]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: switch to common message helpers in open_ctree, adjust messages
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729 goto search_again;
730
731out:
cad321ad 732 spin_unlock(&tree->lock);
d1310b2e
CM
733 if (prealloc)
734 free_extent_state(prealloc);
735
6763af84 736 return 0;
d1310b2e
CM
737
738search_again:
739 if (start > end)
740 goto out;
cad321ad 741 spin_unlock(&tree->lock);
d0164adc 742 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
743 cond_resched();
744 goto again;
745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 876 prealloc = alloc_extent_state(mask);
8233767a 877 BUG_ON(!prealloc);
d1310b2e
CM
878 }
879
cad321ad 880 spin_lock(&tree->lock);
9655d298
CM
881 if (cached_state && *cached_state) {
882 state = *cached_state;
df98b6e2 883 if (state->start <= start && state->end > start &&
27a3507d 884 extent_state_in_tree(state)) {
9655d298
CM
885 node = &state->rb_node;
886 goto hit_next;
887 }
888 }
d1310b2e
CM
889 /*
890 * this search will find all the extents that end after
891 * our range starts.
892 */
12cfbad9 893 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 894 if (!node) {
8233767a
XG
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
12cfbad9 897 err = insert_state(tree, prealloc, start, end,
d38ed27f 898 &p, &parent, &bits, changeset);
c2d904e0
JM
899 if (err)
900 extent_io_tree_panic(tree, err);
901
c42ac0bc 902 cache_state(prealloc, cached_state);
d1310b2e 903 prealloc = NULL;
d1310b2e
CM
904 goto out;
905 }
d1310b2e 906 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 907hit_next:
d1310b2e
CM
908 last_start = state->start;
909 last_end = state->end;
910
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 *
915 * Just lock what we found and keep going
916 */
917 if (state->start == start && state->end <= end) {
1edbb734 918 if (state->state & exclusive_bits) {
d1310b2e
CM
919 *failed_start = state->start;
920 err = -EEXIST;
921 goto out;
922 }
42daec29 923
d38ed27f 924 set_state_bits(tree, state, &bits, changeset);
2c64c53d 925 cache_state(state, cached_state);
d1310b2e 926 merge_state(tree, state);
5c939df5
YZ
927 if (last_end == (u64)-1)
928 goto out;
929 start = last_end + 1;
d1ac6e41
LB
930 state = next_state(state);
931 if (start < end && state && state->start == start &&
932 !need_resched())
933 goto hit_next;
d1310b2e
CM
934 goto search_again;
935 }
936
937 /*
938 * | ---- desired range ---- |
939 * | state |
940 * or
941 * | ------------- state -------------- |
942 *
943 * We need to split the extent we found, and may flip bits on
944 * second half.
945 *
946 * If the extent we found extends past our
947 * range, we just split and search again. It'll get split
948 * again the next time though.
949 *
950 * If the extent we found is inside our range, we set the
951 * desired bit on it.
952 */
953 if (state->start < start) {
1edbb734 954 if (state->state & exclusive_bits) {
d1310b2e
CM
955 *failed_start = start;
956 err = -EEXIST;
957 goto out;
958 }
8233767a
XG
959
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
d1310b2e 962 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
963 if (err)
964 extent_io_tree_panic(tree, err);
965
d1310b2e
CM
966 prealloc = NULL;
967 if (err)
968 goto out;
969 if (state->end <= end) {
d38ed27f 970 set_state_bits(tree, state, &bits, changeset);
2c64c53d 971 cache_state(state, cached_state);
d1310b2e 972 merge_state(tree, state);
5c939df5
YZ
973 if (last_end == (u64)-1)
974 goto out;
975 start = last_end + 1;
d1ac6e41
LB
976 state = next_state(state);
977 if (start < end && state && state->start == start &&
978 !need_resched())
979 goto hit_next;
d1310b2e
CM
980 }
981 goto search_again;
982 }
983 /*
984 * | ---- desired range ---- |
985 * | state | or | state |
986 *
987 * There's a hole, we need to insert something in it and
988 * ignore the extent we found.
989 */
990 if (state->start > start) {
991 u64 this_end;
992 if (end < last_start)
993 this_end = end;
994 else
d397712b 995 this_end = last_start - 1;
8233767a
XG
996
997 prealloc = alloc_extent_state_atomic(prealloc);
998 BUG_ON(!prealloc);
c7f895a2
XG
999
1000 /*
1001 * Avoid to free 'prealloc' if it can be merged with
1002 * the later extent.
1003 */
d1310b2e 1004 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1005 NULL, NULL, &bits, changeset);
c2d904e0
JM
1006 if (err)
1007 extent_io_tree_panic(tree, err);
1008
9ed74f2d
JB
1009 cache_state(prealloc, cached_state);
1010 prealloc = NULL;
d1310b2e
CM
1011 start = this_end + 1;
1012 goto search_again;
1013 }
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * We need to split the extent, and set the bit
1018 * on the first half
1019 */
1020 if (state->start <= end && state->end > end) {
1edbb734 1021 if (state->state & exclusive_bits) {
d1310b2e
CM
1022 *failed_start = start;
1023 err = -EEXIST;
1024 goto out;
1025 }
8233767a
XG
1026
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 BUG_ON(!prealloc);
d1310b2e 1029 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1030 if (err)
1031 extent_io_tree_panic(tree, err);
d1310b2e 1032
d38ed27f 1033 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1034 cache_state(prealloc, cached_state);
d1310b2e
CM
1035 merge_state(tree, prealloc);
1036 prealloc = NULL;
1037 goto out;
1038 }
1039
1040 goto search_again;
1041
1042out:
cad321ad 1043 spin_unlock(&tree->lock);
d1310b2e
CM
1044 if (prealloc)
1045 free_extent_state(prealloc);
1046
1047 return err;
1048
1049search_again:
1050 if (start > end)
1051 goto out;
cad321ad 1052 spin_unlock(&tree->lock);
d0164adc 1053 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1054 cond_resched();
1055 goto again;
1056}
d1310b2e 1057
41074888 1058int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1059 unsigned bits, u64 * failed_start,
41074888 1060 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1061{
1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1063 cached_state, mask, NULL);
3fbe5c02
JM
1064}
1065
1066
462d6fac 1067/**
10983f2e
LB
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 * another
462d6fac
JB
1070 * @tree: the io tree to search
1071 * @start: the start offset in bytes
1072 * @end: the end offset in bytes (inclusive)
1073 * @bits: the bits to set in this range
1074 * @clear_bits: the bits to clear in this range
e6138876 1075 * @cached_state: state that we're going to cache
462d6fac
JB
1076 * @mask: the allocation mask
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 */
1084int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1085 unsigned bits, unsigned clear_bits,
e6138876 1086 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1087{
1088 struct extent_state *state;
1089 struct extent_state *prealloc = NULL;
1090 struct rb_node *node;
12cfbad9
FDBM
1091 struct rb_node **p;
1092 struct rb_node *parent;
462d6fac
JB
1093 int err = 0;
1094 u64 last_start;
1095 u64 last_end;
c8fd3de7 1096 bool first_iteration = true;
462d6fac 1097
a5dee37d 1098 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1099
462d6fac 1100again:
d0164adc 1101 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1102 /*
1103 * Best effort, don't worry if extent state allocation fails
1104 * here for the first iteration. We might have a cached state
1105 * that matches exactly the target range, in which case no
1106 * extent state allocations are needed. We'll only know this
1107 * after locking the tree.
1108 */
462d6fac 1109 prealloc = alloc_extent_state(mask);
c8fd3de7 1110 if (!prealloc && !first_iteration)
462d6fac
JB
1111 return -ENOMEM;
1112 }
1113
1114 spin_lock(&tree->lock);
e6138876
JB
1115 if (cached_state && *cached_state) {
1116 state = *cached_state;
1117 if (state->start <= start && state->end > start &&
27a3507d 1118 extent_state_in_tree(state)) {
e6138876
JB
1119 node = &state->rb_node;
1120 goto hit_next;
1121 }
1122 }
1123
462d6fac
JB
1124 /*
1125 * this search will find all the extents that end after
1126 * our range starts.
1127 */
12cfbad9 1128 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1129 if (!node) {
1130 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1131 if (!prealloc) {
1132 err = -ENOMEM;
1133 goto out;
1134 }
12cfbad9 1135 err = insert_state(tree, prealloc, start, end,
d38ed27f 1136 &p, &parent, &bits, NULL);
c2d904e0
JM
1137 if (err)
1138 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1139 cache_state(prealloc, cached_state);
1140 prealloc = NULL;
462d6fac
JB
1141 goto out;
1142 }
1143 state = rb_entry(node, struct extent_state, rb_node);
1144hit_next:
1145 last_start = state->start;
1146 last_end = state->end;
1147
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 *
1152 * Just lock what we found and keep going
1153 */
1154 if (state->start == start && state->end <= end) {
d38ed27f 1155 set_state_bits(tree, state, &bits, NULL);
e6138876 1156 cache_state(state, cached_state);
fefdc557 1157 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1158 if (last_end == (u64)-1)
1159 goto out;
462d6fac 1160 start = last_end + 1;
d1ac6e41
LB
1161 if (start < end && state && state->start == start &&
1162 !need_resched())
1163 goto hit_next;
462d6fac
JB
1164 goto search_again;
1165 }
1166
1167 /*
1168 * | ---- desired range ---- |
1169 * | state |
1170 * or
1171 * | ------------- state -------------- |
1172 *
1173 * We need to split the extent we found, and may flip bits on
1174 * second half.
1175 *
1176 * If the extent we found extends past our
1177 * range, we just split and search again. It'll get split
1178 * again the next time though.
1179 *
1180 * If the extent we found is inside our range, we set the
1181 * desired bit on it.
1182 */
1183 if (state->start < start) {
1184 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1185 if (!prealloc) {
1186 err = -ENOMEM;
1187 goto out;
1188 }
462d6fac 1189 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1190 if (err)
1191 extent_io_tree_panic(tree, err);
462d6fac
JB
1192 prealloc = NULL;
1193 if (err)
1194 goto out;
1195 if (state->end <= end) {
d38ed27f 1196 set_state_bits(tree, state, &bits, NULL);
e6138876 1197 cache_state(state, cached_state);
fefdc557
QW
1198 state = clear_state_bit(tree, state, &clear_bits, 0,
1199 NULL);
462d6fac
JB
1200 if (last_end == (u64)-1)
1201 goto out;
1202 start = last_end + 1;
d1ac6e41
LB
1203 if (start < end && state && state->start == start &&
1204 !need_resched())
1205 goto hit_next;
462d6fac
JB
1206 }
1207 goto search_again;
1208 }
1209 /*
1210 * | ---- desired range ---- |
1211 * | state | or | state |
1212 *
1213 * There's a hole, we need to insert something in it and
1214 * ignore the extent we found.
1215 */
1216 if (state->start > start) {
1217 u64 this_end;
1218 if (end < last_start)
1219 this_end = end;
1220 else
1221 this_end = last_start - 1;
1222
1223 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1224 if (!prealloc) {
1225 err = -ENOMEM;
1226 goto out;
1227 }
462d6fac
JB
1228
1229 /*
1230 * Avoid to free 'prealloc' if it can be merged with
1231 * the later extent.
1232 */
1233 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1234 NULL, NULL, &bits, NULL);
c2d904e0
JM
1235 if (err)
1236 extent_io_tree_panic(tree, err);
e6138876 1237 cache_state(prealloc, cached_state);
462d6fac
JB
1238 prealloc = NULL;
1239 start = this_end + 1;
1240 goto search_again;
1241 }
1242 /*
1243 * | ---- desired range ---- |
1244 * | state |
1245 * We need to split the extent, and set the bit
1246 * on the first half
1247 */
1248 if (state->start <= end && state->end > end) {
1249 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1250 if (!prealloc) {
1251 err = -ENOMEM;
1252 goto out;
1253 }
462d6fac
JB
1254
1255 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1256 if (err)
1257 extent_io_tree_panic(tree, err);
462d6fac 1258
d38ed27f 1259 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1260 cache_state(prealloc, cached_state);
fefdc557 1261 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1262 prealloc = NULL;
1263 goto out;
1264 }
1265
1266 goto search_again;
1267
1268out:
1269 spin_unlock(&tree->lock);
1270 if (prealloc)
1271 free_extent_state(prealloc);
1272
1273 return err;
1274
1275search_again:
1276 if (start > end)
1277 goto out;
1278 spin_unlock(&tree->lock);
d0164adc 1279 if (gfpflags_allow_blocking(mask))
462d6fac 1280 cond_resched();
c8fd3de7 1281 first_iteration = false;
462d6fac
JB
1282 goto again;
1283}
1284
d1310b2e 1285/* wrappers around set/clear extent bit */
d38ed27f
QW
1286int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1287 unsigned bits, gfp_t mask,
1288 struct extent_changeset *changeset)
1289{
1290 /*
1291 * We don't support EXTENT_LOCKED yet, as current changeset will
1292 * record any bits changed, so for EXTENT_LOCKED case, it will
1293 * either fail with -EEXIST or changeset will record the whole
1294 * range.
1295 */
1296 BUG_ON(bits & EXTENT_LOCKED);
1297
1298 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1299 changeset);
1300}
1301
fefdc557
QW
1302int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, int wake, int delete,
1304 struct extent_state **cached, gfp_t mask)
1305{
1306 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1307 cached, mask, NULL);
1308}
1309
fefdc557
QW
1310int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 unsigned bits, gfp_t mask,
1312 struct extent_changeset *changeset)
1313{
1314 /*
1315 * Don't support EXTENT_LOCKED case, same reason as
1316 * set_record_extent_bits().
1317 */
1318 BUG_ON(bits & EXTENT_LOCKED);
1319
1320 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1321 changeset);
1322}
1323
d352ac68
CM
1324/*
1325 * either insert or lock state struct between start and end use mask to tell
1326 * us if waiting is desired.
1327 */
1edbb734 1328int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1329 struct extent_state **cached_state)
d1310b2e
CM
1330{
1331 int err;
1332 u64 failed_start;
9ee49a04 1333
d1310b2e 1334 while (1) {
ff13db41 1335 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1336 EXTENT_LOCKED, &failed_start,
d38ed27f 1337 cached_state, GFP_NOFS, NULL);
d0082371 1338 if (err == -EEXIST) {
d1310b2e
CM
1339 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1340 start = failed_start;
d0082371 1341 } else
d1310b2e 1342 break;
d1310b2e
CM
1343 WARN_ON(start > end);
1344 }
1345 return err;
1346}
d1310b2e 1347
d0082371 1348int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1349{
1350 int err;
1351 u64 failed_start;
1352
3fbe5c02 1353 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1354 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1355 if (err == -EEXIST) {
1356 if (failed_start > start)
1357 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1358 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1359 return 0;
6643558d 1360 }
25179201
JB
1361 return 1;
1362}
25179201 1363
bd1fa4f0 1364void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1365{
09cbfeaf
KS
1366 unsigned long index = start >> PAGE_SHIFT;
1367 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1368 struct page *page;
1369
1370 while (index <= end_index) {
1371 page = find_get_page(inode->i_mapping, index);
1372 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1373 clear_page_dirty_for_io(page);
09cbfeaf 1374 put_page(page);
4adaa611
CM
1375 index++;
1376 }
4adaa611
CM
1377}
1378
f6311572 1379void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1380{
09cbfeaf
KS
1381 unsigned long index = start >> PAGE_SHIFT;
1382 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1388 __set_page_dirty_nobuffers(page);
8d38633c 1389 account_page_redirty(page);
09cbfeaf 1390 put_page(page);
4adaa611
CM
1391 index++;
1392 }
4adaa611
CM
1393}
1394
d1310b2e
CM
1395/*
1396 * helper function to set both pages and extents in the tree writeback
1397 */
35de6db2 1398static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1399{
09cbfeaf
KS
1400 unsigned long index = start >> PAGE_SHIFT;
1401 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1402 struct page *page;
1403
1404 while (index <= end_index) {
1405 page = find_get_page(tree->mapping, index);
79787eaa 1406 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1407 set_page_writeback(page);
09cbfeaf 1408 put_page(page);
d1310b2e
CM
1409 index++;
1410 }
d1310b2e 1411}
d1310b2e 1412
d352ac68
CM
1413/* find the first state struct with 'bits' set after 'start', and
1414 * return it. tree->lock must be held. NULL will returned if
1415 * nothing was found after 'start'
1416 */
48a3b636
ES
1417static struct extent_state *
1418find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1419 u64 start, unsigned bits)
d7fc640e
CM
1420{
1421 struct rb_node *node;
1422 struct extent_state *state;
1423
1424 /*
1425 * this search will find all the extents that end after
1426 * our range starts.
1427 */
1428 node = tree_search(tree, start);
d397712b 1429 if (!node)
d7fc640e 1430 goto out;
d7fc640e 1431
d397712b 1432 while (1) {
d7fc640e 1433 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1434 if (state->end >= start && (state->state & bits))
d7fc640e 1435 return state;
d397712b 1436
d7fc640e
CM
1437 node = rb_next(node);
1438 if (!node)
1439 break;
1440 }
1441out:
1442 return NULL;
1443}
d7fc640e 1444
69261c4b
XG
1445/*
1446 * find the first offset in the io tree with 'bits' set. zero is
1447 * returned if we find something, and *start_ret and *end_ret are
1448 * set to reflect the state struct that was found.
