]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: Introduce new bits for device allocation tree
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112struct tree_entry {
113 u64 start;
114 u64 end;
d1310b2e
CM
115 struct rb_node rb_node;
116};
117
118struct extent_page_data {
119 struct bio *bio;
120 struct extent_io_tree *tree;
771ed689
CM
121 /* tells writepage not to lock the state bits for this range
122 * it still does the unlocking
123 */
ffbd517d
CM
124 unsigned int extent_locked:1;
125
70fd7614 126 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 127 unsigned int sync_io:1;
d1310b2e
CM
128};
129
57599c7e 130static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
131 struct extent_changeset *changeset,
132 int set)
133{
134 int ret;
135
136 if (!changeset)
57599c7e 137 return 0;
d38ed27f 138 if (set && (state->state & bits) == bits)
57599c7e 139 return 0;
fefdc557 140 if (!set && (state->state & bits) == 0)
57599c7e 141 return 0;
d38ed27f 142 changeset->bytes_changed += state->end - state->start + 1;
53d32359 143 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 144 GFP_ATOMIC);
57599c7e 145 return ret;
d38ed27f
QW
146}
147
bb58eb9e
QW
148static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
149 unsigned long bio_flags)
150{
151 blk_status_t ret = 0;
152 struct bio_vec *bvec = bio_last_bvec_all(bio);
80201fe1 153 struct bio_vec bv;
bb58eb9e
QW
154 struct extent_io_tree *tree = bio->bi_private;
155 u64 start;
156
80201fe1
LT
157 mp_bvec_last_segment(bvec, &bv);
158 start = page_offset(bv.bv_page) + bv.bv_offset;
bb58eb9e
QW
159
160 bio->bi_private = NULL;
161
162 if (tree->ops)
163 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
164 mirror_num, bio_flags, start);
165 else
166 btrfsic_submit_bio(bio);
167
168 return blk_status_to_errno(ret);
169}
170
3065976b
QW
171/* Cleanup unsubmitted bios */
172static void end_write_bio(struct extent_page_data *epd, int ret)
173{
174 if (epd->bio) {
175 epd->bio->bi_status = errno_to_blk_status(ret);
176 bio_endio(epd->bio);
177 epd->bio = NULL;
178 }
179}
180
f4340622
QW
181/*
182 * Submit bio from extent page data via submit_one_bio
183 *
184 * Return 0 if everything is OK.
185 * Return <0 for error.
186 */
187static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 188{
f4340622 189 int ret = 0;
bb58eb9e 190
f4340622 191 if (epd->bio) {
bb58eb9e 192 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
193 /*
194 * Clean up of epd->bio is handled by its endio function.
195 * And endio is either triggered by successful bio execution
196 * or the error handler of submit bio hook.
197 * So at this point, no matter what happened, we don't need
198 * to clean up epd->bio.
199 */
bb58eb9e
QW
200 epd->bio = NULL;
201 }
f4340622 202 return ret;
bb58eb9e 203}
e2932ee0 204
d1310b2e
CM
205int __init extent_io_init(void)
206{
837e1972 207 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 208 sizeof(struct extent_state), 0,
fba4b697 209 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
210 if (!extent_state_cache)
211 return -ENOMEM;
212
837e1972 213 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 214 sizeof(struct extent_buffer), 0,
fba4b697 215 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
216 if (!extent_buffer_cache)
217 goto free_state_cache;
9be3395b 218
8ac9f7c1
KO
219 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
220 offsetof(struct btrfs_io_bio, bio),
221 BIOSET_NEED_BVECS))
9be3395b 222 goto free_buffer_cache;
b208c2f7 223
8ac9f7c1 224 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
225 goto free_bioset;
226
d1310b2e
CM
227 return 0;
228
b208c2f7 229free_bioset:
8ac9f7c1 230 bioset_exit(&btrfs_bioset);
b208c2f7 231
9be3395b
CM
232free_buffer_cache:
233 kmem_cache_destroy(extent_buffer_cache);
234 extent_buffer_cache = NULL;
235
d1310b2e
CM
236free_state_cache:
237 kmem_cache_destroy(extent_state_cache);
9be3395b 238 extent_state_cache = NULL;
d1310b2e
CM
239 return -ENOMEM;
240}
241
e67c718b 242void __cold extent_io_exit(void)
d1310b2e 243{
6d49ba1b 244 btrfs_leak_debug_check();
8c0a8537
KS
245
246 /*
247 * Make sure all delayed rcu free are flushed before we
248 * destroy caches.
249 */
250 rcu_barrier();
5598e900
KM
251 kmem_cache_destroy(extent_state_cache);
252 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 253 bioset_exit(&btrfs_bioset);
d1310b2e
CM
254}
255
c258d6e3 256void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
257 struct extent_io_tree *tree, unsigned int owner,
258 void *private_data)
d1310b2e 259{
c258d6e3 260 tree->fs_info = fs_info;
6bef4d31 261 tree->state = RB_ROOT;
d1310b2e
CM
262 tree->ops = NULL;
263 tree->dirty_bytes = 0;
70dec807 264 spin_lock_init(&tree->lock);
c6100a4b 265 tree->private_data = private_data;
43eb5f29 266 tree->owner = owner;
d1310b2e 267}
d1310b2e 268
41e7acd3
NB
269void extent_io_tree_release(struct extent_io_tree *tree)
270{
271 spin_lock(&tree->lock);
272 /*
273 * Do a single barrier for the waitqueue_active check here, the state
274 * of the waitqueue should not change once extent_io_tree_release is
275 * called.
276 */
277 smp_mb();
278 while (!RB_EMPTY_ROOT(&tree->state)) {
279 struct rb_node *node;
280 struct extent_state *state;
281
282 node = rb_first(&tree->state);
283 state = rb_entry(node, struct extent_state, rb_node);
284 rb_erase(&state->rb_node, &tree->state);
285 RB_CLEAR_NODE(&state->rb_node);
286 /*
287 * btree io trees aren't supposed to have tasks waiting for
288 * changes in the flags of extent states ever.
