]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
direct-io: use bio set/get op accessors
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729
730search_again:
731 if (start > end)
732 goto out;
cad321ad 733 spin_unlock(&tree->lock);
d0164adc 734 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
735 cond_resched();
736 goto again;
7ab5cb2a
DS
737
738out:
739 spin_unlock(&tree->lock);
740 if (prealloc)
741 free_extent_state(prealloc);
742
743 return 0;
744
d1310b2e 745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
876 /*
877 * Don't care for allocation failure here because we might end
878 * up not needing the pre-allocated extent state at all, which
879 * is the case if we only have in the tree extent states that
880 * cover our input range and don't cover too any other range.
881 * If we end up needing a new extent state we allocate it later.
882 */
d1310b2e 883 prealloc = alloc_extent_state(mask);
d1310b2e
CM
884 }
885
cad321ad 886 spin_lock(&tree->lock);
9655d298
CM
887 if (cached_state && *cached_state) {
888 state = *cached_state;
df98b6e2 889 if (state->start <= start && state->end > start &&
27a3507d 890 extent_state_in_tree(state)) {
9655d298
CM
891 node = &state->rb_node;
892 goto hit_next;
893 }
894 }
d1310b2e
CM
895 /*
896 * this search will find all the extents that end after
897 * our range starts.
898 */
12cfbad9 899 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 900 if (!node) {
8233767a
XG
901 prealloc = alloc_extent_state_atomic(prealloc);
902 BUG_ON(!prealloc);
12cfbad9 903 err = insert_state(tree, prealloc, start, end,
d38ed27f 904 &p, &parent, &bits, changeset);
c2d904e0
JM
905 if (err)
906 extent_io_tree_panic(tree, err);
907
c42ac0bc 908 cache_state(prealloc, cached_state);
d1310b2e 909 prealloc = NULL;
d1310b2e
CM
910 goto out;
911 }
d1310b2e 912 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 913hit_next:
d1310b2e
CM
914 last_start = state->start;
915 last_end = state->end;
916
917 /*
918 * | ---- desired range ---- |
919 * | state |
920 *
921 * Just lock what we found and keep going
922 */
923 if (state->start == start && state->end <= end) {
1edbb734 924 if (state->state & exclusive_bits) {
d1310b2e
CM
925 *failed_start = state->start;
926 err = -EEXIST;
927 goto out;
928 }
42daec29 929
d38ed27f 930 set_state_bits(tree, state, &bits, changeset);
2c64c53d 931 cache_state(state, cached_state);
d1310b2e 932 merge_state(tree, state);
5c939df5
YZ
933 if (last_end == (u64)-1)
934 goto out;
935 start = last_end + 1;
d1ac6e41
LB
936 state = next_state(state);
937 if (start < end && state && state->start == start &&
938 !need_resched())
939 goto hit_next;
d1310b2e
CM
940 goto search_again;
941 }
942
943 /*
944 * | ---- desired range ---- |
945 * | state |
946 * or
947 * | ------------- state -------------- |
948 *
949 * We need to split the extent we found, and may flip bits on
950 * second half.
951 *
952 * If the extent we found extends past our
953 * range, we just split and search again. It'll get split
954 * again the next time though.
955 *
956 * If the extent we found is inside our range, we set the
957 * desired bit on it.
958 */
959 if (state->start < start) {
1edbb734 960 if (state->state & exclusive_bits) {
d1310b2e
CM
961 *failed_start = start;
962 err = -EEXIST;
963 goto out;
964 }
8233767a
XG
965
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
d1310b2e 968 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
969 if (err)
970 extent_io_tree_panic(tree, err);
971
d1310b2e
CM
972 prealloc = NULL;
973 if (err)
974 goto out;
975 if (state->end <= end) {
d38ed27f 976 set_state_bits(tree, state, &bits, changeset);
2c64c53d 977 cache_state(state, cached_state);
d1310b2e 978 merge_state(tree, state);
5c939df5
YZ
979 if (last_end == (u64)-1)
980 goto out;
981 start = last_end + 1;
d1ac6e41
LB
982 state = next_state(state);
983 if (start < end && state && state->start == start &&
984 !need_resched())
985 goto hit_next;
d1310b2e
CM
986 }
987 goto search_again;
988 }
989 /*
990 * | ---- desired range ---- |
991 * | state | or | state |
992 *
993 * There's a hole, we need to insert something in it and
994 * ignore the extent we found.
995 */
996 if (state->start > start) {
997 u64 this_end;
998 if (end < last_start)
999 this_end = end;
1000 else
d397712b 1001 this_end = last_start - 1;
8233767a
XG
1002
1003 prealloc = alloc_extent_state_atomic(prealloc);
1004 BUG_ON(!prealloc);
c7f895a2
XG
1005
1006 /*
1007 * Avoid to free 'prealloc' if it can be merged with
1008 * the later extent.
1009 */
d1310b2e 1010 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1011 NULL, NULL, &bits, changeset);
c2d904e0
JM
1012 if (err)
1013 extent_io_tree_panic(tree, err);
1014
9ed74f2d
JB
1015 cache_state(prealloc, cached_state);
1016 prealloc = NULL;
d1310b2e
CM
1017 start = this_end + 1;
1018 goto search_again;
1019 }
1020 /*
1021 * | ---- desired range ---- |
1022 * | state |
1023 * We need to split the extent, and set the bit
1024 * on the first half
1025 */
1026 if (state->start <= end && state->end > end) {
1edbb734 1027 if (state->state & exclusive_bits) {
d1310b2e
CM
1028 *failed_start = start;
1029 err = -EEXIST;
1030 goto out;
1031 }
8233767a
XG
1032
1033 prealloc = alloc_extent_state_atomic(prealloc);
1034 BUG_ON(!prealloc);
d1310b2e 1035 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1036 if (err)
1037 extent_io_tree_panic(tree, err);
d1310b2e 1038
d38ed27f 1039 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1040 cache_state(prealloc, cached_state);
d1310b2e
CM
1041 merge_state(tree, prealloc);
1042 prealloc = NULL;
1043 goto out;
1044 }
1045
b5a4ba14
DS
1046search_again:
1047 if (start > end)
1048 goto out;
1049 spin_unlock(&tree->lock);
1050 if (gfpflags_allow_blocking(mask))
1051 cond_resched();
1052 goto again;
d1310b2e
CM
1053
1054out:
cad321ad 1055 spin_unlock(&tree->lock);
d1310b2e
CM
1056 if (prealloc)
1057 free_extent_state(prealloc);
1058
1059 return err;
1060
d1310b2e 1061}
d1310b2e 1062
41074888 1063int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1064 unsigned bits, u64 * failed_start,
41074888 1065 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1066{
1067 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1068 cached_state, mask, NULL);
3fbe5c02
JM
1069}
1070
1071
462d6fac 1072/**
10983f2e
LB
1073 * convert_extent_bit - convert all bits in a given range from one bit to
1074 * another
462d6fac
JB
1075 * @tree: the io tree to search
1076 * @start: the start offset in bytes
1077 * @end: the end offset in bytes (inclusive)
1078 * @bits: the bits to set in this range
1079 * @clear_bits: the bits to clear in this range
e6138876 1080 * @cached_state: state that we're going to cache
462d6fac
JB
1081 *
1082 * This will go through and set bits for the given range. If any states exist
1083 * already in this range they are set with the given bit and cleared of the
1084 * clear_bits. This is only meant to be used by things that are mergeable, ie
1085 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1086 * boundary bits like LOCK.
210aa277
DS
1087 *
1088 * All allocations are done with GFP_NOFS.
462d6fac
JB
1089 */
1090int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1091 unsigned bits, unsigned clear_bits,
210aa277 1092 struct extent_state **cached_state)
462d6fac
JB
1093{
1094 struct extent_state *state;
1095 struct extent_state *prealloc = NULL;
1096 struct rb_node *node;
12cfbad9
FDBM
1097 struct rb_node **p;
1098 struct rb_node *parent;
462d6fac
JB
1099 int err = 0;
1100 u64 last_start;
1101 u64 last_end;
c8fd3de7 1102 bool first_iteration = true;
462d6fac 1103
a5dee37d 1104 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1105
462d6fac 1106again:
210aa277 1107 if (!prealloc) {
c8fd3de7
FM
1108 /*
1109 * Best effort, don't worry if extent state allocation fails
1110 * here for the first iteration. We might have a cached state
1111 * that matches exactly the target range, in which case no
1112 * extent state allocations are needed. We'll only know this
1113 * after locking the tree.
1114 */
210aa277 1115 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1116 if (!prealloc && !first_iteration)
462d6fac
JB
1117 return -ENOMEM;
1118 }
1119
1120 spin_lock(&tree->lock);
e6138876
JB
1121 if (cached_state && *cached_state) {
1122 state = *cached_state;
1123 if (state->start <= start && state->end > start &&
27a3507d 1124 extent_state_in_tree(state)) {
e6138876
JB
1125 node = &state->rb_node;
1126 goto hit_next;
1127 }
1128 }
1129
462d6fac
JB
1130 /*
1131 * this search will find all the extents that end after
1132 * our range starts.
1133 */
12cfbad9 1134 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1135 if (!node) {
1136 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1137 if (!prealloc) {
1138 err = -ENOMEM;
1139 goto out;
1140 }
12cfbad9 1141 err = insert_state(tree, prealloc, start, end,
d38ed27f 1142 &p, &parent, &bits, NULL);
c2d904e0
JM
1143 if (err)
1144 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1145 cache_state(prealloc, cached_state);
1146 prealloc = NULL;
462d6fac
JB
1147 goto out;
1148 }
1149 state = rb_entry(node, struct extent_state, rb_node);
1150hit_next:
1151 last_start = state->start;
1152 last_end = state->end;
1153
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 *
1158 * Just lock what we found and keep going
1159 */
1160 if (state->start == start && state->end <= end) {
d38ed27f 1161 set_state_bits(tree, state, &bits, NULL);
e6138876 1162 cache_state(state, cached_state);
fefdc557 1163 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1164 if (last_end == (u64)-1)
1165 goto out;
462d6fac 1166 start = last_end + 1;
d1ac6e41
LB
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
462d6fac
JB
1170 goto search_again;
1171 }
1172
1173 /*
1174 * | ---- desired range ---- |
1175 * | state |
1176 * or
1177 * | ------------- state -------------- |
1178 *
1179 * We need to split the extent we found, and may flip bits on
1180 * second half.
1181 *
1182 * If the extent we found extends past our
1183 * range, we just split and search again. It'll get split
1184 * again the next time though.
1185 *
1186 * If the extent we found is inside our range, we set the
1187 * desired bit on it.
1188 */
1189 if (state->start < start) {
1190 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1191 if (!prealloc) {
1192 err = -ENOMEM;
1193 goto out;
1194 }
462d6fac 1195 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1196 if (err)
1197 extent_io_tree_panic(tree, err);
462d6fac
JB
1198 prealloc = NULL;
1199 if (err)
1200 goto out;
1201 if (state->end <= end) {
d38ed27f 1202 set_state_bits(tree, state, &bits, NULL);
e6138876 1203 cache_state(state, cached_state);
fefdc557
QW
1204 state = clear_state_bit(tree, state, &clear_bits, 0,
1205 NULL);
462d6fac
JB
1206 if (last_end == (u64)-1)
1207 goto out;
1208 start = last_end + 1;
d1ac6e41
LB
1209 if (start < end && state && state->start == start &&
1210 !need_resched())
1211 goto hit_next;
462d6fac
JB
1212 }
1213 goto search_again;
1214 }
1215 /*
1216 * | ---- desired range ---- |
1217 * | state | or | state |
1218 *
1219 * There's a hole, we need to insert something in it and
1220 * ignore the extent we found.
1221 */
1222 if (state->start > start) {
1223 u64 this_end;
1224 if (end < last_start)
1225 this_end = end;
1226 else
1227 this_end = last_start - 1;
1228
1229 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1230 if (!prealloc) {
1231 err = -ENOMEM;
1232 goto out;
1233 }
462d6fac
JB
1234
1235 /*
1236 * Avoid to free 'prealloc' if it can be merged with
1237 * the later extent.
1238 */
1239 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1240 NULL, NULL, &bits, NULL);
c2d904e0
JM
1241 if (err)
1242 extent_io_tree_panic(tree, err);
e6138876 1243 cache_state(prealloc, cached_state);
462d6fac
JB
1244 prealloc = NULL;
1245 start = this_end + 1;
1246 goto search_again;
1247 }
1248 /*
1249 * | ---- desired range ---- |
1250 * | state |
1251 * We need to split the extent, and set the bit
1252 * on the first half
1253 */
1254 if (state->start <= end && state->end > end) {
1255 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1256 if (!prealloc) {
1257 err = -ENOMEM;
1258 goto out;
1259 }
462d6fac
JB
1260
1261 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1262 if (err)
1263 extent_io_tree_panic(tree, err);
462d6fac 1264
d38ed27f 1265 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1266 cache_state(prealloc, cached_state);
fefdc557 1267 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1268 prealloc = NULL;
1269 goto out;
1270 }
1271
462d6fac
JB
1272search_again:
1273 if (start > end)
1274 goto out;
1275 spin_unlock(&tree->lock);
210aa277 1276 cond_resched();
c8fd3de7 1277 first_iteration = false;
462d6fac 1278 goto again;
462d6fac
JB
1279
1280out:
1281 spin_unlock(&tree->lock);
1282 if (prealloc)
1283 free_extent_state(prealloc);
1284
1285 return err;
462d6fac
JB
1286}
1287
d1310b2e 1288/* wrappers around set/clear extent bit */
d38ed27f 1289int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1290 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1291{
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
2c53b912 1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1301 changeset);
1302}
1303
fefdc557
QW
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307{
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310}
1311
fefdc557 1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1313 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1314{
1315 /*
1316 * Don't support EXTENT_LOCKED case, same reason as
1317 * set_record_extent_bits().
1318 */
1319 BUG_ON(bits & EXTENT_LOCKED);
1320
f734c44a 1321 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1322 changeset);
1323}
1324
d352ac68
CM
1325/*
1326 * either insert or lock state struct between start and end use mask to tell
1327 * us if waiting is desired.
1328 */
1edbb734 1329int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1330 struct extent_state **cached_state)
d1310b2e
CM
1331{
1332 int err;
1333 u64 failed_start;
9ee49a04 1334
d1310b2e 1335 while (1) {
ff13db41 1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1337 EXTENT_LOCKED, &failed_start,
d38ed27f 1338 cached_state, GFP_NOFS, NULL);
d0082371 1339 if (err == -EEXIST) {
d1310b2e
CM
1340 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1341 start = failed_start;
d0082371 1342 } else
d1310b2e 1343 break;
d1310b2e
CM
1344 WARN_ON(start > end);
1345 }
1346 return err;
1347}
d1310b2e 1348
d0082371 1349int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1350{
1351 int err;
1352 u64 failed_start;
1353
3fbe5c02 1354 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1355 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1356 if (err == -EEXIST) {
1357 if (failed_start > start)
1358 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1359 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1360 return 0;
6643558d 1361 }
25179201
JB
1362 return 1;
1363}
25179201 1364
bd1fa4f0 1365void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1366{
09cbfeaf
KS
1367 unsigned long index = start >> PAGE_SHIFT;
1368 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1369 struct page *page;
1370
1371 while (index <= end_index) {
1372 page = find_get_page(inode->i_mapping, index);
1373 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1374 clear_page_dirty_for_io(page);
09cbfeaf 1375 put_page(page);
4adaa611
CM
1376 index++;
1377 }
4adaa611
CM
1378}
1379
f6311572 1380void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1381{
09cbfeaf
KS
1382 unsigned long index = start >> PAGE_SHIFT;
1383 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1384 struct page *page;
1385
1386 while (index <= end_index) {
1387 page = find_get_page(inode->i_mapping, index);
1388 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1389 __set_page_dirty_nobuffers(page);
8d38633c 1390 account_page_redirty(page);
09cbfeaf 1391 put_page(page);
4adaa611
CM
1392 index++;
1393 }
4adaa611
CM
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
35de6db2 1399static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1400{
09cbfeaf
KS
1401 unsigned long index = start >> PAGE_SHIFT;
1402 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1408 set_page_writeback(page);
09cbfeaf 1409 put_page(page);
d1310b2e
CM
1410 index++;
1411 }
d1310b2e 1412}
d1310b2e 1413
d352ac68
CM
1414/* find the first state struct with 'bits' set after 'start', and
1415 * return it. tree->lock must be held. NULL will returned if
1416 * nothing was found after 'start'
1417 */
48a3b636
ES
1418static struct extent_state *
1419find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1420 u64 start, unsigned bits)
d7fc640e
CM
1421{
1422 struct rb_node *node;
1423 struct extent_state *state;
1424
1425 /*
1426 * this search will find all the extents that end after
1427 * our range starts.
1428 */
1429 node = tree_search(tree, start);
d397712b 1430 if (!node)
d7fc640e 1431 goto out;
d7fc640e 1432
d397712b 1433 while (1) {
d7fc640e 1434 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1435 if (state->end >= start && (state->state & bits))
d7fc640e 1436 return state;
d397712b 1437
d7fc640e
CM
1438 node = rb_next(node);
1439 if (!node)
1440 break;
1441 }
1442out:
1443 return NULL;
1444}
d7fc640e 1445
69261c4b
XG
1446/*
1447 * find the first offset in the io tree with 'bits' set. zero is
1448 * returned if we find something, and *start_ret and *end_ret are
1449 * set to reflect the state struct that was found.
1450 *
477d7eaf 1451 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1452 */
1453int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1454 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1455 struct extent_state **cached_state)
69261c4b
XG
1456{
1457 struct extent_state *state;
e6138876 1458 struct rb_node *n;
69261c4b
XG
1459 int ret = 1;
1460
1461 spin_lock(&tree->lock);
e6138876
JB
1462 if (cached_state && *cached_state) {
1463 state = *cached_state;
27a3507d 1464 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1465 n = rb_next(&state->rb_node);
1466 while (n) {
1467 state = rb_entry(n, struct extent_state,
1468 rb_node);
1469 if (state->state & bits)
1470 goto got_it;
1471 n = rb_next(n);
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 goto out;
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 }
1480
69261c4b 1481 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1482got_it:
69261c4b 1483 if (state) {
e38e2ed7 1484 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1485 *start_ret = state->start;
1486 *end_ret = state->end;
1487 ret = 0;
1488 }
e6138876 1489out:
69261c4b
XG
1490 spin_unlock(&tree->lock);
1491 return ret;
1492}
1493
d352ac68
CM
1494/*
1495 * find a contiguous range of bytes in the file marked as delalloc, not
1496 * more than 'max_bytes'. start and end are used to return the range,
1497 *
1498 * 1 is returned if we find something, 0 if nothing was in the tree
1499 */
c8b97818 1500static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1501 u64 *start, u64 *end, u64 max_bytes,
1502 struct extent_state **cached_state)
d1310b2e
CM
1503{
1504 struct rb_node *node;
1505 struct extent_state *state;
1506 u64 cur_start = *start;
1507 u64 found = 0;
1508 u64 total_bytes = 0;
1509
cad321ad 1510 spin_lock(&tree->lock);
c8b97818 1511
d1310b2e
CM
1512 /*
1513 * this search will find all the extents that end after
1514 * our range starts.