1449 *
477d7eaf 1450 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1451 */
1452int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1453 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1454 struct extent_state **cached_state)
69261c4b
XG
1455{
1456 struct extent_state *state;
e6138876 1457 struct rb_node *n;
69261c4b
XG
1458 int ret = 1;
1459
1460 spin_lock(&tree->lock);
e6138876
JB
1461 if (cached_state && *cached_state) {
1462 state = *cached_state;
27a3507d 1463 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1464 n = rb_next(&state->rb_node);
1465 while (n) {
1466 state = rb_entry(n, struct extent_state,
1467 rb_node);
1468 if (state->state & bits)
1469 goto got_it;
1470 n = rb_next(n);
1471 }
1472 free_extent_state(*cached_state);
1473 *cached_state = NULL;
1474 goto out;
1475 }
1476 free_extent_state(*cached_state);
1477 *cached_state = NULL;
1478 }
1479
69261c4b 1480 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1481got_it:
69261c4b 1482 if (state) {
e38e2ed7 1483 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1484 *start_ret = state->start;
1485 *end_ret = state->end;
1486 ret = 0;
1487 }
e6138876 1488out:
69261c4b
XG
1489 spin_unlock(&tree->lock);
1490 return ret;
1491}
1492
d352ac68
CM
1493/*
1494 * find a contiguous range of bytes in the file marked as delalloc, not
1495 * more than 'max_bytes'. start and end are used to return the range,
1496 *
1497 * 1 is returned if we find something, 0 if nothing was in the tree
1498 */
c8b97818 1499static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1500 u64 *start, u64 *end, u64 max_bytes,
1501 struct extent_state **cached_state)
d1310b2e
CM
1502{
1503 struct rb_node *node;
1504 struct extent_state *state;
1505 u64 cur_start = *start;
1506 u64 found = 0;
1507 u64 total_bytes = 0;
1508
cad321ad 1509 spin_lock(&tree->lock);
c8b97818 1510
d1310b2e
CM
1511 /*
1512 * this search will find all the extents that end after
1513 * our range starts.
1514 */
80ea96b1 1515 node = tree_search(tree, cur_start);
2b114d1d 1516 if (!node) {
3b951516
CM
1517 if (!found)
1518 *end = (u64)-1;
d1310b2e
CM
1519 goto out;
1520 }
1521
d397712b 1522 while (1) {
d1310b2e 1523 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1524 if (found && (state->start != cur_start ||
1525 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1526 goto out;
1527 }
1528 if (!(state->state & EXTENT_DELALLOC)) {
1529 if (!found)
1530 *end = state->end;
1531 goto out;
1532 }
c2a128d2 1533 if (!found) {
d1310b2e 1534 *start = state->start;
c2a128d2
JB
1535 *cached_state = state;
1536 atomic_inc(&state->refs);
1537 }
d1310b2e
CM
1538 found++;
1539 *end = state->end;
1540 cur_start = state->end + 1;
1541 node = rb_next(node);
d1310b2e 1542 total_bytes += state->end - state->start + 1;
7bf811a5 1543 if (total_bytes >= max_bytes)
573aecaf 1544 break;
573aecaf 1545 if (!node)
d1310b2e
CM
1546 break;
1547 }
1548out:
cad321ad 1549 spin_unlock(&tree->lock);
d1310b2e
CM
1550 return found;
1551}
1552
143bede5
JM
1553static noinline void __unlock_for_delalloc(struct inode *inode,
1554 struct page *locked_page,
1555 u64 start, u64 end)
c8b97818
CM
1556{
1557 int ret;
1558 struct page *pages[16];
09cbfeaf
KS
1559 unsigned long index = start >> PAGE_SHIFT;
1560 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1561 unsigned long nr_pages = end_index - index + 1;
1562 int i;
1563
1564 if (index == locked_page->index && end_index == index)
143bede5 1565 return;
c8b97818 1566
d397712b 1567 while (nr_pages > 0) {
c8b97818 1568 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1569 min_t(unsigned long, nr_pages,
1570 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1571 for (i = 0; i < ret; i++) {
1572 if (pages[i] != locked_page)
1573 unlock_page(pages[i]);
09cbfeaf 1574 put_page(pages[i]);
c8b97818
CM
1575 }
1576 nr_pages -= ret;
1577 index += ret;
1578 cond_resched();
1579 }
c8b97818
CM
1580}
1581
1582static noinline int lock_delalloc_pages(struct inode *inode,
1583 struct page *locked_page,
1584 u64 delalloc_start,
1585 u64 delalloc_end)
1586{
09cbfeaf 1587 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1588 unsigned long start_index = index;
09cbfeaf 1589 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1590 unsigned long pages_locked = 0;
1591 struct page *pages[16];
1592 unsigned long nrpages;
1593 int ret;
1594 int i;
1595
1596 /* the caller is responsible for locking the start index */
1597 if (index == locked_page->index && index == end_index)
1598 return 0;
1599
1600 /* skip the page at the start index */
1601 nrpages = end_index - index + 1;
d397712b 1602 while (nrpages > 0) {
c8b97818 1603 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1604 min_t(unsigned long,
1605 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1606 if (ret == 0) {
1607 ret = -EAGAIN;
1608 goto done;
1609 }
1610 /* now we have an array of pages, lock them all */
1611 for (i = 0; i < ret; i++) {
1612 /*
1613 * the caller is taking responsibility for
1614 * locked_page
1615 */
771ed689 1616 if (pages[i] != locked_page) {
c8b97818 1617 lock_page(pages[i]);
f2b1c41c
CM
1618 if (!PageDirty(pages[i]) ||
1619 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1620 ret = -EAGAIN;
1621 unlock_page(pages[i]);
09cbfeaf 1622 put_page(pages[i]);
771ed689
CM
1623 goto done;
1624 }
1625 }
09cbfeaf 1626 put_page(pages[i]);
771ed689 1627 pages_locked++;
c8b97818 1628 }
c8b97818
CM
1629 nrpages -= ret;
1630 index += ret;
1631 cond_resched();
1632 }
1633 ret = 0;
1634done:
1635 if (ret && pages_locked) {
1636 __unlock_for_delalloc(inode, locked_page,
1637 delalloc_start,
1638 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1639 PAGE_SHIFT);
c8b97818
CM
1640 }
1641 return ret;
1642}
1643
1644/*
1645 * find a contiguous range of bytes in the file marked as delalloc, not
1646 * more than 'max_bytes'. start and end are used to return the range,
1647 *
1648 * 1 is returned if we find something, 0 if nothing was in the tree
1649 */
294e30fe
JB
1650STATIC u64 find_lock_delalloc_range(struct inode *inode,
1651 struct extent_io_tree *tree,
1652 struct page *locked_page, u64 *start,
1653 u64 *end, u64 max_bytes)
c8b97818
CM
1654{
1655 u64 delalloc_start;
1656 u64 delalloc_end;
1657 u64 found;
9655d298 1658 struct extent_state *cached_state = NULL;
c8b97818
CM
1659 int ret;
1660 int loops = 0;
1661
1662again:
1663 /* step one, find a bunch of delalloc bytes starting at start */
1664 delalloc_start = *start;
1665 delalloc_end = 0;
1666 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1667 max_bytes, &cached_state);
70b99e69 1668 if (!found || delalloc_end <= *start) {
c8b97818
CM
1669 *start = delalloc_start;
1670 *end = delalloc_end;
c2a128d2 1671 free_extent_state(cached_state);
385fe0be 1672 return 0;
c8b97818
CM
1673 }
1674
70b99e69
CM
1675 /*
1676 * start comes from the offset of locked_page. We have to lock
1677 * pages in order, so we can't process delalloc bytes before
1678 * locked_page
1679 */
d397712b 1680 if (delalloc_start < *start)
70b99e69 1681 delalloc_start = *start;
70b99e69 1682
c8b97818
CM
1683 /*
1684 * make sure to limit the number of pages we try to lock down
c8b97818 1685 */
7bf811a5
JB
1686 if (delalloc_end + 1 - delalloc_start > max_bytes)
1687 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1688
c8b97818
CM
1689 /* step two, lock all the pages after the page that has start */
1690 ret = lock_delalloc_pages(inode, locked_page,
1691 delalloc_start, delalloc_end);
1692 if (ret == -EAGAIN) {
1693 /* some of the pages are gone, lets avoid looping by
1694 * shortening the size of the delalloc range we're searching
1695 */
9655d298 1696 free_extent_state(cached_state);
7d788742 1697 cached_state = NULL;
c8b97818 1698 if (!loops) {
09cbfeaf 1699 max_bytes = PAGE_SIZE;
c8b97818
CM
1700 loops = 1;
1701 goto again;
1702 } else {
1703 found = 0;
1704 goto out_failed;
1705 }
1706 }
79787eaa 1707 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1708
1709 /* step three, lock the state bits for the whole range */
ff13db41 1710 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1711
1712 /* then test to make sure it is all still delalloc */
1713 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1714 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1715 if (!ret) {
9655d298
CM
1716 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1717 &cached_state, GFP_NOFS);
c8b97818
CM
1718 __unlock_for_delalloc(inode, locked_page,
1719 delalloc_start, delalloc_end);
1720 cond_resched();
1721 goto again;
1722 }
9655d298 1723 free_extent_state(cached_state);
c8b97818
CM
1724 *start = delalloc_start;
1725 *end = delalloc_end;
1726out_failed:
1727 return found;
1728}
1729
a9d93e17 1730void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1731 struct page *locked_page,
9ee49a04 1732 unsigned clear_bits,
c2790a2e 1733 unsigned long page_ops)
c8b97818 1734{
c2790a2e 1735 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1736 int ret;
1737 struct page *pages[16];
09cbfeaf
KS
1738 unsigned long index = start >> PAGE_SHIFT;
1739 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1740 unsigned long nr_pages = end_index - index + 1;
1741 int i;
771ed689 1742
2c64c53d 1743 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1744 if (page_ops == 0)
a9d93e17 1745 return;
c8b97818 1746
704de49d
FM
1747 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1748 mapping_set_error(inode->i_mapping, -EIO);
1749
d397712b 1750 while (nr_pages > 0) {
c8b97818 1751 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1752 min_t(unsigned long,
1753 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1754 for (i = 0; i < ret; i++) {
8b62b72b 1755
c2790a2e 1756 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1757 SetPagePrivate2(pages[i]);
1758
c8b97818 1759 if (pages[i] == locked_page) {
09cbfeaf 1760 put_page(pages[i]);
c8b97818
CM
1761 continue;
1762 }
c2790a2e 1763 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1764 clear_page_dirty_for_io(pages[i]);
c2790a2e 1765 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1766 set_page_writeback(pages[i]);
704de49d
FM
1767 if (page_ops & PAGE_SET_ERROR)
1768 SetPageError(pages[i]);
c2790a2e 1769 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1770 end_page_writeback(pages[i]);
c2790a2e 1771 if (page_ops & PAGE_UNLOCK)
771ed689 1772 unlock_page(pages[i]);
09cbfeaf 1773 put_page(pages[i]);
c8b97818
CM
1774 }
1775 nr_pages -= ret;
1776 index += ret;
1777 cond_resched();
1778 }
c8b97818 1779}
c8b97818 1780
d352ac68
CM
1781/*
1782 * count the number of bytes in the tree that have a given bit(s)
1783 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1784 * cached. The total number found is returned.
1785 */
d1310b2e
CM
1786u64 count_range_bits(struct extent_io_tree *tree,
1787 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1788 unsigned bits, int contig)
d1310b2e
CM
1789{
1790 struct rb_node *node;
1791 struct extent_state *state;
1792 u64 cur_start = *start;
1793 u64 total_bytes = 0;
ec29ed5b 1794 u64 last = 0;
d1310b2e
CM
1795 int found = 0;
1796
fae7f21c 1797 if (WARN_ON(search_end <= cur_start))
d1310b2e 1798 return 0;
d1310b2e 1799
cad321ad 1800 spin_lock(&tree->lock);
d1310b2e
CM
1801 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1802 total_bytes = tree->dirty_bytes;
1803 goto out;
1804 }
1805 /*
1806 * this search will find all the extents that end after
1807 * our range starts.
1808 */
80ea96b1 1809 node = tree_search(tree, cur_start);
d397712b 1810 if (!node)
d1310b2e 1811 goto out;
d1310b2e 1812
d397712b 1813 while (1) {
d1310b2e
CM
1814 state = rb_entry(node, struct extent_state, rb_node);
1815 if (state->start > search_end)
1816 break;
ec29ed5b
CM
1817 if (contig && found && state->start > last + 1)
1818 break;
1819 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1820 total_bytes += min(search_end, state->end) + 1 -
1821 max(cur_start, state->start);
1822 if (total_bytes >= max_bytes)
1823 break;
1824 if (!found) {
af60bed2 1825 *start = max(cur_start, state->start);
d1310b2e
CM
1826 found = 1;
1827 }
ec29ed5b
CM
1828 last = state->end;
1829 } else if (contig && found) {
1830 break;
d1310b2e
CM
1831 }
1832 node = rb_next(node);
1833 if (!node)
1834 break;
1835 }
1836out:
cad321ad 1837 spin_unlock(&tree->lock);
d1310b2e
CM
1838 return total_bytes;
1839}
b2950863 1840
d352ac68
CM
1841/*
1842 * set the private field for a given byte offset in the tree. If there isn't
1843 * an extent_state there already, this does nothing.
1844 */
f827ba9a 1845static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1846 struct io_failure_record *failrec)
d1310b2e
CM
1847{
1848 struct rb_node *node;
1849 struct extent_state *state;
1850 int ret = 0;
1851
cad321ad 1852 spin_lock(&tree->lock);
d1310b2e
CM
1853 /*
1854 * this search will find all the extents that end after
1855 * our range starts.
1856 */
80ea96b1 1857 node = tree_search(tree, start);
2b114d1d 1858 if (!node) {
d1310b2e
CM
1859 ret = -ENOENT;
1860 goto out;
1861 }
1862 state = rb_entry(node, struct extent_state, rb_node);
1863 if (state->start != start) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
47dc196a 1867 state->failrec = failrec;
d1310b2e 1868out:
cad321ad 1869 spin_unlock(&tree->lock);
d1310b2e
CM
1870 return ret;
1871}
1872
f827ba9a 1873static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1874 struct io_failure_record **failrec)
d1310b2e
CM
1875{
1876 struct rb_node *node;
1877 struct extent_state *state;
1878 int ret = 0;
1879
cad321ad 1880 spin_lock(&tree->lock);
d1310b2e
CM
1881 /*
1882 * this search will find all the extents that end after
1883 * our range starts.
1884 */
80ea96b1 1885 node = tree_search(tree, start);
2b114d1d 1886 if (!node) {
d1310b2e
CM
1887 ret = -ENOENT;
1888 goto out;
1889 }
1890 state = rb_entry(node, struct extent_state, rb_node);
1891 if (state->start != start) {
1892 ret = -ENOENT;
1893 goto out;
1894 }
47dc196a 1895 *failrec = state->failrec;
d1310b2e 1896out:
cad321ad 1897 spin_unlock(&tree->lock);
d1310b2e
CM
1898 return ret;
1899}
1900
1901/*
1902 * searches a range in the state tree for a given mask.
