >= last) || em_len == (u64)-1 ||
4873 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4874 flags |= FIEMAP_EXTENT_LAST;
4875 end = 1;
4876 }
4877
ec29ed5b 4878 /* now scan forward to see if this is really the last extent. */
e3350e16 4879 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4880 if (IS_ERR(em)) {
4881 ret = PTR_ERR(em);
4882 goto out;
4883 }
4884 if (!em) {
975f84fe
JB
4885 flags |= FIEMAP_EXTENT_LAST;
4886 end = 1;
4887 }
4751832d
QW
4888 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4889 em_len, flags);
26e726af
CS
4890 if (ret) {
4891 if (ret == 1)
4892 ret = 0;
ec29ed5b 4893 goto out_free;
26e726af 4894 }
1506fcc8
YS
4895 }
4896out_free:
4751832d 4897 if (!ret)
5c5aff98 4898 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4899 free_extent_map(em);
4900out:
a52f4cd2 4901 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4902 &cached_state);
5911c8fe
DS
4903
4904out_free_ulist:
e02d48ea 4905 btrfs_free_path(path);
5911c8fe
DS
4906 ulist_free(roots);
4907 ulist_free(tmp_ulist);
1506fcc8
YS
4908 return ret;
4909}
4910
727011e0
CM
4911static void __free_extent_buffer(struct extent_buffer *eb)
4912{
727011e0
CM
4913 kmem_cache_free(extent_buffer_cache, eb);
4914}
4915
2b48966a 4916int extent_buffer_under_io(const struct extent_buffer *eb)
db7f3436
JB
4917{
4918 return (atomic_read(&eb->io_pages) ||
4919 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4920 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4921}
4922
4923/*
55ac0139 4924 * Release all pages attached to the extent buffer.
db7f3436 4925 */
55ac0139 4926static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4927{
d64766fd
NB
4928 int i;
4929 int num_pages;
b0132a3b 4930 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4931
4932 BUG_ON(extent_buffer_under_io(eb));
4933
d64766fd
NB
4934 num_pages = num_extent_pages(eb);
4935 for (i = 0; i < num_pages; i++) {
4936 struct page *page = eb->pages[i];
db7f3436 4937
5d2361db
FL
4938 if (!page)
4939 continue;
4940 if (mapped)
db7f3436 4941 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4942 /*
4943 * We do this since we'll remove the pages after we've
4944 * removed the eb from the radix tree, so we could race
4945 * and have this page now attached to the new eb. So
4946 * only clear page_private if it's still connected to
4947 * this eb.
4948 */
4949 if (PagePrivate(page) &&
4950 page->private == (unsigned long)eb) {
4951 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4952 BUG_ON(PageDirty(page));
4953 BUG_ON(PageWriteback(page));
db7f3436 4954 /*
5d2361db
FL
4955 * We need to make sure we haven't be attached
4956 * to a new eb.
db7f3436 4957 */
d1b89bc0 4958 detach_page_private(page);
db7f3436 4959 }
5d2361db
FL
4960
4961 if (mapped)
4962 spin_unlock(&page->mapping->private_lock);
4963
01327610 4964 /* One for when we allocated the page */
09cbfeaf 4965 put_page(page);
d64766fd 4966 }
db7f3436
JB
4967}
4968
4969/*
4970 * Helper for releasing the extent buffer.
4971 */
4972static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4973{
55ac0139 4974 btrfs_release_extent_buffer_pages(eb);
8c38938c 4975 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
4976 __free_extent_buffer(eb);
4977}
4978
f28491e0
JB
4979static struct extent_buffer *
4980__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4981 unsigned long len)
d1310b2e
CM
4982{
4983 struct extent_buffer *eb = NULL;
4984
d1b5c567 4985 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4986 eb->start = start;
4987 eb->len = len;
f28491e0 4988 eb->fs_info = fs_info;
815a51c7 4989 eb->bflags = 0;
bd681513 4990 rwlock_init(&eb->lock);
bd681513 4991 atomic_set(&eb->blocking_readers, 0);
06297d8c 4992 eb->blocking_writers = 0;
ed1b4ed7 4993 eb->lock_nested = false;
bd681513
CM
4994 init_waitqueue_head(&eb->write_lock_wq);
4995 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4996
3fd63727
JB
4997 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4998 &fs_info->allocated_ebs);
6d49ba1b 4999
3083ee2e 5000 spin_lock_init(&eb->refs_lock);
d1310b2e 5001 atomic_set(&eb->refs, 1);
0b32f4bb 5002 atomic_set(&eb->io_pages, 0);
727011e0 5003
b8dae313
DS
5004 /*
5005 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5006 */
5007 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5008 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5009 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 5010
843ccf9f 5011#ifdef CONFIG_BTRFS_DEBUG
f3dc24c5 5012 eb->spinning_writers = 0;
afd495a8 5013 atomic_set(&eb->spinning_readers, 0);
5c9c799a 5014 atomic_set(&eb->read_locks, 0);
00801ae4 5015 eb->write_locks = 0;
843ccf9f
DS
5016#endif
5017
d1310b2e
CM
5018 return eb;
5019}
5020
2b48966a 5021struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
815a51c7 5022{
cc5e31a4 5023 int i;
815a51c7
JS
5024 struct page *p;
5025 struct extent_buffer *new;
cc5e31a4 5026 int num_pages = num_extent_pages(src);
815a51c7 5027
3f556f78 5028 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5029 if (new == NULL)