289 */
290 ASSERT(!waitqueue_active(&state->wq));
291 free_extent_state(state);
292
293 cond_resched_lock(&tree->lock);
294 }
295 spin_unlock(&tree->lock);
296}
297
b2950863 298static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
299{
300 struct extent_state *state;
d1310b2e 301
3ba7ab22
MH
302 /*
303 * The given mask might be not appropriate for the slab allocator,
304 * drop the unsupported bits
305 */
306 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 307 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 308 if (!state)
d1310b2e
CM
309 return state;
310 state->state = 0;
47dc196a 311 state->failrec = NULL;
27a3507d 312 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 313 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 314 refcount_set(&state->refs, 1);
d1310b2e 315 init_waitqueue_head(&state->wq);
143bede5 316 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
317 return state;
318}
d1310b2e 319
4845e44f 320void free_extent_state(struct extent_state *state)
d1310b2e 321{
d1310b2e
CM
322 if (!state)
323 return;
b7ac31b7 324 if (refcount_dec_and_test(&state->refs)) {
27a3507d 325 WARN_ON(extent_state_in_tree(state));
6d49ba1b 326 btrfs_leak_debug_del(&state->leak_list);
143bede5 327 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
328 kmem_cache_free(extent_state_cache, state);
329 }
330}
d1310b2e 331
f2071b21
FM
332static struct rb_node *tree_insert(struct rb_root *root,
333 struct rb_node *search_start,
334 u64 offset,
12cfbad9
FDBM
335 struct rb_node *node,
336 struct rb_node ***p_in,
337 struct rb_node **parent_in)
d1310b2e 338{
f2071b21 339 struct rb_node **p;
d397712b 340 struct rb_node *parent = NULL;
d1310b2e
CM
341 struct tree_entry *entry;
342
12cfbad9
FDBM
343 if (p_in && parent_in) {
344 p = *p_in;
345 parent = *parent_in;
346 goto do_insert;
347 }
348
f2071b21 349 p = search_start ? &search_start : &root->rb_node;
d397712b 350 while (*p) {
d1310b2e
CM
351 parent = *p;
352 entry = rb_entry(parent, struct tree_entry, rb_node);
353
354 if (offset < entry->start)
355 p = &(*p)->rb_left;
356 else if (offset > entry->end)
357 p = &(*p)->rb_right;
358 else
359 return parent;
360 }
361
12cfbad9 362do_insert:
d1310b2e
CM
363 rb_link_node(node, parent, p);
364 rb_insert_color(node, root);
365 return NULL;
366}
367
80ea96b1 368static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 369 struct rb_node **next_ret,
352646c7 370 struct rb_node **prev_ret,
12cfbad9
FDBM
371 struct rb_node ***p_ret,
372 struct rb_node **parent_ret)
d1310b2e 373{
80ea96b1 374 struct rb_root *root = &tree->state;
12cfbad9 375 struct rb_node **n = &root->rb_node;
d1310b2e
CM
376 struct rb_node *prev = NULL;
377 struct rb_node *orig_prev = NULL;
378 struct tree_entry *entry;
379 struct tree_entry *prev_entry = NULL;
380
12cfbad9
FDBM
381 while (*n) {
382 prev = *n;
383 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
384 prev_entry = entry;
385
386 if (offset < entry->start)
12cfbad9 387 n = &(*n)->rb_left;
d1310b2e 388 else if (offset > entry->end)
12cfbad9 389 n = &(*n)->rb_right;
d397712b 390 else
12cfbad9 391 return *n;
d1310b2e
CM
392 }
393
12cfbad9
FDBM
394 if (p_ret)
395 *p_ret = n;
396 if (parent_ret)
397 *parent_ret = prev;
398
352646c7 399 if (next_ret) {
d1310b2e 400 orig_prev = prev;
d397712b 401 while (prev && offset > prev_entry->end) {
d1310b2e
CM
402 prev = rb_next(prev);
403 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
404 }
352646c7 405 *next_ret = prev;
d1310b2e
CM
406 prev = orig_prev;
407 }
408
352646c7 409 if (prev_ret) {
d1310b2e 410 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 411 while (prev && offset < prev_entry->start) {
d1310b2e
CM
412 prev = rb_prev(prev);
413 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
414 }
352646c7 415 *prev_ret = prev;
d1310b2e
CM
416 }
417 return NULL;
418}
419
12cfbad9
FDBM
420static inline struct rb_node *
421tree_search_for_insert(struct extent_io_tree *tree,
422 u64 offset,
423 struct rb_node ***p_ret,
424 struct rb_node **parent_ret)
d1310b2e 425{
352646c7 426 struct rb_node *next= NULL;
d1310b2e 427 struct rb_node *ret;
70dec807 428
352646c7 429 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 430 if (!ret)
352646c7 431 return next;
d1310b2e
CM
432 return ret;
433}
434
12cfbad9
FDBM
435static inline struct rb_node *tree_search(struct extent_io_tree *tree,
436 u64 offset)
437{
438 return tree_search_for_insert(tree, offset, NULL, NULL);
439}
440
d1310b2e
CM
441/*
442 * utility function to look for merge candidates inside a given range.
443 * Any extents with matching state are merged together into a single
444 * extent in the tree. Extents with EXTENT_IO in their state field
445 * are not merged because the end_io handlers need to be able to do
446 * operations on them without sleeping (or doing allocations/splits).
447 *
448 * This should be called with the tree lock held.
449 */
1bf85046
JM
450static void merge_state(struct extent_io_tree *tree,
451 struct extent_state *state)
d1310b2e
CM
452{
453 struct extent_state *other;
454 struct rb_node *other_node;
455
8882679e 456 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 457 return;
d1310b2e
CM
458
459 other_node = rb_prev(&state->rb_node);
460 if (other_node) {
461 other = rb_entry(other_node, struct extent_state, rb_node);
462 if (other->end == state->start - 1 &&
463 other->state == state->state) {
5c848198
NB
464 if (tree->private_data &&
465 is_data_inode(tree->private_data))
466 btrfs_merge_delalloc_extent(tree->private_data,
467 state, other);
d1310b2e 468 state->start = other->start;
d1310b2e 469 rb_erase(&other->rb_node, &tree->state);
27a3507d 470 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
471 free_extent_state(other);
472 }
473 }
474 other_node = rb_next(&state->rb_node);
475 if (other_node) {
476 other = rb_entry(other_node, struct extent_state, rb_node);
477 if (other->start == state->end + 1 &&
478 other->state == state->state) {
5c848198
NB
479 if (tree->private_data &&
480 is_data_inode(tree->private_data))
481 btrfs_merge_delalloc_extent(tree->private_data,
482 state, other);
df98b6e2 483 state->end = other->end;
df98b6e2 484 rb_erase(&other->rb_node, &tree->state);
27a3507d 485 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 486 free_extent_state(other);
d1310b2e
CM
487 }
488 }
d1310b2e
CM
489}
490
3150b699 491static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
492 struct extent_state *state, unsigned *bits,
493 struct extent_changeset *changeset);
3150b699 494
d1310b2e
CM
495/*
496 * insert an extent_state struct into the tree. 'bits' are set on the
497 * struct before it is inserted.
498 *
499 * This may return -EEXIST if the extent is already there, in which case the
500 * state struct is freed.
501 *
502 * The tree lock is not taken internally. This is a utility function and
503 * probably isn't what you want to call (see set/clear_extent_bit).
504 */
505static int insert_state(struct extent_io_tree *tree,
506 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
507 struct rb_node ***p,
508 struct rb_node **parent,
d38ed27f 509 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
510{
511 struct rb_node *node;
512
31b1a2bd 513 if (end < start)
efe120a0 514 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 515 end, start);
d1310b2e
CM
516 state->start = start;
517 state->end = end;
9ed74f2d 518
d38ed27f 519 set_state_bits(tree, state, bits, changeset);
3150b699 520
f2071b21 521 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
522 if (node) {
523 struct extent_state *found;
524 found = rb_entry(node, struct extent_state, rb_node);
62e85577 525 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 526 found->start, found->end, start, end);
d1310b2e
CM
527 return -EEXIST;
528 }
529 merge_state(tree, state);
530 return 0;
531}
532
533/*
534 * split a given extent state struct in two, inserting the preallocated
535 * struct 'prealloc' as the newly created second half. 'split' indicates an
536 * offset inside 'orig' where it should be split.
537 *
538 * Before calling,
539 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
540 * are two extent state structs in the tree:
541 * prealloc: [orig->start, split - 1]
542 * orig: [ split, orig->end ]
543 *
544 * The tree locks are not taken by this function. They need to be held
545 * by the caller.
546 */
547static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
548 struct extent_state *prealloc, u64 split)
549{
550 struct rb_node *node;
9ed74f2d 551
abbb55f4
NB
552 if (tree->private_data && is_data_inode(tree->private_data))
553 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 554
d1310b2e
CM
555 prealloc->start = orig->start;
556 prealloc->end = split - 1;
557 prealloc->state = orig->state;
558 orig->start = split;
559
f2071b21
FM
560 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
561 &prealloc->rb_node, NULL, NULL);
d1310b2e 562 if (node) {
d1310b2e
CM
563 free_extent_state(prealloc);
564 return -EEXIST;
565 }
566 return 0;
567}
568
cdc6a395
LZ
569static struct extent_state *next_state(struct extent_state *state)
570{
571 struct rb_node *next = rb_next(&state->rb_node);
572 if (next)
573 return rb_entry(next, struct extent_state, rb_node);
574 else
575 return NULL;
576}
577
d1310b2e
CM
578/*
579 * utility function to clear some bits in an extent state struct.
