]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
mpage: mpage_readpages() should submit IO as read-ahead
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
c6100a4b
JB
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
8d599ae1 95}
6d49ba1b
ES
96#else
97#define btrfs_leak_debug_add(new, head) do {} while (0)
98#define btrfs_leak_debug_del(entry) do {} while (0)
99#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 100#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 101#endif
d1310b2e 102
d1310b2e
CM
103#define BUFFER_LRU_MAX 64
104
105struct tree_entry {
106 u64 start;
107 u64 end;
d1310b2e
CM
108 struct rb_node rb_node;
109};
110
111struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
771ed689
CM
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
70fd7614 119 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
57599c7e 123static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
57599c7e 130 return 0;
d38ed27f 131 if (set && (state->state & bits) == bits)
57599c7e 132 return 0;
fefdc557 133 if (!set && (state->state & bits) == 0)
57599c7e 134 return 0;
d38ed27f 135 changeset->bytes_changed += state->end - state->start + 1;
53d32359 136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 137 GFP_ATOMIC);
57599c7e 138 return ret;
d38ed27f
QW
139}
140
aab6e9ed 141static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 146 sizeof(struct extent_state), 0,
fba4b697 147 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 152 sizeof(struct extent_buffer), 0,
fba4b697 153 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b 156
8ac9f7c1
KO
157 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio),
159 BIOSET_NEED_BVECS))
9be3395b 160 goto free_buffer_cache;
b208c2f7 161
8ac9f7c1 162 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7 167free_bioset:
8ac9f7c1 168 bioset_exit(&btrfs_bioset);
b208c2f7 169
9be3395b
CM
170free_buffer_cache:
171 kmem_cache_destroy(extent_buffer_cache);
172 extent_buffer_cache = NULL;
173
d1310b2e
CM
174free_state_cache:
175 kmem_cache_destroy(extent_state_cache);
9be3395b 176 extent_state_cache = NULL;
d1310b2e
CM
177 return -ENOMEM;
178}
179
e67c718b 180void __cold extent_io_exit(void)
d1310b2e 181{
6d49ba1b 182 btrfs_leak_debug_check();
8c0a8537
KS
183
184 /*
185 * Make sure all delayed rcu free are flushed before we
186 * destroy caches.
187 */
188 rcu_barrier();
5598e900
KM
189 kmem_cache_destroy(extent_state_cache);
190 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 191 bioset_exit(&btrfs_bioset);
d1310b2e
CM
192}
193
194void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 195 void *private_data)
d1310b2e 196{
6bef4d31 197 tree->state = RB_ROOT;
d1310b2e
CM
198 tree->ops = NULL;
199 tree->dirty_bytes = 0;
70dec807 200 spin_lock_init(&tree->lock);
c6100a4b 201 tree->private_data = private_data;
d1310b2e 202}
d1310b2e 203
b2950863 204static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
205{
206 struct extent_state *state;
d1310b2e 207
3ba7ab22
MH
208 /*
209 * The given mask might be not appropriate for the slab allocator,
210 * drop the unsupported bits
211 */
212 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 213 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 214 if (!state)
d1310b2e
CM
215 return state;
216 state->state = 0;
47dc196a 217 state->failrec = NULL;
27a3507d 218 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 219 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 220 refcount_set(&state->refs, 1);
d1310b2e 221 init_waitqueue_head(&state->wq);
143bede5 222 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
223 return state;
224}
d1310b2e 225
4845e44f 226void free_extent_state(struct extent_state *state)
d1310b2e 227{
d1310b2e
CM
228 if (!state)
229 return;
b7ac31b7 230 if (refcount_dec_and_test(&state->refs)) {
27a3507d 231 WARN_ON(extent_state_in_tree(state));
6d49ba1b 232 btrfs_leak_debug_del(&state->leak_list);
143bede5 233 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
234 kmem_cache_free(extent_state_cache, state);
235 }
236}
d1310b2e 237
f2071b21
FM
238static struct rb_node *tree_insert(struct rb_root *root,
239 struct rb_node *search_start,
240 u64 offset,
12cfbad9
FDBM
241 struct rb_node *node,
242 struct rb_node ***p_in,
243 struct rb_node **parent_in)
d1310b2e 244{
f2071b21 245 struct rb_node **p;
d397712b 246 struct rb_node *parent = NULL;
d1310b2e
CM
247 struct tree_entry *entry;
248
12cfbad9
FDBM
249 if (p_in && parent_in) {
250 p = *p_in;
251 parent = *parent_in;
252 goto do_insert;
253 }
254
f2071b21 255 p = search_start ? &search_start : &root->rb_node;
d397712b 256 while (*p) {
d1310b2e
CM
257 parent = *p;
258 entry = rb_entry(parent, struct tree_entry, rb_node);
259
260 if (offset < entry->start)
261 p = &(*p)->rb_left;
262 else if (offset > entry->end)
263 p = &(*p)->rb_right;
264 else
265 return parent;
266 }
267
12cfbad9 268do_insert:
d1310b2e
CM
269 rb_link_node(node, parent, p);
270 rb_insert_color(node, root);
271 return NULL;
272}
273
80ea96b1 274static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
275 struct rb_node **prev_ret,
276 struct rb_node **next_ret,
277 struct rb_node ***p_ret,
278 struct rb_node **parent_ret)
d1310b2e 279{
80ea96b1 280 struct rb_root *root = &tree->state;
12cfbad9 281 struct rb_node **n = &root->rb_node;
d1310b2e
CM
282 struct rb_node *prev = NULL;
283 struct rb_node *orig_prev = NULL;
284 struct tree_entry *entry;
285 struct tree_entry *prev_entry = NULL;
286
12cfbad9
FDBM
287 while (*n) {
288 prev = *n;
289 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
290 prev_entry = entry;
291
292 if (offset < entry->start)
12cfbad9 293 n = &(*n)->rb_left;
d1310b2e 294 else if (offset > entry->end)
12cfbad9 295 n = &(*n)->rb_right;
d397712b 296 else
12cfbad9 297 return *n;
d1310b2e
CM
298 }
299
12cfbad9
FDBM
300 if (p_ret)
301 *p_ret = n;
302 if (parent_ret)
303 *parent_ret = prev;
304
d1310b2e
CM
305 if (prev_ret) {
306 orig_prev = prev;
d397712b 307 while (prev && offset > prev_entry->end) {
d1310b2e
CM
308 prev = rb_next(prev);
309 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310 }
311 *prev_ret = prev;
312 prev = orig_prev;
313 }
314
315 if (next_ret) {
316 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 317 while (prev && offset < prev_entry->start) {
d1310b2e
CM
318 prev = rb_prev(prev);
319 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320 }
321 *next_ret = prev;
322 }
323 return NULL;
324}
325
12cfbad9
FDBM
326static inline struct rb_node *
327tree_search_for_insert(struct extent_io_tree *tree,
328 u64 offset,
329 struct rb_node ***p_ret,
330 struct rb_node **parent_ret)
d1310b2e 331{
70dec807 332 struct rb_node *prev = NULL;
d1310b2e 333 struct rb_node *ret;
70dec807 334
12cfbad9 335 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 336 if (!ret)
d1310b2e
CM
337 return prev;
338 return ret;
339}
340
12cfbad9
FDBM
341static inline struct rb_node *tree_search(struct extent_io_tree *tree,
342 u64 offset)
343{
344 return tree_search_for_insert(tree, offset, NULL, NULL);
345}
346
9ed74f2d
JB
347static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
348 struct extent_state *other)
349{
350 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 351 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 399 struct extent_state *state, unsigned *bits)
291d673e 400{
1bf85046 401 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 402 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 406 struct extent_state *state, unsigned *bits)
291d673e 407{
9ed74f2d 408 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 409 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
413 struct extent_state *state, unsigned *bits,
414 struct extent_changeset *changeset);
3150b699 415
d1310b2e
CM
416/*
417 * insert an extent_state struct into the tree. 'bits' are set on the
418 * struct before it is inserted.
419 *
420 * This may return -EEXIST if the extent is already there, in which case the
421 * state struct is freed.
422 *
423 * The tree lock is not taken internally. This is a utility function and
424 * probably isn't what you want to call (see set/clear_extent_bit).
425 */
426static int insert_state(struct extent_io_tree *tree,
427 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
428 struct rb_node ***p,
429 struct rb_node **parent,
d38ed27f 430 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
431{
432 struct rb_node *node;
433
31b1a2bd 434 if (end < start)
efe120a0 435 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 436 end, start);
d1310b2e
CM
437 state->start = start;
438 state->end = end;
9ed74f2d 439
d38ed27f 440 set_state_bits(tree, state, bits, changeset);
3150b699 441
f2071b21 442 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
443 if (node) {
444 struct extent_state *found;
445 found = rb_entry(node, struct extent_state, rb_node);
62e85577 446 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 458 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
fefdc557
QW
514 unsigned *bits, int wake,
515 struct extent_changeset *changeset)
d1310b2e 516{
cdc6a395 517 struct extent_state *next;
9ee49a04 518 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 519 int ret;
d1310b2e 520
0ca1f7ce 521 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
522 u64 range = state->end - state->start + 1;
523 WARN_ON(range > tree->dirty_bytes);
524 tree->dirty_bytes -= range;
525 }
291d673e 526 clear_state_cb(tree, state, bits);
57599c7e
DS
527 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
528 BUG_ON(ret < 0);
32c00aff 529 state->state &= ~bits_to_clear;
d1310b2e
CM
530 if (wake)
531 wake_up(&state->wq);
0ca1f7ce 532 if (state->state == 0) {
cdc6a395 533 next = next_state(state);
27a3507d 534 if (extent_state_in_tree(state)) {
d1310b2e 535 rb_erase(&state->rb_node, &tree->state);
27a3507d 536 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
537 free_extent_state(state);
538 } else {
539 WARN_ON(1);
540 }
541 } else {
542 merge_state(tree, state);
cdc6a395 543 next = next_state(state);
d1310b2e 544 }
cdc6a395 545 return next;
d1310b2e
CM
546}
547
8233767a
XG
548static struct extent_state *
549alloc_extent_state_atomic(struct extent_state *prealloc)
550{
551 if (!prealloc)
552 prealloc = alloc_extent_state(GFP_ATOMIC);
553
554 return prealloc;
555}
556
48a3b636 557static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 558{
05912a3c
DS
559 struct inode *inode = tree->private_data;
560
561 btrfs_panic(btrfs_sb(inode->i_sb), err,
562 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
563}
564
d1310b2e
CM
565/*
566 * clear some bits on a range in the tree. This may require splitting
567 * or inserting elements in the tree, so the gfp mask is used to
568 * indicate which allocations or sleeping are allowed.
569 *
570 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
571 * the given range from the tree regardless of state (ie for truncate).
572 *
573 * the range [start, end] is inclusive.
574 *
6763af84 575 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 576 */
66b0c887 577int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
578 unsigned bits, int wake, int delete,
579 struct extent_state **cached_state,
580 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
581{
582 struct extent_state *state;
2c64c53d 583 struct extent_state *cached;
d1310b2e
CM
584 struct extent_state *prealloc = NULL;
585 struct rb_node *node;
5c939df5 586 u64 last_end;
d1310b2e 587 int err;
2ac55d41 588 int clear = 0;
d1310b2e 589
a5dee37d 590 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 591
7ee9e440
JB
592 if (bits & EXTENT_DELALLOC)
593 bits |= EXTENT_NORESERVE;
594
0ca1f7ce
YZ
595 if (delete)
596 bits |= ~EXTENT_CTLBITS;
597 bits |= EXTENT_FIRST_DELALLOC;
598
2ac55d41
JB
599 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
600 clear = 1;
d1310b2e 601again:
d0164adc 602 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
603 /*
604 * Don't care for allocation failure here because we might end
605 * up not needing the pre-allocated extent state at all, which
606 * is the case if we only have in the tree extent states that
607 * cover our input range and don't cover too any other range.
608 * If we end up needing a new extent state we allocate it later.
609 */
d1310b2e 610 prealloc = alloc_extent_state(mask);
d1310b2e
CM
611 }
612
cad321ad 613 spin_lock(&tree->lock);
2c64c53d
CM
614 if (cached_state) {
615 cached = *cached_state;
2ac55d41
JB
616
617 if (clear) {
618 *cached_state = NULL;
619 cached_state = NULL;
620 }
621
27a3507d
FM
622 if (cached && extent_state_in_tree(cached) &&
623 cached->start <= start && cached->end > start) {
2ac55d41 624 if (clear)
b7ac31b7 625 refcount_dec(&cached->refs);
2c64c53d 626 state = cached;
42daec29 627 goto hit_next;
2c64c53d 628 }
2ac55d41
JB
629 if (clear)
630 free_extent_state(cached);
2c64c53d 631 }
d1310b2e
CM
632 /*
633 * this search will find the extents that end after
634 * our range starts
635 */
80ea96b1 636 node = tree_search(tree, start);
d1310b2e
CM
637 if (!node)
638 goto out;
639 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 640hit_next:
d1310b2e
CM
641 if (state->start > end)
642 goto out;
643 WARN_ON(state->end < start);
5c939df5 644 last_end = state->end;
d1310b2e 645
0449314a 646 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
647 if (!(state->state & bits)) {
648 state = next_state(state);
0449314a 649 goto next;
cdc6a395 650 }
0449314a 651
d1310b2e
CM
652 /*
653 * | ---- desired range ---- |
654 * | state | or
655 * | ------------- state -------------- |
656 *
657 * We need to split the extent we found, and may flip
658 * bits on second half.
659 *
660 * If the extent we found extends past our range, we
661 * just split and search again. It'll get split again
662 * the next time though.
663 *
664 * If the extent we found is inside our range, we clear
665 * the desired bit on it.
666 */
667
668 if (state->start < start) {
8233767a
XG
669 prealloc = alloc_extent_state_atomic(prealloc);
670 BUG_ON(!prealloc);
d1310b2e 671 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
672 if (err)
673 extent_io_tree_panic(tree, err);
674
d1310b2e
CM
675 prealloc = NULL;
676 if (err)
677 goto out;
678 if (state->end <= end) {
fefdc557
QW
679 state = clear_state_bit(tree, state, &bits, wake,
680 changeset);
d1ac6e41 681 goto next;
d1310b2e
CM
682 }
683 goto search_again;
684 }
685 /*
686 * | ---- desired range ---- |
687 * | state |
688 * We need to split the extent, and clear the bit
689 * on the first half
690 */
691 if (state->start <= end && state->end > end) {
8233767a
XG
692 prealloc = alloc_extent_state_atomic(prealloc);
693 BUG_ON(!prealloc);
d1310b2e 694 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
695 if (err)
696 extent_io_tree_panic(tree, err);
697
d1310b2e
CM
698 if (wake)
699 wake_up(&state->wq);
42daec29 700
fefdc557 701 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 702
d1310b2e
CM
703 prealloc = NULL;
704 goto out;
705 }
42daec29 706
fefdc557 707 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 708next:
5c939df5
YZ
709 if (last_end == (u64)-1)
710 goto out;
711 start = last_end + 1;
cdc6a395 712 if (start <= end && state && !need_resched())
692e5759 713 goto hit_next;
d1310b2e
CM
714
715search_again:
716 if (start > end)
717 goto out;
cad321ad 718 spin_unlock(&tree->lock);
d0164adc 719 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
720 cond_resched();
721 goto again;
7ab5cb2a
DS
722
723out:
724 spin_unlock(&tree->lock);
725 if (prealloc)
726 free_extent_state(prealloc);
727
728 return 0;
729
d1310b2e 730}
d1310b2e 731
143bede5
JM
732static void wait_on_state(struct extent_io_tree *tree,
733 struct extent_state *state)
641f5219
CH
734 __releases(tree->lock)
735 __acquires(tree->lock)
d1310b2e
CM
736{
737 DEFINE_WAIT(wait);
738 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 739 spin_unlock(&tree->lock);
d1310b2e 740 schedule();
cad321ad 741 spin_lock(&tree->lock);
d1310b2e 742 finish_wait(&state->wq, &wait);
d1310b2e
CM
743}
744
745/*
746 * waits for one or more bits to clear on a range in the state tree.
747 * The range [start, end] is inclusive.
748 * The tree lock is taken by this function
749 */
41074888
DS
750static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
751 unsigned long bits)
d1310b2e
CM
752{
753 struct extent_state *state;
754 struct rb_node *node;
755
a5dee37d 756 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 757
cad321ad 758 spin_lock(&tree->lock);
d1310b2e
CM
759again:
760 while (1) {
761 /*
762 * this search will find all the extents that end after
763 * our range starts
764 */
80ea96b1 765 node = tree_search(tree, start);
c50d3e71 766process_node:
d1310b2e
CM
767 if (!node)
768 break;
769
770 state = rb_entry(node, struct extent_state, rb_node);
771
772 if (state->start > end)
773 goto out;
774
775 if (state->state & bits) {
776 start = state->start;
b7ac31b7 777 refcount_inc(&state->refs);
d1310b2e
CM
778 wait_on_state(tree, state);
779 free_extent_state(state);
780 goto again;
781 }
782 start = state->end + 1;
783
784 if (start > end)
785 break;
786
c50d3e71
FM
787 if (!cond_resched_lock(&tree->lock)) {
788 node = rb_next(node);
789 goto process_node;
790 }
d1310b2e
CM
791 }
792out:
cad321ad 793 spin_unlock(&tree->lock);
d1310b2e 794}
d1310b2e 795
1bf85046 796static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 797 struct extent_state *state,
d38ed27f 798 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 799{
9ee49a04 800 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 801 int ret;
9ed74f2d 802
1bf85046 803 set_state_cb(tree, state, bits);
0ca1f7ce 804 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
805 u64 range = state->end - state->start + 1;
806 tree->dirty_bytes += range;
807 }
57599c7e
DS
808 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
809 BUG_ON(ret < 0);
0ca1f7ce 810 state->state |= bits_to_set;
d1310b2e
CM
811}
812
e38e2ed7
FM
813static void cache_state_if_flags(struct extent_state *state,
814 struct extent_state **cached_ptr,
9ee49a04 815 unsigned flags)
2c64c53d
CM
816{
817 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 818 if (!flags || (state->state & flags)) {
2c64c53d 819 *cached_ptr = state;
b7ac31b7 820 refcount_inc(&state->refs);
2c64c53d
CM
821 }
822 }
823}
824
e38e2ed7
FM
825static void cache_state(struct extent_state *state,
826 struct extent_state **cached_ptr)
827{
828 return cache_state_if_flags(state, cached_ptr,
829 EXTENT_IOBITS | EXTENT_BOUNDARY);
830}
831
d1310b2e 832/*
1edbb734
CM
833 * set some bits on a range in the tree. This may require allocations or
834 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 835 *
1edbb734
CM
836 * If any of the exclusive bits are set, this will fail with -EEXIST if some
837 * part of the range already has the desired bits set. The start of the
838 * existing range is returned in failed_start in this case.
d1310b2e 839 *
1edbb734 840 * [start, end] is inclusive This takes the tree lock.
d1310b2e 841 */
1edbb734 842
3fbe5c02
JM
843static int __must_check
844__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 845 unsigned bits, unsigned exclusive_bits,
41074888 846 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 847 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
848{
849 struct extent_state *state;
850 struct extent_state *prealloc = NULL;
851 struct rb_node *node;
12cfbad9
FDBM
852 struct rb_node **p;
853 struct rb_node *parent;
d1310b2e 854 int err = 0;
d1310b2e
CM
855 u64 last_start;
856 u64 last_end;
42daec29 857
a5dee37d 858 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 859
0ca1f7ce 860 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 861again:
d0164adc 862 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
863 /*
864 * Don't care for allocation failure here because we might end
865 * up not needing the pre-allocated extent state at all, which
866 * is the case if we only have in the tree extent states that
867 * cover our input range and don't cover too any other range.
868 * If we end up needing a new extent state we allocate it later.
869 */
d1310b2e 870 prealloc = alloc_extent_state(mask);
d1310b2e
CM
871 }
872
cad321ad 873 spin_lock(&tree->lock);
9655d298
CM
874 if (cached_state && *cached_state) {
875 state = *cached_state;
df98b6e2 876 if (state->start <= start && state->end > start &&
27a3507d 877 extent_state_in_tree(state)) {
9655d298
CM
878 node = &state->rb_node;
879 goto hit_next;
880 }
881 }
d1310b2e
CM
882 /*
883 * this search will find all the extents that end after
884 * our range starts.
885 */
12cfbad9 886 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 887 if (!node) {
8233767a
XG
888 prealloc = alloc_extent_state_atomic(prealloc);
889 BUG_ON(!prealloc);
12cfbad9 890 err = insert_state(tree, prealloc, start, end,
d38ed27f 891 &p, &parent, &bits, changeset);
c2d904e0
JM
892 if (err)
893 extent_io_tree_panic(tree, err);
894
c42ac0bc 895 cache_state(prealloc, cached_state);
d1310b2e 896 prealloc = NULL;
d1310b2e
CM
897 goto out;
898 }
d1310b2e 899 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 900hit_next:
d1310b2e
CM
901 last_start = state->start;
902 last_end = state->end;
903
904 /*
905 * | ---- desired range ---- |
906 * | state |
907 *
908 * Just lock what we found and keep going
909 */
910 if (state->start == start && state->end <= end) {
1edbb734 911 if (state->state & exclusive_bits) {
d1310b2e
CM
912 *failed_start = state->start;
913 err = -EEXIST;
914 goto out;
915 }
42daec29 916
d38ed27f 917 set_state_bits(tree, state, &bits, changeset);
2c64c53d 918 cache_state(state, cached_state);
d1310b2e 919 merge_state(tree, state);
5c939df5
YZ
920 if (last_end == (u64)-1)
921 goto out;
922 start = last_end + 1;
d1ac6e41
LB
923 state = next_state(state);
924 if (start < end && state && state->start == start &&
925 !need_resched())
926 goto hit_next;
d1310b2e
CM
927 goto search_again;
928 }
929
930 /*
931 * | ---- desired range ---- |
932 * | state |
933 * or
934 * | ------------- state -------------- |
935 *
936 * We need to split the extent we found, and may flip bits on
937 * second half.
938 *
939 * If the extent we found extends past our
940 * range, we just split and search again. It'll get split
941 * again the next time though.
942 *
943 * If the extent we found is inside our range, we set the
944 * desired bit on it.
945 */
946 if (state->start < start) {
1edbb734 947 if (state->state & exclusive_bits) {
d1310b2e
CM
948 *failed_start = start;
949 err = -EEXIST;
950 goto out;
951 }
8233767a
XG
952
953 prealloc = alloc_extent_state_atomic(prealloc);
954 BUG_ON(!prealloc);
d1310b2e 955 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
956 if (err)
957 extent_io_tree_panic(tree, err);
958
d1310b2e
CM
959 prealloc = NULL;
960 if (err)
961 goto out;
962 if (state->end <= end) {
d38ed27f 963 set_state_bits(tree, state, &bits, changeset);
2c64c53d 964 cache_state(state, cached_state);
d1310b2e 965 merge_state(tree, state);
5c939df5
YZ
966 if (last_end == (u64)-1)
967 goto out;
968 start = last_end + 1;
d1ac6e41
LB
969 state = next_state(state);
970 if (start < end && state && state->start == start &&
971 !need_resched())
972 goto hit_next;
d1310b2e
CM
973 }
974 goto search_again;
975 }
976 /*
977 * | ---- desired range ---- |
978 * | state | or | state |
979 *
980 * There's a hole, we need to insert something in it and
981 * ignore the extent we found.
