]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: sink gfp parameter to set_record_extent_bits
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729 goto search_again;
730
731out:
cad321ad 732 spin_unlock(&tree->lock);
d1310b2e
CM
733 if (prealloc)
734 free_extent_state(prealloc);
735
6763af84 736 return 0;
d1310b2e
CM
737
738search_again:
739 if (start > end)
740 goto out;
cad321ad 741 spin_unlock(&tree->lock);
d0164adc 742 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
743 cond_resched();
744 goto again;
745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 876 prealloc = alloc_extent_state(mask);
8233767a 877 BUG_ON(!prealloc);
d1310b2e
CM
878 }
879
cad321ad 880 spin_lock(&tree->lock);
9655d298
CM
881 if (cached_state && *cached_state) {
882 state = *cached_state;
df98b6e2 883 if (state->start <= start && state->end > start &&
27a3507d 884 extent_state_in_tree(state)) {
9655d298
CM
885 node = &state->rb_node;
886 goto hit_next;
887 }
888 }
d1310b2e
CM
889 /*
890 * this search will find all the extents that end after
891 * our range starts.
892 */
12cfbad9 893 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 894 if (!node) {
8233767a
XG
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
12cfbad9 897 err = insert_state(tree, prealloc, start, end,
d38ed27f 898 &p, &parent, &bits, changeset);
c2d904e0
JM
899 if (err)
900 extent_io_tree_panic(tree, err);
901
c42ac0bc 902 cache_state(prealloc, cached_state);
d1310b2e 903 prealloc = NULL;
d1310b2e
CM
904 goto out;
905 }
d1310b2e 906 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 907hit_next:
d1310b2e
CM
908 last_start = state->start;
909 last_end = state->end;
910
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 *
915 * Just lock what we found and keep going
916 */
917 if (state->start == start && state->end <= end) {
1edbb734 918 if (state->state & exclusive_bits) {
d1310b2e
CM
919 *failed_start = state->start;
920 err = -EEXIST;
921 goto out;
922 }
42daec29 923
d38ed27f 924 set_state_bits(tree, state, &bits, changeset);
2c64c53d 925 cache_state(state, cached_state);
d1310b2e 926 merge_state(tree, state);
5c939df5
YZ
927 if (last_end == (u64)-1)
928 goto out;
929 start = last_end + 1;
d1ac6e41
LB
930 state = next_state(state);
931 if (start < end && state && state->start == start &&
932 !need_resched())
933 goto hit_next;
d1310b2e
CM
934 goto search_again;
935 }
936
937 /*
938 * | ---- desired range ---- |
939 * | state |
940 * or
941 * | ------------- state -------------- |
942 *
943 * We need to split the extent we found, and may flip bits on
944 * second half.
945 *
946 * If the extent we found extends past our
947 * range, we just split and search again. It'll get split
948 * again the next time though.
949 *
950 * If the extent we found is inside our range, we set the
951 * desired bit on it.
952 */
953 if (state->start < start) {
1edbb734 954 if (state->state & exclusive_bits) {
d1310b2e
CM
955 *failed_start = start;
956 err = -EEXIST;
957 goto out;
958 }
8233767a
XG
959
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
d1310b2e 962 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
963 if (err)
964 extent_io_tree_panic(tree, err);
965
d1310b2e
CM
966 prealloc = NULL;
967 if (err)
968 goto out;
969 if (state->end <= end) {
d38ed27f 970 set_state_bits(tree, state, &bits, changeset);
2c64c53d 971 cache_state(state, cached_state);
d1310b2e 972 merge_state(tree, state);
5c939df5
YZ
973 if (last_end == (u64)-1)
974 goto out;
975 start = last_end + 1;
d1ac6e41
LB
976 state = next_state(state);
977 if (start < end && state && state->start == start &&
978 !need_resched())
979 goto hit_next;
d1310b2e
CM
980 }
981 goto search_again;
982 }
983 /*
984 * | ---- desired range ---- |
985 * | state | or | state |
986 *
987 * There's a hole, we need to insert something in it and
988 * ignore the extent we found.
989 */
990 if (state->start > start) {
991 u64 this_end;
992 if (end < last_start)
993 this_end = end;
994 else
d397712b 995 this_end = last_start - 1;
8233767a
XG
996
997 prealloc = alloc_extent_state_atomic(prealloc);
998 BUG_ON(!prealloc);
c7f895a2
XG
999
1000 /*
1001 * Avoid to free 'prealloc' if it can be merged with
1002 * the later extent.
1003 */
d1310b2e 1004 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1005 NULL, NULL, &bits, changeset);
c2d904e0
JM
1006 if (err)
1007 extent_io_tree_panic(tree, err);
1008
9ed74f2d
JB
1009 cache_state(prealloc, cached_state);
1010 prealloc = NULL;
d1310b2e
CM
1011 start = this_end + 1;
1012 goto search_again;
1013 }
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * We need to split the extent, and set the bit
1018 * on the first half
1019 */
1020 if (state->start <= end && state->end > end) {
1edbb734 1021 if (state->state & exclusive_bits) {
d1310b2e
CM
1022 *failed_start = start;
1023 err = -EEXIST;
1024 goto out;
1025 }
8233767a
XG
1026
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 BUG_ON(!prealloc);
d1310b2e 1029 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1030 if (err)
1031 extent_io_tree_panic(tree, err);
d1310b2e 1032
d38ed27f 1033 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1034 cache_state(prealloc, cached_state);
d1310b2e
CM
1035 merge_state(tree, prealloc);
1036 prealloc = NULL;
1037 goto out;
1038 }
1039
1040 goto search_again;
1041
1042out:
cad321ad 1043 spin_unlock(&tree->lock);
d1310b2e
CM
1044 if (prealloc)
1045 free_extent_state(prealloc);
1046
1047 return err;
1048
1049search_again:
1050 if (start > end)
1051 goto out;
cad321ad 1052 spin_unlock(&tree->lock);
d0164adc 1053 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1054 cond_resched();
1055 goto again;
1056}
d1310b2e 1057
41074888 1058int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1059 unsigned bits, u64 * failed_start,
41074888 1060 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1061{
1062 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1063 cached_state, mask, NULL);
3fbe5c02
JM
1064}
1065
1066
462d6fac 1067/**
10983f2e
LB
1068 * convert_extent_bit - convert all bits in a given range from one bit to
1069 * another
462d6fac
JB
1070 * @tree: the io tree to search
1071 * @start: the start offset in bytes
1072 * @end: the end offset in bytes (inclusive)
1073 * @bits: the bits to set in this range
1074 * @clear_bits: the bits to clear in this range
e6138876 1075 * @cached_state: state that we're going to cache
462d6fac
JB
1076 * @mask: the allocation mask
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 */
1084int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1085 unsigned bits, unsigned clear_bits,
e6138876 1086 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1087{
1088 struct extent_state *state;
1089 struct extent_state *prealloc = NULL;
1090 struct rb_node *node;
12cfbad9
FDBM
1091 struct rb_node **p;
1092 struct rb_node *parent;
462d6fac
JB
1093 int err = 0;
1094 u64 last_start;
1095 u64 last_end;
c8fd3de7 1096 bool first_iteration = true;
462d6fac 1097
a5dee37d 1098 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1099
462d6fac 1100again:
d0164adc 1101 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1102 /*
1103 * Best effort, don't worry if extent state allocation fails
1104 * here for the first iteration. We might have a cached state
1105 * that matches exactly the target range, in which case no
1106 * extent state allocations are needed. We'll only know this
1107 * after locking the tree.
1108 */
462d6fac 1109 prealloc = alloc_extent_state(mask);
c8fd3de7 1110 if (!prealloc && !first_iteration)
462d6fac
JB
1111 return -ENOMEM;
1112 }
1113
1114 spin_lock(&tree->lock);
e6138876
JB
1115 if (cached_state && *cached_state) {
1116 state = *cached_state;
1117 if (state->start <= start && state->end > start &&
27a3507d 1118 extent_state_in_tree(state)) {
e6138876
JB
1119 node = &state->rb_node;
1120 goto hit_next;
1121 }
1122 }
1123
462d6fac
JB
1124 /*
1125 * this search will find all the extents that end after
1126 * our range starts.
1127 */
12cfbad9 1128 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1129 if (!node) {
1130 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1131 if (!prealloc) {
1132 err = -ENOMEM;
1133 goto out;
1134 }
12cfbad9 1135 err = insert_state(tree, prealloc, start, end,
d38ed27f 1136 &p, &parent, &bits, NULL);
c2d904e0
JM
1137 if (err)
1138 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1139 cache_state(prealloc, cached_state);
1140 prealloc = NULL;
462d6fac
JB
1141 goto out;
1142 }
1143 state = rb_entry(node, struct extent_state, rb_node);
1144hit_next:
1145 last_start = state->start;
1146 last_end = state->end;
1147
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 *
1152 * Just lock what we found and keep going
1153 */
1154 if (state->start == start && state->end <= end) {
d38ed27f 1155 set_state_bits(tree, state, &bits, NULL);
e6138876 1156 cache_state(state, cached_state);
fefdc557 1157 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1158 if (last_end == (u64)-1)
1159 goto out;
462d6fac 1160 start = last_end + 1;
d1ac6e41
LB
1161 if (start < end && state && state->start == start &&
1162 !need_resched())
1163 goto hit_next;
462d6fac
JB
1164 goto search_again;
1165 }
1166
1167 /*
1168 * | ---- desired range ---- |
1169 * | state |
1170 * or
1171 * | ------------- state -------------- |
1172 *
1173 * We need to split the extent we found, and may flip bits on
1174 * second half.
1175 *
1176 * If the extent we found extends past our
1177 * range, we just split and search again. It'll get split
1178 * again the next time though.
1179 *
1180 * If the extent we found is inside our range, we set the
1181 * desired bit on it.
1182 */
1183 if (state->start < start) {
1184 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1185 if (!prealloc) {
1186 err = -ENOMEM;
1187 goto out;
1188 }
462d6fac 1189 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1190 if (err)
1191 extent_io_tree_panic(tree, err);
462d6fac
JB
1192 prealloc = NULL;
1193 if (err)
1194 goto out;
1195 if (state->end <= end) {
d38ed27f 1196 set_state_bits(tree, state, &bits, NULL);
e6138876 1197 cache_state(state, cached_state);
fefdc557
QW
1198 state = clear_state_bit(tree, state, &clear_bits, 0,
1199 NULL);
462d6fac
JB
1200 if (last_end == (u64)-1)
1201 goto out;
1202 start = last_end + 1;
d1ac6e41
LB
1203 if (start < end && state && state->start == start &&
1204 !need_resched())
1205 goto hit_next;
462d6fac
JB
1206 }
1207 goto search_again;
1208 }
1209 /*
1210 * | ---- desired range ---- |
1211 * | state | or | state |
1212 *
1213 * There's a hole, we need to insert something in it and
1214 * ignore the extent we found.
1215 */
1216 if (state->start > start) {
1217 u64 this_end;
1218 if (end < last_start)
1219 this_end = end;
1220 else
1221 this_end = last_start - 1;
1222
1223 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1224 if (!prealloc) {
1225 err = -ENOMEM;
1226 goto out;
1227 }
462d6fac
JB
1228
1229 /*
1230 * Avoid to free 'prealloc' if it can be merged with
1231 * the later extent.
1232 */
1233 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1234 NULL, NULL, &bits, NULL);
c2d904e0
JM
1235 if (err)
1236 extent_io_tree_panic(tree, err);
e6138876 1237 cache_state(prealloc, cached_state);
462d6fac
JB
1238 prealloc = NULL;
1239 start = this_end + 1;
1240 goto search_again;
1241 }
1242 /*
1243 * | ---- desired range ---- |
1244 * | state |
1245 * We need to split the extent, and set the bit
1246 * on the first half
1247 */
1248 if (state->start <= end && state->end > end) {
1249 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1250 if (!prealloc) {
1251 err = -ENOMEM;
1252 goto out;
1253 }
462d6fac
JB
1254
1255 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1256 if (err)
1257 extent_io_tree_panic(tree, err);
462d6fac 1258
d38ed27f 1259 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1260 cache_state(prealloc, cached_state);
fefdc557 1261 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1262 prealloc = NULL;
1263 goto out;
1264 }
1265
1266 goto search_again;
1267
1268out:
1269 spin_unlock(&tree->lock);
1270 if (prealloc)
1271 free_extent_state(prealloc);
1272
1273 return err;
1274
1275search_again:
1276 if (start > end)
1277 goto out;
1278 spin_unlock(&tree->lock);
d0164adc 1279 if (gfpflags_allow_blocking(mask))
462d6fac 1280 cond_resched();
c8fd3de7 1281 first_iteration = false;
462d6fac
JB
1282 goto again;
1283}
1284
d1310b2e 1285/* wrappers around set/clear extent bit */
d38ed27f 1286int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1287 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1288{
1289 /*
1290 * We don't support EXTENT_LOCKED yet, as current changeset will
1291 * record any bits changed, so for EXTENT_LOCKED case, it will
1292 * either fail with -EEXIST or changeset will record the whole
1293 * range.
1294 */
1295 BUG_ON(bits & EXTENT_LOCKED);
1296
2c53b912 1297 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1298 changeset);
1299}
1300
fefdc557
QW
1301int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1302 unsigned bits, int wake, int delete,
1303 struct extent_state **cached, gfp_t mask)
1304{
1305 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1306 cached, mask, NULL);
1307}
1308
fefdc557 1309int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1310 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1311{
1312 /*
1313 * Don't support EXTENT_LOCKED case, same reason as
1314 * set_record_extent_bits().
1315 */
1316 BUG_ON(bits & EXTENT_LOCKED);
1317
f734c44a 1318 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1319 changeset);
1320}
1321
d352ac68
CM
1322/*
1323 * either insert or lock state struct between start and end use mask to tell
1324 * us if waiting is desired.
1325 */
1edbb734 1326int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1327 struct extent_state **cached_state)
d1310b2e
CM
1328{
1329 int err;
1330 u64 failed_start;
9ee49a04 1331
d1310b2e 1332 while (1) {
ff13db41 1333 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1334 EXTENT_LOCKED, &failed_start,
d38ed27f 1335 cached_state, GFP_NOFS, NULL);
d0082371 1336 if (err == -EEXIST) {
d1310b2e
CM
1337 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1338 start = failed_start;
d0082371 1339 } else
d1310b2e 1340 break;
d1310b2e
CM
1341 WARN_ON(start > end);
1342 }
1343 return err;
1344}
d1310b2e 1345
d0082371 1346int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1347{
1348 int err;
1349 u64 failed_start;
1350
3fbe5c02 1351 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1352 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1353 if (err == -EEXIST) {
1354 if (failed_start > start)
1355 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1356 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1357 return 0;
6643558d 1358 }
25179201
JB
1359 return 1;
1360}
25179201 1361
bd1fa4f0 1362void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1363{
09cbfeaf
KS
1364 unsigned long index = start >> PAGE_SHIFT;
1365 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1366 struct page *page;
1367
1368 while (index <= end_index) {
1369 page = find_get_page(inode->i_mapping, index);
1370 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1371 clear_page_dirty_for_io(page);
09cbfeaf 1372 put_page(page);
4adaa611
CM
1373 index++;
1374 }
4adaa611
CM
1375}
1376
f6311572 1377void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1378{
09cbfeaf
KS
1379 unsigned long index = start >> PAGE_SHIFT;
1380 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1381 struct page *page;
1382
1383 while (index <= end_index) {
1384 page = find_get_page(inode->i_mapping, index);
1385 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1386 __set_page_dirty_nobuffers(page);
8d38633c 1387 account_page_redirty(page);
09cbfeaf 1388 put_page(page);
4adaa611
CM
1389 index++;
1390 }
4adaa611
CM
1391}
1392
d1310b2e
CM
1393/*
1394 * helper function to set both pages and extents in the tree writeback
1395 */
35de6db2 1396static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1397{
09cbfeaf
KS
1398 unsigned long index = start >> PAGE_SHIFT;
1399 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1400 struct page *page;
1401
1402 while (index <= end_index) {
1403 page = find_get_page(tree->mapping, index);
79787eaa 1404 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1405 set_page_writeback(page);
09cbfeaf 1406 put_page(page);
d1310b2e
CM
1407 index++;
1408 }
d1310b2e 1409}
d1310b2e 1410
d352ac68
CM
1411/* find the first state struct with 'bits' set after 'start', and
1412 * return it. tree->lock must be held. NULL will returned if
1413 * nothing was found after 'start'
1414 */
48a3b636
ES
1415static struct extent_state *
1416find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1417 u64 start, unsigned bits)
d7fc640e
CM
1418{
1419 struct rb_node *node;
1420 struct extent_state *state;
1421
1422 /*
1423 * this search will find all the extents that end after
1424 * our range starts.
1425 */
1426 node = tree_search(tree, start);
d397712b 1427 if (!node)
d7fc640e 1428 goto out;
d7fc640e 1429
d397712b 1430 while (1) {
d7fc640e 1431 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1432 if (state->end >= start && (state->state & bits))
d7fc640e 1433 return state;
d397712b 1434
d7fc640e
CM
1435 node = rb_next(node);
1436 if (!node)
1437 break;
1438 }
1439out:
1440 return NULL;
1441}
d7fc640e 1442
69261c4b
XG
1443/*
1444 * find the first offset in the io tree with 'bits' set. zero is
1445 * returned if we find something, and *start_ret and *end_ret are
1446 * set to reflect the state struct that was found.
1447 *
477d7eaf 1448 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1449 */
1450int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1451 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1452 struct extent_state **cached_state)
69261c4b
XG
1453{
1454 struct extent_state *state;
e6138876 1455 struct rb_node *n;
69261c4b
XG
1456 int ret = 1;
1457
1458 spin_lock(&tree->lock);
e6138876
JB
1459 if (cached_state && *cached_state) {
1460 state = *cached_state;
27a3507d 1461 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1462 n = rb_next(&state->rb_node);
1463 while (n) {
1464 state = rb_entry(n, struct extent_state,
1465 rb_node);
1466 if (state->state & bits)
1467 goto got_it;
1468 n = rb_next(n);
1469 }
1470 free_extent_state(*cached_state);
1471 *cached_state = NULL;
1472 goto out;
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 }
1477
69261c4b 1478 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1479got_it:
69261c4b 1480 if (state) {
e38e2ed7 1481 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1482 *start_ret = state->start;
1483 *end_ret = state->end;
1484 ret = 0;
1485 }
e6138876 1486out:
69261c4b
XG
1487 spin_unlock(&tree->lock);
1488 return ret;
1489}
1490
d352ac68
CM
1491/*
1492 * find a contiguous range of bytes in the file marked as delalloc, not
1493 * more than 'max_bytes'. start and end are used to return the range,
1494 *
1495 * 1 is returned if we find something, 0 if nothing was in the tree
1496 */
c8b97818 1497static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1498 u64 *start, u64 *end, u64 max_bytes,
1499 struct extent_state **cached_state)
d1310b2e
CM
1500{
1501 struct rb_node *node;
1502 struct extent_state *state;
1503 u64 cur_start = *start;
1504 u64 found = 0;
1505 u64 total_bytes = 0;
1506
cad321ad 1507 spin_lock(&tree->lock);
c8b97818 1508
d1310b2e
CM
1509 /*
1510 * this search will find all the extents that end after
1511 * our range starts.
