]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
Btrfs: make plug in writing meta blocks really work
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
b7ac31b7 70 refcount_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 77 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 78 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
79 list_del(&eb->leak_list);
80 kmem_cache_free(extent_buffer_cache, eb);
81 }
82}
8d599ae1 83
a5dee37d
JB
84#define btrfs_debug_check_extent_io_range(tree, start, end) \
85 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 86static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 87 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 88{
c6100a4b
JB
89 if (tree->ops && tree->ops->check_extent_io_range)
90 tree->ops->check_extent_io_range(tree->private_data, caller,
91 start, end);
8d599ae1 92}
6d49ba1b
ES
93#else
94#define btrfs_leak_debug_add(new, head) do {} while (0)
95#define btrfs_leak_debug_del(entry) do {} while (0)
96#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 97#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 98#endif
d1310b2e 99
d1310b2e
CM
100#define BUFFER_LRU_MAX 64
101
102struct tree_entry {
103 u64 start;
104 u64 end;
d1310b2e
CM
105 struct rb_node rb_node;
106};
107
108struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
de0022b9 112 unsigned long bio_flags;
771ed689
CM
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
70fd7614 119 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
d38ed27f
QW
123static void add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
130 return;
131 if (set && (state->state & bits) == bits)
132 return;
fefdc557
QW
133 if (!set && (state->state & bits) == 0)
134 return;
d38ed27f 135 changeset->bytes_changed += state->end - state->start + 1;
53d32359 136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
137 GFP_ATOMIC);
138 /* ENOMEM */
139 BUG_ON(ret < 0);
140}
141
0b32f4bb 142static noinline void flush_write_bio(void *data);
c2d904e0
JM
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
c6100a4b
JB
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
c2d904e0 149}
0b32f4bb 150
d1310b2e
CM
151int __init extent_io_init(void)
152{
837e1972 153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 154 sizeof(struct extent_state), 0,
fba4b697 155 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
156 if (!extent_state_cache)
157 return -ENOMEM;
158
837e1972 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 160 sizeof(struct extent_buffer), 0,
fba4b697 161 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
162 if (!extent_buffer_cache)
163 goto free_state_cache;
9be3395b
CM
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
9be3395b
CM
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
fefdc557
QW
584static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
7870d082
JB
1942int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
4a54c8c1
JS
1945{
1946 int ret;
1947 int err = 0;
4a54c8c1 1948
47dc196a 1949 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
91166212 1952 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1953 if (ret)
1954 err = ret;
1955
7870d082 1956 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1957 rec->start + rec->len - 1,
91166212 1958 EXTENT_DAMAGED);
53b381b3
DW
1959 if (ret && !err)
1960 err = ret;
4a54c8c1
JS
1961
1962 kfree(rec);
1963 return err;
1964}
1965
4a54c8c1
JS
1966/*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
3ec706c8 1971 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
6ec656bc
JB
1976int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1979{
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
908960c6 1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
c5e4c3d7 1990 bio = btrfs_io_bio_alloc(1);
4f024f37 1991 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1992 map_length = length;
1993
b5de8d0d
FM
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2024 }
c725328c
LB
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2027 bio->bi_iter.bi_sector = sector;
c725328c 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2029 btrfs_put_bbio(bbio);
4a54c8c1 2030 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2031 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2032 bio_put(bio);
2033 return -EIO;
2034 }
74d46992 2035 bio_set_dev(bio, dev->bdev);
70fd7614 2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2037 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2038
4e49ea4a 2039 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2040 /* try to remap that extent elsewhere? */
b5de8d0d 2041 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2042 bio_put(bio);
442a4f63 2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2044 return -EIO;
2045 }
2046
b14af3b4
DS
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2049 ino, start,
1203b681 2050 rcu_str_deref(dev->name), sector);
b5de8d0d 2051 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2052 bio_put(bio);
2053 return 0;
2054}
2055
2ff7e61e
JM
2056int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
ea466794 2058{
ea466794
JB
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2061 int ret = 0;
ea466794 2062
bc98a42c 2063 if (sb_rdonly(fs_info->sb))
908960c6
ID
2064 return -EROFS;
2065
ea466794 2066 for (i = 0; i < num_pages; i++) {
fb85fc9a 2067 struct page *p = eb->pages[i];
1203b681 2068
6ec656bc 2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2070 start - page_offset(p), mirror_num);
ea466794
JB
2071 if (ret)
2072 break;
09cbfeaf 2073 start += PAGE_SIZE;
ea466794
JB
2074 }
2075
2076 return ret;
2077}
2078
4a54c8c1
JS
2079/*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
7870d082
JB
2083int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2087{
2088 u64 private;
4a54c8c1 2089 struct io_failure_record *failrec;
4a54c8c1
JS
2090 struct extent_state *state;
2091 int num_copies;
4a54c8c1 2092 int ret;
4a54c8c1
JS
2093
2094 private = 0;
7870d082
JB
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
4a54c8c1
JS
2097 if (!ret)
2098 return 0;
2099
7870d082 2100 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2101 if (ret)
2102 return 0;
2103
4a54c8c1
JS
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
ab8d0fc4
JM
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
4a54c8c1
JS
2111 goto out;
2112 }
bc98a42c 2113 if (sb_rdonly(fs_info->sb))
908960c6 2114 goto out;
4a54c8c1 2115
7870d082
JB
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2118 failrec->start,
2119 EXTENT_LOCKED);
7870d082 2120 spin_unlock(&io_tree->lock);
4a54c8c1 2121
883d0de4
MX
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
4a54c8c1 2126 if (num_copies > 1) {
7870d082
JB
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
4a54c8c1
JS
2130 }
2131 }
2132
2133out:
7870d082 2134 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2135
454ff3de 2136 return 0;
4a54c8c1
JS
2137}
2138
f612496b
MX
2139/*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
7ab7956e 2145void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2146{
7ab7956e 2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
47dc196a 2164 failrec = state->failrec;
f612496b
MX
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171}
2172
2fe6303e 2173int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2174 struct io_failure_record **failrec_ret)
4a54c8c1 2175{
ab8d0fc4 2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2177 struct io_failure_record *failrec;
4a54c8c1 2178 struct extent_map *em;
4a54c8c1
JS
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2182 int ret;
4a54c8c1
JS
2183 u64 logical;
2184
47dc196a 2185 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2fe6303e 2190
4a54c8c1
JS
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
68ba990f 2205 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
7a2d6a64 2210 if (!em) {
4a54c8c1
JS
2211 kfree(failrec);
2212 return -EIO;
2213 }
2fe6303e 2214
4a54c8c1
JS
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2fe6303e 2223
ab8d0fc4
JM
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2fe6303e 2227
4a54c8c1
JS
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2233 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2234 if (ret >= 0)
47dc196a 2235 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
ceeb0ae7 2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
ab8d0fc4
JM
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
4a54c8c1
JS
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2fe6303e
MX
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258}
2259
c3cfb656 2260bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2fe6303e
MX
2261 struct io_failure_record *failrec, int failed_mirror)
2262{
ab8d0fc4 2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2264 int num_copies;
2265
ab8d0fc4 2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
ab8d0fc4
JM
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2276 return false;
4a54c8c1
JS
2277 }
2278
4a54c8c1
JS
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
4a54c8c1
JS
2311 }
2312
facc8a22 2313 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2317 return false;
4a54c8c1
JS
2318 }
2319
c3cfb656 2320 return true;
2fe6303e
MX
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
8b110e39 2327 bio_end_io_t *endio_func, void *data)
2fe6303e 2328{
0b246afa 2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
c5e4c3d7 2334 bio = btrfs_io_bio_alloc(1);
2fe6303e 2335 bio->bi_end_io = endio_func;
4f024f37 2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2337 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2338 bio->bi_iter.bi_size = 0;
8b110e39 2339 bio->bi_private = data;
4a54c8c1 2340
facc8a22
MX
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
facc8a22
MX
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2349 csum_size);
2350 }
2351
2fe6303e
MX
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355}
2356
2357/*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368{
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2373 struct bio *bio;
70fd7614 2374 int read_mode = 0;
4e4cbee9 2375 blk_status_t status;
2fe6303e
MX
2376 int ret;
2377
1f7ad75b 2378 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2379
2380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2381 if (ret)
2382 return ret;
2383
c3cfb656
LB
2384 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2385 failed_mirror)) {
7870d082 2386 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2387 return -EIO;
2388 }
2389
2390 if (failed_bio->bi_vcnt > 1)
70fd7614 2391 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2392
2393 phy_offset >>= inode->i_sb->s_blocksize_bits;
2394 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2395 start - page_offset(page),
8b110e39
MX
2396 (int)phy_offset, failed_bio->bi_end_io,
2397 NULL);
1f7ad75b 2398 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2399
ab8d0fc4
JM
2400 btrfs_debug(btrfs_sb(inode->i_sb),
2401 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2402 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2403
8c27cb35 2404 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2405 failrec->bio_flags, 0);
4e4cbee9 2406 if (status) {
7870d082 2407 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2408 bio_put(bio);
4e4cbee9 2409 ret = blk_status_to_errno(status);
6c387ab2
MX
2410 }
2411
013bd4c3 2412 return ret;
4a54c8c1
JS
2413}
2414
d1310b2e
CM
2415/* lots and lots of room for performance fixes in the end_bio funcs */
2416
b5227c07 2417void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2418{
2419 int uptodate = (err == 0);
2420 struct extent_io_tree *tree;
3e2426bd 2421 int ret = 0;
87826df0
JM
2422
2423 tree = &BTRFS_I(page->mapping->host)->io_tree;
2424
c3988d63
DS
2425 if (tree->ops && tree->ops->writepage_end_io_hook)
2426 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2427 uptodate);
87826df0 2428
87826df0 2429 if (!uptodate) {
87826df0
JM
2430 ClearPageUptodate(page);
2431 SetPageError(page);
bff5baf8 2432 ret = err < 0 ? err : -EIO;
5dca6eea 2433 mapping_set_error(page->mapping, ret);
87826df0 2434 }
87826df0
JM
2435}
2436
d1310b2e
CM
2437/*
2438 * after a writepage IO is done, we need to:
2439 * clear the uptodate bits on error
2440 * clear the writeback bits in the extent tree for this IO
2441 * end_page_writeback if the page has no more pending IO
2442 *
2443 * Scheduling is not allowed, so the extent state tree is expected
2444 * to have one and only one object corresponding to this IO.
2445 */
4246a0b6 2446static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2447{
4e4cbee9 2448 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2449 struct bio_vec *bvec;
d1310b2e
CM
2450 u64 start;
2451 u64 end;
2c30c71b 2452 int i;
d1310b2e 2453
c09abff8 2454 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2455 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2456 struct page *page = bvec->bv_page;
0b246afa
JM
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2459
17a5adcc
AO
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
09cbfeaf
KS
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2467 btrfs_err(fs_info,
efe120a0
FH
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
0b246afa 2471 btrfs_info(fs_info,
5d163e0e 2472 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2473 bvec->bv_offset, bvec->bv_len);
2474 }
d1310b2e 2475
17a5adcc
AO
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2478
4e4cbee9 2479 end_extent_writepage(page, error, start, end);
17a5adcc 2480 end_page_writeback(page);
2c30c71b 2481 }
2b1f55b0 2482
d1310b2e 2483 bio_put(bio);
d1310b2e
CM
2484}
2485
883d0de4
MX
2486static void
2487endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2488 int uptodate)
2489{
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2492
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2496}
2497
d1310b2e
CM
2498/*
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2505 *
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2508 */
4246a0b6 2509static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2510{
2c30c71b 2511 struct bio_vec *bvec;
4e4cbee9 2512 int uptodate = !bio->bi_status;
facc8a22 2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2514 struct extent_io_tree *tree, *failure_tree;
facc8a22 2515 u64 offset = 0;
d1310b2e
CM
2516 u64 start;
2517 u64 end;
facc8a22 2518 u64 len;
883d0de4
MX
2519 u64 extent_start = 0;
2520 u64 extent_len = 0;
5cf1ab56 2521 int mirror;
d1310b2e 2522 int ret;
2c30c71b 2523 int i;
d1310b2e 2524
c09abff8 2525 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2526 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2527 struct page *page = bvec->bv_page;
a71754fc 2528 struct inode *inode = page->mapping->host;
ab8d0fc4 2529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2530
ab8d0fc4
JM
2531 btrfs_debug(fs_info,
2532 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2533 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2534 io_bio->mirror_num);
a71754fc 2535 tree = &BTRFS_I(inode)->io_tree;
7870d082 2536 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2537
17a5adcc
AO
2538 /* We always issue full-page reads, but if some block
2539 * in a page fails to read, blk_update_request() will
2540 * advance bv_offset and adjust bv_len to compensate.
2541 * Print a warning for nonzero offsets, and an error
2542 * if they don't add up to a full page. */
09cbfeaf
KS
2543 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2544 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2545 btrfs_err(fs_info,
2546 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2547 bvec->bv_offset, bvec->bv_len);
2548 else
ab8d0fc4
JM
2549 btrfs_info(fs_info,
2550 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2551 bvec->bv_offset, bvec->bv_len);
2552 }
d1310b2e 2553
17a5adcc
AO
2554 start = page_offset(page);
2555 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2556 len = bvec->bv_len;
d1310b2e 2557
9be3395b 2558 mirror = io_bio->mirror_num;
20c9801d 2559 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2560 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2561 page, start, end,
2562 mirror);
5ee0844d 2563 if (ret)
d1310b2e 2564 uptodate = 0;
5ee0844d 2565 else
7870d082
JB
2566 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2567 failure_tree, tree, start,
2568 page,
2569 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2570 }
ea466794 2571
f2a09da9
MX
2572 if (likely(uptodate))
2573 goto readpage_ok;
2574
20a7db8a 2575 if (tree->ops) {
5cf1ab56 2576 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2577 if (ret == -EAGAIN) {
2578 /*
2579 * Data inode's readpage_io_failed_hook() always
2580 * returns -EAGAIN.
2581 *
2582 * The generic bio_readpage_error handles errors
2583 * the following way: If possible, new read
2584 * requests are created and submitted and will
2585 * end up in end_bio_extent_readpage as well (if
2586 * we're lucky, not in the !uptodate case). In
2587 * that case it returns 0 and we just go on with
2588 * the next page in our bio. If it can't handle
2589 * the error it will return -EIO and we remain
2590 * responsible for that page.