52042d8e 580 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
581 *
582 * If no bits are set on the state struct after clearing things, the
583 * struct is freed and removed from the tree
584 */
cdc6a395
LZ
585static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
586 struct extent_state *state,
fefdc557
QW
587 unsigned *bits, int wake,
588 struct extent_changeset *changeset)
d1310b2e 589{
cdc6a395 590 struct extent_state *next;
9ee49a04 591 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 592 int ret;
d1310b2e 593
0ca1f7ce 594 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
595 u64 range = state->end - state->start + 1;
596 WARN_ON(range > tree->dirty_bytes);
597 tree->dirty_bytes -= range;
598 }
a36bb5f9
NB
599
600 if (tree->private_data && is_data_inode(tree->private_data))
601 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
602
57599c7e
DS
603 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
604 BUG_ON(ret < 0);
32c00aff 605 state->state &= ~bits_to_clear;
d1310b2e
CM
606 if (wake)
607 wake_up(&state->wq);
0ca1f7ce 608 if (state->state == 0) {
cdc6a395 609 next = next_state(state);
27a3507d 610 if (extent_state_in_tree(state)) {
d1310b2e 611 rb_erase(&state->rb_node, &tree->state);
27a3507d 612 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
613 free_extent_state(state);
614 } else {
615 WARN_ON(1);
616 }
617 } else {
618 merge_state(tree, state);
cdc6a395 619 next = next_state(state);
d1310b2e 620 }
cdc6a395 621 return next;
d1310b2e
CM
622}
623
8233767a
XG
624static struct extent_state *
625alloc_extent_state_atomic(struct extent_state *prealloc)
626{
627 if (!prealloc)
628 prealloc = alloc_extent_state(GFP_ATOMIC);
629
630 return prealloc;
631}
632
48a3b636 633static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 634{
05912a3c
DS
635 struct inode *inode = tree->private_data;
636
637 btrfs_panic(btrfs_sb(inode->i_sb), err,
638 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
639}
640
d1310b2e
CM
641/*
642 * clear some bits on a range in the tree. This may require splitting
643 * or inserting elements in the tree, so the gfp mask is used to
644 * indicate which allocations or sleeping are allowed.
645 *
646 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
647 * the given range from the tree regardless of state (ie for truncate).
648 *
649 * the range [start, end] is inclusive.
650 *
6763af84 651 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 652 */
66b0c887 653int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
654 unsigned bits, int wake, int delete,
655 struct extent_state **cached_state,
656 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
657{
658 struct extent_state *state;
2c64c53d 659 struct extent_state *cached;
d1310b2e
CM
660 struct extent_state *prealloc = NULL;
661 struct rb_node *node;
5c939df5 662 u64 last_end;
d1310b2e 663 int err;
2ac55d41 664 int clear = 0;
d1310b2e 665
a5dee37d 666 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 667 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 668
7ee9e440
JB
669 if (bits & EXTENT_DELALLOC)
670 bits |= EXTENT_NORESERVE;
671
0ca1f7ce
YZ
672 if (delete)
673 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 674
8882679e 675 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 676 clear = 1;
d1310b2e 677again:
d0164adc 678 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
679 /*
680 * Don't care for allocation failure here because we might end
681 * up not needing the pre-allocated extent state at all, which
682 * is the case if we only have in the tree extent states that
683 * cover our input range and don't cover too any other range.
684 * If we end up needing a new extent state we allocate it later.
685 */
d1310b2e 686 prealloc = alloc_extent_state(mask);
d1310b2e
CM
687 }
688
cad321ad 689 spin_lock(&tree->lock);
2c64c53d
CM
690 if (cached_state) {
691 cached = *cached_state;
2ac55d41
JB
692
693 if (clear) {
694 *cached_state = NULL;
695 cached_state = NULL;
696 }
697
27a3507d
FM
698 if (cached && extent_state_in_tree(cached) &&
699 cached->start <= start && cached->end > start) {
2ac55d41 700 if (clear)
b7ac31b7 701 refcount_dec(&cached->refs);
2c64c53d 702 state = cached;
42daec29 703 goto hit_next;
2c64c53d 704 }
2ac55d41
JB
705 if (clear)
706 free_extent_state(cached);
2c64c53d 707 }
d1310b2e
CM
708 /*
709 * this search will find the extents that end after
710 * our range starts
711 */
80ea96b1 712 node = tree_search(tree, start);
d1310b2e
CM
713 if (!node)
714 goto out;
715 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 716hit_next:
d1310b2e
CM
717 if (state->start > end)
718 goto out;
719 WARN_ON(state->end < start);
5c939df5 720 last_end = state->end;
d1310b2e 721
0449314a 722 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
723 if (!(state->state & bits)) {
724 state = next_state(state);
0449314a 725 goto next;
cdc6a395 726 }
0449314a 727
d1310b2e
CM
728 /*
729 * | ---- desired range ---- |
730 * | state | or
731 * | ------------- state -------------- |
732 *
733 * We need to split the extent we found, and may flip
734 * bits on second half.
735 *
736 * If the extent we found extends past our range, we
737 * just split and search again. It'll get split again
738 * the next time though.
739 *
740 * If the extent we found is inside our range, we clear
741 * the desired bit on it.
742 */
743
744 if (state->start < start) {
8233767a
XG
745 prealloc = alloc_extent_state_atomic(prealloc);
746 BUG_ON(!prealloc);
d1310b2e 747 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
748 if (err)
749 extent_io_tree_panic(tree, err);
750
d1310b2e
CM
751 prealloc = NULL;
752 if (err)
753 goto out;
754 if (state->end <= end) {
fefdc557
QW
755 state = clear_state_bit(tree, state, &bits, wake,
756 changeset);
d1ac6e41 757 goto next;
d1310b2e
CM
758 }
759 goto search_again;
760 }
761 /*
762 * | ---- desired range ---- |
763 * | state |
764 * We need to split the extent, and clear the bit
765 * on the first half
766 */
767 if (state->start <= end && state->end > end) {
8233767a
XG
768 prealloc = alloc_extent_state_atomic(prealloc);
769 BUG_ON(!prealloc);
d1310b2e 770 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
771 if (err)
772 extent_io_tree_panic(tree, err);
773
d1310b2e
CM
774 if (wake)
775 wake_up(&state->wq);
42daec29 776
fefdc557 777 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 778
d1310b2e
CM
779 prealloc = NULL;
780 goto out;
781 }
42daec29 782
fefdc557 783 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 784next:
5c939df5
YZ
785 if (last_end == (u64)-1)
786 goto out;
787 start = last_end + 1;
cdc6a395 788 if (start <= end && state && !need_resched())
692e5759 789 goto hit_next;
d1310b2e
CM
790
791search_again:
792 if (start > end)
793 goto out;
cad321ad 794 spin_unlock(&tree->lock);
d0164adc 795 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
796 cond_resched();
797 goto again;
7ab5cb2a
DS
798
799out:
800 spin_unlock(&tree->lock);
801 if (prealloc)
802 free_extent_state(prealloc);
803
804 return 0;
805
d1310b2e 806}
d1310b2e 807
143bede5
JM
808static void wait_on_state(struct extent_io_tree *tree,
809 struct extent_state *state)
641f5219
CH
810 __releases(tree->lock)
811 __acquires(tree->lock)
d1310b2e
CM
812{
813 DEFINE_WAIT(wait);
814 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 815 spin_unlock(&tree->lock);
d1310b2e 816 schedule();
cad321ad 817 spin_lock(&tree->lock);
d1310b2e 818 finish_wait(&state->wq, &wait);
d1310b2e
CM
819}
820
821/*
822 * waits for one or more bits to clear on a range in the state tree.
