]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: add assertion helpers for extent buffer read lock counters
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112#define BUFFER_LRU_MAX 64
113
114struct tree_entry {
115 u64 start;
116 u64 end;
d1310b2e
CM
117 struct rb_node rb_node;
118};
119
120struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
771ed689
CM
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
125 */
ffbd517d
CM
126 unsigned int extent_locked:1;
127
70fd7614 128 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 129 unsigned int sync_io:1;
d1310b2e
CM
130};
131
57599c7e 132static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
133 struct extent_changeset *changeset,
134 int set)
135{
136 int ret;
137
138 if (!changeset)
57599c7e 139 return 0;
d38ed27f 140 if (set && (state->state & bits) == bits)
57599c7e 141 return 0;
fefdc557 142 if (!set && (state->state & bits) == 0)
57599c7e 143 return 0;
d38ed27f 144 changeset->bytes_changed += state->end - state->start + 1;
53d32359 145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 146 GFP_ATOMIC);
57599c7e 147 return ret;
d38ed27f
QW
148}
149
bb58eb9e
QW
150static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
151 unsigned long bio_flags)
152{
153 blk_status_t ret = 0;
154 struct bio_vec *bvec = bio_last_bvec_all(bio);
80201fe1 155 struct bio_vec bv;
bb58eb9e
QW
156 struct extent_io_tree *tree = bio->bi_private;
157 u64 start;
158
80201fe1
LT
159 mp_bvec_last_segment(bvec, &bv);
160 start = page_offset(bv.bv_page) + bv.bv_offset;
bb58eb9e
QW
161
162 bio->bi_private = NULL;
163
164 if (tree->ops)
165 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
166 mirror_num, bio_flags, start);
167 else
168 btrfsic_submit_bio(bio);
169
170 return blk_status_to_errno(ret);
171}
172
173static void flush_write_bio(struct extent_page_data *epd)
174{
175 if (epd->bio) {
176 int ret;
177
178 ret = submit_one_bio(epd->bio, 0, 0);
179 BUG_ON(ret < 0); /* -ENOMEM */
180 epd->bio = NULL;
181 }
182}
e2932ee0 183
d1310b2e
CM
184int __init extent_io_init(void)
185{
837e1972 186 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 187 sizeof(struct extent_state), 0,
fba4b697 188 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
189 if (!extent_state_cache)
190 return -ENOMEM;
191
837e1972 192 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 193 sizeof(struct extent_buffer), 0,
fba4b697 194 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
195 if (!extent_buffer_cache)
196 goto free_state_cache;
9be3395b 197
8ac9f7c1
KO
198 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
199 offsetof(struct btrfs_io_bio, bio),
200 BIOSET_NEED_BVECS))
9be3395b 201 goto free_buffer_cache;
b208c2f7 202
8ac9f7c1 203 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
204 goto free_bioset;
205
d1310b2e
CM
206 return 0;
207
b208c2f7 208free_bioset:
8ac9f7c1 209 bioset_exit(&btrfs_bioset);
b208c2f7 210
9be3395b
CM
211free_buffer_cache:
212 kmem_cache_destroy(extent_buffer_cache);
213 extent_buffer_cache = NULL;
214
d1310b2e
CM
215free_state_cache:
216 kmem_cache_destroy(extent_state_cache);
9be3395b 217 extent_state_cache = NULL;
d1310b2e
CM
218 return -ENOMEM;
219}
220
e67c718b 221void __cold extent_io_exit(void)
d1310b2e 222{
6d49ba1b 223 btrfs_leak_debug_check();
8c0a8537
KS
224
225 /*
226 * Make sure all delayed rcu free are flushed before we
227 * destroy caches.
228 */
229 rcu_barrier();
5598e900
KM
230 kmem_cache_destroy(extent_state_cache);
231 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 232 bioset_exit(&btrfs_bioset);
d1310b2e
CM
233}
234
c258d6e3 235void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
236 struct extent_io_tree *tree, unsigned int owner,
237 void *private_data)
d1310b2e 238{
c258d6e3 239 tree->fs_info = fs_info;
6bef4d31 240 tree->state = RB_ROOT;
d1310b2e
CM
241 tree->ops = NULL;
242 tree->dirty_bytes = 0;
70dec807 243 spin_lock_init(&tree->lock);
c6100a4b 244 tree->private_data = private_data;
43eb5f29 245 tree->owner = owner;
d1310b2e 246}
d1310b2e 247
b2950863 248static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
249{
250 struct extent_state *state;
d1310b2e 251
3ba7ab22
MH
252 /*
253 * The given mask might be not appropriate for the slab allocator,
254 * drop the unsupported bits
255 */
256 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 257 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 258 if (!state)
d1310b2e
CM
259 return state;
260 state->state = 0;
47dc196a 261 state->failrec = NULL;
27a3507d 262 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 263 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 264 refcount_set(&state->refs, 1);
d1310b2e 265 init_waitqueue_head(&state->wq);
143bede5 266 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
267 return state;
268}
d1310b2e 269
4845e44f 270void free_extent_state(struct extent_state *state)
d1310b2e 271{
d1310b2e
CM
272 if (!state)
273 return;
b7ac31b7 274 if (refcount_dec_and_test(&state->refs)) {
27a3507d 275 WARN_ON(extent_state_in_tree(state));
6d49ba1b 276 btrfs_leak_debug_del(&state->leak_list);
143bede5 277 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
278 kmem_cache_free(extent_state_cache, state);
279 }
280}
d1310b2e 281
f2071b21
FM
282static struct rb_node *tree_insert(struct rb_root *root,
283 struct rb_node *search_start,
284 u64 offset,
12cfbad9
FDBM
285 struct rb_node *node,
286 struct rb_node ***p_in,
287 struct rb_node **parent_in)
d1310b2e 288{
f2071b21 289 struct rb_node **p;
d397712b 290 struct rb_node *parent = NULL;
d1310b2e
CM
291 struct tree_entry *entry;
292
12cfbad9
FDBM
293 if (p_in && parent_in) {
294 p = *p_in;
295 parent = *parent_in;
296 goto do_insert;
297 }
298
f2071b21 299 p = search_start ? &search_start : &root->rb_node;
d397712b 300 while (*p) {
d1310b2e
CM
301 parent = *p;
302 entry = rb_entry(parent, struct tree_entry, rb_node);
303
304 if (offset < entry->start)
305 p = &(*p)->rb_left;
306 else if (offset > entry->end)
307 p = &(*p)->rb_right;
308 else
309 return parent;
310 }
311
12cfbad9 312do_insert:
d1310b2e
CM
313 rb_link_node(node, parent, p);
314 rb_insert_color(node, root);
315 return NULL;
316}
317
80ea96b1 318static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 319 struct rb_node **next_ret,
352646c7 320 struct rb_node **prev_ret,
12cfbad9
FDBM
321 struct rb_node ***p_ret,
322 struct rb_node **parent_ret)
d1310b2e 323{
80ea96b1 324 struct rb_root *root = &tree->state;
12cfbad9 325 struct rb_node **n = &root->rb_node;
d1310b2e
CM
326 struct rb_node *prev = NULL;
327 struct rb_node *orig_prev = NULL;
328 struct tree_entry *entry;
329 struct tree_entry *prev_entry = NULL;
330
12cfbad9
FDBM
331 while (*n) {
332 prev = *n;
333 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
334 prev_entry = entry;
335
336 if (offset < entry->start)
12cfbad9 337 n = &(*n)->rb_left;
d1310b2e 338 else if (offset > entry->end)
12cfbad9 339 n = &(*n)->rb_right;
d397712b 340 else
12cfbad9 341 return *n;
d1310b2e
CM
342 }
343
12cfbad9
FDBM
344 if (p_ret)
345 *p_ret = n;
346 if (parent_ret)
347 *parent_ret = prev;
348
352646c7 349 if (next_ret) {
d1310b2e 350 orig_prev = prev;
d397712b 351 while (prev && offset > prev_entry->end) {
d1310b2e
CM
352 prev = rb_next(prev);
353 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
354 }
352646c7 355 *next_ret = prev;
d1310b2e
CM
356 prev = orig_prev;
357 }
358
352646c7 359 if (prev_ret) {
d1310b2e 360 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 361 while (prev && offset < prev_entry->start) {
d1310b2e
CM
362 prev = rb_prev(prev);
363 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
364 }
352646c7 365 *prev_ret = prev;
d1310b2e
CM
366 }
367 return NULL;
368}
369
12cfbad9
FDBM
370static inline struct rb_node *
371tree_search_for_insert(struct extent_io_tree *tree,
372 u64 offset,
373 struct rb_node ***p_ret,
374 struct rb_node **parent_ret)
d1310b2e 375{
352646c7 376 struct rb_node *next= NULL;
d1310b2e 377 struct rb_node *ret;
70dec807 378
352646c7 379 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 380 if (!ret)
352646c7 381 return next;
d1310b2e
CM
382 return ret;
383}
384
12cfbad9
FDBM
385static inline struct rb_node *tree_search(struct extent_io_tree *tree,
386 u64 offset)
387{
388 return tree_search_for_insert(tree, offset, NULL, NULL);
389}
390
d1310b2e
CM
391/*
392 * utility function to look for merge candidates inside a given range.
393 * Any extents with matching state are merged together into a single
394 * extent in the tree. Extents with EXTENT_IO in their state field
395 * are not merged because the end_io handlers need to be able to do
396 * operations on them without sleeping (or doing allocations/splits).
397 *
398 * This should be called with the tree lock held.
399 */
1bf85046
JM
400static void merge_state(struct extent_io_tree *tree,
401 struct extent_state *state)
d1310b2e
CM
402{
403 struct extent_state *other;
404 struct rb_node *other_node;
405
8882679e 406 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 407 return;
d1310b2e
CM
408
409 other_node = rb_prev(&state->rb_node);
410 if (other_node) {
411 other = rb_entry(other_node, struct extent_state, rb_node);
412 if (other->end == state->start - 1 &&
413 other->state == state->state) {
5c848198
NB
414 if (tree->private_data &&
415 is_data_inode(tree->private_data))
416 btrfs_merge_delalloc_extent(tree->private_data,
417 state, other);
d1310b2e 418 state->start = other->start;
d1310b2e 419 rb_erase(&other->rb_node, &tree->state);
27a3507d 420 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
421 free_extent_state(other);
422 }
423 }
424 other_node = rb_next(&state->rb_node);
425 if (other_node) {
426 other = rb_entry(other_node, struct extent_state, rb_node);
427 if (other->start == state->end + 1 &&
428 other->state == state->state) {
5c848198
NB
429 if (tree->private_data &&
430 is_data_inode(tree->private_data))
431 btrfs_merge_delalloc_extent(tree->private_data,
432 state, other);
df98b6e2 433 state->end = other->end;
df98b6e2 434 rb_erase(&other->rb_node, &tree->state);
27a3507d 435 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 436 free_extent_state(other);
d1310b2e
CM
437 }
438 }
d1310b2e
CM
439}
440
3150b699 441static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
442 struct extent_state *state, unsigned *bits,
443 struct extent_changeset *changeset);
3150b699 444
d1310b2e
CM
445/*
446 * insert an extent_state struct into the tree. 'bits' are set on the
447 * struct before it is inserted.
448 *
449 * This may return -EEXIST if the extent is already there, in which case the
450 * state struct is freed.
451 *
452 * The tree lock is not taken internally. This is a utility function and
453 * probably isn't what you want to call (see set/clear_extent_bit).
454 */
455static int insert_state(struct extent_io_tree *tree,
456 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
457 struct rb_node ***p,
458 struct rb_node **parent,
d38ed27f 459 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
460{
461 struct rb_node *node;
462
31b1a2bd 463 if (end < start)
efe120a0 464 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 465 end, start);
d1310b2e
CM
466 state->start = start;
467 state->end = end;
9ed74f2d 468
d38ed27f 469 set_state_bits(tree, state, bits, changeset);
3150b699 470
f2071b21 471 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
472 if (node) {
473 struct extent_state *found;
474 found = rb_entry(node, struct extent_state, rb_node);
62e85577 475 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 476 found->start, found->end, start, end);
d1310b2e
CM
477 return -EEXIST;
478 }
479 merge_state(tree, state);
480 return 0;
481}
482
483/*
484 * split a given extent state struct in two, inserting the preallocated
485 * struct 'prealloc' as the newly created second half. 'split' indicates an
486 * offset inside 'orig' where it should be split.
487 *
488 * Before calling,
489 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
490 * are two extent state structs in the tree:
491 * prealloc: [orig->start, split - 1]
492 * orig: [ split, orig->end ]
493 *
494 * The tree locks are not taken by this function. They need to be held
495 * by the caller.
496 */
497static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
498 struct extent_state *prealloc, u64 split)
499{
500 struct rb_node *node;
9ed74f2d 501
abbb55f4
NB
502 if (tree->private_data && is_data_inode(tree->private_data))
503 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 504
d1310b2e
CM
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
f2071b21
FM
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
d1310b2e 512 if (node) {
d1310b2e
CM
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517}
518
cdc6a395
LZ
519static struct extent_state *next_state(struct extent_state *state)
520{
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526}
527
d1310b2e
CM
528/*
529 * utility function to clear some bits in an extent state struct.
52042d8e 530 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
cdc6a395
LZ
535static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
fefdc557
QW
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
d1310b2e 539{
cdc6a395 540 struct extent_state *next;
9ee49a04 541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 542 int ret;
d1310b2e 543
0ca1f7ce 544 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
545 u64 range = state->end - state->start + 1;
546 WARN_ON(range > tree->dirty_bytes);
547 tree->dirty_bytes -= range;
548 }
a36bb5f9
NB
549
550 if (tree->private_data && is_data_inode(tree->private_data))
551 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
552
57599c7e
DS
553 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
554 BUG_ON(ret < 0);
32c00aff 555 state->state &= ~bits_to_clear;
d1310b2e
CM
556 if (wake)
557 wake_up(&state->wq);
0ca1f7ce 558 if (state->state == 0) {
cdc6a395 559 next = next_state(state);
27a3507d 560 if (extent_state_in_tree(state)) {
d1310b2e 561 rb_erase(&state->rb_node, &tree->state);
27a3507d 562 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
563 free_extent_state(state);
564 } else {
565 WARN_ON(1);
566 }
567 } else {
568 merge_state(tree, state);
cdc6a395 569 next = next_state(state);
d1310b2e 570 }
cdc6a395 571 return next;
d1310b2e
CM
572}
573
8233767a
XG
574static struct extent_state *
575alloc_extent_state_atomic(struct extent_state *prealloc)
576{
577 if (!prealloc)
578 prealloc = alloc_extent_state(GFP_ATOMIC);
579
580 return prealloc;
581}
582
48a3b636 583static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 584{
05912a3c
DS
585 struct inode *inode = tree->private_data;
586
587 btrfs_panic(btrfs_sb(inode->i_sb), err,
588 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
589}
590
d1310b2e
CM
591/*
592 * clear some bits on a range in the tree. This may require splitting
593 * or inserting elements in the tree, so the gfp mask is used to
594 * indicate which allocations or sleeping are allowed.
595 *
596 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
597 * the given range from the tree regardless of state (ie for truncate).
598 *
599 * the range [start, end] is inclusive.
600 *
6763af84 601 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 602 */
66b0c887 603int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
604 unsigned bits, int wake, int delete,
605 struct extent_state **cached_state,
606 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
607{
608 struct extent_state *state;
2c64c53d 609 struct extent_state *cached;
d1310b2e
CM
610 struct extent_state *prealloc = NULL;
611 struct rb_node *node;
5c939df5 612 u64 last_end;
d1310b2e 613 int err;
2ac55d41 614 int clear = 0;
d1310b2e 615
a5dee37d 616 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 617 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 618
7ee9e440
JB
619 if (bits & EXTENT_DELALLOC)
620 bits |= EXTENT_NORESERVE;
621
0ca1f7ce
YZ
622 if (delete)
623 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 624
8882679e 625 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 626 clear = 1;
d1310b2e 627again:
d0164adc 628 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
629 /*
630 * Don't care for allocation failure here because we might end
631 * up not needing the pre-allocated extent state at all, which
632 * is the case if we only have in the tree extent states that
633 * cover our input range and don't cover too any other range.
634 * If we end up needing a new extent state we allocate it later.
635 */
d1310b2e 636 prealloc = alloc_extent_state(mask);
d1310b2e
CM
637 }
638
cad321ad 639 spin_lock(&tree->lock);
2c64c53d
CM
640 if (cached_state) {
641 cached = *cached_state;
2ac55d41
JB
642
643 if (clear) {
644 *cached_state = NULL;
645 cached_state = NULL;
646 }
647
27a3507d
FM
648 if (cached && extent_state_in_tree(cached) &&
649 cached->start <= start && cached->end > start) {
2ac55d41 650 if (clear)
b7ac31b7 651 refcount_dec(&cached->refs);
2c64c53d 652 state = cached;
42daec29 653 goto hit_next;
2c64c53d 654 }
2ac55d41
JB
655 if (clear)
656 free_extent_state(cached);
2c64c53d 657 }
d1310b2e
CM
658 /*
659 * this search will find the extents that end after
660 * our range starts
661 */
80ea96b1 662 node = tree_search(tree, start);
d1310b2e
CM
663 if (!node)
664 goto out;
665 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 666hit_next:
d1310b2e
CM
667 if (state->start > end)
668 goto out;
669 WARN_ON(state->end < start);
5c939df5 670 last_end = state->end;
d1310b2e 671
0449314a 672 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
673 if (!(state->state & bits)) {
674 state = next_state(state);
0449314a 675 goto next;
cdc6a395 676 }
0449314a 677
d1310b2e
CM
678 /*
679 * | ---- desired range ---- |
680 * | state | or
681 * | ------------- state -------------- |
682 *
683 * We need to split the extent we found, and may flip
684 * bits on second half.
685 *
686 * If the extent we found extends past our range, we
687 * just split and search again. It'll get split again
688 * the next time though.
689 *
690 * If the extent we found is inside our range, we clear
691 * the desired bit on it.
692 */
693
694 if (state->start < start) {
8233767a
XG
695 prealloc = alloc_extent_state_atomic(prealloc);
696 BUG_ON(!prealloc);
d1310b2e 697 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
698 if (err)
699 extent_io_tree_panic(tree, err);
700
d1310b2e
CM
701 prealloc = NULL;
702 if (err)
703 goto out;
704 if (state->end <= end) {
fefdc557
QW
705 state = clear_state_bit(tree, state, &bits, wake,
706 changeset);
d1ac6e41 707 goto next;
d1310b2e
CM
708 }
709 goto search_again;
710 }
711 /*
712 * | ---- desired range ---- |
713 * | state |
714 * We need to split the extent, and clear the bit
715 * on the first half
716 */
717 if (state->start <= end && state->end > end) {
8233767a
XG
718 prealloc = alloc_extent_state_atomic(prealloc);
719 BUG_ON(!prealloc);
d1310b2e 720 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
721 if (err)
722 extent_io_tree_panic(tree, err);
723
d1310b2e
CM
724 if (wake)
725 wake_up(&state->wq);
42daec29 726
fefdc557 727 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 728
d1310b2e
CM
729 prealloc = NULL;
730 goto out;
731 }
42daec29 732
fefdc557 733 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 734next:
5c939df5
YZ
735 if (last_end == (u64)-1)
736 goto out;
737 start = last_end + 1;
cdc6a395 738 if (start <= end && state && !need_resched())
692e5759 739 goto hit_next;
d1310b2e
CM
740
741search_again:
742 if (start > end)
743 goto out;
cad321ad 744 spin_unlock(&tree->lock);
d0164adc 745 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
746 cond_resched();
747 goto again;
7ab5cb2a
DS
748
749out:
750 spin_unlock(&tree->lock);
751 if (prealloc)
752 free_extent_state(prealloc);
753
754 return 0;
755
d1310b2e 756}
d1310b2e 757
143bede5
JM
758static void wait_on_state(struct extent_io_tree *tree,
759 struct extent_state *state)
641f5219
CH
760 __releases(tree->lock)
761 __acquires(tree->lock)
d1310b2e
CM
762{
763 DEFINE_WAIT(wait);
764 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 765 spin_unlock(&tree->lock);
d1310b2e 766 schedule();
cad321ad 767 spin_lock(&tree->lock);
d1310b2e 768 finish_wait(&state->wq, &wait);
d1310b2e
CM
769}
770
771/*
772 * waits for one or more bits to clear on a range in the state tree.
773 * The range [start, end] is inclusive.
774 * The tree lock is taken by this function
775 */
41074888
DS
776static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
777 unsigned long bits)
d1310b2e
CM
778{
779 struct extent_state *state;
780 struct rb_node *node;
781
a5dee37d 782 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 783
cad321ad 784 spin_lock(&tree->lock);
d1310b2e
CM
785again:
786 while (1) {
787 /*
788 * this search will find all the extents that end after
789 * our range starts
790 */
80ea96b1 791 node = tree_search(tree, start);
c50d3e71 792process_node:
d1310b2e
CM
793 if (!node)
794 break;
795
796 state = rb_entry(node, struct extent_state, rb_node);
797
798 if (state->start > end)
799 goto out;
800
801 if (state->state & bits) {
802 start = state->start;
b7ac31b7 803 refcount_inc(&state->refs);
d1310b2e
CM
804 wait_on_state(tree, state);
805 free_extent_state(state);
806 goto again;
807 }
808 start = state->end + 1;
809
810 if (start > end)
811 break;
812
c50d3e71
FM
813 if (!cond_resched_lock(&tree->lock)) {
814 node = rb_next(node);
815 goto process_node;
816 }
d1310b2e
CM
817 }
818out:
cad321ad 819 spin_unlock(&tree->lock);
d1310b2e 820}
d1310b2e 821
1bf85046 822static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 823 struct extent_state *state,
d38ed27f 824 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 825{
9ee49a04 826 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 827 int ret;
9ed74f2d 828
e06a1fc9
NB
829 if (tree->private_data && is_data_inode(tree->private_data))
830 btrfs_set_delalloc_extent(tree->private_data, state, bits);
831
0ca1f7ce 832 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
833 u64 range = state->end - state->start + 1;
834 tree->dirty_bytes += range;
835 }
57599c7e
DS
836 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
837 BUG_ON(ret < 0);
0ca1f7ce 838 state->state |= bits_to_set;
d1310b2e
CM
839}
840
e38e2ed7
FM
841static void cache_state_if_flags(struct extent_state *state,
842 struct extent_state **cached_ptr,
9ee49a04 843 unsigned flags)
2c64c53d
CM
844{
845 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 846 if (!flags || (state->state & flags)) {
2c64c53d 847 *cached_ptr = state;
b7ac31b7 848 refcount_inc(&state->refs);
2c64c53d
CM
849 }
850 }
851}
852
e38e2ed7
FM
853static void cache_state(struct extent_state *state,
854 struct extent_state **cached_ptr)
855{
856 return cache_state_if_flags(state, cached_ptr,
8882679e 857 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
858}
859
d1310b2e 860/*
1edbb734
CM
861 * set some bits on a range in the tree. This may require allocations or
862 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 863 *
1edbb734
CM
864 * If any of the exclusive bits are set, this will fail with -EEXIST if some
865 * part of the range already has the desired bits set. The start of the
866 * existing range is returned in failed_start in this case.
d1310b2e 867 *
1edbb734 868 * [start, end] is inclusive This takes the tree lock.
d1310b2e 869 */
1edbb734 870
3fbe5c02
JM
871static int __must_check
872__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 873 unsigned bits, unsigned exclusive_bits,
41074888 874 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 875 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
876{
877 struct extent_state *state;
878 struct extent_state *prealloc = NULL;
879 struct rb_node *node;
12cfbad9
FDBM
880 struct rb_node **p;
881 struct rb_node *parent;
d1310b2e 882 int err = 0;
d1310b2e
CM
883 u64 last_start;
884 u64 last_end;
42daec29 885
a5dee37d 886 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 887 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 888
d1310b2e 889again:
d0164adc 890 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
891 /*
892 * Don't care for allocation failure here because we might end
893 * up not needing the pre-allocated extent state at all, which
894 * is the case if we only have in the tree extent states that
895 * cover our input range and don't cover too any other range.
