]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/btrfs/extent_io.c
Btrfs: remove unnecessary locking of cleaner_mutex to avoid deadlock
[mirror_ubuntu-zesty-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 399 struct extent_state *state, unsigned *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 406 struct extent_state *state, unsigned *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
9ee49a04 413 struct extent_state *state, unsigned *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
9ee49a04 429 unsigned *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
9ee49a04 514 unsigned *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
9ee49a04 517 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 573 unsigned bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
c7bc6319
FM
598 /*
599 * Don't care for allocation failure here because we might end
600 * up not needing the pre-allocated extent state at all, which
601 * is the case if we only have in the tree extent states that
602 * cover our input range and don't cover too any other range.
603 * If we end up needing a new extent state we allocate it later.
604 */
d1310b2e 605 prealloc = alloc_extent_state(mask);
d1310b2e
CM
606 }
607
cad321ad 608 spin_lock(&tree->lock);
2c64c53d
CM
609 if (cached_state) {
610 cached = *cached_state;
2ac55d41
JB
611
612 if (clear) {
613 *cached_state = NULL;
614 cached_state = NULL;
615 }
616
27a3507d
FM
617 if (cached && extent_state_in_tree(cached) &&
618 cached->start <= start && cached->end > start) {
2ac55d41
JB
619 if (clear)
620 atomic_dec(&cached->refs);
2c64c53d 621 state = cached;
42daec29 622 goto hit_next;
2c64c53d 623 }
2ac55d41
JB
624 if (clear)
625 free_extent_state(cached);
2c64c53d 626 }
d1310b2e
CM
627 /*
628 * this search will find the extents that end after
629 * our range starts
630 */
80ea96b1 631 node = tree_search(tree, start);
d1310b2e
CM
632 if (!node)
633 goto out;
634 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 635hit_next:
d1310b2e
CM
636 if (state->start > end)
637 goto out;
638 WARN_ON(state->end < start);
5c939df5 639 last_end = state->end;
d1310b2e 640
0449314a 641 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
642 if (!(state->state & bits)) {
643 state = next_state(state);
0449314a 644 goto next;
cdc6a395 645 }
0449314a 646
d1310b2e
CM
647 /*
648 * | ---- desired range ---- |
649 * | state | or
650 * | ------------- state -------------- |
651 *
652 * We need to split the extent we found, and may flip
653 * bits on second half.
654 *
655 * If the extent we found extends past our range, we
656 * just split and search again. It'll get split again
657 * the next time though.
658 *
659 * If the extent we found is inside our range, we clear
660 * the desired bit on it.
661 */
662
663 if (state->start < start) {
8233767a
XG
664 prealloc = alloc_extent_state_atomic(prealloc);
665 BUG_ON(!prealloc);
d1310b2e 666 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
667 if (err)
668 extent_io_tree_panic(tree, err);
669
d1310b2e
CM
670 prealloc = NULL;
671 if (err)
672 goto out;
673 if (state->end <= end) {
d1ac6e41
LB
674 state = clear_state_bit(tree, state, &bits, wake);
675 goto next;
d1310b2e
CM
676 }
677 goto search_again;
678 }
679 /*
680 * | ---- desired range ---- |
681 * | state |
682 * We need to split the extent, and clear the bit
683 * on the first half
684 */
685 if (state->start <= end && state->end > end) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 if (wake)
693 wake_up(&state->wq);
42daec29 694
6763af84 695 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 696
d1310b2e
CM
697 prealloc = NULL;
698 goto out;
699 }
42daec29 700
cdc6a395 701 state = clear_state_bit(tree, state, &bits, wake);
0449314a 702next:
5c939df5
YZ
703 if (last_end == (u64)-1)
704 goto out;
705 start = last_end + 1;
cdc6a395 706 if (start <= end && state && !need_resched())
692e5759 707 goto hit_next;
d1310b2e
CM
708 goto search_again;
709
710out:
cad321ad 711 spin_unlock(&tree->lock);
d1310b2e
CM
712 if (prealloc)
713 free_extent_state(prealloc);
714
6763af84 715 return 0;
d1310b2e
CM
716
717search_again:
718 if (start > end)
719 goto out;
cad321ad 720 spin_unlock(&tree->lock);
d1310b2e
CM
721 if (mask & __GFP_WAIT)
722 cond_resched();
723 goto again;
724}
d1310b2e 725
143bede5
JM
726static void wait_on_state(struct extent_io_tree *tree,
727 struct extent_state *state)
641f5219
CH
728 __releases(tree->lock)
729 __acquires(tree->lock)
d1310b2e
CM
730{
731 DEFINE_WAIT(wait);
732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 733 spin_unlock(&tree->lock);
d1310b2e 734 schedule();
cad321ad 735 spin_lock(&tree->lock);
d1310b2e 736 finish_wait(&state->wq, &wait);
d1310b2e
CM
737}
738
739/*
740 * waits for one or more bits to clear on a range in the state tree.
741 * The range [start, end] is inclusive.
742 * The tree lock is taken by this function
743 */
41074888
DS
744static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 unsigned long bits)
d1310b2e
CM
746{
747 struct extent_state *state;
748 struct rb_node *node;
749
a5dee37d 750 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 751
cad321ad 752 spin_lock(&tree->lock);
d1310b2e
CM
753again:
754 while (1) {
755 /*
756 * this search will find all the extents that end after
757 * our range starts
758 */
80ea96b1 759 node = tree_search(tree, start);
c50d3e71 760process_node:
d1310b2e
CM
761 if (!node)
762 break;
763
764 state = rb_entry(node, struct extent_state, rb_node);
765
766 if (state->start > end)
767 goto out;
768
769 if (state->state & bits) {
770 start = state->start;
771 atomic_inc(&state->refs);
772 wait_on_state(tree, state);
773 free_extent_state(state);
774 goto again;
775 }
776 start = state->end + 1;
777
778 if (start > end)
779 break;
780
c50d3e71
FM
781 if (!cond_resched_lock(&tree->lock)) {
782 node = rb_next(node);
783 goto process_node;
784 }
d1310b2e
CM
785 }
786out:
cad321ad 787 spin_unlock(&tree->lock);
d1310b2e 788}
d1310b2e 789
1bf85046 790static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 791 struct extent_state *state,
9ee49a04 792 unsigned *bits)
d1310b2e 793{
9ee49a04 794 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 795
1bf85046 796 set_state_cb(tree, state, bits);
0ca1f7ce 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
800 }
0ca1f7ce 801 state->state |= bits_to_set;
d1310b2e
CM
802}
803
e38e2ed7
FM
804static void cache_state_if_flags(struct extent_state *state,
805 struct extent_state **cached_ptr,
9ee49a04 806 unsigned flags)
2c64c53d
CM
807{
808 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 809 if (!flags || (state->state & flags)) {
2c64c53d
CM
810 *cached_ptr = state;
811 atomic_inc(&state->refs);
812 }
813 }
814}
815
e38e2ed7
FM
816static void cache_state(struct extent_state *state,
817 struct extent_state **cached_ptr)
818{
819 return cache_state_if_flags(state, cached_ptr,
820 EXTENT_IOBITS | EXTENT_BOUNDARY);
821}
822
d1310b2e 823/*
1edbb734
CM
824 * set some bits on a range in the tree. This may require allocations or
825 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 826 *
1edbb734
CM
827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
828 * part of the range already has the desired bits set. The start of the
829 * existing range is returned in failed_start in this case.
d1310b2e 830 *
1edbb734 831 * [start, end] is inclusive This takes the tree lock.
d1310b2e 832 */
1edbb734 833
3fbe5c02
JM
834static int __must_check
835__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 836 unsigned bits, unsigned exclusive_bits,
41074888
DS
837 u64 *failed_start, struct extent_state **cached_state,
838 gfp_t mask)
d1310b2e
CM
839{
840 struct extent_state *state;
841 struct extent_state *prealloc = NULL;
842 struct rb_node *node;
12cfbad9
FDBM
843 struct rb_node **p;
844 struct rb_node *parent;
d1310b2e 845 int err = 0;
d1310b2e
CM
846 u64 last_start;
847 u64 last_end;
42daec29 848
a5dee37d 849 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 850
0ca1f7ce 851 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
852again:
853 if (!prealloc && (mask & __GFP_WAIT)) {
854 prealloc = alloc_extent_state(mask);
8233767a 855 BUG_ON(!prealloc);
d1310b2e
CM
856 }
857
cad321ad 858 spin_lock(&tree->lock);
9655d298
CM
859 if (cached_state && *cached_state) {
860 state = *cached_state;
df98b6e2 861 if (state->start <= start && state->end > start &&
27a3507d 862 extent_state_in_tree(state)) {
9655d298
CM
863 node = &state->rb_node;
864 goto hit_next;
865 }
866 }
d1310b2e
CM
867 /*
868 * this search will find all the extents that end after
869 * our range starts.
870 */
12cfbad9 871 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 872 if (!node) {
8233767a
XG
873 prealloc = alloc_extent_state_atomic(prealloc);
874 BUG_ON(!prealloc);
12cfbad9
FDBM
875 err = insert_state(tree, prealloc, start, end,
876 &p, &parent, &bits);
c2d904e0
JM
877 if (err)
878 extent_io_tree_panic(tree, err);
879
c42ac0bc 880 cache_state(prealloc, cached_state);
d1310b2e 881 prealloc = NULL;
d1310b2e
CM
882 goto out;
883 }
d1310b2e 884 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 885hit_next:
d1310b2e
CM
886 last_start = state->start;
887 last_end = state->end;
888
889 /*
890 * | ---- desired range ---- |
891 * | state |
892 *
893 * Just lock what we found and keep going
894 */
895 if (state->start == start && state->end <= end) {
1edbb734 896 if (state->state & exclusive_bits) {
d1310b2e
CM
897 *failed_start = state->start;
898 err = -EEXIST;
899 goto out;
900 }
42daec29 901
1bf85046 902 set_state_bits(tree, state, &bits);
2c64c53d 903 cache_state(state, cached_state);
d1310b2e 904 merge_state(tree, state);
5c939df5
YZ
905 if (last_end == (u64)-1)
906 goto out;
907 start = last_end + 1;
d1ac6e41
LB
908 state = next_state(state);
909 if (start < end && state && state->start == start &&
910 !need_resched())
911 goto hit_next;
d1310b2e
CM
912 goto search_again;
913 }
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 * or
919 * | ------------- state -------------- |
920 *
921 * We need to split the extent we found, and may flip bits on
922 * second half.
923 *
924 * If the extent we found extends past our
925 * range, we just split and search again. It'll get split
926 * again the next time though.
927 *
928 * If the extent we found is inside our range, we set the
929 * desired bit on it.
930 */
931 if (state->start < start) {
1edbb734 932 if (state->state & exclusive_bits) {
d1310b2e
CM
933 *failed_start = start;
934 err = -EEXIST;
935 goto out;
936 }
8233767a
XG
937
938 prealloc = alloc_extent_state_atomic(prealloc);
939 BUG_ON(!prealloc);
d1310b2e 940 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
941 if (err)
942 extent_io_tree_panic(tree, err);
943
d1310b2e
CM
944 prealloc = NULL;
945 if (err)
946 goto out;
947 if (state->end <= end) {
1bf85046 948 set_state_bits(tree, state, &bits);
2c64c53d 949 cache_state(state, cached_state);
d1310b2e 950 merge_state(tree, state);
5c939df5
YZ
951 if (last_end == (u64)-1)
952 goto out;
953 start = last_end + 1;
d1ac6e41
LB
954 state = next_state(state);
955 if (start < end && state && state->start == start &&
956 !need_resched())
957 goto hit_next;
d1310b2e
CM
958 }
959 goto search_again;
960 }
961 /*
962 * | ---- desired range ---- |
963 * | state | or | state |
964 *
965 * There's a hole, we need to insert something in it and
966 * ignore the extent we found.
967 */
968 if (state->start > start) {
969 u64 this_end;
970 if (end < last_start)
971 this_end = end;
972 else
d397712b 973 this_end = last_start - 1;
8233767a
XG
974
975 prealloc = alloc_extent_state_atomic(prealloc);
976 BUG_ON(!prealloc);
c7f895a2
XG
977
978 /*
979 * Avoid to free 'prealloc' if it can be merged with
980 * the later extent.
981 */
d1310b2e 982 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 983 NULL, NULL, &bits);
c2d904e0
JM
984 if (err)
985 extent_io_tree_panic(tree, err);
986
9ed74f2d
JB
987 cache_state(prealloc, cached_state);
988 prealloc = NULL;
d1310b2e
CM
989 start = this_end + 1;
990 goto search_again;
991 }
992 /*
993 * | ---- desired range ---- |
994 * | state |
995 * We need to split the extent, and set the bit
996 * on the first half
997 */
998 if (state->start <= end && state->end > end) {
1edbb734 999 if (state->state & exclusive_bits) {
d1310b2e
CM
1000 *failed_start = start;
1001 err = -EEXIST;
1002 goto out;
1003 }
8233767a
XG
1004
1005 prealloc = alloc_extent_state_atomic(prealloc);
1006 BUG_ON(!prealloc);
d1310b2e 1007 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
d1310b2e 1010
1bf85046 1011 set_state_bits(tree, prealloc, &bits);
2c64c53d 1012 cache_state(prealloc, cached_state);
d1310b2e
CM
1013 merge_state(tree, prealloc);
1014 prealloc = NULL;
1015 goto out;
1016 }
1017
1018 goto search_again;
1019
1020out:
cad321ad 1021 spin_unlock(&tree->lock);
d1310b2e
CM
1022 if (prealloc)
1023 free_extent_state(prealloc);
1024
1025 return err;
1026
1027search_again:
1028 if (start > end)
1029 goto out;
cad321ad 1030 spin_unlock(&tree->lock);
d1310b2e
CM
1031 if (mask & __GFP_WAIT)
1032 cond_resched();
1033 goto again;
1034}
d1310b2e 1035
41074888 1036int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1037 unsigned bits, u64 * failed_start,
41074888 1038 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1039{
1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 cached_state, mask);
1042}
1043
1044
462d6fac 1045/**
10983f2e
LB
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1047 * another
462d6fac
JB
1048 * @tree: the io tree to search
1049 * @start: the start offset in bytes
1050 * @end: the end offset in bytes (inclusive)
1051 * @bits: the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
e6138876 1053 * @cached_state: state that we're going to cache
462d6fac
JB
1054 * @mask: the allocation mask
1055 *
1056 * This will go through and set bits for the given range. If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits. This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1060 * boundary bits like LOCK.
1061 */
1062int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1063 unsigned bits, unsigned clear_bits,
e6138876 1064 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1065{
1066 struct extent_state *state;
1067 struct extent_state *prealloc = NULL;
1068 struct rb_node *node;
12cfbad9
FDBM
1069 struct rb_node **p;
1070 struct rb_node *parent;
462d6fac
JB
1071 int err = 0;
1072 u64 last_start;
1073 u64 last_end;
c8fd3de7 1074 bool first_iteration = true;
462d6fac 1075
a5dee37d 1076 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1077
462d6fac
JB
1078again:
1079 if (!prealloc && (mask & __GFP_WAIT)) {
c8fd3de7
FM
1080 /*
1081 * Best effort, don't worry if extent state allocation fails
1082 * here for the first iteration. We might have a cached state
1083 * that matches exactly the target range, in which case no
1084 * extent state allocations are needed. We'll only know this
1085 * after locking the tree.
1086 */
462d6fac 1087 prealloc = alloc_extent_state(mask);
c8fd3de7 1088 if (!prealloc && !first_iteration)
462d6fac
JB
1089 return -ENOMEM;
1090 }
1091
1092 spin_lock(&tree->lock);
e6138876
JB
1093 if (cached_state && *cached_state) {
1094 state = *cached_state;
1095 if (state->start <= start && state->end > start &&
27a3507d 1096 extent_state_in_tree(state)) {
e6138876
JB
1097 node = &state->rb_node;
1098 goto hit_next;
1099 }
1100 }
1101
462d6fac
JB
1102 /*
1103 * this search will find all the extents that end after
1104 * our range starts.
1105 */
12cfbad9 1106 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1107 if (!node) {
1108 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1109 if (!prealloc) {
1110 err = -ENOMEM;
1111 goto out;
1112 }
12cfbad9
FDBM
1113 err = insert_state(tree, prealloc, start, end,
1114 &p, &parent, &bits);
c2d904e0
JM
1115 if (err)
1116 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1117 cache_state(prealloc, cached_state);
1118 prealloc = NULL;
462d6fac
JB
1119 goto out;
1120 }
1121 state = rb_entry(node, struct extent_state, rb_node);
1122hit_next:
1123 last_start = state->start;
1124 last_end = state->end;
1125
1126 /*
1127 * | ---- desired range ---- |
1128 * | state |
1129 *
1130 * Just lock what we found and keep going
1131 */
1132 if (state->start == start && state->end <= end) {
462d6fac 1133 set_state_bits(tree, state, &bits);
e6138876 1134 cache_state(state, cached_state);
d1ac6e41 1135 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1136 if (last_end == (u64)-1)
1137 goto out;
462d6fac 1138 start = last_end + 1;
d1ac6e41
LB
1139 if (start < end && state && state->start == start &&
1140 !need_resched())
1141 goto hit_next;
462d6fac
JB
1142 goto search_again;
1143 }
1144
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 * or
1149 * | ------------- state -------------- |
1150 *
1151 * We need to split the extent we found, and may flip bits on
1152 * second half.
1153 *
1154 * If the extent we found extends past our
1155 * range, we just split and search again. It'll get split
1156 * again the next time though.
1157 *
1158 * If the extent we found is inside our range, we set the
1159 * desired bit on it.
1160 */
1161 if (state->start < start) {
1162 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1163 if (!prealloc) {
1164 err = -ENOMEM;
1165 goto out;
1166 }
462d6fac 1167 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1168 if (err)
1169 extent_io_tree_panic(tree, err);
462d6fac
JB
1170 prealloc = NULL;
1171 if (err)
1172 goto out;
1173 if (state->end <= end) {
1174 set_state_bits(tree, state, &bits);
e6138876 1175 cache_state(state, cached_state);
d1ac6e41 1176 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1177 if (last_end == (u64)-1)
1178 goto out;
1179 start = last_end + 1;
d1ac6e41
LB
1180 if (start < end && state && state->start == start &&
1181 !need_resched())
1182 goto hit_next;
462d6fac
JB
1183 }
1184 goto search_again;
1185 }
1186 /*
1187 * | ---- desired range ---- |
1188 * | state | or | state |
1189 *
1190 * There's a hole, we need to insert something in it and
1191 * ignore the extent we found.
1192 */
1193 if (state->start > start) {
1194 u64 this_end;
1195 if (end < last_start)
1196 this_end = end;
1197 else
1198 this_end = last_start - 1;
1199
1200 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1201 if (!prealloc) {
1202 err = -ENOMEM;
1203 goto out;
1204 }
462d6fac
JB
1205
1206 /*
1207 * Avoid to free 'prealloc' if it can be merged with
1208 * the later extent.
