]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: scrub: get rid of sector_t
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
b7ac31b7 70 refcount_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 77 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 78 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
79 list_del(&eb->leak_list);
80 kmem_cache_free(extent_buffer_cache, eb);
81 }
82}
8d599ae1 83
a5dee37d
JB
84#define btrfs_debug_check_extent_io_range(tree, start, end) \
85 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 86static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 87 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 88{
c6100a4b
JB
89 if (tree->ops && tree->ops->check_extent_io_range)
90 tree->ops->check_extent_io_range(tree->private_data, caller,
91 start, end);
8d599ae1 92}
6d49ba1b
ES
93#else
94#define btrfs_leak_debug_add(new, head) do {} while (0)
95#define btrfs_leak_debug_del(entry) do {} while (0)
96#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 97#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 98#endif
d1310b2e 99
d1310b2e
CM
100#define BUFFER_LRU_MAX 64
101
102struct tree_entry {
103 u64 start;
104 u64 end;
d1310b2e
CM
105 struct rb_node rb_node;
106};
107
108struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
771ed689
CM
112
113 /* tells writepage not to lock the state bits for this range
114 * it still does the unlocking
115 */
ffbd517d
CM
116 unsigned int extent_locked:1;
117
70fd7614 118 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 119 unsigned int sync_io:1;
d1310b2e
CM
120};
121
d38ed27f
QW
122static void add_extent_changeset(struct extent_state *state, unsigned bits,
123 struct extent_changeset *changeset,
124 int set)
125{
126 int ret;
127
128 if (!changeset)
129 return;
130 if (set && (state->state & bits) == bits)
131 return;
fefdc557
QW
132 if (!set && (state->state & bits) == 0)
133 return;
d38ed27f 134 changeset->bytes_changed += state->end - state->start + 1;
53d32359 135 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
136 GFP_ATOMIC);
137 /* ENOMEM */
138 BUG_ON(ret < 0);
139}
140
0b32f4bb 141static noinline void flush_write_bio(void *data);
c2d904e0
JM
142static inline struct btrfs_fs_info *
143tree_fs_info(struct extent_io_tree *tree)
144{
c6100a4b
JB
145 if (tree->ops)
146 return tree->ops->tree_fs_info(tree->private_data);
147 return NULL;
c2d904e0 148}
0b32f4bb 149
d1310b2e
CM
150int __init extent_io_init(void)
151{
837e1972 152 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 153 sizeof(struct extent_state), 0,
fba4b697 154 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
155 if (!extent_state_cache)
156 return -ENOMEM;
157
837e1972 158 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 159 sizeof(struct extent_buffer), 0,
fba4b697 160 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
161 if (!extent_buffer_cache)
162 goto free_state_cache;
9be3395b
CM
163
164 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
165 offsetof(struct btrfs_io_bio, bio),
166 BIOSET_NEED_BVECS);
9be3395b
CM
167 if (!btrfs_bioset)
168 goto free_buffer_cache;
b208c2f7
DW
169
170 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
171 goto free_bioset;
172
d1310b2e
CM
173 return 0;
174
b208c2f7
DW
175free_bioset:
176 bioset_free(btrfs_bioset);
177 btrfs_bioset = NULL;
178
9be3395b
CM
179free_buffer_cache:
180 kmem_cache_destroy(extent_buffer_cache);
181 extent_buffer_cache = NULL;
182
d1310b2e
CM
183free_state_cache:
184 kmem_cache_destroy(extent_state_cache);
9be3395b 185 extent_state_cache = NULL;
d1310b2e
CM
186 return -ENOMEM;
187}
188
189void extent_io_exit(void)
190{
6d49ba1b 191 btrfs_leak_debug_check();
8c0a8537
KS
192
193 /*
194 * Make sure all delayed rcu free are flushed before we
195 * destroy caches.
196 */
197 rcu_barrier();
5598e900
KM
198 kmem_cache_destroy(extent_state_cache);
199 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
200 if (btrfs_bioset)
201 bioset_free(btrfs_bioset);
d1310b2e
CM
202}
203
204void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 205 void *private_data)
d1310b2e 206{
6bef4d31 207 tree->state = RB_ROOT;
d1310b2e
CM
208 tree->ops = NULL;
209 tree->dirty_bytes = 0;
70dec807 210 spin_lock_init(&tree->lock);
c6100a4b 211 tree->private_data = private_data;
d1310b2e 212}
d1310b2e 213
b2950863 214static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
215{
216 struct extent_state *state;
d1310b2e 217
3ba7ab22
MH
218 /*
219 * The given mask might be not appropriate for the slab allocator,
220 * drop the unsupported bits
221 */
222 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 223 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 224 if (!state)
d1310b2e
CM
225 return state;
226 state->state = 0;
47dc196a 227 state->failrec = NULL;
27a3507d 228 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 229 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 230 refcount_set(&state->refs, 1);
d1310b2e 231 init_waitqueue_head(&state->wq);
143bede5 232 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
233 return state;
234}
d1310b2e 235
4845e44f 236void free_extent_state(struct extent_state *state)
d1310b2e 237{
d1310b2e
CM
238 if (!state)
239 return;
b7ac31b7 240 if (refcount_dec_and_test(&state->refs)) {
27a3507d 241 WARN_ON(extent_state_in_tree(state));
6d49ba1b 242 btrfs_leak_debug_del(&state->leak_list);
143bede5 243 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
244 kmem_cache_free(extent_state_cache, state);
245 }
246}
d1310b2e 247
f2071b21
FM
248static struct rb_node *tree_insert(struct rb_root *root,
249 struct rb_node *search_start,
250 u64 offset,
12cfbad9
FDBM
251 struct rb_node *node,
252 struct rb_node ***p_in,
253 struct rb_node **parent_in)
d1310b2e 254{
f2071b21 255 struct rb_node **p;
d397712b 256 struct rb_node *parent = NULL;
d1310b2e
CM
257 struct tree_entry *entry;
258
12cfbad9
FDBM
259 if (p_in && parent_in) {
260 p = *p_in;
261 parent = *parent_in;
262 goto do_insert;
263 }
264
f2071b21 265 p = search_start ? &search_start : &root->rb_node;
d397712b 266 while (*p) {
d1310b2e
CM
267 parent = *p;
268 entry = rb_entry(parent, struct tree_entry, rb_node);
269
270 if (offset < entry->start)
271 p = &(*p)->rb_left;
272 else if (offset > entry->end)
273 p = &(*p)->rb_right;
274 else
275 return parent;
276 }
277
12cfbad9 278do_insert:
d1310b2e
CM
279 rb_link_node(node, parent, p);
280 rb_insert_color(node, root);
281 return NULL;
282}
283
80ea96b1 284static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
285 struct rb_node **prev_ret,
286 struct rb_node **next_ret,
287 struct rb_node ***p_ret,
288 struct rb_node **parent_ret)
d1310b2e 289{
80ea96b1 290 struct rb_root *root = &tree->state;
12cfbad9 291 struct rb_node **n = &root->rb_node;
d1310b2e
CM
292 struct rb_node *prev = NULL;
293 struct rb_node *orig_prev = NULL;
294 struct tree_entry *entry;
295 struct tree_entry *prev_entry = NULL;
296
12cfbad9
FDBM
297 while (*n) {
298 prev = *n;
299 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
300 prev_entry = entry;
301
302 if (offset < entry->start)
12cfbad9 303 n = &(*n)->rb_left;
d1310b2e 304 else if (offset > entry->end)
12cfbad9 305 n = &(*n)->rb_right;
d397712b 306 else
12cfbad9 307 return *n;
d1310b2e
CM
308 }
309
12cfbad9
FDBM
310 if (p_ret)
311 *p_ret = n;
312 if (parent_ret)
313 *parent_ret = prev;
314
d1310b2e
CM
315 if (prev_ret) {
316 orig_prev = prev;
d397712b 317 while (prev && offset > prev_entry->end) {
d1310b2e
CM
318 prev = rb_next(prev);
319 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320 }
321 *prev_ret = prev;
322 prev = orig_prev;
323 }
324
325 if (next_ret) {
326 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 327 while (prev && offset < prev_entry->start) {
d1310b2e
CM
328 prev = rb_prev(prev);
329 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
330 }
331 *next_ret = prev;
332 }
333 return NULL;
334}
335
12cfbad9
FDBM
336static inline struct rb_node *
337tree_search_for_insert(struct extent_io_tree *tree,
338 u64 offset,
339 struct rb_node ***p_ret,
340 struct rb_node **parent_ret)
d1310b2e 341{
70dec807 342 struct rb_node *prev = NULL;
d1310b2e 343 struct rb_node *ret;
70dec807 344
12cfbad9 345 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 346 if (!ret)
d1310b2e
CM
347 return prev;
348 return ret;
349}
350
12cfbad9
FDBM
351static inline struct rb_node *tree_search(struct extent_io_tree *tree,
352 u64 offset)
353{
354 return tree_search_for_insert(tree, offset, NULL, NULL);
355}
356
9ed74f2d
JB
357static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
358 struct extent_state *other)
359{
360 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 361 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
362}
363
d1310b2e
CM
364/*
365 * utility function to look for merge candidates inside a given range.
366 * Any extents with matching state are merged together into a single
367 * extent in the tree. Extents with EXTENT_IO in their state field
368 * are not merged because the end_io handlers need to be able to do
369 * operations on them without sleeping (or doing allocations/splits).
370 *
371 * This should be called with the tree lock held.
372 */
1bf85046
JM
373static void merge_state(struct extent_io_tree *tree,
374 struct extent_state *state)
d1310b2e
CM
375{
376 struct extent_state *other;
377 struct rb_node *other_node;
378
5b21f2ed 379 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 380 return;
d1310b2e
CM
381
382 other_node = rb_prev(&state->rb_node);
383 if (other_node) {
384 other = rb_entry(other_node, struct extent_state, rb_node);
385 if (other->end == state->start - 1 &&
386 other->state == state->state) {
9ed74f2d 387 merge_cb(tree, state, other);
d1310b2e 388 state->start = other->start;
d1310b2e 389 rb_erase(&other->rb_node, &tree->state);
27a3507d 390 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
391 free_extent_state(other);
392 }
393 }
394 other_node = rb_next(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->start == state->end + 1 &&
398 other->state == state->state) {
9ed74f2d 399 merge_cb(tree, state, other);
df98b6e2 400 state->end = other->end;
df98b6e2 401 rb_erase(&other->rb_node, &tree->state);
27a3507d 402 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 403 free_extent_state(other);
d1310b2e
CM
404 }
405 }
d1310b2e
CM
406}
407
1bf85046 408static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 409 struct extent_state *state, unsigned *bits)
291d673e 410{
1bf85046 411 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 412 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
413}
414
415static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
9ed74f2d 418 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 419 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
420}
421
3150b699 422static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
423 struct extent_state *state, unsigned *bits,
424 struct extent_changeset *changeset);
3150b699 425
d1310b2e
CM
426/*
427 * insert an extent_state struct into the tree. 'bits' are set on the
428 * struct before it is inserted.
429 *
430 * This may return -EEXIST if the extent is already there, in which case the
431 * state struct is freed.
432 *
433 * The tree lock is not taken internally. This is a utility function and
434 * probably isn't what you want to call (see set/clear_extent_bit).
435 */
436static int insert_state(struct extent_io_tree *tree,
437 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
438 struct rb_node ***p,
439 struct rb_node **parent,
d38ed27f 440 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
441{
442 struct rb_node *node;
443
31b1a2bd 444 if (end < start)
efe120a0 445 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 446 end, start);
d1310b2e
CM
447 state->start = start;
448 state->end = end;
9ed74f2d 449
d38ed27f 450 set_state_bits(tree, state, bits, changeset);
3150b699 451
f2071b21 452 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
453 if (node) {
454 struct extent_state *found;
455 found = rb_entry(node, struct extent_state, rb_node);
62e85577 456 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 457 found->start, found->end, start, end);
d1310b2e
CM
458 return -EEXIST;
459 }
460 merge_state(tree, state);
461 return 0;
462}
463
1bf85046 464static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
465 u64 split)
466{
467 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 468 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
469}
470
d1310b2e
CM
471/*
472 * split a given extent state struct in two, inserting the preallocated
473 * struct 'prealloc' as the newly created second half. 'split' indicates an
474 * offset inside 'orig' where it should be split.
475 *
476 * Before calling,
477 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
478 * are two extent state structs in the tree:
479 * prealloc: [orig->start, split - 1]
480 * orig: [ split, orig->end ]
481 *
482 * The tree locks are not taken by this function. They need to be held
483 * by the caller.
484 */
485static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
486 struct extent_state *prealloc, u64 split)
487{
488 struct rb_node *node;
9ed74f2d
JB
489
490 split_cb(tree, orig, split);
491
d1310b2e
CM
492 prealloc->start = orig->start;
493 prealloc->end = split - 1;
494 prealloc->state = orig->state;
495 orig->start = split;
496
f2071b21
FM
497 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
498 &prealloc->rb_node, NULL, NULL);
d1310b2e 499 if (node) {
d1310b2e
CM
500 free_extent_state(prealloc);
501 return -EEXIST;
502 }
503 return 0;
504}
505
cdc6a395
LZ
506static struct extent_state *next_state(struct extent_state *state)
507{
508 struct rb_node *next = rb_next(&state->rb_node);
509 if (next)
510 return rb_entry(next, struct extent_state, rb_node);
511 else
512 return NULL;
513}
514
d1310b2e
CM
515/*
516 * utility function to clear some bits in an extent state struct.
1b303fc0 517 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
518 *
519 * If no bits are set on the state struct after clearing things, the
520 * struct is freed and removed from the tree
521 */
cdc6a395
LZ
522static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
523 struct extent_state *state,
fefdc557
QW
524 unsigned *bits, int wake,
525 struct extent_changeset *changeset)
d1310b2e 526{
cdc6a395 527 struct extent_state *next;
9ee49a04 528 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 529
0ca1f7ce 530 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
531 u64 range = state->end - state->start + 1;
532 WARN_ON(range > tree->dirty_bytes);
533 tree->dirty_bytes -= range;
534 }
291d673e 535 clear_state_cb(tree, state, bits);
fefdc557 536 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 537 state->state &= ~bits_to_clear;
d1310b2e
CM
538 if (wake)
539 wake_up(&state->wq);
0ca1f7ce 540 if (state->state == 0) {
cdc6a395 541 next = next_state(state);
27a3507d 542 if (extent_state_in_tree(state)) {
d1310b2e 543 rb_erase(&state->rb_node, &tree->state);
27a3507d 544 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
545 free_extent_state(state);
546 } else {
547 WARN_ON(1);
548 }
549 } else {
550 merge_state(tree, state);
cdc6a395 551 next = next_state(state);
d1310b2e 552 }
cdc6a395 553 return next;
d1310b2e
CM
554}
555
8233767a
XG
556static struct extent_state *
557alloc_extent_state_atomic(struct extent_state *prealloc)
558{
559 if (!prealloc)
560 prealloc = alloc_extent_state(GFP_ATOMIC);
561
562 return prealloc;
563}
564
48a3b636 565static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 566{
5d163e0e
JM
567 btrfs_panic(tree_fs_info(tree), err,
568 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
569}
570
d1310b2e
CM
571/*
572 * clear some bits on a range in the tree. This may require splitting
573 * or inserting elements in the tree, so the gfp mask is used to
574 * indicate which allocations or sleeping are allowed.
575 *
576 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
577 * the given range from the tree regardless of state (ie for truncate).
578 *
579 * the range [start, end] is inclusive.
580 *
6763af84 581 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 582 */
fefdc557
QW
583static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
584 unsigned bits, int wake, int delete,
585 struct extent_state **cached_state,
586 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
587{
588 struct extent_state *state;
2c64c53d 589 struct extent_state *cached;
d1310b2e
CM
590 struct extent_state *prealloc = NULL;
591 struct rb_node *node;
5c939df5 592 u64 last_end;
d1310b2e 593 int err;
2ac55d41 594 int clear = 0;
d1310b2e 595
a5dee37d 596 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 597
7ee9e440
JB
598 if (bits & EXTENT_DELALLOC)
599 bits |= EXTENT_NORESERVE;
600
0ca1f7ce
YZ
601 if (delete)
602 bits |= ~EXTENT_CTLBITS;
603 bits |= EXTENT_FIRST_DELALLOC;
604
2ac55d41
JB
605 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
606 clear = 1;
d1310b2e 607again:
d0164adc 608 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
609 /*
610 * Don't care for allocation failure here because we might end
611 * up not needing the pre-allocated extent state at all, which
612 * is the case if we only have in the tree extent states that
613 * cover our input range and don't cover too any other range.
614 * If we end up needing a new extent state we allocate it later.
615 */
d1310b2e 616 prealloc = alloc_extent_state(mask);
d1310b2e
CM
617 }
618
cad321ad 619 spin_lock(&tree->lock);
2c64c53d
CM
620 if (cached_state) {
621 cached = *cached_state;
2ac55d41
JB
622
623 if (clear) {
624 *cached_state = NULL;
625 cached_state = NULL;
626 }
627
27a3507d
FM
628 if (cached && extent_state_in_tree(cached) &&
629 cached->start <= start && cached->end > start) {
2ac55d41 630 if (clear)
b7ac31b7 631 refcount_dec(&cached->refs);
2c64c53d 632 state = cached;
42daec29 633 goto hit_next;
2c64c53d 634 }
2ac55d41
JB
635 if (clear)
636 free_extent_state(cached);
2c64c53d 637 }
d1310b2e
CM
638 /*
639 * this search will find the extents that end after
640 * our range starts
641 */
80ea96b1 642 node = tree_search(tree, start);
d1310b2e
CM
643 if (!node)
644 goto out;
645 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 646hit_next:
d1310b2e
CM
647 if (state->start > end)
648 goto out;
649 WARN_ON(state->end < start);
5c939df5 650 last_end = state->end;
d1310b2e 651
0449314a 652 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
653 if (!(state->state & bits)) {
654 state = next_state(state);
0449314a 655 goto next;
cdc6a395 656 }
0449314a 657
d1310b2e
CM
658 /*
659 * | ---- desired range ---- |
660 * | state | or
661 * | ------------- state -------------- |
662 *
663 * We need to split the extent we found, and may flip
664 * bits on second half.
665 *
666 * If the extent we found extends past our range, we
667 * just split and search again. It'll get split again
668 * the next time though.
669 *
670 * If the extent we found is inside our range, we clear
671 * the desired bit on it.
672 */
673
674 if (state->start < start) {
8233767a
XG
675 prealloc = alloc_extent_state_atomic(prealloc);
676 BUG_ON(!prealloc);
d1310b2e 677 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
678 if (err)
679 extent_io_tree_panic(tree, err);
680
d1310b2e
CM
681 prealloc = NULL;
682 if (err)
683 goto out;
684 if (state->end <= end) {
fefdc557
QW
685 state = clear_state_bit(tree, state, &bits, wake,
686 changeset);
d1ac6e41 687 goto next;
d1310b2e
CM
688 }
689 goto search_again;
690 }
691 /*
692 * | ---- desired range ---- |
693 * | state |
694 * We need to split the extent, and clear the bit
695 * on the first half
696 */
697 if (state->start <= end && state->end > end) {
8233767a
XG
698 prealloc = alloc_extent_state_atomic(prealloc);
699 BUG_ON(!prealloc);
d1310b2e 700 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
701 if (err)
702 extent_io_tree_panic(tree, err);
703
d1310b2e
CM
704 if (wake)
705 wake_up(&state->wq);
42daec29 706
fefdc557 707 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 708
d1310b2e
CM
709 prealloc = NULL;
710 goto out;
711 }
42daec29 712
fefdc557 713 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 714next:
5c939df5
YZ
715 if (last_end == (u64)-1)
716 goto out;
717 start = last_end + 1;
cdc6a395 718 if (start <= end && state && !need_resched())
692e5759 719 goto hit_next;
d1310b2e
CM
720
721search_again:
722 if (start > end)
723 goto out;
cad321ad 724 spin_unlock(&tree->lock);
d0164adc 725 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
726 cond_resched();
727 goto again;
7ab5cb2a
DS
728
729out:
730 spin_unlock(&tree->lock);
731 if (prealloc)
732 free_extent_state(prealloc);
733
734 return 0;
735
d1310b2e 736}
d1310b2e 737
143bede5
JM
738static void wait_on_state(struct extent_io_tree *tree,
739 struct extent_state *state)
641f5219
CH
740 __releases(tree->lock)
741 __acquires(tree->lock)
d1310b2e
CM
742{
743 DEFINE_WAIT(wait);
744 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 745 spin_unlock(&tree->lock);
d1310b2e 746 schedule();
cad321ad 747 spin_lock(&tree->lock);
d1310b2e 748 finish_wait(&state->wq, &wait);
d1310b2e
CM
749}
750
751/*
752 * waits for one or more bits to clear on a range in the state tree.
753 * The range [start, end] is inclusive.
754 * The tree lock is taken by this function
755 */
41074888
DS
756static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
757 unsigned long bits)
d1310b2e
CM
758{
759 struct extent_state *state;
760 struct rb_node *node;
761
a5dee37d 762 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 763
cad321ad 764 spin_lock(&tree->lock);
d1310b2e
CM
765again:
766 while (1) {
767 /*
768 * this search will find all the extents that end after
769 * our range starts
770 */
80ea96b1 771 node = tree_search(tree, start);
c50d3e71 772process_node:
d1310b2e
CM
773 if (!node)
774 break;
775
776 state = rb_entry(node, struct extent_state, rb_node);
777
778 if (state->start > end)
779 goto out;
780
781 if (state->state & bits) {
782 start = state->start;
b7ac31b7 783 refcount_inc(&state->refs);
d1310b2e
CM
784 wait_on_state(tree, state);
785 free_extent_state(state);
786 goto again;
787 }
788 start = state->end + 1;
789
790 if (start > end)
791 break;
792
c50d3e71
FM
793 if (!cond_resched_lock(&tree->lock)) {
794 node = rb_next(node);
795 goto process_node;
796 }
d1310b2e
CM
797 }
798out:
cad321ad 799 spin_unlock(&tree->lock);
d1310b2e 800}
d1310b2e 801
1bf85046 802static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 803 struct extent_state *state,
d38ed27f 804 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 805{
9ee49a04 806 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 807
1bf85046 808 set_state_cb(tree, state, bits);
0ca1f7ce 809 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
810 u64 range = state->end - state->start + 1;
811 tree->dirty_bytes += range;
812 }
d38ed27f 813 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 814 state->state |= bits_to_set;
d1310b2e
CM
815}
816
e38e2ed7
FM
817static void cache_state_if_flags(struct extent_state *state,
818 struct extent_state **cached_ptr,
9ee49a04 819 unsigned flags)
2c64c53d
CM
820{
821 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 822 if (!flags || (state->state & flags)) {
2c64c53d 823 *cached_ptr = state;
b7ac31b7 824 refcount_inc(&state->refs);
2c64c53d
CM
825 }
826 }
827}
828
e38e2ed7
FM
829static void cache_state(struct extent_state *state,
830 struct extent_state **cached_ptr)
831{
832 return cache_state_if_flags(state, cached_ptr,
833 EXTENT_IOBITS | EXTENT_BOUNDARY);
834}
835
d1310b2e 836/*
1edbb734
CM
837 * set some bits on a range in the tree. This may require allocations or
838 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 839 *
1edbb734
CM
840 * If any of the exclusive bits are set, this will fail with -EEXIST if some
841 * part of the range already has the desired bits set. The start of the
842 * existing range is returned in failed_start in this case.
d1310b2e 843 *
1edbb734 844 * [start, end] is inclusive This takes the tree lock.
d1310b2e 845 */
1edbb734 846
3fbe5c02
JM
847static int __must_check
848__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 849 unsigned bits, unsigned exclusive_bits,
41074888 850 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 851 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
852{
853 struct extent_state *state;
854 struct extent_state *prealloc = NULL;
855 struct rb_node *node;
12cfbad9
FDBM
856 struct rb_node **p;
857 struct rb_node *parent;
d1310b2e 858 int err = 0;
d1310b2e
CM
859 u64 last_start;
860 u64 last_end;
42daec29 861
a5dee37d 862 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 863
0ca1f7ce 864 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 865again:
d0164adc 866 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
867 /*
868 * Don't care for allocation failure here because we might end
869 * up not needing the pre-allocated extent state at all, which
870 * is the case if we only have in the tree extent states that
871 * cover our input range and don't cover too any other range.