896 * If we end up needing a new extent state we allocate it later.
897 */
d1310b2e 898 prealloc = alloc_extent_state(mask);
d1310b2e
CM
899 }
900
cad321ad 901 spin_lock(&tree->lock);
9655d298
CM
902 if (cached_state && *cached_state) {
903 state = *cached_state;
df98b6e2 904 if (state->start <= start && state->end > start &&
27a3507d 905 extent_state_in_tree(state)) {
9655d298
CM
906 node = &state->rb_node;
907 goto hit_next;
908 }
909 }
d1310b2e
CM
910 /*
911 * this search will find all the extents that end after
912 * our range starts.
913 */
12cfbad9 914 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 915 if (!node) {
8233767a
XG
916 prealloc = alloc_extent_state_atomic(prealloc);
917 BUG_ON(!prealloc);
12cfbad9 918 err = insert_state(tree, prealloc, start, end,
d38ed27f 919 &p, &parent, &bits, changeset);
c2d904e0
JM
920 if (err)
921 extent_io_tree_panic(tree, err);
922
c42ac0bc 923 cache_state(prealloc, cached_state);
d1310b2e 924 prealloc = NULL;
d1310b2e
CM
925 goto out;
926 }
d1310b2e 927 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 928hit_next:
d1310b2e
CM
929 last_start = state->start;
930 last_end = state->end;
931
932 /*
933 * | ---- desired range ---- |
934 * | state |
935 *
936 * Just lock what we found and keep going
937 */
938 if (state->start == start && state->end <= end) {
1edbb734 939 if (state->state & exclusive_bits) {
d1310b2e
CM
940 *failed_start = state->start;
941 err = -EEXIST;
942 goto out;
943 }
42daec29 944
d38ed27f 945 set_state_bits(tree, state, &bits, changeset);
2c64c53d 946 cache_state(state, cached_state);
d1310b2e 947 merge_state(tree, state);
5c939df5
YZ
948 if (last_end == (u64)-1)
949 goto out;
950 start = last_end + 1;
d1ac6e41
LB
951 state = next_state(state);
952 if (start < end && state && state->start == start &&
953 !need_resched())
954 goto hit_next;
d1310b2e
CM
955 goto search_again;
956 }
957
958 /*
959 * | ---- desired range ---- |
960 * | state |
961 * or
962 * | ------------- state -------------- |
963 *
964 * We need to split the extent we found, and may flip bits on
965 * second half.
966 *
967 * If the extent we found extends past our
968 * range, we just split and search again. It'll get split
969 * again the next time though.
970 *
971 * If the extent we found is inside our range, we set the
972 * desired bit on it.
973 */
974 if (state->start < start) {
1edbb734 975 if (state->state & exclusive_bits) {
d1310b2e
CM
976 *failed_start = start;
977 err = -EEXIST;
978 goto out;
979 }
8233767a
XG
980
981 prealloc = alloc_extent_state_atomic(prealloc);
982 BUG_ON(!prealloc);
d1310b2e 983 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
984 if (err)
985 extent_io_tree_panic(tree, err);
986
d1310b2e
CM
987 prealloc = NULL;
988 if (err)
989 goto out;
990 if (state->end <= end) {
d38ed27f 991 set_state_bits(tree, state, &bits, changeset);
2c64c53d 992 cache_state(state, cached_state);
d1310b2e 993 merge_state(tree, state);
5c939df5
YZ
994 if (last_end == (u64)-1)
995 goto out;
996 start = last_end + 1;
d1ac6e41
LB
997 state = next_state(state);
998 if (start < end && state && state->start == start &&
999 !need_resched())
1000 goto hit_next;
d1310b2e
CM
1001 }
1002 goto search_again;
1003 }
1004 /*
1005 * | ---- desired range ---- |
1006 * | state | or | state |
1007 *
1008 * There's a hole, we need to insert something in it and
1009 * ignore the extent we found.
1010 */
1011 if (state->start > start) {
1012 u64 this_end;
1013 if (end < last_start)
1014 this_end = end;
1015 else
d397712b 1016 this_end = last_start - 1;
8233767a
XG
1017
1018 prealloc = alloc_extent_state_atomic(prealloc);
1019 BUG_ON(!prealloc);
c7f895a2
XG
1020
1021 /*
1022 * Avoid to free 'prealloc' if it can be merged with
1023 * the later extent.
1024 */
d1310b2e 1025 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1026 NULL, NULL, &bits, changeset);
c2d904e0
JM
1027 if (err)
1028 extent_io_tree_panic(tree, err);
1029
9ed74f2d
JB
1030 cache_state(prealloc, cached_state);
1031 prealloc = NULL;
d1310b2e
CM
1032 start = this_end + 1;
1033 goto search_again;
1034 }
1035 /*
1036 * | ---- desired range ---- |
1037 * | state |
1038 * We need to split the extent, and set the bit
1039 * on the first half
1040 */
1041 if (state->start <= end && state->end > end) {
1edbb734 1042 if (state->state & exclusive_bits) {
d1310b2e
CM
1043 *failed_start = start;
1044 err = -EEXIST;
1045 goto out;
1046 }
8233767a
XG
1047
1048 prealloc = alloc_extent_state_atomic(prealloc);
1049 BUG_ON(!prealloc);
d1310b2e 1050 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1051 if (err)
1052 extent_io_tree_panic(tree, err);
d1310b2e 1053
d38ed27f 1054 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1055 cache_state(prealloc, cached_state);
d1310b2e
CM
1056 merge_state(tree, prealloc);
1057 prealloc = NULL;
1058 goto out;
1059 }
1060
b5a4ba14
DS
1061search_again:
1062 if (start > end)
1063 goto out;
1064 spin_unlock(&tree->lock);
1065 if (gfpflags_allow_blocking(mask))
1066 cond_resched();
1067 goto again;
d1310b2e
CM
1068
1069out:
cad321ad 1070 spin_unlock(&tree->lock);
d1310b2e
CM
1071 if (prealloc)
1072 free_extent_state(prealloc);
1073
1074 return err;
1075
d1310b2e 1076}
d1310b2e 1077
41074888 1078int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1079 unsigned bits, u64 * failed_start,
41074888 1080 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1081{
1082 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1083 cached_state, mask, NULL);
3fbe5c02
JM
1084}
1085
1086
462d6fac 1087/**
10983f2e
LB
1088 * convert_extent_bit - convert all bits in a given range from one bit to
1089 * another
462d6fac
JB
1090 * @tree: the io tree to search
1091 * @start: the start offset in bytes
1092 * @end: the end offset in bytes (inclusive)
1093 * @bits: the bits to set in this range
1094 * @clear_bits: the bits to clear in this range
e6138876 1095 * @cached_state: state that we're going to cache
462d6fac
JB
1096 *
1097 * This will go through and set bits for the given range. If any states exist
1098 * already in this range they are set with the given bit and cleared of the
1099 * clear_bits. This is only meant to be used by things that are mergeable, ie
1100 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1101 * boundary bits like LOCK.
210aa277
DS
1102 *
1103 * All allocations are done with GFP_NOFS.
462d6fac
JB
1104 */
1105int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1106 unsigned bits, unsigned clear_bits,
210aa277 1107 struct extent_state **cached_state)
462d6fac
JB
1108{
1109 struct extent_state *state;
1110 struct extent_state *prealloc = NULL;
1111 struct rb_node *node;
12cfbad9
FDBM
1112 struct rb_node **p;
1113 struct rb_node *parent;
462d6fac
JB
1114 int err = 0;
1115 u64 last_start;
1116 u64 last_end;
c8fd3de7 1117 bool first_iteration = true;
462d6fac 1118
a5dee37d 1119 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1120 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1121 clear_bits);
8d599ae1 1122
462d6fac 1123again:
210aa277 1124 if (!prealloc) {
c8fd3de7
FM
1125 /*
1126 * Best effort, don't worry if extent state allocation fails
1127 * here for the first iteration. We might have a cached state
1128 * that matches exactly the target range, in which case no
1129 * extent state allocations are needed. We'll only know this
1130 * after locking the tree.
1131 */
210aa277 1132 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1133 if (!prealloc && !first_iteration)
462d6fac
JB
1134 return -ENOMEM;
1135 }
1136
1137 spin_lock(&tree->lock);
e6138876
JB
1138 if (cached_state && *cached_state) {
1139 state = *cached_state;
1140 if (state->start <= start && state->end > start &&
27a3507d 1141 extent_state_in_tree(state)) {
e6138876
JB
1142 node = &state->rb_node;
1143 goto hit_next;
1144 }
1145 }
1146
462d6fac
JB
1147 /*
1148 * this search will find all the extents that end after
1149 * our range starts.
1150 */
12cfbad9 1151 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1152 if (!node) {
1153 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1154 if (!prealloc) {
1155 err = -ENOMEM;
1156 goto out;
1157 }
12cfbad9 1158 err = insert_state(tree, prealloc, start, end,
d38ed27f 1159 &p, &parent, &bits, NULL);
c2d904e0
JM
1160 if (err)
1161 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1162 cache_state(prealloc, cached_state);
1163 prealloc = NULL;
462d6fac
JB
1164 goto out;
1165 }
1166 state = rb_entry(node, struct extent_state, rb_node);
1167hit_next:
1168 last_start = state->start;
1169 last_end = state->end;
1170
1171 /*
1172 * | ---- desired range ---- |
1173 * | state |
1174 *
1175 * Just lock what we found and keep going
1176 */
1177 if (state->start == start && state->end <= end) {
d38ed27f 1178 set_state_bits(tree, state, &bits, NULL);
e6138876 1179 cache_state(state, cached_state);
fefdc557 1180 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1181 if (last_end == (u64)-1)
1182 goto out;
462d6fac 1183 start = last_end + 1;
d1ac6e41
LB
1184 if (start < end && state && state->start == start &&
1185 !need_resched())
1186 goto hit_next;
462d6fac
JB
1187 goto search_again;
1188 }
1189
1190 /*
1191 * | ---- desired range ---- |
1192 * | state |
1193 * or
1194 * | ------------- state -------------- |
1195 *
1196 * We need to split the extent we found, and may flip bits on
1197 * second half.
1198 *
1199 * If the extent we found extends past our
1200 * range, we just split and search again. It'll get split
1201 * again the next time though.
1202 *
1203 * If the extent we found is inside our range, we set the
1204 * desired bit on it.
1205 */
1206 if (state->start < start) {
1207 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1208 if (!prealloc) {
1209 err = -ENOMEM;
1210 goto out;
1211 }
462d6fac 1212 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1213 if (err)
1214 extent_io_tree_panic(tree, err);
462d6fac
JB
1215 prealloc = NULL;
1216 if (err)
1217 goto out;
1218 if (state->end <= end) {
d38ed27f 1219 set_state_bits(tree, state, &bits, NULL);
e6138876 1220 cache_state(state, cached_state);
fefdc557
QW
1221 state = clear_state_bit(tree, state, &clear_bits, 0,
1222 NULL);
462d6fac
JB
1223 if (last_end == (u64)-1)
1224 goto out;
1225 start = last_end + 1;
d1ac6e41
LB
1226 if (start < end && state && state->start == start &&
1227 !need_resched())
1228 goto hit_next;
462d6fac
JB
1229 }
1230 goto search_again;
1231 }
1232 /*
1233 * | ---- desired range ---- |
1234 * | state | or | state |
1235 *
1236 * There's a hole, we need to insert something in it and
1237 * ignore the extent we found.
1238 */
1239 if (state->start > start) {
1240 u64 this_end;
1241 if (end < last_start)
1242 this_end = end;
1243 else
1244 this_end = last_start - 1;
1245
1246 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1247 if (!prealloc) {
1248 err = -ENOMEM;
1249 goto out;
1250 }
462d6fac
JB
1251
1252 /*
1253 * Avoid to free 'prealloc' if it can be merged with
1254 * the later extent.
1255 */
1256 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1257 NULL, NULL, &bits, NULL);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
e6138876 1260 cache_state(prealloc, cached_state);
462d6fac
JB
1261 prealloc = NULL;
1262 start = this_end + 1;
1263 goto search_again;
1264 }
1265 /*
1266 * | ---- desired range ---- |
1267 * | state |
1268 * We need to split the extent, and set the bit
1269 * on the first half
1270 */
1271 if (state->start <= end && state->end > end) {
1272 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1273 if (!prealloc) {
1274 err = -ENOMEM;
1275 goto out;
1276 }
462d6fac
JB
1277
1278 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1279 if (err)
1280 extent_io_tree_panic(tree, err);
462d6fac 1281
d38ed27f 1282 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1283 cache_state(prealloc, cached_state);
fefdc557 1284 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1285 prealloc = NULL;
1286 goto out;
1287 }
1288
462d6fac
JB
1289search_again:
1290 if (start > end)
1291 goto out;
1292 spin_unlock(&tree->lock);
210aa277 1293 cond_resched();
c8fd3de7 1294 first_iteration = false;
462d6fac 1295 goto again;
462d6fac
JB
1296
1297out:
1298 spin_unlock(&tree->lock);
1299 if (prealloc)
1300 free_extent_state(prealloc);
1301
1302 return err;
462d6fac
JB
1303}
1304
d1310b2e 1305/* wrappers around set/clear extent bit */
d38ed27f 1306int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1307 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1308{
1309 /*
1310 * We don't support EXTENT_LOCKED yet, as current changeset will
1311 * record any bits changed, so for EXTENT_LOCKED case, it will
1312 * either fail with -EEXIST or changeset will record the whole
1313 * range.
1314 */
1315 BUG_ON(bits & EXTENT_LOCKED);
1316
2c53b912 1317 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1318 changeset);
1319}
1320
fefdc557
QW
1321int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1322 unsigned bits, int wake, int delete,
ae0f1625 1323 struct extent_state **cached)
fefdc557
QW
1324{
1325 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1326 cached, GFP_NOFS, NULL);
fefdc557
QW
1327}
1328
fefdc557 1329int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1330 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1331{
1332 /*
1333 * Don't support EXTENT_LOCKED case, same reason as
1334 * set_record_extent_bits().
1335 */
1336 BUG_ON(bits & EXTENT_LOCKED);
1337
f734c44a 1338 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1339 changeset);
1340}
1341
d352ac68
CM
1342/*
1343 * either insert or lock state struct between start and end use mask to tell
1344 * us if waiting is desired.
1345 */
1edbb734 1346int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1347 struct extent_state **cached_state)
d1310b2e
CM
1348{
1349 int err;
1350 u64 failed_start;
9ee49a04 1351
d1310b2e 1352 while (1) {
ff13db41 1353 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1354 EXTENT_LOCKED, &failed_start,
d38ed27f 1355 cached_state, GFP_NOFS, NULL);
d0082371 1356 if (err == -EEXIST) {
d1310b2e
CM
1357 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1358 start = failed_start;
d0082371 1359 } else
d1310b2e 1360 break;
d1310b2e
CM
1361 WARN_ON(start > end);
1362 }
1363 return err;
1364}
d1310b2e 1365
d0082371 1366int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1367{
1368 int err;
1369 u64 failed_start;
1370
3fbe5c02 1371 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1372 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1373 if (err == -EEXIST) {
1374 if (failed_start > start)
1375 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1376 EXTENT_LOCKED, 1, 0, NULL);
25179201 1377 return 0;
6643558d 1378 }
25179201
JB
1379 return 1;
1380}
25179201 1381
bd1fa4f0 1382void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1383{
09cbfeaf
KS
1384 unsigned long index = start >> PAGE_SHIFT;
1385 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1386 struct page *page;
1387
1388 while (index <= end_index) {
1389 page = find_get_page(inode->i_mapping, index);
1390 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1391 clear_page_dirty_for_io(page);
09cbfeaf 1392 put_page(page);
4adaa611
CM
1393 index++;
1394 }
4adaa611
CM
1395}
1396
f6311572 1397void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1398{
09cbfeaf
KS
1399 unsigned long index = start >> PAGE_SHIFT;
1400 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1401 struct page *page;
1402
1403 while (index <= end_index) {
1404 page = find_get_page(inode->i_mapping, index);
1405 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1406 __set_page_dirty_nobuffers(page);
8d38633c 1407 account_page_redirty(page);
09cbfeaf 1408 put_page(page);
4adaa611
CM
1409 index++;
1410 }
4adaa611
CM
1411}
1412
d352ac68
CM
1413/* find the first state struct with 'bits' set after 'start', and
1414 * return it. tree->lock must be held. NULL will returned if
1415 * nothing was found after 'start'
1416 */
48a3b636
ES
1417static struct extent_state *
1418find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1419 u64 start, unsigned bits)
d7fc640e
CM
1420{
1421 struct rb_node *node;
1422 struct extent_state *state;
1423
1424 /*
1425 * this search will find all the extents that end after
1426 * our range starts.
1427 */
1428 node = tree_search(tree, start);
d397712b 1429 if (!node)
d7fc640e 1430 goto out;
d7fc640e 1431
d397712b 1432 while (1) {
d7fc640e 1433 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1434 if (state->end >= start && (state->state & bits))
d7fc640e 1435 return state;
d397712b 1436
d7fc640e
CM
1437 node = rb_next(node);
1438 if (!node)
1439 break;
1440 }
1441out:
1442 return NULL;
1443}
d7fc640e 1444
69261c4b
XG
1445/*
1446 * find the first offset in the io tree with 'bits' set. zero is
1447 * returned if we find something, and *start_ret and *end_ret are
1448 * set to reflect the state struct that was found.
1449 *
477d7eaf 1450 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1451 */
1452int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1453 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1454 struct extent_state **cached_state)
69261c4b
XG
1455{
1456 struct extent_state *state;
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
e6138876
JB
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
27a3507d 1462 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1463 while ((state = next_state(state)) != NULL) {
e6138876
JB
1464 if (state->state & bits)
1465 goto got_it;
e6138876
JB
1466 }
1467 free_extent_state(*cached_state);
1468 *cached_state = NULL;
1469 goto out;
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 }
1474
69261c4b 1475 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1476got_it:
69261c4b 1477 if (state) {
e38e2ed7 1478 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1479 *start_ret = state->start;
1480 *end_ret = state->end;
1481 ret = 0;
1482 }
e6138876 1483out:
69261c4b
XG
1484 spin_unlock(&tree->lock);
1485 return ret;
1486}
1487
d352ac68
CM
1488/*
1489 * find a contiguous range of bytes in the file marked as delalloc, not
1490 * more than 'max_bytes'. start and end are used to return the range,
1491 *
3522e903 1492 * true is returned if we find something, false if nothing was in the tree
d352ac68 1493 */
3522e903 1494static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1495 u64 *start, u64 *end, u64 max_bytes,
1496 struct extent_state **cached_state)
d1310b2e
CM
1497{
1498 struct rb_node *node;
1499 struct extent_state *state;
1500 u64 cur_start = *start;
3522e903 1501 bool found = false;
d1310b2e
CM
1502 u64 total_bytes = 0;
1503
cad321ad 1504 spin_lock(&tree->lock);
c8b97818 1505
d1310b2e
CM
1506 /*
1507 * this search will find all the extents that end after
1508 * our range starts.