2591 */
2592 ret = bio_readpage_error(bio, offset, page,
2593 start, end, mirror);
2594 if (ret == 0) {
4e4cbee9 2595 uptodate = !bio->bi_status;
9d0d1c8b
LB
2596 offset += len;
2597 continue;
2598 }
2599 }
2600
f4a8e656 2601 /*
9d0d1c8b
LB
2602 * metadata's readpage_io_failed_hook() always returns
2603 * -EIO and fixes nothing. -EIO is also returned if
2604 * data inode error could not be fixed.
f4a8e656 2605 */
9d0d1c8b 2606 ASSERT(ret == -EIO);
7e38326f 2607 }
f2a09da9 2608readpage_ok:
883d0de4 2609 if (likely(uptodate)) {
a71754fc 2610 loff_t i_size = i_size_read(inode);
09cbfeaf 2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2612 unsigned off;
a71754fc
JB
2613
2614 /* Zero out the end if this page straddles i_size */
09cbfeaf 2615 off = i_size & (PAGE_SIZE-1);
a583c026 2616 if (page->index == end_index && off)
09cbfeaf 2617 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2618 SetPageUptodate(page);
70dec807 2619 } else {
17a5adcc
AO
2620 ClearPageUptodate(page);
2621 SetPageError(page);
70dec807 2622 }
17a5adcc 2623 unlock_page(page);
facc8a22 2624 offset += len;
883d0de4
MX
2625
2626 if (unlikely(!uptodate)) {
2627 if (extent_len) {
2628 endio_readpage_release_extent(tree,
2629 extent_start,
2630 extent_len, 1);
2631 extent_start = 0;
2632 extent_len = 0;
2633 }
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2641 } else {
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 }
2c30c71b 2647 }
d1310b2e 2648
883d0de4
MX
2649 if (extent_len)
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2651 uptodate);
facc8a22 2652 if (io_bio->end_io)
4e4cbee9 2653 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2654 bio_put(bio);
d1310b2e
CM
2655}
2656
9be3395b 2657/*
184f999e
DS
2658 * Initialize the members up to but not including 'bio'. Use after allocating a
2659 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2660 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2661 */
184f999e 2662static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2663{
184f999e
DS
2664 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2665}
d1310b2e 2666
9be3395b 2667/*
6e707bcd
DS
2668 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2669 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2670 * for the appropriate container_of magic
9be3395b 2671 */
c821e7f3 2672struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2673{
2674 struct bio *bio;
d1310b2e 2675
9f2179a5 2676 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2677 bio_set_dev(bio, bdev);
c821e7f3 2678 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2679 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2680 return bio;
2681}
2682
8b6c1d56 2683struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2684{
23ea8e5a
MX
2685 struct btrfs_io_bio *btrfs_bio;
2686 struct bio *new;
9be3395b 2687
6e707bcd 2688 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2689 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2690 btrfs_bio = btrfs_io_bio(new);
184f999e 2691 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2692 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2693 return new;
2694}
9be3395b 2695
c5e4c3d7 2696struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2697{
facc8a22
MX
2698 struct bio *bio;
2699
6e707bcd 2700 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2701 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2702 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2703 return bio;
9be3395b
CM
2704}
2705
e477094f 2706struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2707{
2708 struct bio *bio;
2709 struct btrfs_io_bio *btrfs_bio;
2710
2711 /* this will never fail when it's backed by a bioset */
e477094f 2712 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2713 ASSERT(bio);
2714
2715 btrfs_bio = btrfs_io_bio(bio);
184f999e 2716 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2717
2718 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2719 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2720 return bio;
2721}
9be3395b 2722
1f7ad75b
MC
2723static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2724 unsigned long bio_flags)
d1310b2e 2725{
4e4cbee9 2726 blk_status_t ret = 0;
70dec807
CM
2727 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2728 struct page *page = bvec->bv_page;
2729 struct extent_io_tree *tree = bio->bi_private;
70dec807 2730 u64 start;
70dec807 2731
4eee4fa4 2732 start = page_offset(page) + bvec->bv_offset;
70dec807 2733
902b22f3 2734 bio->bi_private = NULL;
d1310b2e
CM
2735 bio_get(bio);
2736
20c9801d 2737 if (tree->ops)
c6100a4b 2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2739 mirror_num, bio_flags, start);
0b86a832 2740 else
4e49ea4a 2741 btrfsic_submit_bio(bio);
4a54c8c1 2742
d1310b2e 2743 bio_put(bio);
4e4cbee9 2744 return blk_status_to_errno(ret);
d1310b2e
CM
2745}
2746
1f7ad75b 2747static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2748 unsigned long offset, size_t size, struct bio *bio,
2749 unsigned long bio_flags)
2750{
2751 int ret = 0;
20c9801d 2752 if (tree->ops)
81a75f67 2753 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2754 bio_flags);
3444a972
JM
2755 return ret;
2756
2757}
2758
4b81ba48
DS
2759/*
2760 * @opf: bio REQ_OP_* and REQ_* flags as one value
2761 */
2762static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2763 struct writeback_control *wbc,
d1310b2e
CM
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
f188591e 2768 bio_end_io_t end_io_func,
c8b97818
CM
2769 int mirror_num,
2770 unsigned long prev_bio_flags,
005efedf
FM
2771 unsigned long bio_flags,
2772 bool force_bio_submit)
d1310b2e
CM
2773{
2774 int ret = 0;
2775 struct bio *bio;
c8b97818 2776 int contig = 0;
c8b97818 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2779
2780 if (bio_ret && *bio_ret) {
2781 bio = *bio_ret;
c8b97818 2782 if (old_compressed)
4f024f37 2783 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2784 else
f73a1c7d 2785 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2786
2787 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2788 force_bio_submit ||
1f7ad75b 2789 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2790 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2791 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2792 if (ret < 0) {
2793 *bio_ret = NULL;
79787eaa 2794 return ret;
289454ad 2795 }
d1310b2e
CM
2796 bio = NULL;
2797 } else {
da2f0f74
CM
2798 if (wbc)
2799 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2800 return 0;
2801 }
2802 }
c8b97818 2803
2d8ce70a 2804 bio = btrfs_bio_alloc(bdev, (u64)sector << 9);
c8b97818 2805 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2806 bio->bi_end_io = end_io_func;
2807 bio->bi_private = tree;
e6959b93 2808 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2809 bio->bi_opf = opf;
da2f0f74
CM
2810 if (wbc) {
2811 wbc_init_bio(wbc, bio);
2812 wbc_account_io(wbc, page, page_size);
2813 }
70dec807 2814
d397712b 2815 if (bio_ret)
d1310b2e 2816 *bio_ret = bio;
d397712b 2817 else
1f7ad75b 2818 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2819
2820 return ret;
2821}
2822
48a3b636
ES
2823static void attach_extent_buffer_page(struct extent_buffer *eb,
2824 struct page *page)
d1310b2e
CM
2825{
2826 if (!PagePrivate(page)) {
2827 SetPagePrivate(page);
09cbfeaf 2828 get_page(page);
4f2de97a
JB
2829 set_page_private(page, (unsigned long)eb);
2830 } else {
2831 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2832 }
2833}
2834
4f2de97a 2835void set_page_extent_mapped(struct page *page)
d1310b2e 2836{
4f2de97a
JB
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
09cbfeaf 2839 get_page(page);
4f2de97a
JB
2840 set_page_private(page, EXTENT_PAGE_PRIVATE);
2841 }
d1310b2e
CM
2842}
2843
125bac01
MX
2844static struct extent_map *
2845__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2846 u64 start, u64 len, get_extent_t *get_extent,
2847 struct extent_map **em_cached)
2848{
2849 struct extent_map *em;
2850
2851 if (em_cached && *em_cached) {
2852 em = *em_cached;
cbc0e928 2853 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2854 start < extent_map_end(em)) {
490b54d6 2855 refcount_inc(&em->refs);
125bac01
MX
2856 return em;
2857 }
2858
2859 free_extent_map(em);
2860 *em_cached = NULL;
2861 }
2862
fc4f21b1 2863 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2864 if (em_cached && !IS_ERR_OR_NULL(em)) {
2865 BUG_ON(*em_cached);
490b54d6 2866 refcount_inc(&em->refs);
125bac01
MX
2867 *em_cached = em;
2868 }
2869 return em;
2870}
d1310b2e
CM
2871/*
2872 * basic readpage implementation. Locked extent state structs are inserted
2873 * into the tree that are removed when the IO is done (by the end_io
2874 * handlers)
79787eaa 2875 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2876 * return 0 on success, otherwise return error
d1310b2e 2877 */
9974090b
MX
2878static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
125bac01 2881 struct extent_map **em_cached,
9974090b 2882 struct bio **bio, int mirror_num,
f1c77c55 2883 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2884 u64 *prev_em_start)
d1310b2e
CM
2885{
2886 struct inode *inode = page->mapping->host;
4eee4fa4 2887 u64 start = page_offset(page);
09cbfeaf 2888 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
baf863b9 2898 int ret = 0;
d1310b2e 2899 int nr = 0;
306e16ce 2900 size_t pg_offset = 0;
d1310b2e 2901 size_t iosize;
c8b97818 2902 size_t disk_io_size;
d1310b2e 2903 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2904 unsigned long this_bio_flag = 0;
d1310b2e
CM
2905
2906 set_page_extent_mapped(page);
2907
9974090b 2908 end = page_end;
90a887c9
DM
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2912 unlock_extent(tree, start, end);
90a887c9
DM
2913 goto out;
2914 }
2915 }
2916
09cbfeaf 2917 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2918 char *userpage;
09cbfeaf 2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2920
2921 if (zero_offset) {
09cbfeaf 2922 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2923 userpage = kmap_atomic(page);
c8b97818
CM
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
7ac687d9 2926 kunmap_atomic(userpage);
c8b97818
CM
2927 }
2928 }
d1310b2e 2929 while (cur <= end) {
005efedf 2930 bool force_bio_submit = false;
c8f2f24b 2931
d1310b2e
CM
2932 if (cur >= last_byte) {
2933 char *userpage;
507903b8
AJ
2934 struct extent_state *cached = NULL;
2935
09cbfeaf 2936 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2937 userpage = kmap_atomic(page);
306e16ce 2938 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2939 flush_dcache_page(page);
7ac687d9 2940 kunmap_atomic(userpage);
d1310b2e 2941 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2942 &cached, GFP_NOFS);
7f042a83
FM
2943 unlock_extent_cached(tree, cur,
2944 cur + iosize - 1,
2945 &cached, GFP_NOFS);
d1310b2e
CM
2946 break;
2947 }
125bac01
MX
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
c704005d 2950 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2951 SetPageError(page);
7f042a83 2952 unlock_extent(tree, cur, end);
d1310b2e
CM
2953 break;
2954 }
d1310b2e
CM
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
261507a0 2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
c8b97818 2964
d1310b2e
CM
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2967 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
2970 sector = em->block_start >> 9;
2971 } else {
2972 sector = (em->block_start + extent_offset) >> 9;
2973 disk_io_size = iosize;
2974 }
d1310b2e
CM
2975 bdev = em->bdev;
2976 block_start = em->block_start;
d899e052
YZ
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->orig_start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->orig_start;
3021
d1310b2e
CM
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
507903b8
AJ
3028 struct extent_state *cached = NULL;
3029
7ac687d9 3030 userpage = kmap_atomic(page);
306e16ce 3031 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3032 flush_dcache_page(page);
7ac687d9 3033 kunmap_atomic(userpage);
d1310b2e
CM
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3036 &cached, GFP_NOFS);
7f042a83
FM
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
d1310b2e 3040 cur = cur + iosize;
306e16ce 3041 pg_offset += iosize;
d1310b2e
CM
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
9655d298
CM
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3047 check_page_uptodate(tree, page);
7f042a83 3048 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3049 cur = cur + iosize;
306e16ce 3050 pg_offset += iosize;
d1310b2e
CM
3051 continue;
3052 }
70dec807
CM
3053 /* we have an inline extent but it didn't get marked up
3054 * to date. Error out
3055 */
3056 if (block_start == EXTENT_MAP_INLINE) {
3057 SetPageError(page);
7f042a83 3058 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3059 cur = cur + iosize;
306e16ce 3060 pg_offset += iosize;
70dec807
CM
3061 continue;
3062 }
d1310b2e 3063
4b81ba48 3064 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
1f7ad75b 3065 page, sector, disk_io_size, pg_offset,
c2df8bb4 3066 bdev, bio,
c8b97818
CM
3067 end_bio_extent_readpage, mirror_num,
3068 *bio_flags,
005efedf
FM
3069 this_bio_flag,
3070 force_bio_submit);
c8f2f24b
JB
3071 if (!ret) {
3072 nr++;
3073 *bio_flags = this_bio_flag;
3074 } else {
d1310b2e 3075 SetPageError(page);
7f042a83 3076 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3077 goto out;
edd33c99 3078 }
d1310b2e 3079 cur = cur + iosize;
306e16ce 3080 pg_offset += iosize;
d1310b2e 3081 }
90a887c9 3082out:
d1310b2e
CM
3083 if (!nr) {
3084 if (!PageError(page))
3085 SetPageUptodate(page);
3086 unlock_page(page);
3087 }
baf863b9 3088 return ret;
d1310b2e
CM
3089}
3090
9974090b
MX
3091static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3092 struct page *pages[], int nr_pages,
3093 u64 start, u64 end,
3094 get_extent_t *get_extent,
125bac01 3095 struct extent_map **em_cached,
9974090b 3096 struct bio **bio, int mirror_num,
1f7ad75b 3097 unsigned long *bio_flags,
808f80b4 3098 u64 *prev_em_start)
9974090b
MX
3099{
3100 struct inode *inode;
3101 struct btrfs_ordered_extent *ordered;
3102 int index;
3103
3104 inode = pages[0]->mapping->host;
3105 while (1) {
3106 lock_extent(tree, start, end);
a776c6fa 3107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3108 end - start + 1);
3109 if (!ordered)
3110 break;
3111 unlock_extent(tree, start, end);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 }
3115
3116 for (index = 0; index < nr_pages; index++) {
125bac01 3117 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3118 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3119 put_page(pages[index]);
9974090b
MX
3120 }
3121}
3122
3123static void __extent_readpages(struct extent_io_tree *tree,
3124 struct page *pages[],
3125 int nr_pages, get_extent_t *get_extent,
125bac01 3126 struct extent_map **em_cached,
9974090b 3127 struct bio **bio, int mirror_num,
1f7ad75b 3128 unsigned long *bio_flags,
808f80b4 3129 u64 *prev_em_start)
9974090b 3130{
35a3621b 3131 u64 start = 0;
9974090b
MX
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
35a3621b 3135 int first_index = 0;
9974090b
MX
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
09cbfeaf 3141 end = start + PAGE_SIZE - 1;
9974090b
MX
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
09cbfeaf 3144 end += PAGE_SIZE;
9974090b
MX
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
125bac01
MX
3148 end, get_extent, em_cached,
3149 bio, mirror_num, bio_flags,
1f7ad75b 3150 prev_em_start);
9974090b 3151 start = page_start;
09cbfeaf 3152 end = start + PAGE_SIZE - 1;
9974090b
MX
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
125bac01 3160 end, get_extent, em_cached, bio,
1f7ad75b 3161 mirror_num, bio_flags,
808f80b4 3162 prev_em_start);
9974090b
MX
3163}
3164
3165static int __extent_read_full_page(struct extent_io_tree *tree,
3166 struct page *page,
3167 get_extent_t *get_extent,
3168 struct bio **bio, int mirror_num,
f1c77c55
DS
3169 unsigned long *bio_flags,
3170 unsigned int read_flags)
9974090b
MX
3171{
3172 struct inode *inode = page->mapping->host;
3173 struct btrfs_ordered_extent *ordered;
3174 u64 start = page_offset(page);
09cbfeaf 3175 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3176 int ret;
3177
3178 while (1) {
3179 lock_extent(tree, start, end);
a776c6fa 3180 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3181 PAGE_SIZE);
9974090b
MX
3182 if (!ordered)
3183 break;
3184 unlock_extent(tree, start, end);
3185 btrfs_start_ordered_extent(inode, ordered, 1);
3186 btrfs_put_ordered_extent(ordered);
3187 }
3188
125bac01 3189 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3190 bio_flags, read_flags, NULL);
9974090b
MX
3191 return ret;
3192}
3193
d1310b2e 3194int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3195 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3196{
3197 struct bio *bio = NULL;
c8b97818 3198 unsigned long bio_flags = 0;
d1310b2e
CM
3199 int ret;
3200
8ddc7d9c 3201 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3202 &bio_flags, 0);
d1310b2e 3203 if (bio)
1f7ad75b 3204 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3205 return ret;
3206}
d1310b2e 3207
3d4b9496 3208static void update_nr_written(struct writeback_control *wbc,
a9132667 3209 unsigned long nr_written)
11c8349b
CM
3210{
3211 wbc->nr_to_write -= nr_written;
11c8349b
CM
3212}
3213
d1310b2e 3214/*
40f76580
CM
3215 * helper for __extent_writepage, doing all of the delayed allocation setup.
