]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent_io.c
Merge tag 'efi-urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/efi/efi into...
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
c1c9ff7c 71 atomic_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
f85b7379 101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
70fd7614 130 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f 146 changeset->bytes_changed += state->end - state->start + 1;
53d32359 147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 165 sizeof(struct extent_state), 0,
fba4b697 166 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 171 sizeof(struct extent_buffer), 0,
fba4b697 172 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e 228
3ba7ab22
MH
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 234 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 235 if (!state)
d1310b2e
CM
236 return state;
237 state->state = 0;
47dc196a 238 state->failrec = NULL;
27a3507d 239 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 240 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
241 atomic_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
143bede5 243 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
244 return state;
245}
d1310b2e 246
4845e44f 247void free_extent_state(struct extent_state *state)
d1310b2e 248{
d1310b2e
CM
249 if (!state)
250 return;
251 if (atomic_dec_and_test(&state->refs)) {
27a3507d 252 WARN_ON(extent_state_in_tree(state));
6d49ba1b 253 btrfs_leak_debug_del(&state->leak_list);
143bede5 254 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
255 kmem_cache_free(extent_state_cache, state);
256 }
257}
d1310b2e 258
f2071b21
FM
259static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
12cfbad9
FDBM
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
d1310b2e 265{
f2071b21 266 struct rb_node **p;
d397712b 267 struct rb_node *parent = NULL;
d1310b2e
CM
268 struct tree_entry *entry;
269
12cfbad9
FDBM
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
f2071b21 276 p = search_start ? &search_start : &root->rb_node;
d397712b 277 while (*p) {
d1310b2e
CM
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
12cfbad9 289do_insert:
d1310b2e
CM
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293}
294
80ea96b1 295static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
d1310b2e 300{
80ea96b1 301 struct rb_root *root = &tree->state;
12cfbad9 302 struct rb_node **n = &root->rb_node;
d1310b2e
CM
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
12cfbad9
FDBM
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
311 prev_entry = entry;
312
313 if (offset < entry->start)
12cfbad9 314 n = &(*n)->rb_left;
d1310b2e 315 else if (offset > entry->end)
12cfbad9 316 n = &(*n)->rb_right;
d397712b 317 else
12cfbad9 318 return *n;
d1310b2e
CM
319 }
320
12cfbad9
FDBM
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
d1310b2e
CM
326 if (prev_ret) {
327 orig_prev = prev;
d397712b 328 while (prev && offset > prev_entry->end) {
d1310b2e
CM
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 338 while (prev && offset < prev_entry->start) {
d1310b2e
CM
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345}
346
12cfbad9
FDBM
347static inline struct rb_node *
348tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
d1310b2e 352{
70dec807 353 struct rb_node *prev = NULL;
d1310b2e 354 struct rb_node *ret;
70dec807 355
12cfbad9 356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 357 if (!ret)
d1310b2e
CM
358 return prev;
359 return ret;
360}
361
12cfbad9
FDBM
362static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364{
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366}
367
9ed74f2d
JB
368static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370{
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374}
375
d1310b2e
CM
376/*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
1bf85046
JM
385static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
d1310b2e
CM
387{
388 struct extent_state *other;
389 struct rb_node *other_node;
390
5b21f2ed 391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 392 return;
d1310b2e
CM
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
9ed74f2d 399 merge_cb(tree, state, other);
d1310b2e 400 state->start = other->start;
d1310b2e 401 rb_erase(&other->rb_node, &tree->state);
27a3507d 402 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
9ed74f2d 411 merge_cb(tree, state, other);
df98b6e2 412 state->end = other->end;
df98b6e2 413 rb_erase(&other->rb_node, &tree->state);
27a3507d 414 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 415 free_extent_state(other);
d1310b2e
CM
416 }
417 }
d1310b2e
CM
418}
419
1bf85046 420static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 421 struct extent_state *state, unsigned *bits)
291d673e 422{
1bf85046
JM
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
425}
426
427static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 428 struct extent_state *state, unsigned *bits)
291d673e 429{
9ed74f2d 430 if (tree->ops && tree->ops->clear_bit_hook)
6fc0ef68
NB
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 state, bits);
291d673e
CM
433}
434
3150b699 435static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
3150b699 438
d1310b2e
CM
439/*
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
442 *
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
445 *
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
448 */
449static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
451 struct rb_node ***p,
452 struct rb_node **parent,
d38ed27f 453 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
454{
455 struct rb_node *node;
456
31b1a2bd 457 if (end < start)
efe120a0 458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 459 end, start);
d1310b2e
CM
460 state->start = start;
461 state->end = end;
9ed74f2d 462
d38ed27f 463 set_state_bits(tree, state, bits, changeset);
3150b699 464
f2071b21 465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
466 if (node) {
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
62e85577 469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 470 found->start, found->end, start, end);
d1310b2e
CM
471 return -EEXIST;
472 }
473 merge_state(tree, state);
474 return 0;
475}
476
1bf85046 477static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
478 u64 split)
479{
480 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
482}
483
d1310b2e
CM
484/*
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
488 *
489 * Before calling,
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
494 *
495 * The tree locks are not taken by this function. They need to be held
496 * by the caller.
497 */
498static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
500{
501 struct rb_node *node;
9ed74f2d
JB
502
503 split_cb(tree, orig, split);
504
d1310b2e
CM
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
f2071b21
FM
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
d1310b2e 512 if (node) {
d1310b2e
CM
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517}
518
cdc6a395
LZ
519static struct extent_state *next_state(struct extent_state *state)
520{
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526}
527
d1310b2e
CM
528/*
529 * utility function to clear some bits in an extent state struct.
1b303fc0 530 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
cdc6a395
LZ
535static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
fefdc557
QW
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
d1310b2e 539{
cdc6a395 540 struct extent_state *next;
9ee49a04 541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 542
0ca1f7ce 543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
547 }
291d673e 548 clear_state_cb(tree, state, bits);
fefdc557 549 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 550 state->state &= ~bits_to_clear;
d1310b2e
CM
551 if (wake)
552 wake_up(&state->wq);
0ca1f7ce 553 if (state->state == 0) {
cdc6a395 554 next = next_state(state);
27a3507d 555 if (extent_state_in_tree(state)) {
d1310b2e 556 rb_erase(&state->rb_node, &tree->state);
27a3507d 557 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
558 free_extent_state(state);
559 } else {
560 WARN_ON(1);
561 }
562 } else {
563 merge_state(tree, state);
cdc6a395 564 next = next_state(state);
d1310b2e 565 }
cdc6a395 566 return next;
d1310b2e
CM
567}
568
8233767a
XG
569static struct extent_state *
570alloc_extent_state_atomic(struct extent_state *prealloc)
571{
572 if (!prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
574
575 return prealloc;
576}
577
48a3b636 578static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 579{
5d163e0e
JM
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
582}
583
d1310b2e
CM
584/*
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
588 *
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
591 *
592 * the range [start, end] is inclusive.
593 *
6763af84 594 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 595 */
fefdc557
QW
596static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
600{
601 struct extent_state *state;
2c64c53d 602 struct extent_state *cached;
d1310b2e
CM
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
5c939df5 605 u64 last_end;
d1310b2e 606 int err;
2ac55d41 607 int clear = 0;
d1310b2e 608
a5dee37d 609 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 610
7ee9e440
JB
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
613
0ca1f7ce
YZ
614 if (delete)
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
617
2ac55d41
JB
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 clear = 1;
d1310b2e 620again:
d0164adc 621 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
622 /*
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
628 */
d1310b2e 629 prealloc = alloc_extent_state(mask);
d1310b2e
CM
630 }
631
cad321ad 632 spin_lock(&tree->lock);
2c64c53d
CM
633 if (cached_state) {
634 cached = *cached_state;
2ac55d41
JB
635
636 if (clear) {
637 *cached_state = NULL;
638 cached_state = NULL;
639 }
640
27a3507d
FM
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
2ac55d41
JB
643 if (clear)
644 atomic_dec(&cached->refs);
2c64c53d 645 state = cached;
42daec29 646 goto hit_next;
2c64c53d 647 }
2ac55d41
JB
648 if (clear)
649 free_extent_state(cached);
2c64c53d 650 }
d1310b2e
CM
651 /*
652 * this search will find the extents that end after
653 * our range starts
654 */
80ea96b1 655 node = tree_search(tree, start);
d1310b2e
CM
656 if (!node)
657 goto out;
658 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 659hit_next:
d1310b2e
CM
660 if (state->start > end)
661 goto out;
662 WARN_ON(state->end < start);
5c939df5 663 last_end = state->end;
d1310b2e 664
0449314a 665 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
666 if (!(state->state & bits)) {
667 state = next_state(state);
0449314a 668 goto next;
cdc6a395 669 }
0449314a 670
d1310b2e
CM
671 /*
672 * | ---- desired range ---- |
673 * | state | or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip
677 * bits on second half.
678 *
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
682 *
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
685 */
686
687 if (state->start < start) {
8233767a
XG
688 prealloc = alloc_extent_state_atomic(prealloc);
689 BUG_ON(!prealloc);
d1310b2e 690 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
691 if (err)
692 extent_io_tree_panic(tree, err);
693
d1310b2e
CM
694 prealloc = NULL;
695 if (err)
696 goto out;
697 if (state->end <= end) {
fefdc557
QW
698 state = clear_state_bit(tree, state, &bits, wake,
699 changeset);
d1ac6e41 700 goto next;
d1310b2e
CM
701 }
702 goto search_again;
703 }
704 /*
705 * | ---- desired range ---- |
706 * | state |
707 * We need to split the extent, and clear the bit
708 * on the first half
709 */
710 if (state->start <= end && state->end > end) {
8233767a
XG
711 prealloc = alloc_extent_state_atomic(prealloc);
712 BUG_ON(!prealloc);
d1310b2e 713 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
714 if (err)
715 extent_io_tree_panic(tree, err);
716
d1310b2e
CM
717 if (wake)
718 wake_up(&state->wq);
42daec29 719
fefdc557 720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 721
d1310b2e
CM
722 prealloc = NULL;
723 goto out;
724 }
42daec29 725
fefdc557 726 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 727next:
5c939df5
YZ
728 if (last_end == (u64)-1)
729 goto out;
730 start = last_end + 1;
cdc6a395 731 if (start <= end && state && !need_resched())
692e5759 732 goto hit_next;
d1310b2e
CM
733
734search_again:
735 if (start > end)
736 goto out;
cad321ad 737 spin_unlock(&tree->lock);
d0164adc 738 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
739 cond_resched();
740 goto again;
7ab5cb2a
DS
741
742out:
743 spin_unlock(&tree->lock);
744 if (prealloc)
745 free_extent_state(prealloc);
746
747 return 0;
748
d1310b2e 749}
d1310b2e 750
143bede5
JM
751static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
641f5219
CH
753 __releases(tree->lock)
754 __acquires(tree->lock)
d1310b2e
CM
755{
756 DEFINE_WAIT(wait);
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 758 spin_unlock(&tree->lock);
d1310b2e 759 schedule();
cad321ad 760 spin_lock(&tree->lock);
d1310b2e 761 finish_wait(&state->wq, &wait);
d1310b2e
CM
762}
763
764/*
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
768 */
41074888
DS
769static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 unsigned long bits)
d1310b2e
CM
771{
772 struct extent_state *state;
773 struct rb_node *node;
774
a5dee37d 775 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 776
cad321ad 777 spin_lock(&tree->lock);
d1310b2e
CM
778again:
779 while (1) {
780 /*
781 * this search will find all the extents that end after
782 * our range starts
783 */
80ea96b1 784 node = tree_search(tree, start);
c50d3e71 785process_node:
d1310b2e
CM
786 if (!node)
787 break;
788
789 state = rb_entry(node, struct extent_state, rb_node);
790
791 if (state->start > end)
792 goto out;
793
794 if (state->state & bits) {
795 start = state->start;
796 atomic_inc(&state->refs);
797 wait_on_state(tree, state);
798 free_extent_state(state);
799 goto again;
800 }
801 start = state->end + 1;
802
803 if (start > end)
804 break;
805
c50d3e71
FM
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
808 goto process_node;
809 }
d1310b2e
CM
810 }
811out:
cad321ad 812 spin_unlock(&tree->lock);
d1310b2e 813}
d1310b2e 814
1bf85046 815static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 816 struct extent_state *state,
d38ed27f 817 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 818{
9ee49a04 819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 820
1bf85046 821 set_state_cb(tree, state, bits);
0ca1f7ce 822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
825 }
d38ed27f 826 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 827 state->state |= bits_to_set;
d1310b2e
CM
828}
829
e38e2ed7
FM
830static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
9ee49a04 832 unsigned flags)
2c64c53d
CM
833{
834 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 835 if (!flags || (state->state & flags)) {
2c64c53d
CM
836 *cached_ptr = state;
837 atomic_inc(&state->refs);
838 }
839 }
840}
841
e38e2ed7
FM
842static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
844{
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
847}
848
d1310b2e 849/*
1edbb734
CM
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 852 *
1edbb734
CM
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
d1310b2e 856 *
1edbb734 857 * [start, end] is inclusive This takes the tree lock.
d1310b2e 858 */
1edbb734 859
3fbe5c02
JM
860static int __must_check
861__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 862 unsigned bits, unsigned exclusive_bits,
41074888 863 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 864 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
865{
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
12cfbad9
FDBM
869 struct rb_node **p;
870 struct rb_node *parent;
d1310b2e 871 int err = 0;
d1310b2e
CM
872 u64 last_start;
873 u64 last_end;
42daec29 874
a5dee37d 875 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 876
0ca1f7ce 877 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 878again:
d0164adc 879 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
880 /*
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
886 */
d1310b2e 887 prealloc = alloc_extent_state(mask);
d1310b2e
CM
888 }
889
cad321ad 890 spin_lock(&tree->lock);
9655d298
CM
891 if (cached_state && *cached_state) {
892 state = *cached_state;
df98b6e2 893 if (state->start <= start && state->end > start &&
27a3507d 894 extent_state_in_tree(state)) {
9655d298
CM
895 node = &state->rb_node;
896 goto hit_next;
897 }
898 }
d1310b2e
CM
899 /*
900 * this search will find all the extents that end after
901 * our range starts.
902 */
12cfbad9 903 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 904 if (!node) {
8233767a
XG
905 prealloc = alloc_extent_state_atomic(prealloc);
906 BUG_ON(!prealloc);
12cfbad9 907 err = insert_state(tree, prealloc, start, end,
d38ed27f 908 &p, &parent, &bits, changeset);
c2d904e0
JM
909 if (err)
910 extent_io_tree_panic(tree, err);
911
c42ac0bc 912 cache_state(prealloc, cached_state);
d1310b2e 913 prealloc = NULL;
d1310b2e
CM
914 goto out;
915 }
d1310b2e 916 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 917hit_next:
d1310b2e
CM
918 last_start = state->start;
919 last_end = state->end;
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 *
925 * Just lock what we found and keep going
926 */
927 if (state->start == start && state->end <= end) {
1edbb734 928 if (state->state & exclusive_bits) {
d1310b2e
CM
929 *failed_start = state->start;
930 err = -EEXIST;
931 goto out;
932 }
42daec29 933
d38ed27f 934 set_state_bits(tree, state, &bits, changeset);
2c64c53d 935 cache_state(state, cached_state);
d1310b2e 936 merge_state(tree, state);
5c939df5
YZ
937 if (last_end == (u64)-1)
938 goto out;
939 start = last_end + 1;
d1ac6e41
LB
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
942 !need_resched())
943 goto hit_next;
d1310b2e
CM
944 goto search_again;
945 }
946
947 /*
948 * | ---- desired range ---- |
949 * | state |
950 * or
951 * | ------------- state -------------- |
952 *
953 * We need to split the extent we found, and may flip bits on
954 * second half.
955 *
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
959 *
960 * If the extent we found is inside our range, we set the
961 * desired bit on it.
962 */
963 if (state->start < start) {
1edbb734 964 if (state->state & exclusive_bits) {
d1310b2e
CM
965 *failed_start = start;
966 err = -EEXIST;
967 goto out;
968 }
8233767a
XG
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
d1310b2e 972 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
973 if (err)
974 extent_io_tree_panic(tree, err);
975
d1310b2e
CM
976 prealloc = NULL;
977 if (err)
978 goto out;
979 if (state->end <= end) {
d38ed27f 980 set_state_bits(tree, state, &bits, changeset);
2c64c53d 981 cache_state(state, cached_state);
d1310b2e 982 merge_state(tree, state);
5c939df5
YZ
983 if (last_end == (u64)-1)
984 goto out;
985 start = last_end + 1;
d1ac6e41
LB
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
988 !need_resched())
989 goto hit_next;
d1310b2e
CM
990 }
991 goto search_again;
992 }
993 /*
994 * | ---- desired range ---- |
995 * | state | or | state |
996 *
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
999 */
1000 if (state->start > start) {
1001 u64 this_end;
1002 if (end < last_start)
1003 this_end = end;
1004 else
d397712b 1005 this_end = last_start - 1;
8233767a
XG
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
c7f895a2
XG
1009
1010 /*
1011 * Avoid to free 'prealloc' if it can be merged with
1012 * the later extent.
1013 */
d1310b2e 1014 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1015 NULL, NULL, &bits, changeset);
c2d904e0
JM
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
9ed74f2d
JB
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
d1310b2e
CM
1021 start = this_end + 1;
1022 goto search_again;
1023 }
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 * We need to split the extent, and set the bit
1028 * on the first half
1029 */
1030 if (state->start <= end && state->end > end) {
1edbb734 1031 if (state->state & exclusive_bits) {
d1310b2e
CM
1032 *failed_start = start;
1033 err = -EEXIST;
1034 goto out;
1035 }
8233767a
XG
1036
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 BUG_ON(!prealloc);
d1310b2e 1039 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1040 if (err)
1041 extent_io_tree_panic(tree, err);
d1310b2e 1042
d38ed27f 1043 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1044 cache_state(prealloc, cached_state);
d1310b2e
CM
1045 merge_state(tree, prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049
b5a4ba14
DS
1050search_again:
1051 if (start > end)
1052 goto out;
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1055 cond_resched();
1056 goto again;
d1310b2e
CM
1057
1058out:
cad321ad 1059 spin_unlock(&tree->lock);
d1310b2e
CM
1060 if (prealloc)
1061 free_extent_state(prealloc);
1062
1063 return err;
1064
d1310b2e 1065}
d1310b2e 1066
41074888 1067int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1068 unsigned bits, u64 * failed_start,
41074888 1069 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1070{
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1072 cached_state, mask, NULL);
3fbe5c02
JM
1073}
1074
1075
462d6fac 1076/**
10983f2e
LB
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1078 * another
462d6fac
JB
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
e6138876 1084 * @cached_state: state that we're going to cache
462d6fac
JB
1085 *
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
210aa277
DS
1091 *
1092 * All allocations are done with GFP_NOFS.
462d6fac
JB
1093 */
1094int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1095 unsigned bits, unsigned clear_bits,
210aa277 1096 struct extent_state **cached_state)
462d6fac
JB
1097{
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
12cfbad9
FDBM
1101 struct rb_node **p;
1102 struct rb_node *parent;
462d6fac
JB
1103 int err = 0;
1104 u64 last_start;
1105 u64 last_end;
c8fd3de7 1106 bool first_iteration = true;
462d6fac 1107
a5dee37d 1108 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1109
462d6fac 1110again:
210aa277 1111 if (!prealloc) {
c8fd3de7
FM
1112 /*
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1118 */
210aa277 1119 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1120 if (!prealloc && !first_iteration)
462d6fac
JB
1121 return -ENOMEM;
1122 }
1123
1124 spin_lock(&tree->lock);
e6138876
JB
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
27a3507d 1128 extent_state_in_tree(state)) {
e6138876
JB
1129 node = &state->rb_node;
1130 goto hit_next;
1131 }
1132 }
1133
462d6fac
JB
1134 /*
1135 * this search will find all the extents that end after
1136 * our range starts.