1509 */
80ea96b1 1510 node = tree_search(tree, cur_start);
2b114d1d 1511 if (!node) {
3522e903 1512 *end = (u64)-1;
d1310b2e
CM
1513 goto out;
1514 }
1515
d397712b 1516 while (1) {
d1310b2e 1517 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1518 if (found && (state->start != cur_start ||
1519 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1520 goto out;
1521 }
1522 if (!(state->state & EXTENT_DELALLOC)) {
1523 if (!found)
1524 *end = state->end;
1525 goto out;
1526 }
c2a128d2 1527 if (!found) {
d1310b2e 1528 *start = state->start;
c2a128d2 1529 *cached_state = state;
b7ac31b7 1530 refcount_inc(&state->refs);
c2a128d2 1531 }
3522e903 1532 found = true;
d1310b2e
CM
1533 *end = state->end;
1534 cur_start = state->end + 1;
1535 node = rb_next(node);
d1310b2e 1536 total_bytes += state->end - state->start + 1;
7bf811a5 1537 if (total_bytes >= max_bytes)
573aecaf 1538 break;
573aecaf 1539 if (!node)
d1310b2e
CM
1540 break;
1541 }
1542out:
cad321ad 1543 spin_unlock(&tree->lock);
d1310b2e
CM
1544 return found;
1545}
1546
da2c7009
LB
1547static int __process_pages_contig(struct address_space *mapping,
1548 struct page *locked_page,
1549 pgoff_t start_index, pgoff_t end_index,
1550 unsigned long page_ops, pgoff_t *index_ret);
1551
143bede5
JM
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
c8b97818 1555{
09cbfeaf
KS
1556 unsigned long index = start >> PAGE_SHIFT;
1557 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1558
76c0021d 1559 ASSERT(locked_page);
c8b97818 1560 if (index == locked_page->index && end_index == index)
143bede5 1561 return;
c8b97818 1562
76c0021d
LB
1563 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1564 PAGE_UNLOCK, NULL);
c8b97818
CM
1565}
1566
1567static noinline int lock_delalloc_pages(struct inode *inode,
1568 struct page *locked_page,
1569 u64 delalloc_start,
1570 u64 delalloc_end)
1571{
09cbfeaf 1572 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1573 unsigned long index_ret = index;
09cbfeaf 1574 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1575 int ret;
c8b97818 1576
76c0021d 1577 ASSERT(locked_page);
c8b97818
CM
1578 if (index == locked_page->index && index == end_index)
1579 return 0;
1580
76c0021d
LB
1581 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1582 end_index, PAGE_LOCK, &index_ret);
1583 if (ret == -EAGAIN)
1584 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1585 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1586 return ret;
1587}
1588
1589/*
3522e903
LF
1590 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1591 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1592 *
3522e903
LF
1593 * Return: true if we find something
1594 * false if nothing was in the tree
c8b97818 1595 */
ce9f967f 1596EXPORT_FOR_TESTS
3522e903 1597noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe
JB
1598 struct extent_io_tree *tree,
1599 struct page *locked_page, u64 *start,
917aacec 1600 u64 *end)
c8b97818 1601{
917aacec 1602 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1603 u64 delalloc_start;
1604 u64 delalloc_end;
3522e903 1605 bool found;
9655d298 1606 struct extent_state *cached_state = NULL;
c8b97818
CM
1607 int ret;
1608 int loops = 0;
1609
1610again:
1611 /* step one, find a bunch of delalloc bytes starting at start */
1612 delalloc_start = *start;
1613 delalloc_end = 0;
1614 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1615 max_bytes, &cached_state);
70b99e69 1616 if (!found || delalloc_end <= *start) {
c8b97818
CM
1617 *start = delalloc_start;
1618 *end = delalloc_end;
c2a128d2 1619 free_extent_state(cached_state);
3522e903 1620 return false;
c8b97818
CM
1621 }
1622
70b99e69
CM
1623 /*
1624 * start comes from the offset of locked_page. We have to lock
1625 * pages in order, so we can't process delalloc bytes before
1626 * locked_page
1627 */
d397712b 1628 if (delalloc_start < *start)
70b99e69 1629 delalloc_start = *start;
70b99e69 1630
c8b97818
CM
1631 /*
1632 * make sure to limit the number of pages we try to lock down
c8b97818 1633 */
7bf811a5
JB
1634 if (delalloc_end + 1 - delalloc_start > max_bytes)
1635 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1636
c8b97818
CM
1637 /* step two, lock all the pages after the page that has start */
1638 ret = lock_delalloc_pages(inode, locked_page,
1639 delalloc_start, delalloc_end);
9bfd61d9 1640 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1641 if (ret == -EAGAIN) {
1642 /* some of the pages are gone, lets avoid looping by
1643 * shortening the size of the delalloc range we're searching
1644 */
9655d298 1645 free_extent_state(cached_state);
7d788742 1646 cached_state = NULL;
c8b97818 1647 if (!loops) {
09cbfeaf 1648 max_bytes = PAGE_SIZE;
c8b97818
CM
1649 loops = 1;
1650 goto again;
1651 } else {
3522e903 1652 found = false;
c8b97818
CM
1653 goto out_failed;
1654 }
1655 }
c8b97818
CM
1656
1657 /* step three, lock the state bits for the whole range */
ff13db41 1658 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1659
1660 /* then test to make sure it is all still delalloc */
1661 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1662 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1663 if (!ret) {
9655d298 1664 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1665 &cached_state);
c8b97818
CM
1666 __unlock_for_delalloc(inode, locked_page,
1667 delalloc_start, delalloc_end);
1668 cond_resched();
1669 goto again;
1670 }
9655d298 1671 free_extent_state(cached_state);
c8b97818
CM
1672 *start = delalloc_start;
1673 *end = delalloc_end;
1674out_failed:
1675 return found;
1676}
1677
da2c7009
LB
1678static int __process_pages_contig(struct address_space *mapping,
1679 struct page *locked_page,
1680 pgoff_t start_index, pgoff_t end_index,
1681 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1682{
873695b3 1683 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1684 unsigned long pages_locked = 0;
873695b3 1685 pgoff_t index = start_index;
c8b97818 1686 struct page *pages[16];
873695b3 1687 unsigned ret;
da2c7009 1688 int err = 0;
c8b97818 1689 int i;
771ed689 1690
da2c7009
LB
1691 if (page_ops & PAGE_LOCK) {
1692 ASSERT(page_ops == PAGE_LOCK);
1693 ASSERT(index_ret && *index_ret == start_index);
1694 }
1695
704de49d 1696 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1697 mapping_set_error(mapping, -EIO);
704de49d 1698
d397712b 1699 while (nr_pages > 0) {
873695b3 1700 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1701 min_t(unsigned long,
1702 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1703 if (ret == 0) {
1704 /*
1705 * Only if we're going to lock these pages,
1706 * can we find nothing at @index.
1707 */
1708 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1709 err = -EAGAIN;
1710 goto out;
da2c7009 1711 }
8b62b72b 1712
da2c7009 1713 for (i = 0; i < ret; i++) {
c2790a2e 1714 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1715 SetPagePrivate2(pages[i]);
1716
c8b97818 1717 if (pages[i] == locked_page) {
09cbfeaf 1718 put_page(pages[i]);
da2c7009 1719 pages_locked++;
c8b97818
CM
1720 continue;
1721 }
c2790a2e 1722 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1723 clear_page_dirty_for_io(pages[i]);
c2790a2e 1724 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1725 set_page_writeback(pages[i]);
704de49d
FM
1726 if (page_ops & PAGE_SET_ERROR)
1727 SetPageError(pages[i]);
c2790a2e 1728 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1729 end_page_writeback(pages[i]);
c2790a2e 1730 if (page_ops & PAGE_UNLOCK)
771ed689 1731 unlock_page(pages[i]);
da2c7009
LB
1732 if (page_ops & PAGE_LOCK) {
1733 lock_page(pages[i]);
1734 if (!PageDirty(pages[i]) ||
1735 pages[i]->mapping != mapping) {
1736 unlock_page(pages[i]);
1737 put_page(pages[i]);
1738 err = -EAGAIN;
1739 goto out;
1740 }
1741 }
09cbfeaf 1742 put_page(pages[i]);
da2c7009 1743 pages_locked++;
c8b97818
CM
1744 }
1745 nr_pages -= ret;
1746 index += ret;
1747 cond_resched();
1748 }
da2c7009
LB
1749out:
1750 if (err && index_ret)
1751 *index_ret = start_index + pages_locked - 1;
1752 return err;
c8b97818 1753}
c8b97818 1754
873695b3
LB
1755void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1756 u64 delalloc_end, struct page *locked_page,
1757 unsigned clear_bits,
1758 unsigned long page_ops)
1759{
1760 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1761 NULL);
873695b3
LB
1762
1763 __process_pages_contig(inode->i_mapping, locked_page,
1764 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1765 page_ops, NULL);
873695b3
LB
1766}
1767
d352ac68
CM
1768/*
1769 * count the number of bytes in the tree that have a given bit(s)
1770 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1771 * cached. The total number found is returned.
1772 */
d1310b2e
CM
1773u64 count_range_bits(struct extent_io_tree *tree,
1774 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1775 unsigned bits, int contig)
d1310b2e
CM
1776{
1777 struct rb_node *node;
1778 struct extent_state *state;
1779 u64 cur_start = *start;
1780 u64 total_bytes = 0;
ec29ed5b 1781 u64 last = 0;
d1310b2e
CM
1782 int found = 0;
1783
fae7f21c 1784 if (WARN_ON(search_end <= cur_start))
d1310b2e 1785 return 0;
d1310b2e 1786
cad321ad 1787 spin_lock(&tree->lock);
d1310b2e
CM
1788 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1789 total_bytes = tree->dirty_bytes;
1790 goto out;
1791 }
1792 /*
1793 * this search will find all the extents that end after
1794 * our range starts.
1795 */
80ea96b1 1796 node = tree_search(tree, cur_start);
d397712b 1797 if (!node)
d1310b2e 1798 goto out;
d1310b2e 1799
d397712b 1800 while (1) {
d1310b2e
CM
1801 state = rb_entry(node, struct extent_state, rb_node);
1802 if (state->start > search_end)
1803 break;
ec29ed5b
CM
1804 if (contig && found && state->start > last + 1)
1805 break;
1806 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1807 total_bytes += min(search_end, state->end) + 1 -
1808 max(cur_start, state->start);
1809 if (total_bytes >= max_bytes)
1810 break;
1811 if (!found) {
af60bed2 1812 *start = max(cur_start, state->start);
d1310b2e
CM
1813 found = 1;
1814 }
ec29ed5b
CM
1815 last = state->end;
1816 } else if (contig && found) {
1817 break;
d1310b2e
CM
1818 }
1819 node = rb_next(node);
1820 if (!node)
1821 break;
1822 }
1823out:
cad321ad 1824 spin_unlock(&tree->lock);
d1310b2e
CM
1825 return total_bytes;
1826}
b2950863 1827
d352ac68
CM
1828/*
1829 * set the private field for a given byte offset in the tree. If there isn't
1830 * an extent_state there already, this does nothing.
1831 */
f827ba9a 1832static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1833 struct io_failure_record *failrec)
d1310b2e
CM
1834{
1835 struct rb_node *node;
1836 struct extent_state *state;
1837 int ret = 0;
1838
cad321ad 1839 spin_lock(&tree->lock);
d1310b2e
CM
1840 /*
1841 * this search will find all the extents that end after
1842 * our range starts.
1843 */
80ea96b1 1844 node = tree_search(tree, start);
2b114d1d 1845 if (!node) {
d1310b2e
CM
1846 ret = -ENOENT;
1847 goto out;
1848 }
1849 state = rb_entry(node, struct extent_state, rb_node);
1850 if (state->start != start) {
1851 ret = -ENOENT;
1852 goto out;
1853 }
47dc196a 1854 state->failrec = failrec;
d1310b2e 1855out:
cad321ad 1856 spin_unlock(&tree->lock);
d1310b2e
CM
1857 return ret;
1858}
1859
f827ba9a 1860static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1861 struct io_failure_record **failrec)
d1310b2e
CM
1862{
1863 struct rb_node *node;
1864 struct extent_state *state;
1865 int ret = 0;
1866
cad321ad 1867 spin_lock(&tree->lock);
d1310b2e
CM
1868 /*
1869 * this search will find all the extents that end after
1870 * our range starts.
1871 */
80ea96b1 1872 node = tree_search(tree, start);
2b114d1d 1873 if (!node) {
d1310b2e
CM
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state = rb_entry(node, struct extent_state, rb_node);
1878 if (state->start != start) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
47dc196a 1882 *failrec = state->failrec;
d1310b2e 1883out:
cad321ad 1884 spin_unlock(&tree->lock);
d1310b2e
CM
1885 return ret;
1886}
1887
1888/*
1889 * searches a range in the state tree for a given mask.
70dec807 1890 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1891 * has the bits set. Otherwise, 1 is returned if any bit in the
1892 * range is found set.
1893 */
1894int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1895 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1896{
1897 struct extent_state *state = NULL;
1898 struct rb_node *node;
1899 int bitset = 0;
d1310b2e 1900
cad321ad 1901 spin_lock(&tree->lock);
27a3507d 1902 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1903 cached->end > start)
9655d298
CM
1904 node = &cached->rb_node;
1905 else
1906 node = tree_search(tree, start);
d1310b2e
CM
1907 while (node && start <= end) {
1908 state = rb_entry(node, struct extent_state, rb_node);
1909
1910 if (filled && state->start > start) {
1911 bitset = 0;
1912 break;
1913 }
1914
1915 if (state->start > end)
1916 break;
1917
1918 if (state->state & bits) {
1919 bitset = 1;
1920 if (!filled)
1921 break;
1922 } else if (filled) {
1923 bitset = 0;
1924 break;
1925 }
46562cec
CM
1926
1927 if (state->end == (u64)-1)
1928 break;
1929
d1310b2e
CM
1930 start = state->end + 1;
1931 if (start > end)
1932 break;
1933 node = rb_next(node);
1934 if (!node) {
1935 if (filled)
1936 bitset = 0;
1937 break;
1938 }
1939 }
cad321ad 1940 spin_unlock(&tree->lock);
d1310b2e
CM
1941 return bitset;
1942}
d1310b2e
CM
1943
1944/*
1945 * helper function to set a given page up to date if all the
1946 * extents in the tree for that page are up to date
1947 */
143bede5 1948static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1949{
4eee4fa4 1950 u64 start = page_offset(page);
09cbfeaf 1951 u64 end = start + PAGE_SIZE - 1;
9655d298 1952 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1953 SetPageUptodate(page);
d1310b2e
CM
1954}
1955
7870d082
JB
1956int free_io_failure(struct extent_io_tree *failure_tree,
1957 struct extent_io_tree *io_tree,
1958 struct io_failure_record *rec)
4a54c8c1
JS
1959{
1960 int ret;
1961 int err = 0;
4a54c8c1 1962
47dc196a 1963 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1964 ret = clear_extent_bits(failure_tree, rec->start,
1965 rec->start + rec->len - 1,
91166212 1966 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1967 if (ret)
1968 err = ret;
1969
7870d082 1970 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1971 rec->start + rec->len - 1,
91166212 1972 EXTENT_DAMAGED);
53b381b3
DW
1973 if (ret && !err)
1974 err = ret;
4a54c8c1
JS
1975
1976 kfree(rec);
1977 return err;
1978}
1979
4a54c8c1
JS
1980/*
1981 * this bypasses the standard btrfs submit functions deliberately, as
1982 * the standard behavior is to write all copies in a raid setup. here we only
1983 * want to write the one bad copy. so we do the mapping for ourselves and issue
1984 * submit_bio directly.
3ec706c8 1985 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1986 * actually prevents the read that triggered the error from finishing.
1987 * currently, there can be no more than two copies of every data bit. thus,
1988 * exactly one rewrite is required.
1989 */
6ec656bc
JB
1990int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1991 u64 length, u64 logical, struct page *page,
1992 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1993{
1994 struct bio *bio;
1995 struct btrfs_device *dev;
4a54c8c1
JS
1996 u64 map_length = 0;
1997 u64 sector;
1998 struct btrfs_bio *bbio = NULL;
1999 int ret;
2000
1751e8a6 2001 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2002 BUG_ON(!mirror_num);
2003
c5e4c3d7 2004 bio = btrfs_io_bio_alloc(1);
4f024f37 2005 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2006 map_length = length;
2007
b5de8d0d
FM
2008 /*
2009 * Avoid races with device replace and make sure our bbio has devices
2010 * associated to its stripes that don't go away while we are doing the
2011 * read repair operation.
2012 */
2013 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2014 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2015 /*
2016 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2017 * to update all raid stripes, but here we just want to correct
2018 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2019 * stripe's dev and sector.
2020 */
2021 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2022 &map_length, &bbio, 0);
2023 if (ret) {
2024 btrfs_bio_counter_dec(fs_info);
2025 bio_put(bio);
2026 return -EIO;
2027 }
2028 ASSERT(bbio->mirror_num == 1);
2029 } else {
2030 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2031 &map_length, &bbio, mirror_num);
2032 if (ret) {
2033 btrfs_bio_counter_dec(fs_info);
2034 bio_put(bio);
2035 return -EIO;
2036 }
2037 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2038 }
c725328c
LB
2039
2040 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2041 bio->bi_iter.bi_sector = sector;
c725328c 2042 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2043 btrfs_put_bbio(bbio);
ebbede42
AJ
2044 if (!dev || !dev->bdev ||
2045 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2046 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2047 bio_put(bio);
2048 return -EIO;
2049 }
74d46992 2050 bio_set_dev(bio, dev->bdev);
70fd7614 2051 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2052 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2053
4e49ea4a 2054 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2055 /* try to remap that extent elsewhere? */
b5de8d0d 2056 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2057 bio_put(bio);
442a4f63 2058 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2059 return -EIO;
2060 }
2061
b14af3b4
DS
2062 btrfs_info_rl_in_rcu(fs_info,
2063 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2064 ino, start,
1203b681 2065 rcu_str_deref(dev->name), sector);
b5de8d0d 2066 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2067 bio_put(bio);
2068 return 0;
2069}
2070
2ff7e61e
JM
2071int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2072 struct extent_buffer *eb, int mirror_num)
ea466794 2073{
ea466794 2074 u64 start = eb->start;
cc5e31a4 2075 int i, num_pages = num_extent_pages(eb);
d95603b2 2076 int ret = 0;
ea466794 2077
bc98a42c 2078 if (sb_rdonly(fs_info->sb))
908960c6
ID
2079 return -EROFS;
2080
ea466794 2081 for (i = 0; i < num_pages; i++) {
fb85fc9a 2082 struct page *p = eb->pages[i];
1203b681 2083
6ec656bc 2084 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2085 start - page_offset(p), mirror_num);
ea466794
JB
2086 if (ret)
2087 break;
09cbfeaf 2088 start += PAGE_SIZE;
ea466794
JB
2089 }
2090
2091 return ret;
2092}
2093
4a54c8c1
JS
2094/*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2097 */
7870d082
JB
2098int clean_io_failure(struct btrfs_fs_info *fs_info,
2099 struct extent_io_tree *failure_tree,
2100 struct extent_io_tree *io_tree, u64 start,
2101 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2102{
2103 u64 private;
4a54c8c1 2104 struct io_failure_record *failrec;
4a54c8c1
JS
2105 struct extent_state *state;
2106 int num_copies;
4a54c8c1 2107 int ret;
4a54c8c1
JS
2108
2109 private = 0;
7870d082
JB
2110 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2111 EXTENT_DIRTY, 0);
4a54c8c1
JS
2112 if (!ret)
2113 return 0;
2114
7870d082 2115 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2116 if (ret)
2117 return 0;
2118
4a54c8c1
JS
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
ab8d0fc4
JM
2123 btrfs_debug(fs_info,
2124 "clean_io_failure: freeing dummy error at %llu",
2125 failrec->start);
4a54c8c1
JS
2126 goto out;
2127 }
bc98a42c 2128 if (sb_rdonly(fs_info->sb))
908960c6 2129 goto out;
4a54c8c1 2130
7870d082
JB
2131 spin_lock(&io_tree->lock);
2132 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2133 failrec->start,
2134 EXTENT_LOCKED);
7870d082 2135 spin_unlock(&io_tree->lock);
4a54c8c1 2136
883d0de4
MX
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
4a54c8c1 2141 if (num_copies > 1) {
7870d082
JB
2142 repair_io_failure(fs_info, ino, start, failrec->len,
2143 failrec->logical, page, pg_offset,
2144 failrec->failed_mirror);
4a54c8c1
JS
2145 }
2146 }
2147
2148out:
7870d082 2149 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2150
454ff3de 2151 return 0;
4a54c8c1
JS
2152}
2153
f612496b
MX
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
7ab7956e 2160void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2161{
7ab7956e 2162 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
47dc196a 2179 failrec = state->failrec;
f612496b
MX
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186}
2187
2fe6303e 2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2189 struct io_failure_record **failrec_ret)
4a54c8c1 2190{
ab8d0fc4 2191 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2192 struct io_failure_record *failrec;
4a54c8c1 2193 struct extent_map *em;
4a54c8c1
JS
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2197 int ret;
4a54c8c1
JS
2198 u64 logical;
2199
47dc196a 2200 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2fe6303e 2205
4a54c8c1
JS
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
68ba990f 2220 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
7a2d6a64 2225 if (!em) {
4a54c8c1
JS
2226 kfree(failrec);
2227 return -EIO;
2228 }
2fe6303e 2229
4a54c8c1
JS
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2fe6303e 2238
ab8d0fc4
JM
2239 btrfs_debug(fs_info,
2240 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2241 logical, start, failrec->len);
2fe6303e 2242
4a54c8c1
JS
2243 failrec->logical = logical;
2244 free_extent_map(em);
2245
2246 /* set the bits in the private failure tree */
2247 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2248 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2249 if (ret >= 0)
47dc196a 2250 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
ceeb0ae7 2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
ab8d0fc4
JM
2259 btrfs_debug(fs_info,
2260 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2261 failrec->logical, failrec->start, failrec->len,
2262 failrec->in_validation);
4a54c8c1
JS
2263 /*
2264 * when data can be on disk more than twice, add to failrec here
2265 * (e.g. with a list for failed_mirror) to make
2266 * clean_io_failure() clean all those errors at once.
2267 */
2268 }
2fe6303e
MX
2269
2270 *failrec_ret = failrec;
2271
2272 return 0;
2273}
2274
a0b60d72 2275bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2276 struct io_failure_record *failrec, int failed_mirror)
2277{
ab8d0fc4 2278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2279 int num_copies;
2280
ab8d0fc4 2281 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2282 if (num_copies == 1) {
2283 /*
2284 * we only have a single copy of the data, so don't bother with
2285 * all the retry and error correction code that follows. no
2286 * matter what the error is, it is very likely to persist.
2287 */
ab8d0fc4
JM
2288 btrfs_debug(fs_info,
2289 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2290 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2291 return false;
4a54c8c1
JS
2292 }
2293
4a54c8c1
JS
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
a0b60d72 2299 if (failed_bio_pages > 1) {
4a54c8c1
JS
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
4a54c8c1
JS
2326 }
2327
facc8a22 2328 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2329 btrfs_debug(fs_info,
2330 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2331 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2332 return false;
4a54c8c1
JS
2333 }
2334
c3cfb656 2335 return true;
2fe6303e
MX
2336}
2337
2338
2339struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2340 struct io_failure_record *failrec,
2341 struct page *page, int pg_offset, int icsum,
8b110e39 2342 bio_end_io_t *endio_func, void *data)
2fe6303e 2343{
0b246afa 2344 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2345 struct bio *bio;
2346 struct btrfs_io_bio *btrfs_failed_bio;
2347 struct btrfs_io_bio *btrfs_bio;
2348
c5e4c3d7 2349 bio = btrfs_io_bio_alloc(1);
2fe6303e 2350 bio->bi_end_io = endio_func;
4f024f37 2351 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2352 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2353 bio->bi_iter.bi_size = 0;
8b110e39 2354 bio->bi_private = data;
4a54c8c1 2355
facc8a22
MX
2356 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2357 if (btrfs_failed_bio->csum) {
facc8a22
MX
2358 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2359
2360 btrfs_bio = btrfs_io_bio(bio);
2361 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2362 icsum *= csum_size;
2363 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2364 csum_size);
2365 }
2366
2fe6303e
MX
2367 bio_add_page(bio, page, failrec->len, pg_offset);
2368
2369 return bio;
2370}
2371
2372/*
78e62c02
NB
2373 * This is a generic handler for readpage errors. If other copies exist, read
2374 * those and write back good data to the failed position. Does not investigate
2375 * in remapping the failed extent elsewhere, hoping the device will be smart
2376 * enough to do this as needed
2fe6303e 2377 */
2fe6303e
MX
2378static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2379 struct page *page, u64 start, u64 end,
2380 int failed_mirror)
2381{
2382 struct io_failure_record *failrec;
2383 struct inode *inode = page->mapping->host;
2384 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2385 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2386 struct bio *bio;
70fd7614 2387 int read_mode = 0;
4e4cbee9 2388 blk_status_t status;
2fe6303e 2389 int ret;
8a2ee44a 2390 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2391
1f7ad75b 2392 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2393
2394 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2395 if (ret)
2396 return ret;
2397
a0b60d72 2398 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2399 failed_mirror)) {
7870d082 2400 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2401 return -EIO;
2402 }
2403
a0b60d72 2404 if (failed_bio_pages > 1)
70fd7614 2405 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
8b110e39
MX
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
ebcc3263 2412 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2413
ab8d0fc4
JM
2414 btrfs_debug(btrfs_sb(inode->i_sb),
2415 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2416 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2417
8c27cb35 2418 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2419 failrec->bio_flags, 0);
4e4cbee9 2420 if (status) {
7870d082 2421 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2422 bio_put(bio);
4e4cbee9 2423 ret = blk_status_to_errno(status);
6c387ab2
MX
2424 }
2425
013bd4c3 2426 return ret;
4a54c8c1
JS
2427}
2428
d1310b2e
CM
2429/* lots and lots of room for performance fixes in the end_bio funcs */
2430
b5227c07 2431void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2432{
2433 int uptodate = (err == 0);
3e2426bd 2434 int ret = 0;
87826df0 2435
c629732d 2436 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2437
87826df0 2438 if (!uptodate) {
87826df0
JM
2439 ClearPageUptodate(page);
2440 SetPageError(page);
bff5baf8 2441 ret = err < 0 ? err : -EIO;
5dca6eea 2442 mapping_set_error(page->mapping, ret);
87826df0 2443 }
87826df0
JM
2444}
2445
d1310b2e
CM
2446/*
2447 * after a writepage IO is done, we need to:
2448 * clear the uptodate bits on error
2449 * clear the writeback bits in the extent tree for this IO
2450 * end_page_writeback if the page has no more pending IO
2451 *
2452 * Scheduling is not allowed, so the extent state tree is expected
2453 * to have one and only one object corresponding to this IO.
