]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: improve error handling of btrfs_add_link
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112#define BUFFER_LRU_MAX 64
113
114struct tree_entry {
115 u64 start;
116 u64 end;
d1310b2e
CM
117 struct rb_node rb_node;
118};
119
120struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
771ed689
CM
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
125 */
ffbd517d
CM
126 unsigned int extent_locked:1;
127
70fd7614 128 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 129 unsigned int sync_io:1;
d1310b2e
CM
130};
131
57599c7e 132static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
133 struct extent_changeset *changeset,
134 int set)
135{
136 int ret;
137
138 if (!changeset)
57599c7e 139 return 0;
d38ed27f 140 if (set && (state->state & bits) == bits)
57599c7e 141 return 0;
fefdc557 142 if (!set && (state->state & bits) == 0)
57599c7e 143 return 0;
d38ed27f 144 changeset->bytes_changed += state->end - state->start + 1;
53d32359 145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 146 GFP_ATOMIC);
57599c7e 147 return ret;
d38ed27f
QW
148}
149
aab6e9ed 150static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b 165
8ac9f7c1
KO
166 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
168 BIOSET_NEED_BVECS))
9be3395b 169 goto free_buffer_cache;
b208c2f7 170
8ac9f7c1 171 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7 176free_bioset:
8ac9f7c1 177 bioset_exit(&btrfs_bioset);
b208c2f7 178
9be3395b
CM
179free_buffer_cache:
180 kmem_cache_destroy(extent_buffer_cache);
181 extent_buffer_cache = NULL;
182
d1310b2e
CM
183free_state_cache:
184 kmem_cache_destroy(extent_state_cache);
9be3395b 185 extent_state_cache = NULL;
d1310b2e
CM
186 return -ENOMEM;
187}
188
e67c718b 189void __cold extent_io_exit(void)
d1310b2e 190{
6d49ba1b 191 btrfs_leak_debug_check();
8c0a8537
KS
192
193 /*
194 * Make sure all delayed rcu free are flushed before we
195 * destroy caches.
196 */
197 rcu_barrier();
5598e900
KM
198 kmem_cache_destroy(extent_state_cache);
199 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 200 bioset_exit(&btrfs_bioset);
d1310b2e
CM
201}
202
203void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 204 void *private_data)
d1310b2e 205{
6bef4d31 206 tree->state = RB_ROOT;
d1310b2e
CM
207 tree->ops = NULL;
208 tree->dirty_bytes = 0;
70dec807 209 spin_lock_init(&tree->lock);
c6100a4b 210 tree->private_data = private_data;
d1310b2e 211}
d1310b2e 212
b2950863 213static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
214{
215 struct extent_state *state;
d1310b2e 216
3ba7ab22
MH
217 /*
218 * The given mask might be not appropriate for the slab allocator,
219 * drop the unsupported bits
220 */
221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 222 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 223 if (!state)
d1310b2e
CM
224 return state;
225 state->state = 0;
47dc196a 226 state->failrec = NULL;
27a3507d 227 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 228 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 229 refcount_set(&state->refs, 1);
d1310b2e 230 init_waitqueue_head(&state->wq);
143bede5 231 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
232 return state;
233}
d1310b2e 234
4845e44f 235void free_extent_state(struct extent_state *state)
d1310b2e 236{
d1310b2e
CM
237 if (!state)
238 return;
b7ac31b7 239 if (refcount_dec_and_test(&state->refs)) {
27a3507d 240 WARN_ON(extent_state_in_tree(state));
6d49ba1b 241 btrfs_leak_debug_del(&state->leak_list);
143bede5 242 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
243 kmem_cache_free(extent_state_cache, state);
244 }
245}
d1310b2e 246
f2071b21
FM
247static struct rb_node *tree_insert(struct rb_root *root,
248 struct rb_node *search_start,
249 u64 offset,
12cfbad9
FDBM
250 struct rb_node *node,
251 struct rb_node ***p_in,
252 struct rb_node **parent_in)
d1310b2e 253{
f2071b21 254 struct rb_node **p;
d397712b 255 struct rb_node *parent = NULL;
d1310b2e
CM
256 struct tree_entry *entry;
257
12cfbad9
FDBM
258 if (p_in && parent_in) {
259 p = *p_in;
260 parent = *parent_in;
261 goto do_insert;
262 }
263
f2071b21 264 p = search_start ? &search_start : &root->rb_node;
d397712b 265 while (*p) {
d1310b2e
CM
266 parent = *p;
267 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269 if (offset < entry->start)
270 p = &(*p)->rb_left;
271 else if (offset > entry->end)
272 p = &(*p)->rb_right;
273 else
274 return parent;
275 }
276
12cfbad9 277do_insert:
d1310b2e
CM
278 rb_link_node(node, parent, p);
279 rb_insert_color(node, root);
280 return NULL;
281}
282
80ea96b1 283static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
284 struct rb_node **prev_ret,
285 struct rb_node **next_ret,
286 struct rb_node ***p_ret,
287 struct rb_node **parent_ret)
d1310b2e 288{
80ea96b1 289 struct rb_root *root = &tree->state;
12cfbad9 290 struct rb_node **n = &root->rb_node;
d1310b2e
CM
291 struct rb_node *prev = NULL;
292 struct rb_node *orig_prev = NULL;
293 struct tree_entry *entry;
294 struct tree_entry *prev_entry = NULL;
295
12cfbad9
FDBM
296 while (*n) {
297 prev = *n;
298 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
299 prev_entry = entry;
300
301 if (offset < entry->start)
12cfbad9 302 n = &(*n)->rb_left;
d1310b2e 303 else if (offset > entry->end)
12cfbad9 304 n = &(*n)->rb_right;
d397712b 305 else
12cfbad9 306 return *n;
d1310b2e
CM
307 }
308
12cfbad9
FDBM
309 if (p_ret)
310 *p_ret = n;
311 if (parent_ret)
312 *parent_ret = prev;
313
d1310b2e
CM
314 if (prev_ret) {
315 orig_prev = prev;
d397712b 316 while (prev && offset > prev_entry->end) {
d1310b2e
CM
317 prev = rb_next(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *prev_ret = prev;
321 prev = orig_prev;
322 }
323
324 if (next_ret) {
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 326 while (prev && offset < prev_entry->start) {
d1310b2e
CM
327 prev = rb_prev(prev);
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 }
330 *next_ret = prev;
331 }
332 return NULL;
333}
334
12cfbad9
FDBM
335static inline struct rb_node *
336tree_search_for_insert(struct extent_io_tree *tree,
337 u64 offset,
338 struct rb_node ***p_ret,
339 struct rb_node **parent_ret)
d1310b2e 340{
70dec807 341 struct rb_node *prev = NULL;
d1310b2e 342 struct rb_node *ret;
70dec807 343
12cfbad9 344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 345 if (!ret)
d1310b2e
CM
346 return prev;
347 return ret;
348}
349
12cfbad9
FDBM
350static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351 u64 offset)
352{
353 return tree_search_for_insert(tree, offset, NULL, NULL);
354}
355
d1310b2e
CM
356/*
357 * utility function to look for merge candidates inside a given range.
358 * Any extents with matching state are merged together into a single
359 * extent in the tree. Extents with EXTENT_IO in their state field
360 * are not merged because the end_io handlers need to be able to do
361 * operations on them without sleeping (or doing allocations/splits).
362 *
363 * This should be called with the tree lock held.
364 */
1bf85046
JM
365static void merge_state(struct extent_io_tree *tree,
366 struct extent_state *state)
d1310b2e
CM
367{
368 struct extent_state *other;
369 struct rb_node *other_node;
370
5b21f2ed 371 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 372 return;
d1310b2e
CM
373
374 other_node = rb_prev(&state->rb_node);
375 if (other_node) {
376 other = rb_entry(other_node, struct extent_state, rb_node);
377 if (other->end == state->start - 1 &&
378 other->state == state->state) {
5c848198
NB
379 if (tree->private_data &&
380 is_data_inode(tree->private_data))
381 btrfs_merge_delalloc_extent(tree->private_data,
382 state, other);
d1310b2e 383 state->start = other->start;
d1310b2e 384 rb_erase(&other->rb_node, &tree->state);
27a3507d 385 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
386 free_extent_state(other);
387 }
388 }
389 other_node = rb_next(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->start == state->end + 1 &&
393 other->state == state->state) {
5c848198
NB
394 if (tree->private_data &&
395 is_data_inode(tree->private_data))
396 btrfs_merge_delalloc_extent(tree->private_data,
397 state, other);
df98b6e2 398 state->end = other->end;
df98b6e2 399 rb_erase(&other->rb_node, &tree->state);
27a3507d 400 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 401 free_extent_state(other);
d1310b2e
CM
402 }
403 }
d1310b2e
CM
404}
405
3150b699 406static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
407 struct extent_state *state, unsigned *bits,
408 struct extent_changeset *changeset);
3150b699 409
d1310b2e
CM
410/*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
422 struct rb_node ***p,
423 struct rb_node **parent,
d38ed27f 424 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
425{
426 struct rb_node *node;
427
31b1a2bd 428 if (end < start)
efe120a0 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 430 end, start);
d1310b2e
CM
431 state->start = start;
432 state->end = end;
9ed74f2d 433
d38ed27f 434 set_state_bits(tree, state, bits, changeset);
3150b699 435
f2071b21 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
62e85577 440 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 441 found->start, found->end, start, end);
d1310b2e
CM
442 return -EEXIST;
443 }
444 merge_state(tree, state);
445 return 0;
446}
447
448/*
449 * split a given extent state struct in two, inserting the preallocated
450 * struct 'prealloc' as the newly created second half. 'split' indicates an
451 * offset inside 'orig' where it should be split.
452 *
453 * Before calling,
454 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
455 * are two extent state structs in the tree:
456 * prealloc: [orig->start, split - 1]
457 * orig: [ split, orig->end ]
458 *
459 * The tree locks are not taken by this function. They need to be held
460 * by the caller.
461 */
462static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463 struct extent_state *prealloc, u64 split)
464{
465 struct rb_node *node;
9ed74f2d 466
abbb55f4
NB
467 if (tree->private_data && is_data_inode(tree->private_data))
468 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 469
d1310b2e
CM
470 prealloc->start = orig->start;
471 prealloc->end = split - 1;
472 prealloc->state = orig->state;
473 orig->start = split;
474
f2071b21
FM
475 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476 &prealloc->rb_node, NULL, NULL);
d1310b2e 477 if (node) {
d1310b2e
CM
478 free_extent_state(prealloc);
479 return -EEXIST;
480 }
481 return 0;
482}
483
cdc6a395
LZ
484static struct extent_state *next_state(struct extent_state *state)
485{
486 struct rb_node *next = rb_next(&state->rb_node);
487 if (next)
488 return rb_entry(next, struct extent_state, rb_node);
489 else
490 return NULL;
491}
492
d1310b2e
CM
493/*
494 * utility function to clear some bits in an extent state struct.
1b303fc0 495 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
496 *
497 * If no bits are set on the state struct after clearing things, the
498 * struct is freed and removed from the tree
499 */
cdc6a395
LZ
500static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501 struct extent_state *state,
fefdc557
QW
502 unsigned *bits, int wake,
503 struct extent_changeset *changeset)
d1310b2e 504{
cdc6a395 505 struct extent_state *next;
9ee49a04 506 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 507 int ret;
d1310b2e 508
0ca1f7ce 509 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
510 u64 range = state->end - state->start + 1;
511 WARN_ON(range > tree->dirty_bytes);
512 tree->dirty_bytes -= range;
513 }
a36bb5f9
NB
514
515 if (tree->private_data && is_data_inode(tree->private_data))
516 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
57599c7e
DS
518 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519 BUG_ON(ret < 0);
32c00aff 520 state->state &= ~bits_to_clear;
d1310b2e
CM
521 if (wake)
522 wake_up(&state->wq);
0ca1f7ce 523 if (state->state == 0) {
cdc6a395 524 next = next_state(state);
27a3507d 525 if (extent_state_in_tree(state)) {
d1310b2e 526 rb_erase(&state->rb_node, &tree->state);
27a3507d 527 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
528 free_extent_state(state);
529 } else {
530 WARN_ON(1);
531 }
532 } else {
533 merge_state(tree, state);
cdc6a395 534 next = next_state(state);
d1310b2e 535 }
cdc6a395 536 return next;
d1310b2e
CM
537}
538
8233767a
XG
539static struct extent_state *
540alloc_extent_state_atomic(struct extent_state *prealloc)
541{
542 if (!prealloc)
543 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545 return prealloc;
546}
547
48a3b636 548static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 549{
05912a3c
DS
550 struct inode *inode = tree->private_data;
551
552 btrfs_panic(btrfs_sb(inode->i_sb), err,
553 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
554}
555
d1310b2e
CM
556/*
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
560 *
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
563 *
564 * the range [start, end] is inclusive.
565 *
6763af84 566 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 567 */
66b0c887 568int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
569 unsigned bits, int wake, int delete,
570 struct extent_state **cached_state,
571 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
572{
573 struct extent_state *state;
2c64c53d 574 struct extent_state *cached;
d1310b2e
CM
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
5c939df5 577 u64 last_end;
d1310b2e 578 int err;
2ac55d41 579 int clear = 0;
d1310b2e 580
a5dee37d 581 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 582
7ee9e440
JB
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
585
0ca1f7ce
YZ
586 if (delete)
587 bits |= ~EXTENT_CTLBITS;
588 bits |= EXTENT_FIRST_DELALLOC;
589
2ac55d41
JB
590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591 clear = 1;
d1310b2e 592again:
d0164adc 593 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
594 /*
595 * Don't care for allocation failure here because we might end
596 * up not needing the pre-allocated extent state at all, which
597 * is the case if we only have in the tree extent states that
598 * cover our input range and don't cover too any other range.
599 * If we end up needing a new extent state we allocate it later.
600 */
d1310b2e 601 prealloc = alloc_extent_state(mask);
d1310b2e
CM
602 }
603
cad321ad 604 spin_lock(&tree->lock);
2c64c53d
CM
605 if (cached_state) {
606 cached = *cached_state;
2ac55d41
JB
607
608 if (clear) {
609 *cached_state = NULL;
610 cached_state = NULL;
611 }
612
27a3507d
FM
613 if (cached && extent_state_in_tree(cached) &&
614 cached->start <= start && cached->end > start) {
2ac55d41 615 if (clear)
b7ac31b7 616 refcount_dec(&cached->refs);
2c64c53d 617 state = cached;
42daec29 618 goto hit_next;
2c64c53d 619 }
2ac55d41
JB
620 if (clear)
621 free_extent_state(cached);
2c64c53d 622 }
d1310b2e
CM
623 /*
624 * this search will find the extents that end after
625 * our range starts
626 */
80ea96b1 627 node = tree_search(tree, start);
d1310b2e
CM
628 if (!node)
629 goto out;
630 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 631hit_next:
d1310b2e
CM
632 if (state->start > end)
633 goto out;
634 WARN_ON(state->end < start);
5c939df5 635 last_end = state->end;
d1310b2e 636
0449314a 637 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
638 if (!(state->state & bits)) {
639 state = next_state(state);
0449314a 640 goto next;
cdc6a395 641 }
0449314a 642
d1310b2e
CM
643 /*
644 * | ---- desired range ---- |
645 * | state | or
646 * | ------------- state -------------- |
647 *
648 * We need to split the extent we found, and may flip
649 * bits on second half.
650 *
651 * If the extent we found extends past our range, we
652 * just split and search again. It'll get split again
653 * the next time though.
654 *
655 * If the extent we found is inside our range, we clear
656 * the desired bit on it.
657 */
658
659 if (state->start < start) {
8233767a
XG
660 prealloc = alloc_extent_state_atomic(prealloc);
661 BUG_ON(!prealloc);
d1310b2e 662 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
663 if (err)
664 extent_io_tree_panic(tree, err);
665
d1310b2e
CM
666 prealloc = NULL;
667 if (err)
668 goto out;
669 if (state->end <= end) {
fefdc557
QW
670 state = clear_state_bit(tree, state, &bits, wake,
671 changeset);
d1ac6e41 672 goto next;
d1310b2e
CM
673 }
674 goto search_again;
675 }
676 /*
677 * | ---- desired range ---- |
678 * | state |
679 * We need to split the extent, and clear the bit
680 * on the first half
681 */
682 if (state->start <= end && state->end > end) {
8233767a
XG
683 prealloc = alloc_extent_state_atomic(prealloc);
684 BUG_ON(!prealloc);
d1310b2e 685 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
686 if (err)
687 extent_io_tree_panic(tree, err);
688
d1310b2e
CM
689 if (wake)
690 wake_up(&state->wq);
42daec29 691
fefdc557 692 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 693
d1310b2e
CM
694 prealloc = NULL;
695 goto out;
696 }
42daec29 697
fefdc557 698 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 699next:
5c939df5
YZ
700 if (last_end == (u64)-1)
701 goto out;
702 start = last_end + 1;
cdc6a395 703 if (start <= end && state && !need_resched())
692e5759 704 goto hit_next;
d1310b2e
CM
705
706search_again:
707 if (start > end)
708 goto out;
cad321ad 709 spin_unlock(&tree->lock);
d0164adc 710 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
711 cond_resched();
712 goto again;
7ab5cb2a
DS
713
714out:
715 spin_unlock(&tree->lock);
716 if (prealloc)
717 free_extent_state(prealloc);
718
719 return 0;
720
d1310b2e 721}
d1310b2e 722
143bede5
JM
723static void wait_on_state(struct extent_io_tree *tree,
724 struct extent_state *state)
641f5219
CH
725 __releases(tree->lock)
726 __acquires(tree->lock)
d1310b2e
CM
727{
728 DEFINE_WAIT(wait);
729 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 730 spin_unlock(&tree->lock);
d1310b2e 731 schedule();
cad321ad 732 spin_lock(&tree->lock);
d1310b2e 733 finish_wait(&state->wq, &wait);
d1310b2e
CM
734}
735
736/*
737 * waits for one or more bits to clear on a range in the state tree.
738 * The range [start, end] is inclusive.
739 * The tree lock is taken by this function
740 */
41074888
DS
741static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742 unsigned long bits)
d1310b2e
CM
743{
744 struct extent_state *state;
745 struct rb_node *node;
746
a5dee37d 747 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 748
cad321ad 749 spin_lock(&tree->lock);
d1310b2e
CM
750again:
751 while (1) {
752 /*
753 * this search will find all the extents that end after
754 * our range starts
755 */
80ea96b1 756 node = tree_search(tree, start);
c50d3e71 757process_node:
d1310b2e
CM
758 if (!node)
759 break;
760
761 state = rb_entry(node, struct extent_state, rb_node);
762
763 if (state->start > end)
764 goto out;
765
766 if (state->state & bits) {
767 start = state->start;
b7ac31b7 768 refcount_inc(&state->refs);
d1310b2e
CM
769 wait_on_state(tree, state);
770 free_extent_state(state);
771 goto again;
772 }
773 start = state->end + 1;
774
775 if (start > end)
776 break;
777
c50d3e71
FM
778 if (!cond_resched_lock(&tree->lock)) {
779 node = rb_next(node);
780 goto process_node;
781 }
d1310b2e
CM
782 }
783out:
cad321ad 784 spin_unlock(&tree->lock);
d1310b2e 785}
d1310b2e 786
1bf85046 787static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 788 struct extent_state *state,
d38ed27f 789 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 790{
9ee49a04 791 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 792 int ret;
9ed74f2d 793
e06a1fc9
NB
794 if (tree->private_data && is_data_inode(tree->private_data))
795 btrfs_set_delalloc_extent(tree->private_data, state, bits);
796
0ca1f7ce 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
800 }
57599c7e
DS
801 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802 BUG_ON(ret < 0);
0ca1f7ce 803 state->state |= bits_to_set;
d1310b2e
CM
804}
805
e38e2ed7
FM
806static void cache_state_if_flags(struct extent_state *state,
807 struct extent_state **cached_ptr,
9ee49a04 808 unsigned flags)
2c64c53d
CM
809{
810 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 811 if (!flags || (state->state & flags)) {
2c64c53d 812 *cached_ptr = state;
b7ac31b7 813 refcount_inc(&state->refs);
2c64c53d
CM
814 }
815 }
816}
817
e38e2ed7
FM
818static void cache_state(struct extent_state *state,
819 struct extent_state **cached_ptr)
820{
821 return cache_state_if_flags(state, cached_ptr,
822 EXTENT_IOBITS | EXTENT_BOUNDARY);
823}
824
d1310b2e 825/*
1edbb734
CM
826 * set some bits on a range in the tree. This may require allocations or
827 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 828 *
1edbb734
CM
829 * If any of the exclusive bits are set, this will fail with -EEXIST if some
830 * part of the range already has the desired bits set. The start of the
831 * existing range is returned in failed_start in this case.
d1310b2e 832 *
1edbb734 833 * [start, end] is inclusive This takes the tree lock.
d1310b2e 834 */
1edbb734 835
3fbe5c02
JM
836static int __must_check
837__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 838 unsigned bits, unsigned exclusive_bits,
41074888 839 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 840 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
841{
842 struct extent_state *state;
843 struct extent_state *prealloc = NULL;
844 struct rb_node *node;
12cfbad9
FDBM
845 struct rb_node **p;
846 struct rb_node *parent;
d1310b2e 847 int err = 0;
d1310b2e
CM
848 u64 last_start;
849 u64 last_end;
42daec29 850
a5dee37d 851 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 852
0ca1f7ce 853 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 854again:
d0164adc 855 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
856 /*
857 * Don't care for allocation failure here because we might end
858 * up not needing the pre-allocated extent state at all, which
859 * is the case if we only have in the tree extent states that
860 * cover our input range and don't cover too any other range.
861 * If we end up needing a new extent state we allocate it later.
862 */
d1310b2e 863 prealloc = alloc_extent_state(mask);
d1310b2e
CM
864 }
865
cad321ad 866 spin_lock(&tree->lock);
9655d298
CM
867 if (cached_state && *cached_state) {
868 state = *cached_state;
df98b6e2 869 if (state->start <= start && state->end > start &&
27a3507d 870 extent_state_in_tree(state)) {
9655d298
CM
871 node = &state->rb_node;
872 goto hit_next;
873 }
874 }
d1310b2e
CM
875 /*
876 * this search will find all the extents that end after
877 * our range starts.
