]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
fs/btrfs/volumes.c: add missing free_fs_devices
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
4bef0848 29
b47eda86 30#define LEAK_DEBUG 0
3935127c 31#if LEAK_DEBUG
d397712b 32static DEFINE_SPINLOCK(leak_lock);
4bef0848 33#endif
d1310b2e 34
d1310b2e
CM
35#define BUFFER_LRU_MAX 64
36
37struct tree_entry {
38 u64 start;
39 u64 end;
d1310b2e
CM
40 struct rb_node rb_node;
41};
42
43struct extent_page_data {
44 struct bio *bio;
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
771ed689
CM
47
48 /* tells writepage not to lock the state bits for this range
49 * it still does the unlocking
50 */
ffbd517d
CM
51 unsigned int extent_locked:1;
52
53 /* tells the submit_bio code to use a WRITE_SYNC */
54 unsigned int sync_io:1;
d1310b2e
CM
55};
56
0b32f4bb 57static noinline void flush_write_bio(void *data);
c2d904e0
JM
58static inline struct btrfs_fs_info *
59tree_fs_info(struct extent_io_tree *tree)
60{
61 return btrfs_sb(tree->mapping->host->i_sb);
62}
0b32f4bb 63
d1310b2e
CM
64int __init extent_io_init(void)
65{
9601e3f6
CH
66 extent_state_cache = kmem_cache_create("extent_state",
67 sizeof(struct extent_state), 0,
68 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
69 if (!extent_state_cache)
70 return -ENOMEM;
71
9601e3f6
CH
72 extent_buffer_cache = kmem_cache_create("extent_buffers",
73 sizeof(struct extent_buffer), 0,
74 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
75 if (!extent_buffer_cache)
76 goto free_state_cache;
77 return 0;
78
79free_state_cache:
80 kmem_cache_destroy(extent_state_cache);
81 return -ENOMEM;
82}
83
84void extent_io_exit(void)
85{
86 struct extent_state *state;
2d2ae547 87 struct extent_buffer *eb;
d1310b2e
CM
88
89 while (!list_empty(&states)) {
2d2ae547 90 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
91 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
92 "state %lu in tree %p refs %d\n",
93 (unsigned long long)state->start,
94 (unsigned long long)state->end,
95 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 96 list_del(&state->leak_list);
d1310b2e
CM
97 kmem_cache_free(extent_state_cache, state);
98
99 }
100
2d2ae547
CM
101 while (!list_empty(&buffers)) {
102 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
103 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
104 "refs %d\n", (unsigned long long)eb->start,
105 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
106 list_del(&eb->leak_list);
107 kmem_cache_free(extent_buffer_cache, eb);
108 }
d1310b2e
CM
109 if (extent_state_cache)
110 kmem_cache_destroy(extent_state_cache);
111 if (extent_buffer_cache)
112 kmem_cache_destroy(extent_buffer_cache);
113}
114
115void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 116 struct address_space *mapping)
d1310b2e 117{
6bef4d31 118 tree->state = RB_ROOT;
19fe0a8b 119 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
120 tree->ops = NULL;
121 tree->dirty_bytes = 0;
70dec807 122 spin_lock_init(&tree->lock);
6af118ce 123 spin_lock_init(&tree->buffer_lock);
d1310b2e 124 tree->mapping = mapping;
d1310b2e 125}
d1310b2e 126
b2950863 127static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
128{
129 struct extent_state *state;
3935127c 130#if LEAK_DEBUG
2d2ae547 131 unsigned long flags;
4bef0848 132#endif
d1310b2e
CM
133
134 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 135 if (!state)
d1310b2e
CM
136 return state;
137 state->state = 0;
d1310b2e 138 state->private = 0;
70dec807 139 state->tree = NULL;
3935127c 140#if LEAK_DEBUG
2d2ae547
CM
141 spin_lock_irqsave(&leak_lock, flags);
142 list_add(&state->leak_list, &states);
143 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 144#endif
d1310b2e
CM
145 atomic_set(&state->refs, 1);
146 init_waitqueue_head(&state->wq);
143bede5 147 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
148 return state;
149}
d1310b2e 150
4845e44f 151void free_extent_state(struct extent_state *state)
d1310b2e 152{
d1310b2e
CM
153 if (!state)
154 return;
155 if (atomic_dec_and_test(&state->refs)) {
3935127c 156#if LEAK_DEBUG
2d2ae547 157 unsigned long flags;
4bef0848 158#endif
70dec807 159 WARN_ON(state->tree);
3935127c 160#if LEAK_DEBUG
2d2ae547
CM
161 spin_lock_irqsave(&leak_lock, flags);
162 list_del(&state->leak_list);
163 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 164#endif
143bede5 165 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
166 kmem_cache_free(extent_state_cache, state);
167 }
168}
d1310b2e
CM
169
170static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
171 struct rb_node *node)
172{
d397712b
CM
173 struct rb_node **p = &root->rb_node;
174 struct rb_node *parent = NULL;
d1310b2e
CM
175 struct tree_entry *entry;
176
d397712b 177 while (*p) {
d1310b2e
CM
178 parent = *p;
179 entry = rb_entry(parent, struct tree_entry, rb_node);
180
181 if (offset < entry->start)
182 p = &(*p)->rb_left;
183 else if (offset > entry->end)
184 p = &(*p)->rb_right;
185 else
186 return parent;
187 }
188
189 entry = rb_entry(node, struct tree_entry, rb_node);
d1310b2e
CM
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
192 return NULL;
193}
194
80ea96b1 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
198{
80ea96b1 199 struct rb_root *root = &tree->state;
d397712b 200 struct rb_node *n = root->rb_node;
d1310b2e
CM
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
205
d397712b 206 while (n) {
d1310b2e
CM
207 entry = rb_entry(n, struct tree_entry, rb_node);
208 prev = n;
209 prev_entry = entry;
210
211 if (offset < entry->start)
212 n = n->rb_left;
213 else if (offset > entry->end)
214 n = n->rb_right;
d397712b 215 else
d1310b2e
CM
216 return n;
217 }
218
219 if (prev_ret) {
220 orig_prev = prev;
d397712b 221 while (prev && offset > prev_entry->end) {
d1310b2e
CM
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *prev_ret = prev;
226 prev = orig_prev;
227 }
228
229 if (next_ret) {
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 231 while (prev && offset < prev_entry->start) {
d1310b2e
CM
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 }
235 *next_ret = prev;
236 }
237 return NULL;
238}
239
80ea96b1
CM
240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 u64 offset)
d1310b2e 242{
70dec807 243 struct rb_node *prev = NULL;
d1310b2e 244 struct rb_node *ret;
70dec807 245
80ea96b1 246 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 247 if (!ret)
d1310b2e
CM
248 return prev;
249 return ret;
250}
251
9ed74f2d
JB
252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
254{
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
257 other);
258}
259
d1310b2e
CM
260/*
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
266 *
267 * This should be called with the tree lock held.
268 */
1bf85046
JM
269static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
d1310b2e
CM
271{
272 struct extent_state *other;
273 struct rb_node *other_node;
274
5b21f2ed 275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 276 return;
d1310b2e
CM
277
278 other_node = rb_prev(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
9ed74f2d 283 merge_cb(tree, state, other);
d1310b2e 284 state->start = other->start;
70dec807 285 other->tree = NULL;
d1310b2e
CM
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
288 }
289 }
290 other_node = rb_next(&state->rb_node);
291 if (other_node) {
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
9ed74f2d 295 merge_cb(tree, state, other);
df98b6e2
JB
296 state->end = other->end;
297 other->tree = NULL;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
d1310b2e
CM
300 }
301 }
d1310b2e
CM
302}
303
1bf85046 304static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 305 struct extent_state *state, int *bits)
291d673e 306{
1bf85046
JM
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
309}
310
311static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 312 struct extent_state *state, int *bits)
291d673e 313{
9ed74f2d
JB
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
316}
317
3150b699
XG
318static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
320
d1310b2e
CM
321/*
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
324 *
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
327 *
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
330 */
331static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 333 int *bits)
d1310b2e
CM
334{
335 struct rb_node *node;
336
337 if (end < start) {
d397712b
CM
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
d1310b2e
CM
341 WARN_ON(1);
342 }
d1310b2e
CM
343 state->start = start;
344 state->end = end;
9ed74f2d 345
3150b699
XG
346 set_state_bits(tree, state, bits);
347
d1310b2e
CM
348 node = tree_insert(&tree->state, end, &state->rb_node);
349 if (node) {
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
356 return -EEXIST;
357 }
70dec807 358 state->tree = tree;
d1310b2e
CM
359 merge_state(tree, state);
360 return 0;
361}
362
1bf85046 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
364 u64 split)
365{
366 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
368}
369
d1310b2e
CM
370/*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386{
387 struct rb_node *node;
9ed74f2d
JB
388
389 split_cb(tree, orig, split);
390
d1310b2e
CM
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
d1310b2e
CM
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
70dec807 401 prealloc->tree = tree;
d1310b2e
CM
402 return 0;
403}
404
cdc6a395
LZ
405static struct extent_state *next_state(struct extent_state *state)
406{
407 struct rb_node *next = rb_next(&state->rb_node);
408 if (next)
409 return rb_entry(next, struct extent_state, rb_node);
410 else
411 return NULL;
412}
413
d1310b2e
CM
414/*
415 * utility function to clear some bits in an extent state struct.
8e52acf7 416 * it will optionally wake up any one waiting on this state (wake == 1)
d1310b2e
CM
417 *
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
420 */
cdc6a395
LZ
421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
423 int *bits, int wake)
d1310b2e 424{
cdc6a395 425 struct extent_state *next;
0ca1f7ce 426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 427
0ca1f7ce 428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
432 }
291d673e 433 clear_state_cb(tree, state, bits);
32c00aff 434 state->state &= ~bits_to_clear;
d1310b2e
CM
435 if (wake)
436 wake_up(&state->wq);
0ca1f7ce 437 if (state->state == 0) {
cdc6a395 438 next = next_state(state);
70dec807 439 if (state->tree) {
d1310b2e 440 rb_erase(&state->rb_node, &tree->state);
70dec807 441 state->tree = NULL;
d1310b2e
CM
442 free_extent_state(state);
443 } else {
444 WARN_ON(1);
445 }
446 } else {
447 merge_state(tree, state);
cdc6a395 448 next = next_state(state);
d1310b2e 449 }
cdc6a395 450 return next;
d1310b2e
CM
451}
452
8233767a
XG
453static struct extent_state *
454alloc_extent_state_atomic(struct extent_state *prealloc)
455{
456 if (!prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459 return prealloc;
460}
461
c2d904e0
JM
462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463{
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
467}
468
d1310b2e
CM
469/*
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
473 *
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
476 *
477 * the range [start, end] is inclusive.
478 *
6763af84 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
480 */
481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
484 gfp_t mask)
d1310b2e
CM
485{
486 struct extent_state *state;
2c64c53d 487 struct extent_state *cached;
d1310b2e
CM
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
5c939df5 490 u64 last_end;
d1310b2e 491 int err;
2ac55d41 492 int clear = 0;
d1310b2e 493
0ca1f7ce
YZ
494 if (delete)
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
497
2ac55d41
JB
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 clear = 1;
d1310b2e
CM
500again:
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
503 if (!prealloc)
504 return -ENOMEM;
505 }
506
cad321ad 507 spin_lock(&tree->lock);
2c64c53d
CM
508 if (cached_state) {
509 cached = *cached_state;
2ac55d41
JB
510
511 if (clear) {
512 *cached_state = NULL;
513 cached_state = NULL;
514 }
515
df98b6e2
JB
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
2ac55d41
JB
518 if (clear)
519 atomic_dec(&cached->refs);
2c64c53d 520 state = cached;
42daec29 521 goto hit_next;
2c64c53d 522 }
2ac55d41
JB
523 if (clear)
524 free_extent_state(cached);
2c64c53d 525 }
d1310b2e
CM
526 /*
527 * this search will find the extents that end after
528 * our range starts
529 */
80ea96b1 530 node = tree_search(tree, start);
d1310b2e
CM
531 if (!node)
532 goto out;
533 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 534hit_next:
d1310b2e
CM
535 if (state->start > end)
536 goto out;
537 WARN_ON(state->end < start);
5c939df5 538 last_end = state->end;
d1310b2e 539
0449314a 540 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
541 if (!(state->state & bits)) {
542 state = next_state(state);
0449314a 543 goto next;
cdc6a395 544 }
0449314a 545
d1310b2e
CM
546 /*
547 * | ---- desired range ---- |
548 * | state | or
549 * | ------------- state -------------- |
550 *
551 * We need to split the extent we found, and may flip
552 * bits on second half.
553 *
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
557 *
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
560 */
561
562 if (state->start < start) {
8233767a
XG
563 prealloc = alloc_extent_state_atomic(prealloc);
564 BUG_ON(!prealloc);
d1310b2e 565 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
566 if (err)
567 extent_io_tree_panic(tree, err);
568
d1310b2e
CM
569 prealloc = NULL;
570 if (err)
571 goto out;
572 if (state->end <= end) {
6763af84 573 clear_state_bit(tree, state, &bits, wake);
5c939df5
YZ
574 if (last_end == (u64)-1)
575 goto out;
576 start = last_end + 1;
d1310b2e
CM
577 }
578 goto search_again;
579 }
580 /*
581 * | ---- desired range ---- |
582 * | state |
583 * We need to split the extent, and clear the bit
584 * on the first half
585 */
586 if (state->start <= end && state->end > end) {
8233767a
XG
587 prealloc = alloc_extent_state_atomic(prealloc);
588 BUG_ON(!prealloc);
d1310b2e 589 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
590 if (err)
591 extent_io_tree_panic(tree, err);
592
d1310b2e
CM
593 if (wake)
594 wake_up(&state->wq);
42daec29 595
6763af84 596 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 597
d1310b2e
CM
598 prealloc = NULL;
599 goto out;
600 }
42daec29 601
cdc6a395 602 state = clear_state_bit(tree, state, &bits, wake);
0449314a 603next:
5c939df5
YZ
604 if (last_end == (u64)-1)
605 goto out;
606 start = last_end + 1;
cdc6a395 607 if (start <= end && state && !need_resched())
692e5759 608 goto hit_next;
d1310b2e
CM
609 goto search_again;
610
611out:
cad321ad 612 spin_unlock(&tree->lock);
d1310b2e
CM
613 if (prealloc)
614 free_extent_state(prealloc);
615
6763af84 616 return 0;
d1310b2e
CM
617
618search_again:
619 if (start > end)
620 goto out;
cad321ad 621 spin_unlock(&tree->lock);
d1310b2e
CM
622 if (mask & __GFP_WAIT)
623 cond_resched();
624 goto again;
625}
d1310b2e 626
143bede5
JM
627static void wait_on_state(struct extent_io_tree *tree,
628 struct extent_state *state)
641f5219
CH
629 __releases(tree->lock)
630 __acquires(tree->lock)
d1310b2e
CM
631{
632 DEFINE_WAIT(wait);
633 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 634 spin_unlock(&tree->lock);
d1310b2e 635 schedule();
cad321ad 636 spin_lock(&tree->lock);
d1310b2e 637 finish_wait(&state->wq, &wait);
d1310b2e
CM
638}
639
640/*
641 * waits for one or more bits to clear on a range in the state tree.
642 * The range [start, end] is inclusive.
643 * The tree lock is taken by this function
644 */
143bede5 645void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
646{
647 struct extent_state *state;
648 struct rb_node *node;
649
cad321ad 650 spin_lock(&tree->lock);
d1310b2e
CM
651again:
652 while (1) {
653 /*
654 * this search will find all the extents that end after
655 * our range starts
656 */
80ea96b1 657 node = tree_search(tree, start);
d1310b2e
CM
658 if (!node)
659 break;
660
661 state = rb_entry(node, struct extent_state, rb_node);
662
663 if (state->start > end)
664 goto out;
665
666 if (state->state & bits) {
667 start = state->start;
668 atomic_inc(&state->refs);
669 wait_on_state(tree, state);
670 free_extent_state(state);
671 goto again;
672 }
673 start = state->end + 1;
674
675 if (start > end)
676 break;
677
ded91f08 678 cond_resched_lock(&tree->lock);
d1310b2e
CM
679 }
680out:
cad321ad 681 spin_unlock(&tree->lock);
d1310b2e 682}
d1310b2e 683
1bf85046 684static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 685 struct extent_state *state,
0ca1f7ce 686 int *bits)
d1310b2e 687{
0ca1f7ce 688 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 689
1bf85046 690 set_state_cb(tree, state, bits);
0ca1f7ce 691 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
692 u64 range = state->end - state->start + 1;
693 tree->dirty_bytes += range;
694 }
0ca1f7ce 695 state->state |= bits_to_set;
d1310b2e
CM
696}
697
2c64c53d
CM
698static void cache_state(struct extent_state *state,
699 struct extent_state **cached_ptr)
700{
701 if (cached_ptr && !(*cached_ptr)) {
702 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
703 *cached_ptr = state;
704 atomic_inc(&state->refs);
705 }
706 }
707}
708
507903b8
AJ
709static void uncache_state(struct extent_state **cached_ptr)
710{
711 if (cached_ptr && (*cached_ptr)) {
712 struct extent_state *state = *cached_ptr;
109b36a2
CM
713 *cached_ptr = NULL;
714 free_extent_state(state);
507903b8
AJ
715 }
716}
717
d1310b2e 718/*
1edbb734
CM
719 * set some bits on a range in the tree. This may require allocations or
720 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 721 *
1edbb734
CM
722 * If any of the exclusive bits are set, this will fail with -EEXIST if some
723 * part of the range already has the desired bits set. The start of the
724 * existing range is returned in failed_start in this case.
d1310b2e 725 *
1edbb734 726 * [start, end] is inclusive This takes the tree lock.
d1310b2e 727 */
1edbb734 728
3fbe5c02
JM
729static int __must_check
730__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
731 int bits, int exclusive_bits, u64 *failed_start,
732 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
733{
734 struct extent_state *state;
735 struct extent_state *prealloc = NULL;
736 struct rb_node *node;
d1310b2e 737 int err = 0;
d1310b2e
CM
738 u64 last_start;
739 u64 last_end;
42daec29 740
0ca1f7ce 741 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
742again:
743 if (!prealloc && (mask & __GFP_WAIT)) {
744 prealloc = alloc_extent_state(mask);
8233767a 745 BUG_ON(!prealloc);
d1310b2e
CM
746 }
747
cad321ad 748 spin_lock(&tree->lock);
9655d298
CM
749 if (cached_state && *cached_state) {
750 state = *cached_state;
df98b6e2
JB
751 if (state->start <= start && state->end > start &&
752 state->tree) {
9655d298
CM
753 node = &state->rb_node;
754 goto hit_next;
755 }
756 }
d1310b2e
CM
757 /*
758 * this search will find all the extents that end after
759 * our range starts.
