]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/extent_io.c
Btrfs: fix race between device replace and discard
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729
730search_again:
731 if (start > end)
732 goto out;
cad321ad 733 spin_unlock(&tree->lock);
d0164adc 734 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
735 cond_resched();
736 goto again;
7ab5cb2a
DS
737
738out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
d1310b2e 745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
d1310b2e 883 prealloc = alloc_extent_state(mask);
d1310b2e
CM
884 }
885
cad321ad 886 spin_lock(&tree->lock);
9655d298
CM
887 if (cached_state && *cached_state) {
888 state = *cached_state;
df98b6e2 889 if (state->start <= start && state->end > start &&
27a3507d 890 extent_state_in_tree(state)) {
9655d298
CM
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
d1310b2e
CM
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
12cfbad9 899 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 900 if (!node) {
8233767a
XG
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
12cfbad9 903 err = insert_state(tree, prealloc, start, end,
d38ed27f 904 &p, &parent, &bits, changeset);
c2d904e0
JM
905 if (err)
906 extent_io_tree_panic(tree, err);
907
c42ac0bc 908 cache_state(prealloc, cached_state);
d1310b2e 909 prealloc = NULL;
d1310b2e
CM
910 goto out;
911 }
d1310b2e 912 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 913hit_next:
d1310b2e
CM
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
1edbb734 924 if (state->state & exclusive_bits) {
d1310b2e
CM
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
42daec29 929
d38ed27f 930 set_state_bits(tree, state, &bits, changeset);
2c64c53d 931 cache_state(state, cached_state);
d1310b2e 932 merge_state(tree, state);
5c939df5
YZ
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
d1ac6e41
LB
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
d1310b2e
CM
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
1edbb734 960 if (state->state & exclusive_bits) {
d1310b2e
CM
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
8233767a
XG
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
d1310b2e 968 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
969 if (err)
970 extent_io_tree_panic(tree, err);
971
d1310b2e
CM
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
d38ed27f 976 set_state_bits(tree, state, &bits, changeset);
2c64c53d 977 cache_state(state, cached_state);
d1310b2e 978 merge_state(tree, state);
5c939df5
YZ
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
d1ac6e41
LB
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
d1310b2e
CM
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
d397712b 1001 this_end = last_start - 1;
8233767a
XG
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
c7f895a2
XG
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
d1310b2e 1010 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1011 NULL, NULL, &bits, changeset);
c2d904e0
JM
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
9ed74f2d
JB
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
d1310b2e
CM
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1edbb734 1027 if (state->state & exclusive_bits) {
d1310b2e
CM
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
8233767a
XG
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
d1310b2e 1035 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1036 if (err)
1037 extent_io_tree_panic(tree, err);
d1310b2e 1038
d38ed27f 1039 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1040 cache_state(prealloc, cached_state);
d1310b2e
CM
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
b5a4ba14
DS
1046search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
d1310b2e
CM
1053
1054out:
cad321ad 1055 spin_unlock(&tree->lock);
d1310b2e
CM
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
d1310b2e 1061}
d1310b2e 1062
41074888 1063int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1064 unsigned bits, u64 * failed_start,
41074888 1065 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1066{
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1068 cached_state, mask, NULL);
3fbe5c02
JM
1069}
1070
1071
462d6fac 1072/**
10983f2e
LB
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
462d6fac
JB
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
e6138876 1080 * @cached_state: state that we're going to cache
462d6fac
JB
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
210aa277
DS
1087 *
1088 * All allocations are done with GFP_NOFS.
462d6fac
JB
1089 */
1090int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1091 unsigned bits, unsigned clear_bits,
210aa277 1092 struct extent_state **cached_state)
462d6fac
JB
1093{
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
12cfbad9
FDBM
1097 struct rb_node **p;
1098 struct rb_node *parent;
462d6fac
JB
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
c8fd3de7 1102 bool first_iteration = true;
462d6fac 1103
a5dee37d 1104 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1105
462d6fac 1106again:
210aa277 1107 if (!prealloc) {
c8fd3de7
FM
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
210aa277 1115 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1116 if (!prealloc && !first_iteration)
462d6fac
JB
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
e6138876
JB
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
27a3507d 1124 extent_state_in_tree(state)) {
e6138876
JB
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
462d6fac
JB
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
12cfbad9 1134 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
12cfbad9 1141 err = insert_state(tree, prealloc, start, end,
d38ed27f 1142 &p, &parent, &bits, NULL);
c2d904e0
JM
1143 if (err)
1144 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
462d6fac
JB
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
d38ed27f 1161 set_state_bits(tree, state, &bits, NULL);
e6138876 1162 cache_state(state, cached_state);
fefdc557 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1164 if (last_end == (u64)-1)
1165 goto out;
462d6fac 1166 start = last_end + 1;
d1ac6e41
LB
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
462d6fac
JB
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
462d6fac 1195 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1196 if (err)
1197 extent_io_tree_panic(tree, err);
462d6fac
JB
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
d38ed27f 1202 set_state_bits(tree, state, &bits, NULL);
e6138876 1203 cache_state(state, cached_state);
fefdc557
QW
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
462d6fac
JB
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
d1ac6e41
LB
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
462d6fac
JB
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
462d6fac
JB
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1240 NULL, NULL, &bits, NULL);
c2d904e0
JM
1241 if (err)
1242 extent_io_tree_panic(tree, err);
e6138876 1243 cache_state(prealloc, cached_state);
462d6fac
JB
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
462d6fac
JB
1260
1261 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1262 if (err)
1263 extent_io_tree_panic(tree, err);
462d6fac 1264
d38ed27f 1265 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1266 cache_state(prealloc, cached_state);
fefdc557 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
462d6fac
JB
1272search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
210aa277 1276 cond_resched();
c8fd3de7 1277 first_iteration = false;
462d6fac 1278 goto again;
462d6fac
JB
1279
1280out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
462d6fac
JB
1286}
1287
d1310b2e 1288/* wrappers around set/clear extent bit */
d38ed27f 1289int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1290 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1291{
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
2c53b912 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1301 changeset);
1302}
1303
fefdc557
QW
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307{
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310}
1311
fefdc557 1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1313 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1314{
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
f734c44a 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1322 changeset);
1323}
1324
d352ac68
CM
1325/*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1edbb734 1329int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1330 struct extent_state **cached_state)
d1310b2e
CM
1331{
1332 int err;
1333 u64 failed_start;
9ee49a04 1334
d1310b2e 1335 while (1) {
ff13db41 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1337 EXTENT_LOCKED, &failed_start,
d38ed27f 1338 cached_state, GFP_NOFS, NULL);
d0082371 1339 if (err == -EEXIST) {
d1310b2e
CM
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
d0082371 1342 } else
d1310b2e 1343 break;
d1310b2e
CM
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347}
d1310b2e 1348
d0082371 1349int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1350{
1351 int err;
1352 u64 failed_start;
1353
3fbe5c02 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1355 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1360 return 0;
6643558d 1361 }
25179201
JB
1362 return 1;
1363}
25179201 1364
bd1fa4f0 1365void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1366{
09cbfeaf
KS
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
09cbfeaf 1375 put_page(page);
4adaa611
CM
1376 index++;
1377 }
4adaa611
CM
1378}
1379
f6311572 1380void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1381{
09cbfeaf
KS
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1389 __set_page_dirty_nobuffers(page);
8d38633c 1390 account_page_redirty(page);
09cbfeaf 1391 put_page(page);
4adaa611
CM
1392 index++;
1393 }
4adaa611
CM
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
35de6db2 1399static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1400{
09cbfeaf
KS
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1408 set_page_writeback(page);
09cbfeaf 1409 put_page(page);
d1310b2e
CM
1410 index++;
1411 }
d1310b2e 1412}
d1310b2e 1413
d352ac68
CM
1414/* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
48a3b636
ES
1418static struct extent_state *
1419find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1420 u64 start, unsigned bits)
d7fc640e
CM
1421{
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
d397712b 1430 if (!node)
d7fc640e 1431 goto out;
d7fc640e 1432
d397712b 1433 while (1) {
d7fc640e 1434 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1435 if (state->end >= start && (state->state & bits))
d7fc640e 1436 return state;
d397712b 1437
d7fc640e
CM
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442out:
1443 return NULL;
1444}
d7fc640e 1445
69261c4b
XG
1446/*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
477d7eaf 1451 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1452 */
1453int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1454 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1455 struct extent_state **cached_state)
69261c4b
XG
1456{
1457 struct extent_state *state;
e6138876 1458 struct rb_node *n;
69261c4b
XG
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
e6138876
JB
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
27a3507d 1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
69261c4b 1481 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1482got_it:
69261c4b 1483 if (state) {
e38e2ed7 1484 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
e6138876 1489out:
69261c4b
XG
1490 spin_unlock(&tree->lock);
1491 return ret;
1492}
1493
d352ac68
CM
1494/*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
c8b97818 1500static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
d1310b2e
CM
1503{
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
cad321ad 1510 spin_lock(&tree->lock);
c8b97818 1511
d1310b2e
CM
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
80ea96b1 1516 node = tree_search(tree, cur_start);
2b114d1d 1517 if (!node) {
3b951516
CM
1518 if (!found)
1519 *end = (u64)-1;
d1310b2e
CM
1520 goto out;
1521 }
1522
d397712b 1523 while (1) {
d1310b2e 1524 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
c2a128d2 1534 if (!found) {
d1310b2e 1535 *start = state->start;
c2a128d2
JB
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
d1310b2e
CM
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
d1310b2e 1543 total_bytes += state->end - state->start + 1;
7bf811a5 1544 if (total_bytes >= max_bytes)
573aecaf 1545 break;
573aecaf 1546 if (!node)
d1310b2e
CM
1547 break;
1548 }
1549out:
cad321ad 1550 spin_unlock(&tree->lock);
d1310b2e
CM
1551 return found;
1552}
1553
143bede5
JM
1554static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
c8b97818
CM
1557{
1558 int ret;
1559 struct page *pages[16];
09cbfeaf
KS
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
143bede5 1566 return;
c8b97818 1567
d397712b 1568 while (nr_pages > 0) {
c8b97818 1569 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
09cbfeaf 1575 put_page(pages[i]);
c8b97818
CM
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
c8b97818
CM
1581}
1582
1583static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587{
09cbfeaf 1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1589 unsigned long start_index = index;
09cbfeaf 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
d397712b 1603 while (nrpages > 0) {
c8b97818 1604 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
771ed689 1617 if (pages[i] != locked_page) {
c8b97818 1618 lock_page(pages[i]);
f2b1c41c
CM
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
09cbfeaf 1623 put_page(pages[i]);
771ed689
CM
1624 goto done;
1625 }
1626 }
09cbfeaf 1627 put_page(pages[i]);
771ed689 1628 pages_locked++;
c8b97818 1629 }
c8b97818
CM
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1640 PAGE_SHIFT);
c8b97818
CM
1641 }
1642 return ret;
1643}
1644
1645/*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
294e30fe
JB
1651STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
c8b97818
CM
1655{
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
9655d298 1659 struct extent_state *cached_state = NULL;
c8b97818
CM
1660 int ret;
1661 int loops = 0;
1662
1663again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1668 max_bytes, &cached_state);
70b99e69 1669 if (!found || delalloc_end <= *start) {
c8b97818
CM
1670 *start = delalloc_start;
1671 *end = delalloc_end;
c2a128d2 1672 free_extent_state(cached_state);
385fe0be 1673 return 0;
c8b97818
CM
1674 }
1675
70b99e69
CM
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
d397712b 1681 if (delalloc_start < *start)
70b99e69 1682 delalloc_start = *start;
70b99e69 1683
c8b97818
CM
1684 /*
1685 * make sure to limit the number of pages we try to lock down
c8b97818 1686 */
7bf811a5
JB
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1689
c8b97818
CM
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
9655d298 1697 free_extent_state(cached_state);
7d788742 1698 cached_state = NULL;
c8b97818 1699 if (!loops) {
09cbfeaf 1700 max_bytes = PAGE_SIZE;
c8b97818
CM
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
79787eaa 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1709
1710 /* step three, lock the state bits for the whole range */
ff13db41 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1715 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1716 if (!ret) {
9655d298
CM
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
c8b97818
CM
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
9655d298 1724 free_extent_state(cached_state);
c8b97818
CM
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727out_failed:
1728 return found;
1729}
1730
a9d93e17 1731void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1732 struct page *locked_page,
9ee49a04 1733 unsigned clear_bits,
c2790a2e 1734 unsigned long page_ops)
c8b97818 1735{
c2790a2e 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1737 int ret;
1738 struct page *pages[16];
09cbfeaf
KS
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
771ed689 1743
2c64c53d 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1745 if (page_ops == 0)
a9d93e17 1746 return;
c8b97818 1747
704de49d
FM
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
d397712b 1751 while (nr_pages > 0) {
c8b97818 1752 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1755 for (i = 0; i < ret; i++) {
8b62b72b 1756
c2790a2e 1757 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1758 SetPagePrivate2(pages[i]);
1759
c8b97818 1760 if (pages[i] == locked_page) {
09cbfeaf 1761 put_page(pages[i]);
c8b97818
CM
1762 continue;
1763 }
c2790a2e 1764 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1765 clear_page_dirty_for_io(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1767 set_page_writeback(pages[i]);
704de49d
FM
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
c2790a2e 1770 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1771 end_page_writeback(pages[i]);
c2790a2e 1772 if (page_ops & PAGE_UNLOCK)
771ed689 1773 unlock_page(pages[i]);
09cbfeaf 1774 put_page(pages[i]);
c8b97818
CM
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
c8b97818 1780}
c8b97818 1781
d352ac68
CM
1782/*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
d1310b2e
CM
1787u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1789 unsigned bits, int contig)
d1310b2e
CM
1790{
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
ec29ed5b 1795 u64 last = 0;
d1310b2e
CM
1796 int found = 0;
1797
fae7f21c 1798 if (WARN_ON(search_end <= cur_start))
d1310b2e 1799 return 0;
d1310b2e 1800
cad321ad 1801 spin_lock(&tree->lock);
d1310b2e
CM
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
80ea96b1 1810 node = tree_search(tree, cur_start);
d397712b 1811 if (!node)
d1310b2e 1812 goto out;
d1310b2e 1813
d397712b 1814 while (1) {
d1310b2e
CM
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
ec29ed5b
CM
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
af60bed2 1826 *start = max(cur_start, state->start);
d1310b2e
CM
1827 found = 1;
1828 }
ec29ed5b
CM
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
d1310b2e
CM
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837out:
cad321ad 1838 spin_unlock(&tree->lock);
d1310b2e
CM
1839 return total_bytes;
1840}
b2950863 1841
d352ac68
CM
1842/*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
f827ba9a 1846static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record *failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 state->failrec = failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
f827ba9a 1874static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1875 struct io_failure_record **failrec)
d1310b2e
CM
1876{
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
cad321ad 1881 spin_lock(&tree->lock);
d1310b2e
CM
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
80ea96b1 1886 node = tree_search(tree, start);
2b114d1d 1887 if (!node) {
d1310b2e
CM
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
47dc196a 1896 *failrec = state->failrec;
d1310b2e 1897out:
cad321ad 1898 spin_unlock(&tree->lock);
d1310b2e
CM
1899 return ret;
1900}
1901
1902/*
1903 * searches a range in the state tree for a given mask.