1209 */
1210 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1211 NULL, NULL, &bits);
c2d904e0
JM
1212 if (err)
1213 extent_io_tree_panic(tree, err);
e6138876 1214 cache_state(prealloc, cached_state);
462d6fac
JB
1215 prealloc = NULL;
1216 start = this_end + 1;
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state |
1222 * We need to split the extent, and set the bit
1223 * on the first half
1224 */
1225 if (state->start <= end && state->end > end) {
1226 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1227 if (!prealloc) {
1228 err = -ENOMEM;
1229 goto out;
1230 }
462d6fac
JB
1231
1232 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
462d6fac
JB
1235
1236 set_state_bits(tree, prealloc, &bits);
e6138876 1237 cache_state(prealloc, cached_state);
462d6fac 1238 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1239 prealloc = NULL;
1240 goto out;
1241 }
1242
1243 goto search_again;
1244
1245out:
1246 spin_unlock(&tree->lock);
1247 if (prealloc)
1248 free_extent_state(prealloc);
1249
1250 return err;
1251
1252search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
1256 if (mask & __GFP_WAIT)
1257 cond_resched();
c8fd3de7 1258 first_iteration = false;
462d6fac
JB
1259 goto again;
1260}
1261
d1310b2e
CM
1262/* wrappers around set/clear extent bit */
1263int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 gfp_t mask)
1265{
3fbe5c02 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1267 NULL, mask);
d1310b2e 1268}
d1310b2e
CM
1269
1270int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1271 unsigned bits, gfp_t mask)
d1310b2e 1272{
3fbe5c02 1273 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1274 NULL, mask);
d1310b2e 1275}
d1310b2e
CM
1276
1277int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1278 unsigned bits, gfp_t mask)
d1310b2e 1279{
0f31871f
FM
1280 int wake = 0;
1281
1282 if (bits & EXTENT_LOCKED)
1283 wake = 1;
1284
1285 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
d1310b2e 1286}
d1310b2e
CM
1287
1288int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1289 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1290{
1291 return set_extent_bit(tree, start, end,
fee187d9 1292 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1293 NULL, cached_state, mask);
d1310b2e 1294}
d1310b2e 1295
9e8a4a8b
LB
1296int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1297 struct extent_state **cached_state, gfp_t mask)
1298{
1299 return set_extent_bit(tree, start, end,
1300 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1301 NULL, cached_state, mask);
1302}
1303
d1310b2e
CM
1304int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1305 gfp_t mask)
1306{
1307 return clear_extent_bit(tree, start, end,
32c00aff 1308 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1309 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1310}
d1310b2e
CM
1311
1312int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1313 gfp_t mask)
1314{
3fbe5c02 1315 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1316 NULL, mask);
d1310b2e 1317}
d1310b2e 1318
d1310b2e 1319int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1320 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1321{
6b67a320 1322 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1323 cached_state, mask);
d1310b2e 1324}
d1310b2e 1325
5fd02043
JB
1326int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1327 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1328{
2c64c53d 1329 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1330 cached_state, mask);
d1310b2e 1331}
d1310b2e 1332
d352ac68
CM
1333/*
1334 * either insert or lock state struct between start and end use mask to tell
1335 * us if waiting is desired.
1336 */
1edbb734 1337int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1338 unsigned bits, struct extent_state **cached_state)
d1310b2e
CM
1339{
1340 int err;
1341 u64 failed_start;
9ee49a04 1342
d1310b2e 1343 while (1) {
3fbe5c02
JM
1344 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1345 EXTENT_LOCKED, &failed_start,
1346 cached_state, GFP_NOFS);
d0082371 1347 if (err == -EEXIST) {
d1310b2e
CM
1348 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1349 start = failed_start;
d0082371 1350 } else
d1310b2e 1351 break;
d1310b2e
CM
1352 WARN_ON(start > end);
1353 }
1354 return err;
1355}
d1310b2e 1356
d0082371 1357int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1358{
d0082371 1359 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1360}
1361
d0082371 1362int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1363{
1364 int err;
1365 u64 failed_start;
1366
3fbe5c02
JM
1367 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1368 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1369 if (err == -EEXIST) {
1370 if (failed_start > start)
1371 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1372 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1373 return 0;
6643558d 1374 }
25179201
JB
1375 return 1;
1376}
25179201 1377
2c64c53d
CM
1378int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1379 struct extent_state **cached, gfp_t mask)
1380{
1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1382 mask);
1383}
1384
d0082371 1385int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1386{
2c64c53d 1387 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1388 GFP_NOFS);
d1310b2e 1389}
d1310b2e 1390
4adaa611
CM
1391int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1392{
1393 unsigned long index = start >> PAGE_CACHE_SHIFT;
1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395 struct page *page;
1396
1397 while (index <= end_index) {
1398 page = find_get_page(inode->i_mapping, index);
1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1400 clear_page_dirty_for_io(page);
1401 page_cache_release(page);
1402 index++;
1403 }
1404 return 0;
1405}
1406
1407int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1408{
1409 unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411 struct page *page;
1412
1413 while (index <= end_index) {
1414 page = find_get_page(inode->i_mapping, index);
1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1416 __set_page_dirty_nobuffers(page);
8d38633c 1417 account_page_redirty(page);
4adaa611
CM
1418 page_cache_release(page);
1419 index++;
1420 }
1421 return 0;
1422}
1423
d1310b2e
CM
1424/*
1425 * helper function to set both pages and extents in the tree writeback
1426 */
b2950863 1427static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1428{
1429 unsigned long index = start >> PAGE_CACHE_SHIFT;
1430 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1431 struct page *page;
1432
1433 while (index <= end_index) {
1434 page = find_get_page(tree->mapping, index);
79787eaa 1435 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1436 set_page_writeback(page);
1437 page_cache_release(page);
1438 index++;
1439 }
d1310b2e
CM
1440 return 0;
1441}
d1310b2e 1442
d352ac68
CM
1443/* find the first state struct with 'bits' set after 'start', and
1444 * return it. tree->lock must be held. NULL will returned if
1445 * nothing was found after 'start'
1446 */
48a3b636
ES
1447static struct extent_state *
1448find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1449 u64 start, unsigned bits)
d7fc640e
CM
1450{
1451 struct rb_node *node;
1452 struct extent_state *state;
1453
1454 /*
1455 * this search will find all the extents that end after
1456 * our range starts.
1457 */
1458 node = tree_search(tree, start);
d397712b 1459 if (!node)
d7fc640e 1460 goto out;
d7fc640e 1461
d397712b 1462 while (1) {
d7fc640e 1463 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1464 if (state->end >= start && (state->state & bits))
d7fc640e 1465 return state;
d397712b 1466
d7fc640e
CM
1467 node = rb_next(node);
1468 if (!node)
1469 break;
1470 }
1471out:
1472 return NULL;
1473}
d7fc640e 1474
69261c4b
XG
1475/*
1476 * find the first offset in the io tree with 'bits' set. zero is
1477 * returned if we find something, and *start_ret and *end_ret are
1478 * set to reflect the state struct that was found.
1479 *
477d7eaf 1480 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1481 */
1482int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1483 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1484 struct extent_state **cached_state)
69261c4b
XG
1485{
1486 struct extent_state *state;
e6138876 1487 struct rb_node *n;
69261c4b
XG
1488 int ret = 1;
1489
1490 spin_lock(&tree->lock);
e6138876
JB
1491 if (cached_state && *cached_state) {
1492 state = *cached_state;
27a3507d 1493 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1494 n = rb_next(&state->rb_node);
1495 while (n) {
1496 state = rb_entry(n, struct extent_state,
1497 rb_node);
1498 if (state->state & bits)
1499 goto got_it;
1500 n = rb_next(n);
1501 }
1502 free_extent_state(*cached_state);
1503 *cached_state = NULL;
1504 goto out;
1505 }
1506 free_extent_state(*cached_state);
1507 *cached_state = NULL;
1508 }
1509
69261c4b 1510 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1511got_it:
69261c4b 1512 if (state) {
e38e2ed7 1513 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1514 *start_ret = state->start;
1515 *end_ret = state->end;
1516 ret = 0;
1517 }
e6138876 1518out:
69261c4b
XG
1519 spin_unlock(&tree->lock);
1520 return ret;
1521}
1522
d352ac68
CM
1523/*
1524 * find a contiguous range of bytes in the file marked as delalloc, not
1525 * more than 'max_bytes'. start and end are used to return the range,
1526 *
1527 * 1 is returned if we find something, 0 if nothing was in the tree
1528 */
c8b97818 1529static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1530 u64 *start, u64 *end, u64 max_bytes,
1531 struct extent_state **cached_state)
d1310b2e
CM
1532{
1533 struct rb_node *node;
1534 struct extent_state *state;
1535 u64 cur_start = *start;
1536 u64 found = 0;
1537 u64 total_bytes = 0;
1538
cad321ad 1539 spin_lock(&tree->lock);
c8b97818 1540
d1310b2e
CM
1541 /*
1542 * this search will find all the extents that end after
1543 * our range starts.
1544 */
80ea96b1 1545 node = tree_search(tree, cur_start);
2b114d1d 1546 if (!node) {
3b951516
CM
1547 if (!found)
1548 *end = (u64)-1;
d1310b2e
CM
1549 goto out;
1550 }
1551
d397712b 1552 while (1) {
d1310b2e 1553 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1554 if (found && (state->start != cur_start ||
1555 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1556 goto out;
1557 }
1558 if (!(state->state & EXTENT_DELALLOC)) {
1559 if (!found)
1560 *end = state->end;
1561 goto out;
1562 }
c2a128d2 1563 if (!found) {
d1310b2e 1564 *start = state->start;
c2a128d2
JB
1565 *cached_state = state;
1566 atomic_inc(&state->refs);
1567 }
d1310b2e
CM
1568 found++;
1569 *end = state->end;
1570 cur_start = state->end + 1;
1571 node = rb_next(node);
d1310b2e 1572 total_bytes += state->end - state->start + 1;
7bf811a5 1573 if (total_bytes >= max_bytes)
573aecaf 1574 break;
573aecaf 1575 if (!node)
d1310b2e
CM
1576 break;
1577 }
1578out:
cad321ad 1579 spin_unlock(&tree->lock);
d1310b2e
CM
1580 return found;
1581}
1582
143bede5
JM
1583static noinline void __unlock_for_delalloc(struct inode *inode,
1584 struct page *locked_page,
1585 u64 start, u64 end)
c8b97818
CM
1586{
1587 int ret;
1588 struct page *pages[16];
1589 unsigned long index = start >> PAGE_CACHE_SHIFT;
1590 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1591 unsigned long nr_pages = end_index - index + 1;
1592 int i;
1593
1594 if (index == locked_page->index && end_index == index)
143bede5 1595 return;
c8b97818 1596
d397712b 1597 while (nr_pages > 0) {
c8b97818 1598 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1599 min_t(unsigned long, nr_pages,
1600 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1601 for (i = 0; i < ret; i++) {
1602 if (pages[i] != locked_page)
1603 unlock_page(pages[i]);
1604 page_cache_release(pages[i]);
1605 }
1606 nr_pages -= ret;
1607 index += ret;
1608 cond_resched();
1609 }
c8b97818
CM
1610}
1611
1612static noinline int lock_delalloc_pages(struct inode *inode,
1613 struct page *locked_page,
1614 u64 delalloc_start,
1615 u64 delalloc_end)
1616{
1617 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1618 unsigned long start_index = index;
1619 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1620 unsigned long pages_locked = 0;
1621 struct page *pages[16];
1622 unsigned long nrpages;
1623 int ret;
1624 int i;
1625
1626 /* the caller is responsible for locking the start index */
1627 if (index == locked_page->index && index == end_index)
1628 return 0;
1629
1630 /* skip the page at the start index */
1631 nrpages = end_index - index + 1;
d397712b 1632 while (nrpages > 0) {
c8b97818 1633 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1634 min_t(unsigned long,
1635 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1636 if (ret == 0) {
1637 ret = -EAGAIN;
1638 goto done;
1639 }
1640 /* now we have an array of pages, lock them all */
1641 for (i = 0; i < ret; i++) {
1642 /*
1643 * the caller is taking responsibility for
1644 * locked_page
1645 */
771ed689 1646 if (pages[i] != locked_page) {
c8b97818 1647 lock_page(pages[i]);
f2b1c41c
CM
1648 if (!PageDirty(pages[i]) ||
1649 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1650 ret = -EAGAIN;
1651 unlock_page(pages[i]);
1652 page_cache_release(pages[i]);
1653 goto done;
1654 }
1655 }
c8b97818 1656 page_cache_release(pages[i]);
771ed689 1657 pages_locked++;
c8b97818 1658 }
c8b97818
CM
1659 nrpages -= ret;
1660 index += ret;
1661 cond_resched();
1662 }
1663 ret = 0;
1664done:
1665 if (ret && pages_locked) {
1666 __unlock_for_delalloc(inode, locked_page,
1667 delalloc_start,
1668 ((u64)(start_index + pages_locked - 1)) <<
1669 PAGE_CACHE_SHIFT);
1670 }
1671 return ret;
1672}
1673
1674/*
1675 * find a contiguous range of bytes in the file marked as delalloc, not
1676 * more than 'max_bytes'. start and end are used to return the range,
1677 *
1678 * 1 is returned if we find something, 0 if nothing was in the tree
1679 */
294e30fe
JB
1680STATIC u64 find_lock_delalloc_range(struct inode *inode,
1681 struct extent_io_tree *tree,
1682 struct page *locked_page, u64 *start,
1683 u64 *end, u64 max_bytes)
c8b97818
CM
1684{
1685 u64 delalloc_start;
1686 u64 delalloc_end;
1687 u64 found;
9655d298 1688 struct extent_state *cached_state = NULL;
c8b97818
CM
1689 int ret;
1690 int loops = 0;
1691
1692again:
1693 /* step one, find a bunch of delalloc bytes starting at start */
1694 delalloc_start = *start;
1695 delalloc_end = 0;
1696 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1697 max_bytes, &cached_state);
70b99e69 1698 if (!found || delalloc_end <= *start) {
c8b97818
CM
1699 *start = delalloc_start;
1700 *end = delalloc_end;
c2a128d2 1701 free_extent_state(cached_state);
385fe0be 1702 return 0;
c8b97818
CM
1703 }
1704
70b99e69
CM
1705 /*
1706 * start comes from the offset of locked_page. We have to lock
1707 * pages in order, so we can't process delalloc bytes before
1708 * locked_page
1709 */
d397712b 1710 if (delalloc_start < *start)
70b99e69 1711 delalloc_start = *start;
70b99e69 1712
c8b97818
CM
1713 /*
1714 * make sure to limit the number of pages we try to lock down
c8b97818 1715 */
7bf811a5
JB
1716 if (delalloc_end + 1 - delalloc_start > max_bytes)
1717 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1718
c8b97818
CM
1719 /* step two, lock all the pages after the page that has start */
1720 ret = lock_delalloc_pages(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 if (ret == -EAGAIN) {
1723 /* some of the pages are gone, lets avoid looping by
1724 * shortening the size of the delalloc range we're searching
1725 */
9655d298 1726 free_extent_state(cached_state);
7d788742 1727 cached_state = NULL;
c8b97818 1728 if (!loops) {
7bf811a5 1729 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1730 loops = 1;
1731 goto again;
1732 } else {
1733 found = 0;
1734 goto out_failed;
1735 }
1736 }
79787eaa 1737 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1738
1739 /* step three, lock the state bits for the whole range */
d0082371 1740 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1741
1742 /* then test to make sure it is all still delalloc */
1743 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1744 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1745 if (!ret) {
9655d298
CM
1746 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1747 &cached_state, GFP_NOFS);
c8b97818
CM
1748 __unlock_for_delalloc(inode, locked_page,
1749 delalloc_start, delalloc_end);
1750 cond_resched();
1751 goto again;
1752 }
9655d298 1753 free_extent_state(cached_state);
c8b97818
CM
1754 *start = delalloc_start;
1755 *end = delalloc_end;
1756out_failed:
1757 return found;
1758}
1759
c2790a2e
JB
1760int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1761 struct page *locked_page,
9ee49a04 1762 unsigned clear_bits,
c2790a2e 1763 unsigned long page_ops)
c8b97818 1764{
c2790a2e 1765 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1766 int ret;
1767 struct page *pages[16];
1768 unsigned long index = start >> PAGE_CACHE_SHIFT;
1769 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1770 unsigned long nr_pages = end_index - index + 1;
1771 int i;
771ed689 1772
2c64c53d 1773 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1774 if (page_ops == 0)
771ed689 1775 return 0;
c8b97818 1776
704de49d
FM
1777 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1778 mapping_set_error(inode->i_mapping, -EIO);
1779
d397712b 1780 while (nr_pages > 0) {
c8b97818 1781 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1782 min_t(unsigned long,
1783 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1784 for (i = 0; i < ret; i++) {
8b62b72b 1785
c2790a2e 1786 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1787 SetPagePrivate2(pages[i]);
1788
c8b97818
CM
1789 if (pages[i] == locked_page) {
1790 page_cache_release(pages[i]);
1791 continue;
1792 }
c2790a2e 1793 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1794 clear_page_dirty_for_io(pages[i]);
c2790a2e 1795 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1796 set_page_writeback(pages[i]);
704de49d
FM
1797 if (page_ops & PAGE_SET_ERROR)
1798 SetPageError(pages[i]);
c2790a2e 1799 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1800 end_page_writeback(pages[i]);
c2790a2e 1801 if (page_ops & PAGE_UNLOCK)
771ed689 1802 unlock_page(pages[i]);
c8b97818
CM
1803 page_cache_release(pages[i]);
1804 }
1805 nr_pages -= ret;
1806 index += ret;
1807 cond_resched();
1808 }
1809 return 0;
1810}
c8b97818 1811
d352ac68
CM
1812/*
1813 * count the number of bytes in the tree that have a given bit(s)
1814 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1815 * cached. The total number found is returned.
1816 */
d1310b2e
CM
1817u64 count_range_bits(struct extent_io_tree *tree,
1818 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1819 unsigned bits, int contig)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 u64 cur_start = *start;
1824 u64 total_bytes = 0;
ec29ed5b 1825 u64 last = 0;
d1310b2e
CM
1826 int found = 0;
1827
fae7f21c 1828 if (WARN_ON(search_end <= cur_start))
d1310b2e 1829 return 0;
d1310b2e 1830
cad321ad 1831 spin_lock(&tree->lock);
d1310b2e
CM
1832 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1833 total_bytes = tree->dirty_bytes;
1834 goto out;
1835 }
1836 /*
1837 * this search will find all the extents that end after
1838 * our range starts.
1839 */
80ea96b1 1840 node = tree_search(tree, cur_start);
d397712b 1841 if (!node)
d1310b2e 1842 goto out;
d1310b2e 1843
d397712b 1844 while (1) {
d1310b2e
CM
1845 state = rb_entry(node, struct extent_state, rb_node);
1846 if (state->start > search_end)
1847 break;
ec29ed5b
CM
1848 if (contig && found && state->start > last + 1)
1849 break;
1850 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1851 total_bytes += min(search_end, state->end) + 1 -
1852 max(cur_start, state->start);
1853 if (total_bytes >= max_bytes)
1854 break;
1855 if (!found) {
af60bed2 1856 *start = max(cur_start, state->start);
d1310b2e
CM
1857 found = 1;
1858 }
ec29ed5b
CM
1859 last = state->end;
1860 } else if (contig && found) {
1861 break;
d1310b2e
CM
1862 }
1863 node = rb_next(node);
1864 if (!node)
1865 break;
1866 }
1867out:
cad321ad 1868 spin_unlock(&tree->lock);
d1310b2e
CM
1869 return total_bytes;
1870}
b2950863 1871
d352ac68
CM
1872/*
1873 * set the private field for a given byte offset in the tree. If there isn't
1874 * an extent_state there already, this does nothing.
1875 */
171170c1 1876static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1877{
1878 struct rb_node *node;
1879 struct extent_state *state;
1880 int ret = 0;
1881
cad321ad 1882 spin_lock(&tree->lock);
d1310b2e
CM
1883 /*
1884 * this search will find all the extents that end after
1885 * our range starts.
1886 */
80ea96b1 1887 node = tree_search(tree, start);
2b114d1d 1888 if (!node) {
d1310b2e
CM
1889 ret = -ENOENT;
1890 goto out;
1891 }
1892 state = rb_entry(node, struct extent_state, rb_node);
1893 if (state->start != start) {
1894 ret = -ENOENT;
1895 goto out;
1896 }
1897 state->private = private;
1898out:
cad321ad 1899 spin_unlock(&tree->lock);
d1310b2e
CM
1900 return ret;
1901}
1902
1903int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1904{
1905 struct rb_node *node;
1906 struct extent_state *state;
1907 int ret = 0;
1908
cad321ad 1909 spin_lock(&tree->lock);
d1310b2e
CM
1910 /*
1911 * this search will find all the extents that end after
1912 * our range starts.