1515 */
80ea96b1 1516 node = tree_search(tree, cur_start);
2b114d1d 1517 if (!node) {
3b951516
CM
1518 if (!found)
1519 *end = (u64)-1;
d1310b2e
CM
1520 goto out;
1521 }
1522
d397712b 1523 while (1) {
d1310b2e 1524 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1525 if (found && (state->start != cur_start ||
1526 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1527 goto out;
1528 }
1529 if (!(state->state & EXTENT_DELALLOC)) {
1530 if (!found)
1531 *end = state->end;
1532 goto out;
1533 }
c2a128d2 1534 if (!found) {
d1310b2e 1535 *start = state->start;
c2a128d2
JB
1536 *cached_state = state;
1537 atomic_inc(&state->refs);
1538 }
d1310b2e
CM
1539 found++;
1540 *end = state->end;
1541 cur_start = state->end + 1;
1542 node = rb_next(node);
d1310b2e 1543 total_bytes += state->end - state->start + 1;
7bf811a5 1544 if (total_bytes >= max_bytes)
573aecaf 1545 break;
573aecaf 1546 if (!node)
d1310b2e
CM
1547 break;
1548 }
1549out:
cad321ad 1550 spin_unlock(&tree->lock);
d1310b2e
CM
1551 return found;
1552}
1553
143bede5
JM
1554static noinline void __unlock_for_delalloc(struct inode *inode,
1555 struct page *locked_page,
1556 u64 start, u64 end)
c8b97818
CM
1557{
1558 int ret;
1559 struct page *pages[16];
09cbfeaf
KS
1560 unsigned long index = start >> PAGE_SHIFT;
1561 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1562 unsigned long nr_pages = end_index - index + 1;
1563 int i;
1564
1565 if (index == locked_page->index && end_index == index)
143bede5 1566 return;
c8b97818 1567
d397712b 1568 while (nr_pages > 0) {
c8b97818 1569 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1570 min_t(unsigned long, nr_pages,
1571 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1572 for (i = 0; i < ret; i++) {
1573 if (pages[i] != locked_page)
1574 unlock_page(pages[i]);
09cbfeaf 1575 put_page(pages[i]);
c8b97818
CM
1576 }
1577 nr_pages -= ret;
1578 index += ret;
1579 cond_resched();
1580 }
c8b97818
CM
1581}
1582
1583static noinline int lock_delalloc_pages(struct inode *inode,
1584 struct page *locked_page,
1585 u64 delalloc_start,
1586 u64 delalloc_end)
1587{
09cbfeaf 1588 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1589 unsigned long start_index = index;
09cbfeaf 1590 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1591 unsigned long pages_locked = 0;
1592 struct page *pages[16];
1593 unsigned long nrpages;
1594 int ret;
1595 int i;
1596
1597 /* the caller is responsible for locking the start index */
1598 if (index == locked_page->index && index == end_index)
1599 return 0;
1600
1601 /* skip the page at the start index */
1602 nrpages = end_index - index + 1;
d397712b 1603 while (nrpages > 0) {
c8b97818 1604 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1605 min_t(unsigned long,
1606 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1607 if (ret == 0) {
1608 ret = -EAGAIN;
1609 goto done;
1610 }
1611 /* now we have an array of pages, lock them all */
1612 for (i = 0; i < ret; i++) {
1613 /*
1614 * the caller is taking responsibility for
1615 * locked_page
1616 */
771ed689 1617 if (pages[i] != locked_page) {
c8b97818 1618 lock_page(pages[i]);
f2b1c41c
CM
1619 if (!PageDirty(pages[i]) ||
1620 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1621 ret = -EAGAIN;
1622 unlock_page(pages[i]);
09cbfeaf 1623 put_page(pages[i]);
771ed689
CM
1624 goto done;
1625 }
1626 }
09cbfeaf 1627 put_page(pages[i]);
771ed689 1628 pages_locked++;
c8b97818 1629 }
c8b97818
CM
1630 nrpages -= ret;
1631 index += ret;
1632 cond_resched();
1633 }
1634 ret = 0;
1635done:
1636 if (ret && pages_locked) {
1637 __unlock_for_delalloc(inode, locked_page,
1638 delalloc_start,
1639 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1640 PAGE_SHIFT);
c8b97818
CM
1641 }
1642 return ret;
1643}
1644
1645/*
1646 * find a contiguous range of bytes in the file marked as delalloc, not
1647 * more than 'max_bytes'. start and end are used to return the range,
1648 *
1649 * 1 is returned if we find something, 0 if nothing was in the tree
1650 */
294e30fe
JB
1651STATIC u64 find_lock_delalloc_range(struct inode *inode,
1652 struct extent_io_tree *tree,
1653 struct page *locked_page, u64 *start,
1654 u64 *end, u64 max_bytes)
c8b97818
CM
1655{
1656 u64 delalloc_start;
1657 u64 delalloc_end;
1658 u64 found;
9655d298 1659 struct extent_state *cached_state = NULL;
c8b97818
CM
1660 int ret;
1661 int loops = 0;
1662
1663again:
1664 /* step one, find a bunch of delalloc bytes starting at start */
1665 delalloc_start = *start;
1666 delalloc_end = 0;
1667 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1668 max_bytes, &cached_state);
70b99e69 1669 if (!found || delalloc_end <= *start) {
c8b97818
CM
1670 *start = delalloc_start;
1671 *end = delalloc_end;
c2a128d2 1672 free_extent_state(cached_state);
385fe0be 1673 return 0;
c8b97818
CM
1674 }
1675
70b99e69
CM
1676 /*
1677 * start comes from the offset of locked_page. We have to lock
1678 * pages in order, so we can't process delalloc bytes before
1679 * locked_page
1680 */
d397712b 1681 if (delalloc_start < *start)
70b99e69 1682 delalloc_start = *start;
70b99e69 1683
c8b97818
CM
1684 /*
1685 * make sure to limit the number of pages we try to lock down
c8b97818 1686 */
7bf811a5
JB
1687 if (delalloc_end + 1 - delalloc_start > max_bytes)
1688 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1689
c8b97818
CM
1690 /* step two, lock all the pages after the page that has start */
1691 ret = lock_delalloc_pages(inode, locked_page,
1692 delalloc_start, delalloc_end);
1693 if (ret == -EAGAIN) {
1694 /* some of the pages are gone, lets avoid looping by
1695 * shortening the size of the delalloc range we're searching
1696 */
9655d298 1697 free_extent_state(cached_state);
7d788742 1698 cached_state = NULL;
c8b97818 1699 if (!loops) {
09cbfeaf 1700 max_bytes = PAGE_SIZE;
c8b97818
CM
1701 loops = 1;
1702 goto again;
1703 } else {
1704 found = 0;
1705 goto out_failed;
1706 }
1707 }
79787eaa 1708 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1709
1710 /* step three, lock the state bits for the whole range */
ff13db41 1711 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1712
1713 /* then test to make sure it is all still delalloc */
1714 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1715 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1716 if (!ret) {
9655d298
CM
1717 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1718 &cached_state, GFP_NOFS);
c8b97818
CM
1719 __unlock_for_delalloc(inode, locked_page,
1720 delalloc_start, delalloc_end);
1721 cond_resched();
1722 goto again;
1723 }
9655d298 1724 free_extent_state(cached_state);
c8b97818
CM
1725 *start = delalloc_start;
1726 *end = delalloc_end;
1727out_failed:
1728 return found;
1729}
1730
a9d93e17 1731void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1732 struct page *locked_page,
9ee49a04 1733 unsigned clear_bits,
c2790a2e 1734 unsigned long page_ops)
c8b97818 1735{
c2790a2e 1736 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1737 int ret;
1738 struct page *pages[16];
09cbfeaf
KS
1739 unsigned long index = start >> PAGE_SHIFT;
1740 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1741 unsigned long nr_pages = end_index - index + 1;
1742 int i;
771ed689 1743
2c64c53d 1744 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1745 if (page_ops == 0)
a9d93e17 1746 return;
c8b97818 1747
704de49d
FM
1748 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1749 mapping_set_error(inode->i_mapping, -EIO);
1750
d397712b 1751 while (nr_pages > 0) {
c8b97818 1752 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1753 min_t(unsigned long,
1754 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1755 for (i = 0; i < ret; i++) {
8b62b72b 1756
c2790a2e 1757 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1758 SetPagePrivate2(pages[i]);
1759
c8b97818 1760 if (pages[i] == locked_page) {
09cbfeaf 1761 put_page(pages[i]);
c8b97818
CM
1762 continue;
1763 }
c2790a2e 1764 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1765 clear_page_dirty_for_io(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1767 set_page_writeback(pages[i]);
704de49d
FM
1768 if (page_ops & PAGE_SET_ERROR)
1769 SetPageError(pages[i]);
c2790a2e 1770 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1771 end_page_writeback(pages[i]);
c2790a2e 1772 if (page_ops & PAGE_UNLOCK)
771ed689 1773 unlock_page(pages[i]);
09cbfeaf 1774 put_page(pages[i]);
c8b97818
CM
1775 }
1776 nr_pages -= ret;
1777 index += ret;
1778 cond_resched();
1779 }
c8b97818 1780}
c8b97818 1781
d352ac68
CM
1782/*
1783 * count the number of bytes in the tree that have a given bit(s)
1784 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1785 * cached. The total number found is returned.
1786 */
d1310b2e
CM
1787u64 count_range_bits(struct extent_io_tree *tree,
1788 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1789 unsigned bits, int contig)
d1310b2e
CM
1790{
1791 struct rb_node *node;
1792 struct extent_state *state;
1793 u64 cur_start = *start;
1794 u64 total_bytes = 0;
ec29ed5b 1795 u64 last = 0;
d1310b2e
CM
1796 int found = 0;
1797
fae7f21c 1798 if (WARN_ON(search_end <= cur_start))
d1310b2e 1799 return 0;
d1310b2e 1800
cad321ad 1801 spin_lock(&tree->lock);
d1310b2e
CM
1802 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1803 total_bytes = tree->dirty_bytes;
1804 goto out;
1805 }
1806 /*
1807 * this search will find all the extents that end after
1808 * our range starts.
1809 */
80ea96b1 1810 node = tree_search(tree, cur_start);
d397712b 1811 if (!node)
d1310b2e 1812 goto out;
d1310b2e 1813
d397712b 1814 while (1) {
d1310b2e
CM
1815 state = rb_entry(node, struct extent_state, rb_node);
1816 if (state->start > search_end)
1817 break;
ec29ed5b
CM
1818 if (contig && found && state->start > last + 1)
1819 break;
1820 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1821 total_bytes += min(search_end, state->end) + 1 -
1822 max(cur_start, state->start);
1823 if (total_bytes >= max_bytes)
1824 break;
1825 if (!found) {
af60bed2 1826 *start = max(cur_start, state->start);
d1310b2e
CM
1827 found = 1;
1828 }
ec29ed5b
CM
1829 last = state->end;
1830 } else if (contig && found) {
1831 break;
d1310b2e
CM
1832 }
1833 node = rb_next(node);
1834 if (!node)
1835 break;
1836 }
1837out:
cad321ad 1838 spin_unlock(&tree->lock);
d1310b2e
CM
1839 return total_bytes;
1840}
b2950863 1841
d352ac68
CM
1842/*
1843 * set the private field for a given byte offset in the tree. If there isn't
1844 * an extent_state there already, this does nothing.
1845 */
f827ba9a 1846static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record *failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 state->failrec = failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
f827ba9a 1874static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1875 struct io_failure_record **failrec)
d1310b2e
CM
1876{
1877 struct rb_node *node;
1878 struct extent_state *state;
1879 int ret = 0;
1880
cad321ad 1881 spin_lock(&tree->lock);
d1310b2e
CM
1882 /*
1883 * this search will find all the extents that end after
1884 * our range starts.
1885 */
80ea96b1 1886 node = tree_search(tree, start);
2b114d1d 1887 if (!node) {
d1310b2e
CM
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state = rb_entry(node, struct extent_state, rb_node);
1892 if (state->start != start) {
1893 ret = -ENOENT;
1894 goto out;
1895 }
47dc196a 1896 *failrec = state->failrec;
d1310b2e 1897out:
cad321ad 1898 spin_unlock(&tree->lock);
d1310b2e
CM
1899 return ret;
1900}
1901
1902/*
1903 * searches a range in the state tree for a given mask.
70dec807 1904 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1905 * has the bits set. Otherwise, 1 is returned if any bit in the
1906 * range is found set.
1907 */
1908int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1909 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1910{
1911 struct extent_state *state = NULL;
1912 struct rb_node *node;
1913 int bitset = 0;
d1310b2e 1914
cad321ad 1915 spin_lock(&tree->lock);
27a3507d 1916 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1917 cached->end > start)
9655d298
CM
1918 node = &cached->rb_node;
1919 else
1920 node = tree_search(tree, start);
d1310b2e
CM
1921 while (node && start <= end) {
1922 state = rb_entry(node, struct extent_state, rb_node);
1923
1924 if (filled && state->start > start) {
1925 bitset = 0;
1926 break;
1927 }
1928
1929 if (state->start > end)
1930 break;
1931
1932 if (state->state & bits) {
1933 bitset = 1;
1934 if (!filled)
1935 break;
1936 } else if (filled) {
1937 bitset = 0;
1938 break;
1939 }
46562cec
CM
1940
1941 if (state->end == (u64)-1)
1942 break;
1943
d1310b2e
CM
1944 start = state->end + 1;
1945 if (start > end)
1946 break;
1947 node = rb_next(node);
1948 if (!node) {
1949 if (filled)
1950 bitset = 0;
1951 break;
1952 }
1953 }
cad321ad 1954 spin_unlock(&tree->lock);
d1310b2e
CM
1955 return bitset;
1956}
d1310b2e
CM
1957
1958/*
1959 * helper function to set a given page up to date if all the
1960 * extents in the tree for that page are up to date
1961 */
143bede5 1962static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1963{
4eee4fa4 1964 u64 start = page_offset(page);
09cbfeaf 1965 u64 end = start + PAGE_SIZE - 1;
9655d298 1966 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1967 SetPageUptodate(page);
d1310b2e
CM
1968}
1969
8b110e39 1970int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1971{
1972 int ret;
1973 int err = 0;
1974 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1975
47dc196a 1976 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1977 ret = clear_extent_bits(failure_tree, rec->start,
1978 rec->start + rec->len - 1,
91166212 1979 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1980 if (ret)
1981 err = ret;
1982
53b381b3
DW
1983 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1984 rec->start + rec->len - 1,
91166212 1985 EXTENT_DAMAGED);
53b381b3
DW
1986 if (ret && !err)
1987 err = ret;
4a54c8c1
JS
1988
1989 kfree(rec);
1990 return err;
1991}
1992
4a54c8c1
JS
1993/*
1994 * this bypasses the standard btrfs submit functions deliberately, as
1995 * the standard behavior is to write all copies in a raid setup. here we only
1996 * want to write the one bad copy. so we do the mapping for ourselves and issue
1997 * submit_bio directly.
3ec706c8 1998 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1999 * actually prevents the read that triggered the error from finishing.
2000 * currently, there can be no more than two copies of every data bit. thus,
2001 * exactly one rewrite is required.
2002 */
1203b681
MX
2003int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2004 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2005{
1203b681 2006 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2007 struct bio *bio;
2008 struct btrfs_device *dev;
4a54c8c1
JS
2009 u64 map_length = 0;
2010 u64 sector;
2011 struct btrfs_bio *bbio = NULL;
53b381b3 2012 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2013 int ret;
2014
908960c6 2015 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2016 BUG_ON(!mirror_num);
2017
53b381b3
DW
2018 /* we can't repair anything in raid56 yet */
2019 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2020 return 0;
2021
9be3395b 2022 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2023 if (!bio)
2024 return -EIO;
4f024f37 2025 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2026 map_length = length;
2027
b5de8d0d
FM
2028 /*
2029 * Avoid races with device replace and make sure our bbio has devices
2030 * associated to its stripes that don't go away while we are doing the
2031 * read repair operation.
2032 */
2033 btrfs_bio_counter_inc_blocked(fs_info);
3ec706c8 2034 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
b5de8d0d 2037 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2043 bio->bi_iter.bi_sector = sector;
4a54c8c1 2044 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2045 btrfs_put_bbio(bbio);
4a54c8c1 2046 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2047 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
4e49ea4a 2052 bio->bi_rw = WRITE_SYNC;
ffdd2018 2053 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2054
4e49ea4a 2055 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2056 /* try to remap that extent elsewhere? */
b5de8d0d 2057 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2058 bio_put(bio);
442a4f63 2059 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2060 return -EIO;
2061 }
2062
b14af3b4
DS
2063 btrfs_info_rl_in_rcu(fs_info,
2064 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2065 btrfs_ino(inode), start,
2066 rcu_str_deref(dev->name), sector);
b5de8d0d 2067 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2068 bio_put(bio);
2069 return 0;
2070}
2071
ea466794
JB
2072int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2073 int mirror_num)
2074{
ea466794
JB
2075 u64 start = eb->start;
2076 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2077 int ret = 0;
ea466794 2078
908960c6
ID
2079 if (root->fs_info->sb->s_flags & MS_RDONLY)
2080 return -EROFS;
2081
ea466794 2082 for (i = 0; i < num_pages; i++) {
fb85fc9a 2083 struct page *p = eb->pages[i];
1203b681
MX
2084
2085 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2086 PAGE_SIZE, start, p,
1203b681 2087 start - page_offset(p), mirror_num);
ea466794
JB
2088 if (ret)
2089 break;
09cbfeaf 2090 start += PAGE_SIZE;
ea466794
JB
2091 }
2092
2093 return ret;
2094}
2095
4a54c8c1
JS
2096/*
2097 * each time an IO finishes, we do a fast check in the IO failure tree
2098 * to see if we need to process or clean up an io_failure_record
2099 */
8b110e39
MX
2100int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2101 unsigned int pg_offset)
4a54c8c1
JS
2102{
2103 u64 private;
4a54c8c1 2104 struct io_failure_record *failrec;
908960c6 2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2106 struct extent_state *state;
2107 int num_copies;
4a54c8c1 2108 int ret;
4a54c8c1
JS
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
47dc196a
DS
2116 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2117 &failrec);
4a54c8c1
JS
2118 if (ret)
2119 return 0;
2120
4a54c8c1
JS
2121 BUG_ON(!failrec->this_mirror);
2122
2123 if (failrec->in_validation) {
2124 /* there was no real error, just free the record */
2125 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2126 failrec->start);
4a54c8c1
JS
2127 goto out;
2128 }
908960c6
ID
2129 if (fs_info->sb->s_flags & MS_RDONLY)
2130 goto out;
4a54c8c1
JS
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
883d0de4
MX
2138 if (state && state->start <= failrec->start &&
2139 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
4a54c8c1 2142 if (num_copies > 1) {
1203b681 2143 repair_io_failure(inode, start, failrec->len,
454ff3de 2144 failrec->logical, page,
1203b681 2145 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2146 }
2147 }
2148
2149out:
454ff3de 2150 free_io_failure(inode, failrec);
4a54c8c1 2151
454ff3de 2152 return 0;
4a54c8c1
JS
2153}
2154
f612496b
MX
2155/*
2156 * Can be called when
2157 * - hold extent lock
2158 * - under ordered extent
2159 * - the inode is freeing
2160 */
2161void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2162{
2163 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2164 struct io_failure_record *failrec;
2165 struct extent_state *state, *next;
2166
2167 if (RB_EMPTY_ROOT(&failure_tree->state))
2168 return;
2169
2170 spin_lock(&failure_tree->lock);
2171 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2172 while (state) {
2173 if (state->start > end)
2174 break;
2175
2176 ASSERT(state->end <= end);
2177
2178 next = next_state(state);
2179
47dc196a 2180 failrec = state->failrec;
f612496b
MX
2181 free_extent_state(state);
2182 kfree(failrec);
2183
2184 state = next;
2185 }
2186 spin_unlock(&failure_tree->lock);
2187}
2188
2fe6303e 2189int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2190 struct io_failure_record **failrec_ret)
4a54c8c1 2191{
2fe6303e 2192 struct io_failure_record *failrec;
4a54c8c1 2193 struct extent_map *em;
4a54c8c1
JS
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2197 int ret;
4a54c8c1
JS
2198 u64 logical;
2199
47dc196a 2200 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2fe6303e 2205
4a54c8c1
JS
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
68ba990f 2220 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
7a2d6a64 2225 if (!em) {
4a54c8c1
JS
2226 kfree(failrec);
2227 return -EIO;
2228 }
2fe6303e 2229
4a54c8c1
JS
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2fe6303e
MX
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
4a54c8c1
JS
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2247 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2248 if (ret >= 0)
47dc196a 2249 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
ceeb0ae7 2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2253 if (ret < 0) {
2254 kfree(failrec);
2255 return ret;
2256 }
2257 } else {
2fe6303e 2258 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2259 failrec->logical, failrec->start, failrec->len,
2260 failrec->in_validation);
2261 /*
2262 * when data can be on disk more than twice, add to failrec here
2263 * (e.g. with a list for failed_mirror) to make
2264 * clean_io_failure() clean all those errors at once.