70dec807 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1909 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1910{
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
d1310b2e 1914
cad321ad 1915 spin_lock(&tree->lock);
27a3507d 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1917 cached->end > start)
9655d298
CM
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
d1310b2e
CM
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
46562cec
CM
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
d1310b2e
CM
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
cad321ad 1954 spin_unlock(&tree->lock);
d1310b2e
CM
1955 return bitset;
1956}
d1310b2e
CM
1957
1958/*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
143bede5 1962static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1963{
4eee4fa4 1964 u64 start = page_offset(page);
09cbfeaf 1965 u64 end = start + PAGE_SIZE - 1;
9655d298 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1967 SetPageUptodate(page);
d1310b2e
CM
1968}
1969
8b110e39 1970int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1971{
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
47dc196a 1976 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
91166212 1979 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1980 if (ret)
1981 err = ret;
1982
53b381b3
DW
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
91166212 1985 EXTENT_DAMAGED);
53b381b3
DW
1986 if (ret && !err)
1987 err = ret;
4a54c8c1
JS
1988
1989 kfree(rec);
1990 return err;
1991}
1992
4a54c8c1
JS
1993/*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
3ec706c8 1998 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
1203b681
MX
2003int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2005{
1203b681 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2007 struct bio *bio;
2008 struct btrfs_device *dev;
4a54c8c1
JS
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
53b381b3 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2013 int ret;
2014
908960c6 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2016 BUG_ON(!mirror_num);
2017
53b381b3
DW
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
9be3395b 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2023 if (!bio)
2024 return -EIO;
4f024f37 2025 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2026 map_length = length;
2027
3ec706c8 2028 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2029 &map_length, &bbio, mirror_num);
2030 if (ret) {
2031 bio_put(bio);
2032 return -EIO;
2033 }
2034 BUG_ON(mirror_num != bbio->mirror_num);
2035 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2036 bio->bi_iter.bi_sector = sector;
4a54c8c1 2037 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2038 btrfs_put_bbio(bbio);
4a54c8c1
JS
2039 if (!dev || !dev->bdev || !dev->writeable) {
2040 bio_put(bio);
2041 return -EIO;
2042 }
2043 bio->bi_bdev = dev->bdev;
ffdd2018 2044 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2045
33879d45 2046 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2047 /* try to remap that extent elsewhere? */
2048 bio_put(bio);
442a4f63 2049 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2050 return -EIO;
2051 }
2052
b14af3b4
DS
2053 btrfs_info_rl_in_rcu(fs_info,
2054 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2055 btrfs_ino(inode), start,
2056 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2057 bio_put(bio);
2058 return 0;
2059}
2060
ea466794
JB
2061int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2062 int mirror_num)
2063{
ea466794
JB
2064 u64 start = eb->start;
2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2066 int ret = 0;
ea466794 2067
908960c6
ID
2068 if (root->fs_info->sb->s_flags & MS_RDONLY)
2069 return -EROFS;
2070
ea466794 2071 for (i = 0; i < num_pages; i++) {
fb85fc9a 2072 struct page *p = eb->pages[i];
1203b681
MX
2073
2074 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2075 PAGE_SIZE, start, p,
1203b681 2076 start - page_offset(p), mirror_num);
ea466794
JB
2077 if (ret)
2078 break;
09cbfeaf 2079 start += PAGE_SIZE;
ea466794
JB
2080 }
2081
2082 return ret;
2083}
2084
4a54c8c1
JS
2085/*
2086 * each time an IO finishes, we do a fast check in the IO failure tree
2087 * to see if we need to process or clean up an io_failure_record
2088 */
8b110e39
MX
2089int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2090 unsigned int pg_offset)
4a54c8c1
JS
2091{
2092 u64 private;
4a54c8c1 2093 struct io_failure_record *failrec;
908960c6 2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2095 struct extent_state *state;
2096 int num_copies;
4a54c8c1 2097 int ret;
4a54c8c1
JS
2098
2099 private = 0;
2100 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101 (u64)-1, 1, EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
47dc196a
DS
2105 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2106 &failrec);
4a54c8c1
JS
2107 if (ret)
2108 return 0;
2109
4a54c8c1
JS
2110 BUG_ON(!failrec->this_mirror);
2111
2112 if (failrec->in_validation) {
2113 /* there was no real error, just free the record */
2114 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2115 failrec->start);
4a54c8c1
JS
2116 goto out;
2117 }
908960c6
ID
2118 if (fs_info->sb->s_flags & MS_RDONLY)
2119 goto out;
4a54c8c1
JS
2120
2121 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2122 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2123 failrec->start,
2124 EXTENT_LOCKED);
2125 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2126
883d0de4
MX
2127 if (state && state->start <= failrec->start &&
2128 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2129 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 failrec->len);
4a54c8c1 2131 if (num_copies > 1) {
1203b681 2132 repair_io_failure(inode, start, failrec->len,
454ff3de 2133 failrec->logical, page,
1203b681 2134 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2135 }
2136 }
2137
2138out:
454ff3de 2139 free_io_failure(inode, failrec);
4a54c8c1 2140
454ff3de 2141 return 0;
4a54c8c1
JS
2142}
2143
f612496b
MX
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2151{
2152 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2153 struct io_failure_record *failrec;
2154 struct extent_state *state, *next;
2155
2156 if (RB_EMPTY_ROOT(&failure_tree->state))
2157 return;
2158
2159 spin_lock(&failure_tree->lock);
2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 while (state) {
2162 if (state->start > end)
2163 break;
2164
2165 ASSERT(state->end <= end);
2166
2167 next = next_state(state);
2168
47dc196a 2169 failrec = state->failrec;
f612496b
MX
2170 free_extent_state(state);
2171 kfree(failrec);
2172
2173 state = next;
2174 }
2175 spin_unlock(&failure_tree->lock);
2176}
2177
2fe6303e 2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2179 struct io_failure_record **failrec_ret)
4a54c8c1 2180{
2fe6303e 2181 struct io_failure_record *failrec;
4a54c8c1 2182 struct extent_map *em;
4a54c8c1
JS
2183 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2184 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2185 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2186 int ret;
4a54c8c1
JS
2187 u64 logical;
2188
47dc196a 2189 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2190 if (ret) {
2191 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2192 if (!failrec)
2193 return -ENOMEM;
2fe6303e 2194
4a54c8c1
JS
2195 failrec->start = start;
2196 failrec->len = end - start + 1;
2197 failrec->this_mirror = 0;
2198 failrec->bio_flags = 0;
2199 failrec->in_validation = 0;
2200
2201 read_lock(&em_tree->lock);
2202 em = lookup_extent_mapping(em_tree, start, failrec->len);
2203 if (!em) {
2204 read_unlock(&em_tree->lock);
2205 kfree(failrec);
2206 return -EIO;
2207 }
2208
68ba990f 2209 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2210 free_extent_map(em);
2211 em = NULL;
2212 }
2213 read_unlock(&em_tree->lock);
7a2d6a64 2214 if (!em) {
4a54c8c1
JS
2215 kfree(failrec);
2216 return -EIO;
2217 }
2fe6303e 2218
4a54c8c1
JS
2219 logical = start - em->start;
2220 logical = em->block_start + logical;
2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222 logical = em->block_start;
2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224 extent_set_compress_type(&failrec->bio_flags,
2225 em->compress_type);
2226 }
2fe6303e
MX
2227
2228 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2229 logical, start, failrec->len);
2230
4a54c8c1
JS
2231 failrec->logical = logical;
2232 free_extent_map(em);
2233
2234 /* set the bits in the private failure tree */
2235 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2236 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2237 if (ret >= 0)
47dc196a 2238 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2239 /* set the bits in the inode's tree */
2240 if (ret >= 0)
ceeb0ae7 2241 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2fe6303e 2247 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2fe6303e
MX
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260}
2261
2262int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264{
2265 int num_copies;
2266
5d964051
SB
2267 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2268 failrec->logical, failrec->len);
4a54c8c1
JS
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
2fe6303e 2275 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2276 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2277 return 0;
4a54c8c1
JS
2278 }
2279
4a54c8c1
JS
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
4a54c8c1
JS
2312 }
2313
facc8a22 2314 if (failrec->this_mirror > num_copies) {
2fe6303e 2315 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2316 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2317 return 0;
4a54c8c1
JS
2318 }
2319
2fe6303e
MX
2320 return 1;
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
8b110e39 2327 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2328{
2329 struct bio *bio;
2330 struct btrfs_io_bio *btrfs_failed_bio;
2331 struct btrfs_io_bio *btrfs_bio;
2332
9be3395b 2333 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2334 if (!bio)
2335 return NULL;
2336
2337 bio->bi_end_io = endio_func;
4f024f37 2338 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2339 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2340 bio->bi_iter.bi_size = 0;
8b110e39 2341 bio->bi_private = data;
4a54c8c1 2342
facc8a22
MX
2343 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2344 if (btrfs_failed_bio->csum) {
2345 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2346 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2347
2348 btrfs_bio = btrfs_io_bio(bio);
2349 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2350 icsum *= csum_size;
2351 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2352 csum_size);
2353 }
2354
2fe6303e
MX
2355 bio_add_page(bio, page, failrec->len, pg_offset);
2356
2357 return bio;
2358}
2359
2360/*
2361 * this is a generic handler for readpage errors (default
2362 * readpage_io_failed_hook). if other copies exist, read those and write back
2363 * good data to the failed position. does not investigate in remapping the
2364 * failed extent elsewhere, hoping the device will be smart enough to do this as
2365 * needed
2366 */
2367
2368static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2369 struct page *page, u64 start, u64 end,
2370 int failed_mirror)
2371{
2372 struct io_failure_record *failrec;
2373 struct inode *inode = page->mapping->host;
2374 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2375 struct bio *bio;
2376 int read_mode;
2377 int ret;
2378
2379 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
2385 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2386 if (!ret) {
2387 free_io_failure(inode, failrec);
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
2392 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2393 else
2394 read_mode = READ_SYNC;
2395
2396 phy_offset >>= inode->i_sb->s_blocksize_bits;
2397 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2398 start - page_offset(page),
8b110e39
MX
2399 (int)phy_offset, failed_bio->bi_end_io,
2400 NULL);
2fe6303e
MX
2401 if (!bio) {
2402 free_io_failure(inode, failrec);
2403 return -EIO;
2404 }
4a54c8c1 2405
2fe6303e
MX
2406 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2407 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2408
013bd4c3
TI
2409 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2410 failrec->this_mirror,
2411 failrec->bio_flags, 0);
6c387ab2 2412 if (ret) {
454ff3de 2413 free_io_failure(inode, failrec);
6c387ab2
MX
2414 bio_put(bio);
2415 }
2416
013bd4c3 2417 return ret;
4a54c8c1
JS
2418}
2419
d1310b2e
CM
2420/* lots and lots of room for performance fixes in the end_bio funcs */
2421
b5227c07 2422void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2423{
2424 int uptodate = (err == 0);
2425 struct extent_io_tree *tree;
3e2426bd 2426 int ret = 0;
87826df0
JM
2427
2428 tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
2430 if (tree->ops && tree->ops->writepage_end_io_hook) {
2431 ret = tree->ops->writepage_end_io_hook(page, start,
2432 end, NULL, uptodate);
2433 if (ret)
2434 uptodate = 0;
2435 }
2436
87826df0 2437 if (!uptodate) {
87826df0
JM
2438 ClearPageUptodate(page);
2439 SetPageError(page);
5dca6eea
LB
2440 ret = ret < 0 ? ret : -EIO;
2441 mapping_set_error(page->mapping, ret);
87826df0 2442 }
87826df0
JM
2443}
2444
d1310b2e
CM
2445/*
2446 * after a writepage IO is done, we need to:
2447 * clear the uptodate bits on error
2448 * clear the writeback bits in the extent tree for this IO
2449 * end_page_writeback if the page has no more pending IO
2450 *
2451 * Scheduling is not allowed, so the extent state tree is expected
2452 * to have one and only one object corresponding to this IO.
2453 */
4246a0b6 2454static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2455{
2c30c71b 2456 struct bio_vec *bvec;
d1310b2e
CM
2457 u64 start;
2458 u64 end;
2c30c71b 2459 int i;
d1310b2e 2460
2c30c71b 2461 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2462 struct page *page = bvec->bv_page;
902b22f3 2463
17a5adcc
AO
2464 /* We always issue full-page reads, but if some block
2465 * in a page fails to read, blk_update_request() will
2466 * advance bv_offset and adjust bv_len to compensate.
2467 * Print a warning for nonzero offsets, and an error
2468 * if they don't add up to a full page. */
09cbfeaf
KS
2469 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2470 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2471 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2472 "partial page write in btrfs with offset %u and length %u",
2473 bvec->bv_offset, bvec->bv_len);
2474 else
2475 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2476 "incomplete page write in btrfs with offset %u and "
2477 "length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 }
d1310b2e 2480
17a5adcc
AO
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2483
b5227c07 2484 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2485 end_page_writeback(page);
2c30c71b 2486 }
2b1f55b0 2487
d1310b2e 2488 bio_put(bio);
d1310b2e
CM
2489}
2490
883d0de4
MX
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494{
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
d1310b2e
CM
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
4246a0b6 2514static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2515{
2c30c71b 2516 struct bio_vec *bvec;
4246a0b6 2517 int uptodate = !bio->bi_error;
facc8a22 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2519 struct extent_io_tree *tree;
facc8a22 2520 u64 offset = 0;
d1310b2e
CM
2521 u64 start;
2522 u64 end;
facc8a22 2523 u64 len;
883d0de4
MX
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
5cf1ab56 2526 int mirror;
d1310b2e 2527 int ret;
2c30c71b 2528 int i;
d1310b2e 2529
2c30c71b 2530 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2531 struct page *page = bvec->bv_page;
a71754fc 2532 struct inode *inode = page->mapping->host;
507903b8 2533
be3940c0 2534 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2535 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2536 bio->bi_error, io_bio->mirror_num);
a71754fc 2537 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2538
17a5adcc
AO
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
09cbfeaf
KS
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2546 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
2548 bvec->bv_offset, bvec->bv_len);
2549 else
2550 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2551 "incomplete page read in btrfs with offset %u and "
2552 "length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 }
d1310b2e 2555
17a5adcc
AO
2556 start = page_offset(page);
2557 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2558 len = bvec->bv_len;
d1310b2e 2559
9be3395b 2560 mirror = io_bio->mirror_num;
f2a09da9
MX
2561 if (likely(uptodate && tree->ops &&
2562 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2563 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2564 page, start, end,
2565 mirror);
5ee0844d 2566 if (ret)
d1310b2e 2567 uptodate = 0;
5ee0844d 2568 else
1203b681 2569 clean_io_failure(inode, start, page, 0);
d1310b2e 2570 }
ea466794 2571
f2a09da9
MX
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
2575 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2577 if (!ret && !bio->bi_error)
ea466794 2578 uptodate = 1;
f2a09da9 2579 } else {
f4a8e656
JS
2580 /*
2581 * The generic bio_readpage_error handles errors the
2582 * following way: If possible, new read requests are
2583 * created and submitted and will end up in
2584 * end_bio_extent_readpage as well (if we're lucky, not
2585 * in the !uptodate case). In that case it returns 0 and
2586 * we just go on with the next page in our bio. If it
2587 * can't handle the error it will return -EIO and we
2588 * remain responsible for that page.
