]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: honor umask when creating subvol root
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
d1310b2e 22
d1310b2e
CM
23static struct kmem_cache *extent_state_cache;
24static struct kmem_cache *extent_buffer_cache;
25
26static LIST_HEAD(buffers);
27static LIST_HEAD(states);
4bef0848 28
b47eda86 29#define LEAK_DEBUG 0
3935127c 30#if LEAK_DEBUG
d397712b 31static DEFINE_SPINLOCK(leak_lock);
4bef0848 32#endif
d1310b2e 33
d1310b2e
CM
34#define BUFFER_LRU_MAX 64
35
36struct tree_entry {
37 u64 start;
38 u64 end;
d1310b2e
CM
39 struct rb_node rb_node;
40};
41
42struct extent_page_data {
43 struct bio *bio;
44 struct extent_io_tree *tree;
45 get_extent_t *get_extent;
771ed689
CM
46
47 /* tells writepage not to lock the state bits for this range
48 * it still does the unlocking
49 */
ffbd517d
CM
50 unsigned int extent_locked:1;
51
52 /* tells the submit_bio code to use a WRITE_SYNC */
53 unsigned int sync_io:1;
d1310b2e
CM
54};
55
56int __init extent_io_init(void)
57{
9601e3f6
CH
58 extent_state_cache = kmem_cache_create("extent_state",
59 sizeof(struct extent_state), 0,
60 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
61 if (!extent_state_cache)
62 return -ENOMEM;
63
9601e3f6
CH
64 extent_buffer_cache = kmem_cache_create("extent_buffers",
65 sizeof(struct extent_buffer), 0,
66 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
67 if (!extent_buffer_cache)
68 goto free_state_cache;
69 return 0;
70
71free_state_cache:
72 kmem_cache_destroy(extent_state_cache);
73 return -ENOMEM;
74}
75
76void extent_io_exit(void)
77{
78 struct extent_state *state;
2d2ae547 79 struct extent_buffer *eb;
d1310b2e
CM
80
81 while (!list_empty(&states)) {
2d2ae547 82 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
83 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
84 "state %lu in tree %p refs %d\n",
85 (unsigned long long)state->start,
86 (unsigned long long)state->end,
87 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 88 list_del(&state->leak_list);
d1310b2e
CM
89 kmem_cache_free(extent_state_cache, state);
90
91 }
92
2d2ae547
CM
93 while (!list_empty(&buffers)) {
94 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
95 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
96 "refs %d\n", (unsigned long long)eb->start,
97 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
98 list_del(&eb->leak_list);
99 kmem_cache_free(extent_buffer_cache, eb);
100 }
d1310b2e
CM
101 if (extent_state_cache)
102 kmem_cache_destroy(extent_state_cache);
103 if (extent_buffer_cache)
104 kmem_cache_destroy(extent_buffer_cache);
105}
106
107void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 108 struct address_space *mapping)
d1310b2e 109{
6bef4d31 110 tree->state = RB_ROOT;
19fe0a8b 111 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
112 tree->ops = NULL;
113 tree->dirty_bytes = 0;
70dec807 114 spin_lock_init(&tree->lock);
6af118ce 115 spin_lock_init(&tree->buffer_lock);
d1310b2e 116 tree->mapping = mapping;
d1310b2e 117}
d1310b2e 118
b2950863 119static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
120{
121 struct extent_state *state;
3935127c 122#if LEAK_DEBUG
2d2ae547 123 unsigned long flags;
4bef0848 124#endif
d1310b2e
CM
125
126 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 127 if (!state)
d1310b2e
CM
128 return state;
129 state->state = 0;
d1310b2e 130 state->private = 0;
70dec807 131 state->tree = NULL;
3935127c 132#if LEAK_DEBUG
2d2ae547
CM
133 spin_lock_irqsave(&leak_lock, flags);
134 list_add(&state->leak_list, &states);
135 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 136#endif
d1310b2e
CM
137 atomic_set(&state->refs, 1);
138 init_waitqueue_head(&state->wq);
139 return state;
140}
d1310b2e 141
4845e44f 142void free_extent_state(struct extent_state *state)
d1310b2e 143{
d1310b2e
CM
144 if (!state)
145 return;
146 if (atomic_dec_and_test(&state->refs)) {
3935127c 147#if LEAK_DEBUG
2d2ae547 148 unsigned long flags;
4bef0848 149#endif
70dec807 150 WARN_ON(state->tree);
3935127c 151#if LEAK_DEBUG
2d2ae547
CM
152 spin_lock_irqsave(&leak_lock, flags);
153 list_del(&state->leak_list);
154 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 155#endif
d1310b2e
CM
156 kmem_cache_free(extent_state_cache, state);
157 }
158}
d1310b2e
CM
159
160static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
161 struct rb_node *node)
162{
d397712b
CM
163 struct rb_node **p = &root->rb_node;
164 struct rb_node *parent = NULL;
d1310b2e
CM
165 struct tree_entry *entry;
166
d397712b 167 while (*p) {
d1310b2e
CM
168 parent = *p;
169 entry = rb_entry(parent, struct tree_entry, rb_node);
170
171 if (offset < entry->start)
172 p = &(*p)->rb_left;
173 else if (offset > entry->end)
174 p = &(*p)->rb_right;
175 else
176 return parent;
177 }
178
179 entry = rb_entry(node, struct tree_entry, rb_node);
d1310b2e
CM
180 rb_link_node(node, parent, p);
181 rb_insert_color(node, root);
182 return NULL;
183}
184
80ea96b1 185static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
186 struct rb_node **prev_ret,
187 struct rb_node **next_ret)
188{
80ea96b1 189 struct rb_root *root = &tree->state;
d397712b 190 struct rb_node *n = root->rb_node;
d1310b2e
CM
191 struct rb_node *prev = NULL;
192 struct rb_node *orig_prev = NULL;
193 struct tree_entry *entry;
194 struct tree_entry *prev_entry = NULL;
195
d397712b 196 while (n) {
d1310b2e
CM
197 entry = rb_entry(n, struct tree_entry, rb_node);
198 prev = n;
199 prev_entry = entry;
200
201 if (offset < entry->start)
202 n = n->rb_left;
203 else if (offset > entry->end)
204 n = n->rb_right;
d397712b 205 else
d1310b2e
CM
206 return n;
207 }
208
209 if (prev_ret) {
210 orig_prev = prev;
d397712b 211 while (prev && offset > prev_entry->end) {
d1310b2e
CM
212 prev = rb_next(prev);
213 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
214 }
215 *prev_ret = prev;
216 prev = orig_prev;
217 }
218
219 if (next_ret) {
220 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 221 while (prev && offset < prev_entry->start) {
d1310b2e
CM
222 prev = rb_prev(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *next_ret = prev;
226 }
227 return NULL;
228}
229
80ea96b1
CM
230static inline struct rb_node *tree_search(struct extent_io_tree *tree,
231 u64 offset)
d1310b2e 232{
70dec807 233 struct rb_node *prev = NULL;
d1310b2e 234 struct rb_node *ret;
70dec807 235
80ea96b1 236 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 237 if (!ret)
d1310b2e
CM
238 return prev;
239 return ret;
240}
241
9ed74f2d
JB
242static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
243 struct extent_state *other)
244{
245 if (tree->ops && tree->ops->merge_extent_hook)
246 tree->ops->merge_extent_hook(tree->mapping->host, new,
247 other);
248}
249
d1310b2e
CM
250/*
251 * utility function to look for merge candidates inside a given range.
252 * Any extents with matching state are merged together into a single
253 * extent in the tree. Extents with EXTENT_IO in their state field
254 * are not merged because the end_io handlers need to be able to do
255 * operations on them without sleeping (or doing allocations/splits).
256 *
257 * This should be called with the tree lock held.
258 */
1bf85046
JM
259static void merge_state(struct extent_io_tree *tree,
260 struct extent_state *state)
d1310b2e
CM
261{
262 struct extent_state *other;
263 struct rb_node *other_node;
264
5b21f2ed 265 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 266 return;
d1310b2e
CM
267
268 other_node = rb_prev(&state->rb_node);
269 if (other_node) {
270 other = rb_entry(other_node, struct extent_state, rb_node);
271 if (other->end == state->start - 1 &&
272 other->state == state->state) {
9ed74f2d 273 merge_cb(tree, state, other);
d1310b2e 274 state->start = other->start;
70dec807 275 other->tree = NULL;
d1310b2e
CM
276 rb_erase(&other->rb_node, &tree->state);
277 free_extent_state(other);
278 }
279 }
280 other_node = rb_next(&state->rb_node);
281 if (other_node) {
282 other = rb_entry(other_node, struct extent_state, rb_node);
283 if (other->start == state->end + 1 &&
284 other->state == state->state) {
9ed74f2d 285 merge_cb(tree, state, other);
df98b6e2
JB
286 state->end = other->end;
287 other->tree = NULL;
288 rb_erase(&other->rb_node, &tree->state);
289 free_extent_state(other);
d1310b2e
CM
290 }
291 }
d1310b2e
CM
292}
293
1bf85046 294static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 295 struct extent_state *state, int *bits)
291d673e 296{
1bf85046
JM
297 if (tree->ops && tree->ops->set_bit_hook)
298 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
299}
300
301static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 302 struct extent_state *state, int *bits)
291d673e 303{
9ed74f2d
JB
304 if (tree->ops && tree->ops->clear_bit_hook)
305 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
306}
307
3150b699
XG
308static void set_state_bits(struct extent_io_tree *tree,
309 struct extent_state *state, int *bits);
310
d1310b2e
CM
311/*
312 * insert an extent_state struct into the tree. 'bits' are set on the
313 * struct before it is inserted.
314 *
315 * This may return -EEXIST if the extent is already there, in which case the
316 * state struct is freed.
317 *
318 * The tree lock is not taken internally. This is a utility function and
319 * probably isn't what you want to call (see set/clear_extent_bit).
320 */
321static int insert_state(struct extent_io_tree *tree,
322 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 323 int *bits)
d1310b2e
CM
324{
325 struct rb_node *node;
326
327 if (end < start) {
d397712b
CM
328 printk(KERN_ERR "btrfs end < start %llu %llu\n",
329 (unsigned long long)end,
330 (unsigned long long)start);
d1310b2e
CM
331 WARN_ON(1);
332 }
d1310b2e
CM
333 state->start = start;
334 state->end = end;
9ed74f2d 335
3150b699
XG
336 set_state_bits(tree, state, bits);
337
d1310b2e
CM
338 node = tree_insert(&tree->state, end, &state->rb_node);
339 if (node) {
340 struct extent_state *found;
341 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
342 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
343 "%llu %llu\n", (unsigned long long)found->start,
344 (unsigned long long)found->end,
345 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
346 return -EEXIST;
347 }
70dec807 348 state->tree = tree;
d1310b2e
CM
349 merge_state(tree, state);
350 return 0;
351}
352
1bf85046 353static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
354 u64 split)
355{
356 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 357 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
358}
359
d1310b2e
CM
360/*
361 * split a given extent state struct in two, inserting the preallocated
362 * struct 'prealloc' as the newly created second half. 'split' indicates an
363 * offset inside 'orig' where it should be split.
364 *
365 * Before calling,
366 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
367 * are two extent state structs in the tree:
368 * prealloc: [orig->start, split - 1]
369 * orig: [ split, orig->end ]
370 *
371 * The tree locks are not taken by this function. They need to be held
372 * by the caller.
373 */
374static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
375 struct extent_state *prealloc, u64 split)
376{
377 struct rb_node *node;
9ed74f2d
JB
378
379 split_cb(tree, orig, split);
380
d1310b2e
CM
381 prealloc->start = orig->start;
382 prealloc->end = split - 1;
383 prealloc->state = orig->state;
384 orig->start = split;
385
386 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
387 if (node) {
d1310b2e
CM
388 free_extent_state(prealloc);
389 return -EEXIST;
390 }
70dec807 391 prealloc->tree = tree;
d1310b2e
CM
392 return 0;
393}
394
395/*
396 * utility function to clear some bits in an extent state struct.
397 * it will optionally wake up any one waiting on this state (wake == 1), or
398 * forcibly remove the state from the tree (delete == 1).
399 *
400 * If no bits are set on the state struct after clearing things, the
401 * struct is freed and removed from the tree
402 */
403static int clear_state_bit(struct extent_io_tree *tree,
0ca1f7ce
YZ
404 struct extent_state *state,
405 int *bits, int wake)
d1310b2e 406{
0ca1f7ce 407 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
32c00aff 408 int ret = state->state & bits_to_clear;
d1310b2e 409
0ca1f7ce 410 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
411 u64 range = state->end - state->start + 1;
412 WARN_ON(range > tree->dirty_bytes);
413 tree->dirty_bytes -= range;
414 }
291d673e 415 clear_state_cb(tree, state, bits);
32c00aff 416 state->state &= ~bits_to_clear;
d1310b2e
CM
417 if (wake)
418 wake_up(&state->wq);
0ca1f7ce 419 if (state->state == 0) {
70dec807 420 if (state->tree) {
d1310b2e 421 rb_erase(&state->rb_node, &tree->state);
70dec807 422 state->tree = NULL;
d1310b2e
CM
423 free_extent_state(state);
424 } else {
425 WARN_ON(1);
426 }
427 } else {
428 merge_state(tree, state);
429 }
430 return ret;
431}
432
8233767a
XG
433static struct extent_state *
434alloc_extent_state_atomic(struct extent_state *prealloc)
435{
436 if (!prealloc)
437 prealloc = alloc_extent_state(GFP_ATOMIC);
438
439 return prealloc;
440}
441
d1310b2e
CM
442/*
443 * clear some bits on a range in the tree. This may require splitting
444 * or inserting elements in the tree, so the gfp mask is used to
445 * indicate which allocations or sleeping are allowed.
446 *
447 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
448 * the given range from the tree regardless of state (ie for truncate).
449 *
450 * the range [start, end] is inclusive.
451 *
452 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
453 * bits were already set, or zero if none of the bits were already set.
454 */
455int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
456 int bits, int wake, int delete,
457 struct extent_state **cached_state,
458 gfp_t mask)
d1310b2e
CM
459{
460 struct extent_state *state;
2c64c53d 461 struct extent_state *cached;
d1310b2e 462 struct extent_state *prealloc = NULL;
2c64c53d 463 struct rb_node *next_node;
d1310b2e 464 struct rb_node *node;
5c939df5 465 u64 last_end;
d1310b2e
CM
466 int err;
467 int set = 0;
2ac55d41 468 int clear = 0;
d1310b2e 469
0ca1f7ce
YZ
470 if (delete)
471 bits |= ~EXTENT_CTLBITS;
472 bits |= EXTENT_FIRST_DELALLOC;
473
2ac55d41
JB
474 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
475 clear = 1;
d1310b2e
CM
476again:
477 if (!prealloc && (mask & __GFP_WAIT)) {
478 prealloc = alloc_extent_state(mask);
479 if (!prealloc)
480 return -ENOMEM;
481 }
482
cad321ad 483 spin_lock(&tree->lock);
2c64c53d
CM
484 if (cached_state) {
485 cached = *cached_state;
2ac55d41
JB
486
487 if (clear) {
488 *cached_state = NULL;
489 cached_state = NULL;
490 }
491
df98b6e2
JB
492 if (cached && cached->tree && cached->start <= start &&
493 cached->end > start) {
2ac55d41
JB
494 if (clear)
495 atomic_dec(&cached->refs);
2c64c53d 496 state = cached;
42daec29 497 goto hit_next;
2c64c53d 498 }
2ac55d41
JB
499 if (clear)
500 free_extent_state(cached);
2c64c53d 501 }
d1310b2e
CM
502 /*
503 * this search will find the extents that end after
504 * our range starts
505 */
80ea96b1 506 node = tree_search(tree, start);
d1310b2e
CM
507 if (!node)
508 goto out;
509 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 510hit_next:
d1310b2e
CM
511 if (state->start > end)
512 goto out;
513 WARN_ON(state->end < start);
5c939df5 514 last_end = state->end;
d1310b2e
CM
515
516 /*
517 * | ---- desired range ---- |
518 * | state | or
519 * | ------------- state -------------- |
520 *
521 * We need to split the extent we found, and may flip
522 * bits on second half.
523 *
524 * If the extent we found extends past our range, we
525 * just split and search again. It'll get split again
526 * the next time though.
527 *
528 * If the extent we found is inside our range, we clear
529 * the desired bit on it.
