]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: remove inode argument from repair_io_failure
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
c6100a4b
JB
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
8d599ae1 93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
de0022b9 113 unsigned long bio_flags;
771ed689
CM
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
ffbd517d
CM
118 unsigned int extent_locked:1;
119
70fd7614 120 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 121 unsigned int sync_io:1;
d1310b2e
CM
122};
123
d38ed27f
QW
124static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127{
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
fefdc557
QW
134 if (!set && (state->state & bits) == 0)
135 return;
d38ed27f 136 changeset->bytes_changed += state->end - state->start + 1;
53d32359 137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141}
142
0b32f4bb 143static noinline void flush_write_bio(void *data);
c2d904e0
JM
144static inline struct btrfs_fs_info *
145tree_fs_info(struct extent_io_tree *tree)
146{
c6100a4b
JB
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
c2d904e0 150}
0b32f4bb 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b
CM
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio));
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
fefdc557
QW
584static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
4ac1f4ac 1942int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1943{
1944 int ret;
1945 int err = 0;
4ac1f4ac 1946 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
4a54c8c1 1947
47dc196a 1948 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1949 ret = clear_extent_bits(failure_tree, rec->start,
1950 rec->start + rec->len - 1,
91166212 1951 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1952 if (ret)
1953 err = ret;
1954
4ac1f4ac 1955 ret = clear_extent_bits(&inode->io_tree, rec->start,
53b381b3 1956 rec->start + rec->len - 1,
91166212 1957 EXTENT_DAMAGED);
53b381b3
DW
1958 if (ret && !err)
1959 err = ret;
4a54c8c1
JS
1960
1961 kfree(rec);
1962 return err;
1963}
1964
4a54c8c1
JS
1965/*
1966 * this bypasses the standard btrfs submit functions deliberately, as
1967 * the standard behavior is to write all copies in a raid setup. here we only
1968 * want to write the one bad copy. so we do the mapping for ourselves and issue
1969 * submit_bio directly.
3ec706c8 1970 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1971 * actually prevents the read that triggered the error from finishing.
1972 * currently, there can be no more than two copies of every data bit. thus,
1973 * exactly one rewrite is required.
1974 */
6ec656bc
JB
1975int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1976 u64 length, u64 logical, struct page *page,
1977 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1978{
1979 struct bio *bio;
1980 struct btrfs_device *dev;
4a54c8c1
JS
1981 u64 map_length = 0;
1982 u64 sector;
1983 struct btrfs_bio *bbio = NULL;
1984 int ret;
1985
908960c6 1986 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1987 BUG_ON(!mirror_num);
1988
9be3395b 1989 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1990 if (!bio)
1991 return -EIO;
4f024f37 1992 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1993 map_length = length;
1994
b5de8d0d
FM
1995 /*
1996 * Avoid races with device replace and make sure our bbio has devices
1997 * associated to its stripes that don't go away while we are doing the
1998 * read repair operation.
1999 */
2000 btrfs_bio_counter_inc_blocked(fs_info);
c725328c
LB
2001 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2002 /*
2003 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2004 * to update all raid stripes, but here we just want to correct
2005 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2006 * stripe's dev and sector.
2007 */
2008 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2009 &map_length, &bbio, 0);
2010 if (ret) {
2011 btrfs_bio_counter_dec(fs_info);
2012 bio_put(bio);
2013 return -EIO;
2014 }
2015 ASSERT(bbio->mirror_num == 1);
2016 } else {
2017 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2018 &map_length, &bbio, mirror_num);
2019 if (ret) {
2020 btrfs_bio_counter_dec(fs_info);
2021 bio_put(bio);
2022 return -EIO;
2023 }
2024 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2025 }
c725328c
LB
2026
2027 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2028 bio->bi_iter.bi_sector = sector;
c725328c 2029 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2030 btrfs_put_bbio(bbio);
4a54c8c1 2031 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2032 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2033 bio_put(bio);
2034 return -EIO;
2035 }
2036 bio->bi_bdev = dev->bdev;
70fd7614 2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2038 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2039
4e49ea4a 2040 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2041 /* try to remap that extent elsewhere? */
b5de8d0d 2042 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2043 bio_put(bio);
442a4f63 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2045 return -EIO;
2046 }
2047
b14af3b4
DS
2048 btrfs_info_rl_in_rcu(fs_info,
2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2050 ino, start,
1203b681 2051 rcu_str_deref(dev->name), sector);
b5de8d0d 2052 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2053 bio_put(bio);
2054 return 0;
2055}
2056
2ff7e61e
JM
2057int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 struct extent_buffer *eb, int mirror_num)
ea466794 2059{
ea466794
JB
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2062 int ret = 0;
ea466794 2063
0b246afa 2064 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2065 return -EROFS;
2066
ea466794 2067 for (i = 0; i < num_pages; i++) {
fb85fc9a 2068 struct page *p = eb->pages[i];
1203b681 2069
6ec656bc 2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2071 start - page_offset(p), mirror_num);
ea466794
JB
2072 if (ret)
2073 break;
09cbfeaf 2074 start += PAGE_SIZE;
ea466794
JB
2075 }
2076
2077 return ret;
2078}
2079
4a54c8c1
JS
2080/*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
b30cb441 2084int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
8b110e39 2085 unsigned int pg_offset)
4a54c8c1
JS
2086{
2087 u64 private;
4a54c8c1 2088 struct io_failure_record *failrec;
b30cb441 2089 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2090 struct extent_state *state;
2091 int num_copies;
4a54c8c1 2092 int ret;
4a54c8c1
JS
2093
2094 private = 0;
b30cb441 2095 ret = count_range_bits(&inode->io_failure_tree, &private,
4a54c8c1
JS
2096 (u64)-1, 1, EXTENT_DIRTY, 0);
2097 if (!ret)
2098 return 0;
2099
b30cb441 2100 ret = get_state_failrec(&inode->io_failure_tree, start,
47dc196a 2101 &failrec);
4a54c8c1
JS
2102 if (ret)
2103 return 0;
2104
4a54c8c1
JS
2105 BUG_ON(!failrec->this_mirror);
2106
2107 if (failrec->in_validation) {
2108 /* there was no real error, just free the record */
ab8d0fc4
JM
2109 btrfs_debug(fs_info,
2110 "clean_io_failure: freeing dummy error at %llu",
2111 failrec->start);
4a54c8c1
JS
2112 goto out;
2113 }
908960c6
ID
2114 if (fs_info->sb->s_flags & MS_RDONLY)
2115 goto out;
4a54c8c1 2116
b30cb441
NB
2117 spin_lock(&inode->io_tree.lock);
2118 state = find_first_extent_bit_state(&inode->io_tree,
4a54c8c1
JS
2119 failrec->start,
2120 EXTENT_LOCKED);
b30cb441 2121 spin_unlock(&inode->io_tree.lock);
4a54c8c1 2122
883d0de4
MX
2123 if (state && state->start <= failrec->start &&
2124 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2125 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 failrec->len);
4a54c8c1 2127 if (num_copies > 1) {
6ec656bc
JB
2128 repair_io_failure(fs_info, btrfs_ino(inode), start,
2129 failrec->len, failrec->logical, page,
1203b681 2130 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2131 }
2132 }
2133
2134out:
b30cb441 2135 free_io_failure(inode, failrec);
4a54c8c1 2136
454ff3de 2137 return 0;
4a54c8c1
JS
2138}
2139
f612496b
MX
2140/*
2141 * Can be called when
2142 * - hold extent lock
2143 * - under ordered extent
2144 * - the inode is freeing
2145 */
7ab7956e 2146void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2147{
7ab7956e 2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2149 struct io_failure_record *failrec;
2150 struct extent_state *state, *next;
2151
2152 if (RB_EMPTY_ROOT(&failure_tree->state))
2153 return;
2154
2155 spin_lock(&failure_tree->lock);
2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 while (state) {
2158 if (state->start > end)
2159 break;
2160
2161 ASSERT(state->end <= end);
2162
2163 next = next_state(state);
2164
47dc196a 2165 failrec = state->failrec;
f612496b
MX
2166 free_extent_state(state);
2167 kfree(failrec);
2168
2169 state = next;
2170 }
2171 spin_unlock(&failure_tree->lock);
2172}
2173
2fe6303e 2174int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2175 struct io_failure_record **failrec_ret)
4a54c8c1 2176{
ab8d0fc4 2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2178 struct io_failure_record *failrec;
4a54c8c1 2179 struct extent_map *em;
4a54c8c1
JS
2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2183 int ret;
4a54c8c1
JS
2184 u64 logical;
2185
47dc196a 2186 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2fe6303e 2191
4a54c8c1
JS
2192 failrec->start = start;
2193 failrec->len = end - start + 1;
2194 failrec->this_mirror = 0;
2195 failrec->bio_flags = 0;
2196 failrec->in_validation = 0;
2197
2198 read_lock(&em_tree->lock);
2199 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 if (!em) {
2201 read_unlock(&em_tree->lock);
2202 kfree(failrec);
2203 return -EIO;
2204 }
2205
68ba990f 2206 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2207 free_extent_map(em);
2208 em = NULL;
2209 }
2210 read_unlock(&em_tree->lock);
7a2d6a64 2211 if (!em) {
4a54c8c1
JS
2212 kfree(failrec);
2213 return -EIO;
2214 }
2fe6303e 2215
4a54c8c1
JS
2216 logical = start - em->start;
2217 logical = em->block_start + logical;
2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 logical = em->block_start;
2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 extent_set_compress_type(&failrec->bio_flags,
2222 em->compress_type);
2223 }
2fe6303e 2224
ab8d0fc4
JM
2225 btrfs_debug(fs_info,
2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 logical, start, failrec->len);
2fe6303e 2228
4a54c8c1
JS
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2234 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2235 if (ret >= 0)
47dc196a 2236 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2237 /* set the bits in the inode's tree */
2238 if (ret >= 0)
ceeb0ae7 2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
ab8d0fc4
JM
2245 btrfs_debug(fs_info,
2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 failrec->logical, failrec->start, failrec->len,
2248 failrec->in_validation);
4a54c8c1
JS
2249 /*
2250 * when data can be on disk more than twice, add to failrec here
2251 * (e.g. with a list for failed_mirror) to make
2252 * clean_io_failure() clean all those errors at once.
2253 */
2254 }
2fe6303e
MX
2255
2256 *failrec_ret = failrec;
2257
2258 return 0;
2259}
2260
2261int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2262 struct io_failure_record *failrec, int failed_mirror)
2263{
ab8d0fc4 2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2265 int num_copies;
2266
ab8d0fc4 2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2268 if (num_copies == 1) {
2269 /*
2270 * we only have a single copy of the data, so don't bother with
2271 * all the retry and error correction code that follows. no
2272 * matter what the error is, it is very likely to persist.
2273 */
ab8d0fc4
JM
2274 btrfs_debug(fs_info,
2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2277 return 0;
4a54c8c1
JS
2278 }
2279
4a54c8c1
JS
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
4a54c8c1
JS
2312 }
2313
facc8a22 2314 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2315 btrfs_debug(fs_info,
2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2318 return 0;
4a54c8c1
JS
2319 }
2320
2fe6303e
MX
2321 return 1;
2322}
2323
2324
2325struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
8b110e39 2328 bio_end_io_t *endio_func, void *data)
2fe6303e 2329{
0b246afa 2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2331 struct bio *bio;
2332 struct btrfs_io_bio *btrfs_failed_bio;
2333 struct btrfs_io_bio *btrfs_bio;
2334
9be3395b 2335 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2336 if (!bio)
2337 return NULL;
2338
2339 bio->bi_end_io = endio_func;
4f024f37 2340 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2341 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2342 bio->bi_iter.bi_size = 0;
8b110e39 2343 bio->bi_private = data;
4a54c8c1 2344
facc8a22
MX
2345 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2346 if (btrfs_failed_bio->csum) {
facc8a22
MX
2347 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2348
2349 btrfs_bio = btrfs_io_bio(bio);
2350 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2351 icsum *= csum_size;
2352 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2353 csum_size);
2354 }
2355
2fe6303e
MX
2356 bio_add_page(bio, page, failrec->len, pg_offset);
2357
2358 return bio;
2359}
2360
2361/*
2362 * this is a generic handler for readpage errors (default
2363 * readpage_io_failed_hook). if other copies exist, read those and write back
2364 * good data to the failed position. does not investigate in remapping the
2365 * failed extent elsewhere, hoping the device will be smart enough to do this as
2366 * needed
2367 */
2368
2369static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2370 struct page *page, u64 start, u64 end,
2371 int failed_mirror)
2372{
2373 struct io_failure_record *failrec;
2374 struct inode *inode = page->mapping->host;
2375 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2376 struct bio *bio;
70fd7614 2377 int read_mode = 0;
2fe6303e
MX
2378 int ret;
2379
1f7ad75b 2380 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2381
2382 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2383 if (ret)
2384 return ret;
2385
2386 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2387 if (!ret) {
4ac1f4ac 2388 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2389 return -EIO;
2390 }
2391
2392 if (failed_bio->bi_vcnt > 1)
70fd7614 2393 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2394
2395 phy_offset >>= inode->i_sb->s_blocksize_bits;
2396 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2397 start - page_offset(page),
8b110e39
MX
2398 (int)phy_offset, failed_bio->bi_end_io,
2399 NULL);
2fe6303e 2400 if (!bio) {
4ac1f4ac 2401 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2402 return -EIO;
2403 }
1f7ad75b 2404 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2405
ab8d0fc4
JM
2406 btrfs_debug(btrfs_sb(inode->i_sb),
2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2409
c6100a4b 2410 ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2411 failrec->bio_flags, 0);
6c387ab2 2412 if (ret) {
4ac1f4ac 2413 free_io_failure(BTRFS_I(inode), failrec);
6c387ab2
MX
2414 bio_put(bio);
2415 }
2416
013bd4c3 2417 return ret;
4a54c8c1
JS
2418}
2419
d1310b2e
CM
2420/* lots and lots of room for performance fixes in the end_bio funcs */
2421
b5227c07 2422void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2423{
2424 int uptodate = (err == 0);
2425 struct extent_io_tree *tree;
3e2426bd 2426 int ret = 0;
87826df0
JM
2427
2428 tree = &BTRFS_I(page->mapping->host)->io_tree;
2429
c3988d63
DS
2430 if (tree->ops && tree->ops->writepage_end_io_hook)
2431 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2432 uptodate);
87826df0 2433
87826df0 2434 if (!uptodate) {
87826df0
JM
2435 ClearPageUptodate(page);
2436 SetPageError(page);
bff5baf8 2437 ret = err < 0 ? err : -EIO;
5dca6eea 2438 mapping_set_error(page->mapping, ret);
87826df0 2439 }
87826df0
JM
2440}
2441
d1310b2e
CM
2442/*
2443 * after a writepage IO is done, we need to:
2444 * clear the uptodate bits on error
2445 * clear the writeback bits in the extent tree for this IO
2446 * end_page_writeback if the page has no more pending IO
2447 *
2448 * Scheduling is not allowed, so the extent state tree is expected
2449 * to have one and only one object corresponding to this IO.