3216 *
3217 * This returns 1 if our fill_delalloc function did all the work required
3218 * to write the page (copy into inline extent). In this case the IO has
3219 * been started and the page is already unlocked.
3220 *
3221 * This returns 0 if all went well (page still locked)
3222 * This returns < 0 if there were errors (page still locked)
d1310b2e 3223 */
40f76580
CM
3224static noinline_for_stack int writepage_delalloc(struct inode *inode,
3225 struct page *page, struct writeback_control *wbc,
3226 struct extent_page_data *epd,
3227 u64 delalloc_start,
3228 unsigned long *nr_written)
3229{
3230 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3231 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3232 u64 nr_delalloc;
3233 u64 delalloc_to_write = 0;
3234 u64 delalloc_end = 0;
3235 int ret;
3236 int page_started = 0;
3237
3238 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3239 return 0;
3240
3241 while (delalloc_end < page_end) {
3242 nr_delalloc = find_lock_delalloc_range(inode, tree,
3243 page,
3244 &delalloc_start,
3245 &delalloc_end,
dcab6a3b 3246 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3247 if (nr_delalloc == 0) {
3248 delalloc_start = delalloc_end + 1;
3249 continue;
3250 }
3251 ret = tree->ops->fill_delalloc(inode, page,
3252 delalloc_start,
3253 delalloc_end,
3254 &page_started,
3255 nr_written);
3256 /* File system has been set read-only */
3257 if (ret) {
3258 SetPageError(page);
3259 /* fill_delalloc should be return < 0 for error
3260 * but just in case, we use > 0 here meaning the
3261 * IO is started, so we don't want to return > 0
3262 * unless things are going well.
3263 */
3264 ret = ret < 0 ? ret : -EIO;
3265 goto done;
3266 }
3267 /*
ea1754a0
KS
3268 * delalloc_end is already one less than the total length, so
3269 * we don't subtract one from PAGE_SIZE
40f76580
CM
3270 */
3271 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3272 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3273 delalloc_start = delalloc_end + 1;
3274 }
3275 if (wbc->nr_to_write < delalloc_to_write) {
3276 int thresh = 8192;
3277
3278 if (delalloc_to_write < thresh * 2)
3279 thresh = delalloc_to_write;
3280 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3281 thresh);
3282 }
3283
3284 /* did the fill delalloc function already unlock and start
3285 * the IO?
3286 */
3287 if (page_started) {
3288 /*
3289 * we've unlocked the page, so we can't update
3290 * the mapping's writeback index, just update
3291 * nr_to_write.
3292 */
3293 wbc->nr_to_write -= *nr_written;
3294 return 1;
3295 }
3296
3297 ret = 0;
3298
3299done:
3300 return ret;
3301}
3302
3303/*
3304 * helper for __extent_writepage. This calls the writepage start hooks,
3305 * and does the loop to map the page into extents and bios.
3306 *
3307 * We return 1 if the IO is started and the page is unlocked,
3308 * 0 if all went well (page still locked)
3309 * < 0 if there were errors (page still locked)
3310 */
3311static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3312 struct page *page,
3313 struct writeback_control *wbc,
3314 struct extent_page_data *epd,
3315 loff_t i_size,
3316 unsigned long nr_written,
f1c77c55 3317 unsigned int write_flags, int *nr_ret)
d1310b2e 3318{
d1310b2e 3319 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3320 u64 start = page_offset(page);
09cbfeaf 3321 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3322 u64 end;
3323 u64 cur = start;
3324 u64 extent_offset;
d1310b2e
CM
3325 u64 block_start;
3326 u64 iosize;
3327 sector_t sector;
3328 struct extent_map *em;
3329 struct block_device *bdev;
7f3c74fb 3330 size_t pg_offset = 0;
d1310b2e 3331 size_t blocksize;
40f76580
CM
3332 int ret = 0;
3333 int nr = 0;
3334 bool compressed;
c8b97818 3335
247e743c 3336 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3337 ret = tree->ops->writepage_start_hook(page, start,
3338 page_end);
87826df0
JM
3339 if (ret) {
3340 /* Fixup worker will requeue */
3341 if (ret == -EBUSY)
3342 wbc->pages_skipped++;
3343 else
3344 redirty_page_for_writepage(wbc, page);
40f76580 3345
3d4b9496 3346 update_nr_written(wbc, nr_written);
247e743c 3347 unlock_page(page);
bcf93489 3348 return 1;
247e743c
CM
3349 }
3350 }
3351
11c8349b
CM
3352 /*
3353 * we don't want to touch the inode after unlocking the page,
3354 * so we update the mapping writeback index now
3355 */
3d4b9496 3356 update_nr_written(wbc, nr_written + 1);
771ed689 3357
d1310b2e 3358 end = page_end;
40f76580 3359 if (i_size <= start) {
e6dcd2dc
CM
3360 if (tree->ops && tree->ops->writepage_end_io_hook)
3361 tree->ops->writepage_end_io_hook(page, start,
3362 page_end, NULL, 1);
d1310b2e
CM
3363 goto done;
3364 }
3365
d1310b2e
CM
3366 blocksize = inode->i_sb->s_blocksize;
3367
3368 while (cur <= end) {
40f76580 3369 u64 em_end;
58409edd 3370
40f76580 3371 if (cur >= i_size) {
e6dcd2dc
CM
3372 if (tree->ops && tree->ops->writepage_end_io_hook)
3373 tree->ops->writepage_end_io_hook(page, cur,
3374 page_end, NULL, 1);
d1310b2e
CM
3375 break;
3376 }
fc4f21b1 3377 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3378 end - cur + 1, 1);
c704005d 3379 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3380 SetPageError(page);
61391d56 3381 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3382 break;
3383 }
3384
3385 extent_offset = cur - em->start;
40f76580
CM
3386 em_end = extent_map_end(em);
3387 BUG_ON(em_end <= cur);
d1310b2e 3388 BUG_ON(end < cur);
40f76580 3389 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3390 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3391 sector = (em->block_start + extent_offset) >> 9;
3392 bdev = em->bdev;
3393 block_start = em->block_start;
c8b97818 3394 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3395 free_extent_map(em);
3396 em = NULL;
3397
c8b97818
CM
3398 /*
3399 * compressed and inline extents are written through other
3400 * paths in the FS
3401 */
3402 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3403 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3404 /*
3405 * end_io notification does not happen here for
3406 * compressed extents
3407 */
3408 if (!compressed && tree->ops &&
3409 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3410 tree->ops->writepage_end_io_hook(page, cur,
3411 cur + iosize - 1,
3412 NULL, 1);
c8b97818
CM
3413 else if (compressed) {
3414 /* we don't want to end_page_writeback on
3415 * a compressed extent. this happens
3416 * elsewhere
3417 */
3418 nr++;
3419 }
3420
3421 cur += iosize;
7f3c74fb 3422 pg_offset += iosize;
d1310b2e
CM
3423 continue;
3424 }
c8b97818 3425
58409edd
DS
3426 set_range_writeback(tree, cur, cur + iosize - 1);
3427 if (!PageWriteback(page)) {
3428 btrfs_err(BTRFS_I(inode)->root->fs_info,
3429 "page %lu not writeback, cur %llu end %llu",
3430 page->index, cur, end);
d1310b2e 3431 }
7f3c74fb 3432
4b81ba48 3433 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
1f7ad75b 3434 page, sector, iosize, pg_offset,
c2df8bb4 3435 bdev, &epd->bio,
58409edd
DS
3436 end_bio_extent_writepage,
3437 0, 0, 0, false);
fe01aa65 3438 if (ret) {
58409edd 3439 SetPageError(page);
fe01aa65
TK
3440 if (PageWriteback(page))
3441 end_page_writeback(page);
3442 }
d1310b2e 3443
d1310b2e 3444 cur = cur + iosize;
7f3c74fb 3445 pg_offset += iosize;
d1310b2e
CM
3446 nr++;
3447 }
40f76580
CM
3448done:
3449 *nr_ret = nr;
40f76580
CM
3450 return ret;
3451}
3452
3453/*
3454 * the writepage semantics are similar to regular writepage. extent
3455 * records are inserted to lock ranges in the tree, and as dirty areas
3456 * are found, they are marked writeback. Then the lock bits are removed
3457 * and the end_io handler clears the writeback ranges
3458 */
3459static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3460 void *data)
3461{
3462 struct inode *inode = page->mapping->host;
3463 struct extent_page_data *epd = data;
3464 u64 start = page_offset(page);
09cbfeaf 3465 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3466 int ret;
3467 int nr = 0;
3468 size_t pg_offset = 0;
3469 loff_t i_size = i_size_read(inode);
09cbfeaf 3470 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3471 unsigned int write_flags = 0;
40f76580
CM
3472 unsigned long nr_written = 0;
3473
ff40adf7 3474 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3475
3476 trace___extent_writepage(page, inode, wbc);
3477
3478 WARN_ON(!PageLocked(page));
3479
3480 ClearPageError(page);
3481
09cbfeaf 3482 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3483 if (page->index > end_index ||
3484 (page->index == end_index && !pg_offset)) {
09cbfeaf 3485 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3486 unlock_page(page);
3487 return 0;
3488 }
3489
3490 if (page->index == end_index) {
3491 char *userpage;
3492
3493 userpage = kmap_atomic(page);
3494 memset(userpage + pg_offset, 0,
09cbfeaf 3495 PAGE_SIZE - pg_offset);
40f76580
CM
3496 kunmap_atomic(userpage);
3497 flush_dcache_page(page);
3498 }
3499
3500 pg_offset = 0;
3501
3502 set_page_extent_mapped(page);
3503
3504 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3505 if (ret == 1)
3506 goto done_unlocked;
3507 if (ret)
3508 goto done;
3509
3510 ret = __extent_writepage_io(inode, page, wbc, epd,
3511 i_size, nr_written, write_flags, &nr);
3512 if (ret == 1)
3513 goto done_unlocked;
3514
d1310b2e
CM
3515done:
3516 if (nr == 0) {
3517 /* make sure the mapping tag for page dirty gets cleared */
3518 set_page_writeback(page);
3519 end_page_writeback(page);
3520 }
61391d56
FM
3521 if (PageError(page)) {
3522 ret = ret < 0 ? ret : -EIO;
3523 end_extent_writepage(page, ret, start, page_end);
3524 }
d1310b2e 3525 unlock_page(page);
40f76580 3526 return ret;
771ed689 3527
11c8349b 3528done_unlocked:
d1310b2e
CM
3529 return 0;
3530}
3531
fd8b2b61 3532void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3533{
74316201
N
3534 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3535 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3536}
3537
0e378df1
CM
3538static noinline_for_stack int
3539lock_extent_buffer_for_io(struct extent_buffer *eb,
3540 struct btrfs_fs_info *fs_info,
3541 struct extent_page_data *epd)
0b32f4bb
JB
3542{
3543 unsigned long i, num_pages;
3544 int flush = 0;
3545 int ret = 0;
3546
3547 if (!btrfs_try_tree_write_lock(eb)) {
3548 flush = 1;
3549 flush_write_bio(epd);
3550 btrfs_tree_lock(eb);
3551 }
3552
3553 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3554 btrfs_tree_unlock(eb);
3555 if (!epd->sync_io)
3556 return 0;
3557 if (!flush) {
3558 flush_write_bio(epd);
3559 flush = 1;
3560 }
a098d8e8
CM
3561 while (1) {
3562 wait_on_extent_buffer_writeback(eb);
3563 btrfs_tree_lock(eb);
3564 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3565 break;
0b32f4bb 3566 btrfs_tree_unlock(eb);
0b32f4bb
JB
3567 }
3568 }
3569
51561ffe
JB
3570 /*
3571 * We need to do this to prevent races in people who check if the eb is
3572 * under IO since we can end up having no IO bits set for a short period
3573 * of time.
3574 */
3575 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3576 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3577 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3578 spin_unlock(&eb->refs_lock);
0b32f4bb 3579 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3580 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3581 -eb->len,
3582 fs_info->dirty_metadata_batch);
0b32f4bb 3583 ret = 1;
51561ffe
JB
3584 } else {
3585 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3586 }
3587
3588 btrfs_tree_unlock(eb);
3589
3590 if (!ret)
3591 return ret;
3592
3593 num_pages = num_extent_pages(eb->start, eb->len);
3594 for (i = 0; i < num_pages; i++) {
fb85fc9a 3595 struct page *p = eb->pages[i];
0b32f4bb
JB
3596
3597 if (!trylock_page(p)) {
3598 if (!flush) {
3599 flush_write_bio(epd);
3600 flush = 1;
3601 }
3602 lock_page(p);
3603 }
3604 }
3605
3606 return ret;
3607}
3608
3609static void end_extent_buffer_writeback(struct extent_buffer *eb)
3610{
3611 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3612 smp_mb__after_atomic();
0b32f4bb
JB
3613 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3614}
3615
656f30db
FM
3616static void set_btree_ioerr(struct page *page)
3617{
3618 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3619
3620 SetPageError(page);
3621 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3622 return;
3623
3624 /*
3625 * If writeback for a btree extent that doesn't belong to a log tree
3626 * failed, increment the counter transaction->eb_write_errors.
3627 * We do this because while the transaction is running and before it's
3628 * committing (when we call filemap_fdata[write|wait]_range against
3629 * the btree inode), we might have
3630 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3631 * returns an error or an error happens during writeback, when we're
3632 * committing the transaction we wouldn't know about it, since the pages
3633 * can be no longer dirty nor marked anymore for writeback (if a
3634 * subsequent modification to the extent buffer didn't happen before the
3635 * transaction commit), which makes filemap_fdata[write|wait]_range not
3636 * able to find the pages tagged with SetPageError at transaction
3637 * commit time. So if this happens we must abort the transaction,
3638 * otherwise we commit a super block with btree roots that point to
3639 * btree nodes/leafs whose content on disk is invalid - either garbage
3640 * or the content of some node/leaf from a past generation that got
3641 * cowed or deleted and is no longer valid.
3642 *
3643 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3644 * not be enough - we need to distinguish between log tree extents vs
3645 * non-log tree extents, and the next filemap_fdatawait_range() call
3646 * will catch and clear such errors in the mapping - and that call might
3647 * be from a log sync and not from a transaction commit. Also, checking
3648 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3649 * not done and would not be reliable - the eb might have been released
3650 * from memory and reading it back again means that flag would not be
3651 * set (since it's a runtime flag, not persisted on disk).