2454 */
4246a0b6 2455static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2456{
4e4cbee9 2457 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2458 struct bio_vec *bvec;
d1310b2e
CM
2459 u64 start;
2460 u64 end;
2c30c71b 2461 int i;
6dc4f100 2462 struct bvec_iter_all iter_all;
d1310b2e 2463
c09abff8 2464 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 2465 bio_for_each_segment_all(bvec, bio, i, iter_all) {
d1310b2e 2466 struct page *page = bvec->bv_page;
0b246afa
JM
2467 struct inode *inode = page->mapping->host;
2468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2469
17a5adcc
AO
2470 /* We always issue full-page reads, but if some block
2471 * in a page fails to read, blk_update_request() will
2472 * advance bv_offset and adjust bv_len to compensate.
2473 * Print a warning for nonzero offsets, and an error
2474 * if they don't add up to a full page. */
09cbfeaf
KS
2475 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2476 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2477 btrfs_err(fs_info,
efe120a0
FH
2478 "partial page write in btrfs with offset %u and length %u",
2479 bvec->bv_offset, bvec->bv_len);
2480 else
0b246afa 2481 btrfs_info(fs_info,
5d163e0e 2482 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2483 bvec->bv_offset, bvec->bv_len);
2484 }
d1310b2e 2485
17a5adcc
AO
2486 start = page_offset(page);
2487 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2488
4e4cbee9 2489 end_extent_writepage(page, error, start, end);
17a5adcc 2490 end_page_writeback(page);
2c30c71b 2491 }
2b1f55b0 2492
d1310b2e 2493 bio_put(bio);
d1310b2e
CM
2494}
2495
883d0de4
MX
2496static void
2497endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2498 int uptodate)
2499{
2500 struct extent_state *cached = NULL;
2501 u64 end = start + len - 1;
2502
2503 if (uptodate && tree->track_uptodate)
2504 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2505 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2506}
2507
d1310b2e
CM
2508/*
2509 * after a readpage IO is done, we need to:
2510 * clear the uptodate bits on error
2511 * set the uptodate bits if things worked
2512 * set the page up to date if all extents in the tree are uptodate
2513 * clear the lock bit in the extent tree
2514 * unlock the page if there are no other extents locked for it
2515 *
2516 * Scheduling is not allowed, so the extent state tree is expected
2517 * to have one and only one object corresponding to this IO.
2518 */
4246a0b6 2519static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2520{
2c30c71b 2521 struct bio_vec *bvec;
4e4cbee9 2522 int uptodate = !bio->bi_status;
facc8a22 2523 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2524 struct extent_io_tree *tree, *failure_tree;
facc8a22 2525 u64 offset = 0;
d1310b2e
CM
2526 u64 start;
2527 u64 end;
facc8a22 2528 u64 len;
883d0de4
MX
2529 u64 extent_start = 0;
2530 u64 extent_len = 0;
5cf1ab56 2531 int mirror;
d1310b2e 2532 int ret;
2c30c71b 2533 int i;
6dc4f100 2534 struct bvec_iter_all iter_all;
d1310b2e 2535
c09abff8 2536 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 2537 bio_for_each_segment_all(bvec, bio, i, iter_all) {
d1310b2e 2538 struct page *page = bvec->bv_page;
a71754fc 2539 struct inode *inode = page->mapping->host;
ab8d0fc4 2540 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2541 bool data_inode = btrfs_ino(BTRFS_I(inode))
2542 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2543
ab8d0fc4
JM
2544 btrfs_debug(fs_info,
2545 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2546 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2547 io_bio->mirror_num);
a71754fc 2548 tree = &BTRFS_I(inode)->io_tree;
7870d082 2549 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2550
17a5adcc
AO
2551 /* We always issue full-page reads, but if some block
2552 * in a page fails to read, blk_update_request() will
2553 * advance bv_offset and adjust bv_len to compensate.
2554 * Print a warning for nonzero offsets, and an error
2555 * if they don't add up to a full page. */
09cbfeaf
KS
2556 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2557 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2558 btrfs_err(fs_info,
2559 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2560 bvec->bv_offset, bvec->bv_len);
2561 else
ab8d0fc4
JM
2562 btrfs_info(fs_info,
2563 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2564 bvec->bv_offset, bvec->bv_len);
2565 }
d1310b2e 2566
17a5adcc
AO
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2569 len = bvec->bv_len;
d1310b2e 2570
9be3395b 2571 mirror = io_bio->mirror_num;
78e62c02 2572 if (likely(uptodate)) {
facc8a22
MX
2573 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2574 page, start, end,
2575 mirror);
5ee0844d 2576 if (ret)
d1310b2e 2577 uptodate = 0;
5ee0844d 2578 else
7870d082
JB
2579 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2580 failure_tree, tree, start,
2581 page,
2582 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2583 }
ea466794 2584
f2a09da9
MX
2585 if (likely(uptodate))
2586 goto readpage_ok;
2587
78e62c02 2588 if (data_inode) {
9d0d1c8b 2589
f4a8e656 2590 /*
78e62c02
NB
2591 * The generic bio_readpage_error handles errors the
2592 * following way: If possible, new read requests are
2593 * created and submitted and will end up in
2594 * end_bio_extent_readpage as well (if we're lucky,
2595 * not in the !uptodate case). In that case it returns
2596 * 0 and we just go on with the next page in our bio.
2597 * If it can't handle the error it will return -EIO and
2598 * we remain responsible for that page.
f4a8e656 2599 */
78e62c02
NB
2600 ret = bio_readpage_error(bio, offset, page, start, end,
2601 mirror);
2602 if (ret == 0) {
2603 uptodate = !bio->bi_status;
2604 offset += len;
2605 continue;
2606 }
2607 } else {
2608 struct extent_buffer *eb;
2609
2610 eb = (struct extent_buffer *)page->private;
2611 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2612 eb->read_mirror = mirror;
2613 atomic_dec(&eb->io_pages);
2614 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2615 &eb->bflags))
2616 btree_readahead_hook(eb, -EIO);
2617
2618 ret = -EIO;
7e38326f 2619 }
f2a09da9 2620readpage_ok:
883d0de4 2621 if (likely(uptodate)) {
a71754fc 2622 loff_t i_size = i_size_read(inode);
09cbfeaf 2623 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2624 unsigned off;
a71754fc
JB
2625
2626 /* Zero out the end if this page straddles i_size */
7073017a 2627 off = offset_in_page(i_size);
a583c026 2628 if (page->index == end_index && off)
09cbfeaf 2629 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2630 SetPageUptodate(page);
70dec807 2631 } else {
17a5adcc
AO
2632 ClearPageUptodate(page);
2633 SetPageError(page);
70dec807 2634 }
17a5adcc 2635 unlock_page(page);
facc8a22 2636 offset += len;
883d0de4
MX
2637
2638 if (unlikely(!uptodate)) {
2639 if (extent_len) {
2640 endio_readpage_release_extent(tree,
2641 extent_start,
2642 extent_len, 1);
2643 extent_start = 0;
2644 extent_len = 0;
2645 }
2646 endio_readpage_release_extent(tree, start,
2647 end - start + 1, 0);
2648 } else if (!extent_len) {
2649 extent_start = start;
2650 extent_len = end + 1 - start;
2651 } else if (extent_start + extent_len == start) {
2652 extent_len += end + 1 - start;
2653 } else {
2654 endio_readpage_release_extent(tree, extent_start,
2655 extent_len, uptodate);
2656 extent_start = start;
2657 extent_len = end + 1 - start;
2658 }
2c30c71b 2659 }
d1310b2e 2660
883d0de4
MX
2661 if (extent_len)
2662 endio_readpage_release_extent(tree, extent_start, extent_len,
2663 uptodate);
b3a0dd50 2664 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2665 bio_put(bio);
d1310b2e
CM
2666}
2667
9be3395b 2668/*
184f999e
DS
2669 * Initialize the members up to but not including 'bio'. Use after allocating a
2670 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2671 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2672 */
184f999e 2673static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2674{
184f999e
DS
2675 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2676}
d1310b2e 2677
9be3395b 2678/*
6e707bcd
DS
2679 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2680 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2681 * for the appropriate container_of magic
9be3395b 2682 */
c821e7f3 2683struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2684{
2685 struct bio *bio;
d1310b2e 2686
8ac9f7c1 2687 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2688 bio_set_dev(bio, bdev);
c821e7f3 2689 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2690 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2691 return bio;
2692}
2693
8b6c1d56 2694struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2695{
23ea8e5a
MX
2696 struct btrfs_io_bio *btrfs_bio;
2697 struct bio *new;
9be3395b 2698
6e707bcd 2699 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2700 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2701 btrfs_bio = btrfs_io_bio(new);
184f999e 2702 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2703 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2704 return new;
2705}
9be3395b 2706
c5e4c3d7 2707struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2708{
facc8a22
MX
2709 struct bio *bio;
2710
6e707bcd 2711 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2712 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2713 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2714 return bio;
9be3395b
CM
2715}
2716
e477094f 2717struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2718{
2719 struct bio *bio;
2720 struct btrfs_io_bio *btrfs_bio;
2721
2722 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2723 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2724 ASSERT(bio);
2725
2726 btrfs_bio = btrfs_io_bio(bio);
184f999e 2727 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2728
2729 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2730 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2731 return bio;
2732}
9be3395b 2733
4b81ba48
DS
2734/*
2735 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2736 * @tree: tree so we can call our merge_bio hook
2737 * @wbc: optional writeback control for io accounting
2738 * @page: page to add to the bio
2739 * @pg_offset: offset of the new bio or to check whether we are adding
2740 * a contiguous page to the previous one
2741 * @size: portion of page that we want to write
2742 * @offset: starting offset in the page
2743 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2744 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2745 * @end_io_func: end_io callback for new bio
2746 * @mirror_num: desired mirror to read/write
2747 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2748 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2749 */
2750static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2751 struct writeback_control *wbc,
6273b7f8 2752 struct page *page, u64 offset,
6c5a4e2c 2753 size_t size, unsigned long pg_offset,
d1310b2e
CM
2754 struct block_device *bdev,
2755 struct bio **bio_ret,
f188591e 2756 bio_end_io_t end_io_func,
c8b97818
CM
2757 int mirror_num,
2758 unsigned long prev_bio_flags,
005efedf
FM
2759 unsigned long bio_flags,
2760 bool force_bio_submit)
d1310b2e
CM
2761{
2762 int ret = 0;
2763 struct bio *bio;
09cbfeaf 2764 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2765 sector_t sector = offset >> 9;
d1310b2e 2766
5c2b1fd7
DS
2767 ASSERT(bio_ret);
2768
2769 if (*bio_ret) {
0c8508a6
DS
2770 bool contig;
2771 bool can_merge = true;
2772
d1310b2e 2773 bio = *bio_ret;
0c8508a6 2774 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2775 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2776 else
f73a1c7d 2777 contig = bio_end_sector(bio) == sector;
c8b97818 2778
da12fe54
NB
2779 ASSERT(tree->ops);
2780 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2781 can_merge = false;
2782
2783 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2784 force_bio_submit ||
6c5a4e2c 2785 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2786 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2787 if (ret < 0) {
2788 *bio_ret = NULL;
79787eaa 2789 return ret;
289454ad 2790 }
d1310b2e
CM
2791 bio = NULL;
2792 } else {
da2f0f74
CM
2793 if (wbc)
2794 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2795 return 0;
2796 }
2797 }
c8b97818 2798
6273b7f8 2799 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2800 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2801 bio->bi_end_io = end_io_func;
2802 bio->bi_private = tree;
e6959b93 2803 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2804 bio->bi_opf = opf;
da2f0f74
CM
2805 if (wbc) {
2806 wbc_init_bio(wbc, bio);
2807 wbc_account_io(wbc, page, page_size);
2808 }
70dec807 2809
5c2b1fd7 2810 *bio_ret = bio;
d1310b2e
CM
2811
2812 return ret;
2813}
2814
48a3b636
ES
2815static void attach_extent_buffer_page(struct extent_buffer *eb,
2816 struct page *page)
d1310b2e
CM
2817{
2818 if (!PagePrivate(page)) {
2819 SetPagePrivate(page);
09cbfeaf 2820 get_page(page);
4f2de97a
JB
2821 set_page_private(page, (unsigned long)eb);
2822 } else {
2823 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2824 }
2825}
2826
4f2de97a 2827void set_page_extent_mapped(struct page *page)
d1310b2e 2828{
4f2de97a
JB
2829 if (!PagePrivate(page)) {
2830 SetPagePrivate(page);
09cbfeaf 2831 get_page(page);
4f2de97a
JB
2832 set_page_private(page, EXTENT_PAGE_PRIVATE);
2833 }
d1310b2e
CM
2834}
2835
125bac01
MX
2836static struct extent_map *
2837__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2838 u64 start, u64 len, get_extent_t *get_extent,
2839 struct extent_map **em_cached)
2840{
2841 struct extent_map *em;
2842
2843 if (em_cached && *em_cached) {
2844 em = *em_cached;
cbc0e928 2845 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2846 start < extent_map_end(em)) {
490b54d6 2847 refcount_inc(&em->refs);
125bac01
MX
2848 return em;
2849 }
2850
2851 free_extent_map(em);
2852 *em_cached = NULL;
2853 }
2854
fc4f21b1 2855 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2856 if (em_cached && !IS_ERR_OR_NULL(em)) {
2857 BUG_ON(*em_cached);
490b54d6 2858 refcount_inc(&em->refs);
125bac01
MX
2859 *em_cached = em;
2860 }
2861 return em;
2862}
d1310b2e
CM
2863/*
2864 * basic readpage implementation. Locked extent state structs are inserted
2865 * into the tree that are removed when the IO is done (by the end_io
2866 * handlers)
79787eaa 2867 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2868 * return 0 on success, otherwise return error
d1310b2e 2869 */
9974090b
MX
2870static int __do_readpage(struct extent_io_tree *tree,
2871 struct page *page,
2872 get_extent_t *get_extent,
125bac01 2873 struct extent_map **em_cached,
9974090b 2874 struct bio **bio, int mirror_num,
f1c77c55 2875 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2876 u64 *prev_em_start)
d1310b2e
CM
2877{
2878 struct inode *inode = page->mapping->host;
4eee4fa4 2879 u64 start = page_offset(page);
8eec8296 2880 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2881 u64 cur = start;
2882 u64 extent_offset;
2883 u64 last_byte = i_size_read(inode);
2884 u64 block_start;
2885 u64 cur_end;
d1310b2e
CM
2886 struct extent_map *em;
2887 struct block_device *bdev;
baf863b9 2888 int ret = 0;
d1310b2e 2889 int nr = 0;
306e16ce 2890 size_t pg_offset = 0;
d1310b2e 2891 size_t iosize;
c8b97818 2892 size_t disk_io_size;
d1310b2e 2893 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2894 unsigned long this_bio_flag = 0;
d1310b2e
CM
2895
2896 set_page_extent_mapped(page);
2897
90a887c9
DM
2898 if (!PageUptodate(page)) {
2899 if (cleancache_get_page(page) == 0) {
2900 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2901 unlock_extent(tree, start, end);
90a887c9
DM
2902 goto out;
2903 }
2904 }
2905
09cbfeaf 2906 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2907 char *userpage;
7073017a 2908 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
2909
2910 if (zero_offset) {
09cbfeaf 2911 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2912 userpage = kmap_atomic(page);
c8b97818
CM
2913 memset(userpage + zero_offset, 0, iosize);
2914 flush_dcache_page(page);
7ac687d9 2915 kunmap_atomic(userpage);
c8b97818
CM
2916 }
2917 }
d1310b2e 2918 while (cur <= end) {
005efedf 2919 bool force_bio_submit = false;
6273b7f8 2920 u64 offset;
c8f2f24b 2921
d1310b2e
CM
2922 if (cur >= last_byte) {
2923 char *userpage;
507903b8
AJ
2924 struct extent_state *cached = NULL;
2925
09cbfeaf 2926 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2927 userpage = kmap_atomic(page);
306e16ce 2928 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2929 flush_dcache_page(page);
7ac687d9 2930 kunmap_atomic(userpage);
d1310b2e 2931 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2932 &cached, GFP_NOFS);
7f042a83 2933 unlock_extent_cached(tree, cur,
e43bbe5e 2934 cur + iosize - 1, &cached);
d1310b2e
CM
2935 break;
2936 }
125bac01
MX
2937 em = __get_extent_map(inode, page, pg_offset, cur,
2938 end - cur + 1, get_extent, em_cached);
c704005d 2939 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2940 SetPageError(page);
7f042a83 2941 unlock_extent(tree, cur, end);
d1310b2e
CM
2942 break;
2943 }
d1310b2e
CM
2944 extent_offset = cur - em->start;
2945 BUG_ON(extent_map_end(em) <= cur);
2946 BUG_ON(end < cur);
2947
261507a0 2948 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2949 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2950 extent_set_compress_type(&this_bio_flag,
2951 em->compress_type);
2952 }
c8b97818 2953
d1310b2e
CM
2954 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2955 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2956 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2957 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2958 disk_io_size = em->block_len;
6273b7f8 2959 offset = em->block_start;
c8b97818 2960 } else {
6273b7f8 2961 offset = em->block_start + extent_offset;
c8b97818
CM
2962 disk_io_size = iosize;
2963 }
d1310b2e
CM
2964 bdev = em->bdev;
2965 block_start = em->block_start;
d899e052
YZ
2966 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2967 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2968
2969 /*
2970 * If we have a file range that points to a compressed extent
2971 * and it's followed by a consecutive file range that points to
2972 * to the same compressed extent (possibly with a different
2973 * offset and/or length, so it either points to the whole extent
2974 * or only part of it), we must make sure we do not submit a
2975 * single bio to populate the pages for the 2 ranges because
2976 * this makes the compressed extent read zero out the pages
2977 * belonging to the 2nd range. Imagine the following scenario:
2978 *
2979 * File layout
2980 * [0 - 8K] [8K - 24K]
2981 * | |
2982 * | |
2983 * points to extent X, points to extent X,
2984 * offset 4K, length of 8K offset 0, length 16K
2985 *
2986 * [extent X, compressed length = 4K uncompressed length = 16K]
2987 *
2988 * If the bio to read the compressed extent covers both ranges,
2989 * it will decompress extent X into the pages belonging to the
2990 * first range and then it will stop, zeroing out the remaining
2991 * pages that belong to the other range that points to extent X.
2992 * So here we make sure we submit 2 bios, one for the first
2993 * range and another one for the third range. Both will target
2994 * the same physical extent from disk, but we can't currently
2995 * make the compressed bio endio callback populate the pages
2996 * for both ranges because each compressed bio is tightly
2997 * coupled with a single extent map, and each range can have
2998 * an extent map with a different offset value relative to the
2999 * uncompressed data of our extent and different lengths. This
3000 * is a corner case so we prioritize correctness over
3001 * non-optimal behavior (submitting 2 bios for the same extent).