1137 */
12cfbad9 1138 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1139 if (!node) {
1140 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1141 if (!prealloc) {
1142 err = -ENOMEM;
1143 goto out;
1144 }
12cfbad9 1145 err = insert_state(tree, prealloc, start, end,
d38ed27f 1146 &p, &parent, &bits, NULL);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
462d6fac
JB
1151 goto out;
1152 }
1153 state = rb_entry(node, struct extent_state, rb_node);
1154hit_next:
1155 last_start = state->start;
1156 last_end = state->end;
1157
1158 /*
1159 * | ---- desired range ---- |
1160 * | state |
1161 *
1162 * Just lock what we found and keep going
1163 */
1164 if (state->start == start && state->end <= end) {
d38ed27f 1165 set_state_bits(tree, state, &bits, NULL);
e6138876 1166 cache_state(state, cached_state);
fefdc557 1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1168 if (last_end == (u64)-1)
1169 goto out;
462d6fac 1170 start = last_end + 1;
d1ac6e41
LB
1171 if (start < end && state && state->start == start &&
1172 !need_resched())
1173 goto hit_next;
462d6fac
JB
1174 goto search_again;
1175 }
1176
1177 /*
1178 * | ---- desired range ---- |
1179 * | state |
1180 * or
1181 * | ------------- state -------------- |
1182 *
1183 * We need to split the extent we found, and may flip bits on
1184 * second half.
1185 *
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1189 *
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1192 */
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1195 if (!prealloc) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
462d6fac 1199 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1200 if (err)
1201 extent_io_tree_panic(tree, err);
462d6fac
JB
1202 prealloc = NULL;
1203 if (err)
1204 goto out;
1205 if (state->end <= end) {
d38ed27f 1206 set_state_bits(tree, state, &bits, NULL);
e6138876 1207 cache_state(state, cached_state);
fefdc557
QW
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1209 NULL);
462d6fac
JB
1210 if (last_end == (u64)-1)
1211 goto out;
1212 start = last_end + 1;
d1ac6e41
LB
1213 if (start < end && state && state->start == start &&
1214 !need_resched())
1215 goto hit_next;
462d6fac
JB
1216 }
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1222 *
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1225 */
1226 if (state->start > start) {
1227 u64 this_end;
1228 if (end < last_start)
1229 this_end = end;
1230 else
1231 this_end = last_start - 1;
1232
1233 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
462d6fac
JB
1238
1239 /*
1240 * Avoid to free 'prealloc' if it can be merged with
1241 * the later extent.
1242 */
1243 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1244 NULL, NULL, &bits, NULL);
c2d904e0
JM
1245 if (err)
1246 extent_io_tree_panic(tree, err);
e6138876 1247 cache_state(prealloc, cached_state);
462d6fac
JB
1248 prealloc = NULL;
1249 start = this_end + 1;
1250 goto search_again;
1251 }
1252 /*
1253 * | ---- desired range ---- |
1254 * | state |
1255 * We need to split the extent, and set the bit
1256 * on the first half
1257 */
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1260 if (!prealloc) {
1261 err = -ENOMEM;
1262 goto out;
1263 }
462d6fac
JB
1264
1265 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1266 if (err)
1267 extent_io_tree_panic(tree, err);
462d6fac 1268
d38ed27f 1269 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1270 cache_state(prealloc, cached_state);
fefdc557 1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1272 prealloc = NULL;
1273 goto out;
1274 }
1275
462d6fac
JB
1276search_again:
1277 if (start > end)
1278 goto out;
1279 spin_unlock(&tree->lock);
210aa277 1280 cond_resched();
c8fd3de7 1281 first_iteration = false;
462d6fac 1282 goto again;
462d6fac
JB
1283
1284out:
1285 spin_unlock(&tree->lock);
1286 if (prealloc)
1287 free_extent_state(prealloc);
1288
1289 return err;
462d6fac
JB
1290}
1291
d1310b2e 1292/* wrappers around set/clear extent bit */
d38ed27f 1293int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1294 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1295{
1296 /*
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1300 * range.
1301 */
1302 BUG_ON(bits & EXTENT_LOCKED);
1303
2c53b912 1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1305 changeset);
1306}
1307
fefdc557
QW
1308int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1311{
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1314}
1315
fefdc557 1316int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1317 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1318{
1319 /*
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1322 */
1323 BUG_ON(bits & EXTENT_LOCKED);
1324
f734c44a 1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1326 changeset);
1327}
1328
d352ac68
CM
1329/*
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1332 */
1edbb734 1333int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1334 struct extent_state **cached_state)
d1310b2e
CM
1335{
1336 int err;
1337 u64 failed_start;
9ee49a04 1338
d1310b2e 1339 while (1) {
ff13db41 1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1341 EXTENT_LOCKED, &failed_start,
d38ed27f 1342 cached_state, GFP_NOFS, NULL);
d0082371 1343 if (err == -EEXIST) {
d1310b2e
CM
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
d0082371 1346 } else
d1310b2e 1347 break;
d1310b2e
CM
1348 WARN_ON(start > end);
1349 }
1350 return err;
1351}
d1310b2e 1352
d0082371 1353int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1354{
1355 int err;
1356 u64 failed_start;
1357
3fbe5c02 1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1359 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1364 return 0;
6643558d 1365 }
25179201
JB
1366 return 1;
1367}
25179201 1368
bd1fa4f0 1369void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1370{
09cbfeaf
KS
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
09cbfeaf 1379 put_page(page);
4adaa611
CM
1380 index++;
1381 }
4adaa611
CM
1382}
1383
f6311572 1384void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1385{
09cbfeaf
KS
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1388 struct page *page;
1389
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1393 __set_page_dirty_nobuffers(page);
8d38633c 1394 account_page_redirty(page);
09cbfeaf 1395 put_page(page);
4adaa611
CM
1396 index++;
1397 }
4adaa611
CM
1398}
1399
d1310b2e
CM
1400/*
1401 * helper function to set both pages and extents in the tree writeback
1402 */
35de6db2 1403static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1404{
09cbfeaf
KS
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
79787eaa 1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1412 set_page_writeback(page);
09cbfeaf 1413 put_page(page);
d1310b2e
CM
1414 index++;
1415 }
d1310b2e 1416}
d1310b2e 1417
d352ac68
CM
1418/* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1421 */
48a3b636
ES
1422static struct extent_state *
1423find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1424 u64 start, unsigned bits)
d7fc640e
CM
1425{
1426 struct rb_node *node;
1427 struct extent_state *state;
1428
1429 /*
1430 * this search will find all the extents that end after
1431 * our range starts.
1432 */
1433 node = tree_search(tree, start);
d397712b 1434 if (!node)
d7fc640e 1435 goto out;
d7fc640e 1436
d397712b 1437 while (1) {
d7fc640e 1438 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1439 if (state->end >= start && (state->state & bits))
d7fc640e 1440 return state;
d397712b 1441
d7fc640e
CM
1442 node = rb_next(node);
1443 if (!node)
1444 break;
1445 }
1446out:
1447 return NULL;
1448}
d7fc640e 1449
69261c4b
XG
1450/*
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1454 *
477d7eaf 1455 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1456 */
1457int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1458 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1459 struct extent_state **cached_state)
69261c4b
XG
1460{
1461 struct extent_state *state;
e6138876 1462 struct rb_node *n;
69261c4b
XG
1463 int ret = 1;
1464
1465 spin_lock(&tree->lock);
e6138876
JB
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
27a3507d 1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1469 n = rb_next(&state->rb_node);
1470 while (n) {
1471 state = rb_entry(n, struct extent_state,
1472 rb_node);
1473 if (state->state & bits)
1474 goto got_it;
1475 n = rb_next(n);
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 goto out;
1480 }
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1483 }
1484
69261c4b 1485 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1486got_it:
69261c4b 1487 if (state) {
e38e2ed7 1488 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1491 ret = 0;
1492 }
e6138876 1493out:
69261c4b
XG
1494 spin_unlock(&tree->lock);
1495 return ret;
1496}
1497
d352ac68
CM
1498/*
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1501 *
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1503 */
c8b97818 1504static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
d1310b2e
CM
1507{
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1511 u64 found = 0;
1512 u64 total_bytes = 0;
1513
cad321ad 1514 spin_lock(&tree->lock);
c8b97818 1515
d1310b2e
CM
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
80ea96b1 1520 node = tree_search(tree, cur_start);
2b114d1d 1521 if (!node) {
3b951516
CM
1522 if (!found)
1523 *end = (u64)-1;
d1310b2e
CM
1524 goto out;
1525 }
1526
d397712b 1527 while (1) {
d1310b2e 1528 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1531 goto out;
1532 }
1533 if (!(state->state & EXTENT_DELALLOC)) {
1534 if (!found)
1535 *end = state->end;
1536 goto out;
1537 }
c2a128d2 1538 if (!found) {
d1310b2e 1539 *start = state->start;
c2a128d2
JB
1540 *cached_state = state;
1541 atomic_inc(&state->refs);
1542 }
d1310b2e
CM
1543 found++;
1544 *end = state->end;
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
d1310b2e 1547 total_bytes += state->end - state->start + 1;
7bf811a5 1548 if (total_bytes >= max_bytes)
573aecaf 1549 break;
573aecaf 1550 if (!node)
d1310b2e
CM
1551 break;
1552 }
1553out:
cad321ad 1554 spin_unlock(&tree->lock);
d1310b2e
CM
1555 return found;
1556}
1557
da2c7009
LB
1558static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1562
143bede5
JM
1563static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
c8b97818 1566{
09cbfeaf
KS
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1569
76c0021d 1570 ASSERT(locked_page);
c8b97818 1571 if (index == locked_page->index && end_index == index)
143bede5 1572 return;
c8b97818 1573
76c0021d
LB
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 PAGE_UNLOCK, NULL);
c8b97818
CM
1576}
1577
1578static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1580 u64 delalloc_start,
1581 u64 delalloc_end)
1582{
09cbfeaf 1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1584 unsigned long index_ret = index;
09cbfeaf 1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1586 int ret;
c8b97818 1587
76c0021d 1588 ASSERT(locked_page);
c8b97818
CM
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
76c0021d
LB
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1594 if (ret == -EAGAIN)
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1597 return ret;
1598}
1599
1600/*
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1603 *
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1605 */
294e30fe
JB
1606STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
c8b97818
CM
1610{
1611 u64 delalloc_start;
1612 u64 delalloc_end;
1613 u64 found;
9655d298 1614 struct extent_state *cached_state = NULL;
c8b97818
CM
1615 int ret;
1616 int loops = 0;
1617
1618again:
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1621 delalloc_end = 0;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1623 max_bytes, &cached_state);
70b99e69 1624 if (!found || delalloc_end <= *start) {
c8b97818
CM
1625 *start = delalloc_start;
1626 *end = delalloc_end;
c2a128d2 1627 free_extent_state(cached_state);
385fe0be 1628 return 0;
c8b97818
CM
1629 }
1630
70b99e69
CM
1631 /*
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1634 * locked_page
1635 */
d397712b 1636 if (delalloc_start < *start)
70b99e69 1637 delalloc_start = *start;
70b99e69 1638
c8b97818
CM
1639 /*
1640 * make sure to limit the number of pages we try to lock down
c8b97818 1641 */
7bf811a5
JB
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1644
c8b97818
CM
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1651 */
9655d298 1652 free_extent_state(cached_state);
7d788742 1653 cached_state = NULL;
c8b97818 1654 if (!loops) {
09cbfeaf 1655 max_bytes = PAGE_SIZE;
c8b97818
CM
1656 loops = 1;
1657 goto again;
1658 } else {
1659 found = 0;
1660 goto out_failed;
1661 }
1662 }
79787eaa 1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1664
1665 /* step three, lock the state bits for the whole range */
ff13db41 1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1667
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1670 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1671 if (!ret) {
9655d298
CM
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
c8b97818
CM
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1676 cond_resched();
1677 goto again;
1678 }
9655d298 1679 free_extent_state(cached_state);
c8b97818
CM
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1682out_failed:
1683 return found;
1684}
1685
da2c7009
LB
1686static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1690{
873695b3 1691 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1692 unsigned long pages_locked = 0;
873695b3 1693 pgoff_t index = start_index;
c8b97818 1694 struct page *pages[16];
873695b3 1695 unsigned ret;
da2c7009 1696 int err = 0;
c8b97818 1697 int i;
771ed689 1698
da2c7009
LB
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1702 }
1703
704de49d 1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1705 mapping_set_error(mapping, -EIO);
704de49d 1706
d397712b 1707 while (nr_pages > 0) {
873695b3 1708 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1711 if (ret == 0) {
1712 /*
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1715 */
1716 ASSERT(page_ops & PAGE_LOCK);
1717 return ret;
1718 }
8b62b72b 1719
da2c7009 1720 for (i = 0; i < ret; i++) {
c2790a2e 1721 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1722 SetPagePrivate2(pages[i]);
1723
c8b97818 1724 if (pages[i] == locked_page) {
09cbfeaf 1725 put_page(pages[i]);
da2c7009 1726 pages_locked++;
c8b97818
CM
1727 continue;
1728 }
c2790a2e 1729 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1730 clear_page_dirty_for_io(pages[i]);
c2790a2e 1731 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1732 set_page_writeback(pages[i]);
704de49d
FM
1733 if (page_ops & PAGE_SET_ERROR)
1734 SetPageError(pages[i]);
c2790a2e 1735 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1736 end_page_writeback(pages[i]);
c2790a2e 1737 if (page_ops & PAGE_UNLOCK)
771ed689 1738 unlock_page(pages[i]);
da2c7009
LB
1739 if (page_ops & PAGE_LOCK) {
1740 lock_page(pages[i]);
1741 if (!PageDirty(pages[i]) ||
1742 pages[i]->mapping != mapping) {
1743 unlock_page(pages[i]);
1744 put_page(pages[i]);
1745 err = -EAGAIN;
1746 goto out;
1747 }
1748 }
09cbfeaf 1749 put_page(pages[i]);
da2c7009 1750 pages_locked++;
c8b97818
CM
1751 }
1752 nr_pages -= ret;
1753 index += ret;
1754 cond_resched();
1755 }
da2c7009
LB
1756out:
1757 if (err && index_ret)
1758 *index_ret = start_index + pages_locked - 1;
1759 return err;
c8b97818 1760}
c8b97818 1761
873695b3
LB
1762void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1763 u64 delalloc_end, struct page *locked_page,
1764 unsigned clear_bits,
1765 unsigned long page_ops)
1766{
1767 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1768 NULL, GFP_NOFS);
1769
1770 __process_pages_contig(inode->i_mapping, locked_page,
1771 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1772 page_ops, NULL);
873695b3
LB
1773}
1774
d352ac68
CM
1775/*
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached. The total number found is returned.
1779 */
d1310b2e
CM
1780u64 count_range_bits(struct extent_io_tree *tree,
1781 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1782 unsigned bits, int contig)
d1310b2e
CM
1783{
1784 struct rb_node *node;
1785 struct extent_state *state;
1786 u64 cur_start = *start;
1787 u64 total_bytes = 0;
ec29ed5b 1788 u64 last = 0;
d1310b2e
CM
1789 int found = 0;
1790
fae7f21c 1791 if (WARN_ON(search_end <= cur_start))
d1310b2e 1792 return 0;
d1310b2e 1793
cad321ad 1794 spin_lock(&tree->lock);
d1310b2e
CM
1795 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 total_bytes = tree->dirty_bytes;
1797 goto out;
1798 }
1799 /*
1800 * this search will find all the extents that end after
1801 * our range starts.
1802 */
80ea96b1 1803 node = tree_search(tree, cur_start);
d397712b 1804 if (!node)
d1310b2e 1805 goto out;
d1310b2e 1806
d397712b 1807 while (1) {
d1310b2e
CM
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start > search_end)
1810 break;
ec29ed5b
CM
1811 if (contig && found && state->start > last + 1)
1812 break;
1813 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1814 total_bytes += min(search_end, state->end) + 1 -
1815 max(cur_start, state->start);
1816 if (total_bytes >= max_bytes)
1817 break;
1818 if (!found) {
af60bed2 1819 *start = max(cur_start, state->start);
d1310b2e
CM
1820 found = 1;
1821 }
ec29ed5b
CM
1822 last = state->end;
1823 } else if (contig && found) {
1824 break;
d1310b2e
CM
1825 }
1826 node = rb_next(node);
1827 if (!node)
1828 break;
1829 }
1830out:
cad321ad 1831 spin_unlock(&tree->lock);
d1310b2e
CM
1832 return total_bytes;
1833}
b2950863 1834
d352ac68
CM
1835/*
1836 * set the private field for a given byte offset in the tree. If there isn't
1837 * an extent_state there already, this does nothing.
1838 */
f827ba9a 1839static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1840 struct io_failure_record *failrec)
d1310b2e
CM
1841{
1842 struct rb_node *node;
1843 struct extent_state *state;
1844 int ret = 0;
1845
cad321ad 1846 spin_lock(&tree->lock);
d1310b2e
CM
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
80ea96b1 1851 node = tree_search(tree, start);
2b114d1d 1852 if (!node) {
d1310b2e
CM
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 if (state->start != start) {
1858 ret = -ENOENT;
1859 goto out;
1860 }
47dc196a 1861 state->failrec = failrec;
d1310b2e 1862out:
cad321ad 1863 spin_unlock(&tree->lock);
d1310b2e
CM
1864 return ret;
1865}
1866
f827ba9a 1867static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1868 struct io_failure_record **failrec)
d1310b2e
CM
1869{
1870 struct rb_node *node;
1871 struct extent_state *state;
1872 int ret = 0;
1873
cad321ad 1874 spin_lock(&tree->lock);
d1310b2e
CM
1875 /*
1876 * this search will find all the extents that end after
1877 * our range starts.
1878 */
80ea96b1 1879 node = tree_search(tree, start);
2b114d1d 1880 if (!node) {
d1310b2e
CM
1881 ret = -ENOENT;
1882 goto out;
1883 }
1884 state = rb_entry(node, struct extent_state, rb_node);
1885 if (state->start != start) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
47dc196a 1889 *failrec = state->failrec;
d1310b2e 1890out:
cad321ad 1891 spin_unlock(&tree->lock);
d1310b2e
CM
1892 return ret;
1893}
1894
1895/*
1896 * searches a range in the state tree for a given mask.
70dec807 1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1898 * has the bits set. Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1900 */
1901int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1902 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1903{
1904 struct extent_state *state = NULL;
1905 struct rb_node *node;
1906 int bitset = 0;
d1310b2e 1907
cad321ad 1908 spin_lock(&tree->lock);
27a3507d 1909 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1910 cached->end > start)
9655d298
CM
1911 node = &cached->rb_node;
1912 else
1913 node = tree_search(tree, start);
d1310b2e
CM
1914 while (node && start <= end) {
1915 state = rb_entry(node, struct extent_state, rb_node);
1916
1917 if (filled && state->start > start) {
1918 bitset = 0;
1919 break;
1920 }
1921
1922 if (state->start > end)
1923 break;
1924
1925 if (state->state & bits) {
1926 bitset = 1;
1927 if (!filled)
1928 break;
1929 } else if (filled) {
1930 bitset = 0;
1931 break;
1932 }
46562cec
CM
1933
1934 if (state->end == (u64)-1)
1935 break;
1936
d1310b2e
CM
1937 start = state->end + 1;
1938 if (start > end)
1939 break;
1940 node = rb_next(node);
1941 if (!node) {
1942 if (filled)
1943 bitset = 0;
1944 break;
1945 }
1946 }
cad321ad 1947 spin_unlock(&tree->lock);
d1310b2e
CM
1948 return bitset;
1949}
d1310b2e
CM
1950
1951/*
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1954 */
143bede5 1955static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1956{
4eee4fa4 1957 u64 start = page_offset(page);
09cbfeaf 1958 u64 end = start + PAGE_SIZE - 1;
9655d298 1959 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1960 SetPageUptodate(page);
d1310b2e
CM
1961}
1962
4ac1f4ac 1963int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1964{
1965 int ret;
1966 int err = 0;
4ac1f4ac 1967 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
4a54c8c1 1968
47dc196a 1969 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1970 ret = clear_extent_bits(failure_tree, rec->start,
1971 rec->start + rec->len - 1,
91166212 1972 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1973 if (ret)
1974 err = ret;
1975
4ac1f4ac 1976 ret = clear_extent_bits(&inode->io_tree, rec->start,
53b381b3 1977 rec->start + rec->len - 1,
91166212 1978 EXTENT_DAMAGED);
53b381b3
DW
1979 if (ret && !err)
1980 err = ret;
4a54c8c1
JS
1981
1982 kfree(rec);
1983 return err;
1984}
1985
4a54c8c1
JS
1986/*
1987 * this bypasses the standard btrfs submit functions deliberately, as
1988 * the standard behavior is to write all copies in a raid setup. here we only
1989 * want to write the one bad copy. so we do the mapping for ourselves and issue
1990 * submit_bio directly.
3ec706c8 1991 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1992 * actually prevents the read that triggered the error from finishing.
1993 * currently, there can be no more than two copies of every data bit. thus,
1994 * exactly one rewrite is required.