530 */
531
532 if (state->start < start) {
8233767a
XG
533 prealloc = alloc_extent_state_atomic(prealloc);
534 BUG_ON(!prealloc);
d1310b2e
CM
535 err = split_state(tree, state, prealloc, start);
536 BUG_ON(err == -EEXIST);
537 prealloc = NULL;
538 if (err)
539 goto out;
540 if (state->end <= end) {
0ca1f7ce 541 set |= clear_state_bit(tree, state, &bits, wake);
5c939df5
YZ
542 if (last_end == (u64)-1)
543 goto out;
544 start = last_end + 1;
d1310b2e
CM
545 }
546 goto search_again;
547 }
548 /*
549 * | ---- desired range ---- |
550 * | state |
551 * We need to split the extent, and clear the bit
552 * on the first half
553 */
554 if (state->start <= end && state->end > end) {
8233767a
XG
555 prealloc = alloc_extent_state_atomic(prealloc);
556 BUG_ON(!prealloc);
d1310b2e
CM
557 err = split_state(tree, state, prealloc, end + 1);
558 BUG_ON(err == -EEXIST);
d1310b2e
CM
559 if (wake)
560 wake_up(&state->wq);
42daec29 561
0ca1f7ce 562 set |= clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 563
d1310b2e
CM
564 prealloc = NULL;
565 goto out;
566 }
42daec29 567
2c64c53d
CM
568 if (state->end < end && prealloc && !need_resched())
569 next_node = rb_next(&state->rb_node);
570 else
571 next_node = NULL;
42daec29 572
0ca1f7ce 573 set |= clear_state_bit(tree, state, &bits, wake);
5c939df5
YZ
574 if (last_end == (u64)-1)
575 goto out;
576 start = last_end + 1;
2c64c53d
CM
577 if (start <= end && next_node) {
578 state = rb_entry(next_node, struct extent_state,
579 rb_node);
580 if (state->start == start)
581 goto hit_next;
582 }
d1310b2e
CM
583 goto search_again;
584
585out:
cad321ad 586 spin_unlock(&tree->lock);
d1310b2e
CM
587 if (prealloc)
588 free_extent_state(prealloc);
589
590 return set;
591
592search_again:
593 if (start > end)
594 goto out;
cad321ad 595 spin_unlock(&tree->lock);
d1310b2e
CM
596 if (mask & __GFP_WAIT)
597 cond_resched();
598 goto again;
599}
d1310b2e
CM
600
601static int wait_on_state(struct extent_io_tree *tree,
602 struct extent_state *state)
641f5219
CH
603 __releases(tree->lock)
604 __acquires(tree->lock)
d1310b2e
CM
605{
606 DEFINE_WAIT(wait);
607 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 608 spin_unlock(&tree->lock);
d1310b2e 609 schedule();
cad321ad 610 spin_lock(&tree->lock);
d1310b2e
CM
611 finish_wait(&state->wq, &wait);
612 return 0;
613}
614
615/*
616 * waits for one or more bits to clear on a range in the state tree.
617 * The range [start, end] is inclusive.
618 * The tree lock is taken by this function
619 */
620int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
621{
622 struct extent_state *state;
623 struct rb_node *node;
624
cad321ad 625 spin_lock(&tree->lock);
d1310b2e
CM
626again:
627 while (1) {
628 /*
629 * this search will find all the extents that end after
630 * our range starts
631 */
80ea96b1 632 node = tree_search(tree, start);
d1310b2e
CM
633 if (!node)
634 break;
635
636 state = rb_entry(node, struct extent_state, rb_node);
637
638 if (state->start > end)
639 goto out;
640
641 if (state->state & bits) {
642 start = state->start;
643 atomic_inc(&state->refs);
644 wait_on_state(tree, state);
645 free_extent_state(state);
646 goto again;
647 }
648 start = state->end + 1;
649
650 if (start > end)
651 break;
652
ded91f08 653 cond_resched_lock(&tree->lock);
d1310b2e
CM
654 }
655out:
cad321ad 656 spin_unlock(&tree->lock);
d1310b2e
CM
657 return 0;
658}
d1310b2e 659
1bf85046 660static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 661 struct extent_state *state,
0ca1f7ce 662 int *bits)
d1310b2e 663{
0ca1f7ce 664 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 665
1bf85046 666 set_state_cb(tree, state, bits);
0ca1f7ce 667 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
668 u64 range = state->end - state->start + 1;
669 tree->dirty_bytes += range;
670 }
0ca1f7ce 671 state->state |= bits_to_set;
d1310b2e
CM
672}
673
2c64c53d
CM
674static void cache_state(struct extent_state *state,
675 struct extent_state **cached_ptr)
676{
677 if (cached_ptr && !(*cached_ptr)) {
678 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
679 *cached_ptr = state;
680 atomic_inc(&state->refs);
681 }
682 }
683}
684
507903b8
AJ
685static void uncache_state(struct extent_state **cached_ptr)
686{
687 if (cached_ptr && (*cached_ptr)) {
688 struct extent_state *state = *cached_ptr;
109b36a2
CM
689 *cached_ptr = NULL;
690 free_extent_state(state);
507903b8
AJ
691 }
692}
693
d1310b2e 694/*
1edbb734
CM
695 * set some bits on a range in the tree. This may require allocations or
696 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 697 *
1edbb734
CM
698 * If any of the exclusive bits are set, this will fail with -EEXIST if some
699 * part of the range already has the desired bits set. The start of the
700 * existing range is returned in failed_start in this case.
d1310b2e 701 *
1edbb734 702 * [start, end] is inclusive This takes the tree lock.
d1310b2e 703 */
1edbb734 704
4845e44f
CM
705int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 int bits, int exclusive_bits, u64 *failed_start,
707 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
708{
709 struct extent_state *state;
710 struct extent_state *prealloc = NULL;
711 struct rb_node *node;
d1310b2e 712 int err = 0;
d1310b2e
CM
713 u64 last_start;
714 u64 last_end;
42daec29 715
0ca1f7ce 716 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
717again:
718 if (!prealloc && (mask & __GFP_WAIT)) {
719 prealloc = alloc_extent_state(mask);
8233767a 720 BUG_ON(!prealloc);
d1310b2e
CM
721 }
722
cad321ad 723 spin_lock(&tree->lock);
9655d298
CM
724 if (cached_state && *cached_state) {
725 state = *cached_state;
df98b6e2
JB
726 if (state->start <= start && state->end > start &&
727 state->tree) {
9655d298
CM
728 node = &state->rb_node;
729 goto hit_next;
730 }
731 }
d1310b2e
CM
732 /*
733 * this search will find all the extents that end after
734 * our range starts.
735 */
80ea96b1 736 node = tree_search(tree, start);
d1310b2e 737 if (!node) {
8233767a
XG
738 prealloc = alloc_extent_state_atomic(prealloc);
739 BUG_ON(!prealloc);
0ca1f7ce 740 err = insert_state(tree, prealloc, start, end, &bits);
d1310b2e
CM
741 prealloc = NULL;
742 BUG_ON(err == -EEXIST);
743 goto out;
744 }
d1310b2e 745 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 746hit_next:
d1310b2e
CM
747 last_start = state->start;
748 last_end = state->end;
749
750 /*
751 * | ---- desired range ---- |
752 * | state |
753 *
754 * Just lock what we found and keep going
755 */
756 if (state->start == start && state->end <= end) {
40431d6c 757 struct rb_node *next_node;
1edbb734 758 if (state->state & exclusive_bits) {
d1310b2e
CM
759 *failed_start = state->start;
760 err = -EEXIST;
761 goto out;
762 }
42daec29 763
1bf85046 764 set_state_bits(tree, state, &bits);
9ed74f2d 765
2c64c53d 766 cache_state(state, cached_state);
d1310b2e 767 merge_state(tree, state);
5c939df5
YZ
768 if (last_end == (u64)-1)
769 goto out;
40431d6c 770
5c939df5 771 start = last_end + 1;
df98b6e2 772 next_node = rb_next(&state->rb_node);
c7f895a2
XG
773 if (next_node && start < end && prealloc && !need_resched()) {
774 state = rb_entry(next_node, struct extent_state,
775 rb_node);
776 if (state->start == start)
777 goto hit_next;
40431d6c 778 }
d1310b2e
CM
779 goto search_again;
780 }
781
782 /*
783 * | ---- desired range ---- |
784 * | state |
785 * or
786 * | ------------- state -------------- |
787 *
788 * We need to split the extent we found, and may flip bits on
789 * second half.
790 *
791 * If the extent we found extends past our
792 * range, we just split and search again. It'll get split
793 * again the next time though.
794 *
795 * If the extent we found is inside our range, we set the
796 * desired bit on it.
797 */
798 if (state->start < start) {
1edbb734 799 if (state->state & exclusive_bits) {
d1310b2e
CM
800 *failed_start = start;
801 err = -EEXIST;
802 goto out;
803 }
8233767a
XG
804
805 prealloc = alloc_extent_state_atomic(prealloc);
806 BUG_ON(!prealloc);
d1310b2e
CM
807 err = split_state(tree, state, prealloc, start);
808 BUG_ON(err == -EEXIST);
809 prealloc = NULL;
810 if (err)
811 goto out;
812 if (state->end <= end) {
1bf85046 813 set_state_bits(tree, state, &bits);
2c64c53d 814 cache_state(state, cached_state);
d1310b2e 815 merge_state(tree, state);
5c939df5
YZ
816 if (last_end == (u64)-1)
817 goto out;
818 start = last_end + 1;
d1310b2e
CM
819 }
820 goto search_again;
821 }
822 /*
823 * | ---- desired range ---- |
824 * | state | or | state |
825 *
826 * There's a hole, we need to insert something in it and
827 * ignore the extent we found.
828 */
829 if (state->start > start) {
830 u64 this_end;
831 if (end < last_start)
832 this_end = end;
833 else
d397712b 834 this_end = last_start - 1;
8233767a
XG
835
836 prealloc = alloc_extent_state_atomic(prealloc);
837 BUG_ON(!prealloc);
c7f895a2
XG
838
839 /*
840 * Avoid to free 'prealloc' if it can be merged with
841 * the later extent.
842 */
d1310b2e 843 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 844 &bits);
d1310b2e 845 BUG_ON(err == -EEXIST);
9ed74f2d 846 if (err) {
c7f895a2 847 free_extent_state(prealloc);
9ed74f2d 848 prealloc = NULL;
d1310b2e 849 goto out;
9ed74f2d
JB
850 }
851 cache_state(prealloc, cached_state);
852 prealloc = NULL;
d1310b2e
CM
853 start = this_end + 1;
854 goto search_again;
855 }
856 /*
857 * | ---- desired range ---- |
858 * | state |
859 * We need to split the extent, and set the bit
860 * on the first half
861 */
862 if (state->start <= end && state->end > end) {
1edbb734 863 if (state->state & exclusive_bits) {
d1310b2e
CM
864 *failed_start = start;
865 err = -EEXIST;
866 goto out;
867 }
8233767a
XG
868
869 prealloc = alloc_extent_state_atomic(prealloc);
870 BUG_ON(!prealloc);
d1310b2e
CM
871 err = split_state(tree, state, prealloc, end + 1);
872 BUG_ON(err == -EEXIST);
873
1bf85046 874 set_state_bits(tree, prealloc, &bits);
2c64c53d 875 cache_state(prealloc, cached_state);
d1310b2e
CM
876 merge_state(tree, prealloc);
877 prealloc = NULL;
878 goto out;
879 }
880
881 goto search_again;
882
883out:
cad321ad 884 spin_unlock(&tree->lock);
d1310b2e
CM
885 if (prealloc)
886 free_extent_state(prealloc);
887
888 return err;
889
890search_again:
891 if (start > end)
892 goto out;
cad321ad 893 spin_unlock(&tree->lock);
d1310b2e
CM
894 if (mask & __GFP_WAIT)
895 cond_resched();
896 goto again;
897}
d1310b2e 898
462d6fac
JB
899/**
900 * convert_extent - convert all bits in a given range from one bit to another
901 * @tree: the io tree to search
902 * @start: the start offset in bytes
903 * @end: the end offset in bytes (inclusive)
904 * @bits: the bits to set in this range
905 * @clear_bits: the bits to clear in this range
906 * @mask: the allocation mask
907 *
908 * This will go through and set bits for the given range. If any states exist
909 * already in this range they are set with the given bit and cleared of the
910 * clear_bits. This is only meant to be used by things that are mergeable, ie
911 * converting from say DELALLOC to DIRTY. This is not meant to be used with
912 * boundary bits like LOCK.
913 */
914int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
915 int bits, int clear_bits, gfp_t mask)
916{
917 struct extent_state *state;
918 struct extent_state *prealloc = NULL;
919 struct rb_node *node;
920 int err = 0;
921 u64 last_start;
922 u64 last_end;
923
924again:
925 if (!prealloc && (mask & __GFP_WAIT)) {
926 prealloc = alloc_extent_state(mask);
927 if (!prealloc)
928 return -ENOMEM;
929 }
930
931 spin_lock(&tree->lock);
932 /*
933 * this search will find all the extents that end after
934 * our range starts.
935 */
936 node = tree_search(tree, start);
937 if (!node) {
938 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
939 if (!prealloc) {
940 err = -ENOMEM;
941 goto out;
942 }
462d6fac
JB
943 err = insert_state(tree, prealloc, start, end, &bits);
944 prealloc = NULL;
945 BUG_ON(err == -EEXIST);
946 goto out;
947 }
948 state = rb_entry(node, struct extent_state, rb_node);
949hit_next:
950 last_start = state->start;
951 last_end = state->end;
952
953 /*
954 * | ---- desired range ---- |
955 * | state |
956 *
957 * Just lock what we found and keep going
958 */
959 if (state->start == start && state->end <= end) {
960 struct rb_node *next_node;
961
962 set_state_bits(tree, state, &bits);
963 clear_state_bit(tree, state, &clear_bits, 0);
964
965 merge_state(tree, state);
966 if (last_end == (u64)-1)
967 goto out;
968
969 start = last_end + 1;
970 next_node = rb_next(&state->rb_node);
971 if (next_node && start < end && prealloc && !need_resched()) {
972 state = rb_entry(next_node, struct extent_state,
973 rb_node);
974 if (state->start == start)
975 goto hit_next;
976 }
977 goto search_again;
978 }
979
980 /*
981 * | ---- desired range ---- |
982 * | state |
983 * or
984 * | ------------- state -------------- |
985 *
986 * We need to split the extent we found, and may flip bits on
987 * second half.
988 *
989 * If the extent we found extends past our
990 * range, we just split and search again. It'll get split
991 * again the next time though.
992 *
993 * If the extent we found is inside our range, we set the
994 * desired bit on it.
995 */
996 if (state->start < start) {
997 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
998 if (!prealloc) {
999 err = -ENOMEM;
1000 goto out;
1001 }
462d6fac
JB
1002 err = split_state(tree, state, prealloc, start);
1003 BUG_ON(err == -EEXIST);
1004 prealloc = NULL;
1005 if (err)
1006 goto out;
1007 if (state->end <= end) {
1008 set_state_bits(tree, state, &bits);
1009 clear_state_bit(tree, state, &clear_bits, 0);
1010 merge_state(tree, state);
1011 if (last_end == (u64)-1)
1012 goto out;
1013 start = last_end + 1;
1014 }
1015 goto search_again;
1016 }
1017 /*
1018 * | ---- desired range ---- |
1019 * | state | or | state |
1020 *
1021 * There's a hole, we need to insert something in it and
1022 * ignore the extent we found.
1023 */
1024 if (state->start > start) {
1025 u64 this_end;
1026 if (end < last_start)
1027 this_end = end;
1028 else
1029 this_end = last_start - 1;
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1032 if (!prealloc) {
1033 err = -ENOMEM;
1034 goto out;
1035 }
462d6fac
JB
1036
1037 /*
1038 * Avoid to free 'prealloc' if it can be merged with
1039 * the later extent.
1040 */
1041 err = insert_state(tree, prealloc, start, this_end,
1042 &bits);
1043 BUG_ON(err == -EEXIST);
1044 if (err) {
1045 free_extent_state(prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049 prealloc = NULL;
1050 start = this_end + 1;
1051 goto search_again;
1052 }
1053 /*
1054 * | ---- desired range ---- |
1055 * | state |
1056 * We need to split the extent, and set the bit
1057 * on the first half
1058 */
1059 if (state->start <= end && state->end > end) {
1060 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1061 if (!prealloc) {
1062 err = -ENOMEM;
1063 goto out;
1064 }
462d6fac
JB
1065
1066 err = split_state(tree, state, prealloc, end + 1);
1067 BUG_ON(err == -EEXIST);
1068
1069 set_state_bits(tree, prealloc, &bits);
1070 clear_state_bit(tree, prealloc, &clear_bits, 0);
1071
1072 merge_state(tree, prealloc);
1073 prealloc = NULL;
1074 goto out;
1075 }
1076
1077 goto search_again;
1078
1079out:
1080 spin_unlock(&tree->lock);
1081 if (prealloc)
1082 free_extent_state(prealloc);
1083
1084 return err;
1085
1086search_again:
1087 if (start > end)
1088 goto out;
1089 spin_unlock(&tree->lock);
1090 if (mask & __GFP_WAIT)
1091 cond_resched();
1092 goto again;
1093}
1094
d1310b2e
CM
1095/* wrappers around set/clear extent bit */
1096int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1097 gfp_t mask)
1098{
1099 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
2c64c53d 1100 NULL, mask);
d1310b2e 1101}
d1310b2e
CM
1102
1103int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1104 int bits, gfp_t mask)
1105{
1106 return set_extent_bit(tree, start, end, bits, 0, NULL,
2c64c53d 1107 NULL, mask);
d1310b2e 1108}
d1310b2e
CM
1109
1110int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1111 int bits, gfp_t mask)
1112{
2c64c53d 1113 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1114}
d1310b2e
CM
1115
1116int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1117 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1118{
1119 return set_extent_bit(tree, start, end,
fee187d9 1120 EXTENT_DELALLOC | EXTENT_UPTODATE,
2ac55d41 1121 0, NULL, cached_state, mask);
d1310b2e 1122}
d1310b2e
CM
1123
1124int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1125 gfp_t mask)
1126{
1127 return clear_extent_bit(tree, start, end,
32c00aff 1128 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1129 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1130}
d1310b2e
CM
1131
1132int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1133 gfp_t mask)
1134{
1135 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
2c64c53d 1136 NULL, mask);
d1310b2e 1137}
d1310b2e 1138
d1310b2e 1139int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1140 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1141{
507903b8
AJ
1142 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1143 NULL, cached_state, mask);
d1310b2e 1144}
d1310b2e 1145
d397712b 1146static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
2ac55d41
JB
1147 u64 end, struct extent_state **cached_state,
1148 gfp_t mask)
d1310b2e 1149{
2c64c53d 1150 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1151 cached_state, mask);
d1310b2e 1152}
d1310b2e 1153
d352ac68
CM
1154/*
1155 * either insert or lock state struct between start and end use mask to tell
1156 * us if waiting is desired.