760 */
80ea96b1 761 node = tree_search(tree, start);
d1310b2e 762 if (!node) {
8233767a
XG
763 prealloc = alloc_extent_state_atomic(prealloc);
764 BUG_ON(!prealloc);
0ca1f7ce 765 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
766 if (err)
767 extent_io_tree_panic(tree, err);
768
d1310b2e 769 prealloc = NULL;
d1310b2e
CM
770 goto out;
771 }
d1310b2e 772 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 773hit_next:
d1310b2e
CM
774 last_start = state->start;
775 last_end = state->end;
776
777 /*
778 * | ---- desired range ---- |
779 * | state |
780 *
781 * Just lock what we found and keep going
782 */
783 if (state->start == start && state->end <= end) {
40431d6c 784 struct rb_node *next_node;
1edbb734 785 if (state->state & exclusive_bits) {
d1310b2e
CM
786 *failed_start = state->start;
787 err = -EEXIST;
788 goto out;
789 }
42daec29 790
1bf85046 791 set_state_bits(tree, state, &bits);
9ed74f2d 792
2c64c53d 793 cache_state(state, cached_state);
d1310b2e 794 merge_state(tree, state);
5c939df5
YZ
795 if (last_end == (u64)-1)
796 goto out;
40431d6c 797
5c939df5 798 start = last_end + 1;
df98b6e2 799 next_node = rb_next(&state->rb_node);
c7f895a2
XG
800 if (next_node && start < end && prealloc && !need_resched()) {
801 state = rb_entry(next_node, struct extent_state,
802 rb_node);
803 if (state->start == start)
804 goto hit_next;
40431d6c 805 }
d1310b2e
CM
806 goto search_again;
807 }
808
809 /*
810 * | ---- desired range ---- |
811 * | state |
812 * or
813 * | ------------- state -------------- |
814 *
815 * We need to split the extent we found, and may flip bits on
816 * second half.
817 *
818 * If the extent we found extends past our
819 * range, we just split and search again. It'll get split
820 * again the next time though.
821 *
822 * If the extent we found is inside our range, we set the
823 * desired bit on it.
824 */
825 if (state->start < start) {
1edbb734 826 if (state->state & exclusive_bits) {
d1310b2e
CM
827 *failed_start = start;
828 err = -EEXIST;
829 goto out;
830 }
8233767a
XG
831
832 prealloc = alloc_extent_state_atomic(prealloc);
833 BUG_ON(!prealloc);
d1310b2e 834 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
835 if (err)
836 extent_io_tree_panic(tree, err);
837
d1310b2e
CM
838 prealloc = NULL;
839 if (err)
840 goto out;
841 if (state->end <= end) {
1bf85046 842 set_state_bits(tree, state, &bits);
2c64c53d 843 cache_state(state, cached_state);
d1310b2e 844 merge_state(tree, state);
5c939df5
YZ
845 if (last_end == (u64)-1)
846 goto out;
847 start = last_end + 1;
d1310b2e
CM
848 }
849 goto search_again;
850 }
851 /*
852 * | ---- desired range ---- |
853 * | state | or | state |
854 *
855 * There's a hole, we need to insert something in it and
856 * ignore the extent we found.
857 */
858 if (state->start > start) {
859 u64 this_end;
860 if (end < last_start)
861 this_end = end;
862 else
d397712b 863 this_end = last_start - 1;
8233767a
XG
864
865 prealloc = alloc_extent_state_atomic(prealloc);
866 BUG_ON(!prealloc);
c7f895a2
XG
867
868 /*
869 * Avoid to free 'prealloc' if it can be merged with
870 * the later extent.
871 */
d1310b2e 872 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 873 &bits);
c2d904e0
JM
874 if (err)
875 extent_io_tree_panic(tree, err);
876
9ed74f2d
JB
877 cache_state(prealloc, cached_state);
878 prealloc = NULL;
d1310b2e
CM
879 start = this_end + 1;
880 goto search_again;
881 }
882 /*
883 * | ---- desired range ---- |
884 * | state |
885 * We need to split the extent, and set the bit
886 * on the first half
887 */
888 if (state->start <= end && state->end > end) {
1edbb734 889 if (state->state & exclusive_bits) {
d1310b2e
CM
890 *failed_start = start;
891 err = -EEXIST;
892 goto out;
893 }
8233767a
XG
894
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
d1310b2e 897 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
898 if (err)
899 extent_io_tree_panic(tree, err);
d1310b2e 900
1bf85046 901 set_state_bits(tree, prealloc, &bits);
2c64c53d 902 cache_state(prealloc, cached_state);
d1310b2e
CM
903 merge_state(tree, prealloc);
904 prealloc = NULL;
905 goto out;
906 }
907
908 goto search_again;
909
910out:
cad321ad 911 spin_unlock(&tree->lock);
d1310b2e
CM
912 if (prealloc)
913 free_extent_state(prealloc);
914
915 return err;
916
917search_again:
918 if (start > end)
919 goto out;
cad321ad 920 spin_unlock(&tree->lock);
d1310b2e
CM
921 if (mask & __GFP_WAIT)
922 cond_resched();
923 goto again;
924}
d1310b2e 925
3fbe5c02
JM
926int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927 u64 *failed_start, struct extent_state **cached_state,
928 gfp_t mask)
929{
930 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931 cached_state, mask);
932}
933
934
462d6fac
JB
935/**
936 * convert_extent - convert all bits in a given range from one bit to another
937 * @tree: the io tree to search
938 * @start: the start offset in bytes
939 * @end: the end offset in bytes (inclusive)
940 * @bits: the bits to set in this range
941 * @clear_bits: the bits to clear in this range
942 * @mask: the allocation mask
943 *
944 * This will go through and set bits for the given range. If any states exist
945 * already in this range they are set with the given bit and cleared of the
946 * clear_bits. This is only meant to be used by things that are mergeable, ie
947 * converting from say DELALLOC to DIRTY. This is not meant to be used with
948 * boundary bits like LOCK.
949 */
950int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
951 int bits, int clear_bits, gfp_t mask)
952{
953 struct extent_state *state;
954 struct extent_state *prealloc = NULL;
955 struct rb_node *node;
956 int err = 0;
957 u64 last_start;
958 u64 last_end;
959
960again:
961 if (!prealloc && (mask & __GFP_WAIT)) {
962 prealloc = alloc_extent_state(mask);
963 if (!prealloc)
964 return -ENOMEM;
965 }
966
967 spin_lock(&tree->lock);
968 /*
969 * this search will find all the extents that end after
970 * our range starts.
971 */
972 node = tree_search(tree, start);
973 if (!node) {
974 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
975 if (!prealloc) {
976 err = -ENOMEM;
977 goto out;
978 }
462d6fac
JB
979 err = insert_state(tree, prealloc, start, end, &bits);
980 prealloc = NULL;
c2d904e0
JM
981 if (err)
982 extent_io_tree_panic(tree, err);
462d6fac
JB
983 goto out;
984 }
985 state = rb_entry(node, struct extent_state, rb_node);
986hit_next:
987 last_start = state->start;
988 last_end = state->end;
989
990 /*
991 * | ---- desired range ---- |
992 * | state |
993 *
994 * Just lock what we found and keep going
995 */
996 if (state->start == start && state->end <= end) {
997 struct rb_node *next_node;
998
999 set_state_bits(tree, state, &bits);
1000 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1001 if (last_end == (u64)-1)
1002 goto out;
1003
1004 start = last_end + 1;
1005 next_node = rb_next(&state->rb_node);
1006 if (next_node && start < end && prealloc && !need_resched()) {
1007 state = rb_entry(next_node, struct extent_state,
1008 rb_node);
1009 if (state->start == start)
1010 goto hit_next;
1011 }
1012 goto search_again;
1013 }
1014
1015 /*
1016 * | ---- desired range ---- |
1017 * | state |
1018 * or
1019 * | ------------- state -------------- |
1020 *
1021 * We need to split the extent we found, and may flip bits on
1022 * second half.
1023 *
1024 * If the extent we found extends past our
1025 * range, we just split and search again. It'll get split
1026 * again the next time though.
1027 *
1028 * If the extent we found is inside our range, we set the
1029 * desired bit on it.
1030 */
1031 if (state->start < start) {
1032 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1033 if (!prealloc) {
1034 err = -ENOMEM;
1035 goto out;
1036 }
462d6fac 1037 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1038 if (err)
1039 extent_io_tree_panic(tree, err);
462d6fac
JB
1040 prealloc = NULL;
1041 if (err)
1042 goto out;
1043 if (state->end <= end) {
1044 set_state_bits(tree, state, &bits);
1045 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1046 if (last_end == (u64)-1)
1047 goto out;
1048 start = last_end + 1;
1049 }
1050 goto search_again;
1051 }
1052 /*
1053 * | ---- desired range ---- |
1054 * | state | or | state |
1055 *
1056 * There's a hole, we need to insert something in it and
1057 * ignore the extent we found.
1058 */
1059 if (state->start > start) {
1060 u64 this_end;
1061 if (end < last_start)
1062 this_end = end;
1063 else
1064 this_end = last_start - 1;
1065
1066 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1067 if (!prealloc) {
1068 err = -ENOMEM;
1069 goto out;
1070 }
462d6fac
JB
1071
1072 /*
1073 * Avoid to free 'prealloc' if it can be merged with
1074 * the later extent.
1075 */
1076 err = insert_state(tree, prealloc, start, this_end,
1077 &bits);
c2d904e0
JM
1078 if (err)
1079 extent_io_tree_panic(tree, err);
462d6fac
JB
1080 prealloc = NULL;
1081 start = this_end + 1;
1082 goto search_again;
1083 }
1084 /*
1085 * | ---- desired range ---- |
1086 * | state |
1087 * We need to split the extent, and set the bit
1088 * on the first half
1089 */
1090 if (state->start <= end && state->end > end) {
1091 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1092 if (!prealloc) {
1093 err = -ENOMEM;
1094 goto out;
1095 }
462d6fac
JB
1096
1097 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1098 if (err)
1099 extent_io_tree_panic(tree, err);
462d6fac
JB
1100
1101 set_state_bits(tree, prealloc, &bits);
1102 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1103 prealloc = NULL;
1104 goto out;
1105 }
1106
1107 goto search_again;
1108
1109out:
1110 spin_unlock(&tree->lock);
1111 if (prealloc)
1112 free_extent_state(prealloc);
1113
1114 return err;
1115
1116search_again:
1117 if (start > end)
1118 goto out;
1119 spin_unlock(&tree->lock);
1120 if (mask & __GFP_WAIT)
1121 cond_resched();
1122 goto again;
1123}
1124
d1310b2e
CM
1125/* wrappers around set/clear extent bit */
1126int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1127 gfp_t mask)
1128{
3fbe5c02 1129 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1130 NULL, mask);
d1310b2e 1131}
d1310b2e
CM
1132
1133int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134 int bits, gfp_t mask)
1135{
3fbe5c02 1136 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1137 NULL, mask);
d1310b2e 1138}
d1310b2e
CM
1139
1140int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1141 int bits, gfp_t mask)
1142{
2c64c53d 1143 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1144}
d1310b2e
CM
1145
1146int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1147 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1148{
1149 return set_extent_bit(tree, start, end,
fee187d9 1150 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1151 NULL, cached_state, mask);
d1310b2e 1152}
d1310b2e
CM
1153
1154int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1155 gfp_t mask)
1156{
1157 return clear_extent_bit(tree, start, end,
32c00aff 1158 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1159 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1160}
d1310b2e
CM
1161
1162int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1163 gfp_t mask)
1164{
3fbe5c02 1165 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1166 NULL, mask);
d1310b2e 1167}
d1310b2e 1168
d1310b2e 1169int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1170 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1171{
507903b8 1172 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1173 cached_state, mask);
d1310b2e 1174}
d1310b2e 1175
d397712b 1176static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
2ac55d41
JB
1177 u64 end, struct extent_state **cached_state,
1178 gfp_t mask)
d1310b2e 1179{
2c64c53d 1180 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1181 cached_state, mask);
d1310b2e 1182}
d1310b2e 1183
d352ac68
CM
1184/*
1185 * either insert or lock state struct between start and end use mask to tell
1186 * us if waiting is desired.
1187 */
1edbb734 1188int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1189 int bits, struct extent_state **cached_state)
d1310b2e
CM
1190{
1191 int err;
1192 u64 failed_start;
1193 while (1) {
3fbe5c02
JM
1194 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1195 EXTENT_LOCKED, &failed_start,
1196 cached_state, GFP_NOFS);
d0082371 1197 if (err == -EEXIST) {
d1310b2e
CM
1198 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1199 start = failed_start;
d0082371 1200 } else
d1310b2e 1201 break;
d1310b2e
CM
1202 WARN_ON(start > end);
1203 }
1204 return err;
1205}
d1310b2e 1206
d0082371 1207int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1208{
d0082371 1209 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1210}
1211
d0082371 1212int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1213{
1214 int err;
1215 u64 failed_start;
1216
3fbe5c02
JM
1217 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1218 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1219 if (err == -EEXIST) {
1220 if (failed_start > start)
1221 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1222 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1223 return 0;
6643558d 1224 }
25179201
JB
1225 return 1;
1226}
25179201 1227
2c64c53d
CM
1228int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1229 struct extent_state **cached, gfp_t mask)
1230{
1231 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1232 mask);
1233}
1234
d0082371 1235int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1236{
2c64c53d 1237 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1238 GFP_NOFS);
d1310b2e 1239}
d1310b2e 1240
d1310b2e
CM
1241/*
1242 * helper function to set both pages and extents in the tree writeback
1243 */
b2950863 1244static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1245{
1246 unsigned long index = start >> PAGE_CACHE_SHIFT;
1247 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1248 struct page *page;
1249
1250 while (index <= end_index) {
1251 page = find_get_page(tree->mapping, index);
79787eaa 1252 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1253 set_page_writeback(page);
1254 page_cache_release(page);
1255 index++;
1256 }
d1310b2e
CM
1257 return 0;
1258}
d1310b2e 1259
d352ac68
CM
1260/* find the first state struct with 'bits' set after 'start', and
1261 * return it. tree->lock must be held. NULL will returned if
1262 * nothing was found after 'start'
1263 */
d7fc640e
CM
1264struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1265 u64 start, int bits)
1266{
1267 struct rb_node *node;
1268 struct extent_state *state;
1269
1270 /*
1271 * this search will find all the extents that end after
1272 * our range starts.
1273 */
1274 node = tree_search(tree, start);
d397712b 1275 if (!node)
d7fc640e 1276 goto out;
d7fc640e 1277
d397712b 1278 while (1) {
d7fc640e 1279 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1280 if (state->end >= start && (state->state & bits))
d7fc640e 1281 return state;
d397712b 1282
d7fc640e
CM
1283 node = rb_next(node);
1284 if (!node)
1285 break;
1286 }
1287out:
1288 return NULL;
1289}
d7fc640e 1290
69261c4b
XG
1291/*
1292 * find the first offset in the io tree with 'bits' set. zero is
1293 * returned if we find something, and *start_ret and *end_ret are
1294 * set to reflect the state struct that was found.
1295 *
1296 * If nothing was found, 1 is returned, < 0 on error
1297 */
1298int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1299 u64 *start_ret, u64 *end_ret, int bits)
1300{
1301 struct extent_state *state;
1302 int ret = 1;
1303
1304 spin_lock(&tree->lock);
1305 state = find_first_extent_bit_state(tree, start, bits);
1306 if (state) {
1307 *start_ret = state->start;
1308 *end_ret = state->end;
1309 ret = 0;
1310 }
1311 spin_unlock(&tree->lock);
1312 return ret;
1313}
1314
d352ac68
CM
1315/*
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'. start and end are used to return the range,
1318 *
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1320 */
c8b97818 1321static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1322 u64 *start, u64 *end, u64 max_bytes,
1323 struct extent_state **cached_state)
d1310b2e
CM
1324{
1325 struct rb_node *node;
1326 struct extent_state *state;
1327 u64 cur_start = *start;
1328 u64 found = 0;
1329 u64 total_bytes = 0;
1330
cad321ad 1331 spin_lock(&tree->lock);
c8b97818 1332
d1310b2e
CM
1333 /*
1334 * this search will find all the extents that end after
1335 * our range starts.