1512 */
80ea96b1 1513 node = tree_search(tree, cur_start);
2b114d1d 1514 if (!node) {
3b951516
CM
1515 if (!found)
1516 *end = (u64)-1;
d1310b2e
CM
1517 goto out;
1518 }
1519
d397712b 1520 while (1) {
d1310b2e 1521 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1522 if (found && (state->start != cur_start ||
1523 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1524 goto out;
1525 }
1526 if (!(state->state & EXTENT_DELALLOC)) {
1527 if (!found)
1528 *end = state->end;
1529 goto out;
1530 }
c2a128d2 1531 if (!found) {
d1310b2e 1532 *start = state->start;
c2a128d2
JB
1533 *cached_state = state;
1534 atomic_inc(&state->refs);
1535 }
d1310b2e
CM
1536 found++;
1537 *end = state->end;
1538 cur_start = state->end + 1;
1539 node = rb_next(node);
d1310b2e 1540 total_bytes += state->end - state->start + 1;
7bf811a5 1541 if (total_bytes >= max_bytes)
573aecaf 1542 break;
573aecaf 1543 if (!node)
d1310b2e
CM
1544 break;
1545 }
1546out:
cad321ad 1547 spin_unlock(&tree->lock);
d1310b2e
CM
1548 return found;
1549}
1550
143bede5
JM
1551static noinline void __unlock_for_delalloc(struct inode *inode,
1552 struct page *locked_page,
1553 u64 start, u64 end)
c8b97818
CM
1554{
1555 int ret;
1556 struct page *pages[16];
09cbfeaf
KS
1557 unsigned long index = start >> PAGE_SHIFT;
1558 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1559 unsigned long nr_pages = end_index - index + 1;
1560 int i;
1561
1562 if (index == locked_page->index && end_index == index)
143bede5 1563 return;
c8b97818 1564
d397712b 1565 while (nr_pages > 0) {
c8b97818 1566 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1567 min_t(unsigned long, nr_pages,
1568 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1569 for (i = 0; i < ret; i++) {
1570 if (pages[i] != locked_page)
1571 unlock_page(pages[i]);
09cbfeaf 1572 put_page(pages[i]);
c8b97818
CM
1573 }
1574 nr_pages -= ret;
1575 index += ret;
1576 cond_resched();
1577 }
c8b97818
CM
1578}
1579
1580static noinline int lock_delalloc_pages(struct inode *inode,
1581 struct page *locked_page,
1582 u64 delalloc_start,
1583 u64 delalloc_end)
1584{
09cbfeaf 1585 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1586 unsigned long start_index = index;
09cbfeaf 1587 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1588 unsigned long pages_locked = 0;
1589 struct page *pages[16];
1590 unsigned long nrpages;
1591 int ret;
1592 int i;
1593
1594 /* the caller is responsible for locking the start index */
1595 if (index == locked_page->index && index == end_index)
1596 return 0;
1597
1598 /* skip the page at the start index */
1599 nrpages = end_index - index + 1;
d397712b 1600 while (nrpages > 0) {
c8b97818 1601 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1602 min_t(unsigned long,
1603 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1604 if (ret == 0) {
1605 ret = -EAGAIN;
1606 goto done;
1607 }
1608 /* now we have an array of pages, lock them all */
1609 for (i = 0; i < ret; i++) {
1610 /*
1611 * the caller is taking responsibility for
1612 * locked_page
1613 */
771ed689 1614 if (pages[i] != locked_page) {
c8b97818 1615 lock_page(pages[i]);
f2b1c41c
CM
1616 if (!PageDirty(pages[i]) ||
1617 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1618 ret = -EAGAIN;
1619 unlock_page(pages[i]);
09cbfeaf 1620 put_page(pages[i]);
771ed689
CM
1621 goto done;
1622 }
1623 }
09cbfeaf 1624 put_page(pages[i]);
771ed689 1625 pages_locked++;
c8b97818 1626 }
c8b97818
CM
1627 nrpages -= ret;
1628 index += ret;
1629 cond_resched();
1630 }
1631 ret = 0;
1632done:
1633 if (ret && pages_locked) {
1634 __unlock_for_delalloc(inode, locked_page,
1635 delalloc_start,
1636 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1637 PAGE_SHIFT);
c8b97818
CM
1638 }
1639 return ret;
1640}
1641
1642/*
1643 * find a contiguous range of bytes in the file marked as delalloc, not
1644 * more than 'max_bytes'. start and end are used to return the range,
1645 *
1646 * 1 is returned if we find something, 0 if nothing was in the tree
1647 */
294e30fe
JB
1648STATIC u64 find_lock_delalloc_range(struct inode *inode,
1649 struct extent_io_tree *tree,
1650 struct page *locked_page, u64 *start,
1651 u64 *end, u64 max_bytes)
c8b97818
CM
1652{
1653 u64 delalloc_start;
1654 u64 delalloc_end;
1655 u64 found;
9655d298 1656 struct extent_state *cached_state = NULL;
c8b97818
CM
1657 int ret;
1658 int loops = 0;
1659
1660again:
1661 /* step one, find a bunch of delalloc bytes starting at start */
1662 delalloc_start = *start;
1663 delalloc_end = 0;
1664 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1665 max_bytes, &cached_state);
70b99e69 1666 if (!found || delalloc_end <= *start) {
c8b97818
CM
1667 *start = delalloc_start;
1668 *end = delalloc_end;
c2a128d2 1669 free_extent_state(cached_state);
385fe0be 1670 return 0;
c8b97818
CM
1671 }
1672
70b99e69
CM
1673 /*
1674 * start comes from the offset of locked_page. We have to lock
1675 * pages in order, so we can't process delalloc bytes before
1676 * locked_page
1677 */
d397712b 1678 if (delalloc_start < *start)
70b99e69 1679 delalloc_start = *start;
70b99e69 1680
c8b97818
CM
1681 /*
1682 * make sure to limit the number of pages we try to lock down
c8b97818 1683 */
7bf811a5
JB
1684 if (delalloc_end + 1 - delalloc_start > max_bytes)
1685 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1686
c8b97818
CM
1687 /* step two, lock all the pages after the page that has start */
1688 ret = lock_delalloc_pages(inode, locked_page,
1689 delalloc_start, delalloc_end);
1690 if (ret == -EAGAIN) {
1691 /* some of the pages are gone, lets avoid looping by
1692 * shortening the size of the delalloc range we're searching
1693 */
9655d298 1694 free_extent_state(cached_state);
7d788742 1695 cached_state = NULL;
c8b97818 1696 if (!loops) {
09cbfeaf 1697 max_bytes = PAGE_SIZE;
c8b97818
CM
1698 loops = 1;
1699 goto again;
1700 } else {
1701 found = 0;
1702 goto out_failed;
1703 }
1704 }
79787eaa 1705 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1706
1707 /* step three, lock the state bits for the whole range */
ff13db41 1708 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1709
1710 /* then test to make sure it is all still delalloc */
1711 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1712 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1713 if (!ret) {
9655d298
CM
1714 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1715 &cached_state, GFP_NOFS);
c8b97818
CM
1716 __unlock_for_delalloc(inode, locked_page,
1717 delalloc_start, delalloc_end);
1718 cond_resched();
1719 goto again;
1720 }
9655d298 1721 free_extent_state(cached_state);
c8b97818
CM
1722 *start = delalloc_start;
1723 *end = delalloc_end;
1724out_failed:
1725 return found;
1726}
1727
a9d93e17 1728void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1729 struct page *locked_page,
9ee49a04 1730 unsigned clear_bits,
c2790a2e 1731 unsigned long page_ops)
c8b97818 1732{
c2790a2e 1733 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1734 int ret;
1735 struct page *pages[16];
09cbfeaf
KS
1736 unsigned long index = start >> PAGE_SHIFT;
1737 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1738 unsigned long nr_pages = end_index - index + 1;
1739 int i;
771ed689 1740
2c64c53d 1741 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1742 if (page_ops == 0)
a9d93e17 1743 return;
c8b97818 1744
704de49d
FM
1745 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1746 mapping_set_error(inode->i_mapping, -EIO);
1747
d397712b 1748 while (nr_pages > 0) {
c8b97818 1749 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1750 min_t(unsigned long,
1751 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1752 for (i = 0; i < ret; i++) {
8b62b72b 1753
c2790a2e 1754 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1755 SetPagePrivate2(pages[i]);
1756
c8b97818 1757 if (pages[i] == locked_page) {
09cbfeaf 1758 put_page(pages[i]);
c8b97818
CM
1759 continue;
1760 }
c2790a2e 1761 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1762 clear_page_dirty_for_io(pages[i]);
c2790a2e 1763 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1764 set_page_writeback(pages[i]);
704de49d
FM
1765 if (page_ops & PAGE_SET_ERROR)
1766 SetPageError(pages[i]);
c2790a2e 1767 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1768 end_page_writeback(pages[i]);
c2790a2e 1769 if (page_ops & PAGE_UNLOCK)
771ed689 1770 unlock_page(pages[i]);
09cbfeaf 1771 put_page(pages[i]);
c8b97818
CM
1772 }
1773 nr_pages -= ret;
1774 index += ret;
1775 cond_resched();
1776 }
c8b97818 1777}
c8b97818 1778
d352ac68
CM
1779/*
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1783 */
d1310b2e
CM
1784u64 count_range_bits(struct extent_io_tree *tree,
1785 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1786 unsigned bits, int contig)
d1310b2e
CM
1787{
1788 struct rb_node *node;
1789 struct extent_state *state;
1790 u64 cur_start = *start;
1791 u64 total_bytes = 0;
ec29ed5b 1792 u64 last = 0;
d1310b2e
CM
1793 int found = 0;
1794
fae7f21c 1795 if (WARN_ON(search_end <= cur_start))
d1310b2e 1796 return 0;
d1310b2e 1797
cad321ad 1798 spin_lock(&tree->lock);
d1310b2e
CM
1799 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 total_bytes = tree->dirty_bytes;
1801 goto out;
1802 }
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
80ea96b1 1807 node = tree_search(tree, cur_start);
d397712b 1808 if (!node)
d1310b2e 1809 goto out;
d1310b2e 1810
d397712b 1811 while (1) {
d1310b2e
CM
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start > search_end)
1814 break;
ec29ed5b
CM
1815 if (contig && found && state->start > last + 1)
1816 break;
1817 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1818 total_bytes += min(search_end, state->end) + 1 -
1819 max(cur_start, state->start);
1820 if (total_bytes >= max_bytes)
1821 break;
1822 if (!found) {
af60bed2 1823 *start = max(cur_start, state->start);
d1310b2e
CM
1824 found = 1;
1825 }
ec29ed5b
CM
1826 last = state->end;
1827 } else if (contig && found) {
1828 break;
d1310b2e
CM
1829 }
1830 node = rb_next(node);
1831 if (!node)
1832 break;
1833 }
1834out:
cad321ad 1835 spin_unlock(&tree->lock);
d1310b2e
CM
1836 return total_bytes;
1837}
b2950863 1838
d352ac68
CM
1839/*
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1842 */
f827ba9a 1843static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1844 struct io_failure_record *failrec)
d1310b2e
CM
1845{
1846 struct rb_node *node;
1847 struct extent_state *state;
1848 int ret = 0;
1849
cad321ad 1850 spin_lock(&tree->lock);
d1310b2e
CM
1851 /*
1852 * this search will find all the extents that end after
1853 * our range starts.
1854 */
80ea96b1 1855 node = tree_search(tree, start);
2b114d1d 1856 if (!node) {
d1310b2e
CM
1857 ret = -ENOENT;
1858 goto out;
1859 }
1860 state = rb_entry(node, struct extent_state, rb_node);
1861 if (state->start != start) {
1862 ret = -ENOENT;
1863 goto out;
1864 }
47dc196a 1865 state->failrec = failrec;
d1310b2e 1866out:
cad321ad 1867 spin_unlock(&tree->lock);
d1310b2e
CM
1868 return ret;
1869}
1870
f827ba9a 1871static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1872 struct io_failure_record **failrec)
d1310b2e
CM
1873{
1874 struct rb_node *node;
1875 struct extent_state *state;
1876 int ret = 0;
1877
cad321ad 1878 spin_lock(&tree->lock);
d1310b2e
CM
1879 /*
1880 * this search will find all the extents that end after
1881 * our range starts.
1882 */
80ea96b1 1883 node = tree_search(tree, start);
2b114d1d 1884 if (!node) {
d1310b2e
CM
1885 ret = -ENOENT;
1886 goto out;
1887 }
1888 state = rb_entry(node, struct extent_state, rb_node);
1889 if (state->start != start) {
1890 ret = -ENOENT;
1891 goto out;
1892 }
47dc196a 1893 *failrec = state->failrec;
d1310b2e 1894out:
cad321ad 1895 spin_unlock(&tree->lock);
d1310b2e
CM
1896 return ret;
1897}
1898
1899/*
1900 * searches a range in the state tree for a given mask.
70dec807 1901 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1902 * has the bits set. Otherwise, 1 is returned if any bit in the
1903 * range is found set.
1904 */
1905int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1906 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1907{
1908 struct extent_state *state = NULL;
1909 struct rb_node *node;
1910 int bitset = 0;
d1310b2e 1911
cad321ad 1912 spin_lock(&tree->lock);
27a3507d 1913 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1914 cached->end > start)
9655d298
CM
1915 node = &cached->rb_node;
1916 else
1917 node = tree_search(tree, start);
d1310b2e
CM
1918 while (node && start <= end) {
1919 state = rb_entry(node, struct extent_state, rb_node);
1920
1921 if (filled && state->start > start) {
1922 bitset = 0;
1923 break;
1924 }
1925
1926 if (state->start > end)
1927 break;
1928
1929 if (state->state & bits) {
1930 bitset = 1;
1931 if (!filled)
1932 break;
1933 } else if (filled) {
1934 bitset = 0;
1935 break;
1936 }
46562cec
CM
1937
1938 if (state->end == (u64)-1)
1939 break;
1940
d1310b2e
CM
1941 start = state->end + 1;
1942 if (start > end)
1943 break;
1944 node = rb_next(node);
1945 if (!node) {
1946 if (filled)
1947 bitset = 0;
1948 break;
1949 }
1950 }
cad321ad 1951 spin_unlock(&tree->lock);
d1310b2e
CM
1952 return bitset;
1953}
d1310b2e
CM
1954
1955/*
1956 * helper function to set a given page up to date if all the
1957 * extents in the tree for that page are up to date
1958 */
143bede5 1959static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1960{
4eee4fa4 1961 u64 start = page_offset(page);
09cbfeaf 1962 u64 end = start + PAGE_SIZE - 1;
9655d298 1963 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1964 SetPageUptodate(page);
d1310b2e
CM
1965}
1966
8b110e39 1967int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1968{
1969 int ret;
1970 int err = 0;
1971 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1972
47dc196a 1973 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1974 ret = clear_extent_bits(failure_tree, rec->start,
1975 rec->start + rec->len - 1,
91166212 1976 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1977 if (ret)
1978 err = ret;
1979
53b381b3
DW
1980 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1981 rec->start + rec->len - 1,
91166212 1982 EXTENT_DAMAGED);
53b381b3
DW
1983 if (ret && !err)
1984 err = ret;
4a54c8c1
JS
1985
1986 kfree(rec);
1987 return err;
1988}
1989
4a54c8c1
JS
1990/*
1991 * this bypasses the standard btrfs submit functions deliberately, as
1992 * the standard behavior is to write all copies in a raid setup. here we only
1993 * want to write the one bad copy. so we do the mapping for ourselves and issue
1994 * submit_bio directly.
3ec706c8 1995 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1996 * actually prevents the read that triggered the error from finishing.
1997 * currently, there can be no more than two copies of every data bit. thus,
1998 * exactly one rewrite is required.