1995 */
9d4f7f8a
NB
1996int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1997 u64 logical, struct page *page,
1998 unsigned int pg_offset, int mirror_num)
4a54c8c1 1999{
9d4f7f8a 2000 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2001 struct bio *bio;
2002 struct btrfs_device *dev;
4a54c8c1
JS
2003 u64 map_length = 0;
2004 u64 sector;
2005 struct btrfs_bio *bbio = NULL;
53b381b3 2006 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2007 int ret;
2008
908960c6 2009 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2010 BUG_ON(!mirror_num);
2011
53b381b3
DW
2012 /* we can't repair anything in raid56 yet */
2013 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2014 return 0;
2015
9be3395b 2016 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2017 if (!bio)
2018 return -EIO;
4f024f37 2019 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2020 map_length = length;
2021
b5de8d0d
FM
2022 /*
2023 * Avoid races with device replace and make sure our bbio has devices
2024 * associated to its stripes that don't go away while we are doing the
2025 * read repair operation.
2026 */
2027 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2028 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4a54c8c1
JS
2029 &map_length, &bbio, mirror_num);
2030 if (ret) {
b5de8d0d 2031 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 BUG_ON(mirror_num != bbio->mirror_num);
2036 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2037 bio->bi_iter.bi_sector = sector;
4a54c8c1 2038 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2039 btrfs_put_bbio(bbio);
4a54c8c1 2040 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2041 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2042 bio_put(bio);
2043 return -EIO;
2044 }
2045 bio->bi_bdev = dev->bdev;
70fd7614 2046 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2047 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2048
4e49ea4a 2049 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2050 /* try to remap that extent elsewhere? */
b5de8d0d 2051 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2052 bio_put(bio);
442a4f63 2053 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2054 return -EIO;
2055 }
2056
b14af3b4
DS
2057 btrfs_info_rl_in_rcu(fs_info,
2058 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
9d4f7f8a 2059 btrfs_ino(inode), start,
1203b681 2060 rcu_str_deref(dev->name), sector);
b5de8d0d 2061 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2062 bio_put(bio);
2063 return 0;
2064}
2065
2ff7e61e
JM
2066int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2067 struct extent_buffer *eb, int mirror_num)
ea466794 2068{
ea466794
JB
2069 u64 start = eb->start;
2070 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2071 int ret = 0;
ea466794 2072
0b246afa 2073 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2074 return -EROFS;
2075
ea466794 2076 for (i = 0; i < num_pages; i++) {
fb85fc9a 2077 struct page *p = eb->pages[i];
1203b681 2078
9d4f7f8a 2079 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
09cbfeaf 2080 PAGE_SIZE, start, p,
1203b681 2081 start - page_offset(p), mirror_num);
ea466794
JB
2082 if (ret)
2083 break;
09cbfeaf 2084 start += PAGE_SIZE;
ea466794
JB
2085 }
2086
2087 return ret;
2088}
2089
4a54c8c1
JS
2090/*
2091 * each time an IO finishes, we do a fast check in the IO failure tree
2092 * to see if we need to process or clean up an io_failure_record
2093 */
b30cb441 2094int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
8b110e39 2095 unsigned int pg_offset)
4a54c8c1
JS
2096{
2097 u64 private;
4a54c8c1 2098 struct io_failure_record *failrec;
b30cb441 2099 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2100 struct extent_state *state;
2101 int num_copies;
4a54c8c1 2102 int ret;
4a54c8c1
JS
2103
2104 private = 0;
b30cb441 2105 ret = count_range_bits(&inode->io_failure_tree, &private,
4a54c8c1
JS
2106 (u64)-1, 1, EXTENT_DIRTY, 0);
2107 if (!ret)
2108 return 0;
2109
b30cb441 2110 ret = get_state_failrec(&inode->io_failure_tree, start,
47dc196a 2111 &failrec);
4a54c8c1
JS
2112 if (ret)
2113 return 0;
2114
4a54c8c1
JS
2115 BUG_ON(!failrec->this_mirror);
2116
2117 if (failrec->in_validation) {
2118 /* there was no real error, just free the record */
ab8d0fc4
JM
2119 btrfs_debug(fs_info,
2120 "clean_io_failure: freeing dummy error at %llu",
2121 failrec->start);
4a54c8c1
JS
2122 goto out;
2123 }
908960c6
ID
2124 if (fs_info->sb->s_flags & MS_RDONLY)
2125 goto out;
4a54c8c1 2126
b30cb441
NB
2127 spin_lock(&inode->io_tree.lock);
2128 state = find_first_extent_bit_state(&inode->io_tree,
4a54c8c1
JS
2129 failrec->start,
2130 EXTENT_LOCKED);
b30cb441 2131 spin_unlock(&inode->io_tree.lock);
4a54c8c1 2132
883d0de4
MX
2133 if (state && state->start <= failrec->start &&
2134 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2135 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2136 failrec->len);
4a54c8c1 2137 if (num_copies > 1) {
b30cb441 2138 repair_io_failure(inode, start, failrec->len,
454ff3de 2139 failrec->logical, page,
1203b681 2140 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2141 }
2142 }
2143
2144out:
b30cb441 2145 free_io_failure(inode, failrec);
4a54c8c1 2146
454ff3de 2147 return 0;
4a54c8c1
JS
2148}
2149
f612496b
MX
2150/*
2151 * Can be called when
2152 * - hold extent lock
2153 * - under ordered extent
2154 * - the inode is freeing
2155 */
7ab7956e 2156void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2157{
7ab7956e 2158 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2159 struct io_failure_record *failrec;
2160 struct extent_state *state, *next;
2161
2162 if (RB_EMPTY_ROOT(&failure_tree->state))
2163 return;
2164
2165 spin_lock(&failure_tree->lock);
2166 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2167 while (state) {
2168 if (state->start > end)
2169 break;
2170
2171 ASSERT(state->end <= end);
2172
2173 next = next_state(state);
2174
47dc196a 2175 failrec = state->failrec;
f612496b
MX
2176 free_extent_state(state);
2177 kfree(failrec);
2178
2179 state = next;
2180 }
2181 spin_unlock(&failure_tree->lock);
2182}
2183
2fe6303e 2184int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2185 struct io_failure_record **failrec_ret)
4a54c8c1 2186{
ab8d0fc4 2187 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2188 struct io_failure_record *failrec;
4a54c8c1 2189 struct extent_map *em;
4a54c8c1
JS
2190 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2191 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2193 int ret;
4a54c8c1
JS
2194 u64 logical;
2195
47dc196a 2196 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2197 if (ret) {
2198 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2199 if (!failrec)
2200 return -ENOMEM;
2fe6303e 2201
4a54c8c1
JS
2202 failrec->start = start;
2203 failrec->len = end - start + 1;
2204 failrec->this_mirror = 0;
2205 failrec->bio_flags = 0;
2206 failrec->in_validation = 0;
2207
2208 read_lock(&em_tree->lock);
2209 em = lookup_extent_mapping(em_tree, start, failrec->len);
2210 if (!em) {
2211 read_unlock(&em_tree->lock);
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215
68ba990f 2216 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2217 free_extent_map(em);
2218 em = NULL;
2219 }
2220 read_unlock(&em_tree->lock);
7a2d6a64 2221 if (!em) {
4a54c8c1
JS
2222 kfree(failrec);
2223 return -EIO;
2224 }
2fe6303e 2225
4a54c8c1
JS
2226 logical = start - em->start;
2227 logical = em->block_start + logical;
2228 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2229 logical = em->block_start;
2230 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2231 extent_set_compress_type(&failrec->bio_flags,
2232 em->compress_type);
2233 }
2fe6303e 2234
ab8d0fc4
JM
2235 btrfs_debug(fs_info,
2236 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2237 logical, start, failrec->len);
2fe6303e 2238
4a54c8c1
JS
2239 failrec->logical = logical;
2240 free_extent_map(em);
2241
2242 /* set the bits in the private failure tree */
2243 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2244 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2245 if (ret >= 0)
47dc196a 2246 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2247 /* set the bits in the inode's tree */
2248 if (ret >= 0)
ceeb0ae7 2249 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2250 if (ret < 0) {
2251 kfree(failrec);
2252 return ret;
2253 }
2254 } else {
ab8d0fc4
JM
2255 btrfs_debug(fs_info,
2256 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2257 failrec->logical, failrec->start, failrec->len,
2258 failrec->in_validation);
4a54c8c1
JS
2259 /*
2260 * when data can be on disk more than twice, add to failrec here
2261 * (e.g. with a list for failed_mirror) to make
2262 * clean_io_failure() clean all those errors at once.
2263 */
2264 }
2fe6303e
MX
2265
2266 *failrec_ret = failrec;
2267
2268 return 0;
2269}
2270
2271int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2272 struct io_failure_record *failrec, int failed_mirror)
2273{
ab8d0fc4 2274 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2275 int num_copies;
2276
ab8d0fc4 2277 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2278 if (num_copies == 1) {
2279 /*
2280 * we only have a single copy of the data, so don't bother with
2281 * all the retry and error correction code that follows. no
2282 * matter what the error is, it is very likely to persist.
2283 */
ab8d0fc4
JM
2284 btrfs_debug(fs_info,
2285 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2286 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2287 return 0;
4a54c8c1
JS
2288 }
2289
4a54c8c1
JS
2290 /*
2291 * there are two premises:
2292 * a) deliver good data to the caller
2293 * b) correct the bad sectors on disk
2294 */
2295 if (failed_bio->bi_vcnt > 1) {
2296 /*
2297 * to fulfill b), we need to know the exact failing sectors, as
2298 * we don't want to rewrite any more than the failed ones. thus,
2299 * we need separate read requests for the failed bio
2300 *
2301 * if the following BUG_ON triggers, our validation request got
2302 * merged. we need separate requests for our algorithm to work.
2303 */
2304 BUG_ON(failrec->in_validation);
2305 failrec->in_validation = 1;
2306 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2307 } else {
2308 /*
2309 * we're ready to fulfill a) and b) alongside. get a good copy
2310 * of the failed sector and if we succeed, we have setup
2311 * everything for repair_io_failure to do the rest for us.
2312 */
2313 if (failrec->in_validation) {
2314 BUG_ON(failrec->this_mirror != failed_mirror);
2315 failrec->in_validation = 0;
2316 failrec->this_mirror = 0;
2317 }
2318 failrec->failed_mirror = failed_mirror;
2319 failrec->this_mirror++;
2320 if (failrec->this_mirror == failed_mirror)
2321 failrec->this_mirror++;
4a54c8c1
JS
2322 }
2323
facc8a22 2324 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2325 btrfs_debug(fs_info,
2326 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2327 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2328 return 0;
4a54c8c1
JS
2329 }
2330
2fe6303e
MX
2331 return 1;
2332}
2333
2334
2335struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
8b110e39 2338 bio_end_io_t *endio_func, void *data)
2fe6303e 2339{
0b246afa 2340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2341 struct bio *bio;
2342 struct btrfs_io_bio *btrfs_failed_bio;
2343 struct btrfs_io_bio *btrfs_bio;
2344
9be3395b 2345 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2346 if (!bio)
2347 return NULL;
2348
2349 bio->bi_end_io = endio_func;
4f024f37 2350 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2351 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2352 bio->bi_iter.bi_size = 0;
8b110e39 2353 bio->bi_private = data;
4a54c8c1 2354
facc8a22
MX
2355 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2356 if (btrfs_failed_bio->csum) {
facc8a22
MX
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2363 csum_size);
2364 }
2365
2fe6303e
MX
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369}
2370
2371/*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382{
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
70fd7614 2387 int read_mode = 0;
2fe6303e
MX
2388 int ret;
2389
1f7ad75b 2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
4ac1f4ac 2398 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
70fd7614 2403 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2404
2405 phy_offset >>= inode->i_sb->s_blocksize_bits;
2406 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2407 start - page_offset(page),
8b110e39
MX
2408 (int)phy_offset, failed_bio->bi_end_io,
2409 NULL);
2fe6303e 2410 if (!bio) {
4ac1f4ac 2411 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2412 return -EIO;
2413 }
1f7ad75b 2414 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2415
ab8d0fc4
JM
2416 btrfs_debug(btrfs_sb(inode->i_sb),
2417 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2418 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2419
81a75f67 2420 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
013bd4c3 2421 failrec->bio_flags, 0);
6c387ab2 2422 if (ret) {
4ac1f4ac 2423 free_io_failure(BTRFS_I(inode), failrec);
6c387ab2
MX
2424 bio_put(bio);
2425 }
2426
013bd4c3 2427 return ret;
4a54c8c1
JS
2428}
2429
d1310b2e
CM
2430/* lots and lots of room for performance fixes in the end_bio funcs */
2431
b5227c07 2432void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2433{
2434 int uptodate = (err == 0);
2435 struct extent_io_tree *tree;
3e2426bd 2436 int ret = 0;
87826df0
JM
2437
2438 tree = &BTRFS_I(page->mapping->host)->io_tree;
2439
c3988d63
DS
2440 if (tree->ops && tree->ops->writepage_end_io_hook)
2441 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2442 uptodate);
87826df0 2443
87826df0 2444 if (!uptodate) {
87826df0
JM
2445 ClearPageUptodate(page);
2446 SetPageError(page);
5dca6eea
LB
2447 ret = ret < 0 ? ret : -EIO;
2448 mapping_set_error(page->mapping, ret);
87826df0 2449 }
87826df0
JM
2450}
2451
d1310b2e
CM
2452/*
2453 * after a writepage IO is done, we need to:
2454 * clear the uptodate bits on error
2455 * clear the writeback bits in the extent tree for this IO
2456 * end_page_writeback if the page has no more pending IO
2457 *
2458 * Scheduling is not allowed, so the extent state tree is expected
2459 * to have one and only one object corresponding to this IO.
2460 */
4246a0b6 2461static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2462{
2c30c71b 2463 struct bio_vec *bvec;
d1310b2e
CM
2464 u64 start;
2465 u64 end;
2c30c71b 2466 int i;
d1310b2e 2467
2c30c71b 2468 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2469 struct page *page = bvec->bv_page;
0b246afa
JM
2470 struct inode *inode = page->mapping->host;
2471 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2472
17a5adcc
AO
2473 /* We always issue full-page reads, but if some block
2474 * in a page fails to read, blk_update_request() will
2475 * advance bv_offset and adjust bv_len to compensate.
2476 * Print a warning for nonzero offsets, and an error
2477 * if they don't add up to a full page. */
09cbfeaf
KS
2478 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2479 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2480 btrfs_err(fs_info,
efe120a0
FH
2481 "partial page write in btrfs with offset %u and length %u",
2482 bvec->bv_offset, bvec->bv_len);
2483 else
0b246afa 2484 btrfs_info(fs_info,
5d163e0e 2485 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2486 bvec->bv_offset, bvec->bv_len);
2487 }
d1310b2e 2488
17a5adcc
AO
2489 start = page_offset(page);
2490 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2491
b5227c07 2492 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2493 end_page_writeback(page);
2c30c71b 2494 }
2b1f55b0 2495
d1310b2e 2496 bio_put(bio);
d1310b2e
CM
2497}
2498
883d0de4
MX
2499static void
2500endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2501 int uptodate)
2502{
2503 struct extent_state *cached = NULL;
2504 u64 end = start + len - 1;
2505
2506 if (uptodate && tree->track_uptodate)
2507 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2508 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2509}
2510
d1310b2e
CM
2511/*
2512 * after a readpage IO is done, we need to:
2513 * clear the uptodate bits on error
2514 * set the uptodate bits if things worked
2515 * set the page up to date if all extents in the tree are uptodate
2516 * clear the lock bit in the extent tree
2517 * unlock the page if there are no other extents locked for it
2518 *
2519 * Scheduling is not allowed, so the extent state tree is expected
2520 * to have one and only one object corresponding to this IO.
2521 */
4246a0b6 2522static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2523{
2c30c71b 2524 struct bio_vec *bvec;
4246a0b6 2525 int uptodate = !bio->bi_error;
facc8a22 2526 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2527 struct extent_io_tree *tree;
facc8a22 2528 u64 offset = 0;
d1310b2e
CM
2529 u64 start;
2530 u64 end;
facc8a22 2531 u64 len;
883d0de4
MX
2532 u64 extent_start = 0;
2533 u64 extent_len = 0;
5cf1ab56 2534 int mirror;
d1310b2e 2535 int ret;
2c30c71b 2536 int i;
d1310b2e 2537
2c30c71b 2538 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2539 struct page *page = bvec->bv_page;
a71754fc 2540 struct inode *inode = page->mapping->host;
ab8d0fc4 2541 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2542
ab8d0fc4
JM
2543 btrfs_debug(fs_info,
2544 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2545 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2546 io_bio->mirror_num);
a71754fc 2547 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2548
17a5adcc
AO
2549 /* We always issue full-page reads, but if some block
2550 * in a page fails to read, blk_update_request() will
2551 * advance bv_offset and adjust bv_len to compensate.
2552 * Print a warning for nonzero offsets, and an error
2553 * if they don't add up to a full page. */
09cbfeaf
KS
2554 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2555 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2556 btrfs_err(fs_info,
2557 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2558 bvec->bv_offset, bvec->bv_len);
2559 else
ab8d0fc4
JM
2560 btrfs_info(fs_info,
2561 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2562 bvec->bv_offset, bvec->bv_len);
2563 }
d1310b2e 2564
17a5adcc
AO
2565 start = page_offset(page);
2566 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2567 len = bvec->bv_len;
d1310b2e 2568
9be3395b 2569 mirror = io_bio->mirror_num;
20c9801d 2570 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2571 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2572 page, start, end,
2573 mirror);
5ee0844d 2574 if (ret)
d1310b2e 2575 uptodate = 0;
5ee0844d 2576 else
b30cb441
NB
2577 clean_io_failure(BTRFS_I(inode), start,
2578 page, 0);
d1310b2e 2579 }
ea466794 2580
f2a09da9
MX
2581 if (likely(uptodate))
2582 goto readpage_ok;
2583
20a7db8a 2584 if (tree->ops) {
5cf1ab56 2585 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2586 if (!ret && !bio->bi_error)
ea466794 2587 uptodate = 1;
f2a09da9 2588 } else {
f4a8e656
JS
2589 /*
2590 * The generic bio_readpage_error handles errors the
2591 * following way: If possible, new read requests are
2592 * created and submitted and will end up in
2593 * end_bio_extent_readpage as well (if we're lucky, not
2594 * in the !uptodate case). In that case it returns 0 and
2595 * we just go on with the next page in our bio. If it
2596 * can't handle the error it will return -EIO and we
2597 * remain responsible for that page.