1336 */
80ea96b1 1337 node = tree_search(tree, cur_start);
2b114d1d 1338 if (!node) {
3b951516
CM
1339 if (!found)
1340 *end = (u64)-1;
d1310b2e
CM
1341 goto out;
1342 }
1343
d397712b 1344 while (1) {
d1310b2e 1345 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1346 if (found && (state->start != cur_start ||
1347 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1348 goto out;
1349 }
1350 if (!(state->state & EXTENT_DELALLOC)) {
1351 if (!found)
1352 *end = state->end;
1353 goto out;
1354 }
c2a128d2 1355 if (!found) {
d1310b2e 1356 *start = state->start;
c2a128d2
JB
1357 *cached_state = state;
1358 atomic_inc(&state->refs);
1359 }
d1310b2e
CM
1360 found++;
1361 *end = state->end;
1362 cur_start = state->end + 1;
1363 node = rb_next(node);
1364 if (!node)
1365 break;
1366 total_bytes += state->end - state->start + 1;
1367 if (total_bytes >= max_bytes)
1368 break;
1369 }
1370out:
cad321ad 1371 spin_unlock(&tree->lock);
d1310b2e
CM
1372 return found;
1373}
1374
143bede5
JM
1375static noinline void __unlock_for_delalloc(struct inode *inode,
1376 struct page *locked_page,
1377 u64 start, u64 end)
c8b97818
CM
1378{
1379 int ret;
1380 struct page *pages[16];
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 unsigned long nr_pages = end_index - index + 1;
1384 int i;
1385
1386 if (index == locked_page->index && end_index == index)
143bede5 1387 return;
c8b97818 1388
d397712b 1389 while (nr_pages > 0) {
c8b97818 1390 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1391 min_t(unsigned long, nr_pages,
1392 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1393 for (i = 0; i < ret; i++) {
1394 if (pages[i] != locked_page)
1395 unlock_page(pages[i]);
1396 page_cache_release(pages[i]);
1397 }
1398 nr_pages -= ret;
1399 index += ret;
1400 cond_resched();
1401 }
c8b97818
CM
1402}
1403
1404static noinline int lock_delalloc_pages(struct inode *inode,
1405 struct page *locked_page,
1406 u64 delalloc_start,
1407 u64 delalloc_end)
1408{
1409 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1410 unsigned long start_index = index;
1411 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1412 unsigned long pages_locked = 0;
1413 struct page *pages[16];
1414 unsigned long nrpages;
1415 int ret;
1416 int i;
1417
1418 /* the caller is responsible for locking the start index */
1419 if (index == locked_page->index && index == end_index)
1420 return 0;
1421
1422 /* skip the page at the start index */
1423 nrpages = end_index - index + 1;
d397712b 1424 while (nrpages > 0) {
c8b97818 1425 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1426 min_t(unsigned long,
1427 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1428 if (ret == 0) {
1429 ret = -EAGAIN;
1430 goto done;
1431 }
1432 /* now we have an array of pages, lock them all */
1433 for (i = 0; i < ret; i++) {
1434 /*
1435 * the caller is taking responsibility for
1436 * locked_page
1437 */
771ed689 1438 if (pages[i] != locked_page) {
c8b97818 1439 lock_page(pages[i]);
f2b1c41c
CM
1440 if (!PageDirty(pages[i]) ||
1441 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1442 ret = -EAGAIN;
1443 unlock_page(pages[i]);
1444 page_cache_release(pages[i]);
1445 goto done;
1446 }
1447 }
c8b97818 1448 page_cache_release(pages[i]);
771ed689 1449 pages_locked++;
c8b97818 1450 }
c8b97818
CM
1451 nrpages -= ret;
1452 index += ret;
1453 cond_resched();
1454 }
1455 ret = 0;
1456done:
1457 if (ret && pages_locked) {
1458 __unlock_for_delalloc(inode, locked_page,
1459 delalloc_start,
1460 ((u64)(start_index + pages_locked - 1)) <<
1461 PAGE_CACHE_SHIFT);
1462 }
1463 return ret;
1464}
1465
1466/*
1467 * find a contiguous range of bytes in the file marked as delalloc, not
1468 * more than 'max_bytes'. start and end are used to return the range,
1469 *
1470 * 1 is returned if we find something, 0 if nothing was in the tree
1471 */
1472static noinline u64 find_lock_delalloc_range(struct inode *inode,
1473 struct extent_io_tree *tree,
1474 struct page *locked_page,
1475 u64 *start, u64 *end,
1476 u64 max_bytes)
1477{
1478 u64 delalloc_start;
1479 u64 delalloc_end;
1480 u64 found;
9655d298 1481 struct extent_state *cached_state = NULL;
c8b97818
CM
1482 int ret;
1483 int loops = 0;
1484
1485again:
1486 /* step one, find a bunch of delalloc bytes starting at start */
1487 delalloc_start = *start;
1488 delalloc_end = 0;
1489 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1490 max_bytes, &cached_state);
70b99e69 1491 if (!found || delalloc_end <= *start) {
c8b97818
CM
1492 *start = delalloc_start;
1493 *end = delalloc_end;
c2a128d2 1494 free_extent_state(cached_state);
c8b97818
CM
1495 return found;
1496 }
1497
70b99e69
CM
1498 /*
1499 * start comes from the offset of locked_page. We have to lock
1500 * pages in order, so we can't process delalloc bytes before
1501 * locked_page
1502 */
d397712b 1503 if (delalloc_start < *start)
70b99e69 1504 delalloc_start = *start;
70b99e69 1505
c8b97818
CM
1506 /*
1507 * make sure to limit the number of pages we try to lock down
1508 * if we're looping.
1509 */
d397712b 1510 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1511 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1512
c8b97818
CM
1513 /* step two, lock all the pages after the page that has start */
1514 ret = lock_delalloc_pages(inode, locked_page,
1515 delalloc_start, delalloc_end);
1516 if (ret == -EAGAIN) {
1517 /* some of the pages are gone, lets avoid looping by
1518 * shortening the size of the delalloc range we're searching
1519 */
9655d298 1520 free_extent_state(cached_state);
c8b97818
CM
1521 if (!loops) {
1522 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1523 max_bytes = PAGE_CACHE_SIZE - offset;
1524 loops = 1;
1525 goto again;
1526 } else {
1527 found = 0;
1528 goto out_failed;
1529 }
1530 }
79787eaa 1531 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1532
1533 /* step three, lock the state bits for the whole range */
d0082371 1534 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1535
1536 /* then test to make sure it is all still delalloc */
1537 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1538 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1539 if (!ret) {
9655d298
CM
1540 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1541 &cached_state, GFP_NOFS);
c8b97818
CM
1542 __unlock_for_delalloc(inode, locked_page,
1543 delalloc_start, delalloc_end);
1544 cond_resched();
1545 goto again;
1546 }
9655d298 1547 free_extent_state(cached_state);
c8b97818
CM
1548 *start = delalloc_start;
1549 *end = delalloc_end;
1550out_failed:
1551 return found;
1552}
1553
1554int extent_clear_unlock_delalloc(struct inode *inode,
1555 struct extent_io_tree *tree,
1556 u64 start, u64 end, struct page *locked_page,
a791e35e 1557 unsigned long op)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
771ed689 1565 int clear_bits = 0;
c8b97818 1566
a791e35e 1567 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1568 clear_bits |= EXTENT_LOCKED;
a791e35e 1569 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1570 clear_bits |= EXTENT_DIRTY;
1571
a791e35e 1572 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1573 clear_bits |= EXTENT_DELALLOC;
1574
2c64c53d 1575 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1576 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1577 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1578 EXTENT_SET_PRIVATE2)))
771ed689 1579 return 0;
c8b97818 1580
d397712b 1581 while (nr_pages > 0) {
c8b97818 1582 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1583 min_t(unsigned long,
1584 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1585 for (i = 0; i < ret; i++) {
8b62b72b 1586
a791e35e 1587 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1588 SetPagePrivate2(pages[i]);
1589
c8b97818
CM
1590 if (pages[i] == locked_page) {
1591 page_cache_release(pages[i]);
1592 continue;
1593 }
a791e35e 1594 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1595 clear_page_dirty_for_io(pages[i]);
a791e35e 1596 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1597 set_page_writeback(pages[i]);
a791e35e 1598 if (op & EXTENT_END_WRITEBACK)
c8b97818 1599 end_page_writeback(pages[i]);
a791e35e 1600 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1601 unlock_page(pages[i]);
c8b97818
CM
1602 page_cache_release(pages[i]);
1603 }
1604 nr_pages -= ret;
1605 index += ret;
1606 cond_resched();
1607 }
1608 return 0;
1609}
c8b97818 1610
d352ac68
CM
1611/*
1612 * count the number of bytes in the tree that have a given bit(s)
1613 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1614 * cached. The total number found is returned.
1615 */
d1310b2e
CM
1616u64 count_range_bits(struct extent_io_tree *tree,
1617 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1618 unsigned long bits, int contig)
d1310b2e
CM
1619{
1620 struct rb_node *node;
1621 struct extent_state *state;
1622 u64 cur_start = *start;
1623 u64 total_bytes = 0;
ec29ed5b 1624 u64 last = 0;
d1310b2e
CM
1625 int found = 0;
1626
1627 if (search_end <= cur_start) {
d1310b2e
CM
1628 WARN_ON(1);
1629 return 0;
1630 }
1631
cad321ad 1632 spin_lock(&tree->lock);
d1310b2e
CM
1633 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1634 total_bytes = tree->dirty_bytes;
1635 goto out;
1636 }
1637 /*
1638 * this search will find all the extents that end after
1639 * our range starts.
1640 */
80ea96b1 1641 node = tree_search(tree, cur_start);
d397712b 1642 if (!node)
d1310b2e 1643 goto out;
d1310b2e 1644
d397712b 1645 while (1) {
d1310b2e
CM
1646 state = rb_entry(node, struct extent_state, rb_node);
1647 if (state->start > search_end)
1648 break;
ec29ed5b
CM
1649 if (contig && found && state->start > last + 1)
1650 break;
1651 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1652 total_bytes += min(search_end, state->end) + 1 -
1653 max(cur_start, state->start);
1654 if (total_bytes >= max_bytes)
1655 break;
1656 if (!found) {
af60bed2 1657 *start = max(cur_start, state->start);
d1310b2e
CM
1658 found = 1;
1659 }
ec29ed5b
CM
1660 last = state->end;
1661 } else if (contig && found) {
1662 break;
d1310b2e
CM
1663 }
1664 node = rb_next(node);
1665 if (!node)
1666 break;
1667 }
1668out:
cad321ad 1669 spin_unlock(&tree->lock);
d1310b2e
CM
1670 return total_bytes;
1671}
b2950863 1672
d352ac68
CM
1673/*
1674 * set the private field for a given byte offset in the tree. If there isn't
1675 * an extent_state there already, this does nothing.
1676 */
d1310b2e
CM
1677int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1678{
1679 struct rb_node *node;
1680 struct extent_state *state;
1681 int ret = 0;
1682
cad321ad 1683 spin_lock(&tree->lock);
d1310b2e
CM
1684 /*
1685 * this search will find all the extents that end after
1686 * our range starts.
1687 */
80ea96b1 1688 node = tree_search(tree, start);
2b114d1d 1689 if (!node) {
d1310b2e
CM
1690 ret = -ENOENT;
1691 goto out;
1692 }
1693 state = rb_entry(node, struct extent_state, rb_node);
1694 if (state->start != start) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698 state->private = private;
1699out:
cad321ad 1700 spin_unlock(&tree->lock);
d1310b2e
CM
1701 return ret;
1702}
1703
1704int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1705{
1706 struct rb_node *node;
1707 struct extent_state *state;
1708 int ret = 0;
1709
cad321ad 1710 spin_lock(&tree->lock);
d1310b2e
CM
1711 /*
1712 * this search will find all the extents that end after
1713 * our range starts.
1714 */
80ea96b1 1715 node = tree_search(tree, start);
2b114d1d 1716 if (!node) {
d1310b2e
CM
1717 ret = -ENOENT;
1718 goto out;
1719 }
1720 state = rb_entry(node, struct extent_state, rb_node);
1721 if (state->start != start) {
1722 ret = -ENOENT;
1723 goto out;
1724 }
1725 *private = state->private;
1726out:
cad321ad 1727 spin_unlock(&tree->lock);
d1310b2e
CM
1728 return ret;
1729}
1730
1731/*
1732 * searches a range in the state tree for a given mask.
70dec807 1733 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1734 * has the bits set. Otherwise, 1 is returned if any bit in the
1735 * range is found set.
1736 */
1737int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1738 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1739{
1740 struct extent_state *state = NULL;
1741 struct rb_node *node;
1742 int bitset = 0;
d1310b2e 1743
cad321ad 1744 spin_lock(&tree->lock);
df98b6e2
JB
1745 if (cached && cached->tree && cached->start <= start &&
1746 cached->end > start)
9655d298
CM
1747 node = &cached->rb_node;
1748 else
1749 node = tree_search(tree, start);
d1310b2e
CM
1750 while (node && start <= end) {
1751 state = rb_entry(node, struct extent_state, rb_node);
1752
1753 if (filled && state->start > start) {
1754 bitset = 0;
1755 break;
1756 }
1757
1758 if (state->start > end)
1759 break;
1760
1761 if (state->state & bits) {
1762 bitset = 1;
1763 if (!filled)
1764 break;
1765 } else if (filled) {
1766 bitset = 0;
1767 break;
1768 }
46562cec
CM
1769
1770 if (state->end == (u64)-1)
1771 break;
1772
d1310b2e
CM
1773 start = state->end + 1;
1774 if (start > end)
1775 break;
1776 node = rb_next(node);
1777 if (!node) {
1778 if (filled)
1779 bitset = 0;
1780 break;
1781 }
1782 }
cad321ad 1783 spin_unlock(&tree->lock);
d1310b2e
CM
1784 return bitset;
1785}
d1310b2e
CM
1786
1787/*
1788 * helper function to set a given page up to date if all the
1789 * extents in the tree for that page are up to date
1790 */
143bede5 1791static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1792{
1793 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1794 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1795 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1796 SetPageUptodate(page);
d1310b2e
CM
1797}
1798
1799/*
1800 * helper function to unlock a page if all the extents in the tree
1801 * for that page are unlocked
1802 */
143bede5 1803static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1804{
1805 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1806 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1807 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1808 unlock_page(page);
d1310b2e
CM
1809}
1810
1811/*
1812 * helper function to end page writeback if all the extents
1813 * in the tree for that page are done with writeback
1814 */
143bede5
JM
1815static void check_page_writeback(struct extent_io_tree *tree,
1816 struct page *page)
d1310b2e 1817{
1edbb734 1818 end_page_writeback(page);
d1310b2e
CM
1819}
1820
4a54c8c1
JS
1821/*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
1829struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
1834 unsigned long bio_flags;
1835 int this_mirror;
1836 int failed_mirror;
1837 int in_validation;
1838};
1839
1840static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1841 int did_repair)
1842{
1843 int ret;
1844 int err = 0;
1845 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1846
1847 set_state_private(failure_tree, rec->start, 0);
1848 ret = clear_extent_bits(failure_tree, rec->start,
1849 rec->start + rec->len - 1,
1850 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1851 if (ret)
1852 err = ret;
1853
1854 if (did_repair) {
1855 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1856 rec->start + rec->len - 1,
1857 EXTENT_DAMAGED, GFP_NOFS);
1858 if (ret && !err)
1859 err = ret;
1860 }
1861
1862 kfree(rec);
1863 return err;
1864}
1865
1866static void repair_io_failure_callback(struct bio *bio, int err)
1867{
1868 complete(bio->bi_private);
1869}
1870
1871/*
1872 * this bypasses the standard btrfs submit functions deliberately, as
1873 * the standard behavior is to write all copies in a raid setup. here we only
1874 * want to write the one bad copy. so we do the mapping for ourselves and issue
1875 * submit_bio directly.
1876 * to avoid any synchonization issues, wait for the data after writing, which
1877 * actually prevents the read that triggered the error from finishing.
1878 * currently, there can be no more than two copies of every data bit. thus,
1879 * exactly one rewrite is required.
1880 */
1881int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1882 u64 length, u64 logical, struct page *page,
1883 int mirror_num)
1884{
1885 struct bio *bio;
1886 struct btrfs_device *dev;
1887 DECLARE_COMPLETION_ONSTACK(compl);
1888 u64 map_length = 0;
1889 u64 sector;
1890 struct btrfs_bio *bbio = NULL;
1891 int ret;
1892
1893 BUG_ON(!mirror_num);
1894
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 if (!bio)
1897 return -EIO;
1898 bio->bi_private = &compl;
1899 bio->bi_end_io = repair_io_failure_callback;
1900 bio->bi_size = 0;
1901 map_length = length;
1902
1903 ret = btrfs_map_block(map_tree, WRITE, logical,
1904 &map_length, &bbio, mirror_num);
1905 if (ret) {
1906 bio_put(bio);
1907 return -EIO;
1908 }
1909 BUG_ON(mirror_num != bbio->mirror_num);
1910 sector = bbio->stripes[mirror_num-1].physical >> 9;
1911 bio->bi_sector = sector;
1912 dev = bbio->stripes[mirror_num-1].dev;
1913 kfree(bbio);
1914 if (!dev || !dev->bdev || !dev->writeable) {
1915 bio_put(bio);
1916 return -EIO;
1917 }
1918 bio->bi_bdev = dev->bdev;
1919 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1920 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1921 wait_for_completion(&compl);
1922
1923 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1924 /* try to remap that extent elsewhere? */
1925 bio_put(bio);
1926 return -EIO;
1927 }
1928
1929 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1930 "sector %llu)\n", page->mapping->host->i_ino, start,
1931 dev->name, sector);
1932
1933 bio_put(bio);
1934 return 0;
1935}
1936
ea466794
JB
1937int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1938 int mirror_num)
1939{
1940 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1941 u64 start = eb->start;
1942 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1943 int ret = 0;
ea466794
JB
1944
1945 for (i = 0; i < num_pages; i++) {
1946 struct page *p = extent_buffer_page(eb, i);
1947 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1948 start, p, mirror_num);
1949 if (ret)
1950 break;
1951 start += PAGE_CACHE_SIZE;
1952 }
1953
1954 return ret;
1955}
1956
4a54c8c1
JS
1957/*
1958 * each time an IO finishes, we do a fast check in the IO failure tree
1959 * to see if we need to process or clean up an io_failure_record
1960 */
1961static int clean_io_failure(u64 start, struct page *page)
1962{
1963 u64 private;
1964 u64 private_failure;
1965 struct io_failure_record *failrec;
1966 struct btrfs_mapping_tree *map_tree;
1967 struct extent_state *state;
1968 int num_copies;
1969 int did_repair = 0;
1970 int ret;
1971 struct inode *inode = page->mapping->host;
1972
1973 private = 0;
1974 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1975 (u64)-1, 1, EXTENT_DIRTY, 0);
1976 if (!ret)
1977 return 0;
1978
1979 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1980 &private_failure);
1981 if (ret)
1982 return 0;
1983
1984 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1985 BUG_ON(!failrec->this_mirror);
1986
1987 if (failrec->in_validation) {
1988 /* there was no real error, just free the record */
1989 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1990 failrec->start);
1991 did_repair = 1;
1992 goto out;
1993 }
1994
1995 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1996 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1997 failrec->start,
1998 EXTENT_LOCKED);
1999 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2000
2001 if (state && state->start == failrec->start) {
2002 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2003 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2004 failrec->len);
2005 if (num_copies > 1) {
2006 ret = repair_io_failure(map_tree, start, failrec->len,
2007 failrec->logical, page,
2008 failrec->failed_mirror);
2009 did_repair = !ret;
2010 }
2011 }
2012
2013out:
2014 if (!ret)
2015 ret = free_io_failure(inode, failrec, did_repair);
2016
2017 return ret;
2018}
2019
2020/*
2021 * this is a generic handler for readpage errors (default
2022 * readpage_io_failed_hook). if other copies exist, read those and write back
2023 * good data to the failed position. does not investigate in remapping the
2024 * failed extent elsewhere, hoping the device will be smart enough to do this as
2025 * needed
2026 */
2027
2028static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2029 u64 start, u64 end, int failed_mirror,
2030 struct extent_state *state)
2031{
2032 struct io_failure_record *failrec = NULL;
2033 u64 private;
2034 struct extent_map *em;
2035 struct inode *inode = page->mapping->host;
2036 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2037 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2038 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2039 struct bio *bio;
2040 int num_copies;
2041 int ret;
2042 int read_mode;
2043 u64 logical;
2044
2045 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2046
2047 ret = get_state_private(failure_tree, start, &private);
2048 if (ret) {
2049 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2050 if (!failrec)
2051 return -ENOMEM;
2052 failrec->start = start;
2053 failrec->len = end - start + 1;
2054 failrec->this_mirror = 0;
2055 failrec->bio_flags = 0;
2056 failrec->in_validation = 0;
2057
2058 read_lock(&em_tree->lock);
2059 em = lookup_extent_mapping(em_tree, start, failrec->len);
2060 if (!em) {
2061 read_unlock(&em_tree->lock);
2062 kfree(failrec);
2063 return -EIO;
2064 }
2065
2066 if (em->start > start || em->start + em->len < start) {
2067 free_extent_map(em);
2068 em = NULL;
2069 }
2070 read_unlock(&em_tree->lock);
2071
2072 if (!em || IS_ERR(em)) {
2073 kfree(failrec);
2074 return -EIO;
2075 }
2076 logical = start - em->start;
2077 logical = em->block_start + logical;
2078 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2079 logical = em->block_start;
2080 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2081 extent_set_compress_type(&failrec->bio_flags,
2082 em->compress_type);
2083 }
2084 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2085 "len=%llu\n", logical, start, failrec->len);
2086 failrec->logical = logical;
2087 free_extent_map(em);
2088
2089 /* set the bits in the private failure tree */
2090 ret = set_extent_bits(failure_tree, start, end,
2091 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2092 if (ret >= 0)
2093 ret = set_state_private(failure_tree, start,
2094 (u64)(unsigned long)failrec);
2095 /* set the bits in the inode's tree */
2096 if (ret >= 0)
2097 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2098 GFP_NOFS);
2099 if (ret < 0) {
2100 kfree(failrec);
2101 return ret;
2102 }
2103 } else {
2104 failrec = (struct io_failure_record *)(unsigned long)private;
2105 pr_debug("bio_readpage_error: (found) logical=%llu, "
2106 "start=%llu, len=%llu, validation=%d\n",
2107 failrec->logical, failrec->start, failrec->len,
2108 failrec->in_validation);
2109 /*
2110 * when data can be on disk more than twice, add to failrec here
2111 * (e.g. with a list for failed_mirror) to make
2112 * clean_io_failure() clean all those errors at once.
