]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: get rid of one layer of bios in direct I/O
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e 16#include "extent_io.h"
9c7d3a54 17#include "extent-io-tree.h"
d1310b2e 18#include "extent_map.h"
902b22f3
DW
19#include "ctree.h"
20#include "btrfs_inode.h"
4a54c8c1 21#include "volumes.h"
21adbd5c 22#include "check-integrity.h"
0b32f4bb 23#include "locking.h"
606686ee 24#include "rcu-string.h"
fe09e16c 25#include "backref.h"
6af49dbd 26#include "disk-io.h"
d1310b2e 27
d1310b2e
CM
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 30static struct bio_set btrfs_bioset;
d1310b2e 31
27a3507d
FM
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
6d49ba1b 37#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 38static LIST_HEAD(states);
d397712b 39static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 40
3fd63727
JB
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
6d49ba1b
ES
44{
45 unsigned long flags;
46
3fd63727 47 spin_lock_irqsave(lock, flags);
6d49ba1b 48 list_add(new, head);
3fd63727 49 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
50}
51
3fd63727
JB
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
6d49ba1b
ES
54{
55 unsigned long flags;
56
3fd63727 57 spin_lock_irqsave(lock, flags);
6d49ba1b 58 list_del(entry);
3fd63727 59 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
60}
61
3fd63727 62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 63{
6d49ba1b 64 struct extent_buffer *eb;
3fd63727 65 unsigned long flags;
6d49ba1b 66
8c38938c
JB
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
3fd63727
JB
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
8c38938c
JB
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
33ca832f
JB
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
3fd63727 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
6d49ba1b
ES
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
b7ac31b7 97 refcount_read(&state->refs));
6d49ba1b
ES
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
6d49ba1b 101}
8d599ae1 102
a5dee37d
JB
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 106 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 107{
65a680f6
NB
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
8d599ae1 120}
6d49ba1b 121#else
3fd63727
JB
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 124#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 126#endif
d1310b2e 127
d1310b2e
CM
128struct tree_entry {
129 u64 start;
130 u64 end;
d1310b2e
CM
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
771ed689
CM
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
ffbd517d
CM
139 unsigned int extent_locked:1;
140
70fd7614 141 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 142 unsigned int sync_io:1;
d1310b2e
CM
143};
144
57599c7e 145static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
57599c7e 152 return 0;
d38ed27f 153 if (set && (state->state & bits) == bits)
57599c7e 154 return 0;
fefdc557 155 if (!set && (state->state & bits) == 0)
57599c7e 156 return 0;
d38ed27f 157 changeset->bytes_changed += state->end - state->start + 1;
53d32359 158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 159 GFP_ATOMIC);
57599c7e 160 return ret;
d38ed27f
QW
161}
162
bb58eb9e
QW
163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165{
166 blk_status_t ret = 0;
bb58eb9e 167 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 173 mirror_num, bio_flags);
bb58eb9e
QW
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178}
179
3065976b
QW
180/* Cleanup unsubmitted bios */
181static void end_write_bio(struct extent_page_data *epd, int ret)
182{
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188}
189
f4340622
QW
190/*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 197{
f4340622 198 int ret = 0;
bb58eb9e 199
f4340622 200 if (epd->bio) {
bb58eb9e 201 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
bb58eb9e
QW
209 epd->bio = NULL;
210 }
f4340622 211 return ret;
bb58eb9e 212}
e2932ee0 213
6f0d04f8 214int __init extent_state_cache_init(void)
d1310b2e 215{
837e1972 216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 217 sizeof(struct extent_state), 0,
fba4b697 218 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
219 if (!extent_state_cache)
220 return -ENOMEM;
6f0d04f8
JB
221 return 0;
222}
d1310b2e 223
6f0d04f8
JB
224int __init extent_io_init(void)
225{
837e1972 226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 227 sizeof(struct extent_buffer), 0,
fba4b697 228 SLAB_MEM_SPREAD, NULL);
d1310b2e 229 if (!extent_buffer_cache)
6f0d04f8 230 return -ENOMEM;
9be3395b 231
8ac9f7c1
KO
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
9be3395b 235 goto free_buffer_cache;
b208c2f7 236
8ac9f7c1 237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
238 goto free_bioset;
239
d1310b2e
CM
240 return 0;
241
b208c2f7 242free_bioset:
8ac9f7c1 243 bioset_exit(&btrfs_bioset);
b208c2f7 244
9be3395b
CM
245free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
6f0d04f8
JB
248 return -ENOMEM;
249}
9be3395b 250
6f0d04f8
JB
251void __cold extent_state_cache_exit(void)
252{
253 btrfs_extent_state_leak_debug_check();
d1310b2e 254 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
255}
256
e67c718b 257void __cold extent_io_exit(void)
d1310b2e 258{
8c0a8537
KS
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
5598e900 264 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 265 bioset_exit(&btrfs_bioset);
d1310b2e
CM
266}
267
41a2ee75
JB
268/*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275static struct lock_class_key file_extent_tree_class;
276
c258d6e3 277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
d1310b2e 280{
c258d6e3 281 tree->fs_info = fs_info;
6bef4d31 282 tree->state = RB_ROOT;
d1310b2e
CM
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
70dec807 285 spin_lock_init(&tree->lock);
c6100a4b 286 tree->private_data = private_data;
43eb5f29 287 tree->owner = owner;
41a2ee75
JB
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 290}
d1310b2e 291
41e7acd3
NB
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
b2950863 321static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
322{
323 struct extent_state *state;
d1310b2e 324
3ba7ab22
MH
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 330 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 331 if (!state)
d1310b2e
CM
332 return state;
333 state->state = 0;
47dc196a 334 state->failrec = NULL;
27a3507d 335 RB_CLEAR_NODE(&state->rb_node);
3fd63727 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 337 refcount_set(&state->refs, 1);
d1310b2e 338 init_waitqueue_head(&state->wq);
143bede5 339 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
340 return state;
341}
d1310b2e 342
4845e44f 343void free_extent_state(struct extent_state *state)
d1310b2e 344{
d1310b2e
CM
345 if (!state)
346 return;
b7ac31b7 347 if (refcount_dec_and_test(&state->refs)) {
27a3507d 348 WARN_ON(extent_state_in_tree(state));
3fd63727 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 350 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
d1310b2e 354
f2071b21
FM
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
12cfbad9
FDBM
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
d1310b2e 361{
f2071b21 362 struct rb_node **p;
d397712b 363 struct rb_node *parent = NULL;
d1310b2e
CM
364 struct tree_entry *entry;
365
12cfbad9
FDBM
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
f2071b21 372 p = search_start ? &search_start : &root->rb_node;
d397712b 373 while (*p) {
d1310b2e
CM
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
12cfbad9 385do_insert:
d1310b2e
CM
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
8666e638
NB
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
80ea96b1 409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 410 struct rb_node **next_ret,
352646c7 411 struct rb_node **prev_ret,
12cfbad9
FDBM
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
d1310b2e 414{
80ea96b1 415 struct rb_root *root = &tree->state;
12cfbad9 416 struct rb_node **n = &root->rb_node;
d1310b2e
CM
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
12cfbad9
FDBM
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
425 prev_entry = entry;
426
427 if (offset < entry->start)
12cfbad9 428 n = &(*n)->rb_left;
d1310b2e 429 else if (offset > entry->end)
12cfbad9 430 n = &(*n)->rb_right;
d397712b 431 else
12cfbad9 432 return *n;
d1310b2e
CM
433 }
434
12cfbad9
FDBM
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
352646c7 440 if (next_ret) {
d1310b2e 441 orig_prev = prev;
d397712b 442 while (prev && offset > prev_entry->end) {
d1310b2e
CM
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
352646c7 446 *next_ret = prev;
d1310b2e
CM
447 prev = orig_prev;
448 }
449
352646c7 450 if (prev_ret) {
d1310b2e 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 452 while (prev && offset < prev_entry->start) {
d1310b2e
CM
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
352646c7 456 *prev_ret = prev;
d1310b2e
CM
457 }
458 return NULL;
459}
460
12cfbad9
FDBM
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
d1310b2e 466{
352646c7 467 struct rb_node *next= NULL;
d1310b2e 468 struct rb_node *ret;
70dec807 469
352646c7 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 471 if (!ret)
352646c7 472 return next;
d1310b2e
CM
473 return ret;
474}
475
12cfbad9
FDBM
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
d1310b2e
CM
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
1bf85046
JM
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
d1310b2e
CM
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
8882679e 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 498 return;
d1310b2e
CM
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
5c848198
NB
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
d1310b2e 509 state->start = other->start;
d1310b2e 510 rb_erase(&other->rb_node, &tree->state);
27a3507d 511 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
5c848198
NB
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
df98b6e2 524 state->end = other->end;
df98b6e2 525 rb_erase(&other->rb_node, &tree->state);
27a3507d 526 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 527 free_extent_state(other);
d1310b2e
CM
528 }
529 }
d1310b2e
CM
530}
531
3150b699 532static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
3150b699 535
d1310b2e
CM
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
548 struct rb_node ***p,
549 struct rb_node **parent,
d38ed27f 550 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
551{
552 struct rb_node *node;
553
2792237d
DS
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
d1310b2e
CM
559 state->start = start;
560 state->end = end;
9ed74f2d 561
d38ed27f 562 set_state_bits(tree, state, bits, changeset);
3150b699 563
f2071b21 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 570 found->start, found->end, start, end);
d1310b2e
CM
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
9ed74f2d 595
abbb55f4
NB
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 598
d1310b2e
CM
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
f2071b21
FM
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
d1310b2e 606 if (node) {
d1310b2e
CM
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
cdc6a395
LZ
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
d1310b2e
CM
622/*
623 * utility function to clear some bits in an extent state struct.
52042d8e 624 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
cdc6a395
LZ
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
fefdc557
QW
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
d1310b2e 633{
cdc6a395 634 struct extent_state *next;
9ee49a04 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 636 int ret;
d1310b2e 637
0ca1f7ce 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
a36bb5f9
NB
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
57599c7e
DS
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
32c00aff 649 state->state &= ~bits_to_clear;
d1310b2e
CM
650 if (wake)
651 wake_up(&state->wq);
0ca1f7ce 652 if (state->state == 0) {
cdc6a395 653 next = next_state(state);
27a3507d 654 if (extent_state_in_tree(state)) {
d1310b2e 655 rb_erase(&state->rb_node, &tree->state);
27a3507d 656 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
cdc6a395 663 next = next_state(state);
d1310b2e 664 }
cdc6a395 665 return next;
d1310b2e
CM
666}
667
8233767a
XG
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
48a3b636 677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 678{
05912a3c
DS
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
683}
684
d1310b2e
CM
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
6763af84 695 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 696 */
66b0c887 697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
701{
702 struct extent_state *state;
2c64c53d 703 struct extent_state *cached;
d1310b2e
CM
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
5c939df5 706 u64 last_end;
d1310b2e 707 int err;
2ac55d41 708 int clear = 0;
d1310b2e 709
a5dee37d 710 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 712
7ee9e440
JB
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
0ca1f7ce
YZ
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 718
8882679e 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 720 clear = 1;
d1310b2e 721again:
d0164adc 722 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
d1310b2e 730 prealloc = alloc_extent_state(mask);
d1310b2e
CM
731 }
732
cad321ad 733 spin_lock(&tree->lock);
2c64c53d
CM
734 if (cached_state) {
735 cached = *cached_state;
2ac55d41
JB
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
27a3507d
FM
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
2ac55d41 744 if (clear)
b7ac31b7 745 refcount_dec(&cached->refs);
2c64c53d 746 state = cached;
42daec29 747 goto hit_next;
2c64c53d 748 }
2ac55d41
JB
749 if (clear)
750 free_extent_state(cached);
2c64c53d 751 }
d1310b2e
CM
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
80ea96b1 756 node = tree_search(tree, start);
d1310b2e
CM
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 760hit_next:
d1310b2e
CM
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
5c939df5 764 last_end = state->end;
d1310b2e 765
0449314a 766 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
767 if (!(state->state & bits)) {
768 state = next_state(state);
0449314a 769 goto next;
cdc6a395 770 }
0449314a 771
d1310b2e
CM
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
8233767a
XG
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
d1310b2e 791 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
792 if (err)
793 extent_io_tree_panic(tree, err);
794
d1310b2e
CM
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
fefdc557
QW
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
d1ac6e41 801 goto next;
d1310b2e
CM
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
8233767a
XG
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
d1310b2e 814 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
815 if (err)
816 extent_io_tree_panic(tree, err);
817
d1310b2e
CM
818 if (wake)
819 wake_up(&state->wq);
42daec29 820
fefdc557 821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 822
d1310b2e
CM
823 prealloc = NULL;
824 goto out;
825 }
42daec29 826
fefdc557 827 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 828next:
5c939df5
YZ
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
cdc6a395 832 if (start <= end && state && !need_resched())
692e5759 833 goto hit_next;
d1310b2e
CM
834
835search_again:
836 if (start > end)
837 goto out;
cad321ad 838 spin_unlock(&tree->lock);
d0164adc 839 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
840 cond_resched();
841 goto again;
7ab5cb2a
DS
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
d1310b2e 850}
d1310b2e 851
143bede5
JM
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
641f5219
CH
854 __releases(tree->lock)
855 __acquires(tree->lock)
d1310b2e
CM
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 859 spin_unlock(&tree->lock);
d1310b2e 860 schedule();
cad321ad 861 spin_lock(&tree->lock);
d1310b2e 862 finish_wait(&state->wq, &wait);
d1310b2e
CM
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
41074888
DS
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
d1310b2e
CM
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
a5dee37d 876 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 877
cad321ad 878 spin_lock(&tree->lock);
d1310b2e
CM
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
80ea96b1 885 node = tree_search(tree, start);
c50d3e71 886process_node:
d1310b2e
CM
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
b7ac31b7 897 refcount_inc(&state->refs);
d1310b2e
CM
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
c50d3e71
FM
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
d1310b2e
CM
911 }
912out:
cad321ad 913 spin_unlock(&tree->lock);
d1310b2e 914}
d1310b2e 915
1bf85046 916static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 917 struct extent_state *state,
d38ed27f 918 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 919{
9ee49a04 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 921 int ret;
9ed74f2d 922
e06a1fc9
NB
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
0ca1f7ce 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
57599c7e
DS
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
0ca1f7ce 932 state->state |= bits_to_set;
d1310b2e
CM
933}
934
e38e2ed7
FM
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
9ee49a04 937 unsigned flags)
2c64c53d
CM
938{
939 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 940 if (!flags || (state->state & flags)) {
2c64c53d 941 *cached_ptr = state;
b7ac31b7 942 refcount_inc(&state->refs);
2c64c53d
CM
943 }
944 }
945}
946
e38e2ed7
FM
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
8882679e 951 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
952}
953
d1310b2e 954/*
1edbb734
CM
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 957 *
1edbb734
CM
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
d1310b2e 961 *
1edbb734 962 * [start, end] is inclusive This takes the tree lock.
d1310b2e 963 */
1edbb734 964
3fbe5c02
JM
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 967 unsigned bits, unsigned exclusive_bits,
41074888 968 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 969 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
12cfbad9
FDBM
974 struct rb_node **p;
975 struct rb_node *parent;
d1310b2e 976 int err = 0;
d1310b2e
CM
977 u64 last_start;
978 u64 last_end;
42daec29 979
a5dee37d 980 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 982
d1310b2e 983again:
d0164adc 984 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
d1310b2e 992 prealloc = alloc_extent_state(mask);
d1310b2e
CM
993 }
994
cad321ad 995 spin_lock(&tree->lock);
9655d298
CM
996 if (cached_state && *cached_state) {
997 state = *cached_state;
df98b6e2 998 if (state->start <= start && state->end > start &&
27a3507d 999 extent_state_in_tree(state)) {
9655d298
CM
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
d1310b2e
CM
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
12cfbad9 1008 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1009 if (!node) {
8233767a
XG
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
12cfbad9 1012 err = insert_state(tree, prealloc, start, end,
d38ed27f 1013 &p, &parent, &bits, changeset);
c2d904e0
JM
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
c42ac0bc 1017 cache_state(prealloc, cached_state);
d1310b2e 1018 prealloc = NULL;
d1310b2e
CM
1019 goto out;
1020 }
d1310b2e 1021 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1022hit_next:
d1310b2e
CM
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1edbb734 1033 if (state->state & exclusive_bits) {
d1310b2e
CM
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
42daec29 1038
d38ed27f 1039 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1040 cache_state(state, cached_state);
d1310b2e 1041 merge_state(tree, state);
5c939df5
YZ
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
d1ac6e41
LB
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
d1310b2e
CM
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1edbb734 1069 if (state->state & exclusive_bits) {
d1310b2e
CM
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
8233767a 1074
55ffaabe
FM
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
8233767a
XG
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
d1310b2e 1087 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
d1310b2e
CM
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
d38ed27f 1095 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1096 cache_state(state, cached_state);
d1310b2e 1097 merge_state(tree, state);
5c939df5
YZ
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
d1ac6e41
LB
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
d1310b2e
CM
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
d397712b 1120 this_end = last_start - 1;
8233767a
XG
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
c7f895a2
XG
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
d1310b2e 1129 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1130 NULL, NULL, &bits, changeset);
c2d904e0
JM
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
9ed74f2d
JB
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
d1310b2e
CM
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1edbb734 1146 if (state->state & exclusive_bits) {
d1310b2e
CM
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
8233767a
XG
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
d1310b2e 1154 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1155 if (err)
1156 extent_io_tree_panic(tree, err);
d1310b2e 1157
d38ed27f 1158 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1159 cache_state(prealloc, cached_state);
d1310b2e
CM
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
b5a4ba14
DS
1165search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
d1310b2e
CM
1172
1173out:
cad321ad 1174 spin_unlock(&tree->lock);
d1310b2e
CM
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
d1310b2e 1180}
d1310b2e 1181
41074888 1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1183 unsigned bits, u64 * failed_start,
41074888 1184 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1185{
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1187 cached_state, mask, NULL);
3fbe5c02
JM
1188}
1189
1190
462d6fac 1191/**
10983f2e
LB
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
462d6fac
JB
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
e6138876 1199 * @cached_state: state that we're going to cache
462d6fac
JB
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
210aa277
DS
1206 *
1207 * All allocations are done with GFP_NOFS.