982 */
983 if (state->start > start) {
984 u64 this_end;
985 if (end < last_start)
986 this_end = end;
987 else
d397712b 988 this_end = last_start - 1;
8233767a
XG
989
990 prealloc = alloc_extent_state_atomic(prealloc);
991 BUG_ON(!prealloc);
c7f895a2
XG
992
993 /*
994 * Avoid to free 'prealloc' if it can be merged with
995 * the later extent.
996 */
d1310b2e 997 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 998 NULL, NULL, &bits, changeset);
c2d904e0
JM
999 if (err)
1000 extent_io_tree_panic(tree, err);
1001
9ed74f2d
JB
1002 cache_state(prealloc, cached_state);
1003 prealloc = NULL;
d1310b2e
CM
1004 start = this_end + 1;
1005 goto search_again;
1006 }
1007 /*
1008 * | ---- desired range ---- |
1009 * | state |
1010 * We need to split the extent, and set the bit
1011 * on the first half
1012 */
1013 if (state->start <= end && state->end > end) {
1edbb734 1014 if (state->state & exclusive_bits) {
d1310b2e
CM
1015 *failed_start = start;
1016 err = -EEXIST;
1017 goto out;
1018 }
8233767a
XG
1019
1020 prealloc = alloc_extent_state_atomic(prealloc);
1021 BUG_ON(!prealloc);
d1310b2e 1022 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1023 if (err)
1024 extent_io_tree_panic(tree, err);
d1310b2e 1025
d38ed27f 1026 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1027 cache_state(prealloc, cached_state);
d1310b2e
CM
1028 merge_state(tree, prealloc);
1029 prealloc = NULL;
1030 goto out;
1031 }
1032
b5a4ba14
DS
1033search_again:
1034 if (start > end)
1035 goto out;
1036 spin_unlock(&tree->lock);
1037 if (gfpflags_allow_blocking(mask))
1038 cond_resched();
1039 goto again;
d1310b2e
CM
1040
1041out:
cad321ad 1042 spin_unlock(&tree->lock);
d1310b2e
CM
1043 if (prealloc)
1044 free_extent_state(prealloc);
1045
1046 return err;
1047
d1310b2e 1048}
d1310b2e 1049
41074888 1050int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1051 unsigned bits, u64 * failed_start,
41074888 1052 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1053{
1054 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1055 cached_state, mask, NULL);
3fbe5c02
JM
1056}
1057
1058
462d6fac 1059/**
10983f2e
LB
1060 * convert_extent_bit - convert all bits in a given range from one bit to
1061 * another
462d6fac
JB
1062 * @tree: the io tree to search
1063 * @start: the start offset in bytes
1064 * @end: the end offset in bytes (inclusive)
1065 * @bits: the bits to set in this range
1066 * @clear_bits: the bits to clear in this range
e6138876 1067 * @cached_state: state that we're going to cache
462d6fac
JB
1068 *
1069 * This will go through and set bits for the given range. If any states exist
1070 * already in this range they are set with the given bit and cleared of the
1071 * clear_bits. This is only meant to be used by things that are mergeable, ie
1072 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1073 * boundary bits like LOCK.
210aa277
DS
1074 *
1075 * All allocations are done with GFP_NOFS.
462d6fac
JB
1076 */
1077int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1078 unsigned bits, unsigned clear_bits,
210aa277 1079 struct extent_state **cached_state)
462d6fac
JB
1080{
1081 struct extent_state *state;
1082 struct extent_state *prealloc = NULL;
1083 struct rb_node *node;
12cfbad9
FDBM
1084 struct rb_node **p;
1085 struct rb_node *parent;
462d6fac
JB
1086 int err = 0;
1087 u64 last_start;
1088 u64 last_end;
c8fd3de7 1089 bool first_iteration = true;
462d6fac 1090
a5dee37d 1091 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1092
462d6fac 1093again:
210aa277 1094 if (!prealloc) {
c8fd3de7
FM
1095 /*
1096 * Best effort, don't worry if extent state allocation fails
1097 * here for the first iteration. We might have a cached state
1098 * that matches exactly the target range, in which case no
1099 * extent state allocations are needed. We'll only know this
1100 * after locking the tree.
1101 */
210aa277 1102 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1103 if (!prealloc && !first_iteration)
462d6fac
JB
1104 return -ENOMEM;
1105 }
1106
1107 spin_lock(&tree->lock);
e6138876
JB
1108 if (cached_state && *cached_state) {
1109 state = *cached_state;
1110 if (state->start <= start && state->end > start &&
27a3507d 1111 extent_state_in_tree(state)) {
e6138876
JB
1112 node = &state->rb_node;
1113 goto hit_next;
1114 }
1115 }
1116
462d6fac
JB
1117 /*
1118 * this search will find all the extents that end after
1119 * our range starts.
1120 */
12cfbad9 1121 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1122 if (!node) {
1123 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1124 if (!prealloc) {
1125 err = -ENOMEM;
1126 goto out;
1127 }
12cfbad9 1128 err = insert_state(tree, prealloc, start, end,
d38ed27f 1129 &p, &parent, &bits, NULL);
c2d904e0
JM
1130 if (err)
1131 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1132 cache_state(prealloc, cached_state);
1133 prealloc = NULL;
462d6fac
JB
1134 goto out;
1135 }
1136 state = rb_entry(node, struct extent_state, rb_node);
1137hit_next:
1138 last_start = state->start;
1139 last_end = state->end;
1140
1141 /*
1142 * | ---- desired range ---- |
1143 * | state |
1144 *
1145 * Just lock what we found and keep going
1146 */
1147 if (state->start == start && state->end <= end) {
d38ed27f 1148 set_state_bits(tree, state, &bits, NULL);
e6138876 1149 cache_state(state, cached_state);
fefdc557 1150 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1151 if (last_end == (u64)-1)
1152 goto out;
462d6fac 1153 start = last_end + 1;
d1ac6e41
LB
1154 if (start < end && state && state->start == start &&
1155 !need_resched())
1156 goto hit_next;
462d6fac
JB
1157 goto search_again;
1158 }
1159
1160 /*
1161 * | ---- desired range ---- |
1162 * | state |
1163 * or
1164 * | ------------- state -------------- |
1165 *
1166 * We need to split the extent we found, and may flip bits on
1167 * second half.
1168 *
1169 * If the extent we found extends past our
1170 * range, we just split and search again. It'll get split
1171 * again the next time though.
1172 *
1173 * If the extent we found is inside our range, we set the
1174 * desired bit on it.
1175 */
1176 if (state->start < start) {
1177 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1178 if (!prealloc) {
1179 err = -ENOMEM;
1180 goto out;
1181 }
462d6fac 1182 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1183 if (err)
1184 extent_io_tree_panic(tree, err);
462d6fac
JB
1185 prealloc = NULL;
1186 if (err)
1187 goto out;
1188 if (state->end <= end) {
d38ed27f 1189 set_state_bits(tree, state, &bits, NULL);
e6138876 1190 cache_state(state, cached_state);
fefdc557
QW
1191 state = clear_state_bit(tree, state, &clear_bits, 0,
1192 NULL);
462d6fac
JB
1193 if (last_end == (u64)-1)
1194 goto out;
1195 start = last_end + 1;
d1ac6e41
LB
1196 if (start < end && state && state->start == start &&
1197 !need_resched())
1198 goto hit_next;
462d6fac
JB
1199 }
1200 goto search_again;
1201 }
1202 /*
1203 * | ---- desired range ---- |
1204 * | state | or | state |
1205 *
1206 * There's a hole, we need to insert something in it and
1207 * ignore the extent we found.
1208 */
1209 if (state->start > start) {
1210 u64 this_end;
1211 if (end < last_start)
1212 this_end = end;
1213 else
1214 this_end = last_start - 1;
1215
1216 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1217 if (!prealloc) {
1218 err = -ENOMEM;
1219 goto out;
1220 }
462d6fac
JB
1221
1222 /*
1223 * Avoid to free 'prealloc' if it can be merged with
1224 * the later extent.
1225 */
1226 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1227 NULL, NULL, &bits, NULL);
c2d904e0
JM
1228 if (err)
1229 extent_io_tree_panic(tree, err);
e6138876 1230 cache_state(prealloc, cached_state);
462d6fac
JB
1231 prealloc = NULL;
1232 start = this_end + 1;
1233 goto search_again;
1234 }
1235 /*
1236 * | ---- desired range ---- |
1237 * | state |
1238 * We need to split the extent, and set the bit
1239 * on the first half
1240 */
1241 if (state->start <= end && state->end > end) {
1242 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1243 if (!prealloc) {
1244 err = -ENOMEM;
1245 goto out;
1246 }
462d6fac
JB
1247
1248 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1249 if (err)
1250 extent_io_tree_panic(tree, err);
462d6fac 1251
d38ed27f 1252 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1253 cache_state(prealloc, cached_state);
fefdc557 1254 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1255 prealloc = NULL;
1256 goto out;
1257 }
1258
462d6fac
JB
1259search_again:
1260 if (start > end)
1261 goto out;
1262 spin_unlock(&tree->lock);
210aa277 1263 cond_resched();
c8fd3de7 1264 first_iteration = false;
462d6fac 1265 goto again;
462d6fac
JB
1266
1267out:
1268 spin_unlock(&tree->lock);
1269 if (prealloc)
1270 free_extent_state(prealloc);
1271
1272 return err;
462d6fac
JB
1273}
1274
d1310b2e 1275/* wrappers around set/clear extent bit */
d38ed27f 1276int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1277 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1278{
1279 /*
1280 * We don't support EXTENT_LOCKED yet, as current changeset will
1281 * record any bits changed, so for EXTENT_LOCKED case, it will
1282 * either fail with -EEXIST or changeset will record the whole
1283 * range.
1284 */
1285 BUG_ON(bits & EXTENT_LOCKED);
1286
2c53b912 1287 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1288 changeset);
1289}
1290
fefdc557
QW
1291int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1292 unsigned bits, int wake, int delete,
ae0f1625 1293 struct extent_state **cached)
fefdc557
QW
1294{
1295 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1296 cached, GFP_NOFS, NULL);
fefdc557
QW
1297}
1298
fefdc557 1299int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1300 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1301{
1302 /*
1303 * Don't support EXTENT_LOCKED case, same reason as
1304 * set_record_extent_bits().
1305 */
1306 BUG_ON(bits & EXTENT_LOCKED);
1307
f734c44a 1308 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1309 changeset);
1310}
1311
d352ac68
CM
1312/*
1313 * either insert or lock state struct between start and end use mask to tell
1314 * us if waiting is desired.
1315 */
1edbb734 1316int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1317 struct extent_state **cached_state)
d1310b2e
CM
1318{
1319 int err;
1320 u64 failed_start;
9ee49a04 1321
d1310b2e 1322 while (1) {
ff13db41 1323 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1324 EXTENT_LOCKED, &failed_start,
d38ed27f 1325 cached_state, GFP_NOFS, NULL);
d0082371 1326 if (err == -EEXIST) {
d1310b2e
CM
1327 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1328 start = failed_start;
d0082371 1329 } else
d1310b2e 1330 break;
d1310b2e
CM
1331 WARN_ON(start > end);
1332 }
1333 return err;
1334}
d1310b2e 1335
d0082371 1336int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1337{
1338 int err;
1339 u64 failed_start;
1340
3fbe5c02 1341 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1342 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1343 if (err == -EEXIST) {
1344 if (failed_start > start)
1345 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1346 EXTENT_LOCKED, 1, 0, NULL);
25179201 1347 return 0;
6643558d 1348 }
25179201
JB
1349 return 1;
1350}
25179201 1351
bd1fa4f0 1352void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1353{
09cbfeaf
KS
1354 unsigned long index = start >> PAGE_SHIFT;
1355 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1356 struct page *page;
1357
1358 while (index <= end_index) {
1359 page = find_get_page(inode->i_mapping, index);
1360 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1361 clear_page_dirty_for_io(page);
09cbfeaf 1362 put_page(page);
4adaa611
CM
1363 index++;
1364 }
4adaa611
CM
1365}
1366
f6311572 1367void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1368{
09cbfeaf
KS
1369 unsigned long index = start >> PAGE_SHIFT;
1370 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1371 struct page *page;
1372
1373 while (index <= end_index) {
1374 page = find_get_page(inode->i_mapping, index);
1375 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1376 __set_page_dirty_nobuffers(page);
8d38633c 1377 account_page_redirty(page);
09cbfeaf 1378 put_page(page);
4adaa611
CM
1379 index++;
1380 }
4adaa611
CM
1381}
1382
d352ac68
CM
1383/* find the first state struct with 'bits' set after 'start', and
1384 * return it. tree->lock must be held. NULL will returned if
1385 * nothing was found after 'start'
1386 */
48a3b636
ES
1387static struct extent_state *
1388find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1389 u64 start, unsigned bits)
d7fc640e
CM
1390{
1391 struct rb_node *node;
1392 struct extent_state *state;
1393
1394 /*
1395 * this search will find all the extents that end after
1396 * our range starts.
1397 */
1398 node = tree_search(tree, start);
d397712b 1399 if (!node)
d7fc640e 1400 goto out;
d7fc640e 1401
d397712b 1402 while (1) {
d7fc640e 1403 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1404 if (state->end >= start && (state->state & bits))
d7fc640e 1405 return state;
d397712b 1406
d7fc640e
CM
1407 node = rb_next(node);
1408 if (!node)
1409 break;
1410 }
1411out:
1412 return NULL;
1413}
d7fc640e 1414
69261c4b
XG
1415/*
1416 * find the first offset in the io tree with 'bits' set. zero is
1417 * returned if we find something, and *start_ret and *end_ret are
1418 * set to reflect the state struct that was found.
1419 *
477d7eaf 1420 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1421 */
1422int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1423 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1424 struct extent_state **cached_state)
69261c4b
XG
1425{
1426 struct extent_state *state;
e6138876 1427 struct rb_node *n;
69261c4b
XG
1428 int ret = 1;
1429
1430 spin_lock(&tree->lock);
e6138876
JB
1431 if (cached_state && *cached_state) {
1432 state = *cached_state;
27a3507d 1433 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1434 n = rb_next(&state->rb_node);
1435 while (n) {
1436 state = rb_entry(n, struct extent_state,
1437 rb_node);
1438 if (state->state & bits)
1439 goto got_it;
1440 n = rb_next(n);
1441 }
1442 free_extent_state(*cached_state);
1443 *cached_state = NULL;
1444 goto out;
1445 }
1446 free_extent_state(*cached_state);
1447 *cached_state = NULL;
1448 }
1449
69261c4b 1450 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1451got_it:
69261c4b 1452 if (state) {
e38e2ed7 1453 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1454 *start_ret = state->start;
1455 *end_ret = state->end;
1456 ret = 0;
1457 }
e6138876 1458out:
69261c4b
XG
1459 spin_unlock(&tree->lock);
1460 return ret;
1461}
1462
d352ac68
CM
1463/*
1464 * find a contiguous range of bytes in the file marked as delalloc, not
1465 * more than 'max_bytes'. start and end are used to return the range,
1466 *
1467 * 1 is returned if we find something, 0 if nothing was in the tree
1468 */
c8b97818 1469static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1470 u64 *start, u64 *end, u64 max_bytes,
1471 struct extent_state **cached_state)
d1310b2e
CM
1472{
1473 struct rb_node *node;
1474 struct extent_state *state;
1475 u64 cur_start = *start;
1476 u64 found = 0;
1477 u64 total_bytes = 0;
1478
cad321ad 1479 spin_lock(&tree->lock);
c8b97818 1480
d1310b2e
CM
1481 /*
1482 * this search will find all the extents that end after
1483 * our range starts.
1484 */
80ea96b1 1485 node = tree_search(tree, cur_start);
2b114d1d 1486 if (!node) {
3b951516
CM
1487 if (!found)
1488 *end = (u64)-1;
d1310b2e
CM
1489 goto out;
1490 }
1491
d397712b 1492 while (1) {
d1310b2e 1493 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1494 if (found && (state->start != cur_start ||
1495 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1496 goto out;
1497 }
1498 if (!(state->state & EXTENT_DELALLOC)) {
1499 if (!found)
1500 *end = state->end;
1501 goto out;
1502 }
c2a128d2 1503 if (!found) {
d1310b2e 1504 *start = state->start;
c2a128d2 1505 *cached_state = state;
b7ac31b7 1506 refcount_inc(&state->refs);
c2a128d2 1507 }
d1310b2e
CM
1508 found++;
1509 *end = state->end;
1510 cur_start = state->end + 1;
1511 node = rb_next(node);
d1310b2e 1512 total_bytes += state->end - state->start + 1;
7bf811a5 1513 if (total_bytes >= max_bytes)
573aecaf 1514 break;
573aecaf 1515 if (!node)
d1310b2e
CM
1516 break;
1517 }
1518out:
cad321ad 1519 spin_unlock(&tree->lock);
d1310b2e
CM
1520 return found;
1521}
1522
da2c7009
LB
1523static int __process_pages_contig(struct address_space *mapping,
1524 struct page *locked_page,
1525 pgoff_t start_index, pgoff_t end_index,
1526 unsigned long page_ops, pgoff_t *index_ret);
1527
143bede5
JM
1528static noinline void __unlock_for_delalloc(struct inode *inode,
1529 struct page *locked_page,
1530 u64 start, u64 end)
c8b97818 1531{
09cbfeaf
KS
1532 unsigned long index = start >> PAGE_SHIFT;
1533 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1534
76c0021d 1535 ASSERT(locked_page);
c8b97818 1536 if (index == locked_page->index && end_index == index)
143bede5 1537 return;
c8b97818 1538
76c0021d
LB
1539 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1540 PAGE_UNLOCK, NULL);
c8b97818
CM
1541}
1542
1543static noinline int lock_delalloc_pages(struct inode *inode,
1544 struct page *locked_page,
1545 u64 delalloc_start,
1546 u64 delalloc_end)
1547{
09cbfeaf 1548 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1549 unsigned long index_ret = index;
09cbfeaf 1550 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1551 int ret;
c8b97818 1552
76c0021d 1553 ASSERT(locked_page);
c8b97818
CM
1554 if (index == locked_page->index && index == end_index)
1555 return 0;
1556
76c0021d
LB
1557 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1558 end_index, PAGE_LOCK, &index_ret);
1559 if (ret == -EAGAIN)
1560 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1561 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1562 return ret;
1563}
1564
1565/*
1566 * find a contiguous range of bytes in the file marked as delalloc, not
1567 * more than 'max_bytes'. start and end are used to return the range,
1568 *
1569 * 1 is returned if we find something, 0 if nothing was in the tree
1570 */
294e30fe
JB
1571STATIC u64 find_lock_delalloc_range(struct inode *inode,
1572 struct extent_io_tree *tree,
1573 struct page *locked_page, u64 *start,
1574 u64 *end, u64 max_bytes)
c8b97818
CM
1575{
1576 u64 delalloc_start;
1577 u64 delalloc_end;
1578 u64 found;
9655d298 1579 struct extent_state *cached_state = NULL;
c8b97818
CM
1580 int ret;
1581 int loops = 0;
1582
1583again:
1584 /* step one, find a bunch of delalloc bytes starting at start */
1585 delalloc_start = *start;
1586 delalloc_end = 0;
1587 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1588 max_bytes, &cached_state);
70b99e69 1589 if (!found || delalloc_end <= *start) {
c8b97818
CM
1590 *start = delalloc_start;
1591 *end = delalloc_end;
c2a128d2 1592 free_extent_state(cached_state);
385fe0be 1593 return 0;
c8b97818
CM
1594 }
1595
70b99e69
CM
1596 /*
1597 * start comes from the offset of locked_page. We have to lock
1598 * pages in order, so we can't process delalloc bytes before
1599 * locked_page
1600 */
d397712b 1601 if (delalloc_start < *start)
70b99e69 1602 delalloc_start = *start;
70b99e69 1603
c8b97818
CM
1604 /*
1605 * make sure to limit the number of pages we try to lock down
c8b97818 1606 */
7bf811a5
JB
1607 if (delalloc_end + 1 - delalloc_start > max_bytes)
1608 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1609
c8b97818
CM
1610 /* step two, lock all the pages after the page that has start */
1611 ret = lock_delalloc_pages(inode, locked_page,
1612 delalloc_start, delalloc_end);
1613 if (ret == -EAGAIN) {
1614 /* some of the pages are gone, lets avoid looping by
1615 * shortening the size of the delalloc range we're searching
1616 */
9655d298 1617 free_extent_state(cached_state);
7d788742 1618 cached_state = NULL;
c8b97818 1619 if (!loops) {
09cbfeaf 1620 max_bytes = PAGE_SIZE;
c8b97818
CM
1621 loops = 1;
1622 goto again;
1623 } else {
1624 found = 0;
1625 goto out_failed;
1626 }
1627 }
79787eaa 1628 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1629
1630 /* step three, lock the state bits for the whole range */
ff13db41 1631 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1632
1633 /* then test to make sure it is all still delalloc */
1634 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1635 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1636 if (!ret) {
9655d298 1637 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1638 &cached_state);
c8b97818
CM
1639 __unlock_for_delalloc(inode, locked_page,
1640 delalloc_start, delalloc_end);
1641 cond_resched();
1642 goto again;
1643 }
9655d298 1644 free_extent_state(cached_state);
c8b97818
CM
1645 *start = delalloc_start;
1646 *end = delalloc_end;
1647out_failed:
1648 return found;
1649}
1650
da2c7009
LB
1651static int __process_pages_contig(struct address_space *mapping,
1652 struct page *locked_page,
1653 pgoff_t start_index, pgoff_t end_index,
1654 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1655{
873695b3 1656 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1657 unsigned long pages_locked = 0;
873695b3 1658 pgoff_t index = start_index;
c8b97818 1659 struct page *pages[16];
873695b3 1660 unsigned ret;
da2c7009 1661 int err = 0;
c8b97818 1662 int i;
771ed689 1663
da2c7009
LB
1664 if (page_ops & PAGE_LOCK) {
1665 ASSERT(page_ops == PAGE_LOCK);
1666 ASSERT(index_ret && *index_ret == start_index);
1667 }
1668
704de49d 1669 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1670 mapping_set_error(mapping, -EIO);
704de49d 1671
d397712b 1672 while (nr_pages > 0) {
873695b3 1673 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1674 min_t(unsigned long,
1675 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1676 if (ret == 0) {
1677 /*
1678 * Only if we're going to lock these pages,
1679 * can we find nothing at @index.