2113 */
2114 }
2115 num_copies = btrfs_num_copies(
2116 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2117 failrec->logical, failrec->len);
2118 if (num_copies == 1) {
2119 /*
2120 * we only have a single copy of the data, so don't bother with
2121 * all the retry and error correction code that follows. no
2122 * matter what the error is, it is very likely to persist.
2123 */
2124 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2125 "state=%p, num_copies=%d, next_mirror %d, "
2126 "failed_mirror %d\n", state, num_copies,
2127 failrec->this_mirror, failed_mirror);
2128 free_io_failure(inode, failrec, 0);
2129 return -EIO;
2130 }
2131
2132 if (!state) {
2133 spin_lock(&tree->lock);
2134 state = find_first_extent_bit_state(tree, failrec->start,
2135 EXTENT_LOCKED);
2136 if (state && state->start != failrec->start)
2137 state = NULL;
2138 spin_unlock(&tree->lock);
2139 }
2140
2141 /*
2142 * there are two premises:
2143 * a) deliver good data to the caller
2144 * b) correct the bad sectors on disk
2145 */
2146 if (failed_bio->bi_vcnt > 1) {
2147 /*
2148 * to fulfill b), we need to know the exact failing sectors, as
2149 * we don't want to rewrite any more than the failed ones. thus,
2150 * we need separate read requests for the failed bio
2151 *
2152 * if the following BUG_ON triggers, our validation request got
2153 * merged. we need separate requests for our algorithm to work.
2154 */
2155 BUG_ON(failrec->in_validation);
2156 failrec->in_validation = 1;
2157 failrec->this_mirror = failed_mirror;
2158 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2159 } else {
2160 /*
2161 * we're ready to fulfill a) and b) alongside. get a good copy
2162 * of the failed sector and if we succeed, we have setup
2163 * everything for repair_io_failure to do the rest for us.
2164 */
2165 if (failrec->in_validation) {
2166 BUG_ON(failrec->this_mirror != failed_mirror);
2167 failrec->in_validation = 0;
2168 failrec->this_mirror = 0;
2169 }
2170 failrec->failed_mirror = failed_mirror;
2171 failrec->this_mirror++;
2172 if (failrec->this_mirror == failed_mirror)
2173 failrec->this_mirror++;
2174 read_mode = READ_SYNC;
2175 }
2176
2177 if (!state || failrec->this_mirror > num_copies) {
2178 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2179 "next_mirror %d, failed_mirror %d\n", state,
2180 num_copies, failrec->this_mirror, failed_mirror);
2181 free_io_failure(inode, failrec, 0);
2182 return -EIO;
2183 }
2184
2185 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2186 if (!bio) {
2187 free_io_failure(inode, failrec, 0);
2188 return -EIO;
2189 }
4a54c8c1
JS
2190 bio->bi_private = state;
2191 bio->bi_end_io = failed_bio->bi_end_io;
2192 bio->bi_sector = failrec->logical >> 9;
2193 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2194 bio->bi_size = 0;
2195
2196 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2197
2198 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2199 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2200 failrec->this_mirror, num_copies, failrec->in_validation);
2201
013bd4c3
TI
2202 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2203 failrec->this_mirror,
2204 failrec->bio_flags, 0);
2205 return ret;
4a54c8c1
JS
2206}
2207
d1310b2e
CM
2208/* lots and lots of room for performance fixes in the end_bio funcs */
2209
87826df0
JM
2210int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2211{
2212 int uptodate = (err == 0);
2213 struct extent_io_tree *tree;
2214 int ret;
2215
2216 tree = &BTRFS_I(page->mapping->host)->io_tree;
2217
2218 if (tree->ops && tree->ops->writepage_end_io_hook) {
2219 ret = tree->ops->writepage_end_io_hook(page, start,
2220 end, NULL, uptodate);
2221 if (ret)
2222 uptodate = 0;
2223 }
2224
2225 if (!uptodate && tree->ops &&
2226 tree->ops->writepage_io_failed_hook) {
2227 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2228 start, end, NULL);
2229 /* Writeback already completed */
2230 if (ret == 0)
2231 return 1;
2232 }
2233
2234 if (!uptodate) {
2235 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2236 ClearPageUptodate(page);
2237 SetPageError(page);
2238 }
2239 return 0;
2240}
2241
d1310b2e
CM
2242/*
2243 * after a writepage IO is done, we need to:
2244 * clear the uptodate bits on error
2245 * clear the writeback bits in the extent tree for this IO
2246 * end_page_writeback if the page has no more pending IO
2247 *
2248 * Scheduling is not allowed, so the extent state tree is expected
2249 * to have one and only one object corresponding to this IO.
2250 */
d1310b2e 2251static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2252{
d1310b2e 2253 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2254 struct extent_io_tree *tree;
d1310b2e
CM
2255 u64 start;
2256 u64 end;
2257 int whole_page;
2258
d1310b2e
CM
2259 do {
2260 struct page *page = bvec->bv_page;
902b22f3
DW
2261 tree = &BTRFS_I(page->mapping->host)->io_tree;
2262
d1310b2e
CM
2263 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2264 bvec->bv_offset;
2265 end = start + bvec->bv_len - 1;
2266
2267 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2268 whole_page = 1;
2269 else
2270 whole_page = 0;
2271
2272 if (--bvec >= bio->bi_io_vec)
2273 prefetchw(&bvec->bv_page->flags);
1259ab75 2274
87826df0
JM
2275 if (end_extent_writepage(page, err, start, end))
2276 continue;
70dec807 2277
d1310b2e
CM
2278 if (whole_page)
2279 end_page_writeback(page);
2280 else
2281 check_page_writeback(tree, page);
d1310b2e 2282 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2283
d1310b2e 2284 bio_put(bio);
d1310b2e
CM
2285}
2286
2287/*
2288 * after a readpage IO is done, we need to:
2289 * clear the uptodate bits on error
2290 * set the uptodate bits if things worked
2291 * set the page up to date if all extents in the tree are uptodate
2292 * clear the lock bit in the extent tree
2293 * unlock the page if there are no other extents locked for it
2294 *
2295 * Scheduling is not allowed, so the extent state tree is expected
2296 * to have one and only one object corresponding to this IO.
2297 */
d1310b2e 2298static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2299{
2300 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2301 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2302 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2303 struct extent_io_tree *tree;
d1310b2e
CM
2304 u64 start;
2305 u64 end;
2306 int whole_page;
ea466794 2307 int failed_mirror;
d1310b2e
CM
2308 int ret;
2309
d20f7043
CM
2310 if (err)
2311 uptodate = 0;
2312
d1310b2e
CM
2313 do {
2314 struct page *page = bvec->bv_page;
507903b8
AJ
2315 struct extent_state *cached = NULL;
2316 struct extent_state *state;
2317
4a54c8c1
JS
2318 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2319 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2320 (long int)bio->bi_bdev);
902b22f3
DW
2321 tree = &BTRFS_I(page->mapping->host)->io_tree;
2322
d1310b2e
CM
2323 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2324 bvec->bv_offset;
2325 end = start + bvec->bv_len - 1;
2326
2327 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2328 whole_page = 1;
2329 else
2330 whole_page = 0;
2331
4125bf76 2332 if (++bvec <= bvec_end)
d1310b2e
CM
2333 prefetchw(&bvec->bv_page->flags);
2334
507903b8 2335 spin_lock(&tree->lock);
0d399205 2336 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2337 if (state && state->start == start) {
507903b8
AJ
2338 /*
2339 * take a reference on the state, unlock will drop
2340 * the ref
2341 */
2342 cache_state(state, &cached);
2343 }
2344 spin_unlock(&tree->lock);
2345
d1310b2e 2346 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2347 ret = tree->ops->readpage_end_io_hook(page, start, end,
507903b8 2348 state);
d1310b2e
CM
2349 if (ret)
2350 uptodate = 0;
4a54c8c1
JS
2351 else
2352 clean_io_failure(start, page);
d1310b2e 2353 }
ea466794
JB
2354
2355 if (!uptodate)
32240a91 2356 failed_mirror = (int)(unsigned long)bio->bi_bdev;
ea466794
JB
2357
2358 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2359 ret = tree->ops->readpage_io_failed_hook(page, failed_mirror);
2360 if (!ret && !err &&
2361 test_bit(BIO_UPTODATE, &bio->bi_flags))
2362 uptodate = 1;
2363 } else if (!uptodate) {
f4a8e656
JS
2364 /*
2365 * The generic bio_readpage_error handles errors the
2366 * following way: If possible, new read requests are
2367 * created and submitted and will end up in
2368 * end_bio_extent_readpage as well (if we're lucky, not
2369 * in the !uptodate case). In that case it returns 0 and
2370 * we just go on with the next page in our bio. If it
2371 * can't handle the error it will return -EIO and we
2372 * remain responsible for that page.
2373 */
2374 ret = bio_readpage_error(bio, page, start, end,
2375 failed_mirror, NULL);
7e38326f 2376 if (ret == 0) {
3b951516
CM
2377 uptodate =
2378 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2379 if (err)
2380 uptodate = 0;
507903b8 2381 uncache_state(&cached);
7e38326f
CM
2382 continue;
2383 }
2384 }
d1310b2e 2385
0b32f4bb 2386 if (uptodate && tree->track_uptodate) {
507903b8 2387 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2388 GFP_ATOMIC);
771ed689 2389 }
507903b8 2390 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2391
70dec807
CM
2392 if (whole_page) {
2393 if (uptodate) {
2394 SetPageUptodate(page);
2395 } else {
2396 ClearPageUptodate(page);
2397 SetPageError(page);
2398 }
d1310b2e 2399 unlock_page(page);
70dec807
CM
2400 } else {
2401 if (uptodate) {
2402 check_page_uptodate(tree, page);
2403 } else {
2404 ClearPageUptodate(page);
2405 SetPageError(page);
2406 }
d1310b2e 2407 check_page_locked(tree, page);
70dec807 2408 }
4125bf76 2409 } while (bvec <= bvec_end);
d1310b2e
CM
2410
2411 bio_put(bio);
d1310b2e
CM
2412}
2413
88f794ed
MX
2414struct bio *
2415btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2416 gfp_t gfp_flags)
d1310b2e
CM
2417{
2418 struct bio *bio;
2419
2420 bio = bio_alloc(gfp_flags, nr_vecs);
2421
2422 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2423 while (!bio && (nr_vecs /= 2))
2424 bio = bio_alloc(gfp_flags, nr_vecs);
2425 }
2426
2427 if (bio) {
e1c4b745 2428 bio->bi_size = 0;
d1310b2e
CM
2429 bio->bi_bdev = bdev;
2430 bio->bi_sector = first_sector;
2431 }
2432 return bio;
2433}
2434
79787eaa
JM
2435/*
2436 * Since writes are async, they will only return -ENOMEM.
2437 * Reads can return the full range of I/O error conditions.