5030 return NULL;
5031
5032 for (i = 0; i < num_pages; i++) {
9ec72677 5033 p = alloc_page(GFP_NOFS);
db7f3436
JB
5034 if (!p) {
5035 btrfs_release_extent_buffer(new);
5036 return NULL;
5037 }
815a51c7
JS
5038 attach_extent_buffer_page(new, p);
5039 WARN_ON(PageDirty(p));
5040 SetPageUptodate(p);
5041 new->pages[i] = p;
fba1acf9 5042 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
5043 }
5044
815a51c7 5045 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 5046 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
5047
5048 return new;
5049}
5050
0f331229
OS
5051struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5052 u64 start, unsigned long len)
815a51c7
JS
5053{
5054 struct extent_buffer *eb;
cc5e31a4
DS
5055 int num_pages;
5056 int i;
815a51c7 5057
3f556f78 5058 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5059 if (!eb)
5060 return NULL;
5061
65ad0104 5062 num_pages = num_extent_pages(eb);
815a51c7 5063 for (i = 0; i < num_pages; i++) {
9ec72677 5064 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5065 if (!eb->pages[i])
5066 goto err;
5067 }
5068 set_extent_buffer_uptodate(eb);
5069 btrfs_set_header_nritems(eb, 0);
b0132a3b 5070 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5071
5072 return eb;
5073err:
84167d19
SB
5074 for (; i > 0; i--)
5075 __free_page(eb->pages[i - 1]);
815a51c7
JS
5076 __free_extent_buffer(eb);
5077 return NULL;
5078}
5079
0f331229 5080struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5081 u64 start)
0f331229 5082{
da17066c 5083 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5084}
5085
0b32f4bb
JB
5086static void check_buffer_tree_ref(struct extent_buffer *eb)
5087{
242e18c7 5088 int refs;
6bf9cd2e
BB
5089 /*
5090 * The TREE_REF bit is first set when the extent_buffer is added
5091 * to the radix tree. It is also reset, if unset, when a new reference
5092 * is created by find_extent_buffer.
0b32f4bb 5093 *
6bf9cd2e
BB
5094 * It is only cleared in two cases: freeing the last non-tree
5095 * reference to the extent_buffer when its STALE bit is set or
5096 * calling releasepage when the tree reference is the only reference.
0b32f4bb 5097 *
6bf9cd2e
BB
5098 * In both cases, care is taken to ensure that the extent_buffer's
5099 * pages are not under io. However, releasepage can be concurrently
5100 * called with creating new references, which is prone to race
5101 * conditions between the calls to check_buffer_tree_ref in those
5102 * codepaths and clearing TREE_REF in try_release_extent_buffer.
0b32f4bb 5103 *
6bf9cd2e
BB
5104 * The actual lifetime of the extent_buffer in the radix tree is
5105 * adequately protected by the refcount, but the TREE_REF bit and
5106 * its corresponding reference are not. To protect against this
5107 * class of races, we call check_buffer_tree_ref from the codepaths
5108 * which trigger io after they set eb->io_pages. Note that once io is
5109 * initiated, TREE_REF can no longer be cleared, so that is the
5110 * moment at which any such race is best fixed.
0b32f4bb 5111 */
242e18c7
CM
5112 refs = atomic_read(&eb->refs);
5113 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5114 return;
5115
594831c4
JB
5116 spin_lock(&eb->refs_lock);
5117 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5118 atomic_inc(&eb->refs);
594831c4 5119 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5120}
5121
2457aec6
MG
5122static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5123 struct page *accessed)
5df4235e 5124{
cc5e31a4 5125 int num_pages, i;
5df4235e 5126
0b32f4bb
JB
5127 check_buffer_tree_ref(eb);
5128
65ad0104 5129 num_pages = num_extent_pages(eb);
5df4235e 5130 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5131 struct page *p = eb->pages[i];
5132
2457aec6
MG
5133 if (p != accessed)
5134 mark_page_accessed(p);
5df4235e
JB
5135 }
5136}
5137
f28491e0
JB
5138struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5139 u64 start)
452c75c3
CS
5140{
5141 struct extent_buffer *eb;
5142
5143 rcu_read_lock();
f28491e0 5144 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5145 start >> PAGE_SHIFT);
452c75c3
CS
5146 if (eb && atomic_inc_not_zero(&eb->refs)) {
5147 rcu_read_unlock();
062c19e9
FM
5148 /*
5149 * Lock our eb's refs_lock to avoid races with
5150 * free_extent_buffer. When we get our eb it might be flagged
5151 * with EXTENT_BUFFER_STALE and another task running
5152 * free_extent_buffer might have seen that flag set,
5153 * eb->refs == 2, that the buffer isn't under IO (dirty and
5154 * writeback flags not set) and it's still in the tree (flag
5155 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5156 * of decrementing the extent buffer's reference count twice.
5157 * So here we could race and increment the eb's reference count,
5158 * clear its stale flag, mark it as dirty and drop our reference
5159 * before the other task finishes executing free_extent_buffer,
5160 * which would later result in an attempt to free an extent
5161 * buffer that is dirty.