878 */
12cfbad9 879 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 880 if (!node) {
8233767a
XG
881 prealloc = alloc_extent_state_atomic(prealloc);
882 BUG_ON(!prealloc);
12cfbad9 883 err = insert_state(tree, prealloc, start, end,
d38ed27f 884 &p, &parent, &bits, changeset);
c2d904e0
JM
885 if (err)
886 extent_io_tree_panic(tree, err);
887
c42ac0bc 888 cache_state(prealloc, cached_state);
d1310b2e 889 prealloc = NULL;
d1310b2e
CM
890 goto out;
891 }
d1310b2e 892 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 893hit_next:
d1310b2e
CM
894 last_start = state->start;
895 last_end = state->end;
896
897 /*
898 * | ---- desired range ---- |
899 * | state |
900 *
901 * Just lock what we found and keep going
902 */
903 if (state->start == start && state->end <= end) {
1edbb734 904 if (state->state & exclusive_bits) {
d1310b2e
CM
905 *failed_start = state->start;
906 err = -EEXIST;
907 goto out;
908 }
42daec29 909
d38ed27f 910 set_state_bits(tree, state, &bits, changeset);
2c64c53d 911 cache_state(state, cached_state);
d1310b2e 912 merge_state(tree, state);
5c939df5
YZ
913 if (last_end == (u64)-1)
914 goto out;
915 start = last_end + 1;
d1ac6e41
LB
916 state = next_state(state);
917 if (start < end && state && state->start == start &&
918 !need_resched())
919 goto hit_next;
d1310b2e
CM
920 goto search_again;
921 }
922
923 /*
924 * | ---- desired range ---- |
925 * | state |
926 * or
927 * | ------------- state -------------- |
928 *
929 * We need to split the extent we found, and may flip bits on
930 * second half.
931 *
932 * If the extent we found extends past our
933 * range, we just split and search again. It'll get split
934 * again the next time though.
935 *
936 * If the extent we found is inside our range, we set the
937 * desired bit on it.
938 */
939 if (state->start < start) {
1edbb734 940 if (state->state & exclusive_bits) {
d1310b2e
CM
941 *failed_start = start;
942 err = -EEXIST;
943 goto out;
944 }
8233767a
XG
945
946 prealloc = alloc_extent_state_atomic(prealloc);
947 BUG_ON(!prealloc);
d1310b2e 948 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
949 if (err)
950 extent_io_tree_panic(tree, err);
951
d1310b2e
CM
952 prealloc = NULL;
953 if (err)
954 goto out;
955 if (state->end <= end) {
d38ed27f 956 set_state_bits(tree, state, &bits, changeset);
2c64c53d 957 cache_state(state, cached_state);
d1310b2e 958 merge_state(tree, state);
5c939df5
YZ
959 if (last_end == (u64)-1)
960 goto out;
961 start = last_end + 1;
d1ac6e41
LB
962 state = next_state(state);
963 if (start < end && state && state->start == start &&
964 !need_resched())
965 goto hit_next;
d1310b2e
CM
966 }
967 goto search_again;
968 }
969 /*
970 * | ---- desired range ---- |
971 * | state | or | state |
972 *
973 * There's a hole, we need to insert something in it and
974 * ignore the extent we found.
975 */
976 if (state->start > start) {
977 u64 this_end;
978 if (end < last_start)
979 this_end = end;
980 else
d397712b 981 this_end = last_start - 1;
8233767a
XG
982
983 prealloc = alloc_extent_state_atomic(prealloc);
984 BUG_ON(!prealloc);
c7f895a2
XG
985
986 /*
987 * Avoid to free 'prealloc' if it can be merged with
988 * the later extent.
989 */
d1310b2e 990 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 991 NULL, NULL, &bits, changeset);
c2d904e0
JM
992 if (err)
993 extent_io_tree_panic(tree, err);
994
9ed74f2d
JB
995 cache_state(prealloc, cached_state);
996 prealloc = NULL;
d1310b2e
CM
997 start = this_end + 1;
998 goto search_again;
999 }
1000 /*
1001 * | ---- desired range ---- |
1002 * | state |
1003 * We need to split the extent, and set the bit
1004 * on the first half
1005 */
1006 if (state->start <= end && state->end > end) {
1edbb734 1007 if (state->state & exclusive_bits) {
d1310b2e
CM
1008 *failed_start = start;
1009 err = -EEXIST;
1010 goto out;
1011 }
8233767a
XG
1012
1013 prealloc = alloc_extent_state_atomic(prealloc);
1014 BUG_ON(!prealloc);
d1310b2e 1015 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1016 if (err)
1017 extent_io_tree_panic(tree, err);
d1310b2e 1018
d38ed27f 1019 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1020 cache_state(prealloc, cached_state);
d1310b2e
CM
1021 merge_state(tree, prealloc);
1022 prealloc = NULL;
1023 goto out;
1024 }
1025
b5a4ba14
DS
1026search_again:
1027 if (start > end)
1028 goto out;
1029 spin_unlock(&tree->lock);
1030 if (gfpflags_allow_blocking(mask))
1031 cond_resched();
1032 goto again;
d1310b2e
CM
1033
1034out:
cad321ad 1035 spin_unlock(&tree->lock);
d1310b2e
CM
1036 if (prealloc)
1037 free_extent_state(prealloc);
1038
1039 return err;
1040
d1310b2e 1041}
d1310b2e 1042
41074888 1043int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1044 unsigned bits, u64 * failed_start,
41074888 1045 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1046{
1047 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1048 cached_state, mask, NULL);
3fbe5c02
JM
1049}
1050
1051
462d6fac 1052/**
10983f2e
LB
1053 * convert_extent_bit - convert all bits in a given range from one bit to
1054 * another
462d6fac
JB
1055 * @tree: the io tree to search
1056 * @start: the start offset in bytes
1057 * @end: the end offset in bytes (inclusive)
1058 * @bits: the bits to set in this range
1059 * @clear_bits: the bits to clear in this range
e6138876 1060 * @cached_state: state that we're going to cache
462d6fac
JB
1061 *
1062 * This will go through and set bits for the given range. If any states exist
1063 * already in this range they are set with the given bit and cleared of the
1064 * clear_bits. This is only meant to be used by things that are mergeable, ie
1065 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1066 * boundary bits like LOCK.
210aa277
DS
1067 *
1068 * All allocations are done with GFP_NOFS.
462d6fac
JB
1069 */
1070int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1071 unsigned bits, unsigned clear_bits,
210aa277 1072 struct extent_state **cached_state)
462d6fac
JB
1073{
1074 struct extent_state *state;
1075 struct extent_state *prealloc = NULL;
1076 struct rb_node *node;
12cfbad9
FDBM
1077 struct rb_node **p;
1078 struct rb_node *parent;
462d6fac
JB
1079 int err = 0;
1080 u64 last_start;
1081 u64 last_end;
c8fd3de7 1082 bool first_iteration = true;
462d6fac 1083
a5dee37d 1084 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1085
462d6fac 1086again:
210aa277 1087 if (!prealloc) {
c8fd3de7
FM
1088 /*
1089 * Best effort, don't worry if extent state allocation fails
1090 * here for the first iteration. We might have a cached state
1091 * that matches exactly the target range, in which case no
1092 * extent state allocations are needed. We'll only know this
1093 * after locking the tree.
1094 */
210aa277 1095 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1096 if (!prealloc && !first_iteration)
462d6fac
JB
1097 return -ENOMEM;
1098 }
1099
1100 spin_lock(&tree->lock);
e6138876
JB
1101 if (cached_state && *cached_state) {
1102 state = *cached_state;
1103 if (state->start <= start && state->end > start &&
27a3507d 1104 extent_state_in_tree(state)) {
e6138876
JB
1105 node = &state->rb_node;
1106 goto hit_next;
1107 }
1108 }
1109
462d6fac
JB
1110 /*
1111 * this search will find all the extents that end after
1112 * our range starts.
1113 */
12cfbad9 1114 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1115 if (!node) {
1116 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1117 if (!prealloc) {
1118 err = -ENOMEM;
1119 goto out;
1120 }
12cfbad9 1121 err = insert_state(tree, prealloc, start, end,
d38ed27f 1122 &p, &parent, &bits, NULL);
c2d904e0
JM
1123 if (err)
1124 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1125 cache_state(prealloc, cached_state);
1126 prealloc = NULL;
462d6fac
JB
1127 goto out;
1128 }
1129 state = rb_entry(node, struct extent_state, rb_node);
1130hit_next:
1131 last_start = state->start;
1132 last_end = state->end;
1133
1134 /*
1135 * | ---- desired range ---- |
1136 * | state |
1137 *
1138 * Just lock what we found and keep going
1139 */
1140 if (state->start == start && state->end <= end) {
d38ed27f 1141 set_state_bits(tree, state, &bits, NULL);
e6138876 1142 cache_state(state, cached_state);
fefdc557 1143 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1144 if (last_end == (u64)-1)
1145 goto out;
462d6fac 1146 start = last_end + 1;
d1ac6e41
LB
1147 if (start < end && state && state->start == start &&
1148 !need_resched())
1149 goto hit_next;
462d6fac
JB
1150 goto search_again;
1151 }
1152
1153 /*
1154 * | ---- desired range ---- |
1155 * | state |
1156 * or
1157 * | ------------- state -------------- |
1158 *
1159 * We need to split the extent we found, and may flip bits on
1160 * second half.
1161 *
1162 * If the extent we found extends past our
1163 * range, we just split and search again. It'll get split
1164 * again the next time though.
1165 *
1166 * If the extent we found is inside our range, we set the
1167 * desired bit on it.
1168 */
1169 if (state->start < start) {
1170 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1171 if (!prealloc) {
1172 err = -ENOMEM;
1173 goto out;
1174 }
462d6fac 1175 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1176 if (err)
1177 extent_io_tree_panic(tree, err);
462d6fac
JB
1178 prealloc = NULL;
1179 if (err)
1180 goto out;
1181 if (state->end <= end) {
d38ed27f 1182 set_state_bits(tree, state, &bits, NULL);
e6138876 1183 cache_state(state, cached_state);
fefdc557
QW
1184 state = clear_state_bit(tree, state, &clear_bits, 0,
1185 NULL);
462d6fac
JB
1186 if (last_end == (u64)-1)
1187 goto out;
1188 start = last_end + 1;
d1ac6e41
LB
1189 if (start < end && state && state->start == start &&
1190 !need_resched())
1191 goto hit_next;
462d6fac
JB
1192 }
1193 goto search_again;
1194 }
1195 /*
1196 * | ---- desired range ---- |
1197 * | state | or | state |
1198 *
1199 * There's a hole, we need to insert something in it and
1200 * ignore the extent we found.
1201 */
1202 if (state->start > start) {
1203 u64 this_end;
1204 if (end < last_start)
1205 this_end = end;
1206 else
1207 this_end = last_start - 1;
1208
1209 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1210 if (!prealloc) {
1211 err = -ENOMEM;
1212 goto out;
1213 }
462d6fac
JB
1214
1215 /*
1216 * Avoid to free 'prealloc' if it can be merged with
1217 * the later extent.
1218 */
1219 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1220 NULL, NULL, &bits, NULL);
c2d904e0
JM
1221 if (err)
1222 extent_io_tree_panic(tree, err);
e6138876 1223 cache_state(prealloc, cached_state);
462d6fac
JB
1224 prealloc = NULL;
1225 start = this_end + 1;
1226 goto search_again;
1227 }
1228 /*
1229 * | ---- desired range ---- |
1230 * | state |
1231 * We need to split the extent, and set the bit
1232 * on the first half
1233 */
1234 if (state->start <= end && state->end > end) {
1235 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1236 if (!prealloc) {
1237 err = -ENOMEM;
1238 goto out;
1239 }
462d6fac
JB
1240
1241 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1242 if (err)
1243 extent_io_tree_panic(tree, err);
462d6fac 1244
d38ed27f 1245 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1246 cache_state(prealloc, cached_state);
fefdc557 1247 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1248 prealloc = NULL;
1249 goto out;
1250 }
1251
462d6fac
JB
1252search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
210aa277 1256 cond_resched();
c8fd3de7 1257 first_iteration = false;
462d6fac 1258 goto again;
462d6fac
JB
1259
1260out:
1261 spin_unlock(&tree->lock);
1262 if (prealloc)
1263 free_extent_state(prealloc);
1264
1265 return err;
462d6fac
JB
1266}
1267
d1310b2e 1268/* wrappers around set/clear extent bit */
d38ed27f 1269int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1270 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1271{
1272 /*
1273 * We don't support EXTENT_LOCKED yet, as current changeset will
1274 * record any bits changed, so for EXTENT_LOCKED case, it will
1275 * either fail with -EEXIST or changeset will record the whole
1276 * range.
1277 */
1278 BUG_ON(bits & EXTENT_LOCKED);
1279
2c53b912 1280 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1281 changeset);
1282}
1283
fefdc557
QW
1284int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285 unsigned bits, int wake, int delete,
ae0f1625 1286 struct extent_state **cached)
fefdc557
QW
1287{
1288 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1289 cached, GFP_NOFS, NULL);
fefdc557
QW
1290}
1291
fefdc557 1292int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1293 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1294{
1295 /*
1296 * Don't support EXTENT_LOCKED case, same reason as
1297 * set_record_extent_bits().
1298 */
1299 BUG_ON(bits & EXTENT_LOCKED);
1300
f734c44a 1301 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1302 changeset);
1303}
1304
d352ac68
CM
1305/*
1306 * either insert or lock state struct between start and end use mask to tell
1307 * us if waiting is desired.
1308 */
1edbb734 1309int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1310 struct extent_state **cached_state)
d1310b2e
CM
1311{
1312 int err;
1313 u64 failed_start;
9ee49a04 1314
d1310b2e 1315 while (1) {
ff13db41 1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1317 EXTENT_LOCKED, &failed_start,
d38ed27f 1318 cached_state, GFP_NOFS, NULL);
d0082371 1319 if (err == -EEXIST) {
d1310b2e
CM
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
d0082371 1322 } else
d1310b2e 1323 break;
d1310b2e
CM
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327}
d1310b2e 1328
d0082371 1329int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1330{
1331 int err;
1332 u64 failed_start;
1333
3fbe5c02 1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1335 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1336 if (err == -EEXIST) {
1337 if (failed_start > start)
1338 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1339 EXTENT_LOCKED, 1, 0, NULL);
25179201 1340 return 0;
6643558d 1341 }
25179201
JB
1342 return 1;
1343}
25179201 1344
bd1fa4f0 1345void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1346{
09cbfeaf
KS
1347 unsigned long index = start >> PAGE_SHIFT;
1348 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1349 struct page *page;
1350
1351 while (index <= end_index) {
1352 page = find_get_page(inode->i_mapping, index);
1353 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354 clear_page_dirty_for_io(page);
09cbfeaf 1355 put_page(page);
4adaa611
CM
1356 index++;
1357 }
4adaa611
CM
1358}
1359
f6311572 1360void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1361{
09cbfeaf
KS
1362 unsigned long index = start >> PAGE_SHIFT;
1363 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1364 struct page *page;
1365
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1369 __set_page_dirty_nobuffers(page);
8d38633c 1370 account_page_redirty(page);
09cbfeaf 1371 put_page(page);
4adaa611
CM
1372 index++;
1373 }
4adaa611
CM
1374}
1375
d352ac68
CM
1376/* find the first state struct with 'bits' set after 'start', and
1377 * return it. tree->lock must be held. NULL will returned if
1378 * nothing was found after 'start'
1379 */
48a3b636
ES
1380static struct extent_state *
1381find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1382 u64 start, unsigned bits)
d7fc640e
CM
1383{
1384 struct rb_node *node;
1385 struct extent_state *state;
1386
1387 /*
1388 * this search will find all the extents that end after
1389 * our range starts.
1390 */
1391 node = tree_search(tree, start);
d397712b 1392 if (!node)
d7fc640e 1393 goto out;
d7fc640e 1394
d397712b 1395 while (1) {
d7fc640e 1396 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1397 if (state->end >= start && (state->state & bits))
d7fc640e 1398 return state;
d397712b 1399
d7fc640e
CM
1400 node = rb_next(node);
1401 if (!node)
1402 break;
1403 }
1404out:
1405 return NULL;
1406}
d7fc640e 1407
69261c4b
XG
1408/*
1409 * find the first offset in the io tree with 'bits' set. zero is
1410 * returned if we find something, and *start_ret and *end_ret are
1411 * set to reflect the state struct that was found.
1412 *
477d7eaf 1413 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1414 */
1415int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1416 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1417 struct extent_state **cached_state)
69261c4b
XG
1418{
1419 struct extent_state *state;
1420 int ret = 1;
1421
1422 spin_lock(&tree->lock);
e6138876
JB
1423 if (cached_state && *cached_state) {
1424 state = *cached_state;
27a3507d 1425 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1426 while ((state = next_state(state)) != NULL) {
e6138876
JB
1427 if (state->state & bits)
1428 goto got_it;
e6138876
JB
1429 }
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1432 goto out;
1433 }
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1436 }
1437
69261c4b 1438 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1439got_it:
69261c4b 1440 if (state) {
e38e2ed7 1441 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1444 ret = 0;
1445 }
e6138876 1446out:
69261c4b
XG
1447 spin_unlock(&tree->lock);
1448 return ret;
1449}
1450
d352ac68
CM
1451/*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1454 *
3522e903 1455 * true is returned if we find something, false if nothing was in the tree
d352ac68 1456 */
3522e903 1457static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
d1310b2e
CM
1460{
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
3522e903 1464 bool found = false;
d1310b2e
CM
1465 u64 total_bytes = 0;
1466
cad321ad 1467 spin_lock(&tree->lock);
c8b97818 1468
d1310b2e
CM
1469 /*
1470 * this search will find all the extents that end after
1471 * our range starts.
1472 */
80ea96b1 1473 node = tree_search(tree, cur_start);
2b114d1d 1474 if (!node) {
3522e903 1475 *end = (u64)-1;
d1310b2e
CM
1476 goto out;
1477 }
1478
d397712b 1479 while (1) {
d1310b2e 1480 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1481 if (found && (state->start != cur_start ||
1482 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1483 goto out;
1484 }
1485 if (!(state->state & EXTENT_DELALLOC)) {
1486 if (!found)
1487 *end = state->end;
1488 goto out;
1489 }
c2a128d2 1490 if (!found) {
d1310b2e 1491 *start = state->start;
c2a128d2 1492 *cached_state = state;
b7ac31b7 1493 refcount_inc(&state->refs);
c2a128d2 1494 }
3522e903 1495 found = true;
d1310b2e
CM
1496 *end = state->end;
1497 cur_start = state->end + 1;
1498 node = rb_next(node);
d1310b2e 1499 total_bytes += state->end - state->start + 1;
7bf811a5 1500 if (total_bytes >= max_bytes)
573aecaf 1501 break;
573aecaf 1502 if (!node)
d1310b2e
CM
1503 break;
1504 }
1505out:
cad321ad 1506 spin_unlock(&tree->lock);
d1310b2e
CM
1507 return found;
1508}
1509
da2c7009
LB
1510static int __process_pages_contig(struct address_space *mapping,
1511 struct page *locked_page,
1512 pgoff_t start_index, pgoff_t end_index,
1513 unsigned long page_ops, pgoff_t *index_ret);
1514
143bede5
JM
1515static noinline void __unlock_for_delalloc(struct inode *inode,
1516 struct page *locked_page,
1517 u64 start, u64 end)
c8b97818 1518{
09cbfeaf
KS
1519 unsigned long index = start >> PAGE_SHIFT;
1520 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1521
76c0021d 1522 ASSERT(locked_page);
c8b97818 1523 if (index == locked_page->index && end_index == index)
143bede5 1524 return;
c8b97818 1525
76c0021d
LB
1526 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1527 PAGE_UNLOCK, NULL);
c8b97818
CM
1528}
1529
1530static noinline int lock_delalloc_pages(struct inode *inode,
1531 struct page *locked_page,
1532 u64 delalloc_start,
1533 u64 delalloc_end)
1534{
09cbfeaf 1535 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1536 unsigned long index_ret = index;
09cbfeaf 1537 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1538 int ret;
c8b97818 1539
76c0021d 1540 ASSERT(locked_page);
c8b97818
CM
1541 if (index == locked_page->index && index == end_index)
1542 return 0;
1543
76c0021d
LB
1544 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1545 end_index, PAGE_LOCK, &index_ret);
1546 if (ret == -EAGAIN)
1547 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1548 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1549 return ret;
1550}
1551
1552/*
3522e903
LF
1553 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1554 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1555 *
3522e903
LF
1556 * Return: true if we find something
1557 * false if nothing was in the tree
c8b97818 1558 */
ce9f967f 1559EXPORT_FOR_TESTS
3522e903 1560noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe
JB
1561 struct extent_io_tree *tree,
1562 struct page *locked_page, u64 *start,
917aacec 1563 u64 *end)
c8b97818 1564{
917aacec 1565 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1566 u64 delalloc_start;
1567 u64 delalloc_end;
3522e903 1568 bool found;
9655d298 1569 struct extent_state *cached_state = NULL;
c8b97818
CM
1570 int ret;
1571 int loops = 0;
1572
1573again:
1574 /* step one, find a bunch of delalloc bytes starting at start */
1575 delalloc_start = *start;
1576 delalloc_end = 0;
1577 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1578 max_bytes, &cached_state);
70b99e69 1579 if (!found || delalloc_end <= *start) {
c8b97818
CM
1580 *start = delalloc_start;
1581 *end = delalloc_end;
c2a128d2 1582 free_extent_state(cached_state);
3522e903 1583 return false;
c8b97818
CM
1584 }
1585
70b99e69
CM
1586 /*
1587 * start comes from the offset of locked_page. We have to lock
1588 * pages in order, so we can't process delalloc bytes before
1589 * locked_page
1590 */
d397712b 1591 if (delalloc_start < *start)
70b99e69 1592 delalloc_start = *start;
70b99e69 1593
c8b97818
CM
1594 /*
1595 * make sure to limit the number of pages we try to lock down
c8b97818 1596 */
7bf811a5
JB
1597 if (delalloc_end + 1 - delalloc_start > max_bytes)
1598 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1599
c8b97818
CM
1600 /* step two, lock all the pages after the page that has start */
1601 ret = lock_delalloc_pages(inode, locked_page,
1602 delalloc_start, delalloc_end);
9bfd61d9 1603 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1604 if (ret == -EAGAIN) {
1605 /* some of the pages are gone, lets avoid looping by
1606 * shortening the size of the delalloc range we're searching
1607 */
9655d298 1608 free_extent_state(cached_state);
7d788742 1609 cached_state = NULL;
c8b97818 1610 if (!loops) {
09cbfeaf 1611 max_bytes = PAGE_SIZE;
c8b97818
CM
1612 loops = 1;
1613 goto again;
1614 } else {
3522e903 1615 found = false;
c8b97818
CM
1616 goto out_failed;
1617 }
1618 }
c8b97818
CM
1619
1620 /* step three, lock the state bits for the whole range */
ff13db41 1621 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1622
1623 /* then test to make sure it is all still delalloc */
1624 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1625 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1626 if (!ret) {
9655d298 1627 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1628 &cached_state);
c8b97818
CM
1629 __unlock_for_delalloc(inode, locked_page,
1630 delalloc_start, delalloc_end);
1631 cond_resched();
1632 goto again;
1633 }
9655d298 1634 free_extent_state(cached_state);
c8b97818
CM
1635 *start = delalloc_start;
1636 *end = delalloc_end;
1637out_failed:
1638 return found;
1639}
1640
da2c7009
LB
1641static int __process_pages_contig(struct address_space *mapping,
1642 struct page *locked_page,
1643 pgoff_t start_index, pgoff_t end_index,
1644 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1645{
873695b3 1646 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1647 unsigned long pages_locked = 0;
873695b3 1648 pgoff_t index = start_index;
c8b97818 1649 struct page *pages[16];
873695b3 1650 unsigned ret;
da2c7009 1651 int err = 0;
c8b97818 1652 int i;
771ed689 1653
da2c7009
LB
1654 if (page_ops & PAGE_LOCK) {
1655 ASSERT(page_ops == PAGE_LOCK);
1656 ASSERT(index_ret && *index_ret == start_index);
1657 }
1658
704de49d 1659 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1660 mapping_set_error(mapping, -EIO);
704de49d 1661
d397712b 1662 while (nr_pages > 0) {
873695b3 1663 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1664 min_t(unsigned long,
1665 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1666 if (ret == 0) {
1667 /*
1668 * Only if we're going to lock these pages,
1669 * can we find nothing at @index.
