]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: use bio fields for op and flags
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729
730search_again:
731 if (start > end)
732 goto out;
cad321ad 733 spin_unlock(&tree->lock);
d0164adc 734 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
735 cond_resched();
736 goto again;
7ab5cb2a
DS
737
738out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
d1310b2e 745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
d1310b2e 883 prealloc = alloc_extent_state(mask);
d1310b2e
CM
884 }
885
cad321ad 886 spin_lock(&tree->lock);
9655d298
CM
887 if (cached_state && *cached_state) {
888 state = *cached_state;
df98b6e2 889 if (state->start <= start && state->end > start &&
27a3507d 890 extent_state_in_tree(state)) {
9655d298
CM
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
d1310b2e
CM
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
12cfbad9 899 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 900 if (!node) {
8233767a
XG
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
12cfbad9 903 err = insert_state(tree, prealloc, start, end,
d38ed27f 904 &p, &parent, &bits, changeset);
c2d904e0
JM
905 if (err)
906 extent_io_tree_panic(tree, err);
907
c42ac0bc 908 cache_state(prealloc, cached_state);
d1310b2e 909 prealloc = NULL;
d1310b2e
CM
910 goto out;
911 }
d1310b2e 912 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 913hit_next:
d1310b2e
CM
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
1edbb734 924 if (state->state & exclusive_bits) {
d1310b2e
CM
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
42daec29 929
d38ed27f 930 set_state_bits(tree, state, &bits, changeset);
2c64c53d 931 cache_state(state, cached_state);
d1310b2e 932 merge_state(tree, state);
5c939df5
YZ
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
d1ac6e41
LB
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
d1310b2e
CM
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
1edbb734 960 if (state->state & exclusive_bits) {
d1310b2e
CM
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
8233767a
XG
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
d1310b2e 968 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
969 if (err)
970 extent_io_tree_panic(tree, err);
971
d1310b2e
CM
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
d38ed27f 976 set_state_bits(tree, state, &bits, changeset);
2c64c53d 977 cache_state(state, cached_state);
d1310b2e 978 merge_state(tree, state);
5c939df5
YZ
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
d1ac6e41
LB
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
d1310b2e
CM
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
d397712b 1001 this_end = last_start - 1;
8233767a
XG
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
c7f895a2
XG
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
d1310b2e 1010 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1011 NULL, NULL, &bits, changeset);
c2d904e0
JM
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
9ed74f2d
JB
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
d1310b2e
CM
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1edbb734 1027 if (state->state & exclusive_bits) {
d1310b2e
CM
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
8233767a
XG
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
d1310b2e 1035 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1036 if (err)
1037 extent_io_tree_panic(tree, err);
d1310b2e 1038
d38ed27f 1039 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1040 cache_state(prealloc, cached_state);
d1310b2e
CM
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
b5a4ba14
DS
1046search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
d1310b2e
CM
1053
1054out:
cad321ad 1055 spin_unlock(&tree->lock);
d1310b2e
CM
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
d1310b2e 1061}
d1310b2e 1062
41074888 1063int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1064 unsigned bits, u64 * failed_start,
41074888 1065 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1066{
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1068 cached_state, mask, NULL);
3fbe5c02
JM
1069}
1070
1071
462d6fac 1072/**
10983f2e
LB
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
462d6fac
JB
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
e6138876 1080 * @cached_state: state that we're going to cache
462d6fac
JB
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
210aa277
DS
1087 *
1088 * All allocations are done with GFP_NOFS.
462d6fac
JB
1089 */
1090int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1091 unsigned bits, unsigned clear_bits,
210aa277 1092 struct extent_state **cached_state)
462d6fac
JB
1093{
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
12cfbad9
FDBM
1097 struct rb_node **p;
1098 struct rb_node *parent;
462d6fac
JB
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
c8fd3de7 1102 bool first_iteration = true;
462d6fac 1103
a5dee37d 1104 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1105
462d6fac 1106again:
210aa277 1107 if (!prealloc) {
c8fd3de7
FM
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
210aa277 1115 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1116 if (!prealloc && !first_iteration)
462d6fac
JB
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
e6138876
JB
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
27a3507d 1124 extent_state_in_tree(state)) {
e6138876
JB
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
462d6fac
JB
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
12cfbad9 1134 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
12cfbad9 1141 err = insert_state(tree, prealloc, start, end,
d38ed27f 1142 &p, &parent, &bits, NULL);
c2d904e0
JM
1143 if (err)
1144 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
462d6fac
JB
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
d38ed27f 1161 set_state_bits(tree, state, &bits, NULL);
e6138876 1162 cache_state(state, cached_state);
fefdc557 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1164 if (last_end == (u64)-1)
1165 goto out;
462d6fac 1166 start = last_end + 1;
d1ac6e41
LB
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
462d6fac
JB
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
462d6fac 1195 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1196 if (err)
1197 extent_io_tree_panic(tree, err);
462d6fac
JB
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
d38ed27f 1202 set_state_bits(tree, state, &bits, NULL);
e6138876 1203 cache_state(state, cached_state);
fefdc557
QW
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
462d6fac
JB
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
d1ac6e41
LB
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
462d6fac
JB
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
462d6fac
JB
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1240 NULL, NULL, &bits, NULL);
c2d904e0
JM
1241 if (err)
1242 extent_io_tree_panic(tree, err);
e6138876 1243 cache_state(prealloc, cached_state);
462d6fac
JB
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
462d6fac
JB
1260
1261 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1262 if (err)
1263 extent_io_tree_panic(tree, err);
462d6fac 1264
d38ed27f 1265 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1266 cache_state(prealloc, cached_state);
fefdc557 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
462d6fac
JB
1272search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
210aa277 1276 cond_resched();
c8fd3de7 1277 first_iteration = false;
462d6fac 1278 goto again;
462d6fac
JB
1279
1280out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
462d6fac
JB
1286}
1287
d1310b2e 1288/* wrappers around set/clear extent bit */
d38ed27f 1289int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1290 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1291{
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
2c53b912 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1301 changeset);
1302}
1303
fefdc557
QW
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307{
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310}
1311
fefdc557 1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1313 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1314{
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
f734c44a 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1322 changeset);
1323}
1324
d352ac68
CM
1325/*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1edbb734 1329int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1330 struct extent_state **cached_state)
d1310b2e
CM
1331{
1332 int err;
1333 u64 failed_start;
9ee49a04 1334
d1310b2e 1335 while (1) {
ff13db41 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1337 EXTENT_LOCKED, &failed_start,
d38ed27f 1338 cached_state, GFP_NOFS, NULL);
d0082371 1339 if (err == -EEXIST) {
d1310b2e
CM
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
d0082371 1342 } else
d1310b2e 1343 break;
d1310b2e
CM
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347}
d1310b2e 1348
d0082371 1349int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1350{
1351 int err;
1352 u64 failed_start;
1353
3fbe5c02 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1355 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1360 return 0;
6643558d 1361 }
25179201
JB
1362 return 1;
1363}
25179201 1364
bd1fa4f0 1365void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1366{
09cbfeaf
KS
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
09cbfeaf 1375 put_page(page);
4adaa611
CM
1376 index++;
1377 }
4adaa611
CM
1378}
1379
f6311572 1380void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1381{
09cbfeaf
KS
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1389 __set_page_dirty_nobuffers(page);
8d38633c 1390 account_page_redirty(page);
09cbfeaf 1391 put_page(page);
4adaa611
CM
1392 index++;
1393 }
4adaa611
CM
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
35de6db2 1399static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1400{
09cbfeaf
KS
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1408 set_page_writeback(page);
09cbfeaf 1409 put_page(page);
d1310b2e
CM
1410 index++;
1411 }
d1310b2e 1412}
d1310b2e 1413
d352ac68
CM
1414/* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
48a3b636
ES
1418static struct extent_state *
1419find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1420 u64 start, unsigned bits)
d7fc640e
CM
1421{
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
d397712b 1430 if (!node)
d7fc640e 1431 goto out;
d7fc640e 1432
d397712b 1433 while (1) {
d7fc640e 1434 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1435 if (state->end >= start && (state->state & bits))
d7fc640e 1436 return state;
d397712b 1437
d7fc640e
CM
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442out:
1443 return NULL;
1444}
d7fc640e 1445
69261c4b
XG
1446/*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
477d7eaf 1451 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1452 */
1453int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1454 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1455 struct extent_state **cached_state)
69261c4b
XG
1456{
1457 struct extent_state *state;
e6138876 1458 struct rb_node *n;
69261c4b
XG
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
e6138876
JB
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
27a3507d 1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
69261c4b 1481 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1482got_it:
69261c4b 1483 if (state) {
e38e2ed7 1484 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
e6138876 1489out:
69261c4b
XG
1490 spin_unlock(&tree->lock);
1491 return ret;
1492}
1493
d352ac68
CM
1494/*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
c8b97818 1500static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
d1310b2e
CM
1503{
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
cad321ad 1510 spin_lock(&tree->lock);
c8b97818 1511
d1310b2e
CM
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
80ea96b1 1516 node = tree_search(tree, cur_start);
2b114d1d 1517 if (!node) {
3b951516
CM
1518 if (!found)
1519 *end = (u64)-1;
d1310b2e
CM
1520 goto out;
1521 }
1522
d397712b 1523 while (1) {
d1310b2e 1524 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
c2a128d2 1534 if (!found) {
d1310b2e 1535 *start = state->start;
c2a128d2
JB
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
d1310b2e
CM
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
d1310b2e 1543 total_bytes += state->end - state->start + 1;
7bf811a5 1544 if (total_bytes >= max_bytes)
573aecaf 1545 break;
573aecaf 1546 if (!node)
d1310b2e
CM
1547 break;
1548 }
1549out:
cad321ad 1550 spin_unlock(&tree->lock);
d1310b2e
CM
1551 return found;
1552}
1553
143bede5
JM
1554static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
c8b97818
CM
1557{
1558 int ret;
1559 struct page *pages[16];
09cbfeaf
KS
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
143bede5 1566 return;
c8b97818 1567
d397712b 1568 while (nr_pages > 0) {
c8b97818 1569 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
09cbfeaf 1575 put_page(pages[i]);
c8b97818
CM
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
c8b97818
CM
1581}
1582
1583static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587{
09cbfeaf 1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1589 unsigned long start_index = index;
09cbfeaf 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
d397712b 1603 while (nrpages > 0) {
c8b97818 1604 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
771ed689 1617 if (pages[i] != locked_page) {
c8b97818 1618 lock_page(pages[i]);
f2b1c41c
CM
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
09cbfeaf 1623 put_page(pages[i]);
771ed689
CM
1624 goto done;
1625 }
1626 }
09cbfeaf 1627 put_page(pages[i]);
771ed689 1628 pages_locked++;
c8b97818 1629 }
c8b97818
CM
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1640 PAGE_SHIFT);
c8b97818
CM
1641 }
1642 return ret;
1643}
1644
1645/*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
294e30fe
JB
1651STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
c8b97818
CM
1655{
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
9655d298 1659 struct extent_state *cached_state = NULL;
c8b97818
CM
1660 int ret;
1661 int loops = 0;
1662
1663again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1668 max_bytes, &cached_state);
70b99e69 1669 if (!found || delalloc_end <= *start) {
c8b97818
CM
1670 *start = delalloc_start;
1671 *end = delalloc_end;
c2a128d2 1672 free_extent_state(cached_state);
385fe0be 1673 return 0;
c8b97818
CM
1674 }
1675
70b99e69
CM
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
d397712b 1681 if (delalloc_start < *start)
70b99e69 1682 delalloc_start = *start;
70b99e69 1683
c8b97818
CM
1684 /*
1685 * make sure to limit the number of pages we try to lock down
c8b97818 1686 */
7bf811a5
JB
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1689
c8b97818
CM
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
9655d298 1697 free_extent_state(cached_state);
7d788742 1698 cached_state = NULL;
c8b97818 1699 if (!loops) {
09cbfeaf 1700 max_bytes = PAGE_SIZE;
c8b97818
CM
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
79787eaa 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1709
1710 /* step three, lock the state bits for the whole range */
ff13db41 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1715 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1716 if (!ret) {
9655d298
CM
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
c8b97818
CM
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
9655d298 1724 free_extent_state(cached_state);
c8b97818
CM
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727out_failed:
1728 return found;
1729}
1730
a9d93e17 1731void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1732 struct page *locked_page,
9ee49a04 1733 unsigned clear_bits,
c2790a2e 1734 unsigned long page_ops)
c8b97818 1735{
c2790a2e 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1737 int ret;
1738 struct page *pages[16];
09cbfeaf
KS
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
771ed689 1743
2c64c53d 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1745 if (page_ops == 0)
a9d93e17 1746 return;
c8b97818 1747
704de49d
FM
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
d397712b 1751 while (nr_pages > 0) {
c8b97818 1752 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1755 for (i = 0; i < ret; i++) {
8b62b72b 1756
c2790a2e 1757 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1758 SetPagePrivate2(pages[i]);
1759
c8b97818 1760 if (pages[i] == locked_page) {
09cbfeaf 1761 put_page(pages[i]);
c8b97818
CM
1762 continue;
1763 }
c2790a2e 1764 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1765 clear_page_dirty_for_io(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1767 set_page_writeback(pages[i]);
704de49d
FM
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
c2790a2e 1770 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1771 end_page_writeback(pages[i]);
c2790a2e 1772 if (page_ops & PAGE_UNLOCK)
771ed689 1773 unlock_page(pages[i]);
09cbfeaf 1774 put_page(pages[i]);
c8b97818
CM
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
c8b97818 1780}
c8b97818 1781
d352ac68
CM
1782/*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
d1310b2e
CM
1787u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1789 unsigned bits, int contig)
d1310b2e
CM
1790{
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
ec29ed5b 1795 u64 last = 0;
d1310b2e
CM
1796 int found = 0;
1797
fae7f21c 1798 if (WARN_ON(search_end <= cur_start))
d1310b2e 1799 return 0;
d1310b2e 1800
cad321ad 1801 spin_lock(&tree->lock);
d1310b2e
CM
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
80ea96b1 1810 node = tree_search(tree, cur_start);
d397712b 1811 if (!node)
d1310b2e 1812 goto out;
d1310b2e 1813
d397712b 1814 while (1) {
d1310b2e
CM
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
ec29ed5b
CM
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
af60bed2 1826 *start = max(cur_start, state->start);
d1310b2e
CM
1827 found = 1;
1828 }
ec29ed5b
CM
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
d1310b2e
CM
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837out:
cad321ad 1838 spin_unlock(&tree->lock);
d1310b2e
CM
1839 return total_bytes;
1840}
b2950863 1841
d352ac68
CM
1842/*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
f827ba9a 1846static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record *failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 state->failrec = failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
f827ba9a 1874static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1875 struct io_failure_record **failrec)
d1310b2e
CM
1876{
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
cad321ad 1881 spin_lock(&tree->lock);
d1310b2e
CM
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
80ea96b1 1886 node = tree_search(tree, start);
2b114d1d 1887 if (!node) {
d1310b2e
CM
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
47dc196a 1896 *failrec = state->failrec;
d1310b2e 1897out:
cad321ad 1898 spin_unlock(&tree->lock);
d1310b2e
CM
1899 return ret;
1900}
1901
1902/*
1903 * searches a range in the state tree for a given mask.