2589 */
facc8a22
MX
2590 ret = bio_readpage_error(bio, offset, page, start, end,
2591 mirror);
7e38326f 2592 if (ret == 0) {
4246a0b6 2593 uptodate = !bio->bi_error;
38c1c2e4 2594 offset += len;
7e38326f
CM
2595 continue;
2596 }
2597 }
f2a09da9 2598readpage_ok:
883d0de4 2599 if (likely(uptodate)) {
a71754fc 2600 loff_t i_size = i_size_read(inode);
09cbfeaf 2601 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2602 unsigned off;
a71754fc
JB
2603
2604 /* Zero out the end if this page straddles i_size */
09cbfeaf 2605 off = i_size & (PAGE_SIZE-1);
a583c026 2606 if (page->index == end_index && off)
09cbfeaf 2607 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2608 SetPageUptodate(page);
70dec807 2609 } else {
17a5adcc
AO
2610 ClearPageUptodate(page);
2611 SetPageError(page);
70dec807 2612 }
17a5adcc 2613 unlock_page(page);
facc8a22 2614 offset += len;
883d0de4
MX
2615
2616 if (unlikely(!uptodate)) {
2617 if (extent_len) {
2618 endio_readpage_release_extent(tree,
2619 extent_start,
2620 extent_len, 1);
2621 extent_start = 0;
2622 extent_len = 0;
2623 }
2624 endio_readpage_release_extent(tree, start,
2625 end - start + 1, 0);
2626 } else if (!extent_len) {
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 } else if (extent_start + extent_len == start) {
2630 extent_len += end + 1 - start;
2631 } else {
2632 endio_readpage_release_extent(tree, extent_start,
2633 extent_len, uptodate);
2634 extent_start = start;
2635 extent_len = end + 1 - start;
2636 }
2c30c71b 2637 }
d1310b2e 2638
883d0de4
MX
2639 if (extent_len)
2640 endio_readpage_release_extent(tree, extent_start, extent_len,
2641 uptodate);
facc8a22 2642 if (io_bio->end_io)
4246a0b6 2643 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2644 bio_put(bio);
d1310b2e
CM
2645}
2646
9be3395b
CM
2647/*
2648 * this allocates from the btrfs_bioset. We're returning a bio right now
2649 * but you can call btrfs_io_bio for the appropriate container_of magic
2650 */
88f794ed
MX
2651struct bio *
2652btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2653 gfp_t gfp_flags)
d1310b2e 2654{
facc8a22 2655 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2656 struct bio *bio;
2657
9be3395b 2658 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2659
2660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2661 while (!bio && (nr_vecs /= 2)) {
2662 bio = bio_alloc_bioset(gfp_flags,
2663 nr_vecs, btrfs_bioset);
2664 }
d1310b2e
CM
2665 }
2666
2667 if (bio) {
2668 bio->bi_bdev = bdev;
4f024f37 2669 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2670 btrfs_bio = btrfs_io_bio(bio);
2671 btrfs_bio->csum = NULL;
2672 btrfs_bio->csum_allocated = NULL;
2673 btrfs_bio->end_io = NULL;
d1310b2e
CM
2674 }
2675 return bio;
2676}
2677
9be3395b
CM
2678struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679{
23ea8e5a
MX
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
9be3395b 2682
23ea8e5a
MX
2683 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2684 if (new) {
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_bio->csum = NULL;
2687 btrfs_bio->csum_allocated = NULL;
2688 btrfs_bio->end_io = NULL;
3a9508b0
CM
2689
2690#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2691 /* FIXME, put this into bio_clone_bioset */
2692 if (bio->bi_css)
2693 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2694#endif
23ea8e5a
MX
2695 }
2696 return new;
2697}
9be3395b
CM
2698
2699/* this also allocates from the btrfs_bioset */
2700struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2701{
facc8a22
MX
2702 struct btrfs_io_bio *btrfs_bio;
2703 struct bio *bio;
2704
2705 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2706 if (bio) {
2707 btrfs_bio = btrfs_io_bio(bio);
2708 btrfs_bio->csum = NULL;
2709 btrfs_bio->csum_allocated = NULL;
2710 btrfs_bio->end_io = NULL;
2711 }
2712 return bio;
9be3395b
CM
2713}
2714
2715
355808c2
JM
2716static int __must_check submit_one_bio(int rw, struct bio *bio,
2717 int mirror_num, unsigned long bio_flags)
d1310b2e 2718{
d1310b2e 2719 int ret = 0;
70dec807
CM
2720 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2721 struct page *page = bvec->bv_page;
2722 struct extent_io_tree *tree = bio->bi_private;
70dec807 2723 u64 start;
70dec807 2724
4eee4fa4 2725 start = page_offset(page) + bvec->bv_offset;
70dec807 2726
902b22f3 2727 bio->bi_private = NULL;
d1310b2e
CM
2728
2729 bio_get(bio);
2730
065631f6 2731 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2732 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2733 mirror_num, bio_flags, start);
0b86a832 2734 else
21adbd5c 2735 btrfsic_submit_bio(rw, bio);
4a54c8c1 2736
d1310b2e
CM
2737 bio_put(bio);
2738 return ret;
2739}
2740
64a16701 2741static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2742 unsigned long offset, size_t size, struct bio *bio,
2743 unsigned long bio_flags)
2744{
2745 int ret = 0;
2746 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2747 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2748 bio_flags);
2749 BUG_ON(ret < 0);
2750 return ret;
2751
2752}
2753
d1310b2e 2754static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2755 struct writeback_control *wbc,
d1310b2e
CM
2756 struct page *page, sector_t sector,
2757 size_t size, unsigned long offset,
2758 struct block_device *bdev,
2759 struct bio **bio_ret,
2760 unsigned long max_pages,
f188591e 2761 bio_end_io_t end_io_func,
c8b97818
CM
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
005efedf
FM
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
d1310b2e
CM
2766{
2767 int ret = 0;
2768 struct bio *bio;
c8b97818 2769 int contig = 0;
c8b97818 2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
c8b97818 2775 if (old_compressed)
4f024f37 2776 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2777 else
f73a1c7d 2778 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2781 force_bio_submit ||
64a16701 2782 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2783 bio_add_page(bio, page, page_size, offset) < page_size) {
2784 ret = submit_one_bio(rw, bio, mirror_num,
2785 prev_bio_flags);
289454ad
NA
2786 if (ret < 0) {
2787 *bio_ret = NULL;
79787eaa 2788 return ret;
289454ad 2789 }
d1310b2e
CM
2790 bio = NULL;
2791 } else {
da2f0f74
CM
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2794 return 0;
2795 }
2796 }
c8b97818 2797
b54ffb73
KO
2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2800 if (!bio)
2801 return -ENOMEM;
70dec807 2802
c8b97818 2803 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2804 bio->bi_end_io = end_io_func;
2805 bio->bi_private = tree;
da2f0f74
CM
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
70dec807 2810
d397712b 2811 if (bio_ret)
d1310b2e 2812 *bio_ret = bio;
d397712b 2813 else
c8b97818 2814 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2815
2816 return ret;
2817}
2818
48a3b636
ES
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
d1310b2e
CM
2821{
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
09cbfeaf 2824 get_page(page);
4f2de97a
JB
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2828 }
2829}
2830
4f2de97a 2831void set_page_extent_mapped(struct page *page)
d1310b2e 2832{
4f2de97a
JB
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
09cbfeaf 2835 get_page(page);
4f2de97a
JB
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
d1310b2e
CM
2838}
2839
125bac01
MX
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844{
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
cbc0e928 2849 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
2859 em = get_extent(inode, page, pg_offset, start, len, 0);
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866}
d1310b2e
CM
2867/*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
79787eaa 2871 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2872 */
9974090b
MX
2873static int __do_readpage(struct extent_io_tree *tree,
2874 struct page *page,
2875 get_extent_t *get_extent,
125bac01 2876 struct extent_map **em_cached,
9974090b 2877 struct bio **bio, int mirror_num,
005efedf
FM
2878 unsigned long *bio_flags, int rw,
2879 u64 *prev_em_start)
d1310b2e
CM
2880{
2881 struct inode *inode = page->mapping->host;
4eee4fa4 2882 u64 start = page_offset(page);
09cbfeaf 2883 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2884 u64 end;
2885 u64 cur = start;
2886 u64 extent_offset;
2887 u64 last_byte = i_size_read(inode);
2888 u64 block_start;
2889 u64 cur_end;
2890 sector_t sector;
2891 struct extent_map *em;
2892 struct block_device *bdev;
2893 int ret;
2894 int nr = 0;
306e16ce 2895 size_t pg_offset = 0;
d1310b2e 2896 size_t iosize;
c8b97818 2897 size_t disk_io_size;
d1310b2e 2898 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2899 unsigned long this_bio_flag = 0;
d1310b2e
CM
2900
2901 set_page_extent_mapped(page);
2902
9974090b 2903 end = page_end;
90a887c9
DM
2904 if (!PageUptodate(page)) {
2905 if (cleancache_get_page(page) == 0) {
2906 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2907 unlock_extent(tree, start, end);
90a887c9
DM
2908 goto out;
2909 }
2910 }
2911
09cbfeaf 2912 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2913 char *userpage;
09cbfeaf 2914 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2915
2916 if (zero_offset) {
09cbfeaf 2917 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2918 userpage = kmap_atomic(page);
c8b97818
CM
2919 memset(userpage + zero_offset, 0, iosize);
2920 flush_dcache_page(page);
7ac687d9 2921 kunmap_atomic(userpage);
c8b97818
CM
2922 }
2923 }
d1310b2e 2924 while (cur <= end) {
09cbfeaf 2925 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2926 bool force_bio_submit = false;
c8f2f24b 2927
d1310b2e
CM
2928 if (cur >= last_byte) {
2929 char *userpage;
507903b8
AJ
2930 struct extent_state *cached = NULL;
2931
09cbfeaf 2932 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2933 userpage = kmap_atomic(page);
306e16ce 2934 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2935 flush_dcache_page(page);
7ac687d9 2936 kunmap_atomic(userpage);
d1310b2e 2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2938 &cached, GFP_NOFS);
7f042a83
FM
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
d1310b2e
CM
2942 break;
2943 }
125bac01
MX
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
c704005d 2946 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2947 SetPageError(page);
7f042a83 2948 unlock_extent(tree, cur, end);
d1310b2e
CM
2949 break;
2950 }
d1310b2e
CM
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
261507a0 2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
c8b97818 2960
d1310b2e
CM
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2963 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
d1310b2e
CM
2971 bdev = em->bdev;
2972 block_start = em->block_start;
d899e052
YZ
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
d1310b2e
CM
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
507903b8
AJ
3024 struct extent_state *cached = NULL;
3025
7ac687d9 3026 userpage = kmap_atomic(page);
306e16ce 3027 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3028 flush_dcache_page(page);
7ac687d9 3029 kunmap_atomic(userpage);
d1310b2e
CM
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3032 &cached, GFP_NOFS);
7f042a83
FM
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
d1310b2e 3036 cur = cur + iosize;
306e16ce 3037 pg_offset += iosize;
d1310b2e
CM
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
9655d298
CM
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3043 check_page_uptodate(tree, page);
7f042a83 3044 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3045 cur = cur + iosize;
306e16ce 3046 pg_offset += iosize;
d1310b2e
CM
3047 continue;
3048 }
70dec807
CM
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
7f042a83 3054 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3055 cur = cur + iosize;
306e16ce 3056 pg_offset += iosize;
70dec807
CM
3057 continue;
3058 }
d1310b2e 3059
c8f2f24b 3060 pnr -= page->index;
da2f0f74 3061 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3062 sector, disk_io_size, pg_offset,
89642229 3063 bdev, bio, pnr,
c8b97818
CM
3064 end_bio_extent_readpage, mirror_num,
3065 *bio_flags,
005efedf
FM
3066 this_bio_flag,
3067 force_bio_submit);
c8f2f24b
JB
3068 if (!ret) {
3069 nr++;
3070 *bio_flags = this_bio_flag;
3071 } else {
d1310b2e 3072 SetPageError(page);
7f042a83 3073 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3074 }
d1310b2e 3075 cur = cur + iosize;
306e16ce 3076 pg_offset += iosize;
d1310b2e 3077 }
90a887c9 3078out:
d1310b2e
CM
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
3084 return 0;
3085}
3086
9974090b
MX
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
125bac01 3091 struct extent_map **em_cached,
9974090b 3092 struct bio **bio, int mirror_num,
808f80b4
FM
3093 unsigned long *bio_flags, int rw,
3094 u64 *prev_em_start)
9974090b
MX
3095{
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
3103 ordered = btrfs_lookup_ordered_range(inode, start,
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
125bac01 3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3114 mirror_num, bio_flags, rw, prev_em_start);
09cbfeaf 3115 put_page(pages[index]);
9974090b
MX
3116 }
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
125bac01 3122 struct extent_map **em_cached,
9974090b 3123 struct bio **bio, int mirror_num,
808f80b4
FM
3124 unsigned long *bio_flags, int rw,
3125 u64 *prev_em_start)
9974090b 3126{
35a3621b 3127 u64 start = 0;
9974090b
MX
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
35a3621b 3131 int first_index = 0;
9974090b
MX
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
09cbfeaf 3137 end = start + PAGE_SIZE - 1;
9974090b
MX
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
09cbfeaf 3140 end += PAGE_SIZE;
9974090b
MX
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
125bac01
MX
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
808f80b4 3146 rw, prev_em_start);
9974090b 3147 start = page_start;
09cbfeaf 3148 end = start + PAGE_SIZE - 1;
9974090b
MX
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
125bac01 3156 end, get_extent, em_cached, bio,
808f80b4
FM
3157 mirror_num, bio_flags, rw,
3158 prev_em_start);
9974090b
MX
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
3165 unsigned long *bio_flags, int rw)
3166{
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
09cbfeaf 3170 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
dbfdb6d1 3175 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3176 PAGE_SIZE);
9974090b
MX
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
125bac01 3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3185 bio_flags, rw, NULL);
9974090b
MX
3186 return ret;
3187}
3188
d1310b2e 3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3190 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3191{
3192 struct bio *bio = NULL;
c8b97818 3193 unsigned long bio_flags = 0;
d1310b2e
CM
3194 int ret;
3195
8ddc7d9c 3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3197 &bio_flags, READ);
d1310b2e 3198 if (bio)
8ddc7d9c 3199 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3200 return ret;
3201}
d1310b2e 3202
a9132667
LB
3203static void update_nr_written(struct page *page, struct writeback_control *wbc,
3204 unsigned long nr_written)
11c8349b
CM
3205{
3206 wbc->nr_to_write -= nr_written;
11c8349b
CM
3207}
3208
d1310b2e 3209/*
40f76580
CM
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3211 *
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3215 *
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
d1310b2e 3218 */
40f76580
CM
3219static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3222 u64 delalloc_start,
3223 unsigned long *nr_written)
3224{
3225 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3227 u64 nr_delalloc;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3230 int ret;
3231 int page_started = 0;
3232
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 return 0;
3235
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 page,
3239 &delalloc_start,
3240 &delalloc_end,
dcab6a3b 3241 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3244 continue;
3245 }
3246 ret = tree->ops->fill_delalloc(inode, page,
3247 delalloc_start,
3248 delalloc_end,
3249 &page_started,
3250 nr_written);
3251 /* File system has been set read-only */
3252 if (ret) {
3253 SetPageError(page);
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3258 */
3259 ret = ret < 0 ? ret : -EIO;
3260 goto done;
3261 }
3262 /*
ea1754a0
KS
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
40f76580
CM
3265 */
3266 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3267 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3268 delalloc_start = delalloc_end + 1;
3269 }
3270 if (wbc->nr_to_write < delalloc_to_write) {
3271 int thresh = 8192;
3272
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 thresh);
3277 }
3278
3279 /* did the fill delalloc function already unlock and start
3280 * the IO?
3281 */
3282 if (page_started) {
3283 /*
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3286 * nr_to_write.