5162 */
5163 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5164 spin_lock(&eb->refs_lock);
5165 spin_unlock(&eb->refs_lock);
5166 }
2457aec6 5167 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5168 return eb;
5169 }
5170 rcu_read_unlock();
5171
5172 return NULL;
5173}
5174
faa2dbf0
JB
5175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5176struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5177 u64 start)
faa2dbf0
JB
5178{
5179 struct extent_buffer *eb, *exists = NULL;
5180 int ret;
5181
5182 eb = find_extent_buffer(fs_info, start);
5183 if (eb)
5184 return eb;
da17066c 5185 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 5186 if (!eb)
b6293c82 5187 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
5188 eb->fs_info = fs_info;
5189again:
e1860a77 5190 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
5191 if (ret) {
5192 exists = ERR_PTR(ret);
faa2dbf0 5193 goto free_eb;
b6293c82 5194 }
faa2dbf0
JB
5195 spin_lock(&fs_info->buffer_lock);
5196 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5197 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5198 spin_unlock(&fs_info->buffer_lock);
5199 radix_tree_preload_end();
5200 if (ret == -EEXIST) {
5201 exists = find_extent_buffer(fs_info, start);
5202 if (exists)
5203 goto free_eb;
5204 else
5205 goto again;
5206 }
5207 check_buffer_tree_ref(eb);
5208 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5209
faa2dbf0
JB
5210 return eb;
5211free_eb:
5212 btrfs_release_extent_buffer(eb);
5213 return exists;
5214}
5215#endif
5216
f28491e0 5217struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5218 u64 start)
d1310b2e 5219{
da17066c 5220 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5221 int num_pages;
5222 int i;
09cbfeaf 5223 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5224 struct extent_buffer *eb;
6af118ce 5225 struct extent_buffer *exists = NULL;
d1310b2e 5226 struct page *p;
f28491e0 5227 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5228 int uptodate = 1;
19fe0a8b 5229 int ret;
d1310b2e 5230
da17066c 5231 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5232 btrfs_err(fs_info, "bad tree block start %llu", start);
5233 return ERR_PTR(-EINVAL);
5234 }
5235
f28491e0 5236 eb = find_extent_buffer(fs_info, start);
452c75c3 5237 if (eb)
6af118ce 5238 return eb;
6af118ce 5239
23d79d81 5240 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5241 if (!eb)
c871b0f2 5242 return ERR_PTR(-ENOMEM);
d1310b2e 5243
65ad0104 5244 num_pages = num_extent_pages(eb);
727011e0 5245 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5246 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5247 if (!p) {
5248 exists = ERR_PTR(-ENOMEM);
6af118ce 5249 goto free_eb;
c871b0f2 5250 }
4f2de97a
JB
5251
5252 spin_lock(&mapping->private_lock);
5253 if (PagePrivate(p)) {
5254 /*
5255 * We could have already allocated an eb for this page
5256 * and attached one so lets see if we can get a ref on
5257 * the existing eb, and if we can we know it's good and
5258 * we can just return that one, else we know we can just
5259 * overwrite page->private.
5260 */
5261 exists = (struct extent_buffer *)p->private;
5262 if (atomic_inc_not_zero(&exists->refs)) {
5263 spin_unlock(&mapping->private_lock);
5264 unlock_page(p);
09cbfeaf 5265 put_page(p);
2457aec6 5266 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5267 goto free_eb;
5268 }
5ca64f45 5269 exists = NULL;
4f2de97a 5270
0b32f4bb 5271 /*
4f2de97a
JB
5272 * Do this so attach doesn't complain and we need to
5273 * drop the ref the old guy had.
5274 */
5275 ClearPagePrivate(p);
0b32f4bb 5276 WARN_ON(PageDirty(p));
09cbfeaf 5277 put_page(p);
d1310b2e 5278 }
4f2de97a
JB
5279 attach_extent_buffer_page(eb, p);
5280 spin_unlock(&mapping->private_lock);
0b32f4bb 5281 WARN_ON(PageDirty(p));
727011e0 5282 eb->pages[i] = p;
d1310b2e
CM
5283 if (!PageUptodate(p))
5284 uptodate = 0;
eb14ab8e
CM
5285
5286 /*
b16d011e
NB
5287 * We can't unlock the pages just yet since the extent buffer
5288 * hasn't been properly inserted in the radix tree, this
5289 * opens a race with btree_releasepage which can free a page
5290 * while we are still filling in all pages for the buffer and
5291 * we could crash.
eb14ab8e 5292 */
d1310b2e
CM
5293 }
5294 if (uptodate)
b4ce94de 5295 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5296again:
e1860a77 5297 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5298 if (ret) {
5299 exists = ERR_PTR(ret);
19fe0a8b 5300 goto free_eb;
c871b0f2 5301 }
19fe0a8b 5302
f28491e0
JB
5303 spin_lock(&fs_info->buffer_lock);
5304 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5305 start >> PAGE_SHIFT, eb);
f28491e0 5306 spin_unlock(&fs_info->buffer_lock);
452c75c3 5307 radix_tree_preload_end();
19fe0a8b 5308 if (ret == -EEXIST) {
f28491e0 5309 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5310 if (exists)
5311 goto free_eb;
5312 else
115391d2 5313 goto again;
6af118ce 5314 }
6af118ce 5315 /* add one reference for the tree */
0b32f4bb 5316 check_buffer_tree_ref(eb);
34b41ace 5317 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5318
5319 /*
b16d011e
NB
5320 * Now it's safe to unlock the pages because any calls to
5321 * btree_releasepage will correctly detect that a page belongs to a
5322 * live buffer and won't free them prematurely.