70dec807 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1909 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1910{
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
d1310b2e 1914
cad321ad 1915 spin_lock(&tree->lock);
27a3507d 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1917 cached->end > start)
9655d298
CM
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
d1310b2e
CM
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
46562cec
CM
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
d1310b2e
CM
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
cad321ad 1954 spin_unlock(&tree->lock);
d1310b2e
CM
1955 return bitset;
1956}
d1310b2e
CM
1957
1958/*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
143bede5 1962static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1963{
4eee4fa4 1964 u64 start = page_offset(page);
09cbfeaf 1965 u64 end = start + PAGE_SIZE - 1;
9655d298 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1967 SetPageUptodate(page);
d1310b2e
CM
1968}
1969
8b110e39 1970int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1971{
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
47dc196a 1976 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
91166212 1979 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1980 if (ret)
1981 err = ret;
1982
53b381b3
DW
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
91166212 1985 EXTENT_DAMAGED);
53b381b3
DW
1986 if (ret && !err)
1987 err = ret;
4a54c8c1
JS
1988
1989 kfree(rec);
1990 return err;
1991}
1992
4a54c8c1
JS
1993/*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
3ec706c8 1998 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
1203b681
MX
2003int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2005{
1203b681 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2007 struct bio *bio;
2008 struct btrfs_device *dev;
4a54c8c1
JS
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
53b381b3 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2013 int ret;
2014
908960c6 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2016 BUG_ON(!mirror_num);
2017
53b381b3
DW
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
9be3395b 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2023 if (!bio)
2024 return -EIO;
4f024f37 2025 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2026 map_length = length;
2027
b5de8d0d
FM
2028 /*
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2032 */
2033 btrfs_bio_counter_inc_blocked(fs_info);
3ec706c8 2034 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
b5de8d0d 2037 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2043 bio->bi_iter.bi_sector = sector;
4a54c8c1 2044 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2045 btrfs_put_bbio(bbio);
4a54c8c1 2046 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2047 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
4e49ea4a 2052 bio->bi_rw = WRITE_SYNC;
ffdd2018 2053 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2054
4e49ea4a 2055 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2056 /* try to remap that extent elsewhere? */
b5de8d0d 2057 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2058 bio_put(bio);
442a4f63 2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2060 return -EIO;
2061 }
2062
b14af3b4
DS
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
b5de8d0d 2067 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2068 bio_put(bio);
2069 return 0;
2070}
2071
ea466794
JB
2072int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073 int mirror_num)
2074{
ea466794
JB
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2077 int ret = 0;
ea466794 2078
908960c6
ID
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2080 return -EROFS;
2081
ea466794 2082 for (i = 0; i < num_pages; i++) {
fb85fc9a 2083 struct page *p = eb->pages[i];
1203b681
MX
2084
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2086 PAGE_SIZE, start, p,
1203b681 2087 start - page_offset(p), mirror_num);
ea466794
JB
2088 if (ret)
2089 break;
09cbfeaf 2090 start += PAGE_SIZE;
ea466794
JB
2091 }
2092
2093 return ret;
2094}
2095
4a54c8c1
JS
2096/*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
8b110e39
MX
2100int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
4a54c8c1
JS
2102{
2103 u64 private;
4a54c8c1 2104 struct io_failure_record *failrec;
908960c6 2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2106 struct extent_state *state;
2107 int num_copies;
4a54c8c1 2108 int ret;
4a54c8c1
JS
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
47dc196a
DS
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117 &failrec);
4a54c8c1
JS
2118 if (ret)
2119 return 0;
2120
4a54c8c1
JS
2121 BUG_ON(!failrec->this_mirror);
2122
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126 failrec->start);
4a54c8c1
JS
2127 goto out;
2128 }
908960c6
ID
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2130 goto out;
4a54c8c1
JS
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
883d0de4
MX
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
4a54c8c1 2142 if (num_copies > 1) {
1203b681 2143 repair_io_failure(inode, start, failrec->len,
454ff3de 2144 failrec->logical, page,
1203b681 2145 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2146 }
2147 }
2148
2149out:
454ff3de 2150 free_io_failure(inode, failrec);
4a54c8c1 2151
454ff3de 2152 return 0;
4a54c8c1
JS
2153}
2154
f612496b
MX
2155/*
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2160 */
2161void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162{
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2166
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2168 return;
2169
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172 while (state) {
2173 if (state->start > end)
2174 break;
2175
2176 ASSERT(state->end <= end);
2177
2178 next = next_state(state);
2179
47dc196a 2180 failrec = state->failrec;
f612496b
MX
2181 free_extent_state(state);
2182 kfree(failrec);
2183
2184 state = next;
2185 }
2186 spin_unlock(&failure_tree->lock);
2187}
2188
2fe6303e 2189int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2190 struct io_failure_record **failrec_ret)
4a54c8c1 2191{
2fe6303e 2192 struct io_failure_record *failrec;
4a54c8c1 2193 struct extent_map *em;
4a54c8c1
JS
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2197 int ret;
4a54c8c1
JS
2198 u64 logical;
2199
47dc196a 2200 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2fe6303e 2205
4a54c8c1
JS
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
68ba990f 2220 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
7a2d6a64 2225 if (!em) {
4a54c8c1
JS
2226 kfree(failrec);
2227 return -EIO;
2228 }
2fe6303e 2229
4a54c8c1
JS
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2fe6303e
MX
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
4a54c8c1
JS
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2247 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2248 if (ret >= 0)
47dc196a 2249 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
ceeb0ae7 2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2fe6303e 2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2261 /*
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2265 */
2266 }
2fe6303e
MX
2267
2268 *failrec_ret = failrec;
2269
2270 return 0;
2271}
2272
2273int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2275{
2276 int num_copies;
2277
5d964051
SB
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
4a54c8c1
JS
2280 if (num_copies == 1) {
2281 /*
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2285 */
2fe6303e 2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2287 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2288 return 0;
4a54c8c1
JS
2289 }
2290
4a54c8c1
JS
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
4a54c8c1
JS
2323 }
2324
facc8a22 2325 if (failrec->this_mirror > num_copies) {
2fe6303e 2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2327 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2328 return 0;
4a54c8c1
JS
2329 }
2330
2fe6303e
MX
2331 return 1;
2332}
2333
2334
2335struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
8b110e39 2338 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2339{
2340 struct bio *bio;
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2343
9be3395b 2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2345 if (!bio)
2346 return NULL;
2347
2348 bio->bi_end_io = endio_func;
4f024f37 2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2351 bio->bi_iter.bi_size = 0;
8b110e39 2352 bio->bi_private = data;
4a54c8c1 2353
facc8a22
MX
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2363 csum_size);
2364 }
2365
2fe6303e
MX
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369}
2370
2371/*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382{
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode;
2388 int ret;
2389
1f7ad75b 2390 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404 else
2405 read_mode = READ_SYNC;
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
8b110e39
MX
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
2fe6303e
MX
2412 if (!bio) {
2413 free_io_failure(inode, failrec);
2414 return -EIO;
2415 }
1f7ad75b 2416 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2417
2fe6303e
MX
2418 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2420
81a75f67 2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
013bd4c3 2422 failrec->bio_flags, 0);
6c387ab2 2423 if (ret) {
454ff3de 2424 free_io_failure(inode, failrec);
6c387ab2
MX
2425 bio_put(bio);
2426 }
2427
013bd4c3 2428 return ret;
4a54c8c1
JS
2429}
2430
d1310b2e
CM
2431/* lots and lots of room for performance fixes in the end_bio funcs */
2432
b5227c07 2433void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2434{
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
3e2426bd 2437 int ret = 0;
87826df0
JM
2438
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
2441 if (tree->ops && tree->ops->writepage_end_io_hook) {
2442 ret = tree->ops->writepage_end_io_hook(page, start,
2443 end, NULL, uptodate);
2444 if (ret)
2445 uptodate = 0;
2446 }
2447
87826df0 2448 if (!uptodate) {
87826df0
JM
2449 ClearPageUptodate(page);
2450 SetPageError(page);
5dca6eea
LB
2451 ret = ret < 0 ? ret : -EIO;
2452 mapping_set_error(page->mapping, ret);
87826df0 2453 }
87826df0
JM
2454}
2455
d1310b2e
CM
2456/*
2457 * after a writepage IO is done, we need to:
2458 * clear the uptodate bits on error
2459 * clear the writeback bits in the extent tree for this IO
2460 * end_page_writeback if the page has no more pending IO
2461 *
2462 * Scheduling is not allowed, so the extent state tree is expected
2463 * to have one and only one object corresponding to this IO.
2464 */
4246a0b6 2465static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2466{
2c30c71b 2467 struct bio_vec *bvec;
d1310b2e
CM
2468 u64 start;
2469 u64 end;
2c30c71b 2470 int i;
d1310b2e 2471
2c30c71b 2472 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2473 struct page *page = bvec->bv_page;
902b22f3 2474
17a5adcc
AO
2475 /* We always issue full-page reads, but if some block
2476 * in a page fails to read, blk_update_request() will
2477 * advance bv_offset and adjust bv_len to compensate.
2478 * Print a warning for nonzero offsets, and an error
2479 * if they don't add up to a full page. */
09cbfeaf
KS
2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "partial page write in btrfs with offset %u and length %u",
2484 bvec->bv_offset, bvec->bv_len);
2485 else
2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "incomplete page write in btrfs with offset %u and "
2488 "length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 }
d1310b2e 2491
17a5adcc
AO
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2494
b5227c07 2495 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2496 end_page_writeback(page);
2c30c71b 2497 }
2b1f55b0 2498
d1310b2e 2499 bio_put(bio);
d1310b2e
CM
2500}
2501
883d0de4
MX
2502static void
2503endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504 int uptodate)
2505{
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2508
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512}
2513
d1310b2e
CM
2514/*
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2521 *
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2524 */
4246a0b6 2525static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2526{
2c30c71b 2527 struct bio_vec *bvec;
4246a0b6 2528 int uptodate = !bio->bi_error;
facc8a22 2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2530 struct extent_io_tree *tree;
facc8a22 2531 u64 offset = 0;
d1310b2e
CM
2532 u64 start;
2533 u64 end;
facc8a22 2534 u64 len;
883d0de4
MX
2535 u64 extent_start = 0;
2536 u64 extent_len = 0;
5cf1ab56 2537 int mirror;
d1310b2e 2538 int ret;
2c30c71b 2539 int i;
d1310b2e 2540
2c30c71b 2541 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2542 struct page *page = bvec->bv_page;
a71754fc 2543 struct inode *inode = page->mapping->host;
507903b8 2544
be3940c0 2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547 bio->bi_error, io_bio->mirror_num);
a71754fc 2548 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2549
17a5adcc
AO
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
09cbfeaf
KS
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
2559 bvec->bv_offset, bvec->bv_len);
2560 else
2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562 "incomplete page read in btrfs with offset %u and "
2563 "length %u",
2564 bvec->bv_offset, bvec->bv_len);
2565 }
d1310b2e 2566
17a5adcc
AO
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2569 len = bvec->bv_len;
d1310b2e 2570
9be3395b 2571 mirror = io_bio->mirror_num;
f2a09da9
MX
2572 if (likely(uptodate && tree->ops &&
2573 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2575 page, start, end,
2576 mirror);
5ee0844d 2577 if (ret)
d1310b2e 2578 uptodate = 0;
5ee0844d 2579 else
1203b681 2580 clean_io_failure(inode, start, page, 0);
d1310b2e 2581 }
ea466794 2582
f2a09da9
MX
2583 if (likely(uptodate))
2584 goto readpage_ok;
2585
2586 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2587 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2588 if (!ret && !bio->bi_error)
ea466794 2589 uptodate = 1;
f2a09da9 2590 } else {
f4a8e656
JS
2591 /*
2592 * The generic bio_readpage_error handles errors the
2593 * following way: If possible, new read requests are
2594 * created and submitted and will end up in
2595 * end_bio_extent_readpage as well (if we're lucky, not
2596 * in the !uptodate case). In that case it returns 0 and
2597 * we just go on with the next page in our bio. If it
2598 * can't handle the error it will return -EIO and we
2599 * remain responsible for that page.