2450 */
4246a0b6 2451static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2452{
2c30c71b 2453 struct bio_vec *bvec;
d1310b2e
CM
2454 u64 start;
2455 u64 end;
2c30c71b 2456 int i;
d1310b2e 2457
2c30c71b 2458 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2459 struct page *page = bvec->bv_page;
0b246afa
JM
2460 struct inode *inode = page->mapping->host;
2461 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2462
17a5adcc
AO
2463 /* We always issue full-page reads, but if some block
2464 * in a page fails to read, blk_update_request() will
2465 * advance bv_offset and adjust bv_len to compensate.
2466 * Print a warning for nonzero offsets, and an error
2467 * if they don't add up to a full page. */
09cbfeaf
KS
2468 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2469 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2470 btrfs_err(fs_info,
efe120a0
FH
2471 "partial page write in btrfs with offset %u and length %u",
2472 bvec->bv_offset, bvec->bv_len);
2473 else
0b246afa 2474 btrfs_info(fs_info,
5d163e0e 2475 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2476 bvec->bv_offset, bvec->bv_len);
2477 }
d1310b2e 2478
17a5adcc
AO
2479 start = page_offset(page);
2480 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2481
b5227c07 2482 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2483 end_page_writeback(page);
2c30c71b 2484 }
2b1f55b0 2485
d1310b2e 2486 bio_put(bio);
d1310b2e
CM
2487}
2488
883d0de4
MX
2489static void
2490endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2491 int uptodate)
2492{
2493 struct extent_state *cached = NULL;
2494 u64 end = start + len - 1;
2495
2496 if (uptodate && tree->track_uptodate)
2497 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2498 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2499}
2500
d1310b2e
CM
2501/*
2502 * after a readpage IO is done, we need to:
2503 * clear the uptodate bits on error
2504 * set the uptodate bits if things worked
2505 * set the page up to date if all extents in the tree are uptodate
2506 * clear the lock bit in the extent tree
2507 * unlock the page if there are no other extents locked for it
2508 *
2509 * Scheduling is not allowed, so the extent state tree is expected
2510 * to have one and only one object corresponding to this IO.
2511 */
4246a0b6 2512static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2513{
2c30c71b 2514 struct bio_vec *bvec;
4246a0b6 2515 int uptodate = !bio->bi_error;
facc8a22 2516 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2517 struct extent_io_tree *tree;
facc8a22 2518 u64 offset = 0;
d1310b2e
CM
2519 u64 start;
2520 u64 end;
facc8a22 2521 u64 len;
883d0de4
MX
2522 u64 extent_start = 0;
2523 u64 extent_len = 0;
5cf1ab56 2524 int mirror;
d1310b2e 2525 int ret;
2c30c71b 2526 int i;
d1310b2e 2527
2c30c71b 2528 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2529 struct page *page = bvec->bv_page;
a71754fc 2530 struct inode *inode = page->mapping->host;
ab8d0fc4 2531 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2532
ab8d0fc4
JM
2533 btrfs_debug(fs_info,
2534 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2535 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2536 io_bio->mirror_num);
a71754fc 2537 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2538
17a5adcc
AO
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
09cbfeaf
KS
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2546 btrfs_err(fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2548 bvec->bv_offset, bvec->bv_len);
2549 else
ab8d0fc4
JM
2550 btrfs_info(fs_info,
2551 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2552 bvec->bv_offset, bvec->bv_len);
2553 }
d1310b2e 2554
17a5adcc
AO
2555 start = page_offset(page);
2556 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2557 len = bvec->bv_len;
d1310b2e 2558
9be3395b 2559 mirror = io_bio->mirror_num;
20c9801d 2560 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2561 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2562 page, start, end,
2563 mirror);
5ee0844d 2564 if (ret)
d1310b2e 2565 uptodate = 0;
5ee0844d 2566 else
b30cb441
NB
2567 clean_io_failure(BTRFS_I(inode), start,
2568 page, 0);
d1310b2e 2569 }
ea466794 2570
f2a09da9
MX
2571 if (likely(uptodate))
2572 goto readpage_ok;
2573
20a7db8a 2574 if (tree->ops) {
5cf1ab56 2575 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2576 if (ret == -EAGAIN) {
2577 /*
2578 * Data inode's readpage_io_failed_hook() always
2579 * returns -EAGAIN.
2580 *
2581 * The generic bio_readpage_error handles errors
2582 * the following way: If possible, new read
2583 * requests are created and submitted and will
2584 * end up in end_bio_extent_readpage as well (if
2585 * we're lucky, not in the !uptodate case). In
2586 * that case it returns 0 and we just go on with
2587 * the next page in our bio. If it can't handle
2588 * the error it will return -EIO and we remain
2589 * responsible for that page.
2590 */
2591 ret = bio_readpage_error(bio, offset, page,
2592 start, end, mirror);
2593 if (ret == 0) {
2594 uptodate = !bio->bi_error;
2595 offset += len;
2596 continue;
2597 }
2598 }
2599
f4a8e656 2600 /*
9d0d1c8b
LB
2601 * metadata's readpage_io_failed_hook() always returns
2602 * -EIO and fixes nothing. -EIO is also returned if
2603 * data inode error could not be fixed.
f4a8e656 2604 */
9d0d1c8b 2605 ASSERT(ret == -EIO);
7e38326f 2606 }
f2a09da9 2607readpage_ok:
883d0de4 2608 if (likely(uptodate)) {
a71754fc 2609 loff_t i_size = i_size_read(inode);
09cbfeaf 2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2611 unsigned off;
a71754fc
JB
2612
2613 /* Zero out the end if this page straddles i_size */
09cbfeaf 2614 off = i_size & (PAGE_SIZE-1);
a583c026 2615 if (page->index == end_index && off)
09cbfeaf 2616 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2617 SetPageUptodate(page);
70dec807 2618 } else {
17a5adcc
AO
2619 ClearPageUptodate(page);
2620 SetPageError(page);
70dec807 2621 }
17a5adcc 2622 unlock_page(page);
facc8a22 2623 offset += len;
883d0de4
MX
2624
2625 if (unlikely(!uptodate)) {
2626 if (extent_len) {
2627 endio_readpage_release_extent(tree,
2628 extent_start,
2629 extent_len, 1);
2630 extent_start = 0;
2631 extent_len = 0;
2632 }
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2640 } else {
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 }
2c30c71b 2646 }
d1310b2e 2647
883d0de4
MX
2648 if (extent_len)
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2650 uptodate);
facc8a22 2651 if (io_bio->end_io)
4246a0b6 2652 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2653 bio_put(bio);
d1310b2e
CM
2654}
2655
9be3395b
CM
2656/*
2657 * this allocates from the btrfs_bioset. We're returning a bio right now
2658 * but you can call btrfs_io_bio for the appropriate container_of magic
2659 */
88f794ed
MX
2660struct bio *
2661btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2662 gfp_t gfp_flags)
d1310b2e 2663{
facc8a22 2664 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2665 struct bio *bio;
2666
9be3395b 2667 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2668
2669 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2670 while (!bio && (nr_vecs /= 2)) {
2671 bio = bio_alloc_bioset(gfp_flags,
2672 nr_vecs, btrfs_bioset);
2673 }
d1310b2e
CM
2674 }
2675
2676 if (bio) {
2677 bio->bi_bdev = bdev;
4f024f37 2678 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2679 btrfs_bio = btrfs_io_bio(bio);
2680 btrfs_bio->csum = NULL;
2681 btrfs_bio->csum_allocated = NULL;
2682 btrfs_bio->end_io = NULL;
d1310b2e
CM
2683 }
2684 return bio;
2685}
2686
9be3395b
CM
2687struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2688{
23ea8e5a
MX
2689 struct btrfs_io_bio *btrfs_bio;
2690 struct bio *new;
9be3395b 2691
23ea8e5a
MX
2692 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2693 if (new) {
2694 btrfs_bio = btrfs_io_bio(new);
2695 btrfs_bio->csum = NULL;
2696 btrfs_bio->csum_allocated = NULL;
2697 btrfs_bio->end_io = NULL;
2698 }
2699 return new;
2700}
9be3395b
CM
2701
2702/* this also allocates from the btrfs_bioset */
2703struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2704{
facc8a22
MX
2705 struct btrfs_io_bio *btrfs_bio;
2706 struct bio *bio;
2707
2708 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2709 if (bio) {
2710 btrfs_bio = btrfs_io_bio(bio);
2711 btrfs_bio->csum = NULL;
2712 btrfs_bio->csum_allocated = NULL;
2713 btrfs_bio->end_io = NULL;
2714 }
2715 return bio;
9be3395b
CM
2716}
2717
2718
1f7ad75b
MC
2719static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2720 unsigned long bio_flags)
d1310b2e 2721{
d1310b2e 2722 int ret = 0;
70dec807
CM
2723 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2724 struct page *page = bvec->bv_page;
2725 struct extent_io_tree *tree = bio->bi_private;
70dec807 2726 u64 start;
70dec807 2727
4eee4fa4 2728 start = page_offset(page) + bvec->bv_offset;
70dec807 2729
902b22f3 2730 bio->bi_private = NULL;
d1310b2e
CM
2731 bio_get(bio);
2732
20c9801d 2733 if (tree->ops)
c6100a4b 2734 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2735 mirror_num, bio_flags, start);
0b86a832 2736 else
4e49ea4a 2737 btrfsic_submit_bio(bio);
4a54c8c1 2738
d1310b2e
CM
2739 bio_put(bio);
2740 return ret;
2741}
2742
1f7ad75b 2743static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2744 unsigned long offset, size_t size, struct bio *bio,
2745 unsigned long bio_flags)
2746{
2747 int ret = 0;
20c9801d 2748 if (tree->ops)
81a75f67 2749 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2750 bio_flags);
3444a972
JM
2751 return ret;
2752
2753}
2754
1f7ad75b 2755static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2756 struct writeback_control *wbc,
d1310b2e
CM
2757 struct page *page, sector_t sector,
2758 size_t size, unsigned long offset,
2759 struct block_device *bdev,
2760 struct bio **bio_ret,
f188591e 2761 bio_end_io_t end_io_func,
c8b97818
CM
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
005efedf
FM
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
d1310b2e
CM
2766{
2767 int ret = 0;
2768 struct bio *bio;
c8b97818 2769 int contig = 0;
c8b97818 2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
c8b97818 2775 if (old_compressed)
4f024f37 2776 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2777 else
f73a1c7d 2778 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2781 force_bio_submit ||
1f7ad75b 2782 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2783 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2784 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2785 if (ret < 0) {
2786 *bio_ret = NULL;
79787eaa 2787 return ret;
289454ad 2788 }
d1310b2e
CM
2789 bio = NULL;
2790 } else {
da2f0f74
CM
2791 if (wbc)
2792 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2793 return 0;
2794 }
2795 }
c8b97818 2796
b54ffb73
KO
2797 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2798 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2799 if (!bio)
2800 return -ENOMEM;
70dec807 2801
c8b97818 2802 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2803 bio->bi_end_io = end_io_func;
2804 bio->bi_private = tree;
1f7ad75b 2805 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
70dec807 2810
d397712b 2811 if (bio_ret)
d1310b2e 2812 *bio_ret = bio;
d397712b 2813 else
1f7ad75b 2814 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2815
2816 return ret;
2817}
2818
48a3b636
ES
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
d1310b2e
CM
2821{
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
09cbfeaf 2824 get_page(page);
4f2de97a
JB
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2828 }
2829}
2830
4f2de97a 2831void set_page_extent_mapped(struct page *page)
d1310b2e 2832{
4f2de97a
JB
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
09cbfeaf 2835 get_page(page);
4f2de97a
JB
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
d1310b2e
CM
2838}
2839
125bac01
MX
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844{
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
cbc0e928 2849 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2850 start < extent_map_end(em)) {
490b54d6 2851 refcount_inc(&em->refs);
125bac01
MX
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
fc4f21b1 2859 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
490b54d6 2862 refcount_inc(&em->refs);
125bac01
MX
2863 *em_cached = em;
2864 }
2865 return em;
2866}
d1310b2e
CM
2867/*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
79787eaa 2871 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2872 * return 0 on success, otherwise return error
d1310b2e 2873 */
9974090b
MX
2874static int __do_readpage(struct extent_io_tree *tree,
2875 struct page *page,
2876 get_extent_t *get_extent,
125bac01 2877 struct extent_map **em_cached,
9974090b 2878 struct bio **bio, int mirror_num,
1f7ad75b 2879 unsigned long *bio_flags, int read_flags,
005efedf 2880 u64 *prev_em_start)
d1310b2e
CM
2881{
2882 struct inode *inode = page->mapping->host;
4eee4fa4 2883 u64 start = page_offset(page);
09cbfeaf 2884 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2885 u64 end;
2886 u64 cur = start;
2887 u64 extent_offset;
2888 u64 last_byte = i_size_read(inode);
2889 u64 block_start;
2890 u64 cur_end;
2891 sector_t sector;
2892 struct extent_map *em;
2893 struct block_device *bdev;
baf863b9 2894 int ret = 0;
d1310b2e 2895 int nr = 0;
306e16ce 2896 size_t pg_offset = 0;
d1310b2e 2897 size_t iosize;
c8b97818 2898 size_t disk_io_size;
d1310b2e 2899 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2900 unsigned long this_bio_flag = 0;
d1310b2e
CM
2901
2902 set_page_extent_mapped(page);
2903
9974090b 2904 end = page_end;
90a887c9
DM
2905 if (!PageUptodate(page)) {
2906 if (cleancache_get_page(page) == 0) {
2907 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2908 unlock_extent(tree, start, end);
90a887c9
DM
2909 goto out;
2910 }
2911 }
2912
09cbfeaf 2913 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2914 char *userpage;
09cbfeaf 2915 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2916
2917 if (zero_offset) {
09cbfeaf 2918 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2919 userpage = kmap_atomic(page);
c8b97818
CM
2920 memset(userpage + zero_offset, 0, iosize);
2921 flush_dcache_page(page);
7ac687d9 2922 kunmap_atomic(userpage);
c8b97818
CM
2923 }
2924 }
d1310b2e 2925 while (cur <= end) {
005efedf 2926 bool force_bio_submit = false;
c8f2f24b 2927
d1310b2e
CM
2928 if (cur >= last_byte) {
2929 char *userpage;
507903b8
AJ
2930 struct extent_state *cached = NULL;
2931
09cbfeaf 2932 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2933 userpage = kmap_atomic(page);
306e16ce 2934 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2935 flush_dcache_page(page);
7ac687d9 2936 kunmap_atomic(userpage);
d1310b2e 2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2938 &cached, GFP_NOFS);
7f042a83
FM
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
d1310b2e
CM
2942 break;
2943 }
125bac01
MX
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
c704005d 2946 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2947 SetPageError(page);
7f042a83 2948 unlock_extent(tree, cur, end);
d1310b2e
CM
2949 break;
2950 }
d1310b2e
CM
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
261507a0 2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
c8b97818 2960
d1310b2e
CM
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2963 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
d1310b2e
CM
2971 bdev = em->bdev;
2972 block_start = em->block_start;
d899e052
YZ
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
d1310b2e
CM
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
507903b8
AJ
3024 struct extent_state *cached = NULL;
3025
7ac687d9 3026 userpage = kmap_atomic(page);