1680 */
1681 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1682 err = -EAGAIN;
1683 goto out;
da2c7009 1684 }
8b62b72b 1685
da2c7009 1686 for (i = 0; i < ret; i++) {
c2790a2e 1687 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1688 SetPagePrivate2(pages[i]);
1689
c8b97818 1690 if (pages[i] == locked_page) {
09cbfeaf 1691 put_page(pages[i]);
da2c7009 1692 pages_locked++;
c8b97818
CM
1693 continue;
1694 }
c2790a2e 1695 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1696 clear_page_dirty_for_io(pages[i]);
c2790a2e 1697 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1698 set_page_writeback(pages[i]);
704de49d
FM
1699 if (page_ops & PAGE_SET_ERROR)
1700 SetPageError(pages[i]);
c2790a2e 1701 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1702 end_page_writeback(pages[i]);
c2790a2e 1703 if (page_ops & PAGE_UNLOCK)
771ed689 1704 unlock_page(pages[i]);
da2c7009
LB
1705 if (page_ops & PAGE_LOCK) {
1706 lock_page(pages[i]);
1707 if (!PageDirty(pages[i]) ||
1708 pages[i]->mapping != mapping) {
1709 unlock_page(pages[i]);
1710 put_page(pages[i]);
1711 err = -EAGAIN;
1712 goto out;
1713 }
1714 }
09cbfeaf 1715 put_page(pages[i]);
da2c7009 1716 pages_locked++;
c8b97818
CM
1717 }
1718 nr_pages -= ret;
1719 index += ret;
1720 cond_resched();
1721 }
da2c7009
LB
1722out:
1723 if (err && index_ret)
1724 *index_ret = start_index + pages_locked - 1;
1725 return err;
c8b97818 1726}
c8b97818 1727
873695b3
LB
1728void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729 u64 delalloc_end, struct page *locked_page,
1730 unsigned clear_bits,
1731 unsigned long page_ops)
1732{
1733 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1734 NULL);
873695b3
LB
1735
1736 __process_pages_contig(inode->i_mapping, locked_page,
1737 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1738 page_ops, NULL);
873695b3
LB
1739}
1740
d352ac68
CM
1741/*
1742 * count the number of bytes in the tree that have a given bit(s)
1743 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1744 * cached. The total number found is returned.
1745 */
d1310b2e
CM
1746u64 count_range_bits(struct extent_io_tree *tree,
1747 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1748 unsigned bits, int contig)
d1310b2e
CM
1749{
1750 struct rb_node *node;
1751 struct extent_state *state;
1752 u64 cur_start = *start;
1753 u64 total_bytes = 0;
ec29ed5b 1754 u64 last = 0;
d1310b2e
CM
1755 int found = 0;
1756
fae7f21c 1757 if (WARN_ON(search_end <= cur_start))
d1310b2e 1758 return 0;
d1310b2e 1759
cad321ad 1760 spin_lock(&tree->lock);
d1310b2e
CM
1761 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1762 total_bytes = tree->dirty_bytes;
1763 goto out;
1764 }
1765 /*
1766 * this search will find all the extents that end after
1767 * our range starts.
1768 */
80ea96b1 1769 node = tree_search(tree, cur_start);
d397712b 1770 if (!node)
d1310b2e 1771 goto out;
d1310b2e 1772
d397712b 1773 while (1) {
d1310b2e
CM
1774 state = rb_entry(node, struct extent_state, rb_node);
1775 if (state->start > search_end)
1776 break;
ec29ed5b
CM
1777 if (contig && found && state->start > last + 1)
1778 break;
1779 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1780 total_bytes += min(search_end, state->end) + 1 -
1781 max(cur_start, state->start);
1782 if (total_bytes >= max_bytes)
1783 break;
1784 if (!found) {
af60bed2 1785 *start = max(cur_start, state->start);
d1310b2e
CM
1786 found = 1;
1787 }
ec29ed5b
CM
1788 last = state->end;
1789 } else if (contig && found) {
1790 break;
d1310b2e
CM
1791 }
1792 node = rb_next(node);
1793 if (!node)
1794 break;
1795 }
1796out:
cad321ad 1797 spin_unlock(&tree->lock);
d1310b2e
CM
1798 return total_bytes;
1799}
b2950863 1800
d352ac68
CM
1801/*
1802 * set the private field for a given byte offset in the tree. If there isn't
1803 * an extent_state there already, this does nothing.
1804 */
f827ba9a 1805static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1806 struct io_failure_record *failrec)
d1310b2e
CM
1807{
1808 struct rb_node *node;
1809 struct extent_state *state;
1810 int ret = 0;
1811
cad321ad 1812 spin_lock(&tree->lock);
d1310b2e
CM
1813 /*
1814 * this search will find all the extents that end after
1815 * our range starts.
1816 */
80ea96b1 1817 node = tree_search(tree, start);
2b114d1d 1818 if (!node) {
d1310b2e
CM
1819 ret = -ENOENT;
1820 goto out;
1821 }
1822 state = rb_entry(node, struct extent_state, rb_node);
1823 if (state->start != start) {
1824 ret = -ENOENT;
1825 goto out;
1826 }
47dc196a 1827 state->failrec = failrec;
d1310b2e 1828out:
cad321ad 1829 spin_unlock(&tree->lock);
d1310b2e
CM
1830 return ret;
1831}
1832
f827ba9a 1833static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1834 struct io_failure_record **failrec)
d1310b2e
CM
1835{
1836 struct rb_node *node;
1837 struct extent_state *state;
1838 int ret = 0;
1839
cad321ad 1840 spin_lock(&tree->lock);
d1310b2e
CM
1841 /*
1842 * this search will find all the extents that end after
1843 * our range starts.
1844 */
80ea96b1 1845 node = tree_search(tree, start);
2b114d1d 1846 if (!node) {
d1310b2e
CM
1847 ret = -ENOENT;
1848 goto out;
1849 }
1850 state = rb_entry(node, struct extent_state, rb_node);
1851 if (state->start != start) {
1852 ret = -ENOENT;
1853 goto out;
1854 }
47dc196a 1855 *failrec = state->failrec;
d1310b2e 1856out:
cad321ad 1857 spin_unlock(&tree->lock);
d1310b2e
CM
1858 return ret;
1859}
1860
1861/*
1862 * searches a range in the state tree for a given mask.
70dec807 1863 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1864 * has the bits set. Otherwise, 1 is returned if any bit in the
1865 * range is found set.
1866 */
1867int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1868 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1869{
1870 struct extent_state *state = NULL;
1871 struct rb_node *node;
1872 int bitset = 0;
d1310b2e 1873
cad321ad 1874 spin_lock(&tree->lock);
27a3507d 1875 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1876 cached->end > start)
9655d298
CM
1877 node = &cached->rb_node;
1878 else
1879 node = tree_search(tree, start);
d1310b2e
CM
1880 while (node && start <= end) {
1881 state = rb_entry(node, struct extent_state, rb_node);
1882
1883 if (filled && state->start > start) {
1884 bitset = 0;
1885 break;
1886 }
1887
1888 if (state->start > end)
1889 break;
1890
1891 if (state->state & bits) {
1892 bitset = 1;
1893 if (!filled)
1894 break;
1895 } else if (filled) {
1896 bitset = 0;
1897 break;
1898 }
46562cec
CM
1899
1900 if (state->end == (u64)-1)
1901 break;
1902
d1310b2e
CM
1903 start = state->end + 1;
1904 if (start > end)
1905 break;
1906 node = rb_next(node);
1907 if (!node) {
1908 if (filled)
1909 bitset = 0;
1910 break;
1911 }
1912 }
cad321ad 1913 spin_unlock(&tree->lock);
d1310b2e
CM
1914 return bitset;
1915}
d1310b2e
CM
1916
1917/*
1918 * helper function to set a given page up to date if all the
1919 * extents in the tree for that page are up to date
1920 */
143bede5 1921static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1922{
4eee4fa4 1923 u64 start = page_offset(page);
09cbfeaf 1924 u64 end = start + PAGE_SIZE - 1;
9655d298 1925 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1926 SetPageUptodate(page);
d1310b2e
CM
1927}
1928
7870d082
JB
1929int free_io_failure(struct extent_io_tree *failure_tree,
1930 struct extent_io_tree *io_tree,
1931 struct io_failure_record *rec)
4a54c8c1
JS
1932{
1933 int ret;
1934 int err = 0;
4a54c8c1 1935
47dc196a 1936 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1937 ret = clear_extent_bits(failure_tree, rec->start,
1938 rec->start + rec->len - 1,
91166212 1939 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1940 if (ret)
1941 err = ret;
1942
7870d082 1943 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1944 rec->start + rec->len - 1,
91166212 1945 EXTENT_DAMAGED);
53b381b3
DW
1946 if (ret && !err)
1947 err = ret;
4a54c8c1
JS
1948
1949 kfree(rec);
1950 return err;
1951}
1952
4a54c8c1
JS
1953/*
1954 * this bypasses the standard btrfs submit functions deliberately, as
1955 * the standard behavior is to write all copies in a raid setup. here we only
1956 * want to write the one bad copy. so we do the mapping for ourselves and issue
1957 * submit_bio directly.
3ec706c8 1958 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1959 * actually prevents the read that triggered the error from finishing.
1960 * currently, there can be no more than two copies of every data bit. thus,
1961 * exactly one rewrite is required.
1962 */
6ec656bc
JB
1963int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1964 u64 length, u64 logical, struct page *page,
1965 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1966{
1967 struct bio *bio;
1968 struct btrfs_device *dev;
4a54c8c1
JS
1969 u64 map_length = 0;
1970 u64 sector;
1971 struct btrfs_bio *bbio = NULL;
1972 int ret;
1973
1751e8a6 1974 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1975 BUG_ON(!mirror_num);
1976
c5e4c3d7 1977 bio = btrfs_io_bio_alloc(1);
4f024f37 1978 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1979 map_length = length;
1980
b5de8d0d
FM
1981 /*
1982 * Avoid races with device replace and make sure our bbio has devices
1983 * associated to its stripes that don't go away while we are doing the
1984 * read repair operation.
1985 */
1986 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1987 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
1988 /*
1989 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1990 * to update all raid stripes, but here we just want to correct
1991 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1992 * stripe's dev and sector.
1993 */
1994 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1995 &map_length, &bbio, 0);
1996 if (ret) {
1997 btrfs_bio_counter_dec(fs_info);
1998 bio_put(bio);
1999 return -EIO;
2000 }
2001 ASSERT(bbio->mirror_num == 1);
2002 } else {
2003 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2004 &map_length, &bbio, mirror_num);
2005 if (ret) {
2006 btrfs_bio_counter_dec(fs_info);
2007 bio_put(bio);
2008 return -EIO;
2009 }
2010 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2011 }
c725328c
LB
2012
2013 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2014 bio->bi_iter.bi_sector = sector;
c725328c 2015 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2016 btrfs_put_bbio(bbio);
ebbede42
AJ
2017 if (!dev || !dev->bdev ||
2018 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2019 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2020 bio_put(bio);
2021 return -EIO;
2022 }
74d46992 2023 bio_set_dev(bio, dev->bdev);
70fd7614 2024 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2025 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2026
4e49ea4a 2027 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2028 /* try to remap that extent elsewhere? */
b5de8d0d 2029 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2030 bio_put(bio);
442a4f63 2031 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2032 return -EIO;
2033 }
2034
b14af3b4
DS
2035 btrfs_info_rl_in_rcu(fs_info,
2036 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2037 ino, start,
1203b681 2038 rcu_str_deref(dev->name), sector);
b5de8d0d 2039 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2040 bio_put(bio);
2041 return 0;
2042}
2043
2ff7e61e
JM
2044int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2045 struct extent_buffer *eb, int mirror_num)
ea466794 2046{
ea466794 2047 u64 start = eb->start;
cc5e31a4 2048 int i, num_pages = num_extent_pages(eb);
d95603b2 2049 int ret = 0;
ea466794 2050
bc98a42c 2051 if (sb_rdonly(fs_info->sb))
908960c6
ID
2052 return -EROFS;
2053
ea466794 2054 for (i = 0; i < num_pages; i++) {
fb85fc9a 2055 struct page *p = eb->pages[i];
1203b681 2056
6ec656bc 2057 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2058 start - page_offset(p), mirror_num);
ea466794
JB
2059 if (ret)
2060 break;
09cbfeaf 2061 start += PAGE_SIZE;
ea466794
JB
2062 }
2063
2064 return ret;
2065}
2066
4a54c8c1
JS
2067/*
2068 * each time an IO finishes, we do a fast check in the IO failure tree
2069 * to see if we need to process or clean up an io_failure_record
2070 */
7870d082
JB
2071int clean_io_failure(struct btrfs_fs_info *fs_info,
2072 struct extent_io_tree *failure_tree,
2073 struct extent_io_tree *io_tree, u64 start,
2074 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2075{
2076 u64 private;
4a54c8c1 2077 struct io_failure_record *failrec;
4a54c8c1
JS
2078 struct extent_state *state;
2079 int num_copies;
4a54c8c1 2080 int ret;
4a54c8c1
JS
2081
2082 private = 0;
7870d082
JB
2083 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2084 EXTENT_DIRTY, 0);
4a54c8c1
JS
2085 if (!ret)
2086 return 0;
2087
7870d082 2088 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2089 if (ret)
2090 return 0;
2091
4a54c8c1
JS
2092 BUG_ON(!failrec->this_mirror);
2093
2094 if (failrec->in_validation) {
2095 /* there was no real error, just free the record */
ab8d0fc4
JM
2096 btrfs_debug(fs_info,
2097 "clean_io_failure: freeing dummy error at %llu",
2098 failrec->start);
4a54c8c1
JS
2099 goto out;
2100 }
bc98a42c 2101 if (sb_rdonly(fs_info->sb))
908960c6 2102 goto out;
4a54c8c1 2103
7870d082
JB
2104 spin_lock(&io_tree->lock);
2105 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2106 failrec->start,
2107 EXTENT_LOCKED);
7870d082 2108 spin_unlock(&io_tree->lock);
4a54c8c1 2109
883d0de4
MX
2110 if (state && state->start <= failrec->start &&
2111 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2112 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2113 failrec->len);
4a54c8c1 2114 if (num_copies > 1) {
7870d082
JB
2115 repair_io_failure(fs_info, ino, start, failrec->len,
2116 failrec->logical, page, pg_offset,
2117 failrec->failed_mirror);
4a54c8c1
JS
2118 }
2119 }
2120
2121out:
7870d082 2122 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2123
454ff3de 2124 return 0;
4a54c8c1
JS
2125}
2126
f612496b
MX
2127/*
2128 * Can be called when
2129 * - hold extent lock
2130 * - under ordered extent
2131 * - the inode is freeing
2132 */
7ab7956e 2133void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2134{
7ab7956e 2135 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2136 struct io_failure_record *failrec;
2137 struct extent_state *state, *next;
2138
2139 if (RB_EMPTY_ROOT(&failure_tree->state))
2140 return;
2141
2142 spin_lock(&failure_tree->lock);
2143 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2144 while (state) {
2145 if (state->start > end)
2146 break;
2147
2148 ASSERT(state->end <= end);
2149
2150 next = next_state(state);
2151
47dc196a 2152 failrec = state->failrec;
f612496b
MX
2153 free_extent_state(state);
2154 kfree(failrec);
2155
2156 state = next;
2157 }
2158 spin_unlock(&failure_tree->lock);
2159}
2160
2fe6303e 2161int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2162 struct io_failure_record **failrec_ret)
4a54c8c1 2163{
ab8d0fc4 2164 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2165 struct io_failure_record *failrec;
4a54c8c1 2166 struct extent_map *em;
4a54c8c1
JS
2167 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2168 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2169 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2170 int ret;
4a54c8c1
JS
2171 u64 logical;
2172
47dc196a 2173 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2174 if (ret) {
2175 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2176 if (!failrec)
2177 return -ENOMEM;
2fe6303e 2178
4a54c8c1
JS
2179 failrec->start = start;
2180 failrec->len = end - start + 1;
2181 failrec->this_mirror = 0;
2182 failrec->bio_flags = 0;
2183 failrec->in_validation = 0;
2184
2185 read_lock(&em_tree->lock);
2186 em = lookup_extent_mapping(em_tree, start, failrec->len);
2187 if (!em) {
2188 read_unlock(&em_tree->lock);
2189 kfree(failrec);
2190 return -EIO;
2191 }
2192
68ba990f 2193 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2194 free_extent_map(em);
2195 em = NULL;
2196 }
2197 read_unlock(&em_tree->lock);
7a2d6a64 2198 if (!em) {
4a54c8c1
JS
2199 kfree(failrec);
2200 return -EIO;
2201 }
2fe6303e 2202
4a54c8c1
JS
2203 logical = start - em->start;
2204 logical = em->block_start + logical;
2205 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2206 logical = em->block_start;
2207 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2208 extent_set_compress_type(&failrec->bio_flags,
2209 em->compress_type);
2210 }
2fe6303e 2211
ab8d0fc4
JM
2212 btrfs_debug(fs_info,
2213 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2214 logical, start, failrec->len);
2fe6303e 2215
4a54c8c1
JS
2216 failrec->logical = logical;
2217 free_extent_map(em);
2218
2219 /* set the bits in the private failure tree */
2220 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2221 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2222 if (ret >= 0)
47dc196a 2223 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2224 /* set the bits in the inode's tree */
2225 if (ret >= 0)
ceeb0ae7 2226 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2227 if (ret < 0) {
2228 kfree(failrec);
2229 return ret;
2230 }
2231 } else {
ab8d0fc4
JM
2232 btrfs_debug(fs_info,
2233 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2234 failrec->logical, failrec->start, failrec->len,
2235 failrec->in_validation);
4a54c8c1
JS
2236 /*
2237 * when data can be on disk more than twice, add to failrec here
2238 * (e.g. with a list for failed_mirror) to make
2239 * clean_io_failure() clean all those errors at once.
2240 */
2241 }
2fe6303e
MX
2242
2243 *failrec_ret = failrec;
2244
2245 return 0;
2246}
2247
a0b60d72 2248bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2249 struct io_failure_record *failrec, int failed_mirror)
2250{
ab8d0fc4 2251 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2252 int num_copies;
2253
ab8d0fc4 2254 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2255 if (num_copies == 1) {
2256 /*
2257 * we only have a single copy of the data, so don't bother with
2258 * all the retry and error correction code that follows. no
2259 * matter what the error is, it is very likely to persist.
2260 */
ab8d0fc4
JM
2261 btrfs_debug(fs_info,
2262 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2263 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2264 return false;
4a54c8c1
JS
2265 }
2266
4a54c8c1
JS
2267 /*
2268 * there are two premises:
2269 * a) deliver good data to the caller
2270 * b) correct the bad sectors on disk
2271 */
a0b60d72 2272 if (failed_bio_pages > 1) {
4a54c8c1
JS
2273 /*
2274 * to fulfill b), we need to know the exact failing sectors, as
2275 * we don't want to rewrite any more than the failed ones. thus,
2276 * we need separate read requests for the failed bio
2277 *
2278 * if the following BUG_ON triggers, our validation request got
2279 * merged. we need separate requests for our algorithm to work.
2280 */
2281 BUG_ON(failrec->in_validation);
2282 failrec->in_validation = 1;
2283 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2284 } else {
2285 /*
2286 * we're ready to fulfill a) and b) alongside. get a good copy
2287 * of the failed sector and if we succeed, we have setup
2288 * everything for repair_io_failure to do the rest for us.
2289 */
2290 if (failrec->in_validation) {
2291 BUG_ON(failrec->this_mirror != failed_mirror);
2292 failrec->in_validation = 0;
2293 failrec->this_mirror = 0;
2294 }
2295 failrec->failed_mirror = failed_mirror;
2296 failrec->this_mirror++;
2297 if (failrec->this_mirror == failed_mirror)
2298 failrec->this_mirror++;
4a54c8c1
JS
2299 }
2300
facc8a22 2301 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2302 btrfs_debug(fs_info,
2303 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2304 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2305 return false;
4a54c8c1
JS
2306 }
2307
c3cfb656 2308 return true;
2fe6303e
MX
2309}
2310
2311
2312struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2313 struct io_failure_record *failrec,
2314 struct page *page, int pg_offset, int icsum,
8b110e39 2315 bio_end_io_t *endio_func, void *data)
2fe6303e 2316{
0b246afa 2317 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2318 struct bio *bio;
2319 struct btrfs_io_bio *btrfs_failed_bio;
2320 struct btrfs_io_bio *btrfs_bio;
2321
c5e4c3d7 2322 bio = btrfs_io_bio_alloc(1);
2fe6303e 2323 bio->bi_end_io = endio_func;
4f024f37 2324 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2325 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2326 bio->bi_iter.bi_size = 0;
8b110e39 2327 bio->bi_private = data;
4a54c8c1 2328
facc8a22
MX
2329 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2330 if (btrfs_failed_bio->csum) {
facc8a22
MX
2331 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2332
2333 btrfs_bio = btrfs_io_bio(bio);
2334 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2335 icsum *= csum_size;
2336 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2337 csum_size);
2338 }
2339
2fe6303e
MX
2340 bio_add_page(bio, page, failrec->len, pg_offset);
2341
2342 return bio;
2343}
2344
2345/*
2346 * this is a generic handler for readpage errors (default
2347 * readpage_io_failed_hook). if other copies exist, read those and write back
2348 * good data to the failed position. does not investigate in remapping the
2349 * failed extent elsewhere, hoping the device will be smart enough to do this as
2350 * needed
2351 */
2352
2353static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2354 struct page *page, u64 start, u64 end,
2355 int failed_mirror)
2356{
2357 struct io_failure_record *failrec;
2358 struct inode *inode = page->mapping->host;
2359 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2360 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2361 struct bio *bio;
70fd7614 2362 int read_mode = 0;
4e4cbee9 2363 blk_status_t status;
2fe6303e 2364 int ret;
a0b60d72 2365 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2366
1f7ad75b 2367 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2368
2369 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2370 if (ret)
2371 return ret;
2372
a0b60d72 2373 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2374 failed_mirror)) {
7870d082 2375 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2376 return -EIO;
2377 }
2378
a0b60d72 2379 if (failed_bio_pages > 1)
70fd7614 2380 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2381
2382 phy_offset >>= inode->i_sb->s_blocksize_bits;
2383 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2384 start - page_offset(page),
8b110e39
MX
2385 (int)phy_offset, failed_bio->bi_end_io,
2386 NULL);
ebcc3263 2387 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2388
ab8d0fc4
JM
2389 btrfs_debug(btrfs_sb(inode->i_sb),
2390 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2391 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2392
8c27cb35 2393 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2394 failrec->bio_flags, 0);
4e4cbee9 2395 if (status) {
7870d082 2396 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2397 bio_put(bio);
4e4cbee9 2398 ret = blk_status_to_errno(status);
6c387ab2
MX
2399 }
2400
013bd4c3 2401 return ret;
4a54c8c1
JS
2402}
2403
d1310b2e
CM
2404/* lots and lots of room for performance fixes in the end_bio funcs */
2405
b5227c07 2406void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2407{
2408 int uptodate = (err == 0);
2409 struct extent_io_tree *tree;
3e2426bd 2410 int ret = 0;
87826df0
JM
2411
2412 tree = &BTRFS_I(page->mapping->host)->io_tree;
2413
c3988d63
DS
2414 if (tree->ops && tree->ops->writepage_end_io_hook)
2415 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2416 uptodate);
87826df0 2417
87826df0 2418 if (!uptodate) {
87826df0
JM
2419 ClearPageUptodate(page);
2420 SetPageError(page);
bff5baf8 2421 ret = err < 0 ? err : -EIO;
5dca6eea 2422 mapping_set_error(page->mapping, ret);
87826df0 2423 }
87826df0
JM
2424}
2425
d1310b2e
CM
2426/*
2427 * after a writepage IO is done, we need to:
2428 * clear the uptodate bits on error
2429 * clear the writeback bits in the extent tree for this IO
2430 * end_page_writeback if the page has no more pending IO
2431 *
2432 * Scheduling is not allowed, so the extent state tree is expected
2433 * to have one and only one object corresponding to this IO.