3287 */
3288 wbc->nr_to_write -= *nr_written;
3289 return 1;
3290 }
3291
3292 ret = 0;
3293
3294done:
3295 return ret;
3296}
3297
3298/*
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3301 *
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3305 */
3306static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 struct page *page,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3310 loff_t i_size,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
d1310b2e 3313{
d1310b2e 3314 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3315 u64 start = page_offset(page);
09cbfeaf 3316 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3317 u64 end;
3318 u64 cur = start;
3319 u64 extent_offset;
d1310b2e
CM
3320 u64 block_start;
3321 u64 iosize;
3322 sector_t sector;
2c64c53d 3323 struct extent_state *cached_state = NULL;
d1310b2e
CM
3324 struct extent_map *em;
3325 struct block_device *bdev;
7f3c74fb 3326 size_t pg_offset = 0;
d1310b2e 3327 size_t blocksize;
40f76580
CM
3328 int ret = 0;
3329 int nr = 0;
3330 bool compressed;
c8b97818 3331
247e743c 3332 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3333 ret = tree->ops->writepage_start_hook(page, start,
3334 page_end);
87826df0
JM
3335 if (ret) {
3336 /* Fixup worker will requeue */
3337 if (ret == -EBUSY)
3338 wbc->pages_skipped++;
3339 else
3340 redirty_page_for_writepage(wbc, page);
40f76580 3341
11c8349b 3342 update_nr_written(page, wbc, nr_written);
247e743c 3343 unlock_page(page);
40f76580 3344 ret = 1;
11c8349b 3345 goto done_unlocked;
247e743c
CM
3346 }
3347 }
3348
11c8349b
CM
3349 /*
3350 * we don't want to touch the inode after unlocking the page,
3351 * so we update the mapping writeback index now
3352 */
3353 update_nr_written(page, wbc, nr_written + 1);
771ed689 3354
d1310b2e 3355 end = page_end;
40f76580 3356 if (i_size <= start) {
e6dcd2dc
CM
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, start,
3359 page_end, NULL, 1);
d1310b2e
CM
3360 goto done;
3361 }
3362
d1310b2e
CM
3363 blocksize = inode->i_sb->s_blocksize;
3364
3365 while (cur <= end) {
40f76580 3366 u64 em_end;
58409edd
DS
3367 unsigned long max_nr;
3368
40f76580 3369 if (cur >= i_size) {
e6dcd2dc
CM
3370 if (tree->ops && tree->ops->writepage_end_io_hook)
3371 tree->ops->writepage_end_io_hook(page, cur,
3372 page_end, NULL, 1);
d1310b2e
CM
3373 break;
3374 }
7f3c74fb 3375 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3376 end - cur + 1, 1);
c704005d 3377 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3378 SetPageError(page);
61391d56 3379 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3380 break;
3381 }
3382
3383 extent_offset = cur - em->start;
40f76580
CM
3384 em_end = extent_map_end(em);
3385 BUG_ON(em_end <= cur);
d1310b2e 3386 BUG_ON(end < cur);
40f76580 3387 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3388 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3389 sector = (em->block_start + extent_offset) >> 9;
3390 bdev = em->bdev;
3391 block_start = em->block_start;
c8b97818 3392 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3393 free_extent_map(em);
3394 em = NULL;
3395
c8b97818
CM
3396 /*
3397 * compressed and inline extents are written through other
3398 * paths in the FS
3399 */
3400 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3401 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3402 /*
3403 * end_io notification does not happen here for
3404 * compressed extents
3405 */
3406 if (!compressed && tree->ops &&
3407 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3408 tree->ops->writepage_end_io_hook(page, cur,
3409 cur + iosize - 1,
3410 NULL, 1);
c8b97818
CM
3411 else if (compressed) {
3412 /* we don't want to end_page_writeback on
3413 * a compressed extent. this happens
3414 * elsewhere
3415 */
3416 nr++;
3417 }
3418
3419 cur += iosize;
7f3c74fb 3420 pg_offset += iosize;
d1310b2e
CM
3421 continue;
3422 }
c8b97818 3423
58409edd
DS
3424 max_nr = (i_size >> PAGE_SHIFT) + 1;
3425
3426 set_range_writeback(tree, cur, cur + iosize - 1);
3427 if (!PageWriteback(page)) {
3428 btrfs_err(BTRFS_I(inode)->root->fs_info,
3429 "page %lu not writeback, cur %llu end %llu",
3430 page->index, cur, end);
d1310b2e 3431 }
7f3c74fb 3432
58409edd
DS
3433 ret = submit_extent_page(write_flags, tree, wbc, page,
3434 sector, iosize, pg_offset,
3435 bdev, &epd->bio, max_nr,
3436 end_bio_extent_writepage,
3437 0, 0, 0, false);
3438 if (ret)
3439 SetPageError(page);
d1310b2e 3440
d1310b2e 3441 cur = cur + iosize;
7f3c74fb 3442 pg_offset += iosize;
d1310b2e
CM
3443 nr++;
3444 }
40f76580
CM
3445done:
3446 *nr_ret = nr;
3447
3448done_unlocked:
3449
3450 /* drop our reference on any cached states */
3451 free_extent_state(cached_state);
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 void *data)
3463{
3464 struct inode *inode = page->mapping->host;
3465 struct extent_page_data *epd = data;
3466 u64 start = page_offset(page);
09cbfeaf 3467 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3468 int ret;
3469 int nr = 0;
3470 size_t pg_offset = 0;
3471 loff_t i_size = i_size_read(inode);
09cbfeaf 3472 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3473 int write_flags;
3474 unsigned long nr_written = 0;
3475
3476 if (wbc->sync_mode == WB_SYNC_ALL)
3477 write_flags = WRITE_SYNC;
3478 else
3479 write_flags = WRITE;
3480
3481 trace___extent_writepage(page, inode, wbc);
3482
3483 WARN_ON(!PageLocked(page));
3484
3485 ClearPageError(page);
3486
09cbfeaf 3487 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3488 if (page->index > end_index ||
3489 (page->index == end_index && !pg_offset)) {
09cbfeaf 3490 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3491 unlock_page(page);
3492 return 0;
3493 }
3494
3495 if (page->index == end_index) {
3496 char *userpage;
3497
3498 userpage = kmap_atomic(page);
3499 memset(userpage + pg_offset, 0,
09cbfeaf 3500 PAGE_SIZE - pg_offset);
40f76580
CM
3501 kunmap_atomic(userpage);
3502 flush_dcache_page(page);
3503 }
3504
3505 pg_offset = 0;
3506
3507 set_page_extent_mapped(page);
3508
3509 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3510 if (ret == 1)
3511 goto done_unlocked;
3512 if (ret)
3513 goto done;
3514
3515 ret = __extent_writepage_io(inode, page, wbc, epd,
3516 i_size, nr_written, write_flags, &nr);
3517 if (ret == 1)
3518 goto done_unlocked;
3519
d1310b2e
CM
3520done:
3521 if (nr == 0) {
3522 /* make sure the mapping tag for page dirty gets cleared */
3523 set_page_writeback(page);
3524 end_page_writeback(page);
3525 }
61391d56
FM
3526 if (PageError(page)) {
3527 ret = ret < 0 ? ret : -EIO;
3528 end_extent_writepage(page, ret, start, page_end);
3529 }
d1310b2e 3530 unlock_page(page);
40f76580 3531 return ret;
771ed689 3532
11c8349b 3533done_unlocked:
d1310b2e
CM
3534 return 0;
3535}
3536
fd8b2b61 3537void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3538{
74316201
N
3539 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3540 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3541}
3542
0e378df1
CM
3543static noinline_for_stack int
3544lock_extent_buffer_for_io(struct extent_buffer *eb,
3545 struct btrfs_fs_info *fs_info,
3546 struct extent_page_data *epd)
0b32f4bb
JB
3547{
3548 unsigned long i, num_pages;
3549 int flush = 0;
3550 int ret = 0;
3551
3552 if (!btrfs_try_tree_write_lock(eb)) {
3553 flush = 1;
3554 flush_write_bio(epd);
3555 btrfs_tree_lock(eb);
3556 }
3557
3558 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3559 btrfs_tree_unlock(eb);
3560 if (!epd->sync_io)
3561 return 0;
3562 if (!flush) {
3563 flush_write_bio(epd);
3564 flush = 1;
3565 }
a098d8e8
CM
3566 while (1) {
3567 wait_on_extent_buffer_writeback(eb);
3568 btrfs_tree_lock(eb);
3569 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3570 break;
0b32f4bb 3571 btrfs_tree_unlock(eb);
0b32f4bb
JB
3572 }
3573 }
3574
51561ffe
JB
3575 /*
3576 * We need to do this to prevent races in people who check if the eb is
3577 * under IO since we can end up having no IO bits set for a short period
3578 * of time.
3579 */
3580 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3581 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3582 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3583 spin_unlock(&eb->refs_lock);
0b32f4bb 3584 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3585 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3586 -eb->len,
3587 fs_info->dirty_metadata_batch);
0b32f4bb 3588 ret = 1;
51561ffe
JB
3589 } else {
3590 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3591 }
3592
3593 btrfs_tree_unlock(eb);
3594
3595 if (!ret)
3596 return ret;
3597
3598 num_pages = num_extent_pages(eb->start, eb->len);
3599 for (i = 0; i < num_pages; i++) {
fb85fc9a 3600 struct page *p = eb->pages[i];
0b32f4bb
JB
3601
3602 if (!trylock_page(p)) {
3603 if (!flush) {
3604 flush_write_bio(epd);
3605 flush = 1;
3606 }
3607 lock_page(p);
3608 }
3609 }
3610
3611 return ret;
3612}
3613
3614static void end_extent_buffer_writeback(struct extent_buffer *eb)
3615{
3616 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3617 smp_mb__after_atomic();
0b32f4bb
JB
3618 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3619}
3620
656f30db
FM
3621static void set_btree_ioerr(struct page *page)
3622{
3623 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3624 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3625
3626 SetPageError(page);
3627 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3628 return;
3629
3630 /*
3631 * If writeback for a btree extent that doesn't belong to a log tree
3632 * failed, increment the counter transaction->eb_write_errors.
3633 * We do this because while the transaction is running and before it's
3634 * committing (when we call filemap_fdata[write|wait]_range against
3635 * the btree inode), we might have
3636 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3637 * returns an error or an error happens during writeback, when we're
3638 * committing the transaction we wouldn't know about it, since the pages
3639 * can be no longer dirty nor marked anymore for writeback (if a
3640 * subsequent modification to the extent buffer didn't happen before the
3641 * transaction commit), which makes filemap_fdata[write|wait]_range not
3642 * able to find the pages tagged with SetPageError at transaction
3643 * commit time. So if this happens we must abort the transaction,
3644 * otherwise we commit a super block with btree roots that point to
3645 * btree nodes/leafs whose content on disk is invalid - either garbage
3646 * or the content of some node/leaf from a past generation that got
3647 * cowed or deleted and is no longer valid.
3648 *
3649 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3650 * not be enough - we need to distinguish between log tree extents vs
3651 * non-log tree extents, and the next filemap_fdatawait_range() call
3652 * will catch and clear such errors in the mapping - and that call might
3653 * be from a log sync and not from a transaction commit. Also, checking
3654 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3655 * not done and would not be reliable - the eb might have been released
3656 * from memory and reading it back again means that flag would not be
3657 * set (since it's a runtime flag, not persisted on disk).
3658 *
3659 * Using the flags below in the btree inode also makes us achieve the
3660 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3661 * writeback for all dirty pages and before filemap_fdatawait_range()
3662 * is called, the writeback for all dirty pages had already finished
3663 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3664 * filemap_fdatawait_range() would return success, as it could not know
3665 * that writeback errors happened (the pages were no longer tagged for
3666 * writeback).
3667 */
3668 switch (eb->log_index) {
3669 case -1:
3670 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3671 break;
3672 case 0:
3673 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3674 break;
3675 case 1:
3676 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3677 break;
3678 default:
3679 BUG(); /* unexpected, logic error */
3680 }
3681}
3682
4246a0b6 3683static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3684{
2c30c71b 3685 struct bio_vec *bvec;
0b32f4bb 3686 struct extent_buffer *eb;
2c30c71b 3687 int i, done;
0b32f4bb 3688
2c30c71b 3689 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3690 struct page *page = bvec->bv_page;
3691
0b32f4bb
JB
3692 eb = (struct extent_buffer *)page->private;
3693 BUG_ON(!eb);
3694 done = atomic_dec_and_test(&eb->io_pages);
3695
4246a0b6
CH
3696 if (bio->bi_error ||
3697 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3698 ClearPageUptodate(page);
656f30db 3699 set_btree_ioerr(page);
0b32f4bb
JB
3700 }
3701
3702 end_page_writeback(page);
3703
3704 if (!done)
3705 continue;
3706
3707 end_extent_buffer_writeback(eb);
2c30c71b 3708 }
0b32f4bb
JB
3709
3710 bio_put(bio);
0b32f4bb
JB
3711}
3712
0e378df1 3713static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3714 struct btrfs_fs_info *fs_info,
3715 struct writeback_control *wbc,
3716 struct extent_page_data *epd)
3717{
3718 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3719 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3720 u64 offset = eb->start;
3721 unsigned long i, num_pages;
de0022b9 3722 unsigned long bio_flags = 0;
d4c7ca86 3723 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3724 int ret = 0;
0b32f4bb 3725
656f30db 3726 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3727 num_pages = num_extent_pages(eb->start, eb->len);
3728 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3729 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3730 bio_flags = EXTENT_BIO_TREE_LOG;
3731
0b32f4bb 3732 for (i = 0; i < num_pages; i++) {
fb85fc9a 3733 struct page *p = eb->pages[i];
0b32f4bb
JB
3734
3735 clear_page_dirty_for_io(p);
3736 set_page_writeback(p);
da2f0f74 3737 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
09cbfeaf 3738 PAGE_SIZE, 0, bdev, &epd->bio,
0b32f4bb 3739 -1, end_bio_extent_buffer_writepage,
005efedf 3740 0, epd->bio_flags, bio_flags, false);
de0022b9 3741 epd->bio_flags = bio_flags;
0b32f4bb 3742 if (ret) {
656f30db 3743 set_btree_ioerr(p);
55e3bd2e 3744 end_page_writeback(p);
0b32f4bb
JB
3745 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3746 end_extent_buffer_writeback(eb);
3747 ret = -EIO;
3748 break;
3749 }
09cbfeaf 3750 offset += PAGE_SIZE;
0b32f4bb
JB
3751 update_nr_written(p, wbc, 1);
3752 unlock_page(p);
3753 }
3754
3755 if (unlikely(ret)) {
3756 for (; i < num_pages; i++) {
bbf65cf0 3757 struct page *p = eb->pages[i];
81465028 3758 clear_page_dirty_for_io(p);
0b32f4bb
JB
3759 unlock_page(p);
3760 }
3761 }
3762
3763 return ret;
3764}
3765
3766int btree_write_cache_pages(struct address_space *mapping,
3767 struct writeback_control *wbc)
3768{
3769 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3770 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3771 struct extent_buffer *eb, *prev_eb = NULL;
3772 struct extent_page_data epd = {
3773 .bio = NULL,
3774 .tree = tree,
3775 .extent_locked = 0,
3776 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3777 .bio_flags = 0,
0b32f4bb
JB
3778 };
3779 int ret = 0;
3780 int done = 0;
3781 int nr_to_write_done = 0;
3782 struct pagevec pvec;
3783 int nr_pages;
3784 pgoff_t index;
3785 pgoff_t end; /* Inclusive */
3786 int scanned = 0;
3787 int tag;
3788
3789 pagevec_init(&pvec, 0);
3790 if (wbc->range_cyclic) {
3791 index = mapping->writeback_index; /* Start from prev offset */
3792 end = -1;
3793 } else {
09cbfeaf
KS
3794 index = wbc->range_start >> PAGE_SHIFT;
3795 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3796 scanned = 1;
3797 }
3798 if (wbc->sync_mode == WB_SYNC_ALL)
3799 tag = PAGECACHE_TAG_TOWRITE;
3800 else
3801 tag = PAGECACHE_TAG_DIRTY;
3802retry:
3803 if (wbc->sync_mode == WB_SYNC_ALL)
3804 tag_pages_for_writeback(mapping, index, end);
3805 while (!done && !nr_to_write_done && (index <= end) &&
3806 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3807 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3808 unsigned i;
3809
3810 scanned = 1;
3811 for (i = 0; i < nr_pages; i++) {
3812 struct page *page = pvec.pages[i];
3813
3814 if (!PagePrivate(page))
3815 continue;
3816
3817 if (!wbc->range_cyclic && page->index > end) {
3818 done = 1;
3819 break;
3820 }
3821
b5bae261
JB
3822 spin_lock(&mapping->private_lock);
3823 if (!PagePrivate(page)) {
3824 spin_unlock(&mapping->private_lock);
3825 continue;
3826 }
3827
0b32f4bb 3828 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3829
3830 /*
3831 * Shouldn't happen and normally this would be a BUG_ON
3832 * but no sense in crashing the users box for something
3833 * we can survive anyway.