306e16ce 3027 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3028 flush_dcache_page(page);
7ac687d9 3029 kunmap_atomic(userpage);
d1310b2e
CM
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3032 &cached, GFP_NOFS);
7f042a83
FM
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
d1310b2e 3036 cur = cur + iosize;
306e16ce 3037 pg_offset += iosize;
d1310b2e
CM
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
9655d298
CM
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3043 check_page_uptodate(tree, page);
7f042a83 3044 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3045 cur = cur + iosize;
306e16ce 3046 pg_offset += iosize;
d1310b2e
CM
3047 continue;
3048 }
70dec807
CM
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
7f042a83 3054 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3055 cur = cur + iosize;
306e16ce 3056 pg_offset += iosize;
70dec807
CM
3057 continue;
3058 }
d1310b2e 3059
1f7ad75b
MC
3060 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3061 page, sector, disk_io_size, pg_offset,
c2df8bb4 3062 bdev, bio,
c8b97818
CM
3063 end_bio_extent_readpage, mirror_num,
3064 *bio_flags,
005efedf
FM
3065 this_bio_flag,
3066 force_bio_submit);
c8f2f24b
JB
3067 if (!ret) {
3068 nr++;
3069 *bio_flags = this_bio_flag;
3070 } else {
d1310b2e 3071 SetPageError(page);
7f042a83 3072 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3073 goto out;
edd33c99 3074 }
d1310b2e 3075 cur = cur + iosize;
306e16ce 3076 pg_offset += iosize;
d1310b2e 3077 }
90a887c9 3078out:
d1310b2e
CM
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
baf863b9 3084 return ret;
d1310b2e
CM
3085}
3086
9974090b
MX
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
125bac01 3091 struct extent_map **em_cached,
9974090b 3092 struct bio **bio, int mirror_num,
1f7ad75b 3093 unsigned long *bio_flags,
808f80b4 3094 u64 *prev_em_start)
9974090b
MX
3095{
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
a776c6fa 3103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
125bac01 3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3114 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3115 put_page(pages[index]);
9974090b
MX
3116 }
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
125bac01 3122 struct extent_map **em_cached,
9974090b 3123 struct bio **bio, int mirror_num,
1f7ad75b 3124 unsigned long *bio_flags,
808f80b4 3125 u64 *prev_em_start)
9974090b 3126{
35a3621b 3127 u64 start = 0;
9974090b
MX
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
35a3621b 3131 int first_index = 0;
9974090b
MX
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
09cbfeaf 3137 end = start + PAGE_SIZE - 1;
9974090b
MX
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
09cbfeaf 3140 end += PAGE_SIZE;
9974090b
MX
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
125bac01
MX
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
1f7ad75b 3146 prev_em_start);
9974090b 3147 start = page_start;
09cbfeaf 3148 end = start + PAGE_SIZE - 1;
9974090b
MX
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
125bac01 3156 end, get_extent, em_cached, bio,
1f7ad75b 3157 mirror_num, bio_flags,
808f80b4 3158 prev_em_start);
9974090b
MX
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
1f7ad75b 3165 unsigned long *bio_flags, int read_flags)
9974090b
MX
3166{
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
09cbfeaf 3170 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
a776c6fa 3175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3176 PAGE_SIZE);
9974090b
MX
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
125bac01 3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3185 bio_flags, read_flags, NULL);
9974090b
MX
3186 return ret;
3187}
3188
d1310b2e 3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3190 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3191{
3192 struct bio *bio = NULL;
c8b97818 3193 unsigned long bio_flags = 0;
d1310b2e
CM
3194 int ret;
3195
8ddc7d9c 3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3197 &bio_flags, 0);
d1310b2e 3198 if (bio)
1f7ad75b 3199 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3200 return ret;
3201}
d1310b2e 3202
3d4b9496 3203static void update_nr_written(struct writeback_control *wbc,
a9132667 3204 unsigned long nr_written)
11c8349b
CM
3205{
3206 wbc->nr_to_write -= nr_written;
11c8349b
CM
3207}
3208
d1310b2e 3209/*
40f76580
CM
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3211 *
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3215 *
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
d1310b2e 3218 */
40f76580
CM
3219static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3222 u64 delalloc_start,
3223 unsigned long *nr_written)
3224{
3225 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3227 u64 nr_delalloc;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3230 int ret;
3231 int page_started = 0;
3232
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 return 0;
3235
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 page,
3239 &delalloc_start,
3240 &delalloc_end,
dcab6a3b 3241 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3244 continue;
3245 }
3246 ret = tree->ops->fill_delalloc(inode, page,
3247 delalloc_start,
3248 delalloc_end,
3249 &page_started,
3250 nr_written);
3251 /* File system has been set read-only */
3252 if (ret) {
3253 SetPageError(page);
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3258 */
3259 ret = ret < 0 ? ret : -EIO;
3260 goto done;
3261 }
3262 /*
ea1754a0
KS
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
40f76580
CM
3265 */
3266 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3267 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3268 delalloc_start = delalloc_end + 1;
3269 }
3270 if (wbc->nr_to_write < delalloc_to_write) {
3271 int thresh = 8192;
3272
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 thresh);
3277 }
3278
3279 /* did the fill delalloc function already unlock and start
3280 * the IO?
3281 */
3282 if (page_started) {
3283 /*
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3286 * nr_to_write.
3287 */
3288 wbc->nr_to_write -= *nr_written;
3289 return 1;
3290 }
3291
3292 ret = 0;
3293
3294done:
3295 return ret;
3296}
3297
3298/*
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3301 *
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3305 */
3306static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 struct page *page,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3310 loff_t i_size,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
d1310b2e 3313{
d1310b2e 3314 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3315 u64 start = page_offset(page);
09cbfeaf 3316 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3317 u64 end;
3318 u64 cur = start;
3319 u64 extent_offset;
d1310b2e
CM
3320 u64 block_start;
3321 u64 iosize;
3322 sector_t sector;
3323 struct extent_map *em;
3324 struct block_device *bdev;
7f3c74fb 3325 size_t pg_offset = 0;
d1310b2e 3326 size_t blocksize;
40f76580
CM
3327 int ret = 0;
3328 int nr = 0;
3329 bool compressed;
c8b97818 3330
247e743c 3331 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3332 ret = tree->ops->writepage_start_hook(page, start,
3333 page_end);
87826df0
JM
3334 if (ret) {
3335 /* Fixup worker will requeue */
3336 if (ret == -EBUSY)
3337 wbc->pages_skipped++;
3338 else
3339 redirty_page_for_writepage(wbc, page);
40f76580 3340
3d4b9496 3341 update_nr_written(wbc, nr_written);
247e743c 3342 unlock_page(page);
bcf93489 3343 return 1;
247e743c
CM
3344 }
3345 }
3346
11c8349b
CM
3347 /*
3348 * we don't want to touch the inode after unlocking the page,
3349 * so we update the mapping writeback index now
3350 */
3d4b9496 3351 update_nr_written(wbc, nr_written + 1);
771ed689 3352
d1310b2e 3353 end = page_end;
40f76580 3354 if (i_size <= start) {
e6dcd2dc
CM
3355 if (tree->ops && tree->ops->writepage_end_io_hook)
3356 tree->ops->writepage_end_io_hook(page, start,
3357 page_end, NULL, 1);
d1310b2e
CM
3358 goto done;
3359 }
3360
d1310b2e
CM
3361 blocksize = inode->i_sb->s_blocksize;
3362
3363 while (cur <= end) {
40f76580 3364 u64 em_end;
58409edd 3365
40f76580 3366 if (cur >= i_size) {
e6dcd2dc
CM
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, cur,
3369 page_end, NULL, 1);
d1310b2e
CM
3370 break;
3371 }
fc4f21b1 3372 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3373 end - cur + 1, 1);
c704005d 3374 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3375 SetPageError(page);
61391d56 3376 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3377 break;
3378 }
3379
3380 extent_offset = cur - em->start;
40f76580
CM
3381 em_end = extent_map_end(em);
3382 BUG_ON(em_end <= cur);
d1310b2e 3383 BUG_ON(end < cur);
40f76580 3384 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3385 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3386 sector = (em->block_start + extent_offset) >> 9;
3387 bdev = em->bdev;
3388 block_start = em->block_start;
c8b97818 3389 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3390 free_extent_map(em);
3391 em = NULL;
3392
c8b97818
CM
3393 /*
3394 * compressed and inline extents are written through other
3395 * paths in the FS
3396 */
3397 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3398 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3399 /*
3400 * end_io notification does not happen here for
3401 * compressed extents
3402 */
3403 if (!compressed && tree->ops &&
3404 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3405 tree->ops->writepage_end_io_hook(page, cur,
3406 cur + iosize - 1,
3407 NULL, 1);
c8b97818
CM
3408 else if (compressed) {
3409 /* we don't want to end_page_writeback on
3410 * a compressed extent. this happens
3411 * elsewhere
3412 */
3413 nr++;
3414 }
3415
3416 cur += iosize;
7f3c74fb 3417 pg_offset += iosize;
d1310b2e
CM
3418 continue;
3419 }
c8b97818 3420
58409edd
DS
3421 set_range_writeback(tree, cur, cur + iosize - 1);
3422 if (!PageWriteback(page)) {
3423 btrfs_err(BTRFS_I(inode)->root->fs_info,
3424 "page %lu not writeback, cur %llu end %llu",
3425 page->index, cur, end);
d1310b2e 3426 }
7f3c74fb 3427
1f7ad75b
MC
3428 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3429 page, sector, iosize, pg_offset,
c2df8bb4 3430 bdev, &epd->bio,
58409edd
DS
3431 end_bio_extent_writepage,
3432 0, 0, 0, false);
fe01aa65 3433 if (ret) {
58409edd 3434 SetPageError(page);
fe01aa65
TK
3435 if (PageWriteback(page))
3436 end_page_writeback(page);
3437 }
d1310b2e 3438
d1310b2e 3439 cur = cur + iosize;
7f3c74fb 3440 pg_offset += iosize;
d1310b2e
CM
3441 nr++;
3442 }
40f76580
CM
3443done:
3444 *nr_ret = nr;
40f76580
CM
3445 return ret;
3446}
3447
3448/*
3449 * the writepage semantics are similar to regular writepage. extent
3450 * records are inserted to lock ranges in the tree, and as dirty areas
3451 * are found, they are marked writeback. Then the lock bits are removed
3452 * and the end_io handler clears the writeback ranges
3453 */
3454static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3455 void *data)
3456{
3457 struct inode *inode = page->mapping->host;
3458 struct extent_page_data *epd = data;
3459 u64 start = page_offset(page);
09cbfeaf 3460 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3461 int ret;
3462 int nr = 0;
3463 size_t pg_offset = 0;
3464 loff_t i_size = i_size_read(inode);
09cbfeaf 3465 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3466 int write_flags = 0;
40f76580
CM
3467 unsigned long nr_written = 0;
3468
3469 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3470 write_flags = REQ_SYNC;
40f76580
CM
3471
3472 trace___extent_writepage(page, inode, wbc);
3473
3474 WARN_ON(!PageLocked(page));
3475
3476 ClearPageError(page);
3477
09cbfeaf 3478 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3479 if (page->index > end_index ||
3480 (page->index == end_index && !pg_offset)) {
09cbfeaf 3481 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3482 unlock_page(page);
3483 return 0;
3484 }
3485
3486 if (page->index == end_index) {
3487 char *userpage;
3488
3489 userpage = kmap_atomic(page);
3490 memset(userpage + pg_offset, 0,
09cbfeaf 3491 PAGE_SIZE - pg_offset);
40f76580
CM
3492 kunmap_atomic(userpage);
3493 flush_dcache_page(page);
3494 }
3495
3496 pg_offset = 0;
3497
3498 set_page_extent_mapped(page);
3499
3500 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3501 if (ret == 1)
3502 goto done_unlocked;
3503 if (ret)
3504 goto done;
3505
3506 ret = __extent_writepage_io(inode, page, wbc, epd,
3507 i_size, nr_written, write_flags, &nr);
3508 if (ret == 1)
3509 goto done_unlocked;
3510
d1310b2e
CM
3511done:
3512 if (nr == 0) {
3513 /* make sure the mapping tag for page dirty gets cleared */
3514 set_page_writeback(page);
3515 end_page_writeback(page);
3516 }
61391d56
FM
3517 if (PageError(page)) {
3518 ret = ret < 0 ? ret : -EIO;
3519 end_extent_writepage(page, ret, start, page_end);
3520 }
d1310b2e 3521 unlock_page(page);
40f76580 3522 return ret;
771ed689 3523
11c8349b 3524done_unlocked:
d1310b2e
CM
3525 return 0;
3526}
3527
fd8b2b61 3528void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3529{
74316201
N
3530 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3531 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3532}
3533
0e378df1
CM
3534static noinline_for_stack int
3535lock_extent_buffer_for_io(struct extent_buffer *eb,
3536 struct btrfs_fs_info *fs_info,
3537 struct extent_page_data *epd)
0b32f4bb
JB
3538{
3539 unsigned long i, num_pages;
3540 int flush = 0;
3541 int ret = 0;
3542
3543 if (!btrfs_try_tree_write_lock(eb)) {
3544 flush = 1;
3545 flush_write_bio(epd);
3546 btrfs_tree_lock(eb);
3547 }
3548
3549 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3550 btrfs_tree_unlock(eb);
3551 if (!epd->sync_io)
3552 return 0;
3553 if (!flush) {
3554 flush_write_bio(epd);
3555 flush = 1;
3556 }
a098d8e8
CM
3557 while (1) {
3558 wait_on_extent_buffer_writeback(eb);
3559 btrfs_tree_lock(eb);
3560 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3561 break;
0b32f4bb 3562 btrfs_tree_unlock(eb);
0b32f4bb
JB
3563 }
3564 }
3565
51561ffe
JB
3566 /*
3567 * We need to do this to prevent races in people who check if the eb is
3568 * under IO since we can end up having no IO bits set for a short period
3569 * of time.
3570 */
3571 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3572 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3573 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3574 spin_unlock(&eb->refs_lock);
0b32f4bb 3575 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3576 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3577 -eb->len,
3578 fs_info->dirty_metadata_batch);
0b32f4bb 3579 ret = 1;
51561ffe
JB
3580 } else {
3581 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3582 }
3583
3584 btrfs_tree_unlock(eb);
3585
3586 if (!ret)
3587 return ret;
3588
3589 num_pages = num_extent_pages(eb->start, eb->len);
3590 for (i = 0; i < num_pages; i++) {
fb85fc9a 3591 struct page *p = eb->pages[i];
0b32f4bb
JB
3592
3593 if (!trylock_page(p)) {
3594 if (!flush) {
3595 flush_write_bio(epd);
3596 flush = 1;
3597 }
3598 lock_page(p);
3599 }
3600 }
3601
3602 return ret;
3603}
3604
3605static void end_extent_buffer_writeback(struct extent_buffer *eb)
3606{
3607 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3608 smp_mb__after_atomic();
0b32f4bb
JB
3609 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3610}
3611
656f30db
FM
3612static void set_btree_ioerr(struct page *page)
3613{
3614 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3615
3616 SetPageError(page);
3617 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3618 return;
3619
3620 /*
3621 * If writeback for a btree extent that doesn't belong to a log tree
3622 * failed, increment the counter transaction->eb_write_errors.