1670 */
1671 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1672 err = -EAGAIN;
1673 goto out;
da2c7009 1674 }
8b62b72b 1675
da2c7009 1676 for (i = 0; i < ret; i++) {
c2790a2e 1677 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1678 SetPagePrivate2(pages[i]);
1679
c8b97818 1680 if (pages[i] == locked_page) {
09cbfeaf 1681 put_page(pages[i]);
da2c7009 1682 pages_locked++;
c8b97818
CM
1683 continue;
1684 }
c2790a2e 1685 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1686 clear_page_dirty_for_io(pages[i]);
c2790a2e 1687 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1688 set_page_writeback(pages[i]);
704de49d
FM
1689 if (page_ops & PAGE_SET_ERROR)
1690 SetPageError(pages[i]);
c2790a2e 1691 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1692 end_page_writeback(pages[i]);
c2790a2e 1693 if (page_ops & PAGE_UNLOCK)
771ed689 1694 unlock_page(pages[i]);
da2c7009
LB
1695 if (page_ops & PAGE_LOCK) {
1696 lock_page(pages[i]);
1697 if (!PageDirty(pages[i]) ||
1698 pages[i]->mapping != mapping) {
1699 unlock_page(pages[i]);
1700 put_page(pages[i]);
1701 err = -EAGAIN;
1702 goto out;
1703 }
1704 }
09cbfeaf 1705 put_page(pages[i]);
da2c7009 1706 pages_locked++;
c8b97818
CM
1707 }
1708 nr_pages -= ret;
1709 index += ret;
1710 cond_resched();
1711 }
da2c7009
LB
1712out:
1713 if (err && index_ret)
1714 *index_ret = start_index + pages_locked - 1;
1715 return err;
c8b97818 1716}
c8b97818 1717
873695b3
LB
1718void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1719 u64 delalloc_end, struct page *locked_page,
1720 unsigned clear_bits,
1721 unsigned long page_ops)
1722{
1723 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1724 NULL);
873695b3
LB
1725
1726 __process_pages_contig(inode->i_mapping, locked_page,
1727 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1728 page_ops, NULL);
873695b3
LB
1729}
1730
d352ac68
CM
1731/*
1732 * count the number of bytes in the tree that have a given bit(s)
1733 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1734 * cached. The total number found is returned.
1735 */
d1310b2e
CM
1736u64 count_range_bits(struct extent_io_tree *tree,
1737 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1738 unsigned bits, int contig)
d1310b2e
CM
1739{
1740 struct rb_node *node;
1741 struct extent_state *state;
1742 u64 cur_start = *start;
1743 u64 total_bytes = 0;
ec29ed5b 1744 u64 last = 0;
d1310b2e
CM
1745 int found = 0;
1746
fae7f21c 1747 if (WARN_ON(search_end <= cur_start))
d1310b2e 1748 return 0;
d1310b2e 1749
cad321ad 1750 spin_lock(&tree->lock);
d1310b2e
CM
1751 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1752 total_bytes = tree->dirty_bytes;
1753 goto out;
1754 }
1755 /*
1756 * this search will find all the extents that end after
1757 * our range starts.
1758 */
80ea96b1 1759 node = tree_search(tree, cur_start);
d397712b 1760 if (!node)
d1310b2e 1761 goto out;
d1310b2e 1762
d397712b 1763 while (1) {
d1310b2e
CM
1764 state = rb_entry(node, struct extent_state, rb_node);
1765 if (state->start > search_end)
1766 break;
ec29ed5b
CM
1767 if (contig && found && state->start > last + 1)
1768 break;
1769 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1770 total_bytes += min(search_end, state->end) + 1 -
1771 max(cur_start, state->start);
1772 if (total_bytes >= max_bytes)
1773 break;
1774 if (!found) {
af60bed2 1775 *start = max(cur_start, state->start);
d1310b2e
CM
1776 found = 1;
1777 }
ec29ed5b
CM
1778 last = state->end;
1779 } else if (contig && found) {
1780 break;
d1310b2e
CM
1781 }
1782 node = rb_next(node);
1783 if (!node)
1784 break;
1785 }
1786out:
cad321ad 1787 spin_unlock(&tree->lock);
d1310b2e
CM
1788 return total_bytes;
1789}
b2950863 1790
d352ac68
CM
1791/*
1792 * set the private field for a given byte offset in the tree. If there isn't
1793 * an extent_state there already, this does nothing.
1794 */
f827ba9a 1795static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1796 struct io_failure_record *failrec)
d1310b2e
CM
1797{
1798 struct rb_node *node;
1799 struct extent_state *state;
1800 int ret = 0;
1801
cad321ad 1802 spin_lock(&tree->lock);
d1310b2e
CM
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
80ea96b1 1807 node = tree_search(tree, start);
2b114d1d 1808 if (!node) {
d1310b2e
CM
1809 ret = -ENOENT;
1810 goto out;
1811 }
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start != start) {
1814 ret = -ENOENT;
1815 goto out;
1816 }
47dc196a 1817 state->failrec = failrec;
d1310b2e 1818out:
cad321ad 1819 spin_unlock(&tree->lock);
d1310b2e
CM
1820 return ret;
1821}
1822
f827ba9a 1823static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1824 struct io_failure_record **failrec)
d1310b2e
CM
1825{
1826 struct rb_node *node;
1827 struct extent_state *state;
1828 int ret = 0;
1829
cad321ad 1830 spin_lock(&tree->lock);
d1310b2e
CM
1831 /*
1832 * this search will find all the extents that end after
1833 * our range starts.
1834 */
80ea96b1 1835 node = tree_search(tree, start);
2b114d1d 1836 if (!node) {
d1310b2e
CM
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 state = rb_entry(node, struct extent_state, rb_node);
1841 if (state->start != start) {
1842 ret = -ENOENT;
1843 goto out;
1844 }
47dc196a 1845 *failrec = state->failrec;
d1310b2e 1846out:
cad321ad 1847 spin_unlock(&tree->lock);
d1310b2e
CM
1848 return ret;
1849}
1850
1851/*
1852 * searches a range in the state tree for a given mask.
70dec807 1853 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1854 * has the bits set. Otherwise, 1 is returned if any bit in the
1855 * range is found set.
1856 */
1857int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1858 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1859{
1860 struct extent_state *state = NULL;
1861 struct rb_node *node;
1862 int bitset = 0;
d1310b2e 1863
cad321ad 1864 spin_lock(&tree->lock);
27a3507d 1865 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1866 cached->end > start)
9655d298
CM
1867 node = &cached->rb_node;
1868 else
1869 node = tree_search(tree, start);
d1310b2e
CM
1870 while (node && start <= end) {
1871 state = rb_entry(node, struct extent_state, rb_node);
1872
1873 if (filled && state->start > start) {
1874 bitset = 0;
1875 break;
1876 }
1877
1878 if (state->start > end)
1879 break;
1880
1881 if (state->state & bits) {
1882 bitset = 1;
1883 if (!filled)
1884 break;
1885 } else if (filled) {
1886 bitset = 0;
1887 break;
1888 }
46562cec
CM
1889
1890 if (state->end == (u64)-1)
1891 break;
1892
d1310b2e
CM
1893 start = state->end + 1;
1894 if (start > end)
1895 break;
1896 node = rb_next(node);
1897 if (!node) {
1898 if (filled)
1899 bitset = 0;
1900 break;
1901 }
1902 }
cad321ad 1903 spin_unlock(&tree->lock);
d1310b2e
CM
1904 return bitset;
1905}
d1310b2e
CM
1906
1907/*
1908 * helper function to set a given page up to date if all the
1909 * extents in the tree for that page are up to date
1910 */
143bede5 1911static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1912{
4eee4fa4 1913 u64 start = page_offset(page);
09cbfeaf 1914 u64 end = start + PAGE_SIZE - 1;
9655d298 1915 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1916 SetPageUptodate(page);
d1310b2e
CM
1917}
1918
7870d082
JB
1919int free_io_failure(struct extent_io_tree *failure_tree,
1920 struct extent_io_tree *io_tree,
1921 struct io_failure_record *rec)
4a54c8c1
JS
1922{
1923 int ret;
1924 int err = 0;
4a54c8c1 1925
47dc196a 1926 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1927 ret = clear_extent_bits(failure_tree, rec->start,
1928 rec->start + rec->len - 1,
91166212 1929 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1930 if (ret)
1931 err = ret;
1932
7870d082 1933 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1934 rec->start + rec->len - 1,
91166212 1935 EXTENT_DAMAGED);
53b381b3
DW
1936 if (ret && !err)
1937 err = ret;
4a54c8c1
JS
1938
1939 kfree(rec);
1940 return err;
1941}
1942
4a54c8c1
JS
1943/*
1944 * this bypasses the standard btrfs submit functions deliberately, as
1945 * the standard behavior is to write all copies in a raid setup. here we only
1946 * want to write the one bad copy. so we do the mapping for ourselves and issue
1947 * submit_bio directly.
3ec706c8 1948 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1949 * actually prevents the read that triggered the error from finishing.
1950 * currently, there can be no more than two copies of every data bit. thus,
1951 * exactly one rewrite is required.
1952 */
6ec656bc
JB
1953int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1954 u64 length, u64 logical, struct page *page,
1955 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1956{
1957 struct bio *bio;
1958 struct btrfs_device *dev;
4a54c8c1
JS
1959 u64 map_length = 0;
1960 u64 sector;
1961 struct btrfs_bio *bbio = NULL;
1962 int ret;
1963
1751e8a6 1964 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1965 BUG_ON(!mirror_num);
1966
c5e4c3d7 1967 bio = btrfs_io_bio_alloc(1);
4f024f37 1968 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1969 map_length = length;
1970
b5de8d0d
FM
1971 /*
1972 * Avoid races with device replace and make sure our bbio has devices
1973 * associated to its stripes that don't go away while we are doing the
1974 * read repair operation.
1975 */
1976 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1977 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
1978 /*
1979 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1980 * to update all raid stripes, but here we just want to correct
1981 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1982 * stripe's dev and sector.
1983 */
1984 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1985 &map_length, &bbio, 0);
1986 if (ret) {
1987 btrfs_bio_counter_dec(fs_info);
1988 bio_put(bio);
1989 return -EIO;
1990 }
1991 ASSERT(bbio->mirror_num == 1);
1992 } else {
1993 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1994 &map_length, &bbio, mirror_num);
1995 if (ret) {
1996 btrfs_bio_counter_dec(fs_info);
1997 bio_put(bio);
1998 return -EIO;
1999 }
2000 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2001 }
c725328c
LB
2002
2003 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2004 bio->bi_iter.bi_sector = sector;
c725328c 2005 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2006 btrfs_put_bbio(bbio);
ebbede42
AJ
2007 if (!dev || !dev->bdev ||
2008 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2009 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2010 bio_put(bio);
2011 return -EIO;
2012 }
74d46992 2013 bio_set_dev(bio, dev->bdev);
70fd7614 2014 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2015 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2016
4e49ea4a 2017 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2018 /* try to remap that extent elsewhere? */
b5de8d0d 2019 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2020 bio_put(bio);
442a4f63 2021 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2022 return -EIO;
2023 }
2024
b14af3b4
DS
2025 btrfs_info_rl_in_rcu(fs_info,
2026 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2027 ino, start,
1203b681 2028 rcu_str_deref(dev->name), sector);
b5de8d0d 2029 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2030 bio_put(bio);
2031 return 0;
2032}
2033
2ff7e61e
JM
2034int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2035 struct extent_buffer *eb, int mirror_num)
ea466794 2036{
ea466794 2037 u64 start = eb->start;
cc5e31a4 2038 int i, num_pages = num_extent_pages(eb);
d95603b2 2039 int ret = 0;
ea466794 2040
bc98a42c 2041 if (sb_rdonly(fs_info->sb))
908960c6
ID
2042 return -EROFS;
2043
ea466794 2044 for (i = 0; i < num_pages; i++) {
fb85fc9a 2045 struct page *p = eb->pages[i];
1203b681 2046
6ec656bc 2047 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2048 start - page_offset(p), mirror_num);
ea466794
JB
2049 if (ret)
2050 break;
09cbfeaf 2051 start += PAGE_SIZE;
ea466794
JB
2052 }
2053
2054 return ret;
2055}
2056
4a54c8c1
JS
2057/*
2058 * each time an IO finishes, we do a fast check in the IO failure tree
2059 * to see if we need to process or clean up an io_failure_record
2060 */
7870d082
JB
2061int clean_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_io_tree *failure_tree,
2063 struct extent_io_tree *io_tree, u64 start,
2064 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2065{
2066 u64 private;
4a54c8c1 2067 struct io_failure_record *failrec;
4a54c8c1
JS
2068 struct extent_state *state;
2069 int num_copies;
4a54c8c1 2070 int ret;
4a54c8c1
JS
2071
2072 private = 0;
7870d082
JB
2073 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2074 EXTENT_DIRTY, 0);
4a54c8c1
JS
2075 if (!ret)
2076 return 0;
2077
7870d082 2078 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2079 if (ret)
2080 return 0;
2081
4a54c8c1
JS
2082 BUG_ON(!failrec->this_mirror);
2083
2084 if (failrec->in_validation) {
2085 /* there was no real error, just free the record */
ab8d0fc4
JM
2086 btrfs_debug(fs_info,
2087 "clean_io_failure: freeing dummy error at %llu",
2088 failrec->start);
4a54c8c1
JS
2089 goto out;
2090 }
bc98a42c 2091 if (sb_rdonly(fs_info->sb))
908960c6 2092 goto out;
4a54c8c1 2093
7870d082
JB
2094 spin_lock(&io_tree->lock);
2095 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2096 failrec->start,
2097 EXTENT_LOCKED);
7870d082 2098 spin_unlock(&io_tree->lock);
4a54c8c1 2099
883d0de4
MX
2100 if (state && state->start <= failrec->start &&
2101 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 failrec->len);
4a54c8c1 2104 if (num_copies > 1) {
7870d082
JB
2105 repair_io_failure(fs_info, ino, start, failrec->len,
2106 failrec->logical, page, pg_offset,
2107 failrec->failed_mirror);
4a54c8c1
JS
2108 }
2109 }
2110
2111out:
7870d082 2112 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2113
454ff3de 2114 return 0;
4a54c8c1
JS
2115}
2116
f612496b
MX
2117/*
2118 * Can be called when
2119 * - hold extent lock
2120 * - under ordered extent
2121 * - the inode is freeing
2122 */
7ab7956e 2123void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2124{
7ab7956e 2125 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2126 struct io_failure_record *failrec;
2127 struct extent_state *state, *next;
2128
2129 if (RB_EMPTY_ROOT(&failure_tree->state))
2130 return;
2131
2132 spin_lock(&failure_tree->lock);
2133 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2134 while (state) {
2135 if (state->start > end)
2136 break;
2137
2138 ASSERT(state->end <= end);
2139
2140 next = next_state(state);
2141
47dc196a 2142 failrec = state->failrec;
f612496b
MX
2143 free_extent_state(state);
2144 kfree(failrec);
2145
2146 state = next;
2147 }
2148 spin_unlock(&failure_tree->lock);
2149}
2150
2fe6303e 2151int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2152 struct io_failure_record **failrec_ret)
4a54c8c1 2153{
ab8d0fc4 2154 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2155 struct io_failure_record *failrec;
4a54c8c1 2156 struct extent_map *em;
4a54c8c1
JS
2157 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2158 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2159 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2160 int ret;
4a54c8c1
JS
2161 u64 logical;
2162
47dc196a 2163 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2164 if (ret) {
2165 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2166 if (!failrec)
2167 return -ENOMEM;
2fe6303e 2168
4a54c8c1
JS
2169 failrec->start = start;
2170 failrec->len = end - start + 1;
2171 failrec->this_mirror = 0;
2172 failrec->bio_flags = 0;
2173 failrec->in_validation = 0;
2174
2175 read_lock(&em_tree->lock);
2176 em = lookup_extent_mapping(em_tree, start, failrec->len);
2177 if (!em) {
2178 read_unlock(&em_tree->lock);
2179 kfree(failrec);
2180 return -EIO;
2181 }
2182
68ba990f 2183 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2184 free_extent_map(em);
2185 em = NULL;
2186 }
2187 read_unlock(&em_tree->lock);
7a2d6a64 2188 if (!em) {
4a54c8c1
JS
2189 kfree(failrec);
2190 return -EIO;
2191 }
2fe6303e 2192
4a54c8c1
JS
2193 logical = start - em->start;
2194 logical = em->block_start + logical;
2195 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2196 logical = em->block_start;
2197 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2198 extent_set_compress_type(&failrec->bio_flags,
2199 em->compress_type);
2200 }
2fe6303e 2201
ab8d0fc4
JM
2202 btrfs_debug(fs_info,
2203 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2204 logical, start, failrec->len);
2fe6303e 2205
4a54c8c1
JS
2206 failrec->logical = logical;
2207 free_extent_map(em);
2208
2209 /* set the bits in the private failure tree */
2210 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2211 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2212 if (ret >= 0)
47dc196a 2213 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2214 /* set the bits in the inode's tree */
2215 if (ret >= 0)
ceeb0ae7 2216 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2217 if (ret < 0) {
2218 kfree(failrec);
2219 return ret;
2220 }
2221 } else {
ab8d0fc4
JM
2222 btrfs_debug(fs_info,
2223 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2224 failrec->logical, failrec->start, failrec->len,
2225 failrec->in_validation);
4a54c8c1
JS
2226 /*
2227 * when data can be on disk more than twice, add to failrec here
2228 * (e.g. with a list for failed_mirror) to make
2229 * clean_io_failure() clean all those errors at once.
2230 */
2231 }
2fe6303e
MX
2232
2233 *failrec_ret = failrec;
2234
2235 return 0;
2236}
2237
a0b60d72 2238bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2239 struct io_failure_record *failrec, int failed_mirror)
2240{
ab8d0fc4 2241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2242 int num_copies;
2243
ab8d0fc4 2244 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2245 if (num_copies == 1) {
2246 /*
2247 * we only have a single copy of the data, so don't bother with
2248 * all the retry and error correction code that follows. no
2249 * matter what the error is, it is very likely to persist.
2250 */
ab8d0fc4
JM
2251 btrfs_debug(fs_info,
2252 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2253 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2254 return false;
4a54c8c1
JS
2255 }
2256
4a54c8c1
JS
2257 /*
2258 * there are two premises:
2259 * a) deliver good data to the caller
2260 * b) correct the bad sectors on disk
2261 */
a0b60d72 2262 if (failed_bio_pages > 1) {
4a54c8c1
JS
2263 /*
2264 * to fulfill b), we need to know the exact failing sectors, as
2265 * we don't want to rewrite any more than the failed ones. thus,
2266 * we need separate read requests for the failed bio
2267 *
2268 * if the following BUG_ON triggers, our validation request got
2269 * merged. we need separate requests for our algorithm to work.
2270 */
2271 BUG_ON(failrec->in_validation);
2272 failrec->in_validation = 1;
2273 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2274 } else {
2275 /*
2276 * we're ready to fulfill a) and b) alongside. get a good copy
2277 * of the failed sector and if we succeed, we have setup
2278 * everything for repair_io_failure to do the rest for us.
2279 */
2280 if (failrec->in_validation) {
2281 BUG_ON(failrec->this_mirror != failed_mirror);
2282 failrec->in_validation = 0;
2283 failrec->this_mirror = 0;
2284 }
2285 failrec->failed_mirror = failed_mirror;
2286 failrec->this_mirror++;
2287 if (failrec->this_mirror == failed_mirror)
2288 failrec->this_mirror++;
4a54c8c1
JS
2289 }
2290
facc8a22 2291 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2292 btrfs_debug(fs_info,
2293 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2294 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2295 return false;
4a54c8c1
JS
2296 }
2297
c3cfb656 2298 return true;
2fe6303e
MX
2299}
2300
2301
2302struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2303 struct io_failure_record *failrec,
2304 struct page *page, int pg_offset, int icsum,
8b110e39 2305 bio_end_io_t *endio_func, void *data)
2fe6303e 2306{
0b246afa 2307 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2308 struct bio *bio;
2309 struct btrfs_io_bio *btrfs_failed_bio;
2310 struct btrfs_io_bio *btrfs_bio;
2311
c5e4c3d7 2312 bio = btrfs_io_bio_alloc(1);
2fe6303e 2313 bio->bi_end_io = endio_func;
4f024f37 2314 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2315 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2316 bio->bi_iter.bi_size = 0;
8b110e39 2317 bio->bi_private = data;
4a54c8c1 2318
facc8a22
MX
2319 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320 if (btrfs_failed_bio->csum) {
facc8a22
MX
2321 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2322
2323 btrfs_bio = btrfs_io_bio(bio);
2324 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2325 icsum *= csum_size;
2326 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2327 csum_size);
2328 }
2329
2fe6303e
MX
2330 bio_add_page(bio, page, failrec->len, pg_offset);
2331
2332 return bio;
2333}
2334
2335/*
78e62c02
NB
2336 * This is a generic handler for readpage errors. If other copies exist, read
2337 * those and write back good data to the failed position. Does not investigate
2338 * in remapping the failed extent elsewhere, hoping the device will be smart
2339 * enough to do this as needed
2fe6303e 2340 */
2fe6303e
MX
2341static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2342 struct page *page, u64 start, u64 end,
2343 int failed_mirror)
2344{
2345 struct io_failure_record *failrec;
2346 struct inode *inode = page->mapping->host;
2347 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2348 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2349 struct bio *bio;
70fd7614 2350 int read_mode = 0;
4e4cbee9 2351 blk_status_t status;
2fe6303e 2352 int ret;
a0b60d72 2353 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2354
1f7ad75b 2355 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2356
2357 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2358 if (ret)
2359 return ret;
2360
a0b60d72 2361 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2362 failed_mirror)) {
7870d082 2363 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2364 return -EIO;
2365 }
2366
a0b60d72 2367 if (failed_bio_pages > 1)
70fd7614 2368 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2369
2370 phy_offset >>= inode->i_sb->s_blocksize_bits;
2371 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2372 start - page_offset(page),
8b110e39
MX
2373 (int)phy_offset, failed_bio->bi_end_io,
2374 NULL);
ebcc3263 2375 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2376
ab8d0fc4
JM
2377 btrfs_debug(btrfs_sb(inode->i_sb),
2378 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2379 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2380
8c27cb35 2381 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2382 failrec->bio_flags, 0);
4e4cbee9 2383 if (status) {
7870d082 2384 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2385 bio_put(bio);
4e4cbee9 2386 ret = blk_status_to_errno(status);
6c387ab2
MX
2387 }
2388
013bd4c3 2389 return ret;
4a54c8c1
JS
2390}
2391
d1310b2e
CM
2392/* lots and lots of room for performance fixes in the end_bio funcs */
2393
b5227c07 2394void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2395{
2396 int uptodate = (err == 0);
3e2426bd 2397 int ret = 0;
87826df0 2398
c629732d 2399 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2400
87826df0 2401 if (!uptodate) {
87826df0
JM
2402 ClearPageUptodate(page);
2403 SetPageError(page);
bff5baf8 2404 ret = err < 0 ? err : -EIO;
5dca6eea 2405 mapping_set_error(page->mapping, ret);
87826df0 2406 }
87826df0
JM
2407}
2408
d1310b2e
CM
2409/*
2410 * after a writepage IO is done, we need to:
2411 * clear the uptodate bits on error
2412 * clear the writeback bits in the extent tree for this IO
2413 * end_page_writeback if the page has no more pending IO
2414 *
2415 * Scheduling is not allowed, so the extent state tree is expected
2416 * to have one and only one object corresponding to this IO.