eb14ab8e 5323 */
28187ae5
NB
5324 for (i = 0; i < num_pages; i++)
5325 unlock_page(eb->pages[i]);
d1310b2e
CM
5326 return eb;
5327
6af118ce 5328free_eb:
5ca64f45 5329 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5330 for (i = 0; i < num_pages; i++) {
5331 if (eb->pages[i])
5332 unlock_page(eb->pages[i]);
5333 }
eb14ab8e 5334
897ca6e9 5335 btrfs_release_extent_buffer(eb);
6af118ce 5336 return exists;
d1310b2e 5337}
d1310b2e 5338
3083ee2e
JB
5339static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5340{
5341 struct extent_buffer *eb =
5342 container_of(head, struct extent_buffer, rcu_head);
5343
5344 __free_extent_buffer(eb);
5345}
5346
f7a52a40 5347static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 5348 __releases(&eb->refs_lock)
3083ee2e 5349{
07e21c4d
NB
5350 lockdep_assert_held(&eb->refs_lock);
5351
3083ee2e
JB
5352 WARN_ON(atomic_read(&eb->refs) == 0);
5353 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5354 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5355 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5356
815a51c7 5357 spin_unlock(&eb->refs_lock);
3083ee2e 5358
f28491e0
JB
5359 spin_lock(&fs_info->buffer_lock);
5360 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5361 eb->start >> PAGE_SHIFT);
f28491e0 5362 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5363 } else {
5364 spin_unlock(&eb->refs_lock);
815a51c7 5365 }
3083ee2e 5366
8c38938c 5367 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 5368 /* Should be safe to release our pages at this point */
55ac0139 5369 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5370#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5371 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5372 __free_extent_buffer(eb);
5373 return 1;
5374 }
5375#endif
3083ee2e 5376 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5377 return 1;
3083ee2e
JB
5378 }
5379 spin_unlock(&eb->refs_lock);
e64860aa
JB
5380
5381 return 0;
3083ee2e
JB
5382}
5383
d1310b2e
CM
5384void free_extent_buffer(struct extent_buffer *eb)
5385{
242e18c7
CM
5386 int refs;
5387 int old;
d1310b2e
CM
5388 if (!eb)
5389 return;
5390
242e18c7
CM
5391 while (1) {
5392 refs = atomic_read(&eb->refs);
46cc775e
NB
5393 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5394 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5395 refs == 1))
242e18c7
CM
5396 break;
5397 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5398 if (old == refs)
5399 return;
5400 }
5401
3083ee2e
JB
5402 spin_lock(&eb->refs_lock);
5403 if (atomic_read(&eb->refs) == 2 &&
5404 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5405 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5406 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5407 atomic_dec(&eb->refs);
5408
5409 /*
5410 * I know this is terrible, but it's temporary until we stop tracking
5411 * the uptodate bits and such for the extent buffers.
5412 */
f7a52a40 5413 release_extent_buffer(eb);
3083ee2e
JB
5414}
5415
5416void free_extent_buffer_stale(struct extent_buffer *eb)
5417{
5418 if (!eb)
d1310b2e
CM
5419 return;
5420
3083ee2e
JB
5421 spin_lock(&eb->refs_lock);
5422 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5423
0b32f4bb 5424 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5425 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5426 atomic_dec(&eb->refs);
f7a52a40 5427 release_extent_buffer(eb);
d1310b2e 5428}
d1310b2e 5429
2b48966a 5430void clear_extent_buffer_dirty(const struct extent_buffer *eb)
d1310b2e 5431{
cc5e31a4
DS
5432 int i;
5433 int num_pages;
d1310b2e
CM
5434 struct page *page;
5435
65ad0104 5436 num_pages = num_extent_pages(eb);
d1310b2e
CM
5437
5438 for (i = 0; i < num_pages; i++) {
fb85fc9a 5439 page = eb->pages[i];
b9473439 5440 if (!PageDirty(page))
d2c3f4f6
CM
5441 continue;
5442
a61e6f29 5443 lock_page(page);
eb14ab8e
CM
5444 WARN_ON(!PagePrivate(page));
5445
d1310b2e 5446 clear_page_dirty_for_io(page);
b93b0163 5447 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5448 if (!PageDirty(page))
5449 __xa_clear_mark(&page->mapping->i_pages,
5450 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5451 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5452 ClearPageError(page);
a61e6f29 5453 unlock_page(page);
d1310b2e 5454 }
0b32f4bb 5455 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5456}
d1310b2e 5457
abb57ef3 5458bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5459{
cc5e31a4
DS
5460 int i;
5461 int num_pages;
abb57ef3 5462 bool was_dirty;
d1310b2e 5463
0b32f4bb
JB
5464 check_buffer_tree_ref(eb);
5465
b9473439 5466 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5467
65ad0104 5468 num_pages = num_extent_pages(eb);
3083ee2e 5469 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5470 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5471
abb57ef3
LB
5472 if (!was_dirty)
5473 for (i = 0; i < num_pages; i++)
5474 set_page_dirty(eb->pages[i]);
51995c39
LB
5475
5476#ifdef CONFIG_BTRFS_DEBUG
5477 for (i = 0; i < num_pages; i++)
5478 ASSERT(PageDirty(eb->pages[i]));
5479#endif
5480
b9473439 5481 return was_dirty;
d1310b2e 5482}
d1310b2e 5483
69ba3927 5484void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5485{
cc5e31a4 5486 int i;
1259ab75 5487 struct page *page;
cc5e31a4 5488 int num_pages;
1259ab75 5489
b4ce94de 5490 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5491 num_pages = num_extent_pages(eb);
1259ab75 5492 for (i = 0; i < num_pages; i++) {
fb85fc9a 5493 page = eb->pages[i];
33958dc6
CM
5494 if (page)
5495 ClearPageUptodate(page);
1259ab75 5496 }
1259ab75
CM
5497}
5498
09c25a8c 5499void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5500{
cc5e31a4 5501 int i;
d1310b2e 5502 struct page *page;
cc5e31a4 5503 int num_pages;
d1310b2e 5504
0b32f4bb 5505 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5506 num_pages = num_extent_pages(eb);
d1310b2e 5507 for (i = 0; i < num_pages; i++) {
fb85fc9a 5508 page = eb->pages[i];
d1310b2e
CM
5509 SetPageUptodate(page);
5510 }
d1310b2e 5511}
d1310b2e 5512
c2ccfbc6 5513int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5514{
cc5e31a4 5515 int i;
d1310b2e
CM
5516 struct page *page;
5517 int err;
5518 int ret = 0;
ce9adaa5
CM
5519 int locked_pages = 0;
5520 int all_uptodate = 1;
cc5e31a4 5521 int num_pages;
727011e0 5522 unsigned long num_reads = 0;
a86c12c7 5523 struct bio *bio = NULL;
c8b97818 5524 unsigned long bio_flags = 0;
a86c12c7 5525
b4ce94de 5526 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5527 return 0;
5528
65ad0104 5529 num_pages = num_extent_pages(eb);
8436ea91 5530 for (i = 0; i < num_pages; i++) {
fb85fc9a 5531 page = eb->pages[i];
bb82ab88 5532 if (wait == WAIT_NONE) {
2db04966 5533 if (!trylock_page(page))
ce9adaa5 5534 goto unlock_exit;
d1310b2e
CM
5535 } else {
5536 lock_page(page);
5537 }
ce9adaa5 5538 locked_pages++;
2571e739
LB
5539 }
5540 /*
5541 * We need to firstly lock all pages to make sure that
5542 * the uptodate bit of our pages won't be affected by
5543 * clear_extent_buffer_uptodate().