1157 */
1edbb734 1158int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d 1159 int bits, struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1160{
1161 int err;
1162 u64 failed_start;
1163 while (1) {
1edbb734 1164 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
2c64c53d
CM
1165 EXTENT_LOCKED, &failed_start,
1166 cached_state, mask);
d1310b2e
CM
1167 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1168 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1169 start = failed_start;
1170 } else {
1171 break;
1172 }
1173 WARN_ON(start > end);
1174 }
1175 return err;
1176}
d1310b2e 1177
1edbb734
CM
1178int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1179{
2c64c53d 1180 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1edbb734
CM
1181}
1182
25179201
JB
1183int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1184 gfp_t mask)
1185{
1186 int err;
1187 u64 failed_start;
1188
2c64c53d
CM
1189 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1190 &failed_start, NULL, mask);
6643558d
YZ
1191 if (err == -EEXIST) {
1192 if (failed_start > start)
1193 clear_extent_bit(tree, start, failed_start - 1,
2c64c53d 1194 EXTENT_LOCKED, 1, 0, NULL, mask);
25179201 1195 return 0;
6643558d 1196 }
25179201
JB
1197 return 1;
1198}
25179201 1199
2c64c53d
CM
1200int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1201 struct extent_state **cached, gfp_t mask)
1202{
1203 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1204 mask);
1205}
1206
507903b8 1207int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
d1310b2e 1208{
2c64c53d
CM
1209 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1210 mask);
d1310b2e 1211}
d1310b2e 1212
d1310b2e
CM
1213/*
1214 * helper function to set both pages and extents in the tree writeback
1215 */
b2950863 1216static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1217{
1218 unsigned long index = start >> PAGE_CACHE_SHIFT;
1219 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1220 struct page *page;
1221
1222 while (index <= end_index) {
1223 page = find_get_page(tree->mapping, index);
1224 BUG_ON(!page);
1225 set_page_writeback(page);
1226 page_cache_release(page);
1227 index++;
1228 }
d1310b2e
CM
1229 return 0;
1230}
d1310b2e 1231
d352ac68
CM
1232/* find the first state struct with 'bits' set after 'start', and
1233 * return it. tree->lock must be held. NULL will returned if
1234 * nothing was found after 'start'
1235 */
d7fc640e
CM
1236struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1237 u64 start, int bits)
1238{
1239 struct rb_node *node;
1240 struct extent_state *state;
1241
1242 /*
1243 * this search will find all the extents that end after
1244 * our range starts.
1245 */
1246 node = tree_search(tree, start);
d397712b 1247 if (!node)
d7fc640e 1248 goto out;
d7fc640e 1249
d397712b 1250 while (1) {
d7fc640e 1251 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1252 if (state->end >= start && (state->state & bits))
d7fc640e 1253 return state;
d397712b 1254
d7fc640e
CM
1255 node = rb_next(node);
1256 if (!node)
1257 break;
1258 }
1259out:
1260 return NULL;
1261}
d7fc640e 1262
69261c4b
XG
1263/*
1264 * find the first offset in the io tree with 'bits' set. zero is
1265 * returned if we find something, and *start_ret and *end_ret are
1266 * set to reflect the state struct that was found.
1267 *
1268 * If nothing was found, 1 is returned, < 0 on error
1269 */
1270int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1271 u64 *start_ret, u64 *end_ret, int bits)
1272{
1273 struct extent_state *state;
1274 int ret = 1;
1275
1276 spin_lock(&tree->lock);
1277 state = find_first_extent_bit_state(tree, start, bits);
1278 if (state) {
1279 *start_ret = state->start;
1280 *end_ret = state->end;
1281 ret = 0;
1282 }
1283 spin_unlock(&tree->lock);
1284 return ret;
1285}
1286
d352ac68
CM
1287/*
1288 * find a contiguous range of bytes in the file marked as delalloc, not
1289 * more than 'max_bytes'. start and end are used to return the range,
1290 *
1291 * 1 is returned if we find something, 0 if nothing was in the tree
1292 */
c8b97818 1293static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1294 u64 *start, u64 *end, u64 max_bytes,
1295 struct extent_state **cached_state)
d1310b2e
CM
1296{
1297 struct rb_node *node;
1298 struct extent_state *state;
1299 u64 cur_start = *start;
1300 u64 found = 0;
1301 u64 total_bytes = 0;
1302
cad321ad 1303 spin_lock(&tree->lock);
c8b97818 1304
d1310b2e
CM
1305 /*
1306 * this search will find all the extents that end after
1307 * our range starts.
1308 */
80ea96b1 1309 node = tree_search(tree, cur_start);
2b114d1d 1310 if (!node) {
3b951516
CM
1311 if (!found)
1312 *end = (u64)-1;
d1310b2e
CM
1313 goto out;
1314 }
1315
d397712b 1316 while (1) {
d1310b2e 1317 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1318 if (found && (state->start != cur_start ||
1319 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1320 goto out;
1321 }
1322 if (!(state->state & EXTENT_DELALLOC)) {
1323 if (!found)
1324 *end = state->end;
1325 goto out;
1326 }
c2a128d2 1327 if (!found) {
d1310b2e 1328 *start = state->start;
c2a128d2
JB
1329 *cached_state = state;
1330 atomic_inc(&state->refs);
1331 }
d1310b2e
CM
1332 found++;
1333 *end = state->end;
1334 cur_start = state->end + 1;
1335 node = rb_next(node);
1336 if (!node)
1337 break;
1338 total_bytes += state->end - state->start + 1;
1339 if (total_bytes >= max_bytes)
1340 break;
1341 }
1342out:
cad321ad 1343 spin_unlock(&tree->lock);
d1310b2e
CM
1344 return found;
1345}
1346
c8b97818
CM
1347static noinline int __unlock_for_delalloc(struct inode *inode,
1348 struct page *locked_page,
1349 u64 start, u64 end)
1350{
1351 int ret;
1352 struct page *pages[16];
1353 unsigned long index = start >> PAGE_CACHE_SHIFT;
1354 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1355 unsigned long nr_pages = end_index - index + 1;
1356 int i;
1357
1358 if (index == locked_page->index && end_index == index)
1359 return 0;
1360
d397712b 1361 while (nr_pages > 0) {
c8b97818 1362 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1363 min_t(unsigned long, nr_pages,
1364 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1365 for (i = 0; i < ret; i++) {
1366 if (pages[i] != locked_page)
1367 unlock_page(pages[i]);
1368 page_cache_release(pages[i]);
1369 }
1370 nr_pages -= ret;
1371 index += ret;
1372 cond_resched();
1373 }
1374 return 0;
1375}
1376
1377static noinline int lock_delalloc_pages(struct inode *inode,
1378 struct page *locked_page,
1379 u64 delalloc_start,
1380 u64 delalloc_end)
1381{
1382 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1383 unsigned long start_index = index;
1384 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1385 unsigned long pages_locked = 0;
1386 struct page *pages[16];
1387 unsigned long nrpages;
1388 int ret;
1389 int i;
1390
1391 /* the caller is responsible for locking the start index */
1392 if (index == locked_page->index && index == end_index)
1393 return 0;
1394
1395 /* skip the page at the start index */
1396 nrpages = end_index - index + 1;
d397712b 1397 while (nrpages > 0) {
c8b97818 1398 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1399 min_t(unsigned long,
1400 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1401 if (ret == 0) {
1402 ret = -EAGAIN;
1403 goto done;
1404 }
1405 /* now we have an array of pages, lock them all */
1406 for (i = 0; i < ret; i++) {
1407 /*
1408 * the caller is taking responsibility for
1409 * locked_page
1410 */
771ed689 1411 if (pages[i] != locked_page) {
c8b97818 1412 lock_page(pages[i]);
f2b1c41c
CM
1413 if (!PageDirty(pages[i]) ||
1414 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1415 ret = -EAGAIN;
1416 unlock_page(pages[i]);
1417 page_cache_release(pages[i]);
1418 goto done;
1419 }
1420 }
c8b97818 1421 page_cache_release(pages[i]);
771ed689 1422 pages_locked++;
c8b97818 1423 }
c8b97818
CM
1424 nrpages -= ret;
1425 index += ret;
1426 cond_resched();
1427 }
1428 ret = 0;
1429done:
1430 if (ret && pages_locked) {
1431 __unlock_for_delalloc(inode, locked_page,
1432 delalloc_start,
1433 ((u64)(start_index + pages_locked - 1)) <<
1434 PAGE_CACHE_SHIFT);
1435 }
1436 return ret;
1437}
1438
1439/*
1440 * find a contiguous range of bytes in the file marked as delalloc, not
1441 * more than 'max_bytes'. start and end are used to return the range,
1442 *
1443 * 1 is returned if we find something, 0 if nothing was in the tree
1444 */
1445static noinline u64 find_lock_delalloc_range(struct inode *inode,
1446 struct extent_io_tree *tree,
1447 struct page *locked_page,
1448 u64 *start, u64 *end,
1449 u64 max_bytes)
1450{
1451 u64 delalloc_start;
1452 u64 delalloc_end;
1453 u64 found;
9655d298 1454 struct extent_state *cached_state = NULL;
c8b97818
CM
1455 int ret;
1456 int loops = 0;
1457
1458again:
1459 /* step one, find a bunch of delalloc bytes starting at start */
1460 delalloc_start = *start;
1461 delalloc_end = 0;
1462 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1463 max_bytes, &cached_state);
70b99e69 1464 if (!found || delalloc_end <= *start) {
c8b97818
CM
1465 *start = delalloc_start;
1466 *end = delalloc_end;
c2a128d2 1467 free_extent_state(cached_state);
c8b97818
CM
1468 return found;
1469 }
1470
70b99e69
CM
1471 /*
1472 * start comes from the offset of locked_page. We have to lock
1473 * pages in order, so we can't process delalloc bytes before
1474 * locked_page
1475 */
d397712b 1476 if (delalloc_start < *start)
70b99e69 1477 delalloc_start = *start;
70b99e69 1478
c8b97818
CM
1479 /*
1480 * make sure to limit the number of pages we try to lock down
1481 * if we're looping.
1482 */
d397712b 1483 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1484 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1485
c8b97818
CM
1486 /* step two, lock all the pages after the page that has start */
1487 ret = lock_delalloc_pages(inode, locked_page,
1488 delalloc_start, delalloc_end);
1489 if (ret == -EAGAIN) {
1490 /* some of the pages are gone, lets avoid looping by
1491 * shortening the size of the delalloc range we're searching
1492 */
9655d298 1493 free_extent_state(cached_state);
c8b97818
CM
1494 if (!loops) {
1495 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1496 max_bytes = PAGE_CACHE_SIZE - offset;
1497 loops = 1;
1498 goto again;
1499 } else {
1500 found = 0;
1501 goto out_failed;
1502 }
1503 }
1504 BUG_ON(ret);
1505
1506 /* step three, lock the state bits for the whole range */
9655d298
CM
1507 lock_extent_bits(tree, delalloc_start, delalloc_end,
1508 0, &cached_state, GFP_NOFS);
c8b97818
CM
1509
1510 /* then test to make sure it is all still delalloc */
1511 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1512 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1513 if (!ret) {
9655d298
CM
1514 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1515 &cached_state, GFP_NOFS);
c8b97818
CM
1516 __unlock_for_delalloc(inode, locked_page,
1517 delalloc_start, delalloc_end);
1518 cond_resched();
1519 goto again;
1520 }
9655d298 1521 free_extent_state(cached_state);
c8b97818
CM
1522 *start = delalloc_start;
1523 *end = delalloc_end;
1524out_failed:
1525 return found;
1526}
1527
1528int extent_clear_unlock_delalloc(struct inode *inode,
1529 struct extent_io_tree *tree,
1530 u64 start, u64 end, struct page *locked_page,
a791e35e 1531 unsigned long op)
c8b97818
CM
1532{
1533 int ret;
1534 struct page *pages[16];
1535 unsigned long index = start >> PAGE_CACHE_SHIFT;
1536 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1537 unsigned long nr_pages = end_index - index + 1;
1538 int i;
771ed689 1539 int clear_bits = 0;
c8b97818 1540
a791e35e 1541 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1542 clear_bits |= EXTENT_LOCKED;
a791e35e 1543 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1544 clear_bits |= EXTENT_DIRTY;
1545
a791e35e 1546 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1547 clear_bits |= EXTENT_DELALLOC;
1548
2c64c53d 1549 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1550 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1551 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1552 EXTENT_SET_PRIVATE2)))
771ed689 1553 return 0;
c8b97818 1554
d397712b 1555 while (nr_pages > 0) {
c8b97818 1556 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1557 min_t(unsigned long,
1558 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1559 for (i = 0; i < ret; i++) {
8b62b72b 1560
a791e35e 1561 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1562 SetPagePrivate2(pages[i]);
1563
c8b97818
CM
1564 if (pages[i] == locked_page) {
1565 page_cache_release(pages[i]);
1566 continue;
1567 }
a791e35e 1568 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1569 clear_page_dirty_for_io(pages[i]);
a791e35e 1570 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1571 set_page_writeback(pages[i]);
a791e35e 1572 if (op & EXTENT_END_WRITEBACK)
c8b97818 1573 end_page_writeback(pages[i]);
a791e35e 1574 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1575 unlock_page(pages[i]);
c8b97818
CM
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 return 0;
1583}
c8b97818 1584
d352ac68
CM
1585/*
1586 * count the number of bytes in the tree that have a given bit(s)
1587 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1588 * cached. The total number found is returned.
1589 */
d1310b2e
CM
1590u64 count_range_bits(struct extent_io_tree *tree,
1591 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1592 unsigned long bits, int contig)
d1310b2e
CM
1593{
1594 struct rb_node *node;
1595 struct extent_state *state;
1596 u64 cur_start = *start;
1597 u64 total_bytes = 0;
ec29ed5b 1598 u64 last = 0;
d1310b2e
CM
1599 int found = 0;
1600
1601 if (search_end <= cur_start) {
d1310b2e
CM
1602 WARN_ON(1);
1603 return 0;
1604 }
1605
cad321ad 1606 spin_lock(&tree->lock);
d1310b2e
CM
1607 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1608 total_bytes = tree->dirty_bytes;
1609 goto out;
1610 }
1611 /*
1612 * this search will find all the extents that end after
1613 * our range starts.
1614 */
80ea96b1 1615 node = tree_search(tree, cur_start);
d397712b 1616 if (!node)
d1310b2e 1617 goto out;
d1310b2e 1618
d397712b 1619 while (1) {
d1310b2e
CM
1620 state = rb_entry(node, struct extent_state, rb_node);
1621 if (state->start > search_end)
1622 break;
ec29ed5b
CM
1623 if (contig && found && state->start > last + 1)
1624 break;
1625 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1626 total_bytes += min(search_end, state->end) + 1 -
1627 max(cur_start, state->start);
1628 if (total_bytes >= max_bytes)
1629 break;
1630 if (!found) {
af60bed2 1631 *start = max(cur_start, state->start);
d1310b2e
CM
1632 found = 1;
1633 }
ec29ed5b
CM
1634 last = state->end;
1635 } else if (contig && found) {
1636 break;
d1310b2e
CM
1637 }
1638 node = rb_next(node);
1639 if (!node)
1640 break;
1641 }
1642out:
cad321ad 1643 spin_unlock(&tree->lock);
d1310b2e
CM
1644 return total_bytes;
1645}
b2950863 1646
d352ac68
CM
1647/*
1648 * set the private field for a given byte offset in the tree. If there isn't
1649 * an extent_state there already, this does nothing.
1650 */
d1310b2e
CM
1651int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1652{
1653 struct rb_node *node;
1654 struct extent_state *state;
1655 int ret = 0;
1656
cad321ad 1657 spin_lock(&tree->lock);
d1310b2e
CM
1658 /*
1659 * this search will find all the extents that end after
1660 * our range starts.
1661 */
80ea96b1 1662 node = tree_search(tree, start);
2b114d1d 1663 if (!node) {
d1310b2e
CM
1664 ret = -ENOENT;
1665 goto out;
1666 }
1667 state = rb_entry(node, struct extent_state, rb_node);
1668 if (state->start != start) {
1669 ret = -ENOENT;
1670 goto out;
1671 }
1672 state->private = private;
1673out:
cad321ad 1674 spin_unlock(&tree->lock);
d1310b2e
CM
1675 return ret;
1676}
1677
1678int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1679{
1680 struct rb_node *node;
1681 struct extent_state *state;
1682 int ret = 0;
1683
cad321ad 1684 spin_lock(&tree->lock);
d1310b2e
CM
1685 /*
1686 * this search will find all the extents that end after
1687 * our range starts.
1688 */
80ea96b1 1689 node = tree_search(tree, start);
2b114d1d 1690 if (!node) {
d1310b2e
CM
1691 ret = -ENOENT;
1692 goto out;
1693 }
1694 state = rb_entry(node, struct extent_state, rb_node);
1695 if (state->start != start) {
1696 ret = -ENOENT;
1697 goto out;
1698 }
1699 *private = state->private;
1700out:
cad321ad 1701 spin_unlock(&tree->lock);
d1310b2e
CM
1702 return ret;
1703}
1704
1705/*
1706 * searches a range in the state tree for a given mask.
70dec807 1707 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1708 * has the bits set. Otherwise, 1 is returned if any bit in the
1709 * range is found set.