1999 */
1203b681
MX
2000int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2001 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2002{
1203b681 2003 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2004 struct bio *bio;
2005 struct btrfs_device *dev;
4a54c8c1
JS
2006 u64 map_length = 0;
2007 u64 sector;
2008 struct btrfs_bio *bbio = NULL;
53b381b3 2009 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2010 int ret;
2011
908960c6 2012 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2013 BUG_ON(!mirror_num);
2014
53b381b3
DW
2015 /* we can't repair anything in raid56 yet */
2016 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2017 return 0;
2018
9be3395b 2019 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2020 if (!bio)
2021 return -EIO;
4f024f37 2022 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2023 map_length = length;
2024
3ec706c8 2025 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2026 &map_length, &bbio, mirror_num);
2027 if (ret) {
2028 bio_put(bio);
2029 return -EIO;
2030 }
2031 BUG_ON(mirror_num != bbio->mirror_num);
2032 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2033 bio->bi_iter.bi_sector = sector;
4a54c8c1 2034 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2035 btrfs_put_bbio(bbio);
4a54c8c1
JS
2036 if (!dev || !dev->bdev || !dev->writeable) {
2037 bio_put(bio);
2038 return -EIO;
2039 }
2040 bio->bi_bdev = dev->bdev;
ffdd2018 2041 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2042
33879d45 2043 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2044 /* try to remap that extent elsewhere? */
2045 bio_put(bio);
442a4f63 2046 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2047 return -EIO;
2048 }
2049
b14af3b4
DS
2050 btrfs_info_rl_in_rcu(fs_info,
2051 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2052 btrfs_ino(inode), start,
2053 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2054 bio_put(bio);
2055 return 0;
2056}
2057
ea466794
JB
2058int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2059 int mirror_num)
2060{
ea466794
JB
2061 u64 start = eb->start;
2062 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2063 int ret = 0;
ea466794 2064
908960c6
ID
2065 if (root->fs_info->sb->s_flags & MS_RDONLY)
2066 return -EROFS;
2067
ea466794 2068 for (i = 0; i < num_pages; i++) {
fb85fc9a 2069 struct page *p = eb->pages[i];
1203b681
MX
2070
2071 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2072 PAGE_SIZE, start, p,
1203b681 2073 start - page_offset(p), mirror_num);
ea466794
JB
2074 if (ret)
2075 break;
09cbfeaf 2076 start += PAGE_SIZE;
ea466794
JB
2077 }
2078
2079 return ret;
2080}
2081
4a54c8c1
JS
2082/*
2083 * each time an IO finishes, we do a fast check in the IO failure tree
2084 * to see if we need to process or clean up an io_failure_record
2085 */
8b110e39
MX
2086int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2087 unsigned int pg_offset)
4a54c8c1
JS
2088{
2089 u64 private;
4a54c8c1 2090 struct io_failure_record *failrec;
908960c6 2091 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2092 struct extent_state *state;
2093 int num_copies;
4a54c8c1 2094 int ret;
4a54c8c1
JS
2095
2096 private = 0;
2097 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2098 (u64)-1, 1, EXTENT_DIRTY, 0);
2099 if (!ret)
2100 return 0;
2101
47dc196a
DS
2102 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2103 &failrec);
4a54c8c1
JS
2104 if (ret)
2105 return 0;
2106
4a54c8c1
JS
2107 BUG_ON(!failrec->this_mirror);
2108
2109 if (failrec->in_validation) {
2110 /* there was no real error, just free the record */
2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2112 failrec->start);
4a54c8c1
JS
2113 goto out;
2114 }
908960c6
ID
2115 if (fs_info->sb->s_flags & MS_RDONLY)
2116 goto out;
4a54c8c1
JS
2117
2118 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2119 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2123
883d0de4
MX
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
4a54c8c1 2128 if (num_copies > 1) {
1203b681 2129 repair_io_failure(inode, start, failrec->len,
454ff3de 2130 failrec->logical, page,
1203b681 2131 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2132 }
2133 }
2134
2135out:
454ff3de 2136 free_io_failure(inode, failrec);
4a54c8c1 2137
454ff3de 2138 return 0;
4a54c8c1
JS
2139}
2140
f612496b
MX
2141/*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
2147void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2148{
2149 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2150 struct io_failure_record *failrec;
2151 struct extent_state *state, *next;
2152
2153 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 return;
2155
2156 spin_lock(&failure_tree->lock);
2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 while (state) {
2159 if (state->start > end)
2160 break;
2161
2162 ASSERT(state->end <= end);
2163
2164 next = next_state(state);
2165
47dc196a 2166 failrec = state->failrec;
f612496b
MX
2167 free_extent_state(state);
2168 kfree(failrec);
2169
2170 state = next;
2171 }
2172 spin_unlock(&failure_tree->lock);
2173}
2174
2fe6303e 2175int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2176 struct io_failure_record **failrec_ret)
4a54c8c1 2177{
2fe6303e 2178 struct io_failure_record *failrec;
4a54c8c1 2179 struct extent_map *em;
4a54c8c1
JS
2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2183 int ret;
4a54c8c1
JS
2184 u64 logical;
2185
47dc196a 2186 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2fe6303e 2191
4a54c8c1
JS
2192 failrec->start = start;
2193 failrec->len = end - start + 1;
2194 failrec->this_mirror = 0;
2195 failrec->bio_flags = 0;
2196 failrec->in_validation = 0;
2197
2198 read_lock(&em_tree->lock);
2199 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 if (!em) {
2201 read_unlock(&em_tree->lock);
2202 kfree(failrec);
2203 return -EIO;
2204 }
2205
68ba990f 2206 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2207 free_extent_map(em);
2208 em = NULL;
2209 }
2210 read_unlock(&em_tree->lock);
7a2d6a64 2211 if (!em) {
4a54c8c1
JS
2212 kfree(failrec);
2213 return -EIO;
2214 }
2fe6303e 2215
4a54c8c1
JS
2216 logical = start - em->start;
2217 logical = em->block_start + logical;
2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 logical = em->block_start;
2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 extent_set_compress_type(&failrec->bio_flags,
2222 em->compress_type);
2223 }
2fe6303e
MX
2224
2225 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2226 logical, start, failrec->len);
2227
4a54c8c1
JS
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2233 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2234 if (ret >= 0)
47dc196a 2235 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
ceeb0ae7 2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
2fe6303e 2244 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2245 failrec->logical, failrec->start, failrec->len,
2246 failrec->in_validation);
2247 /*
2248 * when data can be on disk more than twice, add to failrec here
2249 * (e.g. with a list for failed_mirror) to make
2250 * clean_io_failure() clean all those errors at once.
2251 */
2252 }
2fe6303e
MX
2253
2254 *failrec_ret = failrec;
2255
2256 return 0;
2257}
2258
2259int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2260 struct io_failure_record *failrec, int failed_mirror)
2261{
2262 int num_copies;
2263
5d964051
SB
2264 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2265 failrec->logical, failrec->len);
4a54c8c1
JS
2266 if (num_copies == 1) {
2267 /*
2268 * we only have a single copy of the data, so don't bother with
2269 * all the retry and error correction code that follows. no
2270 * matter what the error is, it is very likely to persist.
2271 */
2fe6303e 2272 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2273 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2274 return 0;
4a54c8c1
JS
2275 }
2276
4a54c8c1
JS
2277 /*
2278 * there are two premises:
2279 * a) deliver good data to the caller
2280 * b) correct the bad sectors on disk
2281 */
2282 if (failed_bio->bi_vcnt > 1) {
2283 /*
2284 * to fulfill b), we need to know the exact failing sectors, as
2285 * we don't want to rewrite any more than the failed ones. thus,
2286 * we need separate read requests for the failed bio
2287 *
2288 * if the following BUG_ON triggers, our validation request got
2289 * merged. we need separate requests for our algorithm to work.
2290 */
2291 BUG_ON(failrec->in_validation);
2292 failrec->in_validation = 1;
2293 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2294 } else {
2295 /*
2296 * we're ready to fulfill a) and b) alongside. get a good copy
2297 * of the failed sector and if we succeed, we have setup
2298 * everything for repair_io_failure to do the rest for us.
2299 */
2300 if (failrec->in_validation) {
2301 BUG_ON(failrec->this_mirror != failed_mirror);
2302 failrec->in_validation = 0;
2303 failrec->this_mirror = 0;
2304 }
2305 failrec->failed_mirror = failed_mirror;
2306 failrec->this_mirror++;
2307 if (failrec->this_mirror == failed_mirror)
2308 failrec->this_mirror++;
4a54c8c1
JS
2309 }
2310
facc8a22 2311 if (failrec->this_mirror > num_copies) {
2fe6303e 2312 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2313 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2314 return 0;
4a54c8c1
JS
2315 }
2316
2fe6303e
MX
2317 return 1;
2318}
2319
2320
2321struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2322 struct io_failure_record *failrec,
2323 struct page *page, int pg_offset, int icsum,
8b110e39 2324 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2325{
2326 struct bio *bio;
2327 struct btrfs_io_bio *btrfs_failed_bio;
2328 struct btrfs_io_bio *btrfs_bio;
2329
9be3395b 2330 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2331 if (!bio)
2332 return NULL;
2333
2334 bio->bi_end_io = endio_func;
4f024f37 2335 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2336 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2337 bio->bi_iter.bi_size = 0;
8b110e39 2338 bio->bi_private = data;
4a54c8c1 2339
facc8a22
MX
2340 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2341 if (btrfs_failed_bio->csum) {
2342 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2349 csum_size);
2350 }
2351
2fe6303e
MX
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355}
2356
2357/*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368{
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2372 struct bio *bio;
2373 int read_mode;
2374 int ret;
2375
2376 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2377
2378 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2379 if (ret)
2380 return ret;
2381
2382 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2383 if (!ret) {
2384 free_io_failure(inode, failrec);
2385 return -EIO;
2386 }
2387
2388 if (failed_bio->bi_vcnt > 1)
2389 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2390 else
2391 read_mode = READ_SYNC;
2392
2393 phy_offset >>= inode->i_sb->s_blocksize_bits;
2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2395 start - page_offset(page),
8b110e39
MX
2396 (int)phy_offset, failed_bio->bi_end_io,
2397 NULL);
2fe6303e
MX
2398 if (!bio) {
2399 free_io_failure(inode, failrec);
2400 return -EIO;
2401 }
4a54c8c1 2402
2fe6303e
MX
2403 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2404 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2405
013bd4c3
TI
2406 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2407 failrec->this_mirror,
2408 failrec->bio_flags, 0);
6c387ab2 2409 if (ret) {
454ff3de 2410 free_io_failure(inode, failrec);
6c387ab2
MX
2411 bio_put(bio);
2412 }
2413
013bd4c3 2414 return ret;
4a54c8c1
JS
2415}
2416
d1310b2e
CM
2417/* lots and lots of room for performance fixes in the end_bio funcs */
2418
b5227c07 2419void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2420{
2421 int uptodate = (err == 0);
2422 struct extent_io_tree *tree;
3e2426bd 2423 int ret = 0;
87826df0
JM
2424
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
2427 if (tree->ops && tree->ops->writepage_end_io_hook) {
2428 ret = tree->ops->writepage_end_io_hook(page, start,
2429 end, NULL, uptodate);
2430 if (ret)
2431 uptodate = 0;
2432 }
2433
87826df0 2434 if (!uptodate) {
87826df0
JM
2435 ClearPageUptodate(page);
2436 SetPageError(page);
5dca6eea
LB
2437 ret = ret < 0 ? ret : -EIO;
2438 mapping_set_error(page->mapping, ret);
87826df0 2439 }
87826df0
JM
2440}
2441
d1310b2e
CM
2442/*
2443 * after a writepage IO is done, we need to:
2444 * clear the uptodate bits on error
2445 * clear the writeback bits in the extent tree for this IO
2446 * end_page_writeback if the page has no more pending IO
2447 *
2448 * Scheduling is not allowed, so the extent state tree is expected
2449 * to have one and only one object corresponding to this IO.
2450 */
4246a0b6 2451static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2452{
2c30c71b 2453 struct bio_vec *bvec;
d1310b2e
CM
2454 u64 start;
2455 u64 end;
2c30c71b 2456 int i;
d1310b2e 2457
2c30c71b 2458 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2459 struct page *page = bvec->bv_page;
902b22f3 2460
17a5adcc
AO
2461 /* We always issue full-page reads, but if some block
2462 * in a page fails to read, blk_update_request() will
2463 * advance bv_offset and adjust bv_len to compensate.
2464 * Print a warning for nonzero offsets, and an error
2465 * if they don't add up to a full page. */
09cbfeaf
KS
2466 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2467 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2468 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2469 "partial page write in btrfs with offset %u and length %u",
2470 bvec->bv_offset, bvec->bv_len);
2471 else
2472 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2473 "incomplete page write in btrfs with offset %u and "
2474 "length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 }
d1310b2e 2477
17a5adcc
AO
2478 start = page_offset(page);
2479 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2480
b5227c07 2481 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2482 end_page_writeback(page);
2c30c71b 2483 }
2b1f55b0 2484
d1310b2e 2485 bio_put(bio);
d1310b2e
CM
2486}
2487
883d0de4
MX
2488static void
2489endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2490 int uptodate)
2491{
2492 struct extent_state *cached = NULL;
2493 u64 end = start + len - 1;
2494
2495 if (uptodate && tree->track_uptodate)
2496 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2497 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2498}
2499
d1310b2e
CM
2500/*
2501 * after a readpage IO is done, we need to:
2502 * clear the uptodate bits on error
2503 * set the uptodate bits if things worked
2504 * set the page up to date if all extents in the tree are uptodate
2505 * clear the lock bit in the extent tree
2506 * unlock the page if there are no other extents locked for it
2507 *
2508 * Scheduling is not allowed, so the extent state tree is expected
2509 * to have one and only one object corresponding to this IO.
2510 */
4246a0b6 2511static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2512{
2c30c71b 2513 struct bio_vec *bvec;
4246a0b6 2514 int uptodate = !bio->bi_error;
facc8a22 2515 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2516 struct extent_io_tree *tree;
facc8a22 2517 u64 offset = 0;
d1310b2e
CM
2518 u64 start;
2519 u64 end;
facc8a22 2520 u64 len;
883d0de4
MX
2521 u64 extent_start = 0;
2522 u64 extent_len = 0;
5cf1ab56 2523 int mirror;
d1310b2e 2524 int ret;
2c30c71b 2525 int i;
d1310b2e 2526
2c30c71b 2527 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2528 struct page *page = bvec->bv_page;
a71754fc 2529 struct inode *inode = page->mapping->host;
507903b8 2530
be3940c0 2531 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2532 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2533 bio->bi_error, io_bio->mirror_num);
a71754fc 2534 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2535
17a5adcc
AO
2536 /* We always issue full-page reads, but if some block
2537 * in a page fails to read, blk_update_request() will
2538 * advance bv_offset and adjust bv_len to compensate.
2539 * Print a warning for nonzero offsets, and an error
2540 * if they don't add up to a full page. */
09cbfeaf
KS
2541 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2542 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2543 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2544 "partial page read in btrfs with offset %u and length %u",
2545 bvec->bv_offset, bvec->bv_len);
2546 else
2547 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2548 "incomplete page read in btrfs with offset %u and "
2549 "length %u",
2550 bvec->bv_offset, bvec->bv_len);
2551 }
d1310b2e 2552
17a5adcc
AO
2553 start = page_offset(page);
2554 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2555 len = bvec->bv_len;
d1310b2e 2556
9be3395b 2557 mirror = io_bio->mirror_num;
f2a09da9
MX
2558 if (likely(uptodate && tree->ops &&
2559 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2561 page, start, end,
2562 mirror);
5ee0844d 2563 if (ret)
d1310b2e 2564 uptodate = 0;
5ee0844d 2565 else
1203b681 2566 clean_io_failure(inode, start, page, 0);
d1310b2e 2567 }
ea466794 2568
f2a09da9
MX
2569 if (likely(uptodate))
2570 goto readpage_ok;
2571
2572 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2573 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2574 if (!ret && !bio->bi_error)
ea466794 2575 uptodate = 1;
f2a09da9 2576 } else {
f4a8e656
JS
2577 /*
2578 * The generic bio_readpage_error handles errors the
2579 * following way: If possible, new read requests are
2580 * created and submitted and will end up in
2581 * end_bio_extent_readpage as well (if we're lucky, not
2582 * in the !uptodate case). In that case it returns 0 and
2583 * we just go on with the next page in our bio. If it
2584 * can't handle the error it will return -EIO and we
2585 * remain responsible for that page.
2586 */
facc8a22
MX
2587 ret = bio_readpage_error(bio, offset, page, start, end,
2588 mirror);
7e38326f 2589 if (ret == 0) {
4246a0b6 2590 uptodate = !bio->bi_error;
38c1c2e4 2591 offset += len;
7e38326f
CM
2592 continue;
2593 }
2594 }
f2a09da9 2595readpage_ok:
883d0de4 2596 if (likely(uptodate)) {
a71754fc 2597 loff_t i_size = i_size_read(inode);
09cbfeaf 2598 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2599 unsigned off;
a71754fc
JB
2600
2601 /* Zero out the end if this page straddles i_size */
09cbfeaf 2602 off = i_size & (PAGE_SIZE-1);
a583c026 2603 if (page->index == end_index && off)
09cbfeaf 2604 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2605 SetPageUptodate(page);
70dec807 2606 } else {
17a5adcc
AO
2607 ClearPageUptodate(page);
2608 SetPageError(page);
70dec807 2609 }
17a5adcc 2610 unlock_page(page);
facc8a22 2611 offset += len;
883d0de4
MX
2612
2613 if (unlikely(!uptodate)) {
2614 if (extent_len) {
2615 endio_readpage_release_extent(tree,
2616 extent_start,
2617 extent_len, 1);
2618 extent_start = 0;
2619 extent_len = 0;
2620 }
2621 endio_readpage_release_extent(tree, start,
2622 end - start + 1, 0);
2623 } else if (!extent_len) {
2624 extent_start = start;
2625 extent_len = end + 1 - start;
2626 } else if (extent_start + extent_len == start) {
2627 extent_len += end + 1 - start;
2628 } else {
2629 endio_readpage_release_extent(tree, extent_start,
2630 extent_len, uptodate);
2631 extent_start = start;
2632 extent_len = end + 1 - start;
2633 }
2c30c71b 2634 }
d1310b2e 2635
883d0de4
MX
2636 if (extent_len)
2637 endio_readpage_release_extent(tree, extent_start, extent_len,
2638 uptodate);
facc8a22 2639 if (io_bio->end_io)
4246a0b6 2640 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2641 bio_put(bio);
d1310b2e
CM
2642}
2643
9be3395b
CM
2644/*
2645 * this allocates from the btrfs_bioset. We're returning a bio right now
2646 * but you can call btrfs_io_bio for the appropriate container_of magic
2647 */
88f794ed
MX
2648struct bio *
2649btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2650 gfp_t gfp_flags)
d1310b2e 2651{
facc8a22 2652 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2653 struct bio *bio;
2654
9be3395b 2655 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2656
2657 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2658 while (!bio && (nr_vecs /= 2)) {
2659 bio = bio_alloc_bioset(gfp_flags,
2660 nr_vecs, btrfs_bioset);
2661 }
d1310b2e
CM
2662 }
2663
2664 if (bio) {
2665 bio->bi_bdev = bdev;
4f024f37 2666 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2667 btrfs_bio = btrfs_io_bio(bio);
2668 btrfs_bio->csum = NULL;
2669 btrfs_bio->csum_allocated = NULL;
2670 btrfs_bio->end_io = NULL;
d1310b2e
CM
2671 }
2672 return bio;
2673}
2674
9be3395b
CM