2598 */
facc8a22
MX
2599 ret = bio_readpage_error(bio, offset, page, start, end,
2600 mirror);
7e38326f 2601 if (ret == 0) {
4246a0b6 2602 uptodate = !bio->bi_error;
38c1c2e4 2603 offset += len;
7e38326f
CM
2604 continue;
2605 }
2606 }
f2a09da9 2607readpage_ok:
883d0de4 2608 if (likely(uptodate)) {
a71754fc 2609 loff_t i_size = i_size_read(inode);
09cbfeaf 2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2611 unsigned off;
a71754fc
JB
2612
2613 /* Zero out the end if this page straddles i_size */
09cbfeaf 2614 off = i_size & (PAGE_SIZE-1);
a583c026 2615 if (page->index == end_index && off)
09cbfeaf 2616 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2617 SetPageUptodate(page);
70dec807 2618 } else {
17a5adcc
AO
2619 ClearPageUptodate(page);
2620 SetPageError(page);
70dec807 2621 }
17a5adcc 2622 unlock_page(page);
facc8a22 2623 offset += len;
883d0de4
MX
2624
2625 if (unlikely(!uptodate)) {
2626 if (extent_len) {
2627 endio_readpage_release_extent(tree,
2628 extent_start,
2629 extent_len, 1);
2630 extent_start = 0;
2631 extent_len = 0;
2632 }
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2640 } else {
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 }
2c30c71b 2646 }
d1310b2e 2647
883d0de4
MX
2648 if (extent_len)
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2650 uptodate);
facc8a22 2651 if (io_bio->end_io)
4246a0b6 2652 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2653 bio_put(bio);
d1310b2e
CM
2654}
2655
9be3395b
CM
2656/*
2657 * this allocates from the btrfs_bioset. We're returning a bio right now
2658 * but you can call btrfs_io_bio for the appropriate container_of magic
2659 */
88f794ed
MX
2660struct bio *
2661btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2662 gfp_t gfp_flags)
d1310b2e 2663{
facc8a22 2664 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2665 struct bio *bio;
2666
9be3395b 2667 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2668
2669 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2670 while (!bio && (nr_vecs /= 2)) {
2671 bio = bio_alloc_bioset(gfp_flags,
2672 nr_vecs, btrfs_bioset);
2673 }
d1310b2e
CM
2674 }
2675
2676 if (bio) {
2677 bio->bi_bdev = bdev;
4f024f37 2678 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2679 btrfs_bio = btrfs_io_bio(bio);
2680 btrfs_bio->csum = NULL;
2681 btrfs_bio->csum_allocated = NULL;
2682 btrfs_bio->end_io = NULL;
d1310b2e
CM
2683 }
2684 return bio;
2685}
2686
9be3395b
CM
2687struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2688{
23ea8e5a
MX
2689 struct btrfs_io_bio *btrfs_bio;
2690 struct bio *new;
9be3395b 2691
23ea8e5a
MX
2692 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2693 if (new) {
2694 btrfs_bio = btrfs_io_bio(new);
2695 btrfs_bio->csum = NULL;
2696 btrfs_bio->csum_allocated = NULL;
2697 btrfs_bio->end_io = NULL;
2698 }
2699 return new;
2700}
9be3395b
CM
2701
2702/* this also allocates from the btrfs_bioset */
2703struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2704{
facc8a22
MX
2705 struct btrfs_io_bio *btrfs_bio;
2706 struct bio *bio;
2707
2708 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2709 if (bio) {
2710 btrfs_bio = btrfs_io_bio(bio);
2711 btrfs_bio->csum = NULL;
2712 btrfs_bio->csum_allocated = NULL;
2713 btrfs_bio->end_io = NULL;
2714 }
2715 return bio;
9be3395b
CM
2716}
2717
2718
1f7ad75b
MC
2719static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2720 unsigned long bio_flags)
d1310b2e 2721{
d1310b2e 2722 int ret = 0;
70dec807
CM
2723 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2724 struct page *page = bvec->bv_page;
2725 struct extent_io_tree *tree = bio->bi_private;
70dec807 2726 u64 start;
70dec807 2727
4eee4fa4 2728 start = page_offset(page) + bvec->bv_offset;
70dec807 2729
902b22f3 2730 bio->bi_private = NULL;
d1310b2e
CM
2731 bio_get(bio);
2732
20c9801d 2733 if (tree->ops)
81a75f67 2734 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
eaf25d93 2735 mirror_num, bio_flags, start);
0b86a832 2736 else
4e49ea4a 2737 btrfsic_submit_bio(bio);
4a54c8c1 2738
d1310b2e
CM
2739 bio_put(bio);
2740 return ret;
2741}
2742
1f7ad75b 2743static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2744 unsigned long offset, size_t size, struct bio *bio,
2745 unsigned long bio_flags)
2746{
2747 int ret = 0;
20c9801d 2748 if (tree->ops)
81a75f67 2749 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2750 bio_flags);
3444a972
JM
2751 return ret;
2752
2753}
2754
1f7ad75b 2755static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2756 struct writeback_control *wbc,
d1310b2e
CM
2757 struct page *page, sector_t sector,
2758 size_t size, unsigned long offset,
2759 struct block_device *bdev,
2760 struct bio **bio_ret,
f188591e 2761 bio_end_io_t end_io_func,
c8b97818
CM
2762 int mirror_num,
2763 unsigned long prev_bio_flags,
005efedf
FM
2764 unsigned long bio_flags,
2765 bool force_bio_submit)
d1310b2e
CM
2766{
2767 int ret = 0;
2768 struct bio *bio;
c8b97818 2769 int contig = 0;
c8b97818 2770 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2771 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2772
2773 if (bio_ret && *bio_ret) {
2774 bio = *bio_ret;
c8b97818 2775 if (old_compressed)
4f024f37 2776 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2777 else
f73a1c7d 2778 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2779
2780 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2781 force_bio_submit ||
1f7ad75b 2782 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2783 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2784 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2785 if (ret < 0) {
2786 *bio_ret = NULL;
79787eaa 2787 return ret;
289454ad 2788 }
d1310b2e
CM
2789 bio = NULL;
2790 } else {
da2f0f74
CM
2791 if (wbc)
2792 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2793 return 0;
2794 }
2795 }
c8b97818 2796
b54ffb73
KO
2797 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2798 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2799 if (!bio)
2800 return -ENOMEM;
70dec807 2801
c8b97818 2802 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2803 bio->bi_end_io = end_io_func;
2804 bio->bi_private = tree;
1f7ad75b 2805 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2806 if (wbc) {
2807 wbc_init_bio(wbc, bio);
2808 wbc_account_io(wbc, page, page_size);
2809 }
70dec807 2810
d397712b 2811 if (bio_ret)
d1310b2e 2812 *bio_ret = bio;
d397712b 2813 else
1f7ad75b 2814 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2815
2816 return ret;
2817}
2818
48a3b636
ES
2819static void attach_extent_buffer_page(struct extent_buffer *eb,
2820 struct page *page)
d1310b2e
CM
2821{
2822 if (!PagePrivate(page)) {
2823 SetPagePrivate(page);
09cbfeaf 2824 get_page(page);
4f2de97a
JB
2825 set_page_private(page, (unsigned long)eb);
2826 } else {
2827 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2828 }
2829}
2830
4f2de97a 2831void set_page_extent_mapped(struct page *page)
d1310b2e 2832{
4f2de97a
JB
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
09cbfeaf 2835 get_page(page);
4f2de97a
JB
2836 set_page_private(page, EXTENT_PAGE_PRIVATE);
2837 }
d1310b2e
CM
2838}
2839
125bac01
MX
2840static struct extent_map *
2841__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2842 u64 start, u64 len, get_extent_t *get_extent,
2843 struct extent_map **em_cached)
2844{
2845 struct extent_map *em;
2846
2847 if (em_cached && *em_cached) {
2848 em = *em_cached;
cbc0e928 2849 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2850 start < extent_map_end(em)) {
2851 atomic_inc(&em->refs);
2852 return em;
2853 }
2854
2855 free_extent_map(em);
2856 *em_cached = NULL;
2857 }
2858
fc4f21b1 2859 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2860 if (em_cached && !IS_ERR_OR_NULL(em)) {
2861 BUG_ON(*em_cached);
2862 atomic_inc(&em->refs);
2863 *em_cached = em;
2864 }
2865 return em;
2866}
d1310b2e
CM
2867/*
2868 * basic readpage implementation. Locked extent state structs are inserted
2869 * into the tree that are removed when the IO is done (by the end_io
2870 * handlers)
79787eaa 2871 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2872 * return 0 on success, otherwise return error
d1310b2e 2873 */
9974090b
MX
2874static int __do_readpage(struct extent_io_tree *tree,
2875 struct page *page,
2876 get_extent_t *get_extent,
125bac01 2877 struct extent_map **em_cached,
9974090b 2878 struct bio **bio, int mirror_num,
1f7ad75b 2879 unsigned long *bio_flags, int read_flags,
005efedf 2880 u64 *prev_em_start)
d1310b2e
CM
2881{
2882 struct inode *inode = page->mapping->host;
4eee4fa4 2883 u64 start = page_offset(page);
09cbfeaf 2884 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2885 u64 end;
2886 u64 cur = start;
2887 u64 extent_offset;
2888 u64 last_byte = i_size_read(inode);
2889 u64 block_start;
2890 u64 cur_end;
2891 sector_t sector;
2892 struct extent_map *em;
2893 struct block_device *bdev;
baf863b9 2894 int ret = 0;
d1310b2e 2895 int nr = 0;
306e16ce 2896 size_t pg_offset = 0;
d1310b2e 2897 size_t iosize;
c8b97818 2898 size_t disk_io_size;
d1310b2e 2899 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2900 unsigned long this_bio_flag = 0;
d1310b2e
CM
2901
2902 set_page_extent_mapped(page);
2903
9974090b 2904 end = page_end;
90a887c9
DM
2905 if (!PageUptodate(page)) {
2906 if (cleancache_get_page(page) == 0) {
2907 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2908 unlock_extent(tree, start, end);
90a887c9
DM
2909 goto out;
2910 }
2911 }
2912
09cbfeaf 2913 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2914 char *userpage;
09cbfeaf 2915 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2916
2917 if (zero_offset) {
09cbfeaf 2918 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2919 userpage = kmap_atomic(page);
c8b97818
CM
2920 memset(userpage + zero_offset, 0, iosize);
2921 flush_dcache_page(page);
7ac687d9 2922 kunmap_atomic(userpage);
c8b97818
CM
2923 }
2924 }
d1310b2e 2925 while (cur <= end) {
005efedf 2926 bool force_bio_submit = false;
c8f2f24b 2927
d1310b2e
CM
2928 if (cur >= last_byte) {
2929 char *userpage;
507903b8
AJ
2930 struct extent_state *cached = NULL;
2931
09cbfeaf 2932 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2933 userpage = kmap_atomic(page);
306e16ce 2934 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2935 flush_dcache_page(page);
7ac687d9 2936 kunmap_atomic(userpage);
d1310b2e 2937 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2938 &cached, GFP_NOFS);
7f042a83
FM
2939 unlock_extent_cached(tree, cur,
2940 cur + iosize - 1,
2941 &cached, GFP_NOFS);
d1310b2e
CM
2942 break;
2943 }
125bac01
MX
2944 em = __get_extent_map(inode, page, pg_offset, cur,
2945 end - cur + 1, get_extent, em_cached);
c704005d 2946 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2947 SetPageError(page);
7f042a83 2948 unlock_extent(tree, cur, end);
d1310b2e
CM
2949 break;
2950 }
d1310b2e
CM
2951 extent_offset = cur - em->start;
2952 BUG_ON(extent_map_end(em) <= cur);
2953 BUG_ON(end < cur);
2954
261507a0 2955 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2956 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2957 extent_set_compress_type(&this_bio_flag,
2958 em->compress_type);
2959 }
c8b97818 2960
d1310b2e
CM
2961 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2962 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2963 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2964 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2965 disk_io_size = em->block_len;
2966 sector = em->block_start >> 9;
2967 } else {
2968 sector = (em->block_start + extent_offset) >> 9;
2969 disk_io_size = iosize;
2970 }
d1310b2e
CM
2971 bdev = em->bdev;
2972 block_start = em->block_start;
d899e052
YZ
2973 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2974 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2975
2976 /*
2977 * If we have a file range that points to a compressed extent
2978 * and it's followed by a consecutive file range that points to
2979 * to the same compressed extent (possibly with a different
2980 * offset and/or length, so it either points to the whole extent
2981 * or only part of it), we must make sure we do not submit a
2982 * single bio to populate the pages for the 2 ranges because
2983 * this makes the compressed extent read zero out the pages
2984 * belonging to the 2nd range. Imagine the following scenario:
2985 *
2986 * File layout
2987 * [0 - 8K] [8K - 24K]
2988 * | |
2989 * | |
2990 * points to extent X, points to extent X,
2991 * offset 4K, length of 8K offset 0, length 16K
2992 *
2993 * [extent X, compressed length = 4K uncompressed length = 16K]
2994 *
2995 * If the bio to read the compressed extent covers both ranges,
2996 * it will decompress extent X into the pages belonging to the
2997 * first range and then it will stop, zeroing out the remaining
2998 * pages that belong to the other range that points to extent X.
2999 * So here we make sure we submit 2 bios, one for the first
3000 * range and another one for the third range. Both will target
3001 * the same physical extent from disk, but we can't currently
3002 * make the compressed bio endio callback populate the pages
3003 * for both ranges because each compressed bio is tightly
3004 * coupled with a single extent map, and each range can have
3005 * an extent map with a different offset value relative to the
3006 * uncompressed data of our extent and different lengths. This
3007 * is a corner case so we prioritize correctness over
3008 * non-optimal behavior (submitting 2 bios for the same extent).
3009 */
3010 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3011 prev_em_start && *prev_em_start != (u64)-1 &&
3012 *prev_em_start != em->orig_start)
3013 force_bio_submit = true;
3014
3015 if (prev_em_start)
3016 *prev_em_start = em->orig_start;
3017
d1310b2e
CM
3018 free_extent_map(em);
3019 em = NULL;
3020
3021 /* we've found a hole, just zero and go on */
3022 if (block_start == EXTENT_MAP_HOLE) {
3023 char *userpage;
507903b8
AJ
3024 struct extent_state *cached = NULL;
3025
7ac687d9 3026 userpage = kmap_atomic(page);
306e16ce 3027 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3028 flush_dcache_page(page);
7ac687d9 3029 kunmap_atomic(userpage);
d1310b2e
CM
3030
3031 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3032 &cached, GFP_NOFS);
7f042a83
FM
3033 unlock_extent_cached(tree, cur,
3034 cur + iosize - 1,
3035 &cached, GFP_NOFS);
d1310b2e 3036 cur = cur + iosize;
306e16ce 3037 pg_offset += iosize;
d1310b2e
CM
3038 continue;
3039 }
3040 /* the get_extent function already copied into the page */
9655d298
CM
3041 if (test_range_bit(tree, cur, cur_end,
3042 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3043 check_page_uptodate(tree, page);
7f042a83 3044 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3045 cur = cur + iosize;
306e16ce 3046 pg_offset += iosize;
d1310b2e
CM
3047 continue;
3048 }
70dec807
CM
3049 /* we have an inline extent but it didn't get marked up
3050 * to date. Error out
3051 */
3052 if (block_start == EXTENT_MAP_INLINE) {
3053 SetPageError(page);
7f042a83 3054 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3055 cur = cur + iosize;
306e16ce 3056 pg_offset += iosize;
70dec807
CM
3057 continue;
3058 }
d1310b2e 3059
1f7ad75b
MC
3060 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3061 page, sector, disk_io_size, pg_offset,
c2df8bb4 3062 bdev, bio,
c8b97818
CM
3063 end_bio_extent_readpage, mirror_num,
3064 *bio_flags,
005efedf
FM
3065 this_bio_flag,
3066 force_bio_submit);
c8f2f24b
JB
3067 if (!ret) {
3068 nr++;
3069 *bio_flags = this_bio_flag;
3070 } else {
d1310b2e 3071 SetPageError(page);
7f042a83 3072 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3073 goto out;
edd33c99 3074 }
d1310b2e 3075 cur = cur + iosize;
306e16ce 3076 pg_offset += iosize;
d1310b2e 3077 }
90a887c9 3078out:
d1310b2e
CM
3079 if (!nr) {
3080 if (!PageError(page))
3081 SetPageUptodate(page);
3082 unlock_page(page);
3083 }
baf863b9 3084 return ret;
d1310b2e
CM
3085}
3086
9974090b
MX
3087static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3088 struct page *pages[], int nr_pages,
3089 u64 start, u64 end,
3090 get_extent_t *get_extent,
125bac01 3091 struct extent_map **em_cached,
9974090b 3092 struct bio **bio, int mirror_num,
1f7ad75b 3093 unsigned long *bio_flags,
808f80b4 3094 u64 *prev_em_start)
9974090b
MX
3095{
3096 struct inode *inode;
3097 struct btrfs_ordered_extent *ordered;
3098 int index;
3099
3100 inode = pages[0]->mapping->host;
3101 while (1) {
3102 lock_extent(tree, start, end);
a776c6fa 3103 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3104 end - start + 1);
3105 if (!ordered)
3106 break;
3107 unlock_extent(tree, start, end);
3108 btrfs_start_ordered_extent(inode, ordered, 1);
3109 btrfs_put_ordered_extent(ordered);
3110 }
3111
3112 for (index = 0; index < nr_pages; index++) {
125bac01 3113 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3114 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3115 put_page(pages[index]);
9974090b
MX
3116 }
3117}
3118
3119static void __extent_readpages(struct extent_io_tree *tree,
3120 struct page *pages[],
3121 int nr_pages, get_extent_t *get_extent,
125bac01 3122 struct extent_map **em_cached,
9974090b 3123 struct bio **bio, int mirror_num,
1f7ad75b 3124 unsigned long *bio_flags,
808f80b4 3125 u64 *prev_em_start)
9974090b 3126{
35a3621b 3127 u64 start = 0;
9974090b
MX
3128 u64 end = 0;
3129 u64 page_start;
3130 int index;
35a3621b 3131 int first_index = 0;
9974090b
MX
3132
3133 for (index = 0; index < nr_pages; index++) {
3134 page_start = page_offset(pages[index]);
3135 if (!end) {
3136 start = page_start;
09cbfeaf 3137 end = start + PAGE_SIZE - 1;
9974090b
MX
3138 first_index = index;
3139 } else if (end + 1 == page_start) {
09cbfeaf 3140 end += PAGE_SIZE;
9974090b
MX
3141 } else {
3142 __do_contiguous_readpages(tree, &pages[first_index],
3143 index - first_index, start,
125bac01
MX
3144 end, get_extent, em_cached,
3145 bio, mirror_num, bio_flags,
1f7ad75b 3146 prev_em_start);
9974090b 3147 start = page_start;
09cbfeaf 3148 end = start + PAGE_SIZE - 1;
9974090b
MX
3149 first_index = index;
3150 }
3151 }
3152
3153 if (end)
3154 __do_contiguous_readpages(tree, &pages[first_index],
3155 index - first_index, start,
125bac01 3156 end, get_extent, em_cached, bio,
1f7ad75b 3157 mirror_num, bio_flags,
808f80b4 3158 prev_em_start);
9974090b
MX
3159}
3160
3161static int __extent_read_full_page(struct extent_io_tree *tree,
3162 struct page *page,
3163 get_extent_t *get_extent,
3164 struct bio **bio, int mirror_num,
1f7ad75b 3165 unsigned long *bio_flags, int read_flags)
9974090b
MX
3166{
3167 struct inode *inode = page->mapping->host;
3168 struct btrfs_ordered_extent *ordered;
3169 u64 start = page_offset(page);
09cbfeaf 3170 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3171 int ret;
3172
3173 while (1) {
3174 lock_extent(tree, start, end);
a776c6fa 3175 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3176 PAGE_SIZE);
9974090b
MX
3177 if (!ordered)
3178 break;
3179 unlock_extent(tree, start, end);
3180 btrfs_start_ordered_extent(inode, ordered, 1);
3181 btrfs_put_ordered_extent(ordered);
3182 }
3183
125bac01 3184 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3185 bio_flags, read_flags, NULL);
9974090b
MX
3186 return ret;
3187}
3188
d1310b2e 3189int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3190 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3191{
3192 struct bio *bio = NULL;
c8b97818 3193 unsigned long bio_flags = 0;
d1310b2e
CM
3194 int ret;
3195
8ddc7d9c 3196 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3197 &bio_flags, 0);
d1310b2e 3198 if (bio)
1f7ad75b 3199 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3200 return ret;
3201}
d1310b2e 3202
3d4b9496 3203static void update_nr_written(struct writeback_control *wbc,
a9132667 3204 unsigned long nr_written)
11c8349b
CM
3205{
3206 wbc->nr_to_write -= nr_written;
11c8349b
CM
3207}
3208
d1310b2e 3209/*
40f76580
CM
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3211 *
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3215 *
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
d1310b2e 3218 */
40f76580
CM
3219static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3222 u64 delalloc_start,
3223 unsigned long *nr_written)
3224{
3225 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3227 u64 nr_delalloc;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3230 int ret;
3231 int page_started = 0;
3232
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 return 0;
3235
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 page,
3239 &delalloc_start,
3240 &delalloc_end,
dcab6a3b 3241 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3244 continue;
3245 }
3246 ret = tree->ops->fill_delalloc(inode, page,
3247 delalloc_start,
3248 delalloc_end,
3249 &page_started,
3250 nr_written);
3251 /* File system has been set read-only */
3252 if (ret) {
3253 SetPageError(page);
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3258 */
3259 ret = ret < 0 ? ret : -EIO;
3260 goto done;
3261 }
3262 /*
ea1754a0
KS
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
40f76580
CM
3265 */
3266 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3267 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3268 delalloc_start = delalloc_end + 1;
3269 }
3270 if (wbc->nr_to_write < delalloc_to_write) {
3271 int thresh = 8192;
3272
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 thresh);
3277 }
3278
3279 /* did the fill delalloc function already unlock and start
3280 * the IO?
3281 */
3282 if (page_started) {
3283 /*
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3286 * nr_to_write.