872 * If we end up needing a new extent state we allocate it later.
873 */
d1310b2e 874 prealloc = alloc_extent_state(mask);
d1310b2e
CM
875 }
876
cad321ad 877 spin_lock(&tree->lock);
9655d298
CM
878 if (cached_state && *cached_state) {
879 state = *cached_state;
df98b6e2 880 if (state->start <= start && state->end > start &&
27a3507d 881 extent_state_in_tree(state)) {
9655d298
CM
882 node = &state->rb_node;
883 goto hit_next;
884 }
885 }
d1310b2e
CM
886 /*
887 * this search will find all the extents that end after
888 * our range starts.
889 */
12cfbad9 890 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 891 if (!node) {
8233767a
XG
892 prealloc = alloc_extent_state_atomic(prealloc);
893 BUG_ON(!prealloc);
12cfbad9 894 err = insert_state(tree, prealloc, start, end,
d38ed27f 895 &p, &parent, &bits, changeset);
c2d904e0
JM
896 if (err)
897 extent_io_tree_panic(tree, err);
898
c42ac0bc 899 cache_state(prealloc, cached_state);
d1310b2e 900 prealloc = NULL;
d1310b2e
CM
901 goto out;
902 }
d1310b2e 903 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 904hit_next:
d1310b2e
CM
905 last_start = state->start;
906 last_end = state->end;
907
908 /*
909 * | ---- desired range ---- |
910 * | state |
911 *
912 * Just lock what we found and keep going
913 */
914 if (state->start == start && state->end <= end) {
1edbb734 915 if (state->state & exclusive_bits) {
d1310b2e
CM
916 *failed_start = state->start;
917 err = -EEXIST;
918 goto out;
919 }
42daec29 920
d38ed27f 921 set_state_bits(tree, state, &bits, changeset);
2c64c53d 922 cache_state(state, cached_state);
d1310b2e 923 merge_state(tree, state);
5c939df5
YZ
924 if (last_end == (u64)-1)
925 goto out;
926 start = last_end + 1;
d1ac6e41
LB
927 state = next_state(state);
928 if (start < end && state && state->start == start &&
929 !need_resched())
930 goto hit_next;
d1310b2e
CM
931 goto search_again;
932 }
933
934 /*
935 * | ---- desired range ---- |
936 * | state |
937 * or
938 * | ------------- state -------------- |
939 *
940 * We need to split the extent we found, and may flip bits on
941 * second half.
942 *
943 * If the extent we found extends past our
944 * range, we just split and search again. It'll get split
945 * again the next time though.
946 *
947 * If the extent we found is inside our range, we set the
948 * desired bit on it.
949 */
950 if (state->start < start) {
1edbb734 951 if (state->state & exclusive_bits) {
d1310b2e
CM
952 *failed_start = start;
953 err = -EEXIST;
954 goto out;
955 }
8233767a
XG
956
957 prealloc = alloc_extent_state_atomic(prealloc);
958 BUG_ON(!prealloc);
d1310b2e 959 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
960 if (err)
961 extent_io_tree_panic(tree, err);
962
d1310b2e
CM
963 prealloc = NULL;
964 if (err)
965 goto out;
966 if (state->end <= end) {
d38ed27f 967 set_state_bits(tree, state, &bits, changeset);
2c64c53d 968 cache_state(state, cached_state);
d1310b2e 969 merge_state(tree, state);
5c939df5
YZ
970 if (last_end == (u64)-1)
971 goto out;
972 start = last_end + 1;
d1ac6e41
LB
973 state = next_state(state);
974 if (start < end && state && state->start == start &&
975 !need_resched())
976 goto hit_next;
d1310b2e
CM
977 }
978 goto search_again;
979 }
980 /*
981 * | ---- desired range ---- |
982 * | state | or | state |
983 *
984 * There's a hole, we need to insert something in it and
985 * ignore the extent we found.
986 */
987 if (state->start > start) {
988 u64 this_end;
989 if (end < last_start)
990 this_end = end;
991 else
d397712b 992 this_end = last_start - 1;
8233767a
XG
993
994 prealloc = alloc_extent_state_atomic(prealloc);
995 BUG_ON(!prealloc);
c7f895a2
XG
996
997 /*
998 * Avoid to free 'prealloc' if it can be merged with
999 * the later extent.
1000 */
d1310b2e 1001 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1002 NULL, NULL, &bits, changeset);
c2d904e0
JM
1003 if (err)
1004 extent_io_tree_panic(tree, err);
1005
9ed74f2d
JB
1006 cache_state(prealloc, cached_state);
1007 prealloc = NULL;
d1310b2e
CM
1008 start = this_end + 1;
1009 goto search_again;
1010 }
1011 /*
1012 * | ---- desired range ---- |
1013 * | state |
1014 * We need to split the extent, and set the bit
1015 * on the first half
1016 */
1017 if (state->start <= end && state->end > end) {
1edbb734 1018 if (state->state & exclusive_bits) {
d1310b2e
CM
1019 *failed_start = start;
1020 err = -EEXIST;
1021 goto out;
1022 }
8233767a
XG
1023
1024 prealloc = alloc_extent_state_atomic(prealloc);
1025 BUG_ON(!prealloc);
d1310b2e 1026 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1027 if (err)
1028 extent_io_tree_panic(tree, err);
d1310b2e 1029
d38ed27f 1030 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1031 cache_state(prealloc, cached_state);
d1310b2e
CM
1032 merge_state(tree, prealloc);
1033 prealloc = NULL;
1034 goto out;
1035 }
1036
b5a4ba14
DS
1037search_again:
1038 if (start > end)
1039 goto out;
1040 spin_unlock(&tree->lock);
1041 if (gfpflags_allow_blocking(mask))
1042 cond_resched();
1043 goto again;
d1310b2e
CM
1044
1045out:
cad321ad 1046 spin_unlock(&tree->lock);
d1310b2e
CM
1047 if (prealloc)
1048 free_extent_state(prealloc);
1049
1050 return err;
1051
d1310b2e 1052}
d1310b2e 1053
41074888 1054int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1055 unsigned bits, u64 * failed_start,
41074888 1056 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1057{
1058 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1059 cached_state, mask, NULL);
3fbe5c02
JM
1060}
1061
1062
462d6fac 1063/**
10983f2e
LB
1064 * convert_extent_bit - convert all bits in a given range from one bit to
1065 * another
462d6fac
JB
1066 * @tree: the io tree to search
1067 * @start: the start offset in bytes
1068 * @end: the end offset in bytes (inclusive)
1069 * @bits: the bits to set in this range
1070 * @clear_bits: the bits to clear in this range
e6138876 1071 * @cached_state: state that we're going to cache
462d6fac
JB
1072 *
1073 * This will go through and set bits for the given range. If any states exist
1074 * already in this range they are set with the given bit and cleared of the
1075 * clear_bits. This is only meant to be used by things that are mergeable, ie
1076 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1077 * boundary bits like LOCK.
210aa277
DS
1078 *
1079 * All allocations are done with GFP_NOFS.
462d6fac
JB
1080 */
1081int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1082 unsigned bits, unsigned clear_bits,
210aa277 1083 struct extent_state **cached_state)
462d6fac
JB
1084{
1085 struct extent_state *state;
1086 struct extent_state *prealloc = NULL;
1087 struct rb_node *node;
12cfbad9
FDBM
1088 struct rb_node **p;
1089 struct rb_node *parent;
462d6fac
JB
1090 int err = 0;
1091 u64 last_start;
1092 u64 last_end;
c8fd3de7 1093 bool first_iteration = true;
462d6fac 1094
a5dee37d 1095 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1096
462d6fac 1097again:
210aa277 1098 if (!prealloc) {
c8fd3de7
FM
1099 /*
1100 * Best effort, don't worry if extent state allocation fails
1101 * here for the first iteration. We might have a cached state
1102 * that matches exactly the target range, in which case no
1103 * extent state allocations are needed. We'll only know this
1104 * after locking the tree.
1105 */
210aa277 1106 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1107 if (!prealloc && !first_iteration)
462d6fac
JB
1108 return -ENOMEM;
1109 }
1110
1111 spin_lock(&tree->lock);
e6138876
JB
1112 if (cached_state && *cached_state) {
1113 state = *cached_state;
1114 if (state->start <= start && state->end > start &&
27a3507d 1115 extent_state_in_tree(state)) {
e6138876
JB
1116 node = &state->rb_node;
1117 goto hit_next;
1118 }
1119 }
1120
462d6fac
JB
1121 /*
1122 * this search will find all the extents that end after
1123 * our range starts.
1124 */
12cfbad9 1125 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1126 if (!node) {
1127 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1128 if (!prealloc) {
1129 err = -ENOMEM;
1130 goto out;
1131 }
12cfbad9 1132 err = insert_state(tree, prealloc, start, end,
d38ed27f 1133 &p, &parent, &bits, NULL);
c2d904e0
JM
1134 if (err)
1135 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1136 cache_state(prealloc, cached_state);
1137 prealloc = NULL;
462d6fac
JB
1138 goto out;
1139 }
1140 state = rb_entry(node, struct extent_state, rb_node);
1141hit_next:
1142 last_start = state->start;
1143 last_end = state->end;
1144
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 *
1149 * Just lock what we found and keep going
1150 */
1151 if (state->start == start && state->end <= end) {
d38ed27f 1152 set_state_bits(tree, state, &bits, NULL);
e6138876 1153 cache_state(state, cached_state);
fefdc557 1154 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1155 if (last_end == (u64)-1)
1156 goto out;
462d6fac 1157 start = last_end + 1;
d1ac6e41
LB
1158 if (start < end && state && state->start == start &&
1159 !need_resched())
1160 goto hit_next;
462d6fac
JB
1161 goto search_again;
1162 }
1163
1164 /*
1165 * | ---- desired range ---- |
1166 * | state |
1167 * or
1168 * | ------------- state -------------- |
1169 *
1170 * We need to split the extent we found, and may flip bits on
1171 * second half.
1172 *
1173 * If the extent we found extends past our
1174 * range, we just split and search again. It'll get split
1175 * again the next time though.
1176 *
1177 * If the extent we found is inside our range, we set the
1178 * desired bit on it.
1179 */
1180 if (state->start < start) {
1181 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1182 if (!prealloc) {
1183 err = -ENOMEM;
1184 goto out;
1185 }
462d6fac 1186 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1187 if (err)
1188 extent_io_tree_panic(tree, err);
462d6fac
JB
1189 prealloc = NULL;
1190 if (err)
1191 goto out;
1192 if (state->end <= end) {
d38ed27f 1193 set_state_bits(tree, state, &bits, NULL);
e6138876 1194 cache_state(state, cached_state);
fefdc557
QW
1195 state = clear_state_bit(tree, state, &clear_bits, 0,
1196 NULL);
462d6fac
JB
1197 if (last_end == (u64)-1)
1198 goto out;
1199 start = last_end + 1;
d1ac6e41
LB
1200 if (start < end && state && state->start == start &&
1201 !need_resched())
1202 goto hit_next;
462d6fac
JB
1203 }
1204 goto search_again;
1205 }
1206 /*
1207 * | ---- desired range ---- |
1208 * | state | or | state |
1209 *
1210 * There's a hole, we need to insert something in it and
1211 * ignore the extent we found.
1212 */
1213 if (state->start > start) {
1214 u64 this_end;
1215 if (end < last_start)
1216 this_end = end;
1217 else
1218 this_end = last_start - 1;
1219
1220 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1221 if (!prealloc) {
1222 err = -ENOMEM;
1223 goto out;
1224 }
462d6fac
JB
1225
1226 /*
1227 * Avoid to free 'prealloc' if it can be merged with
1228 * the later extent.
1229 */
1230 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1231 NULL, NULL, &bits, NULL);
c2d904e0
JM
1232 if (err)
1233 extent_io_tree_panic(tree, err);
e6138876 1234 cache_state(prealloc, cached_state);
462d6fac
JB
1235 prealloc = NULL;
1236 start = this_end + 1;
1237 goto search_again;
1238 }
1239 /*
1240 * | ---- desired range ---- |
1241 * | state |
1242 * We need to split the extent, and set the bit
1243 * on the first half
1244 */
1245 if (state->start <= end && state->end > end) {
1246 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1247 if (!prealloc) {
1248 err = -ENOMEM;
1249 goto out;
1250 }
462d6fac
JB
1251
1252 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1253 if (err)
1254 extent_io_tree_panic(tree, err);
462d6fac 1255
d38ed27f 1256 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1257 cache_state(prealloc, cached_state);
fefdc557 1258 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1259 prealloc = NULL;
1260 goto out;
1261 }
1262
462d6fac
JB
1263search_again:
1264 if (start > end)
1265 goto out;
1266 spin_unlock(&tree->lock);
210aa277 1267 cond_resched();
c8fd3de7 1268 first_iteration = false;
462d6fac 1269 goto again;
462d6fac
JB
1270
1271out:
1272 spin_unlock(&tree->lock);
1273 if (prealloc)
1274 free_extent_state(prealloc);
1275
1276 return err;
462d6fac
JB
1277}
1278
d1310b2e 1279/* wrappers around set/clear extent bit */
d38ed27f 1280int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1281 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1282{
1283 /*
1284 * We don't support EXTENT_LOCKED yet, as current changeset will
1285 * record any bits changed, so for EXTENT_LOCKED case, it will
1286 * either fail with -EEXIST or changeset will record the whole
1287 * range.
1288 */
1289 BUG_ON(bits & EXTENT_LOCKED);
1290
2c53b912 1291 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1292 changeset);
1293}
1294
fefdc557
QW
1295int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1296 unsigned bits, int wake, int delete,
1297 struct extent_state **cached, gfp_t mask)
1298{
1299 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1300 cached, mask, NULL);
1301}
1302
fefdc557 1303int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1304 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1305{
1306 /*
1307 * Don't support EXTENT_LOCKED case, same reason as
1308 * set_record_extent_bits().
1309 */
1310 BUG_ON(bits & EXTENT_LOCKED);
1311
f734c44a 1312 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1313 changeset);
1314}
1315
d352ac68
CM
1316/*
1317 * either insert or lock state struct between start and end use mask to tell
1318 * us if waiting is desired.
1319 */
1edbb734 1320int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1321 struct extent_state **cached_state)
d1310b2e
CM
1322{
1323 int err;
1324 u64 failed_start;
9ee49a04 1325
d1310b2e 1326 while (1) {
ff13db41 1327 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1328 EXTENT_LOCKED, &failed_start,
d38ed27f 1329 cached_state, GFP_NOFS, NULL);
d0082371 1330 if (err == -EEXIST) {
d1310b2e
CM
1331 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1332 start = failed_start;
d0082371 1333 } else
d1310b2e 1334 break;
d1310b2e
CM
1335 WARN_ON(start > end);
1336 }
1337 return err;
1338}
d1310b2e 1339
d0082371 1340int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1341{
1342 int err;
1343 u64 failed_start;
1344
3fbe5c02 1345 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1346 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1347 if (err == -EEXIST) {
1348 if (failed_start > start)
1349 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1350 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1351 return 0;
6643558d 1352 }
25179201
JB
1353 return 1;
1354}
25179201 1355
bd1fa4f0 1356void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1357{
09cbfeaf
KS
1358 unsigned long index = start >> PAGE_SHIFT;
1359 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1360 struct page *page;
1361
1362 while (index <= end_index) {
1363 page = find_get_page(inode->i_mapping, index);
1364 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1365 clear_page_dirty_for_io(page);
09cbfeaf 1366 put_page(page);
4adaa611
CM
1367 index++;
1368 }
4adaa611
CM
1369}
1370
f6311572 1371void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1372{
09cbfeaf
KS
1373 unsigned long index = start >> PAGE_SHIFT;
1374 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1375 struct page *page;
1376
1377 while (index <= end_index) {
1378 page = find_get_page(inode->i_mapping, index);
1379 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1380 __set_page_dirty_nobuffers(page);
8d38633c 1381 account_page_redirty(page);
09cbfeaf 1382 put_page(page);
4adaa611
CM
1383 index++;
1384 }
4adaa611
CM
1385}
1386
d1310b2e
CM
1387/*
1388 * helper function to set both pages and extents in the tree writeback
1389 */
35de6db2 1390static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1391{
c6100a4b 1392 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1393}
d1310b2e 1394
d352ac68
CM
1395/* find the first state struct with 'bits' set after 'start', and
1396 * return it. tree->lock must be held. NULL will returned if
1397 * nothing was found after 'start'
1398 */
48a3b636
ES
1399static struct extent_state *
1400find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1401 u64 start, unsigned bits)
d7fc640e
CM
1402{
1403 struct rb_node *node;
1404 struct extent_state *state;
1405
1406 /*
1407 * this search will find all the extents that end after
1408 * our range starts.
1409 */
1410 node = tree_search(tree, start);
d397712b 1411 if (!node)
d7fc640e 1412 goto out;
d7fc640e 1413
d397712b 1414 while (1) {
d7fc640e 1415 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1416 if (state->end >= start && (state->state & bits))
d7fc640e 1417 return state;
d397712b 1418
d7fc640e
CM
1419 node = rb_next(node);
1420 if (!node)
1421 break;
1422 }
1423out:
1424 return NULL;
1425}
d7fc640e 1426
69261c4b
XG
1427/*
1428 * find the first offset in the io tree with 'bits' set. zero is
1429 * returned if we find something, and *start_ret and *end_ret are
1430 * set to reflect the state struct that was found.
1431 *
477d7eaf 1432 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1433 */
1434int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1435 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1436 struct extent_state **cached_state)
69261c4b
XG
1437{
1438 struct extent_state *state;
e6138876 1439 struct rb_node *n;
69261c4b
XG
1440 int ret = 1;
1441
1442 spin_lock(&tree->lock);
e6138876
JB
1443 if (cached_state && *cached_state) {
1444 state = *cached_state;
27a3507d 1445 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1446 n = rb_next(&state->rb_node);
1447 while (n) {
1448 state = rb_entry(n, struct extent_state,
1449 rb_node);
1450 if (state->state & bits)
1451 goto got_it;
1452 n = rb_next(n);
1453 }
1454 free_extent_state(*cached_state);
1455 *cached_state = NULL;
1456 goto out;
1457 }
1458 free_extent_state(*cached_state);
1459 *cached_state = NULL;
1460 }
1461
69261c4b 1462 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1463got_it:
69261c4b 1464 if (state) {
e38e2ed7 1465 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1466 *start_ret = state->start;
1467 *end_ret = state->end;
1468 ret = 0;
1469 }
e6138876 1470out:
69261c4b
XG
1471 spin_unlock(&tree->lock);
1472 return ret;
1473}
1474
d352ac68
CM
1475/*
1476 * find a contiguous range of bytes in the file marked as delalloc, not
1477 * more than 'max_bytes'. start and end are used to return the range,
1478 *
1479 * 1 is returned if we find something, 0 if nothing was in the tree
1480 */
c8b97818 1481static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1482 u64 *start, u64 *end, u64 max_bytes,
1483 struct extent_state **cached_state)
d1310b2e
CM
1484{
1485 struct rb_node *node;
1486 struct extent_state *state;
1487 u64 cur_start = *start;
1488 u64 found = 0;
1489 u64 total_bytes = 0;
1490
cad321ad 1491 spin_lock(&tree->lock);
c8b97818 1492
d1310b2e
CM
1493 /*
1494 * this search will find all the extents that end after
1495 * our range starts.