3623 * We do this because while the transaction is running and before it's
3624 * committing (when we call filemap_fdata[write|wait]_range against
3625 * the btree inode), we might have
3626 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3627 * returns an error or an error happens during writeback, when we're
3628 * committing the transaction we wouldn't know about it, since the pages
3629 * can be no longer dirty nor marked anymore for writeback (if a
3630 * subsequent modification to the extent buffer didn't happen before the
3631 * transaction commit), which makes filemap_fdata[write|wait]_range not
3632 * able to find the pages tagged with SetPageError at transaction
3633 * commit time. So if this happens we must abort the transaction,
3634 * otherwise we commit a super block with btree roots that point to
3635 * btree nodes/leafs whose content on disk is invalid - either garbage
3636 * or the content of some node/leaf from a past generation that got
3637 * cowed or deleted and is no longer valid.
3638 *
3639 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3640 * not be enough - we need to distinguish between log tree extents vs
3641 * non-log tree extents, and the next filemap_fdatawait_range() call
3642 * will catch and clear such errors in the mapping - and that call might
3643 * be from a log sync and not from a transaction commit. Also, checking
3644 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3645 * not done and would not be reliable - the eb might have been released
3646 * from memory and reading it back again means that flag would not be
3647 * set (since it's a runtime flag, not persisted on disk).
3648 *
3649 * Using the flags below in the btree inode also makes us achieve the
3650 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3651 * writeback for all dirty pages and before filemap_fdatawait_range()
3652 * is called, the writeback for all dirty pages had already finished
3653 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3654 * filemap_fdatawait_range() would return success, as it could not know
3655 * that writeback errors happened (the pages were no longer tagged for
3656 * writeback).
3657 */
3658 switch (eb->log_index) {
3659 case -1:
afcdd129 3660 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3661 break;
3662 case 0:
afcdd129 3663 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3664 break;
3665 case 1:
afcdd129 3666 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3667 break;
3668 default:
3669 BUG(); /* unexpected, logic error */
3670 }
3671}
3672
4246a0b6 3673static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3674{
2c30c71b 3675 struct bio_vec *bvec;
0b32f4bb 3676 struct extent_buffer *eb;
2c30c71b 3677 int i, done;
0b32f4bb 3678
2c30c71b 3679 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3680 struct page *page = bvec->bv_page;
3681
0b32f4bb
JB
3682 eb = (struct extent_buffer *)page->private;
3683 BUG_ON(!eb);
3684 done = atomic_dec_and_test(&eb->io_pages);
3685
4246a0b6
CH
3686 if (bio->bi_error ||
3687 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3688 ClearPageUptodate(page);
656f30db 3689 set_btree_ioerr(page);
0b32f4bb
JB
3690 }
3691
3692 end_page_writeback(page);
3693
3694 if (!done)
3695 continue;
3696
3697 end_extent_buffer_writeback(eb);
2c30c71b 3698 }
0b32f4bb
JB
3699
3700 bio_put(bio);
0b32f4bb
JB
3701}
3702
0e378df1 3703static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3704 struct btrfs_fs_info *fs_info,
3705 struct writeback_control *wbc,
3706 struct extent_page_data *epd)
3707{
3708 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3709 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3710 u64 offset = eb->start;
851cd173 3711 u32 nritems;
0b32f4bb 3712 unsigned long i, num_pages;
de0022b9 3713 unsigned long bio_flags = 0;
851cd173 3714 unsigned long start, end;
70fd7614 3715 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3716 int ret = 0;
0b32f4bb 3717
656f30db 3718 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3719 num_pages = num_extent_pages(eb->start, eb->len);
3720 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3721 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3722 bio_flags = EXTENT_BIO_TREE_LOG;
3723
851cd173
LB
3724 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 nritems = btrfs_header_nritems(eb);
3eb548ee 3726 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3727 end = btrfs_node_key_ptr_offset(nritems);
3728
b159fa28 3729 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3730 } else {
3731 /*
3732 * leaf:
3733 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734 */
3735 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3736 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3737 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3738 }
3739
0b32f4bb 3740 for (i = 0; i < num_pages; i++) {
fb85fc9a 3741 struct page *p = eb->pages[i];
0b32f4bb
JB
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
1f7ad75b
MC
3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3747 &epd->bio,
1f7ad75b 3748 end_bio_extent_buffer_writepage,
005efedf 3749 0, epd->bio_flags, bio_flags, false);
de0022b9 3750 epd->bio_flags = bio_flags;
0b32f4bb 3751 if (ret) {
656f30db 3752 set_btree_ioerr(p);
fe01aa65
TK
3753 if (PageWriteback(p))
3754 end_page_writeback(p);
0b32f4bb
JB
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
09cbfeaf 3760 offset += PAGE_SIZE;
3d4b9496 3761 update_nr_written(wbc, 1);
0b32f4bb
JB
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
bbf65cf0 3767 struct page *p = eb->pages[i];
81465028 3768 clear_page_dirty_for_io(p);
0b32f4bb
JB
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774}
3775
3776int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778{
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3787 .bio_flags = 0,
0b32f4bb
JB
3788 };
3789 int ret = 0;
3790 int done = 0;
3791 int nr_to_write_done = 0;
3792 struct pagevec pvec;
3793 int nr_pages;
3794 pgoff_t index;
3795 pgoff_t end; /* Inclusive */
3796 int scanned = 0;
3797 int tag;
3798
3799 pagevec_init(&pvec, 0);
3800 if (wbc->range_cyclic) {
3801 index = mapping->writeback_index; /* Start from prev offset */
3802 end = -1;
3803 } else {
09cbfeaf
KS
3804 index = wbc->range_start >> PAGE_SHIFT;
3805 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3806 scanned = 1;
3807 }
3808 if (wbc->sync_mode == WB_SYNC_ALL)
3809 tag = PAGECACHE_TAG_TOWRITE;
3810 else
3811 tag = PAGECACHE_TAG_DIRTY;
3812retry:
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag_pages_for_writeback(mapping, index, end);
3815 while (!done && !nr_to_write_done && (index <= end) &&
3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 unsigned i;
3819
3820 scanned = 1;
3821 for (i = 0; i < nr_pages; i++) {
3822 struct page *page = pvec.pages[i];
3823
3824 if (!PagePrivate(page))
3825 continue;
3826
3827 if (!wbc->range_cyclic && page->index > end) {
3828 done = 1;
3829 break;
3830 }
3831
b5bae261
JB
3832 spin_lock(&mapping->private_lock);
3833 if (!PagePrivate(page)) {
3834 spin_unlock(&mapping->private_lock);
3835 continue;
3836 }
3837
0b32f4bb 3838 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3839
3840 /*
3841 * Shouldn't happen and normally this would be a BUG_ON
3842 * but no sense in crashing the users box for something
3843 * we can survive anyway.
3844 */
fae7f21c 3845 if (WARN_ON(!eb)) {
b5bae261 3846 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3847 continue;
3848 }
3849
b5bae261
JB
3850 if (eb == prev_eb) {
3851 spin_unlock(&mapping->private_lock);
0b32f4bb 3852 continue;
b5bae261 3853 }
0b32f4bb 3854
b5bae261
JB
3855 ret = atomic_inc_not_zero(&eb->refs);
3856 spin_unlock(&mapping->private_lock);
3857 if (!ret)
0b32f4bb 3858 continue;
0b32f4bb
JB
3859
3860 prev_eb = eb;
3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 if (!ret) {
3863 free_extent_buffer(eb);
3864 continue;
3865 }
3866
3867 ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 if (ret) {
3869 done = 1;
3870 free_extent_buffer(eb);
3871 break;
3872 }
3873 free_extent_buffer(eb);
3874
3875 /*
3876 * the filesystem may choose to bump up nr_to_write.
3877 * We have to make sure to honor the new nr_to_write
3878 * at any time
3879 */
3880 nr_to_write_done = wbc->nr_to_write <= 0;
3881 }
3882 pagevec_release(&pvec);
3883 cond_resched();
3884 }
3885 if (!scanned && !done) {
3886 /*
3887 * We hit the last page and there is more work to be done: wrap
3888 * back to the start of the file
3889 */
3890 scanned = 1;
3891 index = 0;
3892 goto retry;
3893 }
3894 flush_write_bio(&epd);
3895 return ret;
3896}
3897
d1310b2e 3898/**
4bef0848 3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3904 *
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them. If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3912 */
4242b64a 3913static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3914 struct writeback_control *wbc,
d2c3f4f6
CM
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
d1310b2e 3917{
7fd1a3f7 3918 struct inode *inode = mapping->host;
d1310b2e
CM
3919 int ret = 0;
3920 int done = 0;
f85d7d6c 3921 int nr_to_write_done = 0;
d1310b2e
CM
3922 struct pagevec pvec;
3923 int nr_pages;
3924 pgoff_t index;
3925 pgoff_t end; /* Inclusive */
a9132667
LB
3926 pgoff_t done_index;
3927 int range_whole = 0;
d1310b2e 3928 int scanned = 0;
f7aaa06b 3929 int tag;
d1310b2e 3930
7fd1a3f7
JB
3931 /*
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3939 */
3940 if (!igrab(inode))
3941 return 0;
3942
d1310b2e
CM
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3946 end = -1;
3947 } else {
09cbfeaf
KS
3948 index = wbc->range_start >> PAGE_SHIFT;
3949 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951 range_whole = 1;
d1310b2e
CM
3952 scanned = 1;
3953 }
f7aaa06b
JB
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3956 else
3957 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3958retry:
f7aaa06b
JB
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
a9132667 3961 done_index = index;
f85d7d6c 3962 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3965 unsigned i;
3966
3967 scanned = 1;
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3970
a9132667 3971 done_index = page->index;
d1310b2e
CM
3972 /*
3973 * At this point we hold neither mapping->tree_lock nor
3974 * lock on the page itself: the page may be truncated or
3975 * invalidated (changing page->mapping to NULL), or even
3976 * swizzled back from swapper_space to tmpfs file
3977 * mapping
3978 */
c8f2f24b
JB
3979 if (!trylock_page(page)) {
3980 flush_fn(data);
3981 lock_page(page);
01d658f2 3982 }
d1310b2e
CM
3983
3984 if (unlikely(page->mapping != mapping)) {
3985 unlock_page(page);
3986 continue;
3987 }
3988
3989 if (!wbc->range_cyclic && page->index > end) {
3990 done = 1;
3991 unlock_page(page);
3992 continue;
3993 }
3994
d2c3f4f6 3995 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3996 if (PageWriteback(page))
3997 flush_fn(data);
d1310b2e 3998 wait_on_page_writeback(page);
d2c3f4f6 3999 }
d1310b2e
CM
4000
4001 if (PageWriteback(page) ||
4002 !clear_page_dirty_for_io(page)) {
4003 unlock_page(page);
4004 continue;
4005 }
4006
4007 ret = (*writepage)(page, wbc, data);
4008
4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010 unlock_page(page);
4011 ret = 0;
4012 }
a9132667
LB
4013 if (ret < 0) {
4014 /*
4015 * done_index is set past this page,
4016 * so media errors will not choke
4017 * background writeout for the entire
4018 * file. This has consequences for
4019 * range_cyclic semantics (ie. it may
4020 * not be suitable for data integrity
4021 * writeout).
4022 */
4023 done_index = page->index + 1;
4024 done = 1;
4025 break;
4026 }
f85d7d6c
CM
4027
4028 /*
4029 * the filesystem may choose to bump up nr_to_write.
4030 * We have to make sure to honor the new nr_to_write
4031 * at any time
4032 */
4033 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4034 }
4035 pagevec_release(&pvec);
4036 cond_resched();
4037 }
894b36e3 4038 if (!scanned && !done) {
d1310b2e
CM
4039 /*
4040 * We hit the last page and there is more work to be done: wrap
4041 * back to the start of the file
4042 */
4043 scanned = 1;
4044 index = 0;
4045 goto retry;
4046 }
a9132667
LB
4047
4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 mapping->writeback_index = done_index;
4050
7fd1a3f7 4051 btrfs_add_delayed_iput(inode);
894b36e3 4052 return ret;
d1310b2e 4053}
d1310b2e 4054
ffbd517d 4055static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4056{
d2c3f4f6 4057 if (epd->bio) {
355808c2
JM
4058 int ret;
4059
1f7ad75b 4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4061 epd->sync_io ? REQ_SYNC : 0);
355808c2 4062
1f7ad75b 4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4064 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4065 epd->bio = NULL;
4066 }
4067}
4068
ffbd517d
CM
4069static noinline void flush_write_bio(void *data)
4070{
4071 struct extent_page_data *epd = data;
4072 flush_epd_write_bio(epd);
4073}
4074
d1310b2e
CM
4075int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 get_extent_t *get_extent,
4077 struct writeback_control *wbc)
4078{
4079 int ret;
d1310b2e
CM
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .get_extent = get_extent,
771ed689 4084 .extent_locked = 0,
ffbd517d 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4086 .bio_flags = 0,
d1310b2e 4087 };
d1310b2e 4088
d1310b2e
CM
4089 ret = __extent_writepage(page, wbc, &epd);
4090
ffbd517d 4091 flush_epd_write_bio(&epd);
d1310b2e
CM
4092 return ret;
4093}
d1310b2e 4094
771ed689
CM
4095int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 u64 start, u64 end, get_extent_t *get_extent,
4097 int mode)
4098{
4099 int ret = 0;
4100 struct address_space *mapping = inode->i_mapping;
4101 struct page *page;
09cbfeaf
KS
4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103 PAGE_SHIFT;
771ed689
CM
4104
4105 struct extent_page_data epd = {
4106 .bio = NULL,
4107 .tree = tree,
4108 .get_extent = get_extent,
4109 .extent_locked = 1,
ffbd517d 4110 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4111 .bio_flags = 0,
771ed689
CM
4112 };
4113 struct writeback_control wbc_writepages = {
771ed689 4114 .sync_mode = mode,
771ed689
CM
4115 .nr_to_write = nr_pages * 2,
4116 .range_start = start,
4117 .range_end = end + 1,
4118 };
4119
d397712b 4120 while (start <= end) {
09cbfeaf 4121 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4122 if (clear_page_dirty_for_io(page))
4123 ret = __extent_writepage(page, &wbc_writepages, &epd);
4124 else {
4125 if (tree->ops && tree->ops->writepage_end_io_hook)
4126 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4127 start + PAGE_SIZE - 1,
771ed689
CM
4128 NULL, 1);
4129 unlock_page(page);
4130 }
09cbfeaf
KS
4131 put_page(page);
4132 start += PAGE_SIZE;
771ed689
CM
4133 }
4134
ffbd517d 4135 flush_epd_write_bio(&epd);
771ed689
CM
4136 return ret;
4137}
d1310b2e
CM
4138
4139int extent_writepages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 get_extent_t *get_extent,
4142 struct writeback_control *wbc)
4143{
4144 int ret = 0;
4145 struct extent_page_data epd = {
4146 .bio = NULL,
4147 .tree = tree,
4148 .get_extent = get_extent,
771ed689 4149 .extent_locked = 0,
ffbd517d 4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4151 .bio_flags = 0,
d1310b2e
CM
4152 };
4153
4242b64a 4154 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4155 flush_write_bio);
ffbd517d 4156 flush_epd_write_bio(&epd);
d1310b2e
CM
4157 return ret;
4158}
d1310b2e
CM
4159
4160int extent_readpages(struct extent_io_tree *tree,
4161 struct address_space *mapping,
4162 struct list_head *pages, unsigned nr_pages,
4163 get_extent_t get_extent)
4164{
4165 struct bio *bio = NULL;
4166 unsigned page_idx;
c8b97818 4167 unsigned long bio_flags = 0;
67c9684f
LB
4168 struct page *pagepool[16];
4169 struct page *page;
125bac01 4170 struct extent_map *em_cached = NULL;
67c9684f 4171 int nr = 0;
808f80b4 4172 u64 prev_em_start = (u64)-1;
d1310b2e 4173
d1310b2e 4174 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4175 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4176
4177 prefetchw(&page->flags);
4178 list_del(&page->lru);
67c9684f 4179 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4180 page->index,
4181 readahead_gfp_mask(mapping))) {
09cbfeaf 4182 put_page(page);
67c9684f 4183 continue;
d1310b2e 4184 }
67c9684f
LB
4185
4186 pagepool[nr++] = page;
4187 if (nr < ARRAY_SIZE(pagepool))
4188 continue;
125bac01 4189 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4190 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4191 nr = 0;
d1310b2e 4192 }
9974090b 4193 if (nr)
125bac01 4194 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4195 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4196
125bac01
MX
4197 if (em_cached)
4198 free_extent_map(em_cached);
4199
d1310b2e
CM
4200 BUG_ON(!list_empty(pages));
4201 if (bio)
1f7ad75b 4202 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4203 return 0;
4204}
d1310b2e
CM
4205
4206/*
4207 * basic invalidatepage code, this waits on any locked or writeback
4208 * ranges corresponding to the page, and then deletes any extent state
4209 * records from the tree
4210 */
4211int extent_invalidatepage(struct extent_io_tree *tree,
4212 struct page *page, unsigned long offset)
4213{
2ac55d41 4214 struct extent_state *cached_state = NULL;
4eee4fa4 4215 u64 start = page_offset(page);
09cbfeaf 4216 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4217 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4218
fda2832f 4219 start += ALIGN(offset, blocksize);
d1310b2e
CM
4220 if (start > end)
4221 return 0;
4222
ff13db41 4223 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4224 wait_on_page_writeback(page);
d1310b2e 4225 clear_extent_bit(tree, start, end,
32c00aff
JB
4226 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227 EXTENT_DO_ACCOUNTING,
2ac55d41 4228 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4229 return 0;
4230}
d1310b2e 4231
7b13b7b1
CM
4232/*
4233 * a helper for releasepage, this tests for areas of the page that
4234 * are locked or under IO and drops the related state bits if it is safe
4235 * to drop the page.