2417 */
4246a0b6 2418static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2419{
4e4cbee9 2420 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2421 struct bio_vec *bvec;
d1310b2e
CM
2422 u64 start;
2423 u64 end;
2c30c71b 2424 int i;
d1310b2e 2425
c09abff8 2426 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2427 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2428 struct page *page = bvec->bv_page;
0b246afa
JM
2429 struct inode *inode = page->mapping->host;
2430 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2431
17a5adcc
AO
2432 /* We always issue full-page reads, but if some block
2433 * in a page fails to read, blk_update_request() will
2434 * advance bv_offset and adjust bv_len to compensate.
2435 * Print a warning for nonzero offsets, and an error
2436 * if they don't add up to a full page. */
09cbfeaf
KS
2437 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2438 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2439 btrfs_err(fs_info,
efe120a0
FH
2440 "partial page write in btrfs with offset %u and length %u",
2441 bvec->bv_offset, bvec->bv_len);
2442 else
0b246afa 2443 btrfs_info(fs_info,
5d163e0e 2444 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2445 bvec->bv_offset, bvec->bv_len);
2446 }
d1310b2e 2447
17a5adcc
AO
2448 start = page_offset(page);
2449 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2450
4e4cbee9 2451 end_extent_writepage(page, error, start, end);
17a5adcc 2452 end_page_writeback(page);
2c30c71b 2453 }
2b1f55b0 2454
d1310b2e 2455 bio_put(bio);
d1310b2e
CM
2456}
2457
883d0de4
MX
2458static void
2459endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2460 int uptodate)
2461{
2462 struct extent_state *cached = NULL;
2463 u64 end = start + len - 1;
2464
2465 if (uptodate && tree->track_uptodate)
2466 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2467 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2468}
2469
d1310b2e
CM
2470/*
2471 * after a readpage IO is done, we need to:
2472 * clear the uptodate bits on error
2473 * set the uptodate bits if things worked
2474 * set the page up to date if all extents in the tree are uptodate
2475 * clear the lock bit in the extent tree
2476 * unlock the page if there are no other extents locked for it
2477 *
2478 * Scheduling is not allowed, so the extent state tree is expected
2479 * to have one and only one object corresponding to this IO.
2480 */
4246a0b6 2481static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2482{
2c30c71b 2483 struct bio_vec *bvec;
4e4cbee9 2484 int uptodate = !bio->bi_status;
facc8a22 2485 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2486 struct extent_io_tree *tree, *failure_tree;
facc8a22 2487 u64 offset = 0;
d1310b2e
CM
2488 u64 start;
2489 u64 end;
facc8a22 2490 u64 len;
883d0de4
MX
2491 u64 extent_start = 0;
2492 u64 extent_len = 0;
5cf1ab56 2493 int mirror;
d1310b2e 2494 int ret;
2c30c71b 2495 int i;
d1310b2e 2496
c09abff8 2497 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2498 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2499 struct page *page = bvec->bv_page;
a71754fc 2500 struct inode *inode = page->mapping->host;
ab8d0fc4 2501 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2502 bool data_inode = btrfs_ino(BTRFS_I(inode))
2503 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2504
ab8d0fc4
JM
2505 btrfs_debug(fs_info,
2506 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2507 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2508 io_bio->mirror_num);
a71754fc 2509 tree = &BTRFS_I(inode)->io_tree;
7870d082 2510 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2511
17a5adcc
AO
2512 /* We always issue full-page reads, but if some block
2513 * in a page fails to read, blk_update_request() will
2514 * advance bv_offset and adjust bv_len to compensate.
2515 * Print a warning for nonzero offsets, and an error
2516 * if they don't add up to a full page. */
09cbfeaf
KS
2517 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2518 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2519 btrfs_err(fs_info,
2520 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2521 bvec->bv_offset, bvec->bv_len);
2522 else
ab8d0fc4
JM
2523 btrfs_info(fs_info,
2524 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2525 bvec->bv_offset, bvec->bv_len);
2526 }
d1310b2e 2527
17a5adcc
AO
2528 start = page_offset(page);
2529 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2530 len = bvec->bv_len;
d1310b2e 2531
9be3395b 2532 mirror = io_bio->mirror_num;
78e62c02 2533 if (likely(uptodate)) {
facc8a22
MX
2534 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2535 page, start, end,
2536 mirror);
5ee0844d 2537 if (ret)
d1310b2e 2538 uptodate = 0;
5ee0844d 2539 else
7870d082
JB
2540 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2541 failure_tree, tree, start,
2542 page,
2543 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2544 }
ea466794 2545
f2a09da9
MX
2546 if (likely(uptodate))
2547 goto readpage_ok;
2548
78e62c02 2549 if (data_inode) {
9d0d1c8b 2550
f4a8e656 2551 /*
78e62c02
NB
2552 * The generic bio_readpage_error handles errors the
2553 * following way: If possible, new read requests are
2554 * created and submitted and will end up in
2555 * end_bio_extent_readpage as well (if we're lucky,
2556 * not in the !uptodate case). In that case it returns
2557 * 0 and we just go on with the next page in our bio.
2558 * If it can't handle the error it will return -EIO and
2559 * we remain responsible for that page.
f4a8e656 2560 */
78e62c02
NB
2561 ret = bio_readpage_error(bio, offset, page, start, end,
2562 mirror);
2563 if (ret == 0) {
2564 uptodate = !bio->bi_status;
2565 offset += len;
2566 continue;
2567 }
2568 } else {
2569 struct extent_buffer *eb;
2570
2571 eb = (struct extent_buffer *)page->private;
2572 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2573 eb->read_mirror = mirror;
2574 atomic_dec(&eb->io_pages);
2575 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2576 &eb->bflags))
2577 btree_readahead_hook(eb, -EIO);
2578
2579 ret = -EIO;
7e38326f 2580 }
f2a09da9 2581readpage_ok:
883d0de4 2582 if (likely(uptodate)) {
a71754fc 2583 loff_t i_size = i_size_read(inode);
09cbfeaf 2584 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2585 unsigned off;
a71754fc
JB
2586
2587 /* Zero out the end if this page straddles i_size */
7073017a 2588 off = offset_in_page(i_size);
a583c026 2589 if (page->index == end_index && off)
09cbfeaf 2590 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2591 SetPageUptodate(page);
70dec807 2592 } else {
17a5adcc
AO
2593 ClearPageUptodate(page);
2594 SetPageError(page);
70dec807 2595 }
17a5adcc 2596 unlock_page(page);
facc8a22 2597 offset += len;
883d0de4
MX
2598
2599 if (unlikely(!uptodate)) {
2600 if (extent_len) {
2601 endio_readpage_release_extent(tree,
2602 extent_start,
2603 extent_len, 1);
2604 extent_start = 0;
2605 extent_len = 0;
2606 }
2607 endio_readpage_release_extent(tree, start,
2608 end - start + 1, 0);
2609 } else if (!extent_len) {
2610 extent_start = start;
2611 extent_len = end + 1 - start;
2612 } else if (extent_start + extent_len == start) {
2613 extent_len += end + 1 - start;
2614 } else {
2615 endio_readpage_release_extent(tree, extent_start,
2616 extent_len, uptodate);
2617 extent_start = start;
2618 extent_len = end + 1 - start;
2619 }
2c30c71b 2620 }
d1310b2e 2621
883d0de4
MX
2622 if (extent_len)
2623 endio_readpage_release_extent(tree, extent_start, extent_len,
2624 uptodate);
b3a0dd50 2625 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2626 bio_put(bio);
d1310b2e
CM
2627}
2628
9be3395b 2629/*
184f999e
DS
2630 * Initialize the members up to but not including 'bio'. Use after allocating a
2631 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2632 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2633 */
184f999e 2634static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2635{
184f999e
DS
2636 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2637}
d1310b2e 2638
9be3395b 2639/*
6e707bcd
DS
2640 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2641 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2642 * for the appropriate container_of magic
9be3395b 2643 */
c821e7f3 2644struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2645{
2646 struct bio *bio;
d1310b2e 2647
8ac9f7c1 2648 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2649 bio_set_dev(bio, bdev);
c821e7f3 2650 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2651 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2652 return bio;
2653}
2654
8b6c1d56 2655struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2656{
23ea8e5a
MX
2657 struct btrfs_io_bio *btrfs_bio;
2658 struct bio *new;
9be3395b 2659
6e707bcd 2660 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2661 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2662 btrfs_bio = btrfs_io_bio(new);
184f999e 2663 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2664 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2665 return new;
2666}
9be3395b 2667
c5e4c3d7 2668struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2669{
facc8a22
MX
2670 struct bio *bio;
2671
6e707bcd 2672 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2673 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2674 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2675 return bio;
9be3395b
CM
2676}
2677
e477094f 2678struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2679{
2680 struct bio *bio;
2681 struct btrfs_io_bio *btrfs_bio;
2682
2683 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2684 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2685 ASSERT(bio);
2686
2687 btrfs_bio = btrfs_io_bio(bio);
184f999e 2688 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2689
2690 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2691 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2692 return bio;
2693}
9be3395b 2694
1f7ad75b
MC
2695static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2696 unsigned long bio_flags)
d1310b2e 2697{
4e4cbee9 2698 blk_status_t ret = 0;
c45a8f2d 2699 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2700 struct page *page = bvec->bv_page;
2701 struct extent_io_tree *tree = bio->bi_private;
70dec807 2702 u64 start;
70dec807 2703
4eee4fa4 2704 start = page_offset(page) + bvec->bv_offset;
70dec807 2705
902b22f3 2706 bio->bi_private = NULL;
d1310b2e 2707
20c9801d 2708 if (tree->ops)
c6100a4b 2709 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2710 mirror_num, bio_flags, start);
0b86a832 2711 else
4e49ea4a 2712 btrfsic_submit_bio(bio);
4a54c8c1 2713
4e4cbee9 2714 return blk_status_to_errno(ret);
d1310b2e
CM
2715}
2716
4b81ba48
DS
2717/*
2718 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2719 * @tree: tree so we can call our merge_bio hook
2720 * @wbc: optional writeback control for io accounting
2721 * @page: page to add to the bio
2722 * @pg_offset: offset of the new bio or to check whether we are adding
2723 * a contiguous page to the previous one
2724 * @size: portion of page that we want to write
2725 * @offset: starting offset in the page
2726 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2727 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2728 * @end_io_func: end_io callback for new bio
2729 * @mirror_num: desired mirror to read/write
2730 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2731 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2732 */
2733static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2734 struct writeback_control *wbc,
6273b7f8 2735 struct page *page, u64 offset,
6c5a4e2c 2736 size_t size, unsigned long pg_offset,
d1310b2e
CM
2737 struct block_device *bdev,
2738 struct bio **bio_ret,
f188591e 2739 bio_end_io_t end_io_func,
c8b97818
CM
2740 int mirror_num,
2741 unsigned long prev_bio_flags,
005efedf
FM
2742 unsigned long bio_flags,
2743 bool force_bio_submit)
d1310b2e
CM
2744{
2745 int ret = 0;
2746 struct bio *bio;
09cbfeaf 2747 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2748 sector_t sector = offset >> 9;
d1310b2e 2749
5c2b1fd7
DS
2750 ASSERT(bio_ret);
2751
2752 if (*bio_ret) {
0c8508a6
DS
2753 bool contig;
2754 bool can_merge = true;
2755
d1310b2e 2756 bio = *bio_ret;
0c8508a6 2757 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2758 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2759 else
f73a1c7d 2760 contig = bio_end_sector(bio) == sector;
c8b97818 2761
da12fe54
NB
2762 ASSERT(tree->ops);
2763 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2764 can_merge = false;
2765
2766 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2767 force_bio_submit ||
6c5a4e2c 2768 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2769 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2770 if (ret < 0) {
2771 *bio_ret = NULL;
79787eaa 2772 return ret;
289454ad 2773 }
d1310b2e
CM
2774 bio = NULL;
2775 } else {
da2f0f74
CM
2776 if (wbc)
2777 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2778 return 0;
2779 }
2780 }
c8b97818 2781
6273b7f8 2782 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2783 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2784 bio->bi_end_io = end_io_func;
2785 bio->bi_private = tree;
e6959b93 2786 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2787 bio->bi_opf = opf;
da2f0f74
CM
2788 if (wbc) {
2789 wbc_init_bio(wbc, bio);
2790 wbc_account_io(wbc, page, page_size);
2791 }
70dec807 2792
5c2b1fd7 2793 *bio_ret = bio;
d1310b2e
CM
2794
2795 return ret;
2796}
2797
48a3b636
ES
2798static void attach_extent_buffer_page(struct extent_buffer *eb,
2799 struct page *page)
d1310b2e
CM
2800{
2801 if (!PagePrivate(page)) {
2802 SetPagePrivate(page);
09cbfeaf 2803 get_page(page);
4f2de97a
JB
2804 set_page_private(page, (unsigned long)eb);
2805 } else {
2806 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2807 }
2808}
2809
4f2de97a 2810void set_page_extent_mapped(struct page *page)
d1310b2e 2811{
4f2de97a
JB
2812 if (!PagePrivate(page)) {
2813 SetPagePrivate(page);
09cbfeaf 2814 get_page(page);
4f2de97a
JB
2815 set_page_private(page, EXTENT_PAGE_PRIVATE);
2816 }
d1310b2e
CM
2817}
2818
125bac01
MX
2819static struct extent_map *
2820__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2821 u64 start, u64 len, get_extent_t *get_extent,
2822 struct extent_map **em_cached)
2823{
2824 struct extent_map *em;
2825
2826 if (em_cached && *em_cached) {
2827 em = *em_cached;
cbc0e928 2828 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2829 start < extent_map_end(em)) {
490b54d6 2830 refcount_inc(&em->refs);
125bac01
MX
2831 return em;
2832 }
2833
2834 free_extent_map(em);
2835 *em_cached = NULL;
2836 }
2837
fc4f21b1 2838 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2839 if (em_cached && !IS_ERR_OR_NULL(em)) {
2840 BUG_ON(*em_cached);
490b54d6 2841 refcount_inc(&em->refs);
125bac01
MX
2842 *em_cached = em;
2843 }
2844 return em;
2845}
d1310b2e
CM
2846/*
2847 * basic readpage implementation. Locked extent state structs are inserted
2848 * into the tree that are removed when the IO is done (by the end_io
2849 * handlers)
79787eaa 2850 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2851 * return 0 on success, otherwise return error
d1310b2e 2852 */
9974090b
MX
2853static int __do_readpage(struct extent_io_tree *tree,
2854 struct page *page,
2855 get_extent_t *get_extent,
125bac01 2856 struct extent_map **em_cached,
9974090b 2857 struct bio **bio, int mirror_num,
f1c77c55 2858 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2859 u64 *prev_em_start)
d1310b2e
CM
2860{
2861 struct inode *inode = page->mapping->host;
4eee4fa4 2862 u64 start = page_offset(page);
8eec8296 2863 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2864 u64 cur = start;
2865 u64 extent_offset;
2866 u64 last_byte = i_size_read(inode);
2867 u64 block_start;
2868 u64 cur_end;
d1310b2e
CM
2869 struct extent_map *em;
2870 struct block_device *bdev;
baf863b9 2871 int ret = 0;
d1310b2e 2872 int nr = 0;
306e16ce 2873 size_t pg_offset = 0;
d1310b2e 2874 size_t iosize;
c8b97818 2875 size_t disk_io_size;
d1310b2e 2876 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2877 unsigned long this_bio_flag = 0;
d1310b2e
CM
2878
2879 set_page_extent_mapped(page);
2880
90a887c9
DM
2881 if (!PageUptodate(page)) {
2882 if (cleancache_get_page(page) == 0) {
2883 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2884 unlock_extent(tree, start, end);
90a887c9
DM
2885 goto out;
2886 }
2887 }
2888
09cbfeaf 2889 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2890 char *userpage;
7073017a 2891 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
2892
2893 if (zero_offset) {
09cbfeaf 2894 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2895 userpage = kmap_atomic(page);
c8b97818
CM
2896 memset(userpage + zero_offset, 0, iosize);
2897 flush_dcache_page(page);
7ac687d9 2898 kunmap_atomic(userpage);
c8b97818
CM
2899 }
2900 }
d1310b2e 2901 while (cur <= end) {
005efedf 2902 bool force_bio_submit = false;
6273b7f8 2903 u64 offset;
c8f2f24b 2904
d1310b2e
CM
2905 if (cur >= last_byte) {
2906 char *userpage;
507903b8
AJ
2907 struct extent_state *cached = NULL;
2908
09cbfeaf 2909 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2910 userpage = kmap_atomic(page);
306e16ce 2911 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2912 flush_dcache_page(page);
7ac687d9 2913 kunmap_atomic(userpage);
d1310b2e 2914 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2915 &cached, GFP_NOFS);
7f042a83 2916 unlock_extent_cached(tree, cur,
e43bbe5e 2917 cur + iosize - 1, &cached);
d1310b2e
CM
2918 break;
2919 }
125bac01
MX
2920 em = __get_extent_map(inode, page, pg_offset, cur,
2921 end - cur + 1, get_extent, em_cached);
c704005d 2922 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2923 SetPageError(page);
7f042a83 2924 unlock_extent(tree, cur, end);
d1310b2e
CM
2925 break;
2926 }
d1310b2e
CM
2927 extent_offset = cur - em->start;
2928 BUG_ON(extent_map_end(em) <= cur);
2929 BUG_ON(end < cur);
2930
261507a0 2931 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2932 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2933 extent_set_compress_type(&this_bio_flag,
2934 em->compress_type);
2935 }
c8b97818 2936
d1310b2e
CM
2937 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2938 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2939 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2940 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2941 disk_io_size = em->block_len;
6273b7f8 2942 offset = em->block_start;
c8b97818 2943 } else {
6273b7f8 2944 offset = em->block_start + extent_offset;
c8b97818
CM
2945 disk_io_size = iosize;
2946 }
d1310b2e
CM
2947 bdev = em->bdev;
2948 block_start = em->block_start;
d899e052
YZ
2949 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2950 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2951
2952 /*
2953 * If we have a file range that points to a compressed extent
2954 * and it's followed by a consecutive file range that points to
2955 * to the same compressed extent (possibly with a different
2956 * offset and/or length, so it either points to the whole extent
2957 * or only part of it), we must make sure we do not submit a
2958 * single bio to populate the pages for the 2 ranges because
2959 * this makes the compressed extent read zero out the pages
2960 * belonging to the 2nd range. Imagine the following scenario:
2961 *
2962 * File layout
2963 * [0 - 8K] [8K - 24K]
2964 * | |
2965 * | |
2966 * points to extent X, points to extent X,
2967 * offset 4K, length of 8K offset 0, length 16K
2968 *
2969 * [extent X, compressed length = 4K uncompressed length = 16K]
2970 *
2971 * If the bio to read the compressed extent covers both ranges,
2972 * it will decompress extent X into the pages belonging to the
2973 * first range and then it will stop, zeroing out the remaining
2974 * pages that belong to the other range that points to extent X.
2975 * So here we make sure we submit 2 bios, one for the first
2976 * range and another one for the third range. Both will target
2977 * the same physical extent from disk, but we can't currently
2978 * make the compressed bio endio callback populate the pages
2979 * for both ranges because each compressed bio is tightly
2980 * coupled with a single extent map, and each range can have
2981 * an extent map with a different offset value relative to the
2982 * uncompressed data of our extent and different lengths. This
2983 * is a corner case so we prioritize correctness over
2984 * non-optimal behavior (submitting 2 bios for the same extent).