1710 */
1711int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1712 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1713{
1714 struct extent_state *state = NULL;
1715 struct rb_node *node;
1716 int bitset = 0;
d1310b2e 1717
cad321ad 1718 spin_lock(&tree->lock);
df98b6e2
JB
1719 if (cached && cached->tree && cached->start <= start &&
1720 cached->end > start)
9655d298
CM
1721 node = &cached->rb_node;
1722 else
1723 node = tree_search(tree, start);
d1310b2e
CM
1724 while (node && start <= end) {
1725 state = rb_entry(node, struct extent_state, rb_node);
1726
1727 if (filled && state->start > start) {
1728 bitset = 0;
1729 break;
1730 }
1731
1732 if (state->start > end)
1733 break;
1734
1735 if (state->state & bits) {
1736 bitset = 1;
1737 if (!filled)
1738 break;
1739 } else if (filled) {
1740 bitset = 0;
1741 break;
1742 }
46562cec
CM
1743
1744 if (state->end == (u64)-1)
1745 break;
1746
d1310b2e
CM
1747 start = state->end + 1;
1748 if (start > end)
1749 break;
1750 node = rb_next(node);
1751 if (!node) {
1752 if (filled)
1753 bitset = 0;
1754 break;
1755 }
1756 }
cad321ad 1757 spin_unlock(&tree->lock);
d1310b2e
CM
1758 return bitset;
1759}
d1310b2e
CM
1760
1761/*
1762 * helper function to set a given page up to date if all the
1763 * extents in the tree for that page are up to date
1764 */
1765static int check_page_uptodate(struct extent_io_tree *tree,
1766 struct page *page)
1767{
1768 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1769 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1770 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e
CM
1771 SetPageUptodate(page);
1772 return 0;
1773}
1774
1775/*
1776 * helper function to unlock a page if all the extents in the tree
1777 * for that page are unlocked
1778 */
1779static int check_page_locked(struct extent_io_tree *tree,
1780 struct page *page)
1781{
1782 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1783 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1784 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e
CM
1785 unlock_page(page);
1786 return 0;
1787}
1788
1789/*
1790 * helper function to end page writeback if all the extents
1791 * in the tree for that page are done with writeback
1792 */
1793static int check_page_writeback(struct extent_io_tree *tree,
1794 struct page *page)
1795{
1edbb734 1796 end_page_writeback(page);
d1310b2e
CM
1797 return 0;
1798}
1799
4a54c8c1
JS
1800/*
1801 * When IO fails, either with EIO or csum verification fails, we
1802 * try other mirrors that might have a good copy of the data. This
1803 * io_failure_record is used to record state as we go through all the
1804 * mirrors. If another mirror has good data, the page is set up to date
1805 * and things continue. If a good mirror can't be found, the original
1806 * bio end_io callback is called to indicate things have failed.
1807 */
1808struct io_failure_record {
1809 struct page *page;
1810 u64 start;
1811 u64 len;
1812 u64 logical;
1813 unsigned long bio_flags;
1814 int this_mirror;
1815 int failed_mirror;
1816 int in_validation;
1817};
1818
1819static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1820 int did_repair)
1821{
1822 int ret;
1823 int err = 0;
1824 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1825
1826 set_state_private(failure_tree, rec->start, 0);
1827 ret = clear_extent_bits(failure_tree, rec->start,
1828 rec->start + rec->len - 1,
1829 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1830 if (ret)
1831 err = ret;
1832
1833 if (did_repair) {
1834 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1835 rec->start + rec->len - 1,
1836 EXTENT_DAMAGED, GFP_NOFS);
1837 if (ret && !err)
1838 err = ret;
1839 }
1840
1841 kfree(rec);
1842 return err;
1843}
1844
1845static void repair_io_failure_callback(struct bio *bio, int err)
1846{
1847 complete(bio->bi_private);
1848}
1849
1850/*
1851 * this bypasses the standard btrfs submit functions deliberately, as
1852 * the standard behavior is to write all copies in a raid setup. here we only
1853 * want to write the one bad copy. so we do the mapping for ourselves and issue
1854 * submit_bio directly.
1855 * to avoid any synchonization issues, wait for the data after writing, which
1856 * actually prevents the read that triggered the error from finishing.
1857 * currently, there can be no more than two copies of every data bit. thus,
1858 * exactly one rewrite is required.
1859 */
1860int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1861 u64 length, u64 logical, struct page *page,
1862 int mirror_num)
1863{
1864 struct bio *bio;
1865 struct btrfs_device *dev;
1866 DECLARE_COMPLETION_ONSTACK(compl);
1867 u64 map_length = 0;
1868 u64 sector;
1869 struct btrfs_bio *bbio = NULL;
1870 int ret;
1871
1872 BUG_ON(!mirror_num);
1873
1874 bio = bio_alloc(GFP_NOFS, 1);
1875 if (!bio)
1876 return -EIO;
1877 bio->bi_private = &compl;
1878 bio->bi_end_io = repair_io_failure_callback;
1879 bio->bi_size = 0;
1880 map_length = length;
1881
1882 ret = btrfs_map_block(map_tree, WRITE, logical,
1883 &map_length, &bbio, mirror_num);
1884 if (ret) {
1885 bio_put(bio);
1886 return -EIO;
1887 }
1888 BUG_ON(mirror_num != bbio->mirror_num);
1889 sector = bbio->stripes[mirror_num-1].physical >> 9;
1890 bio->bi_sector = sector;
1891 dev = bbio->stripes[mirror_num-1].dev;
1892 kfree(bbio);
1893 if (!dev || !dev->bdev || !dev->writeable) {
1894 bio_put(bio);
1895 return -EIO;
1896 }
1897 bio->bi_bdev = dev->bdev;
1898 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1899 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1900 wait_for_completion(&compl);
1901
1902 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1903 /* try to remap that extent elsewhere? */
1904 bio_put(bio);
1905 return -EIO;
1906 }
1907
1908 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1909 "sector %llu)\n", page->mapping->host->i_ino, start,
1910 dev->name, sector);
1911
1912 bio_put(bio);
1913 return 0;
1914}
1915
1916/*
1917 * each time an IO finishes, we do a fast check in the IO failure tree
1918 * to see if we need to process or clean up an io_failure_record
1919 */
1920static int clean_io_failure(u64 start, struct page *page)
1921{
1922 u64 private;
1923 u64 private_failure;
1924 struct io_failure_record *failrec;
1925 struct btrfs_mapping_tree *map_tree;
1926 struct extent_state *state;
1927 int num_copies;
1928 int did_repair = 0;
1929 int ret;
1930 struct inode *inode = page->mapping->host;
1931
1932 private = 0;
1933 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1934 (u64)-1, 1, EXTENT_DIRTY, 0);
1935 if (!ret)
1936 return 0;
1937
1938 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1939 &private_failure);
1940 if (ret)
1941 return 0;
1942
1943 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1944 BUG_ON(!failrec->this_mirror);
1945
1946 if (failrec->in_validation) {
1947 /* there was no real error, just free the record */
1948 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1949 failrec->start);
1950 did_repair = 1;
1951 goto out;
1952 }
1953
1954 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1955 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1956 failrec->start,
1957 EXTENT_LOCKED);
1958 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1959
1960 if (state && state->start == failrec->start) {
1961 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1962 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1963 failrec->len);
1964 if (num_copies > 1) {
1965 ret = repair_io_failure(map_tree, start, failrec->len,
1966 failrec->logical, page,
1967 failrec->failed_mirror);
1968 did_repair = !ret;
1969 }
1970 }
1971
1972out:
1973 if (!ret)
1974 ret = free_io_failure(inode, failrec, did_repair);
1975
1976 return ret;
1977}
1978
1979/*
1980 * this is a generic handler for readpage errors (default
1981 * readpage_io_failed_hook). if other copies exist, read those and write back
1982 * good data to the failed position. does not investigate in remapping the
1983 * failed extent elsewhere, hoping the device will be smart enough to do this as
1984 * needed
1985 */
1986
1987static int bio_readpage_error(struct bio *failed_bio, struct page *page,
1988 u64 start, u64 end, int failed_mirror,
1989 struct extent_state *state)
1990{
1991 struct io_failure_record *failrec = NULL;
1992 u64 private;
1993 struct extent_map *em;
1994 struct inode *inode = page->mapping->host;
1995 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1997 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1998 struct bio *bio;
1999 int num_copies;
2000 int ret;
2001 int read_mode;
2002 u64 logical;
2003
2004 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2005
2006 ret = get_state_private(failure_tree, start, &private);
2007 if (ret) {
2008 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2009 if (!failrec)
2010 return -ENOMEM;
2011 failrec->start = start;
2012 failrec->len = end - start + 1;
2013 failrec->this_mirror = 0;
2014 failrec->bio_flags = 0;
2015 failrec->in_validation = 0;
2016
2017 read_lock(&em_tree->lock);
2018 em = lookup_extent_mapping(em_tree, start, failrec->len);
2019 if (!em) {
2020 read_unlock(&em_tree->lock);
2021 kfree(failrec);
2022 return -EIO;
2023 }
2024
2025 if (em->start > start || em->start + em->len < start) {
2026 free_extent_map(em);
2027 em = NULL;
2028 }
2029 read_unlock(&em_tree->lock);
2030
2031 if (!em || IS_ERR(em)) {
2032 kfree(failrec);
2033 return -EIO;
2034 }
2035 logical = start - em->start;
2036 logical = em->block_start + logical;
2037 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2038 logical = em->block_start;
2039 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2040 extent_set_compress_type(&failrec->bio_flags,
2041 em->compress_type);
2042 }
2043 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2044 "len=%llu\n", logical, start, failrec->len);
2045 failrec->logical = logical;
2046 free_extent_map(em);
2047
2048 /* set the bits in the private failure tree */
2049 ret = set_extent_bits(failure_tree, start, end,
2050 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2051 if (ret >= 0)
2052 ret = set_state_private(failure_tree, start,
2053 (u64)(unsigned long)failrec);
2054 /* set the bits in the inode's tree */
2055 if (ret >= 0)
2056 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2057 GFP_NOFS);
2058 if (ret < 0) {
2059 kfree(failrec);
2060 return ret;
2061 }
2062 } else {
2063 failrec = (struct io_failure_record *)(unsigned long)private;
2064 pr_debug("bio_readpage_error: (found) logical=%llu, "
2065 "start=%llu, len=%llu, validation=%d\n",
2066 failrec->logical, failrec->start, failrec->len,
2067 failrec->in_validation);
2068 /*
2069 * when data can be on disk more than twice, add to failrec here
2070 * (e.g. with a list for failed_mirror) to make
2071 * clean_io_failure() clean all those errors at once.
2072 */
2073 }
2074 num_copies = btrfs_num_copies(
2075 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2076 failrec->logical, failrec->len);
2077 if (num_copies == 1) {
2078 /*
2079 * we only have a single copy of the data, so don't bother with
2080 * all the retry and error correction code that follows. no
2081 * matter what the error is, it is very likely to persist.
2082 */
2083 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2084 "state=%p, num_copies=%d, next_mirror %d, "
2085 "failed_mirror %d\n", state, num_copies,
2086 failrec->this_mirror, failed_mirror);
2087 free_io_failure(inode, failrec, 0);
2088 return -EIO;
2089 }
2090
2091 if (!state) {
2092 spin_lock(&tree->lock);
2093 state = find_first_extent_bit_state(tree, failrec->start,
2094 EXTENT_LOCKED);
2095 if (state && state->start != failrec->start)
2096 state = NULL;
2097 spin_unlock(&tree->lock);
2098 }
2099
2100 /*
2101 * there are two premises:
2102 * a) deliver good data to the caller
2103 * b) correct the bad sectors on disk
2104 */
2105 if (failed_bio->bi_vcnt > 1) {
2106 /*
2107 * to fulfill b), we need to know the exact failing sectors, as
2108 * we don't want to rewrite any more than the failed ones. thus,
2109 * we need separate read requests for the failed bio
2110 *
2111 * if the following BUG_ON triggers, our validation request got
2112 * merged. we need separate requests for our algorithm to work.
2113 */
2114 BUG_ON(failrec->in_validation);
2115 failrec->in_validation = 1;
2116 failrec->this_mirror = failed_mirror;
2117 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2118 } else {
2119 /*
2120 * we're ready to fulfill a) and b) alongside. get a good copy
2121 * of the failed sector and if we succeed, we have setup
2122 * everything for repair_io_failure to do the rest for us.
2123 */
2124 if (failrec->in_validation) {
2125 BUG_ON(failrec->this_mirror != failed_mirror);
2126 failrec->in_validation = 0;
2127 failrec->this_mirror = 0;
2128 }
2129 failrec->failed_mirror = failed_mirror;
2130 failrec->this_mirror++;
2131 if (failrec->this_mirror == failed_mirror)
2132 failrec->this_mirror++;
2133 read_mode = READ_SYNC;
2134 }
2135
2136 if (!state || failrec->this_mirror > num_copies) {
2137 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2138 "next_mirror %d, failed_mirror %d\n", state,
2139 num_copies, failrec->this_mirror, failed_mirror);
2140 free_io_failure(inode, failrec, 0);
2141 return -EIO;
2142 }
2143
2144 bio = bio_alloc(GFP_NOFS, 1);
2145 bio->bi_private = state;
2146 bio->bi_end_io = failed_bio->bi_end_io;
2147 bio->bi_sector = failrec->logical >> 9;
2148 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2149 bio->bi_size = 0;
2150
2151 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2152
2153 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2154 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2155 failrec->this_mirror, num_copies, failrec->in_validation);
2156
2157 tree->ops->submit_bio_hook(inode, read_mode, bio, failrec->this_mirror,
2158 failrec->bio_flags, 0);
2159 return 0;
2160}
2161
d1310b2e
CM
2162/* lots and lots of room for performance fixes in the end_bio funcs */
2163
87826df0
JM
2164int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2165{
2166 int uptodate = (err == 0);
2167 struct extent_io_tree *tree;
2168 int ret;
2169
2170 tree = &BTRFS_I(page->mapping->host)->io_tree;
2171
2172 if (tree->ops && tree->ops->writepage_end_io_hook) {
2173 ret = tree->ops->writepage_end_io_hook(page, start,
2174 end, NULL, uptodate);
2175 if (ret)
2176 uptodate = 0;
2177 }
2178
2179 if (!uptodate && tree->ops &&
2180 tree->ops->writepage_io_failed_hook) {
2181 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2182 start, end, NULL);
2183 /* Writeback already completed */
2184 if (ret == 0)
2185 return 1;
2186 }
2187
2188 if (!uptodate) {
2189 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2190 ClearPageUptodate(page);
2191 SetPageError(page);
2192 }
2193 return 0;
2194}
2195
d1310b2e
CM
2196/*
2197 * after a writepage IO is done, we need to:
2198 * clear the uptodate bits on error
2199 * clear the writeback bits in the extent tree for this IO
2200 * end_page_writeback if the page has no more pending IO
2201 *
2202 * Scheduling is not allowed, so the extent state tree is expected
2203 * to have one and only one object corresponding to this IO.
2204 */
d1310b2e 2205static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2206{
d1310b2e 2207 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2208 struct extent_io_tree *tree;
d1310b2e
CM
2209 u64 start;
2210 u64 end;
2211 int whole_page;
2212
d1310b2e
CM
2213 do {
2214 struct page *page = bvec->bv_page;
902b22f3
DW
2215 tree = &BTRFS_I(page->mapping->host)->io_tree;
2216
d1310b2e
CM
2217 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2218 bvec->bv_offset;
2219 end = start + bvec->bv_len - 1;
2220
2221 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2222 whole_page = 1;
2223 else
2224 whole_page = 0;
2225
2226 if (--bvec >= bio->bi_io_vec)
2227 prefetchw(&bvec->bv_page->flags);
1259ab75 2228
87826df0
JM
2229 if (end_extent_writepage(page, err, start, end))
2230 continue;
70dec807 2231
d1310b2e
CM
2232 if (whole_page)
2233 end_page_writeback(page);
2234 else
2235 check_page_writeback(tree, page);
d1310b2e 2236 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2237
d1310b2e 2238 bio_put(bio);
d1310b2e
CM
2239}
2240
2241/*
2242 * after a readpage IO is done, we need to:
2243 * clear the uptodate bits on error
2244 * set the uptodate bits if things worked
2245 * set the page up to date if all extents in the tree are uptodate
2246 * clear the lock bit in the extent tree
2247 * unlock the page if there are no other extents locked for it
2248 *
2249 * Scheduling is not allowed, so the extent state tree is expected
2250 * to have one and only one object corresponding to this IO.
2251 */
d1310b2e 2252static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2253{
2254 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2255 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2256 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2257 struct extent_io_tree *tree;
d1310b2e
CM
2258 u64 start;
2259 u64 end;
2260 int whole_page;
2261 int ret;
2262
d20f7043
CM
2263 if (err)
2264 uptodate = 0;
2265
d1310b2e
CM
2266 do {
2267 struct page *page = bvec->bv_page;
507903b8
AJ
2268 struct extent_state *cached = NULL;
2269 struct extent_state *state;
2270
4a54c8c1
JS
2271 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2272 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2273 (long int)bio->bi_bdev);
902b22f3
DW
2274 tree = &BTRFS_I(page->mapping->host)->io_tree;
2275
d1310b2e
CM
2276 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2277 bvec->bv_offset;
2278 end = start + bvec->bv_len - 1;
2279
2280 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2281 whole_page = 1;
2282 else
2283 whole_page = 0;
2284
4125bf76 2285 if (++bvec <= bvec_end)
d1310b2e
CM
2286 prefetchw(&bvec->bv_page->flags);
2287
507903b8 2288 spin_lock(&tree->lock);
0d399205 2289 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2290 if (state && state->start == start) {
507903b8
AJ
2291 /*
2292 * take a reference on the state, unlock will drop
2293 * the ref
2294 */
2295 cache_state(state, &cached);
2296 }
2297 spin_unlock(&tree->lock);
2298
d1310b2e 2299 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2300 ret = tree->ops->readpage_end_io_hook(page, start, end,
507903b8 2301 state);
d1310b2e
CM
2302 if (ret)
2303 uptodate = 0;
4a54c8c1
JS
2304 else
2305 clean_io_failure(start, page);
d1310b2e 2306 }
4a54c8c1 2307 if (!uptodate) {
32240a91
JS
2308 int failed_mirror;
2309 failed_mirror = (int)(unsigned long)bio->bi_bdev;
f4a8e656
JS
2310 /*
2311 * The generic bio_readpage_error handles errors the
2312 * following way: If possible, new read requests are
2313 * created and submitted and will end up in
2314 * end_bio_extent_readpage as well (if we're lucky, not
2315 * in the !uptodate case). In that case it returns 0 and
2316 * we just go on with the next page in our bio. If it
2317 * can't handle the error it will return -EIO and we
2318 * remain responsible for that page.