70dec807 1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1904 * has the bits set. Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1908 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1909{
1910 struct extent_state *state = NULL;
1911 struct rb_node *node;
1912 int bitset = 0;
d1310b2e 1913
cad321ad 1914 spin_lock(&tree->lock);
27a3507d 1915 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1916 cached->end > start)
9655d298
CM
1917 node = &cached->rb_node;
1918 else
1919 node = tree_search(tree, start);
d1310b2e
CM
1920 while (node && start <= end) {
1921 state = rb_entry(node, struct extent_state, rb_node);
1922
1923 if (filled && state->start > start) {
1924 bitset = 0;
1925 break;
1926 }
1927
1928 if (state->start > end)
1929 break;
1930
1931 if (state->state & bits) {
1932 bitset = 1;
1933 if (!filled)
1934 break;
1935 } else if (filled) {
1936 bitset = 0;
1937 break;
1938 }
46562cec
CM
1939
1940 if (state->end == (u64)-1)
1941 break;
1942
d1310b2e
CM
1943 start = state->end + 1;
1944 if (start > end)
1945 break;
1946 node = rb_next(node);
1947 if (!node) {
1948 if (filled)
1949 bitset = 0;
1950 break;
1951 }
1952 }
cad321ad 1953 spin_unlock(&tree->lock);
d1310b2e
CM
1954 return bitset;
1955}
d1310b2e
CM
1956
1957/*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
143bede5 1961static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1962{
4eee4fa4 1963 u64 start = page_offset(page);
09cbfeaf 1964 u64 end = start + PAGE_SIZE - 1;
9655d298 1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1966 SetPageUptodate(page);
d1310b2e
CM
1967}
1968
8b110e39 1969int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1970{
1971 int ret;
1972 int err = 0;
1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
47dc196a 1975 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1976 ret = clear_extent_bits(failure_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 if (ret)
1980 err = ret;
1981
53b381b3
DW
1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 rec->start + rec->len - 1,
1984 EXTENT_DAMAGED, GFP_NOFS);
1985 if (ret && !err)
1986 err = ret;
4a54c8c1
JS
1987
1988 kfree(rec);
1989 return err;
1990}
1991
4a54c8c1
JS
1992/*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
3ec706c8 1997 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
1203b681
MX
2002int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2004{
1203b681 2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2006 struct bio *bio;
2007 struct btrfs_device *dev;
4a54c8c1
JS
2008 u64 map_length = 0;
2009 u64 sector;
2010 struct btrfs_bio *bbio = NULL;
53b381b3 2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2012 int ret;
2013
908960c6 2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2015 BUG_ON(!mirror_num);
2016
53b381b3
DW
2017 /* we can't repair anything in raid56 yet */
2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 return 0;
2020
9be3395b 2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2022 if (!bio)
2023 return -EIO;
4f024f37 2024 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2025 map_length = length;
2026
3ec706c8 2027 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2028 &map_length, &bbio, mirror_num);
2029 if (ret) {
2030 bio_put(bio);
2031 return -EIO;
2032 }
2033 BUG_ON(mirror_num != bbio->mirror_num);
2034 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2035 bio->bi_iter.bi_sector = sector;
4a54c8c1 2036 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2037 btrfs_put_bbio(bbio);
4a54c8c1
JS
2038 if (!dev || !dev->bdev || !dev->writeable) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 bio->bi_bdev = dev->bdev;
ffdd2018 2043 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2044
33879d45 2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2046 /* try to remap that extent elsewhere? */
2047 bio_put(bio);
442a4f63 2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2049 return -EIO;
2050 }
2051
b14af3b4
DS
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2054 btrfs_ino(inode), start,
2055 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2056 bio_put(bio);
2057 return 0;
2058}
2059
ea466794
JB
2060int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 int mirror_num)
2062{
ea466794
JB
2063 u64 start = eb->start;
2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2065 int ret = 0;
ea466794 2066
908960c6
ID
2067 if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 return -EROFS;
2069
ea466794 2070 for (i = 0; i < num_pages; i++) {
fb85fc9a 2071 struct page *p = eb->pages[i];
1203b681
MX
2072
2073 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2074 PAGE_SIZE, start, p,
1203b681 2075 start - page_offset(p), mirror_num);
ea466794
JB
2076 if (ret)
2077 break;
09cbfeaf 2078 start += PAGE_SIZE;
ea466794
JB
2079 }
2080
2081 return ret;
2082}
2083
4a54c8c1
JS
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
8b110e39
MX
2088int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 unsigned int pg_offset)
4a54c8c1
JS
2090{
2091 u64 private;
4a54c8c1 2092 struct io_failure_record *failrec;
908960c6 2093 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2094 struct extent_state *state;
2095 int num_copies;
4a54c8c1 2096 int ret;
4a54c8c1
JS
2097
2098 private = 0;
2099 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2100 (u64)-1, 1, EXTENT_DIRTY, 0);
2101 if (!ret)
2102 return 0;
2103
47dc196a
DS
2104 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2105 &failrec);
4a54c8c1
JS
2106 if (ret)
2107 return 0;
2108
4a54c8c1
JS
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
2113 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2114 failrec->start);
4a54c8c1
JS
2115 goto out;
2116 }
908960c6
ID
2117 if (fs_info->sb->s_flags & MS_RDONLY)
2118 goto out;
4a54c8c1
JS
2119
2120 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2121 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2122 failrec->start,
2123 EXTENT_LOCKED);
2124 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2125
883d0de4
MX
2126 if (state && state->start <= failrec->start &&
2127 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2128 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2129 failrec->len);
4a54c8c1 2130 if (num_copies > 1) {
1203b681 2131 repair_io_failure(inode, start, failrec->len,
454ff3de 2132 failrec->logical, page,
1203b681 2133 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2134 }
2135 }
2136
2137out:
454ff3de 2138 free_io_failure(inode, failrec);
4a54c8c1 2139
454ff3de 2140 return 0;
4a54c8c1
JS
2141}
2142
f612496b
MX
2143/*
2144 * Can be called when
2145 * - hold extent lock
2146 * - under ordered extent
2147 * - the inode is freeing
2148 */
2149void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2150{
2151 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2152 struct io_failure_record *failrec;
2153 struct extent_state *state, *next;
2154
2155 if (RB_EMPTY_ROOT(&failure_tree->state))
2156 return;
2157
2158 spin_lock(&failure_tree->lock);
2159 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2160 while (state) {
2161 if (state->start > end)
2162 break;
2163
2164 ASSERT(state->end <= end);
2165
2166 next = next_state(state);
2167
47dc196a 2168 failrec = state->failrec;
f612496b
MX
2169 free_extent_state(state);
2170 kfree(failrec);
2171
2172 state = next;
2173 }
2174 spin_unlock(&failure_tree->lock);
2175}
2176
2fe6303e 2177int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2178 struct io_failure_record **failrec_ret)
4a54c8c1 2179{
2fe6303e 2180 struct io_failure_record *failrec;
4a54c8c1 2181 struct extent_map *em;
4a54c8c1
JS
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2185 int ret;
4a54c8c1
JS
2186 u64 logical;
2187
47dc196a 2188 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2189 if (ret) {
2190 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 if (!failrec)
2192 return -ENOMEM;
2fe6303e 2193
4a54c8c1
JS
2194 failrec->start = start;
2195 failrec->len = end - start + 1;
2196 failrec->this_mirror = 0;
2197 failrec->bio_flags = 0;
2198 failrec->in_validation = 0;
2199
2200 read_lock(&em_tree->lock);
2201 em = lookup_extent_mapping(em_tree, start, failrec->len);
2202 if (!em) {
2203 read_unlock(&em_tree->lock);
2204 kfree(failrec);
2205 return -EIO;
2206 }
2207
68ba990f 2208 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2209 free_extent_map(em);
2210 em = NULL;
2211 }
2212 read_unlock(&em_tree->lock);
7a2d6a64 2213 if (!em) {
4a54c8c1
JS
2214 kfree(failrec);
2215 return -EIO;
2216 }
2fe6303e 2217
4a54c8c1
JS
2218 logical = start - em->start;
2219 logical = em->block_start + logical;
2220 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2221 logical = em->block_start;
2222 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2223 extent_set_compress_type(&failrec->bio_flags,
2224 em->compress_type);
2225 }
2fe6303e
MX
2226
2227 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2228 logical, start, failrec->len);
2229
4a54c8c1
JS
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
2235 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2236 if (ret >= 0)
47dc196a 2237 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2fe6303e 2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2fe6303e
MX
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260}
2261
2262int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264{
2265 int num_copies;
2266
5d964051
SB
2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 failrec->logical, failrec->len);
4a54c8c1
JS
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2fe6303e 2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2276 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2277 return 0;
4a54c8c1
JS
2278 }
2279
4a54c8c1
JS
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
4a54c8c1
JS
2312 }
2313
facc8a22 2314 if (failrec->this_mirror > num_copies) {
2fe6303e 2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2316 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2317 return 0;
4a54c8c1
JS
2318 }
2319
2fe6303e
MX
2320 return 1;
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
8b110e39 2327 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2328{
2329 struct bio *bio;
2330 struct btrfs_io_bio *btrfs_failed_bio;
2331 struct btrfs_io_bio *btrfs_bio;
2332
9be3395b 2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2334 if (!bio)
2335 return NULL;
2336
2337 bio->bi_end_io = endio_func;
4f024f37 2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2340 bio->bi_iter.bi_size = 0;
8b110e39 2341 bio->bi_private = data;
4a54c8c1 2342
facc8a22
MX
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348 btrfs_bio = btrfs_io_bio(bio);
2349 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2350 icsum *= csum_size;
2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2352 csum_size);
2353 }
2354
2fe6303e
MX
2355 bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357 return bio;
2358}
2359
2360/*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 struct page *page, u64 start, u64 end,
2370 int failed_mirror)
2371{
2372 struct io_failure_record *failrec;
2373 struct inode *inode = page->mapping->host;
2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 struct bio *bio;
2376 int read_mode;
2377 int ret;
2378
2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 if (!ret) {
2387 free_io_failure(inode, failrec);
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 else
2394 read_mode = READ_SYNC;
2395
2396 phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 start - page_offset(page),
8b110e39
MX
2399 (int)phy_offset, failed_bio->bi_end_io,
2400 NULL);
2fe6303e
MX
2401 if (!bio) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
4a54c8c1 2405
2fe6303e
MX
2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2408
013bd4c3
TI
2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 failrec->this_mirror,
2411 failrec->bio_flags, 0);
6c387ab2 2412 if (ret) {
454ff3de 2413 free_io_failure(inode, failrec);
6c387ab2
MX
2414 bio_put(bio);
2415 }
2416
013bd4c3 2417 return ret;
4a54c8c1
JS
2418}
2419
d1310b2e
CM
2420/* lots and lots of room for performance fixes in the end_bio funcs */
2421
b5227c07 2422void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2423{
2424 int uptodate = (err == 0);
2425 struct extent_io_tree *tree;
3e2426bd 2426 int ret = 0;
87826df0
JM
2427
2428 tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430 if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 ret = tree->ops->writepage_end_io_hook(page, start,
2432 end, NULL, uptodate);
2433 if (ret)
2434 uptodate = 0;
2435 }
2436
87826df0 2437 if (!uptodate) {
87826df0
JM
2438 ClearPageUptodate(page);
2439 SetPageError(page);
5dca6eea
LB
2440 ret = ret < 0 ? ret : -EIO;
2441 mapping_set_error(page->mapping, ret);
87826df0 2442 }
87826df0
JM
2443}
2444
d1310b2e
CM
2445/*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
4246a0b6 2454static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2455{
2c30c71b 2456 struct bio_vec *bvec;
d1310b2e
CM
2457 u64 start;
2458 u64 end;
2c30c71b 2459 int i;
d1310b2e 2460
2c30c71b 2461 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2462 struct page *page = bvec->bv_page;
902b22f3 2463
17a5adcc
AO
2464 /* We always issue full-page reads, but if some block
2465 * in a page fails to read, blk_update_request() will
2466 * advance bv_offset and adjust bv_len to compensate.
2467 * Print a warning for nonzero offsets, and an error
2468 * if they don't add up to a full page. */
09cbfeaf
KS
2469 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 "partial page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 else
2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 "incomplete page write in btrfs with offset %u and "
2477 "length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 }
d1310b2e 2480
17a5adcc
AO
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2483
b5227c07 2484 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2485 end_page_writeback(page);
2c30c71b 2486 }
2b1f55b0 2487
d1310b2e 2488 bio_put(bio);
d1310b2e
CM
2489}
2490
883d0de4
MX
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494{
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
d1310b2e
CM
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
4246a0b6 2514static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2515{
2c30c71b 2516 struct bio_vec *bvec;
4246a0b6 2517 int uptodate = !bio->bi_error;
facc8a22 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2519 struct extent_io_tree *tree;
facc8a22 2520 u64 offset = 0;
d1310b2e
CM
2521 u64 start;
2522 u64 end;
facc8a22 2523 u64 len;
883d0de4
MX
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
5cf1ab56 2526 int mirror;
d1310b2e 2527 int ret;
2c30c71b 2528 int i;
d1310b2e 2529
2c30c71b 2530 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2531 struct page *page = bvec->bv_page;
a71754fc 2532 struct inode *inode = page->mapping->host;
507903b8 2533
be3940c0 2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 bio->bi_error, io_bio->mirror_num);
a71754fc 2537 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2538
17a5adcc
AO
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
09cbfeaf
KS
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 else
2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 "incomplete page read in btrfs with offset %u and "
2552 "length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
d1310b2e 2555
17a5adcc
AO
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2558 len = bvec->bv_len;
d1310b2e 2559
9be3395b 2560 mirror = io_bio->mirror_num;
f2a09da9
MX
2561 if (likely(uptodate && tree->ops &&
2562 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
5ee0844d 2566 if (ret)
d1310b2e 2567 uptodate = 0;
5ee0844d 2568 else
1203b681 2569 clean_io_failure(inode, start, page, 0);
d1310b2e 2570 }
ea466794 2571
f2a09da9
MX
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2577 if (!ret && !bio->bi_error)
ea466794 2578 uptodate = 1;
f2a09da9 2579 } else {
f4a8e656
JS
2580 /*
2581 * The generic bio_readpage_error handles errors the
2582 * following way: If possible, new read requests are
2583 * created and submitted and will end up in
2584 * end_bio_extent_readpage as well (if we're lucky, not
2585 * in the !uptodate case). In that case it returns 0 and
2586 * we just go on with the next page in our bio. If it
2587 * can't handle the error it will return -EIO and we
2588 * remain responsible for that page.