1913 */
80ea96b1 1914 node = tree_search(tree, start);
2b114d1d 1915 if (!node) {
d1310b2e
CM
1916 ret = -ENOENT;
1917 goto out;
1918 }
1919 state = rb_entry(node, struct extent_state, rb_node);
1920 if (state->start != start) {
1921 ret = -ENOENT;
1922 goto out;
1923 }
1924 *private = state->private;
1925out:
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return ret;
1928}
1929
1930/*
1931 * searches a range in the state tree for a given mask.
70dec807 1932 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1933 * has the bits set. Otherwise, 1 is returned if any bit in the
1934 * range is found set.
1935 */
1936int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1937 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1938{
1939 struct extent_state *state = NULL;
1940 struct rb_node *node;
1941 int bitset = 0;
d1310b2e 1942
cad321ad 1943 spin_lock(&tree->lock);
27a3507d 1944 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1945 cached->end > start)
9655d298
CM
1946 node = &cached->rb_node;
1947 else
1948 node = tree_search(tree, start);
d1310b2e
CM
1949 while (node && start <= end) {
1950 state = rb_entry(node, struct extent_state, rb_node);
1951
1952 if (filled && state->start > start) {
1953 bitset = 0;
1954 break;
1955 }
1956
1957 if (state->start > end)
1958 break;
1959
1960 if (state->state & bits) {
1961 bitset = 1;
1962 if (!filled)
1963 break;
1964 } else if (filled) {
1965 bitset = 0;
1966 break;
1967 }
46562cec
CM
1968
1969 if (state->end == (u64)-1)
1970 break;
1971
d1310b2e
CM
1972 start = state->end + 1;
1973 if (start > end)
1974 break;
1975 node = rb_next(node);
1976 if (!node) {
1977 if (filled)
1978 bitset = 0;
1979 break;
1980 }
1981 }
cad321ad 1982 spin_unlock(&tree->lock);
d1310b2e
CM
1983 return bitset;
1984}
d1310b2e
CM
1985
1986/*
1987 * helper function to set a given page up to date if all the
1988 * extents in the tree for that page are up to date
1989 */
143bede5 1990static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1991{
4eee4fa4 1992 u64 start = page_offset(page);
d1310b2e 1993 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1994 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1995 SetPageUptodate(page);
d1310b2e
CM
1996}
1997
8b110e39 1998int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1999{
2000 int ret;
2001 int err = 0;
2002 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2003
2004 set_state_private(failure_tree, rec->start, 0);
2005 ret = clear_extent_bits(failure_tree, rec->start,
2006 rec->start + rec->len - 1,
2007 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2008 if (ret)
2009 err = ret;
2010
53b381b3
DW
2011 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2012 rec->start + rec->len - 1,
2013 EXTENT_DAMAGED, GFP_NOFS);
2014 if (ret && !err)
2015 err = ret;
4a54c8c1
JS
2016
2017 kfree(rec);
2018 return err;
2019}
2020
4a54c8c1
JS
2021/*
2022 * this bypasses the standard btrfs submit functions deliberately, as
2023 * the standard behavior is to write all copies in a raid setup. here we only
2024 * want to write the one bad copy. so we do the mapping for ourselves and issue
2025 * submit_bio directly.
3ec706c8 2026 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2027 * actually prevents the read that triggered the error from finishing.
2028 * currently, there can be no more than two copies of every data bit. thus,
2029 * exactly one rewrite is required.
2030 */
1203b681
MX
2031int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2032 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2033{
1203b681 2034 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2035 struct bio *bio;
2036 struct btrfs_device *dev;
4a54c8c1
JS
2037 u64 map_length = 0;
2038 u64 sector;
2039 struct btrfs_bio *bbio = NULL;
53b381b3 2040 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2041 int ret;
2042
908960c6 2043 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2044 BUG_ON(!mirror_num);
2045
53b381b3
DW
2046 /* we can't repair anything in raid56 yet */
2047 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2048 return 0;
2049
9be3395b 2050 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2051 if (!bio)
2052 return -EIO;
4f024f37 2053 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2054 map_length = length;
2055
3ec706c8 2056 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2057 &map_length, &bbio, mirror_num);
2058 if (ret) {
2059 bio_put(bio);
2060 return -EIO;
2061 }
2062 BUG_ON(mirror_num != bbio->mirror_num);
2063 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2064 bio->bi_iter.bi_sector = sector;
4a54c8c1 2065 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2066 btrfs_put_bbio(bbio);
4a54c8c1
JS
2067 if (!dev || !dev->bdev || !dev->writeable) {
2068 bio_put(bio);
2069 return -EIO;
2070 }
2071 bio->bi_bdev = dev->bdev;
ffdd2018 2072 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2073
33879d45 2074 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2075 /* try to remap that extent elsewhere? */
2076 bio_put(bio);
442a4f63 2077 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2078 return -EIO;
2079 }
2080
efe120a0 2081 printk_ratelimited_in_rcu(KERN_INFO
1203b681
MX
2082 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2083 btrfs_ino(inode), start,
2084 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2085 bio_put(bio);
2086 return 0;
2087}
2088
ea466794
JB
2089int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2090 int mirror_num)
2091{
ea466794
JB
2092 u64 start = eb->start;
2093 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2094 int ret = 0;
ea466794 2095
908960c6
ID
2096 if (root->fs_info->sb->s_flags & MS_RDONLY)
2097 return -EROFS;
2098
ea466794 2099 for (i = 0; i < num_pages; i++) {
fb85fc9a 2100 struct page *p = eb->pages[i];
1203b681
MX
2101
2102 ret = repair_io_failure(root->fs_info->btree_inode, start,
2103 PAGE_CACHE_SIZE, start, p,
2104 start - page_offset(p), mirror_num);
ea466794
JB
2105 if (ret)
2106 break;
2107 start += PAGE_CACHE_SIZE;
2108 }
2109
2110 return ret;
2111}
2112
4a54c8c1
JS
2113/*
2114 * each time an IO finishes, we do a fast check in the IO failure tree
2115 * to see if we need to process or clean up an io_failure_record
2116 */
8b110e39
MX
2117int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2118 unsigned int pg_offset)
4a54c8c1
JS
2119{
2120 u64 private;
2121 u64 private_failure;
2122 struct io_failure_record *failrec;
908960c6 2123 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2124 struct extent_state *state;
2125 int num_copies;
4a54c8c1 2126 int ret;
4a54c8c1
JS
2127
2128 private = 0;
2129 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2130 (u64)-1, 1, EXTENT_DIRTY, 0);
2131 if (!ret)
2132 return 0;
2133
2134 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2135 &private_failure);
2136 if (ret)
2137 return 0;
2138
2139 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2140 BUG_ON(!failrec->this_mirror);
2141
2142 if (failrec->in_validation) {
2143 /* there was no real error, just free the record */
2144 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2145 failrec->start);
4a54c8c1
JS
2146 goto out;
2147 }
908960c6
ID
2148 if (fs_info->sb->s_flags & MS_RDONLY)
2149 goto out;
4a54c8c1
JS
2150
2151 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2152 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2153 failrec->start,
2154 EXTENT_LOCKED);
2155 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2156
883d0de4
MX
2157 if (state && state->start <= failrec->start &&
2158 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2159 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2160 failrec->len);
4a54c8c1 2161 if (num_copies > 1) {
1203b681 2162 repair_io_failure(inode, start, failrec->len,
454ff3de 2163 failrec->logical, page,
1203b681 2164 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2165 }
2166 }
2167
2168out:
454ff3de 2169 free_io_failure(inode, failrec);
4a54c8c1 2170
454ff3de 2171 return 0;
4a54c8c1
JS
2172}
2173
f612496b
MX
2174/*
2175 * Can be called when
2176 * - hold extent lock
2177 * - under ordered extent
2178 * - the inode is freeing
2179 */
2180void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2181{
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct io_failure_record *failrec;
2184 struct extent_state *state, *next;
2185
2186 if (RB_EMPTY_ROOT(&failure_tree->state))
2187 return;
2188
2189 spin_lock(&failure_tree->lock);
2190 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2191 while (state) {
2192 if (state->start > end)
2193 break;
2194
2195 ASSERT(state->end <= end);
2196
2197 next = next_state(state);
2198
6e1103a6 2199 failrec = (struct io_failure_record *)(unsigned long)state->private;
f612496b
MX
2200 free_extent_state(state);
2201 kfree(failrec);
2202
2203 state = next;
2204 }
2205 spin_unlock(&failure_tree->lock);
2206}
2207
2fe6303e
MX
2208int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2209 struct io_failure_record **failrec_ret)
4a54c8c1 2210{
2fe6303e 2211 struct io_failure_record *failrec;
4a54c8c1
JS
2212 u64 private;
2213 struct extent_map *em;
4a54c8c1
JS
2214 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2215 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2216 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2217 int ret;
4a54c8c1
JS
2218 u64 logical;
2219
4a54c8c1
JS
2220 ret = get_state_private(failure_tree, start, &private);
2221 if (ret) {
2222 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2223 if (!failrec)
2224 return -ENOMEM;
2fe6303e 2225
4a54c8c1
JS
2226 failrec->start = start;
2227 failrec->len = end - start + 1;
2228 failrec->this_mirror = 0;
2229 failrec->bio_flags = 0;
2230 failrec->in_validation = 0;
2231
2232 read_lock(&em_tree->lock);
2233 em = lookup_extent_mapping(em_tree, start, failrec->len);
2234 if (!em) {
2235 read_unlock(&em_tree->lock);
2236 kfree(failrec);
2237 return -EIO;
2238 }
2239
68ba990f 2240 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2241 free_extent_map(em);
2242 em = NULL;
2243 }
2244 read_unlock(&em_tree->lock);
7a2d6a64 2245 if (!em) {
4a54c8c1
JS
2246 kfree(failrec);
2247 return -EIO;
2248 }
2fe6303e 2249
4a54c8c1
JS
2250 logical = start - em->start;
2251 logical = em->block_start + logical;
2252 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2253 logical = em->block_start;
2254 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2255 extent_set_compress_type(&failrec->bio_flags,
2256 em->compress_type);
2257 }
2fe6303e
MX
2258
2259 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2260 logical, start, failrec->len);
2261
4a54c8c1
JS
2262 failrec->logical = logical;
2263 free_extent_map(em);
2264
2265 /* set the bits in the private failure tree */
2266 ret = set_extent_bits(failure_tree, start, end,
2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268 if (ret >= 0)
2269 ret = set_state_private(failure_tree, start,
2270 (u64)(unsigned long)failrec);
2271 /* set the bits in the inode's tree */
2272 if (ret >= 0)
2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274 GFP_NOFS);
2275 if (ret < 0) {
2276 kfree(failrec);
2277 return ret;
2278 }
2279 } else {
2280 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2281 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2282 failrec->logical, failrec->start, failrec->len,
2283 failrec->in_validation);
2284 /*
2285 * when data can be on disk more than twice, add to failrec here
2286 * (e.g. with a list for failed_mirror) to make
2287 * clean_io_failure() clean all those errors at once.
2288 */
2289 }
2fe6303e
MX
2290
2291 *failrec_ret = failrec;
2292
2293 return 0;
2294}
2295
2296int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2297 struct io_failure_record *failrec, int failed_mirror)
2298{
2299 int num_copies;
2300
5d964051
SB
2301 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2302 failrec->logical, failrec->len);
4a54c8c1
JS
2303 if (num_copies == 1) {
2304 /*
2305 * we only have a single copy of the data, so don't bother with
2306 * all the retry and error correction code that follows. no
2307 * matter what the error is, it is very likely to persist.
2308 */
2fe6303e 2309 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2310 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2311 return 0;
4a54c8c1
JS
2312 }
2313
4a54c8c1
JS
2314 /*
2315 * there are two premises:
2316 * a) deliver good data to the caller
2317 * b) correct the bad sectors on disk
2318 */
2319 if (failed_bio->bi_vcnt > 1) {
2320 /*
2321 * to fulfill b), we need to know the exact failing sectors, as
2322 * we don't want to rewrite any more than the failed ones. thus,
2323 * we need separate read requests for the failed bio
2324 *
2325 * if the following BUG_ON triggers, our validation request got
2326 * merged. we need separate requests for our algorithm to work.
2327 */
2328 BUG_ON(failrec->in_validation);
2329 failrec->in_validation = 1;
2330 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2331 } else {
2332 /*
2333 * we're ready to fulfill a) and b) alongside. get a good copy
2334 * of the failed sector and if we succeed, we have setup
2335 * everything for repair_io_failure to do the rest for us.
2336 */
2337 if (failrec->in_validation) {
2338 BUG_ON(failrec->this_mirror != failed_mirror);
2339 failrec->in_validation = 0;
2340 failrec->this_mirror = 0;
2341 }
2342 failrec->failed_mirror = failed_mirror;
2343 failrec->this_mirror++;
2344 if (failrec->this_mirror == failed_mirror)
2345 failrec->this_mirror++;
4a54c8c1
JS
2346 }
2347
facc8a22 2348 if (failrec->this_mirror > num_copies) {
2fe6303e 2349 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2350 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2351 return 0;
4a54c8c1
JS
2352 }
2353
2fe6303e
MX
2354 return 1;
2355}
2356
2357
2358struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2359 struct io_failure_record *failrec,
2360 struct page *page, int pg_offset, int icsum,
8b110e39 2361 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2362{
2363 struct bio *bio;
2364 struct btrfs_io_bio *btrfs_failed_bio;
2365 struct btrfs_io_bio *btrfs_bio;
2366
9be3395b 2367 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2368 if (!bio)
2369 return NULL;
2370
2371 bio->bi_end_io = endio_func;
4f024f37 2372 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2373 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2374 bio->bi_iter.bi_size = 0;
8b110e39 2375 bio->bi_private = data;
4a54c8c1 2376
facc8a22
MX
2377 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2378 if (btrfs_failed_bio->csum) {
2379 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2380 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2381
2382 btrfs_bio = btrfs_io_bio(bio);
2383 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2384 icsum *= csum_size;
2385 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2386 csum_size);
2387 }
2388
2fe6303e
MX
2389 bio_add_page(bio, page, failrec->len, pg_offset);
2390
2391 return bio;
2392}
2393
2394/*
2395 * this is a generic handler for readpage errors (default
2396 * readpage_io_failed_hook). if other copies exist, read those and write back
2397 * good data to the failed position. does not investigate in remapping the
2398 * failed extent elsewhere, hoping the device will be smart enough to do this as
2399 * needed
2400 */
2401
2402static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2403 struct page *page, u64 start, u64 end,
2404 int failed_mirror)
2405{
2406 struct io_failure_record *failrec;
2407 struct inode *inode = page->mapping->host;
2408 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2409 struct bio *bio;
2410 int read_mode;
2411 int ret;
2412
2413 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2414
2415 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2416 if (ret)
2417 return ret;
2418
2419 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2420 if (!ret) {
2421 free_io_failure(inode, failrec);
2422 return -EIO;
2423 }
2424
2425 if (failed_bio->bi_vcnt > 1)
2426 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2427 else
2428 read_mode = READ_SYNC;
2429
2430 phy_offset >>= inode->i_sb->s_blocksize_bits;
2431 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2432 start - page_offset(page),
8b110e39
MX
2433 (int)phy_offset, failed_bio->bi_end_io,
2434 NULL);
2fe6303e
MX
2435 if (!bio) {
2436 free_io_failure(inode, failrec);
2437 return -EIO;
2438 }
4a54c8c1 2439
2fe6303e
MX
2440 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2441 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2442
013bd4c3
TI
2443 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2444 failrec->this_mirror,
2445 failrec->bio_flags, 0);
6c387ab2 2446 if (ret) {
454ff3de 2447 free_io_failure(inode, failrec);
6c387ab2
MX
2448 bio_put(bio);
2449 }
2450
013bd4c3 2451 return ret;
4a54c8c1
JS
2452}
2453
d1310b2e
CM
2454/* lots and lots of room for performance fixes in the end_bio funcs */
2455
87826df0
JM
2456int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2457{
2458 int uptodate = (err == 0);
2459 struct extent_io_tree *tree;
3e2426bd 2460 int ret = 0;
87826df0
JM
2461
2462 tree = &BTRFS_I(page->mapping->host)->io_tree;
2463
2464 if (tree->ops && tree->ops->writepage_end_io_hook) {
2465 ret = tree->ops->writepage_end_io_hook(page, start,
2466 end, NULL, uptodate);
2467 if (ret)
2468 uptodate = 0;
2469 }
2470
87826df0 2471 if (!uptodate) {
87826df0
JM
2472 ClearPageUptodate(page);
2473 SetPageError(page);
5dca6eea
LB
2474 ret = ret < 0 ? ret : -EIO;
2475 mapping_set_error(page->mapping, ret);
87826df0
JM
2476 }
2477 return 0;
2478}
2479
d1310b2e
CM
2480/*
2481 * after a writepage IO is done, we need to:
2482 * clear the uptodate bits on error
2483 * clear the writeback bits in the extent tree for this IO
2484 * end_page_writeback if the page has no more pending IO
2485 *
2486 * Scheduling is not allowed, so the extent state tree is expected
2487 * to have one and only one object corresponding to this IO.
2488 */
d1310b2e 2489static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2490{
2c30c71b 2491 struct bio_vec *bvec;
d1310b2e
CM
2492 u64 start;
2493 u64 end;
2c30c71b 2494 int i;
d1310b2e 2495
2c30c71b 2496 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2497 struct page *page = bvec->bv_page;
902b22f3 2498
17a5adcc
AO
2499 /* We always issue full-page reads, but if some block
2500 * in a page fails to read, blk_update_request() will
2501 * advance bv_offset and adjust bv_len to compensate.
2502 * Print a warning for nonzero offsets, and an error
2503 * if they don't add up to a full page. */
efe120a0
FH
2504 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2505 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2506 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2507 "partial page write in btrfs with offset %u and length %u",
2508 bvec->bv_offset, bvec->bv_len);
2509 else
2510 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2511 "incomplete page write in btrfs with offset %u and "
2512 "length %u",
2513 bvec->bv_offset, bvec->bv_len);
2514 }
d1310b2e 2515
17a5adcc
AO
2516 start = page_offset(page);
2517 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2518
87826df0
JM
2519 if (end_extent_writepage(page, err, start, end))
2520 continue;
70dec807 2521
17a5adcc 2522 end_page_writeback(page);
2c30c71b 2523 }
2b1f55b0 2524
d1310b2e 2525 bio_put(bio);
d1310b2e
CM
2526}
2527
883d0de4
MX
2528static void
2529endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2530 int uptodate)
2531{
2532 struct extent_state *cached = NULL;
2533 u64 end = start + len - 1;
2534
2535 if (uptodate && tree->track_uptodate)
2536 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2537 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2538}
2539
d1310b2e
CM
2540/*
2541 * after a readpage IO is done, we need to:
2542 * clear the uptodate bits on error
2543 * set the uptodate bits if things worked
2544 * set the page up to date if all extents in the tree are uptodate
2545 * clear the lock bit in the extent tree
2546 * unlock the page if there are no other extents locked for it
2547 *
2548 * Scheduling is not allowed, so the extent state tree is expected
2549 * to have one and only one object corresponding to this IO.