3287 */
3288 wbc->nr_to_write -= *nr_written;
3289 return 1;
3290 }
3291
3292 ret = 0;
3293
3294done:
3295 return ret;
3296}
3297
3298/*
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3301 *
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3305 */
3306static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 struct page *page,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3310 loff_t i_size,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
d1310b2e 3313{
d1310b2e 3314 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3315 u64 start = page_offset(page);
09cbfeaf 3316 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3317 u64 end;
3318 u64 cur = start;
3319 u64 extent_offset;
d1310b2e
CM
3320 u64 block_start;
3321 u64 iosize;
3322 sector_t sector;
3323 struct extent_map *em;
3324 struct block_device *bdev;
7f3c74fb 3325 size_t pg_offset = 0;
d1310b2e 3326 size_t blocksize;
40f76580
CM
3327 int ret = 0;
3328 int nr = 0;
3329 bool compressed;
c8b97818 3330
247e743c 3331 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3332 ret = tree->ops->writepage_start_hook(page, start,
3333 page_end);
87826df0
JM
3334 if (ret) {
3335 /* Fixup worker will requeue */
3336 if (ret == -EBUSY)
3337 wbc->pages_skipped++;
3338 else
3339 redirty_page_for_writepage(wbc, page);
40f76580 3340
3d4b9496 3341 update_nr_written(wbc, nr_written);
247e743c 3342 unlock_page(page);
bcf93489 3343 return 1;
247e743c
CM
3344 }
3345 }
3346
11c8349b
CM
3347 /*
3348 * we don't want to touch the inode after unlocking the page,
3349 * so we update the mapping writeback index now
3350 */
3d4b9496 3351 update_nr_written(wbc, nr_written + 1);
771ed689 3352
d1310b2e 3353 end = page_end;
40f76580 3354 if (i_size <= start) {
e6dcd2dc
CM
3355 if (tree->ops && tree->ops->writepage_end_io_hook)
3356 tree->ops->writepage_end_io_hook(page, start,
3357 page_end, NULL, 1);
d1310b2e
CM
3358 goto done;
3359 }
3360
d1310b2e
CM
3361 blocksize = inode->i_sb->s_blocksize;
3362
3363 while (cur <= end) {
40f76580 3364 u64 em_end;
58409edd 3365
40f76580 3366 if (cur >= i_size) {
e6dcd2dc
CM
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, cur,
3369 page_end, NULL, 1);
d1310b2e
CM
3370 break;
3371 }
fc4f21b1 3372 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3373 end - cur + 1, 1);
c704005d 3374 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3375 SetPageError(page);
61391d56 3376 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3377 break;
3378 }
3379
3380 extent_offset = cur - em->start;
40f76580
CM
3381 em_end = extent_map_end(em);
3382 BUG_ON(em_end <= cur);
d1310b2e 3383 BUG_ON(end < cur);
40f76580 3384 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3385 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3386 sector = (em->block_start + extent_offset) >> 9;
3387 bdev = em->bdev;
3388 block_start = em->block_start;
c8b97818 3389 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3390 free_extent_map(em);
3391 em = NULL;
3392
c8b97818
CM
3393 /*
3394 * compressed and inline extents are written through other
3395 * paths in the FS
3396 */
3397 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3398 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3399 /*
3400 * end_io notification does not happen here for
3401 * compressed extents
3402 */
3403 if (!compressed && tree->ops &&
3404 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3405 tree->ops->writepage_end_io_hook(page, cur,
3406 cur + iosize - 1,
3407 NULL, 1);
c8b97818
CM
3408 else if (compressed) {
3409 /* we don't want to end_page_writeback on
3410 * a compressed extent. this happens
3411 * elsewhere
3412 */
3413 nr++;
3414 }
3415
3416 cur += iosize;
7f3c74fb 3417 pg_offset += iosize;
d1310b2e
CM
3418 continue;
3419 }
c8b97818 3420
58409edd
DS
3421 set_range_writeback(tree, cur, cur + iosize - 1);
3422 if (!PageWriteback(page)) {
3423 btrfs_err(BTRFS_I(inode)->root->fs_info,
3424 "page %lu not writeback, cur %llu end %llu",
3425 page->index, cur, end);
d1310b2e 3426 }
7f3c74fb 3427
1f7ad75b
MC
3428 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3429 page, sector, iosize, pg_offset,
c2df8bb4 3430 bdev, &epd->bio,
58409edd
DS
3431 end_bio_extent_writepage,
3432 0, 0, 0, false);
fe01aa65 3433 if (ret) {
58409edd 3434 SetPageError(page);
fe01aa65
TK
3435 if (PageWriteback(page))
3436 end_page_writeback(page);
3437 }
d1310b2e 3438
d1310b2e 3439 cur = cur + iosize;
7f3c74fb 3440 pg_offset += iosize;
d1310b2e
CM
3441 nr++;
3442 }
40f76580
CM
3443done:
3444 *nr_ret = nr;
40f76580
CM
3445 return ret;
3446}
3447
3448/*
3449 * the writepage semantics are similar to regular writepage. extent
3450 * records are inserted to lock ranges in the tree, and as dirty areas
3451 * are found, they are marked writeback. Then the lock bits are removed
3452 * and the end_io handler clears the writeback ranges
3453 */
3454static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3455 void *data)
3456{
3457 struct inode *inode = page->mapping->host;
3458 struct extent_page_data *epd = data;
3459 u64 start = page_offset(page);
09cbfeaf 3460 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3461 int ret;
3462 int nr = 0;
3463 size_t pg_offset = 0;
3464 loff_t i_size = i_size_read(inode);
09cbfeaf 3465 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3466 int write_flags = 0;
40f76580
CM
3467 unsigned long nr_written = 0;
3468
3469 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3470 write_flags = REQ_SYNC;
40f76580
CM
3471
3472 trace___extent_writepage(page, inode, wbc);
3473
3474 WARN_ON(!PageLocked(page));
3475
3476 ClearPageError(page);
3477
09cbfeaf 3478 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3479 if (page->index > end_index ||
3480 (page->index == end_index && !pg_offset)) {
09cbfeaf 3481 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3482 unlock_page(page);
3483 return 0;
3484 }
3485
3486 if (page->index == end_index) {
3487 char *userpage;
3488
3489 userpage = kmap_atomic(page);
3490 memset(userpage + pg_offset, 0,
09cbfeaf 3491 PAGE_SIZE - pg_offset);
40f76580
CM
3492 kunmap_atomic(userpage);
3493 flush_dcache_page(page);
3494 }
3495
3496 pg_offset = 0;
3497
3498 set_page_extent_mapped(page);
3499
3500 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3501 if (ret == 1)
3502 goto done_unlocked;
3503 if (ret)
3504 goto done;
3505
3506 ret = __extent_writepage_io(inode, page, wbc, epd,
3507 i_size, nr_written, write_flags, &nr);
3508 if (ret == 1)
3509 goto done_unlocked;
3510
d1310b2e
CM
3511done:
3512 if (nr == 0) {
3513 /* make sure the mapping tag for page dirty gets cleared */
3514 set_page_writeback(page);
3515 end_page_writeback(page);
3516 }
61391d56
FM
3517 if (PageError(page)) {
3518 ret = ret < 0 ? ret : -EIO;
3519 end_extent_writepage(page, ret, start, page_end);
3520 }
d1310b2e 3521 unlock_page(page);
40f76580 3522 return ret;
771ed689 3523
11c8349b 3524done_unlocked:
d1310b2e
CM
3525 return 0;
3526}
3527
fd8b2b61 3528void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3529{
74316201
N
3530 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3531 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3532}
3533
0e378df1
CM
3534static noinline_for_stack int
3535lock_extent_buffer_for_io(struct extent_buffer *eb,
3536 struct btrfs_fs_info *fs_info,
3537 struct extent_page_data *epd)
0b32f4bb
JB
3538{
3539 unsigned long i, num_pages;
3540 int flush = 0;
3541 int ret = 0;
3542
3543 if (!btrfs_try_tree_write_lock(eb)) {
3544 flush = 1;
3545 flush_write_bio(epd);
3546 btrfs_tree_lock(eb);
3547 }
3548
3549 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3550 btrfs_tree_unlock(eb);
3551 if (!epd->sync_io)
3552 return 0;
3553 if (!flush) {
3554 flush_write_bio(epd);
3555 flush = 1;
3556 }
a098d8e8
CM
3557 while (1) {
3558 wait_on_extent_buffer_writeback(eb);
3559 btrfs_tree_lock(eb);
3560 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3561 break;
0b32f4bb 3562 btrfs_tree_unlock(eb);
0b32f4bb
JB
3563 }
3564 }
3565
51561ffe
JB
3566 /*
3567 * We need to do this to prevent races in people who check if the eb is
3568 * under IO since we can end up having no IO bits set for a short period
3569 * of time.
3570 */
3571 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3572 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3573 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3574 spin_unlock(&eb->refs_lock);
0b32f4bb 3575 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3576 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3577 -eb->len,
3578 fs_info->dirty_metadata_batch);
0b32f4bb 3579 ret = 1;
51561ffe
JB
3580 } else {
3581 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3582 }
3583
3584 btrfs_tree_unlock(eb);
3585
3586 if (!ret)
3587 return ret;
3588
3589 num_pages = num_extent_pages(eb->start, eb->len);
3590 for (i = 0; i < num_pages; i++) {
fb85fc9a 3591 struct page *p = eb->pages[i];
0b32f4bb
JB
3592
3593 if (!trylock_page(p)) {
3594 if (!flush) {
3595 flush_write_bio(epd);
3596 flush = 1;
3597 }
3598 lock_page(p);
3599 }
3600 }
3601
3602 return ret;
3603}
3604
3605static void end_extent_buffer_writeback(struct extent_buffer *eb)
3606{
3607 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3608 smp_mb__after_atomic();
0b32f4bb
JB
3609 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3610}
3611
656f30db
FM
3612static void set_btree_ioerr(struct page *page)
3613{
3614 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3615
3616 SetPageError(page);
3617 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3618 return;
3619
3620 /*
3621 * If writeback for a btree extent that doesn't belong to a log tree
3622 * failed, increment the counter transaction->eb_write_errors.
3623 * We do this because while the transaction is running and before it's
3624 * committing (when we call filemap_fdata[write|wait]_range against
3625 * the btree inode), we might have
3626 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3627 * returns an error or an error happens during writeback, when we're
3628 * committing the transaction we wouldn't know about it, since the pages
3629 * can be no longer dirty nor marked anymore for writeback (if a
3630 * subsequent modification to the extent buffer didn't happen before the
3631 * transaction commit), which makes filemap_fdata[write|wait]_range not
3632 * able to find the pages tagged with SetPageError at transaction
3633 * commit time. So if this happens we must abort the transaction,
3634 * otherwise we commit a super block with btree roots that point to
3635 * btree nodes/leafs whose content on disk is invalid - either garbage
3636 * or the content of some node/leaf from a past generation that got
3637 * cowed or deleted and is no longer valid.
3638 *
3639 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3640 * not be enough - we need to distinguish between log tree extents vs
3641 * non-log tree extents, and the next filemap_fdatawait_range() call
3642 * will catch and clear such errors in the mapping - and that call might
3643 * be from a log sync and not from a transaction commit. Also, checking
3644 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3645 * not done and would not be reliable - the eb might have been released
3646 * from memory and reading it back again means that flag would not be
3647 * set (since it's a runtime flag, not persisted on disk).
3648 *
3649 * Using the flags below in the btree inode also makes us achieve the
3650 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3651 * writeback for all dirty pages and before filemap_fdatawait_range()
3652 * is called, the writeback for all dirty pages had already finished
3653 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3654 * filemap_fdatawait_range() would return success, as it could not know
3655 * that writeback errors happened (the pages were no longer tagged for
3656 * writeback).
3657 */
3658 switch (eb->log_index) {
3659 case -1:
afcdd129 3660 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3661 break;
3662 case 0:
afcdd129 3663 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3664 break;
3665 case 1:
afcdd129 3666 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3667 break;
3668 default:
3669 BUG(); /* unexpected, logic error */
3670 }
3671}
3672
4246a0b6 3673static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3674{
2c30c71b 3675 struct bio_vec *bvec;
0b32f4bb 3676 struct extent_buffer *eb;
2c30c71b 3677 int i, done;
0b32f4bb 3678
2c30c71b 3679 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3680 struct page *page = bvec->bv_page;
3681
0b32f4bb
JB
3682 eb = (struct extent_buffer *)page->private;
3683 BUG_ON(!eb);
3684 done = atomic_dec_and_test(&eb->io_pages);
3685
4246a0b6
CH
3686 if (bio->bi_error ||
3687 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3688 ClearPageUptodate(page);
656f30db 3689 set_btree_ioerr(page);
0b32f4bb
JB
3690 }
3691
3692 end_page_writeback(page);
3693
3694 if (!done)
3695 continue;
3696
3697 end_extent_buffer_writeback(eb);
2c30c71b 3698 }
0b32f4bb
JB
3699
3700 bio_put(bio);
0b32f4bb
JB
3701}
3702
0e378df1 3703static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3704 struct btrfs_fs_info *fs_info,
3705 struct writeback_control *wbc,
3706 struct extent_page_data *epd)
3707{
3708 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3709 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3710 u64 offset = eb->start;
851cd173 3711 u32 nritems;
0b32f4bb 3712 unsigned long i, num_pages;
de0022b9 3713 unsigned long bio_flags = 0;
851cd173 3714 unsigned long start, end;
70fd7614 3715 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3716 int ret = 0;
0b32f4bb 3717
656f30db 3718 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3719 num_pages = num_extent_pages(eb->start, eb->len);
3720 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3721 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3722 bio_flags = EXTENT_BIO_TREE_LOG;
3723
851cd173
LB
3724 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3725 nritems = btrfs_header_nritems(eb);
3eb548ee 3726 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3727 end = btrfs_node_key_ptr_offset(nritems);
3728
b159fa28 3729 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3730 } else {
3731 /*
3732 * leaf:
3733 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3734 */
3735 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3736 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3737 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3738 }
3739
0b32f4bb 3740 for (i = 0; i < num_pages; i++) {
fb85fc9a 3741 struct page *p = eb->pages[i];
0b32f4bb
JB
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
1f7ad75b
MC
3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3747 &epd->bio,
1f7ad75b 3748 end_bio_extent_buffer_writepage,
005efedf 3749 0, epd->bio_flags, bio_flags, false);
de0022b9 3750 epd->bio_flags = bio_flags;
0b32f4bb 3751 if (ret) {
656f30db 3752 set_btree_ioerr(p);
fe01aa65
TK
3753 if (PageWriteback(p))
3754 end_page_writeback(p);
0b32f4bb
JB
3755 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3756 end_extent_buffer_writeback(eb);
3757 ret = -EIO;
3758 break;
3759 }
09cbfeaf 3760 offset += PAGE_SIZE;
3d4b9496 3761 update_nr_written(wbc, 1);
0b32f4bb
JB
3762 unlock_page(p);
3763 }
3764
3765 if (unlikely(ret)) {
3766 for (; i < num_pages; i++) {
bbf65cf0 3767 struct page *p = eb->pages[i];
81465028 3768 clear_page_dirty_for_io(p);
0b32f4bb
JB
3769 unlock_page(p);
3770 }
3771 }
3772
3773 return ret;
3774}
3775
3776int btree_write_cache_pages(struct address_space *mapping,
3777 struct writeback_control *wbc)
3778{
3779 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3780 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3781 struct extent_buffer *eb, *prev_eb = NULL;
3782 struct extent_page_data epd = {
3783 .bio = NULL,
3784 .tree = tree,
3785 .extent_locked = 0,
3786 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3787 .bio_flags = 0,
0b32f4bb
JB
3788 };
3789 int ret = 0;
3790 int done = 0;
3791 int nr_to_write_done = 0;
3792 struct pagevec pvec;
3793 int nr_pages;
3794 pgoff_t index;
3795 pgoff_t end; /* Inclusive */
3796 int scanned = 0;
3797 int tag;
3798
3799 pagevec_init(&pvec, 0);
3800 if (wbc->range_cyclic) {
3801 index = mapping->writeback_index; /* Start from prev offset */
3802 end = -1;
3803 } else {
09cbfeaf
KS
3804 index = wbc->range_start >> PAGE_SHIFT;
3805 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3806 scanned = 1;
3807 }
3808 if (wbc->sync_mode == WB_SYNC_ALL)
3809 tag = PAGECACHE_TAG_TOWRITE;
3810 else
3811 tag = PAGECACHE_TAG_DIRTY;
3812retry:
3813 if (wbc->sync_mode == WB_SYNC_ALL)
3814 tag_pages_for_writeback(mapping, index, end);
3815 while (!done && !nr_to_write_done && (index <= end) &&
3816 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3817 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3818 unsigned i;
3819
3820 scanned = 1;
3821 for (i = 0; i < nr_pages; i++) {
3822 struct page *page = pvec.pages[i];
3823
3824 if (!PagePrivate(page))
3825 continue;
3826
3827 if (!wbc->range_cyclic && page->index > end) {
3828 done = 1;
3829 break;
3830 }
3831
b5bae261
JB
3832 spin_lock(&mapping->private_lock);
3833 if (!PagePrivate(page)) {
3834 spin_unlock(&mapping->private_lock);
3835 continue;
3836 }
3837
0b32f4bb 3838 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3839
3840 /*
3841 * Shouldn't happen and normally this would be a BUG_ON
3842 * but no sense in crashing the users box for something
3843 * we can survive anyway.
3844 */
fae7f21c 3845 if (WARN_ON(!eb)) {
b5bae261 3846 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3847 continue;
3848 }
3849
b5bae261
JB
3850 if (eb == prev_eb) {
3851 spin_unlock(&mapping->private_lock);
0b32f4bb 3852 continue;
b5bae261 3853 }
0b32f4bb 3854
b5bae261
JB
3855 ret = atomic_inc_not_zero(&eb->refs);
3856 spin_unlock(&mapping->private_lock);
3857 if (!ret)
0b32f4bb 3858 continue;
0b32f4bb
JB
3859
3860 prev_eb = eb;
3861 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3862 if (!ret) {
3863 free_extent_buffer(eb);
3864 continue;
3865 }
3866
3867 ret = write_one_eb(eb, fs_info, wbc, &epd);
3868 if (ret) {
3869 done = 1;
3870 free_extent_buffer(eb);
3871 break;
3872 }
3873 free_extent_buffer(eb);
3874
3875 /*
3876 * the filesystem may choose to bump up nr_to_write.
3877 * We have to make sure to honor the new nr_to_write
3878 * at any time
3879 */
3880 nr_to_write_done = wbc->nr_to_write <= 0;
3881 }
3882 pagevec_release(&pvec);
3883 cond_resched();
3884 }
3885 if (!scanned && !done) {
3886 /*
3887 * We hit the last page and there is more work to be done: wrap
3888 * back to the start of the file
3889 */
3890 scanned = 1;
3891 index = 0;
3892 goto retry;
3893 }
3894 flush_write_bio(&epd);
3895 return ret;
3896}
3897
d1310b2e 3898/**
4bef0848 3899 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3900 * @mapping: address space structure to write
3901 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3902 * @writepage: function called for each page
3903 * @data: data passed to writepage function
3904 *
3905 * If a page is already under I/O, write_cache_pages() skips it, even
3906 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3907 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3908 * and msync() need to guarantee that all the data which was dirty at the time
3909 * the call was made get new I/O started against them. If wbc->sync_mode is
3910 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3911 * existing IO to complete.