2438 */
355808c2
JM
2439static int __must_check submit_one_bio(int rw, struct bio *bio,
2440 int mirror_num, unsigned long bio_flags)
d1310b2e 2441{
d1310b2e 2442 int ret = 0;
70dec807
CM
2443 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2444 struct page *page = bvec->bv_page;
2445 struct extent_io_tree *tree = bio->bi_private;
70dec807 2446 u64 start;
70dec807
CM
2447
2448 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2449
902b22f3 2450 bio->bi_private = NULL;
d1310b2e
CM
2451
2452 bio_get(bio);
2453
065631f6 2454 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2455 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2456 mirror_num, bio_flags, start);
0b86a832 2457 else
21adbd5c 2458 btrfsic_submit_bio(rw, bio);
4a54c8c1 2459
d1310b2e
CM
2460 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2461 ret = -EOPNOTSUPP;
2462 bio_put(bio);
2463 return ret;
2464}
2465
3444a972
JM
2466static int merge_bio(struct extent_io_tree *tree, struct page *page,
2467 unsigned long offset, size_t size, struct bio *bio,
2468 unsigned long bio_flags)
2469{
2470 int ret = 0;
2471 if (tree->ops && tree->ops->merge_bio_hook)
2472 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2473 bio_flags);
2474 BUG_ON(ret < 0);
2475 return ret;
2476
2477}
2478
d1310b2e
CM
2479static int submit_extent_page(int rw, struct extent_io_tree *tree,
2480 struct page *page, sector_t sector,
2481 size_t size, unsigned long offset,
2482 struct block_device *bdev,
2483 struct bio **bio_ret,
2484 unsigned long max_pages,
f188591e 2485 bio_end_io_t end_io_func,
c8b97818
CM
2486 int mirror_num,
2487 unsigned long prev_bio_flags,
2488 unsigned long bio_flags)
d1310b2e
CM
2489{
2490 int ret = 0;
2491 struct bio *bio;
2492 int nr;
c8b97818
CM
2493 int contig = 0;
2494 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2495 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2496 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2497
2498 if (bio_ret && *bio_ret) {
2499 bio = *bio_ret;
c8b97818
CM
2500 if (old_compressed)
2501 contig = bio->bi_sector == sector;
2502 else
2503 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2504 sector;
2505
2506 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2507 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2508 bio_add_page(bio, page, page_size, offset) < page_size) {
2509 ret = submit_one_bio(rw, bio, mirror_num,
2510 prev_bio_flags);
79787eaa
JM
2511 if (ret < 0)
2512 return ret;
d1310b2e
CM
2513 bio = NULL;
2514 } else {
2515 return 0;
2516 }
2517 }
c8b97818
CM
2518 if (this_compressed)
2519 nr = BIO_MAX_PAGES;
2520 else
2521 nr = bio_get_nr_vecs(bdev);
2522
88f794ed 2523 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2524 if (!bio)
2525 return -ENOMEM;
70dec807 2526
c8b97818 2527 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2528 bio->bi_end_io = end_io_func;
2529 bio->bi_private = tree;
70dec807 2530
d397712b 2531 if (bio_ret)
d1310b2e 2532 *bio_ret = bio;
d397712b 2533 else
c8b97818 2534 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2535
2536 return ret;
2537}
2538
4f2de97a 2539void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2540{
2541 if (!PagePrivate(page)) {
2542 SetPagePrivate(page);
d1310b2e 2543 page_cache_get(page);
4f2de97a
JB
2544 set_page_private(page, (unsigned long)eb);
2545 } else {
2546 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2547 }
2548}
2549
4f2de97a 2550void set_page_extent_mapped(struct page *page)
d1310b2e 2551{
4f2de97a
JB
2552 if (!PagePrivate(page)) {
2553 SetPagePrivate(page);
2554 page_cache_get(page);
2555 set_page_private(page, EXTENT_PAGE_PRIVATE);
2556 }
d1310b2e
CM
2557}
2558
2559/*
2560 * basic readpage implementation. Locked extent state structs are inserted
2561 * into the tree that are removed when the IO is done (by the end_io
2562 * handlers)
79787eaa 2563 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2564 */
2565static int __extent_read_full_page(struct extent_io_tree *tree,
2566 struct page *page,
2567 get_extent_t *get_extent,
c8b97818
CM
2568 struct bio **bio, int mirror_num,
2569 unsigned long *bio_flags)
d1310b2e
CM
2570{
2571 struct inode *inode = page->mapping->host;
2572 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2573 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2574 u64 end;
2575 u64 cur = start;
2576 u64 extent_offset;
2577 u64 last_byte = i_size_read(inode);
2578 u64 block_start;
2579 u64 cur_end;
2580 sector_t sector;
2581 struct extent_map *em;
2582 struct block_device *bdev;
11c65dcc 2583 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2584 int ret;
2585 int nr = 0;
306e16ce 2586 size_t pg_offset = 0;
d1310b2e 2587 size_t iosize;
c8b97818 2588 size_t disk_io_size;
d1310b2e 2589 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2590 unsigned long this_bio_flag = 0;
d1310b2e
CM
2591
2592 set_page_extent_mapped(page);
2593
90a887c9
DM
2594 if (!PageUptodate(page)) {
2595 if (cleancache_get_page(page) == 0) {
2596 BUG_ON(blocksize != PAGE_SIZE);
2597 goto out;
2598 }
2599 }
2600
d1310b2e 2601 end = page_end;
11c65dcc 2602 while (1) {
d0082371 2603 lock_extent(tree, start, end);
11c65dcc
JB
2604 ordered = btrfs_lookup_ordered_extent(inode, start);
2605 if (!ordered)
2606 break;
d0082371 2607 unlock_extent(tree, start, end);
11c65dcc
JB
2608 btrfs_start_ordered_extent(inode, ordered, 1);
2609 btrfs_put_ordered_extent(ordered);
2610 }
d1310b2e 2611
c8b97818
CM
2612 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2613 char *userpage;
2614 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2615
2616 if (zero_offset) {
2617 iosize = PAGE_CACHE_SIZE - zero_offset;
2618 userpage = kmap_atomic(page, KM_USER0);
2619 memset(userpage + zero_offset, 0, iosize);
2620 flush_dcache_page(page);
2621 kunmap_atomic(userpage, KM_USER0);
2622 }
2623 }
d1310b2e
CM
2624 while (cur <= end) {
2625 if (cur >= last_byte) {
2626 char *userpage;
507903b8
AJ
2627 struct extent_state *cached = NULL;
2628
306e16ce 2629 iosize = PAGE_CACHE_SIZE - pg_offset;
d1310b2e 2630 userpage = kmap_atomic(page, KM_USER0);
306e16ce 2631 memset(userpage + pg_offset, 0, iosize);
d1310b2e
CM
2632 flush_dcache_page(page);
2633 kunmap_atomic(userpage, KM_USER0);
2634 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2635 &cached, GFP_NOFS);
2636 unlock_extent_cached(tree, cur, cur + iosize - 1,
2637 &cached, GFP_NOFS);
d1310b2e
CM
2638 break;
2639 }
306e16ce 2640 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2641 end - cur + 1, 0);
c704005d 2642 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2643 SetPageError(page);
d0082371 2644 unlock_extent(tree, cur, end);
d1310b2e
CM
2645 break;
2646 }
d1310b2e
CM
2647 extent_offset = cur - em->start;
2648 BUG_ON(extent_map_end(em) <= cur);
2649 BUG_ON(end < cur);
2650
261507a0 2651 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2652 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2653 extent_set_compress_type(&this_bio_flag,
2654 em->compress_type);
2655 }
c8b97818 2656
d1310b2e
CM
2657 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2658 cur_end = min(extent_map_end(em) - 1, end);
2659 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2660 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2661 disk_io_size = em->block_len;
2662 sector = em->block_start >> 9;
2663 } else {
2664 sector = (em->block_start + extent_offset) >> 9;
2665 disk_io_size = iosize;
2666 }
d1310b2e
CM
2667 bdev = em->bdev;
2668 block_start = em->block_start;
d899e052
YZ
2669 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2670 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2671 free_extent_map(em);
2672 em = NULL;
2673
2674 /* we've found a hole, just zero and go on */
2675 if (block_start == EXTENT_MAP_HOLE) {
2676 char *userpage;
507903b8
AJ
2677 struct extent_state *cached = NULL;
2678
d1310b2e 2679 userpage = kmap_atomic(page, KM_USER0);
306e16ce 2680 memset(userpage + pg_offset, 0, iosize);
d1310b2e
CM
2681 flush_dcache_page(page);
2682 kunmap_atomic(userpage, KM_USER0);
2683
2684 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2685 &cached, GFP_NOFS);
2686 unlock_extent_cached(tree, cur, cur + iosize - 1,
2687 &cached, GFP_NOFS);
d1310b2e 2688 cur = cur + iosize;
306e16ce 2689 pg_offset += iosize;
d1310b2e
CM
2690 continue;
2691 }
2692 /* the get_extent function already copied into the page */
9655d298
CM
2693 if (test_range_bit(tree, cur, cur_end,
2694 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2695 check_page_uptodate(tree, page);
d0082371 2696 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2697 cur = cur + iosize;
306e16ce 2698 pg_offset += iosize;
d1310b2e
CM
2699 continue;
2700 }
70dec807
CM
2701 /* we have an inline extent but it didn't get marked up
2702 * to date. Error out
2703 */
2704 if (block_start == EXTENT_MAP_INLINE) {
2705 SetPageError(page);
d0082371 2706 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2707 cur = cur + iosize;
306e16ce 2708 pg_offset += iosize;
70dec807
CM
2709 continue;
2710 }
d1310b2e
CM
2711
2712 ret = 0;
2713 if (tree->ops && tree->ops->readpage_io_hook) {
2714 ret = tree->ops->readpage_io_hook(page, cur,
2715 cur + iosize - 1);
2716 }
2717 if (!ret) {
89642229
CM
2718 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2719 pnr -= page->index;
d1310b2e 2720 ret = submit_extent_page(READ, tree, page,
306e16ce 2721 sector, disk_io_size, pg_offset,
89642229 2722 bdev, bio, pnr,
c8b97818
CM
2723 end_bio_extent_readpage, mirror_num,
2724 *bio_flags,
2725 this_bio_flag);
79787eaa 2726 BUG_ON(ret == -ENOMEM);
89642229 2727 nr++;
c8b97818 2728 *bio_flags = this_bio_flag;
d1310b2e
CM
2729 }
2730 if (ret)
2731 SetPageError(page);
2732 cur = cur + iosize;
306e16ce 2733 pg_offset += iosize;
d1310b2e 2734 }
90a887c9 2735out:
d1310b2e
CM
2736 if (!nr) {
2737 if (!PageError(page))
2738 SetPageUptodate(page);
2739 unlock_page(page);
2740 }
2741 return 0;
2742}
2743
2744int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2745 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2746{
2747 struct bio *bio = NULL;
c8b97818 2748 unsigned long bio_flags = 0;
d1310b2e
CM
2749 int ret;
2750
8ddc7d9c 2751 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2752 &bio_flags);
d1310b2e 2753 if (bio)
8ddc7d9c 2754 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2755 return ret;
2756}
d1310b2e 2757
11c8349b
CM
2758static noinline void update_nr_written(struct page *page,
2759 struct writeback_control *wbc,
2760 unsigned long nr_written)
2761{
2762 wbc->nr_to_write -= nr_written;
2763 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2764 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2765 page->mapping->writeback_index = page->index + nr_written;
2766}
2767
d1310b2e
CM
2768/*
2769 * the writepage semantics are similar to regular writepage. extent
2770 * records are inserted to lock ranges in the tree, and as dirty areas
2771 * are found, they are marked writeback. Then the lock bits are removed
2772 * and the end_io handler clears the writeback ranges
2773 */
2774static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2775 void *data)
2776{
2777 struct inode *inode = page->mapping->host;
2778 struct extent_page_data *epd = data;
2779 struct extent_io_tree *tree = epd->tree;
2780 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2781 u64 delalloc_start;
2782 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2783 u64 end;
2784 u64 cur = start;
2785 u64 extent_offset;
2786 u64 last_byte = i_size_read(inode);
2787 u64 block_start;
2788 u64 iosize;
2789 sector_t sector;
2c64c53d 2790 struct extent_state *cached_state = NULL;
d1310b2e
CM
2791 struct extent_map *em;
2792 struct block_device *bdev;
2793 int ret;
2794 int nr = 0;
7f3c74fb 2795 size_t pg_offset = 0;
d1310b2e
CM
2796 size_t blocksize;
2797 loff_t i_size = i_size_read(inode);
2798 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2799 u64 nr_delalloc;
2800 u64 delalloc_end;
c8b97818
CM
2801 int page_started;
2802 int compressed;
ffbd517d 2803 int write_flags;
771ed689 2804 unsigned long nr_written = 0;
9e487107 2805 bool fill_delalloc = true;
d1310b2e 2806
ffbd517d 2807 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2808 write_flags = WRITE_SYNC;
ffbd517d
CM
2809 else
2810 write_flags = WRITE;
2811
1abe9b8a 2812 trace___extent_writepage(page, inode, wbc);
2813
d1310b2e 2814 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2815
2816 ClearPageError(page);
2817
7f3c74fb 2818 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2819 if (page->index > end_index ||
7f3c74fb 2820 (page->index == end_index && !pg_offset)) {
39be25cd 2821 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2822 unlock_page(page);
2823 return 0;
2824 }
2825
2826 if (page->index == end_index) {
2827 char *userpage;
2828
d1310b2e 2829 userpage = kmap_atomic(page, KM_USER0);
7f3c74fb
CM
2830 memset(userpage + pg_offset, 0,
2831 PAGE_CACHE_SIZE - pg_offset);
d1310b2e 2832 kunmap_atomic(userpage, KM_USER0);
211c17f5 2833 flush_dcache_page(page);
d1310b2e 2834 }
7f3c74fb 2835 pg_offset = 0;
d1310b2e
CM
2836
2837 set_page_extent_mapped(page);
2838
9e487107
JB
2839 if (!tree->ops || !tree->ops->fill_delalloc)
2840 fill_delalloc = false;
2841
d1310b2e
CM
2842 delalloc_start = start;
2843 delalloc_end = 0;
c8b97818 2844 page_started = 0;
9e487107 2845 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2846 u64 delalloc_to_write = 0;
11c8349b
CM
2847 /*
2848 * make sure the wbc mapping index is at least updated
2849 * to this page.
2850 */
2851 update_nr_written(page, wbc, 0);
2852
d397712b 2853 while (delalloc_end < page_end) {
771ed689 2854 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2855 page,
2856 &delalloc_start,
d1310b2e
CM
2857 &delalloc_end,
2858 128 * 1024 * 1024);
771ed689
CM
2859 if (nr_delalloc == 0) {
2860 delalloc_start = delalloc_end + 1;
2861 continue;
2862 }
013bd4c3
TI
2863 ret = tree->ops->fill_delalloc(inode, page,
2864 delalloc_start,
2865 delalloc_end,
2866 &page_started,
2867 &nr_written);
79787eaa
JM
2868 /* File system has been set read-only */
2869 if (ret) {
2870 SetPageError(page);
2871 goto done;
2872 }
f85d7d6c
CM
2873 /*
2874 * delalloc_end is already one less than the total
2875 * length, so we don't subtract one from
2876 * PAGE_CACHE_SIZE
2877 */
2878 delalloc_to_write += (delalloc_end - delalloc_start +
2879 PAGE_CACHE_SIZE) >>
2880 PAGE_CACHE_SHIFT;
d1310b2e 2881 delalloc_start = delalloc_end + 1;
d1310b2e 2882 }
f85d7d6c
CM
2883 if (wbc->nr_to_write < delalloc_to_write) {
2884 int thresh = 8192;
2885
2886 if (delalloc_to_write < thresh * 2)
2887 thresh = delalloc_to_write;
2888 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2889 thresh);
2890 }
c8b97818 2891
771ed689
CM
2892 /* did the fill delalloc function already unlock and start
2893 * the IO?
2894 */
2895 if (page_started) {
2896 ret = 0;
11c8349b
CM
2897 /*
2898 * we've unlocked the page, so we can't update
2899 * the mapping's writeback index, just update
2900 * nr_to_write.
2901 */
2902 wbc->nr_to_write -= nr_written;
2903 goto done_unlocked;
771ed689 2904 }
c8b97818 2905 }
247e743c 2906 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2907 ret = tree->ops->writepage_start_hook(page, start,
2908 page_end);
87826df0
JM
2909 if (ret) {
2910 /* Fixup worker will requeue */
2911 if (ret == -EBUSY)
2912 wbc->pages_skipped++;
2913 else
2914 redirty_page_for_writepage(wbc, page);
11c8349b 2915 update_nr_written(page, wbc, nr_written);
247e743c 2916 unlock_page(page);
771ed689 2917 ret = 0;
11c8349b 2918 goto done_unlocked;
247e743c
CM
2919 }
2920 }
2921
11c8349b
CM
2922 /*
2923 * we don't want to touch the inode after unlocking the page,
2924 * so we update the mapping writeback index now
2925 */
2926 update_nr_written(page, wbc, nr_written + 1);
771ed689 2927
d1310b2e 2928 end = page_end;
d1310b2e 2929 if (last_byte <= start) {
e6dcd2dc
CM
2930 if (tree->ops && tree->ops->writepage_end_io_hook)
2931 tree->ops->writepage_end_io_hook(page, start,
2932 page_end, NULL, 1);
d1310b2e
CM
2933 goto done;
2934 }
2935
d1310b2e
CM
2936 blocksize = inode->i_sb->s_blocksize;
2937
2938 while (cur <= end) {
2939 if (cur >= last_byte) {
e6dcd2dc
CM
2940 if (tree->ops && tree->ops->writepage_end_io_hook)
2941 tree->ops->writepage_end_io_hook(page, cur,
2942 page_end, NULL, 1);
d1310b2e
CM
2943 break;
2944 }
7f3c74fb 2945 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2946 end - cur + 1, 1);
c704005d 2947 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2948 SetPageError(page);
2949 break;
2950 }
2951
2952 extent_offset = cur - em->start;
2953 BUG_ON(extent_map_end(em) <= cur);
2954 BUG_ON(end < cur);
2955 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2956 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2957 sector = (em->block_start + extent_offset) >> 9;
2958 bdev = em->bdev;
2959 block_start = em->block_start;
c8b97818 2960 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2961 free_extent_map(em);
2962 em = NULL;
2963
c8b97818
CM
2964 /*
2965 * compressed and inline extents are written through other
2966 * paths in the FS
2967 */
2968 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2969 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2970 /*
2971 * end_io notification does not happen here for
2972 * compressed extents
2973 */
2974 if (!compressed && tree->ops &&
2975 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2976 tree->ops->writepage_end_io_hook(page, cur,
2977 cur + iosize - 1,
2978 NULL, 1);
c8b97818
CM
2979 else if (compressed) {
2980 /* we don't want to end_page_writeback on
2981 * a compressed extent. this happens
2982 * elsewhere
2983 */
2984 nr++;
2985 }
2986
2987 cur += iosize;
7f3c74fb 2988 pg_offset += iosize;
d1310b2e
CM
2989 continue;
2990 }
d1310b2e
CM
2991 /* leave this out until we have a page_mkwrite call */
2992 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2993 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2994 cur = cur + iosize;
7f3c74fb 2995 pg_offset += iosize;
d1310b2e
CM
2996 continue;
2997 }
c8b97818 2998
d1310b2e
CM
2999 if (tree->ops && tree->ops->writepage_io_hook) {
3000 ret = tree->ops->writepage_io_hook(page, cur,
3001 cur + iosize - 1);
3002 } else {
3003 ret = 0;
3004 }
1259ab75 3005 if (ret) {
d1310b2e 3006 SetPageError(page);
1259ab75 3007 } else {
d1310b2e 3008 unsigned long max_nr = end_index + 1;
7f3c74fb 3009
d1310b2e
CM
3010 set_range_writeback(tree, cur, cur + iosize - 1);
3011 if (!PageWriteback(page)) {
d397712b
CM
3012 printk(KERN_ERR "btrfs warning page %lu not "
3013 "writeback, cur %llu end %llu\n",
3014 page->index, (unsigned long long)cur,
d1310b2e
CM
3015 (unsigned long long)end);
3016 }
3017
ffbd517d
CM
3018 ret = submit_extent_page(write_flags, tree, page,
3019 sector, iosize, pg_offset,
3020 bdev, &epd->bio, max_nr,
c8b97818
CM
3021 end_bio_extent_writepage,
3022 0, 0, 0);
d1310b2e
CM
3023 if (ret)
3024 SetPageError(page);
3025 }
3026 cur = cur + iosize;
7f3c74fb 3027 pg_offset += iosize;
d1310b2e
CM
3028 nr++;
3029 }
3030done:
3031 if (nr == 0) {
3032 /* make sure the mapping tag for page dirty gets cleared */
3033 set_page_writeback(page);
3034 end_page_writeback(page);
3035 }
d1310b2e 3036 unlock_page(page);
771ed689 3037
11c8349b
CM
3038done_unlocked:
3039
2c64c53d
CM
3040 /* drop our reference on any cached states */
3041 free_extent_state(cached_state);
d1310b2e
CM
3042 return 0;
3043}
3044
0b32f4bb
JB
3045static int eb_wait(void *word)
3046{
3047 io_schedule();
3048 return 0;
3049}
3050
3051static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3052{
3053 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3054 TASK_UNINTERRUPTIBLE);
3055}
3056
3057static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3058 struct btrfs_fs_info *fs_info,
3059 struct extent_page_data *epd)
3060{
3061 unsigned long i, num_pages;
3062 int flush = 0;
3063 int ret = 0;
3064
3065 if (!btrfs_try_tree_write_lock(eb)) {
3066 flush = 1;
3067 flush_write_bio(epd);
3068 btrfs_tree_lock(eb);
3069 }
3070
3071 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3072 btrfs_tree_unlock(eb);
3073 if (!epd->sync_io)
3074 return 0;
3075 if (!flush) {
3076 flush_write_bio(epd);
3077 flush = 1;
3078 }
a098d8e8
CM
3079 while (1) {
3080 wait_on_extent_buffer_writeback(eb);
3081 btrfs_tree_lock(eb);
3082 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3083 break;
0b32f4bb 3084 btrfs_tree_unlock(eb);
0b32f4bb
JB
3085 }
3086 }
3087
3088 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3089 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3090 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3091 spin_lock(&fs_info->delalloc_lock);
3092 if (fs_info->dirty_metadata_bytes >= eb->len)
3093 fs_info->dirty_metadata_bytes -= eb->len;
3094 else
3095 WARN_ON(1);
3096 spin_unlock(&fs_info->delalloc_lock);
3097 ret = 1;
3098 }
3099
3100 btrfs_tree_unlock(eb);
3101
3102 if (!ret)
3103 return ret;
3104
3105 num_pages = num_extent_pages(eb->start, eb->len);
3106 for (i = 0; i < num_pages; i++) {
3107 struct page *p = extent_buffer_page(eb, i);
3108
3109 if (!trylock_page(p)) {
3110 if (!flush) {
3111 flush_write_bio(epd);
3112 flush = 1;
3113 }
3114 lock_page(p);
3115 }
3116 }
3117
3118 return ret;
3119}
3120
3121static void end_extent_buffer_writeback(struct extent_buffer *eb)
3122{
3123 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3124 smp_mb__after_clear_bit();
3125 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3126}
3127
3128static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3129{
3130 int uptodate = err == 0;
3131 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3132 struct extent_buffer *eb;
3133 int done;
3134
3135 do {
3136 struct page *page = bvec->bv_page;
3137
3138 bvec--;
3139 eb = (struct extent_buffer *)page->private;
3140 BUG_ON(!eb);
3141 done = atomic_dec_and_test(&eb->io_pages);
3142
3143 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3144 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3145 ClearPageUptodate(page);
3146 SetPageError(page);
3147 }
3148
3149 end_page_writeback(page);
3150
3151 if (!done)
3152 continue;
3153
3154 end_extent_buffer_writeback(eb);
3155 } while (bvec >= bio->bi_io_vec);
3156
3157 bio_put(bio);
3158
3159}
3160
3161static int write_one_eb(struct extent_buffer *eb,
3162 struct btrfs_fs_info *fs_info,
3163 struct writeback_control *wbc,
3164 struct extent_page_data *epd)
3165{
3166 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3167 u64 offset = eb->start;
3168 unsigned long i, num_pages;
3169 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3170 int ret;
3171
3172 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3173 num_pages = num_extent_pages(eb->start, eb->len);
3174 atomic_set(&eb->io_pages, num_pages);
3175 for (i = 0; i < num_pages; i++) {
3176 struct page *p = extent_buffer_page(eb, i);
3177
3178 clear_page_dirty_for_io(p);
3179 set_page_writeback(p);
3180 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3181 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3182 -1, end_bio_extent_buffer_writepage,
3183 0, 0, 0);
3184 if (ret) {
3185 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3186 SetPageError(p);
3187 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3188 end_extent_buffer_writeback(eb);
3189 ret = -EIO;
3190 break;
3191 }
3192 offset += PAGE_CACHE_SIZE;
3193 update_nr_written(p, wbc, 1);
3194 unlock_page(p);
3195 }
3196
3197 if (unlikely(ret)) {
3198 for (; i < num_pages; i++) {
3199 struct page *p = extent_buffer_page(eb, i);
3200 unlock_page(p);
3201 }
3202 }
3203
3204 return ret;
3205}
3206
3207int btree_write_cache_pages(struct address_space *mapping,
3208 struct writeback_control *wbc)
3209{
3210 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3211 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3212 struct extent_buffer *eb, *prev_eb = NULL;
3213 struct extent_page_data epd = {
3214 .bio = NULL,
3215 .tree = tree,
3216 .extent_locked = 0,
3217 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3218 };
3219 int ret = 0;
3220 int done = 0;
3221 int nr_to_write_done = 0;
3222 struct pagevec pvec;
3223 int nr_pages;
3224 pgoff_t index;
3225 pgoff_t end; /* Inclusive */
3226 int scanned = 0;
3227 int tag;
3228
3229 pagevec_init(&pvec, 0);
3230 if (wbc->range_cyclic) {
3231 index = mapping->writeback_index; /* Start from prev offset */
3232 end = -1;
3233 } else {
3234 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3235 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3236 scanned = 1;
3237 }
3238 if (wbc->sync_mode == WB_SYNC_ALL)
3239 tag = PAGECACHE_TAG_TOWRITE;
3240 else
3241 tag = PAGECACHE_TAG_DIRTY;
3242retry:
3243 if (wbc->sync_mode == WB_SYNC_ALL)
3244 tag_pages_for_writeback(mapping, index, end);
3245 while (!done && !nr_to_write_done && (index <= end) &&
3246 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3248 unsigned i;
3249
3250 scanned = 1;
3251 for (i = 0; i < nr_pages; i++) {
3252 struct page *page = pvec.pages[i];
3253
3254 if (!PagePrivate(page))
3255 continue;
3256
3257 if (!wbc->range_cyclic && page->index > end) {
3258 done = 1;
3259 break;
3260 }
3261
3262 eb = (struct extent_buffer *)page->private;
3263 if (!eb) {
3264 WARN_ON(1);
3265 continue;
3266 }
3267
3268 if (eb == prev_eb)
3269 continue;
3270
3271 if (!atomic_inc_not_zero(&eb->refs)) {
3272 WARN_ON(1);
3273 continue;
3274 }
3275
3276 prev_eb = eb;
3277 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3278 if (!ret) {
3279 free_extent_buffer(eb);
3280 continue;
3281 }
3282
3283 ret = write_one_eb(eb, fs_info, wbc, &epd);
3284 if (ret) {
3285 done = 1;
3286 free_extent_buffer(eb);
3287 break;
3288 }
3289 free_extent_buffer(eb);
3290
3291 /*
3292 * the filesystem may choose to bump up nr_to_write.