3002 */
3003 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3004 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3005 *prev_em_start != em->start)
005efedf
FM
3006 force_bio_submit = true;
3007
3008 if (prev_em_start)
8e928218 3009 *prev_em_start = em->start;
005efedf 3010
d1310b2e
CM
3011 free_extent_map(em);
3012 em = NULL;
3013
3014 /* we've found a hole, just zero and go on */
3015 if (block_start == EXTENT_MAP_HOLE) {
3016 char *userpage;
507903b8
AJ
3017 struct extent_state *cached = NULL;
3018
7ac687d9 3019 userpage = kmap_atomic(page);
306e16ce 3020 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3021 flush_dcache_page(page);
7ac687d9 3022 kunmap_atomic(userpage);
d1310b2e
CM
3023
3024 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3025 &cached, GFP_NOFS);
7f042a83 3026 unlock_extent_cached(tree, cur,
e43bbe5e 3027 cur + iosize - 1, &cached);
d1310b2e 3028 cur = cur + iosize;
306e16ce 3029 pg_offset += iosize;
d1310b2e
CM
3030 continue;
3031 }
3032 /* the get_extent function already copied into the page */
9655d298
CM
3033 if (test_range_bit(tree, cur, cur_end,
3034 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3035 check_page_uptodate(tree, page);
7f042a83 3036 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3037 cur = cur + iosize;
306e16ce 3038 pg_offset += iosize;
d1310b2e
CM
3039 continue;
3040 }
70dec807
CM
3041 /* we have an inline extent but it didn't get marked up
3042 * to date. Error out
3043 */
3044 if (block_start == EXTENT_MAP_INLINE) {
3045 SetPageError(page);
7f042a83 3046 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3047 cur = cur + iosize;
306e16ce 3048 pg_offset += iosize;
70dec807
CM
3049 continue;
3050 }
d1310b2e 3051
4b81ba48 3052 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3053 page, offset, disk_io_size,
3054 pg_offset, bdev, bio,
c8b97818
CM
3055 end_bio_extent_readpage, mirror_num,
3056 *bio_flags,
005efedf
FM
3057 this_bio_flag,
3058 force_bio_submit);
c8f2f24b
JB
3059 if (!ret) {
3060 nr++;
3061 *bio_flags = this_bio_flag;
3062 } else {
d1310b2e 3063 SetPageError(page);
7f042a83 3064 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3065 goto out;
edd33c99 3066 }
d1310b2e 3067 cur = cur + iosize;
306e16ce 3068 pg_offset += iosize;
d1310b2e 3069 }
90a887c9 3070out:
d1310b2e
CM
3071 if (!nr) {
3072 if (!PageError(page))
3073 SetPageUptodate(page);
3074 unlock_page(page);
3075 }
baf863b9 3076 return ret;
d1310b2e
CM
3077}
3078
9974090b
MX
3079static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3080 struct page *pages[], int nr_pages,
3081 u64 start, u64 end,
125bac01 3082 struct extent_map **em_cached,
d3fac6ba 3083 struct bio **bio,
1f7ad75b 3084 unsigned long *bio_flags,
808f80b4 3085 u64 *prev_em_start)
9974090b
MX
3086{
3087 struct inode *inode;
3088 struct btrfs_ordered_extent *ordered;
3089 int index;
3090
3091 inode = pages[0]->mapping->host;
3092 while (1) {
3093 lock_extent(tree, start, end);
a776c6fa 3094 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3095 end - start + 1);
3096 if (!ordered)
3097 break;
3098 unlock_extent(tree, start, end);
3099 btrfs_start_ordered_extent(inode, ordered, 1);
3100 btrfs_put_ordered_extent(ordered);
3101 }
3102
3103 for (index = 0; index < nr_pages; index++) {
4ef77695 3104 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3105 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3106 put_page(pages[index]);
9974090b
MX
3107 }
3108}
3109
3110static void __extent_readpages(struct extent_io_tree *tree,
3111 struct page *pages[],
e4d17ef5 3112 int nr_pages,
125bac01 3113 struct extent_map **em_cached,
d3fac6ba 3114 struct bio **bio, unsigned long *bio_flags,
808f80b4 3115 u64 *prev_em_start)
9974090b 3116{
35a3621b 3117 u64 start = 0;
9974090b
MX
3118 u64 end = 0;
3119 u64 page_start;
3120 int index;
35a3621b 3121 int first_index = 0;
9974090b
MX
3122
3123 for (index = 0; index < nr_pages; index++) {
3124 page_start = page_offset(pages[index]);
3125 if (!end) {
3126 start = page_start;
09cbfeaf 3127 end = start + PAGE_SIZE - 1;
9974090b
MX
3128 first_index = index;
3129 } else if (end + 1 == page_start) {
09cbfeaf 3130 end += PAGE_SIZE;
9974090b
MX
3131 } else {
3132 __do_contiguous_readpages(tree, &pages[first_index],
3133 index - first_index, start,
4ef77695 3134 end, em_cached,
d3fac6ba 3135 bio, bio_flags,
1f7ad75b 3136 prev_em_start);
9974090b 3137 start = page_start;
09cbfeaf 3138 end = start + PAGE_SIZE - 1;
9974090b
MX
3139 first_index = index;
3140 }
3141 }
3142
3143 if (end)
3144 __do_contiguous_readpages(tree, &pages[first_index],
3145 index - first_index, start,
4ef77695 3146 end, em_cached, bio,
d3fac6ba 3147 bio_flags, prev_em_start);
9974090b
MX
3148}
3149
3150static int __extent_read_full_page(struct extent_io_tree *tree,
3151 struct page *page,
3152 get_extent_t *get_extent,
3153 struct bio **bio, int mirror_num,
f1c77c55
DS
3154 unsigned long *bio_flags,
3155 unsigned int read_flags)
9974090b
MX
3156{
3157 struct inode *inode = page->mapping->host;
3158 struct btrfs_ordered_extent *ordered;
3159 u64 start = page_offset(page);
09cbfeaf 3160 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3161 int ret;
3162
3163 while (1) {
3164 lock_extent(tree, start, end);
a776c6fa 3165 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3166 PAGE_SIZE);
9974090b
MX
3167 if (!ordered)
3168 break;
3169 unlock_extent(tree, start, end);
3170 btrfs_start_ordered_extent(inode, ordered, 1);
3171 btrfs_put_ordered_extent(ordered);
3172 }
3173
125bac01 3174 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3175 bio_flags, read_flags, NULL);
9974090b
MX
3176 return ret;
3177}
3178
d1310b2e 3179int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3180 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3181{
3182 struct bio *bio = NULL;
c8b97818 3183 unsigned long bio_flags = 0;
d1310b2e
CM
3184 int ret;
3185
8ddc7d9c 3186 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3187 &bio_flags, 0);
d1310b2e 3188 if (bio)
1f7ad75b 3189 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3190 return ret;
3191}
d1310b2e 3192
3d4b9496 3193static void update_nr_written(struct writeback_control *wbc,
a9132667 3194 unsigned long nr_written)
11c8349b
CM
3195{
3196 wbc->nr_to_write -= nr_written;
11c8349b
CM
3197}
3198
d1310b2e 3199/*
40f76580
CM
3200 * helper for __extent_writepage, doing all of the delayed allocation setup.
3201 *
5eaad97a 3202 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3203 * to write the page (copy into inline extent). In this case the IO has
3204 * been started and the page is already unlocked.
3205 *
3206 * This returns 0 if all went well (page still locked)
3207 * This returns < 0 if there were errors (page still locked)
d1310b2e 3208 */
40f76580 3209static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3210 struct page *page, struct writeback_control *wbc,
3211 u64 delalloc_start, unsigned long *nr_written)
40f76580 3212{
8cc0237a 3213 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
09cbfeaf 3214 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3215 bool found;
40f76580
CM
3216 u64 delalloc_to_write = 0;
3217 u64 delalloc_end = 0;
3218 int ret;
3219 int page_started = 0;
3220
40f76580
CM
3221
3222 while (delalloc_end < page_end) {
3522e903 3223 found = find_lock_delalloc_range(inode, tree,
40f76580
CM
3224 page,
3225 &delalloc_start,
917aacec 3226 &delalloc_end);
3522e903 3227 if (!found) {
40f76580
CM
3228 delalloc_start = delalloc_end + 1;
3229 continue;
3230 }
5eaad97a
NB
3231 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3232 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3233 /* File system has been set read-only */
3234 if (ret) {
3235 SetPageError(page);
5eaad97a
NB
3236 /*
3237 * btrfs_run_delalloc_range should return < 0 for error
3238 * but just in case, we use > 0 here meaning the IO is
3239 * started, so we don't want to return > 0 unless
3240 * things are going well.
40f76580
CM
3241 */
3242 ret = ret < 0 ? ret : -EIO;
3243 goto done;
3244 }
3245 /*
ea1754a0
KS
3246 * delalloc_end is already one less than the total length, so
3247 * we don't subtract one from PAGE_SIZE
40f76580
CM
3248 */
3249 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3250 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3251 delalloc_start = delalloc_end + 1;
3252 }
3253 if (wbc->nr_to_write < delalloc_to_write) {
3254 int thresh = 8192;
3255
3256 if (delalloc_to_write < thresh * 2)
3257 thresh = delalloc_to_write;
3258 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3259 thresh);
3260 }
3261
3262 /* did the fill delalloc function already unlock and start
3263 * the IO?
3264 */
3265 if (page_started) {
3266 /*
3267 * we've unlocked the page, so we can't update
3268 * the mapping's writeback index, just update
3269 * nr_to_write.
3270 */
3271 wbc->nr_to_write -= *nr_written;
3272 return 1;
3273 }
3274
3275 ret = 0;
3276
3277done:
3278 return ret;
3279}
3280
3281/*
3282 * helper for __extent_writepage. This calls the writepage start hooks,
3283 * and does the loop to map the page into extents and bios.
3284 *
3285 * We return 1 if the IO is started and the page is unlocked,
3286 * 0 if all went well (page still locked)
3287 * < 0 if there were errors (page still locked)
3288 */
3289static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3290 struct page *page,
3291 struct writeback_control *wbc,
3292 struct extent_page_data *epd,
3293 loff_t i_size,
3294 unsigned long nr_written,
f1c77c55 3295 unsigned int write_flags, int *nr_ret)
d1310b2e 3296{
d1310b2e 3297 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3298 u64 start = page_offset(page);
09cbfeaf 3299 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3300 u64 end;
3301 u64 cur = start;
3302 u64 extent_offset;
d1310b2e
CM
3303 u64 block_start;
3304 u64 iosize;
d1310b2e
CM
3305 struct extent_map *em;
3306 struct block_device *bdev;
7f3c74fb 3307 size_t pg_offset = 0;
d1310b2e 3308 size_t blocksize;
40f76580
CM
3309 int ret = 0;
3310 int nr = 0;
3311 bool compressed;
c8b97818 3312
d75855b4
NB
3313 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3314 if (ret) {
3315 /* Fixup worker will requeue */
3316 if (ret == -EBUSY)
3317 wbc->pages_skipped++;
3318 else
3319 redirty_page_for_writepage(wbc, page);
40f76580 3320
d75855b4
NB
3321 update_nr_written(wbc, nr_written);
3322 unlock_page(page);
3323 return 1;
247e743c
CM
3324 }
3325
11c8349b
CM
3326 /*
3327 * we don't want to touch the inode after unlocking the page,
3328 * so we update the mapping writeback index now
3329 */
3d4b9496 3330 update_nr_written(wbc, nr_written + 1);
771ed689 3331
d1310b2e 3332 end = page_end;
40f76580 3333 if (i_size <= start) {
c629732d 3334 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3335 goto done;
3336 }
3337
d1310b2e
CM
3338 blocksize = inode->i_sb->s_blocksize;
3339
3340 while (cur <= end) {
40f76580 3341 u64 em_end;
6273b7f8 3342 u64 offset;
58409edd 3343
40f76580 3344 if (cur >= i_size) {
7087a9d8 3345 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3346 page_end, 1);
d1310b2e
CM
3347 break;
3348 }
3c98c62f 3349 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3350 end - cur + 1, 1);
c704005d 3351 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3352 SetPageError(page);
61391d56 3353 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3354 break;
3355 }
3356
3357 extent_offset = cur - em->start;
40f76580
CM
3358 em_end = extent_map_end(em);
3359 BUG_ON(em_end <= cur);
d1310b2e 3360 BUG_ON(end < cur);
40f76580 3361 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3362 iosize = ALIGN(iosize, blocksize);
6273b7f8 3363 offset = em->block_start + extent_offset;
d1310b2e
CM
3364 bdev = em->bdev;
3365 block_start = em->block_start;
c8b97818 3366 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3367 free_extent_map(em);
3368 em = NULL;
3369
c8b97818
CM
3370 /*
3371 * compressed and inline extents are written through other
3372 * paths in the FS
3373 */
3374 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3375 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3376 /*
3377 * end_io notification does not happen here for
3378 * compressed extents
3379 */
7087a9d8
NB
3380 if (!compressed)
3381 btrfs_writepage_endio_finish_ordered(page, cur,
3382 cur + iosize - 1,
c629732d 3383 1);
c8b97818
CM
3384 else if (compressed) {
3385 /* we don't want to end_page_writeback on
3386 * a compressed extent. this happens
3387 * elsewhere
3388 */
3389 nr++;
3390 }
3391
3392 cur += iosize;
7f3c74fb 3393 pg_offset += iosize;
d1310b2e
CM
3394 continue;
3395 }
c8b97818 3396
5cdc84bf 3397 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3398 if (!PageWriteback(page)) {
3399 btrfs_err(BTRFS_I(inode)->root->fs_info,
3400 "page %lu not writeback, cur %llu end %llu",
3401 page->index, cur, end);
d1310b2e 3402 }
7f3c74fb 3403
4b81ba48 3404 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3405 page, offset, iosize, pg_offset,
c2df8bb4 3406 bdev, &epd->bio,
58409edd
DS
3407 end_bio_extent_writepage,
3408 0, 0, 0, false);
fe01aa65 3409 if (ret) {
58409edd 3410 SetPageError(page);
fe01aa65
TK
3411 if (PageWriteback(page))
3412 end_page_writeback(page);
3413 }
d1310b2e 3414
d1310b2e 3415 cur = cur + iosize;
7f3c74fb 3416 pg_offset += iosize;
d1310b2e
CM
3417 nr++;
3418 }
40f76580
CM
3419done:
3420 *nr_ret = nr;
40f76580
CM
3421 return ret;
3422}
3423
3424/*
3425 * the writepage semantics are similar to regular writepage. extent
3426 * records are inserted to lock ranges in the tree, and as dirty areas
3427 * are found, they are marked writeback. Then the lock bits are removed
3428 * and the end_io handler clears the writeback ranges
3429 */
3430static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3431 struct extent_page_data *epd)
40f76580
CM
3432{
3433 struct inode *inode = page->mapping->host;
40f76580 3434 u64 start = page_offset(page);
09cbfeaf 3435 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3436 int ret;
3437 int nr = 0;
3438 size_t pg_offset = 0;
3439 loff_t i_size = i_size_read(inode);
09cbfeaf 3440 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3441 unsigned int write_flags = 0;
40f76580
CM
3442 unsigned long nr_written = 0;
3443
ff40adf7 3444 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3445
3446 trace___extent_writepage(page, inode, wbc);
3447
3448 WARN_ON(!PageLocked(page));
3449
3450 ClearPageError(page);
3451
7073017a 3452 pg_offset = offset_in_page(i_size);
40f76580
CM
3453 if (page->index > end_index ||
3454 (page->index == end_index && !pg_offset)) {
09cbfeaf 3455 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3456 unlock_page(page);
3457 return 0;
3458 }
3459
3460 if (page->index == end_index) {
3461 char *userpage;
3462
3463 userpage = kmap_atomic(page);
3464 memset(userpage + pg_offset, 0,
09cbfeaf 3465 PAGE_SIZE - pg_offset);
40f76580
CM
3466 kunmap_atomic(userpage);
3467 flush_dcache_page(page);
3468 }
3469
3470 pg_offset = 0;
3471
3472 set_page_extent_mapped(page);
3473
7789a55a 3474 if (!epd->extent_locked) {
8cc0237a 3475 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3476 if (ret == 1)
3477 goto done_unlocked;
3478 if (ret)
3479 goto done;
3480 }
40f76580
CM
3481
3482 ret = __extent_writepage_io(inode, page, wbc, epd,
3483 i_size, nr_written, write_flags, &nr);
3484 if (ret == 1)
3485 goto done_unlocked;
3486
d1310b2e
CM
3487done:
3488 if (nr == 0) {
3489 /* make sure the mapping tag for page dirty gets cleared */
3490 set_page_writeback(page);
3491 end_page_writeback(page);
3492 }
61391d56
FM
3493 if (PageError(page)) {
3494 ret = ret < 0 ? ret : -EIO;
3495 end_extent_writepage(page, ret, start, page_end);
3496 }
d1310b2e 3497 unlock_page(page);
40f76580 3498 return ret;
771ed689 3499
11c8349b 3500done_unlocked:
d1310b2e
CM
3501 return 0;
3502}
3503
fd8b2b61 3504void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3505{
74316201
N
3506 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3507 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3508}
3509
0e378df1
CM
3510static noinline_for_stack int
3511lock_extent_buffer_for_io(struct extent_buffer *eb,
3512 struct btrfs_fs_info *fs_info,
3513 struct extent_page_data *epd)
0b32f4bb 3514{
cc5e31a4 3515 int i, num_pages;
0b32f4bb
JB
3516 int flush = 0;
3517 int ret = 0;
3518
3519 if (!btrfs_try_tree_write_lock(eb)) {
3520 flush = 1;
3521 flush_write_bio(epd);
3522 btrfs_tree_lock(eb);
3523 }
3524
3525 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3526 btrfs_tree_unlock(eb);
3527 if (!epd->sync_io)
3528 return 0;
3529 if (!flush) {
3530 flush_write_bio(epd);
3531 flush = 1;
3532 }
a098d8e8
CM
3533 while (1) {
3534 wait_on_extent_buffer_writeback(eb);
3535 btrfs_tree_lock(eb);
3536 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3537 break;
0b32f4bb 3538 btrfs_tree_unlock(eb);
0b32f4bb
JB
3539 }
3540 }
3541
51561ffe
JB
3542 /*
3543 * We need to do this to prevent races in people who check if the eb is
3544 * under IO since we can end up having no IO bits set for a short period
3545 * of time.
3546 */
3547 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3548 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3549 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3550 spin_unlock(&eb->refs_lock);
0b32f4bb 3551 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3552 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3553 -eb->len,
3554 fs_info->dirty_metadata_batch);
0b32f4bb 3555 ret = 1;
51561ffe
JB
3556 } else {
3557 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3558 }
3559
3560 btrfs_tree_unlock(eb);
3561
3562 if (!ret)
3563 return ret;
3564
65ad0104 3565 num_pages = num_extent_pages(eb);
0b32f4bb 3566 for (i = 0; i < num_pages; i++) {
fb85fc9a 3567 struct page *p = eb->pages[i];
0b32f4bb
JB
3568
3569 if (!trylock_page(p)) {
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
3574 lock_page(p);
3575 }
3576 }
3577
3578 return ret;
3579}
3580
3581static void end_extent_buffer_writeback(struct extent_buffer *eb)
3582{
3583 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3584 smp_mb__after_atomic();
0b32f4bb
JB
3585 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3586}
3587
656f30db
FM
3588static void set_btree_ioerr(struct page *page)
3589{
3590 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3591
3592 SetPageError(page);
3593 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3594 return;
3595
3596 /*
3597 * If writeback for a btree extent that doesn't belong to a log tree
3598 * failed, increment the counter transaction->eb_write_errors.
3599 * We do this because while the transaction is running and before it's
3600 * committing (when we call filemap_fdata[write|wait]_range against
3601 * the btree inode), we might have
3602 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3603 * returns an error or an error happens during writeback, when we're
3604 * committing the transaction we wouldn't know about it, since the pages
3605 * can be no longer dirty nor marked anymore for writeback (if a
3606 * subsequent modification to the extent buffer didn't happen before the
3607 * transaction commit), which makes filemap_fdata[write|wait]_range not
3608 * able to find the pages tagged with SetPageError at transaction
3609 * commit time. So if this happens we must abort the transaction,
3610 * otherwise we commit a super block with btree roots that point to
3611 * btree nodes/leafs whose content on disk is invalid - either garbage
3612 * or the content of some node/leaf from a past generation that got
3613 * cowed or deleted and is no longer valid.
3614 *
3615 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3616 * not be enough - we need to distinguish between log tree extents vs
3617 * non-log tree extents, and the next filemap_fdatawait_range() call
3618 * will catch and clear such errors in the mapping - and that call might
3619 * be from a log sync and not from a transaction commit. Also, checking
3620 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3621 * not done and would not be reliable - the eb might have been released
3622 * from memory and reading it back again means that flag would not be
3623 * set (since it's a runtime flag, not persisted on disk).
3624 *
3625 * Using the flags below in the btree inode also makes us achieve the
3626 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3627 * writeback for all dirty pages and before filemap_fdatawait_range()
3628 * is called, the writeback for all dirty pages had already finished
3629 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3630 * filemap_fdatawait_range() would return success, as it could not know
3631 * that writeback errors happened (the pages were no longer tagged for
3632 * writeback).
3633 */
3634 switch (eb->log_index) {
3635 case -1:
afcdd129 3636 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3637 break;
3638 case 0:
afcdd129 3639 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3640 break;
3641 case 1:
afcdd129 3642 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3643 break;
3644 default:
3645 BUG(); /* unexpected, logic error */
3646 }
3647}
3648
4246a0b6 3649static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3650{
2c30c71b 3651 struct bio_vec *bvec;
0b32f4bb 3652 struct extent_buffer *eb;
2c30c71b 3653 int i, done;
6dc4f100 3654 struct bvec_iter_all iter_all;
0b32f4bb 3655
c09abff8 3656 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 3657 bio_for_each_segment_all(bvec, bio, i, iter_all) {
0b32f4bb
JB
3658 struct page *page = bvec->bv_page;
3659
0b32f4bb
JB
3660 eb = (struct extent_buffer *)page->private;
3661 BUG_ON(!eb);
3662 done = atomic_dec_and_test(&eb->io_pages);
3663
4e4cbee9 3664 if (bio->bi_status ||
4246a0b6 3665 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3666 ClearPageUptodate(page);
656f30db 3667 set_btree_ioerr(page);
0b32f4bb
JB
3668 }
3669
3670 end_page_writeback(page);
3671
3672 if (!done)
3673 continue;
3674
3675 end_extent_buffer_writeback(eb);
2c30c71b 3676 }
0b32f4bb
JB
3677
3678 bio_put(bio);
0b32f4bb
JB
3679}
3680
0e378df1 3681static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3682 struct btrfs_fs_info *fs_info,
3683 struct writeback_control *wbc,
3684 struct extent_page_data *epd)
3685{
3686 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3687 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3688 u64 offset = eb->start;
851cd173 3689 u32 nritems;
cc5e31a4 3690 int i, num_pages;
851cd173 3691 unsigned long start, end;
ff40adf7 3692 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3693 int ret = 0;
0b32f4bb 3694
656f30db 3695 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3696 num_pages = num_extent_pages(eb);
0b32f4bb 3697 atomic_set(&eb->io_pages, num_pages);
de0022b9 3698
851cd173
LB
3699 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3700 nritems = btrfs_header_nritems(eb);
3eb548ee 3701 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3702 end = btrfs_node_key_ptr_offset(nritems);
3703
b159fa28 3704 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3705 } else {
3706 /*
3707 * leaf:
3708 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3709 */
3710 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3711 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3712 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3713 }
3714
0b32f4bb 3715 for (i = 0; i < num_pages; i++) {
fb85fc9a 3716 struct page *p = eb->pages[i];
0b32f4bb
JB
3717
3718 clear_page_dirty_for_io(p);
3719 set_page_writeback(p);
4b81ba48 3720 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3721 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3722 &epd->bio,
1f7ad75b 3723 end_bio_extent_buffer_writepage,
18fdc679 3724 0, 0, 0, false);
0b32f4bb 3725 if (ret) {
656f30db 3726 set_btree_ioerr(p);
fe01aa65
TK
3727 if (PageWriteback(p))
3728 end_page_writeback(p);
0b32f4bb
JB
3729 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3730 end_extent_buffer_writeback(eb);
3731 ret = -EIO;
3732 break;
3733 }
09cbfeaf 3734 offset += PAGE_SIZE;
3d4b9496 3735 update_nr_written(wbc, 1);
0b32f4bb
JB
3736 unlock_page(p);
3737 }
3738
3739 if (unlikely(ret)) {
3740 for (; i < num_pages; i++) {
bbf65cf0 3741 struct page *p = eb->pages[i];
81465028 3742 clear_page_dirty_for_io(p);
0b32f4bb
JB
3743 unlock_page(p);
3744 }
3745 }
3746
3747 return ret;
3748}
3749
3750int btree_write_cache_pages(struct address_space *mapping,
3751 struct writeback_control *wbc)
3752{
3753 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3754 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3755 struct extent_buffer *eb, *prev_eb = NULL;
3756 struct extent_page_data epd = {
3757 .bio = NULL,
3758 .tree = tree,
3759 .extent_locked = 0,
3760 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3761 };
3762 int ret = 0;
3763 int done = 0;
3764 int nr_to_write_done = 0;
3765 struct pagevec pvec;
3766 int nr_pages;
3767 pgoff_t index;
3768 pgoff_t end; /* Inclusive */
3769 int scanned = 0;
10bbd235 3770 xa_mark_t tag;
0b32f4bb 3771
86679820 3772 pagevec_init(&pvec);
0b32f4bb
JB
3773 if (wbc->range_cyclic) {
3774 index = mapping->writeback_index; /* Start from prev offset */
3775 end = -1;
3776 } else {
09cbfeaf
KS
3777 index = wbc->range_start >> PAGE_SHIFT;
3778 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3779 scanned = 1;
3780 }
3781 if (wbc->sync_mode == WB_SYNC_ALL)
3782 tag = PAGECACHE_TAG_TOWRITE;
3783 else
3784 tag = PAGECACHE_TAG_DIRTY;
3785retry:
3786 if (wbc->sync_mode == WB_SYNC_ALL)
3787 tag_pages_for_writeback(mapping, index, end);
3788 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3789 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3790 tag))) {
0b32f4bb
JB
3791 unsigned i;
3792
3793 scanned = 1;
3794 for (i = 0; i < nr_pages; i++) {
3795 struct page *page = pvec.pages[i];
3796
3797 if (!PagePrivate(page))
3798 continue;
3799
b5bae261
JB
3800 spin_lock(&mapping->private_lock);
3801 if (!PagePrivate(page)) {
3802 spin_unlock(&mapping->private_lock);
3803 continue;
3804 }
3805
0b32f4bb 3806 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3807
3808 /*
3809 * Shouldn't happen and normally this would be a BUG_ON
3810 * but no sense in crashing the users box for something
3811 * we can survive anyway.