2434 */
4246a0b6 2435static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2436{
4e4cbee9 2437 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2438 struct bio_vec *bvec;
d1310b2e
CM
2439 u64 start;
2440 u64 end;
2c30c71b 2441 int i;
d1310b2e 2442
c09abff8 2443 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2444 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2445 struct page *page = bvec->bv_page;
0b246afa
JM
2446 struct inode *inode = page->mapping->host;
2447 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2448
17a5adcc
AO
2449 /* We always issue full-page reads, but if some block
2450 * in a page fails to read, blk_update_request() will
2451 * advance bv_offset and adjust bv_len to compensate.
2452 * Print a warning for nonzero offsets, and an error
2453 * if they don't add up to a full page. */
09cbfeaf
KS
2454 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2455 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2456 btrfs_err(fs_info,
efe120a0
FH
2457 "partial page write in btrfs with offset %u and length %u",
2458 bvec->bv_offset, bvec->bv_len);
2459 else
0b246afa 2460 btrfs_info(fs_info,
5d163e0e 2461 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2462 bvec->bv_offset, bvec->bv_len);
2463 }
d1310b2e 2464
17a5adcc
AO
2465 start = page_offset(page);
2466 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2467
4e4cbee9 2468 end_extent_writepage(page, error, start, end);
17a5adcc 2469 end_page_writeback(page);
2c30c71b 2470 }
2b1f55b0 2471
d1310b2e 2472 bio_put(bio);
d1310b2e
CM
2473}
2474
883d0de4
MX
2475static void
2476endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2477 int uptodate)
2478{
2479 struct extent_state *cached = NULL;
2480 u64 end = start + len - 1;
2481
2482 if (uptodate && tree->track_uptodate)
2483 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2484 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2485}
2486
d1310b2e
CM
2487/*
2488 * after a readpage IO is done, we need to:
2489 * clear the uptodate bits on error
2490 * set the uptodate bits if things worked
2491 * set the page up to date if all extents in the tree are uptodate
2492 * clear the lock bit in the extent tree
2493 * unlock the page if there are no other extents locked for it
2494 *
2495 * Scheduling is not allowed, so the extent state tree is expected
2496 * to have one and only one object corresponding to this IO.
2497 */
4246a0b6 2498static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2499{
2c30c71b 2500 struct bio_vec *bvec;
4e4cbee9 2501 int uptodate = !bio->bi_status;
facc8a22 2502 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2503 struct extent_io_tree *tree, *failure_tree;
facc8a22 2504 u64 offset = 0;
d1310b2e
CM
2505 u64 start;
2506 u64 end;
facc8a22 2507 u64 len;
883d0de4
MX
2508 u64 extent_start = 0;
2509 u64 extent_len = 0;
5cf1ab56 2510 int mirror;
d1310b2e 2511 int ret;
2c30c71b 2512 int i;
d1310b2e 2513
c09abff8 2514 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2515 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2516 struct page *page = bvec->bv_page;
a71754fc 2517 struct inode *inode = page->mapping->host;
ab8d0fc4 2518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2519
ab8d0fc4
JM
2520 btrfs_debug(fs_info,
2521 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2522 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2523 io_bio->mirror_num);
a71754fc 2524 tree = &BTRFS_I(inode)->io_tree;
7870d082 2525 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2526
17a5adcc
AO
2527 /* We always issue full-page reads, but if some block
2528 * in a page fails to read, blk_update_request() will
2529 * advance bv_offset and adjust bv_len to compensate.
2530 * Print a warning for nonzero offsets, and an error
2531 * if they don't add up to a full page. */
09cbfeaf
KS
2532 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2533 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2534 btrfs_err(fs_info,
2535 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2536 bvec->bv_offset, bvec->bv_len);
2537 else
ab8d0fc4
JM
2538 btrfs_info(fs_info,
2539 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2540 bvec->bv_offset, bvec->bv_len);
2541 }
d1310b2e 2542
17a5adcc
AO
2543 start = page_offset(page);
2544 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2545 len = bvec->bv_len;
d1310b2e 2546
9be3395b 2547 mirror = io_bio->mirror_num;
20c9801d 2548 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2549 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2550 page, start, end,
2551 mirror);
5ee0844d 2552 if (ret)
d1310b2e 2553 uptodate = 0;
5ee0844d 2554 else
7870d082
JB
2555 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2556 failure_tree, tree, start,
2557 page,
2558 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2559 }
ea466794 2560
f2a09da9
MX
2561 if (likely(uptodate))
2562 goto readpage_ok;
2563
20a7db8a 2564 if (tree->ops) {
5cf1ab56 2565 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2566 if (ret == -EAGAIN) {
2567 /*
2568 * Data inode's readpage_io_failed_hook() always
2569 * returns -EAGAIN.
2570 *
2571 * The generic bio_readpage_error handles errors
2572 * the following way: If possible, new read
2573 * requests are created and submitted and will
2574 * end up in end_bio_extent_readpage as well (if
2575 * we're lucky, not in the !uptodate case). In
2576 * that case it returns 0 and we just go on with
2577 * the next page in our bio. If it can't handle
2578 * the error it will return -EIO and we remain
2579 * responsible for that page.
2580 */
2581 ret = bio_readpage_error(bio, offset, page,
2582 start, end, mirror);
2583 if (ret == 0) {
4e4cbee9 2584 uptodate = !bio->bi_status;
9d0d1c8b
LB
2585 offset += len;
2586 continue;
2587 }
2588 }
2589
f4a8e656 2590 /*
9d0d1c8b
LB
2591 * metadata's readpage_io_failed_hook() always returns
2592 * -EIO and fixes nothing. -EIO is also returned if
2593 * data inode error could not be fixed.
f4a8e656 2594 */
9d0d1c8b 2595 ASSERT(ret == -EIO);
7e38326f 2596 }
f2a09da9 2597readpage_ok:
883d0de4 2598 if (likely(uptodate)) {
a71754fc 2599 loff_t i_size = i_size_read(inode);
09cbfeaf 2600 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2601 unsigned off;
a71754fc
JB
2602
2603 /* Zero out the end if this page straddles i_size */
09cbfeaf 2604 off = i_size & (PAGE_SIZE-1);
a583c026 2605 if (page->index == end_index && off)
09cbfeaf 2606 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2607 SetPageUptodate(page);
70dec807 2608 } else {
17a5adcc
AO
2609 ClearPageUptodate(page);
2610 SetPageError(page);
70dec807 2611 }
17a5adcc 2612 unlock_page(page);
facc8a22 2613 offset += len;
883d0de4
MX
2614
2615 if (unlikely(!uptodate)) {
2616 if (extent_len) {
2617 endio_readpage_release_extent(tree,
2618 extent_start,
2619 extent_len, 1);
2620 extent_start = 0;
2621 extent_len = 0;
2622 }
2623 endio_readpage_release_extent(tree, start,
2624 end - start + 1, 0);
2625 } else if (!extent_len) {
2626 extent_start = start;
2627 extent_len = end + 1 - start;
2628 } else if (extent_start + extent_len == start) {
2629 extent_len += end + 1 - start;
2630 } else {
2631 endio_readpage_release_extent(tree, extent_start,
2632 extent_len, uptodate);
2633 extent_start = start;
2634 extent_len = end + 1 - start;
2635 }
2c30c71b 2636 }
d1310b2e 2637
883d0de4
MX
2638 if (extent_len)
2639 endio_readpage_release_extent(tree, extent_start, extent_len,
2640 uptodate);
facc8a22 2641 if (io_bio->end_io)
4e4cbee9 2642 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2643 bio_put(bio);
d1310b2e
CM
2644}
2645
9be3395b 2646/*
184f999e
DS
2647 * Initialize the members up to but not including 'bio'. Use after allocating a
2648 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2649 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2650 */
184f999e 2651static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2652{
184f999e
DS
2653 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2654}
d1310b2e 2655
9be3395b 2656/*
6e707bcd
DS
2657 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2658 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2659 * for the appropriate container_of magic
9be3395b 2660 */
c821e7f3 2661struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2662{
2663 struct bio *bio;
d1310b2e 2664
8ac9f7c1 2665 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2666 bio_set_dev(bio, bdev);
c821e7f3 2667 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2668 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2669 return bio;
2670}
2671
8b6c1d56 2672struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2673{
23ea8e5a
MX
2674 struct btrfs_io_bio *btrfs_bio;
2675 struct bio *new;
9be3395b 2676
6e707bcd 2677 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2678 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2679 btrfs_bio = btrfs_io_bio(new);
184f999e 2680 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2681 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2682 return new;
2683}
9be3395b 2684
c5e4c3d7 2685struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2686{
facc8a22
MX
2687 struct bio *bio;
2688
6e707bcd 2689 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2690 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2691 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2692 return bio;
9be3395b
CM
2693}
2694
e477094f 2695struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2696{
2697 struct bio *bio;
2698 struct btrfs_io_bio *btrfs_bio;
2699
2700 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2701 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2702 ASSERT(bio);
2703
2704 btrfs_bio = btrfs_io_bio(bio);
184f999e 2705 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2706
2707 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2708 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2709 return bio;
2710}
9be3395b 2711
1f7ad75b
MC
2712static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2713 unsigned long bio_flags)
d1310b2e 2714{
4e4cbee9 2715 blk_status_t ret = 0;
c45a8f2d 2716 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2717 struct page *page = bvec->bv_page;
2718 struct extent_io_tree *tree = bio->bi_private;
70dec807 2719 u64 start;
70dec807 2720
4eee4fa4 2721 start = page_offset(page) + bvec->bv_offset;
70dec807 2722
902b22f3 2723 bio->bi_private = NULL;
d1310b2e 2724
20c9801d 2725 if (tree->ops)
c6100a4b 2726 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2727 mirror_num, bio_flags, start);
0b86a832 2728 else
4e49ea4a 2729 btrfsic_submit_bio(bio);
4a54c8c1 2730
4e4cbee9 2731 return blk_status_to_errno(ret);
d1310b2e
CM
2732}
2733
4b81ba48
DS
2734/*
2735 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2736 * @tree: tree so we can call our merge_bio hook
2737 * @wbc: optional writeback control for io accounting
2738 * @page: page to add to the bio
2739 * @pg_offset: offset of the new bio or to check whether we are adding
2740 * a contiguous page to the previous one
2741 * @size: portion of page that we want to write
2742 * @offset: starting offset in the page
2743 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2744 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2745 * @end_io_func: end_io callback for new bio
2746 * @mirror_num: desired mirror to read/write
2747 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2748 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2749 */
2750static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2751 struct writeback_control *wbc,
6273b7f8 2752 struct page *page, u64 offset,
6c5a4e2c 2753 size_t size, unsigned long pg_offset,
d1310b2e
CM
2754 struct block_device *bdev,
2755 struct bio **bio_ret,
f188591e 2756 bio_end_io_t end_io_func,
c8b97818
CM
2757 int mirror_num,
2758 unsigned long prev_bio_flags,
005efedf
FM
2759 unsigned long bio_flags,
2760 bool force_bio_submit)
d1310b2e
CM
2761{
2762 int ret = 0;
2763 struct bio *bio;
09cbfeaf 2764 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2765 sector_t sector = offset >> 9;
d1310b2e 2766
5c2b1fd7
DS
2767 ASSERT(bio_ret);
2768
2769 if (*bio_ret) {
0c8508a6
DS
2770 bool contig;
2771 bool can_merge = true;
2772
d1310b2e 2773 bio = *bio_ret;
0c8508a6 2774 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2775 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2776 else
f73a1c7d 2777 contig = bio_end_sector(bio) == sector;
c8b97818 2778
00032d38
DS
2779 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2780 bio, bio_flags))
0c8508a6
DS
2781 can_merge = false;
2782
2783 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2784 force_bio_submit ||
6c5a4e2c 2785 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2786 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2787 if (ret < 0) {
2788 *bio_ret = NULL;
79787eaa 2789 return ret;
289454ad 2790 }
d1310b2e
CM
2791 bio = NULL;
2792 } else {
da2f0f74
CM
2793 if (wbc)
2794 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2795 return 0;
2796 }
2797 }
c8b97818 2798
6273b7f8 2799 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2800 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2801 bio->bi_end_io = end_io_func;
2802 bio->bi_private = tree;
e6959b93 2803 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2804 bio->bi_opf = opf;
da2f0f74
CM
2805 if (wbc) {
2806 wbc_init_bio(wbc, bio);
2807 wbc_account_io(wbc, page, page_size);
2808 }
70dec807 2809
5c2b1fd7 2810 *bio_ret = bio;
d1310b2e
CM
2811
2812 return ret;
2813}
2814
48a3b636
ES
2815static void attach_extent_buffer_page(struct extent_buffer *eb,
2816 struct page *page)
d1310b2e
CM
2817{
2818 if (!PagePrivate(page)) {
2819 SetPagePrivate(page);
09cbfeaf 2820 get_page(page);
4f2de97a
JB
2821 set_page_private(page, (unsigned long)eb);
2822 } else {
2823 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2824 }
2825}
2826
4f2de97a 2827void set_page_extent_mapped(struct page *page)
d1310b2e 2828{
4f2de97a
JB
2829 if (!PagePrivate(page)) {
2830 SetPagePrivate(page);
09cbfeaf 2831 get_page(page);
4f2de97a
JB
2832 set_page_private(page, EXTENT_PAGE_PRIVATE);
2833 }
d1310b2e
CM
2834}
2835
125bac01
MX
2836static struct extent_map *
2837__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2838 u64 start, u64 len, get_extent_t *get_extent,
2839 struct extent_map **em_cached)
2840{
2841 struct extent_map *em;
2842
2843 if (em_cached && *em_cached) {
2844 em = *em_cached;
cbc0e928 2845 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2846 start < extent_map_end(em)) {
490b54d6 2847 refcount_inc(&em->refs);
125bac01
MX
2848 return em;
2849 }
2850
2851 free_extent_map(em);
2852 *em_cached = NULL;
2853 }
2854
fc4f21b1 2855 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2856 if (em_cached && !IS_ERR_OR_NULL(em)) {
2857 BUG_ON(*em_cached);
490b54d6 2858 refcount_inc(&em->refs);
125bac01
MX
2859 *em_cached = em;
2860 }
2861 return em;
2862}
d1310b2e
CM
2863/*
2864 * basic readpage implementation. Locked extent state structs are inserted
2865 * into the tree that are removed when the IO is done (by the end_io
2866 * handlers)
79787eaa 2867 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2868 * return 0 on success, otherwise return error
d1310b2e 2869 */
9974090b
MX
2870static int __do_readpage(struct extent_io_tree *tree,
2871 struct page *page,
2872 get_extent_t *get_extent,
125bac01 2873 struct extent_map **em_cached,
9974090b 2874 struct bio **bio, int mirror_num,
f1c77c55 2875 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2876 u64 *prev_em_start)
d1310b2e
CM
2877{
2878 struct inode *inode = page->mapping->host;
4eee4fa4 2879 u64 start = page_offset(page);
8eec8296 2880 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2881 u64 cur = start;
2882 u64 extent_offset;
2883 u64 last_byte = i_size_read(inode);
2884 u64 block_start;
2885 u64 cur_end;
d1310b2e
CM
2886 struct extent_map *em;
2887 struct block_device *bdev;
baf863b9 2888 int ret = 0;
d1310b2e 2889 int nr = 0;
306e16ce 2890 size_t pg_offset = 0;
d1310b2e 2891 size_t iosize;
c8b97818 2892 size_t disk_io_size;
d1310b2e 2893 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2894 unsigned long this_bio_flag = 0;
d1310b2e
CM
2895
2896 set_page_extent_mapped(page);
2897
90a887c9
DM
2898 if (!PageUptodate(page)) {
2899 if (cleancache_get_page(page) == 0) {
2900 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2901 unlock_extent(tree, start, end);
90a887c9
DM
2902 goto out;
2903 }
2904 }
2905
09cbfeaf 2906 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2907 char *userpage;
09cbfeaf 2908 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2909
2910 if (zero_offset) {
09cbfeaf 2911 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2912 userpage = kmap_atomic(page);
c8b97818
CM
2913 memset(userpage + zero_offset, 0, iosize);
2914 flush_dcache_page(page);
7ac687d9 2915 kunmap_atomic(userpage);
c8b97818
CM
2916 }
2917 }
d1310b2e 2918 while (cur <= end) {
005efedf 2919 bool force_bio_submit = false;
6273b7f8 2920 u64 offset;
c8f2f24b 2921
d1310b2e
CM
2922 if (cur >= last_byte) {
2923 char *userpage;
507903b8
AJ
2924 struct extent_state *cached = NULL;
2925
09cbfeaf 2926 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2927 userpage = kmap_atomic(page);
306e16ce 2928 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2929 flush_dcache_page(page);
7ac687d9 2930 kunmap_atomic(userpage);
d1310b2e 2931 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2932 &cached, GFP_NOFS);
7f042a83 2933 unlock_extent_cached(tree, cur,
e43bbe5e 2934 cur + iosize - 1, &cached);
d1310b2e
CM
2935 break;
2936 }
125bac01
MX
2937 em = __get_extent_map(inode, page, pg_offset, cur,
2938 end - cur + 1, get_extent, em_cached);
c704005d 2939 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2940 SetPageError(page);
7f042a83 2941 unlock_extent(tree, cur, end);
d1310b2e
CM
2942 break;
2943 }
d1310b2e
CM
2944 extent_offset = cur - em->start;
2945 BUG_ON(extent_map_end(em) <= cur);
2946 BUG_ON(end < cur);
2947
261507a0 2948 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2949 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2950 extent_set_compress_type(&this_bio_flag,
2951 em->compress_type);
2952 }
c8b97818 2953
d1310b2e
CM
2954 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2955 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2956 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2957 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2958 disk_io_size = em->block_len;
6273b7f8 2959 offset = em->block_start;
c8b97818 2960 } else {
6273b7f8 2961 offset = em->block_start + extent_offset;
c8b97818
CM
2962 disk_io_size = iosize;
2963 }
d1310b2e
CM
2964 bdev = em->bdev;
2965 block_start = em->block_start;
d899e052
YZ
2966 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2967 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2968
2969 /*
2970 * If we have a file range that points to a compressed extent
2971 * and it's followed by a consecutive file range that points to
2972 * to the same compressed extent (possibly with a different
2973 * offset and/or length, so it either points to the whole extent
2974 * or only part of it), we must make sure we do not submit a
2975 * single bio to populate the pages for the 2 ranges because
2976 * this makes the compressed extent read zero out the pages
2977 * belonging to the 2nd range. Imagine the following scenario:
2978 *
2979 * File layout
2980 * [0 - 8K] [8K - 24K]
2981 * | |
2982 * | |
2983 * points to extent X, points to extent X,
2984 * offset 4K, length of 8K offset 0, length 16K
2985 *
2986 * [extent X, compressed length = 4K uncompressed length = 16K]
2987 *
2988 * If the bio to read the compressed extent covers both ranges,
2989 * it will decompress extent X into the pages belonging to the
2990 * first range and then it will stop, zeroing out the remaining
2991 * pages that belong to the other range that points to extent X.
2992 * So here we make sure we submit 2 bios, one for the first
2993 * range and another one for the third range. Both will target
2994 * the same physical extent from disk, but we can't currently
2995 * make the compressed bio endio callback populate the pages
2996 * for both ranges because each compressed bio is tightly
2997 * coupled with a single extent map, and each range can have
2998 * an extent map with a different offset value relative to the
2999 * uncompressed data of our extent and different lengths. This
3000 * is a corner case so we prioritize correctness over
3001 * non-optimal behavior (submitting 2 bios for the same extent).