3834 */
fae7f21c 3835 if (WARN_ON(!eb)) {
b5bae261 3836 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3837 continue;
3838 }
3839
b5bae261
JB
3840 if (eb == prev_eb) {
3841 spin_unlock(&mapping->private_lock);
0b32f4bb 3842 continue;
b5bae261 3843 }
0b32f4bb 3844
b5bae261
JB
3845 ret = atomic_inc_not_zero(&eb->refs);
3846 spin_unlock(&mapping->private_lock);
3847 if (!ret)
0b32f4bb 3848 continue;
0b32f4bb
JB
3849
3850 prev_eb = eb;
3851 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3852 if (!ret) {
3853 free_extent_buffer(eb);
3854 continue;
3855 }
3856
3857 ret = write_one_eb(eb, fs_info, wbc, &epd);
3858 if (ret) {
3859 done = 1;
3860 free_extent_buffer(eb);
3861 break;
3862 }
3863 free_extent_buffer(eb);
3864
3865 /*
3866 * the filesystem may choose to bump up nr_to_write.
3867 * We have to make sure to honor the new nr_to_write
3868 * at any time
3869 */
3870 nr_to_write_done = wbc->nr_to_write <= 0;
3871 }
3872 pagevec_release(&pvec);
3873 cond_resched();
3874 }
3875 if (!scanned && !done) {
3876 /*
3877 * We hit the last page and there is more work to be done: wrap
3878 * back to the start of the file
3879 */
3880 scanned = 1;
3881 index = 0;
3882 goto retry;
3883 }
3884 flush_write_bio(&epd);
3885 return ret;
3886}
3887
d1310b2e 3888/**
4bef0848 3889 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3890 * @mapping: address space structure to write
3891 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3892 * @writepage: function called for each page
3893 * @data: data passed to writepage function
3894 *
3895 * If a page is already under I/O, write_cache_pages() skips it, even
3896 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3897 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3898 * and msync() need to guarantee that all the data which was dirty at the time
3899 * the call was made get new I/O started against them. If wbc->sync_mode is
3900 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3901 * existing IO to complete.
3902 */
b2950863 3903static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3904 struct address_space *mapping,
3905 struct writeback_control *wbc,
d2c3f4f6
CM
3906 writepage_t writepage, void *data,
3907 void (*flush_fn)(void *))
d1310b2e 3908{
7fd1a3f7 3909 struct inode *inode = mapping->host;
d1310b2e
CM
3910 int ret = 0;
3911 int done = 0;
f85d7d6c 3912 int nr_to_write_done = 0;
d1310b2e
CM
3913 struct pagevec pvec;
3914 int nr_pages;
3915 pgoff_t index;
3916 pgoff_t end; /* Inclusive */
a9132667
LB
3917 pgoff_t done_index;
3918 int range_whole = 0;
d1310b2e 3919 int scanned = 0;
f7aaa06b 3920 int tag;
d1310b2e 3921
7fd1a3f7
JB
3922 /*
3923 * We have to hold onto the inode so that ordered extents can do their
3924 * work when the IO finishes. The alternative to this is failing to add
3925 * an ordered extent if the igrab() fails there and that is a huge pain
3926 * to deal with, so instead just hold onto the inode throughout the
3927 * writepages operation. If it fails here we are freeing up the inode
3928 * anyway and we'd rather not waste our time writing out stuff that is
3929 * going to be truncated anyway.
3930 */
3931 if (!igrab(inode))
3932 return 0;
3933
d1310b2e
CM
3934 pagevec_init(&pvec, 0);
3935 if (wbc->range_cyclic) {
3936 index = mapping->writeback_index; /* Start from prev offset */
3937 end = -1;
3938 } else {
09cbfeaf
KS
3939 index = wbc->range_start >> PAGE_SHIFT;
3940 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3941 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3942 range_whole = 1;
d1310b2e
CM
3943 scanned = 1;
3944 }
f7aaa06b
JB
3945 if (wbc->sync_mode == WB_SYNC_ALL)
3946 tag = PAGECACHE_TAG_TOWRITE;
3947 else
3948 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3949retry:
f7aaa06b
JB
3950 if (wbc->sync_mode == WB_SYNC_ALL)
3951 tag_pages_for_writeback(mapping, index, end);
a9132667 3952 done_index = index;
f85d7d6c 3953 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3954 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3955 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3956 unsigned i;
3957
3958 scanned = 1;
3959 for (i = 0; i < nr_pages; i++) {
3960 struct page *page = pvec.pages[i];
3961
a9132667 3962 done_index = page->index;
d1310b2e
CM
3963 /*
3964 * At this point we hold neither mapping->tree_lock nor
3965 * lock on the page itself: the page may be truncated or
3966 * invalidated (changing page->mapping to NULL), or even
3967 * swizzled back from swapper_space to tmpfs file
3968 * mapping
3969 */
c8f2f24b
JB
3970 if (!trylock_page(page)) {
3971 flush_fn(data);
3972 lock_page(page);
01d658f2 3973 }
d1310b2e
CM
3974
3975 if (unlikely(page->mapping != mapping)) {
3976 unlock_page(page);
3977 continue;
3978 }
3979
3980 if (!wbc->range_cyclic && page->index > end) {
3981 done = 1;
3982 unlock_page(page);
3983 continue;
3984 }
3985
d2c3f4f6 3986 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3987 if (PageWriteback(page))
3988 flush_fn(data);
d1310b2e 3989 wait_on_page_writeback(page);
d2c3f4f6 3990 }
d1310b2e
CM
3991
3992 if (PageWriteback(page) ||
3993 !clear_page_dirty_for_io(page)) {
3994 unlock_page(page);
3995 continue;
3996 }
3997
3998 ret = (*writepage)(page, wbc, data);
3999
4000 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4001 unlock_page(page);
4002 ret = 0;
4003 }
a9132667
LB
4004 if (ret < 0) {
4005 /*
4006 * done_index is set past this page,
4007 * so media errors will not choke
4008 * background writeout for the entire
4009 * file. This has consequences for
4010 * range_cyclic semantics (ie. it may
4011 * not be suitable for data integrity
4012 * writeout).
4013 */
4014 done_index = page->index + 1;
4015 done = 1;
4016 break;
4017 }
f85d7d6c
CM
4018
4019 /*
4020 * the filesystem may choose to bump up nr_to_write.
4021 * We have to make sure to honor the new nr_to_write
4022 * at any time
4023 */
4024 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4025 }
4026 pagevec_release(&pvec);
4027 cond_resched();
4028 }
894b36e3 4029 if (!scanned && !done) {
d1310b2e
CM
4030 /*
4031 * We hit the last page and there is more work to be done: wrap
4032 * back to the start of the file
4033 */
4034 scanned = 1;
4035 index = 0;
4036 goto retry;
4037 }
a9132667
LB
4038
4039 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4040 mapping->writeback_index = done_index;
4041
7fd1a3f7 4042 btrfs_add_delayed_iput(inode);
894b36e3 4043 return ret;
d1310b2e 4044}
d1310b2e 4045
ffbd517d 4046static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4047{
d2c3f4f6 4048 if (epd->bio) {
355808c2
JM
4049 int rw = WRITE;
4050 int ret;
4051
ffbd517d 4052 if (epd->sync_io)
355808c2
JM
4053 rw = WRITE_SYNC;
4054
de0022b9 4055 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4056 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4057 epd->bio = NULL;
4058 }
4059}
4060
ffbd517d
CM
4061static noinline void flush_write_bio(void *data)
4062{
4063 struct extent_page_data *epd = data;
4064 flush_epd_write_bio(epd);
4065}
4066
d1310b2e
CM
4067int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4068 get_extent_t *get_extent,
4069 struct writeback_control *wbc)
4070{
4071 int ret;
d1310b2e
CM
4072 struct extent_page_data epd = {
4073 .bio = NULL,
4074 .tree = tree,
4075 .get_extent = get_extent,
771ed689 4076 .extent_locked = 0,
ffbd517d 4077 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4078 .bio_flags = 0,
d1310b2e 4079 };
d1310b2e 4080
d1310b2e
CM
4081 ret = __extent_writepage(page, wbc, &epd);
4082
ffbd517d 4083 flush_epd_write_bio(&epd);
d1310b2e
CM
4084 return ret;
4085}
d1310b2e 4086
771ed689
CM
4087int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4088 u64 start, u64 end, get_extent_t *get_extent,
4089 int mode)
4090{
4091 int ret = 0;
4092 struct address_space *mapping = inode->i_mapping;
4093 struct page *page;
09cbfeaf
KS
4094 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4095 PAGE_SHIFT;
771ed689
CM
4096
4097 struct extent_page_data epd = {
4098 .bio = NULL,
4099 .tree = tree,
4100 .get_extent = get_extent,
4101 .extent_locked = 1,
ffbd517d 4102 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4103 .bio_flags = 0,
771ed689
CM
4104 };
4105 struct writeback_control wbc_writepages = {
771ed689 4106 .sync_mode = mode,
771ed689
CM
4107 .nr_to_write = nr_pages * 2,
4108 .range_start = start,
4109 .range_end = end + 1,
4110 };
4111
d397712b 4112 while (start <= end) {
09cbfeaf 4113 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4114 if (clear_page_dirty_for_io(page))
4115 ret = __extent_writepage(page, &wbc_writepages, &epd);
4116 else {
4117 if (tree->ops && tree->ops->writepage_end_io_hook)
4118 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4119 start + PAGE_SIZE - 1,
771ed689
CM
4120 NULL, 1);
4121 unlock_page(page);
4122 }
09cbfeaf
KS
4123 put_page(page);
4124 start += PAGE_SIZE;
771ed689
CM
4125 }
4126
ffbd517d 4127 flush_epd_write_bio(&epd);
771ed689
CM
4128 return ret;
4129}
d1310b2e
CM
4130
4131int extent_writepages(struct extent_io_tree *tree,
4132 struct address_space *mapping,
4133 get_extent_t *get_extent,
4134 struct writeback_control *wbc)
4135{
4136 int ret = 0;
4137 struct extent_page_data epd = {
4138 .bio = NULL,
4139 .tree = tree,
4140 .get_extent = get_extent,
771ed689 4141 .extent_locked = 0,
ffbd517d 4142 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4143 .bio_flags = 0,
d1310b2e
CM
4144 };
4145
4bef0848 4146 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4147 __extent_writepage, &epd,
4148 flush_write_bio);
ffbd517d 4149 flush_epd_write_bio(&epd);
d1310b2e
CM
4150 return ret;
4151}
d1310b2e
CM
4152
4153int extent_readpages(struct extent_io_tree *tree,
4154 struct address_space *mapping,
4155 struct list_head *pages, unsigned nr_pages,
4156 get_extent_t get_extent)
4157{
4158 struct bio *bio = NULL;
4159 unsigned page_idx;
c8b97818 4160 unsigned long bio_flags = 0;
67c9684f
LB
4161 struct page *pagepool[16];
4162 struct page *page;
125bac01 4163 struct extent_map *em_cached = NULL;
67c9684f 4164 int nr = 0;
808f80b4 4165 u64 prev_em_start = (u64)-1;
d1310b2e 4166
d1310b2e 4167 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4168 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4169
4170 prefetchw(&page->flags);
4171 list_del(&page->lru);
67c9684f 4172 if (add_to_page_cache_lru(page, mapping,
43e817a1 4173 page->index, GFP_NOFS)) {
09cbfeaf 4174 put_page(page);
67c9684f 4175 continue;
d1310b2e 4176 }
67c9684f
LB
4177
4178 pagepool[nr++] = page;
4179 if (nr < ARRAY_SIZE(pagepool))
4180 continue;
125bac01 4181 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4182 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4183 nr = 0;
d1310b2e 4184 }
9974090b 4185 if (nr)
125bac01 4186 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4187 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4188
125bac01
MX
4189 if (em_cached)
4190 free_extent_map(em_cached);
4191
d1310b2e
CM
4192 BUG_ON(!list_empty(pages));
4193 if (bio)
79787eaa 4194 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4195 return 0;
4196}
d1310b2e
CM
4197
4198/*
4199 * basic invalidatepage code, this waits on any locked or writeback
4200 * ranges corresponding to the page, and then deletes any extent state
4201 * records from the tree
4202 */
4203int extent_invalidatepage(struct extent_io_tree *tree,
4204 struct page *page, unsigned long offset)
4205{
2ac55d41 4206 struct extent_state *cached_state = NULL;
4eee4fa4 4207 u64 start = page_offset(page);
09cbfeaf 4208 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4209 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4210
fda2832f 4211 start += ALIGN(offset, blocksize);
d1310b2e
CM
4212 if (start > end)
4213 return 0;
4214
ff13db41 4215 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4216 wait_on_page_writeback(page);
d1310b2e 4217 clear_extent_bit(tree, start, end,
32c00aff
JB
4218 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4219 EXTENT_DO_ACCOUNTING,
2ac55d41 4220 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4221 return 0;
4222}
d1310b2e 4223
7b13b7b1
CM
4224/*
4225 * a helper for releasepage, this tests for areas of the page that
4226 * are locked or under IO and drops the related state bits if it is safe
4227 * to drop the page.
4228 */
48a3b636
ES
4229static int try_release_extent_state(struct extent_map_tree *map,
4230 struct extent_io_tree *tree,
4231 struct page *page, gfp_t mask)
7b13b7b1 4232{
4eee4fa4 4233 u64 start = page_offset(page);
09cbfeaf 4234 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4235 int ret = 1;
4236
211f90e6 4237 if (test_range_bit(tree, start, end,
8b62b72b 4238 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4239 ret = 0;
4240 else {
4241 if ((mask & GFP_NOFS) == GFP_NOFS)
4242 mask = GFP_NOFS;
11ef160f
CM
4243 /*
4244 * at this point we can safely clear everything except the
4245 * locked bit and the nodatasum bit
4246 */
e3f24cc5 4247 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4248 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4249 0, 0, NULL, mask);
e3f24cc5
CM
4250
4251 /* if clear_extent_bit failed for enomem reasons,
4252 * we can't allow the release to continue.
4253 */
4254 if (ret < 0)
4255 ret = 0;
4256 else
4257 ret = 1;
7b13b7b1
CM
4258 }
4259 return ret;
4260}
7b13b7b1 4261
d1310b2e
CM
4262/*
4263 * a helper for releasepage. As long as there are no locked extents
4264 * in the range corresponding to the page, both state records and extent
4265 * map records are removed
4266 */
4267int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4268 struct extent_io_tree *tree, struct page *page,
4269 gfp_t mask)
d1310b2e
CM
4270{
4271 struct extent_map *em;
4eee4fa4 4272 u64 start = page_offset(page);
09cbfeaf 4273 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4274
d0164adc 4275 if (gfpflags_allow_blocking(mask) &&
ee22184b 4276 page->mapping->host->i_size > SZ_16M) {
39b5637f 4277 u64 len;
70dec807 4278 while (start <= end) {
39b5637f 4279 len = end - start + 1;
890871be 4280 write_lock(&map->lock);
39b5637f 4281 em = lookup_extent_mapping(map, start, len);
285190d9 4282 if (!em) {
890871be 4283 write_unlock(&map->lock);
70dec807
CM
4284 break;
4285 }
7f3c74fb
CM
4286 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4287 em->start != start) {
890871be 4288 write_unlock(&map->lock);
70dec807
CM
4289 free_extent_map(em);
4290 break;
4291 }
4292 if (!test_range_bit(tree, em->start,
4293 extent_map_end(em) - 1,
8b62b72b 4294 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4295 0, NULL)) {
70dec807
CM
4296 remove_extent_mapping(map, em);
4297 /* once for the rb tree */
4298 free_extent_map(em);
4299 }
4300 start = extent_map_end(em);
890871be 4301 write_unlock(&map->lock);
70dec807
CM
4302
4303 /* once for us */
d1310b2e
CM
4304 free_extent_map(em);
4305 }
d1310b2e 4306 }
7b13b7b1 4307 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4308}
d1310b2e 4309
ec29ed5b
CM
4310/*
4311 * helper function for fiemap, which doesn't want to see any holes.