4236 */
48a3b636
ES
4237static int try_release_extent_state(struct extent_map_tree *map,
4238 struct extent_io_tree *tree,
4239 struct page *page, gfp_t mask)
7b13b7b1 4240{
4eee4fa4 4241 u64 start = page_offset(page);
09cbfeaf 4242 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4243 int ret = 1;
4244
211f90e6 4245 if (test_range_bit(tree, start, end,
8b62b72b 4246 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4247 ret = 0;
4248 else {
11ef160f
CM
4249 /*
4250 * at this point we can safely clear everything except the
4251 * locked bit and the nodatasum bit
4252 */
e3f24cc5 4253 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4254 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4255 0, 0, NULL, mask);
e3f24cc5
CM
4256
4257 /* if clear_extent_bit failed for enomem reasons,
4258 * we can't allow the release to continue.
4259 */
4260 if (ret < 0)
4261 ret = 0;
4262 else
4263 ret = 1;
7b13b7b1
CM
4264 }
4265 return ret;
4266}
7b13b7b1 4267
d1310b2e
CM
4268/*
4269 * a helper for releasepage. As long as there are no locked extents
4270 * in the range corresponding to the page, both state records and extent
4271 * map records are removed
4272 */
4273int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4274 struct extent_io_tree *tree, struct page *page,
4275 gfp_t mask)
d1310b2e
CM
4276{
4277 struct extent_map *em;
4eee4fa4 4278 u64 start = page_offset(page);
09cbfeaf 4279 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4280
d0164adc 4281 if (gfpflags_allow_blocking(mask) &&
ee22184b 4282 page->mapping->host->i_size > SZ_16M) {
39b5637f 4283 u64 len;
70dec807 4284 while (start <= end) {
39b5637f 4285 len = end - start + 1;
890871be 4286 write_lock(&map->lock);
39b5637f 4287 em = lookup_extent_mapping(map, start, len);
285190d9 4288 if (!em) {
890871be 4289 write_unlock(&map->lock);
70dec807
CM
4290 break;
4291 }
7f3c74fb
CM
4292 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4293 em->start != start) {
890871be 4294 write_unlock(&map->lock);
70dec807
CM
4295 free_extent_map(em);
4296 break;
4297 }
4298 if (!test_range_bit(tree, em->start,
4299 extent_map_end(em) - 1,
8b62b72b 4300 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4301 0, NULL)) {
70dec807
CM
4302 remove_extent_mapping(map, em);
4303 /* once for the rb tree */
4304 free_extent_map(em);
4305 }
4306 start = extent_map_end(em);
890871be 4307 write_unlock(&map->lock);
70dec807
CM
4308
4309 /* once for us */
d1310b2e
CM
4310 free_extent_map(em);
4311 }
d1310b2e 4312 }
7b13b7b1 4313 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4314}
d1310b2e 4315
ec29ed5b
CM
4316/*
4317 * helper function for fiemap, which doesn't want to see any holes.
4318 * This maps until we find something past 'last'
4319 */
4320static struct extent_map *get_extent_skip_holes(struct inode *inode,
4321 u64 offset,
4322 u64 last,
4323 get_extent_t *get_extent)
4324{
da17066c 4325 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4326 struct extent_map *em;
4327 u64 len;
4328
4329 if (offset >= last)
4330 return NULL;
4331
67871254 4332 while (1) {
ec29ed5b
CM
4333 len = last - offset;
4334 if (len == 0)
4335 break;
fda2832f 4336 len = ALIGN(len, sectorsize);
fc4f21b1 4337 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4338 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4339 return em;
4340
4341 /* if this isn't a hole return it */
4342 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4343 em->block_start != EXTENT_MAP_HOLE) {
4344 return em;
4345 }
4346
4347 /* this is a hole, advance to the next extent */
4348 offset = extent_map_end(em);
4349 free_extent_map(em);
4350 if (offset >= last)
4351 break;
4352 }
4353 return NULL;
4354}
4355
4751832d
QW
4356/*
4357 * To cache previous fiemap extent
4358 *
4359 * Will be used for merging fiemap extent
4360 */
4361struct fiemap_cache {
4362 u64 offset;
4363 u64 phys;
4364 u64 len;
4365 u32 flags;
4366 bool cached;
4367};
4368
4369/*
4370 * Helper to submit fiemap extent.
4371 *
4372 * Will try to merge current fiemap extent specified by @offset, @phys,
4373 * @len and @flags with cached one.
4374 * And only when we fails to merge, cached one will be submitted as
4375 * fiemap extent.
4376 *
4377 * Return value is the same as fiemap_fill_next_extent().
4378 */
4379static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4380 struct fiemap_cache *cache,
4381 u64 offset, u64 phys, u64 len, u32 flags)
4382{
4383 int ret = 0;
4384
4385 if (!cache->cached)
4386 goto assign;
4387
4388 /*
4389 * Sanity check, extent_fiemap() should have ensured that new
4390 * fiemap extent won't overlap with cahced one.
4391 * Not recoverable.
4392 *
4393 * NOTE: Physical address can overlap, due to compression
4394 */
4395 if (cache->offset + cache->len > offset) {
4396 WARN_ON(1);
4397 return -EINVAL;
4398 }
4399
4400 /*
4401 * Only merges fiemap extents if
4402 * 1) Their logical addresses are continuous
4403 *
4404 * 2) Their physical addresses are continuous
4405 * So truly compressed (physical size smaller than logical size)
4406 * extents won't get merged with each other
4407 *
4408 * 3) Share same flags except FIEMAP_EXTENT_LAST
4409 * So regular extent won't get merged with prealloc extent
4410 */
4411 if (cache->offset + cache->len == offset &&
4412 cache->phys + cache->len == phys &&
4413 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4414 (flags & ~FIEMAP_EXTENT_LAST)) {
4415 cache->len += len;
4416 cache->flags |= flags;
4417 goto try_submit_last;
4418 }
4419
4420 /* Not mergeable, need to submit cached one */
4421 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4422 cache->len, cache->flags);
4423 cache->cached = false;
4424 if (ret)
4425 return ret;
4426assign:
4427 cache->cached = true;
4428 cache->offset = offset;
4429 cache->phys = phys;
4430 cache->len = len;
4431 cache->flags = flags;
4432try_submit_last:
4433 if (cache->flags & FIEMAP_EXTENT_LAST) {
4434 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4435 cache->phys, cache->len, cache->flags);
4436 cache->cached = false;
4437 }
4438 return ret;
4439}
4440
4441/*
4442 * Sanity check for fiemap cache
4443 *
4444 * All fiemap cache should be submitted by emit_fiemap_extent()
4445 * Iteration should be terminated either by last fiemap extent or
4446 * fieinfo->fi_extents_max.
4447 * So no cached fiemap should exist.
4448 */
4449static int check_fiemap_cache(struct btrfs_fs_info *fs_info,
4450 struct fiemap_extent_info *fieinfo,
4451 struct fiemap_cache *cache)
4452{
4453 int ret;
4454
4455 if (!cache->cached)
4456 return 0;
4457
4458 /* Small and recoverbale problem, only to info developer */
4459#ifdef CONFIG_BTRFS_DEBUG
4460 WARN_ON(1);
4461#endif
4462 btrfs_warn(fs_info,
4463 "unhandled fiemap cache detected: offset=%llu phys=%llu len=%llu flags=0x%x",
4464 cache->offset, cache->phys, cache->len, cache->flags);
4465 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4466 cache->len, cache->flags);
4467 cache->cached = false;
4468 if (ret > 0)
4469 ret = 0;
4470 return ret;
4471}
4472
1506fcc8
YS
4473int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4474 __u64 start, __u64 len, get_extent_t *get_extent)
4475{
975f84fe 4476 int ret = 0;
1506fcc8
YS
4477 u64 off = start;
4478 u64 max = start + len;
4479 u32 flags = 0;
975f84fe
JB
4480 u32 found_type;
4481 u64 last;
ec29ed5b 4482 u64 last_for_get_extent = 0;
1506fcc8 4483 u64 disko = 0;
ec29ed5b 4484 u64 isize = i_size_read(inode);
975f84fe 4485 struct btrfs_key found_key;
1506fcc8 4486 struct extent_map *em = NULL;
2ac55d41 4487 struct extent_state *cached_state = NULL;
975f84fe 4488 struct btrfs_path *path;
dc046b10 4489 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4490 struct fiemap_cache cache = { 0 };
1506fcc8 4491 int end = 0;
ec29ed5b
CM
4492 u64 em_start = 0;
4493 u64 em_len = 0;
4494 u64 em_end = 0;
1506fcc8
YS
4495
4496 if (len == 0)
4497 return -EINVAL;
4498
975f84fe
JB
4499 path = btrfs_alloc_path();
4500 if (!path)
4501 return -ENOMEM;
4502 path->leave_spinning = 1;
4503
da17066c
JM
4504 start = round_down(start, btrfs_inode_sectorsize(inode));
4505 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4506
ec29ed5b
CM
4507 /*
4508 * lookup the last file extent. We're not using i_size here
4509 * because there might be preallocation past i_size
4510 */
f85b7379
DS
4511 ret = btrfs_lookup_file_extent(NULL, root, path,
4512 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4513 if (ret < 0) {
4514 btrfs_free_path(path);
4515 return ret;
2d324f59
LB
4516 } else {
4517 WARN_ON(!ret);
4518 if (ret == 1)
4519 ret = 0;
975f84fe 4520 }
2d324f59 4521
975f84fe 4522 path->slots[0]--;
975f84fe 4523 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4524 found_type = found_key.type;
975f84fe 4525
ec29ed5b 4526 /* No extents, but there might be delalloc bits */
4a0cc7ca 4527 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4528 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4529 /* have to trust i_size as the end */
4530 last = (u64)-1;
4531 last_for_get_extent = isize;
4532 } else {
4533 /*
4534 * remember the start of the last extent. There are a
4535 * bunch of different factors that go into the length of the
4536 * extent, so its much less complex to remember where it started
4537 */
4538 last = found_key.offset;
4539 last_for_get_extent = last + 1;
975f84fe 4540 }
fe09e16c 4541 btrfs_release_path(path);
975f84fe 4542
ec29ed5b
CM
4543 /*
4544 * we might have some extents allocated but more delalloc past those
4545 * extents. so, we trust isize unless the start of the last extent is
4546 * beyond isize
4547 */
4548 if (last < isize) {
4549 last = (u64)-1;
4550 last_for_get_extent = isize;
4551 }
4552
ff13db41 4553 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4554 &cached_state);
ec29ed5b 4555
4d479cf0 4556 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4557 get_extent);
1506fcc8
YS
4558 if (!em)
4559 goto out;
4560 if (IS_ERR(em)) {
4561 ret = PTR_ERR(em);
4562 goto out;
4563 }
975f84fe 4564
1506fcc8 4565 while (!end) {
b76bb701 4566 u64 offset_in_extent = 0;
ea8efc74
CM
4567
4568 /* break if the extent we found is outside the range */
4569 if (em->start >= max || extent_map_end(em) < off)
4570 break;
4571
4572 /*
4573 * get_extent may return an extent that starts before our
4574 * requested range. We have to make sure the ranges
4575 * we return to fiemap always move forward and don't
4576 * overlap, so adjust the offsets here
4577 */
4578 em_start = max(em->start, off);
1506fcc8 4579
ea8efc74
CM
4580 /*
4581 * record the offset from the start of the extent
b76bb701
JB
4582 * for adjusting the disk offset below. Only do this if the
4583 * extent isn't compressed since our in ram offset may be past
4584 * what we have actually allocated on disk.