2319 */
2320 ret = bio_readpage_error(bio, page, start, end,
2321 failed_mirror, NULL);
7e38326f 2322 if (ret == 0) {
f4a8e656 2323error_handled:
3b951516
CM
2324 uptodate =
2325 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2326 if (err)
2327 uptodate = 0;
507903b8 2328 uncache_state(&cached);
7e38326f
CM
2329 continue;
2330 }
f4a8e656
JS
2331 if (tree->ops && tree->ops->readpage_io_failed_hook) {
2332 ret = tree->ops->readpage_io_failed_hook(
2333 bio, page, start, end,
2334 failed_mirror, state);
2335 if (ret == 0)
2336 goto error_handled;
2337 }
7e38326f 2338 }
d1310b2e 2339
771ed689 2340 if (uptodate) {
507903b8 2341 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2342 GFP_ATOMIC);
771ed689 2343 }
507903b8 2344 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2345
70dec807
CM
2346 if (whole_page) {
2347 if (uptodate) {
2348 SetPageUptodate(page);
2349 } else {
2350 ClearPageUptodate(page);
2351 SetPageError(page);
2352 }
d1310b2e 2353 unlock_page(page);
70dec807
CM
2354 } else {
2355 if (uptodate) {
2356 check_page_uptodate(tree, page);
2357 } else {
2358 ClearPageUptodate(page);
2359 SetPageError(page);
2360 }
d1310b2e 2361 check_page_locked(tree, page);
70dec807 2362 }
4125bf76 2363 } while (bvec <= bvec_end);
d1310b2e
CM
2364
2365 bio_put(bio);
d1310b2e
CM
2366}
2367
88f794ed
MX
2368struct bio *
2369btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2370 gfp_t gfp_flags)
d1310b2e
CM
2371{
2372 struct bio *bio;
2373
2374 bio = bio_alloc(gfp_flags, nr_vecs);
2375
2376 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2377 while (!bio && (nr_vecs /= 2))
2378 bio = bio_alloc(gfp_flags, nr_vecs);
2379 }
2380
2381 if (bio) {
e1c4b745 2382 bio->bi_size = 0;
d1310b2e
CM
2383 bio->bi_bdev = bdev;
2384 bio->bi_sector = first_sector;
2385 }
2386 return bio;
2387}
2388
c8b97818
CM
2389static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2390 unsigned long bio_flags)
d1310b2e 2391{
d1310b2e 2392 int ret = 0;
70dec807
CM
2393 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2394 struct page *page = bvec->bv_page;
2395 struct extent_io_tree *tree = bio->bi_private;
70dec807 2396 u64 start;
70dec807
CM
2397
2398 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2399
902b22f3 2400 bio->bi_private = NULL;
d1310b2e
CM
2401
2402 bio_get(bio);
2403
065631f6 2404 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2405 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2406 mirror_num, bio_flags, start);
0b86a832 2407 else
21adbd5c 2408 btrfsic_submit_bio(rw, bio);
4a54c8c1 2409
d1310b2e
CM
2410 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2411 ret = -EOPNOTSUPP;
2412 bio_put(bio);
2413 return ret;
2414}
2415
2416static int submit_extent_page(int rw, struct extent_io_tree *tree,
2417 struct page *page, sector_t sector,
2418 size_t size, unsigned long offset,
2419 struct block_device *bdev,
2420 struct bio **bio_ret,
2421 unsigned long max_pages,
f188591e 2422 bio_end_io_t end_io_func,
c8b97818
CM
2423 int mirror_num,
2424 unsigned long prev_bio_flags,
2425 unsigned long bio_flags)
d1310b2e
CM
2426{
2427 int ret = 0;
2428 struct bio *bio;
2429 int nr;
c8b97818
CM
2430 int contig = 0;
2431 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2432 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2433 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2434
2435 if (bio_ret && *bio_ret) {
2436 bio = *bio_ret;
c8b97818
CM
2437 if (old_compressed)
2438 contig = bio->bi_sector == sector;
2439 else
2440 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2441 sector;
2442
2443 if (prev_bio_flags != bio_flags || !contig ||
239b14b3 2444 (tree->ops && tree->ops->merge_bio_hook &&
c8b97818
CM
2445 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2446 bio_flags)) ||
2447 bio_add_page(bio, page, page_size, offset) < page_size) {
2448 ret = submit_one_bio(rw, bio, mirror_num,
2449 prev_bio_flags);
d1310b2e
CM
2450 bio = NULL;
2451 } else {
2452 return 0;
2453 }
2454 }
c8b97818
CM
2455 if (this_compressed)
2456 nr = BIO_MAX_PAGES;
2457 else
2458 nr = bio_get_nr_vecs(bdev);
2459
88f794ed 2460 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2461 if (!bio)
2462 return -ENOMEM;
70dec807 2463
c8b97818 2464 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2465 bio->bi_end_io = end_io_func;
2466 bio->bi_private = tree;
70dec807 2467
d397712b 2468 if (bio_ret)
d1310b2e 2469 *bio_ret = bio;
d397712b 2470 else
c8b97818 2471 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2472
2473 return ret;
2474}
2475
2476void set_page_extent_mapped(struct page *page)
2477{
2478 if (!PagePrivate(page)) {
2479 SetPagePrivate(page);
d1310b2e 2480 page_cache_get(page);
6af118ce 2481 set_page_private(page, EXTENT_PAGE_PRIVATE);
d1310b2e
CM
2482 }
2483}
2484
b2950863 2485static void set_page_extent_head(struct page *page, unsigned long len)
d1310b2e 2486{
eb14ab8e 2487 WARN_ON(!PagePrivate(page));
d1310b2e
CM
2488 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
2489}
2490
2491/*
2492 * basic readpage implementation. Locked extent state structs are inserted
2493 * into the tree that are removed when the IO is done (by the end_io
2494 * handlers)
2495 */
2496static int __extent_read_full_page(struct extent_io_tree *tree,
2497 struct page *page,
2498 get_extent_t *get_extent,
c8b97818
CM
2499 struct bio **bio, int mirror_num,
2500 unsigned long *bio_flags)
d1310b2e
CM
2501{
2502 struct inode *inode = page->mapping->host;
2503 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2504 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2505 u64 end;
2506 u64 cur = start;
2507 u64 extent_offset;
2508 u64 last_byte = i_size_read(inode);
2509 u64 block_start;
2510 u64 cur_end;
2511 sector_t sector;
2512 struct extent_map *em;
2513 struct block_device *bdev;
11c65dcc 2514 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2515 int ret;
2516 int nr = 0;
306e16ce 2517 size_t pg_offset = 0;
d1310b2e 2518 size_t iosize;
c8b97818 2519 size_t disk_io_size;
d1310b2e 2520 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2521 unsigned long this_bio_flag = 0;
d1310b2e
CM
2522
2523 set_page_extent_mapped(page);
2524
90a887c9
DM
2525 if (!PageUptodate(page)) {
2526 if (cleancache_get_page(page) == 0) {
2527 BUG_ON(blocksize != PAGE_SIZE);
2528 goto out;
2529 }
2530 }
2531
d1310b2e 2532 end = page_end;
11c65dcc
JB
2533 while (1) {
2534 lock_extent(tree, start, end, GFP_NOFS);
2535 ordered = btrfs_lookup_ordered_extent(inode, start);
2536 if (!ordered)
2537 break;
2538 unlock_extent(tree, start, end, GFP_NOFS);
2539 btrfs_start_ordered_extent(inode, ordered, 1);
2540 btrfs_put_ordered_extent(ordered);
2541 }
d1310b2e 2542
c8b97818
CM
2543 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2544 char *userpage;
2545 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2546
2547 if (zero_offset) {
2548 iosize = PAGE_CACHE_SIZE - zero_offset;
2549 userpage = kmap_atomic(page, KM_USER0);
2550 memset(userpage + zero_offset, 0, iosize);
2551 flush_dcache_page(page);
2552 kunmap_atomic(userpage, KM_USER0);
2553 }
2554 }
d1310b2e
CM
2555 while (cur <= end) {
2556 if (cur >= last_byte) {
2557 char *userpage;
507903b8
AJ
2558 struct extent_state *cached = NULL;
2559
306e16ce 2560 iosize = PAGE_CACHE_SIZE - pg_offset;
d1310b2e 2561 userpage = kmap_atomic(page, KM_USER0);
306e16ce 2562 memset(userpage + pg_offset, 0, iosize);
d1310b2e
CM
2563 flush_dcache_page(page);
2564 kunmap_atomic(userpage, KM_USER0);
2565 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2566 &cached, GFP_NOFS);
2567 unlock_extent_cached(tree, cur, cur + iosize - 1,
2568 &cached, GFP_NOFS);
d1310b2e
CM
2569 break;
2570 }
306e16ce 2571 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2572 end - cur + 1, 0);
c704005d 2573 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2574 SetPageError(page);
2575 unlock_extent(tree, cur, end, GFP_NOFS);
2576 break;
2577 }
d1310b2e
CM
2578 extent_offset = cur - em->start;
2579 BUG_ON(extent_map_end(em) <= cur);
2580 BUG_ON(end < cur);
2581
261507a0 2582 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2583 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2584 extent_set_compress_type(&this_bio_flag,
2585 em->compress_type);
2586 }
c8b97818 2587
d1310b2e
CM
2588 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2589 cur_end = min(extent_map_end(em) - 1, end);
2590 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2591 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2592 disk_io_size = em->block_len;
2593 sector = em->block_start >> 9;
2594 } else {
2595 sector = (em->block_start + extent_offset) >> 9;
2596 disk_io_size = iosize;
2597 }
d1310b2e
CM
2598 bdev = em->bdev;
2599 block_start = em->block_start;
d899e052
YZ
2600 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2601 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2602 free_extent_map(em);
2603 em = NULL;
2604
2605 /* we've found a hole, just zero and go on */
2606 if (block_start == EXTENT_MAP_HOLE) {
2607 char *userpage;
507903b8
AJ
2608 struct extent_state *cached = NULL;
2609
d1310b2e 2610 userpage = kmap_atomic(page, KM_USER0);
306e16ce 2611 memset(userpage + pg_offset, 0, iosize);
d1310b2e
CM
2612 flush_dcache_page(page);
2613 kunmap_atomic(userpage, KM_USER0);
2614
2615 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2616 &cached, GFP_NOFS);
2617 unlock_extent_cached(tree, cur, cur + iosize - 1,
2618 &cached, GFP_NOFS);
d1310b2e 2619 cur = cur + iosize;
306e16ce 2620 pg_offset += iosize;
d1310b2e
CM
2621 continue;
2622 }
2623 /* the get_extent function already copied into the page */
9655d298
CM
2624 if (test_range_bit(tree, cur, cur_end,
2625 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2626 check_page_uptodate(tree, page);
d1310b2e
CM
2627 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2628 cur = cur + iosize;
306e16ce 2629 pg_offset += iosize;
d1310b2e
CM
2630 continue;
2631 }
70dec807
CM
2632 /* we have an inline extent but it didn't get marked up
2633 * to date. Error out
2634 */
2635 if (block_start == EXTENT_MAP_INLINE) {
2636 SetPageError(page);
2637 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2638 cur = cur + iosize;
306e16ce 2639 pg_offset += iosize;
70dec807
CM
2640 continue;
2641 }
d1310b2e
CM
2642
2643 ret = 0;
2644 if (tree->ops && tree->ops->readpage_io_hook) {
2645 ret = tree->ops->readpage_io_hook(page, cur,
2646 cur + iosize - 1);
2647 }
2648 if (!ret) {
89642229
CM
2649 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2650 pnr -= page->index;
d1310b2e 2651 ret = submit_extent_page(READ, tree, page,
306e16ce 2652 sector, disk_io_size, pg_offset,
89642229 2653 bdev, bio, pnr,
c8b97818
CM
2654 end_bio_extent_readpage, mirror_num,
2655 *bio_flags,
2656 this_bio_flag);
89642229 2657 nr++;
c8b97818 2658 *bio_flags = this_bio_flag;
d1310b2e
CM
2659 }
2660 if (ret)
2661 SetPageError(page);
2662 cur = cur + iosize;
306e16ce 2663 pg_offset += iosize;
d1310b2e 2664 }
90a887c9 2665out:
d1310b2e
CM
2666 if (!nr) {
2667 if (!PageError(page))
2668 SetPageUptodate(page);
2669 unlock_page(page);
2670 }
2671 return 0;
2672}
2673
2674int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2675 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2676{
2677 struct bio *bio = NULL;
c8b97818 2678 unsigned long bio_flags = 0;
d1310b2e
CM
2679 int ret;
2680
8ddc7d9c 2681 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2682 &bio_flags);
d1310b2e 2683 if (bio)
8ddc7d9c 2684 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2685 return ret;
2686}
d1310b2e 2687
11c8349b
CM
2688static noinline void update_nr_written(struct page *page,
2689 struct writeback_control *wbc,
2690 unsigned long nr_written)
2691{
2692 wbc->nr_to_write -= nr_written;
2693 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2694 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2695 page->mapping->writeback_index = page->index + nr_written;
2696}
2697
d1310b2e
CM
2698/*
2699 * the writepage semantics are similar to regular writepage. extent
2700 * records are inserted to lock ranges in the tree, and as dirty areas
2701 * are found, they are marked writeback. Then the lock bits are removed
2702 * and the end_io handler clears the writeback ranges
2703 */
2704static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2705 void *data)
2706{
2707 struct inode *inode = page->mapping->host;
2708 struct extent_page_data *epd = data;
2709 struct extent_io_tree *tree = epd->tree;
2710 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2711 u64 delalloc_start;
2712 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2713 u64 end;
2714 u64 cur = start;
2715 u64 extent_offset;
2716 u64 last_byte = i_size_read(inode);
2717 u64 block_start;
2718 u64 iosize;
2719 sector_t sector;
2c64c53d 2720 struct extent_state *cached_state = NULL;
d1310b2e
CM
2721 struct extent_map *em;
2722 struct block_device *bdev;
2723 int ret;
2724 int nr = 0;
7f3c74fb 2725 size_t pg_offset = 0;
d1310b2e
CM
2726 size_t blocksize;
2727 loff_t i_size = i_size_read(inode);
2728 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2729 u64 nr_delalloc;
2730 u64 delalloc_end;
c8b97818
CM
2731 int page_started;
2732 int compressed;
ffbd517d 2733 int write_flags;
771ed689 2734 unsigned long nr_written = 0;
9e487107 2735 bool fill_delalloc = true;
d1310b2e 2736
ffbd517d 2737 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2738 write_flags = WRITE_SYNC;
ffbd517d
CM
2739 else
2740 write_flags = WRITE;
2741
1abe9b8a 2742 trace___extent_writepage(page, inode, wbc);
2743
d1310b2e 2744 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2745
2746 ClearPageError(page);
2747
7f3c74fb 2748 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2749 if (page->index > end_index ||
7f3c74fb 2750 (page->index == end_index && !pg_offset)) {
39be25cd 2751 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2752 unlock_page(page);
2753 return 0;
2754 }
2755
2756 if (page->index == end_index) {
2757 char *userpage;
2758
d1310b2e 2759 userpage = kmap_atomic(page, KM_USER0);
7f3c74fb
CM
2760 memset(userpage + pg_offset, 0,
2761 PAGE_CACHE_SIZE - pg_offset);
d1310b2e 2762 kunmap_atomic(userpage, KM_USER0);
211c17f5 2763 flush_dcache_page(page);
d1310b2e 2764 }
7f3c74fb 2765 pg_offset = 0;
d1310b2e
CM
2766
2767 set_page_extent_mapped(page);
2768
9e487107
JB
2769 if (!tree->ops || !tree->ops->fill_delalloc)
2770 fill_delalloc = false;
2771
d1310b2e
CM
2772 delalloc_start = start;
2773 delalloc_end = 0;
c8b97818 2774 page_started = 0;
9e487107 2775 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2776 u64 delalloc_to_write = 0;
11c8349b
CM
2777 /*
2778 * make sure the wbc mapping index is at least updated
2779 * to this page.
2780 */
2781 update_nr_written(page, wbc, 0);
2782
d397712b 2783 while (delalloc_end < page_end) {
771ed689 2784 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2785 page,
2786 &delalloc_start,
d1310b2e
CM
2787 &delalloc_end,
2788 128 * 1024 * 1024);
771ed689
CM
2789 if (nr_delalloc == 0) {
2790 delalloc_start = delalloc_end + 1;
2791 continue;
2792 }
2793 tree->ops->fill_delalloc(inode, page, delalloc_start,
2794 delalloc_end, &page_started,
2795 &nr_written);
f85d7d6c
CM
2796 /*
2797 * delalloc_end is already one less than the total
2798 * length, so we don't subtract one from
2799 * PAGE_CACHE_SIZE
2800 */
2801 delalloc_to_write += (delalloc_end - delalloc_start +
2802 PAGE_CACHE_SIZE) >>
2803 PAGE_CACHE_SHIFT;
d1310b2e 2804 delalloc_start = delalloc_end + 1;
d1310b2e 2805 }
f85d7d6c
CM
2806 if (wbc->nr_to_write < delalloc_to_write) {
2807 int thresh = 8192;
2808
2809 if (delalloc_to_write < thresh * 2)
2810 thresh = delalloc_to_write;
2811 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2812 thresh);
2813 }
c8b97818 2814
771ed689
CM
2815 /* did the fill delalloc function already unlock and start
2816 * the IO?