2589 */
facc8a22
MX
2590 ret = bio_readpage_error(bio, offset, page, start, end,
2591 mirror);
7e38326f 2592 if (ret == 0) {
4246a0b6 2593 uptodate = !bio->bi_error;
38c1c2e4 2594 offset += len;
7e38326f
CM
2595 continue;
2596 }
2597 }
f2a09da9 2598readpage_ok:
883d0de4 2599 if (likely(uptodate)) {
a71754fc 2600 loff_t i_size = i_size_read(inode);
09cbfeaf 2601 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2602 unsigned off;
a71754fc
JB
2603
2604 /* Zero out the end if this page straddles i_size */
09cbfeaf 2605 off = i_size & (PAGE_SIZE-1);
a583c026 2606 if (page->index == end_index && off)
09cbfeaf 2607 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2608 SetPageUptodate(page);
70dec807 2609 } else {
17a5adcc
AO
2610 ClearPageUptodate(page);
2611 SetPageError(page);
70dec807 2612 }
17a5adcc 2613 unlock_page(page);
facc8a22 2614 offset += len;
883d0de4
MX
2615
2616 if (unlikely(!uptodate)) {
2617 if (extent_len) {
2618 endio_readpage_release_extent(tree,
2619 extent_start,
2620 extent_len, 1);
2621 extent_start = 0;
2622 extent_len = 0;
2623 }
2624 endio_readpage_release_extent(tree, start,
2625 end - start + 1, 0);
2626 } else if (!extent_len) {
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 } else if (extent_start + extent_len == start) {
2630 extent_len += end + 1 - start;
2631 } else {
2632 endio_readpage_release_extent(tree, extent_start,
2633 extent_len, uptodate);
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 }
2c30c71b 2637 }
d1310b2e 2638
883d0de4
MX
2639 if (extent_len)
2640 endio_readpage_release_extent(tree, extent_start, extent_len,
2641 uptodate);
facc8a22 2642 if (io_bio->end_io)
4246a0b6 2643 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2644 bio_put(bio);
d1310b2e
CM
2645}
2646
9be3395b
CM
2647/*
2648 * this allocates from the btrfs_bioset. We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
2650 */
88f794ed
MX
2651struct bio *
2652btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 gfp_t gfp_flags)
d1310b2e 2654{
facc8a22 2655 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2656 struct bio *bio;
2657
9be3395b 2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2659
2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2661 while (!bio && (nr_vecs /= 2)) {
2662 bio = bio_alloc_bioset(gfp_flags,
2663 nr_vecs, btrfs_bioset);
2664 }
d1310b2e
CM
2665 }
2666
2667 if (bio) {
2668 bio->bi_bdev = bdev;
4f024f37 2669 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2670 btrfs_bio = btrfs_io_bio(bio);
2671 btrfs_bio->csum = NULL;
2672 btrfs_bio->csum_allocated = NULL;
2673 btrfs_bio->end_io = NULL;
d1310b2e
CM
2674 }
2675 return bio;
2676}
2677
9be3395b
CM
2678struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679{
23ea8e5a
MX
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
9be3395b 2682
23ea8e5a
MX
2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 if (new) {
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_bio->csum = NULL;
2687 btrfs_bio->csum_allocated = NULL;
2688 btrfs_bio->end_io = NULL;
3a9508b0
CM
2689
2690#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2691 /* FIXME, put this into bio_clone_bioset */
2692 if (bio->bi_css)
2693 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2694#endif
23ea8e5a
MX
2695 }
2696 return new;
2697}
9be3395b
CM
2698
2699/* this also allocates from the btrfs_bioset */
2700struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701{
facc8a22
MX
2702 struct btrfs_io_bio *btrfs_bio;
2703 struct bio *bio;
2704
2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 if (bio) {
2707 btrfs_bio = btrfs_io_bio(bio);
2708 btrfs_bio->csum = NULL;
2709 btrfs_bio->csum_allocated = NULL;
2710 btrfs_bio->end_io = NULL;
2711 }
2712 return bio;
9be3395b
CM
2713}
2714
2715
355808c2
JM
2716static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 int mirror_num, unsigned long bio_flags)
d1310b2e 2718{
d1310b2e 2719 int ret = 0;
70dec807
CM
2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 struct page *page = bvec->bv_page;
2722 struct extent_io_tree *tree = bio->bi_private;
70dec807 2723 u64 start;
70dec807 2724
4eee4fa4 2725 start = page_offset(page) + bvec->bv_offset;
70dec807 2726
902b22f3 2727 bio->bi_private = NULL;
d1310b2e
CM
2728
2729 bio_get(bio);
2730
065631f6 2731 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2733 mirror_num, bio_flags, start);
0b86a832 2734 else
21adbd5c 2735 btrfsic_submit_bio(rw, bio);
4a54c8c1 2736
d1310b2e
CM
2737 bio_put(bio);
2738 return ret;
2739}
2740
64a16701 2741static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2742 unsigned long offset, size_t size, struct bio *bio,
2743 unsigned long bio_flags)
2744{
2745 int ret = 0;
2746 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2748 bio_flags);
2749 BUG_ON(ret < 0);
2750 return ret;
2751
2752}
2753
d1310b2e 2754static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2755 struct writeback_control *wbc,
d1310b2e
CM
2756 struct page *page, sector_t sector,
2757 size_t size, unsigned long offset,
2758 struct block_device *bdev,
2759 struct bio **bio_ret,
2760 unsigned long max_pages,
f188591e 2761 bio_end_io_t end_io_func,
c8b97818
CM
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
005efedf
FM
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
d1310b2e
CM
2766{
2767 int ret = 0;
2768 struct bio *bio;
c8b97818 2769 int contig = 0;
c8b97818 2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
c8b97818 2775 if (old_compressed)
4f024f37 2776 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2777 else
f73a1c7d 2778 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2781 force_bio_submit ||
64a16701 2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(rw, bio, mirror_num,
2785 prev_bio_flags);
289454ad
NA
2786 if (ret < 0) {
2787 *bio_ret = NULL;
79787eaa 2788 return ret;
289454ad 2789 }
d1310b2e
CM
2790 bio = NULL;
2791 } else {
da2f0f74
CM
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2794 return 0;
2795 }
2796 }
c8b97818 2797
b54ffb73
KO
2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2800 if (!bio)
2801 return -ENOMEM;
70dec807 2802
c8b97818 2803 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2804 bio->bi_end_io = end_io_func;
2805 bio->bi_private = tree;
da2f0f74
CM
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
70dec807 2810
d397712b 2811 if (bio_ret)
d1310b2e 2812 *bio_ret = bio;
d397712b 2813 else
c8b97818 2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2815
2816 return ret;
2817}
2818
48a3b636
ES
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
d1310b2e
CM
2821{
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
09cbfeaf 2824 get_page(page);
4f2de97a
JB
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2828 }
2829}
2830
4f2de97a 2831void set_page_extent_mapped(struct page *page)
d1310b2e 2832{
4f2de97a
JB
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
09cbfeaf 2835 get_page(page);
4f2de97a
JB
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
d1310b2e
CM
2838}
2839
125bac01
MX
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844{
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
cbc0e928 2849 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
2859 em = get_extent(inode, page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866}
d1310b2e
CM
2867/*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
79787eaa 2871 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2872 */
9974090b
MX
2873static int __do_readpage(struct extent_io_tree *tree,
2874 struct page *page,
2875 get_extent_t *get_extent,
125bac01 2876 struct extent_map **em_cached,
9974090b 2877 struct bio **bio, int mirror_num,
005efedf
FM
2878 unsigned long *bio_flags, int rw,
2879 u64 *prev_em_start)
d1310b2e
CM
2880{
2881 struct inode *inode = page->mapping->host;
4eee4fa4 2882 u64 start = page_offset(page);
09cbfeaf 2883 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
306e16ce 2895 size_t pg_offset = 0;
d1310b2e 2896 size_t iosize;
c8b97818 2897 size_t disk_io_size;
d1310b2e 2898 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2899 unsigned long this_bio_flag = 0;
d1310b2e
CM
2900
2901 set_page_extent_mapped(page);
2902
9974090b 2903 end = page_end;
90a887c9
DM
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2907 unlock_extent(tree, start, end);
90a887c9
DM
2908 goto out;
2909 }
2910 }
2911
09cbfeaf 2912 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2913 char *userpage;
09cbfeaf 2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2915
2916 if (zero_offset) {
09cbfeaf 2917 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2918 userpage = kmap_atomic(page);
c8b97818
CM
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
7ac687d9 2921 kunmap_atomic(userpage);
c8b97818
CM
2922 }
2923 }
d1310b2e 2924 while (cur <= end) {
09cbfeaf 2925 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2926 bool force_bio_submit = false;
c8f2f24b 2927
d1310b2e
CM
2928 if (cur >= last_byte) {
2929 char *userpage;
507903b8
AJ
2930 struct extent_state *cached = NULL;
2931
09cbfeaf 2932 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2933 userpage = kmap_atomic(page);
306e16ce 2934 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2935 flush_dcache_page(page);
7ac687d9 2936 kunmap_atomic(userpage);
d1310b2e 2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2938 &cached, GFP_NOFS);
7f042a83
FM
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
d1310b2e
CM
2942 break;
2943 }
125bac01
MX
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
c704005d 2946 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2947 SetPageError(page);
7f042a83 2948 unlock_extent(tree, cur, end);
d1310b2e
CM
2949 break;
2950 }
d1310b2e
CM
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
261507a0 2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
c8b97818 2960
d1310b2e
CM
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2963 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
d1310b2e
CM
2971 bdev = em->bdev;
2972 block_start = em->block_start;
d899e052
YZ
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
d1310b2e
CM
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
507903b8
AJ
3024 struct extent_state *cached = NULL;
3025
7ac687d9 3026 userpage = kmap_atomic(page);
306e16ce 3027 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3028 flush_dcache_page(page);
7ac687d9 3029 kunmap_atomic(userpage);
d1310b2e
CM
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3032 &cached, GFP_NOFS);
7f042a83
FM
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
d1310b2e 3036 cur = cur + iosize;
306e16ce 3037 pg_offset += iosize;
d1310b2e
CM
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
9655d298
CM
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3043 check_page_uptodate(tree, page);
7f042a83 3044 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3045 cur = cur + iosize;
306e16ce 3046 pg_offset += iosize;
d1310b2e
CM
3047 continue;
3048 }
70dec807
CM
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
7f042a83 3054 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3055 cur = cur + iosize;
306e16ce 3056 pg_offset += iosize;
70dec807
CM
3057 continue;
3058 }
d1310b2e 3059
c8f2f24b 3060 pnr -= page->index;
da2f0f74 3061 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3062 sector, disk_io_size, pg_offset,
89642229 3063 bdev, bio, pnr,
c8b97818
CM
3064 end_bio_extent_readpage, mirror_num,
3065 *bio_flags,
005efedf
FM
3066 this_bio_flag,
3067 force_bio_submit);
c8f2f24b
JB
3068 if (!ret) {
3069 nr++;
3070 *bio_flags = this_bio_flag;
3071 } else {
d1310b2e 3072 SetPageError(page);
7f042a83 3073 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3074 }
d1310b2e 3075 cur = cur + iosize;
306e16ce 3076 pg_offset += iosize;
d1310b2e 3077 }
90a887c9 3078out:
d1310b2e
CM
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
3084 return 0;
3085}
3086
9974090b
MX
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
125bac01 3091 struct extent_map **em_cached,
9974090b 3092 struct bio **bio, int mirror_num,
808f80b4
FM
3093 unsigned long *bio_flags, int rw,
3094 u64 *prev_em_start)
9974090b
MX
3095{
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(inode, start,
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
125bac01 3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3114 mirror_num, bio_flags, rw, prev_em_start);
09cbfeaf 3115 put_page(pages[index]);
9974090b
MX
3116 }
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
125bac01 3122 struct extent_map **em_cached,
9974090b 3123 struct bio **bio, int mirror_num,
808f80b4
FM
3124 unsigned long *bio_flags, int rw,
3125 u64 *prev_em_start)
9974090b 3126{
35a3621b 3127 u64 start = 0;
9974090b
MX
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
35a3621b 3131 int first_index = 0;
9974090b
MX
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
09cbfeaf 3137 end = start + PAGE_SIZE - 1;
9974090b
MX
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
09cbfeaf 3140 end += PAGE_SIZE;
9974090b
MX
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
125bac01
MX
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
808f80b4 3146 rw, prev_em_start);
9974090b 3147 start = page_start;
09cbfeaf 3148 end = start + PAGE_SIZE - 1;
9974090b
MX
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
125bac01 3156 end, get_extent, em_cached, bio,
808f80b4
FM
3157 mirror_num, bio_flags, rw,
3158 prev_em_start);
9974090b
MX
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int rw)
3166{
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
09cbfeaf 3170 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
dbfdb6d1 3175 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3176 PAGE_SIZE);
9974090b
MX
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
125bac01 3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3185 bio_flags, rw, NULL);
9974090b
MX
3186 return ret;
3187}
3188
d1310b2e 3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3190 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3191{
3192 struct bio *bio = NULL;
c8b97818 3193 unsigned long bio_flags = 0;
d1310b2e
CM
3194 int ret;
3195
8ddc7d9c 3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3197 &bio_flags, READ);
d1310b2e 3198 if (bio)
8ddc7d9c 3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3200 return ret;
3201}
d1310b2e 3202
11c8349b
CM
3203static noinline void update_nr_written(struct page *page,
3204 struct writeback_control *wbc,
3205 unsigned long nr_written)
3206{
3207 wbc->nr_to_write -= nr_written;
3208 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3209 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3210 page->mapping->writeback_index = page->index + nr_written;
3211}
3212
d1310b2e 3213/*
40f76580
CM
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
d1310b2e 3222 */
40f76580
CM
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228{
3229 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
dcab6a3b 3245 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
ea1754a0
KS
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
40f76580
CM
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3271 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298done:
3299 return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 int write_flags, int *nr_ret)
d1310b2e 3317{
d1310b2e 3318 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3319 u64 start = page_offset(page);
09cbfeaf 3320 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
d1310b2e
CM
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
2c64c53d 3327 struct extent_state *cached_state = NULL;
d1310b2e
CM
3328 struct extent_map *em;
3329 struct block_device *bdev;
7f3c74fb 3330 size_t pg_offset = 0;
d1310b2e 3331 size_t blocksize;
40f76580
CM
3332 int ret = 0;
3333 int nr = 0;
3334 bool compressed;
c8b97818 3335
247e743c 3336 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3337 ret = tree->ops->writepage_start_hook(page, start,
3338 page_end);
87826df0
JM
3339 if (ret) {
3340 /* Fixup worker will requeue */
3341 if (ret == -EBUSY)
3342 wbc->pages_skipped++;
3343 else
3344 redirty_page_for_writepage(wbc, page);
40f76580 3345
11c8349b 3346 update_nr_written(page, wbc, nr_written);
247e743c 3347 unlock_page(page);
40f76580 3348 ret = 1;
11c8349b 3349 goto done_unlocked;
247e743c
CM
3350 }
3351 }
3352
11c8349b
CM
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(page, wbc, nr_written + 1);
771ed689 3358
d1310b2e 3359 end = page_end;
40f76580 3360 if (i_size <= start) {
e6dcd2dc
CM
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
d1310b2e
CM
3364 goto done;
3365 }
3366
d1310b2e
CM
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
40f76580 3370 u64 em_end;
58409edd
DS
3371 unsigned long max_nr;
3372
40f76580 3373 if (cur >= i_size) {
e6dcd2dc
CM
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
d1310b2e
CM
3377 break;
3378 }
7f3c74fb 3379 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3380 end - cur + 1, 1);
c704005d 3381 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3382 SetPageError(page);
61391d56 3383 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
40f76580
CM
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
d1310b2e 3390 BUG_ON(end < cur);
40f76580 3391 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3392 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3393 sector = (em->block_start + extent_offset) >> 9;
3394 bdev = em->bdev;
3395 block_start = em->block_start;
c8b97818 3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3397 free_extent_map(em);
3398 em = NULL;
3399
c8b97818
CM
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3405 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
c8b97818
CM
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
7f3c74fb 3424 pg_offset += iosize;
d1310b2e
CM
3425 continue;
3426 }
c8b97818 3427
58409edd
DS
3428 max_nr = (i_size >> PAGE_SHIFT) + 1;
3429
3430 set_range_writeback(tree, cur, cur + iosize - 1);
3431 if (!PageWriteback(page)) {
3432 btrfs_err(BTRFS_I(inode)->root->fs_info,
3433 "page %lu not writeback, cur %llu end %llu",
3434 page->index, cur, end);
d1310b2e 3435 }
7f3c74fb 3436
58409edd
DS
3437 ret = submit_extent_page(write_flags, tree, wbc, page,
3438 sector, iosize, pg_offset,
3439 bdev, &epd->bio, max_nr,
3440 end_bio_extent_writepage,
3441 0, 0, 0, false);
3442 if (ret)
3443 SetPageError(page);
d1310b2e 3444
d1310b2e 3445 cur = cur + iosize;
7f3c74fb 3446 pg_offset += iosize;
d1310b2e
CM
3447 nr++;
3448 }
40f76580
CM
3449done:
3450 *nr_ret = nr;
3451
3452done_unlocked:
3453
3454 /* drop our reference on any cached states */
3455 free_extent_state(cached_state);
3456 return ret;
3457}
3458
3459/*
3460 * the writepage semantics are similar to regular writepage. extent
3461 * records are inserted to lock ranges in the tree, and as dirty areas
3462 * are found, they are marked writeback. Then the lock bits are removed
3463 * and the end_io handler clears the writeback ranges
3464 */
3465static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3466 void *data)
3467{
3468 struct inode *inode = page->mapping->host;
3469 struct extent_page_data *epd = data;
3470 u64 start = page_offset(page);
09cbfeaf 3471 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3472 int ret;
3473 int nr = 0;
3474 size_t pg_offset = 0;
3475 loff_t i_size = i_size_read(inode);
09cbfeaf 3476 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3477 int write_flags;
3478 unsigned long nr_written = 0;
3479
3480 if (wbc->sync_mode == WB_SYNC_ALL)
3481 write_flags = WRITE_SYNC;
3482 else
3483 write_flags = WRITE;
3484
3485 trace___extent_writepage(page, inode, wbc);
3486
3487 WARN_ON(!PageLocked(page));
3488
3489 ClearPageError(page);
3490
09cbfeaf 3491 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3492 if (page->index > end_index ||
3493 (page->index == end_index && !pg_offset)) {
09cbfeaf 3494 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3495 unlock_page(page);
3496 return 0;
3497 }
3498
3499 if (page->index == end_index) {
3500 char *userpage;
3501
3502 userpage = kmap_atomic(page);
3503 memset(userpage + pg_offset, 0,
09cbfeaf 3504 PAGE_SIZE - pg_offset);
40f76580
CM
3505 kunmap_atomic(userpage);
3506 flush_dcache_page(page);
3507 }
3508
3509 pg_offset = 0;
3510
3511 set_page_extent_mapped(page);
3512
3513 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3514 if (ret == 1)
3515 goto done_unlocked;
3516 if (ret)
3517 goto done;
3518
3519 ret = __extent_writepage_io(inode, page, wbc, epd,
3520 i_size, nr_written, write_flags, &nr);
3521 if (ret == 1)
3522 goto done_unlocked;
3523
d1310b2e
CM
3524done:
3525 if (nr == 0) {
3526 /* make sure the mapping tag for page dirty gets cleared */
3527 set_page_writeback(page);
3528 end_page_writeback(page);
3529 }
61391d56
FM
3530 if (PageError(page)) {
3531 ret = ret < 0 ? ret : -EIO;
3532 end_extent_writepage(page, ret, start, page_end);
3533 }
d1310b2e 3534 unlock_page(page);
40f76580 3535 return ret;
771ed689 3536
11c8349b 3537done_unlocked:
d1310b2e
CM
3538 return 0;
3539}
3540
fd8b2b61 3541void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3542{
74316201
N
3543 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3544 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3545}
3546
0e378df1
CM
3547static noinline_for_stack int
3548lock_extent_buffer_for_io(struct extent_buffer *eb,
3549 struct btrfs_fs_info *fs_info,
3550 struct extent_page_data *epd)
0b32f4bb
JB
3551{
3552 unsigned long i, num_pages;
3553 int flush = 0;
3554 int ret = 0;
3555
3556 if (!btrfs_try_tree_write_lock(eb)) {
3557 flush = 1;
3558 flush_write_bio(epd);
3559 btrfs_tree_lock(eb);
3560 }
3561
3562 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3563 btrfs_tree_unlock(eb);
3564 if (!epd->sync_io)
3565 return 0;
3566 if (!flush) {
3567 flush_write_bio(epd);
3568 flush = 1;
3569 }
a098d8e8
CM
3570 while (1) {
3571 wait_on_extent_buffer_writeback(eb);
3572 btrfs_tree_lock(eb);
3573 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3574 break;
0b32f4bb 3575 btrfs_tree_unlock(eb);
0b32f4bb
JB
3576 }
3577 }
3578
51561ffe
JB
3579 /*
3580 * We need to do this to prevent races in people who check if the eb is
3581 * under IO since we can end up having no IO bits set for a short period
3582 * of time.
3583 */
3584 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3585 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3586 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3587 spin_unlock(&eb->refs_lock);
0b32f4bb 3588 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3589 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3590 -eb->len,
3591 fs_info->dirty_metadata_batch);
0b32f4bb 3592 ret = 1;
51561ffe
JB
3593 } else {
3594 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3595 }
3596
3597 btrfs_tree_unlock(eb);
3598
3599 if (!ret)
3600 return ret;
3601
3602 num_pages = num_extent_pages(eb->start, eb->len);
3603 for (i = 0; i < num_pages; i++) {
fb85fc9a 3604 struct page *p = eb->pages[i];
0b32f4bb
JB
3605
3606 if (!trylock_page(p)) {
3607 if (!flush) {
3608 flush_write_bio(epd);
3609 flush = 1;
3610 }
3611 lock_page(p);
3612 }
3613 }
3614
3615 return ret;
3616}
3617
3618static void end_extent_buffer_writeback(struct extent_buffer *eb)
3619{
3620 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3621 smp_mb__after_atomic();
0b32f4bb
JB
3622 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3623}
3624
656f30db
FM
3625static void set_btree_ioerr(struct page *page)
3626{
3627 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3628 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3629
3630 SetPageError(page);
3631 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3632 return;
3633
3634 /*
3635 * If writeback for a btree extent that doesn't belong to a log tree
3636 * failed, increment the counter transaction->eb_write_errors.