4312 * This maps until we find something past 'last'
4313 */
4314static struct extent_map *get_extent_skip_holes(struct inode *inode,
4315 u64 offset,
4316 u64 last,
4317 get_extent_t *get_extent)
4318{
4319 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4320 struct extent_map *em;
4321 u64 len;
4322
4323 if (offset >= last)
4324 return NULL;
4325
67871254 4326 while (1) {
ec29ed5b
CM
4327 len = last - offset;
4328 if (len == 0)
4329 break;
fda2832f 4330 len = ALIGN(len, sectorsize);
ec29ed5b 4331 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4332 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4333 return em;
4334
4335 /* if this isn't a hole return it */
4336 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4337 em->block_start != EXTENT_MAP_HOLE) {
4338 return em;
4339 }
4340
4341 /* this is a hole, advance to the next extent */
4342 offset = extent_map_end(em);
4343 free_extent_map(em);
4344 if (offset >= last)
4345 break;
4346 }
4347 return NULL;
4348}
4349
1506fcc8
YS
4350int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4351 __u64 start, __u64 len, get_extent_t *get_extent)
4352{
975f84fe 4353 int ret = 0;
1506fcc8
YS
4354 u64 off = start;
4355 u64 max = start + len;
4356 u32 flags = 0;
975f84fe
JB
4357 u32 found_type;
4358 u64 last;
ec29ed5b 4359 u64 last_for_get_extent = 0;
1506fcc8 4360 u64 disko = 0;
ec29ed5b 4361 u64 isize = i_size_read(inode);
975f84fe 4362 struct btrfs_key found_key;
1506fcc8 4363 struct extent_map *em = NULL;
2ac55d41 4364 struct extent_state *cached_state = NULL;
975f84fe 4365 struct btrfs_path *path;
dc046b10 4366 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4367 int end = 0;
ec29ed5b
CM
4368 u64 em_start = 0;
4369 u64 em_len = 0;
4370 u64 em_end = 0;
1506fcc8
YS
4371
4372 if (len == 0)
4373 return -EINVAL;
4374
975f84fe
JB
4375 path = btrfs_alloc_path();
4376 if (!path)
4377 return -ENOMEM;
4378 path->leave_spinning = 1;
4379
2c91943b
QW
4380 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4381 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4382
ec29ed5b
CM
4383 /*
4384 * lookup the last file extent. We're not using i_size here
4385 * because there might be preallocation past i_size
4386 */
dc046b10
JB
4387 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4388 0);
975f84fe
JB
4389 if (ret < 0) {
4390 btrfs_free_path(path);
4391 return ret;
2d324f59
LB
4392 } else {
4393 WARN_ON(!ret);
4394 if (ret == 1)
4395 ret = 0;
975f84fe 4396 }
2d324f59 4397
975f84fe 4398 path->slots[0]--;
975f84fe 4399 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4400 found_type = found_key.type;
975f84fe 4401
ec29ed5b 4402 /* No extents, but there might be delalloc bits */
33345d01 4403 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4404 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4405 /* have to trust i_size as the end */
4406 last = (u64)-1;
4407 last_for_get_extent = isize;
4408 } else {
4409 /*
4410 * remember the start of the last extent. There are a
4411 * bunch of different factors that go into the length of the
4412 * extent, so its much less complex to remember where it started
4413 */
4414 last = found_key.offset;
4415 last_for_get_extent = last + 1;
975f84fe 4416 }
fe09e16c 4417 btrfs_release_path(path);
975f84fe 4418
ec29ed5b
CM
4419 /*
4420 * we might have some extents allocated but more delalloc past those
4421 * extents. so, we trust isize unless the start of the last extent is
4422 * beyond isize
4423 */
4424 if (last < isize) {
4425 last = (u64)-1;
4426 last_for_get_extent = isize;
4427 }
4428
ff13db41 4429 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4430 &cached_state);
ec29ed5b 4431
4d479cf0 4432 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4433 get_extent);
1506fcc8
YS
4434 if (!em)
4435 goto out;
4436 if (IS_ERR(em)) {
4437 ret = PTR_ERR(em);
4438 goto out;
4439 }
975f84fe 4440
1506fcc8 4441 while (!end) {
b76bb701 4442 u64 offset_in_extent = 0;
ea8efc74
CM
4443
4444 /* break if the extent we found is outside the range */
4445 if (em->start >= max || extent_map_end(em) < off)
4446 break;
4447
4448 /*
4449 * get_extent may return an extent that starts before our
4450 * requested range. We have to make sure the ranges
4451 * we return to fiemap always move forward and don't
4452 * overlap, so adjust the offsets here
4453 */
4454 em_start = max(em->start, off);
1506fcc8 4455
ea8efc74
CM
4456 /*
4457 * record the offset from the start of the extent
b76bb701
JB
4458 * for adjusting the disk offset below. Only do this if the
4459 * extent isn't compressed since our in ram offset may be past
4460 * what we have actually allocated on disk.
ea8efc74 4461 */
b76bb701
JB
4462 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4463 offset_in_extent = em_start - em->start;
ec29ed5b 4464 em_end = extent_map_end(em);
ea8efc74 4465 em_len = em_end - em_start;
1506fcc8
YS
4466 disko = 0;
4467 flags = 0;
4468
ea8efc74
CM
4469 /*
4470 * bump off for our next call to get_extent
4471 */
4472 off = extent_map_end(em);
4473 if (off >= max)
4474 end = 1;
4475
93dbfad7 4476 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4477 end = 1;
4478 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4479 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4480 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4481 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4482 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4483 flags |= (FIEMAP_EXTENT_DELALLOC |
4484 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4485 } else if (fieinfo->fi_extents_max) {
4486 u64 bytenr = em->block_start -
4487 (em->start - em->orig_start);
fe09e16c 4488
ea8efc74 4489 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4490
4491 /*
4492 * As btrfs supports shared space, this information
4493 * can be exported to userspace tools via
dc046b10
JB
4494 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4495 * then we're just getting a count and we can skip the
4496 * lookup stuff.
fe09e16c 4497 */
dc046b10
JB
4498 ret = btrfs_check_shared(NULL, root->fs_info,
4499 root->objectid,
4500 btrfs_ino(inode), bytenr);
4501 if (ret < 0)
fe09e16c 4502 goto out_free;
dc046b10 4503 if (ret)
fe09e16c 4504 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4505 ret = 0;
1506fcc8
YS
4506 }
4507 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4508 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4509 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4510 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4511
1506fcc8
YS
4512 free_extent_map(em);
4513 em = NULL;
ec29ed5b
CM
4514 if ((em_start >= last) || em_len == (u64)-1 ||
4515 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4516 flags |= FIEMAP_EXTENT_LAST;
4517 end = 1;
4518 }
4519
ec29ed5b
CM
4520 /* now scan forward to see if this is really the last extent. */
4521 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4522 get_extent);
4523 if (IS_ERR(em)) {
4524 ret = PTR_ERR(em);
4525 goto out;
4526 }
4527 if (!em) {
975f84fe
JB
4528 flags |= FIEMAP_EXTENT_LAST;
4529 end = 1;
4530 }
ec29ed5b
CM
4531 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4532 em_len, flags);
26e726af
CS
4533 if (ret) {
4534 if (ret == 1)
4535 ret = 0;
ec29ed5b 4536 goto out_free;
26e726af 4537 }
1506fcc8
YS
4538 }
4539out_free:
4540 free_extent_map(em);
4541out:
fe09e16c 4542 btrfs_free_path(path);
a52f4cd2 4543 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4544 &cached_state, GFP_NOFS);
1506fcc8
YS
4545 return ret;
4546}
4547
727011e0
CM
4548static void __free_extent_buffer(struct extent_buffer *eb)
4549{
6d49ba1b 4550 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4551 kmem_cache_free(extent_buffer_cache, eb);
4552}
4553
a26e8c9f 4554int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4555{
4556 return (atomic_read(&eb->io_pages) ||
4557 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4558 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4559}
4560
4561/*
4562 * Helper for releasing extent buffer page.
4563 */
a50924e3 4564static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4565{
4566 unsigned long index;
db7f3436
JB
4567 struct page *page;
4568 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4569
4570 BUG_ON(extent_buffer_under_io(eb));
4571
a50924e3
DS
4572 index = num_extent_pages(eb->start, eb->len);
4573 if (index == 0)
db7f3436
JB
4574 return;
4575
4576 do {
4577 index--;
fb85fc9a 4578 page = eb->pages[index];
5d2361db
FL
4579 if (!page)
4580 continue;
4581 if (mapped)
db7f3436 4582 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4583 /*
4584 * We do this since we'll remove the pages after we've
4585 * removed the eb from the radix tree, so we could race
4586 * and have this page now attached to the new eb. So
4587 * only clear page_private if it's still connected to
4588 * this eb.
4589 */
4590 if (PagePrivate(page) &&
4591 page->private == (unsigned long)eb) {
4592 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4593 BUG_ON(PageDirty(page));
4594 BUG_ON(PageWriteback(page));
db7f3436 4595 /*
5d2361db
FL
4596 * We need to make sure we haven't be attached
4597 * to a new eb.
db7f3436 4598 */
5d2361db
FL
4599 ClearPagePrivate(page);
4600 set_page_private(page, 0);
4601 /* One for the page private */
09cbfeaf 4602 put_page(page);
db7f3436 4603 }
5d2361db
FL
4604
4605 if (mapped)
4606 spin_unlock(&page->mapping->private_lock);
4607
01327610 4608 /* One for when we allocated the page */
09cbfeaf 4609 put_page(page);
a50924e3 4610 } while (index != 0);
db7f3436
JB
4611}
4612
4613/*
4614 * Helper for releasing the extent buffer.
4615 */
4616static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4617{
a50924e3 4618 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4619 __free_extent_buffer(eb);
4620}
4621
f28491e0
JB
4622static struct extent_buffer *
4623__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4624 unsigned long len)
d1310b2e
CM
4625{
4626 struct extent_buffer *eb = NULL;
4627
d1b5c567 4628 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4629 eb->start = start;
4630 eb->len = len;
f28491e0 4631 eb->fs_info = fs_info;
815a51c7 4632 eb->bflags = 0;
bd681513
CM
4633 rwlock_init(&eb->lock);
4634 atomic_set(&eb->write_locks, 0);
4635 atomic_set(&eb->read_locks, 0);
4636 atomic_set(&eb->blocking_readers, 0);
4637 atomic_set(&eb->blocking_writers, 0);
4638 atomic_set(&eb->spinning_readers, 0);
4639 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4640 eb->lock_nested = 0;
bd681513
CM
4641 init_waitqueue_head(&eb->write_lock_wq);
4642 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4643
6d49ba1b
ES
4644 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4645
3083ee2e 4646 spin_lock_init(&eb->refs_lock);
d1310b2e 4647 atomic_set(&eb->refs, 1);
0b32f4bb 4648 atomic_set(&eb->io_pages, 0);
727011e0 4649
b8dae313
DS
4650 /*
4651 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4652 */
4653 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4654 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4655 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4656
4657 return eb;
4658}
4659
815a51c7
JS
4660struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4661{
4662 unsigned long i;
4663 struct page *p;
4664 struct extent_buffer *new;
4665 unsigned long num_pages = num_extent_pages(src->start, src->len);
4666
3f556f78 4667 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4668 if (new == NULL)
4669 return NULL;
4670
4671 for (i = 0; i < num_pages; i++) {
9ec72677 4672 p = alloc_page(GFP_NOFS);
db7f3436
JB
4673 if (!p) {
4674 btrfs_release_extent_buffer(new);
4675 return NULL;
4676 }
815a51c7
JS
4677 attach_extent_buffer_page(new, p);
4678 WARN_ON(PageDirty(p));
4679 SetPageUptodate(p);
4680 new->pages[i] = p;
4681 }
4682
4683 copy_extent_buffer(new, src, 0, 0, src->len);
4684 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4685 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4686
4687 return new;
4688}
4689
0f331229
OS
4690struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4691 u64 start, unsigned long len)
815a51c7
JS
4692{
4693 struct extent_buffer *eb;
3f556f78 4694 unsigned long num_pages;
815a51c7
JS
4695 unsigned long i;
4696
0f331229 4697 num_pages = num_extent_pages(start, len);
3f556f78
DS
4698
4699 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4700 if (!eb)
4701 return NULL;
4702
4703 for (i = 0; i < num_pages; i++) {
9ec72677 4704 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4705 if (!eb->pages[i])
4706 goto err;
4707 }
4708 set_extent_buffer_uptodate(eb);
4709 btrfs_set_header_nritems(eb, 0);
4710 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4711
4712 return eb;
4713err:
84167d19
SB
4714 for (; i > 0; i--)
4715 __free_page(eb->pages[i - 1]);
815a51c7
JS
4716 __free_extent_buffer(eb);
4717 return NULL;
4718}
4719
0f331229
OS
4720struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4721 u64 start)
4722{
4723 unsigned long len;
4724
4725 if (!fs_info) {
4726 /*
4727 * Called only from tests that don't always have a fs_info
4728 * available, but we know that nodesize is 4096
4729 */
4730 len = 4096;
4731 } else {
4732 len = fs_info->tree_root->nodesize;
4733 }
4734
4735 return __alloc_dummy_extent_buffer(fs_info, start, len);
4736}
4737
0b32f4bb
JB
4738static void check_buffer_tree_ref(struct extent_buffer *eb)
4739{
242e18c7 4740 int refs;
0b32f4bb
JB
4741 /* the ref bit is tricky. We have to make sure it is set
4742 * if we have the buffer dirty. Otherwise the
4743 * code to free a buffer can end up dropping a dirty
4744 * page
4745 *
4746 * Once the ref bit is set, it won't go away while the
4747 * buffer is dirty or in writeback, and it also won't
4748 * go away while we have the reference count on the
4749 * eb bumped.
4750 *
4751 * We can't just set the ref bit without bumping the
4752 * ref on the eb because free_extent_buffer might
4753 * see the ref bit and try to clear it. If this happens
4754 * free_extent_buffer might end up dropping our original
4755 * ref by mistake and freeing the page before we are able
4756 * to add one more ref.
4757 *
4758 * So bump the ref count first, then set the bit. If someone
4759 * beat us to it, drop the ref we added.
4760 */
242e18c7
CM
4761 refs = atomic_read(&eb->refs);
4762 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4763 return;
4764
594831c4
JB
4765 spin_lock(&eb->refs_lock);
4766 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4767 atomic_inc(&eb->refs);
594831c4 4768 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4769}
4770
2457aec6
MG
4771static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4772 struct page *accessed)
5df4235e
JB
4773{
4774 unsigned long num_pages, i;
4775
0b32f4bb
JB
4776 check_buffer_tree_ref(eb);
4777
5df4235e
JB
4778 num_pages = num_extent_pages(eb->start, eb->len);
4779 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4780 struct page *p = eb->pages[i];
4781
2457aec6
MG
4782 if (p != accessed)
4783 mark_page_accessed(p);
5df4235e
JB
4784 }
4785}
4786
f28491e0
JB
4787struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4788 u64 start)
452c75c3
CS
4789{
4790 struct extent_buffer *eb;
4791
4792 rcu_read_lock();
f28491e0 4793 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4794 start >> PAGE_SHIFT);
452c75c3
CS
4795 if (eb && atomic_inc_not_zero(&eb->refs)) {
4796 rcu_read_unlock();
062c19e9
FM
4797 /*
4798 * Lock our eb's refs_lock to avoid races with
4799 * free_extent_buffer. When we get our eb it might be flagged
4800 * with EXTENT_BUFFER_STALE and another task running
4801 * free_extent_buffer might have seen that flag set,
4802 * eb->refs == 2, that the buffer isn't under IO (dirty and
4803 * writeback flags not set) and it's still in the tree (flag
4804 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4805 * of decrementing the extent buffer's reference count twice.