1496 */
80ea96b1 1497 node = tree_search(tree, cur_start);
2b114d1d 1498 if (!node) {
3b951516
CM
1499 if (!found)
1500 *end = (u64)-1;
d1310b2e
CM
1501 goto out;
1502 }
1503
d397712b 1504 while (1) {
d1310b2e 1505 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1506 if (found && (state->start != cur_start ||
1507 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1508 goto out;
1509 }
1510 if (!(state->state & EXTENT_DELALLOC)) {
1511 if (!found)
1512 *end = state->end;
1513 goto out;
1514 }
c2a128d2 1515 if (!found) {
d1310b2e 1516 *start = state->start;
c2a128d2 1517 *cached_state = state;
b7ac31b7 1518 refcount_inc(&state->refs);
c2a128d2 1519 }
d1310b2e
CM
1520 found++;
1521 *end = state->end;
1522 cur_start = state->end + 1;
1523 node = rb_next(node);
d1310b2e 1524 total_bytes += state->end - state->start + 1;
7bf811a5 1525 if (total_bytes >= max_bytes)
573aecaf 1526 break;
573aecaf 1527 if (!node)
d1310b2e
CM
1528 break;
1529 }
1530out:
cad321ad 1531 spin_unlock(&tree->lock);
d1310b2e
CM
1532 return found;
1533}
1534
da2c7009
LB
1535static int __process_pages_contig(struct address_space *mapping,
1536 struct page *locked_page,
1537 pgoff_t start_index, pgoff_t end_index,
1538 unsigned long page_ops, pgoff_t *index_ret);
1539
143bede5
JM
1540static noinline void __unlock_for_delalloc(struct inode *inode,
1541 struct page *locked_page,
1542 u64 start, u64 end)
c8b97818 1543{
09cbfeaf
KS
1544 unsigned long index = start >> PAGE_SHIFT;
1545 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1546
76c0021d 1547 ASSERT(locked_page);
c8b97818 1548 if (index == locked_page->index && end_index == index)
143bede5 1549 return;
c8b97818 1550
76c0021d
LB
1551 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1552 PAGE_UNLOCK, NULL);
c8b97818
CM
1553}
1554
1555static noinline int lock_delalloc_pages(struct inode *inode,
1556 struct page *locked_page,
1557 u64 delalloc_start,
1558 u64 delalloc_end)
1559{
09cbfeaf 1560 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1561 unsigned long index_ret = index;
09cbfeaf 1562 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1563 int ret;
c8b97818 1564
76c0021d 1565 ASSERT(locked_page);
c8b97818
CM
1566 if (index == locked_page->index && index == end_index)
1567 return 0;
1568
76c0021d
LB
1569 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1570 end_index, PAGE_LOCK, &index_ret);
1571 if (ret == -EAGAIN)
1572 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1573 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1574 return ret;
1575}
1576
1577/*
1578 * find a contiguous range of bytes in the file marked as delalloc, not
1579 * more than 'max_bytes'. start and end are used to return the range,
1580 *
1581 * 1 is returned if we find something, 0 if nothing was in the tree
1582 */
294e30fe
JB
1583STATIC u64 find_lock_delalloc_range(struct inode *inode,
1584 struct extent_io_tree *tree,
1585 struct page *locked_page, u64 *start,
1586 u64 *end, u64 max_bytes)
c8b97818
CM
1587{
1588 u64 delalloc_start;
1589 u64 delalloc_end;
1590 u64 found;
9655d298 1591 struct extent_state *cached_state = NULL;
c8b97818
CM
1592 int ret;
1593 int loops = 0;
1594
1595again:
1596 /* step one, find a bunch of delalloc bytes starting at start */
1597 delalloc_start = *start;
1598 delalloc_end = 0;
1599 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1600 max_bytes, &cached_state);
70b99e69 1601 if (!found || delalloc_end <= *start) {
c8b97818
CM
1602 *start = delalloc_start;
1603 *end = delalloc_end;
c2a128d2 1604 free_extent_state(cached_state);
385fe0be 1605 return 0;
c8b97818
CM
1606 }
1607
70b99e69
CM
1608 /*
1609 * start comes from the offset of locked_page. We have to lock
1610 * pages in order, so we can't process delalloc bytes before
1611 * locked_page
1612 */
d397712b 1613 if (delalloc_start < *start)
70b99e69 1614 delalloc_start = *start;
70b99e69 1615
c8b97818
CM
1616 /*
1617 * make sure to limit the number of pages we try to lock down
c8b97818 1618 */
7bf811a5
JB
1619 if (delalloc_end + 1 - delalloc_start > max_bytes)
1620 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1621
c8b97818
CM
1622 /* step two, lock all the pages after the page that has start */
1623 ret = lock_delalloc_pages(inode, locked_page,
1624 delalloc_start, delalloc_end);
1625 if (ret == -EAGAIN) {
1626 /* some of the pages are gone, lets avoid looping by
1627 * shortening the size of the delalloc range we're searching
1628 */
9655d298 1629 free_extent_state(cached_state);
7d788742 1630 cached_state = NULL;
c8b97818 1631 if (!loops) {
09cbfeaf 1632 max_bytes = PAGE_SIZE;
c8b97818
CM
1633 loops = 1;
1634 goto again;
1635 } else {
1636 found = 0;
1637 goto out_failed;
1638 }
1639 }
79787eaa 1640 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1641
1642 /* step three, lock the state bits for the whole range */
ff13db41 1643 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1644
1645 /* then test to make sure it is all still delalloc */
1646 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1647 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1648 if (!ret) {
9655d298
CM
1649 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1650 &cached_state, GFP_NOFS);
c8b97818
CM
1651 __unlock_for_delalloc(inode, locked_page,
1652 delalloc_start, delalloc_end);
1653 cond_resched();
1654 goto again;
1655 }
9655d298 1656 free_extent_state(cached_state);
c8b97818
CM
1657 *start = delalloc_start;
1658 *end = delalloc_end;
1659out_failed:
1660 return found;
1661}
1662
da2c7009
LB
1663static int __process_pages_contig(struct address_space *mapping,
1664 struct page *locked_page,
1665 pgoff_t start_index, pgoff_t end_index,
1666 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1667{
873695b3 1668 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1669 unsigned long pages_locked = 0;
873695b3 1670 pgoff_t index = start_index;
c8b97818 1671 struct page *pages[16];
873695b3 1672 unsigned ret;
da2c7009 1673 int err = 0;
c8b97818 1674 int i;
771ed689 1675
da2c7009
LB
1676 if (page_ops & PAGE_LOCK) {
1677 ASSERT(page_ops == PAGE_LOCK);
1678 ASSERT(index_ret && *index_ret == start_index);
1679 }
1680
704de49d 1681 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1682 mapping_set_error(mapping, -EIO);
704de49d 1683
d397712b 1684 while (nr_pages > 0) {
873695b3 1685 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1686 min_t(unsigned long,
1687 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1688 if (ret == 0) {
1689 /*
1690 * Only if we're going to lock these pages,
1691 * can we find nothing at @index.
1692 */
1693 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1694 err = -EAGAIN;
1695 goto out;
da2c7009 1696 }
8b62b72b 1697
da2c7009 1698 for (i = 0; i < ret; i++) {
c2790a2e 1699 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1700 SetPagePrivate2(pages[i]);
1701
c8b97818 1702 if (pages[i] == locked_page) {
09cbfeaf 1703 put_page(pages[i]);
da2c7009 1704 pages_locked++;
c8b97818
CM
1705 continue;
1706 }
c2790a2e 1707 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1708 clear_page_dirty_for_io(pages[i]);
c2790a2e 1709 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1710 set_page_writeback(pages[i]);
704de49d
FM
1711 if (page_ops & PAGE_SET_ERROR)
1712 SetPageError(pages[i]);
c2790a2e 1713 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1714 end_page_writeback(pages[i]);
c2790a2e 1715 if (page_ops & PAGE_UNLOCK)
771ed689 1716 unlock_page(pages[i]);
da2c7009
LB
1717 if (page_ops & PAGE_LOCK) {
1718 lock_page(pages[i]);
1719 if (!PageDirty(pages[i]) ||
1720 pages[i]->mapping != mapping) {
1721 unlock_page(pages[i]);
1722 put_page(pages[i]);
1723 err = -EAGAIN;
1724 goto out;
1725 }
1726 }
09cbfeaf 1727 put_page(pages[i]);
da2c7009 1728 pages_locked++;
c8b97818
CM
1729 }
1730 nr_pages -= ret;
1731 index += ret;
1732 cond_resched();
1733 }
da2c7009
LB
1734out:
1735 if (err && index_ret)
1736 *index_ret = start_index + pages_locked - 1;
1737 return err;
c8b97818 1738}
c8b97818 1739
873695b3
LB
1740void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1741 u64 delalloc_end, struct page *locked_page,
1742 unsigned clear_bits,
1743 unsigned long page_ops)
1744{
1745 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1746 NULL, GFP_NOFS);
1747
1748 __process_pages_contig(inode->i_mapping, locked_page,
1749 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1750 page_ops, NULL);
873695b3
LB
1751}
1752
d352ac68
CM
1753/*
1754 * count the number of bytes in the tree that have a given bit(s)
1755 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1756 * cached. The total number found is returned.
1757 */
d1310b2e
CM
1758u64 count_range_bits(struct extent_io_tree *tree,
1759 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1760 unsigned bits, int contig)
d1310b2e
CM
1761{
1762 struct rb_node *node;
1763 struct extent_state *state;
1764 u64 cur_start = *start;
1765 u64 total_bytes = 0;
ec29ed5b 1766 u64 last = 0;
d1310b2e
CM
1767 int found = 0;
1768
fae7f21c 1769 if (WARN_ON(search_end <= cur_start))
d1310b2e 1770 return 0;
d1310b2e 1771
cad321ad 1772 spin_lock(&tree->lock);
d1310b2e
CM
1773 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1774 total_bytes = tree->dirty_bytes;
1775 goto out;
1776 }
1777 /*
1778 * this search will find all the extents that end after
1779 * our range starts.
1780 */
80ea96b1 1781 node = tree_search(tree, cur_start);
d397712b 1782 if (!node)
d1310b2e 1783 goto out;
d1310b2e 1784
d397712b 1785 while (1) {
d1310b2e
CM
1786 state = rb_entry(node, struct extent_state, rb_node);
1787 if (state->start > search_end)
1788 break;
ec29ed5b
CM
1789 if (contig && found && state->start > last + 1)
1790 break;
1791 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1792 total_bytes += min(search_end, state->end) + 1 -
1793 max(cur_start, state->start);
1794 if (total_bytes >= max_bytes)
1795 break;
1796 if (!found) {
af60bed2 1797 *start = max(cur_start, state->start);
d1310b2e
CM
1798 found = 1;
1799 }
ec29ed5b
CM
1800 last = state->end;
1801 } else if (contig && found) {
1802 break;
d1310b2e
CM
1803 }
1804 node = rb_next(node);
1805 if (!node)
1806 break;
1807 }
1808out:
cad321ad 1809 spin_unlock(&tree->lock);
d1310b2e
CM
1810 return total_bytes;
1811}
b2950863 1812
d352ac68
CM
1813/*
1814 * set the private field for a given byte offset in the tree. If there isn't
1815 * an extent_state there already, this does nothing.
1816 */
f827ba9a 1817static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1818 struct io_failure_record *failrec)
d1310b2e
CM
1819{
1820 struct rb_node *node;
1821 struct extent_state *state;
1822 int ret = 0;
1823
cad321ad 1824 spin_lock(&tree->lock);
d1310b2e
CM
1825 /*
1826 * this search will find all the extents that end after
1827 * our range starts.
1828 */
80ea96b1 1829 node = tree_search(tree, start);
2b114d1d 1830 if (!node) {
d1310b2e
CM
1831 ret = -ENOENT;
1832 goto out;
1833 }
1834 state = rb_entry(node, struct extent_state, rb_node);
1835 if (state->start != start) {
1836 ret = -ENOENT;
1837 goto out;
1838 }
47dc196a 1839 state->failrec = failrec;
d1310b2e 1840out:
cad321ad 1841 spin_unlock(&tree->lock);
d1310b2e
CM
1842 return ret;
1843}
1844
f827ba9a 1845static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1846 struct io_failure_record **failrec)
d1310b2e
CM
1847{
1848 struct rb_node *node;
1849 struct extent_state *state;
1850 int ret = 0;
1851
cad321ad 1852 spin_lock(&tree->lock);
d1310b2e
CM
1853 /*
1854 * this search will find all the extents that end after
1855 * our range starts.
1856 */
80ea96b1 1857 node = tree_search(tree, start);
2b114d1d 1858 if (!node) {
d1310b2e
CM
1859 ret = -ENOENT;
1860 goto out;
1861 }
1862 state = rb_entry(node, struct extent_state, rb_node);
1863 if (state->start != start) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
47dc196a 1867 *failrec = state->failrec;
d1310b2e 1868out:
cad321ad 1869 spin_unlock(&tree->lock);
d1310b2e
CM
1870 return ret;
1871}
1872
1873/*
1874 * searches a range in the state tree for a given mask.
70dec807 1875 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1876 * has the bits set. Otherwise, 1 is returned if any bit in the
1877 * range is found set.
1878 */
1879int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1880 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1881{
1882 struct extent_state *state = NULL;
1883 struct rb_node *node;
1884 int bitset = 0;
d1310b2e 1885
cad321ad 1886 spin_lock(&tree->lock);
27a3507d 1887 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1888 cached->end > start)
9655d298
CM
1889 node = &cached->rb_node;
1890 else
1891 node = tree_search(tree, start);
d1310b2e
CM
1892 while (node && start <= end) {
1893 state = rb_entry(node, struct extent_state, rb_node);
1894
1895 if (filled && state->start > start) {
1896 bitset = 0;
1897 break;
1898 }
1899
1900 if (state->start > end)
1901 break;
1902
1903 if (state->state & bits) {
1904 bitset = 1;
1905 if (!filled)
1906 break;
1907 } else if (filled) {
1908 bitset = 0;
1909 break;
1910 }
46562cec
CM
1911
1912 if (state->end == (u64)-1)
1913 break;
1914
d1310b2e
CM
1915 start = state->end + 1;
1916 if (start > end)
1917 break;
1918 node = rb_next(node);
1919 if (!node) {
1920 if (filled)
1921 bitset = 0;
1922 break;
1923 }
1924 }
cad321ad 1925 spin_unlock(&tree->lock);
d1310b2e
CM
1926 return bitset;
1927}
d1310b2e
CM
1928
1929/*
1930 * helper function to set a given page up to date if all the
1931 * extents in the tree for that page are up to date
1932 */
143bede5 1933static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1934{
4eee4fa4 1935 u64 start = page_offset(page);
09cbfeaf 1936 u64 end = start + PAGE_SIZE - 1;
9655d298 1937 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1938 SetPageUptodate(page);
d1310b2e
CM
1939}
1940
7870d082
JB
1941int free_io_failure(struct extent_io_tree *failure_tree,
1942 struct extent_io_tree *io_tree,
1943 struct io_failure_record *rec)
4a54c8c1
JS
1944{
1945 int ret;
1946 int err = 0;
4a54c8c1 1947
47dc196a 1948 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1949 ret = clear_extent_bits(failure_tree, rec->start,
1950 rec->start + rec->len - 1,
91166212 1951 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1952 if (ret)
1953 err = ret;
1954
7870d082 1955 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1956 rec->start + rec->len - 1,
91166212 1957 EXTENT_DAMAGED);
53b381b3
DW
1958 if (ret && !err)
1959 err = ret;
4a54c8c1
JS
1960
1961 kfree(rec);
1962 return err;
1963}
1964
4a54c8c1
JS
1965/*
1966 * this bypasses the standard btrfs submit functions deliberately, as
1967 * the standard behavior is to write all copies in a raid setup. here we only
1968 * want to write the one bad copy. so we do the mapping for ourselves and issue
1969 * submit_bio directly.
3ec706c8 1970 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1971 * actually prevents the read that triggered the error from finishing.
1972 * currently, there can be no more than two copies of every data bit. thus,
1973 * exactly one rewrite is required.
1974 */
6ec656bc
JB
1975int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1976 u64 length, u64 logical, struct page *page,
1977 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1978{
1979 struct bio *bio;
1980 struct btrfs_device *dev;
4a54c8c1
JS
1981 u64 map_length = 0;
1982 u64 sector;
1983 struct btrfs_bio *bbio = NULL;
1984 int ret;
1985
908960c6 1986 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1987 BUG_ON(!mirror_num);
1988
c5e4c3d7 1989 bio = btrfs_io_bio_alloc(1);
4f024f37 1990 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1991 map_length = length;
1992
b5de8d0d
FM
1993 /*
1994 * Avoid races with device replace and make sure our bbio has devices
1995 * associated to its stripes that don't go away while we are doing the
1996 * read repair operation.
1997 */
1998 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1999 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2000 /*
2001 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2002 * to update all raid stripes, but here we just want to correct
2003 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2004 * stripe's dev and sector.
2005 */
2006 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2007 &map_length, &bbio, 0);
2008 if (ret) {
2009 btrfs_bio_counter_dec(fs_info);
2010 bio_put(bio);
2011 return -EIO;
2012 }
2013 ASSERT(bbio->mirror_num == 1);
2014 } else {
2015 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2016 &map_length, &bbio, mirror_num);
2017 if (ret) {
2018 btrfs_bio_counter_dec(fs_info);
2019 bio_put(bio);
2020 return -EIO;
2021 }
2022 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2023 }
c725328c
LB
2024
2025 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2026 bio->bi_iter.bi_sector = sector;
c725328c 2027 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2028 btrfs_put_bbio(bbio);
4a54c8c1 2029 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2030 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2031 bio_put(bio);
2032 return -EIO;
2033 }
74d46992 2034 bio_set_dev(bio, dev->bdev);
70fd7614 2035 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2036 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2037
4e49ea4a 2038 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2039 /* try to remap that extent elsewhere? */
b5de8d0d 2040 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2041 bio_put(bio);
442a4f63 2042 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2043 return -EIO;
2044 }
2045
b14af3b4
DS
2046 btrfs_info_rl_in_rcu(fs_info,
2047 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2048 ino, start,
1203b681 2049 rcu_str_deref(dev->name), sector);
b5de8d0d 2050 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2051 bio_put(bio);
2052 return 0;
2053}
2054
2ff7e61e
JM
2055int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2056 struct extent_buffer *eb, int mirror_num)
ea466794 2057{
ea466794
JB
2058 u64 start = eb->start;
2059 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2060 int ret = 0;
ea466794 2061
bc98a42c 2062 if (sb_rdonly(fs_info->sb))
908960c6
ID
2063 return -EROFS;
2064
ea466794 2065 for (i = 0; i < num_pages; i++) {
fb85fc9a 2066 struct page *p = eb->pages[i];
1203b681 2067
6ec656bc 2068 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2069 start - page_offset(p), mirror_num);
ea466794
JB
2070 if (ret)
2071 break;
09cbfeaf 2072 start += PAGE_SIZE;
ea466794
JB
2073 }
2074
2075 return ret;
2076}
2077
4a54c8c1
JS
2078/*
2079 * each time an IO finishes, we do a fast check in the IO failure tree
2080 * to see if we need to process or clean up an io_failure_record
2081 */
7870d082
JB
2082int clean_io_failure(struct btrfs_fs_info *fs_info,
2083 struct extent_io_tree *failure_tree,
2084 struct extent_io_tree *io_tree, u64 start,
2085 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2086{
2087 u64 private;
4a54c8c1 2088 struct io_failure_record *failrec;
4a54c8c1
JS
2089 struct extent_state *state;
2090 int num_copies;
4a54c8c1 2091 int ret;
4a54c8c1
JS
2092
2093 private = 0;
7870d082
JB
2094 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2095 EXTENT_DIRTY, 0);
4a54c8c1
JS
2096 if (!ret)
2097 return 0;
2098
7870d082 2099 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2100 if (ret)
2101 return 0;
2102
4a54c8c1
JS
2103 BUG_ON(!failrec->this_mirror);
2104
2105 if (failrec->in_validation) {
2106 /* there was no real error, just free the record */
ab8d0fc4
JM
2107 btrfs_debug(fs_info,
2108 "clean_io_failure: freeing dummy error at %llu",
2109 failrec->start);
4a54c8c1
JS
2110 goto out;
2111 }
bc98a42c 2112 if (sb_rdonly(fs_info->sb))
908960c6 2113 goto out;
4a54c8c1 2114
7870d082
JB
2115 spin_lock(&io_tree->lock);
2116 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2117 failrec->start,
2118 EXTENT_LOCKED);
7870d082 2119 spin_unlock(&io_tree->lock);
4a54c8c1 2120
883d0de4
MX
2121 if (state && state->start <= failrec->start &&
2122 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2123 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2124 failrec->len);
4a54c8c1 2125 if (num_copies > 1) {
7870d082
JB
2126 repair_io_failure(fs_info, ino, start, failrec->len,
2127 failrec->logical, page, pg_offset,
2128 failrec->failed_mirror);
4a54c8c1
JS
2129 }
2130 }
2131
2132out:
7870d082 2133 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2134
454ff3de 2135 return 0;
4a54c8c1
JS
2136}
2137
f612496b
MX
2138/*
2139 * Can be called when
2140 * - hold extent lock
2141 * - under ordered extent
2142 * - the inode is freeing
2143 */
7ab7956e 2144void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2145{
7ab7956e 2146 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2147 struct io_failure_record *failrec;
2148 struct extent_state *state, *next;
2149
2150 if (RB_EMPTY_ROOT(&failure_tree->state))
2151 return;
2152
2153 spin_lock(&failure_tree->lock);
2154 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2155 while (state) {
2156 if (state->start > end)
2157 break;
2158
2159 ASSERT(state->end <= end);
2160
2161 next = next_state(state);
2162
47dc196a 2163 failrec = state->failrec;
f612496b
MX
2164 free_extent_state(state);
2165 kfree(failrec);
2166
2167 state = next;
2168 }
2169 spin_unlock(&failure_tree->lock);
2170}
2171
2fe6303e 2172int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2173 struct io_failure_record **failrec_ret)
4a54c8c1 2174{
ab8d0fc4 2175 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2176 struct io_failure_record *failrec;
4a54c8c1 2177 struct extent_map *em;
4a54c8c1
JS
2178 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2179 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2180 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2181 int ret;
4a54c8c1
JS
2182 u64 logical;
2183
47dc196a 2184 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2185 if (ret) {
2186 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2187 if (!failrec)
2188 return -ENOMEM;
2fe6303e 2189
4a54c8c1
JS
2190 failrec->start = start;
2191 failrec->len = end - start + 1;
2192 failrec->this_mirror = 0;
2193 failrec->bio_flags = 0;
2194 failrec->in_validation = 0;
2195
2196 read_lock(&em_tree->lock);
2197 em = lookup_extent_mapping(em_tree, start, failrec->len);
2198 if (!em) {
2199 read_unlock(&em_tree->lock);
2200 kfree(failrec);
2201 return -EIO;
2202 }
2203
68ba990f 2204 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2205 free_extent_map(em);
2206 em = NULL;
2207 }
2208 read_unlock(&em_tree->lock);
7a2d6a64 2209 if (!em) {
4a54c8c1
JS
2210 kfree(failrec);
2211 return -EIO;
2212 }
2fe6303e 2213
4a54c8c1
JS
2214 logical = start - em->start;
2215 logical = em->block_start + logical;
2216 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2217 logical = em->block_start;
2218 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2219 extent_set_compress_type(&failrec->bio_flags,
2220 em->compress_type);
2221 }
2fe6303e 2222
ab8d0fc4
JM
2223 btrfs_debug(fs_info,
2224 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2225 logical, start, failrec->len);
2fe6303e 2226
4a54c8c1
JS
2227 failrec->logical = logical;
2228 free_extent_map(em);
2229
2230 /* set the bits in the private failure tree */
2231 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2232 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2233 if (ret >= 0)
47dc196a 2234 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2235 /* set the bits in the inode's tree */
2236 if (ret >= 0)
ceeb0ae7 2237 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2238 if (ret < 0) {
2239 kfree(failrec);
2240 return ret;
2241 }
2242 } else {
ab8d0fc4
JM
2243 btrfs_debug(fs_info,
2244 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2245 failrec->logical, failrec->start, failrec->len,
2246 failrec->in_validation);
4a54c8c1
JS
2247 /*
2248 * when data can be on disk more than twice, add to failrec here
2249 * (e.g. with a list for failed_mirror) to make
2250 * clean_io_failure() clean all those errors at once.
2251 */
2252 }
2fe6303e
MX
2253
2254 *failrec_ret = failrec;
2255
2256 return 0;
2257}
2258
c3cfb656 2259bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2fe6303e
MX
2260 struct io_failure_record *failrec, int failed_mirror)
2261{
ab8d0fc4 2262 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2263 int num_copies;
2264
ab8d0fc4 2265 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2266 if (num_copies == 1) {
2267 /*
2268 * we only have a single copy of the data, so don't bother with
2269 * all the retry and error correction code that follows. no
2270 * matter what the error is, it is very likely to persist.
2271 */
ab8d0fc4
JM
2272 btrfs_debug(fs_info,
2273 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2274 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2275 return false;
4a54c8c1
JS
2276 }
2277
4a54c8c1
JS
2278 /*
2279 * there are two premises:
2280 * a) deliver good data to the caller
2281 * b) correct the bad sectors on disk
2282 */
2283 if (failed_bio->bi_vcnt > 1) {
2284 /*
2285 * to fulfill b), we need to know the exact failing sectors, as
2286 * we don't want to rewrite any more than the failed ones. thus,
2287 * we need separate read requests for the failed bio
2288 *
2289 * if the following BUG_ON triggers, our validation request got
2290 * merged. we need separate requests for our algorithm to work.