2675struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2676{
23ea8e5a
MX
2677 struct btrfs_io_bio *btrfs_bio;
2678 struct bio *new;
9be3395b 2679
23ea8e5a
MX
2680 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2681 if (new) {
2682 btrfs_bio = btrfs_io_bio(new);
2683 btrfs_bio->csum = NULL;
2684 btrfs_bio->csum_allocated = NULL;
2685 btrfs_bio->end_io = NULL;
3a9508b0
CM
2686
2687#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2688 /* FIXME, put this into bio_clone_bioset */
2689 if (bio->bi_css)
2690 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2691#endif
23ea8e5a
MX
2692 }
2693 return new;
2694}
9be3395b
CM
2695
2696/* this also allocates from the btrfs_bioset */
2697struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2698{
facc8a22
MX
2699 struct btrfs_io_bio *btrfs_bio;
2700 struct bio *bio;
2701
2702 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2703 if (bio) {
2704 btrfs_bio = btrfs_io_bio(bio);
2705 btrfs_bio->csum = NULL;
2706 btrfs_bio->csum_allocated = NULL;
2707 btrfs_bio->end_io = NULL;
2708 }
2709 return bio;
9be3395b
CM
2710}
2711
2712
355808c2
JM
2713static int __must_check submit_one_bio(int rw, struct bio *bio,
2714 int mirror_num, unsigned long bio_flags)
d1310b2e 2715{
d1310b2e 2716 int ret = 0;
70dec807
CM
2717 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2718 struct page *page = bvec->bv_page;
2719 struct extent_io_tree *tree = bio->bi_private;
70dec807 2720 u64 start;
70dec807 2721
4eee4fa4 2722 start = page_offset(page) + bvec->bv_offset;
70dec807 2723
902b22f3 2724 bio->bi_private = NULL;
d1310b2e
CM
2725
2726 bio_get(bio);
2727
065631f6 2728 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2729 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2730 mirror_num, bio_flags, start);
0b86a832 2731 else
21adbd5c 2732 btrfsic_submit_bio(rw, bio);
4a54c8c1 2733
d1310b2e
CM
2734 bio_put(bio);
2735 return ret;
2736}
2737
64a16701 2738static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2739 unsigned long offset, size_t size, struct bio *bio,
2740 unsigned long bio_flags)
2741{
2742 int ret = 0;
2743 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2744 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2745 bio_flags);
2746 BUG_ON(ret < 0);
2747 return ret;
2748
2749}
2750
d1310b2e 2751static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2752 struct writeback_control *wbc,
d1310b2e
CM
2753 struct page *page, sector_t sector,
2754 size_t size, unsigned long offset,
2755 struct block_device *bdev,
2756 struct bio **bio_ret,
2757 unsigned long max_pages,
f188591e 2758 bio_end_io_t end_io_func,
c8b97818
CM
2759 int mirror_num,
2760 unsigned long prev_bio_flags,
005efedf
FM
2761 unsigned long bio_flags,
2762 bool force_bio_submit)
d1310b2e
CM
2763{
2764 int ret = 0;
2765 struct bio *bio;
c8b97818 2766 int contig = 0;
c8b97818 2767 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2768 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2769
2770 if (bio_ret && *bio_ret) {
2771 bio = *bio_ret;
c8b97818 2772 if (old_compressed)
4f024f37 2773 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2774 else
f73a1c7d 2775 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2776
2777 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2778 force_bio_submit ||
64a16701 2779 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2780 bio_add_page(bio, page, page_size, offset) < page_size) {
2781 ret = submit_one_bio(rw, bio, mirror_num,
2782 prev_bio_flags);
289454ad
NA
2783 if (ret < 0) {
2784 *bio_ret = NULL;
79787eaa 2785 return ret;
289454ad 2786 }
d1310b2e
CM
2787 bio = NULL;
2788 } else {
da2f0f74
CM
2789 if (wbc)
2790 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2791 return 0;
2792 }
2793 }
c8b97818 2794
b54ffb73
KO
2795 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2796 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2797 if (!bio)
2798 return -ENOMEM;
70dec807 2799
c8b97818 2800 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2801 bio->bi_end_io = end_io_func;
2802 bio->bi_private = tree;
da2f0f74
CM
2803 if (wbc) {
2804 wbc_init_bio(wbc, bio);
2805 wbc_account_io(wbc, page, page_size);
2806 }
70dec807 2807
d397712b 2808 if (bio_ret)
d1310b2e 2809 *bio_ret = bio;
d397712b 2810 else
c8b97818 2811 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2812
2813 return ret;
2814}
2815
48a3b636
ES
2816static void attach_extent_buffer_page(struct extent_buffer *eb,
2817 struct page *page)
d1310b2e
CM
2818{
2819 if (!PagePrivate(page)) {
2820 SetPagePrivate(page);
09cbfeaf 2821 get_page(page);
4f2de97a
JB
2822 set_page_private(page, (unsigned long)eb);
2823 } else {
2824 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2825 }
2826}
2827
4f2de97a 2828void set_page_extent_mapped(struct page *page)
d1310b2e 2829{
4f2de97a
JB
2830 if (!PagePrivate(page)) {
2831 SetPagePrivate(page);
09cbfeaf 2832 get_page(page);
4f2de97a
JB
2833 set_page_private(page, EXTENT_PAGE_PRIVATE);
2834 }
d1310b2e
CM
2835}
2836
125bac01
MX
2837static struct extent_map *
2838__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2839 u64 start, u64 len, get_extent_t *get_extent,
2840 struct extent_map **em_cached)
2841{
2842 struct extent_map *em;
2843
2844 if (em_cached && *em_cached) {
2845 em = *em_cached;
cbc0e928 2846 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2847 start < extent_map_end(em)) {
2848 atomic_inc(&em->refs);
2849 return em;
2850 }
2851
2852 free_extent_map(em);
2853 *em_cached = NULL;
2854 }
2855
2856 em = get_extent(inode, page, pg_offset, start, len, 0);
2857 if (em_cached && !IS_ERR_OR_NULL(em)) {
2858 BUG_ON(*em_cached);
2859 atomic_inc(&em->refs);
2860 *em_cached = em;
2861 }
2862 return em;
2863}
d1310b2e
CM
2864/*
2865 * basic readpage implementation. Locked extent state structs are inserted
2866 * into the tree that are removed when the IO is done (by the end_io
2867 * handlers)
79787eaa 2868 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2869 */
9974090b
MX
2870static int __do_readpage(struct extent_io_tree *tree,
2871 struct page *page,
2872 get_extent_t *get_extent,
125bac01 2873 struct extent_map **em_cached,
9974090b 2874 struct bio **bio, int mirror_num,
005efedf
FM
2875 unsigned long *bio_flags, int rw,
2876 u64 *prev_em_start)
d1310b2e
CM
2877{
2878 struct inode *inode = page->mapping->host;
4eee4fa4 2879 u64 start = page_offset(page);
09cbfeaf 2880 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2881 u64 end;
2882 u64 cur = start;
2883 u64 extent_offset;
2884 u64 last_byte = i_size_read(inode);
2885 u64 block_start;
2886 u64 cur_end;
2887 sector_t sector;
2888 struct extent_map *em;
2889 struct block_device *bdev;
2890 int ret;
2891 int nr = 0;
306e16ce 2892 size_t pg_offset = 0;
d1310b2e 2893 size_t iosize;
c8b97818 2894 size_t disk_io_size;
d1310b2e 2895 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2896 unsigned long this_bio_flag = 0;
d1310b2e
CM
2897
2898 set_page_extent_mapped(page);
2899
9974090b 2900 end = page_end;
90a887c9
DM
2901 if (!PageUptodate(page)) {
2902 if (cleancache_get_page(page) == 0) {
2903 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2904 unlock_extent(tree, start, end);
90a887c9
DM
2905 goto out;
2906 }
2907 }
2908
09cbfeaf 2909 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2910 char *userpage;
09cbfeaf 2911 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2912
2913 if (zero_offset) {
09cbfeaf 2914 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2915 userpage = kmap_atomic(page);
c8b97818
CM
2916 memset(userpage + zero_offset, 0, iosize);
2917 flush_dcache_page(page);
7ac687d9 2918 kunmap_atomic(userpage);
c8b97818
CM
2919 }
2920 }
d1310b2e 2921 while (cur <= end) {
09cbfeaf 2922 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2923 bool force_bio_submit = false;
c8f2f24b 2924
d1310b2e
CM
2925 if (cur >= last_byte) {
2926 char *userpage;
507903b8
AJ
2927 struct extent_state *cached = NULL;
2928
09cbfeaf 2929 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2930 userpage = kmap_atomic(page);
306e16ce 2931 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2932 flush_dcache_page(page);
7ac687d9 2933 kunmap_atomic(userpage);
d1310b2e 2934 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2935 &cached, GFP_NOFS);
7f042a83
FM
2936 unlock_extent_cached(tree, cur,
2937 cur + iosize - 1,
2938 &cached, GFP_NOFS);
d1310b2e
CM
2939 break;
2940 }
125bac01
MX
2941 em = __get_extent_map(inode, page, pg_offset, cur,
2942 end - cur + 1, get_extent, em_cached);
c704005d 2943 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2944 SetPageError(page);
7f042a83 2945 unlock_extent(tree, cur, end);
d1310b2e
CM
2946 break;
2947 }
d1310b2e
CM
2948 extent_offset = cur - em->start;
2949 BUG_ON(extent_map_end(em) <= cur);
2950 BUG_ON(end < cur);
2951
261507a0 2952 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2953 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2954 extent_set_compress_type(&this_bio_flag,
2955 em->compress_type);
2956 }
c8b97818 2957
d1310b2e
CM
2958 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2959 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2960 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2961 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2962 disk_io_size = em->block_len;
2963 sector = em->block_start >> 9;
2964 } else {
2965 sector = (em->block_start + extent_offset) >> 9;
2966 disk_io_size = iosize;
2967 }
d1310b2e
CM
2968 bdev = em->bdev;
2969 block_start = em->block_start;
d899e052
YZ
2970 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2971 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2972
2973 /*
2974 * If we have a file range that points to a compressed extent
2975 * and it's followed by a consecutive file range that points to
2976 * to the same compressed extent (possibly with a different
2977 * offset and/or length, so it either points to the whole extent
2978 * or only part of it), we must make sure we do not submit a
2979 * single bio to populate the pages for the 2 ranges because
2980 * this makes the compressed extent read zero out the pages
2981 * belonging to the 2nd range. Imagine the following scenario:
2982 *
2983 * File layout
2984 * [0 - 8K] [8K - 24K]
2985 * | |
2986 * | |
2987 * points to extent X, points to extent X,
2988 * offset 4K, length of 8K offset 0, length 16K
2989 *
2990 * [extent X, compressed length = 4K uncompressed length = 16K]
2991 *
2992 * If the bio to read the compressed extent covers both ranges,
2993 * it will decompress extent X into the pages belonging to the
2994 * first range and then it will stop, zeroing out the remaining
2995 * pages that belong to the other range that points to extent X.
2996 * So here we make sure we submit 2 bios, one for the first
2997 * range and another one for the third range. Both will target
2998 * the same physical extent from disk, but we can't currently
2999 * make the compressed bio endio callback populate the pages
3000 * for both ranges because each compressed bio is tightly
3001 * coupled with a single extent map, and each range can have
3002 * an extent map with a different offset value relative to the
3003 * uncompressed data of our extent and different lengths. This
3004 * is a corner case so we prioritize correctness over
3005 * non-optimal behavior (submitting 2 bios for the same extent).
3006 */
3007 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3008 prev_em_start && *prev_em_start != (u64)-1 &&
3009 *prev_em_start != em->orig_start)
3010 force_bio_submit = true;
3011
3012 if (prev_em_start)
3013 *prev_em_start = em->orig_start;
3014
d1310b2e
CM
3015 free_extent_map(em);
3016 em = NULL;
3017
3018 /* we've found a hole, just zero and go on */
3019 if (block_start == EXTENT_MAP_HOLE) {
3020 char *userpage;
507903b8
AJ
3021 struct extent_state *cached = NULL;
3022
7ac687d9 3023 userpage = kmap_atomic(page);
306e16ce 3024 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3025 flush_dcache_page(page);
7ac687d9 3026 kunmap_atomic(userpage);
d1310b2e
CM
3027
3028 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3029 &cached, GFP_NOFS);
7f042a83
FM
3030 unlock_extent_cached(tree, cur,
3031 cur + iosize - 1,
3032 &cached, GFP_NOFS);
d1310b2e 3033 cur = cur + iosize;
306e16ce 3034 pg_offset += iosize;
d1310b2e
CM
3035 continue;
3036 }
3037 /* the get_extent function already copied into the page */
9655d298
CM
3038 if (test_range_bit(tree, cur, cur_end,
3039 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3040 check_page_uptodate(tree, page);
7f042a83 3041 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3042 cur = cur + iosize;
306e16ce 3043 pg_offset += iosize;
d1310b2e
CM
3044 continue;
3045 }
70dec807
CM
3046 /* we have an inline extent but it didn't get marked up
3047 * to date. Error out
3048 */
3049 if (block_start == EXTENT_MAP_INLINE) {
3050 SetPageError(page);
7f042a83 3051 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3052 cur = cur + iosize;
306e16ce 3053 pg_offset += iosize;
70dec807
CM
3054 continue;
3055 }
d1310b2e 3056
c8f2f24b 3057 pnr -= page->index;
da2f0f74 3058 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3059 sector, disk_io_size, pg_offset,
89642229 3060 bdev, bio, pnr,
c8b97818
CM
3061 end_bio_extent_readpage, mirror_num,
3062 *bio_flags,
005efedf
FM
3063 this_bio_flag,
3064 force_bio_submit);
c8f2f24b
JB
3065 if (!ret) {
3066 nr++;
3067 *bio_flags = this_bio_flag;
3068 } else {
d1310b2e 3069 SetPageError(page);
7f042a83 3070 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3071 }
d1310b2e 3072 cur = cur + iosize;
306e16ce 3073 pg_offset += iosize;
d1310b2e 3074 }
90a887c9 3075out:
d1310b2e
CM
3076 if (!nr) {
3077 if (!PageError(page))
3078 SetPageUptodate(page);
3079 unlock_page(page);
3080 }
3081 return 0;
3082}
3083
9974090b
MX
3084static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3085 struct page *pages[], int nr_pages,
3086 u64 start, u64 end,
3087 get_extent_t *get_extent,
125bac01 3088 struct extent_map **em_cached,
9974090b 3089 struct bio **bio, int mirror_num,
808f80b4
FM
3090 unsigned long *bio_flags, int rw,
3091 u64 *prev_em_start)
9974090b
MX
3092{
3093 struct inode *inode;
3094 struct btrfs_ordered_extent *ordered;
3095 int index;
3096
3097 inode = pages[0]->mapping->host;
3098 while (1) {
3099 lock_extent(tree, start, end);
3100 ordered = btrfs_lookup_ordered_range(inode, start,
3101 end - start + 1);
3102 if (!ordered)
3103 break;
3104 unlock_extent(tree, start, end);
3105 btrfs_start_ordered_extent(inode, ordered, 1);
3106 btrfs_put_ordered_extent(ordered);
3107 }
3108
3109 for (index = 0; index < nr_pages; index++) {
125bac01 3110 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3111 mirror_num, bio_flags, rw, prev_em_start);
09cbfeaf 3112 put_page(pages[index]);
9974090b
MX
3113 }
3114}
3115
3116static void __extent_readpages(struct extent_io_tree *tree,
3117 struct page *pages[],
3118 int nr_pages, get_extent_t *get_extent,
125bac01 3119 struct extent_map **em_cached,
9974090b 3120 struct bio **bio, int mirror_num,
808f80b4
FM
3121 unsigned long *bio_flags, int rw,
3122 u64 *prev_em_start)
9974090b 3123{
35a3621b 3124 u64 start = 0;
9974090b
MX
3125 u64 end = 0;
3126 u64 page_start;
3127 int index;
35a3621b 3128 int first_index = 0;
9974090b
MX
3129
3130 for (index = 0; index < nr_pages; index++) {
3131 page_start = page_offset(pages[index]);
3132 if (!end) {
3133 start = page_start;
09cbfeaf 3134 end = start + PAGE_SIZE - 1;
9974090b
MX
3135 first_index = index;
3136 } else if (end + 1 == page_start) {
09cbfeaf 3137 end += PAGE_SIZE;
9974090b
MX
3138 } else {
3139 __do_contiguous_readpages(tree, &pages[first_index],
3140 index - first_index, start,
125bac01
MX
3141 end, get_extent, em_cached,
3142 bio, mirror_num, bio_flags,
808f80b4 3143 rw, prev_em_start);
9974090b 3144 start = page_start;
09cbfeaf 3145 end = start + PAGE_SIZE - 1;
9974090b
MX
3146 first_index = index;
3147 }
3148 }
3149
3150 if (end)
3151 __do_contiguous_readpages(tree, &pages[first_index],
3152 index - first_index, start,
125bac01 3153 end, get_extent, em_cached, bio,
808f80b4
FM
3154 mirror_num, bio_flags, rw,
3155 prev_em_start);
9974090b
MX
3156}
3157
3158static int __extent_read_full_page(struct extent_io_tree *tree,
3159 struct page *page,
3160 get_extent_t *get_extent,
3161 struct bio **bio, int mirror_num,
3162 unsigned long *bio_flags, int rw)
3163{
3164 struct inode *inode = page->mapping->host;
3165 struct btrfs_ordered_extent *ordered;
3166 u64 start = page_offset(page);
09cbfeaf 3167 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3168 int ret;
3169
3170 while (1) {
3171 lock_extent(tree, start, end);
dbfdb6d1 3172 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3173 PAGE_SIZE);
9974090b
MX
3174 if (!ordered)
3175 break;
3176 unlock_extent(tree, start, end);
3177 btrfs_start_ordered_extent(inode, ordered, 1);
3178 btrfs_put_ordered_extent(ordered);
3179 }
3180
125bac01 3181 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3182 bio_flags, rw, NULL);
9974090b
MX
3183 return ret;
3184}
3185
d1310b2e 3186int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3187 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3188{
3189 struct bio *bio = NULL;
c8b97818 3190 unsigned long bio_flags = 0;
d1310b2e
CM
3191 int ret;
3192
8ddc7d9c 3193 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3194 &bio_flags, READ);
d1310b2e 3195 if (bio)
8ddc7d9c 3196 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3197 return ret;
3198}
d1310b2e 3199
11c8349b
CM
3200static noinline void update_nr_written(struct page *page,
3201 struct writeback_control *wbc,
3202 unsigned long nr_written)
3203{
3204 wbc->nr_to_write -= nr_written;
3205 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3206 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3207 page->mapping->writeback_index = page->index + nr_written;
3208}
3209
d1310b2e 3210/*
40f76580
CM
3211 * helper for __extent_writepage, doing all of the delayed allocation setup.
3212 *
3213 * This returns 1 if our fill_delalloc function did all the work required
3214 * to write the page (copy into inline extent). In this case the IO has
3215 * been started and the page is already unlocked.
3216 *
3217 * This returns 0 if all went well (page still locked)
3218 * This returns < 0 if there were errors (page still locked)
d1310b2e 3219 */
40f76580
CM
3220static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 struct page *page, struct writeback_control *wbc,
3222 struct extent_page_data *epd,
3223 u64 delalloc_start,
3224 unsigned long *nr_written)
3225{
3226 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3227 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3228 u64 nr_delalloc;
3229 u64 delalloc_to_write = 0;
3230 u64 delalloc_end = 0;
3231 int ret;
3232 int page_started = 0;
3233
3234 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3235 return 0;
3236
3237 while (delalloc_end < page_end) {
3238 nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 page,
3240 &delalloc_start,
3241 &delalloc_end,
dcab6a3b 3242 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3243 if (nr_delalloc == 0) {
3244 delalloc_start = delalloc_end + 1;
3245 continue;
3246 }
3247 ret = tree->ops->fill_delalloc(inode, page,
3248 delalloc_start,
3249 delalloc_end,
3250 &page_started,
3251 nr_written);
3252 /* File system has been set read-only */
3253 if (ret) {
3254 SetPageError(page);
3255 /* fill_delalloc should be return < 0 for error
3256 * but just in case, we use > 0 here meaning the
3257 * IO is started, so we don't want to return > 0
3258 * unless things are going well.
3259 */
3260 ret = ret < 0 ? ret : -EIO;
3261 goto done;
3262 }
3263 /*
ea1754a0
KS
3264 * delalloc_end is already one less than the total length, so
3265 * we don't subtract one from PAGE_SIZE
40f76580
CM
3266 */
3267 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3268 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3269 delalloc_start = delalloc_end + 1;
3270 }
3271 if (wbc->nr_to_write < delalloc_to_write) {
3272 int thresh = 8192;
3273
3274 if (delalloc_to_write < thresh * 2)
3275 thresh = delalloc_to_write;
3276 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3277 thresh);
3278 }
3279
3280 /* did the fill delalloc function already unlock and start
3281 * the IO?
3282 */
3283 if (page_started) {
3284 /*
3285 * we've unlocked the page, so we can't update
3286 * the mapping's writeback index, just update
3287 * nr_to_write.
3288 */
3289 wbc->nr_to_write -= *nr_written;
3290 return 1;
3291 }
3292
3293 ret = 0;
3294
3295done:
3296 return ret;
3297}
3298
3299/*
3300 * helper for __extent_writepage. This calls the writepage start hooks,
3301 * and does the loop to map the page into extents and bios.