2265 */
2266 }
2fe6303e
MX
2267
2268 *failrec_ret = failrec;
2269
2270 return 0;
2271}
2272
2273int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2274 struct io_failure_record *failrec, int failed_mirror)
2275{
2276 int num_copies;
2277
5d964051
SB
2278 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2279 failrec->logical, failrec->len);
4a54c8c1
JS
2280 if (num_copies == 1) {
2281 /*
2282 * we only have a single copy of the data, so don't bother with
2283 * all the retry and error correction code that follows. no
2284 * matter what the error is, it is very likely to persist.
2285 */
2fe6303e 2286 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2287 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2288 return 0;
4a54c8c1
JS
2289 }
2290
4a54c8c1
JS
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
4a54c8c1
JS
2323 }
2324
facc8a22 2325 if (failrec->this_mirror > num_copies) {
2fe6303e 2326 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2327 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2328 return 0;
4a54c8c1
JS
2329 }
2330
2fe6303e
MX
2331 return 1;
2332}
2333
2334
2335struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2336 struct io_failure_record *failrec,
2337 struct page *page, int pg_offset, int icsum,
8b110e39 2338 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2339{
2340 struct bio *bio;
2341 struct btrfs_io_bio *btrfs_failed_bio;
2342 struct btrfs_io_bio *btrfs_bio;
2343
9be3395b 2344 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2345 if (!bio)
2346 return NULL;
2347
2348 bio->bi_end_io = endio_func;
4f024f37 2349 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2350 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2351 bio->bi_iter.bi_size = 0;
8b110e39 2352 bio->bi_private = data;
4a54c8c1 2353
facc8a22
MX
2354 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2355 if (btrfs_failed_bio->csum) {
2356 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2357 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2358
2359 btrfs_bio = btrfs_io_bio(bio);
2360 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2361 icsum *= csum_size;
2362 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2363 csum_size);
2364 }
2365
2fe6303e
MX
2366 bio_add_page(bio, page, failrec->len, pg_offset);
2367
2368 return bio;
2369}
2370
2371/*
2372 * this is a generic handler for readpage errors (default
2373 * readpage_io_failed_hook). if other copies exist, read those and write back
2374 * good data to the failed position. does not investigate in remapping the
2375 * failed extent elsewhere, hoping the device will be smart enough to do this as
2376 * needed
2377 */
2378
2379static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2380 struct page *page, u64 start, u64 end,
2381 int failed_mirror)
2382{
2383 struct io_failure_record *failrec;
2384 struct inode *inode = page->mapping->host;
2385 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2386 struct bio *bio;
2387 int read_mode;
2388 int ret;
2389
2390 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2391
2392 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2393 if (ret)
2394 return ret;
2395
2396 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2397 if (!ret) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
2401
2402 if (failed_bio->bi_vcnt > 1)
2403 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2404 else
2405 read_mode = READ_SYNC;
2406
2407 phy_offset >>= inode->i_sb->s_blocksize_bits;
2408 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2409 start - page_offset(page),
8b110e39
MX
2410 (int)phy_offset, failed_bio->bi_end_io,
2411 NULL);
2fe6303e
MX
2412 if (!bio) {
2413 free_io_failure(inode, failrec);
2414 return -EIO;
2415 }
4a54c8c1 2416
2fe6303e
MX
2417 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2418 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2419
013bd4c3
TI
2420 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2421 failrec->this_mirror,
2422 failrec->bio_flags, 0);
6c387ab2 2423 if (ret) {
454ff3de 2424 free_io_failure(inode, failrec);
6c387ab2
MX
2425 bio_put(bio);
2426 }
2427
013bd4c3 2428 return ret;
4a54c8c1
JS
2429}
2430
d1310b2e
CM
2431/* lots and lots of room for performance fixes in the end_bio funcs */
2432
b5227c07 2433void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2434{
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
3e2426bd 2437 int ret = 0;
87826df0
JM
2438
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
2441 if (tree->ops && tree->ops->writepage_end_io_hook) {
2442 ret = tree->ops->writepage_end_io_hook(page, start,
2443 end, NULL, uptodate);
2444 if (ret)
2445 uptodate = 0;
2446 }
2447
87826df0 2448 if (!uptodate) {
87826df0
JM
2449 ClearPageUptodate(page);
2450 SetPageError(page);
5dca6eea
LB
2451 ret = ret < 0 ? ret : -EIO;
2452 mapping_set_error(page->mapping, ret);
87826df0 2453 }
87826df0
JM
2454}
2455
d1310b2e
CM
2456/*
2457 * after a writepage IO is done, we need to:
2458 * clear the uptodate bits on error
2459 * clear the writeback bits in the extent tree for this IO
2460 * end_page_writeback if the page has no more pending IO
2461 *
2462 * Scheduling is not allowed, so the extent state tree is expected
2463 * to have one and only one object corresponding to this IO.
2464 */
4246a0b6 2465static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2466{
2c30c71b 2467 struct bio_vec *bvec;
d1310b2e
CM
2468 u64 start;
2469 u64 end;
2c30c71b 2470 int i;
d1310b2e 2471
2c30c71b 2472 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2473 struct page *page = bvec->bv_page;
902b22f3 2474
17a5adcc
AO
2475 /* We always issue full-page reads, but if some block
2476 * in a page fails to read, blk_update_request() will
2477 * advance bv_offset and adjust bv_len to compensate.
2478 * Print a warning for nonzero offsets, and an error
2479 * if they don't add up to a full page. */
09cbfeaf
KS
2480 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2481 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2482 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "partial page write in btrfs with offset %u and length %u",
2484 bvec->bv_offset, bvec->bv_len);
2485 else
2486 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "incomplete page write in btrfs with offset %u and "
2488 "length %u",
2489 bvec->bv_offset, bvec->bv_len);
2490 }
d1310b2e 2491
17a5adcc
AO
2492 start = page_offset(page);
2493 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2494
b5227c07 2495 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2496 end_page_writeback(page);
2c30c71b 2497 }
2b1f55b0 2498
d1310b2e 2499 bio_put(bio);
d1310b2e
CM
2500}
2501
883d0de4
MX
2502static void
2503endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2504 int uptodate)
2505{
2506 struct extent_state *cached = NULL;
2507 u64 end = start + len - 1;
2508
2509 if (uptodate && tree->track_uptodate)
2510 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2511 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2512}
2513
d1310b2e
CM
2514/*
2515 * after a readpage IO is done, we need to:
2516 * clear the uptodate bits on error
2517 * set the uptodate bits if things worked
2518 * set the page up to date if all extents in the tree are uptodate
2519 * clear the lock bit in the extent tree
2520 * unlock the page if there are no other extents locked for it
2521 *
2522 * Scheduling is not allowed, so the extent state tree is expected
2523 * to have one and only one object corresponding to this IO.
2524 */
4246a0b6 2525static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2526{
2c30c71b 2527 struct bio_vec *bvec;
4246a0b6 2528 int uptodate = !bio->bi_error;
facc8a22 2529 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2530 struct extent_io_tree *tree;
facc8a22 2531 u64 offset = 0;
d1310b2e
CM
2532 u64 start;
2533 u64 end;
facc8a22 2534 u64 len;
883d0de4
MX
2535 u64 extent_start = 0;
2536 u64 extent_len = 0;
5cf1ab56 2537 int mirror;
d1310b2e 2538 int ret;
2c30c71b 2539 int i;
d1310b2e 2540
2c30c71b 2541 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2542 struct page *page = bvec->bv_page;
a71754fc 2543 struct inode *inode = page->mapping->host;
507903b8 2544
be3940c0 2545 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2546 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2547 bio->bi_error, io_bio->mirror_num);
a71754fc 2548 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2549
17a5adcc
AO
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
09cbfeaf
KS
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2557 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
2559 bvec->bv_offset, bvec->bv_len);
2560 else
2561 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2562 "incomplete page read in btrfs with offset %u and "
2563 "length %u",
2564 bvec->bv_offset, bvec->bv_len);
2565 }
d1310b2e 2566
17a5adcc
AO
2567 start = page_offset(page);
2568 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2569 len = bvec->bv_len;
d1310b2e 2570
9be3395b 2571 mirror = io_bio->mirror_num;
f2a09da9
MX
2572 if (likely(uptodate && tree->ops &&
2573 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2574 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2575 page, start, end,
2576 mirror);
5ee0844d 2577 if (ret)
d1310b2e 2578 uptodate = 0;
5ee0844d 2579 else
1203b681 2580 clean_io_failure(inode, start, page, 0);
d1310b2e 2581 }
ea466794 2582
f2a09da9
MX
2583 if (likely(uptodate))
2584 goto readpage_ok;
2585
2586 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2587 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2588 if (!ret && !bio->bi_error)
ea466794 2589 uptodate = 1;
f2a09da9 2590 } else {
f4a8e656
JS
2591 /*
2592 * The generic bio_readpage_error handles errors the
2593 * following way: If possible, new read requests are
2594 * created and submitted and will end up in
2595 * end_bio_extent_readpage as well (if we're lucky, not
2596 * in the !uptodate case). In that case it returns 0 and
2597 * we just go on with the next page in our bio. If it
2598 * can't handle the error it will return -EIO and we
2599 * remain responsible for that page.
2600 */
facc8a22
MX
2601 ret = bio_readpage_error(bio, offset, page, start, end,
2602 mirror);
7e38326f 2603 if (ret == 0) {
4246a0b6 2604 uptodate = !bio->bi_error;
38c1c2e4 2605 offset += len;
7e38326f
CM
2606 continue;
2607 }
2608 }
f2a09da9 2609readpage_ok:
883d0de4 2610 if (likely(uptodate)) {
a71754fc 2611 loff_t i_size = i_size_read(inode);
09cbfeaf 2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2613 unsigned off;
a71754fc
JB
2614
2615 /* Zero out the end if this page straddles i_size */
09cbfeaf 2616 off = i_size & (PAGE_SIZE-1);
a583c026 2617 if (page->index == end_index && off)
09cbfeaf 2618 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2619 SetPageUptodate(page);
70dec807 2620 } else {
17a5adcc
AO
2621 ClearPageUptodate(page);
2622 SetPageError(page);
70dec807 2623 }
17a5adcc 2624 unlock_page(page);
facc8a22 2625 offset += len;
883d0de4
MX
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2c30c71b 2648 }
d1310b2e 2649
883d0de4
MX
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
facc8a22 2653 if (io_bio->end_io)
4246a0b6 2654 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2655 bio_put(bio);
d1310b2e
CM
2656}
2657
9be3395b
CM
2658/*
2659 * this allocates from the btrfs_bioset. We're returning a bio right now
2660 * but you can call btrfs_io_bio for the appropriate container_of magic
2661 */
88f794ed
MX
2662struct bio *
2663btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2664 gfp_t gfp_flags)
d1310b2e 2665{
facc8a22 2666 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2667 struct bio *bio;
2668
9be3395b 2669 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2670
2671 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2672 while (!bio && (nr_vecs /= 2)) {
2673 bio = bio_alloc_bioset(gfp_flags,
2674 nr_vecs, btrfs_bioset);
2675 }
d1310b2e
CM
2676 }
2677
2678 if (bio) {
2679 bio->bi_bdev = bdev;
4f024f37 2680 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2681 btrfs_bio = btrfs_io_bio(bio);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
d1310b2e
CM
2685 }
2686 return bio;
2687}
2688
9be3395b
CM
2689struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2690{
23ea8e5a
MX
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
9be3395b 2693
23ea8e5a
MX
2694 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2695 if (new) {
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_bio->csum = NULL;
2698 btrfs_bio->csum_allocated = NULL;
2699 btrfs_bio->end_io = NULL;
3a9508b0
CM
2700
2701#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2702 /* FIXME, put this into bio_clone_bioset */
2703 if (bio->bi_css)
2704 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2705#endif
23ea8e5a
MX
2706 }
2707 return new;
2708}
9be3395b
CM
2709
2710/* this also allocates from the btrfs_bioset */
2711struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2712{
facc8a22
MX
2713 struct btrfs_io_bio *btrfs_bio;
2714 struct bio *bio;
2715
2716 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2717 if (bio) {
2718 btrfs_bio = btrfs_io_bio(bio);
2719 btrfs_bio->csum = NULL;
2720 btrfs_bio->csum_allocated = NULL;
2721 btrfs_bio->end_io = NULL;
2722 }
2723 return bio;
9be3395b
CM
2724}
2725
2726
355808c2
JM
2727static int __must_check submit_one_bio(int rw, struct bio *bio,
2728 int mirror_num, unsigned long bio_flags)
d1310b2e 2729{
d1310b2e 2730 int ret = 0;
70dec807
CM
2731 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2732 struct page *page = bvec->bv_page;
2733 struct extent_io_tree *tree = bio->bi_private;
70dec807 2734 u64 start;
70dec807 2735
4eee4fa4 2736 start = page_offset(page) + bvec->bv_offset;
70dec807 2737
902b22f3 2738 bio->bi_private = NULL;
4e49ea4a 2739 bio->bi_rw = rw;
d1310b2e
CM
2740 bio_get(bio);
2741
065631f6 2742 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2743 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2744 mirror_num, bio_flags, start);
0b86a832 2745 else
4e49ea4a 2746 btrfsic_submit_bio(bio);
4a54c8c1 2747
d1310b2e
CM
2748 bio_put(bio);
2749 return ret;
2750}
2751
64a16701 2752static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2753 unsigned long offset, size_t size, struct bio *bio,
2754 unsigned long bio_flags)
2755{
2756 int ret = 0;
2757 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2758 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2759 bio_flags);
2760 BUG_ON(ret < 0);
2761 return ret;
2762
2763}
2764
d1310b2e 2765static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2766 struct writeback_control *wbc,
d1310b2e
CM
2767 struct page *page, sector_t sector,
2768 size_t size, unsigned long offset,
2769 struct block_device *bdev,
2770 struct bio **bio_ret,
2771 unsigned long max_pages,
f188591e 2772 bio_end_io_t end_io_func,
c8b97818
CM
2773 int mirror_num,
2774 unsigned long prev_bio_flags,
005efedf
FM
2775 unsigned long bio_flags,
2776 bool force_bio_submit)
d1310b2e
CM
2777{
2778 int ret = 0;
2779 struct bio *bio;
c8b97818 2780 int contig = 0;
c8b97818 2781 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2782 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2783
2784 if (bio_ret && *bio_ret) {
2785 bio = *bio_ret;
c8b97818 2786 if (old_compressed)
4f024f37 2787 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2788 else
f73a1c7d 2789 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2790
2791 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2792 force_bio_submit ||
64a16701 2793 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2794 bio_add_page(bio, page, page_size, offset) < page_size) {
2795 ret = submit_one_bio(rw, bio, mirror_num,
2796 prev_bio_flags);
289454ad
NA
2797 if (ret < 0) {
2798 *bio_ret = NULL;
79787eaa 2799 return ret;
289454ad 2800 }
d1310b2e
CM
2801 bio = NULL;
2802 } else {
da2f0f74
CM
2803 if (wbc)
2804 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2805 return 0;
2806 }
2807 }
c8b97818 2808
b54ffb73
KO
2809 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2810 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2811 if (!bio)
2812 return -ENOMEM;
70dec807 2813
c8b97818 2814 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2815 bio->bi_end_io = end_io_func;
2816 bio->bi_private = tree;
da2f0f74
CM
2817 if (wbc) {
2818 wbc_init_bio(wbc, bio);
2819 wbc_account_io(wbc, page, page_size);
2820 }
70dec807 2821
d397712b 2822 if (bio_ret)
d1310b2e 2823 *bio_ret = bio;
d397712b 2824 else
c8b97818 2825 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2826
2827 return ret;
2828}
2829
48a3b636
ES
2830static void attach_extent_buffer_page(struct extent_buffer *eb,
2831 struct page *page)
d1310b2e
CM
2832{
2833 if (!PagePrivate(page)) {
2834 SetPagePrivate(page);
09cbfeaf 2835 get_page(page);
4f2de97a
JB
2836 set_page_private(page, (unsigned long)eb);
2837 } else {
2838 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2839 }
2840}
2841
4f2de97a 2842void set_page_extent_mapped(struct page *page)
d1310b2e 2843{
4f2de97a
JB
2844 if (!PagePrivate(page)) {
2845 SetPagePrivate(page);
09cbfeaf 2846 get_page(page);
4f2de97a
JB
2847 set_page_private(page, EXTENT_PAGE_PRIVATE);
2848 }
d1310b2e
CM
2849}
2850
125bac01
MX
2851static struct extent_map *
2852__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2853 u64 start, u64 len, get_extent_t *get_extent,
2854 struct extent_map **em_cached)
2855{
2856 struct extent_map *em;
2857
2858 if (em_cached && *em_cached) {
2859 em = *em_cached;
cbc0e928 2860 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2861 start < extent_map_end(em)) {
2862 atomic_inc(&em->refs);
2863 return em;
2864 }
2865
2866 free_extent_map(em);
2867 *em_cached = NULL;
2868 }
2869
2870 em = get_extent(inode, page, pg_offset, start, len, 0);
2871 if (em_cached && !IS_ERR_OR_NULL(em)) {
2872 BUG_ON(*em_cached);
2873 atomic_inc(&em->refs);
2874 *em_cached = em;
2875 }
2876 return em;
2877}
d1310b2e
CM
2878/*
2879 * basic readpage implementation. Locked extent state structs are inserted
2880 * into the tree that are removed when the IO is done (by the end_io
2881 * handlers)
79787eaa 2882 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2883 */
9974090b
MX
2884static int __do_readpage(struct extent_io_tree *tree,
2885 struct page *page,
2886 get_extent_t *get_extent,
125bac01 2887 struct extent_map **em_cached,
9974090b 2888 struct bio **bio, int mirror_num,
005efedf
FM
2889 unsigned long *bio_flags, int rw,
2890 u64 *prev_em_start)
d1310b2e
CM
2891{
2892 struct inode *inode = page->mapping->host;
4eee4fa4 2893 u64 start = page_offset(page);
09cbfeaf 2894 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2895 u64 end;
2896 u64 cur = start;
2897 u64 extent_offset;
2898 u64 last_byte = i_size_read(inode);
2899 u64 block_start;
2900 u64 cur_end;
2901 sector_t sector;
2902 struct extent_map *em;
2903 struct block_device *bdev;
2904 int ret;
2905 int nr = 0;
306e16ce 2906 size_t pg_offset = 0;
d1310b2e 2907 size_t iosize;
c8b97818 2908 size_t disk_io_size;
d1310b2e 2909 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2910 unsigned long this_bio_flag = 0;
d1310b2e
CM
2911
2912 set_page_extent_mapped(page);
2913
9974090b 2914 end = page_end;
90a887c9
DM
2915 if (!PageUptodate(page)) {
2916 if (cleancache_get_page(page) == 0) {
2917 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2918 unlock_extent(tree, start, end);
90a887c9
DM
2919 goto out;
2920 }
2921 }
2922
09cbfeaf 2923 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2924 char *userpage;
09cbfeaf 2925 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2926
2927 if (zero_offset) {
09cbfeaf 2928 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2929 userpage = kmap_atomic(page);
c8b97818
CM
2930 memset(userpage + zero_offset, 0, iosize);
2931 flush_dcache_page(page);
7ac687d9 2932 kunmap_atomic(userpage);
c8b97818
CM
2933 }
2934 }
d1310b2e 2935 while (cur <= end) {
09cbfeaf 2936 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2937 bool force_bio_submit = false;
c8f2f24b 2938
d1310b2e
CM
2939 if (cur >= last_byte) {
2940 char *userpage;
507903b8
AJ
2941 struct extent_state *cached = NULL;
2942
09cbfeaf 2943 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2944 userpage = kmap_atomic(page);
306e16ce 2945 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2946 flush_dcache_page(page);
7ac687d9 2947 kunmap_atomic(userpage);
d1310b2e 2948 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2949 &cached, GFP_NOFS);
7f042a83
FM
2950 unlock_extent_cached(tree, cur,
2951 cur + iosize - 1,
2952 &cached, GFP_NOFS);
d1310b2e
CM
2953 break;
2954 }
125bac01
MX
2955 em = __get_extent_map(inode, page, pg_offset, cur,
2956 end - cur + 1, get_extent, em_cached);
c704005d 2957 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2958 SetPageError(page);
7f042a83 2959 unlock_extent(tree, cur, end);
d1310b2e
CM
2960 break;
2961 }
d1310b2e
CM
2962 extent_offset = cur - em->start;
2963 BUG_ON(extent_map_end(em) <= cur);
2964 BUG_ON(end < cur);
2965
261507a0 2966 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2967 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2968 extent_set_compress_type(&this_bio_flag,
2969 em->compress_type);
2970 }
c8b97818 2971
d1310b2e
CM
2972 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2973 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2974 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2975 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2976 disk_io_size = em->block_len;
2977 sector = em->block_start >> 9;
2978 } else {
2979 sector = (em->block_start + extent_offset) >> 9;
2980 disk_io_size = iosize;
2981 }
d1310b2e
CM
2982 bdev = em->bdev;
2983 block_start = em->block_start;
d899e052
YZ
2984 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2985 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2986
2987 /*
2988 * If we have a file range that points to a compressed extent
2989 * and it's followed by a consecutive file range that points to
2990 * to the same compressed extent (possibly with a different
2991 * offset and/or length, so it either points to the whole extent
2992 * or only part of it), we must make sure we do not submit a
2993 * single bio to populate the pages for the 2 ranges because
2994 * this makes the compressed extent read zero out the pages
2995 * belonging to the 2nd range. Imagine the following scenario:
2996 *
2997 * File layout
2998 * [0 - 8K] [8K - 24K]
2999 * | |
3000 * | |
3001 * points to extent X, points to extent X,
3002 * offset 4K, length of 8K offset 0, length 16K
3003 *
3004 * [extent X, compressed length = 4K uncompressed length = 16K]
3005 *
3006 * If the bio to read the compressed extent covers both ranges,
3007 * it will decompress extent X into the pages belonging to the
3008 * first range and then it will stop, zeroing out the remaining
3009 * pages that belong to the other range that points to extent X.