2985 */
2986 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2987 prev_em_start && *prev_em_start != (u64)-1 &&
2988 *prev_em_start != em->orig_start)
2989 force_bio_submit = true;
2990
2991 if (prev_em_start)
2992 *prev_em_start = em->orig_start;
2993
d1310b2e
CM
2994 free_extent_map(em);
2995 em = NULL;
2996
2997 /* we've found a hole, just zero and go on */
2998 if (block_start == EXTENT_MAP_HOLE) {
2999 char *userpage;
507903b8
AJ
3000 struct extent_state *cached = NULL;
3001
7ac687d9 3002 userpage = kmap_atomic(page);
306e16ce 3003 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3004 flush_dcache_page(page);
7ac687d9 3005 kunmap_atomic(userpage);
d1310b2e
CM
3006
3007 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3008 &cached, GFP_NOFS);
7f042a83 3009 unlock_extent_cached(tree, cur,
e43bbe5e 3010 cur + iosize - 1, &cached);
d1310b2e 3011 cur = cur + iosize;
306e16ce 3012 pg_offset += iosize;
d1310b2e
CM
3013 continue;
3014 }
3015 /* the get_extent function already copied into the page */
9655d298
CM
3016 if (test_range_bit(tree, cur, cur_end,
3017 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3018 check_page_uptodate(tree, page);
7f042a83 3019 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3020 cur = cur + iosize;
306e16ce 3021 pg_offset += iosize;
d1310b2e
CM
3022 continue;
3023 }
70dec807
CM
3024 /* we have an inline extent but it didn't get marked up
3025 * to date. Error out
3026 */
3027 if (block_start == EXTENT_MAP_INLINE) {
3028 SetPageError(page);
7f042a83 3029 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3030 cur = cur + iosize;
306e16ce 3031 pg_offset += iosize;
70dec807
CM
3032 continue;
3033 }
d1310b2e 3034
4b81ba48 3035 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3036 page, offset, disk_io_size,
3037 pg_offset, bdev, bio,
c8b97818
CM
3038 end_bio_extent_readpage, mirror_num,
3039 *bio_flags,
005efedf
FM
3040 this_bio_flag,
3041 force_bio_submit);
c8f2f24b
JB
3042 if (!ret) {
3043 nr++;
3044 *bio_flags = this_bio_flag;
3045 } else {
d1310b2e 3046 SetPageError(page);
7f042a83 3047 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3048 goto out;
edd33c99 3049 }
d1310b2e 3050 cur = cur + iosize;
306e16ce 3051 pg_offset += iosize;
d1310b2e 3052 }
90a887c9 3053out:
d1310b2e
CM
3054 if (!nr) {
3055 if (!PageError(page))
3056 SetPageUptodate(page);
3057 unlock_page(page);
3058 }
baf863b9 3059 return ret;
d1310b2e
CM
3060}
3061
9974090b
MX
3062static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3063 struct page *pages[], int nr_pages,
3064 u64 start, u64 end,
125bac01 3065 struct extent_map **em_cached,
d3fac6ba 3066 struct bio **bio,
1f7ad75b 3067 unsigned long *bio_flags,
808f80b4 3068 u64 *prev_em_start)
9974090b
MX
3069{
3070 struct inode *inode;
3071 struct btrfs_ordered_extent *ordered;
3072 int index;
3073
3074 inode = pages[0]->mapping->host;
3075 while (1) {
3076 lock_extent(tree, start, end);
a776c6fa 3077 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3078 end - start + 1);
3079 if (!ordered)
3080 break;
3081 unlock_extent(tree, start, end);
3082 btrfs_start_ordered_extent(inode, ordered, 1);
3083 btrfs_put_ordered_extent(ordered);
3084 }
3085
3086 for (index = 0; index < nr_pages; index++) {
4ef77695 3087 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3088 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3089 put_page(pages[index]);
9974090b
MX
3090 }
3091}
3092
3093static void __extent_readpages(struct extent_io_tree *tree,
3094 struct page *pages[],
e4d17ef5 3095 int nr_pages,
125bac01 3096 struct extent_map **em_cached,
d3fac6ba 3097 struct bio **bio, unsigned long *bio_flags,
808f80b4 3098 u64 *prev_em_start)
9974090b 3099{
35a3621b 3100 u64 start = 0;
9974090b
MX
3101 u64 end = 0;
3102 u64 page_start;
3103 int index;
35a3621b 3104 int first_index = 0;
9974090b
MX
3105
3106 for (index = 0; index < nr_pages; index++) {
3107 page_start = page_offset(pages[index]);
3108 if (!end) {
3109 start = page_start;
09cbfeaf 3110 end = start + PAGE_SIZE - 1;
9974090b
MX
3111 first_index = index;
3112 } else if (end + 1 == page_start) {
09cbfeaf 3113 end += PAGE_SIZE;
9974090b
MX
3114 } else {
3115 __do_contiguous_readpages(tree, &pages[first_index],
3116 index - first_index, start,
4ef77695 3117 end, em_cached,
d3fac6ba 3118 bio, bio_flags,
1f7ad75b 3119 prev_em_start);
9974090b 3120 start = page_start;
09cbfeaf 3121 end = start + PAGE_SIZE - 1;
9974090b
MX
3122 first_index = index;
3123 }
3124 }
3125
3126 if (end)
3127 __do_contiguous_readpages(tree, &pages[first_index],
3128 index - first_index, start,
4ef77695 3129 end, em_cached, bio,
d3fac6ba 3130 bio_flags, prev_em_start);
9974090b
MX
3131}
3132
3133static int __extent_read_full_page(struct extent_io_tree *tree,
3134 struct page *page,
3135 get_extent_t *get_extent,
3136 struct bio **bio, int mirror_num,
f1c77c55
DS
3137 unsigned long *bio_flags,
3138 unsigned int read_flags)
9974090b
MX
3139{
3140 struct inode *inode = page->mapping->host;
3141 struct btrfs_ordered_extent *ordered;
3142 u64 start = page_offset(page);
09cbfeaf 3143 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3144 int ret;
3145
3146 while (1) {
3147 lock_extent(tree, start, end);
a776c6fa 3148 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3149 PAGE_SIZE);
9974090b
MX
3150 if (!ordered)
3151 break;
3152 unlock_extent(tree, start, end);
3153 btrfs_start_ordered_extent(inode, ordered, 1);
3154 btrfs_put_ordered_extent(ordered);
3155 }
3156
125bac01 3157 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3158 bio_flags, read_flags, NULL);
9974090b
MX
3159 return ret;
3160}
3161
d1310b2e 3162int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3163 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3164{
3165 struct bio *bio = NULL;
c8b97818 3166 unsigned long bio_flags = 0;
d1310b2e
CM
3167 int ret;
3168
8ddc7d9c 3169 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3170 &bio_flags, 0);
d1310b2e 3171 if (bio)
1f7ad75b 3172 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3173 return ret;
3174}
d1310b2e 3175
3d4b9496 3176static void update_nr_written(struct writeback_control *wbc,
a9132667 3177 unsigned long nr_written)
11c8349b
CM
3178{
3179 wbc->nr_to_write -= nr_written;
11c8349b
CM
3180}
3181
d1310b2e 3182/*
40f76580
CM
3183 * helper for __extent_writepage, doing all of the delayed allocation setup.
3184 *
5eaad97a 3185 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3186 * to write the page (copy into inline extent). In this case the IO has
3187 * been started and the page is already unlocked.
3188 *
3189 * This returns 0 if all went well (page still locked)
3190 * This returns < 0 if there were errors (page still locked)
d1310b2e 3191 */
40f76580 3192static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3193 struct page *page, struct writeback_control *wbc,
3194 u64 delalloc_start, unsigned long *nr_written)
40f76580 3195{
8cc0237a 3196 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
09cbfeaf 3197 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3198 bool found;
40f76580
CM
3199 u64 delalloc_to_write = 0;
3200 u64 delalloc_end = 0;
3201 int ret;
3202 int page_started = 0;
3203
40f76580
CM
3204
3205 while (delalloc_end < page_end) {
3522e903 3206 found = find_lock_delalloc_range(inode, tree,
40f76580
CM
3207 page,
3208 &delalloc_start,
917aacec 3209 &delalloc_end);
3522e903 3210 if (!found) {
40f76580
CM
3211 delalloc_start = delalloc_end + 1;
3212 continue;
3213 }
5eaad97a
NB
3214 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3215 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3216 /* File system has been set read-only */
3217 if (ret) {
3218 SetPageError(page);
5eaad97a
NB
3219 /*
3220 * btrfs_run_delalloc_range should return < 0 for error
3221 * but just in case, we use > 0 here meaning the IO is
3222 * started, so we don't want to return > 0 unless
3223 * things are going well.
40f76580
CM
3224 */
3225 ret = ret < 0 ? ret : -EIO;
3226 goto done;
3227 }
3228 /*
ea1754a0
KS
3229 * delalloc_end is already one less than the total length, so
3230 * we don't subtract one from PAGE_SIZE
40f76580
CM
3231 */
3232 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3233 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3234 delalloc_start = delalloc_end + 1;
3235 }
3236 if (wbc->nr_to_write < delalloc_to_write) {
3237 int thresh = 8192;
3238
3239 if (delalloc_to_write < thresh * 2)
3240 thresh = delalloc_to_write;
3241 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3242 thresh);
3243 }
3244
3245 /* did the fill delalloc function already unlock and start
3246 * the IO?
3247 */
3248 if (page_started) {
3249 /*
3250 * we've unlocked the page, so we can't update
3251 * the mapping's writeback index, just update
3252 * nr_to_write.
3253 */
3254 wbc->nr_to_write -= *nr_written;
3255 return 1;
3256 }
3257
3258 ret = 0;
3259
3260done:
3261 return ret;
3262}
3263
3264/*
3265 * helper for __extent_writepage. This calls the writepage start hooks,
3266 * and does the loop to map the page into extents and bios.
3267 *
3268 * We return 1 if the IO is started and the page is unlocked,
3269 * 0 if all went well (page still locked)
3270 * < 0 if there were errors (page still locked)
3271 */
3272static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3273 struct page *page,
3274 struct writeback_control *wbc,
3275 struct extent_page_data *epd,
3276 loff_t i_size,
3277 unsigned long nr_written,
f1c77c55 3278 unsigned int write_flags, int *nr_ret)
d1310b2e 3279{
d1310b2e 3280 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3281 u64 start = page_offset(page);
09cbfeaf 3282 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3283 u64 end;
3284 u64 cur = start;
3285 u64 extent_offset;
d1310b2e
CM
3286 u64 block_start;
3287 u64 iosize;
d1310b2e
CM
3288 struct extent_map *em;
3289 struct block_device *bdev;
7f3c74fb 3290 size_t pg_offset = 0;
d1310b2e 3291 size_t blocksize;
40f76580
CM
3292 int ret = 0;
3293 int nr = 0;
3294 bool compressed;
c8b97818 3295
d75855b4
NB
3296 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3297 if (ret) {
3298 /* Fixup worker will requeue */
3299 if (ret == -EBUSY)
3300 wbc->pages_skipped++;
3301 else
3302 redirty_page_for_writepage(wbc, page);
40f76580 3303
d75855b4
NB
3304 update_nr_written(wbc, nr_written);
3305 unlock_page(page);
3306 return 1;
247e743c
CM
3307 }
3308
11c8349b
CM
3309 /*
3310 * we don't want to touch the inode after unlocking the page,
3311 * so we update the mapping writeback index now
3312 */
3d4b9496 3313 update_nr_written(wbc, nr_written + 1);
771ed689 3314
d1310b2e 3315 end = page_end;
40f76580 3316 if (i_size <= start) {
c629732d 3317 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3318 goto done;
3319 }
3320
d1310b2e
CM
3321 blocksize = inode->i_sb->s_blocksize;
3322
3323 while (cur <= end) {
40f76580 3324 u64 em_end;
6273b7f8 3325 u64 offset;
58409edd 3326
40f76580 3327 if (cur >= i_size) {
7087a9d8 3328 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3329 page_end, 1);
d1310b2e
CM
3330 break;
3331 }
3c98c62f 3332 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3333 end - cur + 1, 1);
c704005d 3334 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3335 SetPageError(page);
61391d56 3336 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3337 break;
3338 }
3339
3340 extent_offset = cur - em->start;
40f76580
CM
3341 em_end = extent_map_end(em);
3342 BUG_ON(em_end <= cur);
d1310b2e 3343 BUG_ON(end < cur);
40f76580 3344 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3345 iosize = ALIGN(iosize, blocksize);
6273b7f8 3346 offset = em->block_start + extent_offset;
d1310b2e
CM
3347 bdev = em->bdev;
3348 block_start = em->block_start;
c8b97818 3349 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3350 free_extent_map(em);
3351 em = NULL;
3352
c8b97818
CM
3353 /*
3354 * compressed and inline extents are written through other
3355 * paths in the FS
3356 */
3357 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3358 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3359 /*
3360 * end_io notification does not happen here for
3361 * compressed extents
3362 */
7087a9d8
NB
3363 if (!compressed)
3364 btrfs_writepage_endio_finish_ordered(page, cur,
3365 cur + iosize - 1,
c629732d 3366 1);
c8b97818
CM
3367 else if (compressed) {
3368 /* we don't want to end_page_writeback on
3369 * a compressed extent. this happens
3370 * elsewhere
3371 */
3372 nr++;
3373 }
3374
3375 cur += iosize;
7f3c74fb 3376 pg_offset += iosize;
d1310b2e
CM
3377 continue;
3378 }
c8b97818 3379
5cdc84bf 3380 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3381 if (!PageWriteback(page)) {
3382 btrfs_err(BTRFS_I(inode)->root->fs_info,
3383 "page %lu not writeback, cur %llu end %llu",
3384 page->index, cur, end);
d1310b2e 3385 }
7f3c74fb 3386
4b81ba48 3387 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3388 page, offset, iosize, pg_offset,
c2df8bb4 3389 bdev, &epd->bio,
58409edd
DS
3390 end_bio_extent_writepage,
3391 0, 0, 0, false);
fe01aa65 3392 if (ret) {
58409edd 3393 SetPageError(page);
fe01aa65
TK
3394 if (PageWriteback(page))
3395 end_page_writeback(page);
3396 }
d1310b2e 3397
d1310b2e 3398 cur = cur + iosize;
7f3c74fb 3399 pg_offset += iosize;
d1310b2e
CM
3400 nr++;
3401 }
40f76580
CM
3402done:
3403 *nr_ret = nr;
40f76580
CM
3404 return ret;
3405}
3406
3407/*
3408 * the writepage semantics are similar to regular writepage. extent
3409 * records are inserted to lock ranges in the tree, and as dirty areas
3410 * are found, they are marked writeback. Then the lock bits are removed
3411 * and the end_io handler clears the writeback ranges
3412 */
3413static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3414 struct extent_page_data *epd)
40f76580
CM
3415{
3416 struct inode *inode = page->mapping->host;
40f76580 3417 u64 start = page_offset(page);
09cbfeaf 3418 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3419 int ret;
3420 int nr = 0;
3421 size_t pg_offset = 0;
3422 loff_t i_size = i_size_read(inode);
09cbfeaf 3423 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3424 unsigned int write_flags = 0;
40f76580
CM
3425 unsigned long nr_written = 0;
3426
ff40adf7 3427 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3428
3429 trace___extent_writepage(page, inode, wbc);
3430
3431 WARN_ON(!PageLocked(page));
3432
3433 ClearPageError(page);
3434
7073017a 3435 pg_offset = offset_in_page(i_size);
40f76580
CM
3436 if (page->index > end_index ||
3437 (page->index == end_index && !pg_offset)) {
09cbfeaf 3438 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3439 unlock_page(page);
3440 return 0;
3441 }
3442
3443 if (page->index == end_index) {
3444 char *userpage;
3445
3446 userpage = kmap_atomic(page);
3447 memset(userpage + pg_offset, 0,
09cbfeaf 3448 PAGE_SIZE - pg_offset);
40f76580
CM
3449 kunmap_atomic(userpage);
3450 flush_dcache_page(page);
3451 }
3452
3453 pg_offset = 0;
3454
3455 set_page_extent_mapped(page);
3456
7789a55a 3457 if (!epd->extent_locked) {
8cc0237a 3458 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3459 if (ret == 1)
3460 goto done_unlocked;
3461 if (ret)
3462 goto done;
3463 }
40f76580
CM
3464
3465 ret = __extent_writepage_io(inode, page, wbc, epd,
3466 i_size, nr_written, write_flags, &nr);
3467 if (ret == 1)
3468 goto done_unlocked;
3469
d1310b2e
CM
3470done:
3471 if (nr == 0) {
3472 /* make sure the mapping tag for page dirty gets cleared */
3473 set_page_writeback(page);
3474 end_page_writeback(page);
3475 }
61391d56
FM
3476 if (PageError(page)) {
3477 ret = ret < 0 ? ret : -EIO;
3478 end_extent_writepage(page, ret, start, page_end);
3479 }
d1310b2e 3480 unlock_page(page);
40f76580 3481 return ret;
771ed689 3482
11c8349b 3483done_unlocked:
d1310b2e
CM
3484 return 0;
3485}
3486
fd8b2b61 3487void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3488{
74316201
N
3489 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3490 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3491}
3492
0e378df1
CM
3493static noinline_for_stack int
3494lock_extent_buffer_for_io(struct extent_buffer *eb,
3495 struct btrfs_fs_info *fs_info,
3496 struct extent_page_data *epd)
0b32f4bb 3497{
cc5e31a4 3498 int i, num_pages;
0b32f4bb
JB
3499 int flush = 0;
3500 int ret = 0;
3501
3502 if (!btrfs_try_tree_write_lock(eb)) {
3503 flush = 1;
3504 flush_write_bio(epd);
3505 btrfs_tree_lock(eb);
3506 }
3507
3508 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3509 btrfs_tree_unlock(eb);
3510 if (!epd->sync_io)
3511 return 0;
3512 if (!flush) {
3513 flush_write_bio(epd);
3514 flush = 1;
3515 }
a098d8e8
CM
3516 while (1) {
3517 wait_on_extent_buffer_writeback(eb);
3518 btrfs_tree_lock(eb);
3519 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3520 break;
0b32f4bb 3521 btrfs_tree_unlock(eb);
0b32f4bb
JB
3522 }
3523 }
3524
51561ffe
JB
3525 /*
3526 * We need to do this to prevent races in people who check if the eb is
3527 * under IO since we can end up having no IO bits set for a short period
3528 * of time.
3529 */
3530 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3531 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3532 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3533 spin_unlock(&eb->refs_lock);
0b32f4bb 3534 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3535 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3536 -eb->len,
3537 fs_info->dirty_metadata_batch);
0b32f4bb 3538 ret = 1;
51561ffe
JB
3539 } else {
3540 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3541 }
3542
3543 btrfs_tree_unlock(eb);
3544
3545 if (!ret)
3546 return ret;
3547
65ad0104 3548 num_pages = num_extent_pages(eb);
0b32f4bb 3549 for (i = 0; i < num_pages; i++) {
fb85fc9a 3550 struct page *p = eb->pages[i];
0b32f4bb
JB
3551
3552 if (!trylock_page(p)) {
3553 if (!flush) {
3554 flush_write_bio(epd);
3555 flush = 1;
3556 }
3557 lock_page(p);
3558 }
3559 }
3560
3561 return ret;
3562}
3563
3564static void end_extent_buffer_writeback(struct extent_buffer *eb)
3565{
3566 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3567 smp_mb__after_atomic();
0b32f4bb
JB
3568 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3569}
3570
656f30db
FM
3571static void set_btree_ioerr(struct page *page)
3572{
3573 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3574
3575 SetPageError(page);
3576 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3577 return;
3578
3579 /*
3580 * If writeback for a btree extent that doesn't belong to a log tree
3581 * failed, increment the counter transaction->eb_write_errors.
3582 * We do this because while the transaction is running and before it's
3583 * committing (when we call filemap_fdata[write|wait]_range against
3584 * the btree inode), we might have
3585 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3586 * returns an error or an error happens during writeback, when we're
3587 * committing the transaction we wouldn't know about it, since the pages
3588 * can be no longer dirty nor marked anymore for writeback (if a
3589 * subsequent modification to the extent buffer didn't happen before the
3590 * transaction commit), which makes filemap_fdata[write|wait]_range not
3591 * able to find the pages tagged with SetPageError at transaction
3592 * commit time. So if this happens we must abort the transaction,
3593 * otherwise we commit a super block with btree roots that point to
3594 * btree nodes/leafs whose content on disk is invalid - either garbage
3595 * or the content of some node/leaf from a past generation that got
3596 * cowed or deleted and is no longer valid.
3597 *
3598 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3599 * not be enough - we need to distinguish between log tree extents vs
3600 * non-log tree extents, and the next filemap_fdatawait_range() call
3601 * will catch and clear such errors in the mapping - and that call might
3602 * be from a log sync and not from a transaction commit. Also, checking
3603 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3604 * not done and would not be reliable - the eb might have been released
3605 * from memory and reading it back again means that flag would not be
3606 * set (since it's a runtime flag, not persisted on disk).
3607 *
3608 * Using the flags below in the btree inode also makes us achieve the
3609 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3610 * writeback for all dirty pages and before filemap_fdatawait_range()
3611 * is called, the writeback for all dirty pages had already finished
3612 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3613 * filemap_fdatawait_range() would return success, as it could not know
3614 * that writeback errors happened (the pages were no longer tagged for
3615 * writeback).
3616 */
3617 switch (eb->log_index) {
3618 case -1:
afcdd129 3619 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3620 break;
3621 case 0:
afcdd129 3622 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3623 break;
3624 case 1:
afcdd129 3625 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3626 break;
3627 default:
3628 BUG(); /* unexpected, logic error */
3629 }
3630}
3631
4246a0b6 3632static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3633{
2c30c71b 3634 struct bio_vec *bvec;
0b32f4bb 3635 struct extent_buffer *eb;
2c30c71b 3636 int i, done;
0b32f4bb 3637
c09abff8 3638 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3639 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3640 struct page *page = bvec->bv_page;
3641
0b32f4bb
JB
3642 eb = (struct extent_buffer *)page->private;
3643 BUG_ON(!eb);
3644 done = atomic_dec_and_test(&eb->io_pages);
3645
4e4cbee9 3646 if (bio->bi_status ||
4246a0b6 3647 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3648 ClearPageUptodate(page);
656f30db 3649 set_btree_ioerr(page);
0b32f4bb
JB
3650 }
3651
3652 end_page_writeback(page);
3653
3654 if (!done)
3655 continue;
3656
3657 end_extent_buffer_writeback(eb);
2c30c71b 3658 }
0b32f4bb
JB
3659
3660 bio_put(bio);
0b32f4bb
JB
3661}
3662
0e378df1 3663static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3664 struct btrfs_fs_info *fs_info,
3665 struct writeback_control *wbc,
3666 struct extent_page_data *epd)
3667{
3668 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3669 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3670 u64 offset = eb->start;
851cd173 3671 u32 nritems;
cc5e31a4 3672 int i, num_pages;
851cd173 3673 unsigned long start, end;
ff40adf7 3674 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3675 int ret = 0;
0b32f4bb 3676
656f30db 3677 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3678 num_pages = num_extent_pages(eb);
0b32f4bb 3679 atomic_set(&eb->io_pages, num_pages);
de0022b9 3680
851cd173
LB
3681 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3682 nritems = btrfs_header_nritems(eb);
3eb548ee 3683 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3684 end = btrfs_node_key_ptr_offset(nritems);
3685
b159fa28 3686 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3687 } else {
3688 /*
3689 * leaf:
3690 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3691 */
3692 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3693 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3694 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3695 }
3696
0b32f4bb 3697 for (i = 0; i < num_pages; i++) {
fb85fc9a 3698 struct page *p = eb->pages[i];
0b32f4bb
JB
3699
3700 clear_page_dirty_for_io(p);
3701 set_page_writeback(p);
4b81ba48 3702 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3703 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3704 &epd->bio,
1f7ad75b 3705 end_bio_extent_buffer_writepage,
18fdc679 3706 0, 0, 0, false);
0b32f4bb 3707 if (ret) {
656f30db 3708 set_btree_ioerr(p);
fe01aa65
TK
3709 if (PageWriteback(p))
3710 end_page_writeback(p);
0b32f4bb
JB
3711 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3712 end_extent_buffer_writeback(eb);
3713 ret = -EIO;
3714 break;
3715 }
09cbfeaf 3716 offset += PAGE_SIZE;
3d4b9496 3717 update_nr_written(wbc, 1);
0b32f4bb
JB
3718 unlock_page(p);
3719 }
3720
3721 if (unlikely(ret)) {
3722 for (; i < num_pages; i++) {
bbf65cf0 3723 struct page *p = eb->pages[i];
81465028 3724 clear_page_dirty_for_io(p);
0b32f4bb
JB
3725 unlock_page(p);
3726 }
3727 }
3728
3729 return ret;
3730}
3731
3732int btree_write_cache_pages(struct address_space *mapping,
3733 struct writeback_control *wbc)
3734{
3735 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3736 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3737 struct extent_buffer *eb, *prev_eb = NULL;
3738 struct extent_page_data epd = {
3739 .bio = NULL,
3740 .tree = tree,
3741 .extent_locked = 0,
3742 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3743 };
3744 int ret = 0;
3745 int done = 0;
3746 int nr_to_write_done = 0;
3747 struct pagevec pvec;
3748 int nr_pages;
3749 pgoff_t index;
3750 pgoff_t end; /* Inclusive */
3751 int scanned = 0;
10bbd235 3752 xa_mark_t tag;
0b32f4bb 3753
86679820 3754 pagevec_init(&pvec);
0b32f4bb
JB
3755 if (wbc->range_cyclic) {
3756 index = mapping->writeback_index; /* Start from prev offset */
3757 end = -1;
3758 } else {
09cbfeaf
KS
3759 index = wbc->range_start >> PAGE_SHIFT;
3760 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3761 scanned = 1;
3762 }
3763 if (wbc->sync_mode == WB_SYNC_ALL)
3764 tag = PAGECACHE_TAG_TOWRITE;
3765 else
3766 tag = PAGECACHE_TAG_DIRTY;
3767retry:
3768 if (wbc->sync_mode == WB_SYNC_ALL)
3769 tag_pages_for_writeback(mapping, index, end);
3770 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3771 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3772 tag))) {
0b32f4bb
JB
3773 unsigned i;
3774
3775 scanned = 1;
3776 for (i = 0; i < nr_pages; i++) {
3777 struct page *page = pvec.pages[i];
3778
3779 if (!PagePrivate(page))
3780 continue;
3781
b5bae261
JB
3782 spin_lock(&mapping->private_lock);
3783 if (!PagePrivate(page)) {
3784 spin_unlock(&mapping->private_lock);
3785 continue;
3786 }
3787
0b32f4bb 3788 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3789
3790 /*
3791 * Shouldn't happen and normally this would be a BUG_ON
3792 * but no sense in crashing the users box for something
3793 * we can survive anyway.