3302 *
3303 * We return 1 if the IO is started and the page is unlocked,
3304 * 0 if all went well (page still locked)
3305 * < 0 if there were errors (page still locked)
3306 */
3307static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3308 struct page *page,
3309 struct writeback_control *wbc,
3310 struct extent_page_data *epd,
3311 loff_t i_size,
3312 unsigned long nr_written,
3313 int write_flags, int *nr_ret)
d1310b2e 3314{
d1310b2e 3315 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3316 u64 start = page_offset(page);
09cbfeaf 3317 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3318 u64 end;
3319 u64 cur = start;
3320 u64 extent_offset;
d1310b2e
CM
3321 u64 block_start;
3322 u64 iosize;
3323 sector_t sector;
2c64c53d 3324 struct extent_state *cached_state = NULL;
d1310b2e
CM
3325 struct extent_map *em;
3326 struct block_device *bdev;
7f3c74fb 3327 size_t pg_offset = 0;
d1310b2e 3328 size_t blocksize;
40f76580
CM
3329 int ret = 0;
3330 int nr = 0;
3331 bool compressed;
c8b97818 3332
247e743c 3333 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3334 ret = tree->ops->writepage_start_hook(page, start,
3335 page_end);
87826df0
JM
3336 if (ret) {
3337 /* Fixup worker will requeue */
3338 if (ret == -EBUSY)
3339 wbc->pages_skipped++;
3340 else
3341 redirty_page_for_writepage(wbc, page);
40f76580 3342
11c8349b 3343 update_nr_written(page, wbc, nr_written);
247e743c 3344 unlock_page(page);
40f76580 3345 ret = 1;
11c8349b 3346 goto done_unlocked;
247e743c
CM
3347 }
3348 }
3349
11c8349b
CM
3350 /*
3351 * we don't want to touch the inode after unlocking the page,
3352 * so we update the mapping writeback index now
3353 */
3354 update_nr_written(page, wbc, nr_written + 1);
771ed689 3355
d1310b2e 3356 end = page_end;
40f76580 3357 if (i_size <= start) {
e6dcd2dc
CM
3358 if (tree->ops && tree->ops->writepage_end_io_hook)
3359 tree->ops->writepage_end_io_hook(page, start,
3360 page_end, NULL, 1);
d1310b2e
CM
3361 goto done;
3362 }
3363
d1310b2e
CM
3364 blocksize = inode->i_sb->s_blocksize;
3365
3366 while (cur <= end) {
40f76580
CM
3367 u64 em_end;
3368 if (cur >= i_size) {
e6dcd2dc
CM
3369 if (tree->ops && tree->ops->writepage_end_io_hook)
3370 tree->ops->writepage_end_io_hook(page, cur,
3371 page_end, NULL, 1);
d1310b2e
CM
3372 break;
3373 }
7f3c74fb 3374 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3375 end - cur + 1, 1);
c704005d 3376 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3377 SetPageError(page);
61391d56 3378 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3379 break;
3380 }
3381
3382 extent_offset = cur - em->start;
40f76580
CM
3383 em_end = extent_map_end(em);
3384 BUG_ON(em_end <= cur);
d1310b2e 3385 BUG_ON(end < cur);
40f76580 3386 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3387 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3388 sector = (em->block_start + extent_offset) >> 9;
3389 bdev = em->bdev;
3390 block_start = em->block_start;
c8b97818 3391 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3392 free_extent_map(em);
3393 em = NULL;
3394
c8b97818
CM
3395 /*
3396 * compressed and inline extents are written through other
3397 * paths in the FS
3398 */
3399 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3400 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3401 /*
3402 * end_io notification does not happen here for
3403 * compressed extents
3404 */
3405 if (!compressed && tree->ops &&
3406 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3407 tree->ops->writepage_end_io_hook(page, cur,
3408 cur + iosize - 1,
3409 NULL, 1);
c8b97818
CM
3410 else if (compressed) {
3411 /* we don't want to end_page_writeback on
3412 * a compressed extent. this happens
3413 * elsewhere
3414 */
3415 nr++;
3416 }
3417
3418 cur += iosize;
7f3c74fb 3419 pg_offset += iosize;
d1310b2e
CM
3420 continue;
3421 }
c8b97818 3422
d1310b2e
CM
3423 if (tree->ops && tree->ops->writepage_io_hook) {
3424 ret = tree->ops->writepage_io_hook(page, cur,
3425 cur + iosize - 1);
3426 } else {
3427 ret = 0;
3428 }
1259ab75 3429 if (ret) {
d1310b2e 3430 SetPageError(page);
1259ab75 3431 } else {
09cbfeaf 3432 unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
7f3c74fb 3433
d1310b2e
CM
3434 set_range_writeback(tree, cur, cur + iosize - 1);
3435 if (!PageWriteback(page)) {
efe120a0
FH
3436 btrfs_err(BTRFS_I(inode)->root->fs_info,
3437 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3438 page->index, cur, end);
d1310b2e
CM
3439 }
3440
da2f0f74 3441 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3442 sector, iosize, pg_offset,
3443 bdev, &epd->bio, max_nr,
c8b97818 3444 end_bio_extent_writepage,
005efedf 3445 0, 0, 0, false);
d1310b2e
CM
3446 if (ret)
3447 SetPageError(page);
3448 }
3449 cur = cur + iosize;
7f3c74fb 3450 pg_offset += iosize;
d1310b2e
CM
3451 nr++;
3452 }
40f76580
CM
3453done:
3454 *nr_ret = nr;
3455
3456done_unlocked:
3457
3458 /* drop our reference on any cached states */
3459 free_extent_state(cached_state);
3460 return ret;
3461}
3462
3463/*
3464 * the writepage semantics are similar to regular writepage. extent
3465 * records are inserted to lock ranges in the tree, and as dirty areas
3466 * are found, they are marked writeback. Then the lock bits are removed
3467 * and the end_io handler clears the writeback ranges
3468 */
3469static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3470 void *data)
3471{
3472 struct inode *inode = page->mapping->host;
3473 struct extent_page_data *epd = data;
3474 u64 start = page_offset(page);
09cbfeaf 3475 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3476 int ret;
3477 int nr = 0;
3478 size_t pg_offset = 0;
3479 loff_t i_size = i_size_read(inode);
09cbfeaf 3480 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3481 int write_flags;
3482 unsigned long nr_written = 0;
3483
3484 if (wbc->sync_mode == WB_SYNC_ALL)
3485 write_flags = WRITE_SYNC;
3486 else
3487 write_flags = WRITE;
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
09cbfeaf 3495 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
09cbfeaf 3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
09cbfeaf 3508 PAGE_SIZE - pg_offset);
40f76580
CM
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
d1310b2e
CM
3528done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
61391d56
FM
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
d1310b2e 3538 unlock_page(page);
40f76580 3539 return ret;
771ed689 3540
11c8349b 3541done_unlocked:
d1310b2e
CM
3542 return 0;
3543}
3544
fd8b2b61 3545void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3546{
74316201
N
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3549}
3550
0e378df1
CM
3551static noinline_for_stack int
3552lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
0b32f4bb
JB
3555{
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
a098d8e8
CM
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
0b32f4bb 3579 btrfs_tree_unlock(eb);
0b32f4bb
JB
3580 }
3581 }
3582
51561ffe
JB
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3591 spin_unlock(&eb->refs_lock);
0b32f4bb 3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
0b32f4bb 3596 ret = 1;
51561ffe
JB
3597 } else {
3598 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
fb85fc9a 3608 struct page *p = eb->pages[i];
0b32f4bb
JB
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620}
3621
3622static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623{
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3625 smp_mb__after_atomic();
0b32f4bb
JB
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627}
3628
656f30db
FM
3629static void set_btree_ioerr(struct page *page)
3630{
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3633
3634 SetPageError(page);
3635 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3636 return;
3637
3638 /*
3639 * If writeback for a btree extent that doesn't belong to a log tree
3640 * failed, increment the counter transaction->eb_write_errors.
3641 * We do this because while the transaction is running and before it's
3642 * committing (when we call filemap_fdata[write|wait]_range against
3643 * the btree inode), we might have
3644 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3645 * returns an error or an error happens during writeback, when we're
3646 * committing the transaction we wouldn't know about it, since the pages
3647 * can be no longer dirty nor marked anymore for writeback (if a
3648 * subsequent modification to the extent buffer didn't happen before the
3649 * transaction commit), which makes filemap_fdata[write|wait]_range not
3650 * able to find the pages tagged with SetPageError at transaction
3651 * commit time. So if this happens we must abort the transaction,
3652 * otherwise we commit a super block with btree roots that point to
3653 * btree nodes/leafs whose content on disk is invalid - either garbage
3654 * or the content of some node/leaf from a past generation that got
3655 * cowed or deleted and is no longer valid.
3656 *
3657 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3658 * not be enough - we need to distinguish between log tree extents vs
3659 * non-log tree extents, and the next filemap_fdatawait_range() call
3660 * will catch and clear such errors in the mapping - and that call might
3661 * be from a log sync and not from a transaction commit. Also, checking
3662 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3663 * not done and would not be reliable - the eb might have been released
3664 * from memory and reading it back again means that flag would not be
3665 * set (since it's a runtime flag, not persisted on disk).
3666 *
3667 * Using the flags below in the btree inode also makes us achieve the
3668 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3669 * writeback for all dirty pages and before filemap_fdatawait_range()
3670 * is called, the writeback for all dirty pages had already finished
3671 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3672 * filemap_fdatawait_range() would return success, as it could not know
3673 * that writeback errors happened (the pages were no longer tagged for
3674 * writeback).
3675 */
3676 switch (eb->log_index) {
3677 case -1:
3678 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3679 break;
3680 case 0:
3681 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3682 break;
3683 case 1:
3684 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3685 break;
3686 default:
3687 BUG(); /* unexpected, logic error */
3688 }
3689}
3690
4246a0b6 3691static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3692{
2c30c71b 3693 struct bio_vec *bvec;
0b32f4bb 3694 struct extent_buffer *eb;
2c30c71b 3695 int i, done;
0b32f4bb 3696
2c30c71b 3697 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3698 struct page *page = bvec->bv_page;
3699
0b32f4bb
JB
3700 eb = (struct extent_buffer *)page->private;
3701 BUG_ON(!eb);
3702 done = atomic_dec_and_test(&eb->io_pages);
3703
4246a0b6
CH
3704 if (bio->bi_error ||
3705 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3706 ClearPageUptodate(page);
656f30db 3707 set_btree_ioerr(page);
0b32f4bb
JB
3708 }
3709
3710 end_page_writeback(page);
3711
3712 if (!done)
3713 continue;
3714
3715 end_extent_buffer_writeback(eb);
2c30c71b 3716 }
0b32f4bb
JB
3717
3718 bio_put(bio);
0b32f4bb
JB
3719}
3720
0e378df1 3721static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3722 struct btrfs_fs_info *fs_info,
3723 struct writeback_control *wbc,
3724 struct extent_page_data *epd)
3725{
3726 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3727 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3728 u64 offset = eb->start;
3729 unsigned long i, num_pages;
de0022b9 3730 unsigned long bio_flags = 0;
d4c7ca86 3731 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3732 int ret = 0;
0b32f4bb 3733
656f30db 3734 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3735 num_pages = num_extent_pages(eb->start, eb->len);
3736 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3737 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3738 bio_flags = EXTENT_BIO_TREE_LOG;
3739
0b32f4bb 3740 for (i = 0; i < num_pages; i++) {
fb85fc9a 3741 struct page *p = eb->pages[i];
0b32f4bb
JB
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
da2f0f74 3745 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
09cbfeaf 3746 PAGE_SIZE, 0, bdev, &epd->bio,
0b32f4bb 3747 -1, end_bio_extent_buffer_writepage,
005efedf 3748 0, epd->bio_flags, bio_flags, false);
de0022b9 3749 epd->bio_flags = bio_flags;
0b32f4bb 3750 if (ret) {
656f30db 3751 set_btree_ioerr(p);
55e3bd2e 3752 end_page_writeback(p);
0b32f4bb
JB
3753 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3754 end_extent_buffer_writeback(eb);
3755 ret = -EIO;
3756 break;
3757 }
09cbfeaf 3758 offset += PAGE_SIZE;
0b32f4bb
JB
3759 update_nr_written(p, wbc, 1);
3760 unlock_page(p);
3761 }
3762
3763 if (unlikely(ret)) {
3764 for (; i < num_pages; i++) {
bbf65cf0 3765 struct page *p = eb->pages[i];
81465028 3766 clear_page_dirty_for_io(p);
0b32f4bb
JB
3767 unlock_page(p);
3768 }
3769 }
3770
3771 return ret;
3772}
3773
3774int btree_write_cache_pages(struct address_space *mapping,
3775 struct writeback_control *wbc)
3776{
3777 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3778 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3779 struct extent_buffer *eb, *prev_eb = NULL;
3780 struct extent_page_data epd = {
3781 .bio = NULL,
3782 .tree = tree,
3783 .extent_locked = 0,
3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3785 .bio_flags = 0,
0b32f4bb
JB
3786 };
3787 int ret = 0;
3788 int done = 0;
3789 int nr_to_write_done = 0;
3790 struct pagevec pvec;
3791 int nr_pages;
3792 pgoff_t index;
3793 pgoff_t end; /* Inclusive */
3794 int scanned = 0;
3795 int tag;
3796
3797 pagevec_init(&pvec, 0);
3798 if (wbc->range_cyclic) {
3799 index = mapping->writeback_index; /* Start from prev offset */
3800 end = -1;
3801 } else {
09cbfeaf
KS
3802 index = wbc->range_start >> PAGE_SHIFT;
3803 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3804 scanned = 1;
3805 }
3806 if (wbc->sync_mode == WB_SYNC_ALL)
3807 tag = PAGECACHE_TAG_TOWRITE;
3808 else
3809 tag = PAGECACHE_TAG_DIRTY;
3810retry:
3811 if (wbc->sync_mode == WB_SYNC_ALL)
3812 tag_pages_for_writeback(mapping, index, end);
3813 while (!done && !nr_to_write_done && (index <= end) &&
3814 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3815 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3816 unsigned i;
3817
3818 scanned = 1;
3819 for (i = 0; i < nr_pages; i++) {
3820 struct page *page = pvec.pages[i];
3821
3822 if (!PagePrivate(page))
3823 continue;
3824
3825 if (!wbc->range_cyclic && page->index > end) {
3826 done = 1;
3827 break;
3828 }
3829
b5bae261
JB
3830 spin_lock(&mapping->private_lock);
3831 if (!PagePrivate(page)) {
3832 spin_unlock(&mapping->private_lock);
3833 continue;
3834 }
3835
0b32f4bb 3836 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3837
3838 /*
3839 * Shouldn't happen and normally this would be a BUG_ON
3840 * but no sense in crashing the users box for something
3841 * we can survive anyway.
3842 */
fae7f21c 3843 if (WARN_ON(!eb)) {
b5bae261 3844 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3845 continue;
3846 }
3847
b5bae261
JB
3848 if (eb == prev_eb) {
3849 spin_unlock(&mapping->private_lock);
0b32f4bb 3850 continue;
b5bae261 3851 }
0b32f4bb 3852
b5bae261
JB
3853 ret = atomic_inc_not_zero(&eb->refs);
3854 spin_unlock(&mapping->private_lock);
3855 if (!ret)
0b32f4bb 3856 continue;
0b32f4bb
JB
3857
3858 prev_eb = eb;
3859 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3860 if (!ret) {
3861 free_extent_buffer(eb);
3862 continue;
3863 }
3864
3865 ret = write_one_eb(eb, fs_info, wbc, &epd);
3866 if (ret) {
3867 done = 1;
3868 free_extent_buffer(eb);
3869 break;
3870 }
3871 free_extent_buffer(eb);
3872
3873 /*
3874 * the filesystem may choose to bump up nr_to_write.
3875 * We have to make sure to honor the new nr_to_write
3876 * at any time
3877 */
3878 nr_to_write_done = wbc->nr_to_write <= 0;
3879 }
3880 pagevec_release(&pvec);
3881 cond_resched();
3882 }
3883 if (!scanned && !done) {
3884 /*
3885 * We hit the last page and there is more work to be done: wrap
3886 * back to the start of the file
3887 */
3888 scanned = 1;
3889 index = 0;
3890 goto retry;
3891 }
3892 flush_write_bio(&epd);
3893 return ret;
3894}
3895
d1310b2e 3896/**
4bef0848 3897 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3898 * @mapping: address space structure to write
3899 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3900 * @writepage: function called for each page
3901 * @data: data passed to writepage function
3902 *
3903 * If a page is already under I/O, write_cache_pages() skips it, even
3904 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3905 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3906 * and msync() need to guarantee that all the data which was dirty at the time
3907 * the call was made get new I/O started against them. If wbc->sync_mode is
3908 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3909 * existing IO to complete.
3910 */
b2950863 3911static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3912 struct address_space *mapping,
3913 struct writeback_control *wbc,
d2c3f4f6
CM
3914 writepage_t writepage, void *data,
3915 void (*flush_fn)(void *))
d1310b2e 3916{
7fd1a3f7 3917 struct inode *inode = mapping->host;
d1310b2e
CM
3918 int ret = 0;
3919 int done = 0;
61391d56 3920 int err = 0;
f85d7d6c 3921 int nr_to_write_done = 0;
d1310b2e
CM
3922 struct pagevec pvec;
3923 int nr_pages;
3924 pgoff_t index;
3925 pgoff_t end; /* Inclusive */
3926 int scanned = 0;
f7aaa06b 3927 int tag;
d1310b2e 3928
7fd1a3f7
JB
3929 /*
3930 * We have to hold onto the inode so that ordered extents can do their
3931 * work when the IO finishes. The alternative to this is failing to add
3932 * an ordered extent if the igrab() fails there and that is a huge pain
3933 * to deal with, so instead just hold onto the inode throughout the
3934 * writepages operation. If it fails here we are freeing up the inode
3935 * anyway and we'd rather not waste our time writing out stuff that is
3936 * going to be truncated anyway.
3937 */
3938 if (!igrab(inode))
3939 return 0;
3940
d1310b2e
CM
3941 pagevec_init(&pvec, 0);
3942 if (wbc->range_cyclic) {
3943 index = mapping->writeback_index; /* Start from prev offset */
3944 end = -1;
3945 } else {
09cbfeaf
KS
3946 index = wbc->range_start >> PAGE_SHIFT;
3947 end = wbc->range_end >> PAGE_SHIFT;
d1310b2e
CM
3948 scanned = 1;
3949 }
f7aaa06b
JB
3950 if (wbc->sync_mode == WB_SYNC_ALL)
3951 tag = PAGECACHE_TAG_TOWRITE;
3952 else
3953 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3954retry:
f7aaa06b
JB
3955 if (wbc->sync_mode == WB_SYNC_ALL)
3956 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3957 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3958 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3959 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3960 unsigned i;
3961
3962 scanned = 1;
3963 for (i = 0; i < nr_pages; i++) {
3964 struct page *page = pvec.pages[i];
3965
3966 /*
3967 * At this point we hold neither mapping->tree_lock nor
3968 * lock on the page itself: the page may be truncated or
3969 * invalidated (changing page->mapping to NULL), or even
3970 * swizzled back from swapper_space to tmpfs file
3971 * mapping
3972 */
c8f2f24b
JB
3973 if (!trylock_page(page)) {
3974 flush_fn(data);
3975 lock_page(page);
01d658f2 3976 }
d1310b2e
CM
3977
3978 if (unlikely(page->mapping != mapping)) {
3979 unlock_page(page);
3980 continue;
3981 }
3982
3983 if (!wbc->range_cyclic && page->index > end) {
3984 done = 1;
3985 unlock_page(page);
3986 continue;
3987 }
3988
d2c3f4f6 3989 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3990 if (PageWriteback(page))
3991 flush_fn(data);
d1310b2e 3992 wait_on_page_writeback(page);
d2c3f4f6 3993 }
d1310b2e
CM
3994
3995 if (PageWriteback(page) ||
3996 !clear_page_dirty_for_io(page)) {
3997 unlock_page(page);
3998 continue;
3999 }
4000
4001 ret = (*writepage)(page, wbc, data);
4002
4003 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4004 unlock_page(page);
4005 ret = 0;
4006 }
61391d56
FM
4007 if (!err && ret < 0)
4008 err = ret;
f85d7d6c
CM
4009
4010 /*
4011 * the filesystem may choose to bump up nr_to_write.