462d6fac
JB
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1210 unsigned bits, unsigned clear_bits,
210aa277 1211 struct extent_state **cached_state)
462d6fac
JB
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
12cfbad9
FDBM
1216 struct rb_node **p;
1217 struct rb_node *parent;
462d6fac
JB
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
c8fd3de7 1221 bool first_iteration = true;
462d6fac 1222
a5dee37d 1223 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
8d599ae1 1226
462d6fac 1227again:
210aa277 1228 if (!prealloc) {
c8fd3de7
FM
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
210aa277 1236 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1237 if (!prealloc && !first_iteration)
462d6fac
JB
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
e6138876
JB
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
27a3507d 1245 extent_state_in_tree(state)) {
e6138876
JB
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
462d6fac
JB
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
12cfbad9 1255 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
12cfbad9 1262 err = insert_state(tree, prealloc, start, end,
d38ed27f 1263 &p, &parent, &bits, NULL);
c2d904e0
JM
1264 if (err)
1265 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
462d6fac
JB
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
d38ed27f 1282 set_state_bits(tree, state, &bits, NULL);
e6138876 1283 cache_state(state, cached_state);
fefdc557 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1285 if (last_end == (u64)-1)
1286 goto out;
462d6fac 1287 start = last_end + 1;
d1ac6e41
LB
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
462d6fac
JB
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac 1316 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1317 if (err)
1318 extent_io_tree_panic(tree, err);
462d6fac
JB
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
d38ed27f 1323 set_state_bits(tree, state, &bits, NULL);
e6138876 1324 cache_state(state, cached_state);
fefdc557
QW
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
462d6fac
JB
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
d1ac6e41
LB
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
462d6fac
JB
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
462d6fac
JB
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1361 NULL, NULL, &bits, NULL);
c2d904e0
JM
1362 if (err)
1363 extent_io_tree_panic(tree, err);
e6138876 1364 cache_state(prealloc, cached_state);
462d6fac
JB
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
462d6fac
JB
1381
1382 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1383 if (err)
1384 extent_io_tree_panic(tree, err);
462d6fac 1385
d38ed27f 1386 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1387 cache_state(prealloc, cached_state);
fefdc557 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
462d6fac
JB
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
210aa277 1397 cond_resched();
c8fd3de7 1398 first_iteration = false;
462d6fac 1399 goto again;
462d6fac
JB
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
462d6fac
JB
1407}
1408
d1310b2e 1409/* wrappers around set/clear extent bit */
d38ed27f 1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1411 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
2c53b912 1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1422 changeset);
1423}
1424
4ca73656
NB
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427{
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430}
1431
fefdc557
QW
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
ae0f1625 1434 struct extent_state **cached)
fefdc557
QW
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1437 cached, GFP_NOFS, NULL);
fefdc557
QW
1438}
1439
fefdc557 1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1441 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
f734c44a 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1450 changeset);
1451}
1452
d352ac68
CM
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1edbb734 1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1458 struct extent_state **cached_state)
d1310b2e
CM
1459{
1460 int err;
1461 u64 failed_start;
9ee49a04 1462
d1310b2e 1463 while (1) {
ff13db41 1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1465 EXTENT_LOCKED, &failed_start,
d38ed27f 1466 cached_state, GFP_NOFS, NULL);
d0082371 1467 if (err == -EEXIST) {
d1310b2e
CM
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
d0082371 1470 } else
d1310b2e 1471 break;
d1310b2e
CM
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
d1310b2e 1476
d0082371 1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1478{
1479 int err;
1480 u64 failed_start;
1481
3fbe5c02 1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1483 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1487 EXTENT_LOCKED, 1, 0, NULL);
25179201 1488 return 0;
6643558d 1489 }
25179201
JB
1490 return 1;
1491}
25179201 1492
bd1fa4f0 1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1494{
09cbfeaf
KS
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
09cbfeaf 1503 put_page(page);
4adaa611
CM
1504 index++;
1505 }
4adaa611
CM
1506}
1507
f6311572 1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1509{
09cbfeaf
KS
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1517 __set_page_dirty_nobuffers(page);
8d38633c 1518 account_page_redirty(page);
09cbfeaf 1519 put_page(page);
4adaa611
CM
1520 index++;
1521 }
4adaa611
CM
1522}
1523
d352ac68
CM
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
48a3b636
ES
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1530 u64 start, unsigned bits)
d7fc640e
CM
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
d397712b 1540 if (!node)
d7fc640e 1541 goto out;
d7fc640e 1542
d397712b 1543 while (1) {
d7fc640e 1544 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1545 if (state->end >= start && (state->state & bits))
d7fc640e 1546 return state;
d397712b 1547
d7fc640e
CM
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
d7fc640e 1555
69261c4b
XG
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
477d7eaf 1561 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1564 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1565 struct extent_state **cached_state)
69261c4b
XG
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
e6138876
JB
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
27a3507d 1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1574 while ((state = next_state(state)) != NULL) {
e6138876
JB
1575 if (state->state & bits)
1576 goto got_it;
e6138876
JB
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
69261c4b 1586 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1587got_it:
69261c4b 1588 if (state) {
e38e2ed7 1589 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
e6138876 1594out:
69261c4b
XG
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
41a2ee75
JB
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634}
1635
45bfcfc1 1636/**
1eaebb34
NB
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
45bfcfc1
NB
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
45bfcfc1 1680 node = next;
45bfcfc1 1681 }
1eaebb34
NB
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
45bfcfc1 1686 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
45bfcfc1 1709 } else {
1eaebb34
NB
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
45bfcfc1
NB
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749out:
1750 spin_unlock(&tree->lock);
1751}
1752
d352ac68
CM
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
3522e903 1757 * true is returned if we find something, false if nothing was in the tree
d352ac68 1758 */
083e75e7
JB
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
3522e903 1766 bool found = false;
d1310b2e
CM
1767 u64 total_bytes = 0;
1768
cad321ad 1769 spin_lock(&tree->lock);
c8b97818 1770
d1310b2e
CM
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
80ea96b1 1775 node = tree_search(tree, cur_start);
2b114d1d 1776 if (!node) {
3522e903 1777 *end = (u64)-1;
d1310b2e
CM
1778 goto out;
1779 }
1780
d397712b 1781 while (1) {
d1310b2e 1782 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
c2a128d2 1792 if (!found) {
d1310b2e 1793 *start = state->start;
c2a128d2 1794 *cached_state = state;
b7ac31b7 1795 refcount_inc(&state->refs);
c2a128d2 1796 }
3522e903 1797 found = true;
d1310b2e
CM
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
d1310b2e 1801 total_bytes += state->end - state->start + 1;
7bf811a5 1802 if (total_bytes >= max_bytes)
573aecaf 1803 break;
573aecaf 1804 if (!node)
d1310b2e
CM
1805 break;
1806 }
1807out:
cad321ad 1808 spin_unlock(&tree->lock);
d1310b2e
CM
1809 return found;
1810}
1811
da2c7009
LB
1812static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
143bede5
JM
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
c8b97818 1820{
09cbfeaf
KS
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1823
76c0021d 1824 ASSERT(locked_page);
c8b97818 1825 if (index == locked_page->index && end_index == index)
143bede5 1826 return;
c8b97818 1827
76c0021d
LB
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
c8b97818
CM
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836{
09cbfeaf 1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1838 unsigned long index_ret = index;
09cbfeaf 1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1840 int ret;
c8b97818 1841
76c0021d 1842 ASSERT(locked_page);
c8b97818
CM
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
76c0021d
LB
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1851 return ret;
1852}
1853
1854/*
3522e903
LF
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1857 *
3522e903
LF
1858 * Return: true if we find something
1859 * false if nothing was in the tree
c8b97818 1860 */
ce9f967f 1861EXPORT_FOR_TESTS
3522e903 1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1863 struct page *locked_page, u64 *start,
917aacec 1864 u64 *end)
c8b97818 1865{
9978059b 1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1868 u64 delalloc_start;
1869 u64 delalloc_end;
3522e903 1870 bool found;
9655d298 1871 struct extent_state *cached_state = NULL;
c8b97818
CM
1872 int ret;
1873 int loops = 0;
1874
1875again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
083e75e7
JB
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
70b99e69 1881 if (!found || delalloc_end <= *start) {
c8b97818
CM
1882 *start = delalloc_start;
1883 *end = delalloc_end;
c2a128d2 1884 free_extent_state(cached_state);
3522e903 1885 return false;
c8b97818
CM
1886 }
1887
70b99e69
CM
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
d397712b 1893 if (delalloc_start < *start)
70b99e69 1894 delalloc_start = *start;
70b99e69 1895
c8b97818
CM
1896 /*
1897 * make sure to limit the number of pages we try to lock down
c8b97818 1898 */
7bf811a5
JB
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1901
c8b97818
CM
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
9bfd61d9 1905 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
9655d298 1910 free_extent_state(cached_state);
7d788742 1911 cached_state = NULL;
c8b97818 1912 if (!loops) {
09cbfeaf 1913 max_bytes = PAGE_SIZE;
c8b97818
CM
1914 loops = 1;
1915 goto again;
1916 } else {
3522e903 1917 found = false;
c8b97818
CM
1918 goto out_failed;
1919 }
1920 }
c8b97818
CM
1921
1922 /* step three, lock the state bits for the whole range */
ff13db41 1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1927 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1928 if (!ret) {
9655d298 1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1930 &cached_state);
c8b97818
CM
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
9655d298 1936 free_extent_state(cached_state);
c8b97818
CM
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939out_failed:
1940 return found;
1941}
1942
da2c7009
LB
1943static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1947{
873695b3 1948 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1949 unsigned long pages_locked = 0;
873695b3 1950 pgoff_t index = start_index;
c8b97818 1951 struct page *pages[16];
873695b3 1952 unsigned ret;
da2c7009 1953 int err = 0;
c8b97818 1954 int i;
771ed689 1955
da2c7009
LB
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
704de49d 1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1962 mapping_set_error(mapping, -EIO);
704de49d 1963
d397712b 1964 while (nr_pages > 0) {
873695b3 1965 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1974 err = -EAGAIN;
1975 goto out;
da2c7009 1976 }
8b62b72b 1977
da2c7009 1978 for (i = 0; i < ret; i++) {
c2790a2e 1979 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1980 SetPagePrivate2(pages[i]);
1981
1d53c9e6 1982 if (locked_page && pages[i] == locked_page) {
09cbfeaf 1983 put_page(pages[i]);
da2c7009 1984 pages_locked++;
c8b97818
CM
1985 continue;
1986 }
c2790a2e 1987 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1988 clear_page_dirty_for_io(pages[i]);
c2790a2e 1989 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1990 set_page_writeback(pages[i]);
704de49d
FM
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
c2790a2e 1993 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1994 end_page_writeback(pages[i]);
c2790a2e 1995 if (page_ops & PAGE_UNLOCK)
771ed689 1996 unlock_page(pages[i]);
da2c7009
LB
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
2002 put_page(pages[i]);
2003 err = -EAGAIN;
2004 goto out;
2005 }
2006 }
09cbfeaf 2007 put_page(pages[i]);
da2c7009 2008 pages_locked++;
c8b97818
CM
2009 }
2010 nr_pages -= ret;
2011 index += ret;
2012 cond_resched();
2013 }
da2c7009
LB
2014out:
2015 if (err && index_ret)
2016 *index_ret = start_index + pages_locked - 1;
2017 return err;
c8b97818 2018}
c8b97818 2019
873695b3 2020void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
74e9194a
NB
2021 struct page *locked_page,
2022 unsigned clear_bits,
2023 unsigned long page_ops)
873695b3
LB
2024{
2025 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 2026 NULL);
873695b3
LB
2027
2028 __process_pages_contig(inode->i_mapping, locked_page,
2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 2030 page_ops, NULL);
873695b3
LB
2031}
2032
d352ac68
CM
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
d1310b2e
CM
2038u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 2040 unsigned bits, int contig)
d1310b2e
CM
2041{
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
ec29ed5b 2046 u64 last = 0;
d1310b2e
CM
2047 int found = 0;
2048
fae7f21c 2049 if (WARN_ON(search_end <= cur_start))
d1310b2e 2050 return 0;
d1310b2e 2051
cad321ad 2052 spin_lock(&tree->lock);
d1310b2e
CM
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
80ea96b1 2061 node = tree_search(tree, cur_start);
d397712b 2062 if (!node)
d1310b2e 2063 goto out;
d1310b2e 2064
d397712b 2065 while (1) {
d1310b2e
CM
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
ec29ed5b
CM
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
af60bed2 2077 *start = max(cur_start, state->start);
d1310b2e
CM
2078 found = 1;
2079 }
ec29ed5b
CM
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
d1310b2e
CM
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088out:
cad321ad 2089 spin_unlock(&tree->lock);
d1310b2e
CM
2090 return total_bytes;
2091}
b2950863 2092
d352ac68
CM
2093/*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
b3f167aa
JB
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
d1310b2e
CM
2099{
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
cad321ad 2104 spin_lock(&tree->lock);
d1310b2e
CM
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
80ea96b1 2109 node = tree_search(tree, start);
2b114d1d 2110 if (!node) {
d1310b2e
CM
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
47dc196a 2119 state->failrec = failrec;
d1310b2e 2120out:
cad321ad 2121 spin_unlock(&tree->lock);
d1310b2e
CM
2122 return ret;
2123}
2124
b3f167aa
JB
2125int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126 struct io_failure_record **failrec)
d1310b2e
CM
2127{
2128 struct rb_node *node;
2129 struct extent_state *state;
2130 int ret = 0;
2131
cad321ad 2132 spin_lock(&tree->lock);
d1310b2e
CM
2133 /*
2134 * this search will find all the extents that end after
2135 * our range starts.
2136 */
80ea96b1 2137 node = tree_search(tree, start);
2b114d1d 2138 if (!node) {
d1310b2e
CM
2139 ret = -ENOENT;
2140 goto out;
2141 }
2142 state = rb_entry(node, struct extent_state, rb_node);
2143 if (state->start != start) {
2144 ret = -ENOENT;
2145 goto out;
2146 }
47dc196a 2147 *failrec = state->failrec;
d1310b2e 2148out:
cad321ad 2149 spin_unlock(&tree->lock);
d1310b2e
CM
2150 return ret;
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
70dec807 2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2160 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2161{
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
d1310b2e 2165
cad321ad 2166 spin_lock(&tree->lock);
27a3507d 2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2168 cached->end > start)
9655d298
CM
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
d1310b2e
CM
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
46562cec
CM
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
d1310b2e
CM
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
cad321ad 2205 spin_unlock(&tree->lock);
d1310b2e
CM
2206 return bitset;
2207}
d1310b2e
CM
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
143bede5 2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2214{
4eee4fa4 2215 u64 start = page_offset(page);
09cbfeaf 2216 u64 end = start + PAGE_SIZE - 1;
9655d298 2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2218 SetPageUptodate(page);
d1310b2e
CM
2219}
2220
7870d082
JB
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
4a54c8c1
JS
2224{
2225 int ret;
2226 int err = 0;
4a54c8c1 2227
47dc196a 2228 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
91166212 2231 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2232 if (ret)
2233 err = ret;
2234
7870d082 2235 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2236 rec->start + rec->len - 1,
91166212 2237 EXTENT_DAMAGED);
53b381b3
DW
2238 if (ret && !err)
2239 err = ret;
4a54c8c1
JS
2240
2241 kfree(rec);
2242 return err;
2243}
2244
4a54c8c1
JS
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
3ec706c8 2250 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
6ec656bc
JB
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2258{
2259 struct bio *bio;
2260 struct btrfs_device *dev;
4a54c8c1
JS
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
1751e8a6 2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2267 BUG_ON(!mirror_num);
2268
c5e4c3d7 2269 bio = btrfs_io_bio_alloc(1);
4f024f37 2270 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2271 map_length = length;
2272
b5de8d0d
FM
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2303 }
c725328c
LB
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2306 bio->bi_iter.bi_sector = sector;
c725328c 2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2308 btrfs_put_bbio(bbio);
ebbede42
AJ
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2311 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2312 bio_put(bio);
2313 return -EIO;
2314 }
74d46992 2315 bio_set_dev(bio, dev->bdev);
70fd7614 2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2317 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2318
4e49ea4a 2319 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2320 /* try to remap that extent elsewhere? */
b5de8d0d 2321 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2322 bio_put(bio);
442a4f63 2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2324 return -EIO;
2325 }
2326
b14af3b4
DS
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2329 ino, start,
1203b681 2330 rcu_str_deref(dev->name), sector);
b5de8d0d 2331 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2332 bio_put(bio);
2333 return 0;
2334}
2335
20a1fbf9 2336int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2337{
20a1fbf9 2338 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2339 u64 start = eb->start;
cc5e31a4 2340 int i, num_pages = num_extent_pages(eb);
d95603b2 2341 int ret = 0;
ea466794 2342
bc98a42c 2343 if (sb_rdonly(fs_info->sb))
908960c6
ID
2344 return -EROFS;
2345
ea466794 2346 for (i = 0; i < num_pages; i++) {
fb85fc9a 2347 struct page *p = eb->pages[i];
1203b681 2348
6ec656bc 2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2350 start - page_offset(p), mirror_num);
ea466794
JB
2351 if (ret)
2352 break;
09cbfeaf 2353 start += PAGE_SIZE;
ea466794
JB
2354 }
2355
2356 return ret;
2357}
2358
4a54c8c1
JS
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
7870d082
JB
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2367{
2368 u64 private;
4a54c8c1 2369 struct io_failure_record *failrec;
4a54c8c1
JS
2370 struct extent_state *state;
2371 int num_copies;
4a54c8c1 2372 int ret;
4a54c8c1
JS
2373
2374 private = 0;
7870d082
JB
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
4a54c8c1
JS
2377 if (!ret)
2378 return 0;
2379
7870d082 2380 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2381 if (ret)
2382 return 0;
2383
4a54c8c1
JS
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
ab8d0fc4
JM
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
4a54c8c1
JS
2391 goto out;
2392 }
bc98a42c 2393 if (sb_rdonly(fs_info->sb))
908960c6 2394 goto out;
4a54c8c1 2395
7870d082
JB
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2398 failrec->start,
2399 EXTENT_LOCKED);
7870d082 2400 spin_unlock(&io_tree->lock);
4a54c8c1 2401
883d0de4
MX
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
4a54c8c1 2406 if (num_copies > 1) {
7870d082
JB
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
4a54c8c1
JS
2410 }
2411 }
2412
2413out:
7870d082 2414 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2415
454ff3de 2416 return 0;
4a54c8c1
JS
2417}
2418
f612496b
MX
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
7ab7956e 2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2426{
7ab7956e 2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
47dc196a 2444 failrec = state->failrec;
f612496b
MX
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451}
2452
2fe6303e 2453int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2454 struct io_failure_record **failrec_ret)
4a54c8c1 2455{
ab8d0fc4 2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2457 struct io_failure_record *failrec;
4a54c8c1 2458 struct extent_map *em;
4a54c8c1
JS
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2462 int ret;
4a54c8c1
JS
2463 u64 logical;
2464
47dc196a 2465 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2466 if (ret) {
2467 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468 if (!failrec)
2469 return -ENOMEM;
2fe6303e 2470
4a54c8c1
JS
2471 failrec->start = start;
2472 failrec->len = end - start + 1;
2473 failrec->this_mirror = 0;
2474 failrec->bio_flags = 0;
2475 failrec->in_validation = 0;
2476
2477 read_lock(&em_tree->lock);
2478 em = lookup_extent_mapping(em_tree, start, failrec->len);
2479 if (!em) {
2480 read_unlock(&em_tree->lock);
2481 kfree(failrec);
2482 return -EIO;
2483 }
2484
68ba990f 2485 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2486 free_extent_map(em);
2487 em = NULL;
2488 }
2489 read_unlock(&em_tree->lock);
7a2d6a64 2490 if (!em) {
4a54c8c1
JS
2491 kfree(failrec);
2492 return -EIO;
2493 }
2fe6303e 2494
4a54c8c1
JS
2495 logical = start - em->start;
2496 logical = em->block_start + logical;
2497 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498 logical = em->block_start;
2499 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500 extent_set_compress_type(&failrec->bio_flags,
2501 em->compress_type);
2502 }
2fe6303e 2503
ab8d0fc4
JM
2504 btrfs_debug(fs_info,
2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506 logical, start, failrec->len);
2fe6303e 2507
4a54c8c1
JS
2508 failrec->logical = logical;
2509 free_extent_map(em);
2510
2511 /* set the bits in the private failure tree */
2512 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2513 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2514 if (ret >= 0)
47dc196a 2515 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2516 /* set the bits in the inode's tree */
2517 if (ret >= 0)
ceeb0ae7 2518 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2519 if (ret < 0) {
2520 kfree(failrec);
2521 return ret;
2522 }
2523 } else {
ab8d0fc4
JM
2524 btrfs_debug(fs_info,
2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526 failrec->logical, failrec->start, failrec->len,
2527 failrec->in_validation);
4a54c8c1
JS
2528 /*
2529 * when data can be on disk more than twice, add to failrec here
2530 * (e.g. with a list for failed_mirror) to make
2531 * clean_io_failure() clean all those errors at once.
2532 */
2533 }
2fe6303e
MX
2534
2535 *failrec_ret = failrec;
2536
2537 return 0;
2538}
2539
ce06d3ec
OS
2540static bool btrfs_check_repairable(struct inode *inode, bool needs_validation,
2541 struct io_failure_record *failrec,
2542 int failed_mirror)
2fe6303e 2543{
ab8d0fc4 2544 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2545 int num_copies;
2546
ab8d0fc4 2547 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2548 if (num_copies == 1) {
2549 /*
2550 * we only have a single copy of the data, so don't bother with
2551 * all the retry and error correction code that follows. no
2552 * matter what the error is, it is very likely to persist.
2553 */
ab8d0fc4
JM
2554 btrfs_debug(fs_info,
2555 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2556 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2557 return false;
4a54c8c1
JS
2558 }
2559
4a54c8c1
JS
2560 /*
2561 * there are two premises:
2562 * a) deliver good data to the caller
2563 * b) correct the bad sectors on disk
2564 */
c7333972 2565 if (needs_validation) {
4a54c8c1
JS
2566 /*
2567 * to fulfill b), we need to know the exact failing sectors, as
2568 * we don't want to rewrite any more than the failed ones. thus,
2569 * we need separate read requests for the failed bio
2570 *
2571 * if the following BUG_ON triggers, our validation request got
2572 * merged. we need separate requests for our algorithm to work.