3794 */
fae7f21c 3795 if (WARN_ON(!eb)) {
b5bae261 3796 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3797 continue;
3798 }
3799
b5bae261
JB
3800 if (eb == prev_eb) {
3801 spin_unlock(&mapping->private_lock);
0b32f4bb 3802 continue;
b5bae261 3803 }
0b32f4bb 3804
b5bae261
JB
3805 ret = atomic_inc_not_zero(&eb->refs);
3806 spin_unlock(&mapping->private_lock);
3807 if (!ret)
0b32f4bb 3808 continue;
0b32f4bb
JB
3809
3810 prev_eb = eb;
3811 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3812 if (!ret) {
3813 free_extent_buffer(eb);
3814 continue;
3815 }
3816
3817 ret = write_one_eb(eb, fs_info, wbc, &epd);
3818 if (ret) {
3819 done = 1;
3820 free_extent_buffer(eb);
3821 break;
3822 }
3823 free_extent_buffer(eb);
3824
3825 /*
3826 * the filesystem may choose to bump up nr_to_write.
3827 * We have to make sure to honor the new nr_to_write
3828 * at any time
3829 */
3830 nr_to_write_done = wbc->nr_to_write <= 0;
3831 }
3832 pagevec_release(&pvec);
3833 cond_resched();
3834 }
3835 if (!scanned && !done) {
3836 /*
3837 * We hit the last page and there is more work to be done: wrap
3838 * back to the start of the file
3839 */
3840 scanned = 1;
3841 index = 0;
3842 goto retry;
3843 }
3844 flush_write_bio(&epd);
3845 return ret;
3846}
3847
d1310b2e 3848/**
4bef0848 3849 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3850 * @mapping: address space structure to write
3851 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3852 * @data: data passed to __extent_writepage function
d1310b2e
CM
3853 *
3854 * If a page is already under I/O, write_cache_pages() skips it, even
3855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3857 * and msync() need to guarantee that all the data which was dirty at the time
3858 * the call was made get new I/O started against them. If wbc->sync_mode is
3859 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3860 * existing IO to complete.
3861 */
4242b64a 3862static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3863 struct writeback_control *wbc,
aab6e9ed 3864 struct extent_page_data *epd)
d1310b2e 3865{
7fd1a3f7 3866 struct inode *inode = mapping->host;
d1310b2e
CM
3867 int ret = 0;
3868 int done = 0;
f85d7d6c 3869 int nr_to_write_done = 0;
d1310b2e
CM
3870 struct pagevec pvec;
3871 int nr_pages;
3872 pgoff_t index;
3873 pgoff_t end; /* Inclusive */
a9132667
LB
3874 pgoff_t done_index;
3875 int range_whole = 0;
d1310b2e 3876 int scanned = 0;
10bbd235 3877 xa_mark_t tag;
d1310b2e 3878
7fd1a3f7
JB
3879 /*
3880 * We have to hold onto the inode so that ordered extents can do their
3881 * work when the IO finishes. The alternative to this is failing to add
3882 * an ordered extent if the igrab() fails there and that is a huge pain
3883 * to deal with, so instead just hold onto the inode throughout the
3884 * writepages operation. If it fails here we are freeing up the inode
3885 * anyway and we'd rather not waste our time writing out stuff that is
3886 * going to be truncated anyway.
3887 */
3888 if (!igrab(inode))
3889 return 0;
3890
86679820 3891 pagevec_init(&pvec);
d1310b2e
CM
3892 if (wbc->range_cyclic) {
3893 index = mapping->writeback_index; /* Start from prev offset */
3894 end = -1;
3895 } else {
09cbfeaf
KS
3896 index = wbc->range_start >> PAGE_SHIFT;
3897 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3898 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3899 range_whole = 1;
d1310b2e
CM
3900 scanned = 1;
3901 }
3cd24c69
EL
3902
3903 /*
3904 * We do the tagged writepage as long as the snapshot flush bit is set
3905 * and we are the first one who do the filemap_flush() on this inode.
3906 *
3907 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3908 * not race in and drop the bit.
3909 */
3910 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3911 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3912 &BTRFS_I(inode)->runtime_flags))
3913 wbc->tagged_writepages = 1;
3914
3915 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
3916 tag = PAGECACHE_TAG_TOWRITE;
3917 else
3918 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3919retry:
3cd24c69 3920 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 3921 tag_pages_for_writeback(mapping, index, end);
a9132667 3922 done_index = index;
f85d7d6c 3923 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3924 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3925 &index, end, tag))) {
d1310b2e
CM
3926 unsigned i;
3927
3928 scanned = 1;
3929 for (i = 0; i < nr_pages; i++) {
3930 struct page *page = pvec.pages[i];
3931
a9132667 3932 done_index = page->index;
d1310b2e 3933 /*
b93b0163
MW
3934 * At this point we hold neither the i_pages lock nor
3935 * the page lock: the page may be truncated or
3936 * invalidated (changing page->mapping to NULL),
3937 * or even swizzled back from swapper_space to
3938 * tmpfs file mapping
d1310b2e 3939 */
c8f2f24b 3940 if (!trylock_page(page)) {
aab6e9ed 3941 flush_write_bio(epd);
c8f2f24b 3942 lock_page(page);
01d658f2 3943 }
d1310b2e
CM
3944
3945 if (unlikely(page->mapping != mapping)) {
3946 unlock_page(page);
3947 continue;
3948 }
3949
d2c3f4f6 3950 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3951 if (PageWriteback(page))
aab6e9ed 3952 flush_write_bio(epd);
d1310b2e 3953 wait_on_page_writeback(page);
d2c3f4f6 3954 }
d1310b2e
CM
3955
3956 if (PageWriteback(page) ||
3957 !clear_page_dirty_for_io(page)) {
3958 unlock_page(page);
3959 continue;
3960 }
3961
aab6e9ed 3962 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3963
3964 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3965 unlock_page(page);
3966 ret = 0;
3967 }
a9132667
LB
3968 if (ret < 0) {
3969 /*
3970 * done_index is set past this page,
3971 * so media errors will not choke
3972 * background writeout for the entire
3973 * file. This has consequences for
3974 * range_cyclic semantics (ie. it may
3975 * not be suitable for data integrity
3976 * writeout).
3977 */
3978 done_index = page->index + 1;
3979 done = 1;
3980 break;
3981 }
f85d7d6c
CM
3982
3983 /*
3984 * the filesystem may choose to bump up nr_to_write.
3985 * We have to make sure to honor the new nr_to_write
3986 * at any time
3987 */
3988 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3989 }
3990 pagevec_release(&pvec);
3991 cond_resched();
3992 }
894b36e3 3993 if (!scanned && !done) {
d1310b2e
CM
3994 /*
3995 * We hit the last page and there is more work to be done: wrap
3996 * back to the start of the file
3997 */
3998 scanned = 1;
3999 index = 0;
4000 goto retry;
4001 }
a9132667
LB
4002
4003 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4004 mapping->writeback_index = done_index;
4005
7fd1a3f7 4006 btrfs_add_delayed_iput(inode);
894b36e3 4007 return ret;
d1310b2e 4008}
d1310b2e 4009
aab6e9ed 4010static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4011{
d2c3f4f6 4012 if (epd->bio) {
355808c2
JM
4013 int ret;
4014
18fdc679 4015 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4016 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4017 epd->bio = NULL;
4018 }
4019}
4020
0a9b0e53 4021int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4022{
4023 int ret;
d1310b2e
CM
4024 struct extent_page_data epd = {
4025 .bio = NULL,
0a9b0e53 4026 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4027 .extent_locked = 0,
ffbd517d 4028 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4029 };
d1310b2e 4030
d1310b2e
CM
4031 ret = __extent_writepage(page, wbc, &epd);
4032
e2932ee0 4033 flush_write_bio(&epd);
d1310b2e
CM
4034 return ret;
4035}
d1310b2e 4036
5e3ee236 4037int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4038 int mode)
4039{
4040 int ret = 0;
4041 struct address_space *mapping = inode->i_mapping;
5e3ee236 4042 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4043 struct page *page;
09cbfeaf
KS
4044 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4045 PAGE_SHIFT;
771ed689
CM
4046
4047 struct extent_page_data epd = {
4048 .bio = NULL,
4049 .tree = tree,
771ed689 4050 .extent_locked = 1,
ffbd517d 4051 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4052 };
4053 struct writeback_control wbc_writepages = {
771ed689 4054 .sync_mode = mode,
771ed689
CM
4055 .nr_to_write = nr_pages * 2,
4056 .range_start = start,
4057 .range_end = end + 1,
4058 };
4059
d397712b 4060 while (start <= end) {
09cbfeaf 4061 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4062 if (clear_page_dirty_for_io(page))
4063 ret = __extent_writepage(page, &wbc_writepages, &epd);
4064 else {
7087a9d8 4065 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4066 start + PAGE_SIZE - 1, 1);
771ed689
CM
4067 unlock_page(page);
4068 }
09cbfeaf
KS
4069 put_page(page);
4070 start += PAGE_SIZE;
771ed689
CM
4071 }
4072
e2932ee0 4073 flush_write_bio(&epd);
771ed689
CM
4074 return ret;
4075}
d1310b2e 4076
8ae225a8 4077int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4078 struct writeback_control *wbc)
4079{
4080 int ret = 0;
4081 struct extent_page_data epd = {
4082 .bio = NULL,
8ae225a8 4083 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4084 .extent_locked = 0,
ffbd517d 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4086 };
4087
935db853 4088 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4089 flush_write_bio(&epd);
d1310b2e
CM
4090 return ret;
4091}
d1310b2e 4092
2a3ff0ad
NB
4093int extent_readpages(struct address_space *mapping, struct list_head *pages,
4094 unsigned nr_pages)
d1310b2e
CM
4095{
4096 struct bio *bio = NULL;
c8b97818 4097 unsigned long bio_flags = 0;
67c9684f 4098 struct page *pagepool[16];
125bac01 4099 struct extent_map *em_cached = NULL;
2a3ff0ad 4100 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4101 int nr = 0;
808f80b4 4102 u64 prev_em_start = (u64)-1;
d1310b2e 4103
61ed3a14
NB
4104 while (!list_empty(pages)) {
4105 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
4106 struct page *page = list_entry(pages->prev,
4107 struct page, lru);
d1310b2e 4108
61ed3a14
NB
4109 prefetchw(&page->flags);
4110 list_del(&page->lru);
4111 if (add_to_page_cache_lru(page, mapping, page->index,
4112 readahead_gfp_mask(mapping))) {
4113 put_page(page);
4114 continue;
4115 }
4116
4117 pagepool[nr++] = page;
d1310b2e 4118 }
67c9684f 4119
e4d17ef5 4120 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
61ed3a14 4121 &bio_flags, &prev_em_start);
d1310b2e 4122 }
67c9684f 4123
125bac01
MX
4124 if (em_cached)
4125 free_extent_map(em_cached);
4126
d1310b2e 4127 if (bio)
1f7ad75b 4128 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4129 return 0;
4130}
d1310b2e
CM
4131
4132/*
4133 * basic invalidatepage code, this waits on any locked or writeback
4134 * ranges corresponding to the page, and then deletes any extent state
4135 * records from the tree
4136 */
4137int extent_invalidatepage(struct extent_io_tree *tree,
4138 struct page *page, unsigned long offset)
4139{
2ac55d41 4140 struct extent_state *cached_state = NULL;
4eee4fa4 4141 u64 start = page_offset(page);
09cbfeaf 4142 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4143 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4144
fda2832f 4145 start += ALIGN(offset, blocksize);
d1310b2e
CM
4146 if (start > end)
4147 return 0;
4148
ff13db41 4149 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4150 wait_on_page_writeback(page);
d1310b2e 4151 clear_extent_bit(tree, start, end,
32c00aff
JB
4152 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4153 EXTENT_DO_ACCOUNTING,
ae0f1625 4154 1, 1, &cached_state);
d1310b2e
CM
4155 return 0;
4156}
d1310b2e 4157
7b13b7b1
CM
4158/*
4159 * a helper for releasepage, this tests for areas of the page that
4160 * are locked or under IO and drops the related state bits if it is safe
4161 * to drop the page.
4162 */
29c68b2d 4163static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4164 struct page *page, gfp_t mask)
7b13b7b1 4165{
4eee4fa4 4166 u64 start = page_offset(page);
09cbfeaf 4167 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4168 int ret = 1;
4169
211f90e6 4170 if (test_range_bit(tree, start, end,
8b62b72b 4171 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4172 ret = 0;
4173 else {
11ef160f
CM
4174 /*
4175 * at this point we can safely clear everything except the
4176 * locked bit and the nodatasum bit
4177 */
66b0c887 4178 ret = __clear_extent_bit(tree, start, end,
11ef160f 4179 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4180 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4181
4182 /* if clear_extent_bit failed for enomem reasons,
4183 * we can't allow the release to continue.
4184 */
4185 if (ret < 0)
4186 ret = 0;
4187 else
4188 ret = 1;
7b13b7b1
CM
4189 }
4190 return ret;
4191}
7b13b7b1 4192
d1310b2e
CM
4193/*
4194 * a helper for releasepage. As long as there are no locked extents
4195 * in the range corresponding to the page, both state records and extent
4196 * map records are removed
4197 */
477a30ba 4198int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4199{
4200 struct extent_map *em;
4eee4fa4 4201 u64 start = page_offset(page);
09cbfeaf 4202 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4203 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4204 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4205 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4206
d0164adc 4207 if (gfpflags_allow_blocking(mask) &&
ee22184b 4208 page->mapping->host->i_size > SZ_16M) {
39b5637f 4209 u64 len;
70dec807 4210 while (start <= end) {
39b5637f 4211 len = end - start + 1;
890871be 4212 write_lock(&map->lock);
39b5637f 4213 em = lookup_extent_mapping(map, start, len);
285190d9 4214 if (!em) {
890871be 4215 write_unlock(&map->lock);
70dec807
CM
4216 break;
4217 }
7f3c74fb
CM
4218 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4219 em->start != start) {
890871be 4220 write_unlock(&map->lock);
70dec807
CM
4221 free_extent_map(em);
4222 break;
4223 }
4224 if (!test_range_bit(tree, em->start,
4225 extent_map_end(em) - 1,
8b62b72b 4226 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4227 0, NULL)) {
bd3599a0
FM
4228 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4229 &btrfs_inode->runtime_flags);
70dec807
CM
4230 remove_extent_mapping(map, em);
4231 /* once for the rb tree */
4232 free_extent_map(em);
4233 }
4234 start = extent_map_end(em);
890871be 4235 write_unlock(&map->lock);
70dec807
CM
4236
4237 /* once for us */
d1310b2e
CM
4238 free_extent_map(em);
4239 }
d1310b2e 4240 }
29c68b2d 4241 return try_release_extent_state(tree, page, mask);
d1310b2e 4242}
d1310b2e 4243
ec29ed5b
CM
4244/*
4245 * helper function for fiemap, which doesn't want to see any holes.
4246 * This maps until we find something past 'last'
4247 */
4248static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4249 u64 offset, u64 last)
ec29ed5b 4250{
da17066c 4251 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4252 struct extent_map *em;
4253 u64 len;
4254
4255 if (offset >= last)
4256 return NULL;
4257
67871254 4258 while (1) {
ec29ed5b
CM
4259 len = last - offset;
4260 if (len == 0)
4261 break;
fda2832f 4262 len = ALIGN(len, sectorsize);
e3350e16
DS
4263 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4264 len, 0);
c704005d 4265 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4266 return em;
4267
4268 /* if this isn't a hole return it */
4a2d25cd 4269 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4270 return em;
ec29ed5b
CM
4271
4272 /* this is a hole, advance to the next extent */
4273 offset = extent_map_end(em);
4274 free_extent_map(em);
4275 if (offset >= last)
4276 break;
4277 }
4278 return NULL;
4279}
4280
4751832d
QW
4281/*
4282 * To cache previous fiemap extent
4283 *
4284 * Will be used for merging fiemap extent
4285 */
4286struct fiemap_cache {
4287 u64 offset;
4288 u64 phys;
4289 u64 len;
4290 u32 flags;
4291 bool cached;
4292};
4293
4294/*
4295 * Helper to submit fiemap extent.
4296 *
4297 * Will try to merge current fiemap extent specified by @offset, @phys,
4298 * @len and @flags with cached one.
4299 * And only when we fails to merge, cached one will be submitted as
4300 * fiemap extent.
4301 *
4302 * Return value is the same as fiemap_fill_next_extent().
4303 */
4304static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4305 struct fiemap_cache *cache,
4306 u64 offset, u64 phys, u64 len, u32 flags)
4307{
4308 int ret = 0;
4309
4310 if (!cache->cached)
4311 goto assign;
4312
4313 /*
4314 * Sanity check, extent_fiemap() should have ensured that new
4315 * fiemap extent won't overlap with cahced one.
4316 * Not recoverable.
4317 *
4318 * NOTE: Physical address can overlap, due to compression
4319 */
4320 if (cache->offset + cache->len > offset) {
4321 WARN_ON(1);
4322 return -EINVAL;
4323 }
4324
4325 /*
4326 * Only merges fiemap extents if
4327 * 1) Their logical addresses are continuous
4328 *
4329 * 2) Their physical addresses are continuous
4330 * So truly compressed (physical size smaller than logical size)
4331 * extents won't get merged with each other
4332 *
4333 * 3) Share same flags except FIEMAP_EXTENT_LAST
4334 * So regular extent won't get merged with prealloc extent
4335 */
4336 if (cache->offset + cache->len == offset &&
4337 cache->phys + cache->len == phys &&
4338 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4339 (flags & ~FIEMAP_EXTENT_LAST)) {
4340 cache->len += len;
4341 cache->flags |= flags;
4342 goto try_submit_last;
4343 }
4344
4345 /* Not mergeable, need to submit cached one */
4346 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4347 cache->len, cache->flags);
4348 cache->cached = false;
4349 if (ret)
4350 return ret;
4351assign:
4352 cache->cached = true;
4353 cache->offset = offset;
4354 cache->phys = phys;
4355 cache->len = len;
4356 cache->flags = flags;
4357try_submit_last:
4358 if (cache->flags & FIEMAP_EXTENT_LAST) {
4359 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4360 cache->phys, cache->len, cache->flags);
4361 cache->cached = false;
4362 }
4363 return ret;
4364}
4365
4366/*
848c23b7 4367 * Emit last fiemap cache
4751832d 4368 *
848c23b7
QW
4369 * The last fiemap cache may still be cached in the following case:
4370 * 0 4k 8k
4371 * |<- Fiemap range ->|
4372 * |<------------ First extent ----------->|
4373 *
4374 * In this case, the first extent range will be cached but not emitted.
4375 * So we must emit it before ending extent_fiemap().