2550 */
d1310b2e 2551static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2552{
2c30c71b 2553 struct bio_vec *bvec;
d1310b2e 2554 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2555 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2556 struct extent_io_tree *tree;
facc8a22 2557 u64 offset = 0;
d1310b2e
CM
2558 u64 start;
2559 u64 end;
facc8a22 2560 u64 len;
883d0de4
MX
2561 u64 extent_start = 0;
2562 u64 extent_len = 0;
5cf1ab56 2563 int mirror;
d1310b2e 2564 int ret;
2c30c71b 2565 int i;
d1310b2e 2566
d20f7043
CM
2567 if (err)
2568 uptodate = 0;
2569
2c30c71b 2570 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2571 struct page *page = bvec->bv_page;
a71754fc 2572 struct inode *inode = page->mapping->host;
507903b8 2573
be3940c0 2574 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2575 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2576 io_bio->mirror_num);
a71754fc 2577 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2578
17a5adcc
AO
2579 /* We always issue full-page reads, but if some block
2580 * in a page fails to read, blk_update_request() will
2581 * advance bv_offset and adjust bv_len to compensate.
2582 * Print a warning for nonzero offsets, and an error
2583 * if they don't add up to a full page. */
efe120a0
FH
2584 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2585 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2586 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2587 "partial page read in btrfs with offset %u and length %u",
2588 bvec->bv_offset, bvec->bv_len);
2589 else
2590 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2591 "incomplete page read in btrfs with offset %u and "
2592 "length %u",
2593 bvec->bv_offset, bvec->bv_len);
2594 }
d1310b2e 2595
17a5adcc
AO
2596 start = page_offset(page);
2597 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2598 len = bvec->bv_len;
d1310b2e 2599
9be3395b 2600 mirror = io_bio->mirror_num;
f2a09da9
MX
2601 if (likely(uptodate && tree->ops &&
2602 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2603 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2604 page, start, end,
2605 mirror);
5ee0844d 2606 if (ret)
d1310b2e 2607 uptodate = 0;
5ee0844d 2608 else
1203b681 2609 clean_io_failure(inode, start, page, 0);
d1310b2e 2610 }
ea466794 2611
f2a09da9
MX
2612 if (likely(uptodate))
2613 goto readpage_ok;
2614
2615 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2616 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2617 if (!ret && !err &&
2618 test_bit(BIO_UPTODATE, &bio->bi_flags))
2619 uptodate = 1;
f2a09da9 2620 } else {
f4a8e656
JS
2621 /*
2622 * The generic bio_readpage_error handles errors the
2623 * following way: If possible, new read requests are
2624 * created and submitted and will end up in
2625 * end_bio_extent_readpage as well (if we're lucky, not
2626 * in the !uptodate case). In that case it returns 0 and
2627 * we just go on with the next page in our bio. If it
2628 * can't handle the error it will return -EIO and we
2629 * remain responsible for that page.
2630 */
facc8a22
MX
2631 ret = bio_readpage_error(bio, offset, page, start, end,
2632 mirror);
7e38326f 2633 if (ret == 0) {
3b951516
CM
2634 uptodate =
2635 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2636 if (err)
2637 uptodate = 0;
38c1c2e4 2638 offset += len;
7e38326f
CM
2639 continue;
2640 }
2641 }
f2a09da9 2642readpage_ok:
883d0de4 2643 if (likely(uptodate)) {
a71754fc
JB
2644 loff_t i_size = i_size_read(inode);
2645 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2646 unsigned off;
a71754fc
JB
2647
2648 /* Zero out the end if this page straddles i_size */
a583c026
LB
2649 off = i_size & (PAGE_CACHE_SIZE-1);
2650 if (page->index == end_index && off)
2651 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2652 SetPageUptodate(page);
70dec807 2653 } else {
17a5adcc
AO
2654 ClearPageUptodate(page);
2655 SetPageError(page);
70dec807 2656 }
17a5adcc 2657 unlock_page(page);
facc8a22 2658 offset += len;
883d0de4
MX
2659
2660 if (unlikely(!uptodate)) {
2661 if (extent_len) {
2662 endio_readpage_release_extent(tree,
2663 extent_start,
2664 extent_len, 1);
2665 extent_start = 0;
2666 extent_len = 0;
2667 }
2668 endio_readpage_release_extent(tree, start,
2669 end - start + 1, 0);
2670 } else if (!extent_len) {
2671 extent_start = start;
2672 extent_len = end + 1 - start;
2673 } else if (extent_start + extent_len == start) {
2674 extent_len += end + 1 - start;
2675 } else {
2676 endio_readpage_release_extent(tree, extent_start,
2677 extent_len, uptodate);
2678 extent_start = start;
2679 extent_len = end + 1 - start;
2680 }
2c30c71b 2681 }
d1310b2e 2682
883d0de4
MX
2683 if (extent_len)
2684 endio_readpage_release_extent(tree, extent_start, extent_len,
2685 uptodate);
facc8a22
MX
2686 if (io_bio->end_io)
2687 io_bio->end_io(io_bio, err);
d1310b2e 2688 bio_put(bio);
d1310b2e
CM
2689}
2690
9be3395b
CM
2691/*
2692 * this allocates from the btrfs_bioset. We're returning a bio right now
2693 * but you can call btrfs_io_bio for the appropriate container_of magic
2694 */
88f794ed
MX
2695struct bio *
2696btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2697 gfp_t gfp_flags)
d1310b2e 2698{
facc8a22 2699 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2700 struct bio *bio;
2701
9be3395b 2702 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2703
2704 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2705 while (!bio && (nr_vecs /= 2)) {
2706 bio = bio_alloc_bioset(gfp_flags,
2707 nr_vecs, btrfs_bioset);
2708 }
d1310b2e
CM
2709 }
2710
2711 if (bio) {
2712 bio->bi_bdev = bdev;
4f024f37 2713 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2714 btrfs_bio = btrfs_io_bio(bio);
2715 btrfs_bio->csum = NULL;
2716 btrfs_bio->csum_allocated = NULL;
2717 btrfs_bio->end_io = NULL;
d1310b2e
CM
2718 }
2719 return bio;
2720}
2721
9be3395b
CM
2722struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2723{
23ea8e5a
MX
2724 struct btrfs_io_bio *btrfs_bio;
2725 struct bio *new;
9be3395b 2726
23ea8e5a
MX
2727 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2728 if (new) {
2729 btrfs_bio = btrfs_io_bio(new);
2730 btrfs_bio->csum = NULL;
2731 btrfs_bio->csum_allocated = NULL;
2732 btrfs_bio->end_io = NULL;
3a9508b0
CM
2733
2734#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2735 /* FIXME, put this into bio_clone_bioset */
2736 if (bio->bi_css)
2737 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2738#endif
23ea8e5a
MX
2739 }
2740 return new;
2741}
9be3395b
CM
2742
2743/* this also allocates from the btrfs_bioset */
2744struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2745{
facc8a22
MX
2746 struct btrfs_io_bio *btrfs_bio;
2747 struct bio *bio;
2748
2749 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2750 if (bio) {
2751 btrfs_bio = btrfs_io_bio(bio);
2752 btrfs_bio->csum = NULL;
2753 btrfs_bio->csum_allocated = NULL;
2754 btrfs_bio->end_io = NULL;
2755 }
2756 return bio;
9be3395b
CM
2757}
2758
2759
355808c2
JM
2760static int __must_check submit_one_bio(int rw, struct bio *bio,
2761 int mirror_num, unsigned long bio_flags)
d1310b2e 2762{
d1310b2e 2763 int ret = 0;
70dec807
CM
2764 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2765 struct page *page = bvec->bv_page;
2766 struct extent_io_tree *tree = bio->bi_private;
70dec807 2767 u64 start;
70dec807 2768
4eee4fa4 2769 start = page_offset(page) + bvec->bv_offset;
70dec807 2770
902b22f3 2771 bio->bi_private = NULL;
d1310b2e
CM
2772
2773 bio_get(bio);
2774
065631f6 2775 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2776 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2777 mirror_num, bio_flags, start);
0b86a832 2778 else
21adbd5c 2779 btrfsic_submit_bio(rw, bio);
4a54c8c1 2780
d1310b2e
CM
2781 bio_put(bio);
2782 return ret;
2783}
2784
64a16701 2785static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2786 unsigned long offset, size_t size, struct bio *bio,
2787 unsigned long bio_flags)
2788{
2789 int ret = 0;
2790 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2791 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2792 bio_flags);
2793 BUG_ON(ret < 0);
2794 return ret;
2795
2796}
2797
d1310b2e 2798static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2799 struct writeback_control *wbc,
d1310b2e
CM
2800 struct page *page, sector_t sector,
2801 size_t size, unsigned long offset,
2802 struct block_device *bdev,
2803 struct bio **bio_ret,
2804 unsigned long max_pages,
f188591e 2805 bio_end_io_t end_io_func,
c8b97818
CM
2806 int mirror_num,
2807 unsigned long prev_bio_flags,
2808 unsigned long bio_flags)
d1310b2e
CM
2809{
2810 int ret = 0;
2811 struct bio *bio;
2812 int nr;
c8b97818
CM
2813 int contig = 0;
2814 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2815 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2816 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2817
2818 if (bio_ret && *bio_ret) {
2819 bio = *bio_ret;
c8b97818 2820 if (old_compressed)
4f024f37 2821 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2822 else
f73a1c7d 2823 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2824
2825 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2826 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2827 bio_add_page(bio, page, page_size, offset) < page_size) {
2828 ret = submit_one_bio(rw, bio, mirror_num,
2829 prev_bio_flags);
289454ad
NA
2830 if (ret < 0) {
2831 *bio_ret = NULL;
79787eaa 2832 return ret;
289454ad 2833 }
d1310b2e
CM
2834 bio = NULL;
2835 } else {
da2f0f74
CM
2836 if (wbc)
2837 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2838 return 0;
2839 }
2840 }
c8b97818
CM
2841 if (this_compressed)
2842 nr = BIO_MAX_PAGES;
2843 else
2844 nr = bio_get_nr_vecs(bdev);
2845
88f794ed 2846 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2847 if (!bio)
2848 return -ENOMEM;
70dec807 2849
c8b97818 2850 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2851 bio->bi_end_io = end_io_func;
2852 bio->bi_private = tree;
da2f0f74
CM
2853 if (wbc) {
2854 wbc_init_bio(wbc, bio);
2855 wbc_account_io(wbc, page, page_size);
2856 }
70dec807 2857
d397712b 2858 if (bio_ret)
d1310b2e 2859 *bio_ret = bio;
d397712b 2860 else
c8b97818 2861 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2862
2863 return ret;
2864}
2865
48a3b636
ES
2866static void attach_extent_buffer_page(struct extent_buffer *eb,
2867 struct page *page)
d1310b2e
CM
2868{
2869 if (!PagePrivate(page)) {
2870 SetPagePrivate(page);
d1310b2e 2871 page_cache_get(page);
4f2de97a
JB
2872 set_page_private(page, (unsigned long)eb);
2873 } else {
2874 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2875 }
2876}
2877
4f2de97a 2878void set_page_extent_mapped(struct page *page)
d1310b2e 2879{
4f2de97a
JB
2880 if (!PagePrivate(page)) {
2881 SetPagePrivate(page);
2882 page_cache_get(page);
2883 set_page_private(page, EXTENT_PAGE_PRIVATE);
2884 }
d1310b2e
CM
2885}
2886
125bac01
MX
2887static struct extent_map *
2888__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2889 u64 start, u64 len, get_extent_t *get_extent,
2890 struct extent_map **em_cached)
2891{
2892 struct extent_map *em;
2893
2894 if (em_cached && *em_cached) {
2895 em = *em_cached;
cbc0e928 2896 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2897 start < extent_map_end(em)) {
2898 atomic_inc(&em->refs);
2899 return em;
2900 }
2901
2902 free_extent_map(em);
2903 *em_cached = NULL;
2904 }
2905
2906 em = get_extent(inode, page, pg_offset, start, len, 0);
2907 if (em_cached && !IS_ERR_OR_NULL(em)) {
2908 BUG_ON(*em_cached);
2909 atomic_inc(&em->refs);
2910 *em_cached = em;
2911 }
2912 return em;
2913}
d1310b2e
CM
2914/*
2915 * basic readpage implementation. Locked extent state structs are inserted
2916 * into the tree that are removed when the IO is done (by the end_io
2917 * handlers)
79787eaa 2918 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2919 */
9974090b
MX
2920static int __do_readpage(struct extent_io_tree *tree,
2921 struct page *page,
2922 get_extent_t *get_extent,
125bac01 2923 struct extent_map **em_cached,
9974090b
MX
2924 struct bio **bio, int mirror_num,
2925 unsigned long *bio_flags, int rw)
d1310b2e
CM
2926{
2927 struct inode *inode = page->mapping->host;
4eee4fa4 2928 u64 start = page_offset(page);
d1310b2e
CM
2929 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2930 u64 end;
2931 u64 cur = start;
2932 u64 extent_offset;
2933 u64 last_byte = i_size_read(inode);
2934 u64 block_start;
2935 u64 cur_end;
2936 sector_t sector;
2937 struct extent_map *em;
2938 struct block_device *bdev;
2939 int ret;
2940 int nr = 0;
4b384318 2941 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2942 size_t pg_offset = 0;
d1310b2e 2943 size_t iosize;
c8b97818 2944 size_t disk_io_size;
d1310b2e 2945 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2946 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2947
2948 set_page_extent_mapped(page);
2949
9974090b 2950 end = page_end;
90a887c9
DM
2951 if (!PageUptodate(page)) {
2952 if (cleancache_get_page(page) == 0) {
2953 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2954 unlock_extent(tree, start, end);
90a887c9
DM
2955 goto out;
2956 }
2957 }
2958
c8b97818
CM
2959 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2960 char *userpage;
2961 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2962
2963 if (zero_offset) {
2964 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2965 userpage = kmap_atomic(page);
c8b97818
CM
2966 memset(userpage + zero_offset, 0, iosize);
2967 flush_dcache_page(page);
7ac687d9 2968 kunmap_atomic(userpage);
c8b97818
CM
2969 }
2970 }
d1310b2e 2971 while (cur <= end) {
c8f2f24b
JB
2972 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2973
d1310b2e
CM
2974 if (cur >= last_byte) {
2975 char *userpage;
507903b8
AJ
2976 struct extent_state *cached = NULL;
2977
306e16ce 2978 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2979 userpage = kmap_atomic(page);
306e16ce 2980 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2981 flush_dcache_page(page);
7ac687d9 2982 kunmap_atomic(userpage);
d1310b2e 2983 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2984 &cached, GFP_NOFS);
4b384318
MF
2985 if (!parent_locked)
2986 unlock_extent_cached(tree, cur,
2987 cur + iosize - 1,
2988 &cached, GFP_NOFS);
d1310b2e
CM
2989 break;
2990 }
125bac01
MX
2991 em = __get_extent_map(inode, page, pg_offset, cur,
2992 end - cur + 1, get_extent, em_cached);
c704005d 2993 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2994 SetPageError(page);
4b384318
MF
2995 if (!parent_locked)
2996 unlock_extent(tree, cur, end);
d1310b2e
CM
2997 break;
2998 }
d1310b2e
CM
2999 extent_offset = cur - em->start;
3000 BUG_ON(extent_map_end(em) <= cur);
3001 BUG_ON(end < cur);
3002
261507a0 3003 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3004 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3005 extent_set_compress_type(&this_bio_flag,
3006 em->compress_type);
3007 }
c8b97818 3008
d1310b2e
CM
3009 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3010 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3011 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3012 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3013 disk_io_size = em->block_len;
3014 sector = em->block_start >> 9;
3015 } else {
3016 sector = (em->block_start + extent_offset) >> 9;
3017 disk_io_size = iosize;
3018 }
d1310b2e
CM
3019 bdev = em->bdev;
3020 block_start = em->block_start;
d899e052
YZ
3021 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3022 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
3023 free_extent_map(em);
3024 em = NULL;
3025
3026 /* we've found a hole, just zero and go on */
3027 if (block_start == EXTENT_MAP_HOLE) {
3028 char *userpage;
507903b8
AJ
3029 struct extent_state *cached = NULL;
3030
7ac687d9 3031 userpage = kmap_atomic(page);
306e16ce 3032 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3033 flush_dcache_page(page);
7ac687d9 3034 kunmap_atomic(userpage);
d1310b2e
CM
3035
3036 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
3037 &cached, GFP_NOFS);
3038 unlock_extent_cached(tree, cur, cur + iosize - 1,
3039 &cached, GFP_NOFS);
d1310b2e 3040 cur = cur + iosize;
306e16ce 3041 pg_offset += iosize;
d1310b2e
CM
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
9655d298
CM
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3047 check_page_uptodate(tree, page);
4b384318
MF
3048 if (!parent_locked)
3049 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3050 cur = cur + iosize;
306e16ce 3051 pg_offset += iosize;
d1310b2e
CM
3052 continue;
3053 }
70dec807
CM
3054 /* we have an inline extent but it didn't get marked up
3055 * to date. Error out
3056 */
3057 if (block_start == EXTENT_MAP_INLINE) {
3058 SetPageError(page);
4b384318
MF
3059 if (!parent_locked)
3060 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3061 cur = cur + iosize;
306e16ce 3062 pg_offset += iosize;
70dec807
CM
3063 continue;
3064 }
d1310b2e 3065
c8f2f24b 3066 pnr -= page->index;
da2f0f74 3067 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3068 sector, disk_io_size, pg_offset,
89642229 3069 bdev, bio, pnr,
c8b97818
CM
3070 end_bio_extent_readpage, mirror_num,
3071 *bio_flags,
3072 this_bio_flag);
c8f2f24b
JB
3073 if (!ret) {
3074 nr++;
3075 *bio_flags = this_bio_flag;
3076 } else {
d1310b2e 3077 SetPageError(page);
4b384318
MF
3078 if (!parent_locked)
3079 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3080 }
d1310b2e 3081 cur = cur + iosize;
306e16ce 3082 pg_offset += iosize;
d1310b2e 3083 }
90a887c9 3084out:
d1310b2e
CM
3085 if (!nr) {
3086 if (!PageError(page))
3087 SetPageUptodate(page);
3088 unlock_page(page);
3089 }
3090 return 0;
3091}
3092
9974090b
MX
3093static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3094 struct page *pages[], int nr_pages,
3095 u64 start, u64 end,
3096 get_extent_t *get_extent,
125bac01 3097 struct extent_map **em_cached,
9974090b
MX
3098 struct bio **bio, int mirror_num,
3099 unsigned long *bio_flags, int rw)
3100{
3101 struct inode *inode;
3102 struct btrfs_ordered_extent *ordered;
3103 int index;
3104
3105 inode = pages[0]->mapping->host;
3106 while (1) {
3107 lock_extent(tree, start, end);
3108 ordered = btrfs_lookup_ordered_range(inode, start,
3109 end - start + 1);
3110 if (!ordered)
3111 break;
3112 unlock_extent(tree, start, end);
3113 btrfs_start_ordered_extent(inode, ordered, 1);
3114 btrfs_put_ordered_extent(ordered);
3115 }
3116
3117 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3118 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3119 mirror_num, bio_flags, rw);
9974090b
MX
3120 page_cache_release(pages[index]);
3121 }
3122}
3123
3124static void __extent_readpages(struct extent_io_tree *tree,
3125 struct page *pages[],
3126 int nr_pages, get_extent_t *get_extent,
125bac01 3127 struct extent_map **em_cached,
9974090b
MX
3128 struct bio **bio, int mirror_num,
3129 unsigned long *bio_flags, int rw)
3130{
35a3621b 3131 u64 start = 0;
9974090b
MX
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
35a3621b 3135 int first_index = 0;
9974090b
MX
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
3141 end = start + PAGE_CACHE_SIZE - 1;
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
3144 end += PAGE_CACHE_SIZE;
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
125bac01
MX
3148 end, get_extent, em_cached,
3149 bio, mirror_num, bio_flags,
3150 rw);
9974090b
MX
3151 start = page_start;
3152 end = start + PAGE_CACHE_SIZE - 1;
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
125bac01 3160 end, get_extent, em_cached, bio,
9974090b
MX
3161 mirror_num, bio_flags, rw);
3162}
3163
3164static int __extent_read_full_page(struct extent_io_tree *tree,
3165 struct page *page,
3166 get_extent_t *get_extent,
3167 struct bio **bio, int mirror_num,
3168 unsigned long *bio_flags, int rw)
3169{
3170 struct inode *inode = page->mapping->host;
3171 struct btrfs_ordered_extent *ordered;
3172 u64 start = page_offset(page);
3173 u64 end = start + PAGE_CACHE_SIZE - 1;
3174 int ret;
3175
3176 while (1) {
3177 lock_extent(tree, start, end);
3178 ordered = btrfs_lookup_ordered_extent(inode, start);
3179 if (!ordered)
3180 break;
3181 unlock_extent(tree, start, end);
3182 btrfs_start_ordered_extent(inode, ordered, 1);
3183 btrfs_put_ordered_extent(ordered);
3184 }
3185
125bac01
MX
3186 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3187 bio_flags, rw);
9974090b
MX
3188 return ret;
3189}
3190
d1310b2e 3191int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3192 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3193{
3194 struct bio *bio = NULL;
c8b97818 3195 unsigned long bio_flags = 0;
d1310b2e
CM
3196 int ret;
3197
8ddc7d9c 3198 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3199 &bio_flags, READ);
d1310b2e 3200 if (bio)
8ddc7d9c 3201 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3202 return ret;
3203}
d1310b2e 3204
4b384318
MF
3205int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3206 get_extent_t *get_extent, int mirror_num)
3207{
3208 struct bio *bio = NULL;
3209 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3210 int ret;
3211
3212 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3213 &bio_flags, READ);
3214 if (bio)
3215 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3216 return ret;
3217}
3218
11c8349b
CM
3219static noinline void update_nr_written(struct page *page,
3220 struct writeback_control *wbc,
3221 unsigned long nr_written)
3222{
3223 wbc->nr_to_write -= nr_written;
3224 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3225 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3226 page->mapping->writeback_index = page->index + nr_written;
3227}
3228
d1310b2e 3229/*
40f76580
CM
3230 * helper for __extent_writepage, doing all of the delayed allocation setup.