3293 * We have to make sure to honor the new nr_to_write
3294 * at any time
3295 */
3296 nr_to_write_done = wbc->nr_to_write <= 0;
3297 }
3298 pagevec_release(&pvec);
3299 cond_resched();
3300 }
3301 if (!scanned && !done) {
3302 /*
3303 * We hit the last page and there is more work to be done: wrap
3304 * back to the start of the file
3305 */
3306 scanned = 1;
3307 index = 0;
3308 goto retry;
3309 }
3310 flush_write_bio(&epd);
3311 return ret;
3312}
3313
d1310b2e 3314/**
4bef0848 3315 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3316 * @mapping: address space structure to write
3317 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3318 * @writepage: function called for each page
3319 * @data: data passed to writepage function
3320 *
3321 * If a page is already under I/O, write_cache_pages() skips it, even
3322 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3323 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3324 * and msync() need to guarantee that all the data which was dirty at the time
3325 * the call was made get new I/O started against them. If wbc->sync_mode is
3326 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3327 * existing IO to complete.
3328 */
b2950863 3329static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3330 struct address_space *mapping,
3331 struct writeback_control *wbc,
d2c3f4f6
CM
3332 writepage_t writepage, void *data,
3333 void (*flush_fn)(void *))
d1310b2e 3334{
d1310b2e
CM
3335 int ret = 0;
3336 int done = 0;
f85d7d6c 3337 int nr_to_write_done = 0;
d1310b2e
CM
3338 struct pagevec pvec;
3339 int nr_pages;
3340 pgoff_t index;
3341 pgoff_t end; /* Inclusive */
3342 int scanned = 0;
f7aaa06b 3343 int tag;
d1310b2e 3344
d1310b2e
CM
3345 pagevec_init(&pvec, 0);
3346 if (wbc->range_cyclic) {
3347 index = mapping->writeback_index; /* Start from prev offset */
3348 end = -1;
3349 } else {
3350 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3351 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3352 scanned = 1;
3353 }
f7aaa06b
JB
3354 if (wbc->sync_mode == WB_SYNC_ALL)
3355 tag = PAGECACHE_TAG_TOWRITE;
3356 else
3357 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3358retry:
f7aaa06b
JB
3359 if (wbc->sync_mode == WB_SYNC_ALL)
3360 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3361 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3362 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3363 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3364 unsigned i;
3365
3366 scanned = 1;
3367 for (i = 0; i < nr_pages; i++) {
3368 struct page *page = pvec.pages[i];
3369
3370 /*
3371 * At this point we hold neither mapping->tree_lock nor
3372 * lock on the page itself: the page may be truncated or
3373 * invalidated (changing page->mapping to NULL), or even
3374 * swizzled back from swapper_space to tmpfs file
3375 * mapping
3376 */
01d658f2
CM
3377 if (tree->ops &&
3378 tree->ops->write_cache_pages_lock_hook) {
3379 tree->ops->write_cache_pages_lock_hook(page,
3380 data, flush_fn);
3381 } else {
3382 if (!trylock_page(page)) {
3383 flush_fn(data);
3384 lock_page(page);
3385 }
3386 }
d1310b2e
CM
3387
3388 if (unlikely(page->mapping != mapping)) {
3389 unlock_page(page);
3390 continue;
3391 }
3392
3393 if (!wbc->range_cyclic && page->index > end) {
3394 done = 1;
3395 unlock_page(page);
3396 continue;
3397 }
3398
d2c3f4f6 3399 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3400 if (PageWriteback(page))
3401 flush_fn(data);
d1310b2e 3402 wait_on_page_writeback(page);
d2c3f4f6 3403 }
d1310b2e
CM
3404
3405 if (PageWriteback(page) ||
3406 !clear_page_dirty_for_io(page)) {
3407 unlock_page(page);
3408 continue;
3409 }
3410
3411 ret = (*writepage)(page, wbc, data);
3412
3413 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3414 unlock_page(page);
3415 ret = 0;
3416 }
f85d7d6c 3417 if (ret)
d1310b2e 3418 done = 1;
f85d7d6c
CM
3419
3420 /*
3421 * the filesystem may choose to bump up nr_to_write.
3422 * We have to make sure to honor the new nr_to_write
3423 * at any time
3424 */
3425 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3426 }
3427 pagevec_release(&pvec);
3428 cond_resched();
3429 }
3430 if (!scanned && !done) {
3431 /*
3432 * We hit the last page and there is more work to be done: wrap
3433 * back to the start of the file
3434 */
3435 scanned = 1;
3436 index = 0;
3437 goto retry;
3438 }
d1310b2e
CM
3439 return ret;
3440}
d1310b2e 3441
ffbd517d 3442static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3443{
d2c3f4f6 3444 if (epd->bio) {
355808c2
JM
3445 int rw = WRITE;
3446 int ret;
3447
ffbd517d 3448 if (epd->sync_io)
355808c2
JM
3449 rw = WRITE_SYNC;
3450
3451 ret = submit_one_bio(rw, epd->bio, 0, 0);
79787eaa 3452 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3453 epd->bio = NULL;
3454 }
3455}
3456
ffbd517d
CM
3457static noinline void flush_write_bio(void *data)
3458{
3459 struct extent_page_data *epd = data;
3460 flush_epd_write_bio(epd);
3461}
3462
d1310b2e
CM
3463int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3464 get_extent_t *get_extent,
3465 struct writeback_control *wbc)
3466{
3467 int ret;
d1310b2e
CM
3468 struct extent_page_data epd = {
3469 .bio = NULL,
3470 .tree = tree,
3471 .get_extent = get_extent,
771ed689 3472 .extent_locked = 0,
ffbd517d 3473 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3474 };
d1310b2e 3475
d1310b2e
CM
3476 ret = __extent_writepage(page, wbc, &epd);
3477
ffbd517d 3478 flush_epd_write_bio(&epd);
d1310b2e
CM
3479 return ret;
3480}
d1310b2e 3481
771ed689
CM
3482int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3483 u64 start, u64 end, get_extent_t *get_extent,
3484 int mode)
3485{
3486 int ret = 0;
3487 struct address_space *mapping = inode->i_mapping;
3488 struct page *page;
3489 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3490 PAGE_CACHE_SHIFT;
3491
3492 struct extent_page_data epd = {
3493 .bio = NULL,
3494 .tree = tree,
3495 .get_extent = get_extent,
3496 .extent_locked = 1,
ffbd517d 3497 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3498 };
3499 struct writeback_control wbc_writepages = {
771ed689 3500 .sync_mode = mode,
771ed689
CM
3501 .nr_to_write = nr_pages * 2,
3502 .range_start = start,
3503 .range_end = end + 1,
3504 };
3505
d397712b 3506 while (start <= end) {
771ed689
CM
3507 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3508 if (clear_page_dirty_for_io(page))
3509 ret = __extent_writepage(page, &wbc_writepages, &epd);
3510 else {
3511 if (tree->ops && tree->ops->writepage_end_io_hook)
3512 tree->ops->writepage_end_io_hook(page, start,
3513 start + PAGE_CACHE_SIZE - 1,
3514 NULL, 1);
3515 unlock_page(page);
3516 }
3517 page_cache_release(page);
3518 start += PAGE_CACHE_SIZE;
3519 }
3520
ffbd517d 3521 flush_epd_write_bio(&epd);
771ed689
CM
3522 return ret;
3523}
d1310b2e
CM
3524
3525int extent_writepages(struct extent_io_tree *tree,
3526 struct address_space *mapping,
3527 get_extent_t *get_extent,
3528 struct writeback_control *wbc)
3529{
3530 int ret = 0;
3531 struct extent_page_data epd = {
3532 .bio = NULL,
3533 .tree = tree,
3534 .get_extent = get_extent,
771ed689 3535 .extent_locked = 0,
ffbd517d 3536 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3537 };
3538
4bef0848 3539 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3540 __extent_writepage, &epd,
3541 flush_write_bio);
ffbd517d 3542 flush_epd_write_bio(&epd);
d1310b2e
CM
3543 return ret;
3544}
d1310b2e
CM
3545
3546int extent_readpages(struct extent_io_tree *tree,
3547 struct address_space *mapping,
3548 struct list_head *pages, unsigned nr_pages,
3549 get_extent_t get_extent)
3550{
3551 struct bio *bio = NULL;
3552 unsigned page_idx;
c8b97818 3553 unsigned long bio_flags = 0;
d1310b2e 3554
d1310b2e
CM
3555 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3556 struct page *page = list_entry(pages->prev, struct page, lru);
3557
3558 prefetchw(&page->flags);
3559 list_del(&page->lru);
28ecb609 3560 if (!add_to_page_cache_lru(page, mapping,
43e817a1 3561 page->index, GFP_NOFS)) {
f188591e 3562 __extent_read_full_page(tree, page, get_extent,
c8b97818 3563 &bio, 0, &bio_flags);
d1310b2e
CM
3564 }
3565 page_cache_release(page);
3566 }
d1310b2e
CM
3567 BUG_ON(!list_empty(pages));
3568 if (bio)
79787eaa 3569 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3570 return 0;
3571}
d1310b2e
CM
3572
3573/*
3574 * basic invalidatepage code, this waits on any locked or writeback
3575 * ranges corresponding to the page, and then deletes any extent state
3576 * records from the tree
3577 */
3578int extent_invalidatepage(struct extent_io_tree *tree,
3579 struct page *page, unsigned long offset)
3580{
2ac55d41 3581 struct extent_state *cached_state = NULL;
d1310b2e
CM
3582 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3583 u64 end = start + PAGE_CACHE_SIZE - 1;
3584 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3585
d397712b 3586 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3587 if (start > end)
3588 return 0;
3589
d0082371 3590 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3591 wait_on_page_writeback(page);
d1310b2e 3592 clear_extent_bit(tree, start, end,
32c00aff
JB
3593 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3594 EXTENT_DO_ACCOUNTING,
2ac55d41 3595 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3596 return 0;
3597}
d1310b2e 3598
7b13b7b1
CM
3599/*
3600 * a helper for releasepage, this tests for areas of the page that
3601 * are locked or under IO and drops the related state bits if it is safe
3602 * to drop the page.
3603 */
3604int try_release_extent_state(struct extent_map_tree *map,
3605 struct extent_io_tree *tree, struct page *page,
3606 gfp_t mask)
3607{
3608 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3609 u64 end = start + PAGE_CACHE_SIZE - 1;
3610 int ret = 1;
3611
211f90e6 3612 if (test_range_bit(tree, start, end,
8b62b72b 3613 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3614 ret = 0;
3615 else {
3616 if ((mask & GFP_NOFS) == GFP_NOFS)
3617 mask = GFP_NOFS;
11ef160f
CM
3618 /*
3619 * at this point we can safely clear everything except the
3620 * locked bit and the nodatasum bit
3621 */
e3f24cc5 3622 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3623 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3624 0, 0, NULL, mask);
e3f24cc5
CM
3625
3626 /* if clear_extent_bit failed for enomem reasons,
3627 * we can't allow the release to continue.
3628 */
3629 if (ret < 0)
3630 ret = 0;
3631 else
3632 ret = 1;
7b13b7b1
CM
3633 }
3634 return ret;
3635}
7b13b7b1 3636
d1310b2e
CM
3637/*
3638 * a helper for releasepage. As long as there are no locked extents
3639 * in the range corresponding to the page, both state records and extent
3640 * map records are removed
3641 */
3642int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3643 struct extent_io_tree *tree, struct page *page,
3644 gfp_t mask)
d1310b2e
CM
3645{
3646 struct extent_map *em;
3647 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3648 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3649
70dec807
CM
3650 if ((mask & __GFP_WAIT) &&
3651 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3652 u64 len;
70dec807 3653 while (start <= end) {
39b5637f 3654 len = end - start + 1;
890871be 3655 write_lock(&map->lock);
39b5637f 3656 em = lookup_extent_mapping(map, start, len);
285190d9 3657 if (!em) {
890871be 3658 write_unlock(&map->lock);
70dec807
CM
3659 break;
3660 }
7f3c74fb
CM
3661 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3662 em->start != start) {
890871be 3663 write_unlock(&map->lock);
70dec807
CM
3664 free_extent_map(em);
3665 break;
3666 }
3667 if (!test_range_bit(tree, em->start,
3668 extent_map_end(em) - 1,
8b62b72b 3669 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3670 0, NULL)) {
70dec807
CM
3671 remove_extent_mapping(map, em);
3672 /* once for the rb tree */
3673 free_extent_map(em);
3674 }
3675 start = extent_map_end(em);
890871be 3676 write_unlock(&map->lock);
70dec807
CM
3677
3678 /* once for us */
d1310b2e
CM
3679 free_extent_map(em);
3680 }
d1310b2e 3681 }
7b13b7b1 3682 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3683}
d1310b2e 3684
ec29ed5b
CM
3685/*
3686 * helper function for fiemap, which doesn't want to see any holes.