823 * The range [start, end] is inclusive.
824 * The tree lock is taken by this function
825 */
41074888
DS
826static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
827 unsigned long bits)
d1310b2e
CM
828{
829 struct extent_state *state;
830 struct rb_node *node;
831
a5dee37d 832 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 833
cad321ad 834 spin_lock(&tree->lock);
d1310b2e
CM
835again:
836 while (1) {
837 /*
838 * this search will find all the extents that end after
839 * our range starts
840 */
80ea96b1 841 node = tree_search(tree, start);
c50d3e71 842process_node:
d1310b2e
CM
843 if (!node)
844 break;
845
846 state = rb_entry(node, struct extent_state, rb_node);
847
848 if (state->start > end)
849 goto out;
850
851 if (state->state & bits) {
852 start = state->start;
b7ac31b7 853 refcount_inc(&state->refs);
d1310b2e
CM
854 wait_on_state(tree, state);
855 free_extent_state(state);
856 goto again;
857 }
858 start = state->end + 1;
859
860 if (start > end)
861 break;
862
c50d3e71
FM
863 if (!cond_resched_lock(&tree->lock)) {
864 node = rb_next(node);
865 goto process_node;
866 }
d1310b2e
CM
867 }
868out:
cad321ad 869 spin_unlock(&tree->lock);
d1310b2e 870}
d1310b2e 871
1bf85046 872static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 873 struct extent_state *state,
d38ed27f 874 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 875{
9ee49a04 876 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 877 int ret;
9ed74f2d 878
e06a1fc9
NB
879 if (tree->private_data && is_data_inode(tree->private_data))
880 btrfs_set_delalloc_extent(tree->private_data, state, bits);
881
0ca1f7ce 882 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
883 u64 range = state->end - state->start + 1;
884 tree->dirty_bytes += range;
885 }
57599c7e
DS
886 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
887 BUG_ON(ret < 0);
0ca1f7ce 888 state->state |= bits_to_set;
d1310b2e
CM
889}
890
e38e2ed7
FM
891static void cache_state_if_flags(struct extent_state *state,
892 struct extent_state **cached_ptr,
9ee49a04 893 unsigned flags)
2c64c53d
CM
894{
895 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 896 if (!flags || (state->state & flags)) {
2c64c53d 897 *cached_ptr = state;
b7ac31b7 898 refcount_inc(&state->refs);
2c64c53d
CM
899 }
900 }
901}
902
e38e2ed7
FM
903static void cache_state(struct extent_state *state,
904 struct extent_state **cached_ptr)
905{
906 return cache_state_if_flags(state, cached_ptr,
8882679e 907 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
908}
909
d1310b2e 910/*
1edbb734
CM
911 * set some bits on a range in the tree. This may require allocations or
912 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 913 *
1edbb734
CM
914 * If any of the exclusive bits are set, this will fail with -EEXIST if some
915 * part of the range already has the desired bits set. The start of the
916 * existing range is returned in failed_start in this case.
d1310b2e 917 *
1edbb734 918 * [start, end] is inclusive This takes the tree lock.
d1310b2e 919 */
1edbb734 920
3fbe5c02
JM
921static int __must_check
922__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 923 unsigned bits, unsigned exclusive_bits,
41074888 924 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 925 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
926{
927 struct extent_state *state;
928 struct extent_state *prealloc = NULL;
929 struct rb_node *node;
12cfbad9
FDBM
930 struct rb_node **p;
931 struct rb_node *parent;
d1310b2e 932 int err = 0;
d1310b2e
CM
933 u64 last_start;
934 u64 last_end;
42daec29 935
a5dee37d 936 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 937 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 938
d1310b2e 939again:
d0164adc 940 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
941 /*
942 * Don't care for allocation failure here because we might end
943 * up not needing the pre-allocated extent state at all, which
944 * is the case if we only have in the tree extent states that
945 * cover our input range and don't cover too any other range.
946 * If we end up needing a new extent state we allocate it later.
947 */
d1310b2e 948 prealloc = alloc_extent_state(mask);
d1310b2e
CM
949 }
950
cad321ad 951 spin_lock(&tree->lock);
9655d298
CM
952 if (cached_state && *cached_state) {
953 state = *cached_state;
df98b6e2 954 if (state->start <= start && state->end > start &&
27a3507d 955 extent_state_in_tree(state)) {
9655d298
CM
956 node = &state->rb_node;
957 goto hit_next;
958 }
959 }
d1310b2e
CM
960 /*
961 * this search will find all the extents that end after
962 * our range starts.
963 */
12cfbad9 964 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 965 if (!node) {
8233767a
XG
966 prealloc = alloc_extent_state_atomic(prealloc);
967 BUG_ON(!prealloc);
12cfbad9 968 err = insert_state(tree, prealloc, start, end,
d38ed27f 969 &p, &parent, &bits, changeset);
c2d904e0
JM
970 if (err)
971 extent_io_tree_panic(tree, err);
972
c42ac0bc 973 cache_state(prealloc, cached_state);
d1310b2e 974 prealloc = NULL;
d1310b2e
CM
975 goto out;
976 }
d1310b2e 977 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 978hit_next:
d1310b2e
CM
979 last_start = state->start;
980 last_end = state->end;
981
982 /*
983 * | ---- desired range ---- |
984 * | state |
985 *
986 * Just lock what we found and keep going
987 */
988 if (state->start == start && state->end <= end) {
1edbb734 989 if (state->state & exclusive_bits) {
d1310b2e
CM
990 *failed_start = state->start;
991 err = -EEXIST;
992 goto out;
993 }
42daec29 994
d38ed27f 995 set_state_bits(tree, state, &bits, changeset);
2c64c53d 996 cache_state(state, cached_state);
d1310b2e 997 merge_state(tree, state);
5c939df5
YZ
998 if (last_end == (u64)-1)
999 goto out;
1000 start = last_end + 1;
d1ac6e41
LB
1001 state = next_state(state);
1002 if (start < end && state && state->start == start &&
1003 !need_resched())
1004 goto hit_next;
d1310b2e
CM
1005 goto search_again;
1006 }
1007
1008 /*
1009 * | ---- desired range ---- |
1010 * | state |
1011 * or
1012 * | ------------- state -------------- |
1013 *
1014 * We need to split the extent we found, and may flip bits on
1015 * second half.
1016 *
1017 * If the extent we found extends past our
1018 * range, we just split and search again. It'll get split
1019 * again the next time though.
1020 *
1021 * If the extent we found is inside our range, we set the
1022 * desired bit on it.
1023 */
1024 if (state->start < start) {
1edbb734 1025 if (state->state & exclusive_bits) {
d1310b2e
CM
1026 *failed_start = start;
1027 err = -EEXIST;
1028 goto out;
1029 }
8233767a
XG
1030
1031 prealloc = alloc_extent_state_atomic(prealloc);
1032 BUG_ON(!prealloc);
d1310b2e 1033 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1034 if (err)
1035 extent_io_tree_panic(tree, err);
1036
d1310b2e
CM
1037 prealloc = NULL;
1038 if (err)
1039 goto out;
1040 if (state->end <= end) {
d38ed27f 1041 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1042 cache_state(state, cached_state);
d1310b2e 1043 merge_state(tree, state);
5c939df5
YZ
1044 if (last_end == (u64)-1)
1045 goto out;
1046 start = last_end + 1;
d1ac6e41
LB
1047 state = next_state(state);
1048 if (start < end && state && state->start == start &&
1049 !need_resched())
1050 goto hit_next;
d1310b2e
CM
1051 }
1052 goto search_again;
1053 }
1054 /*
1055 * | ---- desired range ---- |
1056 * | state | or | state |
1057 *
1058 * There's a hole, we need to insert something in it and
1059 * ignore the extent we found.