3637 * We do this because while the transaction is running and before it's
3638 * committing (when we call filemap_fdata[write|wait]_range against
3639 * the btree inode), we might have
3640 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3641 * returns an error or an error happens during writeback, when we're
3642 * committing the transaction we wouldn't know about it, since the pages
3643 * can be no longer dirty nor marked anymore for writeback (if a
3644 * subsequent modification to the extent buffer didn't happen before the
3645 * transaction commit), which makes filemap_fdata[write|wait]_range not
3646 * able to find the pages tagged with SetPageError at transaction
3647 * commit time. So if this happens we must abort the transaction,
3648 * otherwise we commit a super block with btree roots that point to
3649 * btree nodes/leafs whose content on disk is invalid - either garbage
3650 * or the content of some node/leaf from a past generation that got
3651 * cowed or deleted and is no longer valid.
3652 *
3653 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3654 * not be enough - we need to distinguish between log tree extents vs
3655 * non-log tree extents, and the next filemap_fdatawait_range() call
3656 * will catch and clear such errors in the mapping - and that call might
3657 * be from a log sync and not from a transaction commit. Also, checking
3658 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3659 * not done and would not be reliable - the eb might have been released
3660 * from memory and reading it back again means that flag would not be
3661 * set (since it's a runtime flag, not persisted on disk).
3662 *
3663 * Using the flags below in the btree inode also makes us achieve the
3664 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3665 * writeback for all dirty pages and before filemap_fdatawait_range()
3666 * is called, the writeback for all dirty pages had already finished
3667 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3668 * filemap_fdatawait_range() would return success, as it could not know
3669 * that writeback errors happened (the pages were no longer tagged for
3670 * writeback).
3671 */
3672 switch (eb->log_index) {
3673 case -1:
3674 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3675 break;
3676 case 0:
3677 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3678 break;
3679 case 1:
3680 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3681 break;
3682 default:
3683 BUG(); /* unexpected, logic error */
3684 }
3685}
3686
4246a0b6 3687static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3688{
2c30c71b 3689 struct bio_vec *bvec;
0b32f4bb 3690 struct extent_buffer *eb;
2c30c71b 3691 int i, done;
0b32f4bb 3692
2c30c71b 3693 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3694 struct page *page = bvec->bv_page;
3695
0b32f4bb
JB
3696 eb = (struct extent_buffer *)page->private;
3697 BUG_ON(!eb);
3698 done = atomic_dec_and_test(&eb->io_pages);
3699
4246a0b6
CH
3700 if (bio->bi_error ||
3701 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3702 ClearPageUptodate(page);
656f30db 3703 set_btree_ioerr(page);
0b32f4bb
JB
3704 }
3705
3706 end_page_writeback(page);
3707
3708 if (!done)
3709 continue;
3710
3711 end_extent_buffer_writeback(eb);
2c30c71b 3712 }
0b32f4bb
JB
3713
3714 bio_put(bio);
0b32f4bb
JB
3715}
3716
0e378df1 3717static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3718 struct btrfs_fs_info *fs_info,
3719 struct writeback_control *wbc,
3720 struct extent_page_data *epd)
3721{
3722 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3723 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3724 u64 offset = eb->start;
3725 unsigned long i, num_pages;
de0022b9 3726 unsigned long bio_flags = 0;
d4c7ca86 3727 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3728 int ret = 0;
0b32f4bb 3729
656f30db 3730 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3731 num_pages = num_extent_pages(eb->start, eb->len);
3732 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3733 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3734 bio_flags = EXTENT_BIO_TREE_LOG;
3735
0b32f4bb 3736 for (i = 0; i < num_pages; i++) {
fb85fc9a 3737 struct page *p = eb->pages[i];
0b32f4bb
JB
3738
3739 clear_page_dirty_for_io(p);
3740 set_page_writeback(p);
da2f0f74 3741 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
09cbfeaf 3742 PAGE_SIZE, 0, bdev, &epd->bio,
0b32f4bb 3743 -1, end_bio_extent_buffer_writepage,
005efedf 3744 0, epd->bio_flags, bio_flags, false);
de0022b9 3745 epd->bio_flags = bio_flags;
0b32f4bb 3746 if (ret) {
656f30db 3747 set_btree_ioerr(p);
55e3bd2e 3748 end_page_writeback(p);
0b32f4bb
JB
3749 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3750 end_extent_buffer_writeback(eb);
3751 ret = -EIO;
3752 break;
3753 }
09cbfeaf 3754 offset += PAGE_SIZE;
0b32f4bb
JB
3755 update_nr_written(p, wbc, 1);
3756 unlock_page(p);
3757 }
3758
3759 if (unlikely(ret)) {
3760 for (; i < num_pages; i++) {
bbf65cf0 3761 struct page *p = eb->pages[i];
81465028 3762 clear_page_dirty_for_io(p);
0b32f4bb
JB
3763 unlock_page(p);
3764 }
3765 }
3766
3767 return ret;
3768}
3769
3770int btree_write_cache_pages(struct address_space *mapping,
3771 struct writeback_control *wbc)
3772{
3773 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3774 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3775 struct extent_buffer *eb, *prev_eb = NULL;
3776 struct extent_page_data epd = {
3777 .bio = NULL,
3778 .tree = tree,
3779 .extent_locked = 0,
3780 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3781 .bio_flags = 0,
0b32f4bb
JB
3782 };
3783 int ret = 0;
3784 int done = 0;
3785 int nr_to_write_done = 0;
3786 struct pagevec pvec;
3787 int nr_pages;
3788 pgoff_t index;
3789 pgoff_t end; /* Inclusive */
3790 int scanned = 0;
3791 int tag;
3792
3793 pagevec_init(&pvec, 0);
3794 if (wbc->range_cyclic) {
3795 index = mapping->writeback_index; /* Start from prev offset */
3796 end = -1;
3797 } else {
09cbfeaf
KS
3798 index = wbc->range_start >> PAGE_SHIFT;
3799 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3800 scanned = 1;
3801 }
3802 if (wbc->sync_mode == WB_SYNC_ALL)
3803 tag = PAGECACHE_TAG_TOWRITE;
3804 else
3805 tag = PAGECACHE_TAG_DIRTY;
3806retry:
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag_pages_for_writeback(mapping, index, end);
3809 while (!done && !nr_to_write_done && (index <= end) &&
3810 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3811 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3812 unsigned i;
3813
3814 scanned = 1;
3815 for (i = 0; i < nr_pages; i++) {
3816 struct page *page = pvec.pages[i];
3817
3818 if (!PagePrivate(page))
3819 continue;
3820
3821 if (!wbc->range_cyclic && page->index > end) {
3822 done = 1;
3823 break;
3824 }
3825
b5bae261
JB
3826 spin_lock(&mapping->private_lock);
3827 if (!PagePrivate(page)) {
3828 spin_unlock(&mapping->private_lock);
3829 continue;
3830 }
3831
0b32f4bb 3832 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3833
3834 /*
3835 * Shouldn't happen and normally this would be a BUG_ON
3836 * but no sense in crashing the users box for something
3837 * we can survive anyway.
3838 */
fae7f21c 3839 if (WARN_ON(!eb)) {
b5bae261 3840 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3841 continue;
3842 }
3843
b5bae261
JB
3844 if (eb == prev_eb) {
3845 spin_unlock(&mapping->private_lock);
0b32f4bb 3846 continue;
b5bae261 3847 }
0b32f4bb 3848
b5bae261
JB
3849 ret = atomic_inc_not_zero(&eb->refs);
3850 spin_unlock(&mapping->private_lock);
3851 if (!ret)
0b32f4bb 3852 continue;
0b32f4bb
JB
3853
3854 prev_eb = eb;
3855 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3856 if (!ret) {
3857 free_extent_buffer(eb);
3858 continue;
3859 }
3860
3861 ret = write_one_eb(eb, fs_info, wbc, &epd);
3862 if (ret) {
3863 done = 1;
3864 free_extent_buffer(eb);
3865 break;
3866 }
3867 free_extent_buffer(eb);
3868
3869 /*
3870 * the filesystem may choose to bump up nr_to_write.
3871 * We have to make sure to honor the new nr_to_write
3872 * at any time
3873 */
3874 nr_to_write_done = wbc->nr_to_write <= 0;
3875 }
3876 pagevec_release(&pvec);
3877 cond_resched();
3878 }
3879 if (!scanned && !done) {
3880 /*
3881 * We hit the last page and there is more work to be done: wrap
3882 * back to the start of the file
3883 */
3884 scanned = 1;
3885 index = 0;
3886 goto retry;
3887 }
3888 flush_write_bio(&epd);
3889 return ret;
3890}
3891
d1310b2e 3892/**
4bef0848 3893 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3894 * @mapping: address space structure to write
3895 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3896 * @writepage: function called for each page
3897 * @data: data passed to writepage function
3898 *
3899 * If a page is already under I/O, write_cache_pages() skips it, even
3900 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3901 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3902 * and msync() need to guarantee that all the data which was dirty at the time
3903 * the call was made get new I/O started against them. If wbc->sync_mode is
3904 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3905 * existing IO to complete.
3906 */
b2950863 3907static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3908 struct address_space *mapping,
3909 struct writeback_control *wbc,
d2c3f4f6
CM
3910 writepage_t writepage, void *data,
3911 void (*flush_fn)(void *))
d1310b2e 3912{
7fd1a3f7 3913 struct inode *inode = mapping->host;
d1310b2e
CM
3914 int ret = 0;
3915 int done = 0;
61391d56 3916 int err = 0;
f85d7d6c 3917 int nr_to_write_done = 0;
d1310b2e
CM
3918 struct pagevec pvec;
3919 int nr_pages;
3920 pgoff_t index;
3921 pgoff_t end; /* Inclusive */
3922 int scanned = 0;
f7aaa06b 3923 int tag;
d1310b2e 3924
7fd1a3f7
JB
3925 /*
3926 * We have to hold onto the inode so that ordered extents can do their
3927 * work when the IO finishes. The alternative to this is failing to add
3928 * an ordered extent if the igrab() fails there and that is a huge pain
3929 * to deal with, so instead just hold onto the inode throughout the
3930 * writepages operation. If it fails here we are freeing up the inode
3931 * anyway and we'd rather not waste our time writing out stuff that is
3932 * going to be truncated anyway.
3933 */
3934 if (!igrab(inode))
3935 return 0;
3936
d1310b2e
CM
3937 pagevec_init(&pvec, 0);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
09cbfeaf
KS
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
d1310b2e
CM
3944 scanned = 1;
3945 }
f7aaa06b
JB
3946 if (wbc->sync_mode == WB_SYNC_ALL)
3947 tag = PAGECACHE_TAG_TOWRITE;
3948 else
3949 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3950retry:
f7aaa06b
JB
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3953 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
3962 /*
3963 * At this point we hold neither mapping->tree_lock nor
3964 * lock on the page itself: the page may be truncated or
3965 * invalidated (changing page->mapping to NULL), or even
3966 * swizzled back from swapper_space to tmpfs file
3967 * mapping
3968 */
c8f2f24b
JB
3969 if (!trylock_page(page)) {
3970 flush_fn(data);
3971 lock_page(page);
01d658f2 3972 }
d1310b2e
CM
3973
3974 if (unlikely(page->mapping != mapping)) {
3975 unlock_page(page);
3976 continue;
3977 }
3978
3979 if (!wbc->range_cyclic && page->index > end) {
3980 done = 1;
3981 unlock_page(page);
3982 continue;
3983 }
3984
d2c3f4f6 3985 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3986 if (PageWriteback(page))
3987 flush_fn(data);
d1310b2e 3988 wait_on_page_writeback(page);
d2c3f4f6 3989 }
d1310b2e
CM
3990
3991 if (PageWriteback(page) ||
3992 !clear_page_dirty_for_io(page)) {
3993 unlock_page(page);
3994 continue;
3995 }
3996
3997 ret = (*writepage)(page, wbc, data);
3998
3999 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4000 unlock_page(page);
4001 ret = 0;
4002 }
61391d56
FM
4003 if (!err && ret < 0)
4004 err = ret;
f85d7d6c
CM
4005
4006 /*
4007 * the filesystem may choose to bump up nr_to_write.
4008 * We have to make sure to honor the new nr_to_write
4009 * at any time
4010 */
4011 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4012 }
4013 pagevec_release(&pvec);
4014 cond_resched();
4015 }
61391d56 4016 if (!scanned && !done && !err) {
d1310b2e
CM
4017 /*
4018 * We hit the last page and there is more work to be done: wrap
4019 * back to the start of the file
4020 */
4021 scanned = 1;
4022 index = 0;
4023 goto retry;
4024 }
7fd1a3f7 4025 btrfs_add_delayed_iput(inode);
61391d56 4026 return err;
d1310b2e 4027}
d1310b2e 4028
ffbd517d 4029static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4030{
d2c3f4f6 4031 if (epd->bio) {
355808c2
JM
4032 int rw = WRITE;
4033 int ret;
4034
ffbd517d 4035 if (epd->sync_io)
355808c2
JM
4036 rw = WRITE_SYNC;
4037
de0022b9 4038 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4039 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4040 epd->bio = NULL;
4041 }
4042}
4043
ffbd517d
CM
4044static noinline void flush_write_bio(void *data)
4045{
4046 struct extent_page_data *epd = data;
4047 flush_epd_write_bio(epd);
4048}
4049
d1310b2e
CM
4050int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4051 get_extent_t *get_extent,
4052 struct writeback_control *wbc)
4053{
4054 int ret;
d1310b2e
CM
4055 struct extent_page_data epd = {
4056 .bio = NULL,
4057 .tree = tree,
4058 .get_extent = get_extent,
771ed689 4059 .extent_locked = 0,
ffbd517d 4060 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4061 .bio_flags = 0,
d1310b2e 4062 };
d1310b2e 4063
d1310b2e
CM
4064 ret = __extent_writepage(page, wbc, &epd);
4065
ffbd517d 4066 flush_epd_write_bio(&epd);
d1310b2e
CM
4067 return ret;
4068}
d1310b2e 4069
771ed689
CM
4070int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4071 u64 start, u64 end, get_extent_t *get_extent,
4072 int mode)
4073{
4074 int ret = 0;
4075 struct address_space *mapping = inode->i_mapping;
4076 struct page *page;
09cbfeaf
KS
4077 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078 PAGE_SHIFT;
771ed689
CM
4079
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .get_extent = get_extent,
4084 .extent_locked = 1,
ffbd517d 4085 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4086 .bio_flags = 0,
771ed689
CM
4087 };
4088 struct writeback_control wbc_writepages = {
771ed689 4089 .sync_mode = mode,
771ed689
CM
4090 .nr_to_write = nr_pages * 2,
4091 .range_start = start,
4092 .range_end = end + 1,
4093 };
4094
d397712b 4095 while (start <= end) {
09cbfeaf 4096 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4097 if (clear_page_dirty_for_io(page))
4098 ret = __extent_writepage(page, &wbc_writepages, &epd);
4099 else {
4100 if (tree->ops && tree->ops->writepage_end_io_hook)
4101 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4102 start + PAGE_SIZE - 1,
771ed689
CM
4103 NULL, 1);
4104 unlock_page(page);
4105 }
09cbfeaf
KS
4106 put_page(page);
4107 start += PAGE_SIZE;
771ed689
CM
4108 }
4109
ffbd517d 4110 flush_epd_write_bio(&epd);
771ed689
CM
4111 return ret;
4112}
d1310b2e
CM
4113
4114int extent_writepages(struct extent_io_tree *tree,
4115 struct address_space *mapping,
4116 get_extent_t *get_extent,
4117 struct writeback_control *wbc)
4118{
4119 int ret = 0;
4120 struct extent_page_data epd = {
4121 .bio = NULL,
4122 .tree = tree,
4123 .get_extent = get_extent,
771ed689 4124 .extent_locked = 0,
ffbd517d 4125 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4126 .bio_flags = 0,
d1310b2e
CM
4127 };
4128
4bef0848 4129 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4130 __extent_writepage, &epd,
4131 flush_write_bio);
ffbd517d 4132 flush_epd_write_bio(&epd);
d1310b2e
CM
4133 return ret;
4134}
d1310b2e
CM
4135
4136int extent_readpages(struct extent_io_tree *tree,
4137 struct address_space *mapping,
4138 struct list_head *pages, unsigned nr_pages,
4139 get_extent_t get_extent)
4140{
4141 struct bio *bio = NULL;
4142 unsigned page_idx;
c8b97818 4143 unsigned long bio_flags = 0;
67c9684f
LB
4144 struct page *pagepool[16];
4145 struct page *page;
125bac01 4146 struct extent_map *em_cached = NULL;
67c9684f 4147 int nr = 0;
808f80b4 4148 u64 prev_em_start = (u64)-1;
d1310b2e 4149
d1310b2e 4150 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4151 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4152
4153 prefetchw(&page->flags);
4154 list_del(&page->lru);
67c9684f 4155 if (add_to_page_cache_lru(page, mapping,
43e817a1 4156 page->index, GFP_NOFS)) {
09cbfeaf 4157 put_page(page);
67c9684f 4158 continue;
d1310b2e 4159 }
67c9684f
LB
4160
4161 pagepool[nr++] = page;
4162 if (nr < ARRAY_SIZE(pagepool))
4163 continue;
125bac01 4164 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4165 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4166 nr = 0;
d1310b2e 4167 }
9974090b 4168 if (nr)
125bac01 4169 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4170 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4171
125bac01
MX
4172 if (em_cached)
4173 free_extent_map(em_cached);
4174
d1310b2e
CM
4175 BUG_ON(!list_empty(pages));
4176 if (bio)
79787eaa 4177 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4178 return 0;
4179}
d1310b2e
CM
4180
4181/*
4182 * basic invalidatepage code, this waits on any locked or writeback
4183 * ranges corresponding to the page, and then deletes any extent state
4184 * records from the tree
4185 */
4186int extent_invalidatepage(struct extent_io_tree *tree,
4187 struct page *page, unsigned long offset)
4188{
2ac55d41 4189 struct extent_state *cached_state = NULL;
4eee4fa4 4190 u64 start = page_offset(page);
09cbfeaf 4191 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4192 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4193
fda2832f 4194 start += ALIGN(offset, blocksize);
d1310b2e
CM
4195 if (start > end)
4196 return 0;
4197
ff13db41 4198 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4199 wait_on_page_writeback(page);
d1310b2e 4200 clear_extent_bit(tree, start, end,
32c00aff
JB
4201 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4202 EXTENT_DO_ACCOUNTING,
2ac55d41 4203 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4204 return 0;
4205}
d1310b2e 4206
7b13b7b1
CM
4207/*
4208 * a helper for releasepage, this tests for areas of the page that
4209 * are locked or under IO and drops the related state bits if it is safe
4210 * to drop the page.