2573 */
2574 BUG_ON(failrec->in_validation);
2575 failrec->in_validation = 1;
2576 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2577 } else {
2578 /*
2579 * we're ready to fulfill a) and b) alongside. get a good copy
2580 * of the failed sector and if we succeed, we have setup
2581 * everything for repair_io_failure to do the rest for us.
2582 */
2583 if (failrec->in_validation) {
2584 BUG_ON(failrec->this_mirror != failed_mirror);
2585 failrec->in_validation = 0;
2586 failrec->this_mirror = 0;
2587 }
2588 failrec->failed_mirror = failed_mirror;
2589 failrec->this_mirror++;
2590 if (failrec->this_mirror == failed_mirror)
2591 failrec->this_mirror++;
4a54c8c1
JS
2592 }
2593
facc8a22 2594 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2595 btrfs_debug(fs_info,
2596 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2597 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2598 return false;
4a54c8c1
JS
2599 }
2600
c3cfb656 2601 return true;
2fe6303e
MX
2602}
2603
2604
2605struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2606 struct io_failure_record *failrec,
2607 struct page *page, int pg_offset, int icsum,
8b110e39 2608 bio_end_io_t *endio_func, void *data)
2fe6303e 2609{
0b246afa 2610 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2611 struct bio *bio;
2612 struct btrfs_io_bio *btrfs_failed_bio;
2613 struct btrfs_io_bio *btrfs_bio;
2614
c5e4c3d7 2615 bio = btrfs_io_bio_alloc(1);
2fe6303e 2616 bio->bi_end_io = endio_func;
4f024f37 2617 bio->bi_iter.bi_sector = failrec->logical >> 9;
4f024f37 2618 bio->bi_iter.bi_size = 0;
8b110e39 2619 bio->bi_private = data;
4a54c8c1 2620
facc8a22
MX
2621 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2622 if (btrfs_failed_bio->csum) {
facc8a22
MX
2623 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2624
2625 btrfs_bio = btrfs_io_bio(bio);
2626 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2627 icsum *= csum_size;
2628 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2629 csum_size);
2630 }
2631
2fe6303e
MX
2632 bio_add_page(bio, page, failrec->len, pg_offset);
2633
2634 return bio;
2635}
2636
c7333972
OS
2637static bool btrfs_io_needs_validation(struct inode *inode, struct bio *bio)
2638{
2639 struct bio_vec *bvec;
2640 u64 len = 0;
2641 int i;
2642
f337bd74
OS
2643 /*
2644 * If bi_status is BLK_STS_OK, then this was a checksum error, not an
2645 * I/O error. In this case, we already know exactly which sector was
2646 * bad, so we don't need to validate.
2647 */
2648 if (bio->bi_status == BLK_STS_OK)
2649 return false;
2650
c7333972
OS
2651 /*
2652 * We need to validate each sector individually if the failed I/O was
2653 * for multiple sectors.
2654 */
2655 bio_for_each_bvec_all(bvec, bio, i) {
2656 len += bvec->bv_len;
2657 if (len > inode->i_sb->s_blocksize)
2658 return true;
2659 }
2660 return false;
2661}
2662
2fe6303e 2663/*
78e62c02
NB
2664 * This is a generic handler for readpage errors. If other copies exist, read
2665 * those and write back good data to the failed position. Does not investigate
2666 * in remapping the failed extent elsewhere, hoping the device will be smart
2667 * enough to do this as needed
2fe6303e 2668 */
2fe6303e
MX
2669static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2670 struct page *page, u64 start, u64 end,
2671 int failed_mirror)
2672{
2673 struct io_failure_record *failrec;
2674 struct inode *inode = page->mapping->host;
2675 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2676 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
c7333972 2677 bool need_validation;
2fe6303e 2678 struct bio *bio;
70fd7614 2679 int read_mode = 0;
4e4cbee9 2680 blk_status_t status;
2fe6303e
MX
2681 int ret;
2682
1f7ad75b 2683 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2684
2685 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2686 if (ret)
2687 return ret;
2688
c7333972
OS
2689 need_validation = btrfs_io_needs_validation(inode, failed_bio);
2690
2691 if (!btrfs_check_repairable(inode, need_validation, failrec,
c3cfb656 2692 failed_mirror)) {
7870d082 2693 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2694 return -EIO;
2695 }
2696
c7333972 2697 if (need_validation)
70fd7614 2698 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2699
2700 phy_offset >>= inode->i_sb->s_blocksize_bits;
2701 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2702 start - page_offset(page),
8b110e39
MX
2703 (int)phy_offset, failed_bio->bi_end_io,
2704 NULL);
ebcc3263 2705 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2706
ab8d0fc4
JM
2707 btrfs_debug(btrfs_sb(inode->i_sb),
2708 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2709 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2710
8c27cb35 2711 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
50489a57 2712 failrec->bio_flags);
4e4cbee9 2713 if (status) {
7870d082 2714 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2715 bio_put(bio);
4e4cbee9 2716 ret = blk_status_to_errno(status);
6c387ab2
MX
2717 }
2718
013bd4c3 2719 return ret;
4a54c8c1
JS
2720}
2721
d1310b2e
CM
2722/* lots and lots of room for performance fixes in the end_bio funcs */
2723
b5227c07 2724void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2725{
2726 int uptodate = (err == 0);
3e2426bd 2727 int ret = 0;
87826df0 2728
c629732d 2729 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2730
87826df0 2731 if (!uptodate) {
87826df0
JM
2732 ClearPageUptodate(page);
2733 SetPageError(page);
bff5baf8 2734 ret = err < 0 ? err : -EIO;
5dca6eea 2735 mapping_set_error(page->mapping, ret);
87826df0 2736 }
87826df0
JM
2737}
2738
d1310b2e
CM
2739/*
2740 * after a writepage IO is done, we need to:
2741 * clear the uptodate bits on error
2742 * clear the writeback bits in the extent tree for this IO
2743 * end_page_writeback if the page has no more pending IO
2744 *
2745 * Scheduling is not allowed, so the extent state tree is expected
2746 * to have one and only one object corresponding to this IO.
2747 */
4246a0b6 2748static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2749{
4e4cbee9 2750 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2751 struct bio_vec *bvec;
d1310b2e
CM
2752 u64 start;
2753 u64 end;
6dc4f100 2754 struct bvec_iter_all iter_all;
d1310b2e 2755
c09abff8 2756 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2757 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2758 struct page *page = bvec->bv_page;
0b246afa
JM
2759 struct inode *inode = page->mapping->host;
2760 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2761
17a5adcc
AO
2762 /* We always issue full-page reads, but if some block
2763 * in a page fails to read, blk_update_request() will
2764 * advance bv_offset and adjust bv_len to compensate.
2765 * Print a warning for nonzero offsets, and an error
2766 * if they don't add up to a full page. */
09cbfeaf
KS
2767 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2768 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2769 btrfs_err(fs_info,
efe120a0
FH
2770 "partial page write in btrfs with offset %u and length %u",
2771 bvec->bv_offset, bvec->bv_len);
2772 else
0b246afa 2773 btrfs_info(fs_info,
5d163e0e 2774 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2775 bvec->bv_offset, bvec->bv_len);
2776 }
d1310b2e 2777
17a5adcc
AO
2778 start = page_offset(page);
2779 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2780
4e4cbee9 2781 end_extent_writepage(page, error, start, end);
17a5adcc 2782 end_page_writeback(page);
2c30c71b 2783 }
2b1f55b0 2784
d1310b2e 2785 bio_put(bio);
d1310b2e
CM
2786}
2787
883d0de4
MX
2788static void
2789endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2790 int uptodate)
2791{
2792 struct extent_state *cached = NULL;
2793 u64 end = start + len - 1;
2794
2795 if (uptodate && tree->track_uptodate)
2796 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2797 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2798}
2799
d1310b2e
CM
2800/*
2801 * after a readpage IO is done, we need to:
2802 * clear the uptodate bits on error
2803 * set the uptodate bits if things worked
2804 * set the page up to date if all extents in the tree are uptodate
2805 * clear the lock bit in the extent tree
2806 * unlock the page if there are no other extents locked for it
2807 *
2808 * Scheduling is not allowed, so the extent state tree is expected
2809 * to have one and only one object corresponding to this IO.
2810 */
4246a0b6 2811static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2812{
2c30c71b 2813 struct bio_vec *bvec;
4e4cbee9 2814 int uptodate = !bio->bi_status;
facc8a22 2815 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2816 struct extent_io_tree *tree, *failure_tree;
facc8a22 2817 u64 offset = 0;
d1310b2e
CM
2818 u64 start;
2819 u64 end;
facc8a22 2820 u64 len;
883d0de4
MX
2821 u64 extent_start = 0;
2822 u64 extent_len = 0;
5cf1ab56 2823 int mirror;
d1310b2e 2824 int ret;
6dc4f100 2825 struct bvec_iter_all iter_all;
d1310b2e 2826
c09abff8 2827 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2828 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2829 struct page *page = bvec->bv_page;
a71754fc 2830 struct inode *inode = page->mapping->host;
ab8d0fc4 2831 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2832 bool data_inode = btrfs_ino(BTRFS_I(inode))
2833 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2834
ab8d0fc4
JM
2835 btrfs_debug(fs_info,
2836 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2837 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2838 io_bio->mirror_num);
a71754fc 2839 tree = &BTRFS_I(inode)->io_tree;
7870d082 2840 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2841
17a5adcc
AO
2842 /* We always issue full-page reads, but if some block
2843 * in a page fails to read, blk_update_request() will
2844 * advance bv_offset and adjust bv_len to compensate.
2845 * Print a warning for nonzero offsets, and an error
2846 * if they don't add up to a full page. */
09cbfeaf
KS
2847 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2848 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2849 btrfs_err(fs_info,
2850 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2851 bvec->bv_offset, bvec->bv_len);
2852 else
ab8d0fc4
JM
2853 btrfs_info(fs_info,
2854 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2855 bvec->bv_offset, bvec->bv_len);
2856 }
d1310b2e 2857
17a5adcc
AO
2858 start = page_offset(page);
2859 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2860 len = bvec->bv_len;
d1310b2e 2861
9be3395b 2862 mirror = io_bio->mirror_num;
78e62c02 2863 if (likely(uptodate)) {
facc8a22
MX
2864 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2865 page, start, end,
2866 mirror);
5ee0844d 2867 if (ret)
d1310b2e 2868 uptodate = 0;
5ee0844d 2869 else
7870d082
JB
2870 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2871 failure_tree, tree, start,
2872 page,
2873 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2874 }
ea466794 2875
f2a09da9
MX
2876 if (likely(uptodate))
2877 goto readpage_ok;
2878
78e62c02 2879 if (data_inode) {
9d0d1c8b 2880
f4a8e656 2881 /*
78e62c02
NB
2882 * The generic bio_readpage_error handles errors the
2883 * following way: If possible, new read requests are
2884 * created and submitted and will end up in
2885 * end_bio_extent_readpage as well (if we're lucky,
2886 * not in the !uptodate case). In that case it returns
2887 * 0 and we just go on with the next page in our bio.
2888 * If it can't handle the error it will return -EIO and
2889 * we remain responsible for that page.
f4a8e656 2890 */
78e62c02
NB
2891 ret = bio_readpage_error(bio, offset, page, start, end,
2892 mirror);
2893 if (ret == 0) {
2894 uptodate = !bio->bi_status;
2895 offset += len;
2896 continue;
2897 }
2898 } else {
2899 struct extent_buffer *eb;
2900
2901 eb = (struct extent_buffer *)page->private;
2902 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2903 eb->read_mirror = mirror;
2904 atomic_dec(&eb->io_pages);
2905 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2906 &eb->bflags))
2907 btree_readahead_hook(eb, -EIO);
7e38326f 2908 }
f2a09da9 2909readpage_ok:
883d0de4 2910 if (likely(uptodate)) {
a71754fc 2911 loff_t i_size = i_size_read(inode);
09cbfeaf 2912 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2913 unsigned off;
a71754fc
JB
2914
2915 /* Zero out the end if this page straddles i_size */
7073017a 2916 off = offset_in_page(i_size);
a583c026 2917 if (page->index == end_index && off)
09cbfeaf 2918 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2919 SetPageUptodate(page);
70dec807 2920 } else {
17a5adcc
AO
2921 ClearPageUptodate(page);
2922 SetPageError(page);
70dec807 2923 }
17a5adcc 2924 unlock_page(page);
facc8a22 2925 offset += len;
883d0de4
MX
2926
2927 if (unlikely(!uptodate)) {
2928 if (extent_len) {
2929 endio_readpage_release_extent(tree,
2930 extent_start,
2931 extent_len, 1);
2932 extent_start = 0;
2933 extent_len = 0;
2934 }
2935 endio_readpage_release_extent(tree, start,
2936 end - start + 1, 0);
2937 } else if (!extent_len) {
2938 extent_start = start;
2939 extent_len = end + 1 - start;
2940 } else if (extent_start + extent_len == start) {
2941 extent_len += end + 1 - start;
2942 } else {
2943 endio_readpage_release_extent(tree, extent_start,
2944 extent_len, uptodate);
2945 extent_start = start;
2946 extent_len = end + 1 - start;
2947 }
2c30c71b 2948 }
d1310b2e 2949
883d0de4
MX
2950 if (extent_len)
2951 endio_readpage_release_extent(tree, extent_start, extent_len,
2952 uptodate);
b3a0dd50 2953 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2954 bio_put(bio);
d1310b2e
CM
2955}
2956
9be3395b 2957/*
184f999e
DS
2958 * Initialize the members up to but not including 'bio'. Use after allocating a
2959 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2960 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2961 */
184f999e 2962static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2963{
184f999e
DS
2964 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2965}
d1310b2e 2966
9be3395b 2967/*
6e707bcd
DS
2968 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2969 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2970 * for the appropriate container_of magic
9be3395b 2971 */
e749af44 2972struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2973{
2974 struct bio *bio;
d1310b2e 2975
8ac9f7c1 2976 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2977 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2978 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2979 return bio;
2980}
2981
8b6c1d56 2982struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2983{
23ea8e5a
MX
2984 struct btrfs_io_bio *btrfs_bio;
2985 struct bio *new;
9be3395b 2986
6e707bcd 2987 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2988 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2989 btrfs_bio = btrfs_io_bio(new);
184f999e 2990 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2991 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2992 return new;
2993}
9be3395b 2994
c5e4c3d7 2995struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2996{
facc8a22
MX
2997 struct bio *bio;
2998
6e707bcd 2999 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 3000 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 3001 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 3002 return bio;
9be3395b
CM
3003}
3004
e477094f 3005struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
3006{
3007 struct bio *bio;
3008 struct btrfs_io_bio *btrfs_bio;
3009
3010 /* this will never fail when it's backed by a bioset */
8ac9f7c1 3011 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
3012 ASSERT(bio);
3013
3014 btrfs_bio = btrfs_io_bio(bio);
184f999e 3015 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
3016
3017 bio_trim(bio, offset >> 9, size >> 9);
17347cec 3018 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
3019 return bio;
3020}
9be3395b 3021
4b81ba48
DS
3022/*
3023 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
3024 * @wbc: optional writeback control for io accounting
3025 * @page: page to add to the bio
3026 * @pg_offset: offset of the new bio or to check whether we are adding
3027 * a contiguous page to the previous one
3028 * @size: portion of page that we want to write
3029 * @offset: starting offset in the page
5c2b1fd7 3030 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3031 * @end_io_func: end_io callback for new bio
3032 * @mirror_num: desired mirror to read/write
3033 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3034 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3035 */
0ceb34bf 3036static int submit_extent_page(unsigned int opf,
da2f0f74 3037 struct writeback_control *wbc,
6273b7f8 3038 struct page *page, u64 offset,
6c5a4e2c 3039 size_t size, unsigned long pg_offset,
d1310b2e 3040 struct bio **bio_ret,
f188591e 3041 bio_end_io_t end_io_func,
c8b97818
CM
3042 int mirror_num,
3043 unsigned long prev_bio_flags,
005efedf
FM
3044 unsigned long bio_flags,
3045 bool force_bio_submit)
d1310b2e
CM
3046{
3047 int ret = 0;
3048 struct bio *bio;
09cbfeaf 3049 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 3050 sector_t sector = offset >> 9;
0ceb34bf 3051 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
d1310b2e 3052
5c2b1fd7
DS
3053 ASSERT(bio_ret);
3054
3055 if (*bio_ret) {
0c8508a6
DS
3056 bool contig;
3057 bool can_merge = true;
3058
d1310b2e 3059 bio = *bio_ret;
0c8508a6 3060 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 3061 contig = bio->bi_iter.bi_sector == sector;
c8b97818 3062 else
f73a1c7d 3063 contig = bio_end_sector(bio) == sector;
c8b97818 3064
da12fe54
NB
3065 ASSERT(tree->ops);
3066 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
3067 can_merge = false;
3068
3069 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 3070 force_bio_submit ||
6c5a4e2c 3071 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 3072 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
3073 if (ret < 0) {
3074 *bio_ret = NULL;
79787eaa 3075 return ret;
289454ad 3076 }
d1310b2e
CM
3077 bio = NULL;
3078 } else {
da2f0f74 3079 if (wbc)
34e51a5e 3080 wbc_account_cgroup_owner(wbc, page, page_size);
d1310b2e
CM
3081 return 0;
3082 }
3083 }
c8b97818 3084
e749af44 3085 bio = btrfs_bio_alloc(offset);
6c5a4e2c 3086 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
3087 bio->bi_end_io = end_io_func;
3088 bio->bi_private = tree;
e6959b93 3089 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 3090 bio->bi_opf = opf;
da2f0f74 3091 if (wbc) {
429aebc0
DS
3092 struct block_device *bdev;
3093
3094 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3095 bio_set_dev(bio, bdev);
da2f0f74 3096 wbc_init_bio(wbc, bio);
34e51a5e 3097 wbc_account_cgroup_owner(wbc, page, page_size);
da2f0f74 3098 }
70dec807 3099
5c2b1fd7 3100 *bio_ret = bio;
d1310b2e
CM
3101
3102 return ret;
3103}
3104
48a3b636
ES
3105static void attach_extent_buffer_page(struct extent_buffer *eb,
3106 struct page *page)
d1310b2e
CM
3107{
3108 if (!PagePrivate(page)) {
3109 SetPagePrivate(page);
09cbfeaf 3110 get_page(page);
4f2de97a
JB
3111 set_page_private(page, (unsigned long)eb);
3112 } else {
3113 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3114 }
3115}
3116
4f2de97a 3117void set_page_extent_mapped(struct page *page)
d1310b2e 3118{
4f2de97a
JB
3119 if (!PagePrivate(page)) {
3120 SetPagePrivate(page);
09cbfeaf 3121 get_page(page);
4f2de97a
JB
3122 set_page_private(page, EXTENT_PAGE_PRIVATE);
3123 }
d1310b2e
CM
3124}
3125
125bac01
MX
3126static struct extent_map *
3127__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3128 u64 start, u64 len, get_extent_t *get_extent,
3129 struct extent_map **em_cached)
3130{
3131 struct extent_map *em;
3132
3133 if (em_cached && *em_cached) {
3134 em = *em_cached;
cbc0e928 3135 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3136 start < extent_map_end(em)) {
490b54d6 3137 refcount_inc(&em->refs);
125bac01
MX
3138 return em;
3139 }
3140
3141 free_extent_map(em);
3142 *em_cached = NULL;
3143 }
3144
39b07b5d 3145 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3146 if (em_cached && !IS_ERR_OR_NULL(em)) {
3147 BUG_ON(*em_cached);
490b54d6 3148 refcount_inc(&em->refs);
125bac01
MX
3149 *em_cached = em;
3150 }
3151 return em;
3152}
d1310b2e
CM
3153/*
3154 * basic readpage implementation. Locked extent state structs are inserted
3155 * into the tree that are removed when the IO is done (by the end_io
3156 * handlers)
79787eaa 3157 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3158 * return 0 on success, otherwise return error
d1310b2e 3159 */
f657a31c 3160static int __do_readpage(struct page *page,
9974090b 3161 get_extent_t *get_extent,
125bac01 3162 struct extent_map **em_cached,
9974090b 3163 struct bio **bio, int mirror_num,
f1c77c55 3164 unsigned long *bio_flags, unsigned int read_flags,
005efedf 3165 u64 *prev_em_start)
d1310b2e
CM
3166{
3167 struct inode *inode = page->mapping->host;
4eee4fa4 3168 u64 start = page_offset(page);
8eec8296 3169 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3170 u64 cur = start;
3171 u64 extent_offset;
3172 u64 last_byte = i_size_read(inode);
3173 u64 block_start;
3174 u64 cur_end;
d1310b2e 3175 struct extent_map *em;
baf863b9 3176 int ret = 0;
d1310b2e 3177 int nr = 0;
306e16ce 3178 size_t pg_offset = 0;
d1310b2e 3179 size_t iosize;
c8b97818 3180 size_t disk_io_size;
d1310b2e 3181 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3182 unsigned long this_bio_flag = 0;
f657a31c 3183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3184
d1310b2e
CM
3185 set_page_extent_mapped(page);
3186
90a887c9
DM
3187 if (!PageUptodate(page)) {
3188 if (cleancache_get_page(page) == 0) {
3189 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3190 unlock_extent(tree, start, end);
90a887c9
DM
3191 goto out;
3192 }
3193 }
3194
09cbfeaf 3195 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3196 char *userpage;
7073017a 3197 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3198
3199 if (zero_offset) {
09cbfeaf 3200 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3201 userpage = kmap_atomic(page);
c8b97818
CM
3202 memset(userpage + zero_offset, 0, iosize);
3203 flush_dcache_page(page);
7ac687d9 3204 kunmap_atomic(userpage);
c8b97818
CM
3205 }
3206 }
d1310b2e 3207 while (cur <= end) {
005efedf 3208 bool force_bio_submit = false;
6273b7f8 3209 u64 offset;
c8f2f24b 3210
d1310b2e
CM
3211 if (cur >= last_byte) {
3212 char *userpage;
507903b8
AJ
3213 struct extent_state *cached = NULL;
3214
09cbfeaf 3215 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3216 userpage = kmap_atomic(page);
306e16ce 3217 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3218 flush_dcache_page(page);
7ac687d9 3219 kunmap_atomic(userpage);
d1310b2e 3220 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3221 &cached, GFP_NOFS);
7f042a83 3222 unlock_extent_cached(tree, cur,
e43bbe5e 3223 cur + iosize - 1, &cached);
d1310b2e
CM
3224 break;
3225 }
125bac01
MX
3226 em = __get_extent_map(inode, page, pg_offset, cur,
3227 end - cur + 1, get_extent, em_cached);
c704005d 3228 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3229 SetPageError(page);
7f042a83 3230 unlock_extent(tree, cur, end);
d1310b2e
CM
3231 break;
3232 }
d1310b2e
CM
3233 extent_offset = cur - em->start;
3234 BUG_ON(extent_map_end(em) <= cur);
3235 BUG_ON(end < cur);
3236
261507a0 3237 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3238 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3239 extent_set_compress_type(&this_bio_flag,
3240 em->compress_type);
3241 }
c8b97818 3242
d1310b2e
CM
3243 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3244 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3245 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3246 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3247 disk_io_size = em->block_len;
6273b7f8 3248 offset = em->block_start;
c8b97818 3249 } else {
6273b7f8 3250 offset = em->block_start + extent_offset;
c8b97818
CM
3251 disk_io_size = iosize;
3252 }
d1310b2e 3253 block_start = em->block_start;
d899e052
YZ
3254 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3255 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3256
3257 /*
3258 * If we have a file range that points to a compressed extent
3259 * and it's followed by a consecutive file range that points to
3260 * to the same compressed extent (possibly with a different
3261 * offset and/or length, so it either points to the whole extent
3262 * or only part of it), we must make sure we do not submit a
3263 * single bio to populate the pages for the 2 ranges because
3264 * this makes the compressed extent read zero out the pages
3265 * belonging to the 2nd range. Imagine the following scenario:
3266 *
3267 * File layout
3268 * [0 - 8K] [8K - 24K]
3269 * | |
3270 * | |
3271 * points to extent X, points to extent X,
3272 * offset 4K, length of 8K offset 0, length 16K
3273 *
3274 * [extent X, compressed length = 4K uncompressed length = 16K]
3275 *
3276 * If the bio to read the compressed extent covers both ranges,
3277 * it will decompress extent X into the pages belonging to the
3278 * first range and then it will stop, zeroing out the remaining
3279 * pages that belong to the other range that points to extent X.