1060 */
1061 if (state->start > start) {
1062 u64 this_end;
1063 if (end < last_start)
1064 this_end = end;
1065 else
d397712b 1066 this_end = last_start - 1;
8233767a
XG
1067
1068 prealloc = alloc_extent_state_atomic(prealloc);
1069 BUG_ON(!prealloc);
c7f895a2
XG
1070
1071 /*
1072 * Avoid to free 'prealloc' if it can be merged with
1073 * the later extent.
1074 */
d1310b2e 1075 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1076 NULL, NULL, &bits, changeset);
c2d904e0
JM
1077 if (err)
1078 extent_io_tree_panic(tree, err);
1079
9ed74f2d
JB
1080 cache_state(prealloc, cached_state);
1081 prealloc = NULL;
d1310b2e
CM
1082 start = this_end + 1;
1083 goto search_again;
1084 }
1085 /*
1086 * | ---- desired range ---- |
1087 * | state |
1088 * We need to split the extent, and set the bit
1089 * on the first half
1090 */
1091 if (state->start <= end && state->end > end) {
1edbb734 1092 if (state->state & exclusive_bits) {
d1310b2e
CM
1093 *failed_start = start;
1094 err = -EEXIST;
1095 goto out;
1096 }
8233767a
XG
1097
1098 prealloc = alloc_extent_state_atomic(prealloc);
1099 BUG_ON(!prealloc);
d1310b2e 1100 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1101 if (err)
1102 extent_io_tree_panic(tree, err);
d1310b2e 1103
d38ed27f 1104 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1105 cache_state(prealloc, cached_state);
d1310b2e
CM
1106 merge_state(tree, prealloc);
1107 prealloc = NULL;
1108 goto out;
1109 }
1110
b5a4ba14
DS
1111search_again:
1112 if (start > end)
1113 goto out;
1114 spin_unlock(&tree->lock);
1115 if (gfpflags_allow_blocking(mask))
1116 cond_resched();
1117 goto again;
d1310b2e
CM
1118
1119out:
cad321ad 1120 spin_unlock(&tree->lock);
d1310b2e
CM
1121 if (prealloc)
1122 free_extent_state(prealloc);
1123
1124 return err;
1125
d1310b2e 1126}
d1310b2e 1127
41074888 1128int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1129 unsigned bits, u64 * failed_start,
41074888 1130 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1131{
1132 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1133 cached_state, mask, NULL);
3fbe5c02
JM
1134}
1135
1136
462d6fac 1137/**
10983f2e
LB
1138 * convert_extent_bit - convert all bits in a given range from one bit to
1139 * another
462d6fac
JB
1140 * @tree: the io tree to search
1141 * @start: the start offset in bytes
1142 * @end: the end offset in bytes (inclusive)
1143 * @bits: the bits to set in this range
1144 * @clear_bits: the bits to clear in this range
e6138876 1145 * @cached_state: state that we're going to cache
462d6fac
JB
1146 *
1147 * This will go through and set bits for the given range. If any states exist
1148 * already in this range they are set with the given bit and cleared of the
1149 * clear_bits. This is only meant to be used by things that are mergeable, ie
1150 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1151 * boundary bits like LOCK.
210aa277
DS
1152 *
1153 * All allocations are done with GFP_NOFS.
462d6fac
JB
1154 */
1155int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1156 unsigned bits, unsigned clear_bits,
210aa277 1157 struct extent_state **cached_state)
462d6fac
JB
1158{
1159 struct extent_state *state;
1160 struct extent_state *prealloc = NULL;
1161 struct rb_node *node;
12cfbad9
FDBM
1162 struct rb_node **p;
1163 struct rb_node *parent;
462d6fac
JB
1164 int err = 0;
1165 u64 last_start;
1166 u64 last_end;
c8fd3de7 1167 bool first_iteration = true;
462d6fac 1168
a5dee37d 1169 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1170 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1171 clear_bits);
8d599ae1 1172
462d6fac 1173again:
210aa277 1174 if (!prealloc) {
c8fd3de7
FM
1175 /*
1176 * Best effort, don't worry if extent state allocation fails
1177 * here for the first iteration. We might have a cached state
1178 * that matches exactly the target range, in which case no
1179 * extent state allocations are needed. We'll only know this
1180 * after locking the tree.
1181 */
210aa277 1182 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1183 if (!prealloc && !first_iteration)
462d6fac
JB
1184 return -ENOMEM;
1185 }
1186
1187 spin_lock(&tree->lock);
e6138876
JB
1188 if (cached_state && *cached_state) {
1189 state = *cached_state;
1190 if (state->start <= start && state->end > start &&
27a3507d 1191 extent_state_in_tree(state)) {
e6138876
JB
1192 node = &state->rb_node;
1193 goto hit_next;
1194 }
1195 }
1196
462d6fac
JB
1197 /*
1198 * this search will find all the extents that end after
1199 * our range starts.
1200 */
12cfbad9 1201 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1202 if (!node) {
1203 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1204 if (!prealloc) {
1205 err = -ENOMEM;
1206 goto out;
1207 }
12cfbad9 1208 err = insert_state(tree, prealloc, start, end,
d38ed27f 1209 &p, &parent, &bits, NULL);
c2d904e0
JM
1210 if (err)
1211 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1212 cache_state(prealloc, cached_state);
1213 prealloc = NULL;
462d6fac
JB
1214 goto out;
1215 }
1216 state = rb_entry(node, struct extent_state, rb_node);
1217hit_next:
1218 last_start = state->start;
1219 last_end = state->end;
1220
1221 /*
1222 * | ---- desired range ---- |
1223 * | state |
1224 *
1225 * Just lock what we found and keep going
1226 */
1227 if (state->start == start && state->end <= end) {
d38ed27f 1228 set_state_bits(tree, state, &bits, NULL);
e6138876 1229 cache_state(state, cached_state);
fefdc557 1230 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1231 if (last_end == (u64)-1)
1232 goto out;
462d6fac 1233 start = last_end + 1;
d1ac6e41
LB
1234 if (start < end && state && state->start == start &&
1235 !need_resched())
1236 goto hit_next;
462d6fac
JB
1237 goto search_again;
1238 }
1239
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * or
1244 * | ------------- state -------------- |
1245 *
1246 * We need to split the extent we found, and may flip bits on
1247 * second half.
1248 *
1249 * If the extent we found extends past our
1250 * range, we just split and search again. It'll get split
1251 * again the next time though.
1252 *
1253 * If the extent we found is inside our range, we set the
1254 * desired bit on it.
1255 */
1256 if (state->start < start) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
462d6fac 1262 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1263 if (err)
1264 extent_io_tree_panic(tree, err);
462d6fac
JB
1265 prealloc = NULL;
1266 if (err)
1267 goto out;
1268 if (state->end <= end) {
d38ed27f 1269 set_state_bits(tree, state, &bits, NULL);
e6138876 1270 cache_state(state, cached_state);
fefdc557
QW
1271 state = clear_state_bit(tree, state, &clear_bits, 0,
1272 NULL);
462d6fac
JB
1273 if (last_end == (u64)-1)
1274 goto out;
1275 start = last_end + 1;
d1ac6e41
LB
1276 if (start < end && state && state->start == start &&
1277 !need_resched())
1278 goto hit_next;
462d6fac
JB
1279 }
1280 goto search_again;
1281 }
1282 /*
1283 * | ---- desired range ---- |
1284 * | state | or | state |
1285 *
1286 * There's a hole, we need to insert something in it and
1287 * ignore the extent we found.