3010 * So here we make sure we submit 2 bios, one for the first
3011 * range and another one for the third range. Both will target
3012 * the same physical extent from disk, but we can't currently
3013 * make the compressed bio endio callback populate the pages
3014 * for both ranges because each compressed bio is tightly
3015 * coupled with a single extent map, and each range can have
3016 * an extent map with a different offset value relative to the
3017 * uncompressed data of our extent and different lengths. This
3018 * is a corner case so we prioritize correctness over
3019 * non-optimal behavior (submitting 2 bios for the same extent).
3020 */
3021 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3022 prev_em_start && *prev_em_start != (u64)-1 &&
3023 *prev_em_start != em->orig_start)
3024 force_bio_submit = true;
3025
3026 if (prev_em_start)
3027 *prev_em_start = em->orig_start;
3028
d1310b2e
CM
3029 free_extent_map(em);
3030 em = NULL;
3031
3032 /* we've found a hole, just zero and go on */
3033 if (block_start == EXTENT_MAP_HOLE) {
3034 char *userpage;
507903b8
AJ
3035 struct extent_state *cached = NULL;
3036
7ac687d9 3037 userpage = kmap_atomic(page);
306e16ce 3038 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3039 flush_dcache_page(page);
7ac687d9 3040 kunmap_atomic(userpage);
d1310b2e
CM
3041
3042 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3043 &cached, GFP_NOFS);
7f042a83
FM
3044 unlock_extent_cached(tree, cur,
3045 cur + iosize - 1,
3046 &cached, GFP_NOFS);
d1310b2e 3047 cur = cur + iosize;
306e16ce 3048 pg_offset += iosize;
d1310b2e
CM
3049 continue;
3050 }
3051 /* the get_extent function already copied into the page */
9655d298
CM
3052 if (test_range_bit(tree, cur, cur_end,
3053 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3054 check_page_uptodate(tree, page);
7f042a83 3055 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3056 cur = cur + iosize;
306e16ce 3057 pg_offset += iosize;
d1310b2e
CM
3058 continue;
3059 }
70dec807
CM
3060 /* we have an inline extent but it didn't get marked up
3061 * to date. Error out
3062 */
3063 if (block_start == EXTENT_MAP_INLINE) {
3064 SetPageError(page);
7f042a83 3065 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3066 cur = cur + iosize;
306e16ce 3067 pg_offset += iosize;
70dec807
CM
3068 continue;
3069 }
d1310b2e 3070
c8f2f24b 3071 pnr -= page->index;
da2f0f74 3072 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3073 sector, disk_io_size, pg_offset,
89642229 3074 bdev, bio, pnr,
c8b97818
CM
3075 end_bio_extent_readpage, mirror_num,
3076 *bio_flags,
005efedf
FM
3077 this_bio_flag,
3078 force_bio_submit);
c8f2f24b
JB
3079 if (!ret) {
3080 nr++;
3081 *bio_flags = this_bio_flag;
3082 } else {
d1310b2e 3083 SetPageError(page);
7f042a83 3084 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3085 }
d1310b2e 3086 cur = cur + iosize;
306e16ce 3087 pg_offset += iosize;
d1310b2e 3088 }
90a887c9 3089out:
d1310b2e
CM
3090 if (!nr) {
3091 if (!PageError(page))
3092 SetPageUptodate(page);
3093 unlock_page(page);
3094 }
3095 return 0;
3096}
3097
9974090b
MX
3098static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3099 struct page *pages[], int nr_pages,
3100 u64 start, u64 end,
3101 get_extent_t *get_extent,
125bac01 3102 struct extent_map **em_cached,
9974090b 3103 struct bio **bio, int mirror_num,
808f80b4
FM
3104 unsigned long *bio_flags, int rw,
3105 u64 *prev_em_start)
9974090b
MX
3106{
3107 struct inode *inode;
3108 struct btrfs_ordered_extent *ordered;
3109 int index;
3110
3111 inode = pages[0]->mapping->host;
3112 while (1) {
3113 lock_extent(tree, start, end);
3114 ordered = btrfs_lookup_ordered_range(inode, start,
3115 end - start + 1);
3116 if (!ordered)
3117 break;
3118 unlock_extent(tree, start, end);
3119 btrfs_start_ordered_extent(inode, ordered, 1);
3120 btrfs_put_ordered_extent(ordered);
3121 }
3122
3123 for (index = 0; index < nr_pages; index++) {
125bac01 3124 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3125 mirror_num, bio_flags, rw, prev_em_start);
09cbfeaf 3126 put_page(pages[index]);
9974090b
MX
3127 }
3128}
3129
3130static void __extent_readpages(struct extent_io_tree *tree,
3131 struct page *pages[],
3132 int nr_pages, get_extent_t *get_extent,
125bac01 3133 struct extent_map **em_cached,
9974090b 3134 struct bio **bio, int mirror_num,
808f80b4
FM
3135 unsigned long *bio_flags, int rw,
3136 u64 *prev_em_start)
9974090b 3137{
35a3621b 3138 u64 start = 0;
9974090b
MX
3139 u64 end = 0;
3140 u64 page_start;
3141 int index;
35a3621b 3142 int first_index = 0;
9974090b
MX
3143
3144 for (index = 0; index < nr_pages; index++) {
3145 page_start = page_offset(pages[index]);
3146 if (!end) {
3147 start = page_start;
09cbfeaf 3148 end = start + PAGE_SIZE - 1;
9974090b
MX
3149 first_index = index;
3150 } else if (end + 1 == page_start) {
09cbfeaf 3151 end += PAGE_SIZE;
9974090b
MX
3152 } else {
3153 __do_contiguous_readpages(tree, &pages[first_index],
3154 index - first_index, start,
125bac01
MX
3155 end, get_extent, em_cached,
3156 bio, mirror_num, bio_flags,
808f80b4 3157 rw, prev_em_start);
9974090b 3158 start = page_start;
09cbfeaf 3159 end = start + PAGE_SIZE - 1;
9974090b
MX
3160 first_index = index;
3161 }
3162 }
3163
3164 if (end)
3165 __do_contiguous_readpages(tree, &pages[first_index],
3166 index - first_index, start,
125bac01 3167 end, get_extent, em_cached, bio,
808f80b4
FM
3168 mirror_num, bio_flags, rw,
3169 prev_em_start);
9974090b
MX
3170}
3171
3172static int __extent_read_full_page(struct extent_io_tree *tree,
3173 struct page *page,
3174 get_extent_t *get_extent,
3175 struct bio **bio, int mirror_num,
3176 unsigned long *bio_flags, int rw)
3177{
3178 struct inode *inode = page->mapping->host;
3179 struct btrfs_ordered_extent *ordered;
3180 u64 start = page_offset(page);
09cbfeaf 3181 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3182 int ret;
3183
3184 while (1) {
3185 lock_extent(tree, start, end);
dbfdb6d1 3186 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3187 PAGE_SIZE);
9974090b
MX
3188 if (!ordered)
3189 break;
3190 unlock_extent(tree, start, end);
3191 btrfs_start_ordered_extent(inode, ordered, 1);
3192 btrfs_put_ordered_extent(ordered);
3193 }
3194
125bac01 3195 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3196 bio_flags, rw, NULL);
9974090b
MX
3197 return ret;
3198}
3199
d1310b2e 3200int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3201 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3202{
3203 struct bio *bio = NULL;
c8b97818 3204 unsigned long bio_flags = 0;
d1310b2e
CM
3205 int ret;
3206
8ddc7d9c 3207 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3208 &bio_flags, READ);
d1310b2e 3209 if (bio)
8ddc7d9c 3210 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3211 return ret;
3212}
d1310b2e 3213
a9132667
LB
3214static void update_nr_written(struct page *page, struct writeback_control *wbc,
3215 unsigned long nr_written)
11c8349b
CM
3216{
3217 wbc->nr_to_write -= nr_written;
11c8349b
CM
3218}
3219
d1310b2e 3220/*
40f76580
CM
3221 * helper for __extent_writepage, doing all of the delayed allocation setup.
3222 *
3223 * This returns 1 if our fill_delalloc function did all the work required
3224 * to write the page (copy into inline extent). In this case the IO has
3225 * been started and the page is already unlocked.
3226 *
3227 * This returns 0 if all went well (page still locked)
3228 * This returns < 0 if there were errors (page still locked)
d1310b2e 3229 */
40f76580
CM
3230static noinline_for_stack int writepage_delalloc(struct inode *inode,
3231 struct page *page, struct writeback_control *wbc,
3232 struct extent_page_data *epd,
3233 u64 delalloc_start,
3234 unsigned long *nr_written)
3235{
3236 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3237 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3238 u64 nr_delalloc;
3239 u64 delalloc_to_write = 0;
3240 u64 delalloc_end = 0;
3241 int ret;
3242 int page_started = 0;
3243
3244 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3245 return 0;
3246
3247 while (delalloc_end < page_end) {
3248 nr_delalloc = find_lock_delalloc_range(inode, tree,
3249 page,
3250 &delalloc_start,
3251 &delalloc_end,
dcab6a3b 3252 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3253 if (nr_delalloc == 0) {
3254 delalloc_start = delalloc_end + 1;
3255 continue;
3256 }
3257 ret = tree->ops->fill_delalloc(inode, page,
3258 delalloc_start,
3259 delalloc_end,
3260 &page_started,
3261 nr_written);
3262 /* File system has been set read-only */
3263 if (ret) {
3264 SetPageError(page);
3265 /* fill_delalloc should be return < 0 for error
3266 * but just in case, we use > 0 here meaning the
3267 * IO is started, so we don't want to return > 0
3268 * unless things are going well.
3269 */
3270 ret = ret < 0 ? ret : -EIO;
3271 goto done;
3272 }
3273 /*
ea1754a0
KS
3274 * delalloc_end is already one less than the total length, so
3275 * we don't subtract one from PAGE_SIZE
40f76580
CM
3276 */
3277 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3278 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3279 delalloc_start = delalloc_end + 1;
3280 }
3281 if (wbc->nr_to_write < delalloc_to_write) {
3282 int thresh = 8192;
3283
3284 if (delalloc_to_write < thresh * 2)
3285 thresh = delalloc_to_write;
3286 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3287 thresh);
3288 }
3289
3290 /* did the fill delalloc function already unlock and start
3291 * the IO?
3292 */
3293 if (page_started) {
3294 /*
3295 * we've unlocked the page, so we can't update
3296 * the mapping's writeback index, just update
3297 * nr_to_write.
3298 */
3299 wbc->nr_to_write -= *nr_written;
3300 return 1;
3301 }
3302
3303 ret = 0;
3304
3305done:
3306 return ret;
3307}
3308
3309/*
3310 * helper for __extent_writepage. This calls the writepage start hooks,
3311 * and does the loop to map the page into extents and bios.