5544 */
8436ea91 5545 for (i = 0; i < num_pages; i++) {
2571e739 5546 page = eb->pages[i];
727011e0
CM
5547 if (!PageUptodate(page)) {
5548 num_reads++;
ce9adaa5 5549 all_uptodate = 0;
727011e0 5550 }
ce9adaa5 5551 }
2571e739 5552
ce9adaa5 5553 if (all_uptodate) {
8436ea91 5554 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5555 goto unlock_exit;
5556 }
5557
656f30db 5558 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5559 eb->read_mirror = 0;
0b32f4bb 5560 atomic_set(&eb->io_pages, num_reads);
6bf9cd2e
BB
5561 /*
5562 * It is possible for releasepage to clear the TREE_REF bit before we
5563 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
5564 */
5565 check_buffer_tree_ref(eb);
8436ea91 5566 for (i = 0; i < num_pages; i++) {
fb85fc9a 5567 page = eb->pages[i];
baf863b9 5568
ce9adaa5 5569 if (!PageUptodate(page)) {
baf863b9
LB
5570 if (ret) {
5571 atomic_dec(&eb->io_pages);
5572 unlock_page(page);
5573 continue;
5574 }
5575
f188591e 5576 ClearPageError(page);
0d44fea7 5577 err = __extent_read_full_page(page,
6af49dbd 5578 btree_get_extent, &bio,
d4c7ca86 5579 mirror_num, &bio_flags,
1f7ad75b 5580 REQ_META);
baf863b9 5581 if (err) {
d1310b2e 5582 ret = err;
baf863b9
LB
5583 /*
5584 * We use &bio in above __extent_read_full_page,
5585 * so we ensure that if it returns error, the
5586 * current page fails to add itself to bio and
5587 * it's been unlocked.
5588 *
5589 * We must dec io_pages by ourselves.
5590 */
5591 atomic_dec(&eb->io_pages);
5592 }
d1310b2e
CM
5593 } else {
5594 unlock_page(page);
5595 }
5596 }
5597
355808c2 5598 if (bio) {
1f7ad75b 5599 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5600 if (err)
5601 return err;
355808c2 5602 }
a86c12c7 5603
bb82ab88 5604 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5605 return ret;
d397712b 5606
8436ea91 5607 for (i = 0; i < num_pages; i++) {
fb85fc9a 5608 page = eb->pages[i];
d1310b2e 5609 wait_on_page_locked(page);
d397712b 5610 if (!PageUptodate(page))
d1310b2e 5611 ret = -EIO;
d1310b2e 5612 }
d397712b 5613
d1310b2e 5614 return ret;
ce9adaa5
CM
5615
5616unlock_exit:
d397712b 5617 while (locked_pages > 0) {
ce9adaa5 5618 locked_pages--;
8436ea91
JB
5619 page = eb->pages[locked_pages];
5620 unlock_page(page);
ce9adaa5
CM
5621 }
5622 return ret;
d1310b2e 5623}
d1310b2e 5624
1cbb1f45
JM
5625void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5626 unsigned long start, unsigned long len)
d1310b2e
CM
5627{
5628 size_t cur;
5629 size_t offset;
5630 struct page *page;
5631 char *kaddr;
5632 char *dst = (char *)dstv;
c60ac0ff 5633 unsigned long i = start >> PAGE_SHIFT;
d1310b2e 5634
f716abd5
LB
5635 if (start + len > eb->len) {
5636 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5637 eb->start, eb->len, start, len);
5638 memset(dst, 0, len);
5639 return;
5640 }
d1310b2e 5641
c60ac0ff 5642 offset = offset_in_page(start);
d1310b2e 5643
d397712b 5644 while (len > 0) {
fb85fc9a 5645 page = eb->pages[i];
d1310b2e 5646
09cbfeaf 5647 cur = min(len, (PAGE_SIZE - offset));
a6591715 5648 kaddr = page_address(page);
d1310b2e 5649 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5650
5651 dst += cur;
5652 len -= cur;
5653 offset = 0;
5654 i++;
5655 }
5656}
d1310b2e 5657
a48b73ec
JB
5658int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
5659 void __user *dstv,
5660 unsigned long start, unsigned long len)
550ac1d8
GH
5661{
5662 size_t cur;
5663 size_t offset;
5664 struct page *page;
5665 char *kaddr;
5666 char __user *dst = (char __user *)dstv;
c60ac0ff 5667 unsigned long i = start >> PAGE_SHIFT;
550ac1d8
GH
5668 int ret = 0;
5669
5670 WARN_ON(start > eb->len);
5671 WARN_ON(start + len > eb->start + eb->len);
5672
c60ac0ff 5673 offset = offset_in_page(start);
550ac1d8
GH
5674
5675 while (len > 0) {
fb85fc9a 5676 page = eb->pages[i];
550ac1d8 5677
09cbfeaf 5678 cur = min(len, (PAGE_SIZE - offset));
550ac1d8 5679 kaddr = page_address(page);
a48b73ec 5680 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
550ac1d8
GH
5681 ret = -EFAULT;
5682 break;
5683 }
5684
5685 dst += cur;
5686 len -= cur;
5687 offset = 0;
5688 i++;
5689 }
5690
5691 return ret;
5692}
5693
1cbb1f45
JM
5694int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5695 unsigned long start, unsigned long len)
d1310b2e
CM
5696{
5697 size_t cur;
5698 size_t offset;
5699 struct page *page;
5700 char *kaddr;
5701 char *ptr = (char *)ptrv;
c60ac0ff 5702 unsigned long i = start >> PAGE_SHIFT;
d1310b2e
CM
5703 int ret = 0;
5704
5705 WARN_ON(start > eb->len);
5706 WARN_ON(start + len > eb->start + eb->len);