2291 */
2292 BUG_ON(failrec->in_validation);
2293 failrec->in_validation = 1;
2294 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2295 } else {
2296 /*
2297 * we're ready to fulfill a) and b) alongside. get a good copy
2298 * of the failed sector and if we succeed, we have setup
2299 * everything for repair_io_failure to do the rest for us.
2300 */
2301 if (failrec->in_validation) {
2302 BUG_ON(failrec->this_mirror != failed_mirror);
2303 failrec->in_validation = 0;
2304 failrec->this_mirror = 0;
2305 }
2306 failrec->failed_mirror = failed_mirror;
2307 failrec->this_mirror++;
2308 if (failrec->this_mirror == failed_mirror)
2309 failrec->this_mirror++;
4a54c8c1
JS
2310 }
2311
facc8a22 2312 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2313 btrfs_debug(fs_info,
2314 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2315 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2316 return false;
4a54c8c1
JS
2317 }
2318
c3cfb656 2319 return true;
2fe6303e
MX
2320}
2321
2322
2323struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2324 struct io_failure_record *failrec,
2325 struct page *page, int pg_offset, int icsum,
8b110e39 2326 bio_end_io_t *endio_func, void *data)
2fe6303e 2327{
0b246afa 2328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2329 struct bio *bio;
2330 struct btrfs_io_bio *btrfs_failed_bio;
2331 struct btrfs_io_bio *btrfs_bio;
2332
c5e4c3d7 2333 bio = btrfs_io_bio_alloc(1);
2fe6303e 2334 bio->bi_end_io = endio_func;
4f024f37 2335 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2336 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2337 bio->bi_iter.bi_size = 0;
8b110e39 2338 bio->bi_private = data;
4a54c8c1 2339
facc8a22
MX
2340 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2341 if (btrfs_failed_bio->csum) {
facc8a22
MX
2342 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2343
2344 btrfs_bio = btrfs_io_bio(bio);
2345 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2346 icsum *= csum_size;
2347 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2348 csum_size);
2349 }
2350
2fe6303e
MX
2351 bio_add_page(bio, page, failrec->len, pg_offset);
2352
2353 return bio;
2354}
2355
2356/*
2357 * this is a generic handler for readpage errors (default
2358 * readpage_io_failed_hook). if other copies exist, read those and write back
2359 * good data to the failed position. does not investigate in remapping the
2360 * failed extent elsewhere, hoping the device will be smart enough to do this as
2361 * needed
2362 */
2363
2364static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2365 struct page *page, u64 start, u64 end,
2366 int failed_mirror)
2367{
2368 struct io_failure_record *failrec;
2369 struct inode *inode = page->mapping->host;
2370 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2371 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2372 struct bio *bio;
70fd7614 2373 int read_mode = 0;
4e4cbee9 2374 blk_status_t status;
2fe6303e
MX
2375 int ret;
2376
1f7ad75b 2377 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2378
2379 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2380 if (ret)
2381 return ret;
2382
c3cfb656
LB
2383 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2384 failed_mirror)) {
7870d082 2385 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2386 return -EIO;
2387 }
2388
2389 if (failed_bio->bi_vcnt > 1)
70fd7614 2390 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2391
2392 phy_offset >>= inode->i_sb->s_blocksize_bits;
2393 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2394 start - page_offset(page),
8b110e39
MX
2395 (int)phy_offset, failed_bio->bi_end_io,
2396 NULL);
1f7ad75b 2397 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2398
ab8d0fc4
JM
2399 btrfs_debug(btrfs_sb(inode->i_sb),
2400 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2401 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2402
8c27cb35 2403 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2404 failrec->bio_flags, 0);
4e4cbee9 2405 if (status) {
7870d082 2406 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2407 bio_put(bio);
4e4cbee9 2408 ret = blk_status_to_errno(status);
6c387ab2
MX
2409 }
2410
013bd4c3 2411 return ret;
4a54c8c1
JS
2412}
2413
d1310b2e
CM
2414/* lots and lots of room for performance fixes in the end_bio funcs */
2415
b5227c07 2416void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2417{
2418 int uptodate = (err == 0);
2419 struct extent_io_tree *tree;
3e2426bd 2420 int ret = 0;
87826df0
JM
2421
2422 tree = &BTRFS_I(page->mapping->host)->io_tree;
2423
c3988d63
DS
2424 if (tree->ops && tree->ops->writepage_end_io_hook)
2425 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2426 uptodate);
87826df0 2427
87826df0 2428 if (!uptodate) {
87826df0
JM
2429 ClearPageUptodate(page);
2430 SetPageError(page);
bff5baf8 2431 ret = err < 0 ? err : -EIO;
5dca6eea 2432 mapping_set_error(page->mapping, ret);
87826df0 2433 }
87826df0
JM
2434}
2435
d1310b2e
CM
2436/*
2437 * after a writepage IO is done, we need to:
2438 * clear the uptodate bits on error
2439 * clear the writeback bits in the extent tree for this IO
2440 * end_page_writeback if the page has no more pending IO
2441 *
2442 * Scheduling is not allowed, so the extent state tree is expected
2443 * to have one and only one object corresponding to this IO.
2444 */
4246a0b6 2445static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2446{
4e4cbee9 2447 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2448 struct bio_vec *bvec;
d1310b2e
CM
2449 u64 start;
2450 u64 end;
2c30c71b 2451 int i;
d1310b2e 2452
c09abff8 2453 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2454 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2455 struct page *page = bvec->bv_page;
0b246afa
JM
2456 struct inode *inode = page->mapping->host;
2457 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2458
17a5adcc
AO
2459 /* We always issue full-page reads, but if some block
2460 * in a page fails to read, blk_update_request() will
2461 * advance bv_offset and adjust bv_len to compensate.
2462 * Print a warning for nonzero offsets, and an error
2463 * if they don't add up to a full page. */
09cbfeaf
KS
2464 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2465 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2466 btrfs_err(fs_info,
efe120a0
FH
2467 "partial page write in btrfs with offset %u and length %u",
2468 bvec->bv_offset, bvec->bv_len);
2469 else
0b246afa 2470 btrfs_info(fs_info,
5d163e0e 2471 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2472 bvec->bv_offset, bvec->bv_len);
2473 }
d1310b2e 2474
17a5adcc
AO
2475 start = page_offset(page);
2476 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2477
4e4cbee9 2478 end_extent_writepage(page, error, start, end);
17a5adcc 2479 end_page_writeback(page);
2c30c71b 2480 }
2b1f55b0 2481
d1310b2e 2482 bio_put(bio);
d1310b2e
CM
2483}
2484
883d0de4
MX
2485static void
2486endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2487 int uptodate)
2488{
2489 struct extent_state *cached = NULL;
2490 u64 end = start + len - 1;
2491
2492 if (uptodate && tree->track_uptodate)
2493 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2494 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2495}
2496
d1310b2e
CM
2497/*
2498 * after a readpage IO is done, we need to:
2499 * clear the uptodate bits on error
2500 * set the uptodate bits if things worked
2501 * set the page up to date if all extents in the tree are uptodate
2502 * clear the lock bit in the extent tree
2503 * unlock the page if there are no other extents locked for it
2504 *
2505 * Scheduling is not allowed, so the extent state tree is expected
2506 * to have one and only one object corresponding to this IO.
2507 */
4246a0b6 2508static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2509{
2c30c71b 2510 struct bio_vec *bvec;
4e4cbee9 2511 int uptodate = !bio->bi_status;
facc8a22 2512 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2513 struct extent_io_tree *tree, *failure_tree;
facc8a22 2514 u64 offset = 0;
d1310b2e
CM
2515 u64 start;
2516 u64 end;
facc8a22 2517 u64 len;
883d0de4
MX
2518 u64 extent_start = 0;
2519 u64 extent_len = 0;
5cf1ab56 2520 int mirror;
d1310b2e 2521 int ret;
2c30c71b 2522 int i;
d1310b2e 2523
c09abff8 2524 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2525 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2526 struct page *page = bvec->bv_page;
a71754fc 2527 struct inode *inode = page->mapping->host;
ab8d0fc4 2528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2529
ab8d0fc4
JM
2530 btrfs_debug(fs_info,
2531 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2532 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2533 io_bio->mirror_num);
a71754fc 2534 tree = &BTRFS_I(inode)->io_tree;
7870d082 2535 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2536
17a5adcc
AO
2537 /* We always issue full-page reads, but if some block
2538 * in a page fails to read, blk_update_request() will
2539 * advance bv_offset and adjust bv_len to compensate.
2540 * Print a warning for nonzero offsets, and an error
2541 * if they don't add up to a full page. */
09cbfeaf
KS
2542 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2543 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2544 btrfs_err(fs_info,
2545 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2546 bvec->bv_offset, bvec->bv_len);
2547 else
ab8d0fc4
JM
2548 btrfs_info(fs_info,
2549 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2550 bvec->bv_offset, bvec->bv_len);
2551 }
d1310b2e 2552
17a5adcc
AO
2553 start = page_offset(page);
2554 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2555 len = bvec->bv_len;
d1310b2e 2556
9be3395b 2557 mirror = io_bio->mirror_num;
20c9801d 2558 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2559 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2560 page, start, end,
2561 mirror);
5ee0844d 2562 if (ret)
d1310b2e 2563 uptodate = 0;
5ee0844d 2564 else
7870d082
JB
2565 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2566 failure_tree, tree, start,
2567 page,
2568 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2569 }
ea466794 2570
f2a09da9
MX
2571 if (likely(uptodate))
2572 goto readpage_ok;
2573
20a7db8a 2574 if (tree->ops) {
5cf1ab56 2575 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2576 if (ret == -EAGAIN) {
2577 /*
2578 * Data inode's readpage_io_failed_hook() always
2579 * returns -EAGAIN.
2580 *
2581 * The generic bio_readpage_error handles errors
2582 * the following way: If possible, new read
2583 * requests are created and submitted and will
2584 * end up in end_bio_extent_readpage as well (if
2585 * we're lucky, not in the !uptodate case). In
2586 * that case it returns 0 and we just go on with
2587 * the next page in our bio. If it can't handle
2588 * the error it will return -EIO and we remain
2589 * responsible for that page.
2590 */
2591 ret = bio_readpage_error(bio, offset, page,
2592 start, end, mirror);
2593 if (ret == 0) {
4e4cbee9 2594 uptodate = !bio->bi_status;
9d0d1c8b
LB
2595 offset += len;
2596 continue;
2597 }
2598 }
2599
f4a8e656 2600 /*
9d0d1c8b
LB
2601 * metadata's readpage_io_failed_hook() always returns
2602 * -EIO and fixes nothing. -EIO is also returned if
2603 * data inode error could not be fixed.
f4a8e656 2604 */
9d0d1c8b 2605 ASSERT(ret == -EIO);
7e38326f 2606 }
f2a09da9 2607readpage_ok:
883d0de4 2608 if (likely(uptodate)) {
a71754fc 2609 loff_t i_size = i_size_read(inode);
09cbfeaf 2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2611 unsigned off;
a71754fc
JB
2612
2613 /* Zero out the end if this page straddles i_size */
09cbfeaf 2614 off = i_size & (PAGE_SIZE-1);
a583c026 2615 if (page->index == end_index && off)
09cbfeaf 2616 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2617 SetPageUptodate(page);
70dec807 2618 } else {
17a5adcc
AO
2619 ClearPageUptodate(page);
2620 SetPageError(page);
70dec807 2621 }
17a5adcc 2622 unlock_page(page);
facc8a22 2623 offset += len;
883d0de4
MX
2624
2625 if (unlikely(!uptodate)) {
2626 if (extent_len) {
2627 endio_readpage_release_extent(tree,
2628 extent_start,
2629 extent_len, 1);
2630 extent_start = 0;
2631 extent_len = 0;
2632 }
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2640 } else {
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 }
2c30c71b 2646 }
d1310b2e 2647
883d0de4
MX
2648 if (extent_len)
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2650 uptodate);
facc8a22 2651 if (io_bio->end_io)
4e4cbee9 2652 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2653 bio_put(bio);
d1310b2e
CM
2654}
2655
9be3395b 2656/*
184f999e
DS
2657 * Initialize the members up to but not including 'bio'. Use after allocating a
2658 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2659 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2660 */
184f999e 2661static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2662{
184f999e
DS
2663 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2664}
d1310b2e 2665
9be3395b 2666/*
6e707bcd
DS
2667 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2668 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2669 * for the appropriate container_of magic
9be3395b 2670 */
c821e7f3 2671struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2672{
2673 struct bio *bio;
d1310b2e 2674
9f2179a5 2675 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2676 bio_set_dev(bio, bdev);
c821e7f3 2677 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2678 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2679 return bio;
2680}
2681
8b6c1d56 2682struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2683{
23ea8e5a
MX
2684 struct btrfs_io_bio *btrfs_bio;
2685 struct bio *new;
9be3395b 2686
6e707bcd 2687 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2688 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2689 btrfs_bio = btrfs_io_bio(new);
184f999e 2690 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2691 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2692 return new;
2693}
9be3395b 2694
c5e4c3d7 2695struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2696{
facc8a22
MX
2697 struct bio *bio;
2698
6e707bcd 2699 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2700 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2701 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2702 return bio;
9be3395b
CM
2703}
2704
e477094f 2705struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2706{
2707 struct bio *bio;
2708 struct btrfs_io_bio *btrfs_bio;
2709
2710 /* this will never fail when it's backed by a bioset */
e477094f 2711 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2712 ASSERT(bio);
2713
2714 btrfs_bio = btrfs_io_bio(bio);
184f999e 2715 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2716
2717 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2718 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2719 return bio;
2720}
9be3395b 2721
1f7ad75b
MC
2722static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2723 unsigned long bio_flags)
d1310b2e 2724{
4e4cbee9 2725 blk_status_t ret = 0;
70dec807
CM
2726 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2727 struct page *page = bvec->bv_page;
2728 struct extent_io_tree *tree = bio->bi_private;
70dec807 2729 u64 start;
70dec807 2730
4eee4fa4 2731 start = page_offset(page) + bvec->bv_offset;
70dec807 2732
902b22f3 2733 bio->bi_private = NULL;
d1310b2e
CM
2734 bio_get(bio);
2735
20c9801d 2736 if (tree->ops)
c6100a4b 2737 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2738 mirror_num, bio_flags, start);
0b86a832 2739 else
4e49ea4a 2740 btrfsic_submit_bio(bio);
4a54c8c1 2741
d1310b2e 2742 bio_put(bio);
4e4cbee9 2743 return blk_status_to_errno(ret);
d1310b2e
CM
2744}
2745
1f7ad75b 2746static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2747 unsigned long offset, size_t size, struct bio *bio,
2748 unsigned long bio_flags)
2749{
2750 int ret = 0;
20c9801d 2751 if (tree->ops)
81a75f67 2752 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2753 bio_flags);
3444a972
JM
2754 return ret;
2755
2756}
2757
4b81ba48
DS
2758/*
2759 * @opf: bio REQ_OP_* and REQ_* flags as one value
2760 */
2761static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2762 struct writeback_control *wbc,
d1310b2e
CM
2763 struct page *page, sector_t sector,
2764 size_t size, unsigned long offset,
2765 struct block_device *bdev,
2766 struct bio **bio_ret,
f188591e 2767 bio_end_io_t end_io_func,
c8b97818
CM
2768 int mirror_num,
2769 unsigned long prev_bio_flags,
005efedf
FM
2770 unsigned long bio_flags,
2771 bool force_bio_submit)
d1310b2e
CM
2772{
2773 int ret = 0;
2774 struct bio *bio;
c8b97818 2775 int contig = 0;
c8b97818 2776 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2777 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2778
2779 if (bio_ret && *bio_ret) {
2780 bio = *bio_ret;
c8b97818 2781 if (old_compressed)
4f024f37 2782 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2783 else
f73a1c7d 2784 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2785
2786 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2787 force_bio_submit ||
1f7ad75b 2788 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2789 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2790 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2791 if (ret < 0) {
2792 *bio_ret = NULL;
79787eaa 2793 return ret;
289454ad 2794 }
d1310b2e
CM
2795 bio = NULL;
2796 } else {
da2f0f74
CM
2797 if (wbc)
2798 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2799 return 0;
2800 }
2801 }
c8b97818 2802
2d8ce70a 2803 bio = btrfs_bio_alloc(bdev, (u64)sector << 9);
c8b97818 2804 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2805 bio->bi_end_io = end_io_func;
2806 bio->bi_private = tree;
e6959b93 2807 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2808 bio->bi_opf = opf;
da2f0f74
CM
2809 if (wbc) {
2810 wbc_init_bio(wbc, bio);
2811 wbc_account_io(wbc, page, page_size);
2812 }
70dec807 2813
d397712b 2814 if (bio_ret)
d1310b2e 2815 *bio_ret = bio;
d397712b 2816 else
1f7ad75b 2817 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2818
2819 return ret;
2820}
2821
48a3b636
ES
2822static void attach_extent_buffer_page(struct extent_buffer *eb,
2823 struct page *page)
d1310b2e
CM
2824{
2825 if (!PagePrivate(page)) {
2826 SetPagePrivate(page);
09cbfeaf 2827 get_page(page);
4f2de97a
JB
2828 set_page_private(page, (unsigned long)eb);
2829 } else {
2830 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2831 }
2832}
2833
4f2de97a 2834void set_page_extent_mapped(struct page *page)
d1310b2e 2835{
4f2de97a
JB
2836 if (!PagePrivate(page)) {
2837 SetPagePrivate(page);
09cbfeaf 2838 get_page(page);
4f2de97a
JB
2839 set_page_private(page, EXTENT_PAGE_PRIVATE);
2840 }
d1310b2e
CM
2841}
2842
125bac01
MX
2843static struct extent_map *
2844__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2845 u64 start, u64 len, get_extent_t *get_extent,
2846 struct extent_map **em_cached)
2847{
2848 struct extent_map *em;
2849
2850 if (em_cached && *em_cached) {
2851 em = *em_cached;
cbc0e928 2852 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2853 start < extent_map_end(em)) {
490b54d6 2854 refcount_inc(&em->refs);
125bac01
MX
2855 return em;
2856 }
2857
2858 free_extent_map(em);
2859 *em_cached = NULL;
2860 }
2861
fc4f21b1 2862 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2863 if (em_cached && !IS_ERR_OR_NULL(em)) {
2864 BUG_ON(*em_cached);
490b54d6 2865 refcount_inc(&em->refs);
125bac01
MX
2866 *em_cached = em;
2867 }
2868 return em;
2869}
d1310b2e
CM
2870/*
2871 * basic readpage implementation. Locked extent state structs are inserted
2872 * into the tree that are removed when the IO is done (by the end_io
2873 * handlers)
79787eaa 2874 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2875 * return 0 on success, otherwise return error
d1310b2e 2876 */
9974090b
MX
2877static int __do_readpage(struct extent_io_tree *tree,
2878 struct page *page,
2879 get_extent_t *get_extent,
125bac01 2880 struct extent_map **em_cached,
9974090b 2881 struct bio **bio, int mirror_num,
f1c77c55 2882 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2883 u64 *prev_em_start)
d1310b2e
CM
2884{
2885 struct inode *inode = page->mapping->host;
4eee4fa4 2886 u64 start = page_offset(page);
09cbfeaf 2887 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2888 u64 end;
2889 u64 cur = start;
2890 u64 extent_offset;
2891 u64 last_byte = i_size_read(inode);
2892 u64 block_start;
2893 u64 cur_end;
2894 sector_t sector;
2895 struct extent_map *em;
2896 struct block_device *bdev;
baf863b9 2897 int ret = 0;
d1310b2e 2898 int nr = 0;
306e16ce 2899 size_t pg_offset = 0;
d1310b2e 2900 size_t iosize;
c8b97818 2901 size_t disk_io_size;
d1310b2e 2902 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2903 unsigned long this_bio_flag = 0;
d1310b2e
CM
2904
2905 set_page_extent_mapped(page);
2906
9974090b 2907 end = page_end;
90a887c9
DM
2908 if (!PageUptodate(page)) {
2909 if (cleancache_get_page(page) == 0) {
2910 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2911 unlock_extent(tree, start, end);
90a887c9
DM
2912 goto out;
2913 }
2914 }
2915
09cbfeaf 2916 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2917 char *userpage;
09cbfeaf 2918 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2919
2920 if (zero_offset) {
09cbfeaf 2921 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2922 userpage = kmap_atomic(page);
c8b97818
CM
2923 memset(userpage + zero_offset, 0, iosize);
2924 flush_dcache_page(page);
7ac687d9 2925 kunmap_atomic(userpage);
c8b97818
CM
2926 }
2927 }
d1310b2e 2928 while (cur <= end) {
005efedf 2929 bool force_bio_submit = false;
c8f2f24b 2930
d1310b2e
CM
2931 if (cur >= last_byte) {
2932 char *userpage;
507903b8
AJ
2933 struct extent_state *cached = NULL;
2934
09cbfeaf 2935 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2936 userpage = kmap_atomic(page);
306e16ce 2937 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2938 flush_dcache_page(page);
7ac687d9 2939 kunmap_atomic(userpage);
d1310b2e 2940 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2941 &cached, GFP_NOFS);
7f042a83
FM
2942 unlock_extent_cached(tree, cur,
2943 cur + iosize - 1,
2944 &cached, GFP_NOFS);
d1310b2e
CM
2945 break;
2946 }
125bac01
MX
2947 em = __get_extent_map(inode, page, pg_offset, cur,
2948 end - cur + 1, get_extent, em_cached);
c704005d 2949 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2950 SetPageError(page);
7f042a83 2951 unlock_extent(tree, cur, end);
d1310b2e
CM
2952 break;
2953 }
d1310b2e
CM
2954 extent_offset = cur - em->start;
2955 BUG_ON(extent_map_end(em) <= cur);
2956 BUG_ON(end < cur);
2957
261507a0 2958 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2959 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2960 extent_set_compress_type(&this_bio_flag,
2961 em->compress_type);
2962 }
c8b97818 2963
d1310b2e
CM
2964 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2965 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2966 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2967 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2968 disk_io_size = em->block_len;
2969 sector = em->block_start >> 9;
2970 } else {
2971 sector = (em->block_start + extent_offset) >> 9;
2972 disk_io_size = iosize;
2973 }
d1310b2e
CM
2974 bdev = em->bdev;
2975 block_start = em->block_start;
d899e052
YZ
2976 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2977 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2978
2979 /*
2980 * If we have a file range that points to a compressed extent
2981 * and it's followed by a consecutive file range that points to
2982 * to the same compressed extent (possibly with a different
2983 * offset and/or length, so it either points to the whole extent
2984 * or only part of it), we must make sure we do not submit a
2985 * single bio to populate the pages for the 2 ranges because
2986 * this makes the compressed extent read zero out the pages
2987 * belonging to the 2nd range. Imagine the following scenario:
2988 *
2989 * File layout
2990 * [0 - 8K] [8K - 24K]
2991 * | |
2992 * | |
2993 * points to extent X, points to extent X,
2994 * offset 4K, length of 8K offset 0, length 16K
2995 *
2996 * [extent X, compressed length = 4K uncompressed length = 16K]
2997 *
2998 * If the bio to read the compressed extent covers both ranges,
2999 * it will decompress extent X into the pages belonging to the
3000 * first range and then it will stop, zeroing out the remaining
3001 * pages that belong to the other range that points to extent X.