3231 *
3232 * This returns 1 if our fill_delalloc function did all the work required
3233 * to write the page (copy into inline extent). In this case the IO has
3234 * been started and the page is already unlocked.
3235 *
3236 * This returns 0 if all went well (page still locked)
3237 * This returns < 0 if there were errors (page still locked)
d1310b2e 3238 */
40f76580
CM
3239static noinline_for_stack int writepage_delalloc(struct inode *inode,
3240 struct page *page, struct writeback_control *wbc,
3241 struct extent_page_data *epd,
3242 u64 delalloc_start,
3243 unsigned long *nr_written)
3244{
3245 struct extent_io_tree *tree = epd->tree;
3246 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3247 u64 nr_delalloc;
3248 u64 delalloc_to_write = 0;
3249 u64 delalloc_end = 0;
3250 int ret;
3251 int page_started = 0;
3252
3253 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3254 return 0;
3255
3256 while (delalloc_end < page_end) {
3257 nr_delalloc = find_lock_delalloc_range(inode, tree,
3258 page,
3259 &delalloc_start,
3260 &delalloc_end,
dcab6a3b 3261 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3262 if (nr_delalloc == 0) {
3263 delalloc_start = delalloc_end + 1;
3264 continue;
3265 }
3266 ret = tree->ops->fill_delalloc(inode, page,
3267 delalloc_start,
3268 delalloc_end,
3269 &page_started,
3270 nr_written);
3271 /* File system has been set read-only */
3272 if (ret) {
3273 SetPageError(page);
3274 /* fill_delalloc should be return < 0 for error
3275 * but just in case, we use > 0 here meaning the
3276 * IO is started, so we don't want to return > 0
3277 * unless things are going well.
3278 */
3279 ret = ret < 0 ? ret : -EIO;
3280 goto done;
3281 }
3282 /*
3283 * delalloc_end is already one less than the total
3284 * length, so we don't subtract one from
3285 * PAGE_CACHE_SIZE
3286 */
3287 delalloc_to_write += (delalloc_end - delalloc_start +
3288 PAGE_CACHE_SIZE) >>
3289 PAGE_CACHE_SHIFT;
3290 delalloc_start = delalloc_end + 1;
3291 }
3292 if (wbc->nr_to_write < delalloc_to_write) {
3293 int thresh = 8192;
3294
3295 if (delalloc_to_write < thresh * 2)
3296 thresh = delalloc_to_write;
3297 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3298 thresh);
3299 }
3300
3301 /* did the fill delalloc function already unlock and start
3302 * the IO?
3303 */
3304 if (page_started) {
3305 /*
3306 * we've unlocked the page, so we can't update
3307 * the mapping's writeback index, just update
3308 * nr_to_write.
3309 */
3310 wbc->nr_to_write -= *nr_written;
3311 return 1;
3312 }
3313
3314 ret = 0;
3315
3316done:
3317 return ret;
3318}
3319
3320/*
3321 * helper for __extent_writepage. This calls the writepage start hooks,
3322 * and does the loop to map the page into extents and bios.
3323 *
3324 * We return 1 if the IO is started and the page is unlocked,
3325 * 0 if all went well (page still locked)
3326 * < 0 if there were errors (page still locked)
3327 */
3328static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3329 struct page *page,
3330 struct writeback_control *wbc,
3331 struct extent_page_data *epd,
3332 loff_t i_size,
3333 unsigned long nr_written,
3334 int write_flags, int *nr_ret)
d1310b2e 3335{
d1310b2e 3336 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3337 u64 start = page_offset(page);
d1310b2e
CM
3338 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3339 u64 end;
3340 u64 cur = start;
3341 u64 extent_offset;
d1310b2e
CM
3342 u64 block_start;
3343 u64 iosize;
3344 sector_t sector;
2c64c53d 3345 struct extent_state *cached_state = NULL;
d1310b2e
CM
3346 struct extent_map *em;
3347 struct block_device *bdev;
7f3c74fb 3348 size_t pg_offset = 0;
d1310b2e 3349 size_t blocksize;
40f76580
CM
3350 int ret = 0;
3351 int nr = 0;
3352 bool compressed;
c8b97818 3353
247e743c 3354 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3355 ret = tree->ops->writepage_start_hook(page, start,
3356 page_end);
87826df0
JM
3357 if (ret) {
3358 /* Fixup worker will requeue */
3359 if (ret == -EBUSY)
3360 wbc->pages_skipped++;
3361 else
3362 redirty_page_for_writepage(wbc, page);
40f76580 3363
11c8349b 3364 update_nr_written(page, wbc, nr_written);
247e743c 3365 unlock_page(page);
40f76580 3366 ret = 1;
11c8349b 3367 goto done_unlocked;
247e743c
CM
3368 }
3369 }
3370
11c8349b
CM
3371 /*
3372 * we don't want to touch the inode after unlocking the page,
3373 * so we update the mapping writeback index now
3374 */
3375 update_nr_written(page, wbc, nr_written + 1);
771ed689 3376
d1310b2e 3377 end = page_end;
40f76580 3378 if (i_size <= start) {
e6dcd2dc
CM
3379 if (tree->ops && tree->ops->writepage_end_io_hook)
3380 tree->ops->writepage_end_io_hook(page, start,
3381 page_end, NULL, 1);
d1310b2e
CM
3382 goto done;
3383 }
3384
d1310b2e
CM
3385 blocksize = inode->i_sb->s_blocksize;
3386
3387 while (cur <= end) {
40f76580
CM
3388 u64 em_end;
3389 if (cur >= i_size) {
e6dcd2dc
CM
3390 if (tree->ops && tree->ops->writepage_end_io_hook)
3391 tree->ops->writepage_end_io_hook(page, cur,
3392 page_end, NULL, 1);
d1310b2e
CM
3393 break;
3394 }
7f3c74fb 3395 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3396 end - cur + 1, 1);
c704005d 3397 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3398 SetPageError(page);
61391d56 3399 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3400 break;
3401 }
3402
3403 extent_offset = cur - em->start;
40f76580
CM
3404 em_end = extent_map_end(em);
3405 BUG_ON(em_end <= cur);
d1310b2e 3406 BUG_ON(end < cur);
40f76580 3407 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3408 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3409 sector = (em->block_start + extent_offset) >> 9;
3410 bdev = em->bdev;
3411 block_start = em->block_start;
c8b97818 3412 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3413 free_extent_map(em);
3414 em = NULL;
3415
c8b97818
CM
3416 /*
3417 * compressed and inline extents are written through other
3418 * paths in the FS
3419 */
3420 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3421 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3422 /*
3423 * end_io notification does not happen here for
3424 * compressed extents
3425 */
3426 if (!compressed && tree->ops &&
3427 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3428 tree->ops->writepage_end_io_hook(page, cur,
3429 cur + iosize - 1,
3430 NULL, 1);
c8b97818
CM
3431 else if (compressed) {
3432 /* we don't want to end_page_writeback on
3433 * a compressed extent. this happens
3434 * elsewhere
3435 */
3436 nr++;
3437 }
3438
3439 cur += iosize;
7f3c74fb 3440 pg_offset += iosize;
d1310b2e
CM
3441 continue;
3442 }
c8b97818 3443
d1310b2e
CM
3444 if (tree->ops && tree->ops->writepage_io_hook) {
3445 ret = tree->ops->writepage_io_hook(page, cur,
3446 cur + iosize - 1);
3447 } else {
3448 ret = 0;
3449 }
1259ab75 3450 if (ret) {
d1310b2e 3451 SetPageError(page);
1259ab75 3452 } else {
40f76580 3453 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3454
d1310b2e
CM
3455 set_range_writeback(tree, cur, cur + iosize - 1);
3456 if (!PageWriteback(page)) {
efe120a0
FH
3457 btrfs_err(BTRFS_I(inode)->root->fs_info,
3458 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3459 page->index, cur, end);
d1310b2e
CM
3460 }
3461
da2f0f74 3462 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3463 sector, iosize, pg_offset,
3464 bdev, &epd->bio, max_nr,
c8b97818
CM
3465 end_bio_extent_writepage,
3466 0, 0, 0);
d1310b2e
CM
3467 if (ret)
3468 SetPageError(page);
3469 }
3470 cur = cur + iosize;
7f3c74fb 3471 pg_offset += iosize;
d1310b2e
CM
3472 nr++;
3473 }
40f76580
CM
3474done:
3475 *nr_ret = nr;
3476
3477done_unlocked:
3478
3479 /* drop our reference on any cached states */
3480 free_extent_state(cached_state);
3481 return ret;
3482}
3483
3484/*
3485 * the writepage semantics are similar to regular writepage. extent
3486 * records are inserted to lock ranges in the tree, and as dirty areas
3487 * are found, they are marked writeback. Then the lock bits are removed
3488 * and the end_io handler clears the writeback ranges
3489 */
3490static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3491 void *data)
3492{
3493 struct inode *inode = page->mapping->host;
3494 struct extent_page_data *epd = data;
3495 u64 start = page_offset(page);
3496 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3497 int ret;
3498 int nr = 0;
3499 size_t pg_offset = 0;
3500 loff_t i_size = i_size_read(inode);
3501 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3502 int write_flags;
3503 unsigned long nr_written = 0;
3504
3505 if (wbc->sync_mode == WB_SYNC_ALL)
3506 write_flags = WRITE_SYNC;
3507 else
3508 write_flags = WRITE;
3509
3510 trace___extent_writepage(page, inode, wbc);
3511
3512 WARN_ON(!PageLocked(page));
3513
3514 ClearPageError(page);
3515
3516 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3517 if (page->index > end_index ||
3518 (page->index == end_index && !pg_offset)) {
3519 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3520 unlock_page(page);
3521 return 0;
3522 }
3523
3524 if (page->index == end_index) {
3525 char *userpage;
3526
3527 userpage = kmap_atomic(page);
3528 memset(userpage + pg_offset, 0,
3529 PAGE_CACHE_SIZE - pg_offset);
3530 kunmap_atomic(userpage);
3531 flush_dcache_page(page);
3532 }
3533
3534 pg_offset = 0;
3535
3536 set_page_extent_mapped(page);
3537
3538 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3539 if (ret == 1)
3540 goto done_unlocked;
3541 if (ret)
3542 goto done;
3543
3544 ret = __extent_writepage_io(inode, page, wbc, epd,
3545 i_size, nr_written, write_flags, &nr);
3546 if (ret == 1)
3547 goto done_unlocked;
3548
d1310b2e
CM
3549done:
3550 if (nr == 0) {
3551 /* make sure the mapping tag for page dirty gets cleared */
3552 set_page_writeback(page);
3553 end_page_writeback(page);
3554 }
61391d56
FM
3555 if (PageError(page)) {
3556 ret = ret < 0 ? ret : -EIO;
3557 end_extent_writepage(page, ret, start, page_end);
3558 }
d1310b2e 3559 unlock_page(page);
40f76580 3560 return ret;
771ed689 3561
11c8349b 3562done_unlocked:
d1310b2e
CM
3563 return 0;
3564}
3565
fd8b2b61 3566void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3567{
74316201
N
3568 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3569 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3570}
3571
0e378df1
CM
3572static noinline_for_stack int
3573lock_extent_buffer_for_io(struct extent_buffer *eb,
3574 struct btrfs_fs_info *fs_info,
3575 struct extent_page_data *epd)
0b32f4bb
JB
3576{
3577 unsigned long i, num_pages;
3578 int flush = 0;
3579 int ret = 0;
3580
3581 if (!btrfs_try_tree_write_lock(eb)) {
3582 flush = 1;
3583 flush_write_bio(epd);
3584 btrfs_tree_lock(eb);
3585 }
3586
3587 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3588 btrfs_tree_unlock(eb);
3589 if (!epd->sync_io)
3590 return 0;
3591 if (!flush) {
3592 flush_write_bio(epd);
3593 flush = 1;
3594 }
a098d8e8
CM
3595 while (1) {
3596 wait_on_extent_buffer_writeback(eb);
3597 btrfs_tree_lock(eb);
3598 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3599 break;
0b32f4bb 3600 btrfs_tree_unlock(eb);
0b32f4bb
JB
3601 }
3602 }
3603
51561ffe
JB
3604 /*
3605 * We need to do this to prevent races in people who check if the eb is
3606 * under IO since we can end up having no IO bits set for a short period
3607 * of time.
3608 */
3609 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3610 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3611 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3612 spin_unlock(&eb->refs_lock);
0b32f4bb 3613 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3614 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3615 -eb->len,
3616 fs_info->dirty_metadata_batch);
0b32f4bb 3617 ret = 1;
51561ffe
JB
3618 } else {
3619 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3620 }
3621
3622 btrfs_tree_unlock(eb);
3623
3624 if (!ret)
3625 return ret;
3626
3627 num_pages = num_extent_pages(eb->start, eb->len);
3628 for (i = 0; i < num_pages; i++) {
fb85fc9a 3629 struct page *p = eb->pages[i];
0b32f4bb
JB
3630
3631 if (!trylock_page(p)) {
3632 if (!flush) {
3633 flush_write_bio(epd);
3634 flush = 1;
3635 }
3636 lock_page(p);
3637 }
3638 }
3639
3640 return ret;
3641}
3642
3643static void end_extent_buffer_writeback(struct extent_buffer *eb)
3644{
3645 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3646 smp_mb__after_atomic();
0b32f4bb
JB
3647 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3648}
3649
656f30db
FM
3650static void set_btree_ioerr(struct page *page)
3651{
3652 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3653 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3654
3655 SetPageError(page);
3656 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3657 return;
3658
3659 /*
3660 * If writeback for a btree extent that doesn't belong to a log tree
3661 * failed, increment the counter transaction->eb_write_errors.
3662 * We do this because while the transaction is running and before it's
3663 * committing (when we call filemap_fdata[write|wait]_range against
3664 * the btree inode), we might have
3665 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3666 * returns an error or an error happens during writeback, when we're
3667 * committing the transaction we wouldn't know about it, since the pages
3668 * can be no longer dirty nor marked anymore for writeback (if a
3669 * subsequent modification to the extent buffer didn't happen before the
3670 * transaction commit), which makes filemap_fdata[write|wait]_range not
3671 * able to find the pages tagged with SetPageError at transaction
3672 * commit time. So if this happens we must abort the transaction,
3673 * otherwise we commit a super block with btree roots that point to
3674 * btree nodes/leafs whose content on disk is invalid - either garbage
3675 * or the content of some node/leaf from a past generation that got
3676 * cowed or deleted and is no longer valid.
3677 *
3678 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3679 * not be enough - we need to distinguish between log tree extents vs
3680 * non-log tree extents, and the next filemap_fdatawait_range() call
3681 * will catch and clear such errors in the mapping - and that call might
3682 * be from a log sync and not from a transaction commit. Also, checking
3683 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3684 * not done and would not be reliable - the eb might have been released
3685 * from memory and reading it back again means that flag would not be
3686 * set (since it's a runtime flag, not persisted on disk).
3687 *
3688 * Using the flags below in the btree inode also makes us achieve the
3689 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3690 * writeback for all dirty pages and before filemap_fdatawait_range()
3691 * is called, the writeback for all dirty pages had already finished
3692 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3693 * filemap_fdatawait_range() would return success, as it could not know
3694 * that writeback errors happened (the pages were no longer tagged for
3695 * writeback).