2600 */
facc8a22
MX
2601 ret = bio_readpage_error(bio, offset, page, start, end,
2602 mirror);
7e38326f 2603 if (ret == 0) {
4246a0b6 2604 uptodate = !bio->bi_error;
38c1c2e4 2605 offset += len;
7e38326f
CM
2606 continue;
2607 }
2608 }
f2a09da9 2609readpage_ok:
883d0de4 2610 if (likely(uptodate)) {
a71754fc 2611 loff_t i_size = i_size_read(inode);
09cbfeaf 2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2613 unsigned off;
a71754fc
JB
2614
2615 /* Zero out the end if this page straddles i_size */
09cbfeaf 2616 off = i_size & (PAGE_SIZE-1);
a583c026 2617 if (page->index == end_index && off)
09cbfeaf 2618 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2619 SetPageUptodate(page);
70dec807 2620 } else {
17a5adcc
AO
2621 ClearPageUptodate(page);
2622 SetPageError(page);
70dec807 2623 }
17a5adcc 2624 unlock_page(page);
facc8a22 2625 offset += len;
883d0de4
MX
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2c30c71b 2648 }
d1310b2e 2649
883d0de4
MX
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
facc8a22 2653 if (io_bio->end_io)
4246a0b6 2654 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2655 bio_put(bio);
d1310b2e
CM
2656}
2657
9be3395b
CM
2658/*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
88f794ed
MX
2662struct bio *
2663btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
d1310b2e 2665{
facc8a22 2666 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2667 struct bio *bio;
2668
9be3395b 2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
d1310b2e
CM
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
4f024f37 2680 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
d1310b2e
CM
2685 }
2686 return bio;
2687}
2688
9be3395b
CM
2689struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690{
23ea8e5a
MX
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
9be3395b 2693
23ea8e5a
MX
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
3a9508b0
CM
2700
2701#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2702 /* FIXME, put this into bio_clone_bioset */
2703 if (bio->bi_css)
2704 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2705#endif
23ea8e5a
MX
2706 }
2707 return new;
2708}
9be3395b
CM
2709
2710/* this also allocates from the btrfs_bioset */
2711struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2712{
facc8a22
MX
2713 struct btrfs_io_bio *btrfs_bio;
2714 struct bio *bio;
2715
2716 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2717 if (bio) {
2718 btrfs_bio = btrfs_io_bio(bio);
2719 btrfs_bio->csum = NULL;
2720 btrfs_bio->csum_allocated = NULL;
2721 btrfs_bio->end_io = NULL;
2722 }
2723 return bio;
9be3395b
CM
2724}
2725
2726
1f7ad75b
MC
2727static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2728 unsigned long bio_flags)
d1310b2e 2729{
d1310b2e 2730 int ret = 0;
70dec807
CM
2731 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2732 struct page *page = bvec->bv_page;
2733 struct extent_io_tree *tree = bio->bi_private;
70dec807 2734 u64 start;
70dec807 2735
4eee4fa4 2736 start = page_offset(page) + bvec->bv_offset;
70dec807 2737
902b22f3 2738 bio->bi_private = NULL;
d1310b2e
CM
2739 bio_get(bio);
2740
065631f6 2741 if (tree->ops && tree->ops->submit_bio_hook)
81a75f67
MC
2742 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
2743 mirror_num, bio_flags, start);
0b86a832 2744 else
4e49ea4a 2745 btrfsic_submit_bio(bio);
4a54c8c1 2746
d1310b2e
CM
2747 bio_put(bio);
2748 return ret;
2749}
2750
1f7ad75b 2751static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2752 unsigned long offset, size_t size, struct bio *bio,
2753 unsigned long bio_flags)
2754{
2755 int ret = 0;
2756 if (tree->ops && tree->ops->merge_bio_hook)
81a75f67
MC
2757 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2758 bio_flags);
3444a972
JM
2759 BUG_ON(ret < 0);
2760 return ret;
2761
2762}
2763
1f7ad75b 2764static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2765 struct writeback_control *wbc,
d1310b2e
CM
2766 struct page *page, sector_t sector,
2767 size_t size, unsigned long offset,
2768 struct block_device *bdev,
2769 struct bio **bio_ret,
2770 unsigned long max_pages,
f188591e 2771 bio_end_io_t end_io_func,
c8b97818
CM
2772 int mirror_num,
2773 unsigned long prev_bio_flags,
005efedf
FM
2774 unsigned long bio_flags,
2775 bool force_bio_submit)
d1310b2e
CM
2776{
2777 int ret = 0;
2778 struct bio *bio;
c8b97818 2779 int contig = 0;
c8b97818 2780 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2781 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2782
2783 if (bio_ret && *bio_ret) {
2784 bio = *bio_ret;
c8b97818 2785 if (old_compressed)
4f024f37 2786 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2787 else
f73a1c7d 2788 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2789
2790 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2791 force_bio_submit ||
1f7ad75b 2792 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2793 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2794 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2795 if (ret < 0) {
2796 *bio_ret = NULL;
79787eaa 2797 return ret;
289454ad 2798 }
d1310b2e
CM
2799 bio = NULL;
2800 } else {
da2f0f74
CM
2801 if (wbc)
2802 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2803 return 0;
2804 }
2805 }
c8b97818 2806
b54ffb73
KO
2807 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2808 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2809 if (!bio)
2810 return -ENOMEM;
70dec807 2811
c8b97818 2812 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2813 bio->bi_end_io = end_io_func;
2814 bio->bi_private = tree;
1f7ad75b 2815 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2816 if (wbc) {
2817 wbc_init_bio(wbc, bio);
2818 wbc_account_io(wbc, page, page_size);
2819 }
70dec807 2820
d397712b 2821 if (bio_ret)
d1310b2e 2822 *bio_ret = bio;
d397712b 2823 else
1f7ad75b 2824 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2825
2826 return ret;
2827}
2828
48a3b636
ES
2829static void attach_extent_buffer_page(struct extent_buffer *eb,
2830 struct page *page)
d1310b2e
CM
2831{
2832 if (!PagePrivate(page)) {
2833 SetPagePrivate(page);
09cbfeaf 2834 get_page(page);
4f2de97a
JB
2835 set_page_private(page, (unsigned long)eb);
2836 } else {
2837 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2838 }
2839}
2840
4f2de97a 2841void set_page_extent_mapped(struct page *page)
d1310b2e 2842{
4f2de97a
JB
2843 if (!PagePrivate(page)) {
2844 SetPagePrivate(page);
09cbfeaf 2845 get_page(page);
4f2de97a
JB
2846 set_page_private(page, EXTENT_PAGE_PRIVATE);
2847 }
d1310b2e
CM
2848}
2849
125bac01
MX
2850static struct extent_map *
2851__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2852 u64 start, u64 len, get_extent_t *get_extent,
2853 struct extent_map **em_cached)
2854{
2855 struct extent_map *em;
2856
2857 if (em_cached && *em_cached) {
2858 em = *em_cached;
cbc0e928 2859 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2860 start < extent_map_end(em)) {
2861 atomic_inc(&em->refs);
2862 return em;
2863 }
2864
2865 free_extent_map(em);
2866 *em_cached = NULL;
2867 }
2868
2869 em = get_extent(inode, page, pg_offset, start, len, 0);
2870 if (em_cached && !IS_ERR_OR_NULL(em)) {
2871 BUG_ON(*em_cached);
2872 atomic_inc(&em->refs);
2873 *em_cached = em;
2874 }
2875 return em;
2876}
d1310b2e
CM
2877/*
2878 * basic readpage implementation. Locked extent state structs are inserted
2879 * into the tree that are removed when the IO is done (by the end_io
2880 * handlers)
79787eaa 2881 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2882 */
9974090b
MX
2883static int __do_readpage(struct extent_io_tree *tree,
2884 struct page *page,
2885 get_extent_t *get_extent,
125bac01 2886 struct extent_map **em_cached,
9974090b 2887 struct bio **bio, int mirror_num,
1f7ad75b 2888 unsigned long *bio_flags, int read_flags,
005efedf 2889 u64 *prev_em_start)
d1310b2e
CM
2890{
2891 struct inode *inode = page->mapping->host;
4eee4fa4 2892 u64 start = page_offset(page);
09cbfeaf 2893 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2894 u64 end;
2895 u64 cur = start;
2896 u64 extent_offset;
2897 u64 last_byte = i_size_read(inode);
2898 u64 block_start;
2899 u64 cur_end;
2900 sector_t sector;
2901 struct extent_map *em;
2902 struct block_device *bdev;
2903 int ret;
2904 int nr = 0;
306e16ce 2905 size_t pg_offset = 0;
d1310b2e 2906 size_t iosize;
c8b97818 2907 size_t disk_io_size;
d1310b2e 2908 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2909 unsigned long this_bio_flag = 0;
d1310b2e
CM
2910
2911 set_page_extent_mapped(page);
2912
9974090b 2913 end = page_end;
90a887c9
DM
2914 if (!PageUptodate(page)) {
2915 if (cleancache_get_page(page) == 0) {
2916 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2917 unlock_extent(tree, start, end);
90a887c9
DM
2918 goto out;
2919 }
2920 }
2921
09cbfeaf 2922 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2923 char *userpage;
09cbfeaf 2924 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2925
2926 if (zero_offset) {
09cbfeaf 2927 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2928 userpage = kmap_atomic(page);
c8b97818
CM
2929 memset(userpage + zero_offset, 0, iosize);
2930 flush_dcache_page(page);
7ac687d9 2931 kunmap_atomic(userpage);
c8b97818
CM
2932 }
2933 }
d1310b2e 2934 while (cur <= end) {
09cbfeaf 2935 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2936 bool force_bio_submit = false;
c8f2f24b 2937
d1310b2e
CM
2938 if (cur >= last_byte) {
2939 char *userpage;
507903b8
AJ
2940 struct extent_state *cached = NULL;
2941
09cbfeaf 2942 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2943 userpage = kmap_atomic(page);
306e16ce 2944 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2945 flush_dcache_page(page);
7ac687d9 2946 kunmap_atomic(userpage);
d1310b2e 2947 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2948 &cached, GFP_NOFS);
7f042a83
FM
2949 unlock_extent_cached(tree, cur,
2950 cur + iosize - 1,
2951 &cached, GFP_NOFS);
d1310b2e
CM
2952 break;
2953 }
125bac01
MX
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
c704005d 2956 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2957 SetPageError(page);
7f042a83 2958 unlock_extent(tree, cur, end);
d1310b2e
CM
2959 break;
2960 }
d1310b2e
CM
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
261507a0 2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
c8b97818 2970
d1310b2e
CM
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2973 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 sector = em->block_start >> 9;
2977 } else {
2978 sector = (em->block_start + extent_offset) >> 9;
2979 disk_io_size = iosize;
2980 }
d1310b2e
CM
2981 bdev = em->bdev;
2982 block_start = em->block_start;
d899e052
YZ
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
d1310b2e
CM
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
507903b8
AJ
3034 struct extent_state *cached = NULL;
3035
7ac687d9 3036 userpage = kmap_atomic(page);
306e16ce 3037 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3038 flush_dcache_page(page);
7ac687d9 3039 kunmap_atomic(userpage);
d1310b2e
CM
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3042 &cached, GFP_NOFS);
7f042a83
FM
3043 unlock_extent_cached(tree, cur,
3044 cur + iosize - 1,
3045 &cached, GFP_NOFS);
d1310b2e 3046 cur = cur + iosize;
306e16ce 3047 pg_offset += iosize;
d1310b2e
CM
3048 continue;
3049 }
3050 /* the get_extent function already copied into the page */
9655d298
CM
3051 if (test_range_bit(tree, cur, cur_end,
3052 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3053 check_page_uptodate(tree, page);
7f042a83 3054 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3055 cur = cur + iosize;
306e16ce 3056 pg_offset += iosize;
d1310b2e
CM
3057 continue;
3058 }
70dec807
CM
3059 /* we have an inline extent but it didn't get marked up
3060 * to date. Error out
3061 */
3062 if (block_start == EXTENT_MAP_INLINE) {
3063 SetPageError(page);
7f042a83 3064 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3065 cur = cur + iosize;
306e16ce 3066 pg_offset += iosize;
70dec807
CM
3067 continue;
3068 }
d1310b2e 3069
c8f2f24b 3070 pnr -= page->index;
1f7ad75b
MC
3071 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3072 page, sector, disk_io_size, pg_offset,
89642229 3073 bdev, bio, pnr,
c8b97818
CM
3074 end_bio_extent_readpage, mirror_num,
3075 *bio_flags,
005efedf
FM
3076 this_bio_flag,
3077 force_bio_submit);
c8f2f24b
JB
3078 if (!ret) {
3079 nr++;
3080 *bio_flags = this_bio_flag;
3081 } else {
d1310b2e 3082 SetPageError(page);
7f042a83 3083 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3084 }
d1310b2e 3085 cur = cur + iosize;
306e16ce 3086 pg_offset += iosize;
d1310b2e 3087 }
90a887c9 3088out:
d1310b2e
CM
3089 if (!nr) {
3090 if (!PageError(page))
3091 SetPageUptodate(page);
3092 unlock_page(page);
3093 }
3094 return 0;
3095}
3096
9974090b
MX
3097static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3098 struct page *pages[], int nr_pages,
3099 u64 start, u64 end,
3100 get_extent_t *get_extent,
125bac01 3101 struct extent_map **em_cached,
9974090b 3102 struct bio **bio, int mirror_num,
1f7ad75b 3103 unsigned long *bio_flags,
808f80b4 3104 u64 *prev_em_start)
9974090b
MX
3105{
3106 struct inode *inode;
3107 struct btrfs_ordered_extent *ordered;
3108 int index;
3109
3110 inode = pages[0]->mapping->host;
3111 while (1) {
3112 lock_extent(tree, start, end);
3113 ordered = btrfs_lookup_ordered_range(inode, start,
3114 end - start + 1);
3115 if (!ordered)
3116 break;
3117 unlock_extent(tree, start, end);
3118 btrfs_start_ordered_extent(inode, ordered, 1);
3119 btrfs_put_ordered_extent(ordered);
3120 }
3121
3122 for (index = 0; index < nr_pages; index++) {
125bac01 3123 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3124 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3125 put_page(pages[index]);
9974090b
MX
3126 }
3127}
3128
3129static void __extent_readpages(struct extent_io_tree *tree,
3130 struct page *pages[],
3131 int nr_pages, get_extent_t *get_extent,
125bac01 3132 struct extent_map **em_cached,
9974090b 3133 struct bio **bio, int mirror_num,
1f7ad75b 3134 unsigned long *bio_flags,
808f80b4 3135 u64 *prev_em_start)
9974090b 3136{
35a3621b 3137 u64 start = 0;
9974090b
MX
3138 u64 end = 0;
3139 u64 page_start;
3140 int index;
35a3621b 3141 int first_index = 0;
9974090b
MX
3142
3143 for (index = 0; index < nr_pages; index++) {
3144 page_start = page_offset(pages[index]);
3145 if (!end) {
3146 start = page_start;
09cbfeaf 3147 end = start + PAGE_SIZE - 1;
9974090b
MX
3148 first_index = index;
3149 } else if (end + 1 == page_start) {
09cbfeaf 3150 end += PAGE_SIZE;
9974090b
MX
3151 } else {
3152 __do_contiguous_readpages(tree, &pages[first_index],
3153 index - first_index, start,
125bac01
MX
3154 end, get_extent, em_cached,
3155 bio, mirror_num, bio_flags,
1f7ad75b 3156 prev_em_start);
9974090b 3157 start = page_start;
09cbfeaf 3158 end = start + PAGE_SIZE - 1;
9974090b
MX
3159 first_index = index;
3160 }
3161 }
3162
3163 if (end)
3164 __do_contiguous_readpages(tree, &pages[first_index],
3165 index - first_index, start,
125bac01 3166 end, get_extent, em_cached, bio,
1f7ad75b 3167 mirror_num, bio_flags,
808f80b4 3168 prev_em_start);
9974090b
MX
3169}
3170
3171static int __extent_read_full_page(struct extent_io_tree *tree,
3172 struct page *page,
3173 get_extent_t *get_extent,
3174 struct bio **bio, int mirror_num,
1f7ad75b 3175 unsigned long *bio_flags, int read_flags)
9974090b
MX
3176{
3177 struct inode *inode = page->mapping->host;
3178 struct btrfs_ordered_extent *ordered;
3179 u64 start = page_offset(page);
09cbfeaf 3180 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3181 int ret;
3182
3183 while (1) {
3184 lock_extent(tree, start, end);
dbfdb6d1 3185 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3186 PAGE_SIZE);
9974090b
MX
3187 if (!ordered)
3188 break;
3189 unlock_extent(tree, start, end);
3190 btrfs_start_ordered_extent(inode, ordered, 1);
3191 btrfs_put_ordered_extent(ordered);
3192 }
3193
125bac01 3194 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3195 bio_flags, read_flags, NULL);
9974090b
MX
3196 return ret;
3197}
3198
d1310b2e 3199int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3200 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3201{
3202 struct bio *bio = NULL;
c8b97818 3203 unsigned long bio_flags = 0;
d1310b2e
CM
3204 int ret;
3205
8ddc7d9c 3206 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3207 &bio_flags, 0);
d1310b2e 3208 if (bio)
1f7ad75b 3209 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3210 return ret;
3211}
d1310b2e 3212
a9132667
LB
3213static void update_nr_written(struct page *page, struct writeback_control *wbc,
3214 unsigned long nr_written)
11c8349b
CM
3215{
3216 wbc->nr_to_write -= nr_written;
11c8349b
CM
3217}
3218
d1310b2e 3219/*
40f76580
CM
3220 * helper for __extent_writepage, doing all of the delayed allocation setup.
3221 *
3222 * This returns 1 if our fill_delalloc function did all the work required
3223 * to write the page (copy into inline extent). In this case the IO has
3224 * been started and the page is already unlocked.
3225 *
3226 * This returns 0 if all went well (page still locked)
3227 * This returns < 0 if there were errors (page still locked)
d1310b2e 3228 */
40f76580
CM
3229static noinline_for_stack int writepage_delalloc(struct inode *inode,
3230 struct page *page, struct writeback_control *wbc,
3231 struct extent_page_data *epd,
3232 u64 delalloc_start,
3233 unsigned long *nr_written)
3234{
3235 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3236 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3237 u64 nr_delalloc;
3238 u64 delalloc_to_write = 0;
3239 u64 delalloc_end = 0;
3240 int ret;
3241 int page_started = 0;
3242
3243 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3244 return 0;
3245
3246 while (delalloc_end < page_end) {
3247 nr_delalloc = find_lock_delalloc_range(inode, tree,
3248 page,
3249 &delalloc_start,
3250 &delalloc_end,
dcab6a3b 3251 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3252 if (nr_delalloc == 0) {
3253 delalloc_start = delalloc_end + 1;
3254 continue;
3255 }
3256 ret = tree->ops->fill_delalloc(inode, page,
3257 delalloc_start,
3258 delalloc_end,
3259 &page_started,
3260 nr_written);
3261 /* File system has been set read-only */
3262 if (ret) {
3263 SetPageError(page);
3264 /* fill_delalloc should be return < 0 for error
3265 * but just in case, we use > 0 here meaning the
3266 * IO is started, so we don't want to return > 0
3267 * unless things are going well.
3268 */
3269 ret = ret < 0 ? ret : -EIO;
3270 goto done;
3271 }
3272 /*
ea1754a0
KS
3273 * delalloc_end is already one less than the total length, so
3274 * we don't subtract one from PAGE_SIZE
40f76580
CM
3275 */
3276 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3277 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3278 delalloc_start = delalloc_end + 1;
3279 }
3280 if (wbc->nr_to_write < delalloc_to_write) {
3281 int thresh = 8192;
3282
3283 if (delalloc_to_write < thresh * 2)
3284 thresh = delalloc_to_write;
3285 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3286 thresh);
3287 }
3288
3289 /* did the fill delalloc function already unlock and start
3290 * the IO?