3312 *
3313 * We return 1 if the IO is started and the page is unlocked,
3314 * 0 if all went well (page still locked)
3315 * < 0 if there were errors (page still locked)
3316 */
3317static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3318 struct page *page,
3319 struct writeback_control *wbc,
3320 struct extent_page_data *epd,
3321 loff_t i_size,
3322 unsigned long nr_written,
3323 int write_flags, int *nr_ret)
d1310b2e 3324{
d1310b2e 3325 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3326 u64 start = page_offset(page);
09cbfeaf 3327 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3328 u64 end;
3329 u64 cur = start;
3330 u64 extent_offset;
d1310b2e
CM
3331 u64 block_start;
3332 u64 iosize;
3333 sector_t sector;
2c64c53d 3334 struct extent_state *cached_state = NULL;
d1310b2e
CM
3335 struct extent_map *em;
3336 struct block_device *bdev;
7f3c74fb 3337 size_t pg_offset = 0;
d1310b2e 3338 size_t blocksize;
40f76580
CM
3339 int ret = 0;
3340 int nr = 0;
3341 bool compressed;
c8b97818 3342
247e743c 3343 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3344 ret = tree->ops->writepage_start_hook(page, start,
3345 page_end);
87826df0
JM
3346 if (ret) {
3347 /* Fixup worker will requeue */
3348 if (ret == -EBUSY)
3349 wbc->pages_skipped++;
3350 else
3351 redirty_page_for_writepage(wbc, page);
40f76580 3352
11c8349b 3353 update_nr_written(page, wbc, nr_written);
247e743c 3354 unlock_page(page);
40f76580 3355 ret = 1;
11c8349b 3356 goto done_unlocked;
247e743c
CM
3357 }
3358 }
3359
11c8349b
CM
3360 /*
3361 * we don't want to touch the inode after unlocking the page,
3362 * so we update the mapping writeback index now
3363 */
3364 update_nr_written(page, wbc, nr_written + 1);
771ed689 3365
d1310b2e 3366 end = page_end;
40f76580 3367 if (i_size <= start) {
e6dcd2dc
CM
3368 if (tree->ops && tree->ops->writepage_end_io_hook)
3369 tree->ops->writepage_end_io_hook(page, start,
3370 page_end, NULL, 1);
d1310b2e
CM
3371 goto done;
3372 }
3373
d1310b2e
CM
3374 blocksize = inode->i_sb->s_blocksize;
3375
3376 while (cur <= end) {
40f76580 3377 u64 em_end;
58409edd
DS
3378 unsigned long max_nr;
3379
40f76580 3380 if (cur >= i_size) {
e6dcd2dc
CM
3381 if (tree->ops && tree->ops->writepage_end_io_hook)
3382 tree->ops->writepage_end_io_hook(page, cur,
3383 page_end, NULL, 1);
d1310b2e
CM
3384 break;
3385 }
7f3c74fb 3386 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3387 end - cur + 1, 1);
c704005d 3388 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3389 SetPageError(page);
61391d56 3390 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3391 break;
3392 }
3393
3394 extent_offset = cur - em->start;
40f76580
CM
3395 em_end = extent_map_end(em);
3396 BUG_ON(em_end <= cur);
d1310b2e 3397 BUG_ON(end < cur);
40f76580 3398 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3399 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3400 sector = (em->block_start + extent_offset) >> 9;
3401 bdev = em->bdev;
3402 block_start = em->block_start;
c8b97818 3403 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3404 free_extent_map(em);
3405 em = NULL;
3406
c8b97818
CM
3407 /*
3408 * compressed and inline extents are written through other
3409 * paths in the FS
3410 */
3411 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3412 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3413 /*
3414 * end_io notification does not happen here for
3415 * compressed extents
3416 */
3417 if (!compressed && tree->ops &&
3418 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3419 tree->ops->writepage_end_io_hook(page, cur,
3420 cur + iosize - 1,
3421 NULL, 1);
c8b97818
CM
3422 else if (compressed) {
3423 /* we don't want to end_page_writeback on
3424 * a compressed extent. this happens
3425 * elsewhere
3426 */
3427 nr++;
3428 }
3429
3430 cur += iosize;
7f3c74fb 3431 pg_offset += iosize;
d1310b2e
CM
3432 continue;
3433 }
c8b97818 3434
58409edd
DS
3435 max_nr = (i_size >> PAGE_SHIFT) + 1;
3436
3437 set_range_writeback(tree, cur, cur + iosize - 1);
3438 if (!PageWriteback(page)) {
3439 btrfs_err(BTRFS_I(inode)->root->fs_info,
3440 "page %lu not writeback, cur %llu end %llu",
3441 page->index, cur, end);
d1310b2e 3442 }
7f3c74fb 3443
58409edd
DS
3444 ret = submit_extent_page(write_flags, tree, wbc, page,
3445 sector, iosize, pg_offset,
3446 bdev, &epd->bio, max_nr,
3447 end_bio_extent_writepage,
3448 0, 0, 0, false);
3449 if (ret)
3450 SetPageError(page);
d1310b2e 3451
d1310b2e 3452 cur = cur + iosize;
7f3c74fb 3453 pg_offset += iosize;
d1310b2e
CM
3454 nr++;
3455 }
40f76580
CM
3456done:
3457 *nr_ret = nr;
3458
3459done_unlocked:
3460
3461 /* drop our reference on any cached states */
3462 free_extent_state(cached_state);
3463 return ret;
3464}
3465
3466/*
3467 * the writepage semantics are similar to regular writepage. extent
3468 * records are inserted to lock ranges in the tree, and as dirty areas
3469 * are found, they are marked writeback. Then the lock bits are removed
3470 * and the end_io handler clears the writeback ranges
3471 */
3472static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3473 void *data)
3474{
3475 struct inode *inode = page->mapping->host;
3476 struct extent_page_data *epd = data;
3477 u64 start = page_offset(page);
09cbfeaf 3478 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3479 int ret;
3480 int nr = 0;
3481 size_t pg_offset = 0;
3482 loff_t i_size = i_size_read(inode);
09cbfeaf 3483 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3484 int write_flags;
3485 unsigned long nr_written = 0;
3486
3487 if (wbc->sync_mode == WB_SYNC_ALL)
3488 write_flags = WRITE_SYNC;
3489 else
3490 write_flags = WRITE;
3491
3492 trace___extent_writepage(page, inode, wbc);
3493
3494 WARN_ON(!PageLocked(page));
3495
3496 ClearPageError(page);
3497
09cbfeaf 3498 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3499 if (page->index > end_index ||
3500 (page->index == end_index && !pg_offset)) {
09cbfeaf 3501 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3502 unlock_page(page);
3503 return 0;
3504 }
3505
3506 if (page->index == end_index) {
3507 char *userpage;
3508
3509 userpage = kmap_atomic(page);
3510 memset(userpage + pg_offset, 0,
09cbfeaf 3511 PAGE_SIZE - pg_offset);
40f76580
CM
3512 kunmap_atomic(userpage);
3513 flush_dcache_page(page);
3514 }
3515
3516 pg_offset = 0;
3517
3518 set_page_extent_mapped(page);
3519
3520 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3521 if (ret == 1)
3522 goto done_unlocked;
3523 if (ret)
3524 goto done;
3525
3526 ret = __extent_writepage_io(inode, page, wbc, epd,
3527 i_size, nr_written, write_flags, &nr);
3528 if (ret == 1)
3529 goto done_unlocked;
3530
d1310b2e
CM
3531done:
3532 if (nr == 0) {
3533 /* make sure the mapping tag for page dirty gets cleared */
3534 set_page_writeback(page);
3535 end_page_writeback(page);
3536 }
61391d56
FM
3537 if (PageError(page)) {
3538 ret = ret < 0 ? ret : -EIO;
3539 end_extent_writepage(page, ret, start, page_end);
3540 }
d1310b2e 3541 unlock_page(page);
40f76580 3542 return ret;
771ed689 3543
11c8349b 3544done_unlocked:
d1310b2e
CM
3545 return 0;
3546}
3547
fd8b2b61 3548void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3549{
74316201
N
3550 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3551 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3552}
3553
0e378df1
CM
3554static noinline_for_stack int
3555lock_extent_buffer_for_io(struct extent_buffer *eb,
3556 struct btrfs_fs_info *fs_info,
3557 struct extent_page_data *epd)
0b32f4bb
JB
3558{
3559 unsigned long i, num_pages;
3560 int flush = 0;
3561 int ret = 0;
3562
3563 if (!btrfs_try_tree_write_lock(eb)) {
3564 flush = 1;
3565 flush_write_bio(epd);
3566 btrfs_tree_lock(eb);
3567 }
3568
3569 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3570 btrfs_tree_unlock(eb);
3571 if (!epd->sync_io)
3572 return 0;
3573 if (!flush) {
3574 flush_write_bio(epd);
3575 flush = 1;
3576 }
a098d8e8
CM
3577 while (1) {
3578 wait_on_extent_buffer_writeback(eb);
3579 btrfs_tree_lock(eb);
3580 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3581 break;
0b32f4bb 3582 btrfs_tree_unlock(eb);
0b32f4bb
JB
3583 }
3584 }
3585
51561ffe
JB
3586 /*
3587 * We need to do this to prevent races in people who check if the eb is
3588 * under IO since we can end up having no IO bits set for a short period
3589 * of time.
3590 */
3591 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3592 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3593 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3594 spin_unlock(&eb->refs_lock);
0b32f4bb 3595 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3596 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3597 -eb->len,
3598 fs_info->dirty_metadata_batch);
0b32f4bb 3599 ret = 1;
51561ffe
JB
3600 } else {
3601 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3602 }
3603
3604 btrfs_tree_unlock(eb);
3605
3606 if (!ret)
3607 return ret;
3608
3609 num_pages = num_extent_pages(eb->start, eb->len);
3610 for (i = 0; i < num_pages; i++) {
fb85fc9a 3611 struct page *p = eb->pages[i];
0b32f4bb
JB
3612
3613 if (!trylock_page(p)) {
3614 if (!flush) {
3615 flush_write_bio(epd);
3616 flush = 1;
3617 }
3618 lock_page(p);
3619 }
3620 }
3621
3622 return ret;
3623}
3624
3625static void end_extent_buffer_writeback(struct extent_buffer *eb)
3626{
3627 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3628 smp_mb__after_atomic();
0b32f4bb
JB
3629 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3630}
3631
656f30db
FM
3632static void set_btree_ioerr(struct page *page)
3633{
3634 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3635 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3636
3637 SetPageError(page);
3638 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3639 return;
3640
3641 /*
3642 * If writeback for a btree extent that doesn't belong to a log tree
3643 * failed, increment the counter transaction->eb_write_errors.
3644 * We do this because while the transaction is running and before it's
3645 * committing (when we call filemap_fdata[write|wait]_range against
3646 * the btree inode), we might have
3647 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3648 * returns an error or an error happens during writeback, when we're
3649 * committing the transaction we wouldn't know about it, since the pages
3650 * can be no longer dirty nor marked anymore for writeback (if a
3651 * subsequent modification to the extent buffer didn't happen before the
3652 * transaction commit), which makes filemap_fdata[write|wait]_range not
3653 * able to find the pages tagged with SetPageError at transaction
3654 * commit time. So if this happens we must abort the transaction,
3655 * otherwise we commit a super block with btree roots that point to
3656 * btree nodes/leafs whose content on disk is invalid - either garbage
3657 * or the content of some node/leaf from a past generation that got
3658 * cowed or deleted and is no longer valid.
3659 *
3660 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3661 * not be enough - we need to distinguish between log tree extents vs
3662 * non-log tree extents, and the next filemap_fdatawait_range() call
3663 * will catch and clear such errors in the mapping - and that call might
3664 * be from a log sync and not from a transaction commit. Also, checking
3665 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3666 * not done and would not be reliable - the eb might have been released
3667 * from memory and reading it back again means that flag would not be
3668 * set (since it's a runtime flag, not persisted on disk).
3669 *
3670 * Using the flags below in the btree inode also makes us achieve the
3671 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3672 * writeback for all dirty pages and before filemap_fdatawait_range()
3673 * is called, the writeback for all dirty pages had already finished
3674 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3675 * filemap_fdatawait_range() would return success, as it could not know
3676 * that writeback errors happened (the pages were no longer tagged for
3677 * writeback).
3678 */
3679 switch (eb->log_index) {
3680 case -1:
3681 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3682 break;
3683 case 0:
3684 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3685 break;
3686 case 1:
3687 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3688 break;
3689 default:
3690 BUG(); /* unexpected, logic error */
3691 }
3692}
3693
4246a0b6 3694static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3695{
2c30c71b 3696 struct bio_vec *bvec;
0b32f4bb 3697 struct extent_buffer *eb;
2c30c71b 3698 int i, done;
0b32f4bb 3699
2c30c71b 3700 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3701 struct page *page = bvec->bv_page;
3702
0b32f4bb
JB
3703 eb = (struct extent_buffer *)page->private;
3704 BUG_ON(!eb);
3705 done = atomic_dec_and_test(&eb->io_pages);
3706
4246a0b6
CH
3707 if (bio->bi_error ||
3708 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3709 ClearPageUptodate(page);
656f30db 3710 set_btree_ioerr(page);
0b32f4bb
JB
3711 }
3712
3713 end_page_writeback(page);
3714
3715 if (!done)
3716 continue;
3717
3718 end_extent_buffer_writeback(eb);
2c30c71b 3719 }
0b32f4bb
JB
3720
3721 bio_put(bio);
0b32f4bb
JB
3722}
3723
0e378df1 3724static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3725 struct btrfs_fs_info *fs_info,
3726 struct writeback_control *wbc,
3727 struct extent_page_data *epd)
3728{
3729 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3730 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3731 u64 offset = eb->start;
3732 unsigned long i, num_pages;
de0022b9 3733 unsigned long bio_flags = 0;
d4c7ca86 3734 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3735 int ret = 0;
0b32f4bb 3736
656f30db 3737 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3738 num_pages = num_extent_pages(eb->start, eb->len);
3739 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3740 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3741 bio_flags = EXTENT_BIO_TREE_LOG;
3742
0b32f4bb 3743 for (i = 0; i < num_pages; i++) {
fb85fc9a 3744 struct page *p = eb->pages[i];
0b32f4bb
JB
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
da2f0f74 3748 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
09cbfeaf 3749 PAGE_SIZE, 0, bdev, &epd->bio,
0b32f4bb 3750 -1, end_bio_extent_buffer_writepage,
005efedf 3751 0, epd->bio_flags, bio_flags, false);
de0022b9 3752 epd->bio_flags = bio_flags;
0b32f4bb 3753 if (ret) {
656f30db 3754 set_btree_ioerr(p);
55e3bd2e 3755 end_page_writeback(p);
0b32f4bb
JB
3756 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757 end_extent_buffer_writeback(eb);
3758 ret = -EIO;
3759 break;
3760 }
09cbfeaf 3761 offset += PAGE_SIZE;
0b32f4bb
JB
3762 update_nr_written(p, wbc, 1);
3763 unlock_page(p);
3764 }
3765
3766 if (unlikely(ret)) {
3767 for (; i < num_pages; i++) {
bbf65cf0 3768 struct page *p = eb->pages[i];
81465028 3769 clear_page_dirty_for_io(p);
0b32f4bb
JB
3770 unlock_page(p);
3771 }
3772 }
3773
3774 return ret;
3775}
3776
3777int btree_write_cache_pages(struct address_space *mapping,
3778 struct writeback_control *wbc)
3779{
3780 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782 struct extent_buffer *eb, *prev_eb = NULL;
3783 struct extent_page_data epd = {
3784 .bio = NULL,
3785 .tree = tree,
3786 .extent_locked = 0,
3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3788 .bio_flags = 0,
0b32f4bb
JB
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec, 0);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
09cbfeaf
KS
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 if (!wbc->range_cyclic && page->index > end) {
3829 done = 1;
3830 break;
3831 }
3832
b5bae261
JB
3833 spin_lock(&mapping->private_lock);
3834 if (!PagePrivate(page)) {
3835 spin_unlock(&mapping->private_lock);
3836 continue;
3837 }
3838
0b32f4bb 3839 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3840
3841 /*
3842 * Shouldn't happen and normally this would be a BUG_ON
3843 * but no sense in crashing the users box for something
3844 * we can survive anyway.
3845 */
fae7f21c 3846 if (WARN_ON(!eb)) {
b5bae261 3847 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3848 continue;
3849 }
3850
b5bae261
JB
3851 if (eb == prev_eb) {
3852 spin_unlock(&mapping->private_lock);
0b32f4bb 3853 continue;
b5bae261 3854 }
0b32f4bb 3855
b5bae261
JB
3856 ret = atomic_inc_not_zero(&eb->refs);
3857 spin_unlock(&mapping->private_lock);
3858 if (!ret)
0b32f4bb 3859 continue;
0b32f4bb
JB
3860
3861 prev_eb = eb;
3862 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 if (!ret) {
3864 free_extent_buffer(eb);
3865 continue;
3866 }
3867
3868 ret = write_one_eb(eb, fs_info, wbc, &epd);
3869 if (ret) {
3870 done = 1;
3871 free_extent_buffer(eb);
3872 break;
3873 }
3874 free_extent_buffer(eb);
3875
3876 /*
3877 * the filesystem may choose to bump up nr_to_write.
3878 * We have to make sure to honor the new nr_to_write
3879 * at any time
3880 */
3881 nr_to_write_done = wbc->nr_to_write <= 0;
3882 }
3883 pagevec_release(&pvec);
3884 cond_resched();
3885 }
3886 if (!scanned && !done) {
3887 /*
3888 * We hit the last page and there is more work to be done: wrap
3889 * back to the start of the file
3890 */
3891 scanned = 1;
3892 index = 0;
3893 goto retry;
3894 }
3895 flush_write_bio(&epd);
3896 return ret;
3897}
3898
d1310b2e 3899/**
4bef0848 3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3901 * @mapping: address space structure to write
3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903 * @writepage: function called for each page
3904 * @data: data passed to writepage function
3905 *
3906 * If a page is already under I/O, write_cache_pages() skips it, even
3907 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3908 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3909 * and msync() need to guarantee that all the data which was dirty at the time
3910 * the call was made get new I/O started against them. If wbc->sync_mode is
3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912 * existing IO to complete.
3913 */
b2950863 3914static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3915 struct address_space *mapping,
3916 struct writeback_control *wbc,
d2c3f4f6
CM
3917 writepage_t writepage, void *data,
3918 void (*flush_fn)(void *))
d1310b2e 3919{
7fd1a3f7 3920 struct inode *inode = mapping->host;
d1310b2e
CM
3921 int ret = 0;
3922 int done = 0;
f85d7d6c 3923 int nr_to_write_done = 0;
d1310b2e
CM
3924 struct pagevec pvec;
3925 int nr_pages;
3926 pgoff_t index;
3927 pgoff_t end; /* Inclusive */
a9132667
LB
3928 pgoff_t done_index;
3929 int range_whole = 0;
d1310b2e 3930 int scanned = 0;
f7aaa06b 3931 int tag;
d1310b2e 3932
7fd1a3f7
JB
3933 /*
3934 * We have to hold onto the inode so that ordered extents can do their
3935 * work when the IO finishes. The alternative to this is failing to add
3936 * an ordered extent if the igrab() fails there and that is a huge pain
3937 * to deal with, so instead just hold onto the inode throughout the
3938 * writepages operation. If it fails here we are freeing up the inode
3939 * anyway and we'd rather not waste our time writing out stuff that is
3940 * going to be truncated anyway.
3941 */
3942 if (!igrab(inode))
3943 return 0;
3944
d1310b2e
CM
3945 pagevec_init(&pvec, 0);
3946 if (wbc->range_cyclic) {
3947 index = mapping->writeback_index; /* Start from prev offset */
3948 end = -1;
3949 } else {
09cbfeaf
KS
3950 index = wbc->range_start >> PAGE_SHIFT;
3951 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3952 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3953 range_whole = 1;
d1310b2e
CM
3954 scanned = 1;
3955 }
f7aaa06b
JB
3956 if (wbc->sync_mode == WB_SYNC_ALL)
3957 tag = PAGECACHE_TAG_TOWRITE;
3958 else
3959 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3960retry:
f7aaa06b
JB
3961 if (wbc->sync_mode == WB_SYNC_ALL)
3962 tag_pages_for_writeback(mapping, index, end);
a9132667 3963 done_index = index;
f85d7d6c 3964 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3965 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3966 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3967 unsigned i;
3968
3969 scanned = 1;
3970 for (i = 0; i < nr_pages; i++) {
3971 struct page *page = pvec.pages[i];
3972
a9132667 3973 done_index = page->index;
d1310b2e
CM
3974 /*
3975 * At this point we hold neither mapping->tree_lock nor
3976 * lock on the page itself: the page may be truncated or
3977 * invalidated (changing page->mapping to NULL), or even
3978 * swizzled back from swapper_space to tmpfs file
3979 * mapping
3980 */
c8f2f24b
JB
3981 if (!trylock_page(page)) {
3982 flush_fn(data);
3983 lock_page(page);
01d658f2 3984 }
d1310b2e
CM
3985
3986 if (unlikely(page->mapping != mapping)) {
3987 unlock_page(page);
3988 continue;
3989 }
3990
3991 if (!wbc->range_cyclic && page->index > end) {
3992 done = 1;
3993 unlock_page(page);
3994 continue;
3995 }
3996
d2c3f4f6 3997 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3998 if (PageWriteback(page))
3999 flush_fn(data);
d1310b2e 4000 wait_on_page_writeback(page);
d2c3f4f6 4001 }
d1310b2e
CM
4002
4003 if (PageWriteback(page) ||
4004 !clear_page_dirty_for_io(page)) {
4005 unlock_page(page);
4006 continue;
4007 }
4008
4009 ret = (*writepage)(page, wbc, data);
4010
4011 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4012 unlock_page(page);
4013 ret = 0;
4014 }
a9132667
LB
4015 if (ret < 0) {
4016 /*
4017 * done_index is set past this page,
4018 * so media errors will not choke
4019 * background writeout for the entire
4020 * file. This has consequences for
4021 * range_cyclic semantics (ie. it may
4022 * not be suitable for data integrity
4023 * writeout).