3696 */
3697 switch (eb->log_index) {
3698 case -1:
3699 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3700 break;
3701 case 0:
3702 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3703 break;
3704 case 1:
3705 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3706 break;
3707 default:
3708 BUG(); /* unexpected, logic error */
3709 }
3710}
3711
0b32f4bb
JB
3712static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3713{
2c30c71b 3714 struct bio_vec *bvec;
0b32f4bb 3715 struct extent_buffer *eb;
2c30c71b 3716 int i, done;
0b32f4bb 3717
2c30c71b 3718 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3719 struct page *page = bvec->bv_page;
3720
0b32f4bb
JB
3721 eb = (struct extent_buffer *)page->private;
3722 BUG_ON(!eb);
3723 done = atomic_dec_and_test(&eb->io_pages);
3724
656f30db 3725 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3726 ClearPageUptodate(page);
656f30db 3727 set_btree_ioerr(page);
0b32f4bb
JB
3728 }
3729
3730 end_page_writeback(page);
3731
3732 if (!done)
3733 continue;
3734
3735 end_extent_buffer_writeback(eb);
2c30c71b 3736 }
0b32f4bb
JB
3737
3738 bio_put(bio);
0b32f4bb
JB
3739}
3740
0e378df1 3741static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3742 struct btrfs_fs_info *fs_info,
3743 struct writeback_control *wbc,
3744 struct extent_page_data *epd)
3745{
3746 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3747 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3748 u64 offset = eb->start;
3749 unsigned long i, num_pages;
de0022b9 3750 unsigned long bio_flags = 0;
d4c7ca86 3751 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3752 int ret = 0;
0b32f4bb 3753
656f30db 3754 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3755 num_pages = num_extent_pages(eb->start, eb->len);
3756 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3757 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3758 bio_flags = EXTENT_BIO_TREE_LOG;
3759
0b32f4bb 3760 for (i = 0; i < num_pages; i++) {
fb85fc9a 3761 struct page *p = eb->pages[i];
0b32f4bb
JB
3762
3763 clear_page_dirty_for_io(p);
3764 set_page_writeback(p);
da2f0f74 3765 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
0b32f4bb
JB
3766 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3767 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3768 0, epd->bio_flags, bio_flags);
3769 epd->bio_flags = bio_flags;
0b32f4bb 3770 if (ret) {
656f30db 3771 set_btree_ioerr(p);
55e3bd2e 3772 end_page_writeback(p);
0b32f4bb
JB
3773 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3774 end_extent_buffer_writeback(eb);
3775 ret = -EIO;
3776 break;
3777 }
3778 offset += PAGE_CACHE_SIZE;
3779 update_nr_written(p, wbc, 1);
3780 unlock_page(p);
3781 }
3782
3783 if (unlikely(ret)) {
3784 for (; i < num_pages; i++) {
bbf65cf0 3785 struct page *p = eb->pages[i];
81465028 3786 clear_page_dirty_for_io(p);
0b32f4bb
JB
3787 unlock_page(p);
3788 }
3789 }
3790
3791 return ret;
3792}
3793
3794int btree_write_cache_pages(struct address_space *mapping,
3795 struct writeback_control *wbc)
3796{
3797 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3798 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3799 struct extent_buffer *eb, *prev_eb = NULL;
3800 struct extent_page_data epd = {
3801 .bio = NULL,
3802 .tree = tree,
3803 .extent_locked = 0,
3804 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3805 .bio_flags = 0,
0b32f4bb
JB
3806 };
3807 int ret = 0;
3808 int done = 0;
3809 int nr_to_write_done = 0;
3810 struct pagevec pvec;
3811 int nr_pages;
3812 pgoff_t index;
3813 pgoff_t end; /* Inclusive */
3814 int scanned = 0;
3815 int tag;
3816
3817 pagevec_init(&pvec, 0);
3818 if (wbc->range_cyclic) {
3819 index = mapping->writeback_index; /* Start from prev offset */
3820 end = -1;
3821 } else {
3822 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3823 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3824 scanned = 1;
3825 }
3826 if (wbc->sync_mode == WB_SYNC_ALL)
3827 tag = PAGECACHE_TAG_TOWRITE;
3828 else
3829 tag = PAGECACHE_TAG_DIRTY;
3830retry:
3831 if (wbc->sync_mode == WB_SYNC_ALL)
3832 tag_pages_for_writeback(mapping, index, end);
3833 while (!done && !nr_to_write_done && (index <= end) &&
3834 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3835 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3836 unsigned i;
3837
3838 scanned = 1;
3839 for (i = 0; i < nr_pages; i++) {
3840 struct page *page = pvec.pages[i];
3841
3842 if (!PagePrivate(page))
3843 continue;
3844
3845 if (!wbc->range_cyclic && page->index > end) {
3846 done = 1;
3847 break;
3848 }
3849
b5bae261
JB
3850 spin_lock(&mapping->private_lock);
3851 if (!PagePrivate(page)) {
3852 spin_unlock(&mapping->private_lock);
3853 continue;
3854 }
3855
0b32f4bb 3856 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3857
3858 /*
3859 * Shouldn't happen and normally this would be a BUG_ON
3860 * but no sense in crashing the users box for something
3861 * we can survive anyway.
3862 */
fae7f21c 3863 if (WARN_ON(!eb)) {
b5bae261 3864 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3865 continue;
3866 }
3867
b5bae261
JB
3868 if (eb == prev_eb) {
3869 spin_unlock(&mapping->private_lock);
0b32f4bb 3870 continue;
b5bae261 3871 }
0b32f4bb 3872
b5bae261
JB
3873 ret = atomic_inc_not_zero(&eb->refs);
3874 spin_unlock(&mapping->private_lock);
3875 if (!ret)
0b32f4bb 3876 continue;
0b32f4bb
JB
3877
3878 prev_eb = eb;
3879 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3880 if (!ret) {
3881 free_extent_buffer(eb);
3882 continue;
3883 }
3884
3885 ret = write_one_eb(eb, fs_info, wbc, &epd);
3886 if (ret) {
3887 done = 1;
3888 free_extent_buffer(eb);
3889 break;
3890 }
3891 free_extent_buffer(eb);
3892
3893 /*
3894 * the filesystem may choose to bump up nr_to_write.
3895 * We have to make sure to honor the new nr_to_write
3896 * at any time
3897 */
3898 nr_to_write_done = wbc->nr_to_write <= 0;
3899 }
3900 pagevec_release(&pvec);
3901 cond_resched();
3902 }
3903 if (!scanned && !done) {
3904 /*
3905 * We hit the last page and there is more work to be done: wrap
3906 * back to the start of the file
3907 */
3908 scanned = 1;
3909 index = 0;
3910 goto retry;
3911 }
3912 flush_write_bio(&epd);
3913 return ret;
3914}
3915
d1310b2e 3916/**
4bef0848 3917 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3918 * @mapping: address space structure to write
3919 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3920 * @writepage: function called for each page
3921 * @data: data passed to writepage function
3922 *
3923 * If a page is already under I/O, write_cache_pages() skips it, even
3924 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3925 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3926 * and msync() need to guarantee that all the data which was dirty at the time
3927 * the call was made get new I/O started against them. If wbc->sync_mode is
3928 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3929 * existing IO to complete.
3930 */
b2950863 3931static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3932 struct address_space *mapping,
3933 struct writeback_control *wbc,
d2c3f4f6
CM
3934 writepage_t writepage, void *data,
3935 void (*flush_fn)(void *))
d1310b2e 3936{
7fd1a3f7 3937 struct inode *inode = mapping->host;
d1310b2e
CM
3938 int ret = 0;
3939 int done = 0;
61391d56 3940 int err = 0;
f85d7d6c 3941 int nr_to_write_done = 0;
d1310b2e
CM
3942 struct pagevec pvec;
3943 int nr_pages;
3944 pgoff_t index;
3945 pgoff_t end; /* Inclusive */
3946 int scanned = 0;
f7aaa06b 3947 int tag;
d1310b2e 3948
7fd1a3f7
JB
3949 /*
3950 * We have to hold onto the inode so that ordered extents can do their
3951 * work when the IO finishes. The alternative to this is failing to add
3952 * an ordered extent if the igrab() fails there and that is a huge pain
3953 * to deal with, so instead just hold onto the inode throughout the
3954 * writepages operation. If it fails here we are freeing up the inode
3955 * anyway and we'd rather not waste our time writing out stuff that is
3956 * going to be truncated anyway.
3957 */
3958 if (!igrab(inode))
3959 return 0;
3960
d1310b2e
CM
3961 pagevec_init(&pvec, 0);
3962 if (wbc->range_cyclic) {
3963 index = mapping->writeback_index; /* Start from prev offset */
3964 end = -1;
3965 } else {
3966 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3967 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3968 scanned = 1;
3969 }
f7aaa06b
JB
3970 if (wbc->sync_mode == WB_SYNC_ALL)
3971 tag = PAGECACHE_TAG_TOWRITE;
3972 else
3973 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3974retry:
f7aaa06b
JB
3975 if (wbc->sync_mode == WB_SYNC_ALL)
3976 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3977 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3978 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3979 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3980 unsigned i;
3981
3982 scanned = 1;
3983 for (i = 0; i < nr_pages; i++) {
3984 struct page *page = pvec.pages[i];
3985
3986 /*
3987 * At this point we hold neither mapping->tree_lock nor
3988 * lock on the page itself: the page may be truncated or
3989 * invalidated (changing page->mapping to NULL), or even
3990 * swizzled back from swapper_space to tmpfs file
3991 * mapping
3992 */
c8f2f24b
JB
3993 if (!trylock_page(page)) {
3994 flush_fn(data);
3995 lock_page(page);
01d658f2 3996 }
d1310b2e
CM
3997
3998 if (unlikely(page->mapping != mapping)) {
3999 unlock_page(page);
4000 continue;
4001 }
4002
4003 if (!wbc->range_cyclic && page->index > end) {
4004 done = 1;
4005 unlock_page(page);
4006 continue;
4007 }
4008
d2c3f4f6 4009 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4010 if (PageWriteback(page))
4011 flush_fn(data);
d1310b2e 4012 wait_on_page_writeback(page);
d2c3f4f6 4013 }
d1310b2e
CM
4014
4015 if (PageWriteback(page) ||
4016 !clear_page_dirty_for_io(page)) {
4017 unlock_page(page);
4018 continue;
4019 }
4020
4021 ret = (*writepage)(page, wbc, data);
4022
4023 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4024 unlock_page(page);
4025 ret = 0;
4026 }
61391d56
FM
4027 if (!err && ret < 0)
4028 err = ret;
f85d7d6c
CM
4029
4030 /*
4031 * the filesystem may choose to bump up nr_to_write.
4032 * We have to make sure to honor the new nr_to_write
4033 * at any time
4034 */
4035 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4036 }
4037 pagevec_release(&pvec);
4038 cond_resched();
4039 }
61391d56 4040 if (!scanned && !done && !err) {
d1310b2e
CM
4041 /*
4042 * We hit the last page and there is more work to be done: wrap
4043 * back to the start of the file
4044 */
4045 scanned = 1;
4046 index = 0;
4047 goto retry;
4048 }
7fd1a3f7 4049 btrfs_add_delayed_iput(inode);
61391d56 4050 return err;
d1310b2e 4051}
d1310b2e 4052
ffbd517d 4053static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4054{
d2c3f4f6 4055 if (epd->bio) {
355808c2
JM
4056 int rw = WRITE;
4057 int ret;
4058
ffbd517d 4059 if (epd->sync_io)
355808c2
JM
4060 rw = WRITE_SYNC;
4061
de0022b9 4062 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4063 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4064 epd->bio = NULL;
4065 }
4066}
4067
ffbd517d
CM
4068static noinline void flush_write_bio(void *data)
4069{
4070 struct extent_page_data *epd = data;
4071 flush_epd_write_bio(epd);
4072}
4073
d1310b2e
CM
4074int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4075 get_extent_t *get_extent,
4076 struct writeback_control *wbc)
4077{
4078 int ret;
d1310b2e
CM
4079 struct extent_page_data epd = {
4080 .bio = NULL,
4081 .tree = tree,
4082 .get_extent = get_extent,
771ed689 4083 .extent_locked = 0,
ffbd517d 4084 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4085 .bio_flags = 0,
d1310b2e 4086 };
d1310b2e 4087
d1310b2e
CM
4088 ret = __extent_writepage(page, wbc, &epd);
4089
ffbd517d 4090 flush_epd_write_bio(&epd);
d1310b2e
CM
4091 return ret;
4092}
d1310b2e 4093
771ed689
CM
4094int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4095 u64 start, u64 end, get_extent_t *get_extent,
4096 int mode)
4097{
4098 int ret = 0;
4099 struct address_space *mapping = inode->i_mapping;
4100 struct page *page;
4101 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4102 PAGE_CACHE_SHIFT;
4103
4104 struct extent_page_data epd = {
4105 .bio = NULL,
4106 .tree = tree,
4107 .get_extent = get_extent,
4108 .extent_locked = 1,
ffbd517d 4109 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4110 .bio_flags = 0,
771ed689
CM
4111 };
4112 struct writeback_control wbc_writepages = {
771ed689 4113 .sync_mode = mode,
771ed689
CM
4114 .nr_to_write = nr_pages * 2,
4115 .range_start = start,
4116 .range_end = end + 1,
4117 };
4118
d397712b 4119 while (start <= end) {
771ed689
CM
4120 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4121 if (clear_page_dirty_for_io(page))
4122 ret = __extent_writepage(page, &wbc_writepages, &epd);
4123 else {
4124 if (tree->ops && tree->ops->writepage_end_io_hook)
4125 tree->ops->writepage_end_io_hook(page, start,
4126 start + PAGE_CACHE_SIZE - 1,
4127 NULL, 1);
4128 unlock_page(page);
4129 }
4130 page_cache_release(page);
4131 start += PAGE_CACHE_SIZE;
4132 }
4133
ffbd517d 4134 flush_epd_write_bio(&epd);
771ed689
CM
4135 return ret;
4136}
d1310b2e
CM
4137
4138int extent_writepages(struct extent_io_tree *tree,
4139 struct address_space *mapping,
4140 get_extent_t *get_extent,
4141 struct writeback_control *wbc)
4142{
4143 int ret = 0;
4144 struct extent_page_data epd = {
4145 .bio = NULL,
4146 .tree = tree,
4147 .get_extent = get_extent,
771ed689 4148 .extent_locked = 0,
ffbd517d 4149 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4150 .bio_flags = 0,
d1310b2e
CM
4151 };
4152
4bef0848 4153 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4154 __extent_writepage, &epd,
4155 flush_write_bio);
ffbd517d 4156 flush_epd_write_bio(&epd);
d1310b2e
CM
4157 return ret;
4158}
d1310b2e
CM
4159
4160int extent_readpages(struct extent_io_tree *tree,
4161 struct address_space *mapping,
4162 struct list_head *pages, unsigned nr_pages,
4163 get_extent_t get_extent)
4164{
4165 struct bio *bio = NULL;
4166 unsigned page_idx;
c8b97818 4167 unsigned long bio_flags = 0;
67c9684f
LB
4168 struct page *pagepool[16];
4169 struct page *page;
125bac01 4170 struct extent_map *em_cached = NULL;
67c9684f 4171 int nr = 0;
d1310b2e 4172
d1310b2e 4173 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4174 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4175
4176 prefetchw(&page->flags);
4177 list_del(&page->lru);
67c9684f 4178 if (add_to_page_cache_lru(page, mapping,
43e817a1 4179 page->index, GFP_NOFS)) {
67c9684f
LB
4180 page_cache_release(page);
4181 continue;
d1310b2e 4182 }
67c9684f
LB
4183
4184 pagepool[nr++] = page;
4185 if (nr < ARRAY_SIZE(pagepool))
4186 continue;
125bac01 4187 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4188 &bio, 0, &bio_flags, READ);
67c9684f 4189 nr = 0;
d1310b2e 4190 }
9974090b 4191 if (nr)
125bac01 4192 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4193 &bio, 0, &bio_flags, READ);
67c9684f 4194
125bac01
MX
4195 if (em_cached)
4196 free_extent_map(em_cached);
4197
d1310b2e
CM
4198 BUG_ON(!list_empty(pages));
4199 if (bio)
79787eaa 4200 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4201 return 0;
4202}
d1310b2e
CM
4203
4204/*
4205 * basic invalidatepage code, this waits on any locked or writeback
4206 * ranges corresponding to the page, and then deletes any extent state
4207 * records from the tree
4208 */
4209int extent_invalidatepage(struct extent_io_tree *tree,
4210 struct page *page, unsigned long offset)
4211{
2ac55d41 4212 struct extent_state *cached_state = NULL;
4eee4fa4 4213 u64 start = page_offset(page);
d1310b2e
CM
4214 u64 end = start + PAGE_CACHE_SIZE - 1;
4215 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4216
fda2832f 4217 start += ALIGN(offset, blocksize);
d1310b2e
CM
4218 if (start > end)
4219 return 0;
4220
d0082371 4221 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4222 wait_on_page_writeback(page);
d1310b2e 4223 clear_extent_bit(tree, start, end,
32c00aff
JB
4224 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4225 EXTENT_DO_ACCOUNTING,
2ac55d41 4226 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4227 return 0;
4228}
d1310b2e 4229
7b13b7b1
CM
4230/*
4231 * a helper for releasepage, this tests for areas of the page that
4232 * are locked or under IO and drops the related state bits if it is safe
4233 * to drop the page.
4234 */
48a3b636
ES
4235static int try_release_extent_state(struct extent_map_tree *map,
4236 struct extent_io_tree *tree,
4237 struct page *page, gfp_t mask)
7b13b7b1 4238{
4eee4fa4 4239 u64 start = page_offset(page);
7b13b7b1
CM
4240 u64 end = start + PAGE_CACHE_SIZE - 1;
4241 int ret = 1;
4242
211f90e6 4243 if (test_range_bit(tree, start, end,
8b62b72b 4244 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4245 ret = 0;
4246 else {
4247 if ((mask & GFP_NOFS) == GFP_NOFS)
4248 mask = GFP_NOFS;
11ef160f
CM
4249 /*
4250 * at this point we can safely clear everything except the
4251 * locked bit and the nodatasum bit
4252 */
e3f24cc5 4253 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4254 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4255 0, 0, NULL, mask);
e3f24cc5
CM
4256
4257 /* if clear_extent_bit failed for enomem reasons,
4258 * we can't allow the release to continue.
4259 */
4260 if (ret < 0)
4261 ret = 0;
4262 else
4263 ret = 1;
7b13b7b1
CM
4264 }
4265 return ret;
4266}
7b13b7b1 4267
d1310b2e
CM
4268/*
4269 * a helper for releasepage. As long as there are no locked extents
4270 * in the range corresponding to the page, both state records and extent
4271 * map records are removed
4272 */
4273int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4274 struct extent_io_tree *tree, struct page *page,
4275 gfp_t mask)
d1310b2e
CM
4276{
4277 struct extent_map *em;
4eee4fa4 4278 u64 start = page_offset(page);
d1310b2e 4279 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4280
70dec807
CM
4281 if ((mask & __GFP_WAIT) &&
4282 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4283 u64 len;
70dec807 4284 while (start <= end) {
39b5637f 4285 len = end - start + 1;
890871be 4286 write_lock(&map->lock);
39b5637f 4287 em = lookup_extent_mapping(map, start, len);
285190d9 4288 if (!em) {
890871be 4289 write_unlock(&map->lock);
70dec807
CM
4290 break;
4291 }
7f3c74fb
CM
4292 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4293 em->start != start) {
890871be 4294 write_unlock(&map->lock);
70dec807
CM
4295 free_extent_map(em);
4296 break;
4297 }
4298 if (!test_range_bit(tree, em->start,
4299 extent_map_end(em) - 1,
8b62b72b 4300 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4301 0, NULL)) {
70dec807
CM
4302 remove_extent_mapping(map, em);
4303 /* once for the rb tree */
4304 free_extent_map(em);
4305 }
4306 start = extent_map_end(em);
890871be 4307 write_unlock(&map->lock);
70dec807
CM
4308
4309 /* once for us */
d1310b2e
CM
4310 free_extent_map(em);
4311 }
d1310b2e 4312 }
7b13b7b1 4313 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4314}
d1310b2e 4315
ec29ed5b
CM
4316/*
4317 * helper function for fiemap, which doesn't want to see any holes.