4211 */
48a3b636
ES
4212static int try_release_extent_state(struct extent_map_tree *map,
4213 struct extent_io_tree *tree,
4214 struct page *page, gfp_t mask)
7b13b7b1 4215{
4eee4fa4 4216 u64 start = page_offset(page);
09cbfeaf 4217 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4218 int ret = 1;
4219
211f90e6 4220 if (test_range_bit(tree, start, end,
8b62b72b 4221 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4222 ret = 0;
4223 else {
4224 if ((mask & GFP_NOFS) == GFP_NOFS)
4225 mask = GFP_NOFS;
11ef160f
CM
4226 /*
4227 * at this point we can safely clear everything except the
4228 * locked bit and the nodatasum bit
4229 */
e3f24cc5 4230 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4231 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4232 0, 0, NULL, mask);
e3f24cc5
CM
4233
4234 /* if clear_extent_bit failed for enomem reasons,
4235 * we can't allow the release to continue.
4236 */
4237 if (ret < 0)
4238 ret = 0;
4239 else
4240 ret = 1;
7b13b7b1
CM
4241 }
4242 return ret;
4243}
7b13b7b1 4244
d1310b2e
CM
4245/*
4246 * a helper for releasepage. As long as there are no locked extents
4247 * in the range corresponding to the page, both state records and extent
4248 * map records are removed
4249 */
4250int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4251 struct extent_io_tree *tree, struct page *page,
4252 gfp_t mask)
d1310b2e
CM
4253{
4254 struct extent_map *em;
4eee4fa4 4255 u64 start = page_offset(page);
09cbfeaf 4256 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4257
d0164adc 4258 if (gfpflags_allow_blocking(mask) &&
ee22184b 4259 page->mapping->host->i_size > SZ_16M) {
39b5637f 4260 u64 len;
70dec807 4261 while (start <= end) {
39b5637f 4262 len = end - start + 1;
890871be 4263 write_lock(&map->lock);
39b5637f 4264 em = lookup_extent_mapping(map, start, len);
285190d9 4265 if (!em) {
890871be 4266 write_unlock(&map->lock);
70dec807
CM
4267 break;
4268 }
7f3c74fb
CM
4269 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4270 em->start != start) {
890871be 4271 write_unlock(&map->lock);
70dec807
CM
4272 free_extent_map(em);
4273 break;
4274 }
4275 if (!test_range_bit(tree, em->start,
4276 extent_map_end(em) - 1,
8b62b72b 4277 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4278 0, NULL)) {
70dec807
CM
4279 remove_extent_mapping(map, em);
4280 /* once for the rb tree */
4281 free_extent_map(em);
4282 }
4283 start = extent_map_end(em);
890871be 4284 write_unlock(&map->lock);
70dec807
CM
4285
4286 /* once for us */
d1310b2e
CM
4287 free_extent_map(em);
4288 }
d1310b2e 4289 }
7b13b7b1 4290 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4291}
d1310b2e 4292
ec29ed5b
CM
4293/*
4294 * helper function for fiemap, which doesn't want to see any holes.
4295 * This maps until we find something past 'last'
4296 */
4297static struct extent_map *get_extent_skip_holes(struct inode *inode,
4298 u64 offset,
4299 u64 last,
4300 get_extent_t *get_extent)
4301{
4302 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4303 struct extent_map *em;
4304 u64 len;
4305
4306 if (offset >= last)
4307 return NULL;
4308
67871254 4309 while (1) {
ec29ed5b
CM
4310 len = last - offset;
4311 if (len == 0)
4312 break;
fda2832f 4313 len = ALIGN(len, sectorsize);
ec29ed5b 4314 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4315 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4316 return em;
4317
4318 /* if this isn't a hole return it */
4319 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4320 em->block_start != EXTENT_MAP_HOLE) {
4321 return em;
4322 }
4323
4324 /* this is a hole, advance to the next extent */
4325 offset = extent_map_end(em);
4326 free_extent_map(em);
4327 if (offset >= last)
4328 break;
4329 }
4330 return NULL;
4331}
4332
1506fcc8
YS
4333int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4334 __u64 start, __u64 len, get_extent_t *get_extent)
4335{
975f84fe 4336 int ret = 0;
1506fcc8
YS
4337 u64 off = start;
4338 u64 max = start + len;
4339 u32 flags = 0;
975f84fe
JB
4340 u32 found_type;
4341 u64 last;
ec29ed5b 4342 u64 last_for_get_extent = 0;
1506fcc8 4343 u64 disko = 0;
ec29ed5b 4344 u64 isize = i_size_read(inode);
975f84fe 4345 struct btrfs_key found_key;
1506fcc8 4346 struct extent_map *em = NULL;
2ac55d41 4347 struct extent_state *cached_state = NULL;
975f84fe 4348 struct btrfs_path *path;
dc046b10 4349 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4350 int end = 0;
ec29ed5b
CM
4351 u64 em_start = 0;
4352 u64 em_len = 0;
4353 u64 em_end = 0;
1506fcc8
YS
4354
4355 if (len == 0)
4356 return -EINVAL;
4357
975f84fe
JB
4358 path = btrfs_alloc_path();
4359 if (!path)
4360 return -ENOMEM;
4361 path->leave_spinning = 1;
4362
2c91943b
QW
4363 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4364 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4365
ec29ed5b
CM
4366 /*
4367 * lookup the last file extent. We're not using i_size here
4368 * because there might be preallocation past i_size
4369 */
dc046b10
JB
4370 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4371 0);
975f84fe
JB
4372 if (ret < 0) {
4373 btrfs_free_path(path);
4374 return ret;
4375 }
4376 WARN_ON(!ret);
4377 path->slots[0]--;
975f84fe 4378 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4379 found_type = found_key.type;
975f84fe 4380
ec29ed5b 4381 /* No extents, but there might be delalloc bits */
33345d01 4382 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4383 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4384 /* have to trust i_size as the end */
4385 last = (u64)-1;
4386 last_for_get_extent = isize;
4387 } else {
4388 /*
4389 * remember the start of the last extent. There are a
4390 * bunch of different factors that go into the length of the
4391 * extent, so its much less complex to remember where it started
4392 */
4393 last = found_key.offset;
4394 last_for_get_extent = last + 1;
975f84fe 4395 }
fe09e16c 4396 btrfs_release_path(path);
975f84fe 4397
ec29ed5b
CM
4398 /*
4399 * we might have some extents allocated but more delalloc past those
4400 * extents. so, we trust isize unless the start of the last extent is
4401 * beyond isize
4402 */
4403 if (last < isize) {
4404 last = (u64)-1;
4405 last_for_get_extent = isize;
4406 }
4407
ff13db41 4408 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4409 &cached_state);
ec29ed5b 4410
4d479cf0 4411 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4412 get_extent);
1506fcc8
YS
4413 if (!em)
4414 goto out;
4415 if (IS_ERR(em)) {
4416 ret = PTR_ERR(em);
4417 goto out;
4418 }
975f84fe 4419
1506fcc8 4420 while (!end) {
b76bb701 4421 u64 offset_in_extent = 0;
ea8efc74
CM
4422
4423 /* break if the extent we found is outside the range */
4424 if (em->start >= max || extent_map_end(em) < off)
4425 break;
4426
4427 /*
4428 * get_extent may return an extent that starts before our
4429 * requested range. We have to make sure the ranges
4430 * we return to fiemap always move forward and don't
4431 * overlap, so adjust the offsets here
4432 */
4433 em_start = max(em->start, off);
1506fcc8 4434
ea8efc74
CM
4435 /*
4436 * record the offset from the start of the extent
b76bb701
JB
4437 * for adjusting the disk offset below. Only do this if the
4438 * extent isn't compressed since our in ram offset may be past
4439 * what we have actually allocated on disk.
ea8efc74 4440 */
b76bb701
JB
4441 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4442 offset_in_extent = em_start - em->start;
ec29ed5b 4443 em_end = extent_map_end(em);
ea8efc74 4444 em_len = em_end - em_start;
1506fcc8
YS
4445 disko = 0;
4446 flags = 0;
4447
ea8efc74
CM
4448 /*
4449 * bump off for our next call to get_extent
4450 */
4451 off = extent_map_end(em);
4452 if (off >= max)
4453 end = 1;
4454
93dbfad7 4455 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4456 end = 1;
4457 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4458 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4459 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4460 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4461 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4462 flags |= (FIEMAP_EXTENT_DELALLOC |
4463 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4464 } else if (fieinfo->fi_extents_max) {
4465 u64 bytenr = em->block_start -
4466 (em->start - em->orig_start);
fe09e16c 4467
ea8efc74 4468 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4469
4470 /*
4471 * As btrfs supports shared space, this information
4472 * can be exported to userspace tools via
dc046b10
JB
4473 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4474 * then we're just getting a count and we can skip the
4475 * lookup stuff.
fe09e16c 4476 */
dc046b10
JB
4477 ret = btrfs_check_shared(NULL, root->fs_info,
4478 root->objectid,
4479 btrfs_ino(inode), bytenr);
4480 if (ret < 0)
fe09e16c 4481 goto out_free;
dc046b10 4482 if (ret)
fe09e16c 4483 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4484 ret = 0;
1506fcc8
YS
4485 }
4486 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4487 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4488 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4489 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4490
1506fcc8
YS
4491 free_extent_map(em);
4492 em = NULL;
ec29ed5b
CM
4493 if ((em_start >= last) || em_len == (u64)-1 ||
4494 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4495 flags |= FIEMAP_EXTENT_LAST;
4496 end = 1;
4497 }
4498
ec29ed5b
CM
4499 /* now scan forward to see if this is really the last extent. */
4500 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4501 get_extent);
4502 if (IS_ERR(em)) {
4503 ret = PTR_ERR(em);
4504 goto out;
4505 }
4506 if (!em) {
975f84fe
JB
4507 flags |= FIEMAP_EXTENT_LAST;
4508 end = 1;
4509 }
ec29ed5b
CM
4510 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4511 em_len, flags);
26e726af
CS
4512 if (ret) {
4513 if (ret == 1)
4514 ret = 0;
ec29ed5b 4515 goto out_free;
26e726af 4516 }
1506fcc8
YS
4517 }
4518out_free:
4519 free_extent_map(em);
4520out:
fe09e16c 4521 btrfs_free_path(path);
a52f4cd2 4522 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4523 &cached_state, GFP_NOFS);
1506fcc8
YS
4524 return ret;
4525}
4526
727011e0
CM
4527static void __free_extent_buffer(struct extent_buffer *eb)
4528{
6d49ba1b 4529 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4530 kmem_cache_free(extent_buffer_cache, eb);
4531}
4532
a26e8c9f 4533int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4534{
4535 return (atomic_read(&eb->io_pages) ||
4536 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4537 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4538}
4539
4540/*
4541 * Helper for releasing extent buffer page.
4542 */
a50924e3 4543static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4544{
4545 unsigned long index;
db7f3436
JB
4546 struct page *page;
4547 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4548
4549 BUG_ON(extent_buffer_under_io(eb));
4550
a50924e3
DS
4551 index = num_extent_pages(eb->start, eb->len);
4552 if (index == 0)
db7f3436
JB
4553 return;
4554
4555 do {
4556 index--;
fb85fc9a 4557 page = eb->pages[index];
5d2361db
FL
4558 if (!page)
4559 continue;
4560 if (mapped)
db7f3436 4561 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4562 /*
4563 * We do this since we'll remove the pages after we've
4564 * removed the eb from the radix tree, so we could race
4565 * and have this page now attached to the new eb. So
4566 * only clear page_private if it's still connected to
4567 * this eb.
4568 */
4569 if (PagePrivate(page) &&
4570 page->private == (unsigned long)eb) {
4571 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4572 BUG_ON(PageDirty(page));
4573 BUG_ON(PageWriteback(page));
db7f3436 4574 /*
5d2361db
FL
4575 * We need to make sure we haven't be attached
4576 * to a new eb.
db7f3436 4577 */
5d2361db
FL
4578 ClearPagePrivate(page);
4579 set_page_private(page, 0);
4580 /* One for the page private */
09cbfeaf 4581 put_page(page);
db7f3436 4582 }
5d2361db
FL
4583
4584 if (mapped)
4585 spin_unlock(&page->mapping->private_lock);
4586
4587 /* One for when we alloced the page */
09cbfeaf 4588 put_page(page);
a50924e3 4589 } while (index != 0);
db7f3436
JB
4590}
4591
4592/*
4593 * Helper for releasing the extent buffer.
4594 */
4595static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4596{
a50924e3 4597 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4598 __free_extent_buffer(eb);
4599}
4600
f28491e0
JB
4601static struct extent_buffer *
4602__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4603 unsigned long len)
d1310b2e
CM
4604{
4605 struct extent_buffer *eb = NULL;
4606
d1b5c567 4607 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4608 eb->start = start;
4609 eb->len = len;
f28491e0 4610 eb->fs_info = fs_info;
815a51c7 4611 eb->bflags = 0;
bd681513
CM
4612 rwlock_init(&eb->lock);
4613 atomic_set(&eb->write_locks, 0);
4614 atomic_set(&eb->read_locks, 0);
4615 atomic_set(&eb->blocking_readers, 0);
4616 atomic_set(&eb->blocking_writers, 0);
4617 atomic_set(&eb->spinning_readers, 0);
4618 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4619 eb->lock_nested = 0;
bd681513
CM
4620 init_waitqueue_head(&eb->write_lock_wq);
4621 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4622
6d49ba1b
ES
4623 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4624
3083ee2e 4625 spin_lock_init(&eb->refs_lock);
d1310b2e 4626 atomic_set(&eb->refs, 1);
0b32f4bb 4627 atomic_set(&eb->io_pages, 0);
727011e0 4628
b8dae313
DS
4629 /*
4630 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4631 */
4632 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4633 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4634 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4635
4636 return eb;
4637}
4638
815a51c7
JS
4639struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4640{
4641 unsigned long i;
4642 struct page *p;
4643 struct extent_buffer *new;
4644 unsigned long num_pages = num_extent_pages(src->start, src->len);
4645
3f556f78 4646 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4647 if (new == NULL)
4648 return NULL;
4649
4650 for (i = 0; i < num_pages; i++) {
9ec72677 4651 p = alloc_page(GFP_NOFS);
db7f3436
JB
4652 if (!p) {
4653 btrfs_release_extent_buffer(new);
4654 return NULL;
4655 }
815a51c7
JS
4656 attach_extent_buffer_page(new, p);
4657 WARN_ON(PageDirty(p));
4658 SetPageUptodate(p);
4659 new->pages[i] = p;
4660 }
4661
4662 copy_extent_buffer(new, src, 0, 0, src->len);
4663 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4664 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4665
4666 return new;
4667}
4668
0f331229
OS
4669struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4670 u64 start, unsigned long len)
815a51c7
JS
4671{
4672 struct extent_buffer *eb;
3f556f78 4673 unsigned long num_pages;
815a51c7
JS
4674 unsigned long i;
4675
0f331229 4676 num_pages = num_extent_pages(start, len);
3f556f78
DS
4677
4678 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4679 if (!eb)
4680 return NULL;
4681
4682 for (i = 0; i < num_pages; i++) {
9ec72677 4683 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4684 if (!eb->pages[i])
4685 goto err;
4686 }
4687 set_extent_buffer_uptodate(eb);
4688 btrfs_set_header_nritems(eb, 0);
4689 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4690
4691 return eb;
4692err:
84167d19
SB
4693 for (; i > 0; i--)
4694 __free_page(eb->pages[i - 1]);
815a51c7
JS
4695 __free_extent_buffer(eb);
4696 return NULL;
4697}
4698
0f331229
OS
4699struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4700 u64 start)
4701{
4702 unsigned long len;
4703
4704 if (!fs_info) {
4705 /*
4706 * Called only from tests that don't always have a fs_info
4707 * available, but we know that nodesize is 4096
4708 */
4709 len = 4096;
4710 } else {
4711 len = fs_info->tree_root->nodesize;
4712 }
4713
4714 return __alloc_dummy_extent_buffer(fs_info, start, len);
4715}
4716
0b32f4bb
JB
4717static void check_buffer_tree_ref(struct extent_buffer *eb)
4718{
242e18c7 4719 int refs;
0b32f4bb
JB
4720 /* the ref bit is tricky. We have to make sure it is set
4721 * if we have the buffer dirty. Otherwise the
4722 * code to free a buffer can end up dropping a dirty
4723 * page
4724 *
4725 * Once the ref bit is set, it won't go away while the
4726 * buffer is dirty or in writeback, and it also won't
4727 * go away while we have the reference count on the
4728 * eb bumped.