3652 *
3653 * Using the flags below in the btree inode also makes us achieve the
3654 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3655 * writeback for all dirty pages and before filemap_fdatawait_range()
3656 * is called, the writeback for all dirty pages had already finished
3657 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3658 * filemap_fdatawait_range() would return success, as it could not know
3659 * that writeback errors happened (the pages were no longer tagged for
3660 * writeback).
3661 */
3662 switch (eb->log_index) {
3663 case -1:
afcdd129 3664 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3665 break;
3666 case 0:
afcdd129 3667 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 case 1:
afcdd129 3670 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3671 break;
3672 default:
3673 BUG(); /* unexpected, logic error */
3674 }
3675}
3676
4246a0b6 3677static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3678{
2c30c71b 3679 struct bio_vec *bvec;
0b32f4bb 3680 struct extent_buffer *eb;
2c30c71b 3681 int i, done;
0b32f4bb 3682
c09abff8 3683 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3684 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3685 struct page *page = bvec->bv_page;
3686
0b32f4bb
JB
3687 eb = (struct extent_buffer *)page->private;
3688 BUG_ON(!eb);
3689 done = atomic_dec_and_test(&eb->io_pages);
3690
4e4cbee9 3691 if (bio->bi_status ||
4246a0b6 3692 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3693 ClearPageUptodate(page);
656f30db 3694 set_btree_ioerr(page);
0b32f4bb
JB
3695 }
3696
3697 end_page_writeback(page);
3698
3699 if (!done)
3700 continue;
3701
3702 end_extent_buffer_writeback(eb);
2c30c71b 3703 }
0b32f4bb
JB
3704
3705 bio_put(bio);
0b32f4bb
JB
3706}
3707
0e378df1 3708static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3709 struct btrfs_fs_info *fs_info,
3710 struct writeback_control *wbc,
3711 struct extent_page_data *epd)
3712{
3713 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3714 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3715 u64 offset = eb->start;
851cd173 3716 u32 nritems;
0b32f4bb 3717 unsigned long i, num_pages;
de0022b9 3718 unsigned long bio_flags = 0;
851cd173 3719 unsigned long start, end;
ff40adf7 3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3721 int ret = 0;
0b32f4bb 3722
656f30db 3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3724 num_pages = num_extent_pages(eb->start, eb->len);
3725 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3726 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3727 bio_flags = EXTENT_BIO_TREE_LOG;
3728
851cd173
LB
3729 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3730 nritems = btrfs_header_nritems(eb);
3eb548ee 3731 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3732 end = btrfs_node_key_ptr_offset(nritems);
3733
b159fa28 3734 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3735 } else {
3736 /*
3737 * leaf:
3738 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3739 */
3740 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3741 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3742 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3743 }
3744
0b32f4bb 3745 for (i = 0; i < num_pages; i++) {
fb85fc9a 3746 struct page *p = eb->pages[i];
0b32f4bb
JB
3747
3748 clear_page_dirty_for_io(p);
3749 set_page_writeback(p);
4b81ba48 3750 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
1f7ad75b 3751 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3752 &epd->bio,
1f7ad75b 3753 end_bio_extent_buffer_writepage,
005efedf 3754 0, epd->bio_flags, bio_flags, false);
de0022b9 3755 epd->bio_flags = bio_flags;
0b32f4bb 3756 if (ret) {
656f30db 3757 set_btree_ioerr(p);
fe01aa65
TK
3758 if (PageWriteback(p))
3759 end_page_writeback(p);
0b32f4bb
JB
3760 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3761 end_extent_buffer_writeback(eb);
3762 ret = -EIO;
3763 break;
3764 }
09cbfeaf 3765 offset += PAGE_SIZE;
3d4b9496 3766 update_nr_written(wbc, 1);
0b32f4bb
JB
3767 unlock_page(p);
3768 }
3769
3770 if (unlikely(ret)) {
3771 for (; i < num_pages; i++) {
bbf65cf0 3772 struct page *p = eb->pages[i];
81465028 3773 clear_page_dirty_for_io(p);
0b32f4bb
JB
3774 unlock_page(p);
3775 }
3776 }
3777
3778 return ret;
3779}
3780
3781int btree_write_cache_pages(struct address_space *mapping,
3782 struct writeback_control *wbc)
3783{
3784 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3785 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3786 struct extent_buffer *eb, *prev_eb = NULL;
3787 struct extent_page_data epd = {
3788 .bio = NULL,
3789 .tree = tree,
3790 .extent_locked = 0,
3791 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3792 .bio_flags = 0,
0b32f4bb
JB
3793 };
3794 int ret = 0;
3795 int done = 0;
3796 int nr_to_write_done = 0;
3797 struct pagevec pvec;
3798 int nr_pages;
3799 pgoff_t index;
3800 pgoff_t end; /* Inclusive */
3801 int scanned = 0;
3802 int tag;
3803
3804 pagevec_init(&pvec, 0);
3805 if (wbc->range_cyclic) {
3806 index = mapping->writeback_index; /* Start from prev offset */
3807 end = -1;
3808 } else {
09cbfeaf
KS
3809 index = wbc->range_start >> PAGE_SHIFT;
3810 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3811 scanned = 1;
3812 }
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag = PAGECACHE_TAG_TOWRITE;
3815 else
3816 tag = PAGECACHE_TAG_DIRTY;
3817retry:
3818 if (wbc->sync_mode == WB_SYNC_ALL)
3819 tag_pages_for_writeback(mapping, index, end);
3820 while (!done && !nr_to_write_done && (index <= end) &&
3821 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3822 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3823 unsigned i;
3824
3825 scanned = 1;
3826 for (i = 0; i < nr_pages; i++) {
3827 struct page *page = pvec.pages[i];
3828
3829 if (!PagePrivate(page))
3830 continue;
3831
3832 if (!wbc->range_cyclic && page->index > end) {
3833 done = 1;
3834 break;
3835 }
3836
b5bae261
JB
3837 spin_lock(&mapping->private_lock);
3838 if (!PagePrivate(page)) {
3839 spin_unlock(&mapping->private_lock);
3840 continue;
3841 }
3842
0b32f4bb 3843 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3844
3845 /*
3846 * Shouldn't happen and normally this would be a BUG_ON
3847 * but no sense in crashing the users box for something
3848 * we can survive anyway.
3849 */
fae7f21c 3850 if (WARN_ON(!eb)) {
b5bae261 3851 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3852 continue;
3853 }
3854
b5bae261
JB
3855 if (eb == prev_eb) {
3856 spin_unlock(&mapping->private_lock);
0b32f4bb 3857 continue;
b5bae261 3858 }
0b32f4bb 3859
b5bae261
JB
3860 ret = atomic_inc_not_zero(&eb->refs);
3861 spin_unlock(&mapping->private_lock);
3862 if (!ret)
0b32f4bb 3863 continue;
0b32f4bb
JB
3864
3865 prev_eb = eb;
3866 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3867 if (!ret) {
3868 free_extent_buffer(eb);
3869 continue;
3870 }
3871
3872 ret = write_one_eb(eb, fs_info, wbc, &epd);
3873 if (ret) {
3874 done = 1;
3875 free_extent_buffer(eb);
3876 break;
3877 }
3878 free_extent_buffer(eb);
3879
3880 /*
3881 * the filesystem may choose to bump up nr_to_write.
3882 * We have to make sure to honor the new nr_to_write
3883 * at any time
3884 */
3885 nr_to_write_done = wbc->nr_to_write <= 0;
3886 }
3887 pagevec_release(&pvec);
3888 cond_resched();
3889 }
3890 if (!scanned && !done) {
3891 /*
3892 * We hit the last page and there is more work to be done: wrap
3893 * back to the start of the file
3894 */
3895 scanned = 1;
3896 index = 0;
3897 goto retry;
3898 }
3899 flush_write_bio(&epd);
3900 return ret;
3901}
3902
d1310b2e 3903/**
4bef0848 3904 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3905 * @mapping: address space structure to write
3906 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3907 * @writepage: function called for each page
3908 * @data: data passed to writepage function
3909 *
3910 * If a page is already under I/O, write_cache_pages() skips it, even
3911 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3912 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3913 * and msync() need to guarantee that all the data which was dirty at the time
3914 * the call was made get new I/O started against them. If wbc->sync_mode is
3915 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3916 * existing IO to complete.
3917 */
4242b64a 3918static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3919 struct writeback_control *wbc,
d2c3f4f6
CM
3920 writepage_t writepage, void *data,
3921 void (*flush_fn)(void *))
d1310b2e 3922{
7fd1a3f7 3923 struct inode *inode = mapping->host;
d1310b2e
CM
3924 int ret = 0;
3925 int done = 0;
f85d7d6c 3926 int nr_to_write_done = 0;
d1310b2e
CM
3927 struct pagevec pvec;
3928 int nr_pages;
3929 pgoff_t index;
3930 pgoff_t end; /* Inclusive */
a9132667
LB
3931 pgoff_t done_index;
3932 int range_whole = 0;
d1310b2e 3933 int scanned = 0;
f7aaa06b 3934 int tag;
d1310b2e 3935
7fd1a3f7
JB
3936 /*
3937 * We have to hold onto the inode so that ordered extents can do their
3938 * work when the IO finishes. The alternative to this is failing to add
3939 * an ordered extent if the igrab() fails there and that is a huge pain
3940 * to deal with, so instead just hold onto the inode throughout the
3941 * writepages operation. If it fails here we are freeing up the inode
3942 * anyway and we'd rather not waste our time writing out stuff that is
3943 * going to be truncated anyway.
3944 */
3945 if (!igrab(inode))
3946 return 0;
3947
d1310b2e
CM
3948 pagevec_init(&pvec, 0);
3949 if (wbc->range_cyclic) {
3950 index = mapping->writeback_index; /* Start from prev offset */
3951 end = -1;
3952 } else {
09cbfeaf
KS
3953 index = wbc->range_start >> PAGE_SHIFT;
3954 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3955 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3956 range_whole = 1;
d1310b2e
CM
3957 scanned = 1;
3958 }
f7aaa06b
JB
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag = PAGECACHE_TAG_TOWRITE;
3961 else
3962 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3963retry:
f7aaa06b
JB
3964 if (wbc->sync_mode == WB_SYNC_ALL)
3965 tag_pages_for_writeback(mapping, index, end);
a9132667 3966 done_index = index;
f85d7d6c 3967 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3968 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3969 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3970 unsigned i;
3971
3972 scanned = 1;
3973 for (i = 0; i < nr_pages; i++) {
3974 struct page *page = pvec.pages[i];
3975
a9132667 3976 done_index = page->index;
d1310b2e
CM
3977 /*
3978 * At this point we hold neither mapping->tree_lock nor
3979 * lock on the page itself: the page may be truncated or
3980 * invalidated (changing page->mapping to NULL), or even
3981 * swizzled back from swapper_space to tmpfs file
3982 * mapping
3983 */
c8f2f24b
JB
3984 if (!trylock_page(page)) {
3985 flush_fn(data);
3986 lock_page(page);
01d658f2 3987 }
d1310b2e
CM
3988
3989 if (unlikely(page->mapping != mapping)) {
3990 unlock_page(page);
3991 continue;
3992 }
3993
3994 if (!wbc->range_cyclic && page->index > end) {
3995 done = 1;
3996 unlock_page(page);
3997 continue;
3998 }
3999
d2c3f4f6 4000 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4001 if (PageWriteback(page))
4002 flush_fn(data);
d1310b2e 4003 wait_on_page_writeback(page);
d2c3f4f6 4004 }
d1310b2e
CM
4005
4006 if (PageWriteback(page) ||
4007 !clear_page_dirty_for_io(page)) {
4008 unlock_page(page);
4009 continue;
4010 }
4011
4012 ret = (*writepage)(page, wbc, data);
4013
4014 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4015 unlock_page(page);
4016 ret = 0;
4017 }
a9132667
LB
4018 if (ret < 0) {
4019 /*
4020 * done_index is set past this page,
4021 * so media errors will not choke
4022 * background writeout for the entire
4023 * file. This has consequences for
4024 * range_cyclic semantics (ie. it may
4025 * not be suitable for data integrity
4026 * writeout).
4027 */
4028 done_index = page->index + 1;
4029 done = 1;
4030 break;
4031 }
f85d7d6c
CM
4032
4033 /*
4034 * the filesystem may choose to bump up nr_to_write.