3812 */
fae7f21c 3813 if (WARN_ON(!eb)) {
b5bae261 3814 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3815 continue;
3816 }
3817
b5bae261
JB
3818 if (eb == prev_eb) {
3819 spin_unlock(&mapping->private_lock);
0b32f4bb 3820 continue;
b5bae261 3821 }
0b32f4bb 3822
b5bae261
JB
3823 ret = atomic_inc_not_zero(&eb->refs);
3824 spin_unlock(&mapping->private_lock);
3825 if (!ret)
0b32f4bb 3826 continue;
0b32f4bb
JB
3827
3828 prev_eb = eb;
3829 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3830 if (!ret) {
3831 free_extent_buffer(eb);
3832 continue;
3833 }
3834
3835 ret = write_one_eb(eb, fs_info, wbc, &epd);
3836 if (ret) {
3837 done = 1;
3838 free_extent_buffer(eb);
3839 break;
3840 }
3841 free_extent_buffer(eb);
3842
3843 /*
3844 * the filesystem may choose to bump up nr_to_write.
3845 * We have to make sure to honor the new nr_to_write
3846 * at any time
3847 */
3848 nr_to_write_done = wbc->nr_to_write <= 0;
3849 }
3850 pagevec_release(&pvec);
3851 cond_resched();
3852 }
3853 if (!scanned && !done) {
3854 /*
3855 * We hit the last page and there is more work to be done: wrap
3856 * back to the start of the file
3857 */
3858 scanned = 1;
3859 index = 0;
3860 goto retry;
3861 }
3862 flush_write_bio(&epd);
3863 return ret;
3864}
3865
d1310b2e 3866/**
4bef0848 3867 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3868 * @mapping: address space structure to write
3869 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3870 * @data: data passed to __extent_writepage function
d1310b2e
CM
3871 *
3872 * If a page is already under I/O, write_cache_pages() skips it, even
3873 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3874 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3875 * and msync() need to guarantee that all the data which was dirty at the time
3876 * the call was made get new I/O started against them. If wbc->sync_mode is
3877 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3878 * existing IO to complete.
3879 */
4242b64a 3880static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3881 struct writeback_control *wbc,
aab6e9ed 3882 struct extent_page_data *epd)
d1310b2e 3883{
7fd1a3f7 3884 struct inode *inode = mapping->host;
d1310b2e
CM
3885 int ret = 0;
3886 int done = 0;
f85d7d6c 3887 int nr_to_write_done = 0;
d1310b2e
CM
3888 struct pagevec pvec;
3889 int nr_pages;
3890 pgoff_t index;
3891 pgoff_t end; /* Inclusive */
a9132667
LB
3892 pgoff_t done_index;
3893 int range_whole = 0;
d1310b2e 3894 int scanned = 0;
10bbd235 3895 xa_mark_t tag;
d1310b2e 3896
7fd1a3f7
JB
3897 /*
3898 * We have to hold onto the inode so that ordered extents can do their
3899 * work when the IO finishes. The alternative to this is failing to add
3900 * an ordered extent if the igrab() fails there and that is a huge pain
3901 * to deal with, so instead just hold onto the inode throughout the
3902 * writepages operation. If it fails here we are freeing up the inode
3903 * anyway and we'd rather not waste our time writing out stuff that is
3904 * going to be truncated anyway.
3905 */
3906 if (!igrab(inode))
3907 return 0;
3908
86679820 3909 pagevec_init(&pvec);
d1310b2e
CM
3910 if (wbc->range_cyclic) {
3911 index = mapping->writeback_index; /* Start from prev offset */
3912 end = -1;
3913 } else {
09cbfeaf
KS
3914 index = wbc->range_start >> PAGE_SHIFT;
3915 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3916 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3917 range_whole = 1;
d1310b2e
CM
3918 scanned = 1;
3919 }
3cd24c69
EL
3920
3921 /*
3922 * We do the tagged writepage as long as the snapshot flush bit is set
3923 * and we are the first one who do the filemap_flush() on this inode.
3924 *
3925 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3926 * not race in and drop the bit.
3927 */
3928 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3929 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3930 &BTRFS_I(inode)->runtime_flags))
3931 wbc->tagged_writepages = 1;
3932
3933 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
3934 tag = PAGECACHE_TAG_TOWRITE;
3935 else
3936 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3937retry:
3cd24c69 3938 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 3939 tag_pages_for_writeback(mapping, index, end);
a9132667 3940 done_index = index;
f85d7d6c 3941 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3942 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3943 &index, end, tag))) {
d1310b2e
CM
3944 unsigned i;
3945
3946 scanned = 1;
3947 for (i = 0; i < nr_pages; i++) {
3948 struct page *page = pvec.pages[i];
3949
a9132667 3950 done_index = page->index;
d1310b2e 3951 /*
b93b0163
MW
3952 * At this point we hold neither the i_pages lock nor
3953 * the page lock: the page may be truncated or
3954 * invalidated (changing page->mapping to NULL),
3955 * or even swizzled back from swapper_space to
3956 * tmpfs file mapping
d1310b2e 3957 */
c8f2f24b 3958 if (!trylock_page(page)) {
aab6e9ed 3959 flush_write_bio(epd);
c8f2f24b 3960 lock_page(page);
01d658f2 3961 }
d1310b2e
CM
3962
3963 if (unlikely(page->mapping != mapping)) {
3964 unlock_page(page);
3965 continue;
3966 }
3967
d2c3f4f6 3968 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3969 if (PageWriteback(page))
aab6e9ed 3970 flush_write_bio(epd);
d1310b2e 3971 wait_on_page_writeback(page);
d2c3f4f6 3972 }
d1310b2e
CM
3973
3974 if (PageWriteback(page) ||
3975 !clear_page_dirty_for_io(page)) {
3976 unlock_page(page);
3977 continue;
3978 }
3979
aab6e9ed 3980 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3981
3982 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3983 unlock_page(page);
3984 ret = 0;
3985 }
a9132667
LB
3986 if (ret < 0) {
3987 /*
3988 * done_index is set past this page,
3989 * so media errors will not choke
3990 * background writeout for the entire
3991 * file. This has consequences for
3992 * range_cyclic semantics (ie. it may
3993 * not be suitable for data integrity
3994 * writeout).
3995 */
3996 done_index = page->index + 1;
3997 done = 1;
3998 break;
3999 }
f85d7d6c
CM
4000
4001 /*
4002 * the filesystem may choose to bump up nr_to_write.
4003 * We have to make sure to honor the new nr_to_write
4004 * at any time
4005 */
4006 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4007 }
4008 pagevec_release(&pvec);
4009 cond_resched();
4010 }
894b36e3 4011 if (!scanned && !done) {
d1310b2e
CM
4012 /*
4013 * We hit the last page and there is more work to be done: wrap
4014 * back to the start of the file
4015 */
4016 scanned = 1;
4017 index = 0;
4018 goto retry;
4019 }
a9132667
LB
4020
4021 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4022 mapping->writeback_index = done_index;
4023
7fd1a3f7 4024 btrfs_add_delayed_iput(inode);
894b36e3 4025 return ret;
d1310b2e 4026}
d1310b2e 4027
0a9b0e53 4028int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4029{
4030 int ret;
d1310b2e
CM
4031 struct extent_page_data epd = {
4032 .bio = NULL,
0a9b0e53 4033 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4034 .extent_locked = 0,
ffbd517d 4035 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4036 };
d1310b2e 4037
d1310b2e
CM
4038 ret = __extent_writepage(page, wbc, &epd);
4039
e2932ee0 4040 flush_write_bio(&epd);
d1310b2e
CM
4041 return ret;
4042}
d1310b2e 4043
5e3ee236 4044int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4045 int mode)
4046{
4047 int ret = 0;
4048 struct address_space *mapping = inode->i_mapping;
5e3ee236 4049 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4050 struct page *page;
09cbfeaf
KS
4051 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4052 PAGE_SHIFT;
771ed689
CM
4053
4054 struct extent_page_data epd = {
4055 .bio = NULL,
4056 .tree = tree,
771ed689 4057 .extent_locked = 1,
ffbd517d 4058 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4059 };
4060 struct writeback_control wbc_writepages = {
771ed689 4061 .sync_mode = mode,
771ed689
CM
4062 .nr_to_write = nr_pages * 2,
4063 .range_start = start,
4064 .range_end = end + 1,
4065 };
4066
d397712b 4067 while (start <= end) {
09cbfeaf 4068 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4069 if (clear_page_dirty_for_io(page))
4070 ret = __extent_writepage(page, &wbc_writepages, &epd);
4071 else {
7087a9d8 4072 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4073 start + PAGE_SIZE - 1, 1);
771ed689
CM
4074 unlock_page(page);
4075 }
09cbfeaf
KS
4076 put_page(page);
4077 start += PAGE_SIZE;
771ed689
CM
4078 }
4079
e2932ee0 4080 flush_write_bio(&epd);
771ed689
CM
4081 return ret;
4082}
d1310b2e 4083
8ae225a8 4084int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4085 struct writeback_control *wbc)
4086{
4087 int ret = 0;
4088 struct extent_page_data epd = {
4089 .bio = NULL,
8ae225a8 4090 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4091 .extent_locked = 0,
ffbd517d 4092 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4093 };
4094
935db853 4095 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4096 flush_write_bio(&epd);
d1310b2e
CM
4097 return ret;
4098}
d1310b2e 4099
2a3ff0ad
NB
4100int extent_readpages(struct address_space *mapping, struct list_head *pages,
4101 unsigned nr_pages)
d1310b2e
CM
4102{
4103 struct bio *bio = NULL;
c8b97818 4104 unsigned long bio_flags = 0;
67c9684f 4105 struct page *pagepool[16];
125bac01 4106 struct extent_map *em_cached = NULL;
2a3ff0ad 4107 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4108 int nr = 0;
808f80b4 4109 u64 prev_em_start = (u64)-1;
d1310b2e 4110
61ed3a14
NB
4111 while (!list_empty(pages)) {
4112 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4113 struct page *page = lru_to_page(pages);
d1310b2e 4114
61ed3a14
NB
4115 prefetchw(&page->flags);
4116 list_del(&page->lru);
4117 if (add_to_page_cache_lru(page, mapping, page->index,
4118 readahead_gfp_mask(mapping))) {
4119 put_page(page);
4120 continue;
4121 }
4122
4123 pagepool[nr++] = page;
d1310b2e 4124 }
67c9684f 4125
e4d17ef5 4126 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
61ed3a14 4127 &bio_flags, &prev_em_start);
d1310b2e 4128 }
67c9684f 4129
125bac01
MX
4130 if (em_cached)
4131 free_extent_map(em_cached);
4132
d1310b2e 4133 if (bio)
1f7ad75b 4134 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4135 return 0;
4136}
d1310b2e
CM
4137
4138/*
4139 * basic invalidatepage code, this waits on any locked or writeback
4140 * ranges corresponding to the page, and then deletes any extent state
4141 * records from the tree
4142 */
4143int extent_invalidatepage(struct extent_io_tree *tree,
4144 struct page *page, unsigned long offset)
4145{
2ac55d41 4146 struct extent_state *cached_state = NULL;
4eee4fa4 4147 u64 start = page_offset(page);
09cbfeaf 4148 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4149 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4150
fda2832f 4151 start += ALIGN(offset, blocksize);
d1310b2e
CM
4152 if (start > end)
4153 return 0;
4154
ff13db41 4155 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4156 wait_on_page_writeback(page);
d1310b2e 4157 clear_extent_bit(tree, start, end,
32c00aff
JB
4158 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4159 EXTENT_DO_ACCOUNTING,
ae0f1625 4160 1, 1, &cached_state);
d1310b2e
CM
4161 return 0;
4162}
d1310b2e 4163
7b13b7b1
CM
4164/*
4165 * a helper for releasepage, this tests for areas of the page that
4166 * are locked or under IO and drops the related state bits if it is safe
4167 * to drop the page.
4168 */
29c68b2d 4169static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4170 struct page *page, gfp_t mask)
7b13b7b1 4171{
4eee4fa4 4172 u64 start = page_offset(page);
09cbfeaf 4173 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4174 int ret = 1;
4175
8882679e 4176 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4177 ret = 0;
8882679e 4178 } else {
11ef160f
CM
4179 /*
4180 * at this point we can safely clear everything except the
4181 * locked bit and the nodatasum bit
4182 */
66b0c887 4183 ret = __clear_extent_bit(tree, start, end,
11ef160f 4184 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4185 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4186
4187 /* if clear_extent_bit failed for enomem reasons,
4188 * we can't allow the release to continue.
4189 */
4190 if (ret < 0)
4191 ret = 0;
4192 else
4193 ret = 1;
7b13b7b1
CM
4194 }
4195 return ret;
4196}
7b13b7b1 4197
d1310b2e
CM
4198/*
4199 * a helper for releasepage. As long as there are no locked extents
4200 * in the range corresponding to the page, both state records and extent
4201 * map records are removed
4202 */
477a30ba 4203int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4204{
4205 struct extent_map *em;
4eee4fa4 4206 u64 start = page_offset(page);
09cbfeaf 4207 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4208 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4209 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4210 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4211
d0164adc 4212 if (gfpflags_allow_blocking(mask) &&
ee22184b 4213 page->mapping->host->i_size > SZ_16M) {
39b5637f 4214 u64 len;
70dec807 4215 while (start <= end) {
39b5637f 4216 len = end - start + 1;
890871be 4217 write_lock(&map->lock);
39b5637f 4218 em = lookup_extent_mapping(map, start, len);
285190d9 4219 if (!em) {
890871be 4220 write_unlock(&map->lock);
70dec807
CM
4221 break;
4222 }
7f3c74fb
CM
4223 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4224 em->start != start) {
890871be 4225 write_unlock(&map->lock);
70dec807
CM
4226 free_extent_map(em);
4227 break;
4228 }
4229 if (!test_range_bit(tree, em->start,
4230 extent_map_end(em) - 1,
4e586ca3 4231 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4232 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4233 &btrfs_inode->runtime_flags);
70dec807
CM
4234 remove_extent_mapping(map, em);
4235 /* once for the rb tree */
4236 free_extent_map(em);
4237 }
4238 start = extent_map_end(em);
890871be 4239 write_unlock(&map->lock);
70dec807
CM
4240
4241 /* once for us */
d1310b2e
CM
4242 free_extent_map(em);
4243 }
d1310b2e 4244 }
29c68b2d 4245 return try_release_extent_state(tree, page, mask);
d1310b2e 4246}
d1310b2e 4247
ec29ed5b
CM
4248/*
4249 * helper function for fiemap, which doesn't want to see any holes.
4250 * This maps until we find something past 'last'
4251 */
4252static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4253 u64 offset, u64 last)
ec29ed5b 4254{
da17066c 4255 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4256 struct extent_map *em;
4257 u64 len;
4258
4259 if (offset >= last)
4260 return NULL;
4261
67871254 4262 while (1) {
ec29ed5b
CM
4263 len = last - offset;
4264 if (len == 0)
4265 break;
fda2832f 4266 len = ALIGN(len, sectorsize);
4ab47a8d 4267 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4268 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4269 return em;
4270
4271 /* if this isn't a hole return it */
4a2d25cd 4272 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4273 return em;
ec29ed5b
CM
4274
4275 /* this is a hole, advance to the next extent */
4276 offset = extent_map_end(em);
4277 free_extent_map(em);
4278 if (offset >= last)
4279 break;
4280 }
4281 return NULL;
4282}
4283
4751832d
QW
4284/*
4285 * To cache previous fiemap extent
4286 *
4287 * Will be used for merging fiemap extent
4288 */
4289struct fiemap_cache {
4290 u64 offset;
4291 u64 phys;
4292 u64 len;
4293 u32 flags;
4294 bool cached;
4295};
4296
4297/*
4298 * Helper to submit fiemap extent.
4299 *
4300 * Will try to merge current fiemap extent specified by @offset, @phys,
4301 * @len and @flags with cached one.
4302 * And only when we fails to merge, cached one will be submitted as
4303 * fiemap extent.
4304 *
4305 * Return value is the same as fiemap_fill_next_extent().
4306 */
4307static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4308 struct fiemap_cache *cache,
4309 u64 offset, u64 phys, u64 len, u32 flags)
4310{
4311 int ret = 0;
4312
4313 if (!cache->cached)
4314 goto assign;
4315
4316 /*
4317 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4318 * fiemap extent won't overlap with cached one.
4751832d
QW
4319 * Not recoverable.
4320 *
4321 * NOTE: Physical address can overlap, due to compression
4322 */
4323 if (cache->offset + cache->len > offset) {
4324 WARN_ON(1);
4325 return -EINVAL;
4326 }
4327
4328 /*
4329 * Only merges fiemap extents if
4330 * 1) Their logical addresses are continuous
4331 *
4332 * 2) Their physical addresses are continuous
4333 * So truly compressed (physical size smaller than logical size)
4334 * extents won't get merged with each other
4335 *
4336 * 3) Share same flags except FIEMAP_EXTENT_LAST
4337 * So regular extent won't get merged with prealloc extent
4338 */
4339 if (cache->offset + cache->len == offset &&
4340 cache->phys + cache->len == phys &&
4341 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4342 (flags & ~FIEMAP_EXTENT_LAST)) {
4343 cache->len += len;
4344 cache->flags |= flags;
4345 goto try_submit_last;
4346 }
4347
4348 /* Not mergeable, need to submit cached one */
4349 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4350 cache->len, cache->flags);
4351 cache->cached = false;
4352 if (ret)
4353 return ret;
4354assign:
4355 cache->cached = true;
4356 cache->offset = offset;
4357 cache->phys = phys;
4358 cache->len = len;
4359 cache->flags = flags;
4360try_submit_last:
4361 if (cache->flags & FIEMAP_EXTENT_LAST) {
4362 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4363 cache->phys, cache->len, cache->flags);
4364 cache->cached = false;
4365 }
4366 return ret;
4367}
4368
4369/*
848c23b7 4370 * Emit last fiemap cache
4751832d 4371 *
848c23b7
QW
4372 * The last fiemap cache may still be cached in the following case:
4373 * 0 4k 8k
4374 * |<- Fiemap range ->|
4375 * |<------------ First extent ----------->|
4376 *
4377 * In this case, the first extent range will be cached but not emitted.
4378 * So we must emit it before ending extent_fiemap().