3291 */
3292 if (page_started) {
3293 /*
3294 * we've unlocked the page, so we can't update
3295 * the mapping's writeback index, just update
3296 * nr_to_write.
3297 */
3298 wbc->nr_to_write -= *nr_written;
3299 return 1;
3300 }
3301
3302 ret = 0;
3303
3304done:
3305 return ret;
3306}
3307
3308/*
3309 * helper for __extent_writepage. This calls the writepage start hooks,
3310 * and does the loop to map the page into extents and bios.
3311 *
3312 * We return 1 if the IO is started and the page is unlocked,
3313 * 0 if all went well (page still locked)
3314 * < 0 if there were errors (page still locked)
3315 */
3316static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3317 struct page *page,
3318 struct writeback_control *wbc,
3319 struct extent_page_data *epd,
3320 loff_t i_size,
3321 unsigned long nr_written,
3322 int write_flags, int *nr_ret)
d1310b2e 3323{
d1310b2e 3324 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3325 u64 start = page_offset(page);
09cbfeaf 3326 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3327 u64 end;
3328 u64 cur = start;
3329 u64 extent_offset;
d1310b2e
CM
3330 u64 block_start;
3331 u64 iosize;
3332 sector_t sector;
2c64c53d 3333 struct extent_state *cached_state = NULL;
d1310b2e
CM
3334 struct extent_map *em;
3335 struct block_device *bdev;
7f3c74fb 3336 size_t pg_offset = 0;
d1310b2e 3337 size_t blocksize;
40f76580
CM
3338 int ret = 0;
3339 int nr = 0;
3340 bool compressed;
c8b97818 3341
247e743c 3342 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3343 ret = tree->ops->writepage_start_hook(page, start,
3344 page_end);
87826df0
JM
3345 if (ret) {
3346 /* Fixup worker will requeue */
3347 if (ret == -EBUSY)
3348 wbc->pages_skipped++;
3349 else
3350 redirty_page_for_writepage(wbc, page);
40f76580 3351
11c8349b 3352 update_nr_written(page, wbc, nr_written);
247e743c 3353 unlock_page(page);
40f76580 3354 ret = 1;
11c8349b 3355 goto done_unlocked;
247e743c
CM
3356 }
3357 }
3358
11c8349b
CM
3359 /*
3360 * we don't want to touch the inode after unlocking the page,
3361 * so we update the mapping writeback index now
3362 */
3363 update_nr_written(page, wbc, nr_written + 1);
771ed689 3364
d1310b2e 3365 end = page_end;
40f76580 3366 if (i_size <= start) {
e6dcd2dc
CM
3367 if (tree->ops && tree->ops->writepage_end_io_hook)
3368 tree->ops->writepage_end_io_hook(page, start,
3369 page_end, NULL, 1);
d1310b2e
CM
3370 goto done;
3371 }
3372
d1310b2e
CM
3373 blocksize = inode->i_sb->s_blocksize;
3374
3375 while (cur <= end) {
40f76580 3376 u64 em_end;
58409edd
DS
3377 unsigned long max_nr;
3378
40f76580 3379 if (cur >= i_size) {
e6dcd2dc
CM
3380 if (tree->ops && tree->ops->writepage_end_io_hook)
3381 tree->ops->writepage_end_io_hook(page, cur,
3382 page_end, NULL, 1);
d1310b2e
CM
3383 break;
3384 }
7f3c74fb 3385 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3386 end - cur + 1, 1);
c704005d 3387 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3388 SetPageError(page);
61391d56 3389 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3390 break;
3391 }
3392
3393 extent_offset = cur - em->start;
40f76580
CM
3394 em_end = extent_map_end(em);
3395 BUG_ON(em_end <= cur);
d1310b2e 3396 BUG_ON(end < cur);
40f76580 3397 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3398 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3399 sector = (em->block_start + extent_offset) >> 9;
3400 bdev = em->bdev;
3401 block_start = em->block_start;
c8b97818 3402 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3403 free_extent_map(em);
3404 em = NULL;
3405
c8b97818
CM
3406 /*
3407 * compressed and inline extents are written through other
3408 * paths in the FS
3409 */
3410 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3411 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3412 /*
3413 * end_io notification does not happen here for
3414 * compressed extents
3415 */
3416 if (!compressed && tree->ops &&
3417 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3418 tree->ops->writepage_end_io_hook(page, cur,
3419 cur + iosize - 1,
3420 NULL, 1);
c8b97818
CM
3421 else if (compressed) {
3422 /* we don't want to end_page_writeback on
3423 * a compressed extent. this happens
3424 * elsewhere
3425 */
3426 nr++;
3427 }
3428
3429 cur += iosize;
7f3c74fb 3430 pg_offset += iosize;
d1310b2e
CM
3431 continue;
3432 }
c8b97818 3433
58409edd
DS
3434 max_nr = (i_size >> PAGE_SHIFT) + 1;
3435
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
3440 page->index, cur, end);
d1310b2e 3441 }
7f3c74fb 3442
1f7ad75b
MC
3443 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3444 page, sector, iosize, pg_offset,
58409edd
DS
3445 bdev, &epd->bio, max_nr,
3446 end_bio_extent_writepage,
3447 0, 0, 0, false);
3448 if (ret)
3449 SetPageError(page);
d1310b2e 3450
d1310b2e 3451 cur = cur + iosize;
7f3c74fb 3452 pg_offset += iosize;
d1310b2e
CM
3453 nr++;
3454 }
40f76580
CM
3455done:
3456 *nr_ret = nr;
3457
3458done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473{
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
09cbfeaf 3477 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
09cbfeaf 3482 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3483 int write_flags = 0;
40f76580
CM
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = WRITE_SYNC;
40f76580
CM
3488
3489 trace___extent_writepage(page, inode, wbc);
3490
3491 WARN_ON(!PageLocked(page));
3492
3493 ClearPageError(page);
3494
09cbfeaf 3495 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3496 if (page->index > end_index ||
3497 (page->index == end_index && !pg_offset)) {
09cbfeaf 3498 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3499 unlock_page(page);
3500 return 0;
3501 }
3502
3503 if (page->index == end_index) {
3504 char *userpage;
3505
3506 userpage = kmap_atomic(page);
3507 memset(userpage + pg_offset, 0,
09cbfeaf 3508 PAGE_SIZE - pg_offset);
40f76580
CM
3509 kunmap_atomic(userpage);
3510 flush_dcache_page(page);
3511 }
3512
3513 pg_offset = 0;
3514
3515 set_page_extent_mapped(page);
3516
3517 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3518 if (ret == 1)
3519 goto done_unlocked;
3520 if (ret)
3521 goto done;
3522
3523 ret = __extent_writepage_io(inode, page, wbc, epd,
3524 i_size, nr_written, write_flags, &nr);
3525 if (ret == 1)
3526 goto done_unlocked;
3527
d1310b2e
CM
3528done:
3529 if (nr == 0) {
3530 /* make sure the mapping tag for page dirty gets cleared */
3531 set_page_writeback(page);
3532 end_page_writeback(page);
3533 }
61391d56
FM
3534 if (PageError(page)) {
3535 ret = ret < 0 ? ret : -EIO;
3536 end_extent_writepage(page, ret, start, page_end);
3537 }
d1310b2e 3538 unlock_page(page);
40f76580 3539 return ret;
771ed689 3540
11c8349b 3541done_unlocked:
d1310b2e
CM
3542 return 0;
3543}
3544
fd8b2b61 3545void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3546{
74316201
N
3547 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3548 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3549}
3550
0e378df1
CM
3551static noinline_for_stack int
3552lock_extent_buffer_for_io(struct extent_buffer *eb,
3553 struct btrfs_fs_info *fs_info,
3554 struct extent_page_data *epd)
0b32f4bb
JB
3555{
3556 unsigned long i, num_pages;
3557 int flush = 0;
3558 int ret = 0;
3559
3560 if (!btrfs_try_tree_write_lock(eb)) {
3561 flush = 1;
3562 flush_write_bio(epd);
3563 btrfs_tree_lock(eb);
3564 }
3565
3566 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3567 btrfs_tree_unlock(eb);
3568 if (!epd->sync_io)
3569 return 0;
3570 if (!flush) {
3571 flush_write_bio(epd);
3572 flush = 1;
3573 }
a098d8e8
CM
3574 while (1) {
3575 wait_on_extent_buffer_writeback(eb);
3576 btrfs_tree_lock(eb);
3577 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3578 break;
0b32f4bb 3579 btrfs_tree_unlock(eb);
0b32f4bb
JB
3580 }
3581 }
3582
51561ffe
JB
3583 /*
3584 * We need to do this to prevent races in people who check if the eb is
3585 * under IO since we can end up having no IO bits set for a short period
3586 * of time.
3587 */
3588 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3589 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3590 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3591 spin_unlock(&eb->refs_lock);
0b32f4bb 3592 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3593 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3594 -eb->len,
3595 fs_info->dirty_metadata_batch);
0b32f4bb 3596 ret = 1;
51561ffe
JB
3597 } else {
3598 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3599 }
3600
3601 btrfs_tree_unlock(eb);
3602
3603 if (!ret)
3604 return ret;
3605
3606 num_pages = num_extent_pages(eb->start, eb->len);
3607 for (i = 0; i < num_pages; i++) {
fb85fc9a 3608 struct page *p = eb->pages[i];
0b32f4bb
JB
3609
3610 if (!trylock_page(p)) {
3611 if (!flush) {
3612 flush_write_bio(epd);
3613 flush = 1;
3614 }
3615 lock_page(p);
3616 }
3617 }
3618
3619 return ret;
3620}
3621
3622static void end_extent_buffer_writeback(struct extent_buffer *eb)
3623{
3624 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3625 smp_mb__after_atomic();
0b32f4bb
JB
3626 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3627}
3628
656f30db
FM
3629static void set_btree_ioerr(struct page *page)
3630{
3631 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3632 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3633
3634 SetPageError(page);
3635 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3636 return;
3637
3638 /*
3639 * If writeback for a btree extent that doesn't belong to a log tree
3640 * failed, increment the counter transaction->eb_write_errors.
3641 * We do this because while the transaction is running and before it's
3642 * committing (when we call filemap_fdata[write|wait]_range against
3643 * the btree inode), we might have
3644 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3645 * returns an error or an error happens during writeback, when we're
3646 * committing the transaction we wouldn't know about it, since the pages
3647 * can be no longer dirty nor marked anymore for writeback (if a
3648 * subsequent modification to the extent buffer didn't happen before the
3649 * transaction commit), which makes filemap_fdata[write|wait]_range not
3650 * able to find the pages tagged with SetPageError at transaction
3651 * commit time. So if this happens we must abort the transaction,
3652 * otherwise we commit a super block with btree roots that point to
3653 * btree nodes/leafs whose content on disk is invalid - either garbage
3654 * or the content of some node/leaf from a past generation that got
3655 * cowed or deleted and is no longer valid.
3656 *
3657 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3658 * not be enough - we need to distinguish between log tree extents vs
3659 * non-log tree extents, and the next filemap_fdatawait_range() call
3660 * will catch and clear such errors in the mapping - and that call might
3661 * be from a log sync and not from a transaction commit. Also, checking
3662 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3663 * not done and would not be reliable - the eb might have been released
3664 * from memory and reading it back again means that flag would not be
3665 * set (since it's a runtime flag, not persisted on disk).
3666 *
3667 * Using the flags below in the btree inode also makes us achieve the
3668 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3669 * writeback for all dirty pages and before filemap_fdatawait_range()
3670 * is called, the writeback for all dirty pages had already finished
3671 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3672 * filemap_fdatawait_range() would return success, as it could not know
3673 * that writeback errors happened (the pages were no longer tagged for
3674 * writeback).
3675 */
3676 switch (eb->log_index) {
3677 case -1:
3678 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3679 break;
3680 case 0:
3681 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3682 break;
3683 case 1:
3684 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3685 break;
3686 default:
3687 BUG(); /* unexpected, logic error */
3688 }
3689}
3690
4246a0b6 3691static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3692{
2c30c71b 3693 struct bio_vec *bvec;
0b32f4bb 3694 struct extent_buffer *eb;
2c30c71b 3695 int i, done;
0b32f4bb 3696
2c30c71b 3697 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3698 struct page *page = bvec->bv_page;
3699
0b32f4bb
JB
3700 eb = (struct extent_buffer *)page->private;
3701 BUG_ON(!eb);
3702 done = atomic_dec_and_test(&eb->io_pages);
3703
4246a0b6
CH
3704 if (bio->bi_error ||
3705 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3706 ClearPageUptodate(page);
656f30db 3707 set_btree_ioerr(page);
0b32f4bb
JB
3708 }
3709
3710 end_page_writeback(page);
3711
3712 if (!done)
3713 continue;
3714
3715 end_extent_buffer_writeback(eb);
2c30c71b 3716 }
0b32f4bb
JB
3717
3718 bio_put(bio);
0b32f4bb
JB
3719}
3720
0e378df1 3721static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3722 struct btrfs_fs_info *fs_info,
3723 struct writeback_control *wbc,
3724 struct extent_page_data *epd)
3725{
3726 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3727 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3728 u64 offset = eb->start;
3729 unsigned long i, num_pages;
de0022b9 3730 unsigned long bio_flags = 0;
1f7ad75b 3731 int write_flags = (epd->sync_io ? WRITE_SYNC : 0) | REQ_META;
d7dbe9e7 3732 int ret = 0;
0b32f4bb 3733
656f30db 3734 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3735 num_pages = num_extent_pages(eb->start, eb->len);
3736 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3737 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3738 bio_flags = EXTENT_BIO_TREE_LOG;
3739
0b32f4bb 3740 for (i = 0; i < num_pages; i++) {
fb85fc9a 3741 struct page *p = eb->pages[i];
0b32f4bb
JB
3742
3743 clear_page_dirty_for_io(p);
3744 set_page_writeback(p);
1f7ad75b
MC
3745 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3746 p, offset >> 9, PAGE_SIZE, 0, bdev,
3747 &epd->bio, -1,
3748 end_bio_extent_buffer_writepage,
005efedf 3749 0, epd->bio_flags, bio_flags, false);
de0022b9 3750 epd->bio_flags = bio_flags;
0b32f4bb 3751 if (ret) {
656f30db 3752 set_btree_ioerr(p);
55e3bd2e 3753 end_page_writeback(p);
0b32f4bb
JB
3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 end_extent_buffer_writeback(eb);
3756 ret = -EIO;
3757 break;
3758 }
09cbfeaf 3759 offset += PAGE_SIZE;
0b32f4bb
JB
3760 update_nr_written(p, wbc, 1);
3761 unlock_page(p);
3762 }
3763
3764 if (unlikely(ret)) {
3765 for (; i < num_pages; i++) {
bbf65cf0 3766 struct page *p = eb->pages[i];
81465028 3767 clear_page_dirty_for_io(p);
0b32f4bb
JB
3768 unlock_page(p);
3769 }
3770 }
3771
3772 return ret;
3773}
3774
3775int btree_write_cache_pages(struct address_space *mapping,
3776 struct writeback_control *wbc)
3777{
3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 struct extent_buffer *eb, *prev_eb = NULL;
3781 struct extent_page_data epd = {
3782 .bio = NULL,
3783 .tree = tree,
3784 .extent_locked = 0,
3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3786 .bio_flags = 0,
0b32f4bb
JB
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec, 0);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
09cbfeaf
KS
3803 index = wbc->range_start >> PAGE_SHIFT;
3804 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 if (!wbc->range_cyclic && page->index > end) {
3827 done = 1;
3828 break;
3829 }
3830
b5bae261
JB
3831 spin_lock(&mapping->private_lock);
3832 if (!PagePrivate(page)) {
3833 spin_unlock(&mapping->private_lock);
3834 continue;
3835 }
3836
0b32f4bb 3837 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3838
3839 /*
3840 * Shouldn't happen and normally this would be a BUG_ON
3841 * but no sense in crashing the users box for something
3842 * we can survive anyway.