4035 * We have to make sure to honor the new nr_to_write
4036 * at any time
4037 */
4038 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4039 }
4040 pagevec_release(&pvec);
4041 cond_resched();
4042 }
894b36e3 4043 if (!scanned && !done) {
d1310b2e
CM
4044 /*
4045 * We hit the last page and there is more work to be done: wrap
4046 * back to the start of the file
4047 */
4048 scanned = 1;
4049 index = 0;
4050 goto retry;
4051 }
a9132667
LB
4052
4053 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4054 mapping->writeback_index = done_index;
4055
7fd1a3f7 4056 btrfs_add_delayed_iput(inode);
894b36e3 4057 return ret;
d1310b2e 4058}
d1310b2e 4059
ffbd517d 4060static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4061{
d2c3f4f6 4062 if (epd->bio) {
355808c2
JM
4063 int ret;
4064
1f7ad75b 4065 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4066 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4067 epd->bio = NULL;
4068 }
4069}
4070
ffbd517d
CM
4071static noinline void flush_write_bio(void *data)
4072{
4073 struct extent_page_data *epd = data;
4074 flush_epd_write_bio(epd);
4075}
4076
d1310b2e
CM
4077int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4078 get_extent_t *get_extent,
4079 struct writeback_control *wbc)
4080{
4081 int ret;
d1310b2e
CM
4082 struct extent_page_data epd = {
4083 .bio = NULL,
4084 .tree = tree,
4085 .get_extent = get_extent,
771ed689 4086 .extent_locked = 0,
ffbd517d 4087 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4088 .bio_flags = 0,
d1310b2e 4089 };
d1310b2e 4090
d1310b2e
CM
4091 ret = __extent_writepage(page, wbc, &epd);
4092
ffbd517d 4093 flush_epd_write_bio(&epd);
d1310b2e
CM
4094 return ret;
4095}
d1310b2e 4096
771ed689
CM
4097int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4098 u64 start, u64 end, get_extent_t *get_extent,
4099 int mode)
4100{
4101 int ret = 0;
4102 struct address_space *mapping = inode->i_mapping;
4103 struct page *page;
09cbfeaf
KS
4104 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4105 PAGE_SHIFT;
771ed689
CM
4106
4107 struct extent_page_data epd = {
4108 .bio = NULL,
4109 .tree = tree,
4110 .get_extent = get_extent,
4111 .extent_locked = 1,
ffbd517d 4112 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4113 .bio_flags = 0,
771ed689
CM
4114 };
4115 struct writeback_control wbc_writepages = {
771ed689 4116 .sync_mode = mode,
771ed689
CM
4117 .nr_to_write = nr_pages * 2,
4118 .range_start = start,
4119 .range_end = end + 1,
4120 };
4121
d397712b 4122 while (start <= end) {
09cbfeaf 4123 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4124 if (clear_page_dirty_for_io(page))
4125 ret = __extent_writepage(page, &wbc_writepages, &epd);
4126 else {
4127 if (tree->ops && tree->ops->writepage_end_io_hook)
4128 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4129 start + PAGE_SIZE - 1,
771ed689
CM
4130 NULL, 1);
4131 unlock_page(page);
4132 }
09cbfeaf
KS
4133 put_page(page);
4134 start += PAGE_SIZE;
771ed689
CM
4135 }
4136
ffbd517d 4137 flush_epd_write_bio(&epd);
771ed689
CM
4138 return ret;
4139}
d1310b2e
CM
4140
4141int extent_writepages(struct extent_io_tree *tree,
4142 struct address_space *mapping,
4143 get_extent_t *get_extent,
4144 struct writeback_control *wbc)
4145{
4146 int ret = 0;
4147 struct extent_page_data epd = {
4148 .bio = NULL,
4149 .tree = tree,
4150 .get_extent = get_extent,
771ed689 4151 .extent_locked = 0,
ffbd517d 4152 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4153 .bio_flags = 0,
d1310b2e
CM
4154 };
4155
4242b64a 4156 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4157 flush_write_bio);
ffbd517d 4158 flush_epd_write_bio(&epd);
d1310b2e
CM
4159 return ret;
4160}
d1310b2e
CM
4161
4162int extent_readpages(struct extent_io_tree *tree,
4163 struct address_space *mapping,
4164 struct list_head *pages, unsigned nr_pages,
4165 get_extent_t get_extent)
4166{
4167 struct bio *bio = NULL;
4168 unsigned page_idx;
c8b97818 4169 unsigned long bio_flags = 0;
67c9684f
LB
4170 struct page *pagepool[16];
4171 struct page *page;
125bac01 4172 struct extent_map *em_cached = NULL;
67c9684f 4173 int nr = 0;
808f80b4 4174 u64 prev_em_start = (u64)-1;
d1310b2e 4175
d1310b2e 4176 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4177 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4178
4179 prefetchw(&page->flags);
4180 list_del(&page->lru);
67c9684f 4181 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4182 page->index,
4183 readahead_gfp_mask(mapping))) {
09cbfeaf 4184 put_page(page);
67c9684f 4185 continue;
d1310b2e 4186 }
67c9684f
LB
4187
4188 pagepool[nr++] = page;
4189 if (nr < ARRAY_SIZE(pagepool))
4190 continue;
125bac01 4191 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4192 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4193 nr = 0;
d1310b2e 4194 }
9974090b 4195 if (nr)
125bac01 4196 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4197 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4198
125bac01
MX
4199 if (em_cached)
4200 free_extent_map(em_cached);
4201
d1310b2e
CM
4202 BUG_ON(!list_empty(pages));
4203 if (bio)
1f7ad75b 4204 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4205 return 0;
4206}
d1310b2e
CM
4207
4208/*
4209 * basic invalidatepage code, this waits on any locked or writeback
4210 * ranges corresponding to the page, and then deletes any extent state
4211 * records from the tree
4212 */
4213int extent_invalidatepage(struct extent_io_tree *tree,
4214 struct page *page, unsigned long offset)
4215{
2ac55d41 4216 struct extent_state *cached_state = NULL;
4eee4fa4 4217 u64 start = page_offset(page);
09cbfeaf 4218 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4219 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4220
fda2832f 4221 start += ALIGN(offset, blocksize);
d1310b2e
CM
4222 if (start > end)
4223 return 0;
4224
ff13db41 4225 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4226 wait_on_page_writeback(page);
d1310b2e 4227 clear_extent_bit(tree, start, end,
32c00aff
JB
4228 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4229 EXTENT_DO_ACCOUNTING,
2ac55d41 4230 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4231 return 0;
4232}
d1310b2e 4233
7b13b7b1
CM
4234/*
4235 * a helper for releasepage, this tests for areas of the page that
4236 * are locked or under IO and drops the related state bits if it is safe
4237 * to drop the page.
4238 */
48a3b636
ES
4239static int try_release_extent_state(struct extent_map_tree *map,
4240 struct extent_io_tree *tree,
4241 struct page *page, gfp_t mask)
7b13b7b1 4242{
4eee4fa4 4243 u64 start = page_offset(page);
09cbfeaf 4244 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4245 int ret = 1;
4246
211f90e6 4247 if (test_range_bit(tree, start, end,
8b62b72b 4248 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4249 ret = 0;
4250 else {
11ef160f
CM
4251 /*
4252 * at this point we can safely clear everything except the
4253 * locked bit and the nodatasum bit
4254 */
e3f24cc5 4255 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4256 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4257 0, 0, NULL, mask);
e3f24cc5
CM
4258
4259 /* if clear_extent_bit failed for enomem reasons,
4260 * we can't allow the release to continue.
4261 */
4262 if (ret < 0)
4263 ret = 0;
4264 else
4265 ret = 1;
7b13b7b1
CM
4266 }
4267 return ret;
4268}
7b13b7b1 4269
d1310b2e
CM
4270/*
4271 * a helper for releasepage. As long as there are no locked extents
4272 * in the range corresponding to the page, both state records and extent
4273 * map records are removed
4274 */
4275int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4276 struct extent_io_tree *tree, struct page *page,
4277 gfp_t mask)
d1310b2e
CM
4278{
4279 struct extent_map *em;
4eee4fa4 4280 u64 start = page_offset(page);
09cbfeaf 4281 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4282
d0164adc 4283 if (gfpflags_allow_blocking(mask) &&
ee22184b 4284 page->mapping->host->i_size > SZ_16M) {
39b5637f 4285 u64 len;
70dec807 4286 while (start <= end) {
39b5637f 4287 len = end - start + 1;
890871be 4288 write_lock(&map->lock);
39b5637f 4289 em = lookup_extent_mapping(map, start, len);
285190d9 4290 if (!em) {
890871be 4291 write_unlock(&map->lock);
70dec807
CM
4292 break;
4293 }
7f3c74fb
CM
4294 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4295 em->start != start) {
890871be 4296 write_unlock(&map->lock);
70dec807
CM
4297 free_extent_map(em);
4298 break;
4299 }
4300 if (!test_range_bit(tree, em->start,
4301 extent_map_end(em) - 1,
8b62b72b 4302 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4303 0, NULL)) {
70dec807
CM
4304 remove_extent_mapping(map, em);
4305 /* once for the rb tree */
4306 free_extent_map(em);
4307 }
4308 start = extent_map_end(em);
890871be 4309 write_unlock(&map->lock);
70dec807
CM
4310
4311 /* once for us */
d1310b2e
CM
4312 free_extent_map(em);
4313 }
d1310b2e 4314 }
7b13b7b1 4315 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4316}
d1310b2e 4317
ec29ed5b
CM
4318/*
4319 * helper function for fiemap, which doesn't want to see any holes.
4320 * This maps until we find something past 'last'
4321 */
4322static struct extent_map *get_extent_skip_holes(struct inode *inode,
4323 u64 offset,
4324 u64 last,
4325 get_extent_t *get_extent)
4326{
da17066c 4327 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4328 struct extent_map *em;
4329 u64 len;
4330
4331 if (offset >= last)
4332 return NULL;
4333
67871254 4334 while (1) {
ec29ed5b
CM
4335 len = last - offset;
4336 if (len == 0)
4337 break;
fda2832f 4338 len = ALIGN(len, sectorsize);
fc4f21b1 4339 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4340 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4341 return em;
4342
4343 /* if this isn't a hole return it */
4344 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4345 em->block_start != EXTENT_MAP_HOLE) {
4346 return em;
4347 }
4348
4349 /* this is a hole, advance to the next extent */
4350 offset = extent_map_end(em);
4351 free_extent_map(em);
4352 if (offset >= last)
4353 break;
4354 }
4355 return NULL;
4356}
4357
4751832d
QW
4358/*
4359 * To cache previous fiemap extent
4360 *
4361 * Will be used for merging fiemap extent
4362 */
4363struct fiemap_cache {
4364 u64 offset;
4365 u64 phys;
4366 u64 len;
4367 u32 flags;
4368 bool cached;
4369};
4370
4371/*
4372 * Helper to submit fiemap extent.
4373 *
4374 * Will try to merge current fiemap extent specified by @offset, @phys,
4375 * @len and @flags with cached one.
4376 * And only when we fails to merge, cached one will be submitted as
4377 * fiemap extent.
4378 *
4379 * Return value is the same as fiemap_fill_next_extent().
4380 */
4381static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4382 struct fiemap_cache *cache,
4383 u64 offset, u64 phys, u64 len, u32 flags)
4384{
4385 int ret = 0;
4386
4387 if (!cache->cached)
4388 goto assign;
4389
4390 /*
4391 * Sanity check, extent_fiemap() should have ensured that new
4392 * fiemap extent won't overlap with cahced one.
4393 * Not recoverable.
4394 *
4395 * NOTE: Physical address can overlap, due to compression
4396 */
4397 if (cache->offset + cache->len > offset) {
4398 WARN_ON(1);
4399 return -EINVAL;
4400 }
4401
4402 /*
4403 * Only merges fiemap extents if
4404 * 1) Their logical addresses are continuous
4405 *
4406 * 2) Their physical addresses are continuous
4407 * So truly compressed (physical size smaller than logical size)
4408 * extents won't get merged with each other
4409 *
4410 * 3) Share same flags except FIEMAP_EXTENT_LAST
4411 * So regular extent won't get merged with prealloc extent
4412 */
4413 if (cache->offset + cache->len == offset &&
4414 cache->phys + cache->len == phys &&
4415 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4416 (flags & ~FIEMAP_EXTENT_LAST)) {
4417 cache->len += len;
4418 cache->flags |= flags;
4419 goto try_submit_last;
4420 }
4421
4422 /* Not mergeable, need to submit cached one */
4423 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4424 cache->len, cache->flags);
4425 cache->cached = false;
4426 if (ret)
4427 return ret;
4428assign:
4429 cache->cached = true;
4430 cache->offset = offset;
4431 cache->phys = phys;
4432 cache->len = len;
4433 cache->flags = flags;
4434try_submit_last:
4435 if (cache->flags & FIEMAP_EXTENT_LAST) {
4436 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4437 cache->phys, cache->len, cache->flags);
4438 cache->cached = false;
4439 }
4440 return ret;
4441}
4442
4443/*
848c23b7 4444 * Emit last fiemap cache
4751832d 4445 *
848c23b7
QW
4446 * The last fiemap cache may still be cached in the following case:
4447 * 0 4k 8k
4448 * |<- Fiemap range ->|
4449 * |<------------ First extent ----------->|
4450 *
4451 * In this case, the first extent range will be cached but not emitted.
4452 * So we must emit it before ending extent_fiemap().
4751832d 4453 */
848c23b7
QW
4454static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4455 struct fiemap_extent_info *fieinfo,
4456 struct fiemap_cache *cache)
4751832d
QW
4457{
4458 int ret;
4459
4460 if (!cache->cached)
4461 return 0;
4462
4751832d
QW
4463 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4464 cache->len, cache->flags);
4465 cache->cached = false;
4466 if (ret > 0)
4467 ret = 0;
4468 return ret;
4469}
4470
1506fcc8
YS
4471int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4472 __u64 start, __u64 len, get_extent_t *get_extent)
4473{
975f84fe 4474 int ret = 0;
1506fcc8
YS
4475 u64 off = start;
4476 u64 max = start + len;
4477 u32 flags = 0;
975f84fe
JB
4478 u32 found_type;
4479 u64 last;
ec29ed5b 4480 u64 last_for_get_extent = 0;
1506fcc8 4481 u64 disko = 0;
ec29ed5b 4482 u64 isize = i_size_read(inode);
975f84fe 4483 struct btrfs_key found_key;
1506fcc8 4484 struct extent_map *em = NULL;
2ac55d41 4485 struct extent_state *cached_state = NULL;
975f84fe 4486 struct btrfs_path *path;
dc046b10 4487 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4488 struct fiemap_cache cache = { 0 };
1506fcc8 4489 int end = 0;
ec29ed5b
CM
4490 u64 em_start = 0;
4491 u64 em_len = 0;
4492 u64 em_end = 0;
1506fcc8
YS
4493
4494 if (len == 0)
4495 return -EINVAL;
4496
975f84fe
JB
4497 path = btrfs_alloc_path();
4498 if (!path)
4499 return -ENOMEM;
4500 path->leave_spinning = 1;
4501
da17066c
JM
4502 start = round_down(start, btrfs_inode_sectorsize(inode));
4503 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4504
ec29ed5b
CM
4505 /*
4506 * lookup the last file extent. We're not using i_size here
4507 * because there might be preallocation past i_size
4508 */
f85b7379
DS
4509 ret = btrfs_lookup_file_extent(NULL, root, path,
4510 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4511 if (ret < 0) {
4512 btrfs_free_path(path);
4513 return ret;
2d324f59
LB
4514 } else {
4515 WARN_ON(!ret);
4516 if (ret == 1)
4517 ret = 0;
975f84fe 4518 }
2d324f59 4519
975f84fe 4520 path->slots[0]--;
975f84fe 4521 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4522 found_type = found_key.type;
975f84fe 4523
ec29ed5b 4524 /* No extents, but there might be delalloc bits */
4a0cc7ca 4525 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4526 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4527 /* have to trust i_size as the end */
4528 last = (u64)-1;
4529 last_for_get_extent = isize;
4530 } else {
4531 /*
4532 * remember the start of the last extent. There are a
4533 * bunch of different factors that go into the length of the
4534 * extent, so its much less complex to remember where it started
4535 */
4536 last = found_key.offset;
4537 last_for_get_extent = last + 1;
975f84fe 4538 }
fe09e16c 4539 btrfs_release_path(path);
975f84fe 4540
ec29ed5b
CM
4541 /*
4542 * we might have some extents allocated but more delalloc past those
4543 * extents. so, we trust isize unless the start of the last extent is
4544 * beyond isize
4545 */
4546 if (last < isize) {
4547 last = (u64)-1;
4548 last_for_get_extent = isize;
4549 }
4550
ff13db41 4551 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4552 &cached_state);
ec29ed5b 4553
4d479cf0 4554 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4555 get_extent);
1506fcc8
YS
4556 if (!em)
4557 goto out;
4558 if (IS_ERR(em)) {
4559 ret = PTR_ERR(em);
4560 goto out;
4561 }
975f84fe 4562
1506fcc8 4563 while (!end) {
b76bb701 4564 u64 offset_in_extent = 0;
ea8efc74
CM
4565
4566 /* break if the extent we found is outside the range */
4567 if (em->start >= max || extent_map_end(em) < off)
4568 break;
4569
4570 /*
4571 * get_extent may return an extent that starts before our
4572 * requested range. We have to make sure the ranges
4573 * we return to fiemap always move forward and don't
4574 * overlap, so adjust the offsets here
4575 */
4576 em_start = max(em->start, off);
1506fcc8 4577
ea8efc74
CM
4578 /*
4579 * record the offset from the start of the extent
b76bb701
JB
4580 * for adjusting the disk offset below. Only do this if the
4581 * extent isn't compressed since our in ram offset may be past
4582 * what we have actually allocated on disk.