3002 */
3003 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3004 prev_em_start && *prev_em_start != (u64)-1 &&
3005 *prev_em_start != em->orig_start)
3006 force_bio_submit = true;
3007
3008 if (prev_em_start)
3009 *prev_em_start = em->orig_start;
3010
d1310b2e
CM
3011 free_extent_map(em);
3012 em = NULL;
3013
3014 /* we've found a hole, just zero and go on */
3015 if (block_start == EXTENT_MAP_HOLE) {
3016 char *userpage;
507903b8
AJ
3017 struct extent_state *cached = NULL;
3018
7ac687d9 3019 userpage = kmap_atomic(page);
306e16ce 3020 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3021 flush_dcache_page(page);
7ac687d9 3022 kunmap_atomic(userpage);
d1310b2e
CM
3023
3024 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3025 &cached, GFP_NOFS);
7f042a83 3026 unlock_extent_cached(tree, cur,
e43bbe5e 3027 cur + iosize - 1, &cached);
d1310b2e 3028 cur = cur + iosize;
306e16ce 3029 pg_offset += iosize;
d1310b2e
CM
3030 continue;
3031 }
3032 /* the get_extent function already copied into the page */
9655d298
CM
3033 if (test_range_bit(tree, cur, cur_end,
3034 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3035 check_page_uptodate(tree, page);
7f042a83 3036 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3037 cur = cur + iosize;
306e16ce 3038 pg_offset += iosize;
d1310b2e
CM
3039 continue;
3040 }
70dec807
CM
3041 /* we have an inline extent but it didn't get marked up
3042 * to date. Error out
3043 */
3044 if (block_start == EXTENT_MAP_INLINE) {
3045 SetPageError(page);
7f042a83 3046 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3047 cur = cur + iosize;
306e16ce 3048 pg_offset += iosize;
70dec807
CM
3049 continue;
3050 }
d1310b2e 3051
4b81ba48 3052 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3053 page, offset, disk_io_size,
3054 pg_offset, bdev, bio,
c8b97818
CM
3055 end_bio_extent_readpage, mirror_num,
3056 *bio_flags,
005efedf
FM
3057 this_bio_flag,
3058 force_bio_submit);
c8f2f24b
JB
3059 if (!ret) {
3060 nr++;
3061 *bio_flags = this_bio_flag;
3062 } else {
d1310b2e 3063 SetPageError(page);
7f042a83 3064 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3065 goto out;
edd33c99 3066 }
d1310b2e 3067 cur = cur + iosize;
306e16ce 3068 pg_offset += iosize;
d1310b2e 3069 }
90a887c9 3070out:
d1310b2e
CM
3071 if (!nr) {
3072 if (!PageError(page))
3073 SetPageUptodate(page);
3074 unlock_page(page);
3075 }
baf863b9 3076 return ret;
d1310b2e
CM
3077}
3078
9974090b
MX
3079static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3080 struct page *pages[], int nr_pages,
3081 u64 start, u64 end,
125bac01 3082 struct extent_map **em_cached,
d3fac6ba 3083 struct bio **bio,
1f7ad75b 3084 unsigned long *bio_flags,
808f80b4 3085 u64 *prev_em_start)
9974090b
MX
3086{
3087 struct inode *inode;
3088 struct btrfs_ordered_extent *ordered;
3089 int index;
3090
3091 inode = pages[0]->mapping->host;
3092 while (1) {
3093 lock_extent(tree, start, end);
a776c6fa 3094 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3095 end - start + 1);
3096 if (!ordered)
3097 break;
3098 unlock_extent(tree, start, end);
3099 btrfs_start_ordered_extent(inode, ordered, 1);
3100 btrfs_put_ordered_extent(ordered);
3101 }
3102
3103 for (index = 0; index < nr_pages; index++) {
4ef77695
DS
3104 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3105 bio, 0, bio_flags, 0, prev_em_start);
09cbfeaf 3106 put_page(pages[index]);
9974090b
MX
3107 }
3108}
3109
3110static void __extent_readpages(struct extent_io_tree *tree,
3111 struct page *pages[],
e4d17ef5 3112 int nr_pages,
125bac01 3113 struct extent_map **em_cached,
d3fac6ba 3114 struct bio **bio, unsigned long *bio_flags,
808f80b4 3115 u64 *prev_em_start)
9974090b 3116{
35a3621b 3117 u64 start = 0;
9974090b
MX
3118 u64 end = 0;
3119 u64 page_start;
3120 int index;
35a3621b 3121 int first_index = 0;
9974090b
MX
3122
3123 for (index = 0; index < nr_pages; index++) {
3124 page_start = page_offset(pages[index]);
3125 if (!end) {
3126 start = page_start;
09cbfeaf 3127 end = start + PAGE_SIZE - 1;
9974090b
MX
3128 first_index = index;
3129 } else if (end + 1 == page_start) {
09cbfeaf 3130 end += PAGE_SIZE;
9974090b
MX
3131 } else {
3132 __do_contiguous_readpages(tree, &pages[first_index],
3133 index - first_index, start,
4ef77695 3134 end, em_cached,
d3fac6ba 3135 bio, bio_flags,
1f7ad75b 3136 prev_em_start);
9974090b 3137 start = page_start;
09cbfeaf 3138 end = start + PAGE_SIZE - 1;
9974090b
MX
3139 first_index = index;
3140 }
3141 }
3142
3143 if (end)
3144 __do_contiguous_readpages(tree, &pages[first_index],
3145 index - first_index, start,
4ef77695 3146 end, em_cached, bio,
d3fac6ba 3147 bio_flags, prev_em_start);
9974090b
MX
3148}
3149
3150static int __extent_read_full_page(struct extent_io_tree *tree,
3151 struct page *page,
3152 get_extent_t *get_extent,
3153 struct bio **bio, int mirror_num,
f1c77c55
DS
3154 unsigned long *bio_flags,
3155 unsigned int read_flags)
9974090b
MX
3156{
3157 struct inode *inode = page->mapping->host;
3158 struct btrfs_ordered_extent *ordered;
3159 u64 start = page_offset(page);
09cbfeaf 3160 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3161 int ret;
3162
3163 while (1) {
3164 lock_extent(tree, start, end);
a776c6fa 3165 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3166 PAGE_SIZE);
9974090b
MX
3167 if (!ordered)
3168 break;
3169 unlock_extent(tree, start, end);
3170 btrfs_start_ordered_extent(inode, ordered, 1);
3171 btrfs_put_ordered_extent(ordered);
3172 }
3173
125bac01 3174 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3175 bio_flags, read_flags, NULL);
9974090b
MX
3176 return ret;
3177}
3178
d1310b2e 3179int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3180 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3181{
3182 struct bio *bio = NULL;
c8b97818 3183 unsigned long bio_flags = 0;
d1310b2e
CM
3184 int ret;
3185
8ddc7d9c 3186 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3187 &bio_flags, 0);
d1310b2e 3188 if (bio)
1f7ad75b 3189 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3190 return ret;
3191}
d1310b2e 3192
3d4b9496 3193static void update_nr_written(struct writeback_control *wbc,
a9132667 3194 unsigned long nr_written)
11c8349b
CM
3195{
3196 wbc->nr_to_write -= nr_written;
11c8349b
CM
3197}
3198
d1310b2e 3199/*
40f76580
CM
3200 * helper for __extent_writepage, doing all of the delayed allocation setup.
3201 *
3202 * This returns 1 if our fill_delalloc function did all the work required
3203 * to write the page (copy into inline extent). In this case the IO has
3204 * been started and the page is already unlocked.
3205 *
3206 * This returns 0 if all went well (page still locked)
3207 * This returns < 0 if there were errors (page still locked)
d1310b2e 3208 */
40f76580
CM
3209static noinline_for_stack int writepage_delalloc(struct inode *inode,
3210 struct page *page, struct writeback_control *wbc,
3211 struct extent_page_data *epd,
3212 u64 delalloc_start,
3213 unsigned long *nr_written)
3214{
3215 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3216 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3217 u64 nr_delalloc;
3218 u64 delalloc_to_write = 0;
3219 u64 delalloc_end = 0;
3220 int ret;
3221 int page_started = 0;
3222
3223 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3224 return 0;
3225
3226 while (delalloc_end < page_end) {
3227 nr_delalloc = find_lock_delalloc_range(inode, tree,
3228 page,
3229 &delalloc_start,
3230 &delalloc_end,
dcab6a3b 3231 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3232 if (nr_delalloc == 0) {
3233 delalloc_start = delalloc_end + 1;
3234 continue;
3235 }
3236 ret = tree->ops->fill_delalloc(inode, page,
3237 delalloc_start,
3238 delalloc_end,
3239 &page_started,
f82b7359 3240 nr_written, wbc);
40f76580
CM
3241 /* File system has been set read-only */
3242 if (ret) {
3243 SetPageError(page);
3244 /* fill_delalloc should be return < 0 for error
3245 * but just in case, we use > 0 here meaning the
3246 * IO is started, so we don't want to return > 0
3247 * unless things are going well.
3248 */
3249 ret = ret < 0 ? ret : -EIO;
3250 goto done;
3251 }
3252 /*
ea1754a0
KS
3253 * delalloc_end is already one less than the total length, so
3254 * we don't subtract one from PAGE_SIZE
40f76580
CM
3255 */
3256 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3257 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3258 delalloc_start = delalloc_end + 1;
3259 }
3260 if (wbc->nr_to_write < delalloc_to_write) {
3261 int thresh = 8192;
3262
3263 if (delalloc_to_write < thresh * 2)
3264 thresh = delalloc_to_write;
3265 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3266 thresh);
3267 }
3268
3269 /* did the fill delalloc function already unlock and start
3270 * the IO?
3271 */
3272 if (page_started) {
3273 /*
3274 * we've unlocked the page, so we can't update
3275 * the mapping's writeback index, just update
3276 * nr_to_write.
3277 */
3278 wbc->nr_to_write -= *nr_written;
3279 return 1;
3280 }
3281
3282 ret = 0;
3283
3284done:
3285 return ret;
3286}
3287
3288/*
3289 * helper for __extent_writepage. This calls the writepage start hooks,
3290 * and does the loop to map the page into extents and bios.
3291 *
3292 * We return 1 if the IO is started and the page is unlocked,
3293 * 0 if all went well (page still locked)
3294 * < 0 if there were errors (page still locked)
3295 */
3296static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3297 struct page *page,
3298 struct writeback_control *wbc,
3299 struct extent_page_data *epd,
3300 loff_t i_size,
3301 unsigned long nr_written,
f1c77c55 3302 unsigned int write_flags, int *nr_ret)
d1310b2e 3303{
d1310b2e 3304 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3305 u64 start = page_offset(page);
09cbfeaf 3306 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3307 u64 end;
3308 u64 cur = start;
3309 u64 extent_offset;
d1310b2e
CM
3310 u64 block_start;
3311 u64 iosize;
d1310b2e
CM
3312 struct extent_map *em;
3313 struct block_device *bdev;
7f3c74fb 3314 size_t pg_offset = 0;
d1310b2e 3315 size_t blocksize;
40f76580
CM
3316 int ret = 0;
3317 int nr = 0;
3318 bool compressed;
c8b97818 3319
247e743c 3320 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3321 ret = tree->ops->writepage_start_hook(page, start,
3322 page_end);
87826df0
JM
3323 if (ret) {
3324 /* Fixup worker will requeue */
3325 if (ret == -EBUSY)
3326 wbc->pages_skipped++;
3327 else
3328 redirty_page_for_writepage(wbc, page);
40f76580 3329
3d4b9496 3330 update_nr_written(wbc, nr_written);
247e743c 3331 unlock_page(page);
bcf93489 3332 return 1;
247e743c
CM
3333 }
3334 }
3335
11c8349b
CM
3336 /*
3337 * we don't want to touch the inode after unlocking the page,
3338 * so we update the mapping writeback index now
3339 */
3d4b9496 3340 update_nr_written(wbc, nr_written + 1);
771ed689 3341
d1310b2e 3342 end = page_end;
40f76580 3343 if (i_size <= start) {
e6dcd2dc
CM
3344 if (tree->ops && tree->ops->writepage_end_io_hook)
3345 tree->ops->writepage_end_io_hook(page, start,
3346 page_end, NULL, 1);
d1310b2e
CM
3347 goto done;
3348 }
3349
d1310b2e
CM
3350 blocksize = inode->i_sb->s_blocksize;
3351
3352 while (cur <= end) {
40f76580 3353 u64 em_end;
6273b7f8 3354 u64 offset;
58409edd 3355
40f76580 3356 if (cur >= i_size) {
e6dcd2dc
CM
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, cur,
3359 page_end, NULL, 1);
d1310b2e
CM
3360 break;
3361 }
3c98c62f 3362 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3363 end - cur + 1, 1);
c704005d 3364 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3365 SetPageError(page);
61391d56 3366 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3367 break;
3368 }
3369
3370 extent_offset = cur - em->start;
40f76580
CM
3371 em_end = extent_map_end(em);
3372 BUG_ON(em_end <= cur);
d1310b2e 3373 BUG_ON(end < cur);
40f76580 3374 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3375 iosize = ALIGN(iosize, blocksize);
6273b7f8 3376 offset = em->block_start + extent_offset;
d1310b2e
CM
3377 bdev = em->bdev;
3378 block_start = em->block_start;
c8b97818 3379 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3380 free_extent_map(em);
3381 em = NULL;
3382
c8b97818
CM
3383 /*
3384 * compressed and inline extents are written through other
3385 * paths in the FS
3386 */
3387 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3388 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3389 /*
3390 * end_io notification does not happen here for
3391 * compressed extents
3392 */
3393 if (!compressed && tree->ops &&
3394 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3395 tree->ops->writepage_end_io_hook(page, cur,
3396 cur + iosize - 1,
3397 NULL, 1);
c8b97818
CM
3398 else if (compressed) {
3399 /* we don't want to end_page_writeback on
3400 * a compressed extent. this happens
3401 * elsewhere
3402 */
3403 nr++;
3404 }
3405
3406 cur += iosize;
7f3c74fb 3407 pg_offset += iosize;
d1310b2e
CM
3408 continue;
3409 }
c8b97818 3410
5cdc84bf 3411 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3412 if (!PageWriteback(page)) {
3413 btrfs_err(BTRFS_I(inode)->root->fs_info,
3414 "page %lu not writeback, cur %llu end %llu",
3415 page->index, cur, end);
d1310b2e 3416 }
7f3c74fb 3417
4b81ba48 3418 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3419 page, offset, iosize, pg_offset,
c2df8bb4 3420 bdev, &epd->bio,
58409edd
DS
3421 end_bio_extent_writepage,
3422 0, 0, 0, false);
fe01aa65 3423 if (ret) {
58409edd 3424 SetPageError(page);
fe01aa65
TK
3425 if (PageWriteback(page))
3426 end_page_writeback(page);
3427 }
d1310b2e 3428
d1310b2e 3429 cur = cur + iosize;
7f3c74fb 3430 pg_offset += iosize;
d1310b2e
CM
3431 nr++;
3432 }
40f76580
CM
3433done:
3434 *nr_ret = nr;
40f76580
CM
3435 return ret;
3436}
3437
3438/*
3439 * the writepage semantics are similar to regular writepage. extent
3440 * records are inserted to lock ranges in the tree, and as dirty areas
3441 * are found, they are marked writeback. Then the lock bits are removed
3442 * and the end_io handler clears the writeback ranges
3443 */
3444static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3445 struct extent_page_data *epd)
40f76580
CM
3446{
3447 struct inode *inode = page->mapping->host;
40f76580 3448 u64 start = page_offset(page);
09cbfeaf 3449 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3450 int ret;
3451 int nr = 0;
3452 size_t pg_offset = 0;
3453 loff_t i_size = i_size_read(inode);
09cbfeaf 3454 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3455 unsigned int write_flags = 0;
40f76580
CM
3456 unsigned long nr_written = 0;
3457
ff40adf7 3458 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3459
3460 trace___extent_writepage(page, inode, wbc);
3461
3462 WARN_ON(!PageLocked(page));
3463
3464 ClearPageError(page);
3465
09cbfeaf 3466 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3467 if (page->index > end_index ||
3468 (page->index == end_index && !pg_offset)) {
09cbfeaf 3469 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3470 unlock_page(page);
3471 return 0;
3472 }
3473
3474 if (page->index == end_index) {
3475 char *userpage;
3476
3477 userpage = kmap_atomic(page);
3478 memset(userpage + pg_offset, 0,
09cbfeaf 3479 PAGE_SIZE - pg_offset);
40f76580
CM
3480 kunmap_atomic(userpage);
3481 flush_dcache_page(page);
3482 }
3483
3484 pg_offset = 0;
3485
3486 set_page_extent_mapped(page);
3487
3488 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3489 if (ret == 1)
3490 goto done_unlocked;
3491 if (ret)
3492 goto done;
3493
3494 ret = __extent_writepage_io(inode, page, wbc, epd,
3495 i_size, nr_written, write_flags, &nr);
3496 if (ret == 1)
3497 goto done_unlocked;
3498
d1310b2e
CM
3499done:
3500 if (nr == 0) {
3501 /* make sure the mapping tag for page dirty gets cleared */
3502 set_page_writeback(page);
3503 end_page_writeback(page);
3504 }
61391d56
FM
3505 if (PageError(page)) {
3506 ret = ret < 0 ? ret : -EIO;
3507 end_extent_writepage(page, ret, start, page_end);
3508 }
d1310b2e 3509 unlock_page(page);
40f76580 3510 return ret;
771ed689 3511
11c8349b 3512done_unlocked:
d1310b2e
CM
3513 return 0;
3514}
3515
fd8b2b61 3516void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3517{
74316201
N
3518 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3519 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3520}
3521
0e378df1
CM
3522static noinline_for_stack int
3523lock_extent_buffer_for_io(struct extent_buffer *eb,
3524 struct btrfs_fs_info *fs_info,
3525 struct extent_page_data *epd)
0b32f4bb 3526{
cc5e31a4 3527 int i, num_pages;
0b32f4bb
JB
3528 int flush = 0;
3529 int ret = 0;
3530
3531 if (!btrfs_try_tree_write_lock(eb)) {
3532 flush = 1;
3533 flush_write_bio(epd);
3534 btrfs_tree_lock(eb);
3535 }
3536
3537 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3538 btrfs_tree_unlock(eb);
3539 if (!epd->sync_io)
3540 return 0;
3541 if (!flush) {
3542 flush_write_bio(epd);
3543 flush = 1;
3544 }
a098d8e8
CM
3545 while (1) {
3546 wait_on_extent_buffer_writeback(eb);
3547 btrfs_tree_lock(eb);
3548 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3549 break;
0b32f4bb 3550 btrfs_tree_unlock(eb);
0b32f4bb
JB
3551 }
3552 }
3553
51561ffe
JB
3554 /*
3555 * We need to do this to prevent races in people who check if the eb is
3556 * under IO since we can end up having no IO bits set for a short period
3557 * of time.
3558 */
3559 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3560 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3561 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3562 spin_unlock(&eb->refs_lock);
0b32f4bb 3563 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3564 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3565 -eb->len,
3566 fs_info->dirty_metadata_batch);
0b32f4bb 3567 ret = 1;
51561ffe
JB
3568 } else {
3569 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3570 }
3571
3572 btrfs_tree_unlock(eb);
3573
3574 if (!ret)
3575 return ret;
3576
65ad0104 3577 num_pages = num_extent_pages(eb);
0b32f4bb 3578 for (i = 0; i < num_pages; i++) {
fb85fc9a 3579 struct page *p = eb->pages[i];
0b32f4bb
JB
3580
3581 if (!trylock_page(p)) {
3582 if (!flush) {
3583 flush_write_bio(epd);
3584 flush = 1;
3585 }
3586 lock_page(p);
3587 }
3588 }
3589
3590 return ret;
3591}
3592
3593static void end_extent_buffer_writeback(struct extent_buffer *eb)
3594{
3595 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3596 smp_mb__after_atomic();
0b32f4bb
JB
3597 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3598}
3599
656f30db
FM
3600static void set_btree_ioerr(struct page *page)
3601{
3602 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3603
3604 SetPageError(page);
3605 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3606 return;
3607
3608 /*
3609 * If writeback for a btree extent that doesn't belong to a log tree
3610 * failed, increment the counter transaction->eb_write_errors.
3611 * We do this because while the transaction is running and before it's
3612 * committing (when we call filemap_fdata[write|wait]_range against
3613 * the btree inode), we might have
3614 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3615 * returns an error or an error happens during writeback, when we're
3616 * committing the transaction we wouldn't know about it, since the pages
3617 * can be no longer dirty nor marked anymore for writeback (if a
3618 * subsequent modification to the extent buffer didn't happen before the
3619 * transaction commit), which makes filemap_fdata[write|wait]_range not
3620 * able to find the pages tagged with SetPageError at transaction
3621 * commit time. So if this happens we must abort the transaction,
3622 * otherwise we commit a super block with btree roots that point to
3623 * btree nodes/leafs whose content on disk is invalid - either garbage
3624 * or the content of some node/leaf from a past generation that got
3625 * cowed or deleted and is no longer valid.
3626 *
3627 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3628 * not be enough - we need to distinguish between log tree extents vs
3629 * non-log tree extents, and the next filemap_fdatawait_range() call
3630 * will catch and clear such errors in the mapping - and that call might
3631 * be from a log sync and not from a transaction commit. Also, checking
3632 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3633 * not done and would not be reliable - the eb might have been released
3634 * from memory and reading it back again means that flag would not be
3635 * set (since it's a runtime flag, not persisted on disk).
3636 *
3637 * Using the flags below in the btree inode also makes us achieve the
3638 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3639 * writeback for all dirty pages and before filemap_fdatawait_range()
3640 * is called, the writeback for all dirty pages had already finished
3641 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3642 * filemap_fdatawait_range() would return success, as it could not know
3643 * that writeback errors happened (the pages were no longer tagged for
3644 * writeback).
3645 */
3646 switch (eb->log_index) {
3647 case -1:
afcdd129 3648 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3649 break;
3650 case 0:
afcdd129 3651 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3652 break;
3653 case 1:
afcdd129 3654 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3655 break;
3656 default:
3657 BUG(); /* unexpected, logic error */
3658 }
3659}
3660
4246a0b6 3661static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3662{
2c30c71b 3663 struct bio_vec *bvec;
0b32f4bb 3664 struct extent_buffer *eb;
2c30c71b 3665 int i, done;
0b32f4bb 3666
c09abff8 3667 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3668 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3669 struct page *page = bvec->bv_page;
3670
0b32f4bb
JB
3671 eb = (struct extent_buffer *)page->private;
3672 BUG_ON(!eb);
3673 done = atomic_dec_and_test(&eb->io_pages);
3674
4e4cbee9 3675 if (bio->bi_status ||
4246a0b6 3676 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3677 ClearPageUptodate(page);
656f30db 3678 set_btree_ioerr(page);
0b32f4bb
JB
3679 }
3680
3681 end_page_writeback(page);
3682
3683 if (!done)
3684 continue;
3685
3686 end_extent_buffer_writeback(eb);
2c30c71b 3687 }
0b32f4bb
JB
3688
3689 bio_put(bio);
0b32f4bb
JB
3690}
3691
0e378df1 3692static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3693 struct btrfs_fs_info *fs_info,
3694 struct writeback_control *wbc,
3695 struct extent_page_data *epd)
3696{
3697 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3698 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3699 u64 offset = eb->start;
851cd173 3700 u32 nritems;
cc5e31a4 3701 int i, num_pages;
851cd173 3702 unsigned long start, end;
ff40adf7 3703 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3704 int ret = 0;
0b32f4bb 3705
656f30db 3706 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3707 num_pages = num_extent_pages(eb);
0b32f4bb 3708 atomic_set(&eb->io_pages, num_pages);
de0022b9 3709
851cd173
LB
3710 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3711 nritems = btrfs_header_nritems(eb);
3eb548ee 3712 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3713 end = btrfs_node_key_ptr_offset(nritems);
3714
b159fa28 3715 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3716 } else {
3717 /*
3718 * leaf:
3719 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3720 */
3721 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3722 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3723 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3724 }
3725
0b32f4bb 3726 for (i = 0; i < num_pages; i++) {
fb85fc9a 3727 struct page *p = eb->pages[i];
0b32f4bb
JB
3728
3729 clear_page_dirty_for_io(p);
3730 set_page_writeback(p);
4b81ba48 3731 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3732 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3733 &epd->bio,
1f7ad75b 3734 end_bio_extent_buffer_writepage,
18fdc679 3735 0, 0, 0, false);
0b32f4bb 3736 if (ret) {
656f30db 3737 set_btree_ioerr(p);
fe01aa65
TK
3738 if (PageWriteback(p))
3739 end_page_writeback(p);
0b32f4bb
JB
3740 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3741 end_extent_buffer_writeback(eb);
3742 ret = -EIO;
3743 break;
3744 }
09cbfeaf 3745 offset += PAGE_SIZE;
3d4b9496 3746 update_nr_written(wbc, 1);
0b32f4bb
JB
3747 unlock_page(p);
3748 }
3749
3750 if (unlikely(ret)) {
3751 for (; i < num_pages; i++) {
bbf65cf0 3752 struct page *p = eb->pages[i];
81465028 3753 clear_page_dirty_for_io(p);
0b32f4bb
JB
3754 unlock_page(p);
3755 }
3756 }
3757
3758 return ret;
3759}
3760
3761int btree_write_cache_pages(struct address_space *mapping,
3762 struct writeback_control *wbc)
3763{
3764 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3765 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3766 struct extent_buffer *eb, *prev_eb = NULL;
3767 struct extent_page_data epd = {
3768 .bio = NULL,
3769 .tree = tree,
3770 .extent_locked = 0,
3771 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3772 };
3773 int ret = 0;
3774 int done = 0;
3775 int nr_to_write_done = 0;
3776 struct pagevec pvec;
3777 int nr_pages;
3778 pgoff_t index;
3779 pgoff_t end; /* Inclusive */
3780 int scanned = 0;
3781 int tag;
3782
86679820 3783 pagevec_init(&pvec);
0b32f4bb
JB
3784 if (wbc->range_cyclic) {
3785 index = mapping->writeback_index; /* Start from prev offset */
3786 end = -1;
3787 } else {
09cbfeaf
KS
3788 index = wbc->range_start >> PAGE_SHIFT;
3789 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3790 scanned = 1;
3791 }
3792 if (wbc->sync_mode == WB_SYNC_ALL)
3793 tag = PAGECACHE_TAG_TOWRITE;
3794 else
3795 tag = PAGECACHE_TAG_DIRTY;
3796retry:
3797 if (wbc->sync_mode == WB_SYNC_ALL)
3798 tag_pages_for_writeback(mapping, index, end);
3799 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3800 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3801 tag))) {
0b32f4bb
JB
3802 unsigned i;
3803
3804 scanned = 1;
3805 for (i = 0; i < nr_pages; i++) {
3806 struct page *page = pvec.pages[i];
3807
3808 if (!PagePrivate(page))
3809 continue;
3810
b5bae261
JB
3811 spin_lock(&mapping->private_lock);
3812 if (!PagePrivate(page)) {
3813 spin_unlock(&mapping->private_lock);
3814 continue;
3815 }
3816
0b32f4bb 3817 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3818
3819 /*
3820 * Shouldn't happen and normally this would be a BUG_ON
3821 * but no sense in crashing the users box for something
3822 * we can survive anyway.