3002 * So here we make sure we submit 2 bios, one for the first
3003 * range and another one for the third range. Both will target
3004 * the same physical extent from disk, but we can't currently
3005 * make the compressed bio endio callback populate the pages
3006 * for both ranges because each compressed bio is tightly
3007 * coupled with a single extent map, and each range can have
3008 * an extent map with a different offset value relative to the
3009 * uncompressed data of our extent and different lengths. This
3010 * is a corner case so we prioritize correctness over
3011 * non-optimal behavior (submitting 2 bios for the same extent).
3012 */
3013 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3014 prev_em_start && *prev_em_start != (u64)-1 &&
3015 *prev_em_start != em->orig_start)
3016 force_bio_submit = true;
3017
3018 if (prev_em_start)
3019 *prev_em_start = em->orig_start;
3020
d1310b2e
CM
3021 free_extent_map(em);
3022 em = NULL;
3023
3024 /* we've found a hole, just zero and go on */
3025 if (block_start == EXTENT_MAP_HOLE) {
3026 char *userpage;
507903b8
AJ
3027 struct extent_state *cached = NULL;
3028
7ac687d9 3029 userpage = kmap_atomic(page);
306e16ce 3030 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3031 flush_dcache_page(page);
7ac687d9 3032 kunmap_atomic(userpage);
d1310b2e
CM
3033
3034 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3035 &cached, GFP_NOFS);
7f042a83
FM
3036 unlock_extent_cached(tree, cur,
3037 cur + iosize - 1,
3038 &cached, GFP_NOFS);
d1310b2e 3039 cur = cur + iosize;
306e16ce 3040 pg_offset += iosize;
d1310b2e
CM
3041 continue;
3042 }
3043 /* the get_extent function already copied into the page */
9655d298
CM
3044 if (test_range_bit(tree, cur, cur_end,
3045 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3046 check_page_uptodate(tree, page);
7f042a83 3047 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3048 cur = cur + iosize;
306e16ce 3049 pg_offset += iosize;
d1310b2e
CM
3050 continue;
3051 }
70dec807
CM
3052 /* we have an inline extent but it didn't get marked up
3053 * to date. Error out
3054 */
3055 if (block_start == EXTENT_MAP_INLINE) {
3056 SetPageError(page);
7f042a83 3057 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3058 cur = cur + iosize;
306e16ce 3059 pg_offset += iosize;
70dec807
CM
3060 continue;
3061 }
d1310b2e 3062
4b81ba48 3063 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
1f7ad75b 3064 page, sector, disk_io_size, pg_offset,
c2df8bb4 3065 bdev, bio,
c8b97818
CM
3066 end_bio_extent_readpage, mirror_num,
3067 *bio_flags,
005efedf
FM
3068 this_bio_flag,
3069 force_bio_submit);
c8f2f24b
JB
3070 if (!ret) {
3071 nr++;
3072 *bio_flags = this_bio_flag;
3073 } else {
d1310b2e 3074 SetPageError(page);
7f042a83 3075 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3076 goto out;
edd33c99 3077 }
d1310b2e 3078 cur = cur + iosize;
306e16ce 3079 pg_offset += iosize;
d1310b2e 3080 }
90a887c9 3081out:
d1310b2e
CM
3082 if (!nr) {
3083 if (!PageError(page))
3084 SetPageUptodate(page);
3085 unlock_page(page);
3086 }
baf863b9 3087 return ret;
d1310b2e
CM
3088}
3089
9974090b
MX
3090static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3091 struct page *pages[], int nr_pages,
3092 u64 start, u64 end,
3093 get_extent_t *get_extent,
125bac01 3094 struct extent_map **em_cached,
9974090b 3095 struct bio **bio, int mirror_num,
1f7ad75b 3096 unsigned long *bio_flags,
808f80b4 3097 u64 *prev_em_start)
9974090b
MX
3098{
3099 struct inode *inode;
3100 struct btrfs_ordered_extent *ordered;
3101 int index;
3102
3103 inode = pages[0]->mapping->host;
3104 while (1) {
3105 lock_extent(tree, start, end);
a776c6fa 3106 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3107 end - start + 1);
3108 if (!ordered)
3109 break;
3110 unlock_extent(tree, start, end);
3111 btrfs_start_ordered_extent(inode, ordered, 1);
3112 btrfs_put_ordered_extent(ordered);
3113 }
3114
3115 for (index = 0; index < nr_pages; index++) {
125bac01 3116 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3117 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3118 put_page(pages[index]);
9974090b
MX
3119 }
3120}
3121
3122static void __extent_readpages(struct extent_io_tree *tree,
3123 struct page *pages[],
3124 int nr_pages, get_extent_t *get_extent,
125bac01 3125 struct extent_map **em_cached,
9974090b 3126 struct bio **bio, int mirror_num,
1f7ad75b 3127 unsigned long *bio_flags,
808f80b4 3128 u64 *prev_em_start)
9974090b 3129{
35a3621b 3130 u64 start = 0;
9974090b
MX
3131 u64 end = 0;
3132 u64 page_start;
3133 int index;
35a3621b 3134 int first_index = 0;
9974090b
MX
3135
3136 for (index = 0; index < nr_pages; index++) {
3137 page_start = page_offset(pages[index]);
3138 if (!end) {
3139 start = page_start;
09cbfeaf 3140 end = start + PAGE_SIZE - 1;
9974090b
MX
3141 first_index = index;
3142 } else if (end + 1 == page_start) {
09cbfeaf 3143 end += PAGE_SIZE;
9974090b
MX
3144 } else {
3145 __do_contiguous_readpages(tree, &pages[first_index],
3146 index - first_index, start,
125bac01
MX
3147 end, get_extent, em_cached,
3148 bio, mirror_num, bio_flags,
1f7ad75b 3149 prev_em_start);
9974090b 3150 start = page_start;
09cbfeaf 3151 end = start + PAGE_SIZE - 1;
9974090b
MX
3152 first_index = index;
3153 }
3154 }
3155
3156 if (end)
3157 __do_contiguous_readpages(tree, &pages[first_index],
3158 index - first_index, start,
125bac01 3159 end, get_extent, em_cached, bio,
1f7ad75b 3160 mirror_num, bio_flags,
808f80b4 3161 prev_em_start);
9974090b
MX
3162}
3163
3164static int __extent_read_full_page(struct extent_io_tree *tree,
3165 struct page *page,
3166 get_extent_t *get_extent,
3167 struct bio **bio, int mirror_num,
f1c77c55
DS
3168 unsigned long *bio_flags,
3169 unsigned int read_flags)
9974090b
MX
3170{
3171 struct inode *inode = page->mapping->host;
3172 struct btrfs_ordered_extent *ordered;
3173 u64 start = page_offset(page);
09cbfeaf 3174 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3175 int ret;
3176
3177 while (1) {
3178 lock_extent(tree, start, end);
a776c6fa 3179 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3180 PAGE_SIZE);
9974090b
MX
3181 if (!ordered)
3182 break;
3183 unlock_extent(tree, start, end);
3184 btrfs_start_ordered_extent(inode, ordered, 1);
3185 btrfs_put_ordered_extent(ordered);
3186 }
3187
125bac01 3188 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3189 bio_flags, read_flags, NULL);
9974090b
MX
3190 return ret;
3191}
3192
d1310b2e 3193int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3194 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3195{
3196 struct bio *bio = NULL;
c8b97818 3197 unsigned long bio_flags = 0;
d1310b2e
CM
3198 int ret;
3199
8ddc7d9c 3200 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3201 &bio_flags, 0);
d1310b2e 3202 if (bio)
1f7ad75b 3203 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3204 return ret;
3205}
d1310b2e 3206
3d4b9496 3207static void update_nr_written(struct writeback_control *wbc,
a9132667 3208 unsigned long nr_written)
11c8349b
CM
3209{
3210 wbc->nr_to_write -= nr_written;
11c8349b
CM
3211}
3212
d1310b2e 3213/*
40f76580
CM
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
d1310b2e 3222 */
40f76580
CM
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228{
3229 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
dcab6a3b 3245 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
ea1754a0
KS
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
40f76580
CM
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3271 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298done:
3299 return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
f1c77c55 3316 unsigned int write_flags, int *nr_ret)
d1310b2e 3317{
d1310b2e 3318 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3319 u64 start = page_offset(page);
09cbfeaf 3320 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
d1310b2e
CM
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
3327 struct extent_map *em;
3328 struct block_device *bdev;
7f3c74fb 3329 size_t pg_offset = 0;
d1310b2e 3330 size_t blocksize;
40f76580
CM
3331 int ret = 0;
3332 int nr = 0;
3333 bool compressed;
c8b97818 3334
247e743c 3335 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3336 ret = tree->ops->writepage_start_hook(page, start,
3337 page_end);
87826df0
JM
3338 if (ret) {
3339 /* Fixup worker will requeue */
3340 if (ret == -EBUSY)
3341 wbc->pages_skipped++;
3342 else
3343 redirty_page_for_writepage(wbc, page);
40f76580 3344
3d4b9496 3345 update_nr_written(wbc, nr_written);
247e743c 3346 unlock_page(page);
bcf93489 3347 return 1;
247e743c
CM
3348 }
3349 }
3350
11c8349b
CM
3351 /*
3352 * we don't want to touch the inode after unlocking the page,
3353 * so we update the mapping writeback index now
3354 */
3d4b9496 3355 update_nr_written(wbc, nr_written + 1);
771ed689 3356
d1310b2e 3357 end = page_end;
40f76580 3358 if (i_size <= start) {
e6dcd2dc
CM
3359 if (tree->ops && tree->ops->writepage_end_io_hook)
3360 tree->ops->writepage_end_io_hook(page, start,
3361 page_end, NULL, 1);
d1310b2e
CM
3362 goto done;
3363 }
3364
d1310b2e
CM
3365 blocksize = inode->i_sb->s_blocksize;
3366
3367 while (cur <= end) {
40f76580 3368 u64 em_end;
58409edd 3369
40f76580 3370 if (cur >= i_size) {
e6dcd2dc
CM
3371 if (tree->ops && tree->ops->writepage_end_io_hook)
3372 tree->ops->writepage_end_io_hook(page, cur,
3373 page_end, NULL, 1);
d1310b2e
CM
3374 break;
3375 }
fc4f21b1 3376 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3377 end - cur + 1, 1);
c704005d 3378 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3379 SetPageError(page);
61391d56 3380 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3381 break;
3382 }
3383
3384 extent_offset = cur - em->start;
40f76580
CM
3385 em_end = extent_map_end(em);
3386 BUG_ON(em_end <= cur);
d1310b2e 3387 BUG_ON(end < cur);
40f76580 3388 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3389 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3390 sector = (em->block_start + extent_offset) >> 9;
3391 bdev = em->bdev;
3392 block_start = em->block_start;
c8b97818 3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3394 free_extent_map(em);
3395 em = NULL;
3396
c8b97818
CM
3397 /*
3398 * compressed and inline extents are written through other
3399 * paths in the FS
3400 */
3401 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3402 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3403 /*
3404 * end_io notification does not happen here for
3405 * compressed extents
3406 */
3407 if (!compressed && tree->ops &&
3408 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3409 tree->ops->writepage_end_io_hook(page, cur,
3410 cur + iosize - 1,
3411 NULL, 1);
c8b97818
CM
3412 else if (compressed) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3415 * elsewhere
3416 */
3417 nr++;
3418 }
3419
3420 cur += iosize;
7f3c74fb 3421 pg_offset += iosize;
d1310b2e
CM
3422 continue;
3423 }
c8b97818 3424
58409edd
DS
3425 set_range_writeback(tree, cur, cur + iosize - 1);
3426 if (!PageWriteback(page)) {
3427 btrfs_err(BTRFS_I(inode)->root->fs_info,
3428 "page %lu not writeback, cur %llu end %llu",
3429 page->index, cur, end);
d1310b2e 3430 }
7f3c74fb 3431
4b81ba48 3432 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
1f7ad75b 3433 page, sector, iosize, pg_offset,
c2df8bb4 3434 bdev, &epd->bio,
58409edd
DS
3435 end_bio_extent_writepage,
3436 0, 0, 0, false);
fe01aa65 3437 if (ret) {
58409edd 3438 SetPageError(page);
fe01aa65
TK
3439 if (PageWriteback(page))
3440 end_page_writeback(page);
3441 }
d1310b2e 3442
d1310b2e 3443 cur = cur + iosize;
7f3c74fb 3444 pg_offset += iosize;
d1310b2e
CM
3445 nr++;
3446 }
40f76580
CM
3447done:
3448 *nr_ret = nr;
40f76580
CM
3449 return ret;
3450}
3451
3452/*
3453 * the writepage semantics are similar to regular writepage. extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback. Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3457 */
3458static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459 void *data)
3460{
3461 struct inode *inode = page->mapping->host;
3462 struct extent_page_data *epd = data;
3463 u64 start = page_offset(page);
09cbfeaf 3464 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3465 int ret;
3466 int nr = 0;
3467 size_t pg_offset = 0;
3468 loff_t i_size = i_size_read(inode);
09cbfeaf 3469 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3470 unsigned int write_flags = 0;
40f76580
CM
3471 unsigned long nr_written = 0;
3472
ff40adf7 3473 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3474
3475 trace___extent_writepage(page, inode, wbc);
3476
3477 WARN_ON(!PageLocked(page));
3478
3479 ClearPageError(page);
3480
09cbfeaf 3481 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3482 if (page->index > end_index ||
3483 (page->index == end_index && !pg_offset)) {
09cbfeaf 3484 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3485 unlock_page(page);
3486 return 0;
3487 }
3488
3489 if (page->index == end_index) {
3490 char *userpage;
3491
3492 userpage = kmap_atomic(page);
3493 memset(userpage + pg_offset, 0,
09cbfeaf 3494 PAGE_SIZE - pg_offset);
40f76580
CM
3495 kunmap_atomic(userpage);
3496 flush_dcache_page(page);
3497 }
3498
3499 pg_offset = 0;
3500
3501 set_page_extent_mapped(page);
3502
3503 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3504 if (ret == 1)
3505 goto done_unlocked;
3506 if (ret)
3507 goto done;
3508
3509 ret = __extent_writepage_io(inode, page, wbc, epd,
3510 i_size, nr_written, write_flags, &nr);
3511 if (ret == 1)
3512 goto done_unlocked;
3513
d1310b2e
CM
3514done:
3515 if (nr == 0) {
3516 /* make sure the mapping tag for page dirty gets cleared */
3517 set_page_writeback(page);
3518 end_page_writeback(page);
3519 }
61391d56
FM
3520 if (PageError(page)) {
3521 ret = ret < 0 ? ret : -EIO;
3522 end_extent_writepage(page, ret, start, page_end);
3523 }
d1310b2e 3524 unlock_page(page);
40f76580 3525 return ret;
771ed689 3526
11c8349b 3527done_unlocked:
d1310b2e
CM
3528 return 0;
3529}
3530
fd8b2b61 3531void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3532{
74316201
N
3533 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3534 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3535}
3536
0e378df1
CM
3537static noinline_for_stack int
3538lock_extent_buffer_for_io(struct extent_buffer *eb,
3539 struct btrfs_fs_info *fs_info,
3540 struct extent_page_data *epd)
0b32f4bb
JB
3541{
3542 unsigned long i, num_pages;
3543 int flush = 0;
3544 int ret = 0;
3545
3546 if (!btrfs_try_tree_write_lock(eb)) {
3547 flush = 1;
3548 flush_write_bio(epd);
3549 btrfs_tree_lock(eb);
3550 }
3551
3552 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3553 btrfs_tree_unlock(eb);
3554 if (!epd->sync_io)
3555 return 0;
3556 if (!flush) {
3557 flush_write_bio(epd);
3558 flush = 1;
3559 }
a098d8e8
CM
3560 while (1) {
3561 wait_on_extent_buffer_writeback(eb);
3562 btrfs_tree_lock(eb);
3563 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3564 break;
0b32f4bb 3565 btrfs_tree_unlock(eb);
0b32f4bb
JB
3566 }
3567 }
3568
51561ffe
JB
3569 /*
3570 * We need to do this to prevent races in people who check if the eb is
3571 * under IO since we can end up having no IO bits set for a short period
3572 * of time.
3573 */
3574 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3575 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3576 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3577 spin_unlock(&eb->refs_lock);
0b32f4bb 3578 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3579 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3580 -eb->len,
3581 fs_info->dirty_metadata_batch);
0b32f4bb 3582 ret = 1;
51561ffe
JB
3583 } else {
3584 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3585 }
3586
3587 btrfs_tree_unlock(eb);
3588
3589 if (!ret)
3590 return ret;
3591
3592 num_pages = num_extent_pages(eb->start, eb->len);
3593 for (i = 0; i < num_pages; i++) {
fb85fc9a 3594 struct page *p = eb->pages[i];
0b32f4bb
JB
3595
3596 if (!trylock_page(p)) {
3597 if (!flush) {
3598 flush_write_bio(epd);
3599 flush = 1;
3600 }
3601 lock_page(p);
3602 }
3603 }
3604
3605 return ret;
3606}
3607
3608static void end_extent_buffer_writeback(struct extent_buffer *eb)
3609{
3610 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3611 smp_mb__after_atomic();
0b32f4bb
JB
3612 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3613}
3614
656f30db
FM
3615static void set_btree_ioerr(struct page *page)
3616{
3617 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3618
3619 SetPageError(page);
3620 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3621 return;
3622
3623 /*
3624 * If writeback for a btree extent that doesn't belong to a log tree
3625 * failed, increment the counter transaction->eb_write_errors.
3626 * We do this because while the transaction is running and before it's
3627 * committing (when we call filemap_fdata[write|wait]_range against
3628 * the btree inode), we might have
3629 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3630 * returns an error or an error happens during writeback, when we're
3631 * committing the transaction we wouldn't know about it, since the pages
3632 * can be no longer dirty nor marked anymore for writeback (if a
3633 * subsequent modification to the extent buffer didn't happen before the
3634 * transaction commit), which makes filemap_fdata[write|wait]_range not
3635 * able to find the pages tagged with SetPageError at transaction
3636 * commit time. So if this happens we must abort the transaction,
3637 * otherwise we commit a super block with btree roots that point to
3638 * btree nodes/leafs whose content on disk is invalid - either garbage
3639 * or the content of some node/leaf from a past generation that got
3640 * cowed or deleted and is no longer valid.
3641 *
3642 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3643 * not be enough - we need to distinguish between log tree extents vs
3644 * non-log tree extents, and the next filemap_fdatawait_range() call
3645 * will catch and clear such errors in the mapping - and that call might
3646 * be from a log sync and not from a transaction commit. Also, checking
3647 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3648 * not done and would not be reliable - the eb might have been released
3649 * from memory and reading it back again means that flag would not be
3650 * set (since it's a runtime flag, not persisted on disk).
3651 *
3652 * Using the flags below in the btree inode also makes us achieve the
3653 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3654 * writeback for all dirty pages and before filemap_fdatawait_range()
3655 * is called, the writeback for all dirty pages had already finished
3656 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3657 * filemap_fdatawait_range() would return success, as it could not know
3658 * that writeback errors happened (the pages were no longer tagged for
3659 * writeback).
3660 */
3661 switch (eb->log_index) {
3662 case -1:
afcdd129 3663 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3664 break;
3665 case 0:
afcdd129 3666 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3667 break;
3668 case 1:
afcdd129 3669 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3670 break;
3671 default:
3672 BUG(); /* unexpected, logic error */
3673 }
3674}
3675
4246a0b6 3676static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3677{
2c30c71b 3678 struct bio_vec *bvec;
0b32f4bb 3679 struct extent_buffer *eb;
2c30c71b 3680 int i, done;
0b32f4bb 3681
c09abff8 3682 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3683 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3684 struct page *page = bvec->bv_page;
3685
0b32f4bb
JB
3686 eb = (struct extent_buffer *)page->private;
3687 BUG_ON(!eb);
3688 done = atomic_dec_and_test(&eb->io_pages);
3689
4e4cbee9 3690 if (bio->bi_status ||
4246a0b6 3691 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3692 ClearPageUptodate(page);
656f30db 3693 set_btree_ioerr(page);
0b32f4bb
JB
3694 }
3695
3696 end_page_writeback(page);
3697
3698 if (!done)
3699 continue;
3700
3701 end_extent_buffer_writeback(eb);
2c30c71b 3702 }
0b32f4bb
JB
3703
3704 bio_put(bio);
0b32f4bb
JB
3705}
3706
0e378df1 3707static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3708 struct btrfs_fs_info *fs_info,
3709 struct writeback_control *wbc,
3710 struct extent_page_data *epd)
3711{
3712 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3713 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3714 u64 offset = eb->start;
851cd173 3715 u32 nritems;
0b32f4bb 3716 unsigned long i, num_pages;
851cd173 3717 unsigned long start, end;
ff40adf7 3718 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3719 int ret = 0;
0b32f4bb 3720
656f30db 3721 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3722 num_pages = num_extent_pages(eb->start, eb->len);
3723 atomic_set(&eb->io_pages, num_pages);
de0022b9 3724
851cd173
LB
3725 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3726 nritems = btrfs_header_nritems(eb);
3eb548ee 3727 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3728 end = btrfs_node_key_ptr_offset(nritems);
3729
b159fa28 3730 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3731 } else {
3732 /*
3733 * leaf:
3734 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3735 */
3736 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3737 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3738 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3739 }
3740
0b32f4bb 3741 for (i = 0; i < num_pages; i++) {
fb85fc9a 3742 struct page *p = eb->pages[i];
0b32f4bb
JB
3743
3744 clear_page_dirty_for_io(p);
3745 set_page_writeback(p);
4b81ba48 3746 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
1f7ad75b 3747 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3748 &epd->bio,
1f7ad75b 3749 end_bio_extent_buffer_writepage,
18fdc679 3750 0, 0, 0, false);
0b32f4bb 3751 if (ret) {
656f30db 3752 set_btree_ioerr(p);
fe01aa65
TK
3753 if (PageWriteback(p))
3754 end_page_writeback(p);
0b32f4bb
JB
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
09cbfeaf 3760 offset += PAGE_SIZE;
3d4b9496 3761 update_nr_written(wbc, 1);
0b32f4bb
JB
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
bbf65cf0 3767 struct page *p = eb->pages[i];
81465028 3768 clear_page_dirty_for_io(p);
0b32f4bb
JB
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774}
3775
3776int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778{
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec, 0);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
09cbfeaf
KS
3803 index = wbc->range_start >> PAGE_SHIFT;
3804 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 if (!wbc->range_cyclic && page->index > end) {
3827 done = 1;
3828 break;
3829 }
3830
b5bae261
JB
3831 spin_lock(&mapping->private_lock);
3832 if (!PagePrivate(page)) {
3833 spin_unlock(&mapping->private_lock);
3834 continue;
3835 }
3836
0b32f4bb 3837 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3838
3839 /*
3840 * Shouldn't happen and normally this would be a BUG_ON
3841 * but no sense in crashing the users box for something
3842 * we can survive anyway.