ea8efc74 4583 */
b76bb701
JB
4584 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4585 offset_in_extent = em_start - em->start;
ec29ed5b 4586 em_end = extent_map_end(em);
ea8efc74 4587 em_len = em_end - em_start;
1506fcc8
YS
4588 disko = 0;
4589 flags = 0;
4590
ea8efc74
CM
4591 /*
4592 * bump off for our next call to get_extent
4593 */
4594 off = extent_map_end(em);
4595 if (off >= max)
4596 end = 1;
4597
93dbfad7 4598 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4599 end = 1;
4600 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4601 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4602 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4603 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4604 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4605 flags |= (FIEMAP_EXTENT_DELALLOC |
4606 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4607 } else if (fieinfo->fi_extents_max) {
4608 u64 bytenr = em->block_start -
4609 (em->start - em->orig_start);
fe09e16c 4610
ea8efc74 4611 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4612
4613 /*
4614 * As btrfs supports shared space, this information
4615 * can be exported to userspace tools via
dc046b10
JB
4616 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4617 * then we're just getting a count and we can skip the
4618 * lookup stuff.
fe09e16c 4619 */
bb739cf0
EN
4620 ret = btrfs_check_shared(root,
4621 btrfs_ino(BTRFS_I(inode)),
4622 bytenr);
dc046b10 4623 if (ret < 0)
fe09e16c 4624 goto out_free;
dc046b10 4625 if (ret)
fe09e16c 4626 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4627 ret = 0;
1506fcc8
YS
4628 }
4629 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4630 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4631 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4632 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4633
1506fcc8
YS
4634 free_extent_map(em);
4635 em = NULL;
ec29ed5b
CM
4636 if ((em_start >= last) || em_len == (u64)-1 ||
4637 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4638 flags |= FIEMAP_EXTENT_LAST;
4639 end = 1;
4640 }
4641
ec29ed5b
CM
4642 /* now scan forward to see if this is really the last extent. */
4643 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4644 get_extent);
4645 if (IS_ERR(em)) {
4646 ret = PTR_ERR(em);
4647 goto out;
4648 }
4649 if (!em) {
975f84fe
JB
4650 flags |= FIEMAP_EXTENT_LAST;
4651 end = 1;
4652 }
4751832d
QW
4653 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4654 em_len, flags);
26e726af
CS
4655 if (ret) {
4656 if (ret == 1)
4657 ret = 0;
ec29ed5b 4658 goto out_free;
26e726af 4659 }
1506fcc8
YS
4660 }
4661out_free:
4751832d 4662 if (!ret)
848c23b7 4663 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4664 free_extent_map(em);
4665out:
fe09e16c 4666 btrfs_free_path(path);
a52f4cd2 4667 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4668 &cached_state, GFP_NOFS);
1506fcc8
YS
4669 return ret;
4670}
4671
727011e0
CM
4672static void __free_extent_buffer(struct extent_buffer *eb)
4673{
6d49ba1b 4674 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4675 kmem_cache_free(extent_buffer_cache, eb);
4676}
4677
a26e8c9f 4678int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4679{
4680 return (atomic_read(&eb->io_pages) ||
4681 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4682 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4683}
4684
4685/*
4686 * Helper for releasing extent buffer page.
4687 */
a50924e3 4688static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4689{
4690 unsigned long index;
db7f3436
JB
4691 struct page *page;
4692 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4693
4694 BUG_ON(extent_buffer_under_io(eb));
4695
a50924e3
DS
4696 index = num_extent_pages(eb->start, eb->len);
4697 if (index == 0)
db7f3436
JB
4698 return;
4699
4700 do {
4701 index--;
fb85fc9a 4702 page = eb->pages[index];
5d2361db
FL
4703 if (!page)
4704 continue;
4705 if (mapped)
db7f3436 4706 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4707 /*
4708 * We do this since we'll remove the pages after we've
4709 * removed the eb from the radix tree, so we could race
4710 * and have this page now attached to the new eb. So
4711 * only clear page_private if it's still connected to
4712 * this eb.
4713 */
4714 if (PagePrivate(page) &&
4715 page->private == (unsigned long)eb) {
4716 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4717 BUG_ON(PageDirty(page));
4718 BUG_ON(PageWriteback(page));
db7f3436 4719 /*
5d2361db
FL
4720 * We need to make sure we haven't be attached
4721 * to a new eb.
db7f3436 4722 */
5d2361db
FL
4723 ClearPagePrivate(page);
4724 set_page_private(page, 0);
4725 /* One for the page private */
09cbfeaf 4726 put_page(page);
db7f3436 4727 }
5d2361db
FL
4728
4729 if (mapped)
4730 spin_unlock(&page->mapping->private_lock);
4731
01327610 4732 /* One for when we allocated the page */
09cbfeaf 4733 put_page(page);
a50924e3 4734 } while (index != 0);
db7f3436
JB
4735}
4736
4737/*
4738 * Helper for releasing the extent buffer.
4739 */
4740static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4741{
a50924e3 4742 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4743 __free_extent_buffer(eb);
4744}
4745
f28491e0
JB
4746static struct extent_buffer *
4747__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4748 unsigned long len)
d1310b2e
CM
4749{
4750 struct extent_buffer *eb = NULL;
4751
d1b5c567 4752 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4753 eb->start = start;
4754 eb->len = len;
f28491e0 4755 eb->fs_info = fs_info;
815a51c7 4756 eb->bflags = 0;
bd681513
CM
4757 rwlock_init(&eb->lock);
4758 atomic_set(&eb->write_locks, 0);
4759 atomic_set(&eb->read_locks, 0);
4760 atomic_set(&eb->blocking_readers, 0);
4761 atomic_set(&eb->blocking_writers, 0);
4762 atomic_set(&eb->spinning_readers, 0);
4763 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4764 eb->lock_nested = 0;
bd681513
CM
4765 init_waitqueue_head(&eb->write_lock_wq);
4766 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4767
6d49ba1b
ES
4768 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4769
3083ee2e 4770 spin_lock_init(&eb->refs_lock);
d1310b2e 4771 atomic_set(&eb->refs, 1);
0b32f4bb 4772 atomic_set(&eb->io_pages, 0);
727011e0 4773
b8dae313
DS
4774 /*
4775 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4776 */
4777 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4778 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4779 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4780
4781 return eb;
4782}
4783
815a51c7
JS
4784struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4785{
4786 unsigned long i;
4787 struct page *p;
4788 struct extent_buffer *new;
4789 unsigned long num_pages = num_extent_pages(src->start, src->len);
4790
3f556f78 4791 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4792 if (new == NULL)
4793 return NULL;
4794
4795 for (i = 0; i < num_pages; i++) {
9ec72677 4796 p = alloc_page(GFP_NOFS);
db7f3436
JB
4797 if (!p) {
4798 btrfs_release_extent_buffer(new);
4799 return NULL;
4800 }
815a51c7
JS
4801 attach_extent_buffer_page(new, p);
4802 WARN_ON(PageDirty(p));
4803 SetPageUptodate(p);
4804 new->pages[i] = p;
fba1acf9 4805 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4806 }
4807
815a51c7
JS
4808 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4809 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4810
4811 return new;
4812}
4813
0f331229
OS
4814struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4815 u64 start, unsigned long len)
815a51c7
JS
4816{
4817 struct extent_buffer *eb;
3f556f78 4818 unsigned long num_pages;
815a51c7
JS
4819 unsigned long i;
4820
0f331229 4821 num_pages = num_extent_pages(start, len);
3f556f78
DS
4822
4823 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4824 if (!eb)
4825 return NULL;
4826
4827 for (i = 0; i < num_pages; i++) {
9ec72677 4828 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4829 if (!eb->pages[i])
4830 goto err;
4831 }
4832 set_extent_buffer_uptodate(eb);
4833 btrfs_set_header_nritems(eb, 0);
4834 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4835
4836 return eb;
4837err:
84167d19
SB
4838 for (; i > 0; i--)
4839 __free_page(eb->pages[i - 1]);
815a51c7
JS
4840 __free_extent_buffer(eb);
4841 return NULL;
4842}
4843
0f331229 4844struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4845 u64 start)
0f331229 4846{
da17066c 4847 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4848}
4849
0b32f4bb
JB
4850static void check_buffer_tree_ref(struct extent_buffer *eb)
4851{
242e18c7 4852 int refs;
0b32f4bb
JB
4853 /* the ref bit is tricky. We have to make sure it is set
4854 * if we have the buffer dirty. Otherwise the
4855 * code to free a buffer can end up dropping a dirty
4856 * page
4857 *
4858 * Once the ref bit is set, it won't go away while the
4859 * buffer is dirty or in writeback, and it also won't
4860 * go away while we have the reference count on the
4861 * eb bumped.
4862 *
4863 * We can't just set the ref bit without bumping the
4864 * ref on the eb because free_extent_buffer might
4865 * see the ref bit and try to clear it. If this happens
4866 * free_extent_buffer might end up dropping our original
4867 * ref by mistake and freeing the page before we are able
4868 * to add one more ref.
4869 *
4870 * So bump the ref count first, then set the bit. If someone
4871 * beat us to it, drop the ref we added.
4872 */
242e18c7
CM
4873 refs = atomic_read(&eb->refs);
4874 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4875 return;
4876
594831c4
JB
4877 spin_lock(&eb->refs_lock);
4878 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4879 atomic_inc(&eb->refs);
594831c4 4880 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4881}
4882
2457aec6
MG
4883static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4884 struct page *accessed)
5df4235e
JB
4885{
4886 unsigned long num_pages, i;
4887
0b32f4bb
JB
4888 check_buffer_tree_ref(eb);
4889
5df4235e
JB
4890 num_pages = num_extent_pages(eb->start, eb->len);
4891 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4892 struct page *p = eb->pages[i];
4893
2457aec6
MG
4894 if (p != accessed)
4895 mark_page_accessed(p);
5df4235e
JB
4896 }
4897}
4898
f28491e0
JB
4899struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4900 u64 start)
452c75c3
CS
4901{
4902 struct extent_buffer *eb;
4903
4904 rcu_read_lock();
f28491e0 4905 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4906 start >> PAGE_SHIFT);
452c75c3
CS
4907 if (eb && atomic_inc_not_zero(&eb->refs)) {
4908 rcu_read_unlock();
062c19e9
FM
4909 /*
4910 * Lock our eb's refs_lock to avoid races with
4911 * free_extent_buffer. When we get our eb it might be flagged
4912 * with EXTENT_BUFFER_STALE and another task running
4913 * free_extent_buffer might have seen that flag set,
4914 * eb->refs == 2, that the buffer isn't under IO (dirty and
4915 * writeback flags not set) and it's still in the tree (flag
4916 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4917 * of decrementing the extent buffer's reference count twice.
4918 * So here we could race and increment the eb's reference count,
4919 * clear its stale flag, mark it as dirty and drop our reference
4920 * before the other task finishes executing free_extent_buffer,
4921 * which would later result in an attempt to free an extent
4922 * buffer that is dirty.
4923 */
4924 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4925 spin_lock(&eb->refs_lock);
4926 spin_unlock(&eb->refs_lock);
4927 }
2457aec6 4928 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4929 return eb;
4930 }
4931 rcu_read_unlock();
4932
4933 return NULL;
4934}
4935
faa2dbf0
JB
4936#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4937struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4938 u64 start)
faa2dbf0
JB
4939{
4940 struct extent_buffer *eb, *exists = NULL;
4941 int ret;
4942
4943 eb = find_extent_buffer(fs_info, start);
4944 if (eb)
4945 return eb;
da17066c 4946 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4947 if (!eb)
4948 return NULL;
4949 eb->fs_info = fs_info;
4950again:
e1860a77 4951 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4952 if (ret)
4953 goto free_eb;
4954 spin_lock(&fs_info->buffer_lock);
4955 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4956 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4957 spin_unlock(&fs_info->buffer_lock);
4958 radix_tree_preload_end();
4959 if (ret == -EEXIST) {
4960 exists = find_extent_buffer(fs_info, start);
4961 if (exists)
4962 goto free_eb;
4963 else
4964 goto again;
4965 }
4966 check_buffer_tree_ref(eb);
4967 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4968
4969 /*
4970 * We will free dummy extent buffer's if they come into
4971 * free_extent_buffer with a ref count of 2, but if we are using this we
4972 * want the buffers to stay in memory until we're done with them, so
4973 * bump the ref count again.
4974 */
4975 atomic_inc(&eb->refs);
4976 return eb;
4977free_eb:
4978 btrfs_release_extent_buffer(eb);
4979 return exists;
4980}
4981#endif
4982
f28491e0 4983struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4984 u64 start)
d1310b2e 4985{
da17066c 4986 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4987 unsigned long num_pages = num_extent_pages(start, len);
4988 unsigned long i;
09cbfeaf 4989 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4990 struct extent_buffer *eb;
6af118ce 4991 struct extent_buffer *exists = NULL;
d1310b2e 4992 struct page *p;
f28491e0 4993 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4994 int uptodate = 1;
19fe0a8b 4995 int ret;
d1310b2e 4996
da17066c 4997 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4998 btrfs_err(fs_info, "bad tree block start %llu", start);
4999 return ERR_PTR(-EINVAL);
5000 }
5001
f28491e0 5002 eb = find_extent_buffer(fs_info, start);
452c75c3 5003 if (eb)
6af118ce 5004 return eb;
6af118ce 5005
23d79d81 5006 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5007 if (!eb)
c871b0f2 5008 return ERR_PTR(-ENOMEM);
d1310b2e 5009
727011e0 5010 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5011 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5012 if (!p) {
5013 exists = ERR_PTR(-ENOMEM);
6af118ce 5014 goto free_eb;
c871b0f2 5015 }
4f2de97a
JB
5016
5017 spin_lock(&mapping->private_lock);
5018 if (PagePrivate(p)) {
5019 /*
5020 * We could have already allocated an eb for this page
5021 * and attached one so lets see if we can get a ref on
5022 * the existing eb, and if we can we know it's good and
5023 * we can just return that one, else we know we can just
5024 * overwrite page->private.
5025 */
5026 exists = (struct extent_buffer *)p->private;
5027 if (atomic_inc_not_zero(&exists->refs)) {
5028 spin_unlock(&mapping->private_lock);
5029 unlock_page(p);
09cbfeaf 5030 put_page(p);
2457aec6 5031 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5032 goto free_eb;
5033 }
5ca64f45 5034 exists = NULL;
4f2de97a 5035
0b32f4bb 5036 /*
4f2de97a
JB
5037 * Do this so attach doesn't complain and we need to
5038 * drop the ref the old guy had.