ea8efc74 4585 */
b76bb701
JB
4586 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4587 offset_in_extent = em_start - em->start;
ec29ed5b 4588 em_end = extent_map_end(em);
ea8efc74 4589 em_len = em_end - em_start;
1506fcc8
YS
4590 disko = 0;
4591 flags = 0;
4592
ea8efc74
CM
4593 /*
4594 * bump off for our next call to get_extent
4595 */
4596 off = extent_map_end(em);
4597 if (off >= max)
4598 end = 1;
4599
93dbfad7 4600 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4601 end = 1;
4602 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4603 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4604 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4605 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4606 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4607 flags |= (FIEMAP_EXTENT_DELALLOC |
4608 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4609 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4610 struct btrfs_trans_handle *trans;
4611
dc046b10
JB
4612 u64 bytenr = em->block_start -
4613 (em->start - em->orig_start);
fe09e16c 4614
ea8efc74 4615 disko = em->block_start + offset_in_extent;
fe09e16c 4616
afce772e
LF
4617 /*
4618 * We need a trans handle to get delayed refs
4619 */
4620 trans = btrfs_join_transaction(root);
4621 /*
4622 * It's OK if we can't start a trans we can still check
4623 * from commit_root
4624 */
4625 if (IS_ERR(trans))
4626 trans = NULL;
4627
fe09e16c
LB
4628 /*
4629 * As btrfs supports shared space, this information
4630 * can be exported to userspace tools via
dc046b10
JB
4631 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4632 * then we're just getting a count and we can skip the
4633 * lookup stuff.
fe09e16c 4634 */
afce772e 4635 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4636 root->objectid,
4637 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4638 if (trans)
3a45bb20 4639 btrfs_end_transaction(trans);
dc046b10 4640 if (ret < 0)
fe09e16c 4641 goto out_free;
dc046b10 4642 if (ret)
fe09e16c 4643 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4644 ret = 0;
1506fcc8
YS
4645 }
4646 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4647 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4648 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4649 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4650
1506fcc8
YS
4651 free_extent_map(em);
4652 em = NULL;
ec29ed5b
CM
4653 if ((em_start >= last) || em_len == (u64)-1 ||
4654 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4655 flags |= FIEMAP_EXTENT_LAST;
4656 end = 1;
4657 }
4658
ec29ed5b
CM
4659 /* now scan forward to see if this is really the last extent. */
4660 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4661 get_extent);
4662 if (IS_ERR(em)) {
4663 ret = PTR_ERR(em);
4664 goto out;
4665 }
4666 if (!em) {
975f84fe
JB
4667 flags |= FIEMAP_EXTENT_LAST;
4668 end = 1;
4669 }
4751832d
QW
4670 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4671 em_len, flags);
26e726af
CS
4672 if (ret) {
4673 if (ret == 1)
4674 ret = 0;
ec29ed5b 4675 goto out_free;
26e726af 4676 }
1506fcc8
YS
4677 }
4678out_free:
4751832d
QW
4679 if (!ret)
4680 ret = check_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4681 free_extent_map(em);
4682out:
fe09e16c 4683 btrfs_free_path(path);
a52f4cd2 4684 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4685 &cached_state, GFP_NOFS);
1506fcc8
YS
4686 return ret;
4687}
4688
727011e0
CM
4689static void __free_extent_buffer(struct extent_buffer *eb)
4690{
6d49ba1b 4691 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4692 kmem_cache_free(extent_buffer_cache, eb);
4693}
4694
a26e8c9f 4695int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4696{
4697 return (atomic_read(&eb->io_pages) ||
4698 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4699 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4700}
4701
4702/*
4703 * Helper for releasing extent buffer page.
4704 */
a50924e3 4705static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4706{
4707 unsigned long index;
db7f3436
JB
4708 struct page *page;
4709 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4710
4711 BUG_ON(extent_buffer_under_io(eb));
4712
a50924e3
DS
4713 index = num_extent_pages(eb->start, eb->len);
4714 if (index == 0)
db7f3436
JB
4715 return;
4716
4717 do {
4718 index--;
fb85fc9a 4719 page = eb->pages[index];
5d2361db
FL
4720 if (!page)
4721 continue;
4722 if (mapped)
db7f3436 4723 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4724 /*
4725 * We do this since we'll remove the pages after we've
4726 * removed the eb from the radix tree, so we could race
4727 * and have this page now attached to the new eb. So
4728 * only clear page_private if it's still connected to
4729 * this eb.
4730 */
4731 if (PagePrivate(page) &&
4732 page->private == (unsigned long)eb) {
4733 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4734 BUG_ON(PageDirty(page));
4735 BUG_ON(PageWriteback(page));
db7f3436 4736 /*
5d2361db
FL
4737 * We need to make sure we haven't be attached
4738 * to a new eb.
db7f3436 4739 */
5d2361db
FL
4740 ClearPagePrivate(page);
4741 set_page_private(page, 0);
4742 /* One for the page private */
09cbfeaf 4743 put_page(page);
db7f3436 4744 }
5d2361db
FL
4745
4746 if (mapped)
4747 spin_unlock(&page->mapping->private_lock);
4748
01327610 4749 /* One for when we allocated the page */
09cbfeaf 4750 put_page(page);
a50924e3 4751 } while (index != 0);
db7f3436
JB
4752}
4753
4754/*
4755 * Helper for releasing the extent buffer.
4756 */
4757static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4758{
a50924e3 4759 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4760 __free_extent_buffer(eb);
4761}
4762
f28491e0
JB
4763static struct extent_buffer *
4764__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4765 unsigned long len)
d1310b2e
CM
4766{
4767 struct extent_buffer *eb = NULL;
4768
d1b5c567 4769 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4770 eb->start = start;
4771 eb->len = len;
f28491e0 4772 eb->fs_info = fs_info;
815a51c7 4773 eb->bflags = 0;
bd681513
CM
4774 rwlock_init(&eb->lock);
4775 atomic_set(&eb->write_locks, 0);
4776 atomic_set(&eb->read_locks, 0);
4777 atomic_set(&eb->blocking_readers, 0);
4778 atomic_set(&eb->blocking_writers, 0);
4779 atomic_set(&eb->spinning_readers, 0);
4780 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4781 eb->lock_nested = 0;
bd681513
CM
4782 init_waitqueue_head(&eb->write_lock_wq);
4783 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4784
6d49ba1b
ES
4785 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4786
3083ee2e 4787 spin_lock_init(&eb->refs_lock);
d1310b2e 4788 atomic_set(&eb->refs, 1);
0b32f4bb 4789 atomic_set(&eb->io_pages, 0);
727011e0 4790
b8dae313
DS
4791 /*
4792 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4793 */
4794 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4795 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4796 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4797
4798 return eb;
4799}
4800
815a51c7
JS
4801struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4802{
4803 unsigned long i;
4804 struct page *p;
4805 struct extent_buffer *new;
4806 unsigned long num_pages = num_extent_pages(src->start, src->len);
4807
3f556f78 4808 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4809 if (new == NULL)
4810 return NULL;
4811
4812 for (i = 0; i < num_pages; i++) {
9ec72677 4813 p = alloc_page(GFP_NOFS);
db7f3436
JB
4814 if (!p) {
4815 btrfs_release_extent_buffer(new);
4816 return NULL;
4817 }
815a51c7
JS
4818 attach_extent_buffer_page(new, p);
4819 WARN_ON(PageDirty(p));
4820 SetPageUptodate(p);
4821 new->pages[i] = p;
fba1acf9 4822 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4823 }
4824
815a51c7
JS
4825 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4826 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4827
4828 return new;
4829}
4830
0f331229
OS
4831struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4832 u64 start, unsigned long len)
815a51c7
JS
4833{
4834 struct extent_buffer *eb;
3f556f78 4835 unsigned long num_pages;
815a51c7
JS
4836 unsigned long i;
4837
0f331229 4838 num_pages = num_extent_pages(start, len);
3f556f78
DS
4839
4840 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4841 if (!eb)
4842 return NULL;
4843
4844 for (i = 0; i < num_pages; i++) {
9ec72677 4845 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4846 if (!eb->pages[i])
4847 goto err;
4848 }
4849 set_extent_buffer_uptodate(eb);
4850 btrfs_set_header_nritems(eb, 0);
4851 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4852
4853 return eb;
4854err:
84167d19
SB
4855 for (; i > 0; i--)
4856 __free_page(eb->pages[i - 1]);
815a51c7
JS
4857 __free_extent_buffer(eb);
4858 return NULL;
4859}
4860
0f331229 4861struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4862 u64 start)
0f331229 4863{
da17066c 4864 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4865}
4866
0b32f4bb
JB
4867static void check_buffer_tree_ref(struct extent_buffer *eb)
4868{
242e18c7 4869 int refs;
0b32f4bb
JB
4870 /* the ref bit is tricky. We have to make sure it is set
4871 * if we have the buffer dirty. Otherwise the
4872 * code to free a buffer can end up dropping a dirty
4873 * page
4874 *
4875 * Once the ref bit is set, it won't go away while the
4876 * buffer is dirty or in writeback, and it also won't
4877 * go away while we have the reference count on the
4878 * eb bumped.
4879 *
4880 * We can't just set the ref bit without bumping the
4881 * ref on the eb because free_extent_buffer might
4882 * see the ref bit and try to clear it. If this happens
4883 * free_extent_buffer might end up dropping our original
4884 * ref by mistake and freeing the page before we are able
4885 * to add one more ref.
4886 *
4887 * So bump the ref count first, then set the bit. If someone
4888 * beat us to it, drop the ref we added.
4889 */
242e18c7
CM
4890 refs = atomic_read(&eb->refs);
4891 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4892 return;
4893
594831c4
JB
4894 spin_lock(&eb->refs_lock);
4895 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4896 atomic_inc(&eb->refs);
594831c4 4897 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4898}
4899
2457aec6
MG
4900static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4901 struct page *accessed)
5df4235e
JB
4902{
4903 unsigned long num_pages, i;
4904
0b32f4bb
JB
4905 check_buffer_tree_ref(eb);
4906
5df4235e
JB
4907 num_pages = num_extent_pages(eb->start, eb->len);
4908 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4909 struct page *p = eb->pages[i];
4910
2457aec6
MG
4911 if (p != accessed)
4912 mark_page_accessed(p);
5df4235e
JB
4913 }
4914}
4915
f28491e0
JB
4916struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4917 u64 start)
452c75c3
CS
4918{
4919 struct extent_buffer *eb;
4920
4921 rcu_read_lock();
f28491e0 4922 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4923 start >> PAGE_SHIFT);
452c75c3
CS
4924 if (eb && atomic_inc_not_zero(&eb->refs)) {
4925 rcu_read_unlock();
062c19e9
FM
4926 /*
4927 * Lock our eb's refs_lock to avoid races with
4928 * free_extent_buffer. When we get our eb it might be flagged
4929 * with EXTENT_BUFFER_STALE and another task running
4930 * free_extent_buffer might have seen that flag set,
4931 * eb->refs == 2, that the buffer isn't under IO (dirty and
4932 * writeback flags not set) and it's still in the tree (flag
4933 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4934 * of decrementing the extent buffer's reference count twice.
4935 * So here we could race and increment the eb's reference count,
4936 * clear its stale flag, mark it as dirty and drop our reference
4937 * before the other task finishes executing free_extent_buffer,
4938 * which would later result in an attempt to free an extent
4939 * buffer that is dirty.
4940 */
4941 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4942 spin_lock(&eb->refs_lock);
4943 spin_unlock(&eb->refs_lock);
4944 }
2457aec6 4945 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4946 return eb;
4947 }
4948 rcu_read_unlock();
4949
4950 return NULL;
4951}
4952
faa2dbf0
JB
4953#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4954struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4955 u64 start)
faa2dbf0
JB
4956{
4957 struct extent_buffer *eb, *exists = NULL;
4958 int ret;
4959
4960 eb = find_extent_buffer(fs_info, start);
4961 if (eb)
4962 return eb;
da17066c 4963 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4964 if (!eb)
4965 return NULL;
4966 eb->fs_info = fs_info;
4967again:
e1860a77 4968 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4969 if (ret)
4970 goto free_eb;
4971 spin_lock(&fs_info->buffer_lock);
4972 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4973 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4974 spin_unlock(&fs_info->buffer_lock);
4975 radix_tree_preload_end();
4976 if (ret == -EEXIST) {
4977 exists = find_extent_buffer(fs_info, start);
4978 if (exists)
4979 goto free_eb;
4980 else
4981 goto again;
4982 }
4983 check_buffer_tree_ref(eb);
4984 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4985
4986 /*
4987 * We will free dummy extent buffer's if they come into
4988 * free_extent_buffer with a ref count of 2, but if we are using this we
4989 * want the buffers to stay in memory until we're done with them, so
4990 * bump the ref count again.
4991 */
4992 atomic_inc(&eb->refs);
4993 return eb;
4994free_eb:
4995 btrfs_release_extent_buffer(eb);
4996 return exists;
4997}
4998#endif
4999
f28491e0 5000struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5001 u64 start)
d1310b2e 5002{
da17066c 5003 unsigned long len = fs_info->nodesize;
d1310b2e
CM
5004 unsigned long num_pages = num_extent_pages(start, len);
5005 unsigned long i;
09cbfeaf 5006 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5007 struct extent_buffer *eb;
6af118ce 5008 struct extent_buffer *exists = NULL;
d1310b2e 5009 struct page *p;
f28491e0 5010 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5011 int uptodate = 1;
19fe0a8b 5012 int ret;
d1310b2e 5013
da17066c 5014 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5015 btrfs_err(fs_info, "bad tree block start %llu", start);
5016 return ERR_PTR(-EINVAL);
5017 }
5018
f28491e0 5019 eb = find_extent_buffer(fs_info, start);
452c75c3 5020 if (eb)
6af118ce 5021 return eb;
6af118ce 5022
23d79d81 5023 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5024 if (!eb)
c871b0f2 5025 return ERR_PTR(-ENOMEM);
d1310b2e 5026
727011e0 5027 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5028 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5029 if (!p) {
5030 exists = ERR_PTR(-ENOMEM);
6af118ce 5031 goto free_eb;
c871b0f2 5032 }
4f2de97a
JB
5033
5034 spin_lock(&mapping->private_lock);
5035 if (PagePrivate(p)) {
5036 /*
5037 * We could have already allocated an eb for this page
5038 * and attached one so lets see if we can get a ref on
5039 * the existing eb, and if we can we know it's good and
5040 * we can just return that one, else we know we can just
5041 * overwrite page->private.
5042 */
5043 exists = (struct extent_buffer *)p->private;
5044 if (atomic_inc_not_zero(&exists->refs)) {
5045 spin_unlock(&mapping->private_lock);
5046 unlock_page(p);
09cbfeaf 5047 put_page(p);
2457aec6 5048 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5049 goto free_eb;
5050 }
5ca64f45 5051 exists = NULL;
4f2de97a 5052
0b32f4bb 5053 /*
4f2de97a
JB
5054 * Do this so attach doesn't complain and we need to
5055 * drop the ref the old guy had.