2817 */
2818 if (page_started) {
2819 ret = 0;
11c8349b
CM
2820 /*
2821 * we've unlocked the page, so we can't update
2822 * the mapping's writeback index, just update
2823 * nr_to_write.
2824 */
2825 wbc->nr_to_write -= nr_written;
2826 goto done_unlocked;
771ed689 2827 }
c8b97818 2828 }
247e743c 2829 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2830 ret = tree->ops->writepage_start_hook(page, start,
2831 page_end);
87826df0
JM
2832 if (ret) {
2833 /* Fixup worker will requeue */
2834 if (ret == -EBUSY)
2835 wbc->pages_skipped++;
2836 else
2837 redirty_page_for_writepage(wbc, page);
11c8349b 2838 update_nr_written(page, wbc, nr_written);
247e743c 2839 unlock_page(page);
771ed689 2840 ret = 0;
11c8349b 2841 goto done_unlocked;
247e743c
CM
2842 }
2843 }
2844
11c8349b
CM
2845 /*
2846 * we don't want to touch the inode after unlocking the page,
2847 * so we update the mapping writeback index now
2848 */
2849 update_nr_written(page, wbc, nr_written + 1);
771ed689 2850
d1310b2e 2851 end = page_end;
d1310b2e 2852 if (last_byte <= start) {
e6dcd2dc
CM
2853 if (tree->ops && tree->ops->writepage_end_io_hook)
2854 tree->ops->writepage_end_io_hook(page, start,
2855 page_end, NULL, 1);
d1310b2e
CM
2856 goto done;
2857 }
2858
d1310b2e
CM
2859 blocksize = inode->i_sb->s_blocksize;
2860
2861 while (cur <= end) {
2862 if (cur >= last_byte) {
e6dcd2dc
CM
2863 if (tree->ops && tree->ops->writepage_end_io_hook)
2864 tree->ops->writepage_end_io_hook(page, cur,
2865 page_end, NULL, 1);
d1310b2e
CM
2866 break;
2867 }
7f3c74fb 2868 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2869 end - cur + 1, 1);
c704005d 2870 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2871 SetPageError(page);
2872 break;
2873 }
2874
2875 extent_offset = cur - em->start;
2876 BUG_ON(extent_map_end(em) <= cur);
2877 BUG_ON(end < cur);
2878 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2879 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2880 sector = (em->block_start + extent_offset) >> 9;
2881 bdev = em->bdev;
2882 block_start = em->block_start;
c8b97818 2883 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2884 free_extent_map(em);
2885 em = NULL;
2886
c8b97818
CM
2887 /*
2888 * compressed and inline extents are written through other
2889 * paths in the FS
2890 */
2891 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2892 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2893 /*
2894 * end_io notification does not happen here for
2895 * compressed extents
2896 */
2897 if (!compressed && tree->ops &&
2898 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2899 tree->ops->writepage_end_io_hook(page, cur,
2900 cur + iosize - 1,
2901 NULL, 1);
c8b97818
CM
2902 else if (compressed) {
2903 /* we don't want to end_page_writeback on
2904 * a compressed extent. this happens
2905 * elsewhere
2906 */
2907 nr++;
2908 }
2909
2910 cur += iosize;
7f3c74fb 2911 pg_offset += iosize;
d1310b2e
CM
2912 continue;
2913 }
d1310b2e
CM
2914 /* leave this out until we have a page_mkwrite call */
2915 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2916 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2917 cur = cur + iosize;
7f3c74fb 2918 pg_offset += iosize;
d1310b2e
CM
2919 continue;
2920 }
c8b97818 2921
d1310b2e
CM
2922 if (tree->ops && tree->ops->writepage_io_hook) {
2923 ret = tree->ops->writepage_io_hook(page, cur,
2924 cur + iosize - 1);
2925 } else {
2926 ret = 0;
2927 }
1259ab75 2928 if (ret) {
d1310b2e 2929 SetPageError(page);
1259ab75 2930 } else {
d1310b2e 2931 unsigned long max_nr = end_index + 1;
7f3c74fb 2932
d1310b2e
CM
2933 set_range_writeback(tree, cur, cur + iosize - 1);
2934 if (!PageWriteback(page)) {
d397712b
CM
2935 printk(KERN_ERR "btrfs warning page %lu not "
2936 "writeback, cur %llu end %llu\n",
2937 page->index, (unsigned long long)cur,
d1310b2e
CM
2938 (unsigned long long)end);
2939 }
2940
ffbd517d
CM
2941 ret = submit_extent_page(write_flags, tree, page,
2942 sector, iosize, pg_offset,
2943 bdev, &epd->bio, max_nr,
c8b97818
CM
2944 end_bio_extent_writepage,
2945 0, 0, 0);
d1310b2e
CM
2946 if (ret)
2947 SetPageError(page);
2948 }
2949 cur = cur + iosize;
7f3c74fb 2950 pg_offset += iosize;
d1310b2e
CM
2951 nr++;
2952 }
2953done:
2954 if (nr == 0) {
2955 /* make sure the mapping tag for page dirty gets cleared */
2956 set_page_writeback(page);
2957 end_page_writeback(page);
2958 }
d1310b2e 2959 unlock_page(page);
771ed689 2960
11c8349b
CM
2961done_unlocked:
2962
2c64c53d
CM
2963 /* drop our reference on any cached states */
2964 free_extent_state(cached_state);
d1310b2e
CM
2965 return 0;
2966}
2967
d1310b2e 2968/**
4bef0848 2969 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
2970 * @mapping: address space structure to write
2971 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2972 * @writepage: function called for each page
2973 * @data: data passed to writepage function
2974 *
2975 * If a page is already under I/O, write_cache_pages() skips it, even
2976 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2977 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2978 * and msync() need to guarantee that all the data which was dirty at the time
2979 * the call was made get new I/O started against them. If wbc->sync_mode is
2980 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2981 * existing IO to complete.
2982 */
b2950863 2983static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
2984 struct address_space *mapping,
2985 struct writeback_control *wbc,
d2c3f4f6
CM
2986 writepage_t writepage, void *data,
2987 void (*flush_fn)(void *))
d1310b2e 2988{
d1310b2e
CM
2989 int ret = 0;
2990 int done = 0;
f85d7d6c 2991 int nr_to_write_done = 0;
d1310b2e
CM
2992 struct pagevec pvec;
2993 int nr_pages;
2994 pgoff_t index;
2995 pgoff_t end; /* Inclusive */
2996 int scanned = 0;
f7aaa06b 2997 int tag;
d1310b2e 2998
d1310b2e
CM
2999 pagevec_init(&pvec, 0);
3000 if (wbc->range_cyclic) {
3001 index = mapping->writeback_index; /* Start from prev offset */
3002 end = -1;
3003 } else {
3004 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3005 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3006 scanned = 1;
3007 }
f7aaa06b
JB
3008 if (wbc->sync_mode == WB_SYNC_ALL)
3009 tag = PAGECACHE_TAG_TOWRITE;
3010 else
3011 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3012retry:
f7aaa06b
JB
3013 if (wbc->sync_mode == WB_SYNC_ALL)
3014 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3015 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3016 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3017 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3018 unsigned i;
3019
3020 scanned = 1;
3021 for (i = 0; i < nr_pages; i++) {
3022 struct page *page = pvec.pages[i];
3023
3024 /*
3025 * At this point we hold neither mapping->tree_lock nor
3026 * lock on the page itself: the page may be truncated or
3027 * invalidated (changing page->mapping to NULL), or even
3028 * swizzled back from swapper_space to tmpfs file
3029 * mapping
3030 */
01d658f2
CM
3031 if (tree->ops &&
3032 tree->ops->write_cache_pages_lock_hook) {
3033 tree->ops->write_cache_pages_lock_hook(page,
3034 data, flush_fn);
3035 } else {
3036 if (!trylock_page(page)) {
3037 flush_fn(data);
3038 lock_page(page);
3039 }
3040 }
d1310b2e
CM
3041
3042 if (unlikely(page->mapping != mapping)) {
3043 unlock_page(page);
3044 continue;
3045 }
3046
3047 if (!wbc->range_cyclic && page->index > end) {
3048 done = 1;
3049 unlock_page(page);
3050 continue;
3051 }
3052
d2c3f4f6 3053 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3054 if (PageWriteback(page))
3055 flush_fn(data);
d1310b2e 3056 wait_on_page_writeback(page);
d2c3f4f6 3057 }
d1310b2e
CM
3058
3059 if (PageWriteback(page) ||
3060 !clear_page_dirty_for_io(page)) {
3061 unlock_page(page);
3062 continue;
3063 }
3064
3065 ret = (*writepage)(page, wbc, data);
3066
3067 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3068 unlock_page(page);
3069 ret = 0;
3070 }
f85d7d6c 3071 if (ret)
d1310b2e 3072 done = 1;
f85d7d6c
CM
3073
3074 /*
3075 * the filesystem may choose to bump up nr_to_write.
3076 * We have to make sure to honor the new nr_to_write
3077 * at any time
3078 */
3079 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3080 }
3081 pagevec_release(&pvec);
3082 cond_resched();
3083 }
3084 if (!scanned && !done) {
3085 /*
3086 * We hit the last page and there is more work to be done: wrap
3087 * back to the start of the file
3088 */
3089 scanned = 1;
3090 index = 0;
3091 goto retry;
3092 }
d1310b2e
CM
3093 return ret;
3094}
d1310b2e 3095
ffbd517d 3096static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3097{
d2c3f4f6 3098 if (epd->bio) {
ffbd517d
CM
3099 if (epd->sync_io)
3100 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3101 else
3102 submit_one_bio(WRITE, epd->bio, 0, 0);
d2c3f4f6
CM
3103 epd->bio = NULL;
3104 }
3105}
3106
ffbd517d
CM
3107static noinline void flush_write_bio(void *data)
3108{
3109 struct extent_page_data *epd = data;
3110 flush_epd_write_bio(epd);
3111}
3112
d1310b2e
CM
3113int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3114 get_extent_t *get_extent,
3115 struct writeback_control *wbc)
3116{
3117 int ret;
d1310b2e
CM
3118 struct extent_page_data epd = {
3119 .bio = NULL,
3120 .tree = tree,
3121 .get_extent = get_extent,
771ed689 3122 .extent_locked = 0,
ffbd517d 3123 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3124 };
d1310b2e 3125
d1310b2e
CM
3126 ret = __extent_writepage(page, wbc, &epd);
3127
ffbd517d 3128 flush_epd_write_bio(&epd);
d1310b2e
CM
3129 return ret;
3130}
d1310b2e 3131
771ed689
CM
3132int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3133 u64 start, u64 end, get_extent_t *get_extent,
3134 int mode)
3135{
3136 int ret = 0;
3137 struct address_space *mapping = inode->i_mapping;
3138 struct page *page;
3139 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3140 PAGE_CACHE_SHIFT;
3141
3142 struct extent_page_data epd = {
3143 .bio = NULL,
3144 .tree = tree,
3145 .get_extent = get_extent,
3146 .extent_locked = 1,
ffbd517d 3147 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3148 };
3149 struct writeback_control wbc_writepages = {
771ed689 3150 .sync_mode = mode,
771ed689
CM
3151 .nr_to_write = nr_pages * 2,
3152 .range_start = start,
3153 .range_end = end + 1,
3154 };
3155
d397712b 3156 while (start <= end) {
771ed689
CM
3157 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3158 if (clear_page_dirty_for_io(page))
3159 ret = __extent_writepage(page, &wbc_writepages, &epd);
3160 else {
3161 if (tree->ops && tree->ops->writepage_end_io_hook)
3162 tree->ops->writepage_end_io_hook(page, start,
3163 start + PAGE_CACHE_SIZE - 1,
3164 NULL, 1);
3165 unlock_page(page);
3166 }
3167 page_cache_release(page);
3168 start += PAGE_CACHE_SIZE;
3169 }
3170
ffbd517d 3171 flush_epd_write_bio(&epd);
771ed689
CM
3172 return ret;
3173}
d1310b2e
CM
3174
3175int extent_writepages(struct extent_io_tree *tree,
3176 struct address_space *mapping,
3177 get_extent_t *get_extent,
3178 struct writeback_control *wbc)
3179{
3180 int ret = 0;
3181 struct extent_page_data epd = {
3182 .bio = NULL,
3183 .tree = tree,
3184 .get_extent = get_extent,
771ed689 3185 .extent_locked = 0,
ffbd517d 3186 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3187 };
3188
4bef0848 3189 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3190 __extent_writepage, &epd,
3191 flush_write_bio);
ffbd517d 3192 flush_epd_write_bio(&epd);
d1310b2e
CM
3193 return ret;
3194}
d1310b2e
CM
3195
3196int extent_readpages(struct extent_io_tree *tree,
3197 struct address_space *mapping,
3198 struct list_head *pages, unsigned nr_pages,
3199 get_extent_t get_extent)
3200{
3201 struct bio *bio = NULL;
3202 unsigned page_idx;
c8b97818 3203 unsigned long bio_flags = 0;
d1310b2e 3204
d1310b2e
CM
3205 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3206 struct page *page = list_entry(pages->prev, struct page, lru);
3207
3208 prefetchw(&page->flags);
3209 list_del(&page->lru);
28ecb609 3210 if (!add_to_page_cache_lru(page, mapping,
43e817a1 3211 page->index, GFP_NOFS)) {
f188591e 3212 __extent_read_full_page(tree, page, get_extent,
c8b97818 3213 &bio, 0, &bio_flags);
d1310b2e
CM
3214 }
3215 page_cache_release(page);
3216 }
d1310b2e
CM
3217 BUG_ON(!list_empty(pages));
3218 if (bio)
c8b97818 3219 submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3220 return 0;
3221}
d1310b2e
CM
3222
3223/*
3224 * basic invalidatepage code, this waits on any locked or writeback
3225 * ranges corresponding to the page, and then deletes any extent state
3226 * records from the tree
3227 */
3228int extent_invalidatepage(struct extent_io_tree *tree,
3229 struct page *page, unsigned long offset)
3230{
2ac55d41 3231 struct extent_state *cached_state = NULL;
d1310b2e
CM
3232 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3233 u64 end = start + PAGE_CACHE_SIZE - 1;
3234 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3235
d397712b 3236 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3237 if (start > end)
3238 return 0;
3239
2ac55d41 3240 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
1edbb734 3241 wait_on_page_writeback(page);
d1310b2e 3242 clear_extent_bit(tree, start, end,
32c00aff
JB
3243 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3244 EXTENT_DO_ACCOUNTING,
2ac55d41 3245 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3246 return 0;
3247}
d1310b2e 3248
7b13b7b1
CM
3249/*
3250 * a helper for releasepage, this tests for areas of the page that
3251 * are locked or under IO and drops the related state bits if it is safe
3252 * to drop the page.
3253 */
3254int try_release_extent_state(struct extent_map_tree *map,
3255 struct extent_io_tree *tree, struct page *page,
3256 gfp_t mask)
3257{
3258 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3259 u64 end = start + PAGE_CACHE_SIZE - 1;
3260 int ret = 1;
3261
211f90e6 3262 if (test_range_bit(tree, start, end,
8b62b72b 3263 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3264 ret = 0;
3265 else {
3266 if ((mask & GFP_NOFS) == GFP_NOFS)
3267 mask = GFP_NOFS;
11ef160f
CM
3268 /*
3269 * at this point we can safely clear everything except the
3270 * locked bit and the nodatasum bit
3271 */
e3f24cc5 3272 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3273 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3274 0, 0, NULL, mask);
e3f24cc5
CM
3275
3276 /* if clear_extent_bit failed for enomem reasons,
3277 * we can't allow the release to continue.
3278 */
3279 if (ret < 0)
3280 ret = 0;
3281 else
3282 ret = 1;
7b13b7b1
CM
3283 }
3284 return ret;
3285}
7b13b7b1 3286
d1310b2e
CM
3287/*
3288 * a helper for releasepage. As long as there are no locked extents
3289 * in the range corresponding to the page, both state records and extent
3290 * map records are removed
3291 */
3292int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3293 struct extent_io_tree *tree, struct page *page,
3294 gfp_t mask)
d1310b2e
CM
3295{
3296 struct extent_map *em;
3297 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3298 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3299
70dec807
CM
3300 if ((mask & __GFP_WAIT) &&
3301 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3302 u64 len;
70dec807 3303 while (start <= end) {
39b5637f 3304 len = end - start + 1;
890871be 3305 write_lock(&map->lock);
39b5637f 3306 em = lookup_extent_mapping(map, start, len);
c704005d 3307 if (IS_ERR_OR_NULL(em)) {
890871be 3308 write_unlock(&map->lock);
70dec807
CM
3309 break;
3310 }
7f3c74fb
CM
3311 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3312 em->start != start) {
890871be 3313 write_unlock(&map->lock);
70dec807
CM
3314 free_extent_map(em);
3315 break;
3316 }
3317 if (!test_range_bit(tree, em->start,
3318 extent_map_end(em) - 1,
8b62b72b 3319 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3320 0, NULL)) {
70dec807
CM
3321 remove_extent_mapping(map, em);
3322 /* once for the rb tree */
3323 free_extent_map(em);
3324 }
3325 start = extent_map_end(em);
890871be 3326 write_unlock(&map->lock);
70dec807
CM
3327
3328 /* once for us */
d1310b2e
CM
3329 free_extent_map(em);
3330 }
d1310b2e 3331 }
7b13b7b1 3332 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3333}
d1310b2e 3334
ec29ed5b
CM
3335/*
3336 * helper function for fiemap, which doesn't want to see any holes.