3843 */
fae7f21c 3844 if (WARN_ON(!eb)) {
b5bae261 3845 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3846 continue;
3847 }
3848
b5bae261
JB
3849 if (eb == prev_eb) {
3850 spin_unlock(&mapping->private_lock);
0b32f4bb 3851 continue;
b5bae261 3852 }
0b32f4bb 3853
b5bae261
JB
3854 ret = atomic_inc_not_zero(&eb->refs);
3855 spin_unlock(&mapping->private_lock);
3856 if (!ret)
0b32f4bb 3857 continue;
0b32f4bb
JB
3858
3859 prev_eb = eb;
3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 if (!ret) {
3862 free_extent_buffer(eb);
3863 continue;
3864 }
3865
3866 ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 if (ret) {
3868 done = 1;
3869 free_extent_buffer(eb);
3870 break;
3871 }
3872 free_extent_buffer(eb);
3873
3874 /*
3875 * the filesystem may choose to bump up nr_to_write.
3876 * We have to make sure to honor the new nr_to_write
3877 * at any time
3878 */
3879 nr_to_write_done = wbc->nr_to_write <= 0;
3880 }
3881 pagevec_release(&pvec);
3882 cond_resched();
3883 }
3884 if (!scanned && !done) {
3885 /*
3886 * We hit the last page and there is more work to be done: wrap
3887 * back to the start of the file
3888 */
3889 scanned = 1;
3890 index = 0;
3891 goto retry;
3892 }
3893 flush_write_bio(&epd);
3894 return ret;
3895}
3896
d1310b2e 3897/**
4bef0848 3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3899 * @mapping: address space structure to write
3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901 * @writepage: function called for each page
3902 * @data: data passed to writepage function
3903 *
3904 * If a page is already under I/O, write_cache_pages() skips it, even
3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3907 * and msync() need to guarantee that all the data which was dirty at the time
3908 * the call was made get new I/O started against them. If wbc->sync_mode is
3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910 * existing IO to complete.
3911 */
b2950863 3912static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3913 struct address_space *mapping,
3914 struct writeback_control *wbc,
d2c3f4f6
CM
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
d1310b2e 3917{
7fd1a3f7 3918 struct inode *inode = mapping->host;
d1310b2e
CM
3919 int ret = 0;
3920 int done = 0;
f85d7d6c 3921 int nr_to_write_done = 0;
d1310b2e
CM
3922 struct pagevec pvec;
3923 int nr_pages;
3924 pgoff_t index;
3925 pgoff_t end; /* Inclusive */
a9132667
LB
3926 pgoff_t done_index;
3927 int range_whole = 0;
d1310b2e 3928 int scanned = 0;
f7aaa06b 3929 int tag;
d1310b2e 3930
7fd1a3f7
JB
3931 /*
3932 * We have to hold onto the inode so that ordered extents can do their
3933 * work when the IO finishes. The alternative to this is failing to add
3934 * an ordered extent if the igrab() fails there and that is a huge pain
3935 * to deal with, so instead just hold onto the inode throughout the
3936 * writepages operation. If it fails here we are freeing up the inode
3937 * anyway and we'd rather not waste our time writing out stuff that is
3938 * going to be truncated anyway.
3939 */
3940 if (!igrab(inode))
3941 return 0;
3942
d1310b2e
CM
3943 pagevec_init(&pvec, 0);
3944 if (wbc->range_cyclic) {
3945 index = mapping->writeback_index; /* Start from prev offset */
3946 end = -1;
3947 } else {
09cbfeaf
KS
3948 index = wbc->range_start >> PAGE_SHIFT;
3949 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3950 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3951 range_whole = 1;
d1310b2e
CM
3952 scanned = 1;
3953 }
f7aaa06b
JB
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3956 else
3957 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3958retry:
f7aaa06b
JB
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
a9132667 3961 done_index = index;
f85d7d6c 3962 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3963 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3964 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3965 unsigned i;
3966
3967 scanned = 1;
3968 for (i = 0; i < nr_pages; i++) {
3969 struct page *page = pvec.pages[i];
3970
a9132667 3971 done_index = page->index;
d1310b2e
CM
3972 /*
3973 * At this point we hold neither mapping->tree_lock nor
3974 * lock on the page itself: the page may be truncated or
3975 * invalidated (changing page->mapping to NULL), or even
3976 * swizzled back from swapper_space to tmpfs file
3977 * mapping
3978 */
c8f2f24b
JB
3979 if (!trylock_page(page)) {
3980 flush_fn(data);
3981 lock_page(page);
01d658f2 3982 }
d1310b2e
CM
3983
3984 if (unlikely(page->mapping != mapping)) {
3985 unlock_page(page);
3986 continue;
3987 }
3988
3989 if (!wbc->range_cyclic && page->index > end) {
3990 done = 1;
3991 unlock_page(page);
3992 continue;
3993 }
3994
d2c3f4f6 3995 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3996 if (PageWriteback(page))
3997 flush_fn(data);
d1310b2e 3998 wait_on_page_writeback(page);
d2c3f4f6 3999 }
d1310b2e
CM
4000
4001 if (PageWriteback(page) ||
4002 !clear_page_dirty_for_io(page)) {
4003 unlock_page(page);
4004 continue;
4005 }
4006
4007 ret = (*writepage)(page, wbc, data);
4008
4009 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4010 unlock_page(page);
4011 ret = 0;
4012 }
a9132667
LB
4013 if (ret < 0) {
4014 /*
4015 * done_index is set past this page,
4016 * so media errors will not choke
4017 * background writeout for the entire
4018 * file. This has consequences for
4019 * range_cyclic semantics (ie. it may
4020 * not be suitable for data integrity
4021 * writeout).
4022 */
4023 done_index = page->index + 1;
4024 done = 1;
4025 break;
4026 }
f85d7d6c
CM
4027
4028 /*
4029 * the filesystem may choose to bump up nr_to_write.
4030 * We have to make sure to honor the new nr_to_write
4031 * at any time
4032 */
4033 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4034 }
4035 pagevec_release(&pvec);
4036 cond_resched();
4037 }
894b36e3 4038 if (!scanned && !done) {
d1310b2e
CM
4039 /*
4040 * We hit the last page and there is more work to be done: wrap
4041 * back to the start of the file
4042 */
4043 scanned = 1;
4044 index = 0;
4045 goto retry;
4046 }
a9132667
LB
4047
4048 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4049 mapping->writeback_index = done_index;
4050
7fd1a3f7 4051 btrfs_add_delayed_iput(inode);
894b36e3 4052 return ret;
d1310b2e 4053}
d1310b2e 4054
ffbd517d 4055static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4056{
d2c3f4f6 4057 if (epd->bio) {
355808c2
JM
4058 int ret;
4059
1f7ad75b
MC
4060 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
4061 epd->sync_io ? WRITE_SYNC : 0);
355808c2 4062
1f7ad75b 4063 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4064 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4065 epd->bio = NULL;
4066 }
4067}
4068
ffbd517d
CM
4069static noinline void flush_write_bio(void *data)
4070{
4071 struct extent_page_data *epd = data;
4072 flush_epd_write_bio(epd);
4073}
4074
d1310b2e
CM
4075int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4076 get_extent_t *get_extent,
4077 struct writeback_control *wbc)
4078{
4079 int ret;
d1310b2e
CM
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .get_extent = get_extent,
771ed689 4084 .extent_locked = 0,
ffbd517d 4085 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4086 .bio_flags = 0,
d1310b2e 4087 };
d1310b2e 4088
d1310b2e
CM
4089 ret = __extent_writepage(page, wbc, &epd);
4090
ffbd517d 4091 flush_epd_write_bio(&epd);
d1310b2e
CM
4092 return ret;
4093}
d1310b2e 4094
771ed689
CM
4095int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4096 u64 start, u64 end, get_extent_t *get_extent,
4097 int mode)
4098{
4099 int ret = 0;
4100 struct address_space *mapping = inode->i_mapping;
4101 struct page *page;
09cbfeaf
KS
4102 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4103 PAGE_SHIFT;
771ed689
CM
4104
4105 struct extent_page_data epd = {
4106 .bio = NULL,
4107 .tree = tree,
4108 .get_extent = get_extent,
4109 .extent_locked = 1,
ffbd517d 4110 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4111 .bio_flags = 0,
771ed689
CM
4112 };
4113 struct writeback_control wbc_writepages = {
771ed689 4114 .sync_mode = mode,
771ed689
CM
4115 .nr_to_write = nr_pages * 2,
4116 .range_start = start,
4117 .range_end = end + 1,
4118 };
4119
d397712b 4120 while (start <= end) {
09cbfeaf 4121 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4122 if (clear_page_dirty_for_io(page))
4123 ret = __extent_writepage(page, &wbc_writepages, &epd);
4124 else {
4125 if (tree->ops && tree->ops->writepage_end_io_hook)
4126 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4127 start + PAGE_SIZE - 1,
771ed689
CM
4128 NULL, 1);
4129 unlock_page(page);
4130 }
09cbfeaf
KS
4131 put_page(page);
4132 start += PAGE_SIZE;
771ed689
CM
4133 }
4134
ffbd517d 4135 flush_epd_write_bio(&epd);
771ed689
CM
4136 return ret;
4137}
d1310b2e
CM
4138
4139int extent_writepages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 get_extent_t *get_extent,
4142 struct writeback_control *wbc)
4143{
4144 int ret = 0;
4145 struct extent_page_data epd = {
4146 .bio = NULL,
4147 .tree = tree,
4148 .get_extent = get_extent,
771ed689 4149 .extent_locked = 0,
ffbd517d 4150 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4151 .bio_flags = 0,
d1310b2e
CM
4152 };
4153
4bef0848 4154 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4155 __extent_writepage, &epd,
4156 flush_write_bio);
ffbd517d 4157 flush_epd_write_bio(&epd);
d1310b2e
CM
4158 return ret;
4159}
d1310b2e
CM
4160
4161int extent_readpages(struct extent_io_tree *tree,
4162 struct address_space *mapping,
4163 struct list_head *pages, unsigned nr_pages,
4164 get_extent_t get_extent)
4165{
4166 struct bio *bio = NULL;
4167 unsigned page_idx;
c8b97818 4168 unsigned long bio_flags = 0;
67c9684f
LB
4169 struct page *pagepool[16];
4170 struct page *page;
125bac01 4171 struct extent_map *em_cached = NULL;
67c9684f 4172 int nr = 0;
808f80b4 4173 u64 prev_em_start = (u64)-1;
d1310b2e 4174
d1310b2e 4175 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4176 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4177
4178 prefetchw(&page->flags);
4179 list_del(&page->lru);
67c9684f 4180 if (add_to_page_cache_lru(page, mapping,
43e817a1 4181 page->index, GFP_NOFS)) {
09cbfeaf 4182 put_page(page);
67c9684f 4183 continue;
d1310b2e 4184 }
67c9684f
LB
4185
4186 pagepool[nr++] = page;
4187 if (nr < ARRAY_SIZE(pagepool))
4188 continue;
125bac01 4189 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4190 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4191 nr = 0;
d1310b2e 4192 }
9974090b 4193 if (nr)
125bac01 4194 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4195 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4196
125bac01
MX
4197 if (em_cached)
4198 free_extent_map(em_cached);
4199
d1310b2e
CM
4200 BUG_ON(!list_empty(pages));
4201 if (bio)
1f7ad75b 4202 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4203 return 0;
4204}
d1310b2e
CM
4205
4206/*
4207 * basic invalidatepage code, this waits on any locked or writeback
4208 * ranges corresponding to the page, and then deletes any extent state
4209 * records from the tree
4210 */
4211int extent_invalidatepage(struct extent_io_tree *tree,
4212 struct page *page, unsigned long offset)
4213{
2ac55d41 4214 struct extent_state *cached_state = NULL;
4eee4fa4 4215 u64 start = page_offset(page);
09cbfeaf 4216 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4217 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4218
fda2832f 4219 start += ALIGN(offset, blocksize);
d1310b2e
CM
4220 if (start > end)
4221 return 0;
4222
ff13db41 4223 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4224 wait_on_page_writeback(page);
d1310b2e 4225 clear_extent_bit(tree, start, end,
32c00aff
JB
4226 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4227 EXTENT_DO_ACCOUNTING,
2ac55d41 4228 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4229 return 0;
4230}
d1310b2e 4231
7b13b7b1
CM
4232/*
4233 * a helper for releasepage, this tests for areas of the page that
4234 * are locked or under IO and drops the related state bits if it is safe
4235 * to drop the page.
4236 */
48a3b636
ES
4237static int try_release_extent_state(struct extent_map_tree *map,
4238 struct extent_io_tree *tree,
4239 struct page *page, gfp_t mask)
7b13b7b1 4240{
4eee4fa4 4241 u64 start = page_offset(page);
09cbfeaf 4242 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4243 int ret = 1;
4244
211f90e6 4245 if (test_range_bit(tree, start, end,
8b62b72b 4246 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4247 ret = 0;
4248 else {
4249 if ((mask & GFP_NOFS) == GFP_NOFS)
4250 mask = GFP_NOFS;
11ef160f
CM
4251 /*
4252 * at this point we can safely clear everything except the
4253 * locked bit and the nodatasum bit
4254 */
e3f24cc5 4255 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4256 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4257 0, 0, NULL, mask);
e3f24cc5
CM
4258
4259 /* if clear_extent_bit failed for enomem reasons,
4260 * we can't allow the release to continue.
4261 */
4262 if (ret < 0)
4263 ret = 0;
4264 else
4265 ret = 1;
7b13b7b1
CM
4266 }
4267 return ret;
4268}
7b13b7b1 4269
d1310b2e
CM
4270/*
4271 * a helper for releasepage. As long as there are no locked extents
4272 * in the range corresponding to the page, both state records and extent
4273 * map records are removed
4274 */
4275int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4276 struct extent_io_tree *tree, struct page *page,
4277 gfp_t mask)
d1310b2e
CM
4278{
4279 struct extent_map *em;
4eee4fa4 4280 u64 start = page_offset(page);
09cbfeaf 4281 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4282
d0164adc 4283 if (gfpflags_allow_blocking(mask) &&
ee22184b 4284 page->mapping->host->i_size > SZ_16M) {
39b5637f 4285 u64 len;
70dec807 4286 while (start <= end) {
39b5637f 4287 len = end - start + 1;
890871be 4288 write_lock(&map->lock);
39b5637f 4289 em = lookup_extent_mapping(map, start, len);
285190d9 4290 if (!em) {
890871be 4291 write_unlock(&map->lock);
70dec807
CM
4292 break;
4293 }
7f3c74fb
CM
4294 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4295 em->start != start) {
890871be 4296 write_unlock(&map->lock);
70dec807
CM
4297 free_extent_map(em);
4298 break;
4299 }
4300 if (!test_range_bit(tree, em->start,
4301 extent_map_end(em) - 1,
8b62b72b 4302 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4303 0, NULL)) {
70dec807
CM
4304 remove_extent_mapping(map, em);
4305 /* once for the rb tree */
4306 free_extent_map(em);
4307 }
4308 start = extent_map_end(em);
890871be 4309 write_unlock(&map->lock);
70dec807
CM
4310
4311 /* once for us */
d1310b2e
CM
4312 free_extent_map(em);
4313 }
d1310b2e 4314 }
7b13b7b1 4315 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4316}
d1310b2e 4317
ec29ed5b
CM
4318/*
4319 * helper function for fiemap, which doesn't want to see any holes.