4729 *
4730 * We can't just set the ref bit without bumping the
4731 * ref on the eb because free_extent_buffer might
4732 * see the ref bit and try to clear it. If this happens
4733 * free_extent_buffer might end up dropping our original
4734 * ref by mistake and freeing the page before we are able
4735 * to add one more ref.
4736 *
4737 * So bump the ref count first, then set the bit. If someone
4738 * beat us to it, drop the ref we added.
4739 */
242e18c7
CM
4740 refs = atomic_read(&eb->refs);
4741 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4742 return;
4743
594831c4
JB
4744 spin_lock(&eb->refs_lock);
4745 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4746 atomic_inc(&eb->refs);
594831c4 4747 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4748}
4749
2457aec6
MG
4750static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4751 struct page *accessed)
5df4235e
JB
4752{
4753 unsigned long num_pages, i;
4754
0b32f4bb
JB
4755 check_buffer_tree_ref(eb);
4756
5df4235e
JB
4757 num_pages = num_extent_pages(eb->start, eb->len);
4758 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4759 struct page *p = eb->pages[i];
4760
2457aec6
MG
4761 if (p != accessed)
4762 mark_page_accessed(p);
5df4235e
JB
4763 }
4764}
4765
f28491e0
JB
4766struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4767 u64 start)
452c75c3
CS
4768{
4769 struct extent_buffer *eb;
4770
4771 rcu_read_lock();
f28491e0 4772 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4773 start >> PAGE_SHIFT);
452c75c3
CS
4774 if (eb && atomic_inc_not_zero(&eb->refs)) {
4775 rcu_read_unlock();
062c19e9
FM
4776 /*
4777 * Lock our eb's refs_lock to avoid races with
4778 * free_extent_buffer. When we get our eb it might be flagged
4779 * with EXTENT_BUFFER_STALE and another task running
4780 * free_extent_buffer might have seen that flag set,
4781 * eb->refs == 2, that the buffer isn't under IO (dirty and
4782 * writeback flags not set) and it's still in the tree (flag
4783 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4784 * of decrementing the extent buffer's reference count twice.
4785 * So here we could race and increment the eb's reference count,
4786 * clear its stale flag, mark it as dirty and drop our reference
4787 * before the other task finishes executing free_extent_buffer,
4788 * which would later result in an attempt to free an extent
4789 * buffer that is dirty.
4790 */
4791 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4792 spin_lock(&eb->refs_lock);
4793 spin_unlock(&eb->refs_lock);
4794 }
2457aec6 4795 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4796 return eb;
4797 }
4798 rcu_read_unlock();
4799
4800 return NULL;
4801}
4802
faa2dbf0
JB
4803#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4804struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4805 u64 start)
faa2dbf0
JB
4806{
4807 struct extent_buffer *eb, *exists = NULL;
4808 int ret;
4809
4810 eb = find_extent_buffer(fs_info, start);
4811 if (eb)
4812 return eb;
3f556f78 4813 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4814 if (!eb)
4815 return NULL;
4816 eb->fs_info = fs_info;
4817again:
4818 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4819 if (ret)
4820 goto free_eb;
4821 spin_lock(&fs_info->buffer_lock);
4822 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4823 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4824 spin_unlock(&fs_info->buffer_lock);
4825 radix_tree_preload_end();
4826 if (ret == -EEXIST) {
4827 exists = find_extent_buffer(fs_info, start);
4828 if (exists)
4829 goto free_eb;
4830 else
4831 goto again;
4832 }
4833 check_buffer_tree_ref(eb);
4834 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4835
4836 /*
4837 * We will free dummy extent buffer's if they come into
4838 * free_extent_buffer with a ref count of 2, but if we are using this we
4839 * want the buffers to stay in memory until we're done with them, so
4840 * bump the ref count again.
4841 */
4842 atomic_inc(&eb->refs);
4843 return eb;
4844free_eb:
4845 btrfs_release_extent_buffer(eb);
4846 return exists;
4847}
4848#endif
4849
f28491e0 4850struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4851 u64 start)
d1310b2e 4852{
ce3e6984 4853 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4854 unsigned long num_pages = num_extent_pages(start, len);
4855 unsigned long i;
09cbfeaf 4856 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4857 struct extent_buffer *eb;
6af118ce 4858 struct extent_buffer *exists = NULL;
d1310b2e 4859 struct page *p;
f28491e0 4860 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4861 int uptodate = 1;
19fe0a8b 4862 int ret;
d1310b2e 4863
f28491e0 4864 eb = find_extent_buffer(fs_info, start);
452c75c3 4865 if (eb)
6af118ce 4866 return eb;
6af118ce 4867
23d79d81 4868 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4869 if (!eb)
d1310b2e
CM
4870 return NULL;
4871
727011e0 4872 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4873 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4874 if (!p)
6af118ce 4875 goto free_eb;
4f2de97a
JB
4876
4877 spin_lock(&mapping->private_lock);
4878 if (PagePrivate(p)) {
4879 /*
4880 * We could have already allocated an eb for this page
4881 * and attached one so lets see if we can get a ref on
4882 * the existing eb, and if we can we know it's good and
4883 * we can just return that one, else we know we can just
4884 * overwrite page->private.
4885 */
4886 exists = (struct extent_buffer *)p->private;
4887 if (atomic_inc_not_zero(&exists->refs)) {
4888 spin_unlock(&mapping->private_lock);
4889 unlock_page(p);
09cbfeaf 4890 put_page(p);
2457aec6 4891 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4892 goto free_eb;
4893 }
5ca64f45 4894 exists = NULL;
4f2de97a 4895
0b32f4bb 4896 /*
4f2de97a
JB
4897 * Do this so attach doesn't complain and we need to
4898 * drop the ref the old guy had.
4899 */
4900 ClearPagePrivate(p);
0b32f4bb 4901 WARN_ON(PageDirty(p));
09cbfeaf 4902 put_page(p);
d1310b2e 4903 }
4f2de97a
JB
4904 attach_extent_buffer_page(eb, p);
4905 spin_unlock(&mapping->private_lock);
0b32f4bb 4906 WARN_ON(PageDirty(p));
727011e0 4907 eb->pages[i] = p;
d1310b2e
CM
4908 if (!PageUptodate(p))
4909 uptodate = 0;
eb14ab8e
CM
4910
4911 /*
4912 * see below about how we avoid a nasty race with release page
4913 * and why we unlock later
4914 */
d1310b2e
CM
4915 }
4916 if (uptodate)
b4ce94de 4917 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4918again:
19fe0a8b
MX
4919 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4920 if (ret)
4921 goto free_eb;
4922
f28491e0
JB
4923 spin_lock(&fs_info->buffer_lock);
4924 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4925 start >> PAGE_SHIFT, eb);
f28491e0 4926 spin_unlock(&fs_info->buffer_lock);
452c75c3 4927 radix_tree_preload_end();
19fe0a8b 4928 if (ret == -EEXIST) {
f28491e0 4929 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4930 if (exists)
4931 goto free_eb;
4932 else
115391d2 4933 goto again;
6af118ce 4934 }
6af118ce 4935 /* add one reference for the tree */
0b32f4bb 4936 check_buffer_tree_ref(eb);
34b41ace 4937 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4938
4939 /*
4940 * there is a race where release page may have
4941 * tried to find this extent buffer in the radix
4942 * but failed. It will tell the VM it is safe to
4943 * reclaim the, and it will clear the page private bit.
4944 * We must make sure to set the page private bit properly
4945 * after the extent buffer is in the radix tree so
4946 * it doesn't get lost
4947 */
727011e0
CM
4948 SetPageChecked(eb->pages[0]);
4949 for (i = 1; i < num_pages; i++) {
fb85fc9a 4950 p = eb->pages[i];
727011e0
CM
4951 ClearPageChecked(p);
4952 unlock_page(p);
4953 }
4954 unlock_page(eb->pages[0]);
d1310b2e
CM
4955 return eb;
4956
6af118ce 4957free_eb:
5ca64f45 4958 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4959 for (i = 0; i < num_pages; i++) {
4960 if (eb->pages[i])
4961 unlock_page(eb->pages[i]);
4962 }
eb14ab8e 4963
897ca6e9 4964 btrfs_release_extent_buffer(eb);
6af118ce 4965 return exists;
d1310b2e 4966}
d1310b2e 4967
3083ee2e
JB
4968static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4969{
4970 struct extent_buffer *eb =
4971 container_of(head, struct extent_buffer, rcu_head);
4972
4973 __free_extent_buffer(eb);
4974}
4975
3083ee2e 4976/* Expects to have eb->eb_lock already held */
f7a52a40 4977static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4978{
4979 WARN_ON(atomic_read(&eb->refs) == 0);
4980 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4981 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4982 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4983
815a51c7 4984 spin_unlock(&eb->refs_lock);
3083ee2e 4985
f28491e0
JB
4986 spin_lock(&fs_info->buffer_lock);
4987 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 4988 eb->start >> PAGE_SHIFT);
f28491e0 4989 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4990 } else {
4991 spin_unlock(&eb->refs_lock);
815a51c7 4992 }
3083ee2e
JB
4993
4994 /* Should be safe to release our pages at this point */
a50924e3 4995 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
4996#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4997 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
4998 __free_extent_buffer(eb);
4999 return 1;
5000 }
5001#endif
3083ee2e 5002 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5003 return 1;
3083ee2e
JB
5004 }
5005 spin_unlock(&eb->refs_lock);
e64860aa
JB
5006
5007 return 0;
3083ee2e
JB
5008}
5009
d1310b2e
CM
5010void free_extent_buffer(struct extent_buffer *eb)
5011{
242e18c7
CM
5012 int refs;
5013 int old;
d1310b2e
CM
5014 if (!eb)
5015 return;
5016
242e18c7
CM
5017 while (1) {
5018 refs = atomic_read(&eb->refs);
5019 if (refs <= 3)
5020 break;
5021 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5022 if (old == refs)
5023 return;
5024 }
5025
3083ee2e 5026 spin_lock(&eb->refs_lock);
815a51c7
JS
5027 if (atomic_read(&eb->refs) == 2 &&
5028 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5029 atomic_dec(&eb->refs);
5030
3083ee2e
JB
5031 if (atomic_read(&eb->refs) == 2 &&
5032 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5033 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5034 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5035 atomic_dec(&eb->refs);
5036
5037 /*
5038 * I know this is terrible, but it's temporary until we stop tracking
5039 * the uptodate bits and such for the extent buffers.
5040 */
f7a52a40 5041 release_extent_buffer(eb);
3083ee2e
JB
5042}
5043
5044void free_extent_buffer_stale(struct extent_buffer *eb)
5045{
5046 if (!eb)
d1310b2e
CM
5047 return;
5048
3083ee2e
JB
5049 spin_lock(&eb->refs_lock);
5050 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5051
0b32f4bb 5052 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5053 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5054 atomic_dec(&eb->refs);
f7a52a40 5055 release_extent_buffer(eb);
d1310b2e 5056}
d1310b2e 5057
1d4284bd 5058void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5059{
d1310b2e
CM
5060 unsigned long i;
5061 unsigned long num_pages;
5062 struct page *page;
5063
d1310b2e
CM
5064 num_pages = num_extent_pages(eb->start, eb->len);
5065
5066 for (i = 0; i < num_pages; i++) {
fb85fc9a 5067 page = eb->pages[i];
b9473439 5068 if (!PageDirty(page))
d2c3f4f6
CM
5069 continue;
5070
a61e6f29 5071 lock_page(page);
eb14ab8e
CM
5072 WARN_ON(!PagePrivate(page));
5073
d1310b2e 5074 clear_page_dirty_for_io(page);
0ee0fda0 5075 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5076 if (!PageDirty(page)) {
5077 radix_tree_tag_clear(&page->mapping->page_tree,
5078 page_index(page),
5079 PAGECACHE_TAG_DIRTY);
5080 }
0ee0fda0 5081 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5082 ClearPageError(page);
a61e6f29 5083 unlock_page(page);
d1310b2e 5084 }
0b32f4bb 5085 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5086}
d1310b2e 5087
0b32f4bb 5088int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5089{
5090 unsigned long i;
5091 unsigned long num_pages;
b9473439 5092 int was_dirty = 0;
d1310b2e 5093
0b32f4bb
JB
5094 check_buffer_tree_ref(eb);
5095
b9473439 5096 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5097
d1310b2e 5098 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5099 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5100 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5101
b9473439 5102 for (i = 0; i < num_pages; i++)
fb85fc9a 5103 set_page_dirty(eb->pages[i]);
b9473439 5104 return was_dirty;
d1310b2e 5105}
d1310b2e 5106
69ba3927 5107void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5108{
5109 unsigned long i;
5110 struct page *page;
5111 unsigned long num_pages;
5112
b4ce94de 5113 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5114 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5115 for (i = 0; i < num_pages; i++) {
fb85fc9a 5116 page = eb->pages[i];
33958dc6
CM
5117 if (page)
5118 ClearPageUptodate(page);
1259ab75 5119 }
1259ab75
CM
5120}
5121
09c25a8c 5122void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5123{
5124 unsigned long i;
5125 struct page *page;
5126 unsigned long num_pages;
5127
0b32f4bb 5128 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5129 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5130 for (i = 0; i < num_pages; i++) {
fb85fc9a 5131 page = eb->pages[i];
d1310b2e
CM
5132 SetPageUptodate(page);
5133 }
d1310b2e 5134}
d1310b2e 5135
0b32f4bb 5136int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5137{
0b32f4bb 5138 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5139}
d1310b2e
CM
5140
5141int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5142 struct extent_buffer *eb, u64 start, int wait,
f188591e 5143 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5144{
5145 unsigned long i;
5146 unsigned long start_i;
5147 struct page *page;
5148 int err;
5149 int ret = 0;
ce9adaa5
CM
5150 int locked_pages = 0;
5151 int all_uptodate = 1;
d1310b2e 5152 unsigned long num_pages;
727011e0 5153 unsigned long num_reads = 0;
a86c12c7 5154 struct bio *bio = NULL;
c8b97818 5155 unsigned long bio_flags = 0;
a86c12c7 5156
b4ce94de 5157 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5158 return 0;
5159
d1310b2e
CM
5160 if (start) {
5161 WARN_ON(start < eb->start);
09cbfeaf
KS
5162 start_i = (start >> PAGE_SHIFT) -
5163 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5164 } else {
5165 start_i = 0;
5166 }
5167
5168 num_pages = num_extent_pages(eb->start, eb->len);
5169 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5170 page = eb->pages[i];
bb82ab88 5171 if (wait == WAIT_NONE) {
2db04966 5172 if (!trylock_page(page))
ce9adaa5 5173 goto unlock_exit;
d1310b2e
CM
5174 } else {
5175 lock_page(page);
5176 }
ce9adaa5 5177 locked_pages++;
727011e0
CM
5178 if (!PageUptodate(page)) {
5179 num_reads++;
ce9adaa5 5180 all_uptodate = 0;
727011e0 5181 }
ce9adaa5
CM
5182 }
5183 if (all_uptodate) {
5184 if (start_i == 0)
b4ce94de 5185 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5186 goto unlock_exit;
5187 }
5188
656f30db 5189 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5190 eb->read_mirror = 0;
0b32f4bb 5191 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5192 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5193 page = eb->pages[i];
ce9adaa5 5194 if (!PageUptodate(page)) {
f188591e 5195 ClearPageError(page);
a86c12c7 5196 err = __extent_read_full_page(tree, page,
f188591e 5197 get_extent, &bio,
d4c7ca86
JB
5198 mirror_num, &bio_flags,
5199 READ | REQ_META);
d397712b 5200 if (err)
d1310b2e 5201 ret = err;
d1310b2e
CM
5202 } else {
5203 unlock_page(page);
5204 }
5205 }
5206
355808c2 5207 if (bio) {
d4c7ca86
JB
5208 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5209 bio_flags);
79787eaa
JM
5210 if (err)
5211 return err;
355808c2 5212 }
a86c12c7 5213
bb82ab88 5214 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5215 return ret;
d397712b 5216
d1310b2e 5217 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5218 page = eb->pages[i];
d1310b2e 5219 wait_on_page_locked(page);
d397712b 5220 if (!PageUptodate(page))
d1310b2e 5221 ret = -EIO;
d1310b2e 5222 }
d397712b 5223
d1310b2e 5224 return ret;
ce9adaa5
CM
5225
5226unlock_exit:
5227 i = start_i;
d397712b 5228 while (locked_pages > 0) {
fb85fc9a 5229 page = eb->pages[i];
ce9adaa5
CM
5230 i++;
5231 unlock_page(page);
5232 locked_pages--;
5233 }
5234 return ret;
d1310b2e 5235}
d1310b2e
CM
5236
5237void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5238 unsigned long start,
5239 unsigned long len)
5240{
5241 size_t cur;
5242 size_t offset;
5243 struct page *page;
5244 char *kaddr;