4806 * So here we could race and increment the eb's reference count,
4807 * clear its stale flag, mark it as dirty and drop our reference
4808 * before the other task finishes executing free_extent_buffer,
4809 * which would later result in an attempt to free an extent
4810 * buffer that is dirty.
4811 */
4812 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4813 spin_lock(&eb->refs_lock);
4814 spin_unlock(&eb->refs_lock);
4815 }
2457aec6 4816 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4817 return eb;
4818 }
4819 rcu_read_unlock();
4820
4821 return NULL;
4822}
4823
faa2dbf0
JB
4824#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4825struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4826 u64 start)
faa2dbf0
JB
4827{
4828 struct extent_buffer *eb, *exists = NULL;
4829 int ret;
4830
4831 eb = find_extent_buffer(fs_info, start);
4832 if (eb)
4833 return eb;
3f556f78 4834 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4835 if (!eb)
4836 return NULL;
4837 eb->fs_info = fs_info;
4838again:
e1860a77 4839 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4840 if (ret)
4841 goto free_eb;
4842 spin_lock(&fs_info->buffer_lock);
4843 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4844 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4845 spin_unlock(&fs_info->buffer_lock);
4846 radix_tree_preload_end();
4847 if (ret == -EEXIST) {
4848 exists = find_extent_buffer(fs_info, start);
4849 if (exists)
4850 goto free_eb;
4851 else
4852 goto again;
4853 }
4854 check_buffer_tree_ref(eb);
4855 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4856
4857 /*
4858 * We will free dummy extent buffer's if they come into
4859 * free_extent_buffer with a ref count of 2, but if we are using this we
4860 * want the buffers to stay in memory until we're done with them, so
4861 * bump the ref count again.
4862 */
4863 atomic_inc(&eb->refs);
4864 return eb;
4865free_eb:
4866 btrfs_release_extent_buffer(eb);
4867 return exists;
4868}
4869#endif
4870
f28491e0 4871struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4872 u64 start)
d1310b2e 4873{
ce3e6984 4874 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4875 unsigned long num_pages = num_extent_pages(start, len);
4876 unsigned long i;
09cbfeaf 4877 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4878 struct extent_buffer *eb;
6af118ce 4879 struct extent_buffer *exists = NULL;
d1310b2e 4880 struct page *p;
f28491e0 4881 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4882 int uptodate = 1;
19fe0a8b 4883 int ret;
d1310b2e 4884
f28491e0 4885 eb = find_extent_buffer(fs_info, start);
452c75c3 4886 if (eb)
6af118ce 4887 return eb;
6af118ce 4888
23d79d81 4889 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4890 if (!eb)
d1310b2e
CM
4891 return NULL;
4892
727011e0 4893 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4894 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4895 if (!p)
6af118ce 4896 goto free_eb;
4f2de97a
JB
4897
4898 spin_lock(&mapping->private_lock);
4899 if (PagePrivate(p)) {
4900 /*
4901 * We could have already allocated an eb for this page
4902 * and attached one so lets see if we can get a ref on
4903 * the existing eb, and if we can we know it's good and
4904 * we can just return that one, else we know we can just
4905 * overwrite page->private.
4906 */
4907 exists = (struct extent_buffer *)p->private;
4908 if (atomic_inc_not_zero(&exists->refs)) {
4909 spin_unlock(&mapping->private_lock);
4910 unlock_page(p);
09cbfeaf 4911 put_page(p);
2457aec6 4912 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4913 goto free_eb;
4914 }
5ca64f45 4915 exists = NULL;
4f2de97a 4916
0b32f4bb 4917 /*
4f2de97a
JB
4918 * Do this so attach doesn't complain and we need to
4919 * drop the ref the old guy had.
4920 */
4921 ClearPagePrivate(p);
0b32f4bb 4922 WARN_ON(PageDirty(p));
09cbfeaf 4923 put_page(p);
d1310b2e 4924 }
4f2de97a
JB
4925 attach_extent_buffer_page(eb, p);
4926 spin_unlock(&mapping->private_lock);
0b32f4bb 4927 WARN_ON(PageDirty(p));
727011e0 4928 eb->pages[i] = p;
d1310b2e
CM
4929 if (!PageUptodate(p))
4930 uptodate = 0;
eb14ab8e
CM
4931
4932 /*
4933 * see below about how we avoid a nasty race with release page
4934 * and why we unlock later
4935 */
d1310b2e
CM
4936 }
4937 if (uptodate)
b4ce94de 4938 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4939again:
e1860a77 4940 ret = radix_tree_preload(GFP_NOFS);
19fe0a8b
MX
4941 if (ret)
4942 goto free_eb;
4943
f28491e0
JB
4944 spin_lock(&fs_info->buffer_lock);
4945 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4946 start >> PAGE_SHIFT, eb);
f28491e0 4947 spin_unlock(&fs_info->buffer_lock);
452c75c3 4948 radix_tree_preload_end();
19fe0a8b 4949 if (ret == -EEXIST) {
f28491e0 4950 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4951 if (exists)
4952 goto free_eb;
4953 else
115391d2 4954 goto again;
6af118ce 4955 }
6af118ce 4956 /* add one reference for the tree */
0b32f4bb 4957 check_buffer_tree_ref(eb);
34b41ace 4958 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4959
4960 /*
4961 * there is a race where release page may have
4962 * tried to find this extent buffer in the radix
4963 * but failed. It will tell the VM it is safe to
4964 * reclaim the, and it will clear the page private bit.
4965 * We must make sure to set the page private bit properly
4966 * after the extent buffer is in the radix tree so
4967 * it doesn't get lost
4968 */
727011e0
CM
4969 SetPageChecked(eb->pages[0]);
4970 for (i = 1; i < num_pages; i++) {
fb85fc9a 4971 p = eb->pages[i];
727011e0
CM
4972 ClearPageChecked(p);
4973 unlock_page(p);
4974 }
4975 unlock_page(eb->pages[0]);
d1310b2e
CM
4976 return eb;
4977
6af118ce 4978free_eb:
5ca64f45 4979 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4980 for (i = 0; i < num_pages; i++) {
4981 if (eb->pages[i])
4982 unlock_page(eb->pages[i]);
4983 }
eb14ab8e 4984
897ca6e9 4985 btrfs_release_extent_buffer(eb);
6af118ce 4986 return exists;
d1310b2e 4987}
d1310b2e 4988
3083ee2e
JB
4989static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4990{
4991 struct extent_buffer *eb =
4992 container_of(head, struct extent_buffer, rcu_head);
4993
4994 __free_extent_buffer(eb);
4995}
4996
3083ee2e 4997/* Expects to have eb->eb_lock already held */
f7a52a40 4998static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4999{
5000 WARN_ON(atomic_read(&eb->refs) == 0);
5001 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5002 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5003 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5004
815a51c7 5005 spin_unlock(&eb->refs_lock);
3083ee2e 5006
f28491e0
JB
5007 spin_lock(&fs_info->buffer_lock);
5008 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5009 eb->start >> PAGE_SHIFT);
f28491e0 5010 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5011 } else {
5012 spin_unlock(&eb->refs_lock);
815a51c7 5013 }
3083ee2e
JB
5014
5015 /* Should be safe to release our pages at this point */
a50924e3 5016 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5017#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5018 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5019 __free_extent_buffer(eb);
5020 return 1;
5021 }
5022#endif
3083ee2e 5023 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5024 return 1;
3083ee2e
JB
5025 }
5026 spin_unlock(&eb->refs_lock);
e64860aa
JB
5027
5028 return 0;
3083ee2e
JB
5029}
5030
d1310b2e
CM
5031void free_extent_buffer(struct extent_buffer *eb)
5032{
242e18c7
CM
5033 int refs;
5034 int old;
d1310b2e
CM
5035 if (!eb)
5036 return;
5037
242e18c7
CM
5038 while (1) {
5039 refs = atomic_read(&eb->refs);
5040 if (refs <= 3)
5041 break;
5042 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5043 if (old == refs)
5044 return;
5045 }
5046
3083ee2e 5047 spin_lock(&eb->refs_lock);
815a51c7
JS
5048 if (atomic_read(&eb->refs) == 2 &&
5049 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5050 atomic_dec(&eb->refs);
5051
3083ee2e
JB
5052 if (atomic_read(&eb->refs) == 2 &&
5053 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5054 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5055 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5056 atomic_dec(&eb->refs);
5057
5058 /*
5059 * I know this is terrible, but it's temporary until we stop tracking
5060 * the uptodate bits and such for the extent buffers.
5061 */
f7a52a40 5062 release_extent_buffer(eb);
3083ee2e
JB
5063}
5064
5065void free_extent_buffer_stale(struct extent_buffer *eb)
5066{
5067 if (!eb)
d1310b2e
CM
5068 return;
5069
3083ee2e
JB
5070 spin_lock(&eb->refs_lock);
5071 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5072
0b32f4bb 5073 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 atomic_dec(&eb->refs);
f7a52a40 5076 release_extent_buffer(eb);
d1310b2e 5077}
d1310b2e 5078
1d4284bd 5079void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5080{
d1310b2e
CM
5081 unsigned long i;
5082 unsigned long num_pages;
5083 struct page *page;
5084
d1310b2e
CM
5085 num_pages = num_extent_pages(eb->start, eb->len);
5086
5087 for (i = 0; i < num_pages; i++) {
fb85fc9a 5088 page = eb->pages[i];
b9473439 5089 if (!PageDirty(page))
d2c3f4f6
CM
5090 continue;
5091
a61e6f29 5092 lock_page(page);
eb14ab8e
CM
5093 WARN_ON(!PagePrivate(page));
5094
d1310b2e 5095 clear_page_dirty_for_io(page);
0ee0fda0 5096 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5097 if (!PageDirty(page)) {
5098 radix_tree_tag_clear(&page->mapping->page_tree,
5099 page_index(page),
5100 PAGECACHE_TAG_DIRTY);
5101 }
0ee0fda0 5102 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5103 ClearPageError(page);
a61e6f29 5104 unlock_page(page);
d1310b2e 5105 }
0b32f4bb 5106 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5107}
d1310b2e 5108
0b32f4bb 5109int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5110{
5111 unsigned long i;
5112 unsigned long num_pages;
b9473439 5113 int was_dirty = 0;
d1310b2e 5114
0b32f4bb
JB
5115 check_buffer_tree_ref(eb);
5116
b9473439 5117 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5118
d1310b2e 5119 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5120 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5121 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5122
b9473439 5123 for (i = 0; i < num_pages; i++)
fb85fc9a 5124 set_page_dirty(eb->pages[i]);
b9473439 5125 return was_dirty;
d1310b2e 5126}
d1310b2e 5127
69ba3927 5128void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5129{
5130 unsigned long i;
5131 struct page *page;
5132 unsigned long num_pages;
5133
b4ce94de 5134 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5135 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5136 for (i = 0; i < num_pages; i++) {
fb85fc9a 5137 page = eb->pages[i];
33958dc6
CM
5138 if (page)
5139 ClearPageUptodate(page);
1259ab75 5140 }
1259ab75
CM
5141}
5142
09c25a8c 5143void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5144{
5145 unsigned long i;
5146 struct page *page;
5147 unsigned long num_pages;
5148
0b32f4bb 5149 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5150 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5151 for (i = 0; i < num_pages; i++) {
fb85fc9a 5152 page = eb->pages[i];
d1310b2e
CM
5153 SetPageUptodate(page);
5154 }
d1310b2e 5155}
d1310b2e 5156
0b32f4bb 5157int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5158{
0b32f4bb 5159 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5160}
d1310b2e
CM
5161
5162int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5163 struct extent_buffer *eb, u64 start, int wait,
f188591e 5164 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5165{
5166 unsigned long i;
5167 unsigned long start_i;
5168 struct page *page;
5169 int err;
5170 int ret = 0;
ce9adaa5
CM
5171 int locked_pages = 0;
5172 int all_uptodate = 1;
d1310b2e 5173 unsigned long num_pages;
727011e0 5174 unsigned long num_reads = 0;
a86c12c7 5175 struct bio *bio = NULL;
c8b97818 5176 unsigned long bio_flags = 0;
a86c12c7 5177
b4ce94de 5178 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5179 return 0;
5180
d1310b2e
CM
5181 if (start) {
5182 WARN_ON(start < eb->start);
09cbfeaf
KS
5183 start_i = (start >> PAGE_SHIFT) -
5184 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5185 } else {
5186 start_i = 0;
5187 }
5188
5189 num_pages = num_extent_pages(eb->start, eb->len);
5190 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5191 page = eb->pages[i];
bb82ab88 5192 if (wait == WAIT_NONE) {
2db04966 5193 if (!trylock_page(page))
ce9adaa5 5194 goto unlock_exit;
d1310b2e
CM
5195 } else {
5196 lock_page(page);
5197 }
ce9adaa5 5198 locked_pages++;
727011e0
CM
5199 if (!PageUptodate(page)) {
5200 num_reads++;
ce9adaa5 5201 all_uptodate = 0;
727011e0 5202 }
ce9adaa5
CM
5203 }
5204 if (all_uptodate) {
5205 if (start_i == 0)
b4ce94de 5206 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5207 goto unlock_exit;
5208 }
5209
656f30db 5210 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5211 eb->read_mirror = 0;
0b32f4bb 5212 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5213 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5214 page = eb->pages[i];
ce9adaa5 5215 if (!PageUptodate(page)) {
f188591e 5216 ClearPageError(page);
a86c12c7 5217 err = __extent_read_full_page(tree, page,
f188591e 5218 get_extent, &bio,
d4c7ca86
JB
5219 mirror_num, &bio_flags,
5220 READ | REQ_META);
d397712b 5221 if (err)
d1310b2e 5222 ret = err;
d1310b2e
CM
5223 } else {
5224 unlock_page(page);
5225 }
5226 }
5227
355808c2 5228 if (bio) {
d4c7ca86
JB
5229 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5230 bio_flags);
79787eaa
JM
5231 if (err)
5232 return err;
355808c2 5233 }
a86c12c7 5234
bb82ab88 5235 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5236 return ret;
d397712b 5237
d1310b2e 5238 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5239 page = eb->pages[i];
d1310b2e 5240 wait_on_page_locked(page);
d397712b 5241 if (!PageUptodate(page))
d1310b2e 5242 ret = -EIO;
d1310b2e 5243 }
d397712b 5244
d1310b2e 5245 return ret;
ce9adaa5
CM
5246
5247unlock_exit:
5248 i = start_i;
d397712b 5249 while (locked_pages > 0) {
fb85fc9a 5250 page = eb->pages[i];
ce9adaa5
CM
5251 i++;
5252 unlock_page(page);
5253 locked_pages--;
5254 }
5255 return ret;
d1310b2e 5256}
d1310b2e
CM
5257
5258void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5259 unsigned long start,
5260 unsigned long len)
5261{
5262 size_t cur;
5263 size_t offset;
5264 struct page *page;
5265 char *kaddr;
5266 char *dst = (char *)dstv;
09cbfeaf
KS
5267 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5268 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5269
5270 WARN_ON(start > eb->len);
5271 WARN_ON(start + len > eb->start + eb->len);
5272
09cbfeaf 5273 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5274
d397712b 5275 while (len > 0) {
fb85fc9a 5276 page = eb->pages[i];
d1310b2e 5277
09cbfeaf 5278 cur = min(len, (PAGE_SIZE - offset));
a6591715 5279 kaddr = page_address(page);
d1310b2e 5280 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5281
5282 dst += cur;
5283 len -= cur;
5284 offset = 0;
5285 i++;
5286 }
5287}
d1310b2e 5288
550ac1d8
GH
5289int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5290 unsigned long start,
5291 unsigned long len)
5292{
5293 size_t cur;
5294 size_t offset;
5295 struct page *page;
5296 char *kaddr;
5297 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5298 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5300 int ret = 0;
5301
5302 WARN_ON(start > eb->len);