4024 */
4025 done_index = page->index + 1;
4026 done = 1;
4027 break;
4028 }
f85d7d6c
CM
4029
4030 /*
4031 * the filesystem may choose to bump up nr_to_write.
4032 * We have to make sure to honor the new nr_to_write
4033 * at any time
4034 */
4035 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4036 }
4037 pagevec_release(&pvec);
4038 cond_resched();
4039 }
894b36e3 4040 if (!scanned && !done) {
d1310b2e
CM
4041 /*
4042 * We hit the last page and there is more work to be done: wrap
4043 * back to the start of the file
4044 */
4045 scanned = 1;
4046 index = 0;
4047 goto retry;
4048 }
a9132667
LB
4049
4050 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4051 mapping->writeback_index = done_index;
4052
7fd1a3f7 4053 btrfs_add_delayed_iput(inode);
894b36e3 4054 return ret;
d1310b2e 4055}
d1310b2e 4056
ffbd517d 4057static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4058{
d2c3f4f6 4059 if (epd->bio) {
355808c2
JM
4060 int rw = WRITE;
4061 int ret;
4062
ffbd517d 4063 if (epd->sync_io)
355808c2
JM
4064 rw = WRITE_SYNC;
4065
de0022b9 4066 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4067 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4068 epd->bio = NULL;
4069 }
4070}
4071
ffbd517d
CM
4072static noinline void flush_write_bio(void *data)
4073{
4074 struct extent_page_data *epd = data;
4075 flush_epd_write_bio(epd);
4076}
4077
d1310b2e
CM
4078int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4079 get_extent_t *get_extent,
4080 struct writeback_control *wbc)
4081{
4082 int ret;
d1310b2e
CM
4083 struct extent_page_data epd = {
4084 .bio = NULL,
4085 .tree = tree,
4086 .get_extent = get_extent,
771ed689 4087 .extent_locked = 0,
ffbd517d 4088 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4089 .bio_flags = 0,
d1310b2e 4090 };
d1310b2e 4091
d1310b2e
CM
4092 ret = __extent_writepage(page, wbc, &epd);
4093
ffbd517d 4094 flush_epd_write_bio(&epd);
d1310b2e
CM
4095 return ret;
4096}
d1310b2e 4097
771ed689
CM
4098int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4099 u64 start, u64 end, get_extent_t *get_extent,
4100 int mode)
4101{
4102 int ret = 0;
4103 struct address_space *mapping = inode->i_mapping;
4104 struct page *page;
09cbfeaf
KS
4105 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4106 PAGE_SHIFT;
771ed689
CM
4107
4108 struct extent_page_data epd = {
4109 .bio = NULL,
4110 .tree = tree,
4111 .get_extent = get_extent,
4112 .extent_locked = 1,
ffbd517d 4113 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4114 .bio_flags = 0,
771ed689
CM
4115 };
4116 struct writeback_control wbc_writepages = {
771ed689 4117 .sync_mode = mode,
771ed689
CM
4118 .nr_to_write = nr_pages * 2,
4119 .range_start = start,
4120 .range_end = end + 1,
4121 };
4122
d397712b 4123 while (start <= end) {
09cbfeaf 4124 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4125 if (clear_page_dirty_for_io(page))
4126 ret = __extent_writepage(page, &wbc_writepages, &epd);
4127 else {
4128 if (tree->ops && tree->ops->writepage_end_io_hook)
4129 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4130 start + PAGE_SIZE - 1,
771ed689
CM
4131 NULL, 1);
4132 unlock_page(page);
4133 }
09cbfeaf
KS
4134 put_page(page);
4135 start += PAGE_SIZE;
771ed689
CM
4136 }
4137
ffbd517d 4138 flush_epd_write_bio(&epd);
771ed689
CM
4139 return ret;
4140}
d1310b2e
CM
4141
4142int extent_writepages(struct extent_io_tree *tree,
4143 struct address_space *mapping,
4144 get_extent_t *get_extent,
4145 struct writeback_control *wbc)
4146{
4147 int ret = 0;
4148 struct extent_page_data epd = {
4149 .bio = NULL,
4150 .tree = tree,
4151 .get_extent = get_extent,
771ed689 4152 .extent_locked = 0,
ffbd517d 4153 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4154 .bio_flags = 0,
d1310b2e
CM
4155 };
4156
4bef0848 4157 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4158 __extent_writepage, &epd,
4159 flush_write_bio);
ffbd517d 4160 flush_epd_write_bio(&epd);
d1310b2e
CM
4161 return ret;
4162}
d1310b2e
CM
4163
4164int extent_readpages(struct extent_io_tree *tree,
4165 struct address_space *mapping,
4166 struct list_head *pages, unsigned nr_pages,
4167 get_extent_t get_extent)
4168{
4169 struct bio *bio = NULL;
4170 unsigned page_idx;
c8b97818 4171 unsigned long bio_flags = 0;
67c9684f
LB
4172 struct page *pagepool[16];
4173 struct page *page;
125bac01 4174 struct extent_map *em_cached = NULL;
67c9684f 4175 int nr = 0;
808f80b4 4176 u64 prev_em_start = (u64)-1;
d1310b2e 4177
d1310b2e 4178 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4179 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4180
4181 prefetchw(&page->flags);
4182 list_del(&page->lru);
67c9684f 4183 if (add_to_page_cache_lru(page, mapping,
43e817a1 4184 page->index, GFP_NOFS)) {
09cbfeaf 4185 put_page(page);
67c9684f 4186 continue;
d1310b2e 4187 }
67c9684f
LB
4188
4189 pagepool[nr++] = page;
4190 if (nr < ARRAY_SIZE(pagepool))
4191 continue;
125bac01 4192 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4193 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4194 nr = 0;
d1310b2e 4195 }
9974090b 4196 if (nr)
125bac01 4197 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4198 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4199
125bac01
MX
4200 if (em_cached)
4201 free_extent_map(em_cached);
4202
d1310b2e
CM
4203 BUG_ON(!list_empty(pages));
4204 if (bio)
79787eaa 4205 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4206 return 0;
4207}
d1310b2e
CM
4208
4209/*
4210 * basic invalidatepage code, this waits on any locked or writeback
4211 * ranges corresponding to the page, and then deletes any extent state
4212 * records from the tree
4213 */
4214int extent_invalidatepage(struct extent_io_tree *tree,
4215 struct page *page, unsigned long offset)
4216{
2ac55d41 4217 struct extent_state *cached_state = NULL;
4eee4fa4 4218 u64 start = page_offset(page);
09cbfeaf 4219 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4220 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4221
fda2832f 4222 start += ALIGN(offset, blocksize);
d1310b2e
CM
4223 if (start > end)
4224 return 0;
4225
ff13db41 4226 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4227 wait_on_page_writeback(page);
d1310b2e 4228 clear_extent_bit(tree, start, end,
32c00aff
JB
4229 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4230 EXTENT_DO_ACCOUNTING,
2ac55d41 4231 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4232 return 0;
4233}
d1310b2e 4234
7b13b7b1
CM
4235/*
4236 * a helper for releasepage, this tests for areas of the page that
4237 * are locked or under IO and drops the related state bits if it is safe
4238 * to drop the page.
4239 */
48a3b636
ES
4240static int try_release_extent_state(struct extent_map_tree *map,
4241 struct extent_io_tree *tree,
4242 struct page *page, gfp_t mask)
7b13b7b1 4243{
4eee4fa4 4244 u64 start = page_offset(page);
09cbfeaf 4245 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4246 int ret = 1;
4247
211f90e6 4248 if (test_range_bit(tree, start, end,
8b62b72b 4249 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4250 ret = 0;
4251 else {
4252 if ((mask & GFP_NOFS) == GFP_NOFS)
4253 mask = GFP_NOFS;
11ef160f
CM
4254 /*
4255 * at this point we can safely clear everything except the
4256 * locked bit and the nodatasum bit
4257 */
e3f24cc5 4258 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4259 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4260 0, 0, NULL, mask);
e3f24cc5
CM
4261
4262 /* if clear_extent_bit failed for enomem reasons,
4263 * we can't allow the release to continue.
4264 */
4265 if (ret < 0)
4266 ret = 0;
4267 else
4268 ret = 1;
7b13b7b1
CM
4269 }
4270 return ret;
4271}
7b13b7b1 4272
d1310b2e
CM
4273/*
4274 * a helper for releasepage. As long as there are no locked extents
4275 * in the range corresponding to the page, both state records and extent
4276 * map records are removed
4277 */
4278int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4279 struct extent_io_tree *tree, struct page *page,
4280 gfp_t mask)
d1310b2e
CM
4281{
4282 struct extent_map *em;
4eee4fa4 4283 u64 start = page_offset(page);
09cbfeaf 4284 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4285
d0164adc 4286 if (gfpflags_allow_blocking(mask) &&
ee22184b 4287 page->mapping->host->i_size > SZ_16M) {
39b5637f 4288 u64 len;
70dec807 4289 while (start <= end) {
39b5637f 4290 len = end - start + 1;
890871be 4291 write_lock(&map->lock);
39b5637f 4292 em = lookup_extent_mapping(map, start, len);
285190d9 4293 if (!em) {
890871be 4294 write_unlock(&map->lock);
70dec807
CM
4295 break;
4296 }
7f3c74fb
CM
4297 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4298 em->start != start) {
890871be 4299 write_unlock(&map->lock);
70dec807
CM
4300 free_extent_map(em);
4301 break;
4302 }
4303 if (!test_range_bit(tree, em->start,
4304 extent_map_end(em) - 1,
8b62b72b 4305 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4306 0, NULL)) {
70dec807
CM
4307 remove_extent_mapping(map, em);
4308 /* once for the rb tree */
4309 free_extent_map(em);
4310 }
4311 start = extent_map_end(em);
890871be 4312 write_unlock(&map->lock);
70dec807
CM
4313
4314 /* once for us */
d1310b2e
CM
4315 free_extent_map(em);
4316 }
d1310b2e 4317 }
7b13b7b1 4318 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4319}
d1310b2e 4320
ec29ed5b
CM
4321/*
4322 * helper function for fiemap, which doesn't want to see any holes.
4323 * This maps until we find something past 'last'
4324 */
4325static struct extent_map *get_extent_skip_holes(struct inode *inode,
4326 u64 offset,
4327 u64 last,
4328 get_extent_t *get_extent)
4329{
4330 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4331 struct extent_map *em;
4332 u64 len;
4333
4334 if (offset >= last)
4335 return NULL;
4336
67871254 4337 while (1) {
ec29ed5b
CM
4338 len = last - offset;
4339 if (len == 0)
4340 break;
fda2832f 4341 len = ALIGN(len, sectorsize);
ec29ed5b 4342 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4343 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4344 return em;
4345
4346 /* if this isn't a hole return it */
4347 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4348 em->block_start != EXTENT_MAP_HOLE) {
4349 return em;
4350 }
4351
4352 /* this is a hole, advance to the next extent */
4353 offset = extent_map_end(em);
4354 free_extent_map(em);
4355 if (offset >= last)
4356 break;
4357 }
4358 return NULL;
4359}
4360
1506fcc8
YS
4361int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4362 __u64 start, __u64 len, get_extent_t *get_extent)
4363{
975f84fe 4364 int ret = 0;
1506fcc8
YS
4365 u64 off = start;
4366 u64 max = start + len;
4367 u32 flags = 0;
975f84fe
JB
4368 u32 found_type;
4369 u64 last;
ec29ed5b 4370 u64 last_for_get_extent = 0;
1506fcc8 4371 u64 disko = 0;
ec29ed5b 4372 u64 isize = i_size_read(inode);
975f84fe 4373 struct btrfs_key found_key;
1506fcc8 4374 struct extent_map *em = NULL;
2ac55d41 4375 struct extent_state *cached_state = NULL;
975f84fe 4376 struct btrfs_path *path;
dc046b10 4377 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4378 int end = 0;
ec29ed5b
CM
4379 u64 em_start = 0;
4380 u64 em_len = 0;
4381 u64 em_end = 0;
1506fcc8
YS
4382
4383 if (len == 0)
4384 return -EINVAL;
4385
975f84fe
JB
4386 path = btrfs_alloc_path();
4387 if (!path)
4388 return -ENOMEM;
4389 path->leave_spinning = 1;
4390
2c91943b
QW
4391 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4392 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4393
ec29ed5b
CM
4394 /*
4395 * lookup the last file extent. We're not using i_size here
4396 * because there might be preallocation past i_size
4397 */
dc046b10
JB
4398 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4399 0);
975f84fe
JB
4400 if (ret < 0) {
4401 btrfs_free_path(path);
4402 return ret;
2d324f59
LB
4403 } else {
4404 WARN_ON(!ret);
4405 if (ret == 1)
4406 ret = 0;
975f84fe 4407 }
2d324f59 4408
975f84fe 4409 path->slots[0]--;
975f84fe 4410 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4411 found_type = found_key.type;
975f84fe 4412
ec29ed5b 4413 /* No extents, but there might be delalloc bits */
33345d01 4414 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4415 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4416 /* have to trust i_size as the end */
4417 last = (u64)-1;
4418 last_for_get_extent = isize;
4419 } else {
4420 /*
4421 * remember the start of the last extent. There are a
4422 * bunch of different factors that go into the length of the
4423 * extent, so its much less complex to remember where it started
4424 */
4425 last = found_key.offset;
4426 last_for_get_extent = last + 1;
975f84fe 4427 }
fe09e16c 4428 btrfs_release_path(path);
975f84fe 4429
ec29ed5b
CM
4430 /*
4431 * we might have some extents allocated but more delalloc past those
4432 * extents. so, we trust isize unless the start of the last extent is
4433 * beyond isize
4434 */
4435 if (last < isize) {
4436 last = (u64)-1;
4437 last_for_get_extent = isize;
4438 }
4439
ff13db41 4440 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4441 &cached_state);
ec29ed5b 4442
4d479cf0 4443 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4444 get_extent);
1506fcc8
YS
4445 if (!em)
4446 goto out;
4447 if (IS_ERR(em)) {
4448 ret = PTR_ERR(em);
4449 goto out;
4450 }
975f84fe 4451
1506fcc8 4452 while (!end) {
b76bb701 4453 u64 offset_in_extent = 0;
ea8efc74
CM
4454
4455 /* break if the extent we found is outside the range */
4456 if (em->start >= max || extent_map_end(em) < off)
4457 break;
4458
4459 /*
4460 * get_extent may return an extent that starts before our
4461 * requested range. We have to make sure the ranges
4462 * we return to fiemap always move forward and don't
4463 * overlap, so adjust the offsets here
4464 */
4465 em_start = max(em->start, off);
1506fcc8 4466
ea8efc74
CM
4467 /*
4468 * record the offset from the start of the extent
b76bb701
JB
4469 * for adjusting the disk offset below. Only do this if the
4470 * extent isn't compressed since our in ram offset may be past
4471 * what we have actually allocated on disk.
ea8efc74 4472 */
b76bb701
JB
4473 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4474 offset_in_extent = em_start - em->start;
ec29ed5b 4475 em_end = extent_map_end(em);
ea8efc74 4476 em_len = em_end - em_start;
1506fcc8
YS
4477 disko = 0;
4478 flags = 0;
4479
ea8efc74
CM
4480 /*
4481 * bump off for our next call to get_extent
4482 */
4483 off = extent_map_end(em);
4484 if (off >= max)
4485 end = 1;
4486
93dbfad7 4487 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4488 end = 1;
4489 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4490 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4491 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4492 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4493 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4494 flags |= (FIEMAP_EXTENT_DELALLOC |
4495 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4496 } else if (fieinfo->fi_extents_max) {
4497 u64 bytenr = em->block_start -
4498 (em->start - em->orig_start);
fe09e16c 4499
ea8efc74 4500 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4501
4502 /*
4503 * As btrfs supports shared space, this information
4504 * can be exported to userspace tools via
dc046b10
JB
4505 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4506 * then we're just getting a count and we can skip the
4507 * lookup stuff.
fe09e16c 4508 */
dc046b10
JB
4509 ret = btrfs_check_shared(NULL, root->fs_info,
4510 root->objectid,
4511 btrfs_ino(inode), bytenr);
4512 if (ret < 0)
fe09e16c 4513 goto out_free;
dc046b10 4514 if (ret)
fe09e16c 4515 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4516 ret = 0;
1506fcc8
YS
4517 }
4518 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4519 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4520 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4521 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4522
1506fcc8
YS
4523 free_extent_map(em);
4524 em = NULL;
ec29ed5b
CM
4525 if ((em_start >= last) || em_len == (u64)-1 ||
4526 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4527 flags |= FIEMAP_EXTENT_LAST;
4528 end = 1;
4529 }
4530
ec29ed5b
CM
4531 /* now scan forward to see if this is really the last extent. */
4532 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4533 get_extent);
4534 if (IS_ERR(em)) {
4535 ret = PTR_ERR(em);
4536 goto out;
4537 }
4538 if (!em) {
975f84fe
JB
4539 flags |= FIEMAP_EXTENT_LAST;
4540 end = 1;
4541 }
ec29ed5b
CM
4542 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4543 em_len, flags);
26e726af
CS
4544 if (ret) {
4545 if (ret == 1)
4546 ret = 0;
ec29ed5b 4547 goto out_free;
26e726af 4548 }
1506fcc8
YS
4549 }
4550out_free:
4551 free_extent_map(em);
4552out:
fe09e16c 4553 btrfs_free_path(path);
a52f4cd2 4554 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4555 &cached_state, GFP_NOFS);
1506fcc8
YS
4556 return ret;
4557}
4558
727011e0
CM
4559static void __free_extent_buffer(struct extent_buffer *eb)
4560{
6d49ba1b 4561 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4562 kmem_cache_free(extent_buffer_cache, eb);
4563}
4564
a26e8c9f 4565int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4566{
4567 return (atomic_read(&eb->io_pages) ||
4568 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4569 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4570}
4571
4572/*
4573 * Helper for releasing extent buffer page.
4574 */
a50924e3 4575static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4576{
4577 unsigned long index;
db7f3436
JB
4578 struct page *page;
4579 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4580
4581 BUG_ON(extent_buffer_under_io(eb));
4582
a50924e3
DS
4583 index = num_extent_pages(eb->start, eb->len);
4584 if (index == 0)
db7f3436
JB
4585 return;
4586
4587 do {
4588 index--;
fb85fc9a 4589 page = eb->pages[index];
5d2361db
FL
4590 if (!page)
4591 continue;
4592 if (mapped)
db7f3436 4593 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4594 /*
4595 * We do this since we'll remove the pages after we've
4596 * removed the eb from the radix tree, so we could race
4597 * and have this page now attached to the new eb. So
4598 * only clear page_private if it's still connected to
4599 * this eb.