4320 * This maps until we find something past 'last'
4321 */
4322static struct extent_map *get_extent_skip_holes(struct inode *inode,
4323 u64 offset,
4324 u64 last,
4325 get_extent_t *get_extent)
4326{
4327 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4328 struct extent_map *em;
4329 u64 len;
4330
4331 if (offset >= last)
4332 return NULL;
4333
67871254 4334 while (1) {
ec29ed5b
CM
4335 len = last - offset;
4336 if (len == 0)
4337 break;
fda2832f 4338 len = ALIGN(len, sectorsize);
ec29ed5b 4339 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4340 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4341 return em;
4342
4343 /* if this isn't a hole return it */
4344 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4345 em->block_start != EXTENT_MAP_HOLE) {
4346 return em;
4347 }
4348
4349 /* this is a hole, advance to the next extent */
4350 offset = extent_map_end(em);
4351 free_extent_map(em);
4352 if (offset >= last)
4353 break;
4354 }
4355 return NULL;
4356}
4357
1506fcc8
YS
4358int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4359 __u64 start, __u64 len, get_extent_t *get_extent)
4360{
975f84fe 4361 int ret = 0;
1506fcc8
YS
4362 u64 off = start;
4363 u64 max = start + len;
4364 u32 flags = 0;
975f84fe
JB
4365 u32 found_type;
4366 u64 last;
ec29ed5b 4367 u64 last_for_get_extent = 0;
1506fcc8 4368 u64 disko = 0;
ec29ed5b 4369 u64 isize = i_size_read(inode);
975f84fe 4370 struct btrfs_key found_key;
1506fcc8 4371 struct extent_map *em = NULL;
2ac55d41 4372 struct extent_state *cached_state = NULL;
975f84fe 4373 struct btrfs_path *path;
dc046b10 4374 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4375 int end = 0;
ec29ed5b
CM
4376 u64 em_start = 0;
4377 u64 em_len = 0;
4378 u64 em_end = 0;
1506fcc8
YS
4379
4380 if (len == 0)
4381 return -EINVAL;
4382
975f84fe
JB
4383 path = btrfs_alloc_path();
4384 if (!path)
4385 return -ENOMEM;
4386 path->leave_spinning = 1;
4387
2c91943b
QW
4388 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4389 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4390
ec29ed5b
CM
4391 /*
4392 * lookup the last file extent. We're not using i_size here
4393 * because there might be preallocation past i_size
4394 */
dc046b10
JB
4395 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4396 0);
975f84fe
JB
4397 if (ret < 0) {
4398 btrfs_free_path(path);
4399 return ret;
2d324f59
LB
4400 } else {
4401 WARN_ON(!ret);
4402 if (ret == 1)
4403 ret = 0;
975f84fe 4404 }
2d324f59 4405
975f84fe 4406 path->slots[0]--;
975f84fe 4407 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4408 found_type = found_key.type;
975f84fe 4409
ec29ed5b 4410 /* No extents, but there might be delalloc bits */
33345d01 4411 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4412 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4413 /* have to trust i_size as the end */
4414 last = (u64)-1;
4415 last_for_get_extent = isize;
4416 } else {
4417 /*
4418 * remember the start of the last extent. There are a
4419 * bunch of different factors that go into the length of the
4420 * extent, so its much less complex to remember where it started
4421 */
4422 last = found_key.offset;
4423 last_for_get_extent = last + 1;
975f84fe 4424 }
fe09e16c 4425 btrfs_release_path(path);
975f84fe 4426
ec29ed5b
CM
4427 /*
4428 * we might have some extents allocated but more delalloc past those
4429 * extents. so, we trust isize unless the start of the last extent is
4430 * beyond isize
4431 */
4432 if (last < isize) {
4433 last = (u64)-1;
4434 last_for_get_extent = isize;
4435 }
4436
ff13db41 4437 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4438 &cached_state);
ec29ed5b 4439
4d479cf0 4440 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4441 get_extent);
1506fcc8
YS
4442 if (!em)
4443 goto out;
4444 if (IS_ERR(em)) {
4445 ret = PTR_ERR(em);
4446 goto out;
4447 }
975f84fe 4448
1506fcc8 4449 while (!end) {
b76bb701 4450 u64 offset_in_extent = 0;
ea8efc74
CM
4451
4452 /* break if the extent we found is outside the range */
4453 if (em->start >= max || extent_map_end(em) < off)
4454 break;
4455
4456 /*
4457 * get_extent may return an extent that starts before our
4458 * requested range. We have to make sure the ranges
4459 * we return to fiemap always move forward and don't
4460 * overlap, so adjust the offsets here
4461 */
4462 em_start = max(em->start, off);
1506fcc8 4463
ea8efc74
CM
4464 /*
4465 * record the offset from the start of the extent
b76bb701
JB
4466 * for adjusting the disk offset below. Only do this if the
4467 * extent isn't compressed since our in ram offset may be past
4468 * what we have actually allocated on disk.
ea8efc74 4469 */
b76bb701
JB
4470 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4471 offset_in_extent = em_start - em->start;
ec29ed5b 4472 em_end = extent_map_end(em);
ea8efc74 4473 em_len = em_end - em_start;
1506fcc8
YS
4474 disko = 0;
4475 flags = 0;
4476
ea8efc74
CM
4477 /*
4478 * bump off for our next call to get_extent
4479 */
4480 off = extent_map_end(em);
4481 if (off >= max)
4482 end = 1;
4483
93dbfad7 4484 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4485 end = 1;
4486 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4487 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4488 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4489 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4490 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4491 flags |= (FIEMAP_EXTENT_DELALLOC |
4492 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4493 } else if (fieinfo->fi_extents_max) {
4494 u64 bytenr = em->block_start -
4495 (em->start - em->orig_start);
fe09e16c 4496
ea8efc74 4497 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4498
4499 /*
4500 * As btrfs supports shared space, this information
4501 * can be exported to userspace tools via
dc046b10
JB
4502 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4503 * then we're just getting a count and we can skip the
4504 * lookup stuff.
fe09e16c 4505 */
dc046b10
JB
4506 ret = btrfs_check_shared(NULL, root->fs_info,
4507 root->objectid,
4508 btrfs_ino(inode), bytenr);
4509 if (ret < 0)
fe09e16c 4510 goto out_free;
dc046b10 4511 if (ret)
fe09e16c 4512 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4513 ret = 0;
1506fcc8
YS
4514 }
4515 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4516 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4517 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4518 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4519
1506fcc8
YS
4520 free_extent_map(em);
4521 em = NULL;
ec29ed5b
CM
4522 if ((em_start >= last) || em_len == (u64)-1 ||
4523 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4524 flags |= FIEMAP_EXTENT_LAST;
4525 end = 1;
4526 }
4527
ec29ed5b
CM
4528 /* now scan forward to see if this is really the last extent. */
4529 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4530 get_extent);
4531 if (IS_ERR(em)) {
4532 ret = PTR_ERR(em);
4533 goto out;
4534 }
4535 if (!em) {
975f84fe
JB
4536 flags |= FIEMAP_EXTENT_LAST;
4537 end = 1;
4538 }
ec29ed5b
CM
4539 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4540 em_len, flags);
26e726af
CS
4541 if (ret) {
4542 if (ret == 1)
4543 ret = 0;
ec29ed5b 4544 goto out_free;
26e726af 4545 }
1506fcc8
YS
4546 }
4547out_free:
4548 free_extent_map(em);
4549out:
fe09e16c 4550 btrfs_free_path(path);
a52f4cd2 4551 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4552 &cached_state, GFP_NOFS);
1506fcc8
YS
4553 return ret;
4554}
4555
727011e0
CM
4556static void __free_extent_buffer(struct extent_buffer *eb)
4557{
6d49ba1b 4558 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4559 kmem_cache_free(extent_buffer_cache, eb);
4560}
4561
a26e8c9f 4562int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4563{
4564 return (atomic_read(&eb->io_pages) ||
4565 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4566 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4567}
4568
4569/*
4570 * Helper for releasing extent buffer page.
4571 */
a50924e3 4572static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4573{
4574 unsigned long index;
db7f3436
JB
4575 struct page *page;
4576 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4577
4578 BUG_ON(extent_buffer_under_io(eb));
4579
a50924e3
DS
4580 index = num_extent_pages(eb->start, eb->len);
4581 if (index == 0)
db7f3436
JB
4582 return;
4583
4584 do {
4585 index--;
fb85fc9a 4586 page = eb->pages[index];
5d2361db
FL
4587 if (!page)
4588 continue;
4589 if (mapped)
db7f3436 4590 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4591 /*
4592 * We do this since we'll remove the pages after we've
4593 * removed the eb from the radix tree, so we could race
4594 * and have this page now attached to the new eb. So
4595 * only clear page_private if it's still connected to
4596 * this eb.
4597 */
4598 if (PagePrivate(page) &&
4599 page->private == (unsigned long)eb) {
4600 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4601 BUG_ON(PageDirty(page));
4602 BUG_ON(PageWriteback(page));
db7f3436 4603 /*
5d2361db
FL
4604 * We need to make sure we haven't be attached
4605 * to a new eb.
db7f3436 4606 */
5d2361db
FL
4607 ClearPagePrivate(page);
4608 set_page_private(page, 0);
4609 /* One for the page private */
09cbfeaf 4610 put_page(page);
db7f3436 4611 }
5d2361db
FL
4612
4613 if (mapped)
4614 spin_unlock(&page->mapping->private_lock);
4615
01327610 4616 /* One for when we allocated the page */
09cbfeaf 4617 put_page(page);
a50924e3 4618 } while (index != 0);
db7f3436
JB
4619}
4620
4621/*
4622 * Helper for releasing the extent buffer.
4623 */
4624static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4625{
a50924e3 4626 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4627 __free_extent_buffer(eb);
4628}
4629
f28491e0
JB
4630static struct extent_buffer *
4631__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4632 unsigned long len)
d1310b2e
CM
4633{
4634 struct extent_buffer *eb = NULL;
4635
d1b5c567 4636 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4637 eb->start = start;
4638 eb->len = len;
f28491e0 4639 eb->fs_info = fs_info;
815a51c7 4640 eb->bflags = 0;
bd681513
CM
4641 rwlock_init(&eb->lock);
4642 atomic_set(&eb->write_locks, 0);
4643 atomic_set(&eb->read_locks, 0);
4644 atomic_set(&eb->blocking_readers, 0);
4645 atomic_set(&eb->blocking_writers, 0);
4646 atomic_set(&eb->spinning_readers, 0);
4647 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4648 eb->lock_nested = 0;
bd681513
CM
4649 init_waitqueue_head(&eb->write_lock_wq);
4650 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4651
6d49ba1b
ES
4652 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4653
3083ee2e 4654 spin_lock_init(&eb->refs_lock);
d1310b2e 4655 atomic_set(&eb->refs, 1);
0b32f4bb 4656 atomic_set(&eb->io_pages, 0);
727011e0 4657
b8dae313
DS
4658 /*
4659 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4660 */
4661 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4662 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4663 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4664
4665 return eb;
4666}
4667
815a51c7
JS
4668struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4669{
4670 unsigned long i;
4671 struct page *p;
4672 struct extent_buffer *new;
4673 unsigned long num_pages = num_extent_pages(src->start, src->len);
4674
3f556f78 4675 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4676 if (new == NULL)
4677 return NULL;
4678
4679 for (i = 0; i < num_pages; i++) {
9ec72677 4680 p = alloc_page(GFP_NOFS);
db7f3436
JB
4681 if (!p) {
4682 btrfs_release_extent_buffer(new);
4683 return NULL;
4684 }
815a51c7
JS
4685 attach_extent_buffer_page(new, p);
4686 WARN_ON(PageDirty(p));
4687 SetPageUptodate(p);
4688 new->pages[i] = p;
4689 }
4690
4691 copy_extent_buffer(new, src, 0, 0, src->len);
4692 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4693 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4694
4695 return new;
4696}
4697
0f331229
OS
4698struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4699 u64 start, unsigned long len)
815a51c7
JS
4700{
4701 struct extent_buffer *eb;
3f556f78 4702 unsigned long num_pages;
815a51c7
JS
4703 unsigned long i;
4704
0f331229 4705 num_pages = num_extent_pages(start, len);
3f556f78
DS
4706
4707 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4708 if (!eb)
4709 return NULL;
4710
4711 for (i = 0; i < num_pages; i++) {
9ec72677 4712 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4713 if (!eb->pages[i])
4714 goto err;
4715 }
4716 set_extent_buffer_uptodate(eb);
4717 btrfs_set_header_nritems(eb, 0);
4718 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4719
4720 return eb;
4721err:
84167d19
SB
4722 for (; i > 0; i--)
4723 __free_page(eb->pages[i - 1]);
815a51c7
JS
4724 __free_extent_buffer(eb);
4725 return NULL;
4726}
4727
0f331229
OS
4728struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4729 u64 start)
4730{
4731 unsigned long len;
4732
4733 if (!fs_info) {
4734 /*
4735 * Called only from tests that don't always have a fs_info
4736 * available, but we know that nodesize is 4096
4737 */
4738 len = 4096;
4739 } else {
4740 len = fs_info->tree_root->nodesize;
4741 }
4742
4743 return __alloc_dummy_extent_buffer(fs_info, start, len);
4744}
4745
0b32f4bb
JB
4746static void check_buffer_tree_ref(struct extent_buffer *eb)
4747{
242e18c7 4748 int refs;
0b32f4bb
JB
4749 /* the ref bit is tricky. We have to make sure it is set
4750 * if we have the buffer dirty. Otherwise the
4751 * code to free a buffer can end up dropping a dirty
4752 * page
4753 *
4754 * Once the ref bit is set, it won't go away while the
4755 * buffer is dirty or in writeback, and it also won't
4756 * go away while we have the reference count on the
4757 * eb bumped.
4758 *
4759 * We can't just set the ref bit without bumping the
4760 * ref on the eb because free_extent_buffer might
4761 * see the ref bit and try to clear it. If this happens
4762 * free_extent_buffer might end up dropping our original
4763 * ref by mistake and freeing the page before we are able
4764 * to add one more ref.
4765 *
4766 * So bump the ref count first, then set the bit. If someone
4767 * beat us to it, drop the ref we added.
4768 */
242e18c7
CM
4769 refs = atomic_read(&eb->refs);
4770 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4771 return;
4772
594831c4
JB
4773 spin_lock(&eb->refs_lock);
4774 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4775 atomic_inc(&eb->refs);
594831c4 4776 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4777}
4778
2457aec6
MG
4779static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4780 struct page *accessed)
5df4235e
JB
4781{
4782 unsigned long num_pages, i;
4783
0b32f4bb
JB
4784 check_buffer_tree_ref(eb);
4785
5df4235e
JB
4786 num_pages = num_extent_pages(eb->start, eb->len);
4787 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4788 struct page *p = eb->pages[i];
4789
2457aec6
MG
4790 if (p != accessed)
4791 mark_page_accessed(p);
5df4235e
JB
4792 }
4793}
4794
f28491e0
JB
4795struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4796 u64 start)
452c75c3
CS
4797{
4798 struct extent_buffer *eb;
4799
4800 rcu_read_lock();
f28491e0 4801 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4802 start >> PAGE_SHIFT);
452c75c3
CS
4803 if (eb && atomic_inc_not_zero(&eb->refs)) {
4804 rcu_read_unlock();
062c19e9
FM
4805 /*
4806 * Lock our eb's refs_lock to avoid races with
4807 * free_extent_buffer. When we get our eb it might be flagged
4808 * with EXTENT_BUFFER_STALE and another task running
4809 * free_extent_buffer might have seen that flag set,
4810 * eb->refs == 2, that the buffer isn't under IO (dirty and
4811 * writeback flags not set) and it's still in the tree (flag
4812 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4813 * of decrementing the extent buffer's reference count twice.