3280 * So here we make sure we submit 2 bios, one for the first
3281 * range and another one for the third range. Both will target
3282 * the same physical extent from disk, but we can't currently
3283 * make the compressed bio endio callback populate the pages
3284 * for both ranges because each compressed bio is tightly
3285 * coupled with a single extent map, and each range can have
3286 * an extent map with a different offset value relative to the
3287 * uncompressed data of our extent and different lengths. This
3288 * is a corner case so we prioritize correctness over
3289 * non-optimal behavior (submitting 2 bios for the same extent).
3290 */
3291 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3292 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3293 *prev_em_start != em->start)
005efedf
FM
3294 force_bio_submit = true;
3295
3296 if (prev_em_start)
8e928218 3297 *prev_em_start = em->start;
005efedf 3298
d1310b2e
CM
3299 free_extent_map(em);
3300 em = NULL;
3301
3302 /* we've found a hole, just zero and go on */
3303 if (block_start == EXTENT_MAP_HOLE) {
3304 char *userpage;
507903b8
AJ
3305 struct extent_state *cached = NULL;
3306
7ac687d9 3307 userpage = kmap_atomic(page);
306e16ce 3308 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3309 flush_dcache_page(page);
7ac687d9 3310 kunmap_atomic(userpage);
d1310b2e
CM
3311
3312 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3313 &cached, GFP_NOFS);
7f042a83 3314 unlock_extent_cached(tree, cur,
e43bbe5e 3315 cur + iosize - 1, &cached);
d1310b2e 3316 cur = cur + iosize;
306e16ce 3317 pg_offset += iosize;
d1310b2e
CM
3318 continue;
3319 }
3320 /* the get_extent function already copied into the page */
9655d298
CM
3321 if (test_range_bit(tree, cur, cur_end,
3322 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3323 check_page_uptodate(tree, page);
7f042a83 3324 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3325 cur = cur + iosize;
306e16ce 3326 pg_offset += iosize;
d1310b2e
CM
3327 continue;
3328 }
70dec807
CM
3329 /* we have an inline extent but it didn't get marked up
3330 * to date. Error out
3331 */
3332 if (block_start == EXTENT_MAP_INLINE) {
3333 SetPageError(page);
7f042a83 3334 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3335 cur = cur + iosize;
306e16ce 3336 pg_offset += iosize;
70dec807
CM
3337 continue;
3338 }
d1310b2e 3339
0ceb34bf 3340 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
6273b7f8 3341 page, offset, disk_io_size,
fa17ed06 3342 pg_offset, bio,
c8b97818
CM
3343 end_bio_extent_readpage, mirror_num,
3344 *bio_flags,
005efedf
FM
3345 this_bio_flag,
3346 force_bio_submit);
c8f2f24b
JB
3347 if (!ret) {
3348 nr++;
3349 *bio_flags = this_bio_flag;
3350 } else {
d1310b2e 3351 SetPageError(page);
7f042a83 3352 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3353 goto out;
edd33c99 3354 }
d1310b2e 3355 cur = cur + iosize;
306e16ce 3356 pg_offset += iosize;
d1310b2e 3357 }
90a887c9 3358out:
d1310b2e
CM
3359 if (!nr) {
3360 if (!PageError(page))
3361 SetPageUptodate(page);
3362 unlock_page(page);
3363 }
baf863b9 3364 return ret;
d1310b2e
CM
3365}
3366
b6660e80 3367static inline void contiguous_readpages(struct page *pages[], int nr_pages,
9974090b 3368 u64 start, u64 end,
125bac01 3369 struct extent_map **em_cached,
d3fac6ba 3370 struct bio **bio,
1f7ad75b 3371 unsigned long *bio_flags,
808f80b4 3372 u64 *prev_em_start)
9974090b 3373{
23d31bd4 3374 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3375 int index;
3376
b272ae22 3377 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3378
3379 for (index = 0; index < nr_pages; index++) {
f657a31c 3380 __do_readpage(pages[index], btrfs_get_extent, em_cached,
5e9d3982 3381 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3382 put_page(pages[index]);
9974090b
MX
3383 }
3384}
3385
0d44fea7 3386static int __extent_read_full_page(struct page *page,
9974090b
MX
3387 get_extent_t *get_extent,
3388 struct bio **bio, int mirror_num,
f1c77c55
DS
3389 unsigned long *bio_flags,
3390 unsigned int read_flags)
9974090b 3391{
23d31bd4 3392 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
9974090b 3393 u64 start = page_offset(page);
09cbfeaf 3394 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3395 int ret;
3396
b272ae22 3397 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b 3398
f657a31c 3399 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3400 bio_flags, read_flags, NULL);
9974090b
MX
3401 return ret;
3402}
3403
71ad38b4
DS
3404int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3405 int mirror_num)
d1310b2e
CM
3406{
3407 struct bio *bio = NULL;
c8b97818 3408 unsigned long bio_flags = 0;
d1310b2e
CM
3409 int ret;
3410
0d44fea7 3411 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
1f7ad75b 3412 &bio_flags, 0);
d1310b2e 3413 if (bio)
1f7ad75b 3414 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3415 return ret;
3416}
d1310b2e 3417
3d4b9496 3418static void update_nr_written(struct writeback_control *wbc,
a9132667 3419 unsigned long nr_written)
11c8349b
CM
3420{
3421 wbc->nr_to_write -= nr_written;
11c8349b
CM
3422}
3423
d1310b2e 3424/*
40f76580
CM
3425 * helper for __extent_writepage, doing all of the delayed allocation setup.
3426 *
5eaad97a 3427 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3428 * to write the page (copy into inline extent). In this case the IO has
3429 * been started and the page is already unlocked.
3430 *
3431 * This returns 0 if all went well (page still locked)
3432 * This returns < 0 if there were errors (page still locked)
d1310b2e 3433 */
40f76580 3434static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3435 struct page *page, struct writeback_control *wbc,
3436 u64 delalloc_start, unsigned long *nr_written)
40f76580 3437{
09cbfeaf 3438 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3439 bool found;
40f76580
CM
3440 u64 delalloc_to_write = 0;
3441 u64 delalloc_end = 0;
3442 int ret;
3443 int page_started = 0;
3444
40f76580
CM
3445
3446 while (delalloc_end < page_end) {
9978059b 3447 found = find_lock_delalloc_range(inode, page,
40f76580 3448 &delalloc_start,
917aacec 3449 &delalloc_end);
3522e903 3450 if (!found) {
40f76580
CM
3451 delalloc_start = delalloc_end + 1;
3452 continue;
3453 }
5eaad97a
NB
3454 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3455 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3456 if (ret) {
3457 SetPageError(page);
5eaad97a
NB
3458 /*
3459 * btrfs_run_delalloc_range should return < 0 for error
3460 * but just in case, we use > 0 here meaning the IO is
3461 * started, so we don't want to return > 0 unless
3462 * things are going well.
40f76580
CM
3463 */
3464 ret = ret < 0 ? ret : -EIO;
3465 goto done;
3466 }
3467 /*
ea1754a0
KS
3468 * delalloc_end is already one less than the total length, so
3469 * we don't subtract one from PAGE_SIZE
40f76580
CM
3470 */
3471 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3472 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3473 delalloc_start = delalloc_end + 1;
3474 }
3475 if (wbc->nr_to_write < delalloc_to_write) {
3476 int thresh = 8192;
3477
3478 if (delalloc_to_write < thresh * 2)
3479 thresh = delalloc_to_write;
3480 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3481 thresh);
3482 }
3483
3484 /* did the fill delalloc function already unlock and start
3485 * the IO?
3486 */
3487 if (page_started) {
3488 /*
3489 * we've unlocked the page, so we can't update
3490 * the mapping's writeback index, just update
3491 * nr_to_write.
3492 */
3493 wbc->nr_to_write -= *nr_written;
3494 return 1;
3495 }
3496
3497 ret = 0;
3498
3499done:
3500 return ret;
3501}
3502
3503/*
3504 * helper for __extent_writepage. This calls the writepage start hooks,
3505 * and does the loop to map the page into extents and bios.
3506 *
3507 * We return 1 if the IO is started and the page is unlocked,
3508 * 0 if all went well (page still locked)
3509 * < 0 if there were errors (page still locked)
3510 */
3511static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3512 struct page *page,
3513 struct writeback_control *wbc,
3514 struct extent_page_data *epd,
3515 loff_t i_size,
3516 unsigned long nr_written,
57e5ffeb 3517 int *nr_ret)
d1310b2e 3518{
45b08405 3519 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4eee4fa4 3520 u64 start = page_offset(page);
09cbfeaf 3521 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3522 u64 end;
3523 u64 cur = start;
3524 u64 extent_offset;
d1310b2e
CM
3525 u64 block_start;
3526 u64 iosize;
d1310b2e 3527 struct extent_map *em;
7f3c74fb 3528 size_t pg_offset = 0;
d1310b2e 3529 size_t blocksize;
40f76580
CM
3530 int ret = 0;
3531 int nr = 0;
57e5ffeb 3532 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3533 bool compressed;
c8b97818 3534
d75855b4
NB
3535 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3536 if (ret) {
3537 /* Fixup worker will requeue */
5ab58055 3538 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3539 update_nr_written(wbc, nr_written);
3540 unlock_page(page);
3541 return 1;
247e743c
CM
3542 }
3543
11c8349b
CM
3544 /*
3545 * we don't want to touch the inode after unlocking the page,
3546 * so we update the mapping writeback index now
3547 */
3d4b9496 3548 update_nr_written(wbc, nr_written + 1);
771ed689 3549
d1310b2e 3550 end = page_end;
d1310b2e
CM
3551 blocksize = inode->i_sb->s_blocksize;
3552
3553 while (cur <= end) {
40f76580 3554 u64 em_end;
6273b7f8 3555 u64 offset;
58409edd 3556
40f76580 3557 if (cur >= i_size) {
7087a9d8 3558 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3559 page_end, 1);
d1310b2e
CM
3560 break;
3561 }
39b07b5d
OS
3562 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3563 end - cur + 1);
c704005d 3564 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3565 SetPageError(page);
61391d56 3566 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3567 break;
3568 }
3569
3570 extent_offset = cur - em->start;
40f76580
CM
3571 em_end = extent_map_end(em);
3572 BUG_ON(em_end <= cur);
d1310b2e 3573 BUG_ON(end < cur);
40f76580 3574 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3575 iosize = ALIGN(iosize, blocksize);
6273b7f8 3576 offset = em->block_start + extent_offset;
d1310b2e 3577 block_start = em->block_start;
c8b97818 3578 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3579 free_extent_map(em);
3580 em = NULL;
3581
c8b97818
CM
3582 /*
3583 * compressed and inline extents are written through other
3584 * paths in the FS
3585 */
3586 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3587 block_start == EXTENT_MAP_INLINE) {
c8b04030 3588 if (compressed)
c8b97818 3589 nr++;
c8b04030
OS
3590 else
3591 btrfs_writepage_endio_finish_ordered(page, cur,
3592 cur + iosize - 1, 1);
c8b97818 3593 cur += iosize;
7f3c74fb 3594 pg_offset += iosize;
d1310b2e
CM
3595 continue;
3596 }
c8b97818 3597
5cdc84bf 3598 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3599 if (!PageWriteback(page)) {
3600 btrfs_err(BTRFS_I(inode)->root->fs_info,
3601 "page %lu not writeback, cur %llu end %llu",
3602 page->index, cur, end);
d1310b2e 3603 }
7f3c74fb 3604
0ceb34bf 3605 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
6273b7f8 3606 page, offset, iosize, pg_offset,
fa17ed06 3607 &epd->bio,
58409edd
DS
3608 end_bio_extent_writepage,
3609 0, 0, 0, false);
fe01aa65 3610 if (ret) {
58409edd 3611 SetPageError(page);
fe01aa65
TK
3612 if (PageWriteback(page))
3613 end_page_writeback(page);
3614 }
d1310b2e 3615
d1310b2e 3616 cur = cur + iosize;
7f3c74fb 3617 pg_offset += iosize;
d1310b2e
CM
3618 nr++;
3619 }
40f76580 3620 *nr_ret = nr;
40f76580
CM
3621 return ret;
3622}
3623
3624/*
3625 * the writepage semantics are similar to regular writepage. extent
3626 * records are inserted to lock ranges in the tree, and as dirty areas
3627 * are found, they are marked writeback. Then the lock bits are removed
3628 * and the end_io handler clears the writeback ranges
3065976b
QW
3629 *
3630 * Return 0 if everything goes well.
3631 * Return <0 for error.
40f76580
CM
3632 */
3633static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3634 struct extent_page_data *epd)
40f76580
CM
3635{
3636 struct inode *inode = page->mapping->host;
40f76580 3637 u64 start = page_offset(page);
09cbfeaf 3638 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3639 int ret;
3640 int nr = 0;
eb70d222 3641 size_t pg_offset;
40f76580 3642 loff_t i_size = i_size_read(inode);
09cbfeaf 3643 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3644 unsigned long nr_written = 0;
3645
40f76580
CM
3646 trace___extent_writepage(page, inode, wbc);
3647
3648 WARN_ON(!PageLocked(page));
3649
3650 ClearPageError(page);
3651
7073017a 3652 pg_offset = offset_in_page(i_size);
40f76580
CM
3653 if (page->index > end_index ||
3654 (page->index == end_index && !pg_offset)) {
09cbfeaf 3655 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3656 unlock_page(page);
3657 return 0;
3658 }
3659
3660 if (page->index == end_index) {
3661 char *userpage;
3662
3663 userpage = kmap_atomic(page);
3664 memset(userpage + pg_offset, 0,
09cbfeaf 3665 PAGE_SIZE - pg_offset);
40f76580
CM
3666 kunmap_atomic(userpage);
3667 flush_dcache_page(page);
3668 }
3669
40f76580
CM
3670 set_page_extent_mapped(page);
3671
7789a55a 3672 if (!epd->extent_locked) {
8cc0237a 3673 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a 3674 if (ret == 1)
169d2c87 3675 return 0;
7789a55a
NB
3676 if (ret)
3677 goto done;
3678 }
40f76580
CM
3679
3680 ret = __extent_writepage_io(inode, page, wbc, epd,
57e5ffeb 3681 i_size, nr_written, &nr);
40f76580 3682 if (ret == 1)
169d2c87 3683 return 0;
40f76580 3684
d1310b2e
CM
3685done:
3686 if (nr == 0) {
3687 /* make sure the mapping tag for page dirty gets cleared */
3688 set_page_writeback(page);
3689 end_page_writeback(page);
3690 }
61391d56
FM
3691 if (PageError(page)) {
3692 ret = ret < 0 ? ret : -EIO;
3693 end_extent_writepage(page, ret, start, page_end);
3694 }
d1310b2e 3695 unlock_page(page);
3065976b 3696 ASSERT(ret <= 0);
40f76580 3697 return ret;
d1310b2e
CM
3698}
3699
fd8b2b61 3700void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3701{
74316201
N
3702 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3703 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3704}
3705
18dfa711
FM
3706static void end_extent_buffer_writeback(struct extent_buffer *eb)
3707{
3708 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3709 smp_mb__after_atomic();
3710 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3711}
3712
2e3c2513
QW
3713/*
3714 * Lock eb pages and flush the bio if we can't the locks
3715 *
3716 * Return 0 if nothing went wrong
3717 * Return >0 is same as 0, except bio is not submitted
3718 * Return <0 if something went wrong, no page is locked
3719 */
9df76fb5 3720static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3721 struct extent_page_data *epd)
0b32f4bb 3722{
9df76fb5 3723 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3724 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3725 int flush = 0;
3726 int ret = 0;
3727
3728 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3729 ret = flush_write_bio(epd);
2e3c2513
QW
3730 if (ret < 0)
3731 return ret;
3732 flush = 1;
0b32f4bb
JB
3733 btrfs_tree_lock(eb);
3734 }
3735
3736 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3737 btrfs_tree_unlock(eb);
3738 if (!epd->sync_io)
3739 return 0;
3740 if (!flush) {
f4340622 3741 ret = flush_write_bio(epd);
2e3c2513
QW
3742 if (ret < 0)
3743 return ret;
0b32f4bb
JB
3744 flush = 1;
3745 }
a098d8e8
CM
3746 while (1) {
3747 wait_on_extent_buffer_writeback(eb);
3748 btrfs_tree_lock(eb);
3749 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3750 break;
0b32f4bb 3751 btrfs_tree_unlock(eb);
0b32f4bb
JB
3752 }
3753 }
3754
51561ffe
JB
3755 /*
3756 * We need to do this to prevent races in people who check if the eb is
3757 * under IO since we can end up having no IO bits set for a short period
3758 * of time.