4751832d 4376 */
848c23b7
QW
4377static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4378 struct fiemap_extent_info *fieinfo,
4379 struct fiemap_cache *cache)
4751832d
QW
4380{
4381 int ret;
4382
4383 if (!cache->cached)
4384 return 0;
4385
4751832d
QW
4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 cache->len, cache->flags);
4388 cache->cached = false;
4389 if (ret > 0)
4390 ret = 0;
4391 return ret;
4392}
4393
1506fcc8 4394int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4395 __u64 start, __u64 len)
1506fcc8 4396{
975f84fe 4397 int ret = 0;
1506fcc8
YS
4398 u64 off = start;
4399 u64 max = start + len;
4400 u32 flags = 0;
975f84fe
JB
4401 u32 found_type;
4402 u64 last;
ec29ed5b 4403 u64 last_for_get_extent = 0;
1506fcc8 4404 u64 disko = 0;
ec29ed5b 4405 u64 isize = i_size_read(inode);
975f84fe 4406 struct btrfs_key found_key;
1506fcc8 4407 struct extent_map *em = NULL;
2ac55d41 4408 struct extent_state *cached_state = NULL;
975f84fe 4409 struct btrfs_path *path;
dc046b10 4410 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4411 struct fiemap_cache cache = { 0 };
1506fcc8 4412 int end = 0;
ec29ed5b
CM
4413 u64 em_start = 0;
4414 u64 em_len = 0;
4415 u64 em_end = 0;
1506fcc8
YS
4416
4417 if (len == 0)
4418 return -EINVAL;
4419
975f84fe
JB
4420 path = btrfs_alloc_path();
4421 if (!path)
4422 return -ENOMEM;
4423 path->leave_spinning = 1;
4424
da17066c
JM
4425 start = round_down(start, btrfs_inode_sectorsize(inode));
4426 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4427
ec29ed5b
CM
4428 /*
4429 * lookup the last file extent. We're not using i_size here
4430 * because there might be preallocation past i_size
4431 */
f85b7379
DS
4432 ret = btrfs_lookup_file_extent(NULL, root, path,
4433 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4434 if (ret < 0) {
4435 btrfs_free_path(path);
4436 return ret;
2d324f59
LB
4437 } else {
4438 WARN_ON(!ret);
4439 if (ret == 1)
4440 ret = 0;
975f84fe 4441 }
2d324f59 4442
975f84fe 4443 path->slots[0]--;
975f84fe 4444 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4445 found_type = found_key.type;
975f84fe 4446
ec29ed5b 4447 /* No extents, but there might be delalloc bits */
4a0cc7ca 4448 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4449 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4450 /* have to trust i_size as the end */
4451 last = (u64)-1;
4452 last_for_get_extent = isize;
4453 } else {
4454 /*
4455 * remember the start of the last extent. There are a
4456 * bunch of different factors that go into the length of the
4457 * extent, so its much less complex to remember where it started
4458 */
4459 last = found_key.offset;
4460 last_for_get_extent = last + 1;
975f84fe 4461 }
fe09e16c 4462 btrfs_release_path(path);
975f84fe 4463
ec29ed5b
CM
4464 /*
4465 * we might have some extents allocated but more delalloc past those
4466 * extents. so, we trust isize unless the start of the last extent is
4467 * beyond isize
4468 */
4469 if (last < isize) {
4470 last = (u64)-1;
4471 last_for_get_extent = isize;
4472 }
4473
ff13db41 4474 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4475 &cached_state);
ec29ed5b 4476
e3350e16 4477 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4478 if (!em)
4479 goto out;
4480 if (IS_ERR(em)) {
4481 ret = PTR_ERR(em);
4482 goto out;
4483 }
975f84fe 4484
1506fcc8 4485 while (!end) {
b76bb701 4486 u64 offset_in_extent = 0;
ea8efc74
CM
4487
4488 /* break if the extent we found is outside the range */
4489 if (em->start >= max || extent_map_end(em) < off)
4490 break;
4491
4492 /*
4493 * get_extent may return an extent that starts before our
4494 * requested range. We have to make sure the ranges
4495 * we return to fiemap always move forward and don't
4496 * overlap, so adjust the offsets here
4497 */
4498 em_start = max(em->start, off);
1506fcc8 4499
ea8efc74
CM
4500 /*
4501 * record the offset from the start of the extent
b76bb701
JB
4502 * for adjusting the disk offset below. Only do this if the
4503 * extent isn't compressed since our in ram offset may be past
4504 * what we have actually allocated on disk.
ea8efc74 4505 */
b76bb701
JB
4506 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4507 offset_in_extent = em_start - em->start;
ec29ed5b 4508 em_end = extent_map_end(em);
ea8efc74 4509 em_len = em_end - em_start;
1506fcc8 4510 flags = 0;
f0986318
FM
4511 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4512 disko = em->block_start + offset_in_extent;
4513 else
4514 disko = 0;
1506fcc8 4515
ea8efc74
CM
4516 /*
4517 * bump off for our next call to get_extent
4518 */
4519 off = extent_map_end(em);
4520 if (off >= max)
4521 end = 1;
4522
93dbfad7 4523 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4524 end = 1;
4525 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4526 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4527 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4528 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4529 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4530 flags |= (FIEMAP_EXTENT_DELALLOC |
4531 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4532 } else if (fieinfo->fi_extents_max) {
4533 u64 bytenr = em->block_start -
4534 (em->start - em->orig_start);
fe09e16c 4535
fe09e16c
LB
4536 /*
4537 * As btrfs supports shared space, this information
4538 * can be exported to userspace tools via
dc046b10
JB
4539 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4540 * then we're just getting a count and we can skip the
4541 * lookup stuff.
fe09e16c 4542 */
bb739cf0
EN
4543 ret = btrfs_check_shared(root,
4544 btrfs_ino(BTRFS_I(inode)),
4545 bytenr);
dc046b10 4546 if (ret < 0)
fe09e16c 4547 goto out_free;
dc046b10 4548 if (ret)
fe09e16c 4549 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4550 ret = 0;
1506fcc8
YS
4551 }
4552 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4553 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4554 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4555 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4556
1506fcc8
YS
4557 free_extent_map(em);
4558 em = NULL;
ec29ed5b
CM
4559 if ((em_start >= last) || em_len == (u64)-1 ||
4560 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4561 flags |= FIEMAP_EXTENT_LAST;
4562 end = 1;
4563 }
4564
ec29ed5b 4565 /* now scan forward to see if this is really the last extent. */
e3350e16 4566 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4567 if (IS_ERR(em)) {
4568 ret = PTR_ERR(em);
4569 goto out;
4570 }
4571 if (!em) {
975f84fe
JB
4572 flags |= FIEMAP_EXTENT_LAST;
4573 end = 1;
4574 }
4751832d
QW
4575 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4576 em_len, flags);
26e726af
CS
4577 if (ret) {
4578 if (ret == 1)
4579 ret = 0;
ec29ed5b 4580 goto out_free;
26e726af 4581 }
1506fcc8
YS
4582 }
4583out_free:
4751832d 4584 if (!ret)
848c23b7 4585 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4586 free_extent_map(em);
4587out:
fe09e16c 4588 btrfs_free_path(path);
a52f4cd2 4589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4590 &cached_state);
1506fcc8
YS
4591 return ret;
4592}
4593
727011e0
CM
4594static void __free_extent_buffer(struct extent_buffer *eb)
4595{
6d49ba1b 4596 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4597 kmem_cache_free(extent_buffer_cache, eb);
4598}
4599
a26e8c9f 4600int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4601{
4602 return (atomic_read(&eb->io_pages) ||
4603 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4604 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4605}
4606
4607/*
55ac0139 4608 * Release all pages attached to the extent buffer.
db7f3436 4609 */
55ac0139 4610static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4611{
d64766fd
NB
4612 int i;
4613 int num_pages;
b0132a3b 4614 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4615
4616 BUG_ON(extent_buffer_under_io(eb));
4617
d64766fd
NB
4618 num_pages = num_extent_pages(eb);
4619 for (i = 0; i < num_pages; i++) {
4620 struct page *page = eb->pages[i];
db7f3436 4621
5d2361db
FL
4622 if (!page)
4623 continue;
4624 if (mapped)
db7f3436 4625 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4626 /*
4627 * We do this since we'll remove the pages after we've
4628 * removed the eb from the radix tree, so we could race
4629 * and have this page now attached to the new eb. So
4630 * only clear page_private if it's still connected to
4631 * this eb.
4632 */
4633 if (PagePrivate(page) &&
4634 page->private == (unsigned long)eb) {
4635 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4636 BUG_ON(PageDirty(page));
4637 BUG_ON(PageWriteback(page));
db7f3436 4638 /*
5d2361db
FL
4639 * We need to make sure we haven't be attached
4640 * to a new eb.
db7f3436 4641 */
5d2361db
FL
4642 ClearPagePrivate(page);
4643 set_page_private(page, 0);
4644 /* One for the page private */
09cbfeaf 4645 put_page(page);
db7f3436 4646 }
5d2361db
FL
4647
4648 if (mapped)
4649 spin_unlock(&page->mapping->private_lock);
4650
01327610 4651 /* One for when we allocated the page */
09cbfeaf 4652 put_page(page);
d64766fd 4653 }
db7f3436
JB
4654}
4655
4656/*
4657 * Helper for releasing the extent buffer.
4658 */
4659static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4660{
55ac0139 4661 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4662 __free_extent_buffer(eb);
4663}
4664
f28491e0
JB
4665static struct extent_buffer *
4666__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4667 unsigned long len)
d1310b2e
CM
4668{
4669 struct extent_buffer *eb = NULL;
4670
d1b5c567 4671 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4672 eb->start = start;
4673 eb->len = len;
f28491e0 4674 eb->fs_info = fs_info;
815a51c7 4675 eb->bflags = 0;
bd681513
CM
4676 rwlock_init(&eb->lock);
4677 atomic_set(&eb->write_locks, 0);
4678 atomic_set(&eb->read_locks, 0);
4679 atomic_set(&eb->blocking_readers, 0);
4680 atomic_set(&eb->blocking_writers, 0);
4681 atomic_set(&eb->spinning_readers, 0);
4682 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4683 eb->lock_nested = 0;
bd681513
CM
4684 init_waitqueue_head(&eb->write_lock_wq);
4685 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4686
6d49ba1b
ES
4687 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4688
3083ee2e 4689 spin_lock_init(&eb->refs_lock);
d1310b2e 4690 atomic_set(&eb->refs, 1);
0b32f4bb 4691 atomic_set(&eb->io_pages, 0);
727011e0 4692
b8dae313
DS
4693 /*
4694 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4695 */
4696 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4697 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4698 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4699
4700 return eb;
4701}
4702
815a51c7
JS
4703struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4704{
cc5e31a4 4705 int i;
815a51c7
JS
4706 struct page *p;
4707 struct extent_buffer *new;
cc5e31a4 4708 int num_pages = num_extent_pages(src);
815a51c7 4709
3f556f78 4710 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4711 if (new == NULL)
4712 return NULL;
4713
4714 for (i = 0; i < num_pages; i++) {
9ec72677 4715 p = alloc_page(GFP_NOFS);
db7f3436
JB
4716 if (!p) {
4717 btrfs_release_extent_buffer(new);
4718 return NULL;
4719 }
815a51c7
JS
4720 attach_extent_buffer_page(new, p);
4721 WARN_ON(PageDirty(p));
4722 SetPageUptodate(p);
4723 new->pages[i] = p;
fba1acf9 4724 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4725 }
4726
815a51c7 4727 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4728 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4729
4730 return new;
4731}
4732
0f331229
OS
4733struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4734 u64 start, unsigned long len)
815a51c7
JS
4735{
4736 struct extent_buffer *eb;
cc5e31a4
DS
4737 int num_pages;
4738 int i;
815a51c7 4739
3f556f78 4740 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4741 if (!eb)
4742 return NULL;
4743
65ad0104 4744 num_pages = num_extent_pages(eb);
815a51c7 4745 for (i = 0; i < num_pages; i++) {
9ec72677 4746 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4747 if (!eb->pages[i])
4748 goto err;
4749 }
4750 set_extent_buffer_uptodate(eb);
4751 btrfs_set_header_nritems(eb, 0);
b0132a3b 4752 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4753
4754 return eb;
4755err:
84167d19
SB
4756 for (; i > 0; i--)
4757 __free_page(eb->pages[i - 1]);
815a51c7
JS
4758 __free_extent_buffer(eb);
4759 return NULL;
4760}
4761
0f331229 4762struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4763 u64 start)
0f331229 4764{
da17066c 4765 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4766}
4767
0b32f4bb
JB
4768static void check_buffer_tree_ref(struct extent_buffer *eb)
4769{
242e18c7 4770 int refs;
0b32f4bb
JB
4771 /* the ref bit is tricky. We have to make sure it is set
4772 * if we have the buffer dirty. Otherwise the
4773 * code to free a buffer can end up dropping a dirty
4774 * page
4775 *
4776 * Once the ref bit is set, it won't go away while the
4777 * buffer is dirty or in writeback, and it also won't
4778 * go away while we have the reference count on the
4779 * eb bumped.
4780 *
4781 * We can't just set the ref bit without bumping the
4782 * ref on the eb because free_extent_buffer might
4783 * see the ref bit and try to clear it. If this happens
4784 * free_extent_buffer might end up dropping our original
4785 * ref by mistake and freeing the page before we are able
4786 * to add one more ref.
4787 *
4788 * So bump the ref count first, then set the bit. If someone
4789 * beat us to it, drop the ref we added.
4790 */
242e18c7
CM
4791 refs = atomic_read(&eb->refs);
4792 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4793 return;
4794
594831c4
JB
4795 spin_lock(&eb->refs_lock);
4796 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4797 atomic_inc(&eb->refs);
594831c4 4798 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4799}
4800
2457aec6
MG
4801static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4802 struct page *accessed)
5df4235e 4803{
cc5e31a4 4804 int num_pages, i;
5df4235e 4805
0b32f4bb
JB
4806 check_buffer_tree_ref(eb);
4807
65ad0104 4808 num_pages = num_extent_pages(eb);
5df4235e 4809 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4810 struct page *p = eb->pages[i];
4811
2457aec6
MG
4812 if (p != accessed)
4813 mark_page_accessed(p);
5df4235e
JB
4814 }
4815}
4816
f28491e0
JB
4817struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4818 u64 start)
452c75c3
CS
4819{
4820 struct extent_buffer *eb;
4821
4822 rcu_read_lock();
f28491e0 4823 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4824 start >> PAGE_SHIFT);
452c75c3
CS
4825 if (eb && atomic_inc_not_zero(&eb->refs)) {
4826 rcu_read_unlock();
062c19e9
FM
4827 /*
4828 * Lock our eb's refs_lock to avoid races with
4829 * free_extent_buffer. When we get our eb it might be flagged
4830 * with EXTENT_BUFFER_STALE and another task running
4831 * free_extent_buffer might have seen that flag set,
4832 * eb->refs == 2, that the buffer isn't under IO (dirty and
4833 * writeback flags not set) and it's still in the tree (flag
4834 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4835 * of decrementing the extent buffer's reference count twice.
4836 * So here we could race and increment the eb's reference count,
4837 * clear its stale flag, mark it as dirty and drop our reference
4838 * before the other task finishes executing free_extent_buffer,
4839 * which would later result in an attempt to free an extent
4840 * buffer that is dirty.
4841 */
4842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4843 spin_lock(&eb->refs_lock);
4844 spin_unlock(&eb->refs_lock);
4845 }
2457aec6 4846 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4847 return eb;
4848 }
4849 rcu_read_unlock();
4850
4851 return NULL;
4852}
4853
faa2dbf0
JB
4854#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4855struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4856 u64 start)
faa2dbf0
JB
4857{
4858 struct extent_buffer *eb, *exists = NULL;
4859 int ret;
4860
4861 eb = find_extent_buffer(fs_info, start);
4862 if (eb)
4863 return eb;
da17066c 4864 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4865 if (!eb)
4866 return NULL;
4867 eb->fs_info = fs_info;
4868again:
e1860a77 4869 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4870 if (ret)
4871 goto free_eb;
4872 spin_lock(&fs_info->buffer_lock);
4873 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4874 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4875 spin_unlock(&fs_info->buffer_lock);
4876 radix_tree_preload_end();
4877 if (ret == -EEXIST) {
4878 exists = find_extent_buffer(fs_info, start);
4879 if (exists)
4880 goto free_eb;
4881 else
4882 goto again;
4883 }
4884 check_buffer_tree_ref(eb);
4885 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4886
faa2dbf0
JB
4887 return eb;
4888free_eb:
4889 btrfs_release_extent_buffer(eb);
4890 return exists;
4891}
4892#endif
4893
f28491e0 4894struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4895 u64 start)
d1310b2e 4896{
da17066c 4897 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4898 int num_pages;
4899 int i;
09cbfeaf 4900 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4901 struct extent_buffer *eb;
6af118ce 4902 struct extent_buffer *exists = NULL;
d1310b2e 4903 struct page *p;
f28491e0 4904 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4905 int uptodate = 1;
19fe0a8b 4906 int ret;
d1310b2e 4907
da17066c 4908 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4909 btrfs_err(fs_info, "bad tree block start %llu", start);
4910 return ERR_PTR(-EINVAL);
4911 }
4912
f28491e0 4913 eb = find_extent_buffer(fs_info, start);
452c75c3 4914 if (eb)
6af118ce 4915 return eb;
6af118ce 4916
23d79d81 4917 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4918 if (!eb)
c871b0f2 4919 return ERR_PTR(-ENOMEM);
d1310b2e 4920
65ad0104 4921 num_pages = num_extent_pages(eb);
727011e0 4922 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4923 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4924 if (!p) {
4925 exists = ERR_PTR(-ENOMEM);
6af118ce 4926 goto free_eb;
c871b0f2 4927 }
4f2de97a
JB
4928
4929 spin_lock(&mapping->private_lock);
4930 if (PagePrivate(p)) {
4931 /*
4932 * We could have already allocated an eb for this page
4933 * and attached one so lets see if we can get a ref on
4934 * the existing eb, and if we can we know it's good and
4935 * we can just return that one, else we know we can just
4936 * overwrite page->private.
4937 */
4938 exists = (struct extent_buffer *)p->private;
4939 if (atomic_inc_not_zero(&exists->refs)) {
4940 spin_unlock(&mapping->private_lock);
4941 unlock_page(p);
09cbfeaf 4942 put_page(p);
2457aec6 4943 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4944 goto free_eb;
4945 }
5ca64f45 4946 exists = NULL;
4f2de97a 4947
0b32f4bb 4948 /*
4f2de97a
JB
4949 * Do this so attach doesn't complain and we need to
4950 * drop the ref the old guy had.
4951 */
4952 ClearPagePrivate(p);
0b32f4bb 4953 WARN_ON(PageDirty(p));
09cbfeaf 4954 put_page(p);
d1310b2e 4955 }
4f2de97a
JB
4956 attach_extent_buffer_page(eb, p);
4957 spin_unlock(&mapping->private_lock);
0b32f4bb 4958 WARN_ON(PageDirty(p));
727011e0 4959 eb->pages[i] = p;
d1310b2e
CM
4960 if (!PageUptodate(p))
4961 uptodate = 0;
eb14ab8e
CM
4962
4963 /*
b16d011e
NB
4964 * We can't unlock the pages just yet since the extent buffer
4965 * hasn't been properly inserted in the radix tree, this
4966 * opens a race with btree_releasepage which can free a page
4967 * while we are still filling in all pages for the buffer and
4968 * we could crash.
eb14ab8e 4969 */
d1310b2e
CM
4970 }
4971 if (uptodate)
b4ce94de 4972 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4973again:
e1860a77 4974 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4975 if (ret) {
4976 exists = ERR_PTR(ret);
19fe0a8b 4977 goto free_eb;
c871b0f2 4978 }
19fe0a8b 4979
f28491e0
JB
4980 spin_lock(&fs_info->buffer_lock);
4981 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4982 start >> PAGE_SHIFT, eb);
f28491e0 4983 spin_unlock(&fs_info->buffer_lock);
452c75c3 4984 radix_tree_preload_end();
19fe0a8b 4985 if (ret == -EEXIST) {
f28491e0 4986 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4987 if (exists)
4988 goto free_eb;
4989 else
115391d2 4990 goto again;
6af118ce 4991 }
6af118ce 4992 /* add one reference for the tree */
0b32f4bb 4993 check_buffer_tree_ref(eb);
34b41ace 4994 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4995
4996 /*
b16d011e
NB
4997 * Now it's safe to unlock the pages because any calls to
4998 * btree_releasepage will correctly detect that a page belongs to a
4999 * live buffer and won't free them prematurely.
eb14ab8e 5000 */
28187ae5
NB
5001 for (i = 0; i < num_pages; i++)
5002 unlock_page(eb->pages[i]);
d1310b2e
CM
5003 return eb;
5004
6af118ce 5005free_eb:
5ca64f45 5006 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5007 for (i = 0; i < num_pages; i++) {
5008 if (eb->pages[i])
5009 unlock_page(eb->pages[i]);
5010 }
eb14ab8e 5011
897ca6e9 5012 btrfs_release_extent_buffer(eb);
6af118ce 5013 return exists;
d1310b2e 5014}
d1310b2e 5015
3083ee2e
JB
5016static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5017{
5018 struct extent_buffer *eb =
5019 container_of(head, struct extent_buffer, rcu_head);
5020
5021 __free_extent_buffer(eb);
5022}
5023
f7a52a40 5024static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5025{
07e21c4d
NB
5026 lockdep_assert_held(&eb->refs_lock);
5027
3083ee2e
JB
5028 WARN_ON(atomic_read(&eb->refs) == 0);
5029 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5030 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5031 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5032
815a51c7 5033 spin_unlock(&eb->refs_lock);
3083ee2e 5034
f28491e0
JB
5035 spin_lock(&fs_info->buffer_lock);
5036 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5037 eb->start >> PAGE_SHIFT);
f28491e0 5038 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5039 } else {
5040 spin_unlock(&eb->refs_lock);
815a51c7 5041 }
3083ee2e
JB
5042
5043 /* Should be safe to release our pages at this point */
55ac0139 5044 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5045#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5046 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5047 __free_extent_buffer(eb);
5048 return 1;
5049 }
5050#endif
3083ee2e 5051 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5052 return 1;
3083ee2e
JB
5053 }
5054 spin_unlock(&eb->refs_lock);
e64860aa
JB
5055
5056 return 0;
3083ee2e
JB
5057}
5058
d1310b2e
CM
5059void free_extent_buffer(struct extent_buffer *eb)
5060{
242e18c7
CM
5061 int refs;
5062 int old;
d1310b2e
CM
5063 if (!eb)
5064 return;
5065
242e18c7
CM
5066 while (1) {
5067 refs = atomic_read(&eb->refs);
46cc775e
NB
5068 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5069 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5070 refs == 1))
242e18c7
CM
5071 break;
5072 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5073 if (old == refs)
5074 return;
5075 }
5076
3083ee2e
JB
5077 spin_lock(&eb->refs_lock);
5078 if (atomic_read(&eb->refs) == 2 &&
5079 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5080 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5081 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5082 atomic_dec(&eb->refs);
5083
5084 /*
5085 * I know this is terrible, but it's temporary until we stop tracking
5086 * the uptodate bits and such for the extent buffers.