4814 * So here we could race and increment the eb's reference count,
4815 * clear its stale flag, mark it as dirty and drop our reference
4816 * before the other task finishes executing free_extent_buffer,
4817 * which would later result in an attempt to free an extent
4818 * buffer that is dirty.
4819 */
4820 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4821 spin_lock(&eb->refs_lock);
4822 spin_unlock(&eb->refs_lock);
4823 }
2457aec6 4824 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4825 return eb;
4826 }
4827 rcu_read_unlock();
4828
4829 return NULL;
4830}
4831
faa2dbf0
JB
4832#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4833struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4834 u64 start)
faa2dbf0
JB
4835{
4836 struct extent_buffer *eb, *exists = NULL;
4837 int ret;
4838
4839 eb = find_extent_buffer(fs_info, start);
4840 if (eb)
4841 return eb;
3f556f78 4842 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4843 if (!eb)
4844 return NULL;
4845 eb->fs_info = fs_info;
4846again:
e1860a77 4847 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4848 if (ret)
4849 goto free_eb;
4850 spin_lock(&fs_info->buffer_lock);
4851 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4852 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4853 spin_unlock(&fs_info->buffer_lock);
4854 radix_tree_preload_end();
4855 if (ret == -EEXIST) {
4856 exists = find_extent_buffer(fs_info, start);
4857 if (exists)
4858 goto free_eb;
4859 else
4860 goto again;
4861 }
4862 check_buffer_tree_ref(eb);
4863 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4864
4865 /*
4866 * We will free dummy extent buffer's if they come into
4867 * free_extent_buffer with a ref count of 2, but if we are using this we
4868 * want the buffers to stay in memory until we're done with them, so
4869 * bump the ref count again.
4870 */
4871 atomic_inc(&eb->refs);
4872 return eb;
4873free_eb:
4874 btrfs_release_extent_buffer(eb);
4875 return exists;
4876}
4877#endif
4878
f28491e0 4879struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4880 u64 start)
d1310b2e 4881{
ce3e6984 4882 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4883 unsigned long num_pages = num_extent_pages(start, len);
4884 unsigned long i;
09cbfeaf 4885 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4886 struct extent_buffer *eb;
6af118ce 4887 struct extent_buffer *exists = NULL;
d1310b2e 4888 struct page *p;
f28491e0 4889 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4890 int uptodate = 1;
19fe0a8b 4891 int ret;
d1310b2e 4892
f28491e0 4893 eb = find_extent_buffer(fs_info, start);
452c75c3 4894 if (eb)
6af118ce 4895 return eb;
6af118ce 4896
23d79d81 4897 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4898 if (!eb)
d1310b2e
CM
4899 return NULL;
4900
727011e0 4901 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4902 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4903 if (!p)
6af118ce 4904 goto free_eb;
4f2de97a
JB
4905
4906 spin_lock(&mapping->private_lock);
4907 if (PagePrivate(p)) {
4908 /*
4909 * We could have already allocated an eb for this page
4910 * and attached one so lets see if we can get a ref on
4911 * the existing eb, and if we can we know it's good and
4912 * we can just return that one, else we know we can just
4913 * overwrite page->private.
4914 */
4915 exists = (struct extent_buffer *)p->private;
4916 if (atomic_inc_not_zero(&exists->refs)) {
4917 spin_unlock(&mapping->private_lock);
4918 unlock_page(p);
09cbfeaf 4919 put_page(p);
2457aec6 4920 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4921 goto free_eb;
4922 }
5ca64f45 4923 exists = NULL;
4f2de97a 4924
0b32f4bb 4925 /*
4f2de97a
JB
4926 * Do this so attach doesn't complain and we need to
4927 * drop the ref the old guy had.
4928 */
4929 ClearPagePrivate(p);
0b32f4bb 4930 WARN_ON(PageDirty(p));
09cbfeaf 4931 put_page(p);
d1310b2e 4932 }
4f2de97a
JB
4933 attach_extent_buffer_page(eb, p);
4934 spin_unlock(&mapping->private_lock);
0b32f4bb 4935 WARN_ON(PageDirty(p));
727011e0 4936 eb->pages[i] = p;
d1310b2e
CM
4937 if (!PageUptodate(p))
4938 uptodate = 0;
eb14ab8e
CM
4939
4940 /*
4941 * see below about how we avoid a nasty race with release page
4942 * and why we unlock later
4943 */
d1310b2e
CM
4944 }
4945 if (uptodate)
b4ce94de 4946 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4947again:
e1860a77 4948 ret = radix_tree_preload(GFP_NOFS);
19fe0a8b
MX
4949 if (ret)
4950 goto free_eb;
4951
f28491e0
JB
4952 spin_lock(&fs_info->buffer_lock);
4953 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4954 start >> PAGE_SHIFT, eb);
f28491e0 4955 spin_unlock(&fs_info->buffer_lock);
452c75c3 4956 radix_tree_preload_end();
19fe0a8b 4957 if (ret == -EEXIST) {
f28491e0 4958 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4959 if (exists)
4960 goto free_eb;
4961 else
115391d2 4962 goto again;
6af118ce 4963 }
6af118ce 4964 /* add one reference for the tree */
0b32f4bb 4965 check_buffer_tree_ref(eb);
34b41ace 4966 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4967
4968 /*
4969 * there is a race where release page may have
4970 * tried to find this extent buffer in the radix
4971 * but failed. It will tell the VM it is safe to
4972 * reclaim the, and it will clear the page private bit.
4973 * We must make sure to set the page private bit properly
4974 * after the extent buffer is in the radix tree so
4975 * it doesn't get lost
4976 */
727011e0
CM
4977 SetPageChecked(eb->pages[0]);
4978 for (i = 1; i < num_pages; i++) {
fb85fc9a 4979 p = eb->pages[i];
727011e0
CM
4980 ClearPageChecked(p);
4981 unlock_page(p);
4982 }
4983 unlock_page(eb->pages[0]);
d1310b2e
CM
4984 return eb;
4985
6af118ce 4986free_eb:
5ca64f45 4987 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4988 for (i = 0; i < num_pages; i++) {
4989 if (eb->pages[i])
4990 unlock_page(eb->pages[i]);
4991 }
eb14ab8e 4992
897ca6e9 4993 btrfs_release_extent_buffer(eb);
6af118ce 4994 return exists;
d1310b2e 4995}
d1310b2e 4996
3083ee2e
JB
4997static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4998{
4999 struct extent_buffer *eb =
5000 container_of(head, struct extent_buffer, rcu_head);
5001
5002 __free_extent_buffer(eb);
5003}
5004
3083ee2e 5005/* Expects to have eb->eb_lock already held */
f7a52a40 5006static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5007{
5008 WARN_ON(atomic_read(&eb->refs) == 0);
5009 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5010 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5011 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5012
815a51c7 5013 spin_unlock(&eb->refs_lock);
3083ee2e 5014
f28491e0
JB
5015 spin_lock(&fs_info->buffer_lock);
5016 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5017 eb->start >> PAGE_SHIFT);
f28491e0 5018 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5019 } else {
5020 spin_unlock(&eb->refs_lock);
815a51c7 5021 }
3083ee2e
JB
5022
5023 /* Should be safe to release our pages at this point */
a50924e3 5024 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5025#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5026 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5027 __free_extent_buffer(eb);
5028 return 1;
5029 }
5030#endif
3083ee2e 5031 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5032 return 1;
3083ee2e
JB
5033 }
5034 spin_unlock(&eb->refs_lock);
e64860aa
JB
5035
5036 return 0;
3083ee2e
JB
5037}
5038
d1310b2e
CM
5039void free_extent_buffer(struct extent_buffer *eb)
5040{
242e18c7
CM
5041 int refs;
5042 int old;
d1310b2e
CM
5043 if (!eb)
5044 return;
5045
242e18c7
CM
5046 while (1) {
5047 refs = atomic_read(&eb->refs);
5048 if (refs <= 3)
5049 break;
5050 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5051 if (old == refs)
5052 return;
5053 }
5054
3083ee2e 5055 spin_lock(&eb->refs_lock);
815a51c7
JS
5056 if (atomic_read(&eb->refs) == 2 &&
5057 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5058 atomic_dec(&eb->refs);
5059
3083ee2e
JB
5060 if (atomic_read(&eb->refs) == 2 &&
5061 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5062 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5063 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5064 atomic_dec(&eb->refs);
5065
5066 /*
5067 * I know this is terrible, but it's temporary until we stop tracking
5068 * the uptodate bits and such for the extent buffers.
5069 */
f7a52a40 5070 release_extent_buffer(eb);
3083ee2e
JB
5071}
5072
5073void free_extent_buffer_stale(struct extent_buffer *eb)
5074{
5075 if (!eb)
d1310b2e
CM
5076 return;
5077
3083ee2e
JB
5078 spin_lock(&eb->refs_lock);
5079 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5080
0b32f4bb 5081 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5082 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5083 atomic_dec(&eb->refs);
f7a52a40 5084 release_extent_buffer(eb);
d1310b2e 5085}
d1310b2e 5086
1d4284bd 5087void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5088{
d1310b2e
CM
5089 unsigned long i;
5090 unsigned long num_pages;
5091 struct page *page;
5092
d1310b2e
CM
5093 num_pages = num_extent_pages(eb->start, eb->len);
5094
5095 for (i = 0; i < num_pages; i++) {
fb85fc9a 5096 page = eb->pages[i];
b9473439 5097 if (!PageDirty(page))
d2c3f4f6
CM
5098 continue;
5099
a61e6f29 5100 lock_page(page);
eb14ab8e
CM
5101 WARN_ON(!PagePrivate(page));
5102
d1310b2e 5103 clear_page_dirty_for_io(page);
0ee0fda0 5104 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5105 if (!PageDirty(page)) {
5106 radix_tree_tag_clear(&page->mapping->page_tree,
5107 page_index(page),
5108 PAGECACHE_TAG_DIRTY);
5109 }
0ee0fda0 5110 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5111 ClearPageError(page);
a61e6f29 5112 unlock_page(page);
d1310b2e 5113 }
0b32f4bb 5114 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5115}
d1310b2e 5116
0b32f4bb 5117int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5118{
5119 unsigned long i;
5120 unsigned long num_pages;
b9473439 5121 int was_dirty = 0;
d1310b2e 5122
0b32f4bb
JB
5123 check_buffer_tree_ref(eb);
5124
b9473439 5125 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5126
d1310b2e 5127 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5128 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5129 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5130
b9473439 5131 for (i = 0; i < num_pages; i++)
fb85fc9a 5132 set_page_dirty(eb->pages[i]);
b9473439 5133 return was_dirty;
d1310b2e 5134}
d1310b2e 5135
69ba3927 5136void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5137{
5138 unsigned long i;
5139 struct page *page;
5140 unsigned long num_pages;
5141
b4ce94de 5142 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5143 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5144 for (i = 0; i < num_pages; i++) {
fb85fc9a 5145 page = eb->pages[i];
33958dc6
CM
5146 if (page)
5147 ClearPageUptodate(page);
1259ab75 5148 }
1259ab75
CM
5149}
5150
09c25a8c 5151void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5152{
5153 unsigned long i;
5154 struct page *page;
5155 unsigned long num_pages;
5156
0b32f4bb 5157 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5158 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5159 for (i = 0; i < num_pages; i++) {
fb85fc9a 5160 page = eb->pages[i];
d1310b2e
CM
5161 SetPageUptodate(page);
5162 }
d1310b2e 5163}
d1310b2e 5164
0b32f4bb 5165int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5166{
0b32f4bb 5167 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5168}
d1310b2e
CM
5169
5170int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5171 struct extent_buffer *eb, u64 start, int wait,
f188591e 5172 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5173{
5174 unsigned long i;
5175 unsigned long start_i;
5176 struct page *page;
5177 int err;
5178 int ret = 0;
ce9adaa5
CM
5179 int locked_pages = 0;
5180 int all_uptodate = 1;
d1310b2e 5181 unsigned long num_pages;
727011e0 5182 unsigned long num_reads = 0;
a86c12c7 5183 struct bio *bio = NULL;
c8b97818 5184 unsigned long bio_flags = 0;
a86c12c7 5185
b4ce94de 5186 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5187 return 0;
5188
d1310b2e
CM
5189 if (start) {
5190 WARN_ON(start < eb->start);
09cbfeaf
KS
5191 start_i = (start >> PAGE_SHIFT) -
5192 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5193 } else {
5194 start_i = 0;
5195 }
5196
5197 num_pages = num_extent_pages(eb->start, eb->len);
5198 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5199 page = eb->pages[i];
bb82ab88 5200 if (wait == WAIT_NONE) {
2db04966 5201 if (!trylock_page(page))
ce9adaa5 5202 goto unlock_exit;
d1310b2e
CM
5203 } else {
5204 lock_page(page);
5205 }
ce9adaa5 5206 locked_pages++;
727011e0
CM
5207 if (!PageUptodate(page)) {
5208 num_reads++;
ce9adaa5 5209 all_uptodate = 0;
727011e0 5210 }
ce9adaa5
CM
5211 }
5212 if (all_uptodate) {
5213 if (start_i == 0)
b4ce94de 5214 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5215 goto unlock_exit;
5216 }
5217
656f30db 5218 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5219 eb->read_mirror = 0;
0b32f4bb 5220 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5221 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5222 page = eb->pages[i];
ce9adaa5 5223 if (!PageUptodate(page)) {
f188591e 5224 ClearPageError(page);
a86c12c7 5225 err = __extent_read_full_page(tree, page,
f188591e 5226 get_extent, &bio,
d4c7ca86 5227 mirror_num, &bio_flags,
1f7ad75b 5228 REQ_META);
d397712b 5229 if (err)
d1310b2e 5230 ret = err;
d1310b2e
CM
5231 } else {
5232 unlock_page(page);
5233 }
5234 }
5235
355808c2 5236 if (bio) {
1f7ad75b 5237 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5238 if (err)
5239 return err;
355808c2 5240 }
a86c12c7 5241
bb82ab88 5242 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5243 return ret;
d397712b 5244
d1310b2e 5245 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5246 page = eb->pages[i];
d1310b2e 5247 wait_on_page_locked(page);
d397712b 5248 if (!PageUptodate(page))
d1310b2e 5249 ret = -EIO;
d1310b2e 5250 }
d397712b 5251
d1310b2e 5252 return ret;
ce9adaa5
CM
5253
5254unlock_exit:
5255 i = start_i;
d397712b 5256 while (locked_pages > 0) {
fb85fc9a 5257 page = eb->pages[i];
ce9adaa5
CM
5258 i++;
5259 unlock_page(page);
5260 locked_pages--;
5261 }
5262 return ret;
d1310b2e 5263}
d1310b2e
CM
5264
5265void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5266 unsigned long start,
5267 unsigned long len)
5268{
5269 size_t cur;
5270 size_t offset;
5271 struct page *page;
5272 char *kaddr;
5273 char *dst = (char *)dstv;
09cbfeaf
KS
5274 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5275 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5276
5277 WARN_ON(start > eb->len);
5278 WARN_ON(start + len > eb->start + eb->len);
5279
09cbfeaf 5280 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5281
d397712b 5282 while (len > 0) {
fb85fc9a 5283 page = eb->pages[i];
d1310b2e 5284
09cbfeaf 5285 cur = min(len, (PAGE_SIZE - offset));
a6591715 5286 kaddr = page_address(page);
d1310b2e 5287 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5288
5289 dst += cur;
5290 len -= cur;
5291 offset = 0;
5292 i++;
5293 }
5294}
d1310b2e 5295
550ac1d8
GH
5296int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5297 unsigned long start,
5298 unsigned long len)
5299{
5300 size_t cur;
5301 size_t offset;
5302 struct page *page;
5303 char *kaddr;
5304 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5305 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5306 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5307 int ret = 0;
5308
5309 WARN_ON(start > eb->len);