3843 */
fae7f21c 3844 if (WARN_ON(!eb)) {
b5bae261 3845 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3846 continue;
3847 }
3848
b5bae261
JB
3849 if (eb == prev_eb) {
3850 spin_unlock(&mapping->private_lock);
0b32f4bb 3851 continue;
b5bae261 3852 }
0b32f4bb 3853
b5bae261
JB
3854 ret = atomic_inc_not_zero(&eb->refs);
3855 spin_unlock(&mapping->private_lock);
3856 if (!ret)
0b32f4bb 3857 continue;
0b32f4bb
JB
3858
3859 prev_eb = eb;
3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 if (!ret) {
3862 free_extent_buffer(eb);
3863 continue;
3864 }
3865
3866 ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 if (ret) {
3868 done = 1;
3869 free_extent_buffer(eb);
3870 break;
3871 }
3872 free_extent_buffer(eb);
3873
3874 /*
3875 * the filesystem may choose to bump up nr_to_write.
3876 * We have to make sure to honor the new nr_to_write
3877 * at any time
3878 */
3879 nr_to_write_done = wbc->nr_to_write <= 0;
3880 }
3881 pagevec_release(&pvec);
3882 cond_resched();
3883 }
3884 if (!scanned && !done) {
3885 /*
3886 * We hit the last page and there is more work to be done: wrap
3887 * back to the start of the file
3888 */
3889 scanned = 1;
3890 index = 0;
3891 goto retry;
3892 }
3893 flush_write_bio(&epd);
3894 return ret;
3895}
3896
d1310b2e 3897/**
4bef0848 3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3899 * @mapping: address space structure to write
3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901 * @writepage: function called for each page
3902 * @data: data passed to writepage function
3903 *
3904 * If a page is already under I/O, write_cache_pages() skips it, even
3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3907 * and msync() need to guarantee that all the data which was dirty at the time
3908 * the call was made get new I/O started against them. If wbc->sync_mode is
3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910 * existing IO to complete.
3911 */
4242b64a 3912static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3913 struct writeback_control *wbc,
d2c3f4f6
CM
3914 writepage_t writepage, void *data,
3915 void (*flush_fn)(void *))
d1310b2e 3916{
7fd1a3f7 3917 struct inode *inode = mapping->host;
d1310b2e
CM
3918 int ret = 0;
3919 int done = 0;
f85d7d6c 3920 int nr_to_write_done = 0;
d1310b2e
CM
3921 struct pagevec pvec;
3922 int nr_pages;
3923 pgoff_t index;
3924 pgoff_t end; /* Inclusive */
a9132667
LB
3925 pgoff_t done_index;
3926 int range_whole = 0;
d1310b2e 3927 int scanned = 0;
f7aaa06b 3928 int tag;
d1310b2e 3929
7fd1a3f7
JB
3930 /*
3931 * We have to hold onto the inode so that ordered extents can do their
3932 * work when the IO finishes. The alternative to this is failing to add
3933 * an ordered extent if the igrab() fails there and that is a huge pain
3934 * to deal with, so instead just hold onto the inode throughout the
3935 * writepages operation. If it fails here we are freeing up the inode
3936 * anyway and we'd rather not waste our time writing out stuff that is
3937 * going to be truncated anyway.
3938 */
3939 if (!igrab(inode))
3940 return 0;
3941
d1310b2e
CM
3942 pagevec_init(&pvec, 0);
3943 if (wbc->range_cyclic) {
3944 index = mapping->writeback_index; /* Start from prev offset */
3945 end = -1;
3946 } else {
09cbfeaf
KS
3947 index = wbc->range_start >> PAGE_SHIFT;
3948 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3949 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3950 range_whole = 1;
d1310b2e
CM
3951 scanned = 1;
3952 }
f7aaa06b
JB
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag = PAGECACHE_TAG_TOWRITE;
3955 else
3956 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3957retry:
f7aaa06b
JB
3958 if (wbc->sync_mode == WB_SYNC_ALL)
3959 tag_pages_for_writeback(mapping, index, end);
a9132667 3960 done_index = index;
f85d7d6c 3961 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3962 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3963 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3964 unsigned i;
3965
3966 scanned = 1;
3967 for (i = 0; i < nr_pages; i++) {
3968 struct page *page = pvec.pages[i];
3969
a9132667 3970 done_index = page->index;
d1310b2e
CM
3971 /*
3972 * At this point we hold neither mapping->tree_lock nor
3973 * lock on the page itself: the page may be truncated or
3974 * invalidated (changing page->mapping to NULL), or even
3975 * swizzled back from swapper_space to tmpfs file
3976 * mapping
3977 */
c8f2f24b
JB
3978 if (!trylock_page(page)) {
3979 flush_fn(data);
3980 lock_page(page);
01d658f2 3981 }
d1310b2e
CM
3982
3983 if (unlikely(page->mapping != mapping)) {
3984 unlock_page(page);
3985 continue;
3986 }
3987
3988 if (!wbc->range_cyclic && page->index > end) {
3989 done = 1;
3990 unlock_page(page);
3991 continue;
3992 }
3993
d2c3f4f6 3994 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3995 if (PageWriteback(page))
3996 flush_fn(data);
d1310b2e 3997 wait_on_page_writeback(page);
d2c3f4f6 3998 }
d1310b2e
CM
3999
4000 if (PageWriteback(page) ||
4001 !clear_page_dirty_for_io(page)) {
4002 unlock_page(page);
4003 continue;
4004 }
4005
4006 ret = (*writepage)(page, wbc, data);
4007
4008 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4009 unlock_page(page);
4010 ret = 0;
4011 }
a9132667
LB
4012 if (ret < 0) {
4013 /*
4014 * done_index is set past this page,
4015 * so media errors will not choke
4016 * background writeout for the entire
4017 * file. This has consequences for
4018 * range_cyclic semantics (ie. it may
4019 * not be suitable for data integrity
4020 * writeout).
4021 */
4022 done_index = page->index + 1;
4023 done = 1;
4024 break;
4025 }
f85d7d6c
CM
4026
4027 /*
4028 * the filesystem may choose to bump up nr_to_write.
4029 * We have to make sure to honor the new nr_to_write
4030 * at any time
4031 */
4032 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4033 }
4034 pagevec_release(&pvec);
4035 cond_resched();
4036 }
894b36e3 4037 if (!scanned && !done) {
d1310b2e
CM
4038 /*
4039 * We hit the last page and there is more work to be done: wrap
4040 * back to the start of the file
4041 */
4042 scanned = 1;
4043 index = 0;
4044 goto retry;
4045 }
a9132667
LB
4046
4047 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4048 mapping->writeback_index = done_index;
4049
7fd1a3f7 4050 btrfs_add_delayed_iput(inode);
894b36e3 4051 return ret;
d1310b2e 4052}
d1310b2e 4053
ffbd517d 4054static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4055{
d2c3f4f6 4056 if (epd->bio) {
355808c2
JM
4057 int ret;
4058
18fdc679 4059 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4060 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4061 epd->bio = NULL;
4062 }
4063}
4064
ffbd517d
CM
4065static noinline void flush_write_bio(void *data)
4066{
4067 struct extent_page_data *epd = data;
4068 flush_epd_write_bio(epd);
4069}
4070
d1310b2e
CM
4071int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4072 get_extent_t *get_extent,
4073 struct writeback_control *wbc)
4074{
4075 int ret;
d1310b2e
CM
4076 struct extent_page_data epd = {
4077 .bio = NULL,
4078 .tree = tree,
4079 .get_extent = get_extent,
771ed689 4080 .extent_locked = 0,
ffbd517d 4081 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4082 };
d1310b2e 4083
d1310b2e
CM
4084 ret = __extent_writepage(page, wbc, &epd);
4085
ffbd517d 4086 flush_epd_write_bio(&epd);
d1310b2e
CM
4087 return ret;
4088}
d1310b2e 4089
771ed689
CM
4090int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4091 u64 start, u64 end, get_extent_t *get_extent,
4092 int mode)
4093{
4094 int ret = 0;
4095 struct address_space *mapping = inode->i_mapping;
4096 struct page *page;
09cbfeaf
KS
4097 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4098 PAGE_SHIFT;
771ed689
CM
4099
4100 struct extent_page_data epd = {
4101 .bio = NULL,
4102 .tree = tree,
4103 .get_extent = get_extent,
4104 .extent_locked = 1,
ffbd517d 4105 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4106 };
4107 struct writeback_control wbc_writepages = {
771ed689 4108 .sync_mode = mode,
771ed689
CM
4109 .nr_to_write = nr_pages * 2,
4110 .range_start = start,
4111 .range_end = end + 1,
4112 };
4113
d397712b 4114 while (start <= end) {
09cbfeaf 4115 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4116 if (clear_page_dirty_for_io(page))
4117 ret = __extent_writepage(page, &wbc_writepages, &epd);
4118 else {
4119 if (tree->ops && tree->ops->writepage_end_io_hook)
4120 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4121 start + PAGE_SIZE - 1,
771ed689
CM
4122 NULL, 1);
4123 unlock_page(page);
4124 }
09cbfeaf
KS
4125 put_page(page);
4126 start += PAGE_SIZE;
771ed689
CM
4127 }
4128
ffbd517d 4129 flush_epd_write_bio(&epd);
771ed689
CM
4130 return ret;
4131}
d1310b2e
CM
4132
4133int extent_writepages(struct extent_io_tree *tree,
4134 struct address_space *mapping,
4135 get_extent_t *get_extent,
4136 struct writeback_control *wbc)
4137{
4138 int ret = 0;
4139 struct extent_page_data epd = {
4140 .bio = NULL,
4141 .tree = tree,
4142 .get_extent = get_extent,
771ed689 4143 .extent_locked = 0,
ffbd517d 4144 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4145 };
4146
4242b64a 4147 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4148 flush_write_bio);
ffbd517d 4149 flush_epd_write_bio(&epd);
d1310b2e
CM
4150 return ret;
4151}
d1310b2e
CM
4152
4153int extent_readpages(struct extent_io_tree *tree,
4154 struct address_space *mapping,
4155 struct list_head *pages, unsigned nr_pages,
4156 get_extent_t get_extent)
4157{
4158 struct bio *bio = NULL;
4159 unsigned page_idx;
c8b97818 4160 unsigned long bio_flags = 0;
67c9684f
LB
4161 struct page *pagepool[16];
4162 struct page *page;
125bac01 4163 struct extent_map *em_cached = NULL;
67c9684f 4164 int nr = 0;
808f80b4 4165 u64 prev_em_start = (u64)-1;
d1310b2e 4166
d1310b2e 4167 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4168 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4169
4170 prefetchw(&page->flags);
4171 list_del(&page->lru);
67c9684f 4172 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4173 page->index,
4174 readahead_gfp_mask(mapping))) {
09cbfeaf 4175 put_page(page);
67c9684f 4176 continue;
d1310b2e 4177 }
67c9684f
LB
4178
4179 pagepool[nr++] = page;
4180 if (nr < ARRAY_SIZE(pagepool))
4181 continue;
125bac01 4182 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4183 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4184 nr = 0;
d1310b2e 4185 }
9974090b 4186 if (nr)
125bac01 4187 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4188 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4189
125bac01
MX
4190 if (em_cached)
4191 free_extent_map(em_cached);
4192
d1310b2e
CM
4193 BUG_ON(!list_empty(pages));
4194 if (bio)
1f7ad75b 4195 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4196 return 0;
4197}
d1310b2e
CM
4198
4199/*
4200 * basic invalidatepage code, this waits on any locked or writeback
4201 * ranges corresponding to the page, and then deletes any extent state
4202 * records from the tree
4203 */
4204int extent_invalidatepage(struct extent_io_tree *tree,
4205 struct page *page, unsigned long offset)
4206{
2ac55d41 4207 struct extent_state *cached_state = NULL;
4eee4fa4 4208 u64 start = page_offset(page);
09cbfeaf 4209 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4210 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4211
fda2832f 4212 start += ALIGN(offset, blocksize);
d1310b2e
CM
4213 if (start > end)
4214 return 0;
4215
ff13db41 4216 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4217 wait_on_page_writeback(page);
d1310b2e 4218 clear_extent_bit(tree, start, end,
32c00aff
JB
4219 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4220 EXTENT_DO_ACCOUNTING,
2ac55d41 4221 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4222 return 0;
4223}
d1310b2e 4224
7b13b7b1
CM
4225/*
4226 * a helper for releasepage, this tests for areas of the page that
4227 * are locked or under IO and drops the related state bits if it is safe
4228 * to drop the page.
4229 */
48a3b636
ES
4230static int try_release_extent_state(struct extent_map_tree *map,
4231 struct extent_io_tree *tree,
4232 struct page *page, gfp_t mask)
7b13b7b1 4233{
4eee4fa4 4234 u64 start = page_offset(page);
09cbfeaf 4235 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4236 int ret = 1;
4237
211f90e6 4238 if (test_range_bit(tree, start, end,
8b62b72b 4239 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4240 ret = 0;
4241 else {
11ef160f
CM
4242 /*
4243 * at this point we can safely clear everything except the
4244 * locked bit and the nodatasum bit
4245 */
e3f24cc5 4246 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4247 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4248 0, 0, NULL, mask);
e3f24cc5
CM
4249
4250 /* if clear_extent_bit failed for enomem reasons,
4251 * we can't allow the release to continue.
4252 */
4253 if (ret < 0)
4254 ret = 0;
4255 else
4256 ret = 1;
7b13b7b1
CM
4257 }
4258 return ret;
4259}
7b13b7b1 4260
d1310b2e
CM
4261/*
4262 * a helper for releasepage. As long as there are no locked extents
4263 * in the range corresponding to the page, both state records and extent
4264 * map records are removed
4265 */
4266int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4267 struct extent_io_tree *tree, struct page *page,
4268 gfp_t mask)
d1310b2e
CM
4269{
4270 struct extent_map *em;
4eee4fa4 4271 u64 start = page_offset(page);
09cbfeaf 4272 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4273
d0164adc 4274 if (gfpflags_allow_blocking(mask) &&
ee22184b 4275 page->mapping->host->i_size > SZ_16M) {
39b5637f 4276 u64 len;
70dec807 4277 while (start <= end) {
39b5637f 4278 len = end - start + 1;
890871be 4279 write_lock(&map->lock);
39b5637f 4280 em = lookup_extent_mapping(map, start, len);
285190d9 4281 if (!em) {
890871be 4282 write_unlock(&map->lock);
70dec807
CM
4283 break;
4284 }
7f3c74fb
CM
4285 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4286 em->start != start) {
890871be 4287 write_unlock(&map->lock);
70dec807
CM
4288 free_extent_map(em);
4289 break;
4290 }
4291 if (!test_range_bit(tree, em->start,
4292 extent_map_end(em) - 1,
8b62b72b 4293 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4294 0, NULL)) {
70dec807
CM
4295 remove_extent_mapping(map, em);
4296 /* once for the rb tree */
4297 free_extent_map(em);
4298 }
4299 start = extent_map_end(em);
890871be 4300 write_unlock(&map->lock);
70dec807
CM
4301
4302 /* once for us */
d1310b2e
CM
4303 free_extent_map(em);
4304 }
d1310b2e 4305 }
7b13b7b1 4306 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4307}
d1310b2e 4308
ec29ed5b
CM
4309/*
4310 * helper function for fiemap, which doesn't want to see any holes.
4311 * This maps until we find something past 'last'
4312 */
4313static struct extent_map *get_extent_skip_holes(struct inode *inode,
4314 u64 offset,
4315 u64 last,
4316 get_extent_t *get_extent)
4317{
da17066c 4318 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4319 struct extent_map *em;
4320 u64 len;
4321
4322 if (offset >= last)
4323 return NULL;
4324
67871254 4325 while (1) {
ec29ed5b
CM
4326 len = last - offset;
4327 if (len == 0)
4328 break;
fda2832f 4329 len = ALIGN(len, sectorsize);
fc4f21b1 4330 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4331 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4332 return em;
4333
4334 /* if this isn't a hole return it */
4335 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4336 em->block_start != EXTENT_MAP_HOLE) {
4337 return em;
4338 }
4339
4340 /* this is a hole, advance to the next extent */
4341 offset = extent_map_end(em);
4342 free_extent_map(em);
4343 if (offset >= last)
4344 break;
4345 }
4346 return NULL;
4347}
4348
4751832d
QW
4349/*
4350 * To cache previous fiemap extent
4351 *
4352 * Will be used for merging fiemap extent
4353 */
4354struct fiemap_cache {
4355 u64 offset;
4356 u64 phys;
4357 u64 len;
4358 u32 flags;
4359 bool cached;
4360};
4361
4362/*
4363 * Helper to submit fiemap extent.
4364 *
4365 * Will try to merge current fiemap extent specified by @offset, @phys,
4366 * @len and @flags with cached one.
4367 * And only when we fails to merge, cached one will be submitted as
4368 * fiemap extent.
4369 *
4370 * Return value is the same as fiemap_fill_next_extent().
4371 */
4372static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4373 struct fiemap_cache *cache,
4374 u64 offset, u64 phys, u64 len, u32 flags)
4375{
4376 int ret = 0;
4377
4378 if (!cache->cached)
4379 goto assign;
4380
4381 /*
4382 * Sanity check, extent_fiemap() should have ensured that new
4383 * fiemap extent won't overlap with cahced one.
4384 * Not recoverable.
4385 *
4386 * NOTE: Physical address can overlap, due to compression
4387 */
4388 if (cache->offset + cache->len > offset) {
4389 WARN_ON(1);
4390 return -EINVAL;
4391 }
4392
4393 /*
4394 * Only merges fiemap extents if
4395 * 1) Their logical addresses are continuous
4396 *
4397 * 2) Their physical addresses are continuous
4398 * So truly compressed (physical size smaller than logical size)
4399 * extents won't get merged with each other
4400 *
4401 * 3) Share same flags except FIEMAP_EXTENT_LAST
4402 * So regular extent won't get merged with prealloc extent
4403 */
4404 if (cache->offset + cache->len == offset &&
4405 cache->phys + cache->len == phys &&
4406 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4407 (flags & ~FIEMAP_EXTENT_LAST)) {
4408 cache->len += len;
4409 cache->flags |= flags;
4410 goto try_submit_last;
4411 }
4412
4413 /* Not mergeable, need to submit cached one */
4414 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4415 cache->len, cache->flags);
4416 cache->cached = false;
4417 if (ret)
4418 return ret;
4419assign:
4420 cache->cached = true;
4421 cache->offset = offset;
4422 cache->phys = phys;
4423 cache->len = len;
4424 cache->flags = flags;
4425try_submit_last:
4426 if (cache->flags & FIEMAP_EXTENT_LAST) {
4427 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4428 cache->phys, cache->len, cache->flags);
4429 cache->cached = false;
4430 }
4431 return ret;
4432}
4433
4434/*
848c23b7 4435 * Emit last fiemap cache
4751832d 4436 *
848c23b7
QW
4437 * The last fiemap cache may still be cached in the following case:
4438 * 0 4k 8k
4439 * |<- Fiemap range ->|
4440 * |<------------ First extent ----------->|
4441 *
4442 * In this case, the first extent range will be cached but not emitted.
4443 * So we must emit it before ending extent_fiemap().
4751832d 4444 */
848c23b7
QW
4445static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4446 struct fiemap_extent_info *fieinfo,
4447 struct fiemap_cache *cache)
4751832d
QW
4448{
4449 int ret;
4450
4451 if (!cache->cached)
4452 return 0;
4453
4751832d
QW
4454 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4455 cache->len, cache->flags);
4456 cache->cached = false;
4457 if (ret > 0)
4458 ret = 0;
4459 return ret;
4460}
4461
1506fcc8
YS
4462int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4463 __u64 start, __u64 len, get_extent_t *get_extent)
4464{
975f84fe 4465 int ret = 0;
1506fcc8
YS
4466 u64 off = start;
4467 u64 max = start + len;
4468 u32 flags = 0;
975f84fe
JB
4469 u32 found_type;
4470 u64 last;
ec29ed5b 4471 u64 last_for_get_extent = 0;
1506fcc8 4472 u64 disko = 0;
ec29ed5b 4473 u64 isize = i_size_read(inode);
975f84fe 4474 struct btrfs_key found_key;
1506fcc8 4475 struct extent_map *em = NULL;
2ac55d41 4476 struct extent_state *cached_state = NULL;
975f84fe 4477 struct btrfs_path *path;
dc046b10 4478 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4479 struct fiemap_cache cache = { 0 };
1506fcc8 4480 int end = 0;
ec29ed5b
CM
4481 u64 em_start = 0;
4482 u64 em_len = 0;
4483 u64 em_end = 0;
1506fcc8
YS
4484
4485 if (len == 0)
4486 return -EINVAL;
4487
975f84fe
JB
4488 path = btrfs_alloc_path();
4489 if (!path)
4490 return -ENOMEM;
4491 path->leave_spinning = 1;
4492
da17066c
JM
4493 start = round_down(start, btrfs_inode_sectorsize(inode));
4494 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4495
ec29ed5b
CM
4496 /*
4497 * lookup the last file extent. We're not using i_size here
4498 * because there might be preallocation past i_size
4499 */
f85b7379
DS
4500 ret = btrfs_lookup_file_extent(NULL, root, path,
4501 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4502 if (ret < 0) {
4503 btrfs_free_path(path);
4504 return ret;
2d324f59
LB
4505 } else {
4506 WARN_ON(!ret);
4507 if (ret == 1)
4508 ret = 0;
975f84fe 4509 }
2d324f59 4510
975f84fe 4511 path->slots[0]--;
975f84fe 4512 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4513 found_type = found_key.type;
975f84fe 4514
ec29ed5b 4515 /* No extents, but there might be delalloc bits */
4a0cc7ca 4516 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4517 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4518 /* have to trust i_size as the end */
4519 last = (u64)-1;
4520 last_for_get_extent = isize;
4521 } else {
4522 /*
4523 * remember the start of the last extent. There are a
4524 * bunch of different factors that go into the length of the
4525 * extent, so its much less complex to remember where it started
4526 */
4527 last = found_key.offset;
4528 last_for_get_extent = last + 1;
975f84fe 4529 }
fe09e16c 4530 btrfs_release_path(path);
975f84fe 4531
ec29ed5b
CM
4532 /*
4533 * we might have some extents allocated but more delalloc past those
4534 * extents. so, we trust isize unless the start of the last extent is
4535 * beyond isize
4536 */
4537 if (last < isize) {
4538 last = (u64)-1;
4539 last_for_get_extent = isize;
4540 }
4541
ff13db41 4542 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4543 &cached_state);
ec29ed5b 4544
4d479cf0 4545 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4546 get_extent);
1506fcc8
YS
4547 if (!em)
4548 goto out;
4549 if (IS_ERR(em)) {
4550 ret = PTR_ERR(em);
4551 goto out;
4552 }
975f84fe 4553
1506fcc8 4554 while (!end) {
b76bb701 4555 u64 offset_in_extent = 0;
ea8efc74
CM
4556
4557 /* break if the extent we found is outside the range */
4558 if (em->start >= max || extent_map_end(em) < off)
4559 break;
4560
4561 /*
4562 * get_extent may return an extent that starts before our
4563 * requested range. We have to make sure the ranges
4564 * we return to fiemap always move forward and don't
4565 * overlap, so adjust the offsets here
4566 */
4567 em_start = max(em->start, off);
1506fcc8 4568
ea8efc74
CM
4569 /*
4570 * record the offset from the start of the extent
b76bb701
JB
4571 * for adjusting the disk offset below. Only do this if the
4572 * extent isn't compressed since our in ram offset may be past
4573 * what we have actually allocated on disk.