4012 * We have to make sure to honor the new nr_to_write
4013 * at any time
4014 */
4015 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4016 }
4017 pagevec_release(&pvec);
4018 cond_resched();
4019 }
61391d56 4020 if (!scanned && !done && !err) {
d1310b2e
CM
4021 /*
4022 * We hit the last page and there is more work to be done: wrap
4023 * back to the start of the file
4024 */
4025 scanned = 1;
4026 index = 0;
4027 goto retry;
4028 }
7fd1a3f7 4029 btrfs_add_delayed_iput(inode);
61391d56 4030 return err;
d1310b2e 4031}
d1310b2e 4032
ffbd517d 4033static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4034{
d2c3f4f6 4035 if (epd->bio) {
355808c2
JM
4036 int rw = WRITE;
4037 int ret;
4038
ffbd517d 4039 if (epd->sync_io)
355808c2
JM
4040 rw = WRITE_SYNC;
4041
de0022b9 4042 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4043 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4044 epd->bio = NULL;
4045 }
4046}
4047
ffbd517d
CM
4048static noinline void flush_write_bio(void *data)
4049{
4050 struct extent_page_data *epd = data;
4051 flush_epd_write_bio(epd);
4052}
4053
d1310b2e
CM
4054int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4055 get_extent_t *get_extent,
4056 struct writeback_control *wbc)
4057{
4058 int ret;
d1310b2e
CM
4059 struct extent_page_data epd = {
4060 .bio = NULL,
4061 .tree = tree,
4062 .get_extent = get_extent,
771ed689 4063 .extent_locked = 0,
ffbd517d 4064 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4065 .bio_flags = 0,
d1310b2e 4066 };
d1310b2e 4067
d1310b2e
CM
4068 ret = __extent_writepage(page, wbc, &epd);
4069
ffbd517d 4070 flush_epd_write_bio(&epd);
d1310b2e
CM
4071 return ret;
4072}
d1310b2e 4073
771ed689
CM
4074int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4075 u64 start, u64 end, get_extent_t *get_extent,
4076 int mode)
4077{
4078 int ret = 0;
4079 struct address_space *mapping = inode->i_mapping;
4080 struct page *page;
09cbfeaf
KS
4081 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4082 PAGE_SHIFT;
771ed689
CM
4083
4084 struct extent_page_data epd = {
4085 .bio = NULL,
4086 .tree = tree,
4087 .get_extent = get_extent,
4088 .extent_locked = 1,
ffbd517d 4089 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4090 .bio_flags = 0,
771ed689
CM
4091 };
4092 struct writeback_control wbc_writepages = {
771ed689 4093 .sync_mode = mode,
771ed689
CM
4094 .nr_to_write = nr_pages * 2,
4095 .range_start = start,
4096 .range_end = end + 1,
4097 };
4098
d397712b 4099 while (start <= end) {
09cbfeaf 4100 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4101 if (clear_page_dirty_for_io(page))
4102 ret = __extent_writepage(page, &wbc_writepages, &epd);
4103 else {
4104 if (tree->ops && tree->ops->writepage_end_io_hook)
4105 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4106 start + PAGE_SIZE - 1,
771ed689
CM
4107 NULL, 1);
4108 unlock_page(page);
4109 }
09cbfeaf
KS
4110 put_page(page);
4111 start += PAGE_SIZE;
771ed689
CM
4112 }
4113
ffbd517d 4114 flush_epd_write_bio(&epd);
771ed689
CM
4115 return ret;
4116}
d1310b2e
CM
4117
4118int extent_writepages(struct extent_io_tree *tree,
4119 struct address_space *mapping,
4120 get_extent_t *get_extent,
4121 struct writeback_control *wbc)
4122{
4123 int ret = 0;
4124 struct extent_page_data epd = {
4125 .bio = NULL,
4126 .tree = tree,
4127 .get_extent = get_extent,
771ed689 4128 .extent_locked = 0,
ffbd517d 4129 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4130 .bio_flags = 0,
d1310b2e
CM
4131 };
4132
4bef0848 4133 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4134 __extent_writepage, &epd,
4135 flush_write_bio);
ffbd517d 4136 flush_epd_write_bio(&epd);
d1310b2e
CM
4137 return ret;
4138}
d1310b2e
CM
4139
4140int extent_readpages(struct extent_io_tree *tree,
4141 struct address_space *mapping,
4142 struct list_head *pages, unsigned nr_pages,
4143 get_extent_t get_extent)
4144{
4145 struct bio *bio = NULL;
4146 unsigned page_idx;
c8b97818 4147 unsigned long bio_flags = 0;
67c9684f
LB
4148 struct page *pagepool[16];
4149 struct page *page;
125bac01 4150 struct extent_map *em_cached = NULL;
67c9684f 4151 int nr = 0;
808f80b4 4152 u64 prev_em_start = (u64)-1;
d1310b2e 4153
d1310b2e 4154 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4155 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4156
4157 prefetchw(&page->flags);
4158 list_del(&page->lru);
67c9684f 4159 if (add_to_page_cache_lru(page, mapping,
43e817a1 4160 page->index, GFP_NOFS)) {
09cbfeaf 4161 put_page(page);
67c9684f 4162 continue;
d1310b2e 4163 }
67c9684f
LB
4164
4165 pagepool[nr++] = page;
4166 if (nr < ARRAY_SIZE(pagepool))
4167 continue;
125bac01 4168 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4169 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4170 nr = 0;
d1310b2e 4171 }
9974090b 4172 if (nr)
125bac01 4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4174 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4175
125bac01
MX
4176 if (em_cached)
4177 free_extent_map(em_cached);
4178
d1310b2e
CM
4179 BUG_ON(!list_empty(pages));
4180 if (bio)
79787eaa 4181 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4182 return 0;
4183}
d1310b2e
CM
4184
4185/*
4186 * basic invalidatepage code, this waits on any locked or writeback
4187 * ranges corresponding to the page, and then deletes any extent state
4188 * records from the tree
4189 */
4190int extent_invalidatepage(struct extent_io_tree *tree,
4191 struct page *page, unsigned long offset)
4192{
2ac55d41 4193 struct extent_state *cached_state = NULL;
4eee4fa4 4194 u64 start = page_offset(page);
09cbfeaf 4195 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4196 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4197
fda2832f 4198 start += ALIGN(offset, blocksize);
d1310b2e
CM
4199 if (start > end)
4200 return 0;
4201
ff13db41 4202 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4203 wait_on_page_writeback(page);
d1310b2e 4204 clear_extent_bit(tree, start, end,
32c00aff
JB
4205 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4206 EXTENT_DO_ACCOUNTING,
2ac55d41 4207 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4208 return 0;
4209}
d1310b2e 4210
7b13b7b1
CM
4211/*
4212 * a helper for releasepage, this tests for areas of the page that
4213 * are locked or under IO and drops the related state bits if it is safe
4214 * to drop the page.
4215 */
48a3b636
ES
4216static int try_release_extent_state(struct extent_map_tree *map,
4217 struct extent_io_tree *tree,
4218 struct page *page, gfp_t mask)
7b13b7b1 4219{
4eee4fa4 4220 u64 start = page_offset(page);
09cbfeaf 4221 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4222 int ret = 1;
4223
211f90e6 4224 if (test_range_bit(tree, start, end,
8b62b72b 4225 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4226 ret = 0;
4227 else {
4228 if ((mask & GFP_NOFS) == GFP_NOFS)
4229 mask = GFP_NOFS;
11ef160f
CM
4230 /*
4231 * at this point we can safely clear everything except the
4232 * locked bit and the nodatasum bit
4233 */
e3f24cc5 4234 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4235 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4236 0, 0, NULL, mask);
e3f24cc5
CM
4237
4238 /* if clear_extent_bit failed for enomem reasons,
4239 * we can't allow the release to continue.
4240 */
4241 if (ret < 0)
4242 ret = 0;
4243 else
4244 ret = 1;
7b13b7b1
CM
4245 }
4246 return ret;
4247}
7b13b7b1 4248
d1310b2e
CM
4249/*
4250 * a helper for releasepage. As long as there are no locked extents
4251 * in the range corresponding to the page, both state records and extent
4252 * map records are removed
4253 */
4254int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4255 struct extent_io_tree *tree, struct page *page,
4256 gfp_t mask)
d1310b2e
CM
4257{
4258 struct extent_map *em;
4eee4fa4 4259 u64 start = page_offset(page);
09cbfeaf 4260 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4261
d0164adc 4262 if (gfpflags_allow_blocking(mask) &&
ee22184b 4263 page->mapping->host->i_size > SZ_16M) {
39b5637f 4264 u64 len;
70dec807 4265 while (start <= end) {
39b5637f 4266 len = end - start + 1;
890871be 4267 write_lock(&map->lock);
39b5637f 4268 em = lookup_extent_mapping(map, start, len);
285190d9 4269 if (!em) {
890871be 4270 write_unlock(&map->lock);
70dec807
CM
4271 break;
4272 }
7f3c74fb
CM
4273 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4274 em->start != start) {
890871be 4275 write_unlock(&map->lock);
70dec807
CM
4276 free_extent_map(em);
4277 break;
4278 }
4279 if (!test_range_bit(tree, em->start,
4280 extent_map_end(em) - 1,
8b62b72b 4281 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4282 0, NULL)) {
70dec807
CM
4283 remove_extent_mapping(map, em);
4284 /* once for the rb tree */
4285 free_extent_map(em);
4286 }
4287 start = extent_map_end(em);
890871be 4288 write_unlock(&map->lock);
70dec807
CM
4289
4290 /* once for us */
d1310b2e
CM
4291 free_extent_map(em);
4292 }
d1310b2e 4293 }
7b13b7b1 4294 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4295}
d1310b2e 4296
ec29ed5b
CM
4297/*
4298 * helper function for fiemap, which doesn't want to see any holes.
4299 * This maps until we find something past 'last'
4300 */
4301static struct extent_map *get_extent_skip_holes(struct inode *inode,
4302 u64 offset,
4303 u64 last,
4304 get_extent_t *get_extent)
4305{
4306 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4307 struct extent_map *em;
4308 u64 len;
4309
4310 if (offset >= last)
4311 return NULL;
4312
67871254 4313 while (1) {
ec29ed5b
CM
4314 len = last - offset;
4315 if (len == 0)
4316 break;
fda2832f 4317 len = ALIGN(len, sectorsize);
ec29ed5b 4318 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4319 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4320 return em;
4321
4322 /* if this isn't a hole return it */
4323 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4324 em->block_start != EXTENT_MAP_HOLE) {
4325 return em;
4326 }
4327
4328 /* this is a hole, advance to the next extent */
4329 offset = extent_map_end(em);
4330 free_extent_map(em);
4331 if (offset >= last)
4332 break;
4333 }
4334 return NULL;
4335}
4336
1506fcc8
YS
4337int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4338 __u64 start, __u64 len, get_extent_t *get_extent)
4339{
975f84fe 4340 int ret = 0;
1506fcc8
YS
4341 u64 off = start;
4342 u64 max = start + len;
4343 u32 flags = 0;
975f84fe
JB
4344 u32 found_type;
4345 u64 last;
ec29ed5b 4346 u64 last_for_get_extent = 0;
1506fcc8 4347 u64 disko = 0;
ec29ed5b 4348 u64 isize = i_size_read(inode);
975f84fe 4349 struct btrfs_key found_key;
1506fcc8 4350 struct extent_map *em = NULL;
2ac55d41 4351 struct extent_state *cached_state = NULL;
975f84fe 4352 struct btrfs_path *path;
dc046b10 4353 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4354 int end = 0;
ec29ed5b
CM
4355 u64 em_start = 0;
4356 u64 em_len = 0;
4357 u64 em_end = 0;
1506fcc8
YS
4358
4359 if (len == 0)
4360 return -EINVAL;
4361
975f84fe
JB
4362 path = btrfs_alloc_path();
4363 if (!path)
4364 return -ENOMEM;
4365 path->leave_spinning = 1;
4366
2c91943b
QW
4367 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4368 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4369
ec29ed5b
CM
4370 /*
4371 * lookup the last file extent. We're not using i_size here
4372 * because there might be preallocation past i_size
4373 */
dc046b10
JB
4374 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4375 0);
975f84fe
JB
4376 if (ret < 0) {
4377 btrfs_free_path(path);
4378 return ret;
4379 }
4380 WARN_ON(!ret);
4381 path->slots[0]--;
975f84fe 4382 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4383 found_type = found_key.type;
975f84fe 4384
ec29ed5b 4385 /* No extents, but there might be delalloc bits */
33345d01 4386 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4387 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4388 /* have to trust i_size as the end */
4389 last = (u64)-1;
4390 last_for_get_extent = isize;
4391 } else {
4392 /*
4393 * remember the start of the last extent. There are a
4394 * bunch of different factors that go into the length of the
4395 * extent, so its much less complex to remember where it started
4396 */
4397 last = found_key.offset;
4398 last_for_get_extent = last + 1;
975f84fe 4399 }
fe09e16c 4400 btrfs_release_path(path);
975f84fe 4401
ec29ed5b
CM
4402 /*
4403 * we might have some extents allocated but more delalloc past those
4404 * extents. so, we trust isize unless the start of the last extent is
4405 * beyond isize
4406 */
4407 if (last < isize) {
4408 last = (u64)-1;
4409 last_for_get_extent = isize;
4410 }
4411
ff13db41 4412 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4413 &cached_state);
ec29ed5b 4414
4d479cf0 4415 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4416 get_extent);
1506fcc8
YS
4417 if (!em)
4418 goto out;
4419 if (IS_ERR(em)) {
4420 ret = PTR_ERR(em);
4421 goto out;
4422 }
975f84fe 4423
1506fcc8 4424 while (!end) {
b76bb701 4425 u64 offset_in_extent = 0;
ea8efc74
CM
4426
4427 /* break if the extent we found is outside the range */
4428 if (em->start >= max || extent_map_end(em) < off)
4429 break;
4430
4431 /*
4432 * get_extent may return an extent that starts before our
4433 * requested range. We have to make sure the ranges
4434 * we return to fiemap always move forward and don't
4435 * overlap, so adjust the offsets here
4436 */
4437 em_start = max(em->start, off);
1506fcc8 4438
ea8efc74
CM
4439 /*
4440 * record the offset from the start of the extent
b76bb701
JB
4441 * for adjusting the disk offset below. Only do this if the
4442 * extent isn't compressed since our in ram offset may be past
4443 * what we have actually allocated on disk.
ea8efc74 4444 */
b76bb701
JB
4445 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4446 offset_in_extent = em_start - em->start;
ec29ed5b 4447 em_end = extent_map_end(em);
ea8efc74 4448 em_len = em_end - em_start;
1506fcc8
YS
4449 disko = 0;
4450 flags = 0;
4451
ea8efc74
CM
4452 /*
4453 * bump off for our next call to get_extent
4454 */
4455 off = extent_map_end(em);
4456 if (off >= max)
4457 end = 1;
4458
93dbfad7 4459 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4460 end = 1;
4461 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4462 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4463 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4464 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4465 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4466 flags |= (FIEMAP_EXTENT_DELALLOC |
4467 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4468 } else if (fieinfo->fi_extents_max) {
4469 u64 bytenr = em->block_start -
4470 (em->start - em->orig_start);
fe09e16c 4471
ea8efc74 4472 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4473
4474 /*
4475 * As btrfs supports shared space, this information
4476 * can be exported to userspace tools via
dc046b10
JB
4477 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4478 * then we're just getting a count and we can skip the
4479 * lookup stuff.
fe09e16c 4480 */
dc046b10
JB
4481 ret = btrfs_check_shared(NULL, root->fs_info,
4482 root->objectid,
4483 btrfs_ino(inode), bytenr);
4484 if (ret < 0)
fe09e16c 4485 goto out_free;
dc046b10 4486 if (ret)
fe09e16c 4487 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4488 ret = 0;
1506fcc8
YS
4489 }
4490 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4491 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4492 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4493 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4494
1506fcc8
YS
4495 free_extent_map(em);
4496 em = NULL;
ec29ed5b
CM
4497 if ((em_start >= last) || em_len == (u64)-1 ||
4498 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4499 flags |= FIEMAP_EXTENT_LAST;
4500 end = 1;
4501 }
4502
ec29ed5b
CM
4503 /* now scan forward to see if this is really the last extent. */
4504 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4505 get_extent);
4506 if (IS_ERR(em)) {
4507 ret = PTR_ERR(em);
4508 goto out;
4509 }
4510 if (!em) {
975f84fe
JB
4511 flags |= FIEMAP_EXTENT_LAST;
4512 end = 1;
4513 }
ec29ed5b
CM
4514 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4515 em_len, flags);
26e726af
CS
4516 if (ret) {
4517 if (ret == 1)
4518 ret = 0;
ec29ed5b 4519 goto out_free;
26e726af 4520 }
1506fcc8
YS
4521 }
4522out_free:
4523 free_extent_map(em);
4524out:
fe09e16c 4525 btrfs_free_path(path);
a52f4cd2 4526 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4527 &cached_state, GFP_NOFS);
1506fcc8
YS
4528 return ret;
4529}
4530
727011e0
CM
4531static void __free_extent_buffer(struct extent_buffer *eb)
4532{
6d49ba1b 4533 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4534 kmem_cache_free(extent_buffer_cache, eb);
4535}
4536
a26e8c9f 4537int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4538{
4539 return (atomic_read(&eb->io_pages) ||
4540 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4541 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4542}
4543
4544/*
4545 * Helper for releasing extent buffer page.
4546 */
a50924e3 4547static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4548{
4549 unsigned long index;
db7f3436
JB
4550 struct page *page;
4551 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4552
4553 BUG_ON(extent_buffer_under_io(eb));
4554
a50924e3
DS
4555 index = num_extent_pages(eb->start, eb->len);
4556 if (index == 0)
db7f3436
JB
4557 return;
4558
4559 do {
4560 index--;
fb85fc9a 4561 page = eb->pages[index];
5d2361db
FL
4562 if (!page)
4563 continue;
4564 if (mapped)
db7f3436 4565 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4566 /*
4567 * We do this since we'll remove the pages after we've
4568 * removed the eb from the radix tree, so we could race
4569 * and have this page now attached to the new eb. So
4570 * only clear page_private if it's still connected to
4571 * this eb.