1288 */
1289 if (state->start > start) {
1290 u64 this_end;
1291 if (end < last_start)
1292 this_end = end;
1293 else
1294 this_end = last_start - 1;
1295
1296 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1297 if (!prealloc) {
1298 err = -ENOMEM;
1299 goto out;
1300 }
462d6fac
JB
1301
1302 /*
1303 * Avoid to free 'prealloc' if it can be merged with
1304 * the later extent.
1305 */
1306 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1307 NULL, NULL, &bits, NULL);
c2d904e0
JM
1308 if (err)
1309 extent_io_tree_panic(tree, err);
e6138876 1310 cache_state(prealloc, cached_state);
462d6fac
JB
1311 prealloc = NULL;
1312 start = this_end + 1;
1313 goto search_again;
1314 }
1315 /*
1316 * | ---- desired range ---- |
1317 * | state |
1318 * We need to split the extent, and set the bit
1319 * on the first half
1320 */
1321 if (state->start <= end && state->end > end) {
1322 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1323 if (!prealloc) {
1324 err = -ENOMEM;
1325 goto out;
1326 }
462d6fac
JB
1327
1328 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1329 if (err)
1330 extent_io_tree_panic(tree, err);
462d6fac 1331
d38ed27f 1332 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1333 cache_state(prealloc, cached_state);
fefdc557 1334 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1335 prealloc = NULL;
1336 goto out;
1337 }
1338
462d6fac
JB
1339search_again:
1340 if (start > end)
1341 goto out;
1342 spin_unlock(&tree->lock);
210aa277 1343 cond_resched();
c8fd3de7 1344 first_iteration = false;
462d6fac 1345 goto again;
462d6fac
JB
1346
1347out:
1348 spin_unlock(&tree->lock);
1349 if (prealloc)
1350 free_extent_state(prealloc);
1351
1352 return err;
462d6fac
JB
1353}
1354
d1310b2e 1355/* wrappers around set/clear extent bit */
d38ed27f 1356int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1357 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1358{
1359 /*
1360 * We don't support EXTENT_LOCKED yet, as current changeset will
1361 * record any bits changed, so for EXTENT_LOCKED case, it will
1362 * either fail with -EEXIST or changeset will record the whole
1363 * range.
1364 */
1365 BUG_ON(bits & EXTENT_LOCKED);
1366
2c53b912 1367 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1368 changeset);
1369}
1370
fefdc557
QW
1371int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1372 unsigned bits, int wake, int delete,
ae0f1625 1373 struct extent_state **cached)
fefdc557
QW
1374{
1375 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1376 cached, GFP_NOFS, NULL);
fefdc557
QW
1377}
1378
fefdc557 1379int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1380 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1381{
1382 /*
1383 * Don't support EXTENT_LOCKED case, same reason as
1384 * set_record_extent_bits().
1385 */
1386 BUG_ON(bits & EXTENT_LOCKED);
1387
f734c44a 1388 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1389 changeset);
1390}
1391
d352ac68
CM
1392/*
1393 * either insert or lock state struct between start and end use mask to tell
1394 * us if waiting is desired.
1395 */
1edbb734 1396int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1397 struct extent_state **cached_state)
d1310b2e
CM
1398{
1399 int err;
1400 u64 failed_start;
9ee49a04 1401
d1310b2e 1402 while (1) {
ff13db41 1403 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1404 EXTENT_LOCKED, &failed_start,
d38ed27f 1405 cached_state, GFP_NOFS, NULL);
d0082371 1406 if (err == -EEXIST) {
d1310b2e
CM
1407 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1408 start = failed_start;
d0082371 1409 } else
d1310b2e 1410 break;
d1310b2e
CM
1411 WARN_ON(start > end);
1412 }
1413 return err;
1414}
d1310b2e 1415
d0082371 1416int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1417{
1418 int err;
1419 u64 failed_start;
1420
3fbe5c02 1421 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1422 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1423 if (err == -EEXIST) {
1424 if (failed_start > start)
1425 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1426 EXTENT_LOCKED, 1, 0, NULL);
25179201 1427 return 0;
6643558d 1428 }
25179201
JB
1429 return 1;
1430}
25179201 1431
bd1fa4f0 1432void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1433{
09cbfeaf
KS
1434 unsigned long index = start >> PAGE_SHIFT;
1435 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1436 struct page *page;
1437
1438 while (index <= end_index) {
1439 page = find_get_page(inode->i_mapping, index);
1440 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1441 clear_page_dirty_for_io(page);
09cbfeaf 1442 put_page(page);
4adaa611
CM
1443 index++;
1444 }
4adaa611
CM
1445}
1446
f6311572 1447void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1448{
09cbfeaf
KS
1449 unsigned long index = start >> PAGE_SHIFT;
1450 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1451 struct page *page;
1452
1453 while (index <= end_index) {
1454 page = find_get_page(inode->i_mapping, index);
1455 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1456 __set_page_dirty_nobuffers(page);
8d38633c 1457 account_page_redirty(page);
09cbfeaf 1458 put_page(page);
4adaa611
CM
1459 index++;
1460 }
4adaa611
CM
1461}
1462
d352ac68
CM
1463/* find the first state struct with 'bits' set after 'start', and
1464 * return it. tree->lock must be held. NULL will returned if
1465 * nothing was found after 'start'
1466 */
48a3b636
ES
1467static struct extent_state *
1468find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1469 u64 start, unsigned bits)
d7fc640e
CM
1470{
1471 struct rb_node *node;
1472 struct extent_state *state;
1473
1474 /*
1475 * this search will find all the extents that end after
1476 * our range starts.
1477 */
1478 node = tree_search(tree, start);
d397712b 1479 if (!node)
d7fc640e 1480 goto out;
d7fc640e 1481
d397712b 1482 while (1) {
d7fc640e 1483 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1484 if (state->end >= start && (state->state & bits))
d7fc640e 1485 return state;
d397712b 1486
d7fc640e
CM
1487 node = rb_next(node);
1488 if (!node)
1489 break;
1490 }
1491out:
1492 return NULL;
1493}
d7fc640e 1494
69261c4b
XG
1495/*
1496 * find the first offset in the io tree with 'bits' set. zero is
1497 * returned if we find something, and *start_ret and *end_ret are
1498 * set to reflect the state struct that was found.
1499 *
477d7eaf 1500 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1501 */
1502int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1503 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1504 struct extent_state **cached_state)
69261c4b
XG
1505{
1506 struct extent_state *state;
1507 int ret = 1;
1508
1509 spin_lock(&tree->lock);
e6138876
JB
1510 if (cached_state && *cached_state) {
1511 state = *cached_state;
27a3507d 1512 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1513 while ((state = next_state(state)) != NULL) {
e6138876
JB
1514 if (state->state & bits)
1515 goto got_it;
e6138876
JB
1516 }
1517 free_extent_state(*cached_state);
1518 *cached_state = NULL;
1519 goto out;
1520 }
1521 free_extent_state(*cached_state);
1522 *cached_state = NULL;
1523 }
1524
69261c4b 1525 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1526got_it:
69261c4b 1527 if (state) {
e38e2ed7 1528 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1529 *start_ret = state->start;
1530 *end_ret = state->end;
1531 ret = 0;
1532 }
e6138876 1533out:
69261c4b
XG
1534 spin_unlock(&tree->lock);
1535 return ret;
1536}
1537
d352ac68
CM
1538/*
1539 * find a contiguous range of bytes in the file marked as delalloc, not
1540 * more than 'max_bytes'. start and end are used to return the range,
1541 *
3522e903 1542 * true is returned if we find something, false if nothing was in the tree
d352ac68 1543 */
3522e903 1544static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1545 u64 *start, u64 *end, u64 max_bytes,
1546 struct extent_state **cached_state)
d1310b2e
CM
1547{
1548 struct rb_node *node;
1549 struct extent_state *state;
1550 u64 cur_start = *start;
3522e903 1551 bool found = false;
d1310b2e
CM
1552 u64 total_bytes = 0;
1553
cad321ad 1554 spin_lock(&tree->lock);
c8b97818 1555
d1310b2e
CM
1556 /*
1557 * this search will find all the extents that end after
1558 * our range starts.