3759 */
3760 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3761 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3762 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3763 spin_unlock(&eb->refs_lock);
0b32f4bb 3764 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3765 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3766 -eb->len,
3767 fs_info->dirty_metadata_batch);
0b32f4bb 3768 ret = 1;
51561ffe
JB
3769 } else {
3770 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3771 }
3772
3773 btrfs_tree_unlock(eb);
3774
3775 if (!ret)
3776 return ret;
3777
65ad0104 3778 num_pages = num_extent_pages(eb);
0b32f4bb 3779 for (i = 0; i < num_pages; i++) {
fb85fc9a 3780 struct page *p = eb->pages[i];
0b32f4bb
JB
3781
3782 if (!trylock_page(p)) {
3783 if (!flush) {
18dfa711
FM
3784 int err;
3785
3786 err = flush_write_bio(epd);
3787 if (err < 0) {
3788 ret = err;
2e3c2513
QW
3789 failed_page_nr = i;
3790 goto err_unlock;
3791 }
0b32f4bb
JB
3792 flush = 1;
3793 }
3794 lock_page(p);
3795 }
3796 }
3797
3798 return ret;
2e3c2513
QW
3799err_unlock:
3800 /* Unlock already locked pages */
3801 for (i = 0; i < failed_page_nr; i++)
3802 unlock_page(eb->pages[i]);
18dfa711
FM
3803 /*
3804 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3805 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3806 * be made and undo everything done before.
3807 */
3808 btrfs_tree_lock(eb);
3809 spin_lock(&eb->refs_lock);
3810 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3811 end_extent_buffer_writeback(eb);
3812 spin_unlock(&eb->refs_lock);
3813 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3814 fs_info->dirty_metadata_batch);
3815 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3816 btrfs_tree_unlock(eb);
2e3c2513 3817 return ret;
0b32f4bb
JB
3818}
3819
656f30db
FM
3820static void set_btree_ioerr(struct page *page)
3821{
3822 struct extent_buffer *eb = (struct extent_buffer *)page->private;
eb5b64f1 3823 struct btrfs_fs_info *fs_info;
656f30db
FM
3824
3825 SetPageError(page);
3826 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3827 return;
3828
eb5b64f1
DZ
3829 /*
3830 * If we error out, we should add back the dirty_metadata_bytes
3831 * to make it consistent.
3832 */
3833 fs_info = eb->fs_info;
3834 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3835 eb->len, fs_info->dirty_metadata_batch);
3836
656f30db
FM
3837 /*
3838 * If writeback for a btree extent that doesn't belong to a log tree
3839 * failed, increment the counter transaction->eb_write_errors.
3840 * We do this because while the transaction is running and before it's
3841 * committing (when we call filemap_fdata[write|wait]_range against
3842 * the btree inode), we might have
3843 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3844 * returns an error or an error happens during writeback, when we're
3845 * committing the transaction we wouldn't know about it, since the pages
3846 * can be no longer dirty nor marked anymore for writeback (if a
3847 * subsequent modification to the extent buffer didn't happen before the
3848 * transaction commit), which makes filemap_fdata[write|wait]_range not
3849 * able to find the pages tagged with SetPageError at transaction
3850 * commit time. So if this happens we must abort the transaction,
3851 * otherwise we commit a super block with btree roots that point to
3852 * btree nodes/leafs whose content on disk is invalid - either garbage
3853 * or the content of some node/leaf from a past generation that got
3854 * cowed or deleted and is no longer valid.
3855 *
3856 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3857 * not be enough - we need to distinguish between log tree extents vs
3858 * non-log tree extents, and the next filemap_fdatawait_range() call
3859 * will catch and clear such errors in the mapping - and that call might
3860 * be from a log sync and not from a transaction commit. Also, checking
3861 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3862 * not done and would not be reliable - the eb might have been released
3863 * from memory and reading it back again means that flag would not be
3864 * set (since it's a runtime flag, not persisted on disk).
3865 *
3866 * Using the flags below in the btree inode also makes us achieve the
3867 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3868 * writeback for all dirty pages and before filemap_fdatawait_range()
3869 * is called, the writeback for all dirty pages had already finished
3870 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3871 * filemap_fdatawait_range() would return success, as it could not know
3872 * that writeback errors happened (the pages were no longer tagged for
3873 * writeback).
3874 */
3875 switch (eb->log_index) {
3876 case -1:
afcdd129 3877 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3878 break;
3879 case 0:
afcdd129 3880 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3881 break;
3882 case 1:
afcdd129 3883 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3884 break;
3885 default:
3886 BUG(); /* unexpected, logic error */
3887 }
3888}
3889
4246a0b6 3890static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3891{
2c30c71b 3892 struct bio_vec *bvec;
0b32f4bb 3893 struct extent_buffer *eb;
2b070cfe 3894 int done;
6dc4f100 3895 struct bvec_iter_all iter_all;
0b32f4bb 3896
c09abff8 3897 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3898 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3899 struct page *page = bvec->bv_page;
3900
0b32f4bb
JB
3901 eb = (struct extent_buffer *)page->private;
3902 BUG_ON(!eb);
3903 done = atomic_dec_and_test(&eb->io_pages);
3904
4e4cbee9 3905 if (bio->bi_status ||
4246a0b6 3906 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3907 ClearPageUptodate(page);
656f30db 3908 set_btree_ioerr(page);
0b32f4bb
JB
3909 }
3910
3911 end_page_writeback(page);
3912
3913 if (!done)
3914 continue;
3915
3916 end_extent_buffer_writeback(eb);
2c30c71b 3917 }
0b32f4bb
JB
3918
3919 bio_put(bio);
0b32f4bb
JB
3920}
3921
0e378df1 3922static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3923 struct writeback_control *wbc,
3924 struct extent_page_data *epd)
3925{
0b32f4bb 3926 u64 offset = eb->start;
851cd173 3927 u32 nritems;
cc5e31a4 3928 int i, num_pages;
851cd173 3929 unsigned long start, end;
ff40adf7 3930 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3931 int ret = 0;
0b32f4bb 3932
656f30db 3933 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3934 num_pages = num_extent_pages(eb);
0b32f4bb 3935 atomic_set(&eb->io_pages, num_pages);
de0022b9 3936
851cd173
LB
3937 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3938 nritems = btrfs_header_nritems(eb);
3eb548ee 3939 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3940 end = btrfs_node_key_ptr_offset(nritems);
3941
b159fa28 3942 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3943 } else {
3944 /*
3945 * leaf:
3946 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3947 */
3948 start = btrfs_item_nr_offset(nritems);
8f881e8c 3949 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3950 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3951 }
3952
0b32f4bb 3953 for (i = 0; i < num_pages; i++) {
fb85fc9a 3954 struct page *p = eb->pages[i];
0b32f4bb
JB
3955
3956 clear_page_dirty_for_io(p);
3957 set_page_writeback(p);
0ceb34bf 3958 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
fa17ed06 3959 p, offset, PAGE_SIZE, 0,
c2df8bb4 3960 &epd->bio,
1f7ad75b 3961 end_bio_extent_buffer_writepage,
18fdc679 3962 0, 0, 0, false);
0b32f4bb 3963 if (ret) {
656f30db 3964 set_btree_ioerr(p);
fe01aa65
TK
3965 if (PageWriteback(p))
3966 end_page_writeback(p);
0b32f4bb
JB
3967 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3968 end_extent_buffer_writeback(eb);
3969 ret = -EIO;
3970 break;
3971 }
09cbfeaf 3972 offset += PAGE_SIZE;
3d4b9496 3973 update_nr_written(wbc, 1);
0b32f4bb
JB
3974 unlock_page(p);
3975 }
3976
3977 if (unlikely(ret)) {
3978 for (; i < num_pages; i++) {
bbf65cf0 3979 struct page *p = eb->pages[i];
81465028 3980 clear_page_dirty_for_io(p);
0b32f4bb
JB
3981 unlock_page(p);
3982 }
3983 }
3984
3985 return ret;
3986}
3987
3988int btree_write_cache_pages(struct address_space *mapping,
3989 struct writeback_control *wbc)
3990{
0b32f4bb
JB
3991 struct extent_buffer *eb, *prev_eb = NULL;
3992 struct extent_page_data epd = {
3993 .bio = NULL,
0b32f4bb
JB
3994 .extent_locked = 0,
3995 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3996 };
b3ff8f1d 3997 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
3998 int ret = 0;
3999 int done = 0;
4000 int nr_to_write_done = 0;
4001 struct pagevec pvec;
4002 int nr_pages;
4003 pgoff_t index;
4004 pgoff_t end; /* Inclusive */
4005 int scanned = 0;
10bbd235 4006 xa_mark_t tag;
0b32f4bb 4007
86679820 4008 pagevec_init(&pvec);
0b32f4bb
JB
4009 if (wbc->range_cyclic) {
4010 index = mapping->writeback_index; /* Start from prev offset */
4011 end = -1;
556755a8
JB
4012 /*
4013 * Start from the beginning does not need to cycle over the
4014 * range, mark it as scanned.
4015 */
4016 scanned = (index == 0);
0b32f4bb 4017 } else {
09cbfeaf
KS
4018 index = wbc->range_start >> PAGE_SHIFT;
4019 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
4020 scanned = 1;
4021 }
4022 if (wbc->sync_mode == WB_SYNC_ALL)
4023 tag = PAGECACHE_TAG_TOWRITE;
4024 else
4025 tag = PAGECACHE_TAG_DIRTY;
4026retry:
4027 if (wbc->sync_mode == WB_SYNC_ALL)
4028 tag_pages_for_writeback(mapping, index, end);
4029 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4030 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4031 tag))) {
0b32f4bb
JB
4032 unsigned i;
4033
0b32f4bb
JB
4034 for (i = 0; i < nr_pages; i++) {
4035 struct page *page = pvec.pages[i];
4036
4037 if (!PagePrivate(page))
4038 continue;
4039
b5bae261
JB
4040 spin_lock(&mapping->private_lock);
4041 if (!PagePrivate(page)) {
4042 spin_unlock(&mapping->private_lock);
4043 continue;
4044 }
4045
0b32f4bb 4046 eb = (struct extent_buffer *)page->private;
b5bae261
JB
4047
4048 /*
4049 * Shouldn't happen and normally this would be a BUG_ON
4050 * but no sense in crashing the users box for something
4051 * we can survive anyway.
4052 */
fae7f21c 4053 if (WARN_ON(!eb)) {
b5bae261 4054 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
4055 continue;
4056 }
4057
b5bae261
JB
4058 if (eb == prev_eb) {
4059 spin_unlock(&mapping->private_lock);
0b32f4bb 4060 continue;
b5bae261 4061 }
0b32f4bb 4062
b5bae261
JB
4063 ret = atomic_inc_not_zero(&eb->refs);
4064 spin_unlock(&mapping->private_lock);
4065 if (!ret)
0b32f4bb 4066 continue;
0b32f4bb
JB
4067
4068 prev_eb = eb;
9df76fb5 4069 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
4070 if (!ret) {
4071 free_extent_buffer(eb);
4072 continue;
0607eb1d
FM
4073 } else if (ret < 0) {
4074 done = 1;
4075 free_extent_buffer(eb);
4076 break;
0b32f4bb
JB
4077 }
4078
0ab02063 4079 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
4080 if (ret) {
4081 done = 1;
4082 free_extent_buffer(eb);
4083 break;
4084 }
4085 free_extent_buffer(eb);
4086
4087 /*
4088 * the filesystem may choose to bump up nr_to_write.
4089 * We have to make sure to honor the new nr_to_write
4090 * at any time
4091 */
4092 nr_to_write_done = wbc->nr_to_write <= 0;
4093 }
4094 pagevec_release(&pvec);
4095 cond_resched();
4096 }
4097 if (!scanned && !done) {
4098 /*
4099 * We hit the last page and there is more work to be done: wrap
4100 * back to the start of the file
4101 */
4102 scanned = 1;
4103 index = 0;
4104 goto retry;
4105 }
2b952eea
QW
4106 ASSERT(ret <= 0);
4107 if (ret < 0) {
4108 end_write_bio(&epd, ret);
4109 return ret;
4110 }
b3ff8f1d
QW
4111 /*
4112 * If something went wrong, don't allow any metadata write bio to be
4113 * submitted.
4114 *
4115 * This would prevent use-after-free if we had dirty pages not
4116 * cleaned up, which can still happen by fuzzed images.
4117 *
4118 * - Bad extent tree
4119 * Allowing existing tree block to be allocated for other trees.
4120 *
4121 * - Log tree operations
4122 * Exiting tree blocks get allocated to log tree, bumps its
4123 * generation, then get cleaned in tree re-balance.
4124 * Such tree block will not be written back, since it's clean,
4125 * thus no WRITTEN flag set.
4126 * And after log writes back, this tree block is not traced by
4127 * any dirty extent_io_tree.
4128 *
4129 * - Offending tree block gets re-dirtied from its original owner
4130 * Since it has bumped generation, no WRITTEN flag, it can be
4131 * reused without COWing. This tree block will not be traced
4132 * by btrfs_transaction::dirty_pages.
4133 *
4134 * Now such dirty tree block will not be cleaned by any dirty
4135 * extent io tree. Thus we don't want to submit such wild eb
4136 * if the fs already has error.
4137 */
4138 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4139 ret = flush_write_bio(&epd);
4140 } else {
4141 ret = -EUCLEAN;
4142 end_write_bio(&epd, ret);
4143 }
0b32f4bb
JB
4144 return ret;
4145}
4146
d1310b2e 4147/**
4bef0848 4148 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4149 * @mapping: address space structure to write
4150 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4151 * @data: data passed to __extent_writepage function
d1310b2e
CM
4152 *
4153 * If a page is already under I/O, write_cache_pages() skips it, even
4154 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4155 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4156 * and msync() need to guarantee that all the data which was dirty at the time
4157 * the call was made get new I/O started against them. If wbc->sync_mode is
4158 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4159 * existing IO to complete.
4160 */
4242b64a 4161static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4162 struct writeback_control *wbc,
aab6e9ed 4163 struct extent_page_data *epd)
d1310b2e 4164{
7fd1a3f7 4165 struct inode *inode = mapping->host;
d1310b2e
CM
4166 int ret = 0;
4167 int done = 0;
f85d7d6c 4168 int nr_to_write_done = 0;
d1310b2e
CM
4169 struct pagevec pvec;
4170 int nr_pages;
4171 pgoff_t index;
4172 pgoff_t end; /* Inclusive */
a9132667
LB
4173 pgoff_t done_index;
4174 int range_whole = 0;
d1310b2e 4175 int scanned = 0;
10bbd235 4176 xa_mark_t tag;
d1310b2e 4177
7fd1a3f7
JB
4178 /*
4179 * We have to hold onto the inode so that ordered extents can do their
4180 * work when the IO finishes. The alternative to this is failing to add
4181 * an ordered extent if the igrab() fails there and that is a huge pain
4182 * to deal with, so instead just hold onto the inode throughout the
4183 * writepages operation. If it fails here we are freeing up the inode
4184 * anyway and we'd rather not waste our time writing out stuff that is
4185 * going to be truncated anyway.
4186 */
4187 if (!igrab(inode))
4188 return 0;
4189
86679820 4190 pagevec_init(&pvec);
d1310b2e
CM
4191 if (wbc->range_cyclic) {
4192 index = mapping->writeback_index; /* Start from prev offset */
4193 end = -1;
556755a8
JB
4194 /*
4195 * Start from the beginning does not need to cycle over the
4196 * range, mark it as scanned.
4197 */
4198 scanned = (index == 0);
d1310b2e 4199 } else {
09cbfeaf
KS
4200 index = wbc->range_start >> PAGE_SHIFT;
4201 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4202 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4203 range_whole = 1;
d1310b2e
CM
4204 scanned = 1;
4205 }
3cd24c69
EL
4206
4207 /*
4208 * We do the tagged writepage as long as the snapshot flush bit is set
4209 * and we are the first one who do the filemap_flush() on this inode.
4210 *
4211 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4212 * not race in and drop the bit.
4213 */
4214 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4215 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4216 &BTRFS_I(inode)->runtime_flags))
4217 wbc->tagged_writepages = 1;
4218
4219 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4220 tag = PAGECACHE_TAG_TOWRITE;
4221 else
4222 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4223retry:
3cd24c69 4224 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4225 tag_pages_for_writeback(mapping, index, end);
a9132667 4226 done_index = index;
f85d7d6c 4227 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4228 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4229 &index, end, tag))) {
d1310b2e
CM
4230 unsigned i;
4231
d1310b2e
CM
4232 for (i = 0; i < nr_pages; i++) {
4233 struct page *page = pvec.pages[i];
4234
f7bddf1e 4235 done_index = page->index + 1;
d1310b2e 4236 /*
b93b0163
MW
4237 * At this point we hold neither the i_pages lock nor
4238 * the page lock: the page may be truncated or
4239 * invalidated (changing page->mapping to NULL),
4240 * or even swizzled back from swapper_space to
4241 * tmpfs file mapping
d1310b2e 4242 */
c8f2f24b 4243 if (!trylock_page(page)) {
f4340622
QW
4244 ret = flush_write_bio(epd);
4245 BUG_ON(ret < 0);
c8f2f24b 4246 lock_page(page);
01d658f2 4247 }
d1310b2e
CM
4248
4249 if (unlikely(page->mapping != mapping)) {
4250 unlock_page(page);
4251 continue;
4252 }
4253
d2c3f4f6 4254 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4255 if (PageWriteback(page)) {
4256 ret = flush_write_bio(epd);
4257 BUG_ON(ret < 0);
4258 }
d1310b2e 4259 wait_on_page_writeback(page);
d2c3f4f6 4260 }
d1310b2e
CM
4261
4262 if (PageWriteback(page) ||
4263 !clear_page_dirty_for_io(page)) {
4264 unlock_page(page);
4265 continue;
4266 }
4267
aab6e9ed 4268 ret = __extent_writepage(page, wbc, epd);
a9132667 4269 if (ret < 0) {
a9132667
LB
4270 done = 1;
4271 break;
4272 }
f85d7d6c
CM
4273
4274 /*
4275 * the filesystem may choose to bump up nr_to_write.
4276 * We have to make sure to honor the new nr_to_write
4277 * at any time
4278 */
4279 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4280 }
4281 pagevec_release(&pvec);
4282 cond_resched();
4283 }
894b36e3 4284 if (!scanned && !done) {
d1310b2e
CM
4285 /*
4286 * We hit the last page and there is more work to be done: wrap
4287 * back to the start of the file
4288 */
4289 scanned = 1;
4290 index = 0;
42ffb0bf
JB
4291
4292 /*
4293 * If we're looping we could run into a page that is locked by a
4294 * writer and that writer could be waiting on writeback for a
4295 * page in our current bio, and thus deadlock, so flush the
4296 * write bio here.