4318 * This maps until we find something past 'last'
4319 */
4320static struct extent_map *get_extent_skip_holes(struct inode *inode,
4321 u64 offset,
4322 u64 last,
4323 get_extent_t *get_extent)
4324{
4325 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4326 struct extent_map *em;
4327 u64 len;
4328
4329 if (offset >= last)
4330 return NULL;
4331
67871254 4332 while (1) {
ec29ed5b
CM
4333 len = last - offset;
4334 if (len == 0)
4335 break;
fda2832f 4336 len = ALIGN(len, sectorsize);
ec29ed5b 4337 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4338 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4339 return em;
4340
4341 /* if this isn't a hole return it */
4342 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4343 em->block_start != EXTENT_MAP_HOLE) {
4344 return em;
4345 }
4346
4347 /* this is a hole, advance to the next extent */
4348 offset = extent_map_end(em);
4349 free_extent_map(em);
4350 if (offset >= last)
4351 break;
4352 }
4353 return NULL;
4354}
4355
1506fcc8
YS
4356int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4357 __u64 start, __u64 len, get_extent_t *get_extent)
4358{
975f84fe 4359 int ret = 0;
1506fcc8
YS
4360 u64 off = start;
4361 u64 max = start + len;
4362 u32 flags = 0;
975f84fe
JB
4363 u32 found_type;
4364 u64 last;
ec29ed5b 4365 u64 last_for_get_extent = 0;
1506fcc8 4366 u64 disko = 0;
ec29ed5b 4367 u64 isize = i_size_read(inode);
975f84fe 4368 struct btrfs_key found_key;
1506fcc8 4369 struct extent_map *em = NULL;
2ac55d41 4370 struct extent_state *cached_state = NULL;
975f84fe 4371 struct btrfs_path *path;
dc046b10 4372 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4373 int end = 0;
ec29ed5b
CM
4374 u64 em_start = 0;
4375 u64 em_len = 0;
4376 u64 em_end = 0;
1506fcc8
YS
4377
4378 if (len == 0)
4379 return -EINVAL;
4380
975f84fe
JB
4381 path = btrfs_alloc_path();
4382 if (!path)
4383 return -ENOMEM;
4384 path->leave_spinning = 1;
4385
2c91943b
QW
4386 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4387 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4388
ec29ed5b
CM
4389 /*
4390 * lookup the last file extent. We're not using i_size here
4391 * because there might be preallocation past i_size
4392 */
dc046b10
JB
4393 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4394 0);
975f84fe
JB
4395 if (ret < 0) {
4396 btrfs_free_path(path);
4397 return ret;
4398 }
4399 WARN_ON(!ret);
4400 path->slots[0]--;
975f84fe 4401 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4402 found_type = found_key.type;
975f84fe 4403
ec29ed5b 4404 /* No extents, but there might be delalloc bits */
33345d01 4405 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4406 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4407 /* have to trust i_size as the end */
4408 last = (u64)-1;
4409 last_for_get_extent = isize;
4410 } else {
4411 /*
4412 * remember the start of the last extent. There are a
4413 * bunch of different factors that go into the length of the
4414 * extent, so its much less complex to remember where it started
4415 */
4416 last = found_key.offset;
4417 last_for_get_extent = last + 1;
975f84fe 4418 }
fe09e16c 4419 btrfs_release_path(path);
975f84fe 4420
ec29ed5b
CM
4421 /*
4422 * we might have some extents allocated but more delalloc past those
4423 * extents. so, we trust isize unless the start of the last extent is
4424 * beyond isize
4425 */
4426 if (last < isize) {
4427 last = (u64)-1;
4428 last_for_get_extent = isize;
4429 }
4430
a52f4cd2 4431 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4432 &cached_state);
ec29ed5b 4433
4d479cf0 4434 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4435 get_extent);
1506fcc8
YS
4436 if (!em)
4437 goto out;
4438 if (IS_ERR(em)) {
4439 ret = PTR_ERR(em);
4440 goto out;
4441 }
975f84fe 4442
1506fcc8 4443 while (!end) {
b76bb701 4444 u64 offset_in_extent = 0;
ea8efc74
CM
4445
4446 /* break if the extent we found is outside the range */
4447 if (em->start >= max || extent_map_end(em) < off)
4448 break;
4449
4450 /*
4451 * get_extent may return an extent that starts before our
4452 * requested range. We have to make sure the ranges
4453 * we return to fiemap always move forward and don't
4454 * overlap, so adjust the offsets here
4455 */
4456 em_start = max(em->start, off);
1506fcc8 4457
ea8efc74
CM
4458 /*
4459 * record the offset from the start of the extent
b76bb701
JB
4460 * for adjusting the disk offset below. Only do this if the
4461 * extent isn't compressed since our in ram offset may be past
4462 * what we have actually allocated on disk.
ea8efc74 4463 */
b76bb701
JB
4464 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4465 offset_in_extent = em_start - em->start;
ec29ed5b 4466 em_end = extent_map_end(em);
ea8efc74 4467 em_len = em_end - em_start;
1506fcc8
YS
4468 disko = 0;
4469 flags = 0;
4470
ea8efc74
CM
4471 /*
4472 * bump off for our next call to get_extent
4473 */
4474 off = extent_map_end(em);
4475 if (off >= max)
4476 end = 1;
4477
93dbfad7 4478 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4479 end = 1;
4480 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4481 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4482 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4483 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4484 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4485 flags |= (FIEMAP_EXTENT_DELALLOC |
4486 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4487 } else if (fieinfo->fi_extents_max) {
4488 u64 bytenr = em->block_start -
4489 (em->start - em->orig_start);
fe09e16c 4490
ea8efc74 4491 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4492
4493 /*
4494 * As btrfs supports shared space, this information
4495 * can be exported to userspace tools via
dc046b10
JB
4496 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4497 * then we're just getting a count and we can skip the
4498 * lookup stuff.
fe09e16c 4499 */
dc046b10
JB
4500 ret = btrfs_check_shared(NULL, root->fs_info,
4501 root->objectid,
4502 btrfs_ino(inode), bytenr);
4503 if (ret < 0)
fe09e16c 4504 goto out_free;
dc046b10 4505 if (ret)
fe09e16c 4506 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4507 ret = 0;
1506fcc8
YS
4508 }
4509 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4510 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4511 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4512 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4513
1506fcc8
YS
4514 free_extent_map(em);
4515 em = NULL;
ec29ed5b
CM
4516 if ((em_start >= last) || em_len == (u64)-1 ||
4517 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4518 flags |= FIEMAP_EXTENT_LAST;
4519 end = 1;
4520 }
4521
ec29ed5b
CM
4522 /* now scan forward to see if this is really the last extent. */
4523 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4524 get_extent);
4525 if (IS_ERR(em)) {
4526 ret = PTR_ERR(em);
4527 goto out;
4528 }
4529 if (!em) {
975f84fe
JB
4530 flags |= FIEMAP_EXTENT_LAST;
4531 end = 1;
4532 }
ec29ed5b
CM
4533 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4534 em_len, flags);
26e726af
CS
4535 if (ret) {
4536 if (ret == 1)
4537 ret = 0;
ec29ed5b 4538 goto out_free;
26e726af 4539 }
1506fcc8
YS
4540 }
4541out_free:
4542 free_extent_map(em);
4543out:
fe09e16c 4544 btrfs_free_path(path);
a52f4cd2 4545 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4546 &cached_state, GFP_NOFS);
1506fcc8
YS
4547 return ret;
4548}
4549
727011e0
CM
4550static void __free_extent_buffer(struct extent_buffer *eb)
4551{
6d49ba1b 4552 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4553 kmem_cache_free(extent_buffer_cache, eb);
4554}
4555
a26e8c9f 4556int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4557{
4558 return (atomic_read(&eb->io_pages) ||
4559 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4560 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4561}
4562
4563/*
4564 * Helper for releasing extent buffer page.
4565 */
a50924e3 4566static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4567{
4568 unsigned long index;
db7f3436
JB
4569 struct page *page;
4570 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4571
4572 BUG_ON(extent_buffer_under_io(eb));
4573
a50924e3
DS
4574 index = num_extent_pages(eb->start, eb->len);
4575 if (index == 0)
db7f3436
JB
4576 return;
4577
4578 do {
4579 index--;
fb85fc9a 4580 page = eb->pages[index];
5d2361db
FL
4581 if (!page)
4582 continue;
4583 if (mapped)
db7f3436 4584 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4585 /*
4586 * We do this since we'll remove the pages after we've
4587 * removed the eb from the radix tree, so we could race
4588 * and have this page now attached to the new eb. So
4589 * only clear page_private if it's still connected to
4590 * this eb.
4591 */
4592 if (PagePrivate(page) &&
4593 page->private == (unsigned long)eb) {
4594 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4595 BUG_ON(PageDirty(page));
4596 BUG_ON(PageWriteback(page));
db7f3436 4597 /*
5d2361db
FL
4598 * We need to make sure we haven't be attached
4599 * to a new eb.
db7f3436 4600 */
5d2361db
FL
4601 ClearPagePrivate(page);
4602 set_page_private(page, 0);
4603 /* One for the page private */
db7f3436
JB
4604 page_cache_release(page);
4605 }
5d2361db
FL
4606
4607 if (mapped)
4608 spin_unlock(&page->mapping->private_lock);
4609
4610 /* One for when we alloced the page */
4611 page_cache_release(page);
a50924e3 4612 } while (index != 0);
db7f3436
JB
4613}
4614
4615/*
4616 * Helper for releasing the extent buffer.
4617 */
4618static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4619{
a50924e3 4620 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4621 __free_extent_buffer(eb);
4622}
4623
f28491e0
JB
4624static struct extent_buffer *
4625__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4626 unsigned long len)
d1310b2e
CM
4627{
4628 struct extent_buffer *eb = NULL;
4629
d1b5c567 4630 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4631 eb->start = start;
4632 eb->len = len;
f28491e0 4633 eb->fs_info = fs_info;
815a51c7 4634 eb->bflags = 0;
bd681513
CM
4635 rwlock_init(&eb->lock);
4636 atomic_set(&eb->write_locks, 0);
4637 atomic_set(&eb->read_locks, 0);
4638 atomic_set(&eb->blocking_readers, 0);
4639 atomic_set(&eb->blocking_writers, 0);
4640 atomic_set(&eb->spinning_readers, 0);
4641 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4642 eb->lock_nested = 0;
bd681513
CM
4643 init_waitqueue_head(&eb->write_lock_wq);
4644 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4645
6d49ba1b
ES
4646 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4647
3083ee2e 4648 spin_lock_init(&eb->refs_lock);
d1310b2e 4649 atomic_set(&eb->refs, 1);
0b32f4bb 4650 atomic_set(&eb->io_pages, 0);
727011e0 4651
b8dae313
DS
4652 /*
4653 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4654 */
4655 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4656 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4657 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4658
4659 return eb;
4660}
4661
815a51c7
JS
4662struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4663{
4664 unsigned long i;
4665 struct page *p;
4666 struct extent_buffer *new;
4667 unsigned long num_pages = num_extent_pages(src->start, src->len);
4668
3f556f78 4669 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4670 if (new == NULL)
4671 return NULL;
4672
4673 for (i = 0; i < num_pages; i++) {
9ec72677 4674 p = alloc_page(GFP_NOFS);
db7f3436
JB
4675 if (!p) {
4676 btrfs_release_extent_buffer(new);
4677 return NULL;
4678 }
815a51c7
JS
4679 attach_extent_buffer_page(new, p);
4680 WARN_ON(PageDirty(p));
4681 SetPageUptodate(p);
4682 new->pages[i] = p;
4683 }
4684
4685 copy_extent_buffer(new, src, 0, 0, src->len);
4686 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4687 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4688
4689 return new;
4690}
4691
3f556f78
DS
4692struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4693 u64 start)
815a51c7
JS
4694{
4695 struct extent_buffer *eb;
3f556f78
DS
4696 unsigned long len;
4697 unsigned long num_pages;
815a51c7
JS
4698 unsigned long i;
4699
3f556f78
DS
4700 if (!fs_info) {
4701 /*
4702 * Called only from tests that don't always have a fs_info
4703 * available, but we know that nodesize is 4096
4704 */
4705 len = 4096;
4706 } else {
4707 len = fs_info->tree_root->nodesize;
4708 }
4709 num_pages = num_extent_pages(0, len);
4710
4711 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4712 if (!eb)
4713 return NULL;
4714
4715 for (i = 0; i < num_pages; i++) {
9ec72677 4716 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4717 if (!eb->pages[i])
4718 goto err;
4719 }
4720 set_extent_buffer_uptodate(eb);
4721 btrfs_set_header_nritems(eb, 0);
4722 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4723
4724 return eb;
4725err:
84167d19
SB
4726 for (; i > 0; i--)
4727 __free_page(eb->pages[i - 1]);
815a51c7
JS
4728 __free_extent_buffer(eb);
4729 return NULL;
4730}
4731
0b32f4bb
JB
4732static void check_buffer_tree_ref(struct extent_buffer *eb)
4733{
242e18c7 4734 int refs;
0b32f4bb
JB
4735 /* the ref bit is tricky. We have to make sure it is set
4736 * if we have the buffer dirty. Otherwise the
4737 * code to free a buffer can end up dropping a dirty
4738 * page
4739 *
4740 * Once the ref bit is set, it won't go away while the
4741 * buffer is dirty or in writeback, and it also won't
4742 * go away while we have the reference count on the
4743 * eb bumped.
4744 *
4745 * We can't just set the ref bit without bumping the
4746 * ref on the eb because free_extent_buffer might
4747 * see the ref bit and try to clear it. If this happens
4748 * free_extent_buffer might end up dropping our original
4749 * ref by mistake and freeing the page before we are able
4750 * to add one more ref.
4751 *
4752 * So bump the ref count first, then set the bit. If someone
4753 * beat us to it, drop the ref we added.
4754 */
242e18c7
CM
4755 refs = atomic_read(&eb->refs);
4756 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4757 return;
4758
594831c4
JB
4759 spin_lock(&eb->refs_lock);
4760 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4761 atomic_inc(&eb->refs);
594831c4 4762 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4763}
4764
2457aec6
MG
4765static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4766 struct page *accessed)
5df4235e
JB
4767{
4768 unsigned long num_pages, i;
4769
0b32f4bb
JB
4770 check_buffer_tree_ref(eb);
4771
5df4235e
JB
4772 num_pages = num_extent_pages(eb->start, eb->len);
4773 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4774 struct page *p = eb->pages[i];
4775
2457aec6
MG
4776 if (p != accessed)
4777 mark_page_accessed(p);
5df4235e
JB
4778 }
4779}
4780
f28491e0
JB
4781struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4782 u64 start)
452c75c3
CS
4783{
4784 struct extent_buffer *eb;
4785
4786 rcu_read_lock();
f28491e0
JB
4787 eb = radix_tree_lookup(&fs_info->buffer_radix,
4788 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4789 if (eb && atomic_inc_not_zero(&eb->refs)) {
4790 rcu_read_unlock();
062c19e9
FM
4791 /*
4792 * Lock our eb's refs_lock to avoid races with
4793 * free_extent_buffer. When we get our eb it might be flagged
4794 * with EXTENT_BUFFER_STALE and another task running
4795 * free_extent_buffer might have seen that flag set,
4796 * eb->refs == 2, that the buffer isn't under IO (dirty and
4797 * writeback flags not set) and it's still in the tree (flag
4798 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4799 * of decrementing the extent buffer's reference count twice.
4800 * So here we could race and increment the eb's reference count,
4801 * clear its stale flag, mark it as dirty and drop our reference
4802 * before the other task finishes executing free_extent_buffer,
4803 * which would later result in an attempt to free an extent
4804 * buffer that is dirty.
4805 */
4806 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4807 spin_lock(&eb->refs_lock);
4808 spin_unlock(&eb->refs_lock);
4809 }
2457aec6 4810 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4811 return eb;
4812 }
4813 rcu_read_unlock();
4814
4815 return NULL;
4816}
4817
faa2dbf0
JB
4818#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4819struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4820 u64 start)
faa2dbf0
JB
4821{
4822 struct extent_buffer *eb, *exists = NULL;
4823 int ret;
4824
4825 eb = find_extent_buffer(fs_info, start);
4826 if (eb)
4827 return eb;
3f556f78 4828 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4829 if (!eb)
4830 return NULL;
4831 eb->fs_info = fs_info;
4832again:
4833 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4834 if (ret)
4835 goto free_eb;
4836 spin_lock(&fs_info->buffer_lock);
4837 ret = radix_tree_insert(&fs_info->buffer_radix,
4838 start >> PAGE_CACHE_SHIFT, eb);
4839 spin_unlock(&fs_info->buffer_lock);
4840 radix_tree_preload_end();
4841 if (ret == -EEXIST) {
4842 exists = find_extent_buffer(fs_info, start);
4843 if (exists)
4844 goto free_eb;
4845 else
4846 goto again;
4847 }
4848 check_buffer_tree_ref(eb);
4849 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4850
4851 /*
4852 * We will free dummy extent buffer's if they come into
4853 * free_extent_buffer with a ref count of 2, but if we are using this we
4854 * want the buffers to stay in memory until we're done with them, so
4855 * bump the ref count again.
4856 */
4857 atomic_inc(&eb->refs);
4858 return eb;
4859free_eb:
4860 btrfs_release_extent_buffer(eb);
4861 return exists;
4862}
4863#endif
4864
f28491e0 4865struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4866 u64 start)
d1310b2e 4867{
ce3e6984 4868 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4869 unsigned long num_pages = num_extent_pages(start, len);
4870 unsigned long i;
4871 unsigned long index = start >> PAGE_CACHE_SHIFT;
4872 struct extent_buffer *eb;
6af118ce 4873 struct extent_buffer *exists = NULL;
d1310b2e 4874 struct page *p;
f28491e0 4875 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4876 int uptodate = 1;
19fe0a8b 4877 int ret;
d1310b2e 4878
f28491e0 4879 eb = find_extent_buffer(fs_info, start);
452c75c3 4880 if (eb)
6af118ce 4881 return eb;
6af118ce 4882
23d79d81 4883 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4884 if (!eb)
d1310b2e
CM
4885 return NULL;
4886
727011e0 4887 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4888 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4889 if (!p)
6af118ce 4890 goto free_eb;
4f2de97a
JB
4891
4892 spin_lock(&mapping->private_lock);
4893 if (PagePrivate(p)) {
4894 /*
4895 * We could have already allocated an eb for this page
4896 * and attached one so lets see if we can get a ref on
4897 * the existing eb, and if we can we know it's good and
4898 * we can just return that one, else we know we can just
4899 * overwrite page->private.
4900 */
4901 exists = (struct extent_buffer *)p->private;
4902 if (atomic_inc_not_zero(&exists->refs)) {
4903 spin_unlock(&mapping->private_lock);
4904 unlock_page(p);
17de39ac 4905 page_cache_release(p);
2457aec6 4906 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4907 goto free_eb;
4908 }
5ca64f45 4909 exists = NULL;
4f2de97a 4910
0b32f4bb 4911 /*
4f2de97a
JB
4912 * Do this so attach doesn't complain and we need to
4913 * drop the ref the old guy had.
4914 */
4915 ClearPagePrivate(p);
0b32f4bb 4916 WARN_ON(PageDirty(p));
4f2de97a 4917 page_cache_release(p);
d1310b2e 4918 }
4f2de97a
JB
4919 attach_extent_buffer_page(eb, p);
4920 spin_unlock(&mapping->private_lock);
0b32f4bb 4921 WARN_ON(PageDirty(p));
727011e0 4922 eb->pages[i] = p;
d1310b2e
CM
4923 if (!PageUptodate(p))
4924 uptodate = 0;
eb14ab8e
CM
4925
4926 /*
4927 * see below about how we avoid a nasty race with release page
4928 * and why we unlock later
4929 */
d1310b2e
CM
4930 }
4931 if (uptodate)
b4ce94de 4932 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4933again:
19fe0a8b
MX
4934 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4935 if (ret)
4936 goto free_eb;
4937
f28491e0
JB
4938 spin_lock(&fs_info->buffer_lock);
4939 ret = radix_tree_insert(&fs_info->buffer_radix,
4940 start >> PAGE_CACHE_SHIFT, eb);
4941 spin_unlock(&fs_info->buffer_lock);
452c75c3 4942 radix_tree_preload_end();
19fe0a8b 4943 if (ret == -EEXIST) {
f28491e0 4944 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4945 if (exists)
4946 goto free_eb;
4947 else
115391d2 4948 goto again;
6af118ce 4949 }
6af118ce 4950 /* add one reference for the tree */
0b32f4bb 4951 check_buffer_tree_ref(eb);
34b41ace 4952 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4953
4954 /*
4955 * there is a race where release page may have
4956 * tried to find this extent buffer in the radix
4957 * but failed. It will tell the VM it is safe to
4958 * reclaim the, and it will clear the page private bit.