3823 */
fae7f21c 3824 if (WARN_ON(!eb)) {
b5bae261 3825 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3826 continue;
3827 }
3828
b5bae261
JB
3829 if (eb == prev_eb) {
3830 spin_unlock(&mapping->private_lock);
0b32f4bb 3831 continue;
b5bae261 3832 }
0b32f4bb 3833
b5bae261
JB
3834 ret = atomic_inc_not_zero(&eb->refs);
3835 spin_unlock(&mapping->private_lock);
3836 if (!ret)
0b32f4bb 3837 continue;
0b32f4bb
JB
3838
3839 prev_eb = eb;
3840 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3841 if (!ret) {
3842 free_extent_buffer(eb);
3843 continue;
3844 }
3845
3846 ret = write_one_eb(eb, fs_info, wbc, &epd);
3847 if (ret) {
3848 done = 1;
3849 free_extent_buffer(eb);
3850 break;
3851 }
3852 free_extent_buffer(eb);
3853
3854 /*
3855 * the filesystem may choose to bump up nr_to_write.
3856 * We have to make sure to honor the new nr_to_write
3857 * at any time
3858 */
3859 nr_to_write_done = wbc->nr_to_write <= 0;
3860 }
3861 pagevec_release(&pvec);
3862 cond_resched();
3863 }
3864 if (!scanned && !done) {
3865 /*
3866 * We hit the last page and there is more work to be done: wrap
3867 * back to the start of the file
3868 */
3869 scanned = 1;
3870 index = 0;
3871 goto retry;
3872 }
3873 flush_write_bio(&epd);
3874 return ret;
3875}
3876
d1310b2e 3877/**
4bef0848 3878 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3879 * @mapping: address space structure to write
3880 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3881 * @data: data passed to __extent_writepage function
d1310b2e
CM
3882 *
3883 * If a page is already under I/O, write_cache_pages() skips it, even
3884 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3885 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3886 * and msync() need to guarantee that all the data which was dirty at the time
3887 * the call was made get new I/O started against them. If wbc->sync_mode is
3888 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3889 * existing IO to complete.
3890 */
4242b64a 3891static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3892 struct writeback_control *wbc,
aab6e9ed 3893 struct extent_page_data *epd)
d1310b2e 3894{
7fd1a3f7 3895 struct inode *inode = mapping->host;
d1310b2e
CM
3896 int ret = 0;
3897 int done = 0;
f85d7d6c 3898 int nr_to_write_done = 0;
d1310b2e
CM
3899 struct pagevec pvec;
3900 int nr_pages;
3901 pgoff_t index;
3902 pgoff_t end; /* Inclusive */
a9132667
LB
3903 pgoff_t done_index;
3904 int range_whole = 0;
d1310b2e 3905 int scanned = 0;
f7aaa06b 3906 int tag;
d1310b2e 3907
7fd1a3f7
JB
3908 /*
3909 * We have to hold onto the inode so that ordered extents can do their
3910 * work when the IO finishes. The alternative to this is failing to add
3911 * an ordered extent if the igrab() fails there and that is a huge pain
3912 * to deal with, so instead just hold onto the inode throughout the
3913 * writepages operation. If it fails here we are freeing up the inode
3914 * anyway and we'd rather not waste our time writing out stuff that is
3915 * going to be truncated anyway.
3916 */
3917 if (!igrab(inode))
3918 return 0;
3919
86679820 3920 pagevec_init(&pvec);
d1310b2e
CM
3921 if (wbc->range_cyclic) {
3922 index = mapping->writeback_index; /* Start from prev offset */
3923 end = -1;
3924 } else {
09cbfeaf
KS
3925 index = wbc->range_start >> PAGE_SHIFT;
3926 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3927 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3928 range_whole = 1;
d1310b2e
CM
3929 scanned = 1;
3930 }
f7aaa06b
JB
3931 if (wbc->sync_mode == WB_SYNC_ALL)
3932 tag = PAGECACHE_TAG_TOWRITE;
3933 else
3934 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3935retry:
f7aaa06b
JB
3936 if (wbc->sync_mode == WB_SYNC_ALL)
3937 tag_pages_for_writeback(mapping, index, end);
a9132667 3938 done_index = index;
f85d7d6c 3939 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3940 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3941 &index, end, tag))) {
d1310b2e
CM
3942 unsigned i;
3943
3944 scanned = 1;
3945 for (i = 0; i < nr_pages; i++) {
3946 struct page *page = pvec.pages[i];
3947
a9132667 3948 done_index = page->index;
d1310b2e 3949 /*
b93b0163
MW
3950 * At this point we hold neither the i_pages lock nor
3951 * the page lock: the page may be truncated or
3952 * invalidated (changing page->mapping to NULL),
3953 * or even swizzled back from swapper_space to
3954 * tmpfs file mapping
d1310b2e 3955 */
c8f2f24b 3956 if (!trylock_page(page)) {
aab6e9ed 3957 flush_write_bio(epd);
c8f2f24b 3958 lock_page(page);
01d658f2 3959 }
d1310b2e
CM
3960
3961 if (unlikely(page->mapping != mapping)) {
3962 unlock_page(page);
3963 continue;
3964 }
3965
d2c3f4f6 3966 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3967 if (PageWriteback(page))
aab6e9ed 3968 flush_write_bio(epd);
d1310b2e 3969 wait_on_page_writeback(page);
d2c3f4f6 3970 }
d1310b2e
CM
3971
3972 if (PageWriteback(page) ||
3973 !clear_page_dirty_for_io(page)) {
3974 unlock_page(page);
3975 continue;
3976 }
3977
aab6e9ed 3978 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3979
3980 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3981 unlock_page(page);
3982 ret = 0;
3983 }
a9132667
LB
3984 if (ret < 0) {
3985 /*
3986 * done_index is set past this page,
3987 * so media errors will not choke
3988 * background writeout for the entire
3989 * file. This has consequences for
3990 * range_cyclic semantics (ie. it may
3991 * not be suitable for data integrity
3992 * writeout).
3993 */
3994 done_index = page->index + 1;
3995 done = 1;
3996 break;
3997 }
f85d7d6c
CM
3998
3999 /*
4000 * the filesystem may choose to bump up nr_to_write.
4001 * We have to make sure to honor the new nr_to_write
4002 * at any time
4003 */
4004 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4005 }
4006 pagevec_release(&pvec);
4007 cond_resched();
4008 }
894b36e3 4009 if (!scanned && !done) {
d1310b2e
CM
4010 /*
4011 * We hit the last page and there is more work to be done: wrap
4012 * back to the start of the file
4013 */
4014 scanned = 1;
4015 index = 0;
4016 goto retry;
4017 }
a9132667
LB
4018
4019 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4020 mapping->writeback_index = done_index;
4021
7fd1a3f7 4022 btrfs_add_delayed_iput(inode);
894b36e3 4023 return ret;
d1310b2e 4024}
d1310b2e 4025
aab6e9ed 4026static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4027{
d2c3f4f6 4028 if (epd->bio) {
355808c2
JM
4029 int ret;
4030
18fdc679 4031 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4032 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4033 epd->bio = NULL;
4034 }
4035}
4036
0a9b0e53 4037int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4038{
4039 int ret;
d1310b2e
CM
4040 struct extent_page_data epd = {
4041 .bio = NULL,
0a9b0e53 4042 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4043 .extent_locked = 0,
ffbd517d 4044 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4045 };
d1310b2e 4046
d1310b2e
CM
4047 ret = __extent_writepage(page, wbc, &epd);
4048
e2932ee0 4049 flush_write_bio(&epd);
d1310b2e
CM
4050 return ret;
4051}
d1310b2e 4052
5e3ee236 4053int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4054 int mode)
4055{
4056 int ret = 0;
4057 struct address_space *mapping = inode->i_mapping;
5e3ee236 4058 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4059 struct page *page;
09cbfeaf
KS
4060 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4061 PAGE_SHIFT;
771ed689
CM
4062
4063 struct extent_page_data epd = {
4064 .bio = NULL,
4065 .tree = tree,
771ed689 4066 .extent_locked = 1,
ffbd517d 4067 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4068 };
4069 struct writeback_control wbc_writepages = {
771ed689 4070 .sync_mode = mode,
771ed689
CM
4071 .nr_to_write = nr_pages * 2,
4072 .range_start = start,
4073 .range_end = end + 1,
4074 };
4075
d397712b 4076 while (start <= end) {
09cbfeaf 4077 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4078 if (clear_page_dirty_for_io(page))
4079 ret = __extent_writepage(page, &wbc_writepages, &epd);
4080 else {
4081 if (tree->ops && tree->ops->writepage_end_io_hook)
4082 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4083 start + PAGE_SIZE - 1,
771ed689
CM
4084 NULL, 1);
4085 unlock_page(page);
4086 }
09cbfeaf
KS
4087 put_page(page);
4088 start += PAGE_SIZE;
771ed689
CM
4089 }
4090
e2932ee0 4091 flush_write_bio(&epd);
771ed689
CM
4092 return ret;
4093}
d1310b2e 4094
8ae225a8 4095int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4096 struct writeback_control *wbc)
4097{
4098 int ret = 0;
4099 struct extent_page_data epd = {
4100 .bio = NULL,
8ae225a8 4101 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4102 .extent_locked = 0,
ffbd517d 4103 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4104 };
4105
935db853 4106 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4107 flush_write_bio(&epd);
d1310b2e
CM
4108 return ret;
4109}
d1310b2e 4110
2a3ff0ad
NB
4111int extent_readpages(struct address_space *mapping, struct list_head *pages,
4112 unsigned nr_pages)
d1310b2e
CM
4113{
4114 struct bio *bio = NULL;
4115 unsigned page_idx;
c8b97818 4116 unsigned long bio_flags = 0;
67c9684f
LB
4117 struct page *pagepool[16];
4118 struct page *page;
125bac01 4119 struct extent_map *em_cached = NULL;
2a3ff0ad 4120 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4121 int nr = 0;
808f80b4 4122 u64 prev_em_start = (u64)-1;
d1310b2e 4123
d1310b2e 4124 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4125 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4126
4127 prefetchw(&page->flags);
4128 list_del(&page->lru);
67c9684f 4129 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4130 page->index,
4131 readahead_gfp_mask(mapping))) {
09cbfeaf 4132 put_page(page);
67c9684f 4133 continue;
d1310b2e 4134 }
67c9684f
LB
4135
4136 pagepool[nr++] = page;
4137 if (nr < ARRAY_SIZE(pagepool))
4138 continue;
e4d17ef5
DS
4139 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4140 &bio_flags, &prev_em_start);
67c9684f 4141 nr = 0;
d1310b2e 4142 }
9974090b 4143 if (nr)
e4d17ef5
DS
4144 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4145 &bio_flags, &prev_em_start);
67c9684f 4146
125bac01
MX
4147 if (em_cached)
4148 free_extent_map(em_cached);
4149
d1310b2e
CM
4150 BUG_ON(!list_empty(pages));
4151 if (bio)
1f7ad75b 4152 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4153 return 0;
4154}
d1310b2e
CM
4155
4156/*
4157 * basic invalidatepage code, this waits on any locked or writeback
4158 * ranges corresponding to the page, and then deletes any extent state
4159 * records from the tree
4160 */
4161int extent_invalidatepage(struct extent_io_tree *tree,
4162 struct page *page, unsigned long offset)
4163{
2ac55d41 4164 struct extent_state *cached_state = NULL;
4eee4fa4 4165 u64 start = page_offset(page);
09cbfeaf 4166 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4167 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4168
fda2832f 4169 start += ALIGN(offset, blocksize);
d1310b2e
CM
4170 if (start > end)
4171 return 0;
4172
ff13db41 4173 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4174 wait_on_page_writeback(page);
d1310b2e 4175 clear_extent_bit(tree, start, end,
32c00aff
JB
4176 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4177 EXTENT_DO_ACCOUNTING,
ae0f1625 4178 1, 1, &cached_state);
d1310b2e
CM
4179 return 0;
4180}
d1310b2e 4181
7b13b7b1
CM
4182/*
4183 * a helper for releasepage, this tests for areas of the page that
4184 * are locked or under IO and drops the related state bits if it is safe
4185 * to drop the page.
4186 */
29c68b2d 4187static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4188 struct page *page, gfp_t mask)
7b13b7b1 4189{
4eee4fa4 4190 u64 start = page_offset(page);
09cbfeaf 4191 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4192 int ret = 1;
4193
211f90e6 4194 if (test_range_bit(tree, start, end,
8b62b72b 4195 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4196 ret = 0;
4197 else {
11ef160f
CM
4198 /*
4199 * at this point we can safely clear everything except the
4200 * locked bit and the nodatasum bit
4201 */
66b0c887 4202 ret = __clear_extent_bit(tree, start, end,
11ef160f 4203 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4204 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4205
4206 /* if clear_extent_bit failed for enomem reasons,
4207 * we can't allow the release to continue.
4208 */
4209 if (ret < 0)
4210 ret = 0;
4211 else
4212 ret = 1;
7b13b7b1
CM
4213 }
4214 return ret;
4215}
7b13b7b1 4216
d1310b2e
CM
4217/*
4218 * a helper for releasepage. As long as there are no locked extents
4219 * in the range corresponding to the page, both state records and extent
4220 * map records are removed
4221 */
477a30ba 4222int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4223{
4224 struct extent_map *em;
4eee4fa4 4225 u64 start = page_offset(page);
09cbfeaf 4226 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4227 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4228 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4229 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4230
d0164adc 4231 if (gfpflags_allow_blocking(mask) &&
ee22184b 4232 page->mapping->host->i_size > SZ_16M) {
39b5637f 4233 u64 len;
70dec807 4234 while (start <= end) {
39b5637f 4235 len = end - start + 1;
890871be 4236 write_lock(&map->lock);
39b5637f 4237 em = lookup_extent_mapping(map, start, len);
285190d9 4238 if (!em) {
890871be 4239 write_unlock(&map->lock);
70dec807
CM
4240 break;
4241 }
7f3c74fb
CM
4242 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4243 em->start != start) {
890871be 4244 write_unlock(&map->lock);
70dec807
CM
4245 free_extent_map(em);
4246 break;
4247 }
4248 if (!test_range_bit(tree, em->start,
4249 extent_map_end(em) - 1,
8b62b72b 4250 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4251 0, NULL)) {
bd3599a0
FM
4252 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4253 &btrfs_inode->runtime_flags);
70dec807
CM
4254 remove_extent_mapping(map, em);
4255 /* once for the rb tree */
4256 free_extent_map(em);
4257 }
4258 start = extent_map_end(em);
890871be 4259 write_unlock(&map->lock);
70dec807
CM
4260
4261 /* once for us */
d1310b2e
CM
4262 free_extent_map(em);
4263 }
d1310b2e 4264 }
29c68b2d 4265 return try_release_extent_state(tree, page, mask);
d1310b2e 4266}
d1310b2e 4267
ec29ed5b
CM
4268/*
4269 * helper function for fiemap, which doesn't want to see any holes.
4270 * This maps until we find something past 'last'
4271 */
4272static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4273 u64 offset, u64 last)
ec29ed5b 4274{
da17066c 4275 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4276 struct extent_map *em;
4277 u64 len;
4278
4279 if (offset >= last)
4280 return NULL;
4281
67871254 4282 while (1) {
ec29ed5b
CM
4283 len = last - offset;
4284 if (len == 0)
4285 break;
fda2832f 4286 len = ALIGN(len, sectorsize);
e3350e16
DS
4287 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4288 len, 0);
c704005d 4289 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4290 return em;
4291
4292 /* if this isn't a hole return it */
4a2d25cd 4293 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4294 return em;
ec29ed5b
CM
4295
4296 /* this is a hole, advance to the next extent */
4297 offset = extent_map_end(em);
4298 free_extent_map(em);
4299 if (offset >= last)
4300 break;
4301 }
4302 return NULL;
4303}
4304
4751832d
QW
4305/*
4306 * To cache previous fiemap extent
4307 *
4308 * Will be used for merging fiemap extent
4309 */
4310struct fiemap_cache {
4311 u64 offset;
4312 u64 phys;
4313 u64 len;
4314 u32 flags;
4315 bool cached;
4316};
4317
4318/*
4319 * Helper to submit fiemap extent.
4320 *
4321 * Will try to merge current fiemap extent specified by @offset, @phys,
4322 * @len and @flags with cached one.
4323 * And only when we fails to merge, cached one will be submitted as
4324 * fiemap extent.
4325 *
4326 * Return value is the same as fiemap_fill_next_extent().
4327 */
4328static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4329 struct fiemap_cache *cache,
4330 u64 offset, u64 phys, u64 len, u32 flags)
4331{
4332 int ret = 0;
4333
4334 if (!cache->cached)
4335 goto assign;
4336
4337 /*
4338 * Sanity check, extent_fiemap() should have ensured that new
4339 * fiemap extent won't overlap with cahced one.
4340 * Not recoverable.
4341 *
4342 * NOTE: Physical address can overlap, due to compression
4343 */
4344 if (cache->offset + cache->len > offset) {
4345 WARN_ON(1);
4346 return -EINVAL;
4347 }
4348
4349 /*
4350 * Only merges fiemap extents if
4351 * 1) Their logical addresses are continuous
4352 *
4353 * 2) Their physical addresses are continuous
4354 * So truly compressed (physical size smaller than logical size)
4355 * extents won't get merged with each other
4356 *
4357 * 3) Share same flags except FIEMAP_EXTENT_LAST
4358 * So regular extent won't get merged with prealloc extent
4359 */
4360 if (cache->offset + cache->len == offset &&
4361 cache->phys + cache->len == phys &&
4362 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4363 (flags & ~FIEMAP_EXTENT_LAST)) {
4364 cache->len += len;
4365 cache->flags |= flags;
4366 goto try_submit_last;
4367 }
4368
4369 /* Not mergeable, need to submit cached one */
4370 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4371 cache->len, cache->flags);
4372 cache->cached = false;
4373 if (ret)
4374 return ret;
4375assign:
4376 cache->cached = true;
4377 cache->offset = offset;
4378 cache->phys = phys;
4379 cache->len = len;
4380 cache->flags = flags;
4381try_submit_last:
4382 if (cache->flags & FIEMAP_EXTENT_LAST) {
4383 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4384 cache->phys, cache->len, cache->flags);
4385 cache->cached = false;
4386 }
4387 return ret;
4388}
4389
4390/*
848c23b7 4391 * Emit last fiemap cache
4751832d 4392 *
848c23b7
QW
4393 * The last fiemap cache may still be cached in the following case:
4394 * 0 4k 8k
4395 * |<- Fiemap range ->|
4396 * |<------------ First extent ----------->|
4397 *
4398 * In this case, the first extent range will be cached but not emitted.
4399 * So we must emit it before ending extent_fiemap().