5056 */
5057 ClearPagePrivate(p);
0b32f4bb 5058 WARN_ON(PageDirty(p));
09cbfeaf 5059 put_page(p);
d1310b2e 5060 }
4f2de97a
JB
5061 attach_extent_buffer_page(eb, p);
5062 spin_unlock(&mapping->private_lock);
0b32f4bb 5063 WARN_ON(PageDirty(p));
727011e0 5064 eb->pages[i] = p;
d1310b2e
CM
5065 if (!PageUptodate(p))
5066 uptodate = 0;
eb14ab8e
CM
5067
5068 /*
5069 * see below about how we avoid a nasty race with release page
5070 * and why we unlock later
5071 */
d1310b2e
CM
5072 }
5073 if (uptodate)
b4ce94de 5074 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5075again:
e1860a77 5076 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5077 if (ret) {
5078 exists = ERR_PTR(ret);
19fe0a8b 5079 goto free_eb;
c871b0f2 5080 }
19fe0a8b 5081
f28491e0
JB
5082 spin_lock(&fs_info->buffer_lock);
5083 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5084 start >> PAGE_SHIFT, eb);
f28491e0 5085 spin_unlock(&fs_info->buffer_lock);
452c75c3 5086 radix_tree_preload_end();
19fe0a8b 5087 if (ret == -EEXIST) {
f28491e0 5088 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5089 if (exists)
5090 goto free_eb;
5091 else
115391d2 5092 goto again;
6af118ce 5093 }
6af118ce 5094 /* add one reference for the tree */
0b32f4bb 5095 check_buffer_tree_ref(eb);
34b41ace 5096 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5097
5098 /*
5099 * there is a race where release page may have
5100 * tried to find this extent buffer in the radix
5101 * but failed. It will tell the VM it is safe to
5102 * reclaim the, and it will clear the page private bit.
5103 * We must make sure to set the page private bit properly
5104 * after the extent buffer is in the radix tree so
5105 * it doesn't get lost
5106 */
727011e0
CM
5107 SetPageChecked(eb->pages[0]);
5108 for (i = 1; i < num_pages; i++) {
fb85fc9a 5109 p = eb->pages[i];
727011e0
CM
5110 ClearPageChecked(p);
5111 unlock_page(p);
5112 }
5113 unlock_page(eb->pages[0]);
d1310b2e
CM
5114 return eb;
5115
6af118ce 5116free_eb:
5ca64f45 5117 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5118 for (i = 0; i < num_pages; i++) {
5119 if (eb->pages[i])
5120 unlock_page(eb->pages[i]);
5121 }
eb14ab8e 5122
897ca6e9 5123 btrfs_release_extent_buffer(eb);
6af118ce 5124 return exists;
d1310b2e 5125}
d1310b2e 5126
3083ee2e
JB
5127static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5128{
5129 struct extent_buffer *eb =
5130 container_of(head, struct extent_buffer, rcu_head);
5131
5132 __free_extent_buffer(eb);
5133}
5134
3083ee2e 5135/* Expects to have eb->eb_lock already held */
f7a52a40 5136static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5137{
5138 WARN_ON(atomic_read(&eb->refs) == 0);
5139 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5140 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5141 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5142
815a51c7 5143 spin_unlock(&eb->refs_lock);
3083ee2e 5144
f28491e0
JB
5145 spin_lock(&fs_info->buffer_lock);
5146 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5147 eb->start >> PAGE_SHIFT);
f28491e0 5148 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5149 } else {
5150 spin_unlock(&eb->refs_lock);
815a51c7 5151 }
3083ee2e
JB
5152
5153 /* Should be safe to release our pages at this point */
a50924e3 5154 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5155#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5156 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5157 __free_extent_buffer(eb);
5158 return 1;
5159 }
5160#endif
3083ee2e 5161 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5162 return 1;
3083ee2e
JB
5163 }
5164 spin_unlock(&eb->refs_lock);
e64860aa
JB
5165
5166 return 0;
3083ee2e
JB
5167}
5168
d1310b2e
CM
5169void free_extent_buffer(struct extent_buffer *eb)
5170{
242e18c7
CM
5171 int refs;
5172 int old;
d1310b2e
CM
5173 if (!eb)
5174 return;
5175
242e18c7
CM
5176 while (1) {
5177 refs = atomic_read(&eb->refs);
5178 if (refs <= 3)
5179 break;
5180 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5181 if (old == refs)
5182 return;
5183 }
5184
3083ee2e 5185 spin_lock(&eb->refs_lock);
815a51c7
JS
5186 if (atomic_read(&eb->refs) == 2 &&
5187 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5188 atomic_dec(&eb->refs);
5189
3083ee2e
JB
5190 if (atomic_read(&eb->refs) == 2 &&
5191 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5192 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5193 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5194 atomic_dec(&eb->refs);
5195
5196 /*
5197 * I know this is terrible, but it's temporary until we stop tracking
5198 * the uptodate bits and such for the extent buffers.
5199 */
f7a52a40 5200 release_extent_buffer(eb);
3083ee2e
JB
5201}
5202
5203void free_extent_buffer_stale(struct extent_buffer *eb)
5204{
5205 if (!eb)
d1310b2e
CM
5206 return;
5207
3083ee2e
JB
5208 spin_lock(&eb->refs_lock);
5209 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5210
0b32f4bb 5211 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5212 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5213 atomic_dec(&eb->refs);
f7a52a40 5214 release_extent_buffer(eb);
d1310b2e 5215}
d1310b2e 5216
1d4284bd 5217void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5218{
d1310b2e
CM
5219 unsigned long i;
5220 unsigned long num_pages;
5221 struct page *page;
5222
d1310b2e
CM
5223 num_pages = num_extent_pages(eb->start, eb->len);
5224
5225 for (i = 0; i < num_pages; i++) {
fb85fc9a 5226 page = eb->pages[i];
b9473439 5227 if (!PageDirty(page))
d2c3f4f6
CM
5228 continue;
5229
a61e6f29 5230 lock_page(page);
eb14ab8e
CM
5231 WARN_ON(!PagePrivate(page));
5232
d1310b2e 5233 clear_page_dirty_for_io(page);
0ee0fda0 5234 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5235 if (!PageDirty(page)) {
5236 radix_tree_tag_clear(&page->mapping->page_tree,
5237 page_index(page),
5238 PAGECACHE_TAG_DIRTY);
5239 }
0ee0fda0 5240 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5241 ClearPageError(page);
a61e6f29 5242 unlock_page(page);
d1310b2e 5243 }
0b32f4bb 5244 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5245}
d1310b2e 5246
0b32f4bb 5247int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5248{
5249 unsigned long i;
5250 unsigned long num_pages;
b9473439 5251 int was_dirty = 0;
d1310b2e 5252
0b32f4bb
JB
5253 check_buffer_tree_ref(eb);
5254
b9473439 5255 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5256
d1310b2e 5257 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5258 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5259 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5260
b9473439 5261 for (i = 0; i < num_pages; i++)
fb85fc9a 5262 set_page_dirty(eb->pages[i]);
b9473439 5263 return was_dirty;
d1310b2e 5264}
d1310b2e 5265
69ba3927 5266void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5267{
5268 unsigned long i;
5269 struct page *page;
5270 unsigned long num_pages;
5271
b4ce94de 5272 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5273 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5274 for (i = 0; i < num_pages; i++) {
fb85fc9a 5275 page = eb->pages[i];
33958dc6
CM
5276 if (page)
5277 ClearPageUptodate(page);
1259ab75 5278 }
1259ab75
CM
5279}
5280
09c25a8c 5281void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5282{
5283 unsigned long i;
5284 struct page *page;
5285 unsigned long num_pages;
5286
0b32f4bb 5287 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5288 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5289 for (i = 0; i < num_pages; i++) {
fb85fc9a 5290 page = eb->pages[i];
d1310b2e
CM
5291 SetPageUptodate(page);
5292 }
d1310b2e 5293}
d1310b2e 5294
0b32f4bb 5295int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5296{
0b32f4bb 5297 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5298}
d1310b2e
CM
5299
5300int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5301 struct extent_buffer *eb, int wait,
f188591e 5302 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5303{
5304 unsigned long i;
d1310b2e
CM
5305 struct page *page;
5306 int err;
5307 int ret = 0;
ce9adaa5
CM
5308 int locked_pages = 0;
5309 int all_uptodate = 1;
d1310b2e 5310 unsigned long num_pages;
727011e0 5311 unsigned long num_reads = 0;
a86c12c7 5312 struct bio *bio = NULL;
c8b97818 5313 unsigned long bio_flags = 0;
a86c12c7 5314
b4ce94de 5315 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5316 return 0;
5317
d1310b2e 5318 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5319 for (i = 0; i < num_pages; i++) {
fb85fc9a 5320 page = eb->pages[i];
bb82ab88 5321 if (wait == WAIT_NONE) {
2db04966 5322 if (!trylock_page(page))
ce9adaa5 5323 goto unlock_exit;
d1310b2e
CM
5324 } else {
5325 lock_page(page);
5326 }
ce9adaa5 5327 locked_pages++;
2571e739
LB
5328 }
5329 /*
5330 * We need to firstly lock all pages to make sure that
5331 * the uptodate bit of our pages won't be affected by
5332 * clear_extent_buffer_uptodate().
5333 */
8436ea91 5334 for (i = 0; i < num_pages; i++) {
2571e739 5335 page = eb->pages[i];
727011e0
CM
5336 if (!PageUptodate(page)) {
5337 num_reads++;
ce9adaa5 5338 all_uptodate = 0;
727011e0 5339 }
ce9adaa5 5340 }
2571e739 5341
ce9adaa5 5342 if (all_uptodate) {
8436ea91 5343 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5344 goto unlock_exit;
5345 }
5346
656f30db 5347 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5348 eb->read_mirror = 0;
0b32f4bb 5349 atomic_set(&eb->io_pages, num_reads);
8436ea91 5350 for (i = 0; i < num_pages; i++) {
fb85fc9a 5351 page = eb->pages[i];
baf863b9 5352
ce9adaa5 5353 if (!PageUptodate(page)) {
baf863b9
LB
5354 if (ret) {
5355 atomic_dec(&eb->io_pages);
5356 unlock_page(page);
5357 continue;
5358 }
5359
f188591e 5360 ClearPageError(page);
a86c12c7 5361 err = __extent_read_full_page(tree, page,
f188591e 5362 get_extent, &bio,
d4c7ca86 5363 mirror_num, &bio_flags,
1f7ad75b 5364 REQ_META);
baf863b9 5365 if (err) {
d1310b2e 5366 ret = err;
baf863b9
LB
5367 /*
5368 * We use &bio in above __extent_read_full_page,
5369 * so we ensure that if it returns error, the
5370 * current page fails to add itself to bio and
5371 * it's been unlocked.
5372 *
5373 * We must dec io_pages by ourselves.
5374 */
5375 atomic_dec(&eb->io_pages);
5376 }
d1310b2e
CM
5377 } else {
5378 unlock_page(page);
5379 }
5380 }
5381
355808c2 5382 if (bio) {
1f7ad75b 5383 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5384 if (err)
5385 return err;
355808c2 5386 }
a86c12c7 5387
bb82ab88 5388 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5389 return ret;
d397712b 5390
8436ea91 5391 for (i = 0; i < num_pages; i++) {
fb85fc9a 5392 page = eb->pages[i];
d1310b2e 5393 wait_on_page_locked(page);
d397712b 5394 if (!PageUptodate(page))
d1310b2e 5395 ret = -EIO;
d1310b2e 5396 }
d397712b 5397
d1310b2e 5398 return ret;
ce9adaa5
CM
5399
5400unlock_exit:
d397712b 5401 while (locked_pages > 0) {
ce9adaa5 5402 locked_pages--;
8436ea91
JB
5403 page = eb->pages[locked_pages];
5404 unlock_page(page);
ce9adaa5
CM
5405 }
5406 return ret;
d1310b2e 5407}
d1310b2e
CM
5408
5409void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5410 unsigned long start,
5411 unsigned long len)
5412{
5413 size_t cur;
5414 size_t offset;
5415 struct page *page;
5416 char *kaddr;
5417 char *dst = (char *)dstv;
09cbfeaf
KS
5418 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5419 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5420
5421 WARN_ON(start > eb->len);
5422 WARN_ON(start + len > eb->start + eb->len);
5423
09cbfeaf 5424 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5425
d397712b 5426 while (len > 0) {
fb85fc9a 5427 page = eb->pages[i];
d1310b2e 5428
09cbfeaf 5429 cur = min(len, (PAGE_SIZE - offset));
a6591715 5430 kaddr = page_address(page);
d1310b2e 5431 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5432
5433 dst += cur;
5434 len -= cur;
5435 offset = 0;
5436 i++;
5437 }
5438}
d1310b2e 5439
550ac1d8
GH
5440int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5441 unsigned long start,
5442 unsigned long len)
5443{
5444 size_t cur;
5445 size_t offset;
5446 struct page *page;
5447 char *kaddr;
5448 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5449 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5450 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5451 int ret = 0;
5452
5453 WARN_ON(start > eb->len);
5454 WARN_ON(start + len > eb->start + eb->len);
5455
09cbfeaf 5456 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5457
5458 while (len > 0) {
fb85fc9a 5459 page = eb->pages[i];
550ac1d8 5460
09cbfeaf 5461 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5462 kaddr = page_address(page);
5463 if (copy_to_user(dst, kaddr + offset, cur)) {
5464 ret = -EFAULT;
5465 break;
5466 }
5467
5468 dst += cur;
5469 len -= cur;
5470 offset = 0;
5471 i++;
5472 }
5473
5474 return ret;
5475}
5476
415b35a5
LB
5477/*
5478 * return 0 if the item is found within a page.
5479 * return 1 if the item spans two pages.
5480 * return -EINVAL otherwise.