5087 */
f7a52a40 5088 release_extent_buffer(eb);
3083ee2e
JB
5089}
5090
5091void free_extent_buffer_stale(struct extent_buffer *eb)
5092{
5093 if (!eb)
d1310b2e
CM
5094 return;
5095
3083ee2e
JB
5096 spin_lock(&eb->refs_lock);
5097 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5098
0b32f4bb 5099 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5100 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5101 atomic_dec(&eb->refs);
f7a52a40 5102 release_extent_buffer(eb);
d1310b2e 5103}
d1310b2e 5104
1d4284bd 5105void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5106{
cc5e31a4
DS
5107 int i;
5108 int num_pages;
d1310b2e
CM
5109 struct page *page;
5110
65ad0104 5111 num_pages = num_extent_pages(eb);
d1310b2e
CM
5112
5113 for (i = 0; i < num_pages; i++) {
fb85fc9a 5114 page = eb->pages[i];
b9473439 5115 if (!PageDirty(page))
d2c3f4f6
CM
5116 continue;
5117
a61e6f29 5118 lock_page(page);
eb14ab8e
CM
5119 WARN_ON(!PagePrivate(page));
5120
d1310b2e 5121 clear_page_dirty_for_io(page);
b93b0163 5122 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5123 if (!PageDirty(page))
5124 __xa_clear_mark(&page->mapping->i_pages,
5125 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5126 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5127 ClearPageError(page);
a61e6f29 5128 unlock_page(page);
d1310b2e 5129 }
0b32f4bb 5130 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5131}
d1310b2e 5132
abb57ef3 5133bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5134{
cc5e31a4
DS
5135 int i;
5136 int num_pages;
abb57ef3 5137 bool was_dirty;
d1310b2e 5138
0b32f4bb
JB
5139 check_buffer_tree_ref(eb);
5140
b9473439 5141 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5142
65ad0104 5143 num_pages = num_extent_pages(eb);
3083ee2e 5144 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5145 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5146
abb57ef3
LB
5147 if (!was_dirty)
5148 for (i = 0; i < num_pages; i++)
5149 set_page_dirty(eb->pages[i]);
51995c39
LB
5150
5151#ifdef CONFIG_BTRFS_DEBUG
5152 for (i = 0; i < num_pages; i++)
5153 ASSERT(PageDirty(eb->pages[i]));
5154#endif
5155
b9473439 5156 return was_dirty;
d1310b2e 5157}
d1310b2e 5158
69ba3927 5159void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5160{
cc5e31a4 5161 int i;
1259ab75 5162 struct page *page;
cc5e31a4 5163 int num_pages;
1259ab75 5164
b4ce94de 5165 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5166 num_pages = num_extent_pages(eb);
1259ab75 5167 for (i = 0; i < num_pages; i++) {
fb85fc9a 5168 page = eb->pages[i];
33958dc6
CM
5169 if (page)
5170 ClearPageUptodate(page);
1259ab75 5171 }
1259ab75
CM
5172}
5173
09c25a8c 5174void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5175{
cc5e31a4 5176 int i;
d1310b2e 5177 struct page *page;
cc5e31a4 5178 int num_pages;
d1310b2e 5179
0b32f4bb 5180 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5181 num_pages = num_extent_pages(eb);
d1310b2e 5182 for (i = 0; i < num_pages; i++) {
fb85fc9a 5183 page = eb->pages[i];
d1310b2e
CM
5184 SetPageUptodate(page);
5185 }
d1310b2e 5186}
d1310b2e 5187
d1310b2e 5188int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5189 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5190{
cc5e31a4 5191 int i;
d1310b2e
CM
5192 struct page *page;
5193 int err;
5194 int ret = 0;
ce9adaa5
CM
5195 int locked_pages = 0;
5196 int all_uptodate = 1;
cc5e31a4 5197 int num_pages;
727011e0 5198 unsigned long num_reads = 0;
a86c12c7 5199 struct bio *bio = NULL;
c8b97818 5200 unsigned long bio_flags = 0;
a86c12c7 5201
b4ce94de 5202 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5203 return 0;
5204
65ad0104 5205 num_pages = num_extent_pages(eb);
8436ea91 5206 for (i = 0; i < num_pages; i++) {
fb85fc9a 5207 page = eb->pages[i];
bb82ab88 5208 if (wait == WAIT_NONE) {
2db04966 5209 if (!trylock_page(page))
ce9adaa5 5210 goto unlock_exit;
d1310b2e
CM
5211 } else {
5212 lock_page(page);
5213 }
ce9adaa5 5214 locked_pages++;
2571e739
LB
5215 }
5216 /*
5217 * We need to firstly lock all pages to make sure that
5218 * the uptodate bit of our pages won't be affected by
5219 * clear_extent_buffer_uptodate().
5220 */
8436ea91 5221 for (i = 0; i < num_pages; i++) {
2571e739 5222 page = eb->pages[i];
727011e0
CM
5223 if (!PageUptodate(page)) {
5224 num_reads++;
ce9adaa5 5225 all_uptodate = 0;
727011e0 5226 }
ce9adaa5 5227 }
2571e739 5228
ce9adaa5 5229 if (all_uptodate) {
8436ea91 5230 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5231 goto unlock_exit;
5232 }
5233
656f30db 5234 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5235 eb->read_mirror = 0;
0b32f4bb 5236 atomic_set(&eb->io_pages, num_reads);
8436ea91 5237 for (i = 0; i < num_pages; i++) {
fb85fc9a 5238 page = eb->pages[i];
baf863b9 5239
ce9adaa5 5240 if (!PageUptodate(page)) {
baf863b9
LB
5241 if (ret) {
5242 atomic_dec(&eb->io_pages);
5243 unlock_page(page);
5244 continue;
5245 }
5246
f188591e 5247 ClearPageError(page);
a86c12c7 5248 err = __extent_read_full_page(tree, page,
6af49dbd 5249 btree_get_extent, &bio,
d4c7ca86 5250 mirror_num, &bio_flags,
1f7ad75b 5251 REQ_META);
baf863b9 5252 if (err) {
d1310b2e 5253 ret = err;
baf863b9
LB
5254 /*
5255 * We use &bio in above __extent_read_full_page,
5256 * so we ensure that if it returns error, the
5257 * current page fails to add itself to bio and
5258 * it's been unlocked.
5259 *
5260 * We must dec io_pages by ourselves.
5261 */
5262 atomic_dec(&eb->io_pages);
5263 }
d1310b2e
CM
5264 } else {
5265 unlock_page(page);
5266 }
5267 }
5268
355808c2 5269 if (bio) {
1f7ad75b 5270 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5271 if (err)
5272 return err;
355808c2 5273 }
a86c12c7 5274
bb82ab88 5275 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5276 return ret;
d397712b 5277
8436ea91 5278 for (i = 0; i < num_pages; i++) {
fb85fc9a 5279 page = eb->pages[i];
d1310b2e 5280 wait_on_page_locked(page);
d397712b 5281 if (!PageUptodate(page))
d1310b2e 5282 ret = -EIO;
d1310b2e 5283 }
d397712b 5284
d1310b2e 5285 return ret;
ce9adaa5
CM
5286
5287unlock_exit:
d397712b 5288 while (locked_pages > 0) {
ce9adaa5 5289 locked_pages--;
8436ea91
JB
5290 page = eb->pages[locked_pages];
5291 unlock_page(page);
ce9adaa5
CM
5292 }
5293 return ret;
d1310b2e 5294}
d1310b2e 5295
1cbb1f45
JM
5296void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5297 unsigned long start, unsigned long len)
d1310b2e
CM
5298{
5299 size_t cur;
5300 size_t offset;
5301 struct page *page;
5302 char *kaddr;
5303 char *dst = (char *)dstv;
7073017a 5304 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5305 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5306
f716abd5
LB
5307 if (start + len > eb->len) {
5308 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5309 eb->start, eb->len, start, len);
5310 memset(dst, 0, len);
5311 return;
5312 }
d1310b2e 5313
7073017a 5314 offset = offset_in_page(start_offset + start);
d1310b2e 5315
d397712b 5316 while (len > 0) {
fb85fc9a 5317 page = eb->pages[i];
d1310b2e 5318
09cbfeaf 5319 cur = min(len, (PAGE_SIZE - offset));
a6591715 5320 kaddr = page_address(page);
d1310b2e 5321 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5322
5323 dst += cur;
5324 len -= cur;
5325 offset = 0;
5326 i++;
5327 }
5328}
d1310b2e 5329
1cbb1f45
JM
5330int read_extent_buffer_to_user(const struct extent_buffer *eb,
5331 void __user *dstv,
5332 unsigned long start, unsigned long len)
550ac1d8
GH
5333{
5334 size_t cur;
5335 size_t offset;
5336 struct page *page;
5337 char *kaddr;
5338 char __user *dst = (char __user *)dstv;
7073017a 5339 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5340 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5341 int ret = 0;
5342
5343 WARN_ON(start > eb->len);
5344 WARN_ON(start + len > eb->start + eb->len);
5345
7073017a 5346 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5347
5348 while (len > 0) {
fb85fc9a 5349 page = eb->pages[i];
550ac1d8 5350
09cbfeaf 5351 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5352 kaddr = page_address(page);
5353 if (copy_to_user(dst, kaddr + offset, cur)) {
5354 ret = -EFAULT;
5355 break;
5356 }
5357
5358 dst += cur;
5359 len -= cur;
5360 offset = 0;
5361 i++;
5362 }
5363
5364 return ret;
5365}
5366
415b35a5
LB
5367/*
5368 * return 0 if the item is found within a page.
5369 * return 1 if the item spans two pages.
5370 * return -EINVAL otherwise.
5371 */
1cbb1f45
JM
5372int map_private_extent_buffer(const struct extent_buffer *eb,
5373 unsigned long start, unsigned long min_len,
5374 char **map, unsigned long *map_start,
5375 unsigned long *map_len)
d1310b2e 5376{
cc2c39d6 5377 size_t offset;
d1310b2e
CM
5378 char *kaddr;
5379 struct page *p;
7073017a 5380 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5381 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5382 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5383 PAGE_SHIFT;
d1310b2e 5384
f716abd5
LB
5385 if (start + min_len > eb->len) {
5386 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5387 eb->start, eb->len, start, min_len);
5388 return -EINVAL;
5389 }
5390
d1310b2e 5391 if (i != end_i)
415b35a5 5392 return 1;
d1310b2e
CM
5393
5394 if (i == 0) {
5395 offset = start_offset;
5396 *map_start = 0;
5397 } else {
5398 offset = 0;
09cbfeaf 5399 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5400 }
d397712b 5401
fb85fc9a 5402 p = eb->pages[i];
a6591715 5403 kaddr = page_address(p);
d1310b2e 5404 *map = kaddr + offset;
09cbfeaf 5405 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5406 return 0;
5407}
d1310b2e 5408
1cbb1f45
JM
5409int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5410 unsigned long start, unsigned long len)
d1310b2e
CM
5411{
5412 size_t cur;
5413 size_t offset;
5414 struct page *page;
5415 char *kaddr;
5416 char *ptr = (char *)ptrv;
7073017a 5417 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5418 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5419 int ret = 0;
5420
5421 WARN_ON(start > eb->len);
5422 WARN_ON(start + len > eb->start + eb->len);
5423
7073017a 5424 offset = offset_in_page(start_offset + start);
d1310b2e 5425
d397712b 5426 while (len > 0) {
fb85fc9a 5427 page = eb->pages[i];
d1310b2e 5428
09cbfeaf 5429 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5430
a6591715 5431 kaddr = page_address(page);
d1310b2e 5432 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5433 if (ret)
5434 break;
5435
5436 ptr += cur;
5437 len -= cur;
5438 offset = 0;
5439 i++;
5440 }
5441 return ret;
5442}
d1310b2e 5443
f157bf76
DS
5444void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5445 const void *srcv)
5446{
5447 char *kaddr;
5448
5449 WARN_ON(!PageUptodate(eb->pages[0]));
5450 kaddr = page_address(eb->pages[0]);
5451 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5452 BTRFS_FSID_SIZE);
5453}
5454
5455void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5456{
5457 char *kaddr;
5458
5459 WARN_ON(!PageUptodate(eb->pages[0]));
5460 kaddr = page_address(eb->pages[0]);
5461 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5462 BTRFS_FSID_SIZE);
5463}
5464
d1310b2e
CM
5465void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5466 unsigned long start, unsigned long len)
5467{
5468 size_t cur;
5469 size_t offset;
5470 struct page *page;
5471 char *kaddr;
5472 char *src = (char *)srcv;
7073017a 5473 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5474 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5475
5476 WARN_ON(start > eb->len);
5477 WARN_ON(start + len > eb->start + eb->len);
5478
7073017a 5479 offset = offset_in_page(start_offset + start);
d1310b2e 5480
d397712b 5481 while (len > 0) {
fb85fc9a 5482 page = eb->pages[i];
d1310b2e
CM
5483 WARN_ON(!PageUptodate(page));
5484
09cbfeaf 5485 cur = min(len, PAGE_SIZE - offset);
a6591715 5486 kaddr = page_address(page);
d1310b2e 5487 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5488
5489 src += cur;
5490 len -= cur;
5491 offset = 0;
5492 i++;
5493 }
5494}
d1310b2e 5495
b159fa28
DS
5496void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5497 unsigned long len)
d1310b2e
CM
5498{
5499 size_t cur;
5500 size_t offset;
5501 struct page *page;
5502 char *kaddr;
7073017a 5503 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5504 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5505
5506 WARN_ON(start > eb->len);
5507 WARN_ON(start + len > eb->start + eb->len);
5508
7073017a 5509 offset = offset_in_page(start_offset + start);
d1310b2e 5510
d397712b 5511 while (len > 0) {
fb85fc9a 5512 page = eb->pages[i];
d1310b2e
CM
5513 WARN_ON(!PageUptodate(page));
5514
09cbfeaf 5515 cur = min(len, PAGE_SIZE - offset);
a6591715 5516 kaddr = page_address(page);
b159fa28 5517 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5518
5519 len -= cur;
5520 offset = 0;
5521 i++;
5522 }
5523}
d1310b2e 5524
58e8012c
DS
5525void copy_extent_buffer_full(struct extent_buffer *dst,
5526 struct extent_buffer *src)
5527{
5528 int i;
cc5e31a4 5529 int num_pages;
58e8012c
DS
5530
5531 ASSERT(dst->len == src->len);
5532
65ad0104 5533 num_pages = num_extent_pages(dst);
58e8012c
DS
5534 for (i = 0; i < num_pages; i++)
5535 copy_page(page_address(dst->pages[i]),
5536 page_address(src->pages[i]));
5537}
5538
d1310b2e
CM
5539void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5540 unsigned long dst_offset, unsigned long src_offset,
5541 unsigned long len)
5542{
5543 u64 dst_len = dst->len;
5544 size_t cur;
5545 size_t offset;
5546 struct page *page;
5547 char *kaddr;
7073017a 5548 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5549 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5550
5551 WARN_ON(src->len != dst_len);
5552
7073017a 5553 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5554
d397712b 5555 while (len > 0) {
fb85fc9a 5556 page = dst->pages[i];
d1310b2e
CM
5557 WARN_ON(!PageUptodate(page));
5558
09cbfeaf 5559 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5560
a6591715 5561 kaddr = page_address(page);
d1310b2e 5562 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5563
5564 src_offset += cur;
5565 len -= cur;
5566 offset = 0;
5567 i++;
5568 }
5569}
d1310b2e 5570
3e1e8bb7
OS
5571/*
5572 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5573 * given bit number
5574 * @eb: the extent buffer
5575 * @start: offset of the bitmap item in the extent buffer
5576 * @nr: bit number
5577 * @page_index: return index of the page in the extent buffer that contains the
5578 * given bit number
5579 * @page_offset: return offset into the page given by page_index
5580 *
5581 * This helper hides the ugliness of finding the byte in an extent buffer which
5582 * contains a given bit.
5583 */
5584static inline void eb_bitmap_offset(struct extent_buffer *eb,
5585 unsigned long start, unsigned long nr,
5586 unsigned long *page_index,
5587 size_t *page_offset)
5588{
7073017a 5589 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5590 size_t byte_offset = BIT_BYTE(nr);
5591 size_t offset;
5592
5593 /*
5594 * The byte we want is the offset of the extent buffer + the offset of
5595 * the bitmap item in the extent buffer + the offset of the byte in the
5596 * bitmap item.
5597 */
5598 offset = start_offset + start + byte_offset;
5599
09cbfeaf 5600 *page_index = offset >> PAGE_SHIFT;
7073017a 5601 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5602}
5603
5604/**
5605 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5606 * @eb: the extent buffer
5607 * @start: offset of the bitmap item in the extent buffer
5608 * @nr: bit number to test
5609 */
5610int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5611 unsigned long nr)
5612{
2fe1d551 5613 u8 *kaddr;
3e1e8bb7
OS
5614 struct page *page;
5615 unsigned long i;
5616 size_t offset;
5617
5618 eb_bitmap_offset(eb, start, nr, &i, &offset);
5619 page = eb->pages[i];
5620 WARN_ON(!PageUptodate(page));
5621 kaddr = page_address(page);
5622 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5623}
5624
5625/**
5626 * extent_buffer_bitmap_set - set an area of a bitmap
5627 * @eb: the extent buffer
5628 * @start: offset of the bitmap item in the extent buffer
5629 * @pos: bit number of the first bit
5630 * @len: number of bits to set
5631 */
5632void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5633 unsigned long pos, unsigned long len)
5634{
2fe1d551 5635 u8 *kaddr;
3e1e8bb7
OS
5636 struct page *page;
5637 unsigned long i;
5638 size_t offset;
5639 const unsigned int size = pos + len;
5640 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5641 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5642
5643 eb_bitmap_offset(eb, start, pos, &i, &offset);
5644 page = eb->pages[i];
5645 WARN_ON(!PageUptodate(page));
5646 kaddr = page_address(page);
5647
5648 while (len >= bits_to_set) {
5649 kaddr[offset] |= mask_to_set;
5650 len -= bits_to_set;
5651 bits_to_set = BITS_PER_BYTE;
9c894696 5652 mask_to_set = ~0;
09cbfeaf 5653 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5654 offset = 0;
5655 page = eb->pages[++i];
5656 WARN_ON(!PageUptodate(page));
5657 kaddr = page_address(page);
5658 }
5659 }
5660 if (len) {
5661 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5662 kaddr[offset] |= mask_to_set;
5663 }
5664}
5665
5666
5667/**
5668 * extent_buffer_bitmap_clear - clear an area of a bitmap
5669 * @eb: the extent buffer
5670 * @start: offset of the bitmap item in the extent buffer
5671 * @pos: bit number of the first bit
5672 * @len: number of bits to clear
5673 */
5674void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5675 unsigned long pos, unsigned long len)
5676{
2fe1d551 5677 u8 *kaddr;
3e1e8bb7
OS
5678 struct page *page;
5679 unsigned long i;
5680 size_t offset;
5681 const unsigned int size = pos + len;
5682 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5683 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5684
5685 eb_bitmap_offset(eb, start, pos, &i, &offset);
5686 page = eb->pages[i];
5687 WARN_ON(!PageUptodate(page));
5688 kaddr = page_address(page);
5689
5690 while (len >= bits_to_clear) {
5691 kaddr[offset] &= ~mask_to_clear;
5692 len -= bits_to_clear;
5693 bits_to_clear = BITS_PER_BYTE;
9c894696 5694 mask_to_clear = ~0;
09cbfeaf 5695 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5696 offset = 0;
5697 page = eb->pages[++i];
5698 WARN_ON(!PageUptodate(page));
5699 kaddr = page_address(page);
5700 }
5701 }
5702 if (len) {
5703 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5704 kaddr[offset] &= ~mask_to_clear;
5705 }
5706}
5707
3387206f
ST
5708static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5709{
5710 unsigned long distance = (src > dst) ? src - dst : dst - src;
5711 return distance < len;
5712}
5713
d1310b2e
CM
5714static void copy_pages(struct page *dst_page, struct page *src_page,
5715 unsigned long dst_off, unsigned long src_off,
5716 unsigned long len)
5717{
a6591715 5718 char *dst_kaddr = page_address(dst_page);
d1310b2e 5719 char *src_kaddr;
727011e0 5720 int must_memmove = 0;
d1310b2e 5721
3387206f 5722 if (dst_page != src_page) {
a6591715 5723 src_kaddr = page_address(src_page);
3387206f 5724 } else {
d1310b2e 5725 src_kaddr = dst_kaddr;
727011e0
CM
5726 if (areas_overlap(src_off, dst_off, len))
5727 must_memmove = 1;
3387206f 5728 }
d1310b2e 5729
727011e0
CM
5730 if (must_memmove)
5731 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5732 else
5733 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5734}
5735
5736void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5737 unsigned long src_offset, unsigned long len)
5738{
0b246afa 5739 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5740 size_t cur;
5741 size_t dst_off_in_page;
5742 size_t src_off_in_page;
7073017a 5743 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5744 unsigned long dst_i;
5745 unsigned long src_i;
5746
5747 if (src_offset + len > dst->len) {
0b246afa 5748 btrfs_err(fs_info,
5d163e0e
JM
5749 "memmove bogus src_offset %lu move len %lu dst len %lu",
5750 src_offset, len, dst->len);
d1310b2e
CM
5751 BUG_ON(1);
5752 }
5753 if (dst_offset + len > dst->len) {
0b246afa 5754 btrfs_err(fs_info,
5d163e0e
JM
5755 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5756 dst_offset, len, dst->len);
d1310b2e
CM
5757 BUG_ON(1);
5758 }
5759
d397712b 5760 while (len > 0) {
7073017a
JT
5761 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5762 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5763
09cbfeaf
KS
5764 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5765 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5766
09cbfeaf 5767 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5768 src_off_in_page));
5769 cur = min_t(unsigned long, cur,
09cbfeaf 5770 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5771
fb85fc9a 5772 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5773 dst_off_in_page, src_off_in_page, cur);
5774
5775 src_offset += cur;
5776 dst_offset += cur;
5777 len -= cur;
5778 }
5779}
d1310b2e
CM
5780
5781void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5782 unsigned long src_offset, unsigned long len)
5783{
0b246afa 5784 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5785 size_t cur;
5786 size_t dst_off_in_page;
5787 size_t src_off_in_page;
5788 unsigned long dst_end = dst_offset + len - 1;
5789 unsigned long src_end = src_offset + len - 1;
7073017a 5790 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5791 unsigned long dst_i;
5792 unsigned long src_i;
5793
5794 if (src_offset + len > dst->len) {
0b246afa 5795 btrfs_err(fs_info,
5d163e0e
JM
5796 "memmove bogus src_offset %lu move len %lu len %lu",
5797 src_offset, len, dst->len);
d1310b2e
CM
5798 BUG_ON(1);
5799 }
5800 if (dst_offset + len > dst->len) {
0b246afa 5801 btrfs_err(fs_info,
5d163e0e
JM
5802 "memmove bogus dst_offset %lu move len %lu len %lu",
5803 dst_offset, len, dst->len);
d1310b2e
CM
5804 BUG_ON(1);
5805 }
727011e0 5806 if (dst_offset < src_offset) {
d1310b2e
CM
5807 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5808 return;
5809 }
d397712b 5810 while (len > 0) {
09cbfeaf
KS
5811 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5812 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 5813
7073017a
JT
5814 dst_off_in_page = offset_in_page(start_offset + dst_end);
5815 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
5816
5817 cur = min_t(unsigned long, len, src_off_in_page + 1);
5818 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5819 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5820 dst_off_in_page - cur + 1,
5821 src_off_in_page - cur + 1, cur);
5822
5823 dst_end -= cur;
5824 src_end -= cur;
5825 len -= cur;
5826 }
5827}
6af118ce 5828
f7a52a40 5829int try_release_extent_buffer(struct page *page)
19fe0a8b 5830{
6af118ce 5831 struct extent_buffer *eb;
6af118ce 5832
3083ee2e 5833 /*
01327610 5834 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5835 * now.
5836 */
5837 spin_lock(&page->mapping->private_lock);
5838 if (!PagePrivate(page)) {
5839 spin_unlock(&page->mapping->private_lock);
4f2de97a 5840 return 1;
45f49bce 5841 }
6af118ce 5842
3083ee2e
JB
5843 eb = (struct extent_buffer *)page->private;
5844 BUG_ON(!eb);
19fe0a8b
MX
5845
5846 /*
3083ee2e
JB
5847 * This is a little awful but should be ok, we need to make sure that
5848 * the eb doesn't disappear out from under us while we're looking at
5849 * this page.
19fe0a8b 5850 */
3083ee2e 5851 spin_lock(&eb->refs_lock);
0b32f4bb 5852 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5853 spin_unlock(&eb->refs_lock);
5854 spin_unlock(&page->mapping->private_lock);
5855 return 0;
b9473439 5856 }
3083ee2e 5857 spin_unlock(&page->mapping->private_lock);
897ca6e9 5858
19fe0a8b 5859 /*
3083ee2e
JB
5860 * If tree ref isn't set then we know the ref on this eb is a real ref,
5861 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5862 */
3083ee2e
JB
5863 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5864 spin_unlock(&eb->refs_lock);
5865 return 0;
b9473439 5866 }
19fe0a8b 5867
f7a52a40 5868 return release_extent_buffer(eb);
6af118ce 5869}