5707
c60ac0ff 5708 offset = offset_in_page(start);
d1310b2e 5709
d397712b 5710 while (len > 0) {
fb85fc9a 5711 page = eb->pages[i];
d1310b2e 5712
09cbfeaf 5713 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5714
a6591715 5715 kaddr = page_address(page);
d1310b2e 5716 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5717 if (ret)
5718 break;
5719
5720 ptr += cur;
5721 len -= cur;
5722 offset = 0;
5723 i++;
5724 }
5725 return ret;
5726}
d1310b2e 5727
2b48966a 5728void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
f157bf76
DS
5729 const void *srcv)
5730{
5731 char *kaddr;
5732
5733 WARN_ON(!PageUptodate(eb->pages[0]));
5734 kaddr = page_address(eb->pages[0]);
5735 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5736 BTRFS_FSID_SIZE);
5737}
5738
2b48966a 5739void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
f157bf76
DS
5740{
5741 char *kaddr;
5742
5743 WARN_ON(!PageUptodate(eb->pages[0]));
5744 kaddr = page_address(eb->pages[0]);
5745 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5746 BTRFS_FSID_SIZE);
5747}
5748
2b48966a 5749void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
d1310b2e
CM
5750 unsigned long start, unsigned long len)
5751{
5752 size_t cur;
5753 size_t offset;
5754 struct page *page;
5755 char *kaddr;
5756 char *src = (char *)srcv;
c60ac0ff 5757 unsigned long i = start >> PAGE_SHIFT;
d1310b2e
CM
5758
5759 WARN_ON(start > eb->len);
5760 WARN_ON(start + len > eb->start + eb->len);
5761
c60ac0ff 5762 offset = offset_in_page(start);
d1310b2e 5763
d397712b 5764 while (len > 0) {
fb85fc9a 5765 page = eb->pages[i];
d1310b2e
CM
5766 WARN_ON(!PageUptodate(page));
5767
09cbfeaf 5768 cur = min(len, PAGE_SIZE - offset);
a6591715 5769 kaddr = page_address(page);
d1310b2e 5770 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5771
5772 src += cur;
5773 len -= cur;
5774 offset = 0;
5775 i++;
5776 }
5777}
d1310b2e 5778
2b48966a 5779void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
b159fa28 5780 unsigned long len)
d1310b2e
CM
5781{
5782 size_t cur;
5783 size_t offset;
5784 struct page *page;
5785 char *kaddr;
c60ac0ff 5786 unsigned long i = start >> PAGE_SHIFT;
d1310b2e
CM
5787
5788 WARN_ON(start > eb->len);
5789 WARN_ON(start + len > eb->start + eb->len);
5790
c60ac0ff 5791 offset = offset_in_page(start);
d1310b2e 5792
d397712b 5793 while (len > 0) {
fb85fc9a 5794 page = eb->pages[i];
d1310b2e
CM
5795 WARN_ON(!PageUptodate(page));
5796
09cbfeaf 5797 cur = min(len, PAGE_SIZE - offset);
a6591715 5798 kaddr = page_address(page);
b159fa28 5799 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5800
5801 len -= cur;
5802 offset = 0;
5803 i++;
5804 }
5805}
d1310b2e 5806
2b48966a
DS
5807void copy_extent_buffer_full(const struct extent_buffer *dst,
5808 const struct extent_buffer *src)
58e8012c
DS
5809{
5810 int i;
cc5e31a4 5811 int num_pages;
58e8012c
DS
5812
5813 ASSERT(dst->len == src->len);
5814
65ad0104 5815 num_pages = num_extent_pages(dst);
58e8012c
DS
5816 for (i = 0; i < num_pages; i++)
5817 copy_page(page_address(dst->pages[i]),
5818 page_address(src->pages[i]));
5819}
5820
2b48966a
DS
5821void copy_extent_buffer(const struct extent_buffer *dst,
5822 const struct extent_buffer *src,
d1310b2e
CM
5823 unsigned long dst_offset, unsigned long src_offset,
5824 unsigned long len)
5825{
5826 u64 dst_len = dst->len;
5827 size_t cur;
5828 size_t offset;
5829 struct page *page;
5830 char *kaddr;
c60ac0ff 5831 unsigned long i = dst_offset >> PAGE_SHIFT;
d1310b2e
CM
5832
5833 WARN_ON(src->len != dst_len);
5834
c60ac0ff 5835 offset = offset_in_page(dst_offset);
d1310b2e 5836
d397712b 5837 while (len > 0) {
fb85fc9a 5838 page = dst->pages[i];
d1310b2e
CM
5839 WARN_ON(!PageUptodate(page));
5840
09cbfeaf 5841 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5842
a6591715 5843 kaddr = page_address(page);
d1310b2e 5844 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5845
5846 src_offset += cur;
5847 len -= cur;
5848 offset = 0;
5849 i++;
5850 }
5851}
d1310b2e 5852
3e1e8bb7
OS
5853/*
5854 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5855 * given bit number
5856 * @eb: the extent buffer
5857 * @start: offset of the bitmap item in the extent buffer
5858 * @nr: bit number
5859 * @page_index: return index of the page in the extent buffer that contains the
5860 * given bit number
5861 * @page_offset: return offset into the page given by page_index
5862 *
5863 * This helper hides the ugliness of finding the byte in an extent buffer which
5864 * contains a given bit.