ea8efc74 4574 */
b76bb701
JB
4575 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4576 offset_in_extent = em_start - em->start;
ec29ed5b 4577 em_end = extent_map_end(em);
ea8efc74 4578 em_len = em_end - em_start;
1506fcc8
YS
4579 disko = 0;
4580 flags = 0;
4581
ea8efc74
CM
4582 /*
4583 * bump off for our next call to get_extent
4584 */
4585 off = extent_map_end(em);
4586 if (off >= max)
4587 end = 1;
4588
93dbfad7 4589 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4590 end = 1;
4591 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4592 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4593 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4594 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4595 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4596 flags |= (FIEMAP_EXTENT_DELALLOC |
4597 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4598 } else if (fieinfo->fi_extents_max) {
4599 u64 bytenr = em->block_start -
4600 (em->start - em->orig_start);
fe09e16c 4601
ea8efc74 4602 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4603
4604 /*
4605 * As btrfs supports shared space, this information
4606 * can be exported to userspace tools via
dc046b10
JB
4607 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4608 * then we're just getting a count and we can skip the
4609 * lookup stuff.
fe09e16c 4610 */
bb739cf0
EN
4611 ret = btrfs_check_shared(root,
4612 btrfs_ino(BTRFS_I(inode)),
4613 bytenr);
dc046b10 4614 if (ret < 0)
fe09e16c 4615 goto out_free;
dc046b10 4616 if (ret)
fe09e16c 4617 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4618 ret = 0;
1506fcc8
YS
4619 }
4620 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4621 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4622 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4623 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4624
1506fcc8
YS
4625 free_extent_map(em);
4626 em = NULL;
ec29ed5b
CM
4627 if ((em_start >= last) || em_len == (u64)-1 ||
4628 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4629 flags |= FIEMAP_EXTENT_LAST;
4630 end = 1;
4631 }
4632
ec29ed5b
CM
4633 /* now scan forward to see if this is really the last extent. */
4634 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4635 get_extent);
4636 if (IS_ERR(em)) {
4637 ret = PTR_ERR(em);
4638 goto out;
4639 }
4640 if (!em) {
975f84fe
JB
4641 flags |= FIEMAP_EXTENT_LAST;
4642 end = 1;
4643 }
4751832d
QW
4644 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4645 em_len, flags);
26e726af
CS
4646 if (ret) {
4647 if (ret == 1)
4648 ret = 0;
ec29ed5b 4649 goto out_free;
26e726af 4650 }
1506fcc8
YS
4651 }
4652out_free:
4751832d 4653 if (!ret)
848c23b7 4654 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4655 free_extent_map(em);
4656out:
fe09e16c 4657 btrfs_free_path(path);
a52f4cd2 4658 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4659 &cached_state, GFP_NOFS);
1506fcc8
YS
4660 return ret;
4661}
4662
727011e0
CM
4663static void __free_extent_buffer(struct extent_buffer *eb)
4664{
6d49ba1b 4665 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4666 kmem_cache_free(extent_buffer_cache, eb);
4667}
4668
a26e8c9f 4669int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4670{
4671 return (atomic_read(&eb->io_pages) ||
4672 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4673 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4674}
4675
4676/*
4677 * Helper for releasing extent buffer page.
4678 */
a50924e3 4679static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4680{
4681 unsigned long index;
db7f3436
JB
4682 struct page *page;
4683 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4684
4685 BUG_ON(extent_buffer_under_io(eb));
4686
a50924e3
DS
4687 index = num_extent_pages(eb->start, eb->len);
4688 if (index == 0)
db7f3436
JB
4689 return;
4690
4691 do {
4692 index--;
fb85fc9a 4693 page = eb->pages[index];
5d2361db
FL
4694 if (!page)
4695 continue;
4696 if (mapped)
db7f3436 4697 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4698 /*
4699 * We do this since we'll remove the pages after we've
4700 * removed the eb from the radix tree, so we could race
4701 * and have this page now attached to the new eb. So
4702 * only clear page_private if it's still connected to
4703 * this eb.
4704 */
4705 if (PagePrivate(page) &&
4706 page->private == (unsigned long)eb) {
4707 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4708 BUG_ON(PageDirty(page));
4709 BUG_ON(PageWriteback(page));
db7f3436 4710 /*
5d2361db
FL
4711 * We need to make sure we haven't be attached
4712 * to a new eb.
db7f3436 4713 */
5d2361db
FL
4714 ClearPagePrivate(page);
4715 set_page_private(page, 0);
4716 /* One for the page private */
09cbfeaf 4717 put_page(page);
db7f3436 4718 }
5d2361db
FL
4719
4720 if (mapped)
4721 spin_unlock(&page->mapping->private_lock);
4722
01327610 4723 /* One for when we allocated the page */
09cbfeaf 4724 put_page(page);
a50924e3 4725 } while (index != 0);
db7f3436
JB
4726}
4727
4728/*
4729 * Helper for releasing the extent buffer.
4730 */
4731static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4732{
a50924e3 4733 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4734 __free_extent_buffer(eb);
4735}
4736
f28491e0
JB
4737static struct extent_buffer *
4738__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4739 unsigned long len)
d1310b2e
CM
4740{
4741 struct extent_buffer *eb = NULL;
4742
d1b5c567 4743 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4744 eb->start = start;
4745 eb->len = len;
f28491e0 4746 eb->fs_info = fs_info;
815a51c7 4747 eb->bflags = 0;
bd681513
CM
4748 rwlock_init(&eb->lock);
4749 atomic_set(&eb->write_locks, 0);
4750 atomic_set(&eb->read_locks, 0);
4751 atomic_set(&eb->blocking_readers, 0);
4752 atomic_set(&eb->blocking_writers, 0);
4753 atomic_set(&eb->spinning_readers, 0);
4754 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4755 eb->lock_nested = 0;
bd681513
CM
4756 init_waitqueue_head(&eb->write_lock_wq);
4757 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4758
6d49ba1b
ES
4759 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4760
3083ee2e 4761 spin_lock_init(&eb->refs_lock);
d1310b2e 4762 atomic_set(&eb->refs, 1);
0b32f4bb 4763 atomic_set(&eb->io_pages, 0);
727011e0 4764
b8dae313
DS
4765 /*
4766 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4767 */
4768 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4769 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4770 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4771
4772 return eb;
4773}
4774
815a51c7
JS
4775struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4776{
4777 unsigned long i;
4778 struct page *p;
4779 struct extent_buffer *new;
4780 unsigned long num_pages = num_extent_pages(src->start, src->len);
4781
3f556f78 4782 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4783 if (new == NULL)
4784 return NULL;
4785
4786 for (i = 0; i < num_pages; i++) {
9ec72677 4787 p = alloc_page(GFP_NOFS);
db7f3436
JB
4788 if (!p) {
4789 btrfs_release_extent_buffer(new);
4790 return NULL;
4791 }
815a51c7
JS
4792 attach_extent_buffer_page(new, p);
4793 WARN_ON(PageDirty(p));
4794 SetPageUptodate(p);
4795 new->pages[i] = p;
fba1acf9 4796 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4797 }
4798
815a51c7
JS
4799 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4800 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4801
4802 return new;
4803}
4804
0f331229
OS
4805struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806 u64 start, unsigned long len)
815a51c7
JS
4807{
4808 struct extent_buffer *eb;
3f556f78 4809 unsigned long num_pages;
815a51c7
JS
4810 unsigned long i;
4811
0f331229 4812 num_pages = num_extent_pages(start, len);
3f556f78
DS
4813
4814 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4815 if (!eb)
4816 return NULL;
4817
4818 for (i = 0; i < num_pages; i++) {
9ec72677 4819 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4820 if (!eb->pages[i])
4821 goto err;
4822 }
4823 set_extent_buffer_uptodate(eb);
4824 btrfs_set_header_nritems(eb, 0);
4825 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4826
4827 return eb;
4828err:
84167d19
SB
4829 for (; i > 0; i--)
4830 __free_page(eb->pages[i - 1]);
815a51c7
JS
4831 __free_extent_buffer(eb);
4832 return NULL;
4833}
4834
0f331229 4835struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4836 u64 start)
0f331229 4837{
da17066c 4838 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4839}
4840
0b32f4bb
JB
4841static void check_buffer_tree_ref(struct extent_buffer *eb)
4842{
242e18c7 4843 int refs;
0b32f4bb
JB
4844 /* the ref bit is tricky. We have to make sure it is set
4845 * if we have the buffer dirty. Otherwise the
4846 * code to free a buffer can end up dropping a dirty
4847 * page
4848 *
4849 * Once the ref bit is set, it won't go away while the
4850 * buffer is dirty or in writeback, and it also won't
4851 * go away while we have the reference count on the
4852 * eb bumped.
4853 *
4854 * We can't just set the ref bit without bumping the
4855 * ref on the eb because free_extent_buffer might
4856 * see the ref bit and try to clear it. If this happens
4857 * free_extent_buffer might end up dropping our original
4858 * ref by mistake and freeing the page before we are able
4859 * to add one more ref.
4860 *
4861 * So bump the ref count first, then set the bit. If someone
4862 * beat us to it, drop the ref we added.
4863 */
242e18c7
CM
4864 refs = atomic_read(&eb->refs);
4865 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4866 return;
4867
594831c4
JB
4868 spin_lock(&eb->refs_lock);
4869 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4870 atomic_inc(&eb->refs);
594831c4 4871 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4872}
4873
2457aec6
MG
4874static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4875 struct page *accessed)
5df4235e
JB
4876{
4877 unsigned long num_pages, i;
4878
0b32f4bb
JB
4879 check_buffer_tree_ref(eb);
4880
5df4235e
JB
4881 num_pages = num_extent_pages(eb->start, eb->len);
4882 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4883 struct page *p = eb->pages[i];
4884
2457aec6
MG
4885 if (p != accessed)
4886 mark_page_accessed(p);
5df4235e
JB
4887 }
4888}
4889
f28491e0
JB
4890struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4891 u64 start)
452c75c3
CS
4892{
4893 struct extent_buffer *eb;
4894
4895 rcu_read_lock();
f28491e0 4896 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4897 start >> PAGE_SHIFT);
452c75c3
CS
4898 if (eb && atomic_inc_not_zero(&eb->refs)) {
4899 rcu_read_unlock();
062c19e9
FM
4900 /*
4901 * Lock our eb's refs_lock to avoid races with
4902 * free_extent_buffer. When we get our eb it might be flagged
4903 * with EXTENT_BUFFER_STALE and another task running
4904 * free_extent_buffer might have seen that flag set,
4905 * eb->refs == 2, that the buffer isn't under IO (dirty and
4906 * writeback flags not set) and it's still in the tree (flag
4907 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4908 * of decrementing the extent buffer's reference count twice.
4909 * So here we could race and increment the eb's reference count,
4910 * clear its stale flag, mark it as dirty and drop our reference
4911 * before the other task finishes executing free_extent_buffer,
4912 * which would later result in an attempt to free an extent
4913 * buffer that is dirty.
4914 */
4915 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4916 spin_lock(&eb->refs_lock);
4917 spin_unlock(&eb->refs_lock);
4918 }
2457aec6 4919 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4920 return eb;
4921 }
4922 rcu_read_unlock();
4923
4924 return NULL;
4925}
4926
faa2dbf0
JB
4927#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4928struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4929 u64 start)
faa2dbf0
JB
4930{
4931 struct extent_buffer *eb, *exists = NULL;
4932 int ret;
4933
4934 eb = find_extent_buffer(fs_info, start);
4935 if (eb)
4936 return eb;
da17066c 4937 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4938 if (!eb)
4939 return NULL;
4940 eb->fs_info = fs_info;
4941again:
e1860a77 4942 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4943 if (ret)
4944 goto free_eb;
4945 spin_lock(&fs_info->buffer_lock);
4946 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4947 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4948 spin_unlock(&fs_info->buffer_lock);
4949 radix_tree_preload_end();
4950 if (ret == -EEXIST) {
4951 exists = find_extent_buffer(fs_info, start);
4952 if (exists)
4953 goto free_eb;
4954 else
4955 goto again;
4956 }
4957 check_buffer_tree_ref(eb);
4958 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4959
4960 /*
4961 * We will free dummy extent buffer's if they come into
4962 * free_extent_buffer with a ref count of 2, but if we are using this we
4963 * want the buffers to stay in memory until we're done with them, so
4964 * bump the ref count again.
4965 */
4966 atomic_inc(&eb->refs);
4967 return eb;
4968free_eb:
4969 btrfs_release_extent_buffer(eb);
4970 return exists;
4971}
4972#endif
4973
f28491e0 4974struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4975 u64 start)
d1310b2e 4976{
da17066c 4977 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4978 unsigned long num_pages = num_extent_pages(start, len);
4979 unsigned long i;
09cbfeaf 4980 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4981 struct extent_buffer *eb;
6af118ce 4982 struct extent_buffer *exists = NULL;
d1310b2e 4983 struct page *p;
f28491e0 4984 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4985 int uptodate = 1;
19fe0a8b 4986 int ret;
d1310b2e 4987
da17066c 4988 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4989 btrfs_err(fs_info, "bad tree block start %llu", start);
4990 return ERR_PTR(-EINVAL);
4991 }
4992
f28491e0 4993 eb = find_extent_buffer(fs_info, start);
452c75c3 4994 if (eb)
6af118ce 4995 return eb;
6af118ce 4996
23d79d81 4997 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4998 if (!eb)
c871b0f2 4999 return ERR_PTR(-ENOMEM);
d1310b2e 5000
727011e0 5001 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5002 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5003 if (!p) {
5004 exists = ERR_PTR(-ENOMEM);
6af118ce 5005 goto free_eb;
c871b0f2 5006 }
4f2de97a
JB
5007
5008 spin_lock(&mapping->private_lock);
5009 if (PagePrivate(p)) {
5010 /*
5011 * We could have already allocated an eb for this page
5012 * and attached one so lets see if we can get a ref on
5013 * the existing eb, and if we can we know it's good and
5014 * we can just return that one, else we know we can just
5015 * overwrite page->private.
5016 */
5017 exists = (struct extent_buffer *)p->private;
5018 if (atomic_inc_not_zero(&exists->refs)) {
5019 spin_unlock(&mapping->private_lock);
5020 unlock_page(p);
09cbfeaf 5021 put_page(p);
2457aec6 5022 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5023 goto free_eb;
5024 }
5ca64f45 5025 exists = NULL;
4f2de97a 5026
0b32f4bb 5027 /*
4f2de97a
JB
5028 * Do this so attach doesn't complain and we need to
5029 * drop the ref the old guy had.
5030 */
5031 ClearPagePrivate(p);
0b32f4bb 5032 WARN_ON(PageDirty(p));
09cbfeaf 5033 put_page(p);
d1310b2e 5034 }
4f2de97a
JB
5035 attach_extent_buffer_page(eb, p);
5036 spin_unlock(&mapping->private_lock);
0b32f4bb 5037 WARN_ON(PageDirty(p));
727011e0 5038 eb->pages[i] = p;
d1310b2e
CM
5039 if (!PageUptodate(p))
5040 uptodate = 0;
eb14ab8e
CM
5041
5042 /*
5043 * see below about how we avoid a nasty race with release page
5044 * and why we unlock later
5045 */
d1310b2e
CM
5046 }
5047 if (uptodate)
b4ce94de 5048 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5049again:
e1860a77 5050 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5051 if (ret) {
5052 exists = ERR_PTR(ret);
19fe0a8b 5053 goto free_eb;
c871b0f2 5054 }
19fe0a8b 5055
f28491e0
JB
5056 spin_lock(&fs_info->buffer_lock);
5057 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5058 start >> PAGE_SHIFT, eb);
f28491e0 5059 spin_unlock(&fs_info->buffer_lock);
452c75c3 5060 radix_tree_preload_end();
19fe0a8b 5061 if (ret == -EEXIST) {
f28491e0 5062 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5063 if (exists)
5064 goto free_eb;
5065 else
115391d2 5066 goto again;
6af118ce 5067 }
6af118ce 5068 /* add one reference for the tree */
0b32f4bb 5069 check_buffer_tree_ref(eb);
34b41ace 5070 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5071
5072 /*
5073 * there is a race where release page may have
5074 * tried to find this extent buffer in the radix
5075 * but failed. It will tell the VM it is safe to
5076 * reclaim the, and it will clear the page private bit.
5077 * We must make sure to set the page private bit properly
5078 * after the extent buffer is in the radix tree so
5079 * it doesn't get lost
5080 */
727011e0
CM
5081 SetPageChecked(eb->pages[0]);
5082 for (i = 1; i < num_pages; i++) {
fb85fc9a 5083 p = eb->pages[i];
727011e0
CM
5084 ClearPageChecked(p);
5085 unlock_page(p);
5086 }
5087 unlock_page(eb->pages[0]);
d1310b2e
CM
5088 return eb;
5089
6af118ce 5090free_eb:
5ca64f45 5091 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5092 for (i = 0; i < num_pages; i++) {
5093 if (eb->pages[i])
5094 unlock_page(eb->pages[i]);
5095 }
eb14ab8e 5096
897ca6e9 5097 btrfs_release_extent_buffer(eb);
6af118ce 5098 return exists;
d1310b2e 5099}
d1310b2e 5100
3083ee2e
JB
5101static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5102{
5103 struct extent_buffer *eb =
5104 container_of(head, struct extent_buffer, rcu_head);
5105
5106 __free_extent_buffer(eb);
5107}
5108
3083ee2e 5109/* Expects to have eb->eb_lock already held */
f7a52a40 5110static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5111{
5112 WARN_ON(atomic_read(&eb->refs) == 0);
5113 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5114 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5115 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5116
815a51c7 5117 spin_unlock(&eb->refs_lock);
3083ee2e 5118
f28491e0
JB
5119 spin_lock(&fs_info->buffer_lock);
5120 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5121 eb->start >> PAGE_SHIFT);
f28491e0 5122 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5123 } else {
5124 spin_unlock(&eb->refs_lock);
815a51c7 5125 }
3083ee2e
JB
5126
5127 /* Should be safe to release our pages at this point */
a50924e3 5128 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5129#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5130 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5131 __free_extent_buffer(eb);
5132 return 1;
5133 }
5134#endif
3083ee2e 5135 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5136 return 1;
3083ee2e
JB
5137 }
5138 spin_unlock(&eb->refs_lock);
e64860aa
JB
5139
5140 return 0;
3083ee2e
JB
5141}
5142
d1310b2e
CM
5143void free_extent_buffer(struct extent_buffer *eb)
5144{
242e18c7
CM
5145 int refs;
5146 int old;
d1310b2e
CM
5147 if (!eb)
5148 return;
5149
242e18c7
CM
5150 while (1) {
5151 refs = atomic_read(&eb->refs);
5152 if (refs <= 3)
5153 break;
5154 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5155 if (old == refs)
5156 return;
5157 }
5158
3083ee2e 5159 spin_lock(&eb->refs_lock);
815a51c7
JS
5160 if (atomic_read(&eb->refs) == 2 &&
5161 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5162 atomic_dec(&eb->refs);
5163
3083ee2e
JB
5164 if (atomic_read(&eb->refs) == 2 &&
5165 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5166 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5167 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5168 atomic_dec(&eb->refs);
5169
5170 /*
5171 * I know this is terrible, but it's temporary until we stop tracking
5172 * the uptodate bits and such for the extent buffers.
5173 */
f7a52a40 5174 release_extent_buffer(eb);
3083ee2e
JB
5175}
5176
5177void free_extent_buffer_stale(struct extent_buffer *eb)
5178{
5179 if (!eb)
d1310b2e
CM
5180 return;
5181
3083ee2e
JB
5182 spin_lock(&eb->refs_lock);
5183 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5184
0b32f4bb 5185 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5186 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5187 atomic_dec(&eb->refs);
f7a52a40 5188 release_extent_buffer(eb);
d1310b2e 5189}
d1310b2e 5190
1d4284bd 5191void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5192{
d1310b2e
CM
5193 unsigned long i;
5194 unsigned long num_pages;
5195 struct page *page;
5196
d1310b2e
CM
5197 num_pages = num_extent_pages(eb->start, eb->len);
5198
5199 for (i = 0; i < num_pages; i++) {
fb85fc9a 5200 page = eb->pages[i];
b9473439 5201 if (!PageDirty(page))
d2c3f4f6
CM
5202 continue;
5203
a61e6f29 5204 lock_page(page);
eb14ab8e
CM
5205 WARN_ON(!PagePrivate(page));
5206
d1310b2e 5207 clear_page_dirty_for_io(page);
0ee0fda0 5208 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5209 if (!PageDirty(page)) {
5210 radix_tree_tag_clear(&page->mapping->page_tree,
5211 page_index(page),
5212 PAGECACHE_TAG_DIRTY);
5213 }
0ee0fda0 5214 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5215 ClearPageError(page);
a61e6f29 5216 unlock_page(page);
d1310b2e 5217 }
0b32f4bb 5218 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5219}
d1310b2e 5220
0b32f4bb 5221int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5222{
5223 unsigned long i;
5224 unsigned long num_pages;
b9473439 5225 int was_dirty = 0;
d1310b2e 5226
0b32f4bb
JB
5227 check_buffer_tree_ref(eb);
5228
b9473439 5229 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5230
d1310b2e 5231 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5232 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5233 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5234
b9473439 5235 for (i = 0; i < num_pages; i++)
fb85fc9a 5236 set_page_dirty(eb->pages[i]);
b9473439 5237 return was_dirty;
d1310b2e 5238}
d1310b2e 5239
69ba3927 5240void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5241{
5242 unsigned long i;
5243 struct page *page;
5244 unsigned long num_pages;
5245
b4ce94de 5246 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5247 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5248 for (i = 0; i < num_pages; i++) {
fb85fc9a 5249 page = eb->pages[i];
33958dc6
CM
5250 if (page)
5251 ClearPageUptodate(page);
1259ab75 5252 }
1259ab75
CM
5253}
5254
09c25a8c 5255void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5256{
5257 unsigned long i;
5258 struct page *page;
5259 unsigned long num_pages;
5260
0b32f4bb 5261 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5262 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5263 for (i = 0; i < num_pages; i++) {
fb85fc9a 5264 page = eb->pages[i];
d1310b2e
CM
5265 SetPageUptodate(page);
5266 }
d1310b2e 5267}
d1310b2e 5268
0b32f4bb 5269int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5270{
0b32f4bb 5271 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5272}
d1310b2e
CM
5273
5274int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5275 struct extent_buffer *eb, int wait,
f188591e 5276 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5277{
5278 unsigned long i;
d1310b2e
CM
5279 struct page *page;
5280 int err;
5281 int ret = 0;
ce9adaa5
CM
5282 int locked_pages = 0;
5283 int all_uptodate = 1;
d1310b2e 5284 unsigned long num_pages;
727011e0 5285 unsigned long num_reads = 0;
a86c12c7 5286 struct bio *bio = NULL;
c8b97818 5287 unsigned long bio_flags = 0;
a86c12c7 5288
b4ce94de 5289 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5290 return 0;
5291
d1310b2e 5292 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5293 for (i = 0; i < num_pages; i++) {
fb85fc9a 5294 page = eb->pages[i];
bb82ab88 5295 if (wait == WAIT_NONE) {
2db04966 5296 if (!trylock_page(page))
ce9adaa5 5297 goto unlock_exit;
d1310b2e
CM
5298 } else {
5299 lock_page(page);
5300 }
ce9adaa5 5301 locked_pages++;
2571e739
LB
5302 }
5303 /*
5304 * We need to firstly lock all pages to make sure that
5305 * the uptodate bit of our pages won't be affected by
5306 * clear_extent_buffer_uptodate().