3912 */
4242b64a 3913static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3914 struct writeback_control *wbc,
d2c3f4f6
CM
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
d1310b2e 3917{
7fd1a3f7 3918 struct inode *inode = mapping->host;
d1310b2e
CM
3919 int ret = 0;
3920 int done = 0;
f85d7d6c 3921 int nr_to_write_done = 0;
d1310b2e
CM
3922 struct pagevec pvec;
3923 int nr_pages;
3924 pgoff_t index;
3925 pgoff_t end; /* Inclusive */
a9132667
LB
3926 pgoff_t done_index;
3927 int range_whole = 0;
d1310b2e 3928 int scanned = 0;
f7aaa06b 3929 int tag;
d1310b2e 3930
7fd1a3f7
JB
3931 /*
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3939 */
3940 if (!igrab(inode))
3941 return 0;
3942
d1310b2e
CM
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3946 end = -1;
3947 } else {
09cbfeaf
KS
3948 index = wbc->range_start >> PAGE_SHIFT;
3949 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951 range_whole = 1;
d1310b2e
CM
3952 scanned = 1;
3953 }
f7aaa06b
JB
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3956 else
3957 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3958retry:
f7aaa06b
JB
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
a9132667 3961 done_index = index;
f85d7d6c 3962 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3965 unsigned i;
3966
3967 scanned = 1;
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3970
a9132667 3971 done_index = page->index;
d1310b2e
CM
3972 /*
3973 * At this point we hold neither mapping->tree_lock nor
3974 * lock on the page itself: the page may be truncated or
3975 * invalidated (changing page->mapping to NULL), or even
3976 * swizzled back from swapper_space to tmpfs file
3977 * mapping
3978 */
c8f2f24b
JB
3979 if (!trylock_page(page)) {
3980 flush_fn(data);
3981 lock_page(page);
01d658f2 3982 }
d1310b2e
CM
3983
3984 if (unlikely(page->mapping != mapping)) {
3985 unlock_page(page);
3986 continue;
3987 }
3988
3989 if (!wbc->range_cyclic && page->index > end) {
3990 done = 1;
3991 unlock_page(page);
3992 continue;
3993 }
3994
d2c3f4f6 3995 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3996 if (PageWriteback(page))
3997 flush_fn(data);
d1310b2e 3998 wait_on_page_writeback(page);
d2c3f4f6 3999 }
d1310b2e
CM
4000
4001 if (PageWriteback(page) ||
4002 !clear_page_dirty_for_io(page)) {
4003 unlock_page(page);
4004 continue;
4005 }
4006
4007 ret = (*writepage)(page, wbc, data);
4008
4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010 unlock_page(page);
4011 ret = 0;
4012 }
a9132667
LB
4013 if (ret < 0) {
4014 /*
4015 * done_index is set past this page,
4016 * so media errors will not choke
4017 * background writeout for the entire
4018 * file. This has consequences for
4019 * range_cyclic semantics (ie. it may
4020 * not be suitable for data integrity
4021 * writeout).
4022 */
4023 done_index = page->index + 1;
4024 done = 1;
4025 break;
4026 }
f85d7d6c
CM
4027
4028 /*
4029 * the filesystem may choose to bump up nr_to_write.
4030 * We have to make sure to honor the new nr_to_write
4031 * at any time
4032 */
4033 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4034 }
4035 pagevec_release(&pvec);
4036 cond_resched();
4037 }
894b36e3 4038 if (!scanned && !done) {
d1310b2e
CM
4039 /*
4040 * We hit the last page and there is more work to be done: wrap
4041 * back to the start of the file
4042 */
4043 scanned = 1;
4044 index = 0;
4045 goto retry;
4046 }
a9132667
LB
4047
4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 mapping->writeback_index = done_index;
4050
7fd1a3f7 4051 btrfs_add_delayed_iput(inode);
894b36e3 4052 return ret;
d1310b2e 4053}
d1310b2e 4054
ffbd517d 4055static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4056{
d2c3f4f6 4057 if (epd->bio) {
355808c2
JM
4058 int ret;
4059
1f7ad75b 4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4061 epd->sync_io ? REQ_SYNC : 0);
355808c2 4062
1f7ad75b 4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4064 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4065 epd->bio = NULL;
4066 }
4067}
4068
ffbd517d
CM
4069static noinline void flush_write_bio(void *data)
4070{
4071 struct extent_page_data *epd = data;
4072 flush_epd_write_bio(epd);
4073}
4074
d1310b2e
CM
4075int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 get_extent_t *get_extent,
4077 struct writeback_control *wbc)
4078{
4079 int ret;
d1310b2e
CM
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .get_extent = get_extent,
771ed689 4084 .extent_locked = 0,
ffbd517d 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4086 .bio_flags = 0,
d1310b2e 4087 };
d1310b2e 4088
d1310b2e
CM
4089 ret = __extent_writepage(page, wbc, &epd);
4090
ffbd517d 4091 flush_epd_write_bio(&epd);
d1310b2e
CM
4092 return ret;
4093}
d1310b2e 4094
771ed689
CM
4095int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 u64 start, u64 end, get_extent_t *get_extent,
4097 int mode)
4098{
4099 int ret = 0;
4100 struct address_space *mapping = inode->i_mapping;
4101 struct page *page;
09cbfeaf
KS
4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103 PAGE_SHIFT;
771ed689
CM
4104
4105 struct extent_page_data epd = {
4106 .bio = NULL,
4107 .tree = tree,
4108 .get_extent = get_extent,
4109 .extent_locked = 1,
ffbd517d 4110 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4111 .bio_flags = 0,
771ed689
CM
4112 };
4113 struct writeback_control wbc_writepages = {
771ed689 4114 .sync_mode = mode,
771ed689
CM
4115 .nr_to_write = nr_pages * 2,
4116 .range_start = start,
4117 .range_end = end + 1,
4118 };
4119
d397712b 4120 while (start <= end) {
09cbfeaf 4121 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4122 if (clear_page_dirty_for_io(page))
4123 ret = __extent_writepage(page, &wbc_writepages, &epd);
4124 else {
4125 if (tree->ops && tree->ops->writepage_end_io_hook)
4126 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4127 start + PAGE_SIZE - 1,
771ed689
CM
4128 NULL, 1);
4129 unlock_page(page);
4130 }
09cbfeaf
KS
4131 put_page(page);
4132 start += PAGE_SIZE;
771ed689
CM
4133 }
4134
ffbd517d 4135 flush_epd_write_bio(&epd);
771ed689
CM
4136 return ret;
4137}
d1310b2e
CM
4138
4139int extent_writepages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 get_extent_t *get_extent,
4142 struct writeback_control *wbc)
4143{
4144 int ret = 0;
4145 struct extent_page_data epd = {
4146 .bio = NULL,
4147 .tree = tree,
4148 .get_extent = get_extent,
771ed689 4149 .extent_locked = 0,
ffbd517d 4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4151 .bio_flags = 0,
d1310b2e
CM
4152 };
4153
4242b64a 4154 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4155 flush_write_bio);
ffbd517d 4156 flush_epd_write_bio(&epd);
d1310b2e
CM
4157 return ret;
4158}
d1310b2e
CM
4159
4160int extent_readpages(struct extent_io_tree *tree,
4161 struct address_space *mapping,
4162 struct list_head *pages, unsigned nr_pages,
4163 get_extent_t get_extent)
4164{
4165 struct bio *bio = NULL;
4166 unsigned page_idx;
c8b97818 4167 unsigned long bio_flags = 0;
67c9684f
LB
4168 struct page *pagepool[16];
4169 struct page *page;
125bac01 4170 struct extent_map *em_cached = NULL;
67c9684f 4171 int nr = 0;
808f80b4 4172 u64 prev_em_start = (u64)-1;
d1310b2e 4173
d1310b2e 4174 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4175 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4176
4177 prefetchw(&page->flags);
4178 list_del(&page->lru);
67c9684f 4179 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4180 page->index,
4181 readahead_gfp_mask(mapping))) {
09cbfeaf 4182 put_page(page);
67c9684f 4183 continue;
d1310b2e 4184 }
67c9684f
LB
4185
4186 pagepool[nr++] = page;
4187 if (nr < ARRAY_SIZE(pagepool))
4188 continue;
125bac01 4189 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4190 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4191 nr = 0;
d1310b2e 4192 }
9974090b 4193 if (nr)
125bac01 4194 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4195 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4196
125bac01
MX
4197 if (em_cached)
4198 free_extent_map(em_cached);
4199
d1310b2e
CM
4200 BUG_ON(!list_empty(pages));
4201 if (bio)
1f7ad75b 4202 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4203 return 0;
4204}
d1310b2e
CM
4205
4206/*
4207 * basic invalidatepage code, this waits on any locked or writeback
4208 * ranges corresponding to the page, and then deletes any extent state
4209 * records from the tree
4210 */
4211int extent_invalidatepage(struct extent_io_tree *tree,
4212 struct page *page, unsigned long offset)
4213{
2ac55d41 4214 struct extent_state *cached_state = NULL;
4eee4fa4 4215 u64 start = page_offset(page);
09cbfeaf 4216 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4217 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4218
fda2832f 4219 start += ALIGN(offset, blocksize);
d1310b2e
CM
4220 if (start > end)
4221 return 0;
4222
ff13db41 4223 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4224 wait_on_page_writeback(page);
d1310b2e 4225 clear_extent_bit(tree, start, end,
32c00aff
JB
4226 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227 EXTENT_DO_ACCOUNTING,
2ac55d41 4228 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4229 return 0;
4230}
d1310b2e 4231
7b13b7b1
CM
4232/*
4233 * a helper for releasepage, this tests for areas of the page that
4234 * are locked or under IO and drops the related state bits if it is safe
4235 * to drop the page.
4236 */
48a3b636
ES
4237static int try_release_extent_state(struct extent_map_tree *map,
4238 struct extent_io_tree *tree,
4239 struct page *page, gfp_t mask)
7b13b7b1 4240{
4eee4fa4 4241 u64 start = page_offset(page);
09cbfeaf 4242 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4243 int ret = 1;
4244
211f90e6 4245 if (test_range_bit(tree, start, end,
8b62b72b 4246 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4247 ret = 0;
4248 else {
11ef160f
CM
4249 /*
4250 * at this point we can safely clear everything except the
4251 * locked bit and the nodatasum bit
4252 */
e3f24cc5 4253 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4254 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4255 0, 0, NULL, mask);
e3f24cc5
CM
4256
4257 /* if clear_extent_bit failed for enomem reasons,
4258 * we can't allow the release to continue.
4259 */
4260 if (ret < 0)
4261 ret = 0;
4262 else
4263 ret = 1;
7b13b7b1
CM
4264 }
4265 return ret;
4266}
7b13b7b1 4267
d1310b2e
CM
4268/*
4269 * a helper for releasepage. As long as there are no locked extents
4270 * in the range corresponding to the page, both state records and extent
4271 * map records are removed
4272 */
4273int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4274 struct extent_io_tree *tree, struct page *page,
4275 gfp_t mask)
d1310b2e
CM
4276{
4277 struct extent_map *em;
4eee4fa4 4278 u64 start = page_offset(page);
09cbfeaf 4279 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4280
d0164adc 4281 if (gfpflags_allow_blocking(mask) &&
ee22184b 4282 page->mapping->host->i_size > SZ_16M) {
39b5637f 4283 u64 len;
70dec807 4284 while (start <= end) {
39b5637f 4285 len = end - start + 1;
890871be 4286 write_lock(&map->lock);
39b5637f 4287 em = lookup_extent_mapping(map, start, len);
285190d9 4288 if (!em) {
890871be 4289 write_unlock(&map->lock);
70dec807
CM
4290 break;
4291 }
7f3c74fb
CM
4292 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4293 em->start != start) {
890871be 4294 write_unlock(&map->lock);
70dec807
CM
4295 free_extent_map(em);
4296 break;
4297 }
4298 if (!test_range_bit(tree, em->start,
4299 extent_map_end(em) - 1,
8b62b72b 4300 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4301 0, NULL)) {
70dec807
CM
4302 remove_extent_mapping(map, em);
4303 /* once for the rb tree */
4304 free_extent_map(em);
4305 }
4306 start = extent_map_end(em);
890871be 4307 write_unlock(&map->lock);
70dec807
CM
4308
4309 /* once for us */
d1310b2e
CM
4310 free_extent_map(em);
4311 }
d1310b2e 4312 }
7b13b7b1 4313 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4314}
d1310b2e 4315
ec29ed5b
CM
4316/*
4317 * helper function for fiemap, which doesn't want to see any holes.
4318 * This maps until we find something past 'last'
4319 */
4320static struct extent_map *get_extent_skip_holes(struct inode *inode,
4321 u64 offset,
4322 u64 last,
4323 get_extent_t *get_extent)
4324{
da17066c 4325 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4326 struct extent_map *em;
4327 u64 len;
4328
4329 if (offset >= last)
4330 return NULL;
4331
67871254 4332 while (1) {
ec29ed5b
CM
4333 len = last - offset;
4334 if (len == 0)
4335 break;
fda2832f 4336 len = ALIGN(len, sectorsize);
fc4f21b1 4337 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4338 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4339 return em;
4340
4341 /* if this isn't a hole return it */
4342 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4343 em->block_start != EXTENT_MAP_HOLE) {
4344 return em;
4345 }
4346
4347 /* this is a hole, advance to the next extent */
4348 offset = extent_map_end(em);
4349 free_extent_map(em);
4350 if (offset >= last)
4351 break;
4352 }
4353 return NULL;
4354}
4355
1506fcc8
YS
4356int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4357 __u64 start, __u64 len, get_extent_t *get_extent)
4358{
975f84fe 4359 int ret = 0;
1506fcc8
YS
4360 u64 off = start;
4361 u64 max = start + len;
4362 u32 flags = 0;
975f84fe
JB
4363 u32 found_type;
4364 u64 last;
ec29ed5b 4365 u64 last_for_get_extent = 0;
1506fcc8 4366 u64 disko = 0;
ec29ed5b 4367 u64 isize = i_size_read(inode);
975f84fe 4368 struct btrfs_key found_key;
1506fcc8 4369 struct extent_map *em = NULL;
2ac55d41 4370 struct extent_state *cached_state = NULL;
975f84fe 4371 struct btrfs_path *path;
dc046b10 4372 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4373 int end = 0;
ec29ed5b
CM
4374 u64 em_start = 0;
4375 u64 em_len = 0;
4376 u64 em_end = 0;
1506fcc8
YS
4377
4378 if (len == 0)
4379 return -EINVAL;
4380
975f84fe
JB
4381 path = btrfs_alloc_path();
4382 if (!path)
4383 return -ENOMEM;
4384 path->leave_spinning = 1;
4385
da17066c
JM
4386 start = round_down(start, btrfs_inode_sectorsize(inode));
4387 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4388
ec29ed5b
CM
4389 /*
4390 * lookup the last file extent. We're not using i_size here
4391 * because there might be preallocation past i_size
4392 */
f85b7379
DS
4393 ret = btrfs_lookup_file_extent(NULL, root, path,
4394 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4395 if (ret < 0) {
4396 btrfs_free_path(path);
4397 return ret;
2d324f59
LB
4398 } else {
4399 WARN_ON(!ret);
4400 if (ret == 1)
4401 ret = 0;
975f84fe 4402 }
2d324f59 4403
975f84fe 4404 path->slots[0]--;
975f84fe 4405 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4406 found_type = found_key.type;
975f84fe 4407
ec29ed5b 4408 /* No extents, but there might be delalloc bits */
4a0cc7ca 4409 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4410 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4411 /* have to trust i_size as the end */
4412 last = (u64)-1;
4413 last_for_get_extent = isize;
4414 } else {
4415 /*
4416 * remember the start of the last extent. There are a
4417 * bunch of different factors that go into the length of the
4418 * extent, so its much less complex to remember where it started
4419 */
4420 last = found_key.offset;
4421 last_for_get_extent = last + 1;
975f84fe 4422 }
fe09e16c 4423 btrfs_release_path(path);
975f84fe 4424
ec29ed5b
CM
4425 /*
4426 * we might have some extents allocated but more delalloc past those
4427 * extents. so, we trust isize unless the start of the last extent is
4428 * beyond isize
4429 */
4430 if (last < isize) {
4431 last = (u64)-1;
4432 last_for_get_extent = isize;
4433 }
4434
ff13db41 4435 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4436 &cached_state);
ec29ed5b 4437
4d479cf0 4438 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4439 get_extent);
1506fcc8
YS
4440 if (!em)
4441 goto out;
4442 if (IS_ERR(em)) {
4443 ret = PTR_ERR(em);
4444 goto out;
4445 }
975f84fe 4446
1506fcc8 4447 while (!end) {
b76bb701 4448 u64 offset_in_extent = 0;
ea8efc74
CM
4449
4450 /* break if the extent we found is outside the range */
4451 if (em->start >= max || extent_map_end(em) < off)
4452 break;
4453
4454 /*
4455 * get_extent may return an extent that starts before our
4456 * requested range. We have to make sure the ranges
4457 * we return to fiemap always move forward and don't
4458 * overlap, so adjust the offsets here
4459 */
4460 em_start = max(em->start, off);
1506fcc8 4461
ea8efc74
CM
4462 /*
4463 * record the offset from the start of the extent
b76bb701
JB
4464 * for adjusting the disk offset below. Only do this if the
4465 * extent isn't compressed since our in ram offset may be past
4466 * what we have actually allocated on disk.
ea8efc74 4467 */
b76bb701
JB
4468 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4469 offset_in_extent = em_start - em->start;
ec29ed5b 4470 em_end = extent_map_end(em);
ea8efc74 4471 em_len = em_end - em_start;
1506fcc8
YS
4472 disko = 0;
4473 flags = 0;
4474
ea8efc74
CM
4475 /*
4476 * bump off for our next call to get_extent
4477 */
4478 off = extent_map_end(em);
4479 if (off >= max)
4480 end = 1;
4481
93dbfad7 4482 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4483 end = 1;
4484 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4485 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4486 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4487 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4488 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4489 flags |= (FIEMAP_EXTENT_DELALLOC |
4490 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4491 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4492 struct btrfs_trans_handle *trans;
4493
dc046b10
JB
4494 u64 bytenr = em->block_start -
4495 (em->start - em->orig_start);
fe09e16c 4496
ea8efc74 4497 disko = em->block_start + offset_in_extent;
fe09e16c 4498
afce772e
LF
4499 /*
4500 * We need a trans handle to get delayed refs
4501 */
4502 trans = btrfs_join_transaction(root);
4503 /*
4504 * It's OK if we can't start a trans we can still check
4505 * from commit_root
4506 */
4507 if (IS_ERR(trans))
4508 trans = NULL;
4509
fe09e16c
LB
4510 /*
4511 * As btrfs supports shared space, this information
4512 * can be exported to userspace tools via
dc046b10
JB
4513 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4514 * then we're just getting a count and we can skip the
4515 * lookup stuff.
fe09e16c 4516 */
afce772e 4517 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4518 root->objectid,
4519 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4520 if (trans)
3a45bb20 4521 btrfs_end_transaction(trans);
dc046b10 4522 if (ret < 0)
fe09e16c 4523 goto out_free;
dc046b10 4524 if (ret)
fe09e16c 4525 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4526 ret = 0;
1506fcc8
YS
4527 }
4528 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4529 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4530 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4531 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4532
1506fcc8
YS
4533 free_extent_map(em);
4534 em = NULL;
ec29ed5b
CM
4535 if ((em_start >= last) || em_len == (u64)-1 ||
4536 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4537 flags |= FIEMAP_EXTENT_LAST;
4538 end = 1;
4539 }
4540
ec29ed5b
CM
4541 /* now scan forward to see if this is really the last extent. */
4542 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4543 get_extent);
4544 if (IS_ERR(em)) {
4545 ret = PTR_ERR(em);
4546 goto out;
4547 }
4548 if (!em) {
975f84fe
JB
4549 flags |= FIEMAP_EXTENT_LAST;
4550 end = 1;
4551 }
ec29ed5b
CM
4552 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4553 em_len, flags);
26e726af
CS
4554 if (ret) {
4555 if (ret == 1)
4556 ret = 0;
ec29ed5b 4557 goto out_free;
26e726af 4558 }
1506fcc8
YS
4559 }
4560out_free:
4561 free_extent_map(em);
4562out:
fe09e16c 4563 btrfs_free_path(path);
a52f4cd2 4564 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4565 &cached_state, GFP_NOFS);
1506fcc8
YS
4566 return ret;
4567}
4568
727011e0
CM
4569static void __free_extent_buffer(struct extent_buffer *eb)
4570{
6d49ba1b 4571 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4572 kmem_cache_free(extent_buffer_cache, eb);
4573}
4574
a26e8c9f 4575int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4576{
4577 return (atomic_read(&eb->io_pages) ||
4578 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4579 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4580}
4581
4582/*
4583 * Helper for releasing extent buffer page.
4584 */
a50924e3 4585static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4586{
4587 unsigned long index;
db7f3436
JB
4588 struct page *page;
4589 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4590
4591 BUG_ON(extent_buffer_under_io(eb));
4592
a50924e3
DS
4593 index = num_extent_pages(eb->start, eb->len);
4594 if (index == 0)
db7f3436
JB
4595 return;
4596
4597 do {
4598 index--;
fb85fc9a 4599 page = eb->pages[index];
5d2361db
FL
4600 if (!page)
4601 continue;
4602 if (mapped)
db7f3436 4603 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4604 /*
4605 * We do this since we'll remove the pages after we've
4606 * removed the eb from the radix tree, so we could race
4607 * and have this page now attached to the new eb. So
4608 * only clear page_private if it's still connected to
4609 * this eb.