5039 */
5040 ClearPagePrivate(p);
0b32f4bb 5041 WARN_ON(PageDirty(p));
09cbfeaf 5042 put_page(p);
d1310b2e 5043 }
4f2de97a
JB
5044 attach_extent_buffer_page(eb, p);
5045 spin_unlock(&mapping->private_lock);
0b32f4bb 5046 WARN_ON(PageDirty(p));
727011e0 5047 eb->pages[i] = p;
d1310b2e
CM
5048 if (!PageUptodate(p))
5049 uptodate = 0;
eb14ab8e
CM
5050
5051 /*
5052 * see below about how we avoid a nasty race with release page
5053 * and why we unlock later
5054 */
d1310b2e
CM
5055 }
5056 if (uptodate)
b4ce94de 5057 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5058again:
e1860a77 5059 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5060 if (ret) {
5061 exists = ERR_PTR(ret);
19fe0a8b 5062 goto free_eb;
c871b0f2 5063 }
19fe0a8b 5064
f28491e0
JB
5065 spin_lock(&fs_info->buffer_lock);
5066 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5067 start >> PAGE_SHIFT, eb);
f28491e0 5068 spin_unlock(&fs_info->buffer_lock);
452c75c3 5069 radix_tree_preload_end();
19fe0a8b 5070 if (ret == -EEXIST) {
f28491e0 5071 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5072 if (exists)
5073 goto free_eb;
5074 else
115391d2 5075 goto again;
6af118ce 5076 }
6af118ce 5077 /* add one reference for the tree */
0b32f4bb 5078 check_buffer_tree_ref(eb);
34b41ace 5079 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5080
5081 /*
5082 * there is a race where release page may have
5083 * tried to find this extent buffer in the radix
5084 * but failed. It will tell the VM it is safe to
5085 * reclaim the, and it will clear the page private bit.
5086 * We must make sure to set the page private bit properly
5087 * after the extent buffer is in the radix tree so
5088 * it doesn't get lost
5089 */
727011e0
CM
5090 SetPageChecked(eb->pages[0]);
5091 for (i = 1; i < num_pages; i++) {
fb85fc9a 5092 p = eb->pages[i];
727011e0
CM
5093 ClearPageChecked(p);
5094 unlock_page(p);
5095 }
5096 unlock_page(eb->pages[0]);
d1310b2e
CM
5097 return eb;
5098
6af118ce 5099free_eb:
5ca64f45 5100 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5101 for (i = 0; i < num_pages; i++) {
5102 if (eb->pages[i])
5103 unlock_page(eb->pages[i]);
5104 }
eb14ab8e 5105
897ca6e9 5106 btrfs_release_extent_buffer(eb);
6af118ce 5107 return exists;
d1310b2e 5108}
d1310b2e 5109
3083ee2e
JB
5110static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5111{
5112 struct extent_buffer *eb =
5113 container_of(head, struct extent_buffer, rcu_head);
5114
5115 __free_extent_buffer(eb);
5116}
5117
3083ee2e 5118/* Expects to have eb->eb_lock already held */
f7a52a40 5119static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5120{
5121 WARN_ON(atomic_read(&eb->refs) == 0);
5122 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5123 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5124 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5125
815a51c7 5126 spin_unlock(&eb->refs_lock);
3083ee2e 5127
f28491e0
JB
5128 spin_lock(&fs_info->buffer_lock);
5129 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5130 eb->start >> PAGE_SHIFT);
f28491e0 5131 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5132 } else {
5133 spin_unlock(&eb->refs_lock);
815a51c7 5134 }
3083ee2e
JB
5135
5136 /* Should be safe to release our pages at this point */
a50924e3 5137 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5138#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5139 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5140 __free_extent_buffer(eb);
5141 return 1;
5142 }
5143#endif
3083ee2e 5144 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5145 return 1;
3083ee2e
JB
5146 }
5147 spin_unlock(&eb->refs_lock);
e64860aa
JB
5148
5149 return 0;
3083ee2e
JB
5150}
5151
d1310b2e
CM
5152void free_extent_buffer(struct extent_buffer *eb)
5153{
242e18c7
CM
5154 int refs;
5155 int old;
d1310b2e
CM
5156 if (!eb)
5157 return;
5158
242e18c7
CM
5159 while (1) {
5160 refs = atomic_read(&eb->refs);
5161 if (refs <= 3)
5162 break;
5163 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5164 if (old == refs)
5165 return;
5166 }
5167
3083ee2e 5168 spin_lock(&eb->refs_lock);
815a51c7
JS
5169 if (atomic_read(&eb->refs) == 2 &&
5170 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5171 atomic_dec(&eb->refs);
5172
3083ee2e
JB
5173 if (atomic_read(&eb->refs) == 2 &&
5174 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5175 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5176 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5177 atomic_dec(&eb->refs);
5178
5179 /*
5180 * I know this is terrible, but it's temporary until we stop tracking
5181 * the uptodate bits and such for the extent buffers.
5182 */
f7a52a40 5183 release_extent_buffer(eb);
3083ee2e
JB
5184}
5185
5186void free_extent_buffer_stale(struct extent_buffer *eb)
5187{
5188 if (!eb)
d1310b2e
CM
5189 return;
5190
3083ee2e
JB
5191 spin_lock(&eb->refs_lock);
5192 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5193
0b32f4bb 5194 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5195 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5196 atomic_dec(&eb->refs);
f7a52a40 5197 release_extent_buffer(eb);
d1310b2e 5198}
d1310b2e 5199
1d4284bd 5200void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5201{
d1310b2e
CM
5202 unsigned long i;
5203 unsigned long num_pages;
5204 struct page *page;
5205
d1310b2e
CM
5206 num_pages = num_extent_pages(eb->start, eb->len);
5207
5208 for (i = 0; i < num_pages; i++) {
fb85fc9a 5209 page = eb->pages[i];
b9473439 5210 if (!PageDirty(page))
d2c3f4f6
CM
5211 continue;
5212
a61e6f29 5213 lock_page(page);
eb14ab8e
CM
5214 WARN_ON(!PagePrivate(page));
5215
d1310b2e 5216 clear_page_dirty_for_io(page);
0ee0fda0 5217 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5218 if (!PageDirty(page)) {
5219 radix_tree_tag_clear(&page->mapping->page_tree,
5220 page_index(page),
5221 PAGECACHE_TAG_DIRTY);
5222 }
0ee0fda0 5223 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5224 ClearPageError(page);
a61e6f29 5225 unlock_page(page);
d1310b2e 5226 }
0b32f4bb 5227 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5228}
d1310b2e 5229
0b32f4bb 5230int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5231{
5232 unsigned long i;
5233 unsigned long num_pages;
b9473439 5234 int was_dirty = 0;
d1310b2e 5235
0b32f4bb
JB
5236 check_buffer_tree_ref(eb);
5237
b9473439 5238 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5239
d1310b2e 5240 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5241 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5242 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5243
b9473439 5244 for (i = 0; i < num_pages; i++)
fb85fc9a 5245 set_page_dirty(eb->pages[i]);
b9473439 5246 return was_dirty;
d1310b2e 5247}
d1310b2e 5248
69ba3927 5249void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5250{
5251 unsigned long i;
5252 struct page *page;
5253 unsigned long num_pages;
5254
b4ce94de 5255 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5256 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5257 for (i = 0; i < num_pages; i++) {
fb85fc9a 5258 page = eb->pages[i];
33958dc6
CM
5259 if (page)
5260 ClearPageUptodate(page);
1259ab75 5261 }
1259ab75
CM
5262}
5263
09c25a8c 5264void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5265{
5266 unsigned long i;
5267 struct page *page;
5268 unsigned long num_pages;
5269
0b32f4bb 5270 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5271 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5272 for (i = 0; i < num_pages; i++) {
fb85fc9a 5273 page = eb->pages[i];
d1310b2e
CM
5274 SetPageUptodate(page);
5275 }
d1310b2e 5276}
d1310b2e 5277
0b32f4bb 5278int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5279{
0b32f4bb 5280 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5281}
d1310b2e
CM
5282
5283int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5284 struct extent_buffer *eb, int wait,
f188591e 5285 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5286{
5287 unsigned long i;
d1310b2e
CM
5288 struct page *page;
5289 int err;
5290 int ret = 0;
ce9adaa5
CM
5291 int locked_pages = 0;
5292 int all_uptodate = 1;
d1310b2e 5293 unsigned long num_pages;
727011e0 5294 unsigned long num_reads = 0;
a86c12c7 5295 struct bio *bio = NULL;
c8b97818 5296 unsigned long bio_flags = 0;
a86c12c7 5297
b4ce94de 5298 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5299 return 0;
5300
d1310b2e 5301 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5302 for (i = 0; i < num_pages; i++) {
fb85fc9a 5303 page = eb->pages[i];
bb82ab88 5304 if (wait == WAIT_NONE) {
2db04966 5305 if (!trylock_page(page))
ce9adaa5 5306 goto unlock_exit;
d1310b2e
CM
5307 } else {
5308 lock_page(page);
5309 }
ce9adaa5 5310 locked_pages++;
2571e739
LB
5311 }
5312 /*
5313 * We need to firstly lock all pages to make sure that
5314 * the uptodate bit of our pages won't be affected by
5315 * clear_extent_buffer_uptodate().
5316 */
8436ea91 5317 for (i = 0; i < num_pages; i++) {
2571e739 5318 page = eb->pages[i];
727011e0
CM
5319 if (!PageUptodate(page)) {
5320 num_reads++;
ce9adaa5 5321 all_uptodate = 0;
727011e0 5322 }
ce9adaa5 5323 }
2571e739 5324
ce9adaa5 5325 if (all_uptodate) {
8436ea91 5326 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5327 goto unlock_exit;
5328 }
5329
656f30db 5330 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5331 eb->read_mirror = 0;
0b32f4bb 5332 atomic_set(&eb->io_pages, num_reads);
8436ea91 5333 for (i = 0; i < num_pages; i++) {
fb85fc9a 5334 page = eb->pages[i];
baf863b9 5335
ce9adaa5 5336 if (!PageUptodate(page)) {
baf863b9
LB
5337 if (ret) {
5338 atomic_dec(&eb->io_pages);
5339 unlock_page(page);
5340 continue;
5341 }
5342
f188591e 5343 ClearPageError(page);
a86c12c7 5344 err = __extent_read_full_page(tree, page,
f188591e 5345 get_extent, &bio,
d4c7ca86 5346 mirror_num, &bio_flags,
1f7ad75b 5347 REQ_META);
baf863b9 5348 if (err) {
d1310b2e 5349 ret = err;
baf863b9
LB
5350 /*
5351 * We use &bio in above __extent_read_full_page,
5352 * so we ensure that if it returns error, the
5353 * current page fails to add itself to bio and
5354 * it's been unlocked.
5355 *
5356 * We must dec io_pages by ourselves.
5357 */
5358 atomic_dec(&eb->io_pages);
5359 }
d1310b2e
CM
5360 } else {
5361 unlock_page(page);
5362 }
5363 }
5364
355808c2 5365 if (bio) {
1f7ad75b 5366 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5367 if (err)
5368 return err;
355808c2 5369 }
a86c12c7 5370
bb82ab88 5371 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5372 return ret;
d397712b 5373
8436ea91 5374 for (i = 0; i < num_pages; i++) {
fb85fc9a 5375 page = eb->pages[i];
d1310b2e 5376 wait_on_page_locked(page);
d397712b 5377 if (!PageUptodate(page))
d1310b2e 5378 ret = -EIO;
d1310b2e 5379 }
d397712b 5380
d1310b2e 5381 return ret;
ce9adaa5
CM
5382
5383unlock_exit:
d397712b 5384 while (locked_pages > 0) {
ce9adaa5 5385 locked_pages--;
8436ea91
JB
5386 page = eb->pages[locked_pages];
5387 unlock_page(page);
ce9adaa5
CM
5388 }
5389 return ret;
d1310b2e 5390}
d1310b2e 5391
1cbb1f45
JM
5392void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5393 unsigned long start, unsigned long len)
d1310b2e
CM
5394{
5395 size_t cur;
5396 size_t offset;
5397 struct page *page;
5398 char *kaddr;
5399 char *dst = (char *)dstv;
09cbfeaf
KS
5400 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5401 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5402
f716abd5
LB
5403 if (start + len > eb->len) {
5404 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5405 eb->start, eb->len, start, len);
5406 memset(dst, 0, len);
5407 return;
5408 }
d1310b2e 5409
09cbfeaf 5410 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5411
d397712b 5412 while (len > 0) {
fb85fc9a 5413 page = eb->pages[i];
d1310b2e 5414
09cbfeaf 5415 cur = min(len, (PAGE_SIZE - offset));
a6591715 5416 kaddr = page_address(page);
d1310b2e 5417 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5418
5419 dst += cur;
5420 len -= cur;
5421 offset = 0;
5422 i++;
5423 }
5424}
d1310b2e 5425
1cbb1f45
JM
5426int read_extent_buffer_to_user(const struct extent_buffer *eb,
5427 void __user *dstv,
5428 unsigned long start, unsigned long len)
550ac1d8
GH
5429{
5430 size_t cur;
5431 size_t offset;
5432 struct page *page;
5433 char *kaddr;
5434 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5435 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5436 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5437 int ret = 0;
5438
5439 WARN_ON(start > eb->len);
5440 WARN_ON(start + len > eb->start + eb->len);
5441
09cbfeaf 5442 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5443
5444 while (len > 0) {
fb85fc9a 5445 page = eb->pages[i];
550ac1d8 5446
09cbfeaf 5447 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5448 kaddr = page_address(page);
5449 if (copy_to_user(dst, kaddr + offset, cur)) {
5450 ret = -EFAULT;
5451 break;
5452 }
5453
5454 dst += cur;
5455 len -= cur;
5456 offset = 0;
5457 i++;
5458 }
5459
5460 return ret;
5461}
5462
415b35a5
LB
5463/*
5464 * return 0 if the item is found within a page.
5465 * return 1 if the item spans two pages.
5466 * return -EINVAL otherwise.