5245 char *dst = (char *)dstv;
09cbfeaf
KS
5246 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5247 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5248
5249 WARN_ON(start > eb->len);
5250 WARN_ON(start + len > eb->start + eb->len);
5251
09cbfeaf 5252 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5253
d397712b 5254 while (len > 0) {
fb85fc9a 5255 page = eb->pages[i];
d1310b2e 5256
09cbfeaf 5257 cur = min(len, (PAGE_SIZE - offset));
a6591715 5258 kaddr = page_address(page);
d1310b2e 5259 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5260
5261 dst += cur;
5262 len -= cur;
5263 offset = 0;
5264 i++;
5265 }
5266}
d1310b2e 5267
550ac1d8
GH
5268int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5269 unsigned long start,
5270 unsigned long len)
5271{
5272 size_t cur;
5273 size_t offset;
5274 struct page *page;
5275 char *kaddr;
5276 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5277 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5278 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5279 int ret = 0;
5280
5281 WARN_ON(start > eb->len);
5282 WARN_ON(start + len > eb->start + eb->len);
5283
09cbfeaf 5284 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5285
5286 while (len > 0) {
fb85fc9a 5287 page = eb->pages[i];
550ac1d8 5288
09cbfeaf 5289 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5290 kaddr = page_address(page);
5291 if (copy_to_user(dst, kaddr + offset, cur)) {
5292 ret = -EFAULT;
5293 break;
5294 }
5295
5296 dst += cur;
5297 len -= cur;
5298 offset = 0;
5299 i++;
5300 }
5301
5302 return ret;
5303}
5304
d1310b2e 5305int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5306 unsigned long min_len, char **map,
d1310b2e 5307 unsigned long *map_start,
a6591715 5308 unsigned long *map_len)
d1310b2e 5309{
09cbfeaf 5310 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5311 char *kaddr;
5312 struct page *p;
09cbfeaf
KS
5313 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5314 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5315 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5316 PAGE_SHIFT;
d1310b2e
CM
5317
5318 if (i != end_i)
5319 return -EINVAL;
5320
5321 if (i == 0) {
5322 offset = start_offset;
5323 *map_start = 0;
5324 } else {
5325 offset = 0;
09cbfeaf 5326 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5327 }
d397712b 5328
d1310b2e 5329 if (start + min_len > eb->len) {
31b1a2bd 5330 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5331 "wanted %lu %lu\n",
5332 eb->start, eb->len, start, min_len);
85026533 5333 return -EINVAL;
d1310b2e
CM
5334 }
5335
fb85fc9a 5336 p = eb->pages[i];
a6591715 5337 kaddr = page_address(p);
d1310b2e 5338 *map = kaddr + offset;
09cbfeaf 5339 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5340 return 0;
5341}
d1310b2e 5342
d1310b2e
CM
5343int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5344 unsigned long start,
5345 unsigned long len)
5346{
5347 size_t cur;
5348 size_t offset;
5349 struct page *page;
5350 char *kaddr;
5351 char *ptr = (char *)ptrv;
09cbfeaf
KS
5352 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5353 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5354 int ret = 0;
5355
5356 WARN_ON(start > eb->len);
5357 WARN_ON(start + len > eb->start + eb->len);
5358
09cbfeaf 5359 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5360
d397712b 5361 while (len > 0) {
fb85fc9a 5362 page = eb->pages[i];
d1310b2e 5363
09cbfeaf 5364 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5365
a6591715 5366 kaddr = page_address(page);
d1310b2e 5367 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5368 if (ret)
5369 break;
5370
5371 ptr += cur;
5372 len -= cur;
5373 offset = 0;
5374 i++;
5375 }
5376 return ret;
5377}
d1310b2e
CM
5378
5379void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5380 unsigned long start, unsigned long len)
5381{
5382 size_t cur;
5383 size_t offset;
5384 struct page *page;
5385 char *kaddr;
5386 char *src = (char *)srcv;
09cbfeaf
KS
5387 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5388 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5389
5390 WARN_ON(start > eb->len);
5391 WARN_ON(start + len > eb->start + eb->len);
5392
09cbfeaf 5393 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5394
d397712b 5395 while (len > 0) {
fb85fc9a 5396 page = eb->pages[i];
d1310b2e
CM
5397 WARN_ON(!PageUptodate(page));
5398
09cbfeaf 5399 cur = min(len, PAGE_SIZE - offset);
a6591715 5400 kaddr = page_address(page);
d1310b2e 5401 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5402
5403 src += cur;
5404 len -= cur;
5405 offset = 0;
5406 i++;
5407 }
5408}
d1310b2e
CM
5409
5410void memset_extent_buffer(struct extent_buffer *eb, char c,
5411 unsigned long start, unsigned long len)
5412{
5413 size_t cur;
5414 size_t offset;
5415 struct page *page;
5416 char *kaddr;
09cbfeaf
KS
5417 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5419
5420 WARN_ON(start > eb->len);
5421 WARN_ON(start + len > eb->start + eb->len);
5422
09cbfeaf 5423 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5424
d397712b 5425 while (len > 0) {
fb85fc9a 5426 page = eb->pages[i];
d1310b2e
CM
5427 WARN_ON(!PageUptodate(page));
5428
09cbfeaf 5429 cur = min(len, PAGE_SIZE - offset);
a6591715 5430 kaddr = page_address(page);
d1310b2e 5431 memset(kaddr + offset, c, cur);
d1310b2e
CM
5432
5433 len -= cur;
5434 offset = 0;
5435 i++;
5436 }
5437}
d1310b2e
CM
5438
5439void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5440 unsigned long dst_offset, unsigned long src_offset,
5441 unsigned long len)
5442{
5443 u64 dst_len = dst->len;
5444 size_t cur;
5445 size_t offset;
5446 struct page *page;
5447 char *kaddr;
09cbfeaf
KS
5448 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5449 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5450
5451 WARN_ON(src->len != dst_len);
5452
5453 offset = (start_offset + dst_offset) &
09cbfeaf 5454 (PAGE_SIZE - 1);
d1310b2e 5455
d397712b 5456 while (len > 0) {
fb85fc9a 5457 page = dst->pages[i];
d1310b2e
CM
5458 WARN_ON(!PageUptodate(page));
5459
09cbfeaf 5460 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5461
a6591715 5462 kaddr = page_address(page);
d1310b2e 5463 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5464
5465 src_offset += cur;
5466 len -= cur;
5467 offset = 0;
5468 i++;
5469 }
5470}
d1310b2e 5471
3e1e8bb7
OS
5472/*
5473 * The extent buffer bitmap operations are done with byte granularity because
5474 * bitmap items are not guaranteed to be aligned to a word and therefore a
5475 * single word in a bitmap may straddle two pages in the extent buffer.
5476 */
5477#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5478#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5479#define BITMAP_FIRST_BYTE_MASK(start) \
5480 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5481#define BITMAP_LAST_BYTE_MASK(nbits) \
5482 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5483
5484/*
5485 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5486 * given bit number
5487 * @eb: the extent buffer
5488 * @start: offset of the bitmap item in the extent buffer
5489 * @nr: bit number
5490 * @page_index: return index of the page in the extent buffer that contains the
5491 * given bit number
5492 * @page_offset: return offset into the page given by page_index
5493 *
5494 * This helper hides the ugliness of finding the byte in an extent buffer which
5495 * contains a given bit.
5496 */
5497static inline void eb_bitmap_offset(struct extent_buffer *eb,
5498 unsigned long start, unsigned long nr,
5499 unsigned long *page_index,
5500 size_t *page_offset)
5501{
09cbfeaf 5502 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5503 size_t byte_offset = BIT_BYTE(nr);
5504 size_t offset;
5505
5506 /*
5507 * The byte we want is the offset of the extent buffer + the offset of
5508 * the bitmap item in the extent buffer + the offset of the byte in the
5509 * bitmap item.
5510 */
5511 offset = start_offset + start + byte_offset;
5512
09cbfeaf
KS
5513 *page_index = offset >> PAGE_SHIFT;
5514 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5515}
5516
5517/**
5518 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5519 * @eb: the extent buffer
5520 * @start: offset of the bitmap item in the extent buffer
5521 * @nr: bit number to test
5522 */
5523int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5524 unsigned long nr)
5525{
5526 char *kaddr;
5527 struct page *page;
5528 unsigned long i;
5529 size_t offset;
5530
5531 eb_bitmap_offset(eb, start, nr, &i, &offset);
5532 page = eb->pages[i];
5533 WARN_ON(!PageUptodate(page));
5534 kaddr = page_address(page);
5535 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5536}
5537
5538/**
5539 * extent_buffer_bitmap_set - set an area of a bitmap
5540 * @eb: the extent buffer
5541 * @start: offset of the bitmap item in the extent buffer
5542 * @pos: bit number of the first bit
5543 * @len: number of bits to set
5544 */
5545void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5546 unsigned long pos, unsigned long len)
5547{
5548 char *kaddr;
5549 struct page *page;
5550 unsigned long i;
5551 size_t offset;
5552 const unsigned int size = pos + len;
5553 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5554 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5555
5556 eb_bitmap_offset(eb, start, pos, &i, &offset);
5557 page = eb->pages[i];
5558 WARN_ON(!PageUptodate(page));
5559 kaddr = page_address(page);
5560
5561 while (len >= bits_to_set) {
5562 kaddr[offset] |= mask_to_set;
5563 len -= bits_to_set;
5564 bits_to_set = BITS_PER_BYTE;
5565 mask_to_set = ~0U;
09cbfeaf 5566 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5567 offset = 0;
5568 page = eb->pages[++i];
5569 WARN_ON(!PageUptodate(page));
5570 kaddr = page_address(page);
5571 }
5572 }
5573 if (len) {
5574 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5575 kaddr[offset] |= mask_to_set;
5576 }
5577}
5578
5579
5580/**
5581 * extent_buffer_bitmap_clear - clear an area of a bitmap
5582 * @eb: the extent buffer
5583 * @start: offset of the bitmap item in the extent buffer
5584 * @pos: bit number of the first bit
5585 * @len: number of bits to clear
5586 */
5587void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5588 unsigned long pos, unsigned long len)
5589{
5590 char *kaddr;
5591 struct page *page;
5592 unsigned long i;
5593 size_t offset;
5594 const unsigned int size = pos + len;
5595 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5596 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5597
5598 eb_bitmap_offset(eb, start, pos, &i, &offset);
5599 page = eb->pages[i];
5600 WARN_ON(!PageUptodate(page));
5601 kaddr = page_address(page);
5602
5603 while (len >= bits_to_clear) {
5604 kaddr[offset] &= ~mask_to_clear;
5605 len -= bits_to_clear;
5606 bits_to_clear = BITS_PER_BYTE;
5607 mask_to_clear = ~0U;
09cbfeaf 5608 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5609 offset = 0;
5610 page = eb->pages[++i];
5611 WARN_ON(!PageUptodate(page));
5612 kaddr = page_address(page);
5613 }
5614 }
5615 if (len) {
5616 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5617 kaddr[offset] &= ~mask_to_clear;
5618 }
5619}
5620
3387206f
ST
5621static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5622{
5623 unsigned long distance = (src > dst) ? src - dst : dst - src;
5624 return distance < len;
5625}
5626
d1310b2e
CM
5627static void copy_pages(struct page *dst_page, struct page *src_page,
5628 unsigned long dst_off, unsigned long src_off,
5629 unsigned long len)
5630{
a6591715 5631 char *dst_kaddr = page_address(dst_page);
d1310b2e 5632 char *src_kaddr;
727011e0 5633 int must_memmove = 0;
d1310b2e 5634
3387206f 5635 if (dst_page != src_page) {
a6591715 5636 src_kaddr = page_address(src_page);
3387206f 5637 } else {
d1310b2e 5638 src_kaddr = dst_kaddr;
727011e0
CM
5639 if (areas_overlap(src_off, dst_off, len))
5640 must_memmove = 1;
3387206f 5641 }
d1310b2e 5642
727011e0
CM
5643 if (must_memmove)
5644 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5645 else
5646 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5647}
5648
5649void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5650 unsigned long src_offset, unsigned long len)
5651{
5652 size_t cur;
5653 size_t dst_off_in_page;
5654 size_t src_off_in_page;
09cbfeaf 5655 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5656 unsigned long dst_i;
5657 unsigned long src_i;
5658
5659 if (src_offset + len > dst->len) {
f14d104d
DS
5660 btrfs_err(dst->fs_info,
5661 "memmove bogus src_offset %lu move "
5662 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5663 BUG_ON(1);
5664 }
5665 if (dst_offset + len > dst->len) {
f14d104d
DS
5666 btrfs_err(dst->fs_info,
5667 "memmove bogus dst_offset %lu move "
5668 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5669 BUG_ON(1);
5670 }
5671
d397712b 5672 while (len > 0) {
d1310b2e 5673 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5674 (PAGE_SIZE - 1);
d1310b2e 5675 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5676 (PAGE_SIZE - 1);
d1310b2e 5677
09cbfeaf
KS
5678 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5679 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5680
09cbfeaf 5681 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5682 src_off_in_page));
5683 cur = min_t(unsigned long, cur,
09cbfeaf 5684 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5685
fb85fc9a 5686 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5687 dst_off_in_page, src_off_in_page, cur);
5688
5689 src_offset += cur;
5690 dst_offset += cur;
5691 len -= cur;
5692 }
5693}
d1310b2e
CM
5694
5695void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5696 unsigned long src_offset, unsigned long len)
5697{
5698 size_t cur;
5699 size_t dst_off_in_page;
5700 size_t src_off_in_page;
5701 unsigned long dst_end = dst_offset + len - 1;
5702 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5703 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5704 unsigned long dst_i;
5705 unsigned long src_i;
5706
5707 if (src_offset + len > dst->len) {
f14d104d
DS
5708 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5709 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5710 BUG_ON(1);
5711 }
5712 if (dst_offset + len > dst->len) {
f14d104d
DS
5713 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5714 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5715 BUG_ON(1);
5716 }
727011e0 5717 if (dst_offset < src_offset) {
d1310b2e
CM
5718 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5719 return;
5720 }
d397712b 5721 while (len > 0) {
09cbfeaf
KS
5722 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5723 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5724
5725 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5726 (PAGE_SIZE - 1);
d1310b2e 5727 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5728 (PAGE_SIZE - 1);
d1310b2e
CM
5729
5730 cur = min_t(unsigned long, len, src_off_in_page + 1);
5731 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5732 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5733 dst_off_in_page - cur + 1,
5734 src_off_in_page - cur + 1, cur);
5735
5736 dst_end -= cur;
5737 src_end -= cur;
5738 len -= cur;
5739 }
5740}
6af118ce 5741
f7a52a40 5742int try_release_extent_buffer(struct page *page)
19fe0a8b 5743{
6af118ce 5744 struct extent_buffer *eb;
6af118ce 5745
3083ee2e
JB
5746 /*
5747 * We need to make sure noboody is attaching this page to an eb right
5748 * now.
5749 */
5750 spin_lock(&page->mapping->private_lock);
5751 if (!PagePrivate(page)) {
5752 spin_unlock(&page->mapping->private_lock);
4f2de97a 5753 return 1;
45f49bce 5754 }
6af118ce 5755
3083ee2e
JB
5756 eb = (struct extent_buffer *)page->private;
5757 BUG_ON(!eb);
19fe0a8b
MX
5758
5759 /*
3083ee2e
JB
5760 * This is a little awful but should be ok, we need to make sure that
5761 * the eb doesn't disappear out from under us while we're looking at
5762 * this page.
19fe0a8b 5763 */
3083ee2e 5764 spin_lock(&eb->refs_lock);
0b32f4bb 5765 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5766 spin_unlock(&eb->refs_lock);
5767 spin_unlock(&page->mapping->private_lock);
5768 return 0;
b9473439 5769 }
3083ee2e 5770 spin_unlock(&page->mapping->private_lock);
897ca6e9 5771
19fe0a8b 5772 /*
3083ee2e
JB
5773 * If tree ref isn't set then we know the ref on this eb is a real ref,
5774 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5775 */
3083ee2e
JB
5776 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5777 spin_unlock(&eb->refs_lock);
5778 return 0;
b9473439 5779 }
19fe0a8b 5780
f7a52a40 5781 return release_extent_buffer(eb);
6af118ce 5782}