4610 */
4611 if (PagePrivate(page) &&
4612 page->private == (unsigned long)eb) {
4613 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4614 BUG_ON(PageDirty(page));
4615 BUG_ON(PageWriteback(page));
db7f3436 4616 /*
5d2361db
FL
4617 * We need to make sure we haven't be attached
4618 * to a new eb.
db7f3436 4619 */
5d2361db
FL
4620 ClearPagePrivate(page);
4621 set_page_private(page, 0);
4622 /* One for the page private */
09cbfeaf 4623 put_page(page);
db7f3436 4624 }
5d2361db
FL
4625
4626 if (mapped)
4627 spin_unlock(&page->mapping->private_lock);
4628
01327610 4629 /* One for when we allocated the page */
09cbfeaf 4630 put_page(page);
a50924e3 4631 } while (index != 0);
db7f3436
JB
4632}
4633
4634/*
4635 * Helper for releasing the extent buffer.
4636 */
4637static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4638{
a50924e3 4639 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4640 __free_extent_buffer(eb);
4641}
4642
f28491e0
JB
4643static struct extent_buffer *
4644__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4645 unsigned long len)
d1310b2e
CM
4646{
4647 struct extent_buffer *eb = NULL;
4648
d1b5c567 4649 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4650 eb->start = start;
4651 eb->len = len;
f28491e0 4652 eb->fs_info = fs_info;
815a51c7 4653 eb->bflags = 0;
bd681513
CM
4654 rwlock_init(&eb->lock);
4655 atomic_set(&eb->write_locks, 0);
4656 atomic_set(&eb->read_locks, 0);
4657 atomic_set(&eb->blocking_readers, 0);
4658 atomic_set(&eb->blocking_writers, 0);
4659 atomic_set(&eb->spinning_readers, 0);
4660 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4661 eb->lock_nested = 0;
bd681513
CM
4662 init_waitqueue_head(&eb->write_lock_wq);
4663 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4664
6d49ba1b
ES
4665 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4666
3083ee2e 4667 spin_lock_init(&eb->refs_lock);
d1310b2e 4668 atomic_set(&eb->refs, 1);
0b32f4bb 4669 atomic_set(&eb->io_pages, 0);
727011e0 4670
b8dae313
DS
4671 /*
4672 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4673 */
4674 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4675 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4676 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4677
4678 return eb;
4679}
4680
815a51c7
JS
4681struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4682{
4683 unsigned long i;
4684 struct page *p;
4685 struct extent_buffer *new;
4686 unsigned long num_pages = num_extent_pages(src->start, src->len);
4687
3f556f78 4688 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4689 if (new == NULL)
4690 return NULL;
4691
4692 for (i = 0; i < num_pages; i++) {
9ec72677 4693 p = alloc_page(GFP_NOFS);
db7f3436
JB
4694 if (!p) {
4695 btrfs_release_extent_buffer(new);
4696 return NULL;
4697 }
815a51c7
JS
4698 attach_extent_buffer_page(new, p);
4699 WARN_ON(PageDirty(p));
4700 SetPageUptodate(p);
4701 new->pages[i] = p;
fba1acf9 4702 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4703 }
4704
815a51c7
JS
4705 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4706 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4707
4708 return new;
4709}
4710
0f331229
OS
4711struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4712 u64 start, unsigned long len)
815a51c7
JS
4713{
4714 struct extent_buffer *eb;
3f556f78 4715 unsigned long num_pages;
815a51c7
JS
4716 unsigned long i;
4717
0f331229 4718 num_pages = num_extent_pages(start, len);
3f556f78
DS
4719
4720 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4721 if (!eb)
4722 return NULL;
4723
4724 for (i = 0; i < num_pages; i++) {
9ec72677 4725 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4726 if (!eb->pages[i])
4727 goto err;
4728 }
4729 set_extent_buffer_uptodate(eb);
4730 btrfs_set_header_nritems(eb, 0);
4731 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4732
4733 return eb;
4734err:
84167d19
SB
4735 for (; i > 0; i--)
4736 __free_page(eb->pages[i - 1]);
815a51c7
JS
4737 __free_extent_buffer(eb);
4738 return NULL;
4739}
4740
0f331229 4741struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4742 u64 start)
0f331229 4743{
da17066c 4744 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4745}
4746
0b32f4bb
JB
4747static void check_buffer_tree_ref(struct extent_buffer *eb)
4748{
242e18c7 4749 int refs;
0b32f4bb
JB
4750 /* the ref bit is tricky. We have to make sure it is set
4751 * if we have the buffer dirty. Otherwise the
4752 * code to free a buffer can end up dropping a dirty
4753 * page
4754 *
4755 * Once the ref bit is set, it won't go away while the
4756 * buffer is dirty or in writeback, and it also won't
4757 * go away while we have the reference count on the
4758 * eb bumped.
4759 *
4760 * We can't just set the ref bit without bumping the
4761 * ref on the eb because free_extent_buffer might
4762 * see the ref bit and try to clear it. If this happens
4763 * free_extent_buffer might end up dropping our original
4764 * ref by mistake and freeing the page before we are able
4765 * to add one more ref.
4766 *
4767 * So bump the ref count first, then set the bit. If someone
4768 * beat us to it, drop the ref we added.
4769 */
242e18c7
CM
4770 refs = atomic_read(&eb->refs);
4771 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4772 return;
4773
594831c4
JB
4774 spin_lock(&eb->refs_lock);
4775 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4776 atomic_inc(&eb->refs);
594831c4 4777 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4778}
4779
2457aec6
MG
4780static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4781 struct page *accessed)
5df4235e
JB
4782{
4783 unsigned long num_pages, i;
4784
0b32f4bb
JB
4785 check_buffer_tree_ref(eb);
4786
5df4235e
JB
4787 num_pages = num_extent_pages(eb->start, eb->len);
4788 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4789 struct page *p = eb->pages[i];
4790
2457aec6
MG
4791 if (p != accessed)
4792 mark_page_accessed(p);
5df4235e
JB
4793 }
4794}
4795
f28491e0
JB
4796struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4797 u64 start)
452c75c3
CS
4798{
4799 struct extent_buffer *eb;
4800
4801 rcu_read_lock();
f28491e0 4802 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4803 start >> PAGE_SHIFT);
452c75c3
CS
4804 if (eb && atomic_inc_not_zero(&eb->refs)) {
4805 rcu_read_unlock();
062c19e9
FM
4806 /*
4807 * Lock our eb's refs_lock to avoid races with
4808 * free_extent_buffer. When we get our eb it might be flagged
4809 * with EXTENT_BUFFER_STALE and another task running
4810 * free_extent_buffer might have seen that flag set,
4811 * eb->refs == 2, that the buffer isn't under IO (dirty and
4812 * writeback flags not set) and it's still in the tree (flag
4813 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4814 * of decrementing the extent buffer's reference count twice.
4815 * So here we could race and increment the eb's reference count,
4816 * clear its stale flag, mark it as dirty and drop our reference
4817 * before the other task finishes executing free_extent_buffer,
4818 * which would later result in an attempt to free an extent
4819 * buffer that is dirty.
4820 */
4821 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4822 spin_lock(&eb->refs_lock);
4823 spin_unlock(&eb->refs_lock);
4824 }
2457aec6 4825 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4826 return eb;
4827 }
4828 rcu_read_unlock();
4829
4830 return NULL;
4831}
4832
faa2dbf0
JB
4833#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4834struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4835 u64 start)
faa2dbf0
JB
4836{
4837 struct extent_buffer *eb, *exists = NULL;
4838 int ret;
4839
4840 eb = find_extent_buffer(fs_info, start);
4841 if (eb)
4842 return eb;
da17066c 4843 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4844 if (!eb)
4845 return NULL;
4846 eb->fs_info = fs_info;
4847again:
e1860a77 4848 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4849 if (ret)
4850 goto free_eb;
4851 spin_lock(&fs_info->buffer_lock);
4852 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4853 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4854 spin_unlock(&fs_info->buffer_lock);
4855 radix_tree_preload_end();
4856 if (ret == -EEXIST) {
4857 exists = find_extent_buffer(fs_info, start);
4858 if (exists)
4859 goto free_eb;
4860 else
4861 goto again;
4862 }
4863 check_buffer_tree_ref(eb);
4864 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4865
4866 /*
4867 * We will free dummy extent buffer's if they come into
4868 * free_extent_buffer with a ref count of 2, but if we are using this we
4869 * want the buffers to stay in memory until we're done with them, so
4870 * bump the ref count again.
4871 */
4872 atomic_inc(&eb->refs);
4873 return eb;
4874free_eb:
4875 btrfs_release_extent_buffer(eb);
4876 return exists;
4877}
4878#endif
4879
f28491e0 4880struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4881 u64 start)
d1310b2e 4882{
da17066c 4883 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4884 unsigned long num_pages = num_extent_pages(start, len);
4885 unsigned long i;
09cbfeaf 4886 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4887 struct extent_buffer *eb;
6af118ce 4888 struct extent_buffer *exists = NULL;
d1310b2e 4889 struct page *p;
f28491e0 4890 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4891 int uptodate = 1;
19fe0a8b 4892 int ret;
d1310b2e 4893
da17066c 4894 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4895 btrfs_err(fs_info, "bad tree block start %llu", start);
4896 return ERR_PTR(-EINVAL);
4897 }
4898
f28491e0 4899 eb = find_extent_buffer(fs_info, start);
452c75c3 4900 if (eb)
6af118ce 4901 return eb;
6af118ce 4902
23d79d81 4903 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4904 if (!eb)
c871b0f2 4905 return ERR_PTR(-ENOMEM);
d1310b2e 4906
727011e0 4907 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4908 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4909 if (!p) {
4910 exists = ERR_PTR(-ENOMEM);
6af118ce 4911 goto free_eb;
c871b0f2 4912 }
4f2de97a
JB
4913
4914 spin_lock(&mapping->private_lock);
4915 if (PagePrivate(p)) {
4916 /*
4917 * We could have already allocated an eb for this page
4918 * and attached one so lets see if we can get a ref on
4919 * the existing eb, and if we can we know it's good and
4920 * we can just return that one, else we know we can just
4921 * overwrite page->private.
4922 */
4923 exists = (struct extent_buffer *)p->private;
4924 if (atomic_inc_not_zero(&exists->refs)) {
4925 spin_unlock(&mapping->private_lock);
4926 unlock_page(p);
09cbfeaf 4927 put_page(p);
2457aec6 4928 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4929 goto free_eb;
4930 }
5ca64f45 4931 exists = NULL;
4f2de97a 4932
0b32f4bb 4933 /*
4f2de97a
JB
4934 * Do this so attach doesn't complain and we need to
4935 * drop the ref the old guy had.
4936 */
4937 ClearPagePrivate(p);
0b32f4bb 4938 WARN_ON(PageDirty(p));
09cbfeaf 4939 put_page(p);
d1310b2e 4940 }
4f2de97a
JB
4941 attach_extent_buffer_page(eb, p);
4942 spin_unlock(&mapping->private_lock);
0b32f4bb 4943 WARN_ON(PageDirty(p));
727011e0 4944 eb->pages[i] = p;
d1310b2e
CM
4945 if (!PageUptodate(p))
4946 uptodate = 0;
eb14ab8e
CM
4947
4948 /*
4949 * see below about how we avoid a nasty race with release page
4950 * and why we unlock later
4951 */
d1310b2e
CM
4952 }
4953 if (uptodate)
b4ce94de 4954 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4955again:
e1860a77 4956 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4957 if (ret) {
4958 exists = ERR_PTR(ret);
19fe0a8b 4959 goto free_eb;
c871b0f2 4960 }
19fe0a8b 4961
f28491e0
JB
4962 spin_lock(&fs_info->buffer_lock);
4963 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4964 start >> PAGE_SHIFT, eb);
f28491e0 4965 spin_unlock(&fs_info->buffer_lock);
452c75c3 4966 radix_tree_preload_end();
19fe0a8b 4967 if (ret == -EEXIST) {
f28491e0 4968 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4969 if (exists)
4970 goto free_eb;
4971 else
115391d2 4972 goto again;
6af118ce 4973 }
6af118ce 4974 /* add one reference for the tree */
0b32f4bb 4975 check_buffer_tree_ref(eb);
34b41ace 4976 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4977
4978 /*
4979 * there is a race where release page may have
4980 * tried to find this extent buffer in the radix
4981 * but failed. It will tell the VM it is safe to
4982 * reclaim the, and it will clear the page private bit.
4983 * We must make sure to set the page private bit properly
4984 * after the extent buffer is in the radix tree so
4985 * it doesn't get lost
4986 */
727011e0
CM
4987 SetPageChecked(eb->pages[0]);
4988 for (i = 1; i < num_pages; i++) {
fb85fc9a 4989 p = eb->pages[i];
727011e0
CM
4990 ClearPageChecked(p);
4991 unlock_page(p);
4992 }
4993 unlock_page(eb->pages[0]);
d1310b2e
CM
4994 return eb;
4995
6af118ce 4996free_eb:
5ca64f45 4997 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4998 for (i = 0; i < num_pages; i++) {
4999 if (eb->pages[i])
5000 unlock_page(eb->pages[i]);
5001 }
eb14ab8e 5002
897ca6e9 5003 btrfs_release_extent_buffer(eb);
6af118ce 5004 return exists;
d1310b2e 5005}
d1310b2e 5006
3083ee2e
JB
5007static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5008{
5009 struct extent_buffer *eb =
5010 container_of(head, struct extent_buffer, rcu_head);
5011
5012 __free_extent_buffer(eb);
5013}
5014
3083ee2e 5015/* Expects to have eb->eb_lock already held */
f7a52a40 5016static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5017{
5018 WARN_ON(atomic_read(&eb->refs) == 0);
5019 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5020 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5021 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5022
815a51c7 5023 spin_unlock(&eb->refs_lock);
3083ee2e 5024
f28491e0
JB
5025 spin_lock(&fs_info->buffer_lock);
5026 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5027 eb->start >> PAGE_SHIFT);
f28491e0 5028 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5029 } else {
5030 spin_unlock(&eb->refs_lock);
815a51c7 5031 }
3083ee2e
JB
5032
5033 /* Should be safe to release our pages at this point */
a50924e3 5034 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5035#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5036 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5037 __free_extent_buffer(eb);
5038 return 1;
5039 }
5040#endif
3083ee2e 5041 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5042 return 1;
3083ee2e
JB
5043 }
5044 spin_unlock(&eb->refs_lock);
e64860aa
JB
5045
5046 return 0;
3083ee2e
JB
5047}
5048
d1310b2e
CM
5049void free_extent_buffer(struct extent_buffer *eb)
5050{
242e18c7
CM
5051 int refs;
5052 int old;
d1310b2e
CM
5053 if (!eb)
5054 return;
5055
242e18c7
CM
5056 while (1) {
5057 refs = atomic_read(&eb->refs);
5058 if (refs <= 3)
5059 break;
5060 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5061 if (old == refs)
5062 return;
5063 }
5064
3083ee2e 5065 spin_lock(&eb->refs_lock);
815a51c7
JS
5066 if (atomic_read(&eb->refs) == 2 &&
5067 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5068 atomic_dec(&eb->refs);
5069
3083ee2e
JB
5070 if (atomic_read(&eb->refs) == 2 &&
5071 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5072 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5073 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5074 atomic_dec(&eb->refs);
5075
5076 /*
5077 * I know this is terrible, but it's temporary until we stop tracking
5078 * the uptodate bits and such for the extent buffers.
5079 */
f7a52a40 5080 release_extent_buffer(eb);
3083ee2e
JB
5081}
5082
5083void free_extent_buffer_stale(struct extent_buffer *eb)
5084{
5085 if (!eb)
d1310b2e
CM
5086 return;
5087
3083ee2e
JB
5088 spin_lock(&eb->refs_lock);
5089 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5090
0b32f4bb 5091 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5092 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5093 atomic_dec(&eb->refs);
f7a52a40 5094 release_extent_buffer(eb);
d1310b2e 5095}
d1310b2e 5096
1d4284bd 5097void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5098{
d1310b2e
CM
5099 unsigned long i;
5100 unsigned long num_pages;
5101 struct page *page;
5102
d1310b2e
CM
5103 num_pages = num_extent_pages(eb->start, eb->len);
5104
5105 for (i = 0; i < num_pages; i++) {
fb85fc9a 5106 page = eb->pages[i];
b9473439 5107 if (!PageDirty(page))
d2c3f4f6
CM
5108 continue;
5109
a61e6f29 5110 lock_page(page);
eb14ab8e
CM
5111 WARN_ON(!PagePrivate(page));
5112
d1310b2e 5113 clear_page_dirty_for_io(page);
0ee0fda0 5114 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5115 if (!PageDirty(page)) {
5116 radix_tree_tag_clear(&page->mapping->page_tree,
5117 page_index(page),
5118 PAGECACHE_TAG_DIRTY);
5119 }
0ee0fda0 5120 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5121 ClearPageError(page);
a61e6f29 5122 unlock_page(page);
d1310b2e 5123 }
0b32f4bb 5124 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5125}
d1310b2e 5126
0b32f4bb 5127int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5128{
5129 unsigned long i;
5130 unsigned long num_pages;
b9473439 5131 int was_dirty = 0;
d1310b2e 5132
0b32f4bb
JB
5133 check_buffer_tree_ref(eb);
5134
b9473439 5135 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5136
d1310b2e 5137 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5138 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5139 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5140
b9473439 5141 for (i = 0; i < num_pages; i++)
fb85fc9a 5142 set_page_dirty(eb->pages[i]);
b9473439 5143 return was_dirty;
d1310b2e 5144}
d1310b2e 5145
69ba3927 5146void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5147{
5148 unsigned long i;
5149 struct page *page;
5150 unsigned long num_pages;
5151
b4ce94de 5152 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5153 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5154 for (i = 0; i < num_pages; i++) {
fb85fc9a 5155 page = eb->pages[i];
33958dc6
CM
5156 if (page)
5157 ClearPageUptodate(page);
1259ab75 5158 }
1259ab75
CM
5159}
5160
09c25a8c 5161void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5162{
5163 unsigned long i;
5164 struct page *page;
5165 unsigned long num_pages;
5166
0b32f4bb 5167 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5168 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5169 for (i = 0; i < num_pages; i++) {
fb85fc9a 5170 page = eb->pages[i];
d1310b2e
CM
5171 SetPageUptodate(page);
5172 }
d1310b2e 5173}
d1310b2e 5174
0b32f4bb 5175int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5176{
0b32f4bb 5177 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5178}
d1310b2e
CM
5179
5180int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5181 struct extent_buffer *eb, int wait,
f188591e 5182 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5183{
5184 unsigned long i;
d1310b2e
CM
5185 struct page *page;
5186 int err;
5187 int ret = 0;
ce9adaa5
CM
5188 int locked_pages = 0;
5189 int all_uptodate = 1;
d1310b2e 5190 unsigned long num_pages;
727011e0 5191 unsigned long num_reads = 0;
a86c12c7 5192 struct bio *bio = NULL;
c8b97818 5193 unsigned long bio_flags = 0;
a86c12c7 5194
b4ce94de 5195 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5196 return 0;
5197
d1310b2e 5198 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5199 for (i = 0; i < num_pages; i++) {
fb85fc9a 5200 page = eb->pages[i];
bb82ab88 5201 if (wait == WAIT_NONE) {
2db04966 5202 if (!trylock_page(page))
ce9adaa5 5203 goto unlock_exit;
d1310b2e
CM
5204 } else {
5205 lock_page(page);
5206 }
ce9adaa5 5207 locked_pages++;
2571e739
LB
5208 }
5209 /*
5210 * We need to firstly lock all pages to make sure that
5211 * the uptodate bit of our pages won't be affected by
5212 * clear_extent_buffer_uptodate().
5213 */
8436ea91 5214 for (i = 0; i < num_pages; i++) {
2571e739 5215 page = eb->pages[i];
727011e0
CM
5216 if (!PageUptodate(page)) {
5217 num_reads++;
ce9adaa5 5218 all_uptodate = 0;
727011e0 5219 }
ce9adaa5 5220 }
2571e739 5221
ce9adaa5 5222 if (all_uptodate) {
8436ea91 5223 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5224 goto unlock_exit;
5225 }
5226
656f30db 5227 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5228 eb->read_mirror = 0;
0b32f4bb 5229 atomic_set(&eb->io_pages, num_reads);
8436ea91 5230 for (i = 0; i < num_pages; i++) {
fb85fc9a 5231 page = eb->pages[i];
baf863b9 5232
ce9adaa5 5233 if (!PageUptodate(page)) {
baf863b9
LB
5234 if (ret) {
5235 atomic_dec(&eb->io_pages);
5236 unlock_page(page);
5237 continue;
5238 }
5239
f188591e 5240 ClearPageError(page);
a86c12c7 5241 err = __extent_read_full_page(tree, page,
f188591e 5242 get_extent, &bio,
d4c7ca86 5243 mirror_num, &bio_flags,
1f7ad75b 5244 REQ_META);
baf863b9 5245 if (err) {
d1310b2e 5246 ret = err;
baf863b9
LB
5247 /*
5248 * We use &bio in above __extent_read_full_page,
5249 * so we ensure that if it returns error, the
5250 * current page fails to add itself to bio and
5251 * it's been unlocked.