4751832d 4400 */
848c23b7
QW
4401static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4402 struct fiemap_extent_info *fieinfo,
4403 struct fiemap_cache *cache)
4751832d
QW
4404{
4405 int ret;
4406
4407 if (!cache->cached)
4408 return 0;
4409
4751832d
QW
4410 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4411 cache->len, cache->flags);
4412 cache->cached = false;
4413 if (ret > 0)
4414 ret = 0;
4415 return ret;
4416}
4417
1506fcc8 4418int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4419 __u64 start, __u64 len)
1506fcc8 4420{
975f84fe 4421 int ret = 0;
1506fcc8
YS
4422 u64 off = start;
4423 u64 max = start + len;
4424 u32 flags = 0;
975f84fe
JB
4425 u32 found_type;
4426 u64 last;
ec29ed5b 4427 u64 last_for_get_extent = 0;
1506fcc8 4428 u64 disko = 0;
ec29ed5b 4429 u64 isize = i_size_read(inode);
975f84fe 4430 struct btrfs_key found_key;
1506fcc8 4431 struct extent_map *em = NULL;
2ac55d41 4432 struct extent_state *cached_state = NULL;
975f84fe 4433 struct btrfs_path *path;
dc046b10 4434 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4435 struct fiemap_cache cache = { 0 };
1506fcc8 4436 int end = 0;
ec29ed5b
CM
4437 u64 em_start = 0;
4438 u64 em_len = 0;
4439 u64 em_end = 0;
1506fcc8
YS
4440
4441 if (len == 0)
4442 return -EINVAL;
4443
975f84fe
JB
4444 path = btrfs_alloc_path();
4445 if (!path)
4446 return -ENOMEM;
4447 path->leave_spinning = 1;
4448
da17066c
JM
4449 start = round_down(start, btrfs_inode_sectorsize(inode));
4450 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4451
ec29ed5b
CM
4452 /*
4453 * lookup the last file extent. We're not using i_size here
4454 * because there might be preallocation past i_size
4455 */
f85b7379
DS
4456 ret = btrfs_lookup_file_extent(NULL, root, path,
4457 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4458 if (ret < 0) {
4459 btrfs_free_path(path);
4460 return ret;
2d324f59
LB
4461 } else {
4462 WARN_ON(!ret);
4463 if (ret == 1)
4464 ret = 0;
975f84fe 4465 }
2d324f59 4466
975f84fe 4467 path->slots[0]--;
975f84fe 4468 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4469 found_type = found_key.type;
975f84fe 4470
ec29ed5b 4471 /* No extents, but there might be delalloc bits */
4a0cc7ca 4472 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4473 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4474 /* have to trust i_size as the end */
4475 last = (u64)-1;
4476 last_for_get_extent = isize;
4477 } else {
4478 /*
4479 * remember the start of the last extent. There are a
4480 * bunch of different factors that go into the length of the
4481 * extent, so its much less complex to remember where it started
4482 */
4483 last = found_key.offset;
4484 last_for_get_extent = last + 1;
975f84fe 4485 }
fe09e16c 4486 btrfs_release_path(path);
975f84fe 4487
ec29ed5b
CM
4488 /*
4489 * we might have some extents allocated but more delalloc past those
4490 * extents. so, we trust isize unless the start of the last extent is
4491 * beyond isize
4492 */
4493 if (last < isize) {
4494 last = (u64)-1;
4495 last_for_get_extent = isize;
4496 }
4497
ff13db41 4498 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4499 &cached_state);
ec29ed5b 4500
e3350e16 4501 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4502 if (!em)
4503 goto out;
4504 if (IS_ERR(em)) {
4505 ret = PTR_ERR(em);
4506 goto out;
4507 }
975f84fe 4508
1506fcc8 4509 while (!end) {
b76bb701 4510 u64 offset_in_extent = 0;
ea8efc74
CM
4511
4512 /* break if the extent we found is outside the range */
4513 if (em->start >= max || extent_map_end(em) < off)
4514 break;
4515
4516 /*
4517 * get_extent may return an extent that starts before our
4518 * requested range. We have to make sure the ranges
4519 * we return to fiemap always move forward and don't
4520 * overlap, so adjust the offsets here
4521 */
4522 em_start = max(em->start, off);
1506fcc8 4523
ea8efc74
CM
4524 /*
4525 * record the offset from the start of the extent
b76bb701
JB
4526 * for adjusting the disk offset below. Only do this if the
4527 * extent isn't compressed since our in ram offset may be past
4528 * what we have actually allocated on disk.
ea8efc74 4529 */
b76bb701
JB
4530 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4531 offset_in_extent = em_start - em->start;
ec29ed5b 4532 em_end = extent_map_end(em);
ea8efc74 4533 em_len = em_end - em_start;
1506fcc8 4534 flags = 0;
f0986318
FM
4535 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4536 disko = em->block_start + offset_in_extent;
4537 else
4538 disko = 0;
1506fcc8 4539
ea8efc74
CM
4540 /*
4541 * bump off for our next call to get_extent
4542 */
4543 off = extent_map_end(em);
4544 if (off >= max)
4545 end = 1;
4546
93dbfad7 4547 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4548 end = 1;
4549 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4550 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4551 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4552 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4553 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4554 flags |= (FIEMAP_EXTENT_DELALLOC |
4555 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4556 } else if (fieinfo->fi_extents_max) {
4557 u64 bytenr = em->block_start -
4558 (em->start - em->orig_start);
fe09e16c 4559
fe09e16c
LB
4560 /*
4561 * As btrfs supports shared space, this information
4562 * can be exported to userspace tools via
dc046b10
JB
4563 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4564 * then we're just getting a count and we can skip the
4565 * lookup stuff.
fe09e16c 4566 */
bb739cf0
EN
4567 ret = btrfs_check_shared(root,
4568 btrfs_ino(BTRFS_I(inode)),
4569 bytenr);
dc046b10 4570 if (ret < 0)
fe09e16c 4571 goto out_free;
dc046b10 4572 if (ret)
fe09e16c 4573 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4574 ret = 0;
1506fcc8
YS
4575 }
4576 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4577 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4578 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4579 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4580
1506fcc8
YS
4581 free_extent_map(em);
4582 em = NULL;
ec29ed5b
CM
4583 if ((em_start >= last) || em_len == (u64)-1 ||
4584 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4585 flags |= FIEMAP_EXTENT_LAST;
4586 end = 1;
4587 }
4588
ec29ed5b 4589 /* now scan forward to see if this is really the last extent. */
e3350e16 4590 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4591 if (IS_ERR(em)) {
4592 ret = PTR_ERR(em);
4593 goto out;
4594 }
4595 if (!em) {
975f84fe
JB
4596 flags |= FIEMAP_EXTENT_LAST;
4597 end = 1;
4598 }
4751832d
QW
4599 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4600 em_len, flags);
26e726af
CS
4601 if (ret) {
4602 if (ret == 1)
4603 ret = 0;
ec29ed5b 4604 goto out_free;
26e726af 4605 }
1506fcc8
YS
4606 }
4607out_free:
4751832d 4608 if (!ret)
848c23b7 4609 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4610 free_extent_map(em);
4611out:
fe09e16c 4612 btrfs_free_path(path);
a52f4cd2 4613 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4614 &cached_state);
1506fcc8
YS
4615 return ret;
4616}
4617
727011e0
CM
4618static void __free_extent_buffer(struct extent_buffer *eb)
4619{
6d49ba1b 4620 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4621 kmem_cache_free(extent_buffer_cache, eb);
4622}
4623
a26e8c9f 4624int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4625{
4626 return (atomic_read(&eb->io_pages) ||
4627 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4628 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4629}
4630
4631/*
55ac0139 4632 * Release all pages attached to the extent buffer.
db7f3436 4633 */
55ac0139 4634static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4635{
d64766fd
NB
4636 int i;
4637 int num_pages;
b0132a3b 4638 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4639
4640 BUG_ON(extent_buffer_under_io(eb));
4641
d64766fd
NB
4642 num_pages = num_extent_pages(eb);
4643 for (i = 0; i < num_pages; i++) {
4644 struct page *page = eb->pages[i];
db7f3436 4645
5d2361db
FL
4646 if (!page)
4647 continue;
4648 if (mapped)
db7f3436 4649 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4650 /*
4651 * We do this since we'll remove the pages after we've
4652 * removed the eb from the radix tree, so we could race
4653 * and have this page now attached to the new eb. So
4654 * only clear page_private if it's still connected to
4655 * this eb.
4656 */
4657 if (PagePrivate(page) &&
4658 page->private == (unsigned long)eb) {
4659 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4660 BUG_ON(PageDirty(page));
4661 BUG_ON(PageWriteback(page));
db7f3436 4662 /*
5d2361db
FL
4663 * We need to make sure we haven't be attached
4664 * to a new eb.
db7f3436 4665 */
5d2361db
FL
4666 ClearPagePrivate(page);
4667 set_page_private(page, 0);
4668 /* One for the page private */
09cbfeaf 4669 put_page(page);
db7f3436 4670 }
5d2361db
FL
4671
4672 if (mapped)
4673 spin_unlock(&page->mapping->private_lock);
4674
01327610 4675 /* One for when we allocated the page */
09cbfeaf 4676 put_page(page);
d64766fd 4677 }
db7f3436
JB
4678}
4679
4680/*
4681 * Helper for releasing the extent buffer.
4682 */
4683static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4684{
55ac0139 4685 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4686 __free_extent_buffer(eb);
4687}
4688
f28491e0
JB
4689static struct extent_buffer *
4690__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4691 unsigned long len)
d1310b2e
CM
4692{
4693 struct extent_buffer *eb = NULL;
4694
d1b5c567 4695 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4696 eb->start = start;
4697 eb->len = len;
f28491e0 4698 eb->fs_info = fs_info;
815a51c7 4699 eb->bflags = 0;
bd681513
CM
4700 rwlock_init(&eb->lock);
4701 atomic_set(&eb->write_locks, 0);
4702 atomic_set(&eb->read_locks, 0);
4703 atomic_set(&eb->blocking_readers, 0);
4704 atomic_set(&eb->blocking_writers, 0);
4705 atomic_set(&eb->spinning_readers, 0);
4706 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4707 eb->lock_nested = 0;
bd681513
CM
4708 init_waitqueue_head(&eb->write_lock_wq);
4709 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4710
6d49ba1b
ES
4711 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4712
3083ee2e 4713 spin_lock_init(&eb->refs_lock);
d1310b2e 4714 atomic_set(&eb->refs, 1);
0b32f4bb 4715 atomic_set(&eb->io_pages, 0);
727011e0 4716
b8dae313
DS
4717 /*
4718 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4719 */
4720 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4721 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4722 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4723
4724 return eb;
4725}
4726
815a51c7
JS
4727struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4728{
cc5e31a4 4729 int i;
815a51c7
JS
4730 struct page *p;
4731 struct extent_buffer *new;
cc5e31a4 4732 int num_pages = num_extent_pages(src);
815a51c7 4733
3f556f78 4734 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4735 if (new == NULL)
4736 return NULL;
4737
4738 for (i = 0; i < num_pages; i++) {
9ec72677 4739 p = alloc_page(GFP_NOFS);
db7f3436
JB
4740 if (!p) {
4741 btrfs_release_extent_buffer(new);
4742 return NULL;
4743 }
815a51c7
JS
4744 attach_extent_buffer_page(new, p);
4745 WARN_ON(PageDirty(p));
4746 SetPageUptodate(p);
4747 new->pages[i] = p;
fba1acf9 4748 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4749 }
4750
815a51c7 4751 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4752 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4753
4754 return new;
4755}
4756
0f331229
OS
4757struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4758 u64 start, unsigned long len)
815a51c7
JS
4759{
4760 struct extent_buffer *eb;
cc5e31a4
DS
4761 int num_pages;
4762 int i;
815a51c7 4763
3f556f78 4764 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4765 if (!eb)
4766 return NULL;
4767
65ad0104 4768 num_pages = num_extent_pages(eb);
815a51c7 4769 for (i = 0; i < num_pages; i++) {
9ec72677 4770 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4771 if (!eb->pages[i])
4772 goto err;
4773 }
4774 set_extent_buffer_uptodate(eb);
4775 btrfs_set_header_nritems(eb, 0);
b0132a3b 4776 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4777
4778 return eb;
4779err:
84167d19
SB
4780 for (; i > 0; i--)
4781 __free_page(eb->pages[i - 1]);
815a51c7
JS
4782 __free_extent_buffer(eb);
4783 return NULL;
4784}
4785
0f331229 4786struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4787 u64 start)
0f331229 4788{
da17066c 4789 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4790}
4791
0b32f4bb
JB
4792static void check_buffer_tree_ref(struct extent_buffer *eb)
4793{
242e18c7 4794 int refs;
0b32f4bb
JB
4795 /* the ref bit is tricky. We have to make sure it is set
4796 * if we have the buffer dirty. Otherwise the
4797 * code to free a buffer can end up dropping a dirty
4798 * page
4799 *
4800 * Once the ref bit is set, it won't go away while the
4801 * buffer is dirty or in writeback, and it also won't
4802 * go away while we have the reference count on the
4803 * eb bumped.
4804 *
4805 * We can't just set the ref bit without bumping the
4806 * ref on the eb because free_extent_buffer might
4807 * see the ref bit and try to clear it. If this happens
4808 * free_extent_buffer might end up dropping our original
4809 * ref by mistake and freeing the page before we are able
4810 * to add one more ref.
4811 *
4812 * So bump the ref count first, then set the bit. If someone
4813 * beat us to it, drop the ref we added.
4814 */
242e18c7
CM
4815 refs = atomic_read(&eb->refs);
4816 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4817 return;
4818
594831c4
JB
4819 spin_lock(&eb->refs_lock);
4820 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4821 atomic_inc(&eb->refs);
594831c4 4822 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4823}
4824
2457aec6
MG
4825static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4826 struct page *accessed)
5df4235e 4827{
cc5e31a4 4828 int num_pages, i;
5df4235e 4829
0b32f4bb
JB
4830 check_buffer_tree_ref(eb);
4831
65ad0104 4832 num_pages = num_extent_pages(eb);
5df4235e 4833 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4834 struct page *p = eb->pages[i];
4835
2457aec6
MG
4836 if (p != accessed)
4837 mark_page_accessed(p);
5df4235e
JB
4838 }
4839}
4840
f28491e0
JB
4841struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4842 u64 start)
452c75c3
CS
4843{
4844 struct extent_buffer *eb;
4845
4846 rcu_read_lock();
f28491e0 4847 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4848 start >> PAGE_SHIFT);
452c75c3
CS
4849 if (eb && atomic_inc_not_zero(&eb->refs)) {
4850 rcu_read_unlock();
062c19e9
FM
4851 /*
4852 * Lock our eb's refs_lock to avoid races with
4853 * free_extent_buffer. When we get our eb it might be flagged
4854 * with EXTENT_BUFFER_STALE and another task running
4855 * free_extent_buffer might have seen that flag set,
4856 * eb->refs == 2, that the buffer isn't under IO (dirty and
4857 * writeback flags not set) and it's still in the tree (flag
4858 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4859 * of decrementing the extent buffer's reference count twice.
4860 * So here we could race and increment the eb's reference count,
4861 * clear its stale flag, mark it as dirty and drop our reference
4862 * before the other task finishes executing free_extent_buffer,
4863 * which would later result in an attempt to free an extent
4864 * buffer that is dirty.
4865 */
4866 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4867 spin_lock(&eb->refs_lock);
4868 spin_unlock(&eb->refs_lock);
4869 }
2457aec6 4870 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4871 return eb;
4872 }
4873 rcu_read_unlock();
4874
4875 return NULL;
4876}
4877
faa2dbf0
JB
4878#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4879struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4880 u64 start)
faa2dbf0
JB
4881{
4882 struct extent_buffer *eb, *exists = NULL;
4883 int ret;
4884
4885 eb = find_extent_buffer(fs_info, start);
4886 if (eb)
4887 return eb;
da17066c 4888 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4889 if (!eb)
4890 return NULL;
4891 eb->fs_info = fs_info;
4892again:
e1860a77 4893 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4894 if (ret)
4895 goto free_eb;
4896 spin_lock(&fs_info->buffer_lock);
4897 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4898 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4899 spin_unlock(&fs_info->buffer_lock);
4900 radix_tree_preload_end();
4901 if (ret == -EEXIST) {
4902 exists = find_extent_buffer(fs_info, start);
4903 if (exists)
4904 goto free_eb;
4905 else
4906 goto again;
4907 }
4908 check_buffer_tree_ref(eb);
4909 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4910
4911 /*
4912 * We will free dummy extent buffer's if they come into
4913 * free_extent_buffer with a ref count of 2, but if we are using this we
4914 * want the buffers to stay in memory until we're done with them, so
4915 * bump the ref count again.
4916 */
4917 atomic_inc(&eb->refs);
4918 return eb;
4919free_eb:
4920 btrfs_release_extent_buffer(eb);
4921 return exists;
4922}
4923#endif
4924
f28491e0 4925struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4926 u64 start)
d1310b2e 4927{
da17066c 4928 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4929 int num_pages;
4930 int i;
09cbfeaf 4931 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4932 struct extent_buffer *eb;
6af118ce 4933 struct extent_buffer *exists = NULL;
d1310b2e 4934 struct page *p;
f28491e0 4935 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4936 int uptodate = 1;
19fe0a8b 4937 int ret;
d1310b2e 4938
da17066c 4939 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4940 btrfs_err(fs_info, "bad tree block start %llu", start);
4941 return ERR_PTR(-EINVAL);
4942 }
4943
f28491e0 4944 eb = find_extent_buffer(fs_info, start);
452c75c3 4945 if (eb)
6af118ce 4946 return eb;
6af118ce 4947
23d79d81 4948 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4949 if (!eb)
c871b0f2 4950 return ERR_PTR(-ENOMEM);
d1310b2e 4951
65ad0104 4952 num_pages = num_extent_pages(eb);
727011e0 4953 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4954 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4955 if (!p) {
4956 exists = ERR_PTR(-ENOMEM);
6af118ce 4957 goto free_eb;
c871b0f2 4958 }
4f2de97a
JB
4959
4960 spin_lock(&mapping->private_lock);
4961 if (PagePrivate(p)) {
4962 /*
4963 * We could have already allocated an eb for this page
4964 * and attached one so lets see if we can get a ref on
4965 * the existing eb, and if we can we know it's good and
4966 * we can just return that one, else we know we can just
4967 * overwrite page->private.
4968 */
4969 exists = (struct extent_buffer *)p->private;
4970 if (atomic_inc_not_zero(&exists->refs)) {
4971 spin_unlock(&mapping->private_lock);
4972 unlock_page(p);
09cbfeaf 4973 put_page(p);
2457aec6 4974 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4975 goto free_eb;
4976 }
5ca64f45 4977 exists = NULL;
4f2de97a 4978
0b32f4bb 4979 /*
4f2de97a
JB
4980 * Do this so attach doesn't complain and we need to
4981 * drop the ref the old guy had.
4982 */
4983 ClearPagePrivate(p);
0b32f4bb 4984 WARN_ON(PageDirty(p));
09cbfeaf 4985 put_page(p);
d1310b2e 4986 }
4f2de97a
JB
4987 attach_extent_buffer_page(eb, p);
4988 spin_unlock(&mapping->private_lock);
0b32f4bb 4989 WARN_ON(PageDirty(p));
727011e0 4990 eb->pages[i] = p;
d1310b2e
CM
4991 if (!PageUptodate(p))
4992 uptodate = 0;
eb14ab8e
CM
4993
4994 /*
b16d011e
NB
4995 * We can't unlock the pages just yet since the extent buffer
4996 * hasn't been properly inserted in the radix tree, this
4997 * opens a race with btree_releasepage which can free a page
4998 * while we are still filling in all pages for the buffer and
4999 * we could crash.
eb14ab8e 5000 */
d1310b2e
CM
5001 }
5002 if (uptodate)
b4ce94de 5003 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5004again:
e1860a77 5005 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5006 if (ret) {
5007 exists = ERR_PTR(ret);
19fe0a8b 5008 goto free_eb;
c871b0f2 5009 }
19fe0a8b 5010
f28491e0
JB
5011 spin_lock(&fs_info->buffer_lock);
5012 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5013 start >> PAGE_SHIFT, eb);
f28491e0 5014 spin_unlock(&fs_info->buffer_lock);
452c75c3 5015 radix_tree_preload_end();
19fe0a8b 5016 if (ret == -EEXIST) {
f28491e0 5017 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5018 if (exists)
5019 goto free_eb;
5020 else
115391d2 5021 goto again;
6af118ce 5022 }
6af118ce 5023 /* add one reference for the tree */
0b32f4bb 5024 check_buffer_tree_ref(eb);
34b41ace 5025 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5026
5027 /*
b16d011e
NB
5028 * Now it's safe to unlock the pages because any calls to
5029 * btree_releasepage will correctly detect that a page belongs to a
5030 * live buffer and won't free them prematurely.
eb14ab8e 5031 */
28187ae5
NB
5032 for (i = 0; i < num_pages; i++)
5033 unlock_page(eb->pages[i]);
d1310b2e
CM
5034 return eb;
5035
6af118ce 5036free_eb:
5ca64f45 5037 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5038 for (i = 0; i < num_pages; i++) {
5039 if (eb->pages[i])
5040 unlock_page(eb->pages[i]);
5041 }
eb14ab8e 5042
897ca6e9 5043 btrfs_release_extent_buffer(eb);
6af118ce 5044 return exists;
d1310b2e 5045}
d1310b2e 5046
3083ee2e
JB
5047static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5048{
5049 struct extent_buffer *eb =
5050 container_of(head, struct extent_buffer, rcu_head);
5051
5052 __free_extent_buffer(eb);
5053}
5054
f7a52a40 5055static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5056{
07e21c4d
NB
5057 lockdep_assert_held(&eb->refs_lock);
5058
3083ee2e
JB
5059 WARN_ON(atomic_read(&eb->refs) == 0);
5060 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5061 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5062 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5063
815a51c7 5064 spin_unlock(&eb->refs_lock);
3083ee2e 5065
f28491e0
JB
5066 spin_lock(&fs_info->buffer_lock);
5067 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5068 eb->start >> PAGE_SHIFT);
f28491e0 5069 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5070 } else {
5071 spin_unlock(&eb->refs_lock);
815a51c7 5072 }
3083ee2e
JB
5073
5074 /* Should be safe to release our pages at this point */
55ac0139 5075 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5076#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5077 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5078 __free_extent_buffer(eb);
5079 return 1;
5080 }
5081#endif
3083ee2e 5082 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5083 return 1;
3083ee2e
JB
5084 }
5085 spin_unlock(&eb->refs_lock);
e64860aa
JB
5086
5087 return 0;
3083ee2e
JB
5088}
5089
d1310b2e
CM
5090void free_extent_buffer(struct extent_buffer *eb)
5091{
242e18c7
CM
5092 int refs;
5093 int old;
d1310b2e
CM
5094 if (!eb)
5095 return;
5096
242e18c7
CM
5097 while (1) {
5098 refs = atomic_read(&eb->refs);
5099 if (refs <= 3)
5100 break;
5101 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5102 if (old == refs)
5103 return;
5104 }
5105
3083ee2e 5106 spin_lock(&eb->refs_lock);
815a51c7 5107 if (atomic_read(&eb->refs) == 2 &&
b0132a3b 5108 test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
815a51c7
JS
5109 atomic_dec(&eb->refs);
5110
3083ee2e
JB
5111 if (atomic_read(&eb->refs) == 2 &&
5112 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5113 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5114 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5115 atomic_dec(&eb->refs);
5116
5117 /*
5118 * I know this is terrible, but it's temporary until we stop tracking
5119 * the uptodate bits and such for the extent buffers.