3337 * This maps until we find something past 'last'
3338 */
3339static struct extent_map *get_extent_skip_holes(struct inode *inode,
3340 u64 offset,
3341 u64 last,
3342 get_extent_t *get_extent)
3343{
3344 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3345 struct extent_map *em;
3346 u64 len;
3347
3348 if (offset >= last)
3349 return NULL;
3350
3351 while(1) {
3352 len = last - offset;
3353 if (len == 0)
3354 break;
3355 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3356 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3357 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3358 return em;
3359
3360 /* if this isn't a hole return it */
3361 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3362 em->block_start != EXTENT_MAP_HOLE) {
3363 return em;
3364 }
3365
3366 /* this is a hole, advance to the next extent */
3367 offset = extent_map_end(em);
3368 free_extent_map(em);
3369 if (offset >= last)
3370 break;
3371 }
3372 return NULL;
3373}
3374
1506fcc8
YS
3375int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3376 __u64 start, __u64 len, get_extent_t *get_extent)
3377{
975f84fe 3378 int ret = 0;
1506fcc8
YS
3379 u64 off = start;
3380 u64 max = start + len;
3381 u32 flags = 0;
975f84fe
JB
3382 u32 found_type;
3383 u64 last;
ec29ed5b 3384 u64 last_for_get_extent = 0;
1506fcc8 3385 u64 disko = 0;
ec29ed5b 3386 u64 isize = i_size_read(inode);
975f84fe 3387 struct btrfs_key found_key;
1506fcc8 3388 struct extent_map *em = NULL;
2ac55d41 3389 struct extent_state *cached_state = NULL;
975f84fe
JB
3390 struct btrfs_path *path;
3391 struct btrfs_file_extent_item *item;
1506fcc8 3392 int end = 0;
ec29ed5b
CM
3393 u64 em_start = 0;
3394 u64 em_len = 0;
3395 u64 em_end = 0;
1506fcc8 3396 unsigned long emflags;
1506fcc8
YS
3397
3398 if (len == 0)
3399 return -EINVAL;
3400
975f84fe
JB
3401 path = btrfs_alloc_path();
3402 if (!path)
3403 return -ENOMEM;
3404 path->leave_spinning = 1;
3405
4d479cf0
JB
3406 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3407 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3408
ec29ed5b
CM
3409 /*
3410 * lookup the last file extent. We're not using i_size here
3411 * because there might be preallocation past i_size
3412 */
975f84fe 3413 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3414 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3415 if (ret < 0) {
3416 btrfs_free_path(path);
3417 return ret;
3418 }
3419 WARN_ON(!ret);
3420 path->slots[0]--;
3421 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3422 struct btrfs_file_extent_item);
3423 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3424 found_type = btrfs_key_type(&found_key);
3425
ec29ed5b 3426 /* No extents, but there might be delalloc bits */
33345d01 3427 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3428 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3429 /* have to trust i_size as the end */
3430 last = (u64)-1;
3431 last_for_get_extent = isize;
3432 } else {
3433 /*
3434 * remember the start of the last extent. There are a
3435 * bunch of different factors that go into the length of the
3436 * extent, so its much less complex to remember where it started
3437 */
3438 last = found_key.offset;
3439 last_for_get_extent = last + 1;
975f84fe 3440 }
975f84fe
JB
3441 btrfs_free_path(path);
3442
ec29ed5b
CM
3443 /*
3444 * we might have some extents allocated but more delalloc past those
3445 * extents. so, we trust isize unless the start of the last extent is
3446 * beyond isize
3447 */
3448 if (last < isize) {
3449 last = (u64)-1;
3450 last_for_get_extent = isize;
3451 }
3452
2ac55d41
JB
3453 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3454 &cached_state, GFP_NOFS);
ec29ed5b 3455
4d479cf0 3456 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3457 get_extent);
1506fcc8
YS
3458 if (!em)
3459 goto out;
3460 if (IS_ERR(em)) {
3461 ret = PTR_ERR(em);
3462 goto out;
3463 }
975f84fe 3464
1506fcc8 3465 while (!end) {
ea8efc74
CM
3466 u64 offset_in_extent;
3467
3468 /* break if the extent we found is outside the range */
3469 if (em->start >= max || extent_map_end(em) < off)
3470 break;
3471
3472 /*
3473 * get_extent may return an extent that starts before our
3474 * requested range. We have to make sure the ranges
3475 * we return to fiemap always move forward and don't
3476 * overlap, so adjust the offsets here
3477 */
3478 em_start = max(em->start, off);
1506fcc8 3479
ea8efc74
CM
3480 /*
3481 * record the offset from the start of the extent
3482 * for adjusting the disk offset below
3483 */
3484 offset_in_extent = em_start - em->start;
ec29ed5b 3485 em_end = extent_map_end(em);
ea8efc74 3486 em_len = em_end - em_start;
ec29ed5b 3487 emflags = em->flags;
1506fcc8
YS
3488 disko = 0;
3489 flags = 0;
3490
ea8efc74
CM
3491 /*
3492 * bump off for our next call to get_extent
3493 */
3494 off = extent_map_end(em);
3495 if (off >= max)
3496 end = 1;
3497
93dbfad7 3498 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3499 end = 1;
3500 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3501 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3502 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3503 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3504 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3505 flags |= (FIEMAP_EXTENT_DELALLOC |
3506 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3507 } else {
ea8efc74 3508 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3509 }
3510 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3511 flags |= FIEMAP_EXTENT_ENCODED;
3512
1506fcc8
YS
3513 free_extent_map(em);
3514 em = NULL;
ec29ed5b
CM
3515 if ((em_start >= last) || em_len == (u64)-1 ||
3516 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3517 flags |= FIEMAP_EXTENT_LAST;
3518 end = 1;
3519 }
3520
ec29ed5b
CM
3521 /* now scan forward to see if this is really the last extent. */
3522 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3523 get_extent);
3524 if (IS_ERR(em)) {
3525 ret = PTR_ERR(em);
3526 goto out;
3527 }
3528 if (!em) {
975f84fe
JB
3529 flags |= FIEMAP_EXTENT_LAST;
3530 end = 1;
3531 }
ec29ed5b
CM
3532 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3533 em_len, flags);
3534 if (ret)
3535 goto out_free;
1506fcc8
YS
3536 }
3537out_free:
3538 free_extent_map(em);
3539out:
2ac55d41
JB
3540 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3541 &cached_state, GFP_NOFS);
1506fcc8
YS
3542 return ret;
3543}
3544
4a54c8c1 3545inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3546 unsigned long i)
3547{
3548 struct page *p;
3549 struct address_space *mapping;
3550
3551 if (i == 0)
3552 return eb->first_page;
3553 i += eb->start >> PAGE_CACHE_SHIFT;
3554 mapping = eb->first_page->mapping;
33958dc6
CM
3555 if (!mapping)
3556 return NULL;
0ee0fda0
SW
3557
3558 /*
3559 * extent_buffer_page is only called after pinning the page
3560 * by increasing the reference count. So we know the page must
3561 * be in the radix tree.
3562 */
0ee0fda0 3563 rcu_read_lock();
d1310b2e 3564 p = radix_tree_lookup(&mapping->page_tree, i);
0ee0fda0 3565 rcu_read_unlock();
2b1f55b0 3566
d1310b2e
CM
3567 return p;
3568}
3569
4a54c8c1 3570inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3571{
6af118ce
CM
3572 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3573 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3574}
3575
d1310b2e
CM
3576static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3577 u64 start,
3578 unsigned long len,
3579 gfp_t mask)
3580{
3581 struct extent_buffer *eb = NULL;
3935127c 3582#if LEAK_DEBUG
2d2ae547 3583 unsigned long flags;
4bef0848 3584#endif
d1310b2e 3585
d1310b2e 3586 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3587 if (eb == NULL)
3588 return NULL;
d1310b2e
CM
3589 eb->start = start;
3590 eb->len = len;
bd681513
CM
3591 rwlock_init(&eb->lock);
3592 atomic_set(&eb->write_locks, 0);
3593 atomic_set(&eb->read_locks, 0);
3594 atomic_set(&eb->blocking_readers, 0);
3595 atomic_set(&eb->blocking_writers, 0);
3596 atomic_set(&eb->spinning_readers, 0);
3597 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3598 eb->lock_nested = 0;
bd681513
CM
3599 init_waitqueue_head(&eb->write_lock_wq);
3600 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3601
3935127c 3602#if LEAK_DEBUG
2d2ae547
CM
3603 spin_lock_irqsave(&leak_lock, flags);
3604 list_add(&eb->leak_list, &buffers);
3605 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3606#endif
d1310b2e
CM
3607 atomic_set(&eb->refs, 1);
3608
3609 return eb;
3610}
3611
3612static void __free_extent_buffer(struct extent_buffer *eb)
3613{
3935127c 3614#if LEAK_DEBUG
2d2ae547
CM
3615 unsigned long flags;
3616 spin_lock_irqsave(&leak_lock, flags);
3617 list_del(&eb->leak_list);
3618 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3619#endif
d1310b2e
CM
3620 kmem_cache_free(extent_buffer_cache, eb);
3621}
3622
897ca6e9
MX
3623/*
3624 * Helper for releasing extent buffer page.
3625 */
3626static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3627 unsigned long start_idx)
3628{
3629 unsigned long index;
3630 struct page *page;
3631
3632 if (!eb->first_page)
3633 return;
3634
3635 index = num_extent_pages(eb->start, eb->len);
3636 if (start_idx >= index)
3637 return;
3638
3639 do {
3640 index--;
3641 page = extent_buffer_page(eb, index);
3642 if (page)
3643 page_cache_release(page);
3644 } while (index != start_idx);
3645}
3646
3647/*
3648 * Helper for releasing the extent buffer.
3649 */
3650static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3651{
3652 btrfs_release_extent_buffer_page(eb, 0);
3653 __free_extent_buffer(eb);
3654}
3655
d1310b2e
CM
3656struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3657 u64 start, unsigned long len,
ba144192 3658 struct page *page0)
d1310b2e
CM
3659{
3660 unsigned long num_pages = num_extent_pages(start, len);
3661 unsigned long i;
3662 unsigned long index = start >> PAGE_CACHE_SHIFT;
3663 struct extent_buffer *eb;
6af118ce 3664 struct extent_buffer *exists = NULL;
d1310b2e
CM
3665 struct page *p;
3666 struct address_space *mapping = tree->mapping;
3667 int uptodate = 1;
19fe0a8b 3668 int ret;
d1310b2e 3669
19fe0a8b
MX
3670 rcu_read_lock();
3671 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3672 if (eb && atomic_inc_not_zero(&eb->refs)) {
3673 rcu_read_unlock();
0f9dd46c 3674 mark_page_accessed(eb->first_page);
6af118ce
CM
3675 return eb;
3676 }
19fe0a8b 3677 rcu_read_unlock();
6af118ce 3678
ba144192 3679 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 3680 if (!eb)
d1310b2e
CM
3681 return NULL;
3682
d1310b2e
CM
3683 if (page0) {
3684 eb->first_page = page0;
3685 i = 1;
3686 index++;
3687 page_cache_get(page0);
3688 mark_page_accessed(page0);
3689 set_page_extent_mapped(page0);
d1310b2e 3690 set_page_extent_head(page0, len);
f188591e 3691 uptodate = PageUptodate(page0);
d1310b2e
CM
3692 } else {
3693 i = 0;
3694 }
3695 for (; i < num_pages; i++, index++) {
a6591715 3696 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
3697 if (!p) {
3698 WARN_ON(1);
6af118ce 3699 goto free_eb;
d1310b2e
CM
3700 }
3701 set_page_extent_mapped(p);
3702 mark_page_accessed(p);
3703 if (i == 0) {
3704 eb->first_page = p;
3705 set_page_extent_head(p, len);
3706 } else {
3707 set_page_private(p, EXTENT_PAGE_PRIVATE);
3708 }
3709 if (!PageUptodate(p))
3710 uptodate = 0;
eb14ab8e
CM
3711
3712 /*
3713 * see below about how we avoid a nasty race with release page
3714 * and why we unlock later
3715 */
3716 if (i != 0)
3717 unlock_page(p);
d1310b2e
CM
3718 }
3719 if (uptodate)
b4ce94de 3720 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 3721
19fe0a8b
MX
3722 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
3723 if (ret)
3724 goto free_eb;
3725
6af118ce 3726 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
3727 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
3728 if (ret == -EEXIST) {
3729 exists = radix_tree_lookup(&tree->buffer,
3730 start >> PAGE_CACHE_SHIFT);
6af118ce
CM
3731 /* add one reference for the caller */
3732 atomic_inc(&exists->refs);
3733 spin_unlock(&tree->buffer_lock);
19fe0a8b 3734 radix_tree_preload_end();
6af118ce
CM
3735 goto free_eb;
3736 }
6af118ce
CM
3737 /* add one reference for the tree */
3738 atomic_inc(&eb->refs);
f044ba78 3739 spin_unlock(&tree->buffer_lock);
19fe0a8b 3740 radix_tree_preload_end();
eb14ab8e
CM
3741
3742 /*
3743 * there is a race where release page may have
3744 * tried to find this extent buffer in the radix
3745 * but failed. It will tell the VM it is safe to
3746 * reclaim the, and it will clear the page private bit.