5865 */
2b48966a 5866static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3e1e8bb7
OS
5867 unsigned long start, unsigned long nr,
5868 unsigned long *page_index,
5869 size_t *page_offset)
5870{
3e1e8bb7
OS
5871 size_t byte_offset = BIT_BYTE(nr);
5872 size_t offset;
5873
5874 /*
5875 * The byte we want is the offset of the extent buffer + the offset of
5876 * the bitmap item in the extent buffer + the offset of the byte in the
5877 * bitmap item.
5878 */
c60ac0ff 5879 offset = start + byte_offset;
3e1e8bb7 5880
09cbfeaf 5881 *page_index = offset >> PAGE_SHIFT;
7073017a 5882 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5883}
5884
5885/**
5886 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5887 * @eb: the extent buffer
5888 * @start: offset of the bitmap item in the extent buffer
5889 * @nr: bit number to test
5890 */
2b48966a 5891int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5892 unsigned long nr)
5893{
2fe1d551 5894 u8 *kaddr;
3e1e8bb7
OS
5895 struct page *page;
5896 unsigned long i;
5897 size_t offset;
5898
5899 eb_bitmap_offset(eb, start, nr, &i, &offset);
5900 page = eb->pages[i];
5901 WARN_ON(!PageUptodate(page));
5902 kaddr = page_address(page);
5903 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5904}
5905
5906/**
5907 * extent_buffer_bitmap_set - set an area of a bitmap
5908 * @eb: the extent buffer
5909 * @start: offset of the bitmap item in the extent buffer
5910 * @pos: bit number of the first bit
5911 * @len: number of bits to set
5912 */
2b48966a 5913void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
3e1e8bb7
OS
5914 unsigned long pos, unsigned long len)
5915{
2fe1d551 5916 u8 *kaddr;
3e1e8bb7
OS
5917 struct page *page;
5918 unsigned long i;
5919 size_t offset;
5920 const unsigned int size = pos + len;
5921 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5922 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5923
5924 eb_bitmap_offset(eb, start, pos, &i, &offset);
5925 page = eb->pages[i];
5926 WARN_ON(!PageUptodate(page));
5927 kaddr = page_address(page);
5928
5929 while (len >= bits_to_set) {
5930 kaddr[offset] |= mask_to_set;
5931 len -= bits_to_set;
5932 bits_to_set = BITS_PER_BYTE;
9c894696 5933 mask_to_set = ~0;
09cbfeaf 5934 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5935 offset = 0;
5936 page = eb->pages[++i];
5937 WARN_ON(!PageUptodate(page));
5938 kaddr = page_address(page);
5939 }
5940 }
5941 if (len) {
5942 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5943 kaddr[offset] |= mask_to_set;
5944 }
5945}
5946
5947
5948/**
5949 * extent_buffer_bitmap_clear - clear an area of a bitmap
5950 * @eb: the extent buffer
5951 * @start: offset of the bitmap item in the extent buffer
5952 * @pos: bit number of the first bit
5953 * @len: number of bits to clear
5954 */
2b48966a
DS
5955void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
5956 unsigned long start, unsigned long pos,
5957 unsigned long len)
3e1e8bb7 5958{
2fe1d551 5959 u8 *kaddr;
3e1e8bb7
OS
5960 struct page *page;
5961 unsigned long i;
5962 size_t offset;
5963 const unsigned int size = pos + len;
5964 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5965 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5966
5967 eb_bitmap_offset(eb, start, pos, &i, &offset);
5968 page = eb->pages[i];
5969 WARN_ON(!PageUptodate(page));
5970 kaddr = page_address(page);
5971
5972 while (len >= bits_to_clear) {
5973 kaddr[offset] &= ~mask_to_clear;
5974 len -= bits_to_clear;
5975 bits_to_clear = BITS_PER_BYTE;
9c894696 5976 mask_to_clear = ~0;
09cbfeaf 5977 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5978 offset = 0;
5979 page = eb->pages[++i];
5980 WARN_ON(!PageUptodate(page));
5981 kaddr = page_address(page);
5982 }
5983 }
5984 if (len) {
5985 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5986 kaddr[offset] &= ~mask_to_clear;
5987 }
5988}
5989
3387206f
ST
5990static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5991{
5992 unsigned long distance = (src > dst) ? src - dst : dst - src;
5993 return distance < len;
5994}
5995
d1310b2e
CM
5996static void copy_pages(struct page *dst_page, struct page *src_page,
5997 unsigned long dst_off, unsigned long src_off,
5998 unsigned long len)
5999{
a6591715 6000 char *dst_kaddr = page_address(dst_page);
d1310b2e 6001 char *src_kaddr;
727011e0 6002 int must_memmove = 0;
d1310b2e 6003
3387206f 6004 if (dst_page != src_page) {
a6591715 6005 src_kaddr = page_address(src_page);
3387206f 6006 } else {
d1310b2e 6007 src_kaddr = dst_kaddr;
727011e0
CM
6008 if (areas_overlap(src_off, dst_off, len))
6009 must_memmove = 1;
3387206f 6010 }
d1310b2e 6011
727011e0
CM
6012 if (must_memmove)