4572 */
4573 if (PagePrivate(page) &&
4574 page->private == (unsigned long)eb) {
4575 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4576 BUG_ON(PageDirty(page));
4577 BUG_ON(PageWriteback(page));
db7f3436 4578 /*
5d2361db
FL
4579 * We need to make sure we haven't be attached
4580 * to a new eb.
db7f3436 4581 */
5d2361db
FL
4582 ClearPagePrivate(page);
4583 set_page_private(page, 0);
4584 /* One for the page private */
09cbfeaf 4585 put_page(page);
db7f3436 4586 }
5d2361db
FL
4587
4588 if (mapped)
4589 spin_unlock(&page->mapping->private_lock);
4590
4591 /* One for when we alloced the page */
09cbfeaf 4592 put_page(page);
a50924e3 4593 } while (index != 0);
db7f3436
JB
4594}
4595
4596/*
4597 * Helper for releasing the extent buffer.
4598 */
4599static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4600{
a50924e3 4601 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4602 __free_extent_buffer(eb);
4603}
4604
f28491e0
JB
4605static struct extent_buffer *
4606__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4607 unsigned long len)
d1310b2e
CM
4608{
4609 struct extent_buffer *eb = NULL;
4610
d1b5c567 4611 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4612 eb->start = start;
4613 eb->len = len;
f28491e0 4614 eb->fs_info = fs_info;
815a51c7 4615 eb->bflags = 0;
bd681513
CM
4616 rwlock_init(&eb->lock);
4617 atomic_set(&eb->write_locks, 0);
4618 atomic_set(&eb->read_locks, 0);
4619 atomic_set(&eb->blocking_readers, 0);
4620 atomic_set(&eb->blocking_writers, 0);
4621 atomic_set(&eb->spinning_readers, 0);
4622 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4623 eb->lock_nested = 0;
bd681513
CM
4624 init_waitqueue_head(&eb->write_lock_wq);
4625 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4626
6d49ba1b
ES
4627 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4628
3083ee2e 4629 spin_lock_init(&eb->refs_lock);
d1310b2e 4630 atomic_set(&eb->refs, 1);
0b32f4bb 4631 atomic_set(&eb->io_pages, 0);
727011e0 4632
b8dae313
DS
4633 /*
4634 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4635 */
4636 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4637 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4638 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4639
4640 return eb;
4641}
4642
815a51c7
JS
4643struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4644{
4645 unsigned long i;
4646 struct page *p;
4647 struct extent_buffer *new;
4648 unsigned long num_pages = num_extent_pages(src->start, src->len);
4649
3f556f78 4650 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4651 if (new == NULL)
4652 return NULL;
4653
4654 for (i = 0; i < num_pages; i++) {
9ec72677 4655 p = alloc_page(GFP_NOFS);
db7f3436
JB
4656 if (!p) {
4657 btrfs_release_extent_buffer(new);
4658 return NULL;
4659 }
815a51c7
JS
4660 attach_extent_buffer_page(new, p);
4661 WARN_ON(PageDirty(p));
4662 SetPageUptodate(p);
4663 new->pages[i] = p;
4664 }
4665
4666 copy_extent_buffer(new, src, 0, 0, src->len);
4667 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4668 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4669
4670 return new;
4671}
4672
0f331229
OS
4673struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4674 u64 start, unsigned long len)
815a51c7
JS
4675{
4676 struct extent_buffer *eb;
3f556f78 4677 unsigned long num_pages;
815a51c7
JS
4678 unsigned long i;
4679
0f331229 4680 num_pages = num_extent_pages(start, len);
3f556f78
DS
4681
4682 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4683 if (!eb)
4684 return NULL;
4685
4686 for (i = 0; i < num_pages; i++) {
9ec72677 4687 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4688 if (!eb->pages[i])
4689 goto err;
4690 }
4691 set_extent_buffer_uptodate(eb);
4692 btrfs_set_header_nritems(eb, 0);
4693 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4694
4695 return eb;
4696err:
84167d19
SB
4697 for (; i > 0; i--)
4698 __free_page(eb->pages[i - 1]);
815a51c7
JS
4699 __free_extent_buffer(eb);
4700 return NULL;
4701}
4702
0f331229
OS
4703struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4704 u64 start)
4705{
4706 unsigned long len;
4707
4708 if (!fs_info) {
4709 /*
4710 * Called only from tests that don't always have a fs_info
4711 * available, but we know that nodesize is 4096
4712 */
4713 len = 4096;
4714 } else {
4715 len = fs_info->tree_root->nodesize;
4716 }
4717
4718 return __alloc_dummy_extent_buffer(fs_info, start, len);
4719}
4720
0b32f4bb
JB
4721static void check_buffer_tree_ref(struct extent_buffer *eb)
4722{
242e18c7 4723 int refs;
0b32f4bb
JB
4724 /* the ref bit is tricky. We have to make sure it is set
4725 * if we have the buffer dirty. Otherwise the
4726 * code to free a buffer can end up dropping a dirty
4727 * page
4728 *
4729 * Once the ref bit is set, it won't go away while the
4730 * buffer is dirty or in writeback, and it also won't
4731 * go away while we have the reference count on the
4732 * eb bumped.
4733 *
4734 * We can't just set the ref bit without bumping the
4735 * ref on the eb because free_extent_buffer might
4736 * see the ref bit and try to clear it. If this happens
4737 * free_extent_buffer might end up dropping our original
4738 * ref by mistake and freeing the page before we are able
4739 * to add one more ref.
4740 *
4741 * So bump the ref count first, then set the bit. If someone
4742 * beat us to it, drop the ref we added.
4743 */
242e18c7
CM
4744 refs = atomic_read(&eb->refs);
4745 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4746 return;
4747
594831c4
JB
4748 spin_lock(&eb->refs_lock);
4749 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4750 atomic_inc(&eb->refs);
594831c4 4751 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4752}
4753
2457aec6
MG
4754static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4755 struct page *accessed)
5df4235e
JB
4756{
4757 unsigned long num_pages, i;
4758
0b32f4bb
JB
4759 check_buffer_tree_ref(eb);
4760
5df4235e
JB
4761 num_pages = num_extent_pages(eb->start, eb->len);
4762 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4763 struct page *p = eb->pages[i];
4764
2457aec6
MG
4765 if (p != accessed)
4766 mark_page_accessed(p);
5df4235e
JB
4767 }
4768}
4769
f28491e0
JB
4770struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4771 u64 start)
452c75c3
CS
4772{
4773 struct extent_buffer *eb;
4774
4775 rcu_read_lock();
f28491e0 4776 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4777 start >> PAGE_SHIFT);
452c75c3
CS
4778 if (eb && atomic_inc_not_zero(&eb->refs)) {
4779 rcu_read_unlock();
062c19e9
FM
4780 /*
4781 * Lock our eb's refs_lock to avoid races with
4782 * free_extent_buffer. When we get our eb it might be flagged
4783 * with EXTENT_BUFFER_STALE and another task running
4784 * free_extent_buffer might have seen that flag set,
4785 * eb->refs == 2, that the buffer isn't under IO (dirty and
4786 * writeback flags not set) and it's still in the tree (flag
4787 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4788 * of decrementing the extent buffer's reference count twice.
4789 * So here we could race and increment the eb's reference count,
4790 * clear its stale flag, mark it as dirty and drop our reference
4791 * before the other task finishes executing free_extent_buffer,
4792 * which would later result in an attempt to free an extent
4793 * buffer that is dirty.
4794 */
4795 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4796 spin_lock(&eb->refs_lock);
4797 spin_unlock(&eb->refs_lock);
4798 }
2457aec6 4799 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4800 return eb;
4801 }
4802 rcu_read_unlock();
4803
4804 return NULL;
4805}
4806
faa2dbf0
JB
4807#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4808struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4809 u64 start)
faa2dbf0
JB
4810{
4811 struct extent_buffer *eb, *exists = NULL;
4812 int ret;
4813
4814 eb = find_extent_buffer(fs_info, start);
4815 if (eb)
4816 return eb;
3f556f78 4817 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4818 if (!eb)
4819 return NULL;
4820 eb->fs_info = fs_info;
4821again:
4822 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4823 if (ret)
4824 goto free_eb;
4825 spin_lock(&fs_info->buffer_lock);
4826 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4827 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4828 spin_unlock(&fs_info->buffer_lock);
4829 radix_tree_preload_end();
4830 if (ret == -EEXIST) {
4831 exists = find_extent_buffer(fs_info, start);
4832 if (exists)
4833 goto free_eb;
4834 else
4835 goto again;
4836 }
4837 check_buffer_tree_ref(eb);
4838 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4839
4840 /*
4841 * We will free dummy extent buffer's if they come into
4842 * free_extent_buffer with a ref count of 2, but if we are using this we
4843 * want the buffers to stay in memory until we're done with them, so
4844 * bump the ref count again.
4845 */
4846 atomic_inc(&eb->refs);
4847 return eb;
4848free_eb:
4849 btrfs_release_extent_buffer(eb);
4850 return exists;
4851}
4852#endif
4853
f28491e0 4854struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4855 u64 start)
d1310b2e 4856{
ce3e6984 4857 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4858 unsigned long num_pages = num_extent_pages(start, len);
4859 unsigned long i;
09cbfeaf 4860 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4861 struct extent_buffer *eb;
6af118ce 4862 struct extent_buffer *exists = NULL;
d1310b2e 4863 struct page *p;
f28491e0 4864 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4865 int uptodate = 1;
19fe0a8b 4866 int ret;
d1310b2e 4867
f28491e0 4868 eb = find_extent_buffer(fs_info, start);
452c75c3 4869 if (eb)
6af118ce 4870 return eb;
6af118ce 4871
23d79d81 4872 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4873 if (!eb)
d1310b2e
CM
4874 return NULL;
4875
727011e0 4876 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4877 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4878 if (!p)
6af118ce 4879 goto free_eb;
4f2de97a
JB
4880
4881 spin_lock(&mapping->private_lock);
4882 if (PagePrivate(p)) {
4883 /*
4884 * We could have already allocated an eb for this page
4885 * and attached one so lets see if we can get a ref on
4886 * the existing eb, and if we can we know it's good and
4887 * we can just return that one, else we know we can just
4888 * overwrite page->private.
4889 */
4890 exists = (struct extent_buffer *)p->private;
4891 if (atomic_inc_not_zero(&exists->refs)) {
4892 spin_unlock(&mapping->private_lock);
4893 unlock_page(p);
09cbfeaf 4894 put_page(p);
2457aec6 4895 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4896 goto free_eb;
4897 }
5ca64f45 4898 exists = NULL;
4f2de97a 4899
0b32f4bb 4900 /*
4f2de97a
JB
4901 * Do this so attach doesn't complain and we need to
4902 * drop the ref the old guy had.
4903 */
4904 ClearPagePrivate(p);
0b32f4bb 4905 WARN_ON(PageDirty(p));
09cbfeaf 4906 put_page(p);
d1310b2e 4907 }
4f2de97a
JB
4908 attach_extent_buffer_page(eb, p);
4909 spin_unlock(&mapping->private_lock);
0b32f4bb 4910 WARN_ON(PageDirty(p));
727011e0 4911 eb->pages[i] = p;
d1310b2e
CM
4912 if (!PageUptodate(p))
4913 uptodate = 0;
eb14ab8e
CM
4914
4915 /*
4916 * see below about how we avoid a nasty race with release page
4917 * and why we unlock later
4918 */
d1310b2e
CM
4919 }
4920 if (uptodate)
b4ce94de 4921 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4922again:
19fe0a8b
MX
4923 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4924 if (ret)
4925 goto free_eb;
4926
f28491e0
JB
4927 spin_lock(&fs_info->buffer_lock);
4928 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4929 start >> PAGE_SHIFT, eb);
f28491e0 4930 spin_unlock(&fs_info->buffer_lock);
452c75c3 4931 radix_tree_preload_end();
19fe0a8b 4932 if (ret == -EEXIST) {
f28491e0 4933 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4934 if (exists)
4935 goto free_eb;
4936 else
115391d2 4937 goto again;
6af118ce 4938 }
6af118ce 4939 /* add one reference for the tree */
0b32f4bb 4940 check_buffer_tree_ref(eb);
34b41ace 4941 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4942
4943 /*
4944 * there is a race where release page may have
4945 * tried to find this extent buffer in the radix
4946 * but failed. It will tell the VM it is safe to
4947 * reclaim the, and it will clear the page private bit.
4948 * We must make sure to set the page private bit properly
4949 * after the extent buffer is in the radix tree so
4950 * it doesn't get lost
4951 */
727011e0
CM
4952 SetPageChecked(eb->pages[0]);
4953 for (i = 1; i < num_pages; i++) {
fb85fc9a 4954 p = eb->pages[i];
727011e0
CM
4955 ClearPageChecked(p);
4956 unlock_page(p);
4957 }
4958 unlock_page(eb->pages[0]);
d1310b2e
CM
4959 return eb;
4960
6af118ce 4961free_eb:
5ca64f45 4962 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4963 for (i = 0; i < num_pages; i++) {
4964 if (eb->pages[i])
4965 unlock_page(eb->pages[i]);
4966 }
eb14ab8e 4967
897ca6e9 4968 btrfs_release_extent_buffer(eb);
6af118ce 4969 return exists;
d1310b2e 4970}
d1310b2e 4971
3083ee2e
JB
4972static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4973{
4974 struct extent_buffer *eb =
4975 container_of(head, struct extent_buffer, rcu_head);
4976
4977 __free_extent_buffer(eb);
4978}
4979
3083ee2e 4980/* Expects to have eb->eb_lock already held */
f7a52a40 4981static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4982{
4983 WARN_ON(atomic_read(&eb->refs) == 0);
4984 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4985 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4986 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4987
815a51c7 4988 spin_unlock(&eb->refs_lock);
3083ee2e 4989
f28491e0
JB
4990 spin_lock(&fs_info->buffer_lock);
4991 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 4992 eb->start >> PAGE_SHIFT);
f28491e0 4993 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4994 } else {
4995 spin_unlock(&eb->refs_lock);
815a51c7 4996 }
3083ee2e
JB
4997
4998 /* Should be safe to release our pages at this point */
a50924e3 4999 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5000#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5001 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5002 __free_extent_buffer(eb);
5003 return 1;
5004 }
5005#endif
3083ee2e 5006 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5007 return 1;
3083ee2e
JB
5008 }
5009 spin_unlock(&eb->refs_lock);
e64860aa
JB
5010
5011 return 0;
3083ee2e
JB
5012}
5013
d1310b2e
CM
5014void free_extent_buffer(struct extent_buffer *eb)
5015{
242e18c7
CM
5016 int refs;
5017 int old;
d1310b2e
CM
5018 if (!eb)
5019 return;
5020
242e18c7
CM
5021 while (1) {
5022 refs = atomic_read(&eb->refs);
5023 if (refs <= 3)
5024 break;
5025 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5026 if (old == refs)
5027 return;
5028 }
5029
3083ee2e 5030 spin_lock(&eb->refs_lock);
815a51c7
JS
5031 if (atomic_read(&eb->refs) == 2 &&
5032 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5033 atomic_dec(&eb->refs);
5034
3083ee2e
JB
5035 if (atomic_read(&eb->refs) == 2 &&
5036 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5037 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5038 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5039 atomic_dec(&eb->refs);
5040
5041 /*
5042 * I know this is terrible, but it's temporary until we stop tracking
5043 * the uptodate bits and such for the extent buffers.