1559 */
80ea96b1 1560 node = tree_search(tree, cur_start);
2b114d1d 1561 if (!node) {
3522e903 1562 *end = (u64)-1;
d1310b2e
CM
1563 goto out;
1564 }
1565
d397712b 1566 while (1) {
d1310b2e 1567 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1568 if (found && (state->start != cur_start ||
1569 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1570 goto out;
1571 }
1572 if (!(state->state & EXTENT_DELALLOC)) {
1573 if (!found)
1574 *end = state->end;
1575 goto out;
1576 }
c2a128d2 1577 if (!found) {
d1310b2e 1578 *start = state->start;
c2a128d2 1579 *cached_state = state;
b7ac31b7 1580 refcount_inc(&state->refs);
c2a128d2 1581 }
3522e903 1582 found = true;
d1310b2e
CM
1583 *end = state->end;
1584 cur_start = state->end + 1;
1585 node = rb_next(node);
d1310b2e 1586 total_bytes += state->end - state->start + 1;
7bf811a5 1587 if (total_bytes >= max_bytes)
573aecaf 1588 break;
573aecaf 1589 if (!node)
d1310b2e
CM
1590 break;
1591 }
1592out:
cad321ad 1593 spin_unlock(&tree->lock);
d1310b2e
CM
1594 return found;
1595}
1596
da2c7009
LB
1597static int __process_pages_contig(struct address_space *mapping,
1598 struct page *locked_page,
1599 pgoff_t start_index, pgoff_t end_index,
1600 unsigned long page_ops, pgoff_t *index_ret);
1601
143bede5
JM
1602static noinline void __unlock_for_delalloc(struct inode *inode,
1603 struct page *locked_page,
1604 u64 start, u64 end)
c8b97818 1605{
09cbfeaf
KS
1606 unsigned long index = start >> PAGE_SHIFT;
1607 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1608
76c0021d 1609 ASSERT(locked_page);
c8b97818 1610 if (index == locked_page->index && end_index == index)
143bede5 1611 return;
c8b97818 1612
76c0021d
LB
1613 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1614 PAGE_UNLOCK, NULL);
c8b97818
CM
1615}
1616
1617static noinline int lock_delalloc_pages(struct inode *inode,
1618 struct page *locked_page,
1619 u64 delalloc_start,
1620 u64 delalloc_end)
1621{
09cbfeaf 1622 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1623 unsigned long index_ret = index;
09cbfeaf 1624 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1625 int ret;
c8b97818 1626
76c0021d 1627 ASSERT(locked_page);
c8b97818
CM
1628 if (index == locked_page->index && index == end_index)
1629 return 0;
1630
76c0021d
LB
1631 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1632 end_index, PAGE_LOCK, &index_ret);
1633 if (ret == -EAGAIN)
1634 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1635 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1636 return ret;
1637}
1638
1639/*
3522e903
LF
1640 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1641 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1642 *
3522e903
LF
1643 * Return: true if we find something
1644 * false if nothing was in the tree
c8b97818 1645 */
ce9f967f 1646EXPORT_FOR_TESTS
3522e903 1647noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe
JB
1648 struct extent_io_tree *tree,
1649 struct page *locked_page, u64 *start,
917aacec 1650 u64 *end)
c8b97818 1651{
917aacec 1652 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1653 u64 delalloc_start;
1654 u64 delalloc_end;
3522e903 1655 bool found;
9655d298 1656 struct extent_state *cached_state = NULL;
c8b97818
CM
1657 int ret;
1658 int loops = 0;
1659
1660again:
1661 /* step one, find a bunch of delalloc bytes starting at start */
1662 delalloc_start = *start;
1663 delalloc_end = 0;
1664 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1665 max_bytes, &cached_state);
70b99e69 1666 if (!found || delalloc_end <= *start) {
c8b97818
CM
1667 *start = delalloc_start;
1668 *end = delalloc_end;
c2a128d2 1669 free_extent_state(cached_state);
3522e903 1670 return false;
c8b97818
CM
1671 }
1672
70b99e69
CM
1673 /*
1674 * start comes from the offset of locked_page. We have to lock
1675 * pages in order, so we can't process delalloc bytes before
1676 * locked_page
1677 */
d397712b 1678 if (delalloc_start < *start)
70b99e69 1679 delalloc_start = *start;
70b99e69 1680
c8b97818
CM
1681 /*
1682 * make sure to limit the number of pages we try to lock down
c8b97818 1683 */
7bf811a5
JB
1684 if (delalloc_end + 1 - delalloc_start > max_bytes)
1685 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1686
c8b97818
CM
1687 /* step two, lock all the pages after the page that has start */
1688 ret = lock_delalloc_pages(inode, locked_page,
1689 delalloc_start, delalloc_end);
9bfd61d9 1690 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
9655d298 1695 free_extent_state(cached_state);
7d788742 1696 cached_state = NULL;
c8b97818 1697 if (!loops) {
09cbfeaf 1698 max_bytes = PAGE_SIZE;
c8b97818
CM
1699 loops = 1;
1700 goto again;
1701 } else {
3522e903 1702 found = false;
c8b97818
CM
1703 goto out_failed;
1704 }
1705 }
c8b97818
CM
1706
1707 /* step three, lock the state bits for the whole range */
ff13db41 1708 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1709
1710 /* then test to make sure it is all still delalloc */
1711 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1712 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1713 if (!ret) {
9655d298 1714 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1715 &cached_state);
c8b97818
CM
1716 __unlock_for_delalloc(inode, locked_page,
1717 delalloc_start, delalloc_end);
1718 cond_resched();
1719 goto again;
1720 }
9655d298 1721 free_extent_state(cached_state);
c8b97818
CM
1722 *start = delalloc_start;
1723 *end = delalloc_end;
1724out_failed:
1725 return found;
1726}
1727
da2c7009
LB
1728static int __process_pages_contig(struct address_space *mapping,
1729 struct page *locked_page,
1730 pgoff_t start_index, pgoff_t end_index,
1731 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1732{
873695b3 1733 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1734 unsigned long pages_locked = 0;
873695b3 1735 pgoff_t index = start_index;
c8b97818 1736 struct page *pages[16];
873695b3 1737 unsigned ret;
da2c7009 1738 int err = 0;
c8b97818 1739 int i;
771ed689 1740
da2c7009
LB
1741 if (page_ops & PAGE_LOCK) {
1742 ASSERT(page_ops == PAGE_LOCK);
1743 ASSERT(index_ret && *index_ret == start_index);
1744 }
1745
704de49d 1746 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1747 mapping_set_error(mapping, -EIO);
704de49d 1748
d397712b 1749 while (nr_pages > 0) {
873695b3 1750 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1753 if (ret == 0) {
1754 /*
1755 * Only if we're going to lock these pages,
1756 * can we find nothing at @index.