4751832d 4379 */
848c23b7
QW
4380static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4381 struct fiemap_extent_info *fieinfo,
4382 struct fiemap_cache *cache)
4751832d
QW
4383{
4384 int ret;
4385
4386 if (!cache->cached)
4387 return 0;
4388
4751832d
QW
4389 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4390 cache->len, cache->flags);
4391 cache->cached = false;
4392 if (ret > 0)
4393 ret = 0;
4394 return ret;
4395}
4396
1506fcc8 4397int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4398 __u64 start, __u64 len)
1506fcc8 4399{
975f84fe 4400 int ret = 0;
1506fcc8
YS
4401 u64 off = start;
4402 u64 max = start + len;
4403 u32 flags = 0;
975f84fe
JB
4404 u32 found_type;
4405 u64 last;
ec29ed5b 4406 u64 last_for_get_extent = 0;
1506fcc8 4407 u64 disko = 0;
ec29ed5b 4408 u64 isize = i_size_read(inode);
975f84fe 4409 struct btrfs_key found_key;
1506fcc8 4410 struct extent_map *em = NULL;
2ac55d41 4411 struct extent_state *cached_state = NULL;
975f84fe 4412 struct btrfs_path *path;
dc046b10 4413 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4414 struct fiemap_cache cache = { 0 };
1506fcc8 4415 int end = 0;
ec29ed5b
CM
4416 u64 em_start = 0;
4417 u64 em_len = 0;
4418 u64 em_end = 0;
1506fcc8
YS
4419
4420 if (len == 0)
4421 return -EINVAL;
4422
975f84fe
JB
4423 path = btrfs_alloc_path();
4424 if (!path)
4425 return -ENOMEM;
4426 path->leave_spinning = 1;
4427
da17066c
JM
4428 start = round_down(start, btrfs_inode_sectorsize(inode));
4429 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4430
ec29ed5b
CM
4431 /*
4432 * lookup the last file extent. We're not using i_size here
4433 * because there might be preallocation past i_size
4434 */
f85b7379
DS
4435 ret = btrfs_lookup_file_extent(NULL, root, path,
4436 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4437 if (ret < 0) {
4438 btrfs_free_path(path);
4439 return ret;
2d324f59
LB
4440 } else {
4441 WARN_ON(!ret);
4442 if (ret == 1)
4443 ret = 0;
975f84fe 4444 }
2d324f59 4445
975f84fe 4446 path->slots[0]--;
975f84fe 4447 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4448 found_type = found_key.type;
975f84fe 4449
ec29ed5b 4450 /* No extents, but there might be delalloc bits */
4a0cc7ca 4451 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4452 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4453 /* have to trust i_size as the end */
4454 last = (u64)-1;
4455 last_for_get_extent = isize;
4456 } else {
4457 /*
4458 * remember the start of the last extent. There are a
4459 * bunch of different factors that go into the length of the
4460 * extent, so its much less complex to remember where it started
4461 */
4462 last = found_key.offset;
4463 last_for_get_extent = last + 1;
975f84fe 4464 }
fe09e16c 4465 btrfs_release_path(path);
975f84fe 4466
ec29ed5b
CM
4467 /*
4468 * we might have some extents allocated but more delalloc past those
4469 * extents. so, we trust isize unless the start of the last extent is
4470 * beyond isize
4471 */
4472 if (last < isize) {
4473 last = (u64)-1;
4474 last_for_get_extent = isize;
4475 }
4476
ff13db41 4477 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4478 &cached_state);
ec29ed5b 4479
e3350e16 4480 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4481 if (!em)
4482 goto out;
4483 if (IS_ERR(em)) {
4484 ret = PTR_ERR(em);
4485 goto out;
4486 }
975f84fe 4487
1506fcc8 4488 while (!end) {
b76bb701 4489 u64 offset_in_extent = 0;
ea8efc74
CM
4490
4491 /* break if the extent we found is outside the range */
4492 if (em->start >= max || extent_map_end(em) < off)
4493 break;
4494
4495 /*
4496 * get_extent may return an extent that starts before our
4497 * requested range. We have to make sure the ranges
4498 * we return to fiemap always move forward and don't
4499 * overlap, so adjust the offsets here
4500 */
4501 em_start = max(em->start, off);
1506fcc8 4502
ea8efc74
CM
4503 /*
4504 * record the offset from the start of the extent
b76bb701
JB
4505 * for adjusting the disk offset below. Only do this if the
4506 * extent isn't compressed since our in ram offset may be past
4507 * what we have actually allocated on disk.
ea8efc74 4508 */
b76bb701
JB
4509 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4510 offset_in_extent = em_start - em->start;
ec29ed5b 4511 em_end = extent_map_end(em);
ea8efc74 4512 em_len = em_end - em_start;
1506fcc8 4513 flags = 0;
f0986318
FM
4514 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4515 disko = em->block_start + offset_in_extent;
4516 else
4517 disko = 0;
1506fcc8 4518
ea8efc74
CM
4519 /*
4520 * bump off for our next call to get_extent
4521 */
4522 off = extent_map_end(em);
4523 if (off >= max)
4524 end = 1;
4525
93dbfad7 4526 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4527 end = 1;
4528 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4529 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4530 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4531 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4532 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4533 flags |= (FIEMAP_EXTENT_DELALLOC |
4534 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4535 } else if (fieinfo->fi_extents_max) {
4536 u64 bytenr = em->block_start -
4537 (em->start - em->orig_start);
fe09e16c 4538
fe09e16c
LB
4539 /*
4540 * As btrfs supports shared space, this information
4541 * can be exported to userspace tools via
dc046b10
JB
4542 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4543 * then we're just getting a count and we can skip the
4544 * lookup stuff.
fe09e16c 4545 */
bb739cf0
EN
4546 ret = btrfs_check_shared(root,
4547 btrfs_ino(BTRFS_I(inode)),
4548 bytenr);
dc046b10 4549 if (ret < 0)
fe09e16c 4550 goto out_free;
dc046b10 4551 if (ret)
fe09e16c 4552 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4553 ret = 0;
1506fcc8
YS
4554 }
4555 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4556 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4557 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4558 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4559
1506fcc8
YS
4560 free_extent_map(em);
4561 em = NULL;
ec29ed5b
CM
4562 if ((em_start >= last) || em_len == (u64)-1 ||
4563 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4564 flags |= FIEMAP_EXTENT_LAST;
4565 end = 1;
4566 }
4567
ec29ed5b 4568 /* now scan forward to see if this is really the last extent. */
e3350e16 4569 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4570 if (IS_ERR(em)) {
4571 ret = PTR_ERR(em);
4572 goto out;
4573 }
4574 if (!em) {
975f84fe
JB
4575 flags |= FIEMAP_EXTENT_LAST;
4576 end = 1;
4577 }
4751832d
QW
4578 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4579 em_len, flags);
26e726af
CS
4580 if (ret) {
4581 if (ret == 1)
4582 ret = 0;
ec29ed5b 4583 goto out_free;
26e726af 4584 }
1506fcc8
YS
4585 }
4586out_free:
4751832d 4587 if (!ret)
848c23b7 4588 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4589 free_extent_map(em);
4590out:
fe09e16c 4591 btrfs_free_path(path);
a52f4cd2 4592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4593 &cached_state);
1506fcc8
YS
4594 return ret;
4595}
4596
727011e0
CM
4597static void __free_extent_buffer(struct extent_buffer *eb)
4598{
6d49ba1b 4599 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4600 kmem_cache_free(extent_buffer_cache, eb);
4601}
4602
a26e8c9f 4603int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4604{
4605 return (atomic_read(&eb->io_pages) ||
4606 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4607 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4608}
4609
4610/*
55ac0139 4611 * Release all pages attached to the extent buffer.
db7f3436 4612 */
55ac0139 4613static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4614{
d64766fd
NB
4615 int i;
4616 int num_pages;
b0132a3b 4617 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4618
4619 BUG_ON(extent_buffer_under_io(eb));
4620
d64766fd
NB
4621 num_pages = num_extent_pages(eb);
4622 for (i = 0; i < num_pages; i++) {
4623 struct page *page = eb->pages[i];
db7f3436 4624
5d2361db
FL
4625 if (!page)
4626 continue;
4627 if (mapped)
db7f3436 4628 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4629 /*
4630 * We do this since we'll remove the pages after we've
4631 * removed the eb from the radix tree, so we could race
4632 * and have this page now attached to the new eb. So
4633 * only clear page_private if it's still connected to
4634 * this eb.
4635 */
4636 if (PagePrivate(page) &&
4637 page->private == (unsigned long)eb) {
4638 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4639 BUG_ON(PageDirty(page));
4640 BUG_ON(PageWriteback(page));
db7f3436 4641 /*
5d2361db
FL
4642 * We need to make sure we haven't be attached
4643 * to a new eb.
db7f3436 4644 */
5d2361db
FL
4645 ClearPagePrivate(page);
4646 set_page_private(page, 0);
4647 /* One for the page private */
09cbfeaf 4648 put_page(page);
db7f3436 4649 }
5d2361db
FL
4650
4651 if (mapped)
4652 spin_unlock(&page->mapping->private_lock);
4653
01327610 4654 /* One for when we allocated the page */
09cbfeaf 4655 put_page(page);
d64766fd 4656 }
db7f3436
JB
4657}
4658
4659/*
4660 * Helper for releasing the extent buffer.
4661 */
4662static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4663{
55ac0139 4664 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4665 __free_extent_buffer(eb);
4666}
4667
f28491e0
JB
4668static struct extent_buffer *
4669__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4670 unsigned long len)
d1310b2e
CM
4671{
4672 struct extent_buffer *eb = NULL;
4673
d1b5c567 4674 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4675 eb->start = start;
4676 eb->len = len;
f28491e0 4677 eb->fs_info = fs_info;
815a51c7 4678 eb->bflags = 0;
bd681513
CM
4679 rwlock_init(&eb->lock);
4680 atomic_set(&eb->write_locks, 0);
4681 atomic_set(&eb->read_locks, 0);
4682 atomic_set(&eb->blocking_readers, 0);
4683 atomic_set(&eb->blocking_writers, 0);
5b25f70f 4684 eb->lock_nested = 0;
bd681513
CM
4685 init_waitqueue_head(&eb->write_lock_wq);
4686 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4687
6d49ba1b
ES
4688 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4689
3083ee2e 4690 spin_lock_init(&eb->refs_lock);
d1310b2e 4691 atomic_set(&eb->refs, 1);
0b32f4bb 4692 atomic_set(&eb->io_pages, 0);
727011e0 4693
b8dae313
DS
4694 /*
4695 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4696 */
4697 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4698 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4699 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4700
843ccf9f
DS
4701#ifdef CONFIG_BTRFS_DEBUG
4702 atomic_set(&eb->spinning_writers, 0);
afd495a8 4703 atomic_set(&eb->spinning_readers, 0);
843ccf9f
DS
4704#endif
4705
d1310b2e
CM
4706 return eb;
4707}
4708
815a51c7
JS
4709struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4710{
cc5e31a4 4711 int i;
815a51c7
JS
4712 struct page *p;
4713 struct extent_buffer *new;
cc5e31a4 4714 int num_pages = num_extent_pages(src);
815a51c7 4715
3f556f78 4716 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4717 if (new == NULL)
4718 return NULL;
4719
4720 for (i = 0; i < num_pages; i++) {
9ec72677 4721 p = alloc_page(GFP_NOFS);
db7f3436
JB
4722 if (!p) {
4723 btrfs_release_extent_buffer(new);
4724 return NULL;
4725 }
815a51c7
JS
4726 attach_extent_buffer_page(new, p);
4727 WARN_ON(PageDirty(p));
4728 SetPageUptodate(p);
4729 new->pages[i] = p;
fba1acf9 4730 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4731 }
4732
815a51c7 4733 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4734 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4735
4736 return new;
4737}
4738
0f331229
OS
4739struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4740 u64 start, unsigned long len)
815a51c7
JS
4741{
4742 struct extent_buffer *eb;
cc5e31a4
DS
4743 int num_pages;
4744 int i;
815a51c7 4745
3f556f78 4746 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4747 if (!eb)
4748 return NULL;
4749
65ad0104 4750 num_pages = num_extent_pages(eb);
815a51c7 4751 for (i = 0; i < num_pages; i++) {
9ec72677 4752 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4753 if (!eb->pages[i])
4754 goto err;
4755 }
4756 set_extent_buffer_uptodate(eb);
4757 btrfs_set_header_nritems(eb, 0);
b0132a3b 4758 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4759
4760 return eb;
4761err:
84167d19
SB
4762 for (; i > 0; i--)
4763 __free_page(eb->pages[i - 1]);
815a51c7
JS
4764 __free_extent_buffer(eb);
4765 return NULL;
4766}
4767
0f331229 4768struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4769 u64 start)
0f331229 4770{
da17066c 4771 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4772}
4773
0b32f4bb
JB
4774static void check_buffer_tree_ref(struct extent_buffer *eb)
4775{
242e18c7 4776 int refs;
0b32f4bb
JB
4777 /* the ref bit is tricky. We have to make sure it is set
4778 * if we have the buffer dirty. Otherwise the
4779 * code to free a buffer can end up dropping a dirty
4780 * page
4781 *
4782 * Once the ref bit is set, it won't go away while the
4783 * buffer is dirty or in writeback, and it also won't
4784 * go away while we have the reference count on the
4785 * eb bumped.
4786 *
4787 * We can't just set the ref bit without bumping the
4788 * ref on the eb because free_extent_buffer might
4789 * see the ref bit and try to clear it. If this happens
4790 * free_extent_buffer might end up dropping our original
4791 * ref by mistake and freeing the page before we are able
4792 * to add one more ref.
4793 *
4794 * So bump the ref count first, then set the bit. If someone
4795 * beat us to it, drop the ref we added.
4796 */
242e18c7
CM
4797 refs = atomic_read(&eb->refs);
4798 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4799 return;
4800
594831c4
JB
4801 spin_lock(&eb->refs_lock);
4802 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4803 atomic_inc(&eb->refs);
594831c4 4804 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4805}
4806
2457aec6
MG
4807static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4808 struct page *accessed)
5df4235e 4809{
cc5e31a4 4810 int num_pages, i;
5df4235e 4811
0b32f4bb
JB
4812 check_buffer_tree_ref(eb);
4813
65ad0104 4814 num_pages = num_extent_pages(eb);
5df4235e 4815 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4816 struct page *p = eb->pages[i];
4817
2457aec6
MG
4818 if (p != accessed)
4819 mark_page_accessed(p);
5df4235e
JB
4820 }
4821}
4822
f28491e0
JB
4823struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4824 u64 start)
452c75c3
CS
4825{
4826 struct extent_buffer *eb;
4827
4828 rcu_read_lock();
f28491e0 4829 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4830 start >> PAGE_SHIFT);
452c75c3
CS
4831 if (eb && atomic_inc_not_zero(&eb->refs)) {
4832 rcu_read_unlock();
062c19e9
FM
4833 /*
4834 * Lock our eb's refs_lock to avoid races with
4835 * free_extent_buffer. When we get our eb it might be flagged
4836 * with EXTENT_BUFFER_STALE and another task running
4837 * free_extent_buffer might have seen that flag set,
4838 * eb->refs == 2, that the buffer isn't under IO (dirty and
4839 * writeback flags not set) and it's still in the tree (flag
4840 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4841 * of decrementing the extent buffer's reference count twice.
4842 * So here we could race and increment the eb's reference count,
4843 * clear its stale flag, mark it as dirty and drop our reference
4844 * before the other task finishes executing free_extent_buffer,
4845 * which would later result in an attempt to free an extent
4846 * buffer that is dirty.
4847 */
4848 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4849 spin_lock(&eb->refs_lock);
4850 spin_unlock(&eb->refs_lock);
4851 }
2457aec6 4852 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4853 return eb;
4854 }
4855 rcu_read_unlock();
4856
4857 return NULL;
4858}
4859
faa2dbf0
JB
4860#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4861struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4862 u64 start)
faa2dbf0
JB
4863{
4864 struct extent_buffer *eb, *exists = NULL;
4865 int ret;
4866
4867 eb = find_extent_buffer(fs_info, start);
4868 if (eb)
4869 return eb;
da17066c 4870 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4871 if (!eb)
4872 return NULL;
4873 eb->fs_info = fs_info;
4874again:
e1860a77 4875 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4876 if (ret)
4877 goto free_eb;
4878 spin_lock(&fs_info->buffer_lock);
4879 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4880 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4881 spin_unlock(&fs_info->buffer_lock);
4882 radix_tree_preload_end();
4883 if (ret == -EEXIST) {
4884 exists = find_extent_buffer(fs_info, start);
4885 if (exists)
4886 goto free_eb;
4887 else
4888 goto again;
4889 }
4890 check_buffer_tree_ref(eb);
4891 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4892
faa2dbf0
JB
4893 return eb;
4894free_eb:
4895 btrfs_release_extent_buffer(eb);
4896 return exists;
4897}
4898#endif
4899
f28491e0 4900struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4901 u64 start)
d1310b2e 4902{
da17066c 4903 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4904 int num_pages;
4905 int i;
09cbfeaf 4906 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4907 struct extent_buffer *eb;
6af118ce 4908 struct extent_buffer *exists = NULL;
d1310b2e 4909 struct page *p;
f28491e0 4910 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4911 int uptodate = 1;
19fe0a8b 4912 int ret;
d1310b2e 4913
da17066c 4914 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4915 btrfs_err(fs_info, "bad tree block start %llu", start);
4916 return ERR_PTR(-EINVAL);
4917 }
4918
f28491e0 4919 eb = find_extent_buffer(fs_info, start);
452c75c3 4920 if (eb)
6af118ce 4921 return eb;
6af118ce 4922
23d79d81 4923 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4924 if (!eb)
c871b0f2 4925 return ERR_PTR(-ENOMEM);
d1310b2e 4926
65ad0104 4927 num_pages = num_extent_pages(eb);
727011e0 4928 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4929 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4930 if (!p) {
4931 exists = ERR_PTR(-ENOMEM);
6af118ce 4932 goto free_eb;
c871b0f2 4933 }
4f2de97a
JB
4934
4935 spin_lock(&mapping->private_lock);
4936 if (PagePrivate(p)) {
4937 /*
4938 * We could have already allocated an eb for this page
4939 * and attached one so lets see if we can get a ref on
4940 * the existing eb, and if we can we know it's good and
4941 * we can just return that one, else we know we can just
4942 * overwrite page->private.
4943 */
4944 exists = (struct extent_buffer *)p->private;
4945 if (atomic_inc_not_zero(&exists->refs)) {
4946 spin_unlock(&mapping->private_lock);
4947 unlock_page(p);
09cbfeaf 4948 put_page(p);
2457aec6 4949 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4950 goto free_eb;
4951 }
5ca64f45 4952 exists = NULL;
4f2de97a 4953
0b32f4bb 4954 /*
4f2de97a
JB
4955 * Do this so attach doesn't complain and we need to
4956 * drop the ref the old guy had.
4957 */
4958 ClearPagePrivate(p);
0b32f4bb 4959 WARN_ON(PageDirty(p));
09cbfeaf 4960 put_page(p);
d1310b2e 4961 }
4f2de97a
JB
4962 attach_extent_buffer_page(eb, p);
4963 spin_unlock(&mapping->private_lock);
0b32f4bb 4964 WARN_ON(PageDirty(p));
727011e0 4965 eb->pages[i] = p;
d1310b2e
CM
4966 if (!PageUptodate(p))
4967 uptodate = 0;
eb14ab8e
CM
4968
4969 /*
b16d011e
NB
4970 * We can't unlock the pages just yet since the extent buffer
4971 * hasn't been properly inserted in the radix tree, this
4972 * opens a race with btree_releasepage which can free a page
4973 * while we are still filling in all pages for the buffer and
4974 * we could crash.
eb14ab8e 4975 */
d1310b2e
CM
4976 }
4977 if (uptodate)
b4ce94de 4978 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4979again:
e1860a77 4980 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4981 if (ret) {
4982 exists = ERR_PTR(ret);
19fe0a8b 4983 goto free_eb;
c871b0f2 4984 }
19fe0a8b 4985
f28491e0
JB
4986 spin_lock(&fs_info->buffer_lock);
4987 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4988 start >> PAGE_SHIFT, eb);
f28491e0 4989 spin_unlock(&fs_info->buffer_lock);
452c75c3 4990 radix_tree_preload_end();
19fe0a8b 4991 if (ret == -EEXIST) {
f28491e0 4992 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4993 if (exists)
4994 goto free_eb;
4995 else
115391d2 4996 goto again;
6af118ce 4997 }
6af118ce 4998 /* add one reference for the tree */
0b32f4bb 4999 check_buffer_tree_ref(eb);
34b41ace 5000 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5001
5002 /*
b16d011e
NB
5003 * Now it's safe to unlock the pages because any calls to
5004 * btree_releasepage will correctly detect that a page belongs to a
5005 * live buffer and won't free them prematurely.
eb14ab8e 5006 */
28187ae5
NB
5007 for (i = 0; i < num_pages; i++)
5008 unlock_page(eb->pages[i]);
d1310b2e
CM
5009 return eb;
5010
6af118ce 5011free_eb:
5ca64f45 5012 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5013 for (i = 0; i < num_pages; i++) {
5014 if (eb->pages[i])
5015 unlock_page(eb->pages[i]);
5016 }
eb14ab8e 5017
897ca6e9 5018 btrfs_release_extent_buffer(eb);
6af118ce 5019 return exists;
d1310b2e 5020}
d1310b2e 5021
3083ee2e
JB
5022static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5023{
5024 struct extent_buffer *eb =
5025 container_of(head, struct extent_buffer, rcu_head);
5026
5027 __free_extent_buffer(eb);
5028}
5029
f7a52a40 5030static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5031{
07e21c4d
NB
5032 lockdep_assert_held(&eb->refs_lock);
5033
3083ee2e
JB
5034 WARN_ON(atomic_read(&eb->refs) == 0);
5035 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5036 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5037 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5038
815a51c7 5039 spin_unlock(&eb->refs_lock);
3083ee2e 5040
f28491e0
JB
5041 spin_lock(&fs_info->buffer_lock);
5042 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5043 eb->start >> PAGE_SHIFT);
f28491e0 5044 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5045 } else {
5046 spin_unlock(&eb->refs_lock);
815a51c7 5047 }
3083ee2e
JB
5048
5049 /* Should be safe to release our pages at this point */
55ac0139 5050 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5051#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5052 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5053 __free_extent_buffer(eb);
5054 return 1;
5055 }
5056#endif
3083ee2e 5057 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5058 return 1;
3083ee2e
JB
5059 }
5060 spin_unlock(&eb->refs_lock);
e64860aa
JB
5061
5062 return 0;
3083ee2e
JB
5063}
5064
d1310b2e
CM
5065void free_extent_buffer(struct extent_buffer *eb)
5066{
242e18c7
CM
5067 int refs;
5068 int old;
d1310b2e
CM
5069 if (!eb)
5070 return;
5071
242e18c7
CM
5072 while (1) {
5073 refs = atomic_read(&eb->refs);
46cc775e
NB
5074 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5075 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5076 refs == 1))
242e18c7
CM
5077 break;
5078 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5079 if (old == refs)
5080 return;
5081 }
5082
3083ee2e
JB
5083 spin_lock(&eb->refs_lock);
5084 if (atomic_read(&eb->refs) == 2 &&
5085 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5086 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5087 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5088 atomic_dec(&eb->refs);
5089
5090 /*
5091 * I know this is terrible, but it's temporary until we stop tracking
5092 * the uptodate bits and such for the extent buffers.
5093 */
f7a52a40 5094 release_extent_buffer(eb);
3083ee2e
JB
5095}
5096
5097void free_extent_buffer_stale(struct extent_buffer *eb)
5098{
5099 if (!eb)
d1310b2e
CM
5100 return;
5101
3083ee2e
JB
5102 spin_lock(&eb->refs_lock);
5103 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5104
0b32f4bb 5105 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5106 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5107 atomic_dec(&eb->refs);
f7a52a40 5108 release_extent_buffer(eb);
d1310b2e 5109}
d1310b2e 5110
1d4284bd 5111void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5112{
cc5e31a4
DS
5113 int i;
5114 int num_pages;
d1310b2e
CM
5115 struct page *page;
5116
65ad0104 5117 num_pages = num_extent_pages(eb);
d1310b2e
CM
5118
5119 for (i = 0; i < num_pages; i++) {
fb85fc9a 5120 page = eb->pages[i];
b9473439 5121 if (!PageDirty(page))
d2c3f4f6
CM
5122 continue;
5123
a61e6f29 5124 lock_page(page);
eb14ab8e
CM
5125 WARN_ON(!PagePrivate(page));
5126
d1310b2e 5127 clear_page_dirty_for_io(page);
b93b0163 5128 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5129 if (!PageDirty(page))
5130 __xa_clear_mark(&page->mapping->i_pages,
5131 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5132 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5133 ClearPageError(page);
a61e6f29 5134 unlock_page(page);
d1310b2e 5135 }
0b32f4bb 5136 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5137}
d1310b2e 5138
abb57ef3 5139bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5140{
cc5e31a4
DS
5141 int i;
5142 int num_pages;
abb57ef3 5143 bool was_dirty;
d1310b2e 5144
0b32f4bb
JB
5145 check_buffer_tree_ref(eb);
5146
b9473439 5147 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5148
65ad0104 5149 num_pages = num_extent_pages(eb);
3083ee2e 5150 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5151 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5152
abb57ef3
LB
5153 if (!was_dirty)
5154 for (i = 0; i < num_pages; i++)
5155 set_page_dirty(eb->pages[i]);
51995c39
LB
5156
5157#ifdef CONFIG_BTRFS_DEBUG
5158 for (i = 0; i < num_pages; i++)
5159 ASSERT(PageDirty(eb->pages[i]));
5160#endif
5161
b9473439 5162 return was_dirty;
d1310b2e 5163}
d1310b2e 5164
69ba3927 5165void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5166{
cc5e31a4 5167 int i;
1259ab75 5168 struct page *page;
cc5e31a4 5169 int num_pages;
1259ab75 5170
b4ce94de 5171 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5172 num_pages = num_extent_pages(eb);
1259ab75 5173 for (i = 0; i < num_pages; i++) {
fb85fc9a 5174 page = eb->pages[i];
33958dc6
CM
5175 if (page)
5176 ClearPageUptodate(page);
1259ab75 5177 }
1259ab75
CM
5178}
5179
09c25a8c 5180void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5181{
cc5e31a4 5182 int i;
d1310b2e 5183 struct page *page;
cc5e31a4 5184 int num_pages;
d1310b2e 5185
0b32f4bb 5186 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5187 num_pages = num_extent_pages(eb);
d1310b2e 5188 for (i = 0; i < num_pages; i++) {
fb85fc9a 5189 page = eb->pages[i];
d1310b2e
CM
5190 SetPageUptodate(page);
5191 }
d1310b2e 5192}
d1310b2e 5193
d1310b2e 5194int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5195 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5196{
cc5e31a4 5197 int i;
d1310b2e
CM
5198 struct page *page;
5199 int err;
5200 int ret = 0;
ce9adaa5
CM
5201 int locked_pages = 0;
5202 int all_uptodate = 1;
cc5e31a4 5203 int num_pages;
727011e0 5204 unsigned long num_reads = 0;
a86c12c7 5205 struct bio *bio = NULL;
c8b97818 5206 unsigned long bio_flags = 0;
a86c12c7 5207
b4ce94de 5208 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5209 return 0;
5210
65ad0104 5211 num_pages = num_extent_pages(eb);
8436ea91 5212 for (i = 0; i < num_pages; i++) {
fb85fc9a 5213 page = eb->pages[i];
bb82ab88 5214 if (wait == WAIT_NONE) {
2db04966 5215 if (!trylock_page(page))
ce9adaa5 5216 goto unlock_exit;
d1310b2e
CM
5217 } else {
5218 lock_page(page);
5219 }
ce9adaa5 5220 locked_pages++;
2571e739
LB
5221 }
5222 /*
5223 * We need to firstly lock all pages to make sure that
5224 * the uptodate bit of our pages won't be affected by
5225 * clear_extent_buffer_uptodate().