5044 */
f7a52a40 5045 release_extent_buffer(eb);
3083ee2e
JB
5046}
5047
5048void free_extent_buffer_stale(struct extent_buffer *eb)
5049{
5050 if (!eb)
d1310b2e
CM
5051 return;
5052
3083ee2e
JB
5053 spin_lock(&eb->refs_lock);
5054 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5055
0b32f4bb 5056 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5057 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5058 atomic_dec(&eb->refs);
f7a52a40 5059 release_extent_buffer(eb);
d1310b2e 5060}
d1310b2e 5061
1d4284bd 5062void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5063{
d1310b2e
CM
5064 unsigned long i;
5065 unsigned long num_pages;
5066 struct page *page;
5067
d1310b2e
CM
5068 num_pages = num_extent_pages(eb->start, eb->len);
5069
5070 for (i = 0; i < num_pages; i++) {
fb85fc9a 5071 page = eb->pages[i];
b9473439 5072 if (!PageDirty(page))
d2c3f4f6
CM
5073 continue;
5074
a61e6f29 5075 lock_page(page);
eb14ab8e
CM
5076 WARN_ON(!PagePrivate(page));
5077
d1310b2e 5078 clear_page_dirty_for_io(page);
0ee0fda0 5079 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5080 if (!PageDirty(page)) {
5081 radix_tree_tag_clear(&page->mapping->page_tree,
5082 page_index(page),
5083 PAGECACHE_TAG_DIRTY);
5084 }
0ee0fda0 5085 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5086 ClearPageError(page);
a61e6f29 5087 unlock_page(page);
d1310b2e 5088 }
0b32f4bb 5089 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5090}
d1310b2e 5091
0b32f4bb 5092int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5093{
5094 unsigned long i;
5095 unsigned long num_pages;
b9473439 5096 int was_dirty = 0;
d1310b2e 5097
0b32f4bb
JB
5098 check_buffer_tree_ref(eb);
5099
b9473439 5100 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5101
d1310b2e 5102 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5103 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5104 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5105
b9473439 5106 for (i = 0; i < num_pages; i++)
fb85fc9a 5107 set_page_dirty(eb->pages[i]);
b9473439 5108 return was_dirty;
d1310b2e 5109}
d1310b2e 5110
69ba3927 5111void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5112{
5113 unsigned long i;
5114 struct page *page;
5115 unsigned long num_pages;
5116
b4ce94de 5117 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5118 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5119 for (i = 0; i < num_pages; i++) {
fb85fc9a 5120 page = eb->pages[i];
33958dc6
CM
5121 if (page)
5122 ClearPageUptodate(page);
1259ab75 5123 }
1259ab75
CM
5124}
5125
09c25a8c 5126void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5127{
5128 unsigned long i;
5129 struct page *page;
5130 unsigned long num_pages;
5131
0b32f4bb 5132 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5133 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5134 for (i = 0; i < num_pages; i++) {
fb85fc9a 5135 page = eb->pages[i];
d1310b2e
CM
5136 SetPageUptodate(page);
5137 }
d1310b2e 5138}
d1310b2e 5139
0b32f4bb 5140int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5141{
0b32f4bb 5142 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5143}
d1310b2e
CM
5144
5145int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5146 struct extent_buffer *eb, u64 start, int wait,
f188591e 5147 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5148{
5149 unsigned long i;
5150 unsigned long start_i;
5151 struct page *page;
5152 int err;
5153 int ret = 0;
ce9adaa5
CM
5154 int locked_pages = 0;
5155 int all_uptodate = 1;
d1310b2e 5156 unsigned long num_pages;
727011e0 5157 unsigned long num_reads = 0;
a86c12c7 5158 struct bio *bio = NULL;
c8b97818 5159 unsigned long bio_flags = 0;
a86c12c7 5160
b4ce94de 5161 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5162 return 0;
5163
d1310b2e
CM
5164 if (start) {
5165 WARN_ON(start < eb->start);
09cbfeaf
KS
5166 start_i = (start >> PAGE_SHIFT) -
5167 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5168 } else {
5169 start_i = 0;
5170 }
5171
5172 num_pages = num_extent_pages(eb->start, eb->len);
5173 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5174 page = eb->pages[i];
bb82ab88 5175 if (wait == WAIT_NONE) {
2db04966 5176 if (!trylock_page(page))
ce9adaa5 5177 goto unlock_exit;
d1310b2e
CM
5178 } else {
5179 lock_page(page);
5180 }
ce9adaa5 5181 locked_pages++;
727011e0
CM
5182 if (!PageUptodate(page)) {
5183 num_reads++;
ce9adaa5 5184 all_uptodate = 0;
727011e0 5185 }
ce9adaa5
CM
5186 }
5187 if (all_uptodate) {
5188 if (start_i == 0)
b4ce94de 5189 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5190 goto unlock_exit;
5191 }
5192
656f30db 5193 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5194 eb->read_mirror = 0;
0b32f4bb 5195 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5196 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5197 page = eb->pages[i];
ce9adaa5 5198 if (!PageUptodate(page)) {
f188591e 5199 ClearPageError(page);
a86c12c7 5200 err = __extent_read_full_page(tree, page,
f188591e 5201 get_extent, &bio,
d4c7ca86
JB
5202 mirror_num, &bio_flags,
5203 READ | REQ_META);
d397712b 5204 if (err)
d1310b2e 5205 ret = err;
d1310b2e
CM
5206 } else {
5207 unlock_page(page);
5208 }
5209 }
5210
355808c2 5211 if (bio) {
d4c7ca86
JB
5212 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5213 bio_flags);
79787eaa
JM
5214 if (err)
5215 return err;
355808c2 5216 }
a86c12c7 5217
bb82ab88 5218 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5219 return ret;
d397712b 5220
d1310b2e 5221 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5222 page = eb->pages[i];
d1310b2e 5223 wait_on_page_locked(page);
d397712b 5224 if (!PageUptodate(page))
d1310b2e 5225 ret = -EIO;
d1310b2e 5226 }
d397712b 5227
d1310b2e 5228 return ret;
ce9adaa5
CM
5229
5230unlock_exit:
5231 i = start_i;
d397712b 5232 while (locked_pages > 0) {
fb85fc9a 5233 page = eb->pages[i];
ce9adaa5
CM
5234 i++;
5235 unlock_page(page);
5236 locked_pages--;
5237 }
5238 return ret;
d1310b2e 5239}
d1310b2e
CM
5240
5241void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5242 unsigned long start,
5243 unsigned long len)
5244{
5245 size_t cur;
5246 size_t offset;
5247 struct page *page;
5248 char *kaddr;
5249 char *dst = (char *)dstv;
09cbfeaf
KS
5250 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5251 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5252
5253 WARN_ON(start > eb->len);
5254 WARN_ON(start + len > eb->start + eb->len);
5255
09cbfeaf 5256 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5257
d397712b 5258 while (len > 0) {
fb85fc9a 5259 page = eb->pages[i];
d1310b2e 5260
09cbfeaf 5261 cur = min(len, (PAGE_SIZE - offset));
a6591715 5262 kaddr = page_address(page);
d1310b2e 5263 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5264
5265 dst += cur;
5266 len -= cur;
5267 offset = 0;
5268 i++;
5269 }
5270}
d1310b2e 5271
550ac1d8
GH
5272int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5273 unsigned long start,
5274 unsigned long len)
5275{
5276 size_t cur;
5277 size_t offset;
5278 struct page *page;
5279 char *kaddr;
5280 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5281 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5282 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5283 int ret = 0;
5284
5285 WARN_ON(start > eb->len);
5286 WARN_ON(start + len > eb->start + eb->len);
5287
09cbfeaf 5288 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5289
5290 while (len > 0) {
fb85fc9a 5291 page = eb->pages[i];
550ac1d8 5292
09cbfeaf 5293 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5294 kaddr = page_address(page);
5295 if (copy_to_user(dst, kaddr + offset, cur)) {
5296 ret = -EFAULT;
5297 break;
5298 }
5299
5300 dst += cur;
5301 len -= cur;
5302 offset = 0;
5303 i++;
5304 }
5305
5306 return ret;
5307}
5308
d1310b2e 5309int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5310 unsigned long min_len, char **map,
d1310b2e 5311 unsigned long *map_start,
a6591715 5312 unsigned long *map_len)
d1310b2e 5313{
09cbfeaf 5314 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5315 char *kaddr;
5316 struct page *p;
09cbfeaf
KS
5317 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5318 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5319 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5320 PAGE_SHIFT;
d1310b2e
CM
5321
5322 if (i != end_i)
5323 return -EINVAL;
5324
5325 if (i == 0) {
5326 offset = start_offset;
5327 *map_start = 0;
5328 } else {
5329 offset = 0;
09cbfeaf 5330 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5331 }
d397712b 5332
d1310b2e 5333 if (start + min_len > eb->len) {
31b1a2bd 5334 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5335 "wanted %lu %lu\n",
5336 eb->start, eb->len, start, min_len);
85026533 5337 return -EINVAL;
d1310b2e
CM
5338 }
5339
fb85fc9a 5340 p = eb->pages[i];
a6591715 5341 kaddr = page_address(p);
d1310b2e 5342 *map = kaddr + offset;
09cbfeaf 5343 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5344 return 0;
5345}
d1310b2e 5346
d1310b2e
CM
5347int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5348 unsigned long start,
5349 unsigned long len)
5350{
5351 size_t cur;
5352 size_t offset;
5353 struct page *page;
5354 char *kaddr;
5355 char *ptr = (char *)ptrv;
09cbfeaf
KS
5356 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5357 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5358 int ret = 0;
5359
5360 WARN_ON(start > eb->len);
5361 WARN_ON(start + len > eb->start + eb->len);
5362
09cbfeaf 5363 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5364
d397712b 5365 while (len > 0) {
fb85fc9a 5366 page = eb->pages[i];
d1310b2e 5367
09cbfeaf 5368 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5369
a6591715 5370 kaddr = page_address(page);
d1310b2e 5371 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5372 if (ret)
5373 break;
5374
5375 ptr += cur;
5376 len -= cur;
5377 offset = 0;
5378 i++;
5379 }
5380 return ret;
5381}
d1310b2e
CM
5382
5383void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5384 unsigned long start, unsigned long len)
5385{
5386 size_t cur;
5387 size_t offset;
5388 struct page *page;
5389 char *kaddr;
5390 char *src = (char *)srcv;
09cbfeaf
KS
5391 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5392 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5393
5394 WARN_ON(start > eb->len);
5395 WARN_ON(start + len > eb->start + eb->len);
5396
09cbfeaf 5397 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5398
d397712b 5399 while (len > 0) {
fb85fc9a 5400 page = eb->pages[i];
d1310b2e
CM
5401 WARN_ON(!PageUptodate(page));
5402
09cbfeaf 5403 cur = min(len, PAGE_SIZE - offset);
a6591715 5404 kaddr = page_address(page);
d1310b2e 5405 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5406
5407 src += cur;
5408 len -= cur;
5409 offset = 0;
5410 i++;
5411 }
5412}
d1310b2e
CM
5413
5414void memset_extent_buffer(struct extent_buffer *eb, char c,
5415 unsigned long start, unsigned long len)
5416{
5417 size_t cur;
5418 size_t offset;
5419 struct page *page;
5420 char *kaddr;
09cbfeaf
KS
5421 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5422 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5423
5424 WARN_ON(start > eb->len);
5425 WARN_ON(start + len > eb->start + eb->len);
5426
09cbfeaf 5427 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5428
d397712b 5429 while (len > 0) {
fb85fc9a 5430 page = eb->pages[i];
d1310b2e
CM
5431 WARN_ON(!PageUptodate(page));
5432
09cbfeaf 5433 cur = min(len, PAGE_SIZE - offset);
a6591715 5434 kaddr = page_address(page);
d1310b2e 5435 memset(kaddr + offset, c, cur);
d1310b2e
CM
5436
5437 len -= cur;
5438 offset = 0;
5439 i++;
5440 }
5441}
d1310b2e
CM
5442
5443void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5444 unsigned long dst_offset, unsigned long src_offset,
5445 unsigned long len)
5446{
5447 u64 dst_len = dst->len;
5448 size_t cur;
5449 size_t offset;
5450 struct page *page;
5451 char *kaddr;
09cbfeaf
KS
5452 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5453 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5454
5455 WARN_ON(src->len != dst_len);
5456
5457 offset = (start_offset + dst_offset) &
09cbfeaf 5458 (PAGE_SIZE - 1);
d1310b2e 5459
d397712b 5460 while (len > 0) {
fb85fc9a 5461 page = dst->pages[i];
d1310b2e
CM
5462 WARN_ON(!PageUptodate(page));
5463
09cbfeaf 5464 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5465
a6591715 5466 kaddr = page_address(page);
d1310b2e 5467 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5468
5469 src_offset += cur;
5470 len -= cur;
5471 offset = 0;
5472 i++;
5473 }
5474}
d1310b2e 5475
3e1e8bb7
OS
5476/*
5477 * The extent buffer bitmap operations are done with byte granularity because
5478 * bitmap items are not guaranteed to be aligned to a word and therefore a
5479 * single word in a bitmap may straddle two pages in the extent buffer.
5480 */
5481#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5482#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5483#define BITMAP_FIRST_BYTE_MASK(start) \
5484 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5485#define BITMAP_LAST_BYTE_MASK(nbits) \
5486 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5487
5488/*
5489 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5490 * given bit number
5491 * @eb: the extent buffer
5492 * @start: offset of the bitmap item in the extent buffer
5493 * @nr: bit number
5494 * @page_index: return index of the page in the extent buffer that contains the
5495 * given bit number
5496 * @page_offset: return offset into the page given by page_index
5497 *
5498 * This helper hides the ugliness of finding the byte in an extent buffer which
5499 * contains a given bit.
5500 */
5501static inline void eb_bitmap_offset(struct extent_buffer *eb,
5502 unsigned long start, unsigned long nr,
5503 unsigned long *page_index,
5504 size_t *page_offset)
5505{
09cbfeaf 5506 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5507 size_t byte_offset = BIT_BYTE(nr);
5508 size_t offset;
5509
5510 /*
5511 * The byte we want is the offset of the extent buffer + the offset of
5512 * the bitmap item in the extent buffer + the offset of the byte in the
5513 * bitmap item.
5514 */
5515 offset = start_offset + start + byte_offset;
5516
09cbfeaf
KS
5517 *page_index = offset >> PAGE_SHIFT;
5518 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5519}
5520
5521/**
5522 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5523 * @eb: the extent buffer
5524 * @start: offset of the bitmap item in the extent buffer
5525 * @nr: bit number to test
5526 */
5527int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5528 unsigned long nr)
5529{
5530 char *kaddr;
5531 struct page *page;
5532 unsigned long i;
5533 size_t offset;
5534
5535 eb_bitmap_offset(eb, start, nr, &i, &offset);
5536 page = eb->pages[i];
5537 WARN_ON(!PageUptodate(page));
5538 kaddr = page_address(page);
5539 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5540}
5541
5542/**
5543 * extent_buffer_bitmap_set - set an area of a bitmap
5544 * @eb: the extent buffer
5545 * @start: offset of the bitmap item in the extent buffer
5546 * @pos: bit number of the first bit
5547 * @len: number of bits to set
5548 */
5549void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5550 unsigned long pos, unsigned long len)
5551{
5552 char *kaddr;
5553 struct page *page;
5554 unsigned long i;
5555 size_t offset;
5556 const unsigned int size = pos + len;
5557 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5558 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5559
5560 eb_bitmap_offset(eb, start, pos, &i, &offset);
5561 page = eb->pages[i];
5562 WARN_ON(!PageUptodate(page));
5563 kaddr = page_address(page);
5564
5565 while (len >= bits_to_set) {
5566 kaddr[offset] |= mask_to_set;
5567 len -= bits_to_set;
5568 bits_to_set = BITS_PER_BYTE;
5569 mask_to_set = ~0U;
09cbfeaf 5570 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5571 offset = 0;
5572 page = eb->pages[++i];
5573 WARN_ON(!PageUptodate(page));
5574 kaddr = page_address(page);
5575 }
5576 }
5577 if (len) {
5578 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5579 kaddr[offset] |= mask_to_set;
5580 }
5581}
5582
5583
5584/**
5585 * extent_buffer_bitmap_clear - clear an area of a bitmap
5586 * @eb: the extent buffer
5587 * @start: offset of the bitmap item in the extent buffer
5588 * @pos: bit number of the first bit
5589 * @len: number of bits to clear
5590 */
5591void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5592 unsigned long pos, unsigned long len)
5593{
5594 char *kaddr;
5595 struct page *page;
5596 unsigned long i;
5597 size_t offset;
5598 const unsigned int size = pos + len;
5599 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5600 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5601
5602 eb_bitmap_offset(eb, start, pos, &i, &offset);
5603 page = eb->pages[i];
5604 WARN_ON(!PageUptodate(page));
5605 kaddr = page_address(page);
5606
5607 while (len >= bits_to_clear) {
5608 kaddr[offset] &= ~mask_to_clear;
5609 len -= bits_to_clear;
5610 bits_to_clear = BITS_PER_BYTE;
5611 mask_to_clear = ~0U;
09cbfeaf 5612 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5613 offset = 0;
5614 page = eb->pages[++i];
5615 WARN_ON(!PageUptodate(page));
5616 kaddr = page_address(page);
5617 }
5618 }
5619 if (len) {
5620 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5621 kaddr[offset] &= ~mask_to_clear;
5622 }
5623}
5624
3387206f
ST
5625static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5626{
5627 unsigned long distance = (src > dst) ? src - dst : dst - src;
5628 return distance < len;
5629}
5630
d1310b2e
CM
5631static void copy_pages(struct page *dst_page, struct page *src_page,
5632 unsigned long dst_off, unsigned long src_off,
5633 unsigned long len)
5634{
a6591715 5635 char *dst_kaddr = page_address(dst_page);
d1310b2e 5636 char *src_kaddr;
727011e0 5637 int must_memmove = 0;
d1310b2e 5638
3387206f 5639 if (dst_page != src_page) {
a6591715 5640 src_kaddr = page_address(src_page);
3387206f 5641 } else {
d1310b2e 5642 src_kaddr = dst_kaddr;
727011e0
CM
5643 if (areas_overlap(src_off, dst_off, len))
5644 must_memmove = 1;
3387206f 5645 }
d1310b2e 5646
727011e0
CM
5647 if (must_memmove)
5648 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5649 else
5650 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5651}
5652
5653void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5654 unsigned long src_offset, unsigned long len)
5655{
5656 size_t cur;
5657 size_t dst_off_in_page;
5658 size_t src_off_in_page;
09cbfeaf 5659 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5660 unsigned long dst_i;
5661 unsigned long src_i;
5662
5663 if (src_offset + len > dst->len) {
f14d104d
DS
5664 btrfs_err(dst->fs_info,
5665 "memmove bogus src_offset %lu move "
5666 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5667 BUG_ON(1);
5668 }
5669 if (dst_offset + len > dst->len) {
f14d104d
DS
5670 btrfs_err(dst->fs_info,
5671 "memmove bogus dst_offset %lu move "
5672 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5673 BUG_ON(1);
5674 }
5675
d397712b 5676 while (len > 0) {
d1310b2e 5677 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5678 (PAGE_SIZE - 1);
d1310b2e 5679 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5680 (PAGE_SIZE - 1);
d1310b2e 5681
09cbfeaf
KS
5682 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5683 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5684
09cbfeaf 5685 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5686 src_off_in_page));
5687 cur = min_t(unsigned long, cur,
09cbfeaf 5688 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5689
fb85fc9a 5690 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5691 dst_off_in_page, src_off_in_page, cur);
5692
5693 src_offset += cur;
5694 dst_offset += cur;
5695 len -= cur;
5696 }
5697}
d1310b2e
CM
5698
5699void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5700 unsigned long src_offset, unsigned long len)
5701{
5702 size_t cur;
5703 size_t dst_off_in_page;
5704 size_t src_off_in_page;
5705 unsigned long dst_end = dst_offset + len - 1;
5706 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5707 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5708 unsigned long dst_i;
5709 unsigned long src_i;
5710
5711 if (src_offset + len > dst->len) {
f14d104d
DS
5712 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5713 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5714 BUG_ON(1);
5715 }
5716 if (dst_offset + len > dst->len) {
f14d104d
DS
5717 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5718 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5719 BUG_ON(1);
5720 }
727011e0 5721 if (dst_offset < src_offset) {
d1310b2e
CM
5722 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5723 return;
5724 }
d397712b 5725 while (len > 0) {
09cbfeaf
KS
5726 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5727 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5728
5729 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5730 (PAGE_SIZE - 1);
d1310b2e 5731 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5732 (PAGE_SIZE - 1);
d1310b2e
CM
5733
5734 cur = min_t(unsigned long, len, src_off_in_page + 1);
5735 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5736 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5737 dst_off_in_page - cur + 1,
5738 src_off_in_page - cur + 1, cur);
5739
5740 dst_end -= cur;
5741 src_end -= cur;
5742 len -= cur;
5743 }
5744}
6af118ce 5745
f7a52a40 5746int try_release_extent_buffer(struct page *page)
19fe0a8b 5747{
6af118ce 5748 struct extent_buffer *eb;
6af118ce 5749
3083ee2e
JB
5750 /*
5751 * We need to make sure noboody is attaching this page to an eb right
5752 * now.
5753 */
5754 spin_lock(&page->mapping->private_lock);
5755 if (!PagePrivate(page)) {
5756 spin_unlock(&page->mapping->private_lock);
4f2de97a 5757 return 1;
45f49bce 5758 }
6af118ce 5759
3083ee2e
JB
5760 eb = (struct extent_buffer *)page->private;
5761 BUG_ON(!eb);
19fe0a8b
MX
5762
5763 /*
3083ee2e
JB
5764 * This is a little awful but should be ok, we need to make sure that
5765 * the eb doesn't disappear out from under us while we're looking at
5766 * this page.
19fe0a8b 5767 */
3083ee2e 5768 spin_lock(&eb->refs_lock);
0b32f4bb 5769 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5770 spin_unlock(&eb->refs_lock);
5771 spin_unlock(&page->mapping->private_lock);
5772 return 0;
b9473439 5773 }
3083ee2e 5774 spin_unlock(&page->mapping->private_lock);
897ca6e9 5775
19fe0a8b 5776 /*
3083ee2e
JB
5777 * If tree ref isn't set then we know the ref on this eb is a real ref,
5778 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5779 */
3083ee2e
JB
5780 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5781 spin_unlock(&eb->refs_lock);
5782 return 0;
b9473439 5783 }
19fe0a8b 5784
f7a52a40 5785 return release_extent_buffer(eb);
6af118ce 5786}