5467 */
1cbb1f45
JM
5468int map_private_extent_buffer(const struct extent_buffer *eb,
5469 unsigned long start, unsigned long min_len,
5470 char **map, unsigned long *map_start,
5471 unsigned long *map_len)
d1310b2e 5472{
09cbfeaf 5473 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5474 char *kaddr;
5475 struct page *p;
09cbfeaf
KS
5476 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5477 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5478 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5479 PAGE_SHIFT;
d1310b2e 5480
f716abd5
LB
5481 if (start + min_len > eb->len) {
5482 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5483 eb->start, eb->len, start, min_len);
5484 return -EINVAL;
5485 }
5486
d1310b2e 5487 if (i != end_i)
415b35a5 5488 return 1;
d1310b2e
CM
5489
5490 if (i == 0) {
5491 offset = start_offset;
5492 *map_start = 0;
5493 } else {
5494 offset = 0;
09cbfeaf 5495 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5496 }
d397712b 5497
fb85fc9a 5498 p = eb->pages[i];
a6591715 5499 kaddr = page_address(p);
d1310b2e 5500 *map = kaddr + offset;
09cbfeaf 5501 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5502 return 0;
5503}
d1310b2e 5504
1cbb1f45
JM
5505int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5506 unsigned long start, unsigned long len)
d1310b2e
CM
5507{
5508 size_t cur;
5509 size_t offset;
5510 struct page *page;
5511 char *kaddr;
5512 char *ptr = (char *)ptrv;
09cbfeaf
KS
5513 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5514 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5515 int ret = 0;
5516
5517 WARN_ON(start > eb->len);
5518 WARN_ON(start + len > eb->start + eb->len);
5519
09cbfeaf 5520 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5521
d397712b 5522 while (len > 0) {
fb85fc9a 5523 page = eb->pages[i];
d1310b2e 5524
09cbfeaf 5525 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5526
a6591715 5527 kaddr = page_address(page);
d1310b2e 5528 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5529 if (ret)
5530 break;
5531
5532 ptr += cur;
5533 len -= cur;
5534 offset = 0;
5535 i++;
5536 }
5537 return ret;
5538}
d1310b2e 5539
f157bf76
DS
5540void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5541 const void *srcv)
5542{
5543 char *kaddr;
5544
5545 WARN_ON(!PageUptodate(eb->pages[0]));
5546 kaddr = page_address(eb->pages[0]);
5547 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5548 BTRFS_FSID_SIZE);
5549}
5550
5551void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5552{
5553 char *kaddr;
5554
5555 WARN_ON(!PageUptodate(eb->pages[0]));
5556 kaddr = page_address(eb->pages[0]);
5557 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5558 BTRFS_FSID_SIZE);
5559}
5560
d1310b2e
CM
5561void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5562 unsigned long start, unsigned long len)
5563{
5564 size_t cur;
5565 size_t offset;
5566 struct page *page;
5567 char *kaddr;
5568 char *src = (char *)srcv;
09cbfeaf
KS
5569 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5570 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5571
5572 WARN_ON(start > eb->len);
5573 WARN_ON(start + len > eb->start + eb->len);
5574
09cbfeaf 5575 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5576
d397712b 5577 while (len > 0) {
fb85fc9a 5578 page = eb->pages[i];
d1310b2e
CM
5579 WARN_ON(!PageUptodate(page));
5580
09cbfeaf 5581 cur = min(len, PAGE_SIZE - offset);
a6591715 5582 kaddr = page_address(page);
d1310b2e 5583 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5584
5585 src += cur;
5586 len -= cur;
5587 offset = 0;
5588 i++;
5589 }
5590}
d1310b2e 5591
b159fa28
DS
5592void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5593 unsigned long len)
d1310b2e
CM
5594{
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
09cbfeaf
KS
5599 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5600 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5601
5602 WARN_ON(start > eb->len);
5603 WARN_ON(start + len > eb->start + eb->len);
5604
09cbfeaf 5605 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5606
d397712b 5607 while (len > 0) {
fb85fc9a 5608 page = eb->pages[i];
d1310b2e
CM
5609 WARN_ON(!PageUptodate(page));
5610
09cbfeaf 5611 cur = min(len, PAGE_SIZE - offset);
a6591715 5612 kaddr = page_address(page);
b159fa28 5613 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5614
5615 len -= cur;
5616 offset = 0;
5617 i++;
5618 }
5619}
d1310b2e 5620
58e8012c
DS
5621void copy_extent_buffer_full(struct extent_buffer *dst,
5622 struct extent_buffer *src)
5623{
5624 int i;
5625 unsigned num_pages;
5626
5627 ASSERT(dst->len == src->len);
5628
5629 num_pages = num_extent_pages(dst->start, dst->len);
5630 for (i = 0; i < num_pages; i++)
5631 copy_page(page_address(dst->pages[i]),
5632 page_address(src->pages[i]));
5633}
5634
d1310b2e
CM
5635void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5636 unsigned long dst_offset, unsigned long src_offset,
5637 unsigned long len)
5638{
5639 u64 dst_len = dst->len;
5640 size_t cur;
5641 size_t offset;
5642 struct page *page;
5643 char *kaddr;
09cbfeaf
KS
5644 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5645 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5646
5647 WARN_ON(src->len != dst_len);
5648
5649 offset = (start_offset + dst_offset) &
09cbfeaf 5650 (PAGE_SIZE - 1);
d1310b2e 5651
d397712b 5652 while (len > 0) {
fb85fc9a 5653 page = dst->pages[i];
d1310b2e
CM
5654 WARN_ON(!PageUptodate(page));
5655
09cbfeaf 5656 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5657
a6591715 5658 kaddr = page_address(page);
d1310b2e 5659 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5660
5661 src_offset += cur;
5662 len -= cur;
5663 offset = 0;
5664 i++;
5665 }
5666}
d1310b2e 5667
2fe1d551
OS
5668void le_bitmap_set(u8 *map, unsigned int start, int len)
5669{
5670 u8 *p = map + BIT_BYTE(start);
5671 const unsigned int size = start + len;
5672 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5673 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5674
5675 while (len - bits_to_set >= 0) {
5676 *p |= mask_to_set;
5677 len -= bits_to_set;
5678 bits_to_set = BITS_PER_BYTE;
9c894696 5679 mask_to_set = ~0;
2fe1d551
OS
5680 p++;
5681 }
5682 if (len) {
5683 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5684 *p |= mask_to_set;
5685 }
5686}
5687
5688void le_bitmap_clear(u8 *map, unsigned int start, int len)
5689{
5690 u8 *p = map + BIT_BYTE(start);
5691 const unsigned int size = start + len;
5692 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5693 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5694
5695 while (len - bits_to_clear >= 0) {
5696 *p &= ~mask_to_clear;
5697 len -= bits_to_clear;
5698 bits_to_clear = BITS_PER_BYTE;
9c894696 5699 mask_to_clear = ~0;
2fe1d551
OS
5700 p++;
5701 }
5702 if (len) {
5703 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5704 *p &= ~mask_to_clear;
5705 }
5706}
3e1e8bb7
OS
5707
5708/*
5709 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5710 * given bit number
5711 * @eb: the extent buffer
5712 * @start: offset of the bitmap item in the extent buffer
5713 * @nr: bit number
5714 * @page_index: return index of the page in the extent buffer that contains the
5715 * given bit number
5716 * @page_offset: return offset into the page given by page_index
5717 *
5718 * This helper hides the ugliness of finding the byte in an extent buffer which
5719 * contains a given bit.
5720 */
5721static inline void eb_bitmap_offset(struct extent_buffer *eb,
5722 unsigned long start, unsigned long nr,
5723 unsigned long *page_index,
5724 size_t *page_offset)
5725{
09cbfeaf 5726 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5727 size_t byte_offset = BIT_BYTE(nr);
5728 size_t offset;
5729
5730 /*
5731 * The byte we want is the offset of the extent buffer + the offset of
5732 * the bitmap item in the extent buffer + the offset of the byte in the
5733 * bitmap item.
5734 */
5735 offset = start_offset + start + byte_offset;
5736
09cbfeaf
KS
5737 *page_index = offset >> PAGE_SHIFT;
5738 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5739}
5740
5741/**
5742 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5743 * @eb: the extent buffer
5744 * @start: offset of the bitmap item in the extent buffer
5745 * @nr: bit number to test
5746 */
5747int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5748 unsigned long nr)
5749{
2fe1d551 5750 u8 *kaddr;
3e1e8bb7
OS
5751 struct page *page;
5752 unsigned long i;
5753 size_t offset;
5754
5755 eb_bitmap_offset(eb, start, nr, &i, &offset);
5756 page = eb->pages[i];
5757 WARN_ON(!PageUptodate(page));
5758 kaddr = page_address(page);
5759 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5760}
5761
5762/**
5763 * extent_buffer_bitmap_set - set an area of a bitmap
5764 * @eb: the extent buffer
5765 * @start: offset of the bitmap item in the extent buffer
5766 * @pos: bit number of the first bit
5767 * @len: number of bits to set
5768 */
5769void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5770 unsigned long pos, unsigned long len)
5771{
2fe1d551 5772 u8 *kaddr;
3e1e8bb7
OS
5773 struct page *page;
5774 unsigned long i;
5775 size_t offset;
5776 const unsigned int size = pos + len;
5777 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5778 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5779
5780 eb_bitmap_offset(eb, start, pos, &i, &offset);
5781 page = eb->pages[i];
5782 WARN_ON(!PageUptodate(page));
5783 kaddr = page_address(page);
5784
5785 while (len >= bits_to_set) {
5786 kaddr[offset] |= mask_to_set;
5787 len -= bits_to_set;
5788 bits_to_set = BITS_PER_BYTE;
9c894696 5789 mask_to_set = ~0;
09cbfeaf 5790 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5791 offset = 0;
5792 page = eb->pages[++i];
5793 WARN_ON(!PageUptodate(page));
5794 kaddr = page_address(page);
5795 }
5796 }
5797 if (len) {
5798 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5799 kaddr[offset] |= mask_to_set;
5800 }
5801}
5802
5803
5804/**
5805 * extent_buffer_bitmap_clear - clear an area of a bitmap
5806 * @eb: the extent buffer
5807 * @start: offset of the bitmap item in the extent buffer
5808 * @pos: bit number of the first bit
5809 * @len: number of bits to clear
5810 */
5811void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5812 unsigned long pos, unsigned long len)
5813{
2fe1d551 5814 u8 *kaddr;
3e1e8bb7
OS
5815 struct page *page;
5816 unsigned long i;
5817 size_t offset;
5818 const unsigned int size = pos + len;
5819 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5820 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5821
5822 eb_bitmap_offset(eb, start, pos, &i, &offset);
5823 page = eb->pages[i];
5824 WARN_ON(!PageUptodate(page));
5825 kaddr = page_address(page);
5826
5827 while (len >= bits_to_clear) {
5828 kaddr[offset] &= ~mask_to_clear;
5829 len -= bits_to_clear;
5830 bits_to_clear = BITS_PER_BYTE;
9c894696 5831 mask_to_clear = ~0;
09cbfeaf 5832 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5833 offset = 0;
5834 page = eb->pages[++i];
5835 WARN_ON(!PageUptodate(page));
5836 kaddr = page_address(page);
5837 }
5838 }
5839 if (len) {
5840 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5841 kaddr[offset] &= ~mask_to_clear;
5842 }
5843}
5844
3387206f
ST
5845static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5846{
5847 unsigned long distance = (src > dst) ? src - dst : dst - src;
5848 return distance < len;
5849}
5850
d1310b2e
CM
5851static void copy_pages(struct page *dst_page, struct page *src_page,
5852 unsigned long dst_off, unsigned long src_off,
5853 unsigned long len)
5854{
a6591715 5855 char *dst_kaddr = page_address(dst_page);
d1310b2e 5856 char *src_kaddr;
727011e0 5857 int must_memmove = 0;
d1310b2e 5858
3387206f 5859 if (dst_page != src_page) {
a6591715 5860 src_kaddr = page_address(src_page);
3387206f 5861 } else {
d1310b2e 5862 src_kaddr = dst_kaddr;
727011e0
CM
5863 if (areas_overlap(src_off, dst_off, len))
5864 must_memmove = 1;
3387206f 5865 }
d1310b2e 5866
727011e0
CM
5867 if (must_memmove)
5868 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5869 else
5870 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5871}
5872
5873void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5874 unsigned long src_offset, unsigned long len)
5875{
0b246afa 5876 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5877 size_t cur;
5878 size_t dst_off_in_page;
5879 size_t src_off_in_page;
09cbfeaf 5880 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5881 unsigned long dst_i;
5882 unsigned long src_i;
5883
5884 if (src_offset + len > dst->len) {
0b246afa 5885 btrfs_err(fs_info,
5d163e0e
JM
5886 "memmove bogus src_offset %lu move len %lu dst len %lu",
5887 src_offset, len, dst->len);
d1310b2e
CM
5888 BUG_ON(1);
5889 }
5890 if (dst_offset + len > dst->len) {
0b246afa 5891 btrfs_err(fs_info,
5d163e0e
JM
5892 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5893 dst_offset, len, dst->len);
d1310b2e
CM
5894 BUG_ON(1);
5895 }
5896
d397712b 5897 while (len > 0) {
d1310b2e 5898 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5899 (PAGE_SIZE - 1);
d1310b2e 5900 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5901 (PAGE_SIZE - 1);
d1310b2e 5902
09cbfeaf
KS
5903 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5904 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5905
09cbfeaf 5906 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5907 src_off_in_page));
5908 cur = min_t(unsigned long, cur,
09cbfeaf 5909 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5910
fb85fc9a 5911 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5912 dst_off_in_page, src_off_in_page, cur);
5913
5914 src_offset += cur;
5915 dst_offset += cur;
5916 len -= cur;
5917 }
5918}
d1310b2e
CM
5919
5920void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5921 unsigned long src_offset, unsigned long len)
5922{
0b246afa 5923 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5924 size_t cur;
5925 size_t dst_off_in_page;
5926 size_t src_off_in_page;
5927 unsigned long dst_end = dst_offset + len - 1;
5928 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5929 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5930 unsigned long dst_i;
5931 unsigned long src_i;
5932
5933 if (src_offset + len > dst->len) {
0b246afa 5934 btrfs_err(fs_info,
5d163e0e
JM
5935 "memmove bogus src_offset %lu move len %lu len %lu",
5936 src_offset, len, dst->len);
d1310b2e
CM
5937 BUG_ON(1);
5938 }
5939 if (dst_offset + len > dst->len) {
0b246afa 5940 btrfs_err(fs_info,
5d163e0e
JM
5941 "memmove bogus dst_offset %lu move len %lu len %lu",
5942 dst_offset, len, dst->len);
d1310b2e
CM
5943 BUG_ON(1);
5944 }
727011e0 5945 if (dst_offset < src_offset) {
d1310b2e
CM
5946 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5947 return;
5948 }
d397712b 5949 while (len > 0) {
09cbfeaf
KS
5950 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5951 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5952
5953 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5954 (PAGE_SIZE - 1);
d1310b2e 5955 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5956 (PAGE_SIZE - 1);
d1310b2e
CM
5957
5958 cur = min_t(unsigned long, len, src_off_in_page + 1);
5959 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5960 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5961 dst_off_in_page - cur + 1,
5962 src_off_in_page - cur + 1, cur);
5963
5964 dst_end -= cur;
5965 src_end -= cur;
5966 len -= cur;
5967 }
5968}
6af118ce 5969
f7a52a40 5970int try_release_extent_buffer(struct page *page)
19fe0a8b 5971{
6af118ce 5972 struct extent_buffer *eb;
6af118ce 5973
3083ee2e 5974 /*
01327610 5975 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5976 * now.
5977 */
5978 spin_lock(&page->mapping->private_lock);
5979 if (!PagePrivate(page)) {
5980 spin_unlock(&page->mapping->private_lock);
4f2de97a 5981 return 1;
45f49bce 5982 }
6af118ce 5983
3083ee2e
JB
5984 eb = (struct extent_buffer *)page->private;
5985 BUG_ON(!eb);
19fe0a8b
MX
5986
5987 /*
3083ee2e
JB
5988 * This is a little awful but should be ok, we need to make sure that
5989 * the eb doesn't disappear out from under us while we're looking at
5990 * this page.
19fe0a8b 5991 */
3083ee2e 5992 spin_lock(&eb->refs_lock);
0b32f4bb 5993 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5994 spin_unlock(&eb->refs_lock);
5995 spin_unlock(&page->mapping->private_lock);
5996 return 0;
b9473439 5997 }
3083ee2e 5998 spin_unlock(&page->mapping->private_lock);
897ca6e9 5999
19fe0a8b 6000 /*
3083ee2e
JB
6001 * If tree ref isn't set then we know the ref on this eb is a real ref,
6002 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6003 */
3083ee2e
JB
6004 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6005 spin_unlock(&eb->refs_lock);
6006 return 0;
b9473439 6007 }
19fe0a8b 6008
f7a52a40 6009 return release_extent_buffer(eb);
6af118ce 6010}