4297 */
4298 ret = flush_write_bio(epd);
4299 if (!ret)
4300 goto retry;
d1310b2e 4301 }
a9132667
LB
4302
4303 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4304 mapping->writeback_index = done_index;
4305
7fd1a3f7 4306 btrfs_add_delayed_iput(inode);
894b36e3 4307 return ret;
d1310b2e 4308}
d1310b2e 4309
0a9b0e53 4310int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4311{
4312 int ret;
d1310b2e
CM
4313 struct extent_page_data epd = {
4314 .bio = NULL,
771ed689 4315 .extent_locked = 0,
ffbd517d 4316 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4317 };
d1310b2e 4318
d1310b2e 4319 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4320 ASSERT(ret <= 0);
4321 if (ret < 0) {
4322 end_write_bio(&epd, ret);
4323 return ret;
4324 }
d1310b2e 4325
3065976b
QW
4326 ret = flush_write_bio(&epd);
4327 ASSERT(ret <= 0);
d1310b2e
CM
4328 return ret;
4329}
d1310b2e 4330
5e3ee236 4331int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4332 int mode)
4333{
4334 int ret = 0;
4335 struct address_space *mapping = inode->i_mapping;
4336 struct page *page;
09cbfeaf
KS
4337 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4338 PAGE_SHIFT;
771ed689
CM
4339
4340 struct extent_page_data epd = {
4341 .bio = NULL,
771ed689 4342 .extent_locked = 1,
ffbd517d 4343 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4344 };
4345 struct writeback_control wbc_writepages = {
771ed689 4346 .sync_mode = mode,
771ed689
CM
4347 .nr_to_write = nr_pages * 2,
4348 .range_start = start,
4349 .range_end = end + 1,
ec39f769
CM
4350 /* We're called from an async helper function */
4351 .punt_to_cgroup = 1,
4352 .no_cgroup_owner = 1,
771ed689
CM
4353 };
4354
dbb70bec 4355 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 4356 while (start <= end) {
09cbfeaf 4357 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4358 if (clear_page_dirty_for_io(page))
4359 ret = __extent_writepage(page, &wbc_writepages, &epd);
4360 else {
7087a9d8 4361 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4362 start + PAGE_SIZE - 1, 1);
771ed689
CM
4363 unlock_page(page);
4364 }
09cbfeaf
KS
4365 put_page(page);
4366 start += PAGE_SIZE;
771ed689
CM
4367 }
4368
02c6db4f 4369 ASSERT(ret <= 0);
dbb70bec
CM
4370 if (ret == 0)
4371 ret = flush_write_bio(&epd);
4372 else
02c6db4f 4373 end_write_bio(&epd, ret);
dbb70bec
CM
4374
4375 wbc_detach_inode(&wbc_writepages);
771ed689
CM
4376 return ret;
4377}
d1310b2e 4378
8ae225a8 4379int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4380 struct writeback_control *wbc)
4381{
4382 int ret = 0;
4383 struct extent_page_data epd = {
4384 .bio = NULL,
771ed689 4385 .extent_locked = 0,
ffbd517d 4386 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4387 };
4388
935db853 4389 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4390 ASSERT(ret <= 0);
4391 if (ret < 0) {
4392 end_write_bio(&epd, ret);
4393 return ret;
4394 }
4395 ret = flush_write_bio(&epd);
d1310b2e
CM
4396 return ret;
4397}
d1310b2e 4398
2a3ff0ad
NB
4399int extent_readpages(struct address_space *mapping, struct list_head *pages,
4400 unsigned nr_pages)
d1310b2e
CM
4401{
4402 struct bio *bio = NULL;
c8b97818 4403 unsigned long bio_flags = 0;
67c9684f 4404 struct page *pagepool[16];
125bac01 4405 struct extent_map *em_cached = NULL;
67c9684f 4406 int nr = 0;
808f80b4 4407 u64 prev_em_start = (u64)-1;
d1310b2e 4408
61ed3a14 4409 while (!list_empty(pages)) {
e65ef21e
NB
4410 u64 contig_end = 0;
4411
61ed3a14 4412 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4413 struct page *page = lru_to_page(pages);
d1310b2e 4414
61ed3a14
NB
4415 prefetchw(&page->flags);
4416 list_del(&page->lru);
4417 if (add_to_page_cache_lru(page, mapping, page->index,
4418 readahead_gfp_mask(mapping))) {
4419 put_page(page);
e65ef21e 4420 break;
61ed3a14
NB
4421 }
4422
4423 pagepool[nr++] = page;
e65ef21e 4424 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4425 }
67c9684f 4426
e65ef21e
NB
4427 if (nr) {
4428 u64 contig_start = page_offset(pagepool[0]);
4429
4430 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4431
b6660e80 4432 contiguous_readpages(pagepool, nr, contig_start,
e65ef21e
NB
4433 contig_end, &em_cached, &bio, &bio_flags,
4434 &prev_em_start);
4435 }
d1310b2e 4436 }
67c9684f 4437
125bac01
MX
4438 if (em_cached)
4439 free_extent_map(em_cached);
4440
d1310b2e 4441 if (bio)
1f7ad75b 4442 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4443 return 0;
4444}
d1310b2e
CM
4445
4446/*
4447 * basic invalidatepage code, this waits on any locked or writeback
4448 * ranges corresponding to the page, and then deletes any extent state
4449 * records from the tree
4450 */
4451int extent_invalidatepage(struct extent_io_tree *tree,
4452 struct page *page, unsigned long offset)
4453{
2ac55d41 4454 struct extent_state *cached_state = NULL;
4eee4fa4 4455 u64 start = page_offset(page);
09cbfeaf 4456 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4457 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4458
fda2832f 4459 start += ALIGN(offset, blocksize);
d1310b2e
CM
4460 if (start > end)
4461 return 0;
4462
ff13db41 4463 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4464 wait_on_page_writeback(page);
e182163d
OS
4465 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4466 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4467 return 0;
4468}
d1310b2e 4469
7b13b7b1
CM
4470/*
4471 * a helper for releasepage, this tests for areas of the page that
4472 * are locked or under IO and drops the related state bits if it is safe
4473 * to drop the page.
4474 */
29c68b2d 4475static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4476 struct page *page, gfp_t mask)
7b13b7b1 4477{
4eee4fa4 4478 u64 start = page_offset(page);
09cbfeaf 4479 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4480 int ret = 1;
4481
8882679e 4482 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4483 ret = 0;
8882679e 4484 } else {
11ef160f
CM
4485 /*
4486 * at this point we can safely clear everything except the
4487 * locked bit and the nodatasum bit
4488 */
66b0c887 4489 ret = __clear_extent_bit(tree, start, end,
11ef160f 4490 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4491 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4492
4493 /* if clear_extent_bit failed for enomem reasons,
4494 * we can't allow the release to continue.
4495 */
4496 if (ret < 0)
4497 ret = 0;
4498 else
4499 ret = 1;
7b13b7b1
CM
4500 }
4501 return ret;
4502}
7b13b7b1 4503
d1310b2e
CM
4504/*
4505 * a helper for releasepage. As long as there are no locked extents
4506 * in the range corresponding to the page, both state records and extent
4507 * map records are removed
4508 */
477a30ba 4509int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4510{
4511 struct extent_map *em;
4eee4fa4 4512 u64 start = page_offset(page);
09cbfeaf 4513 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4514 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4515 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4516 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4517
d0164adc 4518 if (gfpflags_allow_blocking(mask) &&
ee22184b 4519 page->mapping->host->i_size > SZ_16M) {
39b5637f 4520 u64 len;
70dec807 4521 while (start <= end) {
39b5637f 4522 len = end - start + 1;
890871be 4523 write_lock(&map->lock);
39b5637f 4524 em = lookup_extent_mapping(map, start, len);
285190d9 4525 if (!em) {
890871be 4526 write_unlock(&map->lock);
70dec807
CM
4527 break;
4528 }
7f3c74fb
CM
4529 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4530 em->start != start) {
890871be 4531 write_unlock(&map->lock);
70dec807
CM
4532 free_extent_map(em);
4533 break;
4534 }
4535 if (!test_range_bit(tree, em->start,
4536 extent_map_end(em) - 1,
4e586ca3 4537 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4538 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4539 &btrfs_inode->runtime_flags);
70dec807
CM
4540 remove_extent_mapping(map, em);
4541 /* once for the rb tree */
4542 free_extent_map(em);
4543 }
4544 start = extent_map_end(em);
890871be 4545 write_unlock(&map->lock);
70dec807
CM
4546
4547 /* once for us */
d1310b2e
CM
4548 free_extent_map(em);
4549 }
d1310b2e 4550 }
29c68b2d 4551 return try_release_extent_state(tree, page, mask);
d1310b2e 4552}
d1310b2e 4553
ec29ed5b
CM
4554/*
4555 * helper function for fiemap, which doesn't want to see any holes.
4556 * This maps until we find something past 'last'
4557 */
4558static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4559 u64 offset, u64 last)
ec29ed5b 4560{
da17066c 4561 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4562 struct extent_map *em;
4563 u64 len;
4564
4565 if (offset >= last)
4566 return NULL;
4567
67871254 4568 while (1) {
ec29ed5b
CM
4569 len = last - offset;
4570 if (len == 0)
4571 break;
fda2832f 4572 len = ALIGN(len, sectorsize);
4ab47a8d 4573 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4574 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4575 return em;
4576
4577 /* if this isn't a hole return it */
4a2d25cd 4578 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4579 return em;
ec29ed5b
CM
4580
4581 /* this is a hole, advance to the next extent */
4582 offset = extent_map_end(em);
4583 free_extent_map(em);
4584 if (offset >= last)
4585 break;
4586 }
4587 return NULL;
4588}
4589
4751832d
QW
4590/*
4591 * To cache previous fiemap extent
4592 *
4593 * Will be used for merging fiemap extent
4594 */
4595struct fiemap_cache {
4596 u64 offset;
4597 u64 phys;
4598 u64 len;
4599 u32 flags;
4600 bool cached;
4601};
4602
4603/*
4604 * Helper to submit fiemap extent.
4605 *
4606 * Will try to merge current fiemap extent specified by @offset, @phys,
4607 * @len and @flags with cached one.
4608 * And only when we fails to merge, cached one will be submitted as
4609 * fiemap extent.
4610 *
4611 * Return value is the same as fiemap_fill_next_extent().
4612 */
4613static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4614 struct fiemap_cache *cache,
4615 u64 offset, u64 phys, u64 len, u32 flags)
4616{
4617 int ret = 0;
4618
4619 if (!cache->cached)
4620 goto assign;
4621
4622 /*
4623 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4624 * fiemap extent won't overlap with cached one.
4751832d
QW
4625 * Not recoverable.
4626 *
4627 * NOTE: Physical address can overlap, due to compression
4628 */
4629 if (cache->offset + cache->len > offset) {
4630 WARN_ON(1);
4631 return -EINVAL;
4632 }
4633
4634 /*
4635 * Only merges fiemap extents if
4636 * 1) Their logical addresses are continuous
4637 *
4638 * 2) Their physical addresses are continuous
4639 * So truly compressed (physical size smaller than logical size)
4640 * extents won't get merged with each other
4641 *
4642 * 3) Share same flags except FIEMAP_EXTENT_LAST
4643 * So regular extent won't get merged with prealloc extent
4644 */
4645 if (cache->offset + cache->len == offset &&
4646 cache->phys + cache->len == phys &&
4647 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4648 (flags & ~FIEMAP_EXTENT_LAST)) {
4649 cache->len += len;
4650 cache->flags |= flags;
4651 goto try_submit_last;
4652 }
4653
4654 /* Not mergeable, need to submit cached one */
4655 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4656 cache->len, cache->flags);
4657 cache->cached = false;
4658 if (ret)
4659 return ret;
4660assign:
4661 cache->cached = true;
4662 cache->offset = offset;
4663 cache->phys = phys;
4664 cache->len = len;
4665 cache->flags = flags;
4666try_submit_last:
4667 if (cache->flags & FIEMAP_EXTENT_LAST) {
4668 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4669 cache->phys, cache->len, cache->flags);
4670 cache->cached = false;
4671 }
4672 return ret;
4673}
4674
4675/*
848c23b7 4676 * Emit last fiemap cache
4751832d 4677 *
848c23b7
QW
4678 * The last fiemap cache may still be cached in the following case:
4679 * 0 4k 8k
4680 * |<- Fiemap range ->|
4681 * |<------------ First extent ----------->|
4682 *
4683 * In this case, the first extent range will be cached but not emitted.
4684 * So we must emit it before ending extent_fiemap().
4751832d 4685 */
5c5aff98 4686static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4687 struct fiemap_cache *cache)
4751832d
QW
4688{
4689 int ret;
4690
4691 if (!cache->cached)
4692 return 0;
4693
4751832d
QW
4694 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4695 cache->len, cache->flags);
4696 cache->cached = false;
4697 if (ret > 0)
4698 ret = 0;
4699 return ret;
4700}
4701
1506fcc8 4702int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4703 __u64 start, __u64 len)
1506fcc8 4704{
975f84fe 4705 int ret = 0;
1506fcc8
YS
4706 u64 off = start;
4707 u64 max = start + len;
4708 u32 flags = 0;
975f84fe
JB
4709 u32 found_type;
4710 u64 last;
ec29ed5b 4711 u64 last_for_get_extent = 0;
1506fcc8 4712 u64 disko = 0;
ec29ed5b 4713 u64 isize = i_size_read(inode);
975f84fe 4714 struct btrfs_key found_key;
1506fcc8 4715 struct extent_map *em = NULL;
2ac55d41 4716 struct extent_state *cached_state = NULL;
975f84fe 4717 struct btrfs_path *path;
dc046b10 4718 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4719 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4720 struct ulist *roots;
4721 struct ulist *tmp_ulist;
1506fcc8 4722 int end = 0;
ec29ed5b
CM
4723 u64 em_start = 0;
4724 u64 em_len = 0;
4725 u64 em_end = 0;
1506fcc8
YS
4726
4727 if (len == 0)
4728 return -EINVAL;
4729
975f84fe
JB
4730 path = btrfs_alloc_path();
4731 if (!path)
4732 return -ENOMEM;
4733 path->leave_spinning = 1;
4734
5911c8fe
DS
4735 roots = ulist_alloc(GFP_KERNEL);
4736 tmp_ulist = ulist_alloc(GFP_KERNEL);
4737 if (!roots || !tmp_ulist) {
4738 ret = -ENOMEM;
4739 goto out_free_ulist;
4740 }
4741
da17066c
JM
4742 start = round_down(start, btrfs_inode_sectorsize(inode));
4743 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4744
ec29ed5b
CM
4745 /*
4746 * lookup the last file extent. We're not using i_size here
4747 * because there might be preallocation past i_size
4748 */
f85b7379
DS
4749 ret = btrfs_lookup_file_extent(NULL, root, path,
4750 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe 4751 if (ret < 0) {
5911c8fe 4752 goto out_free_ulist;
2d324f59
LB
4753 } else {
4754 WARN_ON(!ret);
4755 if (ret == 1)
4756 ret = 0;
975f84fe 4757 }
2d324f59 4758
975f84fe 4759 path->slots[0]--;
975f84fe 4760 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4761 found_type = found_key.type;
975f84fe 4762
ec29ed5b 4763 /* No extents, but there might be delalloc bits */
4a0cc7ca 4764 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4765 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4766 /* have to trust i_size as the end */
4767 last = (u64)-1;
4768 last_for_get_extent = isize;
4769 } else {
4770 /*
4771 * remember the start of the last extent. There are a
4772 * bunch of different factors that go into the length of the
4773 * extent, so its much less complex to remember where it started
4774 */
4775 last = found_key.offset;
4776 last_for_get_extent = last + 1;
975f84fe 4777 }
fe09e16c 4778 btrfs_release_path(path);
975f84fe 4779
ec29ed5b
CM
4780 /*
4781 * we might have some extents allocated but more delalloc past those
4782 * extents. so, we trust isize unless the start of the last extent is
4783 * beyond isize
4784 */
4785 if (last < isize) {
4786 last = (u64)-1;
4787 last_for_get_extent = isize;
4788 }
4789
ff13db41 4790 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4791 &cached_state);
ec29ed5b 4792
e3350e16 4793 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4794 if (!em)
4795 goto out;
4796 if (IS_ERR(em)) {
4797 ret = PTR_ERR(em);
4798 goto out;
4799 }
975f84fe 4800
1506fcc8 4801 while (!end) {
b76bb701 4802 u64 offset_in_extent = 0;
ea8efc74
CM
4803
4804 /* break if the extent we found is outside the range */
4805 if (em->start >= max || extent_map_end(em) < off)
4806 break;
4807
4808 /*
4809 * get_extent may return an extent that starts before our
4810 * requested range. We have to make sure the ranges
4811 * we return to fiemap always move forward and don't
4812 * overlap, so adjust the offsets here
4813 */
4814 em_start = max(em->start, off);
1506fcc8 4815
ea8efc74
CM
4816 /*
4817 * record the offset from the start of the extent
b76bb701
JB
4818 * for adjusting the disk offset below. Only do this if the
4819 * extent isn't compressed since our in ram offset may be past
4820 * what we have actually allocated on disk.
ea8efc74 4821 */
b76bb701
JB
4822 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4823 offset_in_extent = em_start - em->start;
ec29ed5b 4824 em_end = extent_map_end(em);
ea8efc74 4825 em_len = em_end - em_start;
1506fcc8 4826 flags = 0;
f0986318
FM
4827 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4828 disko = em->block_start + offset_in_extent;
4829 else
4830 disko = 0;
1506fcc8 4831
ea8efc74
CM
4832 /*
4833 * bump off for our next call to get_extent
4834 */
4835 off = extent_map_end(em);
4836 if (off >= max)
4837 end = 1;
4838
93dbfad7 4839 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4840 end = 1;
4841 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4842 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4843 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4844 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4845 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4846 flags |= (FIEMAP_EXTENT_DELALLOC |
4847 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4848 } else if (fieinfo->fi_extents_max) {
4849 u64 bytenr = em->block_start -
4850 (em->start - em->orig_start);
fe09e16c 4851
fe09e16c
LB
4852 /*
4853 * As btrfs supports shared space, this information
4854 * can be exported to userspace tools via
dc046b10
JB
4855 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4856 * then we're just getting a count and we can skip the
4857 * lookup stuff.
fe09e16c 4858 */
bb739cf0
EN
4859 ret = btrfs_check_shared(root,
4860 btrfs_ino(BTRFS_I(inode)),
5911c8fe 4861 bytenr, roots, tmp_ulist);
dc046b10 4862 if (ret < 0)
fe09e16c 4863 goto out_free;
dc046b10 4864 if (ret)
fe09e16c 4865 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4866 ret = 0;
1506fcc8
YS
4867 }
4868 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4869 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4870 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4871 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4872
1506fcc8
YS
4873 free_extent_map(em);
4874 em = NULL;
ec29ed5b
CM
4875 if ((em_start >= last) || em_len == (u64)-1 ||
4876 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4877 flags |= FIEMAP_EXTENT_LAST;
4878 end = 1;
4879 }
4880
ec29ed5b 4881 /* now scan forward to see if this is really the last extent. */
e3350e16 4882 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4883 if (IS_ERR(em)) {
4884 ret = PTR_ERR(em);
4885 goto out;
4886 }
4887 if (!em) {
975f84fe
JB
4888 flags |= FIEMAP_EXTENT_LAST;
4889 end = 1;
4890 }
4751832d
QW
4891 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4892 em_len, flags);
26e726af
CS
4893 if (ret) {
4894 if (ret == 1)
4895 ret = 0;
ec29ed5b 4896 goto out_free;
26e726af 4897 }
1506fcc8
YS
4898 }
4899out_free:
4751832d 4900 if (!ret)
5c5aff98 4901 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4902 free_extent_map(em);
4903out:
a52f4cd2 4904 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4905 &cached_state);
5911c8fe
DS
4906
4907out_free_ulist:
e02d48ea 4908 btrfs_free_path(path);
5911c8fe
DS
4909 ulist_free(roots);
4910 ulist_free(tmp_ulist);
1506fcc8
YS
4911 return ret;
4912}
4913
727011e0
CM
4914static void __free_extent_buffer(struct extent_buffer *eb)
4915{
727011e0
CM
4916 kmem_cache_free(extent_buffer_cache, eb);
4917}
4918
a26e8c9f 4919int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4920{
4921 return (atomic_read(&eb->io_pages) ||
4922 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4923 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4924}
4925
4926/*
55ac0139 4927 * Release all pages attached to the extent buffer.
db7f3436 4928 */
55ac0139 4929static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4930{
d64766fd
NB
4931 int i;
4932 int num_pages;
b0132a3b 4933 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4934
4935 BUG_ON(extent_buffer_under_io(eb));
4936
d64766fd
NB
4937 num_pages = num_extent_pages(eb);
4938 for (i = 0; i < num_pages; i++) {
4939 struct page *page = eb->pages[i];
db7f3436 4940
5d2361db
FL
4941 if (!page)
4942 continue;
4943 if (mapped)
db7f3436 4944 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4945 /*
4946 * We do this since we'll remove the pages after we've
4947 * removed the eb from the radix tree, so we could race
4948 * and have this page now attached to the new eb. So
4949 * only clear page_private if it's still connected to
4950 * this eb.