5307 */
8436ea91 5308 for (i = 0; i < num_pages; i++) {
2571e739 5309 page = eb->pages[i];
727011e0
CM
5310 if (!PageUptodate(page)) {
5311 num_reads++;
ce9adaa5 5312 all_uptodate = 0;
727011e0 5313 }
ce9adaa5 5314 }
2571e739 5315
ce9adaa5 5316 if (all_uptodate) {
8436ea91 5317 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5318 goto unlock_exit;
5319 }
5320
656f30db 5321 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5322 eb->read_mirror = 0;
0b32f4bb 5323 atomic_set(&eb->io_pages, num_reads);
8436ea91 5324 for (i = 0; i < num_pages; i++) {
fb85fc9a 5325 page = eb->pages[i];
baf863b9 5326
ce9adaa5 5327 if (!PageUptodate(page)) {
baf863b9
LB
5328 if (ret) {
5329 atomic_dec(&eb->io_pages);
5330 unlock_page(page);
5331 continue;
5332 }
5333
f188591e 5334 ClearPageError(page);
a86c12c7 5335 err = __extent_read_full_page(tree, page,
f188591e 5336 get_extent, &bio,
d4c7ca86 5337 mirror_num, &bio_flags,
1f7ad75b 5338 REQ_META);
baf863b9 5339 if (err) {
d1310b2e 5340 ret = err;
baf863b9
LB
5341 /*
5342 * We use &bio in above __extent_read_full_page,
5343 * so we ensure that if it returns error, the
5344 * current page fails to add itself to bio and
5345 * it's been unlocked.
5346 *
5347 * We must dec io_pages by ourselves.
5348 */
5349 atomic_dec(&eb->io_pages);
5350 }
d1310b2e
CM
5351 } else {
5352 unlock_page(page);
5353 }
5354 }
5355
355808c2 5356 if (bio) {
1f7ad75b 5357 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5358 if (err)
5359 return err;
355808c2 5360 }
a86c12c7 5361
bb82ab88 5362 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5363 return ret;
d397712b 5364
8436ea91 5365 for (i = 0; i < num_pages; i++) {
fb85fc9a 5366 page = eb->pages[i];
d1310b2e 5367 wait_on_page_locked(page);
d397712b 5368 if (!PageUptodate(page))
d1310b2e 5369 ret = -EIO;
d1310b2e 5370 }
d397712b 5371
d1310b2e 5372 return ret;
ce9adaa5
CM
5373
5374unlock_exit:
d397712b 5375 while (locked_pages > 0) {
ce9adaa5 5376 locked_pages--;
8436ea91
JB
5377 page = eb->pages[locked_pages];
5378 unlock_page(page);
ce9adaa5
CM
5379 }
5380 return ret;
d1310b2e 5381}
d1310b2e 5382
1cbb1f45
JM
5383void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5384 unsigned long start, unsigned long len)
d1310b2e
CM
5385{
5386 size_t cur;
5387 size_t offset;
5388 struct page *page;
5389 char *kaddr;
5390 char *dst = (char *)dstv;
09cbfeaf
KS
5391 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5392 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5393
f716abd5
LB
5394 if (start + len > eb->len) {
5395 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5396 eb->start, eb->len, start, len);
5397 memset(dst, 0, len);
5398 return;
5399 }
d1310b2e 5400
09cbfeaf 5401 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5402
d397712b 5403 while (len > 0) {
fb85fc9a 5404 page = eb->pages[i];
d1310b2e 5405
09cbfeaf 5406 cur = min(len, (PAGE_SIZE - offset));
a6591715 5407 kaddr = page_address(page);
d1310b2e 5408 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5409
5410 dst += cur;
5411 len -= cur;
5412 offset = 0;
5413 i++;
5414 }
5415}
d1310b2e 5416
1cbb1f45
JM
5417int read_extent_buffer_to_user(const struct extent_buffer *eb,
5418 void __user *dstv,
5419 unsigned long start, unsigned long len)
550ac1d8
GH
5420{
5421 size_t cur;
5422 size_t offset;
5423 struct page *page;
5424 char *kaddr;
5425 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5426 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5427 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5428 int ret = 0;
5429
5430 WARN_ON(start > eb->len);
5431 WARN_ON(start + len > eb->start + eb->len);
5432
09cbfeaf 5433 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5434
5435 while (len > 0) {
fb85fc9a 5436 page = eb->pages[i];
550ac1d8 5437
09cbfeaf 5438 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5439 kaddr = page_address(page);
5440 if (copy_to_user(dst, kaddr + offset, cur)) {
5441 ret = -EFAULT;
5442 break;
5443 }
5444
5445 dst += cur;
5446 len -= cur;
5447 offset = 0;
5448 i++;
5449 }
5450
5451 return ret;
5452}
5453
415b35a5
LB
5454/*
5455 * return 0 if the item is found within a page.
5456 * return 1 if the item spans two pages.
5457 * return -EINVAL otherwise.
5458 */
1cbb1f45
JM
5459int map_private_extent_buffer(const struct extent_buffer *eb,
5460 unsigned long start, unsigned long min_len,
5461 char **map, unsigned long *map_start,
5462 unsigned long *map_len)
d1310b2e 5463{
09cbfeaf 5464 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5465 char *kaddr;
5466 struct page *p;
09cbfeaf
KS
5467 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5468 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5469 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5470 PAGE_SHIFT;
d1310b2e 5471
f716abd5
LB
5472 if (start + min_len > eb->len) {
5473 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5474 eb->start, eb->len, start, min_len);
5475 return -EINVAL;
5476 }
5477
d1310b2e 5478 if (i != end_i)
415b35a5 5479 return 1;
d1310b2e
CM
5480
5481 if (i == 0) {
5482 offset = start_offset;
5483 *map_start = 0;
5484 } else {
5485 offset = 0;
09cbfeaf 5486 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5487 }
d397712b 5488
fb85fc9a 5489 p = eb->pages[i];
a6591715 5490 kaddr = page_address(p);
d1310b2e 5491 *map = kaddr + offset;
09cbfeaf 5492 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5493 return 0;
5494}
d1310b2e 5495
1cbb1f45
JM
5496int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5497 unsigned long start, unsigned long len)
d1310b2e
CM
5498{
5499 size_t cur;
5500 size_t offset;
5501 struct page *page;
5502 char *kaddr;
5503 char *ptr = (char *)ptrv;
09cbfeaf
KS
5504 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5505 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5506 int ret = 0;
5507
5508 WARN_ON(start > eb->len);
5509 WARN_ON(start + len > eb->start + eb->len);
5510
09cbfeaf 5511 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5512
d397712b 5513 while (len > 0) {
fb85fc9a 5514 page = eb->pages[i];
d1310b2e 5515
09cbfeaf 5516 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5517
a6591715 5518 kaddr = page_address(page);
d1310b2e 5519 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5520 if (ret)
5521 break;
5522
5523 ptr += cur;
5524 len -= cur;
5525 offset = 0;
5526 i++;
5527 }
5528 return ret;
5529}
d1310b2e 5530
f157bf76
DS
5531void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5532 const void *srcv)
5533{
5534 char *kaddr;
5535
5536 WARN_ON(!PageUptodate(eb->pages[0]));
5537 kaddr = page_address(eb->pages[0]);
5538 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5539 BTRFS_FSID_SIZE);
5540}
5541
5542void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5543{
5544 char *kaddr;
5545
5546 WARN_ON(!PageUptodate(eb->pages[0]));
5547 kaddr = page_address(eb->pages[0]);
5548 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5549 BTRFS_FSID_SIZE);
5550}
5551
d1310b2e
CM
5552void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5553 unsigned long start, unsigned long len)
5554{
5555 size_t cur;
5556 size_t offset;
5557 struct page *page;
5558 char *kaddr;
5559 char *src = (char *)srcv;
09cbfeaf
KS
5560 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5561 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5562
5563 WARN_ON(start > eb->len);
5564 WARN_ON(start + len > eb->start + eb->len);
5565
09cbfeaf 5566 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5567
d397712b 5568 while (len > 0) {
fb85fc9a 5569 page = eb->pages[i];
d1310b2e
CM
5570 WARN_ON(!PageUptodate(page));
5571
09cbfeaf 5572 cur = min(len, PAGE_SIZE - offset);
a6591715 5573 kaddr = page_address(page);
d1310b2e 5574 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5575
5576 src += cur;
5577 len -= cur;
5578 offset = 0;
5579 i++;
5580 }
5581}
d1310b2e 5582
b159fa28
DS
5583void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5584 unsigned long len)
d1310b2e
CM
5585{
5586 size_t cur;
5587 size_t offset;
5588 struct page *page;
5589 char *kaddr;
09cbfeaf
KS
5590 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5591 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5592
5593 WARN_ON(start > eb->len);
5594 WARN_ON(start + len > eb->start + eb->len);
5595
09cbfeaf 5596 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5597
d397712b 5598 while (len > 0) {
fb85fc9a 5599 page = eb->pages[i];
d1310b2e
CM
5600 WARN_ON(!PageUptodate(page));
5601
09cbfeaf 5602 cur = min(len, PAGE_SIZE - offset);
a6591715 5603 kaddr = page_address(page);
b159fa28 5604 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5605
5606 len -= cur;
5607 offset = 0;
5608 i++;
5609 }
5610}
d1310b2e 5611
58e8012c
DS
5612void copy_extent_buffer_full(struct extent_buffer *dst,
5613 struct extent_buffer *src)
5614{
5615 int i;
5616 unsigned num_pages;
5617
5618 ASSERT(dst->len == src->len);
5619
5620 num_pages = num_extent_pages(dst->start, dst->len);
5621 for (i = 0; i < num_pages; i++)
5622 copy_page(page_address(dst->pages[i]),
5623 page_address(src->pages[i]));
5624}
5625
d1310b2e
CM
5626void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5627 unsigned long dst_offset, unsigned long src_offset,
5628 unsigned long len)
5629{
5630 u64 dst_len = dst->len;
5631 size_t cur;
5632 size_t offset;
5633 struct page *page;
5634 char *kaddr;
09cbfeaf
KS
5635 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5636 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5637
5638 WARN_ON(src->len != dst_len);
5639
5640 offset = (start_offset + dst_offset) &
09cbfeaf 5641 (PAGE_SIZE - 1);
d1310b2e 5642
d397712b 5643 while (len > 0) {
fb85fc9a 5644 page = dst->pages[i];
d1310b2e
CM
5645 WARN_ON(!PageUptodate(page));
5646
09cbfeaf 5647 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5648
a6591715 5649 kaddr = page_address(page);
d1310b2e 5650 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5651
5652 src_offset += cur;
5653 len -= cur;
5654 offset = 0;
5655 i++;
5656 }
5657}
d1310b2e 5658
2fe1d551
OS
5659void le_bitmap_set(u8 *map, unsigned int start, int len)
5660{
5661 u8 *p = map + BIT_BYTE(start);
5662 const unsigned int size = start + len;
5663 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5664 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5665
5666 while (len - bits_to_set >= 0) {
5667 *p |= mask_to_set;
5668 len -= bits_to_set;
5669 bits_to_set = BITS_PER_BYTE;
9c894696 5670 mask_to_set = ~0;
2fe1d551
OS
5671 p++;
5672 }
5673 if (len) {
5674 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5675 *p |= mask_to_set;
5676 }
5677}
5678
5679void le_bitmap_clear(u8 *map, unsigned int start, int len)
5680{
5681 u8 *p = map + BIT_BYTE(start);
5682 const unsigned int size = start + len;
5683 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5684 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5685
5686 while (len - bits_to_clear >= 0) {
5687 *p &= ~mask_to_clear;
5688 len -= bits_to_clear;
5689 bits_to_clear = BITS_PER_BYTE;
9c894696 5690 mask_to_clear = ~0;
2fe1d551
OS
5691 p++;
5692 }
5693 if (len) {
5694 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5695 *p &= ~mask_to_clear;
5696 }
5697}
3e1e8bb7
OS
5698
5699/*
5700 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5701 * given bit number
5702 * @eb: the extent buffer
5703 * @start: offset of the bitmap item in the extent buffer
5704 * @nr: bit number
5705 * @page_index: return index of the page in the extent buffer that contains the
5706 * given bit number
5707 * @page_offset: return offset into the page given by page_index
5708 *
5709 * This helper hides the ugliness of finding the byte in an extent buffer which
5710 * contains a given bit.
5711 */
5712static inline void eb_bitmap_offset(struct extent_buffer *eb,
5713 unsigned long start, unsigned long nr,
5714 unsigned long *page_index,
5715 size_t *page_offset)
5716{
09cbfeaf 5717 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5718 size_t byte_offset = BIT_BYTE(nr);
5719 size_t offset;
5720
5721 /*
5722 * The byte we want is the offset of the extent buffer + the offset of
5723 * the bitmap item in the extent buffer + the offset of the byte in the
5724 * bitmap item.
5725 */
5726 offset = start_offset + start + byte_offset;
5727
09cbfeaf
KS
5728 *page_index = offset >> PAGE_SHIFT;
5729 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5730}
5731
5732/**
5733 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5734 * @eb: the extent buffer
5735 * @start: offset of the bitmap item in the extent buffer
5736 * @nr: bit number to test
5737 */
5738int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5739 unsigned long nr)
5740{
2fe1d551 5741 u8 *kaddr;
3e1e8bb7
OS
5742 struct page *page;
5743 unsigned long i;
5744 size_t offset;
5745
5746 eb_bitmap_offset(eb, start, nr, &i, &offset);
5747 page = eb->pages[i];
5748 WARN_ON(!PageUptodate(page));
5749 kaddr = page_address(page);
5750 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5751}
5752
5753/**
5754 * extent_buffer_bitmap_set - set an area of a bitmap
5755 * @eb: the extent buffer
5756 * @start: offset of the bitmap item in the extent buffer
5757 * @pos: bit number of the first bit
5758 * @len: number of bits to set
5759 */
5760void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5761 unsigned long pos, unsigned long len)
5762{
2fe1d551 5763 u8 *kaddr;
3e1e8bb7
OS
5764 struct page *page;
5765 unsigned long i;
5766 size_t offset;
5767 const unsigned int size = pos + len;
5768 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5769 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5770
5771 eb_bitmap_offset(eb, start, pos, &i, &offset);
5772 page = eb->pages[i];
5773 WARN_ON(!PageUptodate(page));
5774 kaddr = page_address(page);
5775
5776 while (len >= bits_to_set) {
5777 kaddr[offset] |= mask_to_set;
5778 len -= bits_to_set;
5779 bits_to_set = BITS_PER_BYTE;
9c894696 5780 mask_to_set = ~0;
09cbfeaf 5781 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5782 offset = 0;
5783 page = eb->pages[++i];
5784 WARN_ON(!PageUptodate(page));
5785 kaddr = page_address(page);
5786 }
5787 }
5788 if (len) {
5789 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5790 kaddr[offset] |= mask_to_set;
5791 }
5792}
5793
5794
5795/**
5796 * extent_buffer_bitmap_clear - clear an area of a bitmap
5797 * @eb: the extent buffer
5798 * @start: offset of the bitmap item in the extent buffer
5799 * @pos: bit number of the first bit
5800 * @len: number of bits to clear
5801 */
5802void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5803 unsigned long pos, unsigned long len)
5804{
2fe1d551 5805 u8 *kaddr;
3e1e8bb7
OS
5806 struct page *page;
5807 unsigned long i;
5808 size_t offset;
5809 const unsigned int size = pos + len;
5810 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5811 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5812
5813 eb_bitmap_offset(eb, start, pos, &i, &offset);
5814 page = eb->pages[i];
5815 WARN_ON(!PageUptodate(page));
5816 kaddr = page_address(page);
5817
5818 while (len >= bits_to_clear) {
5819 kaddr[offset] &= ~mask_to_clear;
5820 len -= bits_to_clear;
5821 bits_to_clear = BITS_PER_BYTE;
9c894696 5822 mask_to_clear = ~0;
09cbfeaf 5823 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5824 offset = 0;
5825 page = eb->pages[++i];
5826 WARN_ON(!PageUptodate(page));
5827 kaddr = page_address(page);
5828 }
5829 }
5830 if (len) {
5831 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5832 kaddr[offset] &= ~mask_to_clear;
5833 }
5834}
5835
3387206f
ST
5836static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5837{
5838 unsigned long distance = (src > dst) ? src - dst : dst - src;
5839 return distance < len;
5840}
5841
d1310b2e
CM
5842static void copy_pages(struct page *dst_page, struct page *src_page,
5843 unsigned long dst_off, unsigned long src_off,
5844 unsigned long len)
5845{
a6591715 5846 char *dst_kaddr = page_address(dst_page);
d1310b2e 5847 char *src_kaddr;
727011e0 5848 int must_memmove = 0;
d1310b2e 5849
3387206f 5850 if (dst_page != src_page) {
a6591715 5851 src_kaddr = page_address(src_page);
3387206f 5852 } else {
d1310b2e 5853 src_kaddr = dst_kaddr;
727011e0
CM
5854 if (areas_overlap(src_off, dst_off, len))
5855 must_memmove = 1;
3387206f 5856 }
d1310b2e 5857
727011e0
CM
5858 if (must_memmove)
5859 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5860 else
5861 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5862}
5863
5864void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5865 unsigned long src_offset, unsigned long len)
5866{
0b246afa 5867 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5868 size_t cur;
5869 size_t dst_off_in_page;
5870 size_t src_off_in_page;
09cbfeaf 5871 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5872 unsigned long dst_i;
5873 unsigned long src_i;
5874
5875 if (src_offset + len > dst->len) {
0b246afa 5876 btrfs_err(fs_info,
5d163e0e
JM
5877 "memmove bogus src_offset %lu move len %lu dst len %lu",
5878 src_offset, len, dst->len);
d1310b2e
CM
5879 BUG_ON(1);
5880 }
5881 if (dst_offset + len > dst->len) {
0b246afa 5882 btrfs_err(fs_info,
5d163e0e
JM
5883 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5884 dst_offset, len, dst->len);
d1310b2e
CM
5885 BUG_ON(1);
5886 }
5887
d397712b 5888 while (len > 0) {
d1310b2e 5889 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5890 (PAGE_SIZE - 1);
d1310b2e 5891 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5892 (PAGE_SIZE - 1);
d1310b2e 5893
09cbfeaf
KS
5894 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5895 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5896
09cbfeaf 5897 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5898 src_off_in_page));
5899 cur = min_t(unsigned long, cur,
09cbfeaf 5900 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5901
fb85fc9a 5902 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5903 dst_off_in_page, src_off_in_page, cur);
5904
5905 src_offset += cur;
5906 dst_offset += cur;
5907 len -= cur;
5908 }
5909}
d1310b2e
CM
5910
5911void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5912 unsigned long src_offset, unsigned long len)
5913{
0b246afa 5914 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5915 size_t cur;
5916 size_t dst_off_in_page;
5917 size_t src_off_in_page;
5918 unsigned long dst_end = dst_offset + len - 1;
5919 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5920 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5921 unsigned long dst_i;
5922 unsigned long src_i;
5923
5924 if (src_offset + len > dst->len) {
0b246afa 5925 btrfs_err(fs_info,
5d163e0e
JM
5926 "memmove bogus src_offset %lu move len %lu len %lu",
5927 src_offset, len, dst->len);
d1310b2e
CM
5928 BUG_ON(1);
5929 }
5930 if (dst_offset + len > dst->len) {
0b246afa 5931 btrfs_err(fs_info,
5d163e0e
JM
5932 "memmove bogus dst_offset %lu move len %lu len %lu",
5933 dst_offset, len, dst->len);
d1310b2e
CM
5934 BUG_ON(1);
5935 }
727011e0 5936 if (dst_offset < src_offset) {
d1310b2e
CM
5937 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5938 return;
5939 }
d397712b 5940 while (len > 0) {
09cbfeaf
KS
5941 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5942 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5943
5944 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5945 (PAGE_SIZE - 1);
d1310b2e 5946 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5947 (PAGE_SIZE - 1);
d1310b2e
CM
5948
5949 cur = min_t(unsigned long, len, src_off_in_page + 1);
5950 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5951 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5952 dst_off_in_page - cur + 1,
5953 src_off_in_page - cur + 1, cur);
5954
5955 dst_end -= cur;
5956 src_end -= cur;
5957 len -= cur;
5958 }
5959}
6af118ce 5960
f7a52a40 5961int try_release_extent_buffer(struct page *page)
19fe0a8b 5962{
6af118ce 5963 struct extent_buffer *eb;
6af118ce 5964
3083ee2e 5965 /*
01327610 5966 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5967 * now.
5968 */
5969 spin_lock(&page->mapping->private_lock);
5970 if (!PagePrivate(page)) {
5971 spin_unlock(&page->mapping->private_lock);
4f2de97a 5972 return 1;
45f49bce 5973 }
6af118ce 5974
3083ee2e
JB
5975 eb = (struct extent_buffer *)page->private;
5976 BUG_ON(!eb);
19fe0a8b
MX
5977
5978 /*
3083ee2e
JB
5979 * This is a little awful but should be ok, we need to make sure that
5980 * the eb doesn't disappear out from under us while we're looking at
5981 * this page.
19fe0a8b 5982 */
3083ee2e 5983 spin_lock(&eb->refs_lock);
0b32f4bb 5984 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5985 spin_unlock(&eb->refs_lock);
5986 spin_unlock(&page->mapping->private_lock);
5987 return 0;
b9473439 5988 }
3083ee2e 5989 spin_unlock(&page->mapping->private_lock);
897ca6e9 5990
19fe0a8b 5991 /*
3083ee2e
JB
5992 * If tree ref isn't set then we know the ref on this eb is a real ref,
5993 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5994 */
3083ee2e
JB
5995 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5996 spin_unlock(&eb->refs_lock);
5997 return 0;
b9473439 5998 }
19fe0a8b 5999
f7a52a40 6000 return release_extent_buffer(eb);
6af118ce 6001}