5310 WARN_ON(start + len > eb->start + eb->len);
5311
09cbfeaf 5312 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5313
5314 while (len > 0) {
fb85fc9a 5315 page = eb->pages[i];
550ac1d8 5316
09cbfeaf 5317 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5318 kaddr = page_address(page);
5319 if (copy_to_user(dst, kaddr + offset, cur)) {
5320 ret = -EFAULT;
5321 break;
5322 }
5323
5324 dst += cur;
5325 len -= cur;
5326 offset = 0;
5327 i++;
5328 }
5329
5330 return ret;
5331}
5332
d1310b2e 5333int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5334 unsigned long min_len, char **map,
d1310b2e 5335 unsigned long *map_start,
a6591715 5336 unsigned long *map_len)
d1310b2e 5337{
09cbfeaf 5338 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5339 char *kaddr;
5340 struct page *p;
09cbfeaf
KS
5341 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5342 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5343 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5344 PAGE_SHIFT;
d1310b2e
CM
5345
5346 if (i != end_i)
5347 return -EINVAL;
5348
5349 if (i == 0) {
5350 offset = start_offset;
5351 *map_start = 0;
5352 } else {
5353 offset = 0;
09cbfeaf 5354 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5355 }
d397712b 5356
d1310b2e 5357 if (start + min_len > eb->len) {
31b1a2bd 5358 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5359 "wanted %lu %lu\n",
5360 eb->start, eb->len, start, min_len);
85026533 5361 return -EINVAL;
d1310b2e
CM
5362 }
5363
fb85fc9a 5364 p = eb->pages[i];
a6591715 5365 kaddr = page_address(p);
d1310b2e 5366 *map = kaddr + offset;
09cbfeaf 5367 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5368 return 0;
5369}
d1310b2e 5370
d1310b2e
CM
5371int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5372 unsigned long start,
5373 unsigned long len)
5374{
5375 size_t cur;
5376 size_t offset;
5377 struct page *page;
5378 char *kaddr;
5379 char *ptr = (char *)ptrv;
09cbfeaf
KS
5380 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5381 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5382 int ret = 0;
5383
5384 WARN_ON(start > eb->len);
5385 WARN_ON(start + len > eb->start + eb->len);
5386
09cbfeaf 5387 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5388
d397712b 5389 while (len > 0) {
fb85fc9a 5390 page = eb->pages[i];
d1310b2e 5391
09cbfeaf 5392 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5393
a6591715 5394 kaddr = page_address(page);
d1310b2e 5395 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5396 if (ret)
5397 break;
5398
5399 ptr += cur;
5400 len -= cur;
5401 offset = 0;
5402 i++;
5403 }
5404 return ret;
5405}
d1310b2e
CM
5406
5407void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5408 unsigned long start, unsigned long len)
5409{
5410 size_t cur;
5411 size_t offset;
5412 struct page *page;
5413 char *kaddr;
5414 char *src = (char *)srcv;
09cbfeaf
KS
5415 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5416 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5417
5418 WARN_ON(start > eb->len);
5419 WARN_ON(start + len > eb->start + eb->len);
5420
09cbfeaf 5421 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5422
d397712b 5423 while (len > 0) {
fb85fc9a 5424 page = eb->pages[i];
d1310b2e
CM
5425 WARN_ON(!PageUptodate(page));
5426
09cbfeaf 5427 cur = min(len, PAGE_SIZE - offset);
a6591715 5428 kaddr = page_address(page);
d1310b2e 5429 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5430
5431 src += cur;
5432 len -= cur;
5433 offset = 0;
5434 i++;
5435 }
5436}
d1310b2e
CM
5437
5438void memset_extent_buffer(struct extent_buffer *eb, char c,
5439 unsigned long start, unsigned long len)
5440{
5441 size_t cur;
5442 size_t offset;
5443 struct page *page;
5444 char *kaddr;
09cbfeaf
KS
5445 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5446 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5447
5448 WARN_ON(start > eb->len);
5449 WARN_ON(start + len > eb->start + eb->len);
5450
09cbfeaf 5451 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5452
d397712b 5453 while (len > 0) {
fb85fc9a 5454 page = eb->pages[i];
d1310b2e
CM
5455 WARN_ON(!PageUptodate(page));
5456
09cbfeaf 5457 cur = min(len, PAGE_SIZE - offset);
a6591715 5458 kaddr = page_address(page);
d1310b2e 5459 memset(kaddr + offset, c, cur);
d1310b2e
CM
5460
5461 len -= cur;
5462 offset = 0;
5463 i++;
5464 }
5465}
d1310b2e
CM
5466
5467void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5468 unsigned long dst_offset, unsigned long src_offset,
5469 unsigned long len)
5470{
5471 u64 dst_len = dst->len;
5472 size_t cur;
5473 size_t offset;
5474 struct page *page;
5475 char *kaddr;
09cbfeaf
KS
5476 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5477 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5478
5479 WARN_ON(src->len != dst_len);
5480
5481 offset = (start_offset + dst_offset) &
09cbfeaf 5482 (PAGE_SIZE - 1);
d1310b2e 5483
d397712b 5484 while (len > 0) {
fb85fc9a 5485 page = dst->pages[i];
d1310b2e
CM
5486 WARN_ON(!PageUptodate(page));
5487
09cbfeaf 5488 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5489
a6591715 5490 kaddr = page_address(page);
d1310b2e 5491 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5492
5493 src_offset += cur;
5494 len -= cur;
5495 offset = 0;
5496 i++;
5497 }
5498}
d1310b2e 5499
3e1e8bb7
OS
5500/*
5501 * The extent buffer bitmap operations are done with byte granularity because
5502 * bitmap items are not guaranteed to be aligned to a word and therefore a
5503 * single word in a bitmap may straddle two pages in the extent buffer.
5504 */
5505#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5506#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5507#define BITMAP_FIRST_BYTE_MASK(start) \
5508 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5509#define BITMAP_LAST_BYTE_MASK(nbits) \
5510 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5511
5512/*
5513 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5514 * given bit number
5515 * @eb: the extent buffer
5516 * @start: offset of the bitmap item in the extent buffer
5517 * @nr: bit number
5518 * @page_index: return index of the page in the extent buffer that contains the
5519 * given bit number
5520 * @page_offset: return offset into the page given by page_index
5521 *
5522 * This helper hides the ugliness of finding the byte in an extent buffer which
5523 * contains a given bit.
5524 */
5525static inline void eb_bitmap_offset(struct extent_buffer *eb,
5526 unsigned long start, unsigned long nr,
5527 unsigned long *page_index,
5528 size_t *page_offset)
5529{
09cbfeaf 5530 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5531 size_t byte_offset = BIT_BYTE(nr);
5532 size_t offset;
5533
5534 /*
5535 * The byte we want is the offset of the extent buffer + the offset of
5536 * the bitmap item in the extent buffer + the offset of the byte in the
5537 * bitmap item.
5538 */
5539 offset = start_offset + start + byte_offset;
5540
09cbfeaf
KS
5541 *page_index = offset >> PAGE_SHIFT;
5542 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5543}
5544
5545/**
5546 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5547 * @eb: the extent buffer
5548 * @start: offset of the bitmap item in the extent buffer
5549 * @nr: bit number to test
5550 */
5551int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5552 unsigned long nr)
5553{
5554 char *kaddr;
5555 struct page *page;
5556 unsigned long i;
5557 size_t offset;
5558
5559 eb_bitmap_offset(eb, start, nr, &i, &offset);
5560 page = eb->pages[i];
5561 WARN_ON(!PageUptodate(page));
5562 kaddr = page_address(page);
5563 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5564}
5565
5566/**
5567 * extent_buffer_bitmap_set - set an area of a bitmap
5568 * @eb: the extent buffer
5569 * @start: offset of the bitmap item in the extent buffer
5570 * @pos: bit number of the first bit
5571 * @len: number of bits to set
5572 */
5573void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5574 unsigned long pos, unsigned long len)
5575{
5576 char *kaddr;
5577 struct page *page;
5578 unsigned long i;
5579 size_t offset;
5580 const unsigned int size = pos + len;
5581 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5582 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5583
5584 eb_bitmap_offset(eb, start, pos, &i, &offset);
5585 page = eb->pages[i];
5586 WARN_ON(!PageUptodate(page));
5587 kaddr = page_address(page);
5588
5589 while (len >= bits_to_set) {
5590 kaddr[offset] |= mask_to_set;
5591 len -= bits_to_set;
5592 bits_to_set = BITS_PER_BYTE;
5593 mask_to_set = ~0U;
09cbfeaf 5594 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5595 offset = 0;
5596 page = eb->pages[++i];
5597 WARN_ON(!PageUptodate(page));
5598 kaddr = page_address(page);
5599 }
5600 }
5601 if (len) {
5602 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5603 kaddr[offset] |= mask_to_set;
5604 }
5605}
5606
5607
5608/**
5609 * extent_buffer_bitmap_clear - clear an area of a bitmap
5610 * @eb: the extent buffer
5611 * @start: offset of the bitmap item in the extent buffer
5612 * @pos: bit number of the first bit
5613 * @len: number of bits to clear
5614 */
5615void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5616 unsigned long pos, unsigned long len)
5617{
5618 char *kaddr;
5619 struct page *page;
5620 unsigned long i;
5621 size_t offset;
5622 const unsigned int size = pos + len;
5623 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5624 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5625
5626 eb_bitmap_offset(eb, start, pos, &i, &offset);
5627 page = eb->pages[i];
5628 WARN_ON(!PageUptodate(page));
5629 kaddr = page_address(page);
5630
5631 while (len >= bits_to_clear) {
5632 kaddr[offset] &= ~mask_to_clear;
5633 len -= bits_to_clear;
5634 bits_to_clear = BITS_PER_BYTE;
5635 mask_to_clear = ~0U;
09cbfeaf 5636 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5637 offset = 0;
5638 page = eb->pages[++i];
5639 WARN_ON(!PageUptodate(page));
5640 kaddr = page_address(page);
5641 }
5642 }
5643 if (len) {
5644 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5645 kaddr[offset] &= ~mask_to_clear;
5646 }
5647}
5648
3387206f
ST
5649static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5650{
5651 unsigned long distance = (src > dst) ? src - dst : dst - src;
5652 return distance < len;
5653}
5654
d1310b2e
CM
5655static void copy_pages(struct page *dst_page, struct page *src_page,
5656 unsigned long dst_off, unsigned long src_off,
5657 unsigned long len)
5658{
a6591715 5659 char *dst_kaddr = page_address(dst_page);
d1310b2e 5660 char *src_kaddr;
727011e0 5661 int must_memmove = 0;
d1310b2e 5662
3387206f 5663 if (dst_page != src_page) {
a6591715 5664 src_kaddr = page_address(src_page);
3387206f 5665 } else {
d1310b2e 5666 src_kaddr = dst_kaddr;
727011e0
CM
5667 if (areas_overlap(src_off, dst_off, len))
5668 must_memmove = 1;
3387206f 5669 }
d1310b2e 5670
727011e0
CM
5671 if (must_memmove)
5672 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5673 else
5674 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5675}
5676
5677void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5678 unsigned long src_offset, unsigned long len)
5679{
5680 size_t cur;
5681 size_t dst_off_in_page;
5682 size_t src_off_in_page;
09cbfeaf 5683 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5684 unsigned long dst_i;
5685 unsigned long src_i;
5686
5687 if (src_offset + len > dst->len) {
f14d104d
DS
5688 btrfs_err(dst->fs_info,
5689 "memmove bogus src_offset %lu move "
5690 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5691 BUG_ON(1);
5692 }
5693 if (dst_offset + len > dst->len) {
f14d104d
DS
5694 btrfs_err(dst->fs_info,
5695 "memmove bogus dst_offset %lu move "
5696 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5697 BUG_ON(1);
5698 }
5699
d397712b 5700 while (len > 0) {
d1310b2e 5701 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5702 (PAGE_SIZE - 1);
d1310b2e 5703 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5704 (PAGE_SIZE - 1);
d1310b2e 5705
09cbfeaf
KS
5706 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5707 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5708
09cbfeaf 5709 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5710 src_off_in_page));
5711 cur = min_t(unsigned long, cur,
09cbfeaf 5712 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5713
fb85fc9a 5714 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5715 dst_off_in_page, src_off_in_page, cur);
5716
5717 src_offset += cur;
5718 dst_offset += cur;
5719 len -= cur;
5720 }
5721}
d1310b2e
CM
5722
5723void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5724 unsigned long src_offset, unsigned long len)
5725{
5726 size_t cur;
5727 size_t dst_off_in_page;
5728 size_t src_off_in_page;
5729 unsigned long dst_end = dst_offset + len - 1;
5730 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5731 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5732 unsigned long dst_i;
5733 unsigned long src_i;
5734
5735 if (src_offset + len > dst->len) {
f14d104d
DS
5736 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5737 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5738 BUG_ON(1);
5739 }
5740 if (dst_offset + len > dst->len) {
f14d104d
DS
5741 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5742 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5743 BUG_ON(1);
5744 }
727011e0 5745 if (dst_offset < src_offset) {
d1310b2e
CM
5746 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5747 return;
5748 }
d397712b 5749 while (len > 0) {
09cbfeaf
KS
5750 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5751 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5752
5753 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5754 (PAGE_SIZE - 1);
d1310b2e 5755 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5756 (PAGE_SIZE - 1);
d1310b2e
CM
5757
5758 cur = min_t(unsigned long, len, src_off_in_page + 1);
5759 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5760 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5761 dst_off_in_page - cur + 1,
5762 src_off_in_page - cur + 1, cur);
5763
5764 dst_end -= cur;
5765 src_end -= cur;
5766 len -= cur;
5767 }
5768}
6af118ce 5769
f7a52a40 5770int try_release_extent_buffer(struct page *page)
19fe0a8b 5771{
6af118ce 5772 struct extent_buffer *eb;
6af118ce 5773
3083ee2e 5774 /*
01327610 5775 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5776 * now.
5777 */
5778 spin_lock(&page->mapping->private_lock);
5779 if (!PagePrivate(page)) {
5780 spin_unlock(&page->mapping->private_lock);
4f2de97a 5781 return 1;
45f49bce 5782 }
6af118ce 5783
3083ee2e
JB
5784 eb = (struct extent_buffer *)page->private;
5785 BUG_ON(!eb);
19fe0a8b
MX
5786
5787 /*
3083ee2e
JB
5788 * This is a little awful but should be ok, we need to make sure that
5789 * the eb doesn't disappear out from under us while we're looking at
5790 * this page.
19fe0a8b 5791 */
3083ee2e 5792 spin_lock(&eb->refs_lock);
0b32f4bb 5793 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5794 spin_unlock(&eb->refs_lock);
5795 spin_unlock(&page->mapping->private_lock);
5796 return 0;
b9473439 5797 }
3083ee2e 5798 spin_unlock(&page->mapping->private_lock);
897ca6e9 5799
19fe0a8b 5800 /*
3083ee2e
JB
5801 * If tree ref isn't set then we know the ref on this eb is a real ref,
5802 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5803 */
3083ee2e
JB
5804 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5805 spin_unlock(&eb->refs_lock);
5806 return 0;
b9473439 5807 }
19fe0a8b 5808
f7a52a40 5809 return release_extent_buffer(eb);
6af118ce 5810}