4951 */
4952 if (PagePrivate(page) &&
4953 page->private == (unsigned long)eb) {
4954 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4955 BUG_ON(PageDirty(page));
4956 BUG_ON(PageWriteback(page));
db7f3436 4957 /*
5d2361db
FL
4958 * We need to make sure we haven't be attached
4959 * to a new eb.
db7f3436 4960 */
5d2361db
FL
4961 ClearPagePrivate(page);
4962 set_page_private(page, 0);
4963 /* One for the page private */
09cbfeaf 4964 put_page(page);
db7f3436 4965 }
5d2361db
FL
4966
4967 if (mapped)
4968 spin_unlock(&page->mapping->private_lock);
4969
01327610 4970 /* One for when we allocated the page */
09cbfeaf 4971 put_page(page);
d64766fd 4972 }
db7f3436
JB
4973}
4974
4975/*
4976 * Helper for releasing the extent buffer.
4977 */
4978static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4979{
55ac0139 4980 btrfs_release_extent_buffer_pages(eb);
8c38938c 4981 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
4982 __free_extent_buffer(eb);
4983}
4984
f28491e0
JB
4985static struct extent_buffer *
4986__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4987 unsigned long len)
d1310b2e
CM
4988{
4989 struct extent_buffer *eb = NULL;
4990
d1b5c567 4991 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4992 eb->start = start;
4993 eb->len = len;
f28491e0 4994 eb->fs_info = fs_info;
815a51c7 4995 eb->bflags = 0;
bd681513 4996 rwlock_init(&eb->lock);
bd681513 4997 atomic_set(&eb->blocking_readers, 0);
06297d8c 4998 eb->blocking_writers = 0;
ed1b4ed7 4999 eb->lock_nested = false;
bd681513
CM
5000 init_waitqueue_head(&eb->write_lock_wq);
5001 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 5002
3fd63727
JB
5003 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5004 &fs_info->allocated_ebs);
6d49ba1b 5005
3083ee2e 5006 spin_lock_init(&eb->refs_lock);
d1310b2e 5007 atomic_set(&eb->refs, 1);
0b32f4bb 5008 atomic_set(&eb->io_pages, 0);
727011e0 5009
b8dae313
DS
5010 /*
5011 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
5012 */
5013 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
5014 > MAX_INLINE_EXTENT_BUFFER_SIZE);
5015 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 5016
843ccf9f 5017#ifdef CONFIG_BTRFS_DEBUG
f3dc24c5 5018 eb->spinning_writers = 0;
afd495a8 5019 atomic_set(&eb->spinning_readers, 0);
5c9c799a 5020 atomic_set(&eb->read_locks, 0);
00801ae4 5021 eb->write_locks = 0;
843ccf9f
DS
5022#endif
5023
d1310b2e
CM
5024 return eb;
5025}
5026
815a51c7
JS
5027struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
5028{
cc5e31a4 5029 int i;
815a51c7
JS
5030 struct page *p;
5031 struct extent_buffer *new;
cc5e31a4 5032 int num_pages = num_extent_pages(src);
815a51c7 5033
3f556f78 5034 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5035 if (new == NULL)
5036 return NULL;
5037
5038 for (i = 0; i < num_pages; i++) {
9ec72677 5039 p = alloc_page(GFP_NOFS);
db7f3436
JB
5040 if (!p) {
5041 btrfs_release_extent_buffer(new);
5042 return NULL;
5043 }
815a51c7
JS
5044 attach_extent_buffer_page(new, p);
5045 WARN_ON(PageDirty(p));
5046 SetPageUptodate(p);
5047 new->pages[i] = p;
fba1acf9 5048 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
5049 }
5050
815a51c7 5051 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 5052 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
5053
5054 return new;
5055}
5056
0f331229
OS
5057struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5058 u64 start, unsigned long len)
815a51c7
JS
5059{
5060 struct extent_buffer *eb;
cc5e31a4
DS
5061 int num_pages;
5062 int i;
815a51c7 5063
3f556f78 5064 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5065 if (!eb)
5066 return NULL;
5067
65ad0104 5068 num_pages = num_extent_pages(eb);
815a51c7 5069 for (i = 0; i < num_pages; i++) {
9ec72677 5070 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5071 if (!eb->pages[i])
5072 goto err;
5073 }
5074 set_extent_buffer_uptodate(eb);
5075 btrfs_set_header_nritems(eb, 0);
b0132a3b 5076 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5077
5078 return eb;
5079err:
84167d19
SB
5080 for (; i > 0; i--)
5081 __free_page(eb->pages[i - 1]);
815a51c7
JS
5082 __free_extent_buffer(eb);
5083 return NULL;
5084}
5085
0f331229 5086struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5087 u64 start)
0f331229 5088{
da17066c 5089 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5090}
5091
0b32f4bb
JB
5092static void check_buffer_tree_ref(struct extent_buffer *eb)
5093{
242e18c7 5094 int refs;
0b32f4bb
JB
5095 /* the ref bit is tricky. We have to make sure it is set
5096 * if we have the buffer dirty. Otherwise the
5097 * code to free a buffer can end up dropping a dirty
5098 * page
5099 *
5100 * Once the ref bit is set, it won't go away while the
5101 * buffer is dirty or in writeback, and it also won't
5102 * go away while we have the reference count on the
5103 * eb bumped.
5104 *
5105 * We can't just set the ref bit without bumping the
5106 * ref on the eb because free_extent_buffer might
5107 * see the ref bit and try to clear it. If this happens
5108 * free_extent_buffer might end up dropping our original
5109 * ref by mistake and freeing the page before we are able
5110 * to add one more ref.
5111 *
5112 * So bump the ref count first, then set the bit. If someone
5113 * beat us to it, drop the ref we added.
5114 */
242e18c7
CM
5115 refs = atomic_read(&eb->refs);
5116 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5117 return;
5118
594831c4
JB
5119 spin_lock(&eb->refs_lock);
5120 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5121 atomic_inc(&eb->refs);
594831c4 5122 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5123}
5124
2457aec6
MG
5125static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5126 struct page *accessed)
5df4235e 5127{
cc5e31a4 5128 int num_pages, i;
5df4235e 5129
0b32f4bb
JB
5130 check_buffer_tree_ref(eb);
5131
65ad0104 5132 num_pages = num_extent_pages(eb);
5df4235e 5133 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5134 struct page *p = eb->pages[i];
5135
2457aec6
MG
5136 if (p != accessed)
5137 mark_page_accessed(p);
5df4235e
JB
5138 }
5139}
5140
f28491e0
JB
5141struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5142 u64 start)
452c75c3
CS
5143{
5144 struct extent_buffer *eb;
5145
5146 rcu_read_lock();
f28491e0 5147 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5148 start >> PAGE_SHIFT);
452c75c3
CS
5149 if (eb && atomic_inc_not_zero(&eb->refs)) {
5150 rcu_read_unlock();
062c19e9
FM
5151 /*
5152 * Lock our eb's refs_lock to avoid races with
5153 * free_extent_buffer. When we get our eb it might be flagged
5154 * with EXTENT_BUFFER_STALE and another task running
5155 * free_extent_buffer might have seen that flag set,
5156 * eb->refs == 2, that the buffer isn't under IO (dirty and
5157 * writeback flags not set) and it's still in the tree (flag
5158 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5159 * of decrementing the extent buffer's reference count twice.
5160 * So here we could race and increment the eb's reference count,
5161 * clear its stale flag, mark it as dirty and drop our reference
5162 * before the other task finishes executing free_extent_buffer,
5163 * which would later result in an attempt to free an extent
5164 * buffer that is dirty.
5165 */
5166 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5167 spin_lock(&eb->refs_lock);
5168 spin_unlock(&eb->refs_lock);
5169 }
2457aec6 5170 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5171 return eb;
5172 }
5173 rcu_read_unlock();
5174
5175 return NULL;
5176}
5177
faa2dbf0
JB
5178#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5179struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5180 u64 start)
faa2dbf0
JB
5181{
5182 struct extent_buffer *eb, *exists = NULL;
5183 int ret;
5184
5185 eb = find_extent_buffer(fs_info, start);
5186 if (eb)
5187 return eb;
da17066c 5188 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 5189 if (!eb)
b6293c82 5190 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
5191 eb->fs_info = fs_info;
5192again:
e1860a77 5193 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
5194 if (ret) {
5195 exists = ERR_PTR(ret);
faa2dbf0 5196 goto free_eb;
b6293c82 5197 }
faa2dbf0
JB
5198 spin_lock(&fs_info->buffer_lock);
5199 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5200 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5201 spin_unlock(&fs_info->buffer_lock);
5202 radix_tree_preload_end();
5203 if (ret == -EEXIST) {
5204 exists = find_extent_buffer(fs_info, start);
5205 if (exists)
5206 goto free_eb;
5207 else
5208 goto again;
5209 }
5210 check_buffer_tree_ref(eb);
5211 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5212
faa2dbf0
JB
5213 return eb;
5214free_eb:
5215 btrfs_release_extent_buffer(eb);
5216 return exists;
5217}
5218#endif
5219
f28491e0 5220struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5221 u64 start)
d1310b2e 5222{
da17066c 5223 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5224 int num_pages;
5225 int i;
09cbfeaf 5226 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5227 struct extent_buffer *eb;
6af118ce 5228 struct extent_buffer *exists = NULL;
d1310b2e 5229 struct page *p;
f28491e0 5230 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5231 int uptodate = 1;
19fe0a8b 5232 int ret;
d1310b2e 5233
da17066c 5234 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5235 btrfs_err(fs_info, "bad tree block start %llu", start);
5236 return ERR_PTR(-EINVAL);
5237 }
5238
f28491e0 5239 eb = find_extent_buffer(fs_info, start);
452c75c3 5240 if (eb)
6af118ce 5241 return eb;
6af118ce 5242
23d79d81 5243 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5244 if (!eb)
c871b0f2 5245 return ERR_PTR(-ENOMEM);
d1310b2e 5246
65ad0104 5247 num_pages = num_extent_pages(eb);
727011e0 5248 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5249 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5250 if (!p) {
5251 exists = ERR_PTR(-ENOMEM);
6af118ce 5252 goto free_eb;
c871b0f2 5253 }
4f2de97a
JB
5254
5255 spin_lock(&mapping->private_lock);
5256 if (PagePrivate(p)) {
5257 /*
5258 * We could have already allocated an eb for this page
5259 * and attached one so lets see if we can get a ref on
5260 * the existing eb, and if we can we know it's good and
5261 * we can just return that one, else we know we can just
5262 * overwrite page->private.
5263 */
5264 exists = (struct extent_buffer *)p->private;
5265 if (atomic_inc_not_zero(&exists->refs)) {
5266 spin_unlock(&mapping->private_lock);
5267 unlock_page(p);
09cbfeaf 5268 put_page(p);
2457aec6 5269 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5270 goto free_eb;
5271 }
5ca64f45 5272 exists = NULL;
4f2de97a 5273
0b32f4bb 5274 /*
4f2de97a
JB
5275 * Do this so attach doesn't complain and we need to
5276 * drop the ref the old guy had.
5277 */
5278 ClearPagePrivate(p);
0b32f4bb 5279 WARN_ON(PageDirty(p));
09cbfeaf 5280 put_page(p);
d1310b2e 5281 }
4f2de97a
JB
5282 attach_extent_buffer_page(eb, p);
5283 spin_unlock(&mapping->private_lock);
0b32f4bb 5284 WARN_ON(PageDirty(p));
727011e0 5285 eb->pages[i] = p;
d1310b2e
CM
5286 if (!PageUptodate(p))
5287 uptodate = 0;
eb14ab8e
CM
5288
5289 /*
b16d011e
NB
5290 * We can't unlock the pages just yet since the extent buffer
5291 * hasn't been properly inserted in the radix tree, this
5292 * opens a race with btree_releasepage which can free a page
5293 * while we are still filling in all pages for the buffer and
5294 * we could crash.
eb14ab8e 5295 */
d1310b2e
CM
5296 }
5297 if (uptodate)
b4ce94de 5298 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5299again:
e1860a77 5300 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5301 if (ret) {
5302 exists = ERR_PTR(ret);
19fe0a8b 5303 goto free_eb;
c871b0f2 5304 }
19fe0a8b 5305
f28491e0
JB
5306 spin_lock(&fs_info->buffer_lock);
5307 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5308 start >> PAGE_SHIFT, eb);
f28491e0 5309 spin_unlock(&fs_info->buffer_lock);
452c75c3 5310 radix_tree_preload_end();
19fe0a8b 5311 if (ret == -EEXIST) {
f28491e0 5312 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5313 if (exists)
5314 goto free_eb;
5315 else
115391d2 5316 goto again;
6af118ce 5317 }
6af118ce 5318 /* add one reference for the tree */
0b32f4bb 5319 check_buffer_tree_ref(eb);
34b41ace 5320 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5321
5322 /*
b16d011e
NB
5323 * Now it's safe to unlock the pages because any calls to
5324 * btree_releasepage will correctly detect that a page belongs to a
5325 * live buffer and won't free them prematurely.
eb14ab8e 5326 */
28187ae5
NB
5327 for (i = 0; i < num_pages; i++)
5328 unlock_page(eb->pages[i]);
d1310b2e
CM
5329 return eb;
5330
6af118ce 5331free_eb:
5ca64f45 5332 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5333 for (i = 0; i < num_pages; i++) {
5334 if (eb->pages[i])
5335 unlock_page(eb->pages[i]);
5336 }
eb14ab8e 5337
897ca6e9 5338 btrfs_release_extent_buffer(eb);
6af118ce 5339 return exists;
d1310b2e 5340}
d1310b2e 5341
3083ee2e
JB
5342static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5343{
5344 struct extent_buffer *eb =
5345 container_of(head, struct extent_buffer, rcu_head);
5346
5347 __free_extent_buffer(eb);
5348}
5349
f7a52a40 5350static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 5351 __releases(&eb->refs_lock)
3083ee2e 5352{
07e21c4d
NB
5353 lockdep_assert_held(&eb->refs_lock);
5354
3083ee2e
JB
5355 WARN_ON(atomic_read(&eb->refs) == 0);
5356 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5357 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5358 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5359
815a51c7 5360 spin_unlock(&eb->refs_lock);
3083ee2e 5361
f28491e0
JB
5362 spin_lock(&fs_info->buffer_lock);
5363 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5364 eb->start >> PAGE_SHIFT);
f28491e0 5365 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5366 } else {
5367 spin_unlock(&eb->refs_lock);
815a51c7 5368 }
3083ee2e 5369
8c38938c 5370 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 5371 /* Should be safe to release our pages at this point */
55ac0139 5372 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5373#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5374 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5375 __free_extent_buffer(eb);
5376 return 1;
5377 }
5378#endif
3083ee2e 5379 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5380 return 1;
3083ee2e
JB
5381 }
5382 spin_unlock(&eb->refs_lock);
e64860aa
JB
5383
5384 return 0;
3083ee2e
JB
5385}
5386
d1310b2e
CM
5387void free_extent_buffer(struct extent_buffer *eb)
5388{
242e18c7
CM
5389 int refs;
5390 int old;
d1310b2e
CM
5391 if (!eb)
5392 return;
5393
242e18c7
CM
5394 while (1) {
5395 refs = atomic_read(&eb->refs);
46cc775e
NB
5396 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5397 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5398 refs == 1))
242e18c7
CM
5399 break;
5400 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5401 if (old == refs)
5402 return;
5403 }
5404
3083ee2e
JB
5405 spin_lock(&eb->refs_lock);
5406 if (atomic_read(&eb->refs) == 2 &&
5407 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5408 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5409 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5410 atomic_dec(&eb->refs);
5411
5412 /*
5413 * I know this is terrible, but it's temporary until we stop tracking
5414 * the uptodate bits and such for the extent buffers.
5415 */
f7a52a40 5416 release_extent_buffer(eb);
3083ee2e
JB
5417}
5418
5419void free_extent_buffer_stale(struct extent_buffer *eb)
5420{
5421 if (!eb)
d1310b2e
CM
5422 return;
5423
3083ee2e
JB
5424 spin_lock(&eb->refs_lock);
5425 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5426
0b32f4bb 5427 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5428 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5429 atomic_dec(&eb->refs);
f7a52a40 5430 release_extent_buffer(eb);
d1310b2e 5431}
d1310b2e 5432
1d4284bd 5433void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5434{
cc5e31a4
DS
5435 int i;
5436 int num_pages;
d1310b2e
CM
5437 struct page *page;
5438
65ad0104 5439 num_pages = num_extent_pages(eb);
d1310b2e
CM
5440
5441 for (i = 0; i < num_pages; i++) {
fb85fc9a 5442 page = eb->pages[i];
b9473439 5443 if (!PageDirty(page))
d2c3f4f6
CM
5444 continue;
5445
a61e6f29 5446 lock_page(page);
eb14ab8e
CM
5447 WARN_ON(!PagePrivate(page));
5448
d1310b2e 5449 clear_page_dirty_for_io(page);
b93b0163 5450 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5451 if (!PageDirty(page))
5452 __xa_clear_mark(&page->mapping->i_pages,
5453 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5454 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5455 ClearPageError(page);
a61e6f29 5456 unlock_page(page);
d1310b2e 5457 }
0b32f4bb 5458 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5459}
d1310b2e 5460
abb57ef3 5461bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5462{
cc5e31a4
DS
5463 int i;
5464 int num_pages;
abb57ef3 5465 bool was_dirty;
d1310b2e 5466
0b32f4bb
JB
5467 check_buffer_tree_ref(eb);
5468
b9473439 5469 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5470
65ad0104 5471 num_pages = num_extent_pages(eb);
3083ee2e 5472 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5473 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5474
abb57ef3
LB
5475 if (!was_dirty)
5476 for (i = 0; i < num_pages; i++)
5477 set_page_dirty(eb->pages[i]);
51995c39
LB
5478
5479#ifdef CONFIG_BTRFS_DEBUG
5480 for (i = 0; i < num_pages; i++)
5481 ASSERT(PageDirty(eb->pages[i]));
5482#endif
5483
b9473439 5484 return was_dirty;
d1310b2e 5485}
d1310b2e 5486
69ba3927 5487void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5488{
cc5e31a4 5489 int i;
1259ab75 5490 struct page *page;
cc5e31a4 5491 int num_pages;
1259ab75 5492
b4ce94de 5493 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5494 num_pages = num_extent_pages(eb);
1259ab75 5495 for (i = 0; i < num_pages; i++) {
fb85fc9a 5496 page = eb->pages[i];
33958dc6
CM
5497 if (page)
5498 ClearPageUptodate(page);
1259ab75 5499 }
1259ab75
CM
5500}
5501
09c25a8c 5502void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5503{
cc5e31a4 5504 int i;
d1310b2e 5505 struct page *page;
cc5e31a4 5506 int num_pages;
d1310b2e 5507
0b32f4bb 5508 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5509 num_pages = num_extent_pages(eb);
d1310b2e 5510 for (i = 0; i < num_pages; i++) {
fb85fc9a 5511 page = eb->pages[i];
d1310b2e
CM
5512 SetPageUptodate(page);
5513 }
d1310b2e 5514}
d1310b2e 5515
c2ccfbc6 5516int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5517{
cc5e31a4 5518 int i;
d1310b2e
CM
5519 struct page *page;
5520 int err;
5521 int ret = 0;
ce9adaa5
CM
5522 int locked_pages = 0;
5523 int all_uptodate = 1;
cc5e31a4 5524 int num_pages;
727011e0 5525 unsigned long num_reads = 0;
a86c12c7 5526 struct bio *bio = NULL;
c8b97818 5527 unsigned long bio_flags = 0;
a86c12c7 5528
b4ce94de 5529 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5530 return 0;
5531
65ad0104 5532 num_pages = num_extent_pages(eb);
8436ea91 5533 for (i = 0; i < num_pages; i++) {
fb85fc9a 5534 page = eb->pages[i];
bb82ab88 5535 if (wait == WAIT_NONE) {
2db04966 5536 if (!trylock_page(page))
ce9adaa5 5537 goto unlock_exit;
d1310b2e
CM
5538 } else {
5539 lock_page(page);
5540 }
ce9adaa5 5541 locked_pages++;
2571e739
LB
5542 }
5543 /*
5544 * We need to firstly lock all pages to make sure that
5545 * the uptodate bit of our pages won't be affected by
5546 * clear_extent_buffer_uptodate().