6013 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6014 else
6015 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
6016}
6017
2b48966a
DS
6018void memcpy_extent_buffer(const struct extent_buffer *dst,
6019 unsigned long dst_offset, unsigned long src_offset,
6020 unsigned long len)
d1310b2e 6021{
0b246afa 6022 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6023 size_t cur;
6024 size_t dst_off_in_page;
6025 size_t src_off_in_page;
d1310b2e
CM
6026 unsigned long dst_i;
6027 unsigned long src_i;
6028
6029 if (src_offset + len > dst->len) {
0b246afa 6030 btrfs_err(fs_info,
5d163e0e
JM
6031 "memmove bogus src_offset %lu move len %lu dst len %lu",
6032 src_offset, len, dst->len);
290342f6 6033 BUG();
d1310b2e
CM
6034 }
6035 if (dst_offset + len > dst->len) {
0b246afa 6036 btrfs_err(fs_info,
5d163e0e
JM
6037 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6038 dst_offset, len, dst->len);
290342f6 6039 BUG();
d1310b2e
CM
6040 }
6041
d397712b 6042 while (len > 0) {
c60ac0ff
DS
6043 dst_off_in_page = offset_in_page(dst_offset);
6044 src_off_in_page = offset_in_page(src_offset);
d1310b2e 6045
c60ac0ff
DS
6046 dst_i = dst_offset >> PAGE_SHIFT;
6047 src_i = src_offset >> PAGE_SHIFT;
d1310b2e 6048
09cbfeaf 6049 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
6050 src_off_in_page));
6051 cur = min_t(unsigned long, cur,
09cbfeaf 6052 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 6053
fb85fc9a 6054 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6055 dst_off_in_page, src_off_in_page, cur);
6056
6057 src_offset += cur;
6058 dst_offset += cur;
6059 len -= cur;
6060 }
6061}
d1310b2e 6062
2b48966a
DS
6063void memmove_extent_buffer(const struct extent_buffer *dst,
6064 unsigned long dst_offset, unsigned long src_offset,
6065 unsigned long len)
d1310b2e 6066{
0b246afa 6067 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6068 size_t cur;
6069 size_t dst_off_in_page;
6070 size_t src_off_in_page;
6071 unsigned long dst_end = dst_offset + len - 1;
6072 unsigned long src_end = src_offset + len - 1;
d1310b2e
CM
6073 unsigned long dst_i;
6074 unsigned long src_i;
6075
6076 if (src_offset + len > dst->len) {
0b246afa 6077 btrfs_err(fs_info,
5d163e0e
JM
6078 "memmove bogus src_offset %lu move len %lu len %lu",
6079 src_offset, len, dst->len);
290342f6 6080 BUG();
d1310b2e
CM
6081 }
6082 if (dst_offset + len > dst->len) {
0b246afa 6083 btrfs_err(fs_info,
5d163e0e
JM
6084 "memmove bogus dst_offset %lu move len %lu len %lu",
6085 dst_offset, len, dst->len);
290342f6 6086 BUG();
d1310b2e 6087 }
727011e0 6088 if (dst_offset < src_offset) {
d1310b2e
CM
6089 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6090 return;
6091 }
d397712b 6092 while (len > 0) {
c60ac0ff
DS
6093 dst_i = dst_end >> PAGE_SHIFT;
6094 src_i = src_end >> PAGE_SHIFT;
d1310b2e 6095
c60ac0ff
DS
6096 dst_off_in_page = offset_in_page(dst_end);
6097 src_off_in_page = offset_in_page(src_end);
d1310b2e
CM
6098
6099 cur = min_t(unsigned long, len, src_off_in_page + 1);
6100 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6101 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6102 dst_off_in_page - cur + 1,
6103 src_off_in_page - cur + 1, cur);
6104
6105 dst_end -= cur;
6106 src_end -= cur;
6107 len -= cur;
6108 }
6109}
6af118ce 6110
f7a52a40 6111int try_release_extent_buffer(struct page *page)
19fe0a8b 6112{
6af118ce 6113 struct extent_buffer *eb;
6af118ce 6114
3083ee2e 6115 /*
01327610 6116 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6117 * now.
6118 */
6119 spin_lock(&page->mapping->private_lock);
6120 if (!PagePrivate(page)) {
6121 spin_unlock(&page->mapping->private_lock);
4f2de97a 6122 return 1;
45f49bce 6123 }
6af118ce 6124
3083ee2e
JB
6125 eb = (struct extent_buffer *)page->private;
6126 BUG_ON(!eb);
19fe0a8b
MX
6127
6128 /*
3083ee2e
JB
6129 * This is a little awful but should be ok, we need to make sure that
6130 * the eb doesn't disappear out from under us while we're looking at
6131 * this page.
19fe0a8b 6132 */
3083ee2e 6133 spin_lock(&eb->refs_lock);
0b32f4bb 6134 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6135 spin_unlock(&eb->refs_lock);
6136 spin_unlock(&page->mapping->private_lock);
6137 return 0;
b9473439 6138 }
3083ee2e 6139 spin_unlock(&page->mapping->private_lock);
897ca6e9 6140
19fe0a8b 6141 /*
3083ee2e
JB
6142 * If tree ref isn't set then we know the ref on this eb is a real ref,
6143 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6144 */
3083ee2e
JB
6145 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6146 spin_unlock(&eb->refs_lock);
6147 return 0;
b9473439 6148 }
19fe0a8b 6149
f7a52a40 6150 return release_extent_buffer(eb);
6af118ce 6151}