5252 *
5253 * We must dec io_pages by ourselves.
5254 */
5255 atomic_dec(&eb->io_pages);
5256 }
d1310b2e
CM
5257 } else {
5258 unlock_page(page);
5259 }
5260 }
5261
355808c2 5262 if (bio) {
1f7ad75b 5263 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5264 if (err)
5265 return err;
355808c2 5266 }
a86c12c7 5267
bb82ab88 5268 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5269 return ret;
d397712b 5270
8436ea91 5271 for (i = 0; i < num_pages; i++) {
fb85fc9a 5272 page = eb->pages[i];
d1310b2e 5273 wait_on_page_locked(page);
d397712b 5274 if (!PageUptodate(page))
d1310b2e 5275 ret = -EIO;
d1310b2e 5276 }
d397712b 5277
d1310b2e 5278 return ret;
ce9adaa5
CM
5279
5280unlock_exit:
d397712b 5281 while (locked_pages > 0) {
ce9adaa5 5282 locked_pages--;
8436ea91
JB
5283 page = eb->pages[locked_pages];
5284 unlock_page(page);
ce9adaa5
CM
5285 }
5286 return ret;
d1310b2e 5287}
d1310b2e
CM
5288
5289void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5290 unsigned long start,
5291 unsigned long len)
5292{
5293 size_t cur;
5294 size_t offset;
5295 struct page *page;
5296 char *kaddr;
5297 char *dst = (char *)dstv;
09cbfeaf
KS
5298 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5299 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5300
5301 WARN_ON(start > eb->len);
5302 WARN_ON(start + len > eb->start + eb->len);
5303
09cbfeaf 5304 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5305
d397712b 5306 while (len > 0) {
fb85fc9a 5307 page = eb->pages[i];
d1310b2e 5308
09cbfeaf 5309 cur = min(len, (PAGE_SIZE - offset));
a6591715 5310 kaddr = page_address(page);
d1310b2e 5311 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5312
5313 dst += cur;
5314 len -= cur;
5315 offset = 0;
5316 i++;
5317 }
5318}
d1310b2e 5319
550ac1d8
GH
5320int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5321 unsigned long start,
5322 unsigned long len)
5323{
5324 size_t cur;
5325 size_t offset;
5326 struct page *page;
5327 char *kaddr;
5328 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5329 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5330 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5331 int ret = 0;
5332
5333 WARN_ON(start > eb->len);
5334 WARN_ON(start + len > eb->start + eb->len);
5335
09cbfeaf 5336 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5337
5338 while (len > 0) {
fb85fc9a 5339 page = eb->pages[i];
550ac1d8 5340
09cbfeaf 5341 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5342 kaddr = page_address(page);
5343 if (copy_to_user(dst, kaddr + offset, cur)) {
5344 ret = -EFAULT;
5345 break;
5346 }
5347
5348 dst += cur;
5349 len -= cur;
5350 offset = 0;
5351 i++;
5352 }
5353
5354 return ret;
5355}
5356
415b35a5
LB
5357/*
5358 * return 0 if the item is found within a page.
5359 * return 1 if the item spans two pages.
5360 * return -EINVAL otherwise.
5361 */
d1310b2e 5362int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5363 unsigned long min_len, char **map,
d1310b2e 5364 unsigned long *map_start,
a6591715 5365 unsigned long *map_len)
d1310b2e 5366{
09cbfeaf 5367 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5368 char *kaddr;
5369 struct page *p;
09cbfeaf
KS
5370 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5371 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5372 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5373 PAGE_SHIFT;
d1310b2e
CM
5374
5375 if (i != end_i)
415b35a5 5376 return 1;
d1310b2e
CM
5377
5378 if (i == 0) {
5379 offset = start_offset;
5380 *map_start = 0;
5381 } else {
5382 offset = 0;
09cbfeaf 5383 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5384 }
d397712b 5385
d1310b2e 5386 if (start + min_len > eb->len) {
5d163e0e 5387 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5388 eb->start, eb->len, start, min_len);
85026533 5389 return -EINVAL;
d1310b2e
CM
5390 }
5391
fb85fc9a 5392 p = eb->pages[i];
a6591715 5393 kaddr = page_address(p);
d1310b2e 5394 *map = kaddr + offset;
09cbfeaf 5395 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5396 return 0;
5397}
d1310b2e 5398
d1310b2e
CM
5399int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5400 unsigned long start,
5401 unsigned long len)
5402{
5403 size_t cur;
5404 size_t offset;
5405 struct page *page;
5406 char *kaddr;
5407 char *ptr = (char *)ptrv;
09cbfeaf
KS
5408 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5410 int ret = 0;
5411
5412 WARN_ON(start > eb->len);
5413 WARN_ON(start + len > eb->start + eb->len);
5414
09cbfeaf 5415 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5416
d397712b 5417 while (len > 0) {
fb85fc9a 5418 page = eb->pages[i];
d1310b2e 5419
09cbfeaf 5420 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5421
a6591715 5422 kaddr = page_address(page);
d1310b2e 5423 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5424 if (ret)
5425 break;
5426
5427 ptr += cur;
5428 len -= cur;
5429 offset = 0;
5430 i++;
5431 }
5432 return ret;
5433}
d1310b2e 5434
f157bf76
DS
5435void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5436 const void *srcv)
5437{
5438 char *kaddr;
5439
5440 WARN_ON(!PageUptodate(eb->pages[0]));
5441 kaddr = page_address(eb->pages[0]);
5442 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5443 BTRFS_FSID_SIZE);
5444}
5445
5446void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5447{
5448 char *kaddr;
5449
5450 WARN_ON(!PageUptodate(eb->pages[0]));
5451 kaddr = page_address(eb->pages[0]);
5452 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5453 BTRFS_FSID_SIZE);
5454}
5455
d1310b2e
CM
5456void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5457 unsigned long start, unsigned long len)
5458{
5459 size_t cur;
5460 size_t offset;
5461 struct page *page;
5462 char *kaddr;
5463 char *src = (char *)srcv;
09cbfeaf
KS
5464 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5465 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5466
5467 WARN_ON(start > eb->len);
5468 WARN_ON(start + len > eb->start + eb->len);
5469
09cbfeaf 5470 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5471
d397712b 5472 while (len > 0) {
fb85fc9a 5473 page = eb->pages[i];
d1310b2e
CM
5474 WARN_ON(!PageUptodate(page));
5475
09cbfeaf 5476 cur = min(len, PAGE_SIZE - offset);
a6591715 5477 kaddr = page_address(page);
d1310b2e 5478 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5479
5480 src += cur;
5481 len -= cur;
5482 offset = 0;
5483 i++;
5484 }
5485}
d1310b2e 5486
b159fa28
DS
5487void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5488 unsigned long len)
d1310b2e
CM
5489{
5490 size_t cur;
5491 size_t offset;
5492 struct page *page;
5493 char *kaddr;
09cbfeaf
KS
5494 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5495 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5496
5497 WARN_ON(start > eb->len);
5498 WARN_ON(start + len > eb->start + eb->len);
5499
09cbfeaf 5500 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5501
d397712b 5502 while (len > 0) {
fb85fc9a 5503 page = eb->pages[i];
d1310b2e
CM
5504 WARN_ON(!PageUptodate(page));
5505
09cbfeaf 5506 cur = min(len, PAGE_SIZE - offset);
a6591715 5507 kaddr = page_address(page);
b159fa28 5508 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5509
5510 len -= cur;
5511 offset = 0;
5512 i++;
5513 }
5514}
d1310b2e 5515
58e8012c
DS
5516void copy_extent_buffer_full(struct extent_buffer *dst,
5517 struct extent_buffer *src)
5518{
5519 int i;
5520 unsigned num_pages;
5521
5522 ASSERT(dst->len == src->len);
5523
5524 num_pages = num_extent_pages(dst->start, dst->len);
5525 for (i = 0; i < num_pages; i++)
5526 copy_page(page_address(dst->pages[i]),
5527 page_address(src->pages[i]));
5528}
5529
d1310b2e
CM
5530void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5531 unsigned long dst_offset, unsigned long src_offset,
5532 unsigned long len)
5533{
5534 u64 dst_len = dst->len;
5535 size_t cur;
5536 size_t offset;
5537 struct page *page;
5538 char *kaddr;
09cbfeaf
KS
5539 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5540 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5541
5542 WARN_ON(src->len != dst_len);
5543
5544 offset = (start_offset + dst_offset) &
09cbfeaf 5545 (PAGE_SIZE - 1);
d1310b2e 5546
d397712b 5547 while (len > 0) {
fb85fc9a 5548 page = dst->pages[i];
d1310b2e
CM
5549 WARN_ON(!PageUptodate(page));
5550
09cbfeaf 5551 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5552
a6591715 5553 kaddr = page_address(page);
d1310b2e 5554 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5555
5556 src_offset += cur;
5557 len -= cur;
5558 offset = 0;
5559 i++;
5560 }
5561}
d1310b2e 5562
2fe1d551
OS
5563void le_bitmap_set(u8 *map, unsigned int start, int len)
5564{
5565 u8 *p = map + BIT_BYTE(start);
5566 const unsigned int size = start + len;
5567 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5568 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5569
5570 while (len - bits_to_set >= 0) {
5571 *p |= mask_to_set;
5572 len -= bits_to_set;
5573 bits_to_set = BITS_PER_BYTE;
9c894696 5574 mask_to_set = ~0;
2fe1d551
OS
5575 p++;
5576 }
5577 if (len) {
5578 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5579 *p |= mask_to_set;
5580 }
5581}
5582
5583void le_bitmap_clear(u8 *map, unsigned int start, int len)
5584{
5585 u8 *p = map + BIT_BYTE(start);
5586 const unsigned int size = start + len;
5587 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5588 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5589
5590 while (len - bits_to_clear >= 0) {
5591 *p &= ~mask_to_clear;
5592 len -= bits_to_clear;
5593 bits_to_clear = BITS_PER_BYTE;
9c894696 5594 mask_to_clear = ~0;
2fe1d551
OS
5595 p++;
5596 }
5597 if (len) {
5598 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5599 *p &= ~mask_to_clear;
5600 }
5601}
3e1e8bb7
OS
5602
5603/*
5604 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5605 * given bit number
5606 * @eb: the extent buffer
5607 * @start: offset of the bitmap item in the extent buffer
5608 * @nr: bit number
5609 * @page_index: return index of the page in the extent buffer that contains the
5610 * given bit number
5611 * @page_offset: return offset into the page given by page_index
5612 *
5613 * This helper hides the ugliness of finding the byte in an extent buffer which
5614 * contains a given bit.
5615 */
5616static inline void eb_bitmap_offset(struct extent_buffer *eb,
5617 unsigned long start, unsigned long nr,
5618 unsigned long *page_index,
5619 size_t *page_offset)
5620{
09cbfeaf 5621 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5622 size_t byte_offset = BIT_BYTE(nr);
5623 size_t offset;
5624
5625 /*
5626 * The byte we want is the offset of the extent buffer + the offset of
5627 * the bitmap item in the extent buffer + the offset of the byte in the
5628 * bitmap item.
5629 */
5630 offset = start_offset + start + byte_offset;
5631
09cbfeaf
KS
5632 *page_index = offset >> PAGE_SHIFT;
5633 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5634}
5635
5636/**
5637 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5638 * @eb: the extent buffer
5639 * @start: offset of the bitmap item in the extent buffer
5640 * @nr: bit number to test
5641 */
5642int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5643 unsigned long nr)
5644{
2fe1d551 5645 u8 *kaddr;
3e1e8bb7
OS
5646 struct page *page;
5647 unsigned long i;
5648 size_t offset;
5649
5650 eb_bitmap_offset(eb, start, nr, &i, &offset);
5651 page = eb->pages[i];
5652 WARN_ON(!PageUptodate(page));
5653 kaddr = page_address(page);
5654 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5655}
5656
5657/**
5658 * extent_buffer_bitmap_set - set an area of a bitmap
5659 * @eb: the extent buffer
5660 * @start: offset of the bitmap item in the extent buffer
5661 * @pos: bit number of the first bit
5662 * @len: number of bits to set
5663 */
5664void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5665 unsigned long pos, unsigned long len)
5666{
2fe1d551 5667 u8 *kaddr;
3e1e8bb7
OS
5668 struct page *page;
5669 unsigned long i;
5670 size_t offset;
5671 const unsigned int size = pos + len;
5672 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5673 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5674
5675 eb_bitmap_offset(eb, start, pos, &i, &offset);
5676 page = eb->pages[i];
5677 WARN_ON(!PageUptodate(page));
5678 kaddr = page_address(page);
5679
5680 while (len >= bits_to_set) {
5681 kaddr[offset] |= mask_to_set;
5682 len -= bits_to_set;
5683 bits_to_set = BITS_PER_BYTE;
9c894696 5684 mask_to_set = ~0;
09cbfeaf 5685 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5686 offset = 0;
5687 page = eb->pages[++i];
5688 WARN_ON(!PageUptodate(page));
5689 kaddr = page_address(page);
5690 }
5691 }
5692 if (len) {
5693 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5694 kaddr[offset] |= mask_to_set;
5695 }
5696}
5697
5698
5699/**
5700 * extent_buffer_bitmap_clear - clear an area of a bitmap
5701 * @eb: the extent buffer
5702 * @start: offset of the bitmap item in the extent buffer
5703 * @pos: bit number of the first bit
5704 * @len: number of bits to clear
5705 */
5706void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5707 unsigned long pos, unsigned long len)
5708{
2fe1d551 5709 u8 *kaddr;
3e1e8bb7
OS
5710 struct page *page;
5711 unsigned long i;
5712 size_t offset;
5713 const unsigned int size = pos + len;
5714 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5715 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5716
5717 eb_bitmap_offset(eb, start, pos, &i, &offset);
5718 page = eb->pages[i];
5719 WARN_ON(!PageUptodate(page));
5720 kaddr = page_address(page);
5721
5722 while (len >= bits_to_clear) {
5723 kaddr[offset] &= ~mask_to_clear;
5724 len -= bits_to_clear;
5725 bits_to_clear = BITS_PER_BYTE;
9c894696 5726 mask_to_clear = ~0;
09cbfeaf 5727 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5728 offset = 0;
5729 page = eb->pages[++i];
5730 WARN_ON(!PageUptodate(page));
5731 kaddr = page_address(page);
5732 }
5733 }
5734 if (len) {
5735 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5736 kaddr[offset] &= ~mask_to_clear;
5737 }
5738}
5739
3387206f
ST
5740static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5741{
5742 unsigned long distance = (src > dst) ? src - dst : dst - src;
5743 return distance < len;
5744}
5745
d1310b2e
CM
5746static void copy_pages(struct page *dst_page, struct page *src_page,
5747 unsigned long dst_off, unsigned long src_off,
5748 unsigned long len)
5749{
a6591715 5750 char *dst_kaddr = page_address(dst_page);
d1310b2e 5751 char *src_kaddr;
727011e0 5752 int must_memmove = 0;
d1310b2e 5753
3387206f 5754 if (dst_page != src_page) {
a6591715 5755 src_kaddr = page_address(src_page);
3387206f 5756 } else {
d1310b2e 5757 src_kaddr = dst_kaddr;
727011e0
CM
5758 if (areas_overlap(src_off, dst_off, len))
5759 must_memmove = 1;
3387206f 5760 }
d1310b2e 5761
727011e0
CM
5762 if (must_memmove)
5763 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5764 else
5765 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5766}
5767
5768void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5769 unsigned long src_offset, unsigned long len)
5770{
0b246afa 5771 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5772 size_t cur;
5773 size_t dst_off_in_page;
5774 size_t src_off_in_page;
09cbfeaf 5775 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5776 unsigned long dst_i;
5777 unsigned long src_i;
5778
5779 if (src_offset + len > dst->len) {
0b246afa 5780 btrfs_err(fs_info,
5d163e0e
JM
5781 "memmove bogus src_offset %lu move len %lu dst len %lu",
5782 src_offset, len, dst->len);
d1310b2e
CM
5783 BUG_ON(1);
5784 }
5785 if (dst_offset + len > dst->len) {
0b246afa 5786 btrfs_err(fs_info,
5d163e0e
JM
5787 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5788 dst_offset, len, dst->len);
d1310b2e
CM
5789 BUG_ON(1);
5790 }
5791
d397712b 5792 while (len > 0) {
d1310b2e 5793 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5794 (PAGE_SIZE - 1);
d1310b2e 5795 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5796 (PAGE_SIZE - 1);
d1310b2e 5797
09cbfeaf
KS
5798 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5799 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5800
09cbfeaf 5801 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5802 src_off_in_page));
5803 cur = min_t(unsigned long, cur,
09cbfeaf 5804 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5805
fb85fc9a 5806 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5807 dst_off_in_page, src_off_in_page, cur);
5808
5809 src_offset += cur;
5810 dst_offset += cur;
5811 len -= cur;
5812 }
5813}
d1310b2e
CM
5814
5815void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5816 unsigned long src_offset, unsigned long len)
5817{
0b246afa 5818 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5819 size_t cur;
5820 size_t dst_off_in_page;
5821 size_t src_off_in_page;
5822 unsigned long dst_end = dst_offset + len - 1;
5823 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5824 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5825 unsigned long dst_i;
5826 unsigned long src_i;
5827
5828 if (src_offset + len > dst->len) {
0b246afa 5829 btrfs_err(fs_info,
5d163e0e
JM
5830 "memmove bogus src_offset %lu move len %lu len %lu",
5831 src_offset, len, dst->len);
d1310b2e
CM
5832 BUG_ON(1);
5833 }
5834 if (dst_offset + len > dst->len) {
0b246afa 5835 btrfs_err(fs_info,
5d163e0e
JM
5836 "memmove bogus dst_offset %lu move len %lu len %lu",
5837 dst_offset, len, dst->len);
d1310b2e
CM
5838 BUG_ON(1);
5839 }
727011e0 5840 if (dst_offset < src_offset) {
d1310b2e
CM
5841 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5842 return;
5843 }
d397712b 5844 while (len > 0) {
09cbfeaf
KS
5845 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5846 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5847
5848 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5849 (PAGE_SIZE - 1);
d1310b2e 5850 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5851 (PAGE_SIZE - 1);
d1310b2e
CM
5852
5853 cur = min_t(unsigned long, len, src_off_in_page + 1);
5854 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5855 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5856 dst_off_in_page - cur + 1,
5857 src_off_in_page - cur + 1, cur);
5858
5859 dst_end -= cur;
5860 src_end -= cur;
5861 len -= cur;
5862 }
5863}
6af118ce 5864
f7a52a40 5865int try_release_extent_buffer(struct page *page)
19fe0a8b 5866{
6af118ce 5867 struct extent_buffer *eb;
6af118ce 5868
3083ee2e 5869 /*
01327610 5870 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5871 * now.
5872 */
5873 spin_lock(&page->mapping->private_lock);
5874 if (!PagePrivate(page)) {
5875 spin_unlock(&page->mapping->private_lock);
4f2de97a 5876 return 1;
45f49bce 5877 }
6af118ce 5878
3083ee2e
JB
5879 eb = (struct extent_buffer *)page->private;
5880 BUG_ON(!eb);
19fe0a8b
MX
5881
5882 /*
3083ee2e
JB
5883 * This is a little awful but should be ok, we need to make sure that
5884 * the eb doesn't disappear out from under us while we're looking at
5885 * this page.
19fe0a8b 5886 */
3083ee2e 5887 spin_lock(&eb->refs_lock);
0b32f4bb 5888 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5889 spin_unlock(&eb->refs_lock);
5890 spin_unlock(&page->mapping->private_lock);
5891 return 0;
b9473439 5892 }
3083ee2e 5893 spin_unlock(&page->mapping->private_lock);
897ca6e9 5894
19fe0a8b 5895 /*
3083ee2e
JB
5896 * If tree ref isn't set then we know the ref on this eb is a real ref,
5897 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5898 */
3083ee2e
JB
5899 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5900 spin_unlock(&eb->refs_lock);
5901 return 0;
b9473439 5902 }
19fe0a8b 5903
f7a52a40 5904 return release_extent_buffer(eb);
6af118ce 5905}