5481 */
d1310b2e 5482int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5483 unsigned long min_len, char **map,
d1310b2e 5484 unsigned long *map_start,
a6591715 5485 unsigned long *map_len)
d1310b2e 5486{
09cbfeaf 5487 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5488 char *kaddr;
5489 struct page *p;
09cbfeaf
KS
5490 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5491 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5492 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5493 PAGE_SHIFT;
d1310b2e
CM
5494
5495 if (i != end_i)
415b35a5 5496 return 1;
d1310b2e
CM
5497
5498 if (i == 0) {
5499 offset = start_offset;
5500 *map_start = 0;
5501 } else {
5502 offset = 0;
09cbfeaf 5503 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5504 }
d397712b 5505
d1310b2e 5506 if (start + min_len > eb->len) {
5d163e0e 5507 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5508 eb->start, eb->len, start, min_len);
85026533 5509 return -EINVAL;
d1310b2e
CM
5510 }
5511
fb85fc9a 5512 p = eb->pages[i];
a6591715 5513 kaddr = page_address(p);
d1310b2e 5514 *map = kaddr + offset;
09cbfeaf 5515 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5516 return 0;
5517}
d1310b2e 5518
d1310b2e
CM
5519int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5520 unsigned long start,
5521 unsigned long len)
5522{
5523 size_t cur;
5524 size_t offset;
5525 struct page *page;
5526 char *kaddr;
5527 char *ptr = (char *)ptrv;
09cbfeaf
KS
5528 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5529 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5530 int ret = 0;
5531
5532 WARN_ON(start > eb->len);
5533 WARN_ON(start + len > eb->start + eb->len);
5534
09cbfeaf 5535 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5536
d397712b 5537 while (len > 0) {
fb85fc9a 5538 page = eb->pages[i];
d1310b2e 5539
09cbfeaf 5540 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5541
a6591715 5542 kaddr = page_address(page);
d1310b2e 5543 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5544 if (ret)
5545 break;
5546
5547 ptr += cur;
5548 len -= cur;
5549 offset = 0;
5550 i++;
5551 }
5552 return ret;
5553}
d1310b2e 5554
f157bf76
DS
5555void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5556 const void *srcv)
5557{
5558 char *kaddr;
5559
5560 WARN_ON(!PageUptodate(eb->pages[0]));
5561 kaddr = page_address(eb->pages[0]);
5562 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5563 BTRFS_FSID_SIZE);
5564}
5565
5566void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5567{
5568 char *kaddr;
5569
5570 WARN_ON(!PageUptodate(eb->pages[0]));
5571 kaddr = page_address(eb->pages[0]);
5572 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5573 BTRFS_FSID_SIZE);
5574}
5575
d1310b2e
CM
5576void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5577 unsigned long start, unsigned long len)
5578{
5579 size_t cur;
5580 size_t offset;
5581 struct page *page;
5582 char *kaddr;
5583 char *src = (char *)srcv;
09cbfeaf
KS
5584 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5585 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5586
5587 WARN_ON(start > eb->len);
5588 WARN_ON(start + len > eb->start + eb->len);
5589
09cbfeaf 5590 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5591
d397712b 5592 while (len > 0) {
fb85fc9a 5593 page = eb->pages[i];
d1310b2e
CM
5594 WARN_ON(!PageUptodate(page));
5595
09cbfeaf 5596 cur = min(len, PAGE_SIZE - offset);
a6591715 5597 kaddr = page_address(page);
d1310b2e 5598 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5599
5600 src += cur;
5601 len -= cur;
5602 offset = 0;
5603 i++;
5604 }
5605}
d1310b2e 5606
b159fa28
DS
5607void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5608 unsigned long len)
d1310b2e
CM
5609{
5610 size_t cur;
5611 size_t offset;
5612 struct page *page;
5613 char *kaddr;
09cbfeaf
KS
5614 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5615 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5616
5617 WARN_ON(start > eb->len);
5618 WARN_ON(start + len > eb->start + eb->len);
5619
09cbfeaf 5620 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5621
d397712b 5622 while (len > 0) {
fb85fc9a 5623 page = eb->pages[i];
d1310b2e
CM
5624 WARN_ON(!PageUptodate(page));
5625
09cbfeaf 5626 cur = min(len, PAGE_SIZE - offset);
a6591715 5627 kaddr = page_address(page);
b159fa28 5628 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5629
5630 len -= cur;
5631 offset = 0;
5632 i++;
5633 }
5634}
d1310b2e 5635
58e8012c
DS
5636void copy_extent_buffer_full(struct extent_buffer *dst,
5637 struct extent_buffer *src)
5638{
5639 int i;
5640 unsigned num_pages;
5641
5642 ASSERT(dst->len == src->len);
5643
5644 num_pages = num_extent_pages(dst->start, dst->len);
5645 for (i = 0; i < num_pages; i++)
5646 copy_page(page_address(dst->pages[i]),
5647 page_address(src->pages[i]));
5648}
5649
d1310b2e
CM
5650void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5651 unsigned long dst_offset, unsigned long src_offset,
5652 unsigned long len)
5653{
5654 u64 dst_len = dst->len;
5655 size_t cur;
5656 size_t offset;
5657 struct page *page;
5658 char *kaddr;
09cbfeaf
KS
5659 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5660 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5661
5662 WARN_ON(src->len != dst_len);
5663
5664 offset = (start_offset + dst_offset) &
09cbfeaf 5665 (PAGE_SIZE - 1);
d1310b2e 5666
d397712b 5667 while (len > 0) {
fb85fc9a 5668 page = dst->pages[i];
d1310b2e
CM
5669 WARN_ON(!PageUptodate(page));
5670
09cbfeaf 5671 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5672
a6591715 5673 kaddr = page_address(page);
d1310b2e 5674 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5675
5676 src_offset += cur;
5677 len -= cur;
5678 offset = 0;
5679 i++;
5680 }
5681}
d1310b2e 5682
2fe1d551
OS
5683void le_bitmap_set(u8 *map, unsigned int start, int len)
5684{
5685 u8 *p = map + BIT_BYTE(start);
5686 const unsigned int size = start + len;
5687 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5688 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5689
5690 while (len - bits_to_set >= 0) {
5691 *p |= mask_to_set;
5692 len -= bits_to_set;
5693 bits_to_set = BITS_PER_BYTE;
9c894696 5694 mask_to_set = ~0;
2fe1d551
OS
5695 p++;
5696 }
5697 if (len) {
5698 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5699 *p |= mask_to_set;
5700 }
5701}
5702
5703void le_bitmap_clear(u8 *map, unsigned int start, int len)
5704{
5705 u8 *p = map + BIT_BYTE(start);
5706 const unsigned int size = start + len;
5707 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5708 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5709
5710 while (len - bits_to_clear >= 0) {
5711 *p &= ~mask_to_clear;
5712 len -= bits_to_clear;
5713 bits_to_clear = BITS_PER_BYTE;
9c894696 5714 mask_to_clear = ~0;
2fe1d551
OS
5715 p++;
5716 }
5717 if (len) {
5718 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5719 *p &= ~mask_to_clear;
5720 }
5721}
3e1e8bb7
OS
5722
5723/*
5724 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5725 * given bit number
5726 * @eb: the extent buffer
5727 * @start: offset of the bitmap item in the extent buffer
5728 * @nr: bit number
5729 * @page_index: return index of the page in the extent buffer that contains the
5730 * given bit number
5731 * @page_offset: return offset into the page given by page_index
5732 *
5733 * This helper hides the ugliness of finding the byte in an extent buffer which
5734 * contains a given bit.
5735 */
5736static inline void eb_bitmap_offset(struct extent_buffer *eb,
5737 unsigned long start, unsigned long nr,
5738 unsigned long *page_index,
5739 size_t *page_offset)
5740{
09cbfeaf 5741 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5742 size_t byte_offset = BIT_BYTE(nr);
5743 size_t offset;
5744
5745 /*
5746 * The byte we want is the offset of the extent buffer + the offset of
5747 * the bitmap item in the extent buffer + the offset of the byte in the
5748 * bitmap item.
5749 */
5750 offset = start_offset + start + byte_offset;
5751
09cbfeaf
KS
5752 *page_index = offset >> PAGE_SHIFT;
5753 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5754}
5755
5756/**
5757 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5758 * @eb: the extent buffer
5759 * @start: offset of the bitmap item in the extent buffer
5760 * @nr: bit number to test
5761 */
5762int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5763 unsigned long nr)
5764{
2fe1d551 5765 u8 *kaddr;
3e1e8bb7
OS
5766 struct page *page;
5767 unsigned long i;
5768 size_t offset;
5769
5770 eb_bitmap_offset(eb, start, nr, &i, &offset);
5771 page = eb->pages[i];
5772 WARN_ON(!PageUptodate(page));
5773 kaddr = page_address(page);
5774 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5775}
5776
5777/**
5778 * extent_buffer_bitmap_set - set an area of a bitmap
5779 * @eb: the extent buffer
5780 * @start: offset of the bitmap item in the extent buffer
5781 * @pos: bit number of the first bit
5782 * @len: number of bits to set
5783 */
5784void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5785 unsigned long pos, unsigned long len)
5786{
2fe1d551 5787 u8 *kaddr;
3e1e8bb7
OS
5788 struct page *page;
5789 unsigned long i;
5790 size_t offset;
5791 const unsigned int size = pos + len;
5792 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5793 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5794
5795 eb_bitmap_offset(eb, start, pos, &i, &offset);
5796 page = eb->pages[i];
5797 WARN_ON(!PageUptodate(page));
5798 kaddr = page_address(page);
5799
5800 while (len >= bits_to_set) {
5801 kaddr[offset] |= mask_to_set;
5802 len -= bits_to_set;
5803 bits_to_set = BITS_PER_BYTE;
9c894696 5804 mask_to_set = ~0;
09cbfeaf 5805 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5806 offset = 0;
5807 page = eb->pages[++i];
5808 WARN_ON(!PageUptodate(page));
5809 kaddr = page_address(page);
5810 }
5811 }
5812 if (len) {
5813 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5814 kaddr[offset] |= mask_to_set;
5815 }
5816}
5817
5818
5819/**
5820 * extent_buffer_bitmap_clear - clear an area of a bitmap
5821 * @eb: the extent buffer
5822 * @start: offset of the bitmap item in the extent buffer
5823 * @pos: bit number of the first bit
5824 * @len: number of bits to clear
5825 */
5826void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5827 unsigned long pos, unsigned long len)
5828{
2fe1d551 5829 u8 *kaddr;
3e1e8bb7
OS
5830 struct page *page;
5831 unsigned long i;
5832 size_t offset;
5833 const unsigned int size = pos + len;
5834 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5835 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5836
5837 eb_bitmap_offset(eb, start, pos, &i, &offset);
5838 page = eb->pages[i];
5839 WARN_ON(!PageUptodate(page));
5840 kaddr = page_address(page);
5841
5842 while (len >= bits_to_clear) {
5843 kaddr[offset] &= ~mask_to_clear;
5844 len -= bits_to_clear;
5845 bits_to_clear = BITS_PER_BYTE;
9c894696 5846 mask_to_clear = ~0;
09cbfeaf 5847 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5848 offset = 0;
5849 page = eb->pages[++i];
5850 WARN_ON(!PageUptodate(page));
5851 kaddr = page_address(page);
5852 }
5853 }
5854 if (len) {
5855 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5856 kaddr[offset] &= ~mask_to_clear;
5857 }
5858}
5859
3387206f
ST
5860static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5861{
5862 unsigned long distance = (src > dst) ? src - dst : dst - src;
5863 return distance < len;
5864}
5865
d1310b2e
CM
5866static void copy_pages(struct page *dst_page, struct page *src_page,
5867 unsigned long dst_off, unsigned long src_off,
5868 unsigned long len)
5869{
a6591715 5870 char *dst_kaddr = page_address(dst_page);
d1310b2e 5871 char *src_kaddr;
727011e0 5872 int must_memmove = 0;
d1310b2e 5873
3387206f 5874 if (dst_page != src_page) {
a6591715 5875 src_kaddr = page_address(src_page);
3387206f 5876 } else {
d1310b2e 5877 src_kaddr = dst_kaddr;
727011e0
CM
5878 if (areas_overlap(src_off, dst_off, len))
5879 must_memmove = 1;
3387206f 5880 }
d1310b2e 5881
727011e0
CM
5882 if (must_memmove)
5883 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5884 else
5885 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5886}
5887
5888void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5889 unsigned long src_offset, unsigned long len)
5890{
0b246afa 5891 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5892 size_t cur;
5893 size_t dst_off_in_page;
5894 size_t src_off_in_page;
09cbfeaf 5895 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5896 unsigned long dst_i;
5897 unsigned long src_i;
5898
5899 if (src_offset + len > dst->len) {
0b246afa 5900 btrfs_err(fs_info,
5d163e0e
JM
5901 "memmove bogus src_offset %lu move len %lu dst len %lu",
5902 src_offset, len, dst->len);
d1310b2e
CM
5903 BUG_ON(1);
5904 }
5905 if (dst_offset + len > dst->len) {
0b246afa 5906 btrfs_err(fs_info,
5d163e0e
JM
5907 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5908 dst_offset, len, dst->len);
d1310b2e
CM
5909 BUG_ON(1);
5910 }
5911
d397712b 5912 while (len > 0) {
d1310b2e 5913 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5914 (PAGE_SIZE - 1);
d1310b2e 5915 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5916 (PAGE_SIZE - 1);
d1310b2e 5917
09cbfeaf
KS
5918 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5919 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5920
09cbfeaf 5921 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5922 src_off_in_page));
5923 cur = min_t(unsigned long, cur,
09cbfeaf 5924 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5925
fb85fc9a 5926 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5927 dst_off_in_page, src_off_in_page, cur);
5928
5929 src_offset += cur;
5930 dst_offset += cur;
5931 len -= cur;
5932 }
5933}
d1310b2e
CM
5934
5935void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5936 unsigned long src_offset, unsigned long len)
5937{
0b246afa 5938 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5939 size_t cur;
5940 size_t dst_off_in_page;
5941 size_t src_off_in_page;
5942 unsigned long dst_end = dst_offset + len - 1;
5943 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5944 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5945 unsigned long dst_i;
5946 unsigned long src_i;
5947
5948 if (src_offset + len > dst->len) {
0b246afa 5949 btrfs_err(fs_info,
5d163e0e
JM
5950 "memmove bogus src_offset %lu move len %lu len %lu",
5951 src_offset, len, dst->len);
d1310b2e
CM
5952 BUG_ON(1);
5953 }
5954 if (dst_offset + len > dst->len) {
0b246afa 5955 btrfs_err(fs_info,
5d163e0e
JM
5956 "memmove bogus dst_offset %lu move len %lu len %lu",
5957 dst_offset, len, dst->len);
d1310b2e
CM
5958 BUG_ON(1);
5959 }
727011e0 5960 if (dst_offset < src_offset) {
d1310b2e
CM
5961 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5962 return;
5963 }
d397712b 5964 while (len > 0) {
09cbfeaf
KS
5965 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5966 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5967
5968 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5969 (PAGE_SIZE - 1);
d1310b2e 5970 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5971 (PAGE_SIZE - 1);
d1310b2e
CM
5972
5973 cur = min_t(unsigned long, len, src_off_in_page + 1);
5974 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5975 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5976 dst_off_in_page - cur + 1,
5977 src_off_in_page - cur + 1, cur);
5978
5979 dst_end -= cur;
5980 src_end -= cur;
5981 len -= cur;
5982 }
5983}
6af118ce 5984
f7a52a40 5985int try_release_extent_buffer(struct page *page)
19fe0a8b 5986{
6af118ce 5987 struct extent_buffer *eb;
6af118ce 5988
3083ee2e 5989 /*
01327610 5990 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5991 * now.
5992 */
5993 spin_lock(&page->mapping->private_lock);
5994 if (!PagePrivate(page)) {
5995 spin_unlock(&page->mapping->private_lock);
4f2de97a 5996 return 1;
45f49bce 5997 }
6af118ce 5998
3083ee2e
JB
5999 eb = (struct extent_buffer *)page->private;
6000 BUG_ON(!eb);
19fe0a8b
MX
6001
6002 /*
3083ee2e
JB
6003 * This is a little awful but should be ok, we need to make sure that
6004 * the eb doesn't disappear out from under us while we're looking at
6005 * this page.
19fe0a8b 6006 */
3083ee2e 6007 spin_lock(&eb->refs_lock);
0b32f4bb 6008 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6009 spin_unlock(&eb->refs_lock);
6010 spin_unlock(&page->mapping->private_lock);
6011 return 0;
b9473439 6012 }
3083ee2e 6013 spin_unlock(&page->mapping->private_lock);
897ca6e9 6014
19fe0a8b 6015 /*
3083ee2e
JB
6016 * If tree ref isn't set then we know the ref on this eb is a real ref,
6017 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6018 */
3083ee2e
JB
6019 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6020 spin_unlock(&eb->refs_lock);
6021 return 0;
b9473439 6022 }
19fe0a8b 6023
f7a52a40 6024 return release_extent_buffer(eb);
6af118ce 6025}