5547 */
8436ea91 5548 for (i = 0; i < num_pages; i++) {
2571e739 5549 page = eb->pages[i];
727011e0
CM
5550 if (!PageUptodate(page)) {
5551 num_reads++;
ce9adaa5 5552 all_uptodate = 0;
727011e0 5553 }
ce9adaa5 5554 }
2571e739 5555
ce9adaa5 5556 if (all_uptodate) {
8436ea91 5557 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5558 goto unlock_exit;
5559 }
5560
656f30db 5561 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5562 eb->read_mirror = 0;
0b32f4bb 5563 atomic_set(&eb->io_pages, num_reads);
8436ea91 5564 for (i = 0; i < num_pages; i++) {
fb85fc9a 5565 page = eb->pages[i];
baf863b9 5566
ce9adaa5 5567 if (!PageUptodate(page)) {
baf863b9
LB
5568 if (ret) {
5569 atomic_dec(&eb->io_pages);
5570 unlock_page(page);
5571 continue;
5572 }
5573
f188591e 5574 ClearPageError(page);
0d44fea7 5575 err = __extent_read_full_page(page,
6af49dbd 5576 btree_get_extent, &bio,
d4c7ca86 5577 mirror_num, &bio_flags,
1f7ad75b 5578 REQ_META);
baf863b9 5579 if (err) {
d1310b2e 5580 ret = err;
baf863b9
LB
5581 /*
5582 * We use &bio in above __extent_read_full_page,
5583 * so we ensure that if it returns error, the
5584 * current page fails to add itself to bio and
5585 * it's been unlocked.
5586 *
5587 * We must dec io_pages by ourselves.
5588 */
5589 atomic_dec(&eb->io_pages);
5590 }
d1310b2e
CM
5591 } else {
5592 unlock_page(page);
5593 }
5594 }
5595
355808c2 5596 if (bio) {
1f7ad75b 5597 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5598 if (err)
5599 return err;
355808c2 5600 }
a86c12c7 5601
bb82ab88 5602 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5603 return ret;
d397712b 5604
8436ea91 5605 for (i = 0; i < num_pages; i++) {
fb85fc9a 5606 page = eb->pages[i];
d1310b2e 5607 wait_on_page_locked(page);
d397712b 5608 if (!PageUptodate(page))
d1310b2e 5609 ret = -EIO;
d1310b2e 5610 }
d397712b 5611
d1310b2e 5612 return ret;
ce9adaa5
CM
5613
5614unlock_exit:
d397712b 5615 while (locked_pages > 0) {
ce9adaa5 5616 locked_pages--;
8436ea91
JB
5617 page = eb->pages[locked_pages];
5618 unlock_page(page);
ce9adaa5
CM
5619 }
5620 return ret;
d1310b2e 5621}
d1310b2e 5622
1cbb1f45
JM
5623void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5624 unsigned long start, unsigned long len)
d1310b2e
CM
5625{
5626 size_t cur;
5627 size_t offset;
5628 struct page *page;
5629 char *kaddr;
5630 char *dst = (char *)dstv;
7073017a 5631 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5632 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5633
f716abd5
LB
5634 if (start + len > eb->len) {
5635 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5636 eb->start, eb->len, start, len);
5637 memset(dst, 0, len);
5638 return;
5639 }
d1310b2e 5640
7073017a 5641 offset = offset_in_page(start_offset + start);
d1310b2e 5642
d397712b 5643 while (len > 0) {
fb85fc9a 5644 page = eb->pages[i];
d1310b2e 5645
09cbfeaf 5646 cur = min(len, (PAGE_SIZE - offset));
a6591715 5647 kaddr = page_address(page);
d1310b2e 5648 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5649
5650 dst += cur;
5651 len -= cur;
5652 offset = 0;
5653 i++;
5654 }
5655}
d1310b2e 5656
1cbb1f45
JM
5657int read_extent_buffer_to_user(const struct extent_buffer *eb,
5658 void __user *dstv,
5659 unsigned long start, unsigned long len)
550ac1d8
GH
5660{
5661 size_t cur;
5662 size_t offset;
5663 struct page *page;
5664 char *kaddr;
5665 char __user *dst = (char __user *)dstv;
7073017a 5666 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5667 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5668 int ret = 0;
5669
5670 WARN_ON(start > eb->len);
5671 WARN_ON(start + len > eb->start + eb->len);
5672
7073017a 5673 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5674
5675 while (len > 0) {
fb85fc9a 5676 page = eb->pages[i];
550ac1d8 5677
09cbfeaf 5678 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5679 kaddr = page_address(page);
5680 if (copy_to_user(dst, kaddr + offset, cur)) {
5681 ret = -EFAULT;
5682 break;
5683 }
5684
5685 dst += cur;
5686 len -= cur;
5687 offset = 0;
5688 i++;
5689 }
5690
5691 return ret;
5692}
5693
415b35a5
LB
5694/*
5695 * return 0 if the item is found within a page.
5696 * return 1 if the item spans two pages.
5697 * return -EINVAL otherwise.
5698 */
1cbb1f45
JM
5699int map_private_extent_buffer(const struct extent_buffer *eb,
5700 unsigned long start, unsigned long min_len,
5701 char **map, unsigned long *map_start,
5702 unsigned long *map_len)
d1310b2e 5703{
cc2c39d6 5704 size_t offset;
d1310b2e
CM
5705 char *kaddr;
5706 struct page *p;
7073017a 5707 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5708 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5709 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5710 PAGE_SHIFT;
d1310b2e 5711
f716abd5
LB
5712 if (start + min_len > eb->len) {
5713 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5714 eb->start, eb->len, start, min_len);
5715 return -EINVAL;
5716 }
5717
d1310b2e 5718 if (i != end_i)
415b35a5 5719 return 1;
d1310b2e
CM
5720
5721 if (i == 0) {
5722 offset = start_offset;
5723 *map_start = 0;
5724 } else {
5725 offset = 0;
09cbfeaf 5726 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5727 }
d397712b 5728
fb85fc9a 5729 p = eb->pages[i];
a6591715 5730 kaddr = page_address(p);
d1310b2e 5731 *map = kaddr + offset;
09cbfeaf 5732 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5733 return 0;
5734}
d1310b2e 5735
1cbb1f45
JM
5736int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5737 unsigned long start, unsigned long len)
d1310b2e
CM
5738{
5739 size_t cur;
5740 size_t offset;
5741 struct page *page;
5742 char *kaddr;
5743 char *ptr = (char *)ptrv;
7073017a 5744 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5745 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5746 int ret = 0;
5747
5748 WARN_ON(start > eb->len);
5749 WARN_ON(start + len > eb->start + eb->len);
5750
7073017a 5751 offset = offset_in_page(start_offset + start);
d1310b2e 5752
d397712b 5753 while (len > 0) {
fb85fc9a 5754 page = eb->pages[i];
d1310b2e 5755
09cbfeaf 5756 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5757
a6591715 5758 kaddr = page_address(page);
d1310b2e 5759 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5760 if (ret)
5761 break;
5762
5763 ptr += cur;
5764 len -= cur;
5765 offset = 0;
5766 i++;
5767 }
5768 return ret;
5769}
d1310b2e 5770
f157bf76
DS
5771void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5772 const void *srcv)
5773{
5774 char *kaddr;
5775
5776 WARN_ON(!PageUptodate(eb->pages[0]));
5777 kaddr = page_address(eb->pages[0]);
5778 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5779 BTRFS_FSID_SIZE);
5780}
5781
5782void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5783{
5784 char *kaddr;
5785
5786 WARN_ON(!PageUptodate(eb->pages[0]));
5787 kaddr = page_address(eb->pages[0]);
5788 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5789 BTRFS_FSID_SIZE);
5790}
5791
d1310b2e
CM
5792void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5793 unsigned long start, unsigned long len)
5794{
5795 size_t cur;
5796 size_t offset;
5797 struct page *page;
5798 char *kaddr;
5799 char *src = (char *)srcv;
7073017a 5800 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5801 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5802
5803 WARN_ON(start > eb->len);
5804 WARN_ON(start + len > eb->start + eb->len);
5805
7073017a 5806 offset = offset_in_page(start_offset + start);
d1310b2e 5807
d397712b 5808 while (len > 0) {
fb85fc9a 5809 page = eb->pages[i];
d1310b2e
CM
5810 WARN_ON(!PageUptodate(page));
5811
09cbfeaf 5812 cur = min(len, PAGE_SIZE - offset);
a6591715 5813 kaddr = page_address(page);
d1310b2e 5814 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5815
5816 src += cur;
5817 len -= cur;
5818 offset = 0;
5819 i++;
5820 }
5821}
d1310b2e 5822
b159fa28
DS
5823void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5824 unsigned long len)
d1310b2e
CM
5825{
5826 size_t cur;
5827 size_t offset;
5828 struct page *page;
5829 char *kaddr;
7073017a 5830 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5831 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5832
5833 WARN_ON(start > eb->len);
5834 WARN_ON(start + len > eb->start + eb->len);
5835
7073017a 5836 offset = offset_in_page(start_offset + start);
d1310b2e 5837
d397712b 5838 while (len > 0) {
fb85fc9a 5839 page = eb->pages[i];
d1310b2e
CM
5840 WARN_ON(!PageUptodate(page));
5841
09cbfeaf 5842 cur = min(len, PAGE_SIZE - offset);
a6591715 5843 kaddr = page_address(page);
b159fa28 5844 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5845
5846 len -= cur;
5847 offset = 0;
5848 i++;
5849 }
5850}
d1310b2e 5851
58e8012c
DS
5852void copy_extent_buffer_full(struct extent_buffer *dst,
5853 struct extent_buffer *src)
5854{
5855 int i;
cc5e31a4 5856 int num_pages;
58e8012c
DS
5857
5858 ASSERT(dst->len == src->len);
5859
65ad0104 5860 num_pages = num_extent_pages(dst);
58e8012c
DS
5861 for (i = 0; i < num_pages; i++)
5862 copy_page(page_address(dst->pages[i]),
5863 page_address(src->pages[i]));
5864}
5865
d1310b2e
CM
5866void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5867 unsigned long dst_offset, unsigned long src_offset,
5868 unsigned long len)
5869{
5870 u64 dst_len = dst->len;
5871 size_t cur;
5872 size_t offset;
5873 struct page *page;
5874 char *kaddr;
7073017a 5875 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5876 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5877
5878 WARN_ON(src->len != dst_len);
5879
7073017a 5880 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5881
d397712b 5882 while (len > 0) {
fb85fc9a 5883 page = dst->pages[i];
d1310b2e
CM
5884 WARN_ON(!PageUptodate(page));
5885
09cbfeaf 5886 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5887
a6591715 5888 kaddr = page_address(page);
d1310b2e 5889 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5890
5891 src_offset += cur;
5892 len -= cur;
5893 offset = 0;
5894 i++;
5895 }
5896}
d1310b2e 5897
3e1e8bb7
OS
5898/*
5899 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5900 * given bit number
5901 * @eb: the extent buffer
5902 * @start: offset of the bitmap item in the extent buffer
5903 * @nr: bit number
5904 * @page_index: return index of the page in the extent buffer that contains the
5905 * given bit number
5906 * @page_offset: return offset into the page given by page_index
5907 *
5908 * This helper hides the ugliness of finding the byte in an extent buffer which
5909 * contains a given bit.
5910 */
5911static inline void eb_bitmap_offset(struct extent_buffer *eb,
5912 unsigned long start, unsigned long nr,
5913 unsigned long *page_index,
5914 size_t *page_offset)
5915{
7073017a 5916 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5917 size_t byte_offset = BIT_BYTE(nr);
5918 size_t offset;
5919
5920 /*
5921 * The byte we want is the offset of the extent buffer + the offset of
5922 * the bitmap item in the extent buffer + the offset of the byte in the
5923 * bitmap item.
5924 */
5925 offset = start_offset + start + byte_offset;
5926
09cbfeaf 5927 *page_index = offset >> PAGE_SHIFT;
7073017a 5928 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5929}
5930
5931/**
5932 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5933 * @eb: the extent buffer
5934 * @start: offset of the bitmap item in the extent buffer
5935 * @nr: bit number to test
5936 */
5937int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5938 unsigned long nr)
5939{
2fe1d551 5940 u8 *kaddr;
3e1e8bb7
OS
5941 struct page *page;
5942 unsigned long i;
5943 size_t offset;
5944
5945 eb_bitmap_offset(eb, start, nr, &i, &offset);
5946 page = eb->pages[i];
5947 WARN_ON(!PageUptodate(page));
5948 kaddr = page_address(page);
5949 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5950}
5951
5952/**
5953 * extent_buffer_bitmap_set - set an area of a bitmap
5954 * @eb: the extent buffer
5955 * @start: offset of the bitmap item in the extent buffer
5956 * @pos: bit number of the first bit
5957 * @len: number of bits to set
5958 */
5959void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5960 unsigned long pos, unsigned long len)
5961{
2fe1d551 5962 u8 *kaddr;
3e1e8bb7
OS
5963 struct page *page;
5964 unsigned long i;
5965 size_t offset;
5966 const unsigned int size = pos + len;
5967 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5968 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5969
5970 eb_bitmap_offset(eb, start, pos, &i, &offset);
5971 page = eb->pages[i];
5972 WARN_ON(!PageUptodate(page));
5973 kaddr = page_address(page);
5974
5975 while (len >= bits_to_set) {
5976 kaddr[offset] |= mask_to_set;
5977 len -= bits_to_set;
5978 bits_to_set = BITS_PER_BYTE;
9c894696 5979 mask_to_set = ~0;
09cbfeaf 5980 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5981 offset = 0;
5982 page = eb->pages[++i];
5983 WARN_ON(!PageUptodate(page));
5984 kaddr = page_address(page);
5985 }
5986 }
5987 if (len) {
5988 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5989 kaddr[offset] |= mask_to_set;
5990 }
5991}
5992
5993
5994/**
5995 * extent_buffer_bitmap_clear - clear an area of a bitmap
5996 * @eb: the extent buffer
5997 * @start: offset of the bitmap item in the extent buffer
5998 * @pos: bit number of the first bit
5999 * @len: number of bits to clear
6000 */
6001void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
6002 unsigned long pos, unsigned long len)
6003{
2fe1d551 6004 u8 *kaddr;
3e1e8bb7
OS
6005 struct page *page;
6006 unsigned long i;
6007 size_t offset;
6008 const unsigned int size = pos + len;
6009 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 6010 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
6011
6012 eb_bitmap_offset(eb, start, pos, &i, &offset);
6013 page = eb->pages[i];
6014 WARN_ON(!PageUptodate(page));
6015 kaddr = page_address(page);
6016
6017 while (len >= bits_to_clear) {
6018 kaddr[offset] &= ~mask_to_clear;
6019 len -= bits_to_clear;
6020 bits_to_clear = BITS_PER_BYTE;
9c894696 6021 mask_to_clear = ~0;
09cbfeaf 6022 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
6023 offset = 0;
6024 page = eb->pages[++i];
6025 WARN_ON(!PageUptodate(page));
6026 kaddr = page_address(page);
6027 }
6028 }
6029 if (len) {
6030 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6031 kaddr[offset] &= ~mask_to_clear;
6032 }
6033}
6034
3387206f
ST
6035static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6036{
6037 unsigned long distance = (src > dst) ? src - dst : dst - src;
6038 return distance < len;
6039}
6040
d1310b2e
CM
6041static void copy_pages(struct page *dst_page, struct page *src_page,
6042 unsigned long dst_off, unsigned long src_off,
6043 unsigned long len)
6044{
a6591715 6045 char *dst_kaddr = page_address(dst_page);
d1310b2e 6046 char *src_kaddr;
727011e0 6047 int must_memmove = 0;
d1310b2e 6048
3387206f 6049 if (dst_page != src_page) {
a6591715 6050 src_kaddr = page_address(src_page);
3387206f 6051 } else {
d1310b2e 6052 src_kaddr = dst_kaddr;
727011e0
CM
6053 if (areas_overlap(src_off, dst_off, len))
6054 must_memmove = 1;
3387206f 6055 }
d1310b2e 6056
727011e0
CM
6057 if (must_memmove)
6058 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6059 else
6060 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
6061}
6062
6063void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6064 unsigned long src_offset, unsigned long len)
6065{
0b246afa 6066 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6067 size_t cur;
6068 size_t dst_off_in_page;
6069 size_t src_off_in_page;
7073017a 6070 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
6071 unsigned long dst_i;
6072 unsigned long src_i;
6073
6074 if (src_offset + len > dst->len) {
0b246afa 6075 btrfs_err(fs_info,
5d163e0e
JM
6076 "memmove bogus src_offset %lu move len %lu dst len %lu",
6077 src_offset, len, dst->len);
290342f6 6078 BUG();
d1310b2e
CM
6079 }
6080 if (dst_offset + len > dst->len) {
0b246afa 6081 btrfs_err(fs_info,
5d163e0e
JM
6082 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6083 dst_offset, len, dst->len);
290342f6 6084 BUG();
d1310b2e
CM
6085 }
6086
d397712b 6087 while (len > 0) {
7073017a
JT
6088 dst_off_in_page = offset_in_page(start_offset + dst_offset);
6089 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 6090
09cbfeaf
KS
6091 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
6092 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 6093
09cbfeaf 6094 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
6095 src_off_in_page));
6096 cur = min_t(unsigned long, cur,
09cbfeaf 6097 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 6098
fb85fc9a 6099 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6100 dst_off_in_page, src_off_in_page, cur);
6101
6102 src_offset += cur;
6103 dst_offset += cur;
6104 len -= cur;
6105 }
6106}
d1310b2e
CM
6107
6108void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6109 unsigned long src_offset, unsigned long len)
6110{
0b246afa 6111 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6112 size_t cur;
6113 size_t dst_off_in_page;
6114 size_t src_off_in_page;
6115 unsigned long dst_end = dst_offset + len - 1;
6116 unsigned long src_end = src_offset + len - 1;
7073017a 6117 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
6118 unsigned long dst_i;
6119 unsigned long src_i;
6120
6121 if (src_offset + len > dst->len) {
0b246afa 6122 btrfs_err(fs_info,
5d163e0e
JM
6123 "memmove bogus src_offset %lu move len %lu len %lu",
6124 src_offset, len, dst->len);
290342f6 6125 BUG();
d1310b2e
CM
6126 }
6127 if (dst_offset + len > dst->len) {
0b246afa 6128 btrfs_err(fs_info,
5d163e0e
JM
6129 "memmove bogus dst_offset %lu move len %lu len %lu",
6130 dst_offset, len, dst->len);
290342f6 6131 BUG();
d1310b2e 6132 }
727011e0 6133 if (dst_offset < src_offset) {
d1310b2e
CM
6134 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6135 return;
6136 }
d397712b 6137 while (len > 0) {
09cbfeaf
KS
6138 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6139 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 6140
7073017a
JT
6141 dst_off_in_page = offset_in_page(start_offset + dst_end);
6142 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
6143
6144 cur = min_t(unsigned long, len, src_off_in_page + 1);
6145 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6146 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6147 dst_off_in_page - cur + 1,
6148 src_off_in_page - cur + 1, cur);
6149
6150 dst_end -= cur;
6151 src_end -= cur;
6152 len -= cur;
6153 }
6154}
6af118ce 6155
f7a52a40 6156int try_release_extent_buffer(struct page *page)
19fe0a8b 6157{
6af118ce 6158 struct extent_buffer *eb;
6af118ce 6159
3083ee2e 6160 /*
01327610 6161 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6162 * now.
6163 */
6164 spin_lock(&page->mapping->private_lock);
6165 if (!PagePrivate(page)) {
6166 spin_unlock(&page->mapping->private_lock);
4f2de97a 6167 return 1;
45f49bce 6168 }
6af118ce 6169
3083ee2e
JB
6170 eb = (struct extent_buffer *)page->private;
6171 BUG_ON(!eb);
19fe0a8b
MX
6172
6173 /*
3083ee2e
JB
6174 * This is a little awful but should be ok, we need to make sure that
6175 * the eb doesn't disappear out from under us while we're looking at
6176 * this page.
19fe0a8b 6177 */
3083ee2e 6178 spin_lock(&eb->refs_lock);
0b32f4bb 6179 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6180 spin_unlock(&eb->refs_lock);
6181 spin_unlock(&page->mapping->private_lock);
6182 return 0;
b9473439 6183 }
3083ee2e 6184 spin_unlock(&page->mapping->private_lock);
897ca6e9 6185
19fe0a8b 6186 /*
3083ee2e
JB
6187 * If tree ref isn't set then we know the ref on this eb is a real ref,
6188 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6189 */
3083ee2e
JB
6190 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6191 spin_unlock(&eb->refs_lock);
6192 return 0;
b9473439 6193 }
19fe0a8b 6194
f7a52a40 6195 return release_extent_buffer(eb);
6af118ce 6196}