5120 */
f7a52a40 5121 release_extent_buffer(eb);
3083ee2e
JB
5122}
5123
5124void free_extent_buffer_stale(struct extent_buffer *eb)
5125{
5126 if (!eb)
d1310b2e
CM
5127 return;
5128
3083ee2e
JB
5129 spin_lock(&eb->refs_lock);
5130 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5131
0b32f4bb 5132 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5133 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5134 atomic_dec(&eb->refs);
f7a52a40 5135 release_extent_buffer(eb);
d1310b2e 5136}
d1310b2e 5137
1d4284bd 5138void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5139{
cc5e31a4
DS
5140 int i;
5141 int num_pages;
d1310b2e
CM
5142 struct page *page;
5143
65ad0104 5144 num_pages = num_extent_pages(eb);
d1310b2e
CM
5145
5146 for (i = 0; i < num_pages; i++) {
fb85fc9a 5147 page = eb->pages[i];
b9473439 5148 if (!PageDirty(page))
d2c3f4f6
CM
5149 continue;
5150
a61e6f29 5151 lock_page(page);
eb14ab8e
CM
5152 WARN_ON(!PagePrivate(page));
5153
d1310b2e 5154 clear_page_dirty_for_io(page);
b93b0163 5155 xa_lock_irq(&page->mapping->i_pages);
d1310b2e 5156 if (!PageDirty(page)) {
b93b0163 5157 radix_tree_tag_clear(&page->mapping->i_pages,
d1310b2e
CM
5158 page_index(page),
5159 PAGECACHE_TAG_DIRTY);
5160 }
b93b0163 5161 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5162 ClearPageError(page);
a61e6f29 5163 unlock_page(page);
d1310b2e 5164 }
0b32f4bb 5165 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5166}
d1310b2e 5167
0b32f4bb 5168int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5169{
cc5e31a4
DS
5170 int i;
5171 int num_pages;
b9473439 5172 int was_dirty = 0;
d1310b2e 5173
0b32f4bb
JB
5174 check_buffer_tree_ref(eb);
5175
b9473439 5176 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5177
65ad0104 5178 num_pages = num_extent_pages(eb);
3083ee2e 5179 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5180 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5181
b9473439 5182 for (i = 0; i < num_pages; i++)
fb85fc9a 5183 set_page_dirty(eb->pages[i]);
b9473439 5184 return was_dirty;
d1310b2e 5185}
d1310b2e 5186
69ba3927 5187void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5188{
cc5e31a4 5189 int i;
1259ab75 5190 struct page *page;
cc5e31a4 5191 int num_pages;
1259ab75 5192
b4ce94de 5193 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5194 num_pages = num_extent_pages(eb);
1259ab75 5195 for (i = 0; i < num_pages; i++) {
fb85fc9a 5196 page = eb->pages[i];
33958dc6
CM
5197 if (page)
5198 ClearPageUptodate(page);
1259ab75 5199 }
1259ab75
CM
5200}
5201
09c25a8c 5202void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5203{
cc5e31a4 5204 int i;
d1310b2e 5205 struct page *page;
cc5e31a4 5206 int num_pages;
d1310b2e 5207
0b32f4bb 5208 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5209 num_pages = num_extent_pages(eb);
d1310b2e 5210 for (i = 0; i < num_pages; i++) {
fb85fc9a 5211 page = eb->pages[i];
d1310b2e
CM
5212 SetPageUptodate(page);
5213 }
d1310b2e 5214}
d1310b2e 5215
d1310b2e 5216int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5217 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5218{
cc5e31a4 5219 int i;
d1310b2e
CM
5220 struct page *page;
5221 int err;
5222 int ret = 0;
ce9adaa5
CM
5223 int locked_pages = 0;
5224 int all_uptodate = 1;
cc5e31a4 5225 int num_pages;
727011e0 5226 unsigned long num_reads = 0;
a86c12c7 5227 struct bio *bio = NULL;
c8b97818 5228 unsigned long bio_flags = 0;
a86c12c7 5229
b4ce94de 5230 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5231 return 0;
5232
65ad0104 5233 num_pages = num_extent_pages(eb);
8436ea91 5234 for (i = 0; i < num_pages; i++) {
fb85fc9a 5235 page = eb->pages[i];
bb82ab88 5236 if (wait == WAIT_NONE) {
2db04966 5237 if (!trylock_page(page))
ce9adaa5 5238 goto unlock_exit;
d1310b2e
CM
5239 } else {
5240 lock_page(page);
5241 }
ce9adaa5 5242 locked_pages++;
2571e739
LB
5243 }
5244 /*
5245 * We need to firstly lock all pages to make sure that
5246 * the uptodate bit of our pages won't be affected by
5247 * clear_extent_buffer_uptodate().
5248 */
8436ea91 5249 for (i = 0; i < num_pages; i++) {
2571e739 5250 page = eb->pages[i];
727011e0
CM
5251 if (!PageUptodate(page)) {
5252 num_reads++;
ce9adaa5 5253 all_uptodate = 0;
727011e0 5254 }
ce9adaa5 5255 }
2571e739 5256
ce9adaa5 5257 if (all_uptodate) {
8436ea91 5258 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5259 goto unlock_exit;
5260 }
5261
656f30db 5262 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5263 eb->read_mirror = 0;
0b32f4bb 5264 atomic_set(&eb->io_pages, num_reads);
8436ea91 5265 for (i = 0; i < num_pages; i++) {
fb85fc9a 5266 page = eb->pages[i];
baf863b9 5267
ce9adaa5 5268 if (!PageUptodate(page)) {
baf863b9
LB
5269 if (ret) {
5270 atomic_dec(&eb->io_pages);
5271 unlock_page(page);
5272 continue;
5273 }
5274
f188591e 5275 ClearPageError(page);
a86c12c7 5276 err = __extent_read_full_page(tree, page,
6af49dbd 5277 btree_get_extent, &bio,
d4c7ca86 5278 mirror_num, &bio_flags,
1f7ad75b 5279 REQ_META);
baf863b9 5280 if (err) {
d1310b2e 5281 ret = err;
baf863b9
LB
5282 /*
5283 * We use &bio in above __extent_read_full_page,
5284 * so we ensure that if it returns error, the
5285 * current page fails to add itself to bio and
5286 * it's been unlocked.
5287 *
5288 * We must dec io_pages by ourselves.
5289 */
5290 atomic_dec(&eb->io_pages);
5291 }
d1310b2e
CM
5292 } else {
5293 unlock_page(page);
5294 }
5295 }
5296
355808c2 5297 if (bio) {
1f7ad75b 5298 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5299 if (err)
5300 return err;
355808c2 5301 }
a86c12c7 5302
bb82ab88 5303 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5304 return ret;
d397712b 5305
8436ea91 5306 for (i = 0; i < num_pages; i++) {
fb85fc9a 5307 page = eb->pages[i];
d1310b2e 5308 wait_on_page_locked(page);
d397712b 5309 if (!PageUptodate(page))
d1310b2e 5310 ret = -EIO;
d1310b2e 5311 }
d397712b 5312
d1310b2e 5313 return ret;
ce9adaa5
CM
5314
5315unlock_exit:
d397712b 5316 while (locked_pages > 0) {
ce9adaa5 5317 locked_pages--;
8436ea91
JB
5318 page = eb->pages[locked_pages];
5319 unlock_page(page);
ce9adaa5
CM
5320 }
5321 return ret;
d1310b2e 5322}
d1310b2e 5323
1cbb1f45
JM
5324void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5325 unsigned long start, unsigned long len)
d1310b2e
CM
5326{
5327 size_t cur;
5328 size_t offset;
5329 struct page *page;
5330 char *kaddr;
5331 char *dst = (char *)dstv;
09cbfeaf
KS
5332 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5333 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5334
f716abd5
LB
5335 if (start + len > eb->len) {
5336 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5337 eb->start, eb->len, start, len);
5338 memset(dst, 0, len);
5339 return;
5340 }
d1310b2e 5341
09cbfeaf 5342 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5343
d397712b 5344 while (len > 0) {
fb85fc9a 5345 page = eb->pages[i];
d1310b2e 5346
09cbfeaf 5347 cur = min(len, (PAGE_SIZE - offset));
a6591715 5348 kaddr = page_address(page);
d1310b2e 5349 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5350
5351 dst += cur;
5352 len -= cur;
5353 offset = 0;
5354 i++;
5355 }
5356}
d1310b2e 5357
1cbb1f45
JM
5358int read_extent_buffer_to_user(const struct extent_buffer *eb,
5359 void __user *dstv,
5360 unsigned long start, unsigned long len)
550ac1d8
GH
5361{
5362 size_t cur;
5363 size_t offset;
5364 struct page *page;
5365 char *kaddr;
5366 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5367 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5368 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5369 int ret = 0;
5370
5371 WARN_ON(start > eb->len);
5372 WARN_ON(start + len > eb->start + eb->len);
5373
09cbfeaf 5374 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5375
5376 while (len > 0) {
fb85fc9a 5377 page = eb->pages[i];
550ac1d8 5378
09cbfeaf 5379 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5380 kaddr = page_address(page);
5381 if (copy_to_user(dst, kaddr + offset, cur)) {
5382 ret = -EFAULT;
5383 break;
5384 }
5385
5386 dst += cur;
5387 len -= cur;
5388 offset = 0;
5389 i++;
5390 }
5391
5392 return ret;
5393}
5394
415b35a5
LB
5395/*
5396 * return 0 if the item is found within a page.
5397 * return 1 if the item spans two pages.
5398 * return -EINVAL otherwise.
5399 */
1cbb1f45
JM
5400int map_private_extent_buffer(const struct extent_buffer *eb,
5401 unsigned long start, unsigned long min_len,
5402 char **map, unsigned long *map_start,
5403 unsigned long *map_len)
d1310b2e 5404{
09cbfeaf 5405 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5406 char *kaddr;
5407 struct page *p;
09cbfeaf
KS
5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5410 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5411 PAGE_SHIFT;
d1310b2e 5412
f716abd5
LB
5413 if (start + min_len > eb->len) {
5414 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5415 eb->start, eb->len, start, min_len);
5416 return -EINVAL;
5417 }
5418
d1310b2e 5419 if (i != end_i)
415b35a5 5420 return 1;
d1310b2e
CM
5421
5422 if (i == 0) {
5423 offset = start_offset;
5424 *map_start = 0;
5425 } else {
5426 offset = 0;
09cbfeaf 5427 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5428 }
d397712b 5429
fb85fc9a 5430 p = eb->pages[i];
a6591715 5431 kaddr = page_address(p);
d1310b2e 5432 *map = kaddr + offset;
09cbfeaf 5433 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5434 return 0;
5435}
d1310b2e 5436
1cbb1f45
JM
5437int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5438 unsigned long start, unsigned long len)
d1310b2e
CM
5439{
5440 size_t cur;
5441 size_t offset;
5442 struct page *page;
5443 char *kaddr;
5444 char *ptr = (char *)ptrv;
09cbfeaf
KS
5445 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5446 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5447 int ret = 0;
5448
5449 WARN_ON(start > eb->len);
5450 WARN_ON(start + len > eb->start + eb->len);
5451
09cbfeaf 5452 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5453
d397712b 5454 while (len > 0) {
fb85fc9a 5455 page = eb->pages[i];
d1310b2e 5456
09cbfeaf 5457 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5458
a6591715 5459 kaddr = page_address(page);
d1310b2e 5460 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5461 if (ret)
5462 break;
5463
5464 ptr += cur;
5465 len -= cur;
5466 offset = 0;
5467 i++;
5468 }
5469 return ret;
5470}
d1310b2e 5471
f157bf76
DS
5472void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5473 const void *srcv)
5474{
5475 char *kaddr;
5476
5477 WARN_ON(!PageUptodate(eb->pages[0]));
5478 kaddr = page_address(eb->pages[0]);
5479 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5480 BTRFS_FSID_SIZE);
5481}
5482
5483void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5484{
5485 char *kaddr;
5486
5487 WARN_ON(!PageUptodate(eb->pages[0]));
5488 kaddr = page_address(eb->pages[0]);
5489 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5490 BTRFS_FSID_SIZE);
5491}
5492
d1310b2e
CM
5493void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5494 unsigned long start, unsigned long len)
5495{
5496 size_t cur;
5497 size_t offset;
5498 struct page *page;
5499 char *kaddr;
5500 char *src = (char *)srcv;
09cbfeaf
KS
5501 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5502 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5503
5504 WARN_ON(start > eb->len);
5505 WARN_ON(start + len > eb->start + eb->len);
5506
09cbfeaf 5507 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5508
d397712b 5509 while (len > 0) {
fb85fc9a 5510 page = eb->pages[i];
d1310b2e
CM
5511 WARN_ON(!PageUptodate(page));
5512
09cbfeaf 5513 cur = min(len, PAGE_SIZE - offset);
a6591715 5514 kaddr = page_address(page);
d1310b2e 5515 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5516
5517 src += cur;
5518 len -= cur;
5519 offset = 0;
5520 i++;
5521 }
5522}
d1310b2e 5523
b159fa28
DS
5524void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5525 unsigned long len)
d1310b2e
CM
5526{
5527 size_t cur;
5528 size_t offset;
5529 struct page *page;
5530 char *kaddr;
09cbfeaf
KS
5531 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5532 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5533
5534 WARN_ON(start > eb->len);
5535 WARN_ON(start + len > eb->start + eb->len);
5536
09cbfeaf 5537 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5538
d397712b 5539 while (len > 0) {
fb85fc9a 5540 page = eb->pages[i];
d1310b2e
CM
5541 WARN_ON(!PageUptodate(page));
5542
09cbfeaf 5543 cur = min(len, PAGE_SIZE - offset);
a6591715 5544 kaddr = page_address(page);
b159fa28 5545 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5546
5547 len -= cur;
5548 offset = 0;
5549 i++;
5550 }
5551}
d1310b2e 5552
58e8012c
DS
5553void copy_extent_buffer_full(struct extent_buffer *dst,
5554 struct extent_buffer *src)
5555{
5556 int i;
cc5e31a4 5557 int num_pages;
58e8012c
DS
5558
5559 ASSERT(dst->len == src->len);
5560
65ad0104 5561 num_pages = num_extent_pages(dst);
58e8012c
DS
5562 for (i = 0; i < num_pages; i++)
5563 copy_page(page_address(dst->pages[i]),
5564 page_address(src->pages[i]));
5565}
5566
d1310b2e
CM
5567void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5568 unsigned long dst_offset, unsigned long src_offset,
5569 unsigned long len)
5570{
5571 u64 dst_len = dst->len;
5572 size_t cur;
5573 size_t offset;
5574 struct page *page;
5575 char *kaddr;
09cbfeaf
KS
5576 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5577 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5578
5579 WARN_ON(src->len != dst_len);
5580
5581 offset = (start_offset + dst_offset) &
09cbfeaf 5582 (PAGE_SIZE - 1);
d1310b2e 5583
d397712b 5584 while (len > 0) {
fb85fc9a 5585 page = dst->pages[i];
d1310b2e
CM
5586 WARN_ON(!PageUptodate(page));
5587
09cbfeaf 5588 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5589
a6591715 5590 kaddr = page_address(page);
d1310b2e 5591 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5592
5593 src_offset += cur;
5594 len -= cur;
5595 offset = 0;
5596 i++;
5597 }
5598}
d1310b2e 5599
3e1e8bb7
OS
5600/*
5601 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5602 * given bit number
5603 * @eb: the extent buffer
5604 * @start: offset of the bitmap item in the extent buffer
5605 * @nr: bit number
5606 * @page_index: return index of the page in the extent buffer that contains the
5607 * given bit number
5608 * @page_offset: return offset into the page given by page_index
5609 *
5610 * This helper hides the ugliness of finding the byte in an extent buffer which
5611 * contains a given bit.
5612 */
5613static inline void eb_bitmap_offset(struct extent_buffer *eb,
5614 unsigned long start, unsigned long nr,
5615 unsigned long *page_index,
5616 size_t *page_offset)
5617{
09cbfeaf 5618 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5619 size_t byte_offset = BIT_BYTE(nr);
5620 size_t offset;
5621
5622 /*
5623 * The byte we want is the offset of the extent buffer + the offset of
5624 * the bitmap item in the extent buffer + the offset of the byte in the
5625 * bitmap item.
5626 */
5627 offset = start_offset + start + byte_offset;
5628
09cbfeaf
KS
5629 *page_index = offset >> PAGE_SHIFT;
5630 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5631}
5632
5633/**
5634 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5635 * @eb: the extent buffer
5636 * @start: offset of the bitmap item in the extent buffer
5637 * @nr: bit number to test
5638 */
5639int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5640 unsigned long nr)
5641{
2fe1d551 5642 u8 *kaddr;
3e1e8bb7
OS
5643 struct page *page;
5644 unsigned long i;
5645 size_t offset;
5646
5647 eb_bitmap_offset(eb, start, nr, &i, &offset);
5648 page = eb->pages[i];
5649 WARN_ON(!PageUptodate(page));
5650 kaddr = page_address(page);
5651 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5652}
5653
5654/**
5655 * extent_buffer_bitmap_set - set an area of a bitmap
5656 * @eb: the extent buffer
5657 * @start: offset of the bitmap item in the extent buffer
5658 * @pos: bit number of the first bit
5659 * @len: number of bits to set
5660 */
5661void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5662 unsigned long pos, unsigned long len)
5663{
2fe1d551 5664 u8 *kaddr;
3e1e8bb7
OS
5665 struct page *page;
5666 unsigned long i;
5667 size_t offset;
5668 const unsigned int size = pos + len;
5669 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5670 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5671
5672 eb_bitmap_offset(eb, start, pos, &i, &offset);
5673 page = eb->pages[i];
5674 WARN_ON(!PageUptodate(page));
5675 kaddr = page_address(page);
5676
5677 while (len >= bits_to_set) {
5678 kaddr[offset] |= mask_to_set;
5679 len -= bits_to_set;
5680 bits_to_set = BITS_PER_BYTE;
9c894696 5681 mask_to_set = ~0;
09cbfeaf 5682 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5683 offset = 0;
5684 page = eb->pages[++i];
5685 WARN_ON(!PageUptodate(page));
5686 kaddr = page_address(page);
5687 }
5688 }
5689 if (len) {
5690 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5691 kaddr[offset] |= mask_to_set;
5692 }
5693}
5694
5695
5696/**
5697 * extent_buffer_bitmap_clear - clear an area of a bitmap
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @pos: bit number of the first bit
5701 * @len: number of bits to clear
5702 */
5703void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5704 unsigned long pos, unsigned long len)
5705{
2fe1d551 5706 u8 *kaddr;
3e1e8bb7
OS
5707 struct page *page;
5708 unsigned long i;
5709 size_t offset;
5710 const unsigned int size = pos + len;
5711 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5712 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5713
5714 eb_bitmap_offset(eb, start, pos, &i, &offset);
5715 page = eb->pages[i];
5716 WARN_ON(!PageUptodate(page));
5717 kaddr = page_address(page);
5718
5719 while (len >= bits_to_clear) {
5720 kaddr[offset] &= ~mask_to_clear;
5721 len -= bits_to_clear;
5722 bits_to_clear = BITS_PER_BYTE;
9c894696 5723 mask_to_clear = ~0;
09cbfeaf 5724 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5725 offset = 0;
5726 page = eb->pages[++i];
5727 WARN_ON(!PageUptodate(page));
5728 kaddr = page_address(page);
5729 }
5730 }
5731 if (len) {
5732 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5733 kaddr[offset] &= ~mask_to_clear;
5734 }
5735}
5736
3387206f
ST
5737static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5738{
5739 unsigned long distance = (src > dst) ? src - dst : dst - src;
5740 return distance < len;
5741}
5742
d1310b2e
CM
5743static void copy_pages(struct page *dst_page, struct page *src_page,
5744 unsigned long dst_off, unsigned long src_off,
5745 unsigned long len)
5746{
a6591715 5747 char *dst_kaddr = page_address(dst_page);
d1310b2e 5748 char *src_kaddr;
727011e0 5749 int must_memmove = 0;
d1310b2e 5750
3387206f 5751 if (dst_page != src_page) {
a6591715 5752 src_kaddr = page_address(src_page);
3387206f 5753 } else {
d1310b2e 5754 src_kaddr = dst_kaddr;
727011e0
CM
5755 if (areas_overlap(src_off, dst_off, len))
5756 must_memmove = 1;
3387206f 5757 }
d1310b2e 5758
727011e0
CM
5759 if (must_memmove)
5760 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5761 else
5762 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5763}
5764
5765void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5766 unsigned long src_offset, unsigned long len)
5767{
0b246afa 5768 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5769 size_t cur;
5770 size_t dst_off_in_page;
5771 size_t src_off_in_page;
09cbfeaf 5772 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5773 unsigned long dst_i;
5774 unsigned long src_i;
5775
5776 if (src_offset + len > dst->len) {
0b246afa 5777 btrfs_err(fs_info,
5d163e0e
JM
5778 "memmove bogus src_offset %lu move len %lu dst len %lu",
5779 src_offset, len, dst->len);
d1310b2e
CM
5780 BUG_ON(1);
5781 }
5782 if (dst_offset + len > dst->len) {
0b246afa 5783 btrfs_err(fs_info,
5d163e0e
JM
5784 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5785 dst_offset, len, dst->len);
d1310b2e
CM
5786 BUG_ON(1);
5787 }
5788
d397712b 5789 while (len > 0) {
d1310b2e 5790 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5791 (PAGE_SIZE - 1);
d1310b2e 5792 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5793 (PAGE_SIZE - 1);
d1310b2e 5794
09cbfeaf
KS
5795 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5796 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5797
09cbfeaf 5798 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5799 src_off_in_page));
5800 cur = min_t(unsigned long, cur,
09cbfeaf 5801 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5802
fb85fc9a 5803 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5804 dst_off_in_page, src_off_in_page, cur);
5805
5806 src_offset += cur;
5807 dst_offset += cur;
5808 len -= cur;
5809 }
5810}
d1310b2e
CM
5811
5812void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5813 unsigned long src_offset, unsigned long len)
5814{
0b246afa 5815 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5816 size_t cur;
5817 size_t dst_off_in_page;
5818 size_t src_off_in_page;
5819 unsigned long dst_end = dst_offset + len - 1;
5820 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5821 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5822 unsigned long dst_i;
5823 unsigned long src_i;
5824
5825 if (src_offset + len > dst->len) {
0b246afa 5826 btrfs_err(fs_info,
5d163e0e
JM
5827 "memmove bogus src_offset %lu move len %lu len %lu",
5828 src_offset, len, dst->len);
d1310b2e
CM
5829 BUG_ON(1);
5830 }
5831 if (dst_offset + len > dst->len) {
0b246afa 5832 btrfs_err(fs_info,
5d163e0e
JM
5833 "memmove bogus dst_offset %lu move len %lu len %lu",
5834 dst_offset, len, dst->len);
d1310b2e
CM
5835 BUG_ON(1);
5836 }
727011e0 5837 if (dst_offset < src_offset) {
d1310b2e
CM
5838 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5839 return;
5840 }
d397712b 5841 while (len > 0) {
09cbfeaf
KS
5842 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5843 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5844
5845 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5846 (PAGE_SIZE - 1);
d1310b2e 5847 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5848 (PAGE_SIZE - 1);
d1310b2e
CM
5849
5850 cur = min_t(unsigned long, len, src_off_in_page + 1);
5851 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5852 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5853 dst_off_in_page - cur + 1,
5854 src_off_in_page - cur + 1, cur);
5855
5856 dst_end -= cur;
5857 src_end -= cur;
5858 len -= cur;
5859 }
5860}
6af118ce 5861
f7a52a40 5862int try_release_extent_buffer(struct page *page)
19fe0a8b 5863{
6af118ce 5864 struct extent_buffer *eb;
6af118ce 5865
3083ee2e 5866 /*
01327610 5867 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5868 * now.
5869 */
5870 spin_lock(&page->mapping->private_lock);
5871 if (!PagePrivate(page)) {
5872 spin_unlock(&page->mapping->private_lock);
4f2de97a 5873 return 1;
45f49bce 5874 }
6af118ce 5875
3083ee2e
JB
5876 eb = (struct extent_buffer *)page->private;
5877 BUG_ON(!eb);
19fe0a8b
MX
5878
5879 /*
3083ee2e
JB
5880 * This is a little awful but should be ok, we need to make sure that
5881 * the eb doesn't disappear out from under us while we're looking at
5882 * this page.
19fe0a8b 5883 */
3083ee2e 5884 spin_lock(&eb->refs_lock);
0b32f4bb 5885 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5886 spin_unlock(&eb->refs_lock);
5887 spin_unlock(&page->mapping->private_lock);
5888 return 0;
b9473439 5889 }
3083ee2e 5890 spin_unlock(&page->mapping->private_lock);
897ca6e9 5891
19fe0a8b 5892 /*
3083ee2e
JB
5893 * If tree ref isn't set then we know the ref on this eb is a real ref,
5894 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5895 */
3083ee2e
JB
5896 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5897 spin_unlock(&eb->refs_lock);
5898 return 0;
b9473439 5899 }
19fe0a8b 5900
f7a52a40 5901 return release_extent_buffer(eb);
6af118ce 5902}