4959 * We must make sure to set the page private bit properly
4960 * after the extent buffer is in the radix tree so
4961 * it doesn't get lost
4962 */
727011e0
CM
4963 SetPageChecked(eb->pages[0]);
4964 for (i = 1; i < num_pages; i++) {
fb85fc9a 4965 p = eb->pages[i];
727011e0
CM
4966 ClearPageChecked(p);
4967 unlock_page(p);
4968 }
4969 unlock_page(eb->pages[0]);
d1310b2e
CM
4970 return eb;
4971
6af118ce 4972free_eb:
5ca64f45 4973 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4974 for (i = 0; i < num_pages; i++) {
4975 if (eb->pages[i])
4976 unlock_page(eb->pages[i]);
4977 }
eb14ab8e 4978
897ca6e9 4979 btrfs_release_extent_buffer(eb);
6af118ce 4980 return exists;
d1310b2e 4981}
d1310b2e 4982
3083ee2e
JB
4983static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4984{
4985 struct extent_buffer *eb =
4986 container_of(head, struct extent_buffer, rcu_head);
4987
4988 __free_extent_buffer(eb);
4989}
4990
3083ee2e 4991/* Expects to have eb->eb_lock already held */
f7a52a40 4992static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4993{
4994 WARN_ON(atomic_read(&eb->refs) == 0);
4995 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4996 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4997 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4998
815a51c7 4999 spin_unlock(&eb->refs_lock);
3083ee2e 5000
f28491e0
JB
5001 spin_lock(&fs_info->buffer_lock);
5002 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 5003 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 5004 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5005 } else {
5006 spin_unlock(&eb->refs_lock);
815a51c7 5007 }
3083ee2e
JB
5008
5009 /* Should be safe to release our pages at this point */
a50924e3 5010 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5011#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5012 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5013 __free_extent_buffer(eb);
5014 return 1;
5015 }
5016#endif
3083ee2e 5017 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5018 return 1;
3083ee2e
JB
5019 }
5020 spin_unlock(&eb->refs_lock);
e64860aa
JB
5021
5022 return 0;
3083ee2e
JB
5023}
5024
d1310b2e
CM
5025void free_extent_buffer(struct extent_buffer *eb)
5026{
242e18c7
CM
5027 int refs;
5028 int old;
d1310b2e
CM
5029 if (!eb)
5030 return;
5031
242e18c7
CM
5032 while (1) {
5033 refs = atomic_read(&eb->refs);
5034 if (refs <= 3)
5035 break;
5036 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5037 if (old == refs)
5038 return;
5039 }
5040
3083ee2e 5041 spin_lock(&eb->refs_lock);
815a51c7
JS
5042 if (atomic_read(&eb->refs) == 2 &&
5043 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5044 atomic_dec(&eb->refs);
5045
3083ee2e
JB
5046 if (atomic_read(&eb->refs) == 2 &&
5047 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5048 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5049 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5050 atomic_dec(&eb->refs);
5051
5052 /*
5053 * I know this is terrible, but it's temporary until we stop tracking
5054 * the uptodate bits and such for the extent buffers.
5055 */
f7a52a40 5056 release_extent_buffer(eb);
3083ee2e
JB
5057}
5058
5059void free_extent_buffer_stale(struct extent_buffer *eb)
5060{
5061 if (!eb)
d1310b2e
CM
5062 return;
5063
3083ee2e
JB
5064 spin_lock(&eb->refs_lock);
5065 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5066
0b32f4bb 5067 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5068 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5069 atomic_dec(&eb->refs);
f7a52a40 5070 release_extent_buffer(eb);
d1310b2e 5071}
d1310b2e 5072
1d4284bd 5073void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5074{
d1310b2e
CM
5075 unsigned long i;
5076 unsigned long num_pages;
5077 struct page *page;
5078
d1310b2e
CM
5079 num_pages = num_extent_pages(eb->start, eb->len);
5080
5081 for (i = 0; i < num_pages; i++) {
fb85fc9a 5082 page = eb->pages[i];
b9473439 5083 if (!PageDirty(page))
d2c3f4f6
CM
5084 continue;
5085
a61e6f29 5086 lock_page(page);
eb14ab8e
CM
5087 WARN_ON(!PagePrivate(page));
5088
d1310b2e 5089 clear_page_dirty_for_io(page);
0ee0fda0 5090 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5091 if (!PageDirty(page)) {
5092 radix_tree_tag_clear(&page->mapping->page_tree,
5093 page_index(page),
5094 PAGECACHE_TAG_DIRTY);
5095 }
0ee0fda0 5096 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5097 ClearPageError(page);
a61e6f29 5098 unlock_page(page);
d1310b2e 5099 }
0b32f4bb 5100 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5101}
d1310b2e 5102
0b32f4bb 5103int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5104{
5105 unsigned long i;
5106 unsigned long num_pages;
b9473439 5107 int was_dirty = 0;
d1310b2e 5108
0b32f4bb
JB
5109 check_buffer_tree_ref(eb);
5110
b9473439 5111 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5112
d1310b2e 5113 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5114 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5115 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5116
b9473439 5117 for (i = 0; i < num_pages; i++)
fb85fc9a 5118 set_page_dirty(eb->pages[i]);
b9473439 5119 return was_dirty;
d1310b2e 5120}
d1310b2e 5121
0b32f4bb 5122int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5123{
5124 unsigned long i;
5125 struct page *page;
5126 unsigned long num_pages;
5127
b4ce94de 5128 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5129 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5130 for (i = 0; i < num_pages; i++) {
fb85fc9a 5131 page = eb->pages[i];
33958dc6
CM
5132 if (page)
5133 ClearPageUptodate(page);
1259ab75
CM
5134 }
5135 return 0;
5136}
5137
0b32f4bb 5138int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5139{
5140 unsigned long i;
5141 struct page *page;
5142 unsigned long num_pages;
5143
0b32f4bb 5144 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5145 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5146 for (i = 0; i < num_pages; i++) {
fb85fc9a 5147 page = eb->pages[i];
d1310b2e
CM
5148 SetPageUptodate(page);
5149 }
5150 return 0;
5151}
d1310b2e 5152
0b32f4bb 5153int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5154{
0b32f4bb 5155 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5156}
d1310b2e
CM
5157
5158int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5159 struct extent_buffer *eb, u64 start, int wait,
f188591e 5160 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5161{
5162 unsigned long i;
5163 unsigned long start_i;
5164 struct page *page;
5165 int err;
5166 int ret = 0;
ce9adaa5
CM
5167 int locked_pages = 0;
5168 int all_uptodate = 1;
d1310b2e 5169 unsigned long num_pages;
727011e0 5170 unsigned long num_reads = 0;
a86c12c7 5171 struct bio *bio = NULL;
c8b97818 5172 unsigned long bio_flags = 0;
a86c12c7 5173
b4ce94de 5174 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5175 return 0;
5176
d1310b2e
CM
5177 if (start) {
5178 WARN_ON(start < eb->start);
5179 start_i = (start >> PAGE_CACHE_SHIFT) -
5180 (eb->start >> PAGE_CACHE_SHIFT);
5181 } else {
5182 start_i = 0;
5183 }
5184
5185 num_pages = num_extent_pages(eb->start, eb->len);
5186 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5187 page = eb->pages[i];
bb82ab88 5188 if (wait == WAIT_NONE) {
2db04966 5189 if (!trylock_page(page))
ce9adaa5 5190 goto unlock_exit;
d1310b2e
CM
5191 } else {
5192 lock_page(page);
5193 }
ce9adaa5 5194 locked_pages++;
727011e0
CM
5195 if (!PageUptodate(page)) {
5196 num_reads++;
ce9adaa5 5197 all_uptodate = 0;
727011e0 5198 }
ce9adaa5
CM
5199 }
5200 if (all_uptodate) {
5201 if (start_i == 0)
b4ce94de 5202 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5203 goto unlock_exit;
5204 }
5205
656f30db 5206 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5207 eb->read_mirror = 0;
0b32f4bb 5208 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5209 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5210 page = eb->pages[i];
ce9adaa5 5211 if (!PageUptodate(page)) {
f188591e 5212 ClearPageError(page);
a86c12c7 5213 err = __extent_read_full_page(tree, page,
f188591e 5214 get_extent, &bio,
d4c7ca86
JB
5215 mirror_num, &bio_flags,
5216 READ | REQ_META);
d397712b 5217 if (err)
d1310b2e 5218 ret = err;
d1310b2e
CM
5219 } else {
5220 unlock_page(page);
5221 }
5222 }
5223
355808c2 5224 if (bio) {
d4c7ca86
JB
5225 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5226 bio_flags);
79787eaa
JM
5227 if (err)
5228 return err;
355808c2 5229 }
a86c12c7 5230
bb82ab88 5231 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5232 return ret;
d397712b 5233
d1310b2e 5234 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5235 page = eb->pages[i];
d1310b2e 5236 wait_on_page_locked(page);
d397712b 5237 if (!PageUptodate(page))
d1310b2e 5238 ret = -EIO;
d1310b2e 5239 }
d397712b 5240
d1310b2e 5241 return ret;
ce9adaa5
CM
5242
5243unlock_exit:
5244 i = start_i;
d397712b 5245 while (locked_pages > 0) {
fb85fc9a 5246 page = eb->pages[i];
ce9adaa5
CM
5247 i++;
5248 unlock_page(page);
5249 locked_pages--;
5250 }
5251 return ret;
d1310b2e 5252}
d1310b2e
CM
5253
5254void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5255 unsigned long start,
5256 unsigned long len)
5257{
5258 size_t cur;
5259 size_t offset;
5260 struct page *page;
5261 char *kaddr;
5262 char *dst = (char *)dstv;
5263 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5264 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5265
5266 WARN_ON(start > eb->len);
5267 WARN_ON(start + len > eb->start + eb->len);
5268
778746b5 5269 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5270
d397712b 5271 while (len > 0) {
fb85fc9a 5272 page = eb->pages[i];
d1310b2e
CM
5273
5274 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5275 kaddr = page_address(page);
d1310b2e 5276 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5277
5278 dst += cur;
5279 len -= cur;
5280 offset = 0;
5281 i++;
5282 }
5283}
d1310b2e 5284
550ac1d8
GH
5285int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5286 unsigned long start,
5287 unsigned long len)
5288{
5289 size_t cur;
5290 size_t offset;
5291 struct page *page;
5292 char *kaddr;
5293 char __user *dst = (char __user *)dstv;
5294 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5295 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5296 int ret = 0;
5297
5298 WARN_ON(start > eb->len);
5299 WARN_ON(start + len > eb->start + eb->len);
5300
5301 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5302
5303 while (len > 0) {
fb85fc9a 5304 page = eb->pages[i];
550ac1d8
GH
5305
5306 cur = min(len, (PAGE_CACHE_SIZE - offset));
5307 kaddr = page_address(page);
5308 if (copy_to_user(dst, kaddr + offset, cur)) {
5309 ret = -EFAULT;
5310 break;
5311 }
5312
5313 dst += cur;
5314 len -= cur;
5315 offset = 0;
5316 i++;
5317 }
5318
5319 return ret;
5320}
5321
d1310b2e 5322int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5323 unsigned long min_len, char **map,
d1310b2e 5324 unsigned long *map_start,
a6591715 5325 unsigned long *map_len)
d1310b2e
CM
5326{
5327 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5328 char *kaddr;
5329 struct page *p;
5330 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5331 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5332 unsigned long end_i = (start_offset + start + min_len - 1) >>
5333 PAGE_CACHE_SHIFT;
5334
5335 if (i != end_i)
5336 return -EINVAL;
5337
5338 if (i == 0) {
5339 offset = start_offset;
5340 *map_start = 0;
5341 } else {
5342 offset = 0;
5343 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5344 }
d397712b 5345
d1310b2e 5346 if (start + min_len > eb->len) {
31b1a2bd 5347 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5348 "wanted %lu %lu\n",
5349 eb->start, eb->len, start, min_len);
85026533 5350 return -EINVAL;
d1310b2e
CM
5351 }
5352
fb85fc9a 5353 p = eb->pages[i];
a6591715 5354 kaddr = page_address(p);
d1310b2e
CM
5355 *map = kaddr + offset;
5356 *map_len = PAGE_CACHE_SIZE - offset;
5357 return 0;
5358}
d1310b2e 5359
d1310b2e
CM
5360int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5361 unsigned long start,
5362 unsigned long len)
5363{
5364 size_t cur;
5365 size_t offset;
5366 struct page *page;
5367 char *kaddr;
5368 char *ptr = (char *)ptrv;
5369 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5370 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5371 int ret = 0;
5372
5373 WARN_ON(start > eb->len);
5374 WARN_ON(start + len > eb->start + eb->len);
5375
778746b5 5376 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5377
d397712b 5378 while (len > 0) {
fb85fc9a 5379 page = eb->pages[i];
d1310b2e
CM
5380
5381 cur = min(len, (PAGE_CACHE_SIZE - offset));
5382
a6591715 5383 kaddr = page_address(page);
d1310b2e 5384 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5385 if (ret)
5386 break;
5387
5388 ptr += cur;
5389 len -= cur;
5390 offset = 0;
5391 i++;
5392 }
5393 return ret;
5394}
d1310b2e
CM
5395
5396void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5397 unsigned long start, unsigned long len)
5398{
5399 size_t cur;
5400 size_t offset;
5401 struct page *page;
5402 char *kaddr;
5403 char *src = (char *)srcv;
5404 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5405 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5406
5407 WARN_ON(start > eb->len);
5408 WARN_ON(start + len > eb->start + eb->len);
5409
778746b5 5410 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5411
d397712b 5412 while (len > 0) {
fb85fc9a 5413 page = eb->pages[i];
d1310b2e
CM
5414 WARN_ON(!PageUptodate(page));
5415
5416 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5417 kaddr = page_address(page);
d1310b2e 5418 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5419
5420 src += cur;
5421 len -= cur;
5422 offset = 0;
5423 i++;
5424 }
5425}
d1310b2e
CM
5426
5427void memset_extent_buffer(struct extent_buffer *eb, char c,
5428 unsigned long start, unsigned long len)
5429{
5430 size_t cur;
5431 size_t offset;
5432 struct page *page;
5433 char *kaddr;
5434 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5435 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5436
5437 WARN_ON(start > eb->len);
5438 WARN_ON(start + len > eb->start + eb->len);
5439
778746b5 5440 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5441
d397712b 5442 while (len > 0) {
fb85fc9a 5443 page = eb->pages[i];
d1310b2e
CM
5444 WARN_ON(!PageUptodate(page));
5445
5446 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5447 kaddr = page_address(page);
d1310b2e 5448 memset(kaddr + offset, c, cur);
d1310b2e
CM
5449
5450 len -= cur;
5451 offset = 0;
5452 i++;
5453 }
5454}
d1310b2e
CM
5455
5456void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5457 unsigned long dst_offset, unsigned long src_offset,
5458 unsigned long len)
5459{
5460 u64 dst_len = dst->len;
5461 size_t cur;
5462 size_t offset;
5463 struct page *page;
5464 char *kaddr;
5465 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5466 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5467
5468 WARN_ON(src->len != dst_len);
5469
5470 offset = (start_offset + dst_offset) &
778746b5 5471 (PAGE_CACHE_SIZE - 1);
d1310b2e 5472
d397712b 5473 while (len > 0) {
fb85fc9a 5474 page = dst->pages[i];
d1310b2e
CM
5475 WARN_ON(!PageUptodate(page));
5476
5477 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5478
a6591715 5479 kaddr = page_address(page);
d1310b2e 5480 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5481
5482 src_offset += cur;
5483 len -= cur;
5484 offset = 0;
5485 i++;
5486 }
5487}
d1310b2e 5488
3387206f
ST
5489static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5490{
5491 unsigned long distance = (src > dst) ? src - dst : dst - src;
5492 return distance < len;
5493}
5494
d1310b2e
CM
5495static void copy_pages(struct page *dst_page, struct page *src_page,
5496 unsigned long dst_off, unsigned long src_off,
5497 unsigned long len)
5498{
a6591715 5499 char *dst_kaddr = page_address(dst_page);
d1310b2e 5500 char *src_kaddr;
727011e0 5501 int must_memmove = 0;
d1310b2e 5502
3387206f 5503 if (dst_page != src_page) {
a6591715 5504 src_kaddr = page_address(src_page);
3387206f 5505 } else {
d1310b2e 5506 src_kaddr = dst_kaddr;
727011e0
CM
5507 if (areas_overlap(src_off, dst_off, len))
5508 must_memmove = 1;
3387206f 5509 }
d1310b2e 5510
727011e0
CM
5511 if (must_memmove)
5512 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5513 else
5514 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5515}
5516
5517void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5518 unsigned long src_offset, unsigned long len)
5519{
5520 size_t cur;
5521 size_t dst_off_in_page;
5522 size_t src_off_in_page;
5523 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5524 unsigned long dst_i;
5525 unsigned long src_i;
5526
5527 if (src_offset + len > dst->len) {
efe120a0 5528 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5529 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5530 BUG_ON(1);
5531 }
5532 if (dst_offset + len > dst->len) {
efe120a0 5533 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5534 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5535 BUG_ON(1);
5536 }
5537
d397712b 5538 while (len > 0) {
d1310b2e 5539 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5540 (PAGE_CACHE_SIZE - 1);
d1310b2e 5541 src_off_in_page = (start_offset + src_offset) &
778746b5 5542 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5543
5544 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5545 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5546
5547 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5548 src_off_in_page));
5549 cur = min_t(unsigned long, cur,
5550 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5551
fb85fc9a 5552 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5553 dst_off_in_page, src_off_in_page, cur);
5554
5555 src_offset += cur;
5556 dst_offset += cur;
5557 len -= cur;
5558 }
5559}
d1310b2e
CM
5560
5561void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5562 unsigned long src_offset, unsigned long len)
5563{
5564 size_t cur;
5565 size_t dst_off_in_page;
5566 size_t src_off_in_page;
5567 unsigned long dst_end = dst_offset + len - 1;
5568 unsigned long src_end = src_offset + len - 1;
5569 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5570 unsigned long dst_i;
5571 unsigned long src_i;
5572
5573 if (src_offset + len > dst->len) {
efe120a0 5574 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5575 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5576 BUG_ON(1);
5577 }
5578 if (dst_offset + len > dst->len) {
efe120a0 5579 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5580 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5581 BUG_ON(1);
5582 }
727011e0 5583 if (dst_offset < src_offset) {
d1310b2e
CM
5584 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5585 return;
5586 }
d397712b 5587 while (len > 0) {
d1310b2e
CM
5588 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5589 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5590
5591 dst_off_in_page = (start_offset + dst_end) &
778746b5 5592 (PAGE_CACHE_SIZE - 1);
d1310b2e 5593 src_off_in_page = (start_offset + src_end) &
778746b5 5594 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5595
5596 cur = min_t(unsigned long, len, src_off_in_page + 1);
5597 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5598 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5599 dst_off_in_page - cur + 1,
5600 src_off_in_page - cur + 1, cur);
5601
5602 dst_end -= cur;
5603 src_end -= cur;
5604 len -= cur;
5605 }
5606}
6af118ce 5607
f7a52a40 5608int try_release_extent_buffer(struct page *page)
19fe0a8b 5609{
6af118ce 5610 struct extent_buffer *eb;
6af118ce 5611
3083ee2e
JB
5612 /*
5613 * We need to make sure noboody is attaching this page to an eb right
5614 * now.
5615 */
5616 spin_lock(&page->mapping->private_lock);
5617 if (!PagePrivate(page)) {
5618 spin_unlock(&page->mapping->private_lock);
4f2de97a 5619 return 1;
45f49bce 5620 }
6af118ce 5621
3083ee2e
JB
5622 eb = (struct extent_buffer *)page->private;
5623 BUG_ON(!eb);
19fe0a8b
MX
5624
5625 /*
3083ee2e
JB
5626 * This is a little awful but should be ok, we need to make sure that
5627 * the eb doesn't disappear out from under us while we're looking at
5628 * this page.
19fe0a8b 5629 */
3083ee2e 5630 spin_lock(&eb->refs_lock);
0b32f4bb 5631 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5632 spin_unlock(&eb->refs_lock);
5633 spin_unlock(&page->mapping->private_lock);
5634 return 0;
b9473439 5635 }
3083ee2e 5636 spin_unlock(&page->mapping->private_lock);
897ca6e9 5637
19fe0a8b 5638 /*
3083ee2e
JB
5639 * If tree ref isn't set then we know the ref on this eb is a real ref,
5640 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5641 */
3083ee2e
JB
5642 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5643 spin_unlock(&eb->refs_lock);
5644 return 0;
b9473439 5645 }
19fe0a8b 5646
f7a52a40 5647 return release_extent_buffer(eb);
6af118ce 5648}