5303 WARN_ON(start + len > eb->start + eb->len);
5304
09cbfeaf 5305 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5306
5307 while (len > 0) {
fb85fc9a 5308 page = eb->pages[i];
550ac1d8 5309
09cbfeaf 5310 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5311 kaddr = page_address(page);
5312 if (copy_to_user(dst, kaddr + offset, cur)) {
5313 ret = -EFAULT;
5314 break;
5315 }
5316
5317 dst += cur;
5318 len -= cur;
5319 offset = 0;
5320 i++;
5321 }
5322
5323 return ret;
5324}
5325
d1310b2e 5326int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5327 unsigned long min_len, char **map,
d1310b2e 5328 unsigned long *map_start,
a6591715 5329 unsigned long *map_len)
d1310b2e 5330{
09cbfeaf 5331 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5332 char *kaddr;
5333 struct page *p;
09cbfeaf
KS
5334 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5335 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5336 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5337 PAGE_SHIFT;
d1310b2e
CM
5338
5339 if (i != end_i)
5340 return -EINVAL;
5341
5342 if (i == 0) {
5343 offset = start_offset;
5344 *map_start = 0;
5345 } else {
5346 offset = 0;
09cbfeaf 5347 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5348 }
d397712b 5349
d1310b2e 5350 if (start + min_len > eb->len) {
31b1a2bd 5351 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5352 "wanted %lu %lu\n",
5353 eb->start, eb->len, start, min_len);
85026533 5354 return -EINVAL;
d1310b2e
CM
5355 }
5356
fb85fc9a 5357 p = eb->pages[i];
a6591715 5358 kaddr = page_address(p);
d1310b2e 5359 *map = kaddr + offset;
09cbfeaf 5360 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5361 return 0;
5362}
d1310b2e 5363
d1310b2e
CM
5364int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5365 unsigned long start,
5366 unsigned long len)
5367{
5368 size_t cur;
5369 size_t offset;
5370 struct page *page;
5371 char *kaddr;
5372 char *ptr = (char *)ptrv;
09cbfeaf
KS
5373 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5374 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5375 int ret = 0;
5376
5377 WARN_ON(start > eb->len);
5378 WARN_ON(start + len > eb->start + eb->len);
5379
09cbfeaf 5380 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5381
d397712b 5382 while (len > 0) {
fb85fc9a 5383 page = eb->pages[i];
d1310b2e 5384
09cbfeaf 5385 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5386
a6591715 5387 kaddr = page_address(page);
d1310b2e 5388 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5389 if (ret)
5390 break;
5391
5392 ptr += cur;
5393 len -= cur;
5394 offset = 0;
5395 i++;
5396 }
5397 return ret;
5398}
d1310b2e
CM
5399
5400void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5401 unsigned long start, unsigned long len)
5402{
5403 size_t cur;
5404 size_t offset;
5405 struct page *page;
5406 char *kaddr;
5407 char *src = (char *)srcv;
09cbfeaf
KS
5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5410
5411 WARN_ON(start > eb->len);
5412 WARN_ON(start + len > eb->start + eb->len);
5413
09cbfeaf 5414 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5415
d397712b 5416 while (len > 0) {
fb85fc9a 5417 page = eb->pages[i];
d1310b2e
CM
5418 WARN_ON(!PageUptodate(page));
5419
09cbfeaf 5420 cur = min(len, PAGE_SIZE - offset);
a6591715 5421 kaddr = page_address(page);
d1310b2e 5422 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5423
5424 src += cur;
5425 len -= cur;
5426 offset = 0;
5427 i++;
5428 }
5429}
d1310b2e
CM
5430
5431void memset_extent_buffer(struct extent_buffer *eb, char c,
5432 unsigned long start, unsigned long len)
5433{
5434 size_t cur;
5435 size_t offset;
5436 struct page *page;
5437 char *kaddr;
09cbfeaf
KS
5438 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5439 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5440
5441 WARN_ON(start > eb->len);
5442 WARN_ON(start + len > eb->start + eb->len);
5443
09cbfeaf 5444 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5445
d397712b 5446 while (len > 0) {
fb85fc9a 5447 page = eb->pages[i];
d1310b2e
CM
5448 WARN_ON(!PageUptodate(page));
5449
09cbfeaf 5450 cur = min(len, PAGE_SIZE - offset);
a6591715 5451 kaddr = page_address(page);
d1310b2e 5452 memset(kaddr + offset, c, cur);
d1310b2e
CM
5453
5454 len -= cur;
5455 offset = 0;
5456 i++;
5457 }
5458}
d1310b2e
CM
5459
5460void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5461 unsigned long dst_offset, unsigned long src_offset,
5462 unsigned long len)
5463{
5464 u64 dst_len = dst->len;
5465 size_t cur;
5466 size_t offset;
5467 struct page *page;
5468 char *kaddr;
09cbfeaf
KS
5469 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5470 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5471
5472 WARN_ON(src->len != dst_len);
5473
5474 offset = (start_offset + dst_offset) &
09cbfeaf 5475 (PAGE_SIZE - 1);
d1310b2e 5476
d397712b 5477 while (len > 0) {
fb85fc9a 5478 page = dst->pages[i];
d1310b2e
CM
5479 WARN_ON(!PageUptodate(page));
5480
09cbfeaf 5481 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5482
a6591715 5483 kaddr = page_address(page);
d1310b2e 5484 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5485
5486 src_offset += cur;
5487 len -= cur;
5488 offset = 0;
5489 i++;
5490 }
5491}
d1310b2e 5492
3e1e8bb7
OS
5493/*
5494 * The extent buffer bitmap operations are done with byte granularity because
5495 * bitmap items are not guaranteed to be aligned to a word and therefore a
5496 * single word in a bitmap may straddle two pages in the extent buffer.
5497 */
5498#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5499#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5500#define BITMAP_FIRST_BYTE_MASK(start) \
5501 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5502#define BITMAP_LAST_BYTE_MASK(nbits) \
5503 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5504
5505/*
5506 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5507 * given bit number
5508 * @eb: the extent buffer
5509 * @start: offset of the bitmap item in the extent buffer
5510 * @nr: bit number
5511 * @page_index: return index of the page in the extent buffer that contains the
5512 * given bit number
5513 * @page_offset: return offset into the page given by page_index
5514 *
5515 * This helper hides the ugliness of finding the byte in an extent buffer which
5516 * contains a given bit.
5517 */
5518static inline void eb_bitmap_offset(struct extent_buffer *eb,
5519 unsigned long start, unsigned long nr,
5520 unsigned long *page_index,
5521 size_t *page_offset)
5522{
09cbfeaf 5523 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5524 size_t byte_offset = BIT_BYTE(nr);
5525 size_t offset;
5526
5527 /*
5528 * The byte we want is the offset of the extent buffer + the offset of
5529 * the bitmap item in the extent buffer + the offset of the byte in the
5530 * bitmap item.
5531 */
5532 offset = start_offset + start + byte_offset;
5533
09cbfeaf
KS
5534 *page_index = offset >> PAGE_SHIFT;
5535 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5536}
5537
5538/**
5539 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5540 * @eb: the extent buffer
5541 * @start: offset of the bitmap item in the extent buffer
5542 * @nr: bit number to test
5543 */
5544int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5545 unsigned long nr)
5546{
5547 char *kaddr;
5548 struct page *page;
5549 unsigned long i;
5550 size_t offset;
5551
5552 eb_bitmap_offset(eb, start, nr, &i, &offset);
5553 page = eb->pages[i];
5554 WARN_ON(!PageUptodate(page));
5555 kaddr = page_address(page);
5556 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5557}
5558
5559/**
5560 * extent_buffer_bitmap_set - set an area of a bitmap
5561 * @eb: the extent buffer
5562 * @start: offset of the bitmap item in the extent buffer
5563 * @pos: bit number of the first bit
5564 * @len: number of bits to set
5565 */
5566void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5567 unsigned long pos, unsigned long len)
5568{
5569 char *kaddr;
5570 struct page *page;
5571 unsigned long i;
5572 size_t offset;
5573 const unsigned int size = pos + len;
5574 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5575 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5576
5577 eb_bitmap_offset(eb, start, pos, &i, &offset);
5578 page = eb->pages[i];
5579 WARN_ON(!PageUptodate(page));
5580 kaddr = page_address(page);
5581
5582 while (len >= bits_to_set) {
5583 kaddr[offset] |= mask_to_set;
5584 len -= bits_to_set;
5585 bits_to_set = BITS_PER_BYTE;
5586 mask_to_set = ~0U;
09cbfeaf 5587 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5588 offset = 0;
5589 page = eb->pages[++i];
5590 WARN_ON(!PageUptodate(page));
5591 kaddr = page_address(page);
5592 }
5593 }
5594 if (len) {
5595 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5596 kaddr[offset] |= mask_to_set;
5597 }
5598}
5599
5600
5601/**
5602 * extent_buffer_bitmap_clear - clear an area of a bitmap
5603 * @eb: the extent buffer
5604 * @start: offset of the bitmap item in the extent buffer
5605 * @pos: bit number of the first bit
5606 * @len: number of bits to clear
5607 */
5608void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5609 unsigned long pos, unsigned long len)
5610{
5611 char *kaddr;
5612 struct page *page;
5613 unsigned long i;
5614 size_t offset;
5615 const unsigned int size = pos + len;
5616 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5617 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5618
5619 eb_bitmap_offset(eb, start, pos, &i, &offset);
5620 page = eb->pages[i];
5621 WARN_ON(!PageUptodate(page));
5622 kaddr = page_address(page);
5623
5624 while (len >= bits_to_clear) {
5625 kaddr[offset] &= ~mask_to_clear;
5626 len -= bits_to_clear;
5627 bits_to_clear = BITS_PER_BYTE;
5628 mask_to_clear = ~0U;
09cbfeaf 5629 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5630 offset = 0;
5631 page = eb->pages[++i];
5632 WARN_ON(!PageUptodate(page));
5633 kaddr = page_address(page);
5634 }
5635 }
5636 if (len) {
5637 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5638 kaddr[offset] &= ~mask_to_clear;
5639 }
5640}
5641
3387206f
ST
5642static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5643{
5644 unsigned long distance = (src > dst) ? src - dst : dst - src;
5645 return distance < len;
5646}
5647
d1310b2e
CM
5648static void copy_pages(struct page *dst_page, struct page *src_page,
5649 unsigned long dst_off, unsigned long src_off,
5650 unsigned long len)
5651{
a6591715 5652 char *dst_kaddr = page_address(dst_page);
d1310b2e 5653 char *src_kaddr;
727011e0 5654 int must_memmove = 0;
d1310b2e 5655
3387206f 5656 if (dst_page != src_page) {
a6591715 5657 src_kaddr = page_address(src_page);
3387206f 5658 } else {
d1310b2e 5659 src_kaddr = dst_kaddr;
727011e0
CM
5660 if (areas_overlap(src_off, dst_off, len))
5661 must_memmove = 1;
3387206f 5662 }
d1310b2e 5663
727011e0
CM
5664 if (must_memmove)
5665 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5666 else
5667 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5668}
5669
5670void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5671 unsigned long src_offset, unsigned long len)
5672{
5673 size_t cur;
5674 size_t dst_off_in_page;
5675 size_t src_off_in_page;
09cbfeaf 5676 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5677 unsigned long dst_i;
5678 unsigned long src_i;
5679
5680 if (src_offset + len > dst->len) {
f14d104d
DS
5681 btrfs_err(dst->fs_info,
5682 "memmove bogus src_offset %lu move "
5683 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5684 BUG_ON(1);
5685 }
5686 if (dst_offset + len > dst->len) {
f14d104d
DS
5687 btrfs_err(dst->fs_info,
5688 "memmove bogus dst_offset %lu move "
5689 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5690 BUG_ON(1);
5691 }
5692
d397712b 5693 while (len > 0) {
d1310b2e 5694 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5695 (PAGE_SIZE - 1);
d1310b2e 5696 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5697 (PAGE_SIZE - 1);
d1310b2e 5698
09cbfeaf
KS
5699 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5700 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5701
09cbfeaf 5702 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5703 src_off_in_page));
5704 cur = min_t(unsigned long, cur,
09cbfeaf 5705 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5706
fb85fc9a 5707 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5708 dst_off_in_page, src_off_in_page, cur);
5709
5710 src_offset += cur;
5711 dst_offset += cur;
5712 len -= cur;
5713 }
5714}
d1310b2e
CM
5715
5716void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5717 unsigned long src_offset, unsigned long len)
5718{
5719 size_t cur;
5720 size_t dst_off_in_page;
5721 size_t src_off_in_page;
5722 unsigned long dst_end = dst_offset + len - 1;
5723 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5724 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5725 unsigned long dst_i;
5726 unsigned long src_i;
5727
5728 if (src_offset + len > dst->len) {
f14d104d
DS
5729 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5730 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5731 BUG_ON(1);
5732 }
5733 if (dst_offset + len > dst->len) {
f14d104d
DS
5734 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5735 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5736 BUG_ON(1);
5737 }
727011e0 5738 if (dst_offset < src_offset) {
d1310b2e
CM
5739 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5740 return;
5741 }
d397712b 5742 while (len > 0) {
09cbfeaf
KS
5743 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5744 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5745
5746 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5747 (PAGE_SIZE - 1);
d1310b2e 5748 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5749 (PAGE_SIZE - 1);
d1310b2e
CM
5750
5751 cur = min_t(unsigned long, len, src_off_in_page + 1);
5752 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5753 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5754 dst_off_in_page - cur + 1,
5755 src_off_in_page - cur + 1, cur);
5756
5757 dst_end -= cur;
5758 src_end -= cur;
5759 len -= cur;
5760 }
5761}
6af118ce 5762
f7a52a40 5763int try_release_extent_buffer(struct page *page)
19fe0a8b 5764{
6af118ce 5765 struct extent_buffer *eb;
6af118ce 5766
3083ee2e 5767 /*
01327610 5768 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5769 * now.
5770 */
5771 spin_lock(&page->mapping->private_lock);
5772 if (!PagePrivate(page)) {
5773 spin_unlock(&page->mapping->private_lock);
4f2de97a 5774 return 1;
45f49bce 5775 }
6af118ce 5776
3083ee2e
JB
5777 eb = (struct extent_buffer *)page->private;
5778 BUG_ON(!eb);
19fe0a8b
MX
5779
5780 /*
3083ee2e
JB
5781 * This is a little awful but should be ok, we need to make sure that
5782 * the eb doesn't disappear out from under us while we're looking at
5783 * this page.
19fe0a8b 5784 */
3083ee2e 5785 spin_lock(&eb->refs_lock);
0b32f4bb 5786 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5787 spin_unlock(&eb->refs_lock);
5788 spin_unlock(&page->mapping->private_lock);
5789 return 0;
b9473439 5790 }
3083ee2e 5791 spin_unlock(&page->mapping->private_lock);
897ca6e9 5792
19fe0a8b 5793 /*
3083ee2e
JB
5794 * If tree ref isn't set then we know the ref on this eb is a real ref,
5795 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5796 */
3083ee2e
JB
5797 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5798 spin_unlock(&eb->refs_lock);
5799 return 0;
b9473439 5800 }
19fe0a8b 5801
f7a52a40 5802 return release_extent_buffer(eb);
6af118ce 5803}