3687 * This maps until we find something past 'last'
3688 */
3689static struct extent_map *get_extent_skip_holes(struct inode *inode,
3690 u64 offset,
3691 u64 last,
3692 get_extent_t *get_extent)
3693{
3694 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3695 struct extent_map *em;
3696 u64 len;
3697
3698 if (offset >= last)
3699 return NULL;
3700
3701 while(1) {
3702 len = last - offset;
3703 if (len == 0)
3704 break;
3705 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3706 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3707 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3708 return em;
3709
3710 /* if this isn't a hole return it */
3711 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3712 em->block_start != EXTENT_MAP_HOLE) {
3713 return em;
3714 }
3715
3716 /* this is a hole, advance to the next extent */
3717 offset = extent_map_end(em);
3718 free_extent_map(em);
3719 if (offset >= last)
3720 break;
3721 }
3722 return NULL;
3723}
3724
1506fcc8
YS
3725int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3726 __u64 start, __u64 len, get_extent_t *get_extent)
3727{
975f84fe 3728 int ret = 0;
1506fcc8
YS
3729 u64 off = start;
3730 u64 max = start + len;
3731 u32 flags = 0;
975f84fe
JB
3732 u32 found_type;
3733 u64 last;
ec29ed5b 3734 u64 last_for_get_extent = 0;
1506fcc8 3735 u64 disko = 0;
ec29ed5b 3736 u64 isize = i_size_read(inode);
975f84fe 3737 struct btrfs_key found_key;
1506fcc8 3738 struct extent_map *em = NULL;
2ac55d41 3739 struct extent_state *cached_state = NULL;
975f84fe
JB
3740 struct btrfs_path *path;
3741 struct btrfs_file_extent_item *item;
1506fcc8 3742 int end = 0;
ec29ed5b
CM
3743 u64 em_start = 0;
3744 u64 em_len = 0;
3745 u64 em_end = 0;
1506fcc8 3746 unsigned long emflags;
1506fcc8
YS
3747
3748 if (len == 0)
3749 return -EINVAL;
3750
975f84fe
JB
3751 path = btrfs_alloc_path();
3752 if (!path)
3753 return -ENOMEM;
3754 path->leave_spinning = 1;
3755
4d479cf0
JB
3756 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3757 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3758
ec29ed5b
CM
3759 /*
3760 * lookup the last file extent. We're not using i_size here
3761 * because there might be preallocation past i_size
3762 */
975f84fe 3763 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3764 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3765 if (ret < 0) {
3766 btrfs_free_path(path);
3767 return ret;
3768 }
3769 WARN_ON(!ret);
3770 path->slots[0]--;
3771 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3772 struct btrfs_file_extent_item);
3773 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3774 found_type = btrfs_key_type(&found_key);
3775
ec29ed5b 3776 /* No extents, but there might be delalloc bits */
33345d01 3777 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3778 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3779 /* have to trust i_size as the end */
3780 last = (u64)-1;
3781 last_for_get_extent = isize;
3782 } else {
3783 /*
3784 * remember the start of the last extent. There are a
3785 * bunch of different factors that go into the length of the
3786 * extent, so its much less complex to remember where it started
3787 */
3788 last = found_key.offset;
3789 last_for_get_extent = last + 1;
975f84fe 3790 }
975f84fe
JB
3791 btrfs_free_path(path);
3792
ec29ed5b
CM
3793 /*
3794 * we might have some extents allocated but more delalloc past those
3795 * extents. so, we trust isize unless the start of the last extent is
3796 * beyond isize
3797 */
3798 if (last < isize) {
3799 last = (u64)-1;
3800 last_for_get_extent = isize;
3801 }
3802
2ac55d41 3803 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3804 &cached_state);
ec29ed5b 3805
4d479cf0 3806 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3807 get_extent);
1506fcc8
YS
3808 if (!em)
3809 goto out;
3810 if (IS_ERR(em)) {
3811 ret = PTR_ERR(em);
3812 goto out;
3813 }
975f84fe 3814
1506fcc8 3815 while (!end) {
ea8efc74
CM
3816 u64 offset_in_extent;
3817
3818 /* break if the extent we found is outside the range */
3819 if (em->start >= max || extent_map_end(em) < off)
3820 break;
3821
3822 /*
3823 * get_extent may return an extent that starts before our
3824 * requested range. We have to make sure the ranges
3825 * we return to fiemap always move forward and don't
3826 * overlap, so adjust the offsets here
3827 */
3828 em_start = max(em->start, off);
1506fcc8 3829
ea8efc74
CM
3830 /*
3831 * record the offset from the start of the extent
3832 * for adjusting the disk offset below
3833 */
3834 offset_in_extent = em_start - em->start;
ec29ed5b 3835 em_end = extent_map_end(em);
ea8efc74 3836 em_len = em_end - em_start;
ec29ed5b 3837 emflags = em->flags;
1506fcc8
YS
3838 disko = 0;
3839 flags = 0;
3840
ea8efc74
CM
3841 /*
3842 * bump off for our next call to get_extent
3843 */
3844 off = extent_map_end(em);
3845 if (off >= max)
3846 end = 1;
3847
93dbfad7 3848 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3849 end = 1;
3850 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3851 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3852 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3853 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3854 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3855 flags |= (FIEMAP_EXTENT_DELALLOC |
3856 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3857 } else {
ea8efc74 3858 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3859 }
3860 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3861 flags |= FIEMAP_EXTENT_ENCODED;
3862
1506fcc8
YS
3863 free_extent_map(em);
3864 em = NULL;
ec29ed5b
CM
3865 if ((em_start >= last) || em_len == (u64)-1 ||
3866 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3867 flags |= FIEMAP_EXTENT_LAST;
3868 end = 1;
3869 }
3870
ec29ed5b
CM
3871 /* now scan forward to see if this is really the last extent. */
3872 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3873 get_extent);
3874 if (IS_ERR(em)) {
3875 ret = PTR_ERR(em);
3876 goto out;
3877 }
3878 if (!em) {
975f84fe
JB
3879 flags |= FIEMAP_EXTENT_LAST;
3880 end = 1;
3881 }
ec29ed5b
CM
3882 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3883 em_len, flags);
3884 if (ret)
3885 goto out_free;
1506fcc8
YS
3886 }
3887out_free:
3888 free_extent_map(em);
3889out:
2ac55d41
JB
3890 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3891 &cached_state, GFP_NOFS);
1506fcc8
YS
3892 return ret;
3893}
3894
4a54c8c1 3895inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3896 unsigned long i)
3897{
727011e0 3898 return eb->pages[i];
d1310b2e
CM
3899}
3900
4a54c8c1 3901inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3902{
6af118ce
CM
3903 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3904 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3905}
3906
727011e0
CM
3907static void __free_extent_buffer(struct extent_buffer *eb)
3908{
3909#if LEAK_DEBUG
3910 unsigned long flags;
3911 spin_lock_irqsave(&leak_lock, flags);
3912 list_del(&eb->leak_list);
3913 spin_unlock_irqrestore(&leak_lock, flags);
3914#endif
3915 if (eb->pages && eb->pages != eb->inline_pages)
3916 kfree(eb->pages);
3917 kmem_cache_free(extent_buffer_cache, eb);
3918}
3919
d1310b2e
CM
3920static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3921 u64 start,
3922 unsigned long len,
3923 gfp_t mask)
3924{
3925 struct extent_buffer *eb = NULL;
3935127c 3926#if LEAK_DEBUG
2d2ae547 3927 unsigned long flags;
4bef0848 3928#endif
d1310b2e 3929
d1310b2e 3930 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3931 if (eb == NULL)
3932 return NULL;
d1310b2e
CM
3933 eb->start = start;
3934 eb->len = len;
4f2de97a 3935 eb->tree = tree;
bd681513
CM
3936 rwlock_init(&eb->lock);
3937 atomic_set(&eb->write_locks, 0);
3938 atomic_set(&eb->read_locks, 0);
3939 atomic_set(&eb->blocking_readers, 0);
3940 atomic_set(&eb->blocking_writers, 0);
3941 atomic_set(&eb->spinning_readers, 0);
3942 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3943 eb->lock_nested = 0;
bd681513
CM
3944 init_waitqueue_head(&eb->write_lock_wq);
3945 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3946
3935127c 3947#if LEAK_DEBUG
2d2ae547
CM
3948 spin_lock_irqsave(&leak_lock, flags);
3949 list_add(&eb->leak_list, &buffers);
3950 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3951#endif
3083ee2e 3952 spin_lock_init(&eb->refs_lock);
d1310b2e 3953 atomic_set(&eb->refs, 1);
0b32f4bb 3954 atomic_set(&eb->io_pages, 0);
727011e0
CM
3955
3956 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3957 struct page **pages;
3958 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3959 PAGE_CACHE_SHIFT;
3960 pages = kzalloc(num_pages, mask);
3961 if (!pages) {
3962 __free_extent_buffer(eb);
3963 return NULL;
3964 }
3965 eb->pages = pages;
3966 } else {
3967 eb->pages = eb->inline_pages;
3968 }
d1310b2e
CM
3969
3970 return eb;
3971}
3972
0b32f4bb
JB
3973static int extent_buffer_under_io(struct extent_buffer *eb)
3974{
3975 return (atomic_read(&eb->io_pages) ||
3976 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3977 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3978}
3979
897ca6e9
MX
3980/*
3981 * Helper for releasing extent buffer page.
3982 */
3983static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3984 unsigned long start_idx)
3985{
3986 unsigned long index;
3987 struct page *page;
3988
0b32f4bb
JB
3989 BUG_ON(extent_buffer_under_io(eb));
3990
897ca6e9
MX
3991 index = num_extent_pages(eb->start, eb->len);
3992 if (start_idx >= index)
3993 return;
3994
3995 do {
3996 index--;
3997 page = extent_buffer_page(eb, index);
4f2de97a
JB
3998 if (page) {
3999 spin_lock(&page->mapping->private_lock);
4000 /*
4001 * We do this since we'll remove the pages after we've
4002 * removed the eb from the radix tree, so we could race
4003 * and have this page now attached to the new eb. So
4004 * only clear page_private if it's still connected to
4005 * this eb.
4006 */
4007 if (PagePrivate(page) &&
4008 page->private == (unsigned long)eb) {
0b32f4bb 4009 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4010 BUG_ON(PageDirty(page));
4011 BUG_ON(PageWriteback(page));
4f2de97a
JB
4012 /*
4013 * We need to make sure we haven't be attached
4014 * to a new eb.
4015 */
4016 ClearPagePrivate(page);
4017 set_page_private(page, 0);
4018 /* One for the page private */
4019 page_cache_release(page);
4020 }
4021 spin_unlock(&page->mapping->private_lock);
4022
4023 /* One for when we alloced the page */
897ca6e9 4024 page_cache_release(page);
4f2de97a 4025 }
897ca6e9
MX
4026 } while (index != start_idx);
4027}
4028
4029/*
4030 * Helper for releasing the extent buffer.
4031 */
4032static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4033{
4034 btrfs_release_extent_buffer_page(eb, 0);
4035 __free_extent_buffer(eb);
4036}
4037
0b32f4bb
JB
4038static void check_buffer_tree_ref(struct extent_buffer *eb)
4039{
4040 /* the ref bit is tricky. We have to make sure it is set
4041 * if we have the buffer dirty. Otherwise the
4042 * code to free a buffer can end up dropping a dirty
4043 * page
4044 *
4045 * Once the ref bit is set, it won't go away while the
4046 * buffer is dirty or in writeback, and it also won't
4047 * go away while we have the reference count on the
4048 * eb bumped.
4049 *
4050 * We can't just set the ref bit without bumping the
4051 * ref on the eb because free_extent_buffer might
4052 * see the ref bit and try to clear it. If this happens
4053 * free_extent_buffer might end up dropping our original
4054 * ref by mistake and freeing the page before we are able
4055 * to add one more ref.
4056 *
4057 * So bump the ref count first, then set the bit. If someone
4058 * beat us to it, drop the ref we added.
4059 */
4060 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4061 atomic_inc(&eb->refs);
4062 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4063 atomic_dec(&eb->refs);
4064 }
4065}
4066
5df4235e
JB
4067static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4068{
4069 unsigned long num_pages, i;
4070
0b32f4bb
JB
4071 check_buffer_tree_ref(eb);
4072
5df4235e
JB
4073 num_pages = num_extent_pages(eb->start, eb->len);
4074 for (i = 0; i < num_pages; i++) {
4075 struct page *p = extent_buffer_page(eb, i);
4076 mark_page_accessed(p);
4077 }
4078}
4079
d1310b2e 4080struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4081 u64 start, unsigned long len)
d1310b2e
CM
4082{
4083 unsigned long num_pages = num_extent_pages(start, len);
4084 unsigned long i;
4085 unsigned long index = start >> PAGE_CACHE_SHIFT;
4086 struct extent_buffer *eb;
6af118ce 4087 struct extent_buffer *exists = NULL;
d1310b2e
CM
4088 struct page *p;
4089 struct address_space *mapping = tree->mapping;
4090 int uptodate = 1;
19fe0a8b 4091 int ret;
d1310b2e 4092
19fe0a8b
MX
4093 rcu_read_lock();
4094 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4095 if (eb && atomic_inc_not_zero(&eb->refs)) {
4096 rcu_read_unlock();
5df4235e 4097 mark_extent_buffer_accessed(eb);
6af118ce
CM
4098 return eb;
4099 }
19fe0a8b 4100 rcu_read_unlock();
6af118ce 4101
ba144192 4102 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4103 if (!eb)
d1310b2e
CM
4104 return NULL;
4105
727011e0 4106 for (i = 0; i < num_pages; i++, index++) {
a6591715 4107 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4108 if (!p) {
4109 WARN_ON(1);
6af118ce 4110 goto free_eb;
d1310b2e 4111 }
4f2de97a
JB
4112
4113 spin_lock(&mapping->private_lock);
4114 if (PagePrivate(p)) {
4115 /*
4116 * We could have already allocated an eb for this page
4117 * and attached one so lets see if we can get a ref on
4118 * the existing eb, and if we can we know it's good and
4119 * we can just return that one, else we know we can just
4120 * overwrite page->private.
4121 */
4122 exists = (struct extent_buffer *)p->private;
4123 if (atomic_inc_not_zero(&exists->refs)) {
4124 spin_unlock(&mapping->private_lock);
4125 unlock_page(p);
5df4235e 4126 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4127 goto free_eb;
4128 }
4129
0b32f4bb 4130 /*
4f2de97a
JB
4131 * Do this so attach doesn't complain and we need to
4132 * drop the ref the old guy had.
4133 */
4134 ClearPagePrivate(p);
0b32f4bb 4135 WARN_ON(PageDirty(p));
4f2de97a
JB
4136 page_cache_release(p);
4137 }
4138 attach_extent_buffer_page(eb, p);
4139 spin_unlock(&mapping->private_lock);
0b32f4bb 4140 WARN_ON(PageDirty(p));
d1310b2e 4141 mark_page_accessed(p);
727011e0 4142 eb->pages[i] = p;
d1310b2e
CM
4143 if (!PageUptodate(p))
4144 uptodate = 0;
eb14ab8e
CM
4145
4146 /*
4147 * see below about how we avoid a nasty race with release page
4148 * and why we unlock later
4149 */
d1310b2e
CM
4150 }
4151 if (uptodate)
b4ce94de 4152 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4153again:
19fe0a8b
MX
4154 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4155 if (ret)
4156 goto free_eb;
4157
6af118ce 4158 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4159 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4160 if (ret == -EEXIST) {
4161 exists = radix_tree_lookup(&tree->buffer,
4162 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4163 if (!atomic_inc_not_zero(&exists->refs)) {
4164 spin_unlock(&tree->buffer_lock);
4165 radix_tree_preload_end();
115391d2
JB
4166 exists = NULL;
4167 goto again;
4168 }
6af118ce 4169 spin_unlock(&tree->buffer_lock);
19fe0a8b 4170 radix_tree_preload_end();
5df4235e 4171 mark_extent_buffer_accessed(exists);
6af118ce
CM
4172 goto free_eb;
4173 }
6af118ce 4174 /* add one reference for the tree */
3083ee2e 4175 spin_lock(&eb->refs_lock);
0b32f4bb 4176 check_buffer_tree_ref(eb);
3083ee2e 4177 spin_unlock(&eb->refs_lock);
f044ba78 4178 spin_unlock(&tree->buffer_lock);
19fe0a8b 4179 radix_tree_preload_end();
eb14ab8e
CM
4180
4181 /*
4182 * there is a race where release page may have
4183 * tried to find this extent buffer in the radix
4184 * but failed. It will tell the VM it is safe to
4185 * reclaim the, and it will clear the page private bit.
4186 * We must make sure to set the page private bit properly
4187 * after the extent buffer is in the radix tree so
4188 * it doesn't get lost
4189 */
727011e0
CM
4190 SetPageChecked(eb->pages[0]);
4191 for (i = 1; i < num_pages; i++) {
4192 p = extent_buffer_page(eb, i);
727011e0
CM
4193 ClearPageChecked(p);
4194 unlock_page(p);
4195 }
4196 unlock_page(eb->pages[0]);
d1310b2e
CM
4197 return eb;
4198
6af118ce 4199free_eb:
727011e0
CM
4200 for (i = 0; i < num_pages; i++) {
4201 if (eb->pages[i])
4202 unlock_page(eb->pages[i]);
4203 }
eb14ab8e 4204
d1310b2e 4205 if (!atomic_dec_and_test(&eb->refs))
6af118ce 4206 return exists;
897ca6e9 4207 btrfs_release_extent_buffer(eb);
6af118ce 4208 return exists;
d1310b2e 4209}
d1310b2e
CM
4210
4211struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4212 u64 start, unsigned long len)
d1310b2e 4213{
d1310b2e 4214 struct extent_buffer *eb;
d1310b2e 4215
19fe0a8b
MX
4216 rcu_read_lock();
4217 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4218 if (eb && atomic_inc_not_zero(&eb->refs)) {
4219 rcu_read_unlock();
5df4235e 4220 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4221 return eb;
4222 }
4223 rcu_read_unlock();
0f9dd46c 4224
19fe0a8b 4225 return NULL;
d1310b2e 4226}
d1310b2e 4227
3083ee2e
JB
4228static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4229{
4230 struct extent_buffer *eb =
4231 container_of(head, struct extent_buffer, rcu_head);
4232
4233 __free_extent_buffer(eb);
4234}
4235
3083ee2e
JB
4236/* Expects to have eb->eb_lock already held */
4237static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4238{
4239 WARN_ON(atomic_read(&eb->refs) == 0);
4240 if (atomic_dec_and_test(&eb->refs)) {
4241 struct extent_io_tree *tree = eb->tree;
3083ee2e
JB
4242
4243 spin_unlock(&eb->refs_lock);
4244
3083ee2e
JB
4245 spin_lock(&tree->buffer_lock);
4246 radix_tree_delete(&tree->buffer,
4247 eb->start >> PAGE_CACHE_SHIFT);
4248 spin_unlock(&tree->buffer_lock);
4249
4250 /* Should be safe to release our pages at this point */
4251 btrfs_release_extent_buffer_page(eb, 0);
4252
4253 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4254 return;
4255 }
4256 spin_unlock(&eb->refs_lock);
4257}
4258
d1310b2e
CM
4259void free_extent_buffer(struct extent_buffer *eb)
4260{
d1310b2e
CM
4261 if (!eb)
4262 return;
4263
3083ee2e
JB
4264 spin_lock(&eb->refs_lock);
4265 if (atomic_read(&eb->refs) == 2 &&
4266 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4267 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4268 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4269 atomic_dec(&eb->refs);
4270
4271 /*
4272 * I know this is terrible, but it's temporary until we stop tracking
4273 * the uptodate bits and such for the extent buffers.