4600 */
4601 if (PagePrivate(page) &&
4602 page->private == (unsigned long)eb) {
4603 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4604 BUG_ON(PageDirty(page));
4605 BUG_ON(PageWriteback(page));
db7f3436 4606 /*
5d2361db
FL
4607 * We need to make sure we haven't be attached
4608 * to a new eb.
db7f3436 4609 */
5d2361db
FL
4610 ClearPagePrivate(page);
4611 set_page_private(page, 0);
4612 /* One for the page private */
09cbfeaf 4613 put_page(page);
db7f3436 4614 }
5d2361db
FL
4615
4616 if (mapped)
4617 spin_unlock(&page->mapping->private_lock);
4618
01327610 4619 /* One for when we allocated the page */
09cbfeaf 4620 put_page(page);
a50924e3 4621 } while (index != 0);
db7f3436
JB
4622}
4623
4624/*
4625 * Helper for releasing the extent buffer.
4626 */
4627static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4628{
a50924e3 4629 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4630 __free_extent_buffer(eb);
4631}
4632
f28491e0
JB
4633static struct extent_buffer *
4634__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4635 unsigned long len)
d1310b2e
CM
4636{
4637 struct extent_buffer *eb = NULL;
4638
d1b5c567 4639 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4640 eb->start = start;
4641 eb->len = len;
f28491e0 4642 eb->fs_info = fs_info;
815a51c7 4643 eb->bflags = 0;
bd681513
CM
4644 rwlock_init(&eb->lock);
4645 atomic_set(&eb->write_locks, 0);
4646 atomic_set(&eb->read_locks, 0);
4647 atomic_set(&eb->blocking_readers, 0);
4648 atomic_set(&eb->blocking_writers, 0);
4649 atomic_set(&eb->spinning_readers, 0);
4650 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4651 eb->lock_nested = 0;
bd681513
CM
4652 init_waitqueue_head(&eb->write_lock_wq);
4653 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4654
6d49ba1b
ES
4655 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4656
3083ee2e 4657 spin_lock_init(&eb->refs_lock);
d1310b2e 4658 atomic_set(&eb->refs, 1);
0b32f4bb 4659 atomic_set(&eb->io_pages, 0);
727011e0 4660
b8dae313
DS
4661 /*
4662 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4663 */
4664 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4665 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4666 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4667
4668 return eb;
4669}
4670
815a51c7
JS
4671struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4672{
4673 unsigned long i;
4674 struct page *p;
4675 struct extent_buffer *new;
4676 unsigned long num_pages = num_extent_pages(src->start, src->len);
4677
3f556f78 4678 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4679 if (new == NULL)
4680 return NULL;
4681
4682 for (i = 0; i < num_pages; i++) {
9ec72677 4683 p = alloc_page(GFP_NOFS);
db7f3436
JB
4684 if (!p) {
4685 btrfs_release_extent_buffer(new);
4686 return NULL;
4687 }
815a51c7
JS
4688 attach_extent_buffer_page(new, p);
4689 WARN_ON(PageDirty(p));
4690 SetPageUptodate(p);
4691 new->pages[i] = p;
4692 }
4693
4694 copy_extent_buffer(new, src, 0, 0, src->len);
4695 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4696 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4697
4698 return new;
4699}
4700
0f331229
OS
4701struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4702 u64 start, unsigned long len)
815a51c7
JS
4703{
4704 struct extent_buffer *eb;
3f556f78 4705 unsigned long num_pages;
815a51c7
JS
4706 unsigned long i;
4707
0f331229 4708 num_pages = num_extent_pages(start, len);
3f556f78
DS
4709
4710 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4711 if (!eb)
4712 return NULL;
4713
4714 for (i = 0; i < num_pages; i++) {
9ec72677 4715 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4716 if (!eb->pages[i])
4717 goto err;
4718 }
4719 set_extent_buffer_uptodate(eb);
4720 btrfs_set_header_nritems(eb, 0);
4721 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4722
4723 return eb;
4724err:
84167d19
SB
4725 for (; i > 0; i--)
4726 __free_page(eb->pages[i - 1]);
815a51c7
JS
4727 __free_extent_buffer(eb);
4728 return NULL;
4729}
4730
0f331229
OS
4731struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start)
4733{
4734 unsigned long len;
4735
4736 if (!fs_info) {
4737 /*
4738 * Called only from tests that don't always have a fs_info
4739 * available, but we know that nodesize is 4096
4740 */
4741 len = 4096;
4742 } else {
4743 len = fs_info->tree_root->nodesize;
4744 }
4745
4746 return __alloc_dummy_extent_buffer(fs_info, start, len);
4747}
4748
0b32f4bb
JB
4749static void check_buffer_tree_ref(struct extent_buffer *eb)
4750{
242e18c7 4751 int refs;
0b32f4bb
JB
4752 /* the ref bit is tricky. We have to make sure it is set
4753 * if we have the buffer dirty. Otherwise the
4754 * code to free a buffer can end up dropping a dirty
4755 * page
4756 *
4757 * Once the ref bit is set, it won't go away while the
4758 * buffer is dirty or in writeback, and it also won't
4759 * go away while we have the reference count on the
4760 * eb bumped.
4761 *
4762 * We can't just set the ref bit without bumping the
4763 * ref on the eb because free_extent_buffer might
4764 * see the ref bit and try to clear it. If this happens
4765 * free_extent_buffer might end up dropping our original
4766 * ref by mistake and freeing the page before we are able
4767 * to add one more ref.
4768 *
4769 * So bump the ref count first, then set the bit. If someone
4770 * beat us to it, drop the ref we added.
4771 */
242e18c7
CM
4772 refs = atomic_read(&eb->refs);
4773 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4774 return;
4775
594831c4
JB
4776 spin_lock(&eb->refs_lock);
4777 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4778 atomic_inc(&eb->refs);
594831c4 4779 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4780}
4781
2457aec6
MG
4782static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4783 struct page *accessed)
5df4235e
JB
4784{
4785 unsigned long num_pages, i;
4786
0b32f4bb
JB
4787 check_buffer_tree_ref(eb);
4788
5df4235e
JB
4789 num_pages = num_extent_pages(eb->start, eb->len);
4790 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4791 struct page *p = eb->pages[i];
4792
2457aec6
MG
4793 if (p != accessed)
4794 mark_page_accessed(p);
5df4235e
JB
4795 }
4796}
4797
f28491e0
JB
4798struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4799 u64 start)
452c75c3
CS
4800{
4801 struct extent_buffer *eb;
4802
4803 rcu_read_lock();
f28491e0 4804 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4805 start >> PAGE_SHIFT);
452c75c3
CS
4806 if (eb && atomic_inc_not_zero(&eb->refs)) {
4807 rcu_read_unlock();
062c19e9
FM
4808 /*
4809 * Lock our eb's refs_lock to avoid races with
4810 * free_extent_buffer. When we get our eb it might be flagged
4811 * with EXTENT_BUFFER_STALE and another task running
4812 * free_extent_buffer might have seen that flag set,
4813 * eb->refs == 2, that the buffer isn't under IO (dirty and
4814 * writeback flags not set) and it's still in the tree (flag
4815 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4816 * of decrementing the extent buffer's reference count twice.
4817 * So here we could race and increment the eb's reference count,
4818 * clear its stale flag, mark it as dirty and drop our reference
4819 * before the other task finishes executing free_extent_buffer,
4820 * which would later result in an attempt to free an extent
4821 * buffer that is dirty.
4822 */
4823 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4824 spin_lock(&eb->refs_lock);
4825 spin_unlock(&eb->refs_lock);
4826 }
2457aec6 4827 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4828 return eb;
4829 }
4830 rcu_read_unlock();
4831
4832 return NULL;
4833}
4834
faa2dbf0
JB
4835#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4836struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4837 u64 start)
faa2dbf0
JB
4838{
4839 struct extent_buffer *eb, *exists = NULL;
4840 int ret;
4841
4842 eb = find_extent_buffer(fs_info, start);
4843 if (eb)
4844 return eb;
3f556f78 4845 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4846 if (!eb)
4847 return NULL;
4848 eb->fs_info = fs_info;
4849again:
e1860a77 4850 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4851 if (ret)
4852 goto free_eb;
4853 spin_lock(&fs_info->buffer_lock);
4854 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4855 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4856 spin_unlock(&fs_info->buffer_lock);
4857 radix_tree_preload_end();
4858 if (ret == -EEXIST) {
4859 exists = find_extent_buffer(fs_info, start);
4860 if (exists)
4861 goto free_eb;
4862 else
4863 goto again;
4864 }
4865 check_buffer_tree_ref(eb);
4866 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4867
4868 /*
4869 * We will free dummy extent buffer's if they come into
4870 * free_extent_buffer with a ref count of 2, but if we are using this we
4871 * want the buffers to stay in memory until we're done with them, so
4872 * bump the ref count again.
4873 */
4874 atomic_inc(&eb->refs);
4875 return eb;
4876free_eb:
4877 btrfs_release_extent_buffer(eb);
4878 return exists;
4879}
4880#endif
4881
f28491e0 4882struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4883 u64 start)
d1310b2e 4884{
ce3e6984 4885 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4886 unsigned long num_pages = num_extent_pages(start, len);
4887 unsigned long i;
09cbfeaf 4888 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4889 struct extent_buffer *eb;
6af118ce 4890 struct extent_buffer *exists = NULL;
d1310b2e 4891 struct page *p;
f28491e0 4892 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4893 int uptodate = 1;
19fe0a8b 4894 int ret;
d1310b2e 4895
f28491e0 4896 eb = find_extent_buffer(fs_info, start);
452c75c3 4897 if (eb)
6af118ce 4898 return eb;
6af118ce 4899
23d79d81 4900 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4901 if (!eb)
d1310b2e
CM
4902 return NULL;
4903
727011e0 4904 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4905 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4906 if (!p)
6af118ce 4907 goto free_eb;
4f2de97a
JB
4908
4909 spin_lock(&mapping->private_lock);
4910 if (PagePrivate(p)) {
4911 /*
4912 * We could have already allocated an eb for this page
4913 * and attached one so lets see if we can get a ref on
4914 * the existing eb, and if we can we know it's good and
4915 * we can just return that one, else we know we can just
4916 * overwrite page->private.
4917 */
4918 exists = (struct extent_buffer *)p->private;
4919 if (atomic_inc_not_zero(&exists->refs)) {
4920 spin_unlock(&mapping->private_lock);
4921 unlock_page(p);
09cbfeaf 4922 put_page(p);
2457aec6 4923 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4924 goto free_eb;
4925 }
5ca64f45 4926 exists = NULL;
4f2de97a 4927
0b32f4bb 4928 /*
4f2de97a
JB
4929 * Do this so attach doesn't complain and we need to
4930 * drop the ref the old guy had.
4931 */
4932 ClearPagePrivate(p);
0b32f4bb 4933 WARN_ON(PageDirty(p));
09cbfeaf 4934 put_page(p);
d1310b2e 4935 }
4f2de97a
JB
4936 attach_extent_buffer_page(eb, p);
4937 spin_unlock(&mapping->private_lock);
0b32f4bb 4938 WARN_ON(PageDirty(p));
727011e0 4939 eb->pages[i] = p;
d1310b2e
CM
4940 if (!PageUptodate(p))
4941 uptodate = 0;
eb14ab8e
CM
4942
4943 /*
4944 * see below about how we avoid a nasty race with release page
4945 * and why we unlock later
4946 */
d1310b2e
CM
4947 }
4948 if (uptodate)
b4ce94de 4949 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4950again:
e1860a77 4951 ret = radix_tree_preload(GFP_NOFS);
19fe0a8b
MX
4952 if (ret)
4953 goto free_eb;
4954
f28491e0
JB
4955 spin_lock(&fs_info->buffer_lock);
4956 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4957 start >> PAGE_SHIFT, eb);
f28491e0 4958 spin_unlock(&fs_info->buffer_lock);
452c75c3 4959 radix_tree_preload_end();
19fe0a8b 4960 if (ret == -EEXIST) {
f28491e0 4961 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4962 if (exists)
4963 goto free_eb;
4964 else
115391d2 4965 goto again;
6af118ce 4966 }
6af118ce 4967 /* add one reference for the tree */
0b32f4bb 4968 check_buffer_tree_ref(eb);
34b41ace 4969 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4970
4971 /*
4972 * there is a race where release page may have
4973 * tried to find this extent buffer in the radix
4974 * but failed. It will tell the VM it is safe to
4975 * reclaim the, and it will clear the page private bit.
4976 * We must make sure to set the page private bit properly
4977 * after the extent buffer is in the radix tree so
4978 * it doesn't get lost
4979 */
727011e0
CM
4980 SetPageChecked(eb->pages[0]);
4981 for (i = 1; i < num_pages; i++) {
fb85fc9a 4982 p = eb->pages[i];
727011e0
CM
4983 ClearPageChecked(p);
4984 unlock_page(p);
4985 }
4986 unlock_page(eb->pages[0]);
d1310b2e
CM
4987 return eb;
4988
6af118ce 4989free_eb:
5ca64f45 4990 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4991 for (i = 0; i < num_pages; i++) {
4992 if (eb->pages[i])
4993 unlock_page(eb->pages[i]);
4994 }
eb14ab8e 4995
897ca6e9 4996 btrfs_release_extent_buffer(eb);
6af118ce 4997 return exists;
d1310b2e 4998}
d1310b2e 4999
3083ee2e
JB
5000static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5001{
5002 struct extent_buffer *eb =
5003 container_of(head, struct extent_buffer, rcu_head);
5004
5005 __free_extent_buffer(eb);
5006}
5007
3083ee2e 5008/* Expects to have eb->eb_lock already held */
f7a52a40 5009static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5010{
5011 WARN_ON(atomic_read(&eb->refs) == 0);
5012 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5013 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5014 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5015
815a51c7 5016 spin_unlock(&eb->refs_lock);
3083ee2e 5017
f28491e0
JB
5018 spin_lock(&fs_info->buffer_lock);
5019 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5020 eb->start >> PAGE_SHIFT);
f28491e0 5021 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5022 } else {
5023 spin_unlock(&eb->refs_lock);
815a51c7 5024 }
3083ee2e
JB
5025
5026 /* Should be safe to release our pages at this point */
a50924e3 5027 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5028#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5029 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5030 __free_extent_buffer(eb);
5031 return 1;
5032 }
5033#endif
3083ee2e 5034 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5035 return 1;
3083ee2e
JB
5036 }
5037 spin_unlock(&eb->refs_lock);
e64860aa
JB
5038
5039 return 0;
3083ee2e
JB
5040}
5041
d1310b2e
CM
5042void free_extent_buffer(struct extent_buffer *eb)
5043{
242e18c7
CM
5044 int refs;
5045 int old;
d1310b2e
CM
5046 if (!eb)
5047 return;
5048
242e18c7
CM
5049 while (1) {
5050 refs = atomic_read(&eb->refs);
5051 if (refs <= 3)
5052 break;
5053 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5054 if (old == refs)
5055 return;
5056 }
5057
3083ee2e 5058 spin_lock(&eb->refs_lock);
815a51c7
JS
5059 if (atomic_read(&eb->refs) == 2 &&
5060 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5061 atomic_dec(&eb->refs);
5062
3083ee2e
JB
5063 if (atomic_read(&eb->refs) == 2 &&
5064 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5065 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5066 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5067 atomic_dec(&eb->refs);
5068
5069 /*
5070 * I know this is terrible, but it's temporary until we stop tracking
5071 * the uptodate bits and such for the extent buffers.