5226 */
8436ea91 5227 for (i = 0; i < num_pages; i++) {
2571e739 5228 page = eb->pages[i];
727011e0
CM
5229 if (!PageUptodate(page)) {
5230 num_reads++;
ce9adaa5 5231 all_uptodate = 0;
727011e0 5232 }
ce9adaa5 5233 }
2571e739 5234
ce9adaa5 5235 if (all_uptodate) {
8436ea91 5236 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5237 goto unlock_exit;
5238 }
5239
656f30db 5240 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5241 eb->read_mirror = 0;
0b32f4bb 5242 atomic_set(&eb->io_pages, num_reads);
8436ea91 5243 for (i = 0; i < num_pages; i++) {
fb85fc9a 5244 page = eb->pages[i];
baf863b9 5245
ce9adaa5 5246 if (!PageUptodate(page)) {
baf863b9
LB
5247 if (ret) {
5248 atomic_dec(&eb->io_pages);
5249 unlock_page(page);
5250 continue;
5251 }
5252
f188591e 5253 ClearPageError(page);
a86c12c7 5254 err = __extent_read_full_page(tree, page,
6af49dbd 5255 btree_get_extent, &bio,
d4c7ca86 5256 mirror_num, &bio_flags,
1f7ad75b 5257 REQ_META);
baf863b9 5258 if (err) {
d1310b2e 5259 ret = err;
baf863b9
LB
5260 /*
5261 * We use &bio in above __extent_read_full_page,
5262 * so we ensure that if it returns error, the
5263 * current page fails to add itself to bio and
5264 * it's been unlocked.
5265 *
5266 * We must dec io_pages by ourselves.
5267 */
5268 atomic_dec(&eb->io_pages);
5269 }
d1310b2e
CM
5270 } else {
5271 unlock_page(page);
5272 }
5273 }
5274
355808c2 5275 if (bio) {
1f7ad75b 5276 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5277 if (err)
5278 return err;
355808c2 5279 }
a86c12c7 5280
bb82ab88 5281 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5282 return ret;
d397712b 5283
8436ea91 5284 for (i = 0; i < num_pages; i++) {
fb85fc9a 5285 page = eb->pages[i];
d1310b2e 5286 wait_on_page_locked(page);
d397712b 5287 if (!PageUptodate(page))
d1310b2e 5288 ret = -EIO;
d1310b2e 5289 }
d397712b 5290
d1310b2e 5291 return ret;
ce9adaa5
CM
5292
5293unlock_exit:
d397712b 5294 while (locked_pages > 0) {
ce9adaa5 5295 locked_pages--;
8436ea91
JB
5296 page = eb->pages[locked_pages];
5297 unlock_page(page);
ce9adaa5
CM
5298 }
5299 return ret;
d1310b2e 5300}
d1310b2e 5301
1cbb1f45
JM
5302void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5303 unsigned long start, unsigned long len)
d1310b2e
CM
5304{
5305 size_t cur;
5306 size_t offset;
5307 struct page *page;
5308 char *kaddr;
5309 char *dst = (char *)dstv;
7073017a 5310 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5311 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5312
f716abd5
LB
5313 if (start + len > eb->len) {
5314 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5315 eb->start, eb->len, start, len);
5316 memset(dst, 0, len);
5317 return;
5318 }
d1310b2e 5319
7073017a 5320 offset = offset_in_page(start_offset + start);
d1310b2e 5321
d397712b 5322 while (len > 0) {
fb85fc9a 5323 page = eb->pages[i];
d1310b2e 5324
09cbfeaf 5325 cur = min(len, (PAGE_SIZE - offset));
a6591715 5326 kaddr = page_address(page);
d1310b2e 5327 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5328
5329 dst += cur;
5330 len -= cur;
5331 offset = 0;
5332 i++;
5333 }
5334}
d1310b2e 5335
1cbb1f45
JM
5336int read_extent_buffer_to_user(const struct extent_buffer *eb,
5337 void __user *dstv,
5338 unsigned long start, unsigned long len)
550ac1d8
GH
5339{
5340 size_t cur;
5341 size_t offset;
5342 struct page *page;
5343 char *kaddr;
5344 char __user *dst = (char __user *)dstv;
7073017a 5345 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5346 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5347 int ret = 0;
5348
5349 WARN_ON(start > eb->len);
5350 WARN_ON(start + len > eb->start + eb->len);
5351
7073017a 5352 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5353
5354 while (len > 0) {
fb85fc9a 5355 page = eb->pages[i];
550ac1d8 5356
09cbfeaf 5357 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5358 kaddr = page_address(page);
5359 if (copy_to_user(dst, kaddr + offset, cur)) {
5360 ret = -EFAULT;
5361 break;
5362 }
5363
5364 dst += cur;
5365 len -= cur;
5366 offset = 0;
5367 i++;
5368 }
5369
5370 return ret;
5371}
5372
415b35a5
LB
5373/*
5374 * return 0 if the item is found within a page.
5375 * return 1 if the item spans two pages.
5376 * return -EINVAL otherwise.
5377 */
1cbb1f45
JM
5378int map_private_extent_buffer(const struct extent_buffer *eb,
5379 unsigned long start, unsigned long min_len,
5380 char **map, unsigned long *map_start,
5381 unsigned long *map_len)
d1310b2e 5382{
cc2c39d6 5383 size_t offset;
d1310b2e
CM
5384 char *kaddr;
5385 struct page *p;
7073017a 5386 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5387 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5388 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5389 PAGE_SHIFT;
d1310b2e 5390
f716abd5
LB
5391 if (start + min_len > eb->len) {
5392 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5393 eb->start, eb->len, start, min_len);
5394 return -EINVAL;
5395 }
5396
d1310b2e 5397 if (i != end_i)
415b35a5 5398 return 1;
d1310b2e
CM
5399
5400 if (i == 0) {
5401 offset = start_offset;
5402 *map_start = 0;
5403 } else {
5404 offset = 0;
09cbfeaf 5405 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5406 }
d397712b 5407
fb85fc9a 5408 p = eb->pages[i];
a6591715 5409 kaddr = page_address(p);
d1310b2e 5410 *map = kaddr + offset;
09cbfeaf 5411 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5412 return 0;
5413}
d1310b2e 5414
1cbb1f45
JM
5415int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5416 unsigned long start, unsigned long len)
d1310b2e
CM
5417{
5418 size_t cur;
5419 size_t offset;
5420 struct page *page;
5421 char *kaddr;
5422 char *ptr = (char *)ptrv;
7073017a 5423 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5424 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5425 int ret = 0;
5426
5427 WARN_ON(start > eb->len);
5428 WARN_ON(start + len > eb->start + eb->len);
5429
7073017a 5430 offset = offset_in_page(start_offset + start);
d1310b2e 5431
d397712b 5432 while (len > 0) {
fb85fc9a 5433 page = eb->pages[i];
d1310b2e 5434
09cbfeaf 5435 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5436
a6591715 5437 kaddr = page_address(page);
d1310b2e 5438 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5439 if (ret)
5440 break;
5441
5442 ptr += cur;
5443 len -= cur;
5444 offset = 0;
5445 i++;
5446 }
5447 return ret;
5448}
d1310b2e 5449
f157bf76
DS
5450void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5451 const void *srcv)
5452{
5453 char *kaddr;
5454
5455 WARN_ON(!PageUptodate(eb->pages[0]));
5456 kaddr = page_address(eb->pages[0]);
5457 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5458 BTRFS_FSID_SIZE);
5459}
5460
5461void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5462{
5463 char *kaddr;
5464
5465 WARN_ON(!PageUptodate(eb->pages[0]));
5466 kaddr = page_address(eb->pages[0]);
5467 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5468 BTRFS_FSID_SIZE);
5469}
5470
d1310b2e
CM
5471void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5472 unsigned long start, unsigned long len)
5473{
5474 size_t cur;
5475 size_t offset;
5476 struct page *page;
5477 char *kaddr;
5478 char *src = (char *)srcv;
7073017a 5479 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5480 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5481
5482 WARN_ON(start > eb->len);
5483 WARN_ON(start + len > eb->start + eb->len);
5484
7073017a 5485 offset = offset_in_page(start_offset + start);
d1310b2e 5486
d397712b 5487 while (len > 0) {
fb85fc9a 5488 page = eb->pages[i];
d1310b2e
CM
5489 WARN_ON(!PageUptodate(page));
5490
09cbfeaf 5491 cur = min(len, PAGE_SIZE - offset);
a6591715 5492 kaddr = page_address(page);
d1310b2e 5493 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5494
5495 src += cur;
5496 len -= cur;
5497 offset = 0;
5498 i++;
5499 }
5500}
d1310b2e 5501
b159fa28
DS
5502void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5503 unsigned long len)
d1310b2e
CM
5504{
5505 size_t cur;
5506 size_t offset;
5507 struct page *page;
5508 char *kaddr;
7073017a 5509 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5510 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5511
5512 WARN_ON(start > eb->len);
5513 WARN_ON(start + len > eb->start + eb->len);
5514
7073017a 5515 offset = offset_in_page(start_offset + start);
d1310b2e 5516
d397712b 5517 while (len > 0) {
fb85fc9a 5518 page = eb->pages[i];
d1310b2e
CM
5519 WARN_ON(!PageUptodate(page));
5520
09cbfeaf 5521 cur = min(len, PAGE_SIZE - offset);
a6591715 5522 kaddr = page_address(page);
b159fa28 5523 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5524
5525 len -= cur;
5526 offset = 0;
5527 i++;
5528 }
5529}
d1310b2e 5530
58e8012c
DS
5531void copy_extent_buffer_full(struct extent_buffer *dst,
5532 struct extent_buffer *src)
5533{
5534 int i;
cc5e31a4 5535 int num_pages;
58e8012c
DS
5536
5537 ASSERT(dst->len == src->len);
5538
65ad0104 5539 num_pages = num_extent_pages(dst);
58e8012c
DS
5540 for (i = 0; i < num_pages; i++)
5541 copy_page(page_address(dst->pages[i]),
5542 page_address(src->pages[i]));
5543}
5544
d1310b2e
CM
5545void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5546 unsigned long dst_offset, unsigned long src_offset,
5547 unsigned long len)
5548{
5549 u64 dst_len = dst->len;
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
7073017a 5554 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5555 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5556
5557 WARN_ON(src->len != dst_len);
5558
7073017a 5559 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5560
d397712b 5561 while (len > 0) {
fb85fc9a 5562 page = dst->pages[i];
d1310b2e
CM
5563 WARN_ON(!PageUptodate(page));
5564
09cbfeaf 5565 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5566
a6591715 5567 kaddr = page_address(page);
d1310b2e 5568 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5569
5570 src_offset += cur;
5571 len -= cur;
5572 offset = 0;
5573 i++;
5574 }
5575}
d1310b2e 5576
3e1e8bb7
OS
5577/*
5578 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5579 * given bit number
5580 * @eb: the extent buffer
5581 * @start: offset of the bitmap item in the extent buffer
5582 * @nr: bit number
5583 * @page_index: return index of the page in the extent buffer that contains the
5584 * given bit number
5585 * @page_offset: return offset into the page given by page_index
5586 *
5587 * This helper hides the ugliness of finding the byte in an extent buffer which
5588 * contains a given bit.
5589 */
5590static inline void eb_bitmap_offset(struct extent_buffer *eb,
5591 unsigned long start, unsigned long nr,
5592 unsigned long *page_index,
5593 size_t *page_offset)
5594{
7073017a 5595 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5596 size_t byte_offset = BIT_BYTE(nr);
5597 size_t offset;
5598
5599 /*
5600 * The byte we want is the offset of the extent buffer + the offset of
5601 * the bitmap item in the extent buffer + the offset of the byte in the
5602 * bitmap item.
5603 */
5604 offset = start_offset + start + byte_offset;
5605
09cbfeaf 5606 *page_index = offset >> PAGE_SHIFT;
7073017a 5607 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5608}
5609
5610/**
5611 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5612 * @eb: the extent buffer
5613 * @start: offset of the bitmap item in the extent buffer
5614 * @nr: bit number to test
5615 */
5616int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5617 unsigned long nr)
5618{
2fe1d551 5619 u8 *kaddr;
3e1e8bb7
OS
5620 struct page *page;
5621 unsigned long i;
5622 size_t offset;
5623
5624 eb_bitmap_offset(eb, start, nr, &i, &offset);
5625 page = eb->pages[i];
5626 WARN_ON(!PageUptodate(page));
5627 kaddr = page_address(page);
5628 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5629}
5630
5631/**
5632 * extent_buffer_bitmap_set - set an area of a bitmap
5633 * @eb: the extent buffer
5634 * @start: offset of the bitmap item in the extent buffer
5635 * @pos: bit number of the first bit
5636 * @len: number of bits to set
5637 */
5638void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5639 unsigned long pos, unsigned long len)
5640{
2fe1d551 5641 u8 *kaddr;
3e1e8bb7
OS
5642 struct page *page;
5643 unsigned long i;
5644 size_t offset;
5645 const unsigned int size = pos + len;
5646 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5647 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5648
5649 eb_bitmap_offset(eb, start, pos, &i, &offset);
5650 page = eb->pages[i];
5651 WARN_ON(!PageUptodate(page));
5652 kaddr = page_address(page);
5653
5654 while (len >= bits_to_set) {
5655 kaddr[offset] |= mask_to_set;
5656 len -= bits_to_set;
5657 bits_to_set = BITS_PER_BYTE;
9c894696 5658 mask_to_set = ~0;
09cbfeaf 5659 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5660 offset = 0;
5661 page = eb->pages[++i];
5662 WARN_ON(!PageUptodate(page));
5663 kaddr = page_address(page);
5664 }
5665 }
5666 if (len) {
5667 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5668 kaddr[offset] |= mask_to_set;
5669 }
5670}
5671
5672
5673/**
5674 * extent_buffer_bitmap_clear - clear an area of a bitmap
5675 * @eb: the extent buffer
5676 * @start: offset of the bitmap item in the extent buffer
5677 * @pos: bit number of the first bit
5678 * @len: number of bits to clear
5679 */
5680void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5681 unsigned long pos, unsigned long len)
5682{
2fe1d551 5683 u8 *kaddr;
3e1e8bb7
OS
5684 struct page *page;
5685 unsigned long i;
5686 size_t offset;
5687 const unsigned int size = pos + len;
5688 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5689 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5690
5691 eb_bitmap_offset(eb, start, pos, &i, &offset);
5692 page = eb->pages[i];
5693 WARN_ON(!PageUptodate(page));
5694 kaddr = page_address(page);
5695
5696 while (len >= bits_to_clear) {
5697 kaddr[offset] &= ~mask_to_clear;
5698 len -= bits_to_clear;
5699 bits_to_clear = BITS_PER_BYTE;
9c894696 5700 mask_to_clear = ~0;
09cbfeaf 5701 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5702 offset = 0;
5703 page = eb->pages[++i];
5704 WARN_ON(!PageUptodate(page));
5705 kaddr = page_address(page);
5706 }
5707 }
5708 if (len) {
5709 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5710 kaddr[offset] &= ~mask_to_clear;
5711 }
5712}
5713
3387206f
ST
5714static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5715{
5716 unsigned long distance = (src > dst) ? src - dst : dst - src;
5717 return distance < len;
5718}
5719
d1310b2e
CM
5720static void copy_pages(struct page *dst_page, struct page *src_page,
5721 unsigned long dst_off, unsigned long src_off,
5722 unsigned long len)
5723{
a6591715 5724 char *dst_kaddr = page_address(dst_page);
d1310b2e 5725 char *src_kaddr;
727011e0 5726 int must_memmove = 0;
d1310b2e 5727
3387206f 5728 if (dst_page != src_page) {
a6591715 5729 src_kaddr = page_address(src_page);
3387206f 5730 } else {
d1310b2e 5731 src_kaddr = dst_kaddr;
727011e0
CM
5732 if (areas_overlap(src_off, dst_off, len))
5733 must_memmove = 1;
3387206f 5734 }
d1310b2e 5735
727011e0
CM
5736 if (must_memmove)
5737 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5738 else
5739 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5740}
5741
5742void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5743 unsigned long src_offset, unsigned long len)
5744{
0b246afa 5745 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5746 size_t cur;
5747 size_t dst_off_in_page;
5748 size_t src_off_in_page;
7073017a 5749 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5750 unsigned long dst_i;
5751 unsigned long src_i;
5752
5753 if (src_offset + len > dst->len) {
0b246afa 5754 btrfs_err(fs_info,
5d163e0e
JM
5755 "memmove bogus src_offset %lu move len %lu dst len %lu",
5756 src_offset, len, dst->len);
d1310b2e
CM
5757 BUG_ON(1);
5758 }
5759 if (dst_offset + len > dst->len) {
0b246afa 5760 btrfs_err(fs_info,
5d163e0e
JM
5761 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5762 dst_offset, len, dst->len);
d1310b2e
CM
5763 BUG_ON(1);
5764 }
5765
d397712b 5766 while (len > 0) {
7073017a
JT
5767 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5768 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5769
09cbfeaf
KS
5770 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5771 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5772
09cbfeaf 5773 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5774 src_off_in_page));
5775 cur = min_t(unsigned long, cur,
09cbfeaf 5776 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5777
fb85fc9a 5778 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5779 dst_off_in_page, src_off_in_page, cur);
5780
5781 src_offset += cur;
5782 dst_offset += cur;
5783 len -= cur;
5784 }
5785}
d1310b2e
CM
5786
5787void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5788 unsigned long src_offset, unsigned long len)
5789{
0b246afa 5790 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5791 size_t cur;
5792 size_t dst_off_in_page;
5793 size_t src_off_in_page;
5794 unsigned long dst_end = dst_offset + len - 1;
5795 unsigned long src_end = src_offset + len - 1;
7073017a 5796 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5797 unsigned long dst_i;
5798 unsigned long src_i;
5799
5800 if (src_offset + len > dst->len) {
0b246afa 5801 btrfs_err(fs_info,
5d163e0e
JM
5802 "memmove bogus src_offset %lu move len %lu len %lu",
5803 src_offset, len, dst->len);
d1310b2e
CM
5804 BUG_ON(1);
5805 }
5806 if (dst_offset + len > dst->len) {
0b246afa 5807 btrfs_err(fs_info,
5d163e0e
JM
5808 "memmove bogus dst_offset %lu move len %lu len %lu",
5809 dst_offset, len, dst->len);
d1310b2e
CM
5810 BUG_ON(1);
5811 }
727011e0 5812 if (dst_offset < src_offset) {
d1310b2e
CM
5813 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5814 return;
5815 }
d397712b 5816 while (len > 0) {
09cbfeaf
KS
5817 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5818 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 5819
7073017a
JT
5820 dst_off_in_page = offset_in_page(start_offset + dst_end);
5821 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
5822
5823 cur = min_t(unsigned long, len, src_off_in_page + 1);
5824 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5825 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5826 dst_off_in_page - cur + 1,
5827 src_off_in_page - cur + 1, cur);
5828
5829 dst_end -= cur;
5830 src_end -= cur;
5831 len -= cur;
5832 }
5833}
6af118ce 5834
f7a52a40 5835int try_release_extent_buffer(struct page *page)
19fe0a8b 5836{
6af118ce 5837 struct extent_buffer *eb;
6af118ce 5838
3083ee2e 5839 /*
01327610 5840 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5841 * now.
5842 */
5843 spin_lock(&page->mapping->private_lock);
5844 if (!PagePrivate(page)) {
5845 spin_unlock(&page->mapping->private_lock);
4f2de97a 5846 return 1;
45f49bce 5847 }
6af118ce 5848
3083ee2e
JB
5849 eb = (struct extent_buffer *)page->private;
5850 BUG_ON(!eb);
19fe0a8b
MX
5851
5852 /*
3083ee2e
JB
5853 * This is a little awful but should be ok, we need to make sure that
5854 * the eb doesn't disappear out from under us while we're looking at
5855 * this page.
19fe0a8b 5856 */
3083ee2e 5857 spin_lock(&eb->refs_lock);
0b32f4bb 5858 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5859 spin_unlock(&eb->refs_lock);
5860 spin_unlock(&page->mapping->private_lock);
5861 return 0;
b9473439 5862 }
3083ee2e 5863 spin_unlock(&page->mapping->private_lock);
897ca6e9 5864
19fe0a8b 5865 /*
3083ee2e
JB
5866 * If tree ref isn't set then we know the ref on this eb is a real ref,
5867 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5868 */
3083ee2e
JB
5869 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5870 spin_unlock(&eb->refs_lock);
5871 return 0;
b9473439 5872 }
19fe0a8b 5873
f7a52a40 5874 return release_extent_buffer(eb);
6af118ce 5875}