3747 * We must make sure to set the page private bit properly
3748 * after the extent buffer is in the radix tree so
3749 * it doesn't get lost
3750 */
3751 set_page_extent_mapped(eb->first_page);
3752 set_page_extent_head(eb->first_page, eb->len);
3753 if (!page0)
3754 unlock_page(eb->first_page);
d1310b2e
CM
3755 return eb;
3756
6af118ce 3757free_eb:
eb14ab8e
CM
3758 if (eb->first_page && !page0)
3759 unlock_page(eb->first_page);
3760
d1310b2e 3761 if (!atomic_dec_and_test(&eb->refs))
6af118ce 3762 return exists;
897ca6e9 3763 btrfs_release_extent_buffer(eb);
6af118ce 3764 return exists;
d1310b2e 3765}
d1310b2e
CM
3766
3767struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 3768 u64 start, unsigned long len)
d1310b2e 3769{
d1310b2e 3770 struct extent_buffer *eb;
d1310b2e 3771
19fe0a8b
MX
3772 rcu_read_lock();
3773 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3774 if (eb && atomic_inc_not_zero(&eb->refs)) {
3775 rcu_read_unlock();
0f9dd46c 3776 mark_page_accessed(eb->first_page);
19fe0a8b
MX
3777 return eb;
3778 }
3779 rcu_read_unlock();
0f9dd46c 3780
19fe0a8b 3781 return NULL;
d1310b2e 3782}
d1310b2e
CM
3783
3784void free_extent_buffer(struct extent_buffer *eb)
3785{
d1310b2e
CM
3786 if (!eb)
3787 return;
3788
3789 if (!atomic_dec_and_test(&eb->refs))
3790 return;
3791
6af118ce 3792 WARN_ON(1);
d1310b2e 3793}
d1310b2e
CM
3794
3795int clear_extent_buffer_dirty(struct extent_io_tree *tree,
3796 struct extent_buffer *eb)
3797{
d1310b2e
CM
3798 unsigned long i;
3799 unsigned long num_pages;
3800 struct page *page;
3801
d1310b2e
CM
3802 num_pages = num_extent_pages(eb->start, eb->len);
3803
3804 for (i = 0; i < num_pages; i++) {
3805 page = extent_buffer_page(eb, i);
b9473439 3806 if (!PageDirty(page))
d2c3f4f6
CM
3807 continue;
3808
a61e6f29 3809 lock_page(page);
eb14ab8e
CM
3810 WARN_ON(!PagePrivate(page));
3811
3812 set_page_extent_mapped(page);
d1310b2e
CM
3813 if (i == 0)
3814 set_page_extent_head(page, eb->len);
d1310b2e 3815
d1310b2e 3816 clear_page_dirty_for_io(page);
0ee0fda0 3817 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
3818 if (!PageDirty(page)) {
3819 radix_tree_tag_clear(&page->mapping->page_tree,
3820 page_index(page),
3821 PAGECACHE_TAG_DIRTY);
3822 }
0ee0fda0 3823 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 3824 ClearPageError(page);
a61e6f29 3825 unlock_page(page);
d1310b2e
CM
3826 }
3827 return 0;
3828}
d1310b2e 3829
d1310b2e
CM
3830int set_extent_buffer_dirty(struct extent_io_tree *tree,
3831 struct extent_buffer *eb)
3832{
3833 unsigned long i;
3834 unsigned long num_pages;
b9473439 3835 int was_dirty = 0;
d1310b2e 3836
b9473439 3837 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
d1310b2e 3838 num_pages = num_extent_pages(eb->start, eb->len);
b9473439 3839 for (i = 0; i < num_pages; i++)
d1310b2e 3840 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
b9473439 3841 return was_dirty;
d1310b2e 3842}
d1310b2e 3843
19b6caf4
CM
3844static int __eb_straddles_pages(u64 start, u64 len)
3845{
3846 if (len < PAGE_CACHE_SIZE)
3847 return 1;
3848 if (start & (PAGE_CACHE_SIZE - 1))
3849 return 1;
3850 if ((start + len) & (PAGE_CACHE_SIZE - 1))
3851 return 1;
3852 return 0;
3853}
3854
3855static int eb_straddles_pages(struct extent_buffer *eb)
3856{
3857 return __eb_straddles_pages(eb->start, eb->len);
3858}
3859
1259ab75 3860int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
2ac55d41
JB
3861 struct extent_buffer *eb,
3862 struct extent_state **cached_state)
1259ab75
CM
3863{
3864 unsigned long i;
3865 struct page *page;
3866 unsigned long num_pages;
3867
3868 num_pages = num_extent_pages(eb->start, eb->len);
b4ce94de 3869 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1259ab75 3870
19b6caf4
CM
3871 if (eb_straddles_pages(eb)) {
3872 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3873 cached_state, GFP_NOFS);
3874 }
1259ab75
CM
3875 for (i = 0; i < num_pages; i++) {
3876 page = extent_buffer_page(eb, i);
33958dc6
CM
3877 if (page)
3878 ClearPageUptodate(page);
1259ab75
CM
3879 }
3880 return 0;
3881}
3882
d1310b2e
CM
3883int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3884 struct extent_buffer *eb)
3885{
3886 unsigned long i;
3887 struct page *page;
3888 unsigned long num_pages;
3889
3890 num_pages = num_extent_pages(eb->start, eb->len);
3891
19b6caf4
CM
3892 if (eb_straddles_pages(eb)) {
3893 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3894 NULL, GFP_NOFS);
3895 }
d1310b2e
CM
3896 for (i = 0; i < num_pages; i++) {
3897 page = extent_buffer_page(eb, i);
3898 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3899 ((i == num_pages - 1) &&
3900 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3901 check_page_uptodate(tree, page);
3902 continue;
3903 }
3904 SetPageUptodate(page);
3905 }
3906 return 0;
3907}
d1310b2e 3908
ce9adaa5
CM
3909int extent_range_uptodate(struct extent_io_tree *tree,
3910 u64 start, u64 end)
3911{
3912 struct page *page;
3913 int ret;
3914 int pg_uptodate = 1;
3915 int uptodate;
3916 unsigned long index;
3917
19b6caf4
CM
3918 if (__eb_straddles_pages(start, end - start + 1)) {
3919 ret = test_range_bit(tree, start, end,
3920 EXTENT_UPTODATE, 1, NULL);
3921 if (ret)
3922 return 1;
3923 }
d397712b 3924 while (start <= end) {
ce9adaa5
CM
3925 index = start >> PAGE_CACHE_SHIFT;
3926 page = find_get_page(tree->mapping, index);
8bedd51b
MH
3927 if (!page)
3928 return 1;
ce9adaa5
CM
3929 uptodate = PageUptodate(page);
3930 page_cache_release(page);
3931 if (!uptodate) {
3932 pg_uptodate = 0;
3933 break;
3934 }
3935 start += PAGE_CACHE_SIZE;
3936 }
3937 return pg_uptodate;
3938}
3939
d1310b2e 3940int extent_buffer_uptodate(struct extent_io_tree *tree,
2ac55d41
JB
3941 struct extent_buffer *eb,
3942 struct extent_state *cached_state)
d1310b2e 3943{
728131d8 3944 int ret = 0;
ce9adaa5
CM
3945 unsigned long num_pages;
3946 unsigned long i;
728131d8
CM
3947 struct page *page;
3948 int pg_uptodate = 1;
3949
b4ce94de 3950 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4235298e 3951 return 1;
728131d8 3952
19b6caf4
CM
3953 if (eb_straddles_pages(eb)) {
3954 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3955 EXTENT_UPTODATE, 1, cached_state);
3956 if (ret)
3957 return ret;
3958 }
728131d8
CM
3959
3960 num_pages = num_extent_pages(eb->start, eb->len);
3961 for (i = 0; i < num_pages; i++) {
3962 page = extent_buffer_page(eb, i);
3963 if (!PageUptodate(page)) {
3964 pg_uptodate = 0;
3965 break;
3966 }
3967 }
4235298e 3968 return pg_uptodate;
d1310b2e 3969}
d1310b2e
CM
3970
3971int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 3972 struct extent_buffer *eb, u64 start, int wait,
f188591e 3973 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3974{
3975 unsigned long i;
3976 unsigned long start_i;
3977 struct page *page;
3978 int err;
3979 int ret = 0;
ce9adaa5
CM
3980 int locked_pages = 0;
3981 int all_uptodate = 1;
3982 int inc_all_pages = 0;
d1310b2e 3983 unsigned long num_pages;
a86c12c7 3984 struct bio *bio = NULL;
c8b97818 3985 unsigned long bio_flags = 0;
a86c12c7 3986
b4ce94de 3987 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
3988 return 0;
3989
19b6caf4
CM
3990 if (eb_straddles_pages(eb)) {
3991 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3992 EXTENT_UPTODATE, 1, NULL)) {
3993 return 0;
3994 }
d1310b2e
CM
3995 }
3996
3997 if (start) {
3998 WARN_ON(start < eb->start);
3999 start_i = (start >> PAGE_CACHE_SHIFT) -
4000 (eb->start >> PAGE_CACHE_SHIFT);
4001 } else {
4002 start_i = 0;
4003 }
4004
4005 num_pages = num_extent_pages(eb->start, eb->len);
4006 for (i = start_i; i < num_pages; i++) {
4007 page = extent_buffer_page(eb, i);
bb82ab88 4008 if (wait == WAIT_NONE) {
2db04966 4009 if (!trylock_page(page))
ce9adaa5 4010 goto unlock_exit;
d1310b2e
CM
4011 } else {
4012 lock_page(page);
4013 }
ce9adaa5 4014 locked_pages++;
d397712b 4015 if (!PageUptodate(page))
ce9adaa5 4016 all_uptodate = 0;
ce9adaa5
CM
4017 }
4018 if (all_uptodate) {
4019 if (start_i == 0)
b4ce94de 4020 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4021 goto unlock_exit;
4022 }
4023
4024 for (i = start_i; i < num_pages; i++) {
4025 page = extent_buffer_page(eb, i);
eb14ab8e
CM
4026
4027 WARN_ON(!PagePrivate(page));
4028
4029 set_page_extent_mapped(page);
4030 if (i == 0)
4031 set_page_extent_head(page, eb->len);
4032
ce9adaa5
CM
4033 if (inc_all_pages)
4034 page_cache_get(page);
4035 if (!PageUptodate(page)) {
4036 if (start_i == 0)
4037 inc_all_pages = 1;
f188591e 4038 ClearPageError(page);
a86c12c7 4039 err = __extent_read_full_page(tree, page,
f188591e 4040 get_extent, &bio,
c8b97818 4041 mirror_num, &bio_flags);
d397712b 4042 if (err)
d1310b2e 4043 ret = err;
d1310b2e
CM
4044 } else {
4045 unlock_page(page);
4046 }
4047 }
4048
a86c12c7 4049 if (bio)
c8b97818 4050 submit_one_bio(READ, bio, mirror_num, bio_flags);
a86c12c7 4051
bb82ab88 4052 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4053 return ret;
d397712b 4054
d1310b2e
CM
4055 for (i = start_i; i < num_pages; i++) {
4056 page = extent_buffer_page(eb, i);
4057 wait_on_page_locked(page);
d397712b 4058 if (!PageUptodate(page))
d1310b2e 4059 ret = -EIO;
d1310b2e 4060 }
d397712b 4061
d1310b2e 4062 if (!ret)
b4ce94de 4063 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4064 return ret;
ce9adaa5
CM
4065
4066unlock_exit:
4067 i = start_i;
d397712b 4068 while (locked_pages > 0) {
ce9adaa5
CM
4069 page = extent_buffer_page(eb, i);
4070 i++;
4071 unlock_page(page);
4072 locked_pages--;
4073 }
4074 return ret;
d1310b2e 4075}
d1310b2e
CM
4076
4077void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4078 unsigned long start,
4079 unsigned long len)
4080{
4081 size_t cur;
4082 size_t offset;
4083 struct page *page;
4084 char *kaddr;
4085 char *dst = (char *)dstv;
4086 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4087 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4088
4089 WARN_ON(start > eb->len);
4090 WARN_ON(start + len > eb->start + eb->len);
4091
4092 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4093
d397712b 4094 while (len > 0) {
d1310b2e 4095 page = extent_buffer_page(eb, i);
d1310b2e
CM
4096
4097 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4098 kaddr = page_address(page);
d1310b2e 4099 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4100
4101 dst += cur;
4102 len -= cur;
4103 offset = 0;
4104 i++;
4105 }
4106}
d1310b2e
CM
4107
4108int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4109 unsigned long min_len, char **map,
d1310b2e 4110 unsigned long *map_start,
a6591715 4111 unsigned long *map_len)
d1310b2e
CM
4112{
4113 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4114 char *kaddr;
4115 struct page *p;
4116 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4117 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4118 unsigned long end_i = (start_offset + start + min_len - 1) >>
4119 PAGE_CACHE_SHIFT;
4120
4121 if (i != end_i)
4122 return -EINVAL;
4123
4124 if (i == 0) {
4125 offset = start_offset;
4126 *map_start = 0;
4127 } else {
4128 offset = 0;
4129 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4130 }
d397712b 4131
d1310b2e 4132 if (start + min_len > eb->len) {
d397712b
CM
4133 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4134 "wanted %lu %lu\n", (unsigned long long)eb->start,
4135 eb->len, start, min_len);
d1310b2e 4136 WARN_ON(1);
85026533 4137 return -EINVAL;
d1310b2e
CM
4138 }
4139
4140 p = extent_buffer_page(eb, i);
a6591715 4141 kaddr = page_address(p);
d1310b2e
CM
4142 *map = kaddr + offset;
4143 *map_len = PAGE_CACHE_SIZE - offset;
4144 return 0;
4145}
d1310b2e 4146
d1310b2e
CM
4147int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4148 unsigned long start,
4149 unsigned long len)
4150{
4151 size_t cur;
4152 size_t offset;
4153 struct page *page;
4154 char *kaddr;
4155 char *ptr = (char *)ptrv;
4156 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4157 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4158 int ret = 0;
4159
4160 WARN_ON(start > eb->len);
4161 WARN_ON(start + len > eb->start + eb->len);
4162
4163 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4164
d397712b 4165 while (len > 0) {
d1310b2e 4166 page = extent_buffer_page(eb, i);
d1310b2e
CM
4167
4168 cur = min(len, (PAGE_CACHE_SIZE - offset));
4169
a6591715 4170 kaddr = page_address(page);
d1310b2e 4171 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4172 if (ret)
4173 break;
4174
4175 ptr += cur;
4176 len -= cur;
4177 offset = 0;
4178 i++;
4179 }
4180 return ret;
4181}
d1310b2e
CM
4182
4183void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4184 unsigned long start, unsigned long len)
4185{
4186 size_t cur;
4187 size_t offset;
4188 struct page *page;
4189 char *kaddr;
4190 char *src = (char *)srcv;
4191 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4192 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4193
4194 WARN_ON(start > eb->len);
4195 WARN_ON(start + len > eb->start + eb->len);
4196
4197 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4198
d397712b 4199 while (len > 0) {
d1310b2e
CM
4200 page = extent_buffer_page(eb, i);
4201 WARN_ON(!PageUptodate(page));
4202
4203 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4204 kaddr = page_address(page);
d1310b2e 4205 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4206
4207 src += cur;
4208 len -= cur;
4209 offset = 0;
4210 i++;
4211 }
4212}
d1310b2e
CM
4213
4214void memset_extent_buffer(struct extent_buffer *eb, char c,
4215 unsigned long start, unsigned long len)
4216{
4217 size_t cur;
4218 size_t offset;
4219 struct page *page;
4220 char *kaddr;
4221 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4222 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4223
4224 WARN_ON(start > eb->len);
4225 WARN_ON(start + len > eb->start + eb->len);
4226
4227 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4228
d397712b 4229 while (len > 0) {
d1310b2e
CM
4230 page = extent_buffer_page(eb, i);
4231 WARN_ON(!PageUptodate(page));
4232
4233 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4234 kaddr = page_address(page);
d1310b2e 4235 memset(kaddr + offset, c, cur);
d1310b2e
CM
4236
4237 len -= cur;
4238 offset = 0;
4239 i++;
4240 }
4241}
d1310b2e
CM
4242
4243void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4244 unsigned long dst_offset, unsigned long src_offset,
4245 unsigned long len)
4246{
4247 u64 dst_len = dst->len;
4248 size_t cur;
4249 size_t offset;
4250 struct page *page;
4251 char *kaddr;
4252 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4253 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4254
4255 WARN_ON(src->len != dst_len);
4256
4257 offset = (start_offset + dst_offset) &
4258 ((unsigned long)PAGE_CACHE_SIZE - 1);
4259
d397712b 4260 while (len > 0) {
d1310b2e
CM
4261 page = extent_buffer_page(dst, i);
4262 WARN_ON(!PageUptodate(page));
4263
4264 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4265
a6591715 4266 kaddr = page_address(page);
d1310b2e 4267 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4268
4269 src_offset += cur;
4270 len -= cur;
4271 offset = 0;
4272 i++;
4273 }
4274}
d1310b2e
CM
4275
4276static void move_pages(struct page *dst_page, struct page *src_page,
4277 unsigned long dst_off, unsigned long src_off,
4278 unsigned long len)
4279{
a6591715 4280 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4281 if (dst_page == src_page) {
4282 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4283 } else {
a6591715 4284 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4285 char *p = dst_kaddr + dst_off + len;
4286 char *s = src_kaddr + src_off + len;
4287
4288 while (len--)
4289 *--p = *--s;
d1310b2e 4290 }
d1310b2e
CM
4291}
4292
3387206f
ST
4293static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4294{
4295 unsigned long distance = (src > dst) ? src - dst : dst - src;
4296 return distance < len;
4297}
4298
d1310b2e
CM
4299static void copy_pages(struct page *dst_page, struct page *src_page,
4300 unsigned long dst_off, unsigned long src_off,
4301 unsigned long len)
4302{
a6591715 4303 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4304 char *src_kaddr;
4305
3387206f 4306 if (dst_page != src_page) {
a6591715 4307 src_kaddr = page_address(src_page);
3387206f 4308 } else {
d1310b2e 4309 src_kaddr = dst_kaddr;
3387206f
ST
4310 BUG_ON(areas_overlap(src_off, dst_off, len));
4311 }
d1310b2e
CM
4312
4313 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4314}
4315
4316void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4317 unsigned long src_offset, unsigned long len)
4318{
4319 size_t cur;
4320 size_t dst_off_in_page;
4321 size_t src_off_in_page;
4322 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4323 unsigned long dst_i;
4324 unsigned long src_i;
4325
4326 if (src_offset + len > dst->len) {
d397712b
CM
4327 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4328 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4329 BUG_ON(1);
4330 }
4331 if (dst_offset + len > dst->len) {
d397712b
CM
4332 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4333 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4334 BUG_ON(1);
4335 }
4336
d397712b 4337 while (len > 0) {
d1310b2e
CM
4338 dst_off_in_page = (start_offset + dst_offset) &
4339 ((unsigned long)PAGE_CACHE_SIZE - 1);
4340 src_off_in_page = (start_offset + src_offset) &
4341 ((unsigned long)PAGE_CACHE_SIZE - 1);
4342
4343 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4344 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4345
4346 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4347 src_off_in_page));
4348 cur = min_t(unsigned long, cur,
4349 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4350
4351 copy_pages(extent_buffer_page(dst, dst_i),
4352 extent_buffer_page(dst, src_i),
4353 dst_off_in_page, src_off_in_page, cur);
4354
4355 src_offset += cur;
4356 dst_offset += cur;
4357 len -= cur;
4358 }
4359}
d1310b2e
CM
4360
4361void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4362 unsigned long src_offset, unsigned long len)
4363{
4364 size_t cur;
4365 size_t dst_off_in_page;
4366 size_t src_off_in_page;
4367 unsigned long dst_end = dst_offset + len - 1;
4368 unsigned long src_end = src_offset + len - 1;
4369 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4370 unsigned long dst_i;
4371 unsigned long src_i;
4372
4373 if (src_offset + len > dst->len) {
d397712b
CM
4374 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4375 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4376 BUG_ON(1);
4377 }
4378 if (dst_offset + len > dst->len) {
d397712b
CM
4379 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4380 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4381 BUG_ON(1);
4382 }
3387206f 4383 if (!areas_overlap(src_offset, dst_offset, len)) {
d1310b2e
CM
4384 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4385 return;
4386 }
d397712b 4387 while (len > 0) {
d1310b2e
CM
4388 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4389 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4390
4391 dst_off_in_page = (start_offset + dst_end) &
4392 ((unsigned long)PAGE_CACHE_SIZE - 1);
4393 src_off_in_page = (start_offset + src_end) &
4394 ((unsigned long)PAGE_CACHE_SIZE - 1);
4395
4396 cur = min_t(unsigned long, len, src_off_in_page + 1);
4397 cur = min(cur, dst_off_in_page + 1);
4398 move_pages(extent_buffer_page(dst, dst_i),
4399 extent_buffer_page(dst, src_i),
4400 dst_off_in_page - cur + 1,
4401 src_off_in_page - cur + 1, cur);
4402
4403 dst_end -= cur;
4404 src_end -= cur;
4405 len -= cur;
4406 }
4407}
6af118ce 4408
19fe0a8b
MX
4409static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4410{
4411 struct extent_buffer *eb =
4412 container_of(head, struct extent_buffer, rcu_head);
4413
4414 btrfs_release_extent_buffer(eb);
4415}
4416
6af118ce
CM
4417int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
4418{
4419 u64 start = page_offset(page);
4420 struct extent_buffer *eb;
4421 int ret = 1;
6af118ce
CM
4422
4423 spin_lock(&tree->buffer_lock);
19fe0a8b 4424 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
45f49bce
CM
4425 if (!eb) {
4426 spin_unlock(&tree->buffer_lock);
4427 return ret;
4428 }
6af118ce 4429
19fe0a8b 4430 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
6af118ce
CM
4431 ret = 0;
4432 goto out;
4433 }
19fe0a8b
MX
4434
4435 /*
4436 * set @eb->refs to 0 if it is already 1, and then release the @eb.
4437 * Or go back.
4438 */
4439 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
b9473439
CM
4440 ret = 0;
4441 goto out;
4442 }
897ca6e9 4443
19fe0a8b 4444 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
6af118ce
CM
4445out:
4446 spin_unlock(&tree->buffer_lock);
19fe0a8b
MX
4447
4448 /* at this point we can safely release the extent buffer */
4449 if (atomic_read(&eb->refs) == 0)
4450 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6af118ce
CM
4451 return ret;
4452}