5072 */
f7a52a40 5073 release_extent_buffer(eb);
3083ee2e
JB
5074}
5075
5076void free_extent_buffer_stale(struct extent_buffer *eb)
5077{
5078 if (!eb)
d1310b2e
CM
5079 return;
5080
3083ee2e
JB
5081 spin_lock(&eb->refs_lock);
5082 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5083
0b32f4bb 5084 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5085 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5086 atomic_dec(&eb->refs);
f7a52a40 5087 release_extent_buffer(eb);
d1310b2e 5088}
d1310b2e 5089
1d4284bd 5090void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5091{
d1310b2e
CM
5092 unsigned long i;
5093 unsigned long num_pages;
5094 struct page *page;
5095
d1310b2e
CM
5096 num_pages = num_extent_pages(eb->start, eb->len);
5097
5098 for (i = 0; i < num_pages; i++) {
fb85fc9a 5099 page = eb->pages[i];
b9473439 5100 if (!PageDirty(page))
d2c3f4f6
CM
5101 continue;
5102
a61e6f29 5103 lock_page(page);
eb14ab8e
CM
5104 WARN_ON(!PagePrivate(page));
5105
d1310b2e 5106 clear_page_dirty_for_io(page);
0ee0fda0 5107 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5108 if (!PageDirty(page)) {
5109 radix_tree_tag_clear(&page->mapping->page_tree,
5110 page_index(page),
5111 PAGECACHE_TAG_DIRTY);
5112 }
0ee0fda0 5113 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5114 ClearPageError(page);
a61e6f29 5115 unlock_page(page);
d1310b2e 5116 }
0b32f4bb 5117 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5118}
d1310b2e 5119
0b32f4bb 5120int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5121{
5122 unsigned long i;
5123 unsigned long num_pages;
b9473439 5124 int was_dirty = 0;
d1310b2e 5125
0b32f4bb
JB
5126 check_buffer_tree_ref(eb);
5127
b9473439 5128 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5129
d1310b2e 5130 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5131 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5132 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5133
b9473439 5134 for (i = 0; i < num_pages; i++)
fb85fc9a 5135 set_page_dirty(eb->pages[i]);
b9473439 5136 return was_dirty;
d1310b2e 5137}
d1310b2e 5138
69ba3927 5139void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5140{
5141 unsigned long i;
5142 struct page *page;
5143 unsigned long num_pages;
5144
b4ce94de 5145 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5146 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5147 for (i = 0; i < num_pages; i++) {
fb85fc9a 5148 page = eb->pages[i];
33958dc6
CM
5149 if (page)
5150 ClearPageUptodate(page);
1259ab75 5151 }
1259ab75
CM
5152}
5153
09c25a8c 5154void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5155{
5156 unsigned long i;
5157 struct page *page;
5158 unsigned long num_pages;
5159
0b32f4bb 5160 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5161 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5162 for (i = 0; i < num_pages; i++) {
fb85fc9a 5163 page = eb->pages[i];
d1310b2e
CM
5164 SetPageUptodate(page);
5165 }
d1310b2e 5166}
d1310b2e 5167
0b32f4bb 5168int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5169{
0b32f4bb 5170 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5171}
d1310b2e
CM
5172
5173int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5174 struct extent_buffer *eb, u64 start, int wait,
f188591e 5175 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5176{
5177 unsigned long i;
5178 unsigned long start_i;
5179 struct page *page;
5180 int err;
5181 int ret = 0;
ce9adaa5
CM
5182 int locked_pages = 0;
5183 int all_uptodate = 1;
d1310b2e 5184 unsigned long num_pages;
727011e0 5185 unsigned long num_reads = 0;
a86c12c7 5186 struct bio *bio = NULL;
c8b97818 5187 unsigned long bio_flags = 0;
a86c12c7 5188
b4ce94de 5189 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5190 return 0;
5191
d1310b2e
CM
5192 if (start) {
5193 WARN_ON(start < eb->start);
09cbfeaf
KS
5194 start_i = (start >> PAGE_SHIFT) -
5195 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5196 } else {
5197 start_i = 0;
5198 }
5199
5200 num_pages = num_extent_pages(eb->start, eb->len);
5201 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5202 page = eb->pages[i];
bb82ab88 5203 if (wait == WAIT_NONE) {
2db04966 5204 if (!trylock_page(page))
ce9adaa5 5205 goto unlock_exit;
d1310b2e
CM
5206 } else {
5207 lock_page(page);
5208 }
ce9adaa5 5209 locked_pages++;
727011e0
CM
5210 if (!PageUptodate(page)) {
5211 num_reads++;
ce9adaa5 5212 all_uptodate = 0;
727011e0 5213 }
ce9adaa5
CM
5214 }
5215 if (all_uptodate) {
5216 if (start_i == 0)
b4ce94de 5217 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5218 goto unlock_exit;
5219 }
5220
656f30db 5221 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5222 eb->read_mirror = 0;
0b32f4bb 5223 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5224 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5225 page = eb->pages[i];
ce9adaa5 5226 if (!PageUptodate(page)) {
f188591e 5227 ClearPageError(page);
a86c12c7 5228 err = __extent_read_full_page(tree, page,
f188591e 5229 get_extent, &bio,
d4c7ca86
JB
5230 mirror_num, &bio_flags,
5231 READ | REQ_META);
d397712b 5232 if (err)
d1310b2e 5233 ret = err;
d1310b2e
CM
5234 } else {
5235 unlock_page(page);
5236 }
5237 }
5238
355808c2 5239 if (bio) {
d4c7ca86
JB
5240 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5241 bio_flags);
79787eaa
JM
5242 if (err)
5243 return err;
355808c2 5244 }
a86c12c7 5245
bb82ab88 5246 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5247 return ret;
d397712b 5248
d1310b2e 5249 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5250 page = eb->pages[i];
d1310b2e 5251 wait_on_page_locked(page);
d397712b 5252 if (!PageUptodate(page))
d1310b2e 5253 ret = -EIO;
d1310b2e 5254 }
d397712b 5255
d1310b2e 5256 return ret;
ce9adaa5
CM
5257
5258unlock_exit:
5259 i = start_i;
d397712b 5260 while (locked_pages > 0) {
fb85fc9a 5261 page = eb->pages[i];
ce9adaa5
CM
5262 i++;
5263 unlock_page(page);
5264 locked_pages--;
5265 }
5266 return ret;
d1310b2e 5267}
d1310b2e
CM
5268
5269void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5270 unsigned long start,
5271 unsigned long len)
5272{
5273 size_t cur;
5274 size_t offset;
5275 struct page *page;
5276 char *kaddr;
5277 char *dst = (char *)dstv;
09cbfeaf
KS
5278 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5279 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5280
5281 WARN_ON(start > eb->len);
5282 WARN_ON(start + len > eb->start + eb->len);
5283
09cbfeaf 5284 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5285
d397712b 5286 while (len > 0) {
fb85fc9a 5287 page = eb->pages[i];
d1310b2e 5288
09cbfeaf 5289 cur = min(len, (PAGE_SIZE - offset));
a6591715 5290 kaddr = page_address(page);
d1310b2e 5291 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5292
5293 dst += cur;
5294 len -= cur;
5295 offset = 0;
5296 i++;
5297 }
5298}
d1310b2e 5299
550ac1d8
GH
5300int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5301 unsigned long start,
5302 unsigned long len)
5303{
5304 size_t cur;
5305 size_t offset;
5306 struct page *page;
5307 char *kaddr;
5308 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5309 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5310 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5311 int ret = 0;
5312
5313 WARN_ON(start > eb->len);
5314 WARN_ON(start + len > eb->start + eb->len);
5315
09cbfeaf 5316 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5317
5318 while (len > 0) {
fb85fc9a 5319 page = eb->pages[i];
550ac1d8 5320
09cbfeaf 5321 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5322 kaddr = page_address(page);
5323 if (copy_to_user(dst, kaddr + offset, cur)) {
5324 ret = -EFAULT;
5325 break;
5326 }
5327
5328 dst += cur;
5329 len -= cur;
5330 offset = 0;
5331 i++;
5332 }
5333
5334 return ret;
5335}
5336
d1310b2e 5337int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5338 unsigned long min_len, char **map,
d1310b2e 5339 unsigned long *map_start,
a6591715 5340 unsigned long *map_len)
d1310b2e 5341{
09cbfeaf 5342 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5343 char *kaddr;
5344 struct page *p;
09cbfeaf
KS
5345 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5346 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5347 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5348 PAGE_SHIFT;
d1310b2e
CM
5349
5350 if (i != end_i)
5351 return -EINVAL;
5352
5353 if (i == 0) {
5354 offset = start_offset;
5355 *map_start = 0;
5356 } else {
5357 offset = 0;
09cbfeaf 5358 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5359 }
d397712b 5360
d1310b2e 5361 if (start + min_len > eb->len) {
31b1a2bd 5362 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5363 "wanted %lu %lu\n",
5364 eb->start, eb->len, start, min_len);
85026533 5365 return -EINVAL;
d1310b2e
CM
5366 }
5367
fb85fc9a 5368 p = eb->pages[i];
a6591715 5369 kaddr = page_address(p);
d1310b2e 5370 *map = kaddr + offset;
09cbfeaf 5371 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5372 return 0;
5373}
d1310b2e 5374
d1310b2e
CM
5375int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5376 unsigned long start,
5377 unsigned long len)
5378{
5379 size_t cur;
5380 size_t offset;
5381 struct page *page;
5382 char *kaddr;
5383 char *ptr = (char *)ptrv;
09cbfeaf
KS
5384 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5385 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5386 int ret = 0;
5387
5388 WARN_ON(start > eb->len);
5389 WARN_ON(start + len > eb->start + eb->len);
5390
09cbfeaf 5391 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5392
d397712b 5393 while (len > 0) {
fb85fc9a 5394 page = eb->pages[i];
d1310b2e 5395
09cbfeaf 5396 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5397
a6591715 5398 kaddr = page_address(page);
d1310b2e 5399 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5400 if (ret)
5401 break;
5402
5403 ptr += cur;
5404 len -= cur;
5405 offset = 0;
5406 i++;
5407 }
5408 return ret;
5409}
d1310b2e
CM
5410
5411void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5412 unsigned long start, unsigned long len)
5413{
5414 size_t cur;
5415 size_t offset;
5416 struct page *page;
5417 char *kaddr;
5418 char *src = (char *)srcv;
09cbfeaf
KS
5419 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5420 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5421
5422 WARN_ON(start > eb->len);
5423 WARN_ON(start + len > eb->start + eb->len);
5424
09cbfeaf 5425 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5426
d397712b 5427 while (len > 0) {
fb85fc9a 5428 page = eb->pages[i];
d1310b2e
CM
5429 WARN_ON(!PageUptodate(page));
5430
09cbfeaf 5431 cur = min(len, PAGE_SIZE - offset);
a6591715 5432 kaddr = page_address(page);
d1310b2e 5433 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5434
5435 src += cur;
5436 len -= cur;
5437 offset = 0;
5438 i++;
5439 }
5440}
d1310b2e
CM
5441
5442void memset_extent_buffer(struct extent_buffer *eb, char c,
5443 unsigned long start, unsigned long len)
5444{
5445 size_t cur;
5446 size_t offset;
5447 struct page *page;
5448 char *kaddr;
09cbfeaf
KS
5449 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5450 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5451
5452 WARN_ON(start > eb->len);
5453 WARN_ON(start + len > eb->start + eb->len);
5454
09cbfeaf 5455 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5456
d397712b 5457 while (len > 0) {
fb85fc9a 5458 page = eb->pages[i];
d1310b2e
CM
5459 WARN_ON(!PageUptodate(page));
5460
09cbfeaf 5461 cur = min(len, PAGE_SIZE - offset);
a6591715 5462 kaddr = page_address(page);
d1310b2e 5463 memset(kaddr + offset, c, cur);
d1310b2e
CM
5464
5465 len -= cur;
5466 offset = 0;
5467 i++;
5468 }
5469}
d1310b2e
CM
5470
5471void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5472 unsigned long dst_offset, unsigned long src_offset,
5473 unsigned long len)
5474{
5475 u64 dst_len = dst->len;
5476 size_t cur;
5477 size_t offset;
5478 struct page *page;
5479 char *kaddr;
09cbfeaf
KS
5480 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5481 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5482
5483 WARN_ON(src->len != dst_len);
5484
5485 offset = (start_offset + dst_offset) &
09cbfeaf 5486 (PAGE_SIZE - 1);
d1310b2e 5487
d397712b 5488 while (len > 0) {
fb85fc9a 5489 page = dst->pages[i];
d1310b2e
CM
5490 WARN_ON(!PageUptodate(page));
5491
09cbfeaf 5492 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5493
a6591715 5494 kaddr = page_address(page);
d1310b2e 5495 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5496
5497 src_offset += cur;
5498 len -= cur;
5499 offset = 0;
5500 i++;
5501 }
5502}
d1310b2e 5503
3e1e8bb7
OS
5504/*
5505 * The extent buffer bitmap operations are done with byte granularity because
5506 * bitmap items are not guaranteed to be aligned to a word and therefore a
5507 * single word in a bitmap may straddle two pages in the extent buffer.
5508 */
5509#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5510#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5511#define BITMAP_FIRST_BYTE_MASK(start) \
5512 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5513#define BITMAP_LAST_BYTE_MASK(nbits) \
5514 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5515
5516/*
5517 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5518 * given bit number
5519 * @eb: the extent buffer
5520 * @start: offset of the bitmap item in the extent buffer
5521 * @nr: bit number
5522 * @page_index: return index of the page in the extent buffer that contains the
5523 * given bit number
5524 * @page_offset: return offset into the page given by page_index
5525 *
5526 * This helper hides the ugliness of finding the byte in an extent buffer which
5527 * contains a given bit.
5528 */
5529static inline void eb_bitmap_offset(struct extent_buffer *eb,
5530 unsigned long start, unsigned long nr,
5531 unsigned long *page_index,
5532 size_t *page_offset)
5533{
09cbfeaf 5534 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5535 size_t byte_offset = BIT_BYTE(nr);
5536 size_t offset;
5537
5538 /*
5539 * The byte we want is the offset of the extent buffer + the offset of
5540 * the bitmap item in the extent buffer + the offset of the byte in the
5541 * bitmap item.
5542 */
5543 offset = start_offset + start + byte_offset;
5544
09cbfeaf
KS
5545 *page_index = offset >> PAGE_SHIFT;
5546 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5547}
5548
5549/**
5550 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5551 * @eb: the extent buffer
5552 * @start: offset of the bitmap item in the extent buffer
5553 * @nr: bit number to test
5554 */
5555int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5556 unsigned long nr)
5557{
5558 char *kaddr;
5559 struct page *page;
5560 unsigned long i;
5561 size_t offset;
5562
5563 eb_bitmap_offset(eb, start, nr, &i, &offset);
5564 page = eb->pages[i];
5565 WARN_ON(!PageUptodate(page));
5566 kaddr = page_address(page);
5567 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5568}
5569
5570/**
5571 * extent_buffer_bitmap_set - set an area of a bitmap
5572 * @eb: the extent buffer
5573 * @start: offset of the bitmap item in the extent buffer
5574 * @pos: bit number of the first bit
5575 * @len: number of bits to set
5576 */
5577void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5578 unsigned long pos, unsigned long len)
5579{
5580 char *kaddr;
5581 struct page *page;
5582 unsigned long i;
5583 size_t offset;
5584 const unsigned int size = pos + len;
5585 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5586 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5587
5588 eb_bitmap_offset(eb, start, pos, &i, &offset);
5589 page = eb->pages[i];
5590 WARN_ON(!PageUptodate(page));
5591 kaddr = page_address(page);
5592
5593 while (len >= bits_to_set) {
5594 kaddr[offset] |= mask_to_set;
5595 len -= bits_to_set;
5596 bits_to_set = BITS_PER_BYTE;
5597 mask_to_set = ~0U;
09cbfeaf 5598 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5599 offset = 0;
5600 page = eb->pages[++i];
5601 WARN_ON(!PageUptodate(page));
5602 kaddr = page_address(page);
5603 }
5604 }
5605 if (len) {
5606 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5607 kaddr[offset] |= mask_to_set;
5608 }
5609}
5610
5611
5612/**
5613 * extent_buffer_bitmap_clear - clear an area of a bitmap
5614 * @eb: the extent buffer
5615 * @start: offset of the bitmap item in the extent buffer
5616 * @pos: bit number of the first bit
5617 * @len: number of bits to clear
5618 */
5619void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5620 unsigned long pos, unsigned long len)
5621{
5622 char *kaddr;
5623 struct page *page;
5624 unsigned long i;
5625 size_t offset;
5626 const unsigned int size = pos + len;
5627 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5628 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5629
5630 eb_bitmap_offset(eb, start, pos, &i, &offset);
5631 page = eb->pages[i];
5632 WARN_ON(!PageUptodate(page));
5633 kaddr = page_address(page);
5634
5635 while (len >= bits_to_clear) {
5636 kaddr[offset] &= ~mask_to_clear;
5637 len -= bits_to_clear;
5638 bits_to_clear = BITS_PER_BYTE;
5639 mask_to_clear = ~0U;
09cbfeaf 5640 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5641 offset = 0;
5642 page = eb->pages[++i];
5643 WARN_ON(!PageUptodate(page));
5644 kaddr = page_address(page);
5645 }
5646 }
5647 if (len) {
5648 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5649 kaddr[offset] &= ~mask_to_clear;
5650 }
5651}
5652
3387206f
ST
5653static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5654{
5655 unsigned long distance = (src > dst) ? src - dst : dst - src;
5656 return distance < len;
5657}
5658
d1310b2e
CM
5659static void copy_pages(struct page *dst_page, struct page *src_page,
5660 unsigned long dst_off, unsigned long src_off,
5661 unsigned long len)
5662{
a6591715 5663 char *dst_kaddr = page_address(dst_page);
d1310b2e 5664 char *src_kaddr;
727011e0 5665 int must_memmove = 0;
d1310b2e 5666
3387206f 5667 if (dst_page != src_page) {
a6591715 5668 src_kaddr = page_address(src_page);
3387206f 5669 } else {
d1310b2e 5670 src_kaddr = dst_kaddr;
727011e0
CM
5671 if (areas_overlap(src_off, dst_off, len))
5672 must_memmove = 1;
3387206f 5673 }
d1310b2e 5674
727011e0
CM
5675 if (must_memmove)
5676 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5677 else
5678 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5679}
5680
5681void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5682 unsigned long src_offset, unsigned long len)
5683{
5684 size_t cur;
5685 size_t dst_off_in_page;
5686 size_t src_off_in_page;
09cbfeaf 5687 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5688 unsigned long dst_i;
5689 unsigned long src_i;
5690
5691 if (src_offset + len > dst->len) {
f14d104d
DS
5692 btrfs_err(dst->fs_info,
5693 "memmove bogus src_offset %lu move "
5694 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5695 BUG_ON(1);
5696 }
5697 if (dst_offset + len > dst->len) {
f14d104d
DS
5698 btrfs_err(dst->fs_info,
5699 "memmove bogus dst_offset %lu move "
5700 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5701 BUG_ON(1);
5702 }
5703
d397712b 5704 while (len > 0) {
d1310b2e 5705 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5706 (PAGE_SIZE - 1);
d1310b2e 5707 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5708 (PAGE_SIZE - 1);
d1310b2e 5709
09cbfeaf
KS
5710 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5711 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5712
09cbfeaf 5713 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5714 src_off_in_page));
5715 cur = min_t(unsigned long, cur,
09cbfeaf 5716 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5717
fb85fc9a 5718 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5719 dst_off_in_page, src_off_in_page, cur);
5720
5721 src_offset += cur;
5722 dst_offset += cur;
5723 len -= cur;
5724 }
5725}
d1310b2e
CM
5726
5727void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5728 unsigned long src_offset, unsigned long len)
5729{
5730 size_t cur;
5731 size_t dst_off_in_page;
5732 size_t src_off_in_page;
5733 unsigned long dst_end = dst_offset + len - 1;
5734 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5735 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5736 unsigned long dst_i;
5737 unsigned long src_i;
5738
5739 if (src_offset + len > dst->len) {
f14d104d
DS
5740 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5741 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5742 BUG_ON(1);
5743 }
5744 if (dst_offset + len > dst->len) {
f14d104d
DS
5745 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5746 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5747 BUG_ON(1);
5748 }
727011e0 5749 if (dst_offset < src_offset) {
d1310b2e
CM
5750 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5751 return;
5752 }
d397712b 5753 while (len > 0) {
09cbfeaf
KS
5754 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5755 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5756
5757 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5758 (PAGE_SIZE - 1);
d1310b2e 5759 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5760 (PAGE_SIZE - 1);
d1310b2e
CM
5761
5762 cur = min_t(unsigned long, len, src_off_in_page + 1);
5763 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5764 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5765 dst_off_in_page - cur + 1,
5766 src_off_in_page - cur + 1, cur);
5767
5768 dst_end -= cur;
5769 src_end -= cur;
5770 len -= cur;
5771 }
5772}
6af118ce 5773
f7a52a40 5774int try_release_extent_buffer(struct page *page)
19fe0a8b 5775{
6af118ce 5776 struct extent_buffer *eb;
6af118ce 5777
3083ee2e 5778 /*
01327610 5779 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5780 * now.
5781 */
5782 spin_lock(&page->mapping->private_lock);
5783 if (!PagePrivate(page)) {
5784 spin_unlock(&page->mapping->private_lock);
4f2de97a 5785 return 1;
45f49bce 5786 }
6af118ce 5787
3083ee2e
JB
5788 eb = (struct extent_buffer *)page->private;
5789 BUG_ON(!eb);
19fe0a8b
MX
5790
5791 /*
3083ee2e
JB
5792 * This is a little awful but should be ok, we need to make sure that
5793 * the eb doesn't disappear out from under us while we're looking at
5794 * this page.
19fe0a8b 5795 */
3083ee2e 5796 spin_lock(&eb->refs_lock);
0b32f4bb 5797 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5798 spin_unlock(&eb->refs_lock);
5799 spin_unlock(&page->mapping->private_lock);
5800 return 0;
b9473439 5801 }
3083ee2e 5802 spin_unlock(&page->mapping->private_lock);
897ca6e9 5803
19fe0a8b 5804 /*
3083ee2e
JB
5805 * If tree ref isn't set then we know the ref on this eb is a real ref,
5806 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5807 */
3083ee2e
JB
5808 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5809 spin_unlock(&eb->refs_lock);
5810 return 0;
b9473439 5811 }
19fe0a8b 5812
f7a52a40 5813 return release_extent_buffer(eb);
6af118ce 5814}