4274 */
4275 release_extent_buffer(eb, GFP_ATOMIC);
4276}
4277
4278void free_extent_buffer_stale(struct extent_buffer *eb)
4279{
4280 if (!eb)
d1310b2e
CM
4281 return;
4282
3083ee2e
JB
4283 spin_lock(&eb->refs_lock);
4284 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4285
0b32f4bb 4286 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4287 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4288 atomic_dec(&eb->refs);
4289 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4290}
d1310b2e 4291
1d4284bd 4292void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4293{
d1310b2e
CM
4294 unsigned long i;
4295 unsigned long num_pages;
4296 struct page *page;
4297
d1310b2e
CM
4298 num_pages = num_extent_pages(eb->start, eb->len);
4299
4300 for (i = 0; i < num_pages; i++) {
4301 page = extent_buffer_page(eb, i);
b9473439 4302 if (!PageDirty(page))
d2c3f4f6
CM
4303 continue;
4304
a61e6f29 4305 lock_page(page);
eb14ab8e
CM
4306 WARN_ON(!PagePrivate(page));
4307
d1310b2e 4308 clear_page_dirty_for_io(page);
0ee0fda0 4309 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4310 if (!PageDirty(page)) {
4311 radix_tree_tag_clear(&page->mapping->page_tree,
4312 page_index(page),
4313 PAGECACHE_TAG_DIRTY);
4314 }
0ee0fda0 4315 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4316 ClearPageError(page);
a61e6f29 4317 unlock_page(page);
d1310b2e 4318 }
0b32f4bb 4319 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4320}
d1310b2e 4321
0b32f4bb 4322int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4323{
4324 unsigned long i;
4325 unsigned long num_pages;
b9473439 4326 int was_dirty = 0;
d1310b2e 4327
0b32f4bb
JB
4328 check_buffer_tree_ref(eb);
4329
b9473439 4330 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4331
d1310b2e 4332 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4333 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4334 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4335
b9473439 4336 for (i = 0; i < num_pages; i++)
0b32f4bb 4337 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4338 return was_dirty;
d1310b2e 4339}
d1310b2e 4340
0b32f4bb 4341static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4342{
4343 if (len < PAGE_CACHE_SIZE)
4344 return 1;
4345 if (start & (PAGE_CACHE_SIZE - 1))
4346 return 1;
4347 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4348 return 1;
4349 return 0;
4350}
4351
0b32f4bb 4352int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4353{
4354 unsigned long i;
4355 struct page *page;
4356 unsigned long num_pages;
4357
b4ce94de 4358 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4359 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4360 for (i = 0; i < num_pages; i++) {
4361 page = extent_buffer_page(eb, i);
33958dc6
CM
4362 if (page)
4363 ClearPageUptodate(page);
1259ab75
CM
4364 }
4365 return 0;
4366}
4367
0b32f4bb 4368int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4369{
4370 unsigned long i;
4371 struct page *page;
4372 unsigned long num_pages;
4373
0b32f4bb 4374 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4375 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4376 for (i = 0; i < num_pages; i++) {
4377 page = extent_buffer_page(eb, i);
d1310b2e
CM
4378 SetPageUptodate(page);
4379 }
4380 return 0;
4381}
d1310b2e 4382
ce9adaa5
CM
4383int extent_range_uptodate(struct extent_io_tree *tree,
4384 u64 start, u64 end)
4385{
4386 struct page *page;
4387 int ret;
4388 int pg_uptodate = 1;
4389 int uptodate;
4390 unsigned long index;
4391
0b32f4bb 4392 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4393 ret = test_range_bit(tree, start, end,
4394 EXTENT_UPTODATE, 1, NULL);
4395 if (ret)
4396 return 1;
4397 }
d397712b 4398 while (start <= end) {
ce9adaa5
CM
4399 index = start >> PAGE_CACHE_SHIFT;
4400 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4401 if (!page)
4402 return 1;
ce9adaa5
CM
4403 uptodate = PageUptodate(page);
4404 page_cache_release(page);
4405 if (!uptodate) {
4406 pg_uptodate = 0;
4407 break;
4408 }
4409 start += PAGE_CACHE_SIZE;
4410 }
4411 return pg_uptodate;
4412}
4413
0b32f4bb 4414int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4415{
0b32f4bb 4416 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4417}
d1310b2e
CM
4418
4419int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4420 struct extent_buffer *eb, u64 start, int wait,
f188591e 4421 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4422{
4423 unsigned long i;
4424 unsigned long start_i;
4425 struct page *page;
4426 int err;
4427 int ret = 0;
ce9adaa5
CM
4428 int locked_pages = 0;
4429 int all_uptodate = 1;
d1310b2e 4430 unsigned long num_pages;
727011e0 4431 unsigned long num_reads = 0;
a86c12c7 4432 struct bio *bio = NULL;
c8b97818 4433 unsigned long bio_flags = 0;
a86c12c7 4434
b4ce94de 4435 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4436 return 0;
4437
d1310b2e
CM
4438 if (start) {
4439 WARN_ON(start < eb->start);
4440 start_i = (start >> PAGE_CACHE_SHIFT) -
4441 (eb->start >> PAGE_CACHE_SHIFT);
4442 } else {
4443 start_i = 0;
4444 }
4445
4446 num_pages = num_extent_pages(eb->start, eb->len);
4447 for (i = start_i; i < num_pages; i++) {
4448 page = extent_buffer_page(eb, i);
bb82ab88 4449 if (wait == WAIT_NONE) {
2db04966 4450 if (!trylock_page(page))
ce9adaa5 4451 goto unlock_exit;
d1310b2e
CM
4452 } else {
4453 lock_page(page);
4454 }
ce9adaa5 4455 locked_pages++;
727011e0
CM
4456 if (!PageUptodate(page)) {
4457 num_reads++;
ce9adaa5 4458 all_uptodate = 0;
727011e0 4459 }
ce9adaa5
CM
4460 }
4461 if (all_uptodate) {
4462 if (start_i == 0)
b4ce94de 4463 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4464 goto unlock_exit;
4465 }
4466
ea466794
JB
4467 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4468 eb->failed_mirror = 0;
0b32f4bb 4469 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4470 for (i = start_i; i < num_pages; i++) {
4471 page = extent_buffer_page(eb, i);
ce9adaa5 4472 if (!PageUptodate(page)) {
f188591e 4473 ClearPageError(page);
a86c12c7 4474 err = __extent_read_full_page(tree, page,
f188591e 4475 get_extent, &bio,
c8b97818 4476 mirror_num, &bio_flags);
d397712b 4477 if (err)
d1310b2e 4478 ret = err;
d1310b2e
CM
4479 } else {
4480 unlock_page(page);
4481 }
4482 }
4483
355808c2
JM
4484 if (bio) {
4485 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4486 if (err)
4487 return err;
355808c2 4488 }
a86c12c7 4489
bb82ab88 4490 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4491 return ret;
d397712b 4492
d1310b2e
CM
4493 for (i = start_i; i < num_pages; i++) {
4494 page = extent_buffer_page(eb, i);
4495 wait_on_page_locked(page);
d397712b 4496 if (!PageUptodate(page))
d1310b2e 4497 ret = -EIO;
d1310b2e 4498 }
d397712b 4499
d1310b2e 4500 return ret;
ce9adaa5
CM
4501
4502unlock_exit:
4503 i = start_i;
d397712b 4504 while (locked_pages > 0) {
ce9adaa5
CM
4505 page = extent_buffer_page(eb, i);
4506 i++;
4507 unlock_page(page);
4508 locked_pages--;
4509 }
4510 return ret;
d1310b2e 4511}
d1310b2e
CM
4512
4513void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4514 unsigned long start,
4515 unsigned long len)
4516{
4517 size_t cur;
4518 size_t offset;
4519 struct page *page;
4520 char *kaddr;
4521 char *dst = (char *)dstv;
4522 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4523 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4524
4525 WARN_ON(start > eb->len);
4526 WARN_ON(start + len > eb->start + eb->len);
4527
4528 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4529
d397712b 4530 while (len > 0) {
d1310b2e 4531 page = extent_buffer_page(eb, i);
d1310b2e
CM
4532
4533 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4534 kaddr = page_address(page);
d1310b2e 4535 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4536
4537 dst += cur;
4538 len -= cur;
4539 offset = 0;
4540 i++;
4541 }
4542}
d1310b2e
CM
4543
4544int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4545 unsigned long min_len, char **map,
d1310b2e 4546 unsigned long *map_start,
a6591715 4547 unsigned long *map_len)
d1310b2e
CM
4548{
4549 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4550 char *kaddr;
4551 struct page *p;
4552 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4553 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4554 unsigned long end_i = (start_offset + start + min_len - 1) >>
4555 PAGE_CACHE_SHIFT;
4556
4557 if (i != end_i)
4558 return -EINVAL;
4559
4560 if (i == 0) {
4561 offset = start_offset;
4562 *map_start = 0;
4563 } else {
4564 offset = 0;
4565 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4566 }
d397712b 4567
d1310b2e 4568 if (start + min_len > eb->len) {
d397712b
CM
4569 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4570 "wanted %lu %lu\n", (unsigned long long)eb->start,
4571 eb->len, start, min_len);
d1310b2e 4572 WARN_ON(1);
85026533 4573 return -EINVAL;
d1310b2e
CM
4574 }
4575
4576 p = extent_buffer_page(eb, i);
a6591715 4577 kaddr = page_address(p);
d1310b2e
CM
4578 *map = kaddr + offset;
4579 *map_len = PAGE_CACHE_SIZE - offset;
4580 return 0;
4581}
d1310b2e 4582
d1310b2e
CM
4583int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4584 unsigned long start,
4585 unsigned long len)
4586{
4587 size_t cur;
4588 size_t offset;
4589 struct page *page;
4590 char *kaddr;
4591 char *ptr = (char *)ptrv;
4592 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4593 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4594 int ret = 0;
4595
4596 WARN_ON(start > eb->len);
4597 WARN_ON(start + len > eb->start + eb->len);
4598
4599 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4600
d397712b 4601 while (len > 0) {
d1310b2e 4602 page = extent_buffer_page(eb, i);
d1310b2e
CM
4603
4604 cur = min(len, (PAGE_CACHE_SIZE - offset));
4605
a6591715 4606 kaddr = page_address(page);
d1310b2e 4607 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4608 if (ret)
4609 break;
4610
4611 ptr += cur;
4612 len -= cur;
4613 offset = 0;
4614 i++;
4615 }
4616 return ret;
4617}
d1310b2e
CM
4618
4619void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4620 unsigned long start, unsigned long len)
4621{
4622 size_t cur;
4623 size_t offset;
4624 struct page *page;
4625 char *kaddr;
4626 char *src = (char *)srcv;
4627 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4628 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4629
4630 WARN_ON(start > eb->len);
4631 WARN_ON(start + len > eb->start + eb->len);
4632
4633 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4634
d397712b 4635 while (len > 0) {
d1310b2e
CM
4636 page = extent_buffer_page(eb, i);
4637 WARN_ON(!PageUptodate(page));
4638
4639 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4640 kaddr = page_address(page);
d1310b2e 4641 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4642
4643 src += cur;
4644 len -= cur;
4645 offset = 0;
4646 i++;
4647 }
4648}
d1310b2e
CM
4649
4650void memset_extent_buffer(struct extent_buffer *eb, char c,
4651 unsigned long start, unsigned long len)
4652{
4653 size_t cur;
4654 size_t offset;
4655 struct page *page;
4656 char *kaddr;
4657 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4658 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4659
4660 WARN_ON(start > eb->len);
4661 WARN_ON(start + len > eb->start + eb->len);
4662
4663 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4664
d397712b 4665 while (len > 0) {
d1310b2e
CM
4666 page = extent_buffer_page(eb, i);
4667 WARN_ON(!PageUptodate(page));
4668
4669 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4670 kaddr = page_address(page);
d1310b2e 4671 memset(kaddr + offset, c, cur);
d1310b2e
CM
4672
4673 len -= cur;
4674 offset = 0;
4675 i++;
4676 }
4677}
d1310b2e
CM
4678
4679void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4680 unsigned long dst_offset, unsigned long src_offset,
4681 unsigned long len)
4682{
4683 u64 dst_len = dst->len;
4684 size_t cur;
4685 size_t offset;
4686 struct page *page;
4687 char *kaddr;
4688 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4689 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4690
4691 WARN_ON(src->len != dst_len);
4692
4693 offset = (start_offset + dst_offset) &
4694 ((unsigned long)PAGE_CACHE_SIZE - 1);
4695
d397712b 4696 while (len > 0) {
d1310b2e
CM
4697 page = extent_buffer_page(dst, i);
4698 WARN_ON(!PageUptodate(page));
4699
4700 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4701
a6591715 4702 kaddr = page_address(page);
d1310b2e 4703 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4704
4705 src_offset += cur;
4706 len -= cur;
4707 offset = 0;
4708 i++;
4709 }
4710}
d1310b2e
CM
4711
4712static void move_pages(struct page *dst_page, struct page *src_page,
4713 unsigned long dst_off, unsigned long src_off,
4714 unsigned long len)
4715{
a6591715 4716 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4717 if (dst_page == src_page) {
4718 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4719 } else {
a6591715 4720 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4721 char *p = dst_kaddr + dst_off + len;
4722 char *s = src_kaddr + src_off + len;
4723
4724 while (len--)
4725 *--p = *--s;
d1310b2e 4726 }
d1310b2e
CM
4727}
4728
3387206f
ST
4729static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4730{
4731 unsigned long distance = (src > dst) ? src - dst : dst - src;
4732 return distance < len;
4733}
4734
d1310b2e
CM
4735static void copy_pages(struct page *dst_page, struct page *src_page,
4736 unsigned long dst_off, unsigned long src_off,
4737 unsigned long len)
4738{
a6591715 4739 char *dst_kaddr = page_address(dst_page);
d1310b2e 4740 char *src_kaddr;
727011e0 4741 int must_memmove = 0;
d1310b2e 4742
3387206f 4743 if (dst_page != src_page) {
a6591715 4744 src_kaddr = page_address(src_page);
3387206f 4745 } else {
d1310b2e 4746 src_kaddr = dst_kaddr;
727011e0
CM
4747 if (areas_overlap(src_off, dst_off, len))
4748 must_memmove = 1;
3387206f 4749 }
d1310b2e 4750
727011e0
CM
4751 if (must_memmove)
4752 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4753 else
4754 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4755}
4756
4757void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4758 unsigned long src_offset, unsigned long len)
4759{
4760 size_t cur;
4761 size_t dst_off_in_page;
4762 size_t src_off_in_page;
4763 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4764 unsigned long dst_i;
4765 unsigned long src_i;
4766
4767 if (src_offset + len > dst->len) {
d397712b
CM
4768 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4769 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4770 BUG_ON(1);
4771 }
4772 if (dst_offset + len > dst->len) {
d397712b
CM
4773 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4774 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4775 BUG_ON(1);
4776 }
4777
d397712b 4778 while (len > 0) {
d1310b2e
CM
4779 dst_off_in_page = (start_offset + dst_offset) &
4780 ((unsigned long)PAGE_CACHE_SIZE - 1);
4781 src_off_in_page = (start_offset + src_offset) &
4782 ((unsigned long)PAGE_CACHE_SIZE - 1);
4783
4784 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4785 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4786
4787 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4788 src_off_in_page));
4789 cur = min_t(unsigned long, cur,
4790 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4791
4792 copy_pages(extent_buffer_page(dst, dst_i),
4793 extent_buffer_page(dst, src_i),
4794 dst_off_in_page, src_off_in_page, cur);
4795
4796 src_offset += cur;
4797 dst_offset += cur;
4798 len -= cur;
4799 }
4800}
d1310b2e
CM
4801
4802void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4803 unsigned long src_offset, unsigned long len)
4804{
4805 size_t cur;
4806 size_t dst_off_in_page;
4807 size_t src_off_in_page;
4808 unsigned long dst_end = dst_offset + len - 1;
4809 unsigned long src_end = src_offset + len - 1;
4810 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4811 unsigned long dst_i;
4812 unsigned long src_i;
4813
4814 if (src_offset + len > dst->len) {
d397712b
CM
4815 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4816 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4817 BUG_ON(1);
4818 }
4819 if (dst_offset + len > dst->len) {
d397712b
CM
4820 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4821 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4822 BUG_ON(1);
4823 }
727011e0 4824 if (dst_offset < src_offset) {
d1310b2e
CM
4825 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4826 return;
4827 }
d397712b 4828 while (len > 0) {
d1310b2e
CM
4829 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4830 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4831
4832 dst_off_in_page = (start_offset + dst_end) &
4833 ((unsigned long)PAGE_CACHE_SIZE - 1);
4834 src_off_in_page = (start_offset + src_end) &
4835 ((unsigned long)PAGE_CACHE_SIZE - 1);
4836
4837 cur = min_t(unsigned long, len, src_off_in_page + 1);
4838 cur = min(cur, dst_off_in_page + 1);
4839 move_pages(extent_buffer_page(dst, dst_i),
4840 extent_buffer_page(dst, src_i),
4841 dst_off_in_page - cur + 1,
4842 src_off_in_page - cur + 1, cur);
4843
4844 dst_end -= cur;
4845 src_end -= cur;
4846 len -= cur;
4847 }
4848}
6af118ce 4849
3083ee2e 4850int try_release_extent_buffer(struct page *page, gfp_t mask)
6af118ce 4851{
3083ee2e 4852 struct extent_buffer *eb;
6af118ce 4853
3083ee2e
JB
4854 /*
4855 * We need to make sure noboody is attaching this page to an eb right
4856 * now.
4857 */
4858 spin_lock(&page->mapping->private_lock);
4859 if (!PagePrivate(page)) {
4860 spin_unlock(&page->mapping->private_lock);
4f2de97a 4861 return 1;
3083ee2e 4862 }
6af118ce 4863
3083ee2e
JB
4864 eb = (struct extent_buffer *)page->private;
4865 BUG_ON(!eb);
4866
0b32f4bb 4867 /*
3083ee2e
JB
4868 * This is a little awful but should be ok, we need to make sure that
4869 * the eb doesn't disappear out from under us while we're looking at
4870 * this page.
4871 */
4872 spin_lock(&eb->refs_lock);
0b32f4bb 4873 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4874 spin_unlock(&eb->refs_lock);
4875 spin_unlock(&page->mapping->private_lock);
4876 return 0;
6af118ce 4877 }
3083ee2e
JB
4878 spin_unlock(&page->mapping->private_lock);
4879
4880 if ((mask & GFP_NOFS) == GFP_NOFS)
4881 mask = GFP_NOFS;
19fe0a8b
MX
4882
4883 /*
3083ee2e
JB
4884 * If tree ref isn't set then we know the ref on this eb is a real ref,
4885 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4886 */
3083ee2e
JB
4887 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4888 spin_unlock(&eb->refs_lock);
4889 return 0;
b9473439 4890 }
3083ee2e 4891 release_extent_buffer(eb, mask);
19fe0a8b 4892
3083ee2e 4893 return 1;
6af118ce 4894}