1757 */
1758 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1759 err = -EAGAIN;
1760 goto out;
da2c7009 1761 }
8b62b72b 1762
da2c7009 1763 for (i = 0; i < ret; i++) {
c2790a2e 1764 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1765 SetPagePrivate2(pages[i]);
1766
c8b97818 1767 if (pages[i] == locked_page) {
09cbfeaf 1768 put_page(pages[i]);
da2c7009 1769 pages_locked++;
c8b97818
CM
1770 continue;
1771 }
c2790a2e 1772 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1773 clear_page_dirty_for_io(pages[i]);
c2790a2e 1774 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1775 set_page_writeback(pages[i]);
704de49d
FM
1776 if (page_ops & PAGE_SET_ERROR)
1777 SetPageError(pages[i]);
c2790a2e 1778 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1779 end_page_writeback(pages[i]);
c2790a2e 1780 if (page_ops & PAGE_UNLOCK)
771ed689 1781 unlock_page(pages[i]);
da2c7009
LB
1782 if (page_ops & PAGE_LOCK) {
1783 lock_page(pages[i]);
1784 if (!PageDirty(pages[i]) ||
1785 pages[i]->mapping != mapping) {
1786 unlock_page(pages[i]);
1787 put_page(pages[i]);
1788 err = -EAGAIN;
1789 goto out;
1790 }
1791 }
09cbfeaf 1792 put_page(pages[i]);
da2c7009 1793 pages_locked++;
c8b97818
CM
1794 }
1795 nr_pages -= ret;
1796 index += ret;
1797 cond_resched();
1798 }
da2c7009
LB
1799out:
1800 if (err && index_ret)
1801 *index_ret = start_index + pages_locked - 1;
1802 return err;
c8b97818 1803}
c8b97818 1804
873695b3
LB
1805void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1806 u64 delalloc_end, struct page *locked_page,
1807 unsigned clear_bits,
1808 unsigned long page_ops)
1809{
1810 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1811 NULL);
873695b3
LB
1812
1813 __process_pages_contig(inode->i_mapping, locked_page,
1814 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1815 page_ops, NULL);
873695b3
LB
1816}
1817
d352ac68
CM
1818/*
1819 * count the number of bytes in the tree that have a given bit(s)
1820 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1821 * cached. The total number found is returned.
1822 */
d1310b2e
CM
1823u64 count_range_bits(struct extent_io_tree *tree,
1824 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1825 unsigned bits, int contig)
d1310b2e
CM
1826{
1827 struct rb_node *node;
1828 struct extent_state *state;
1829 u64 cur_start = *start;
1830 u64 total_bytes = 0;
ec29ed5b 1831 u64 last = 0;
d1310b2e
CM
1832 int found = 0;
1833
fae7f21c 1834 if (WARN_ON(search_end <= cur_start))
d1310b2e 1835 return 0;
d1310b2e 1836
cad321ad 1837 spin_lock(&tree->lock);
d1310b2e
CM
1838 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1839 total_bytes = tree->dirty_bytes;
1840 goto out;
1841 }
1842 /*
1843 * this search will find all the extents that end after
1844 * our range starts.
1845 */
80ea96b1 1846 node = tree_search(tree, cur_start);
d397712b 1847 if (!node)
d1310b2e 1848 goto out;
d1310b2e 1849
d397712b 1850 while (1) {
d1310b2e
CM
1851 state = rb_entry(node, struct extent_state, rb_node);
1852 if (state->start > search_end)
1853 break;
ec29ed5b
CM
1854 if (contig && found && state->start > last + 1)
1855 break;
1856 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1857 total_bytes += min(search_end, state->end) + 1 -
1858 max(cur_start, state->start);
1859 if (total_bytes >= max_bytes)
1860 break;
1861 if (!found) {
af60bed2 1862 *start = max(cur_start, state->start);
d1310b2e
CM
1863 found = 1;
1864 }
ec29ed5b
CM
1865 last = state->end;
1866 } else if (contig && found) {
1867 break;
d1310b2e
CM
1868 }
1869 node = rb_next(node);
1870 if (!node)
1871 break;
1872 }
1873out:
cad321ad 1874 spin_unlock(&tree->lock);
d1310b2e
CM
1875 return total_bytes;
1876}
b2950863 1877
d352ac68
CM
1878/*
1879 * set the private field for a given byte offset in the tree. If there isn't
1880 * an extent_state there already, this does nothing.
1881 */
f827ba9a 1882static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1883 struct io_failure_record *failrec)
d1310b2e
CM
1884{
1885 struct rb_node *node;
1886 struct extent_state *state;
1887 int ret = 0;
1888
cad321ad 1889 spin_lock(&tree->lock);
d1310b2e
CM
1890 /*
1891 * this search will find all the extents that end after
1892 * our range starts.
1893 */
80ea96b1 1894 node = tree_search(tree, start);
2b114d1d 1895 if (!node) {
d1310b2e
CM
1896 ret = -ENOENT;
1897 goto out;
1898 }
1899 state = rb_entry(node, struct extent_state, rb_node);
1900 if (state->start != start) {
1901 ret = -ENOENT;
1902 goto out;
1903 }
47dc196a 1904 state->failrec = failrec;
d1310b2e 1905out:
cad321ad 1906 spin_unlock(&tree->lock);
d1310b2e
CM
1907 return ret;
1908}
1909
f827ba9a 1910static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1911 struct io_failure_record **failrec)
d1310b2e
CM
1912{
1913 struct rb_node *node;
1914 struct extent_state *state;
1915 int ret = 0;
1916
cad321ad 1917 spin_lock(&tree->lock);
d1310b2e
CM
1918 /*
1919 * this search will find all the extents that end after
1920 * our range starts.
1921 */
80ea96b1 1922 node = tree_search(tree, start);
2b114d1d 1923 if (!node) {
d1310b2e
CM
1924 ret = -ENOENT;
1925 goto out;
1926 }
1927 state = rb_entry(node, struct extent_state, rb_node);
1928 if (state->start != start) {
1929 ret = -ENOENT;
1930 goto out;
1931 }
47dc196a 1932 *failrec = state->failrec;
d1310b2e 1933out:
cad321ad 1934 spin_unlock(&tree->lock);
d1310b2e
CM
1935 return ret;
1936}
1937
1938/*
1939 * searches a range in the state tree for a given mask.
70dec807 1940 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1941 * has the bits set. Otherwise, 1 is returned if any bit in the
1942 * range is found set.
1943 */
1944int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1945 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1946{
1947 struct extent_state *state = NULL;
1948 struct rb_node *node;
1949 int bitset = 0;
d1310b2e 1950
cad321ad 1951 spin_lock(&tree->lock);
27a3507d 1952 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1953 cached->end > start)
9655d298
CM
1954 node = &cached->rb_node;
1955 else
1956 node = tree_search(tree, start);
d1310b2e
CM
1957 while (node && start <= end) {
1958 state = rb_entry(node, struct extent_state, rb_node);
1959
1960 if (filled && state->start > start) {
1961 bitset = 0;
1962 break;
1963 }
1964
1965 if (state->start > end)
1966 break;
1967
1968 if (state->state & bits) {
1969 bitset = 1;
1970 if (!filled)
1971 break;
1972 } else if (filled) {
1973 bitset = 0;
1974 break;
1975 }
46562cec
CM
1976
1977 if (state->end == (u64)-1)
1978 break;
1979
d1310b2e
CM
1980 start = state->end + 1;
1981 if (start > end)
1982 break;
1983 node = rb_next(node);
1984 if (!node) {
1985 if (filled)
1986 bitset = 0;
1987 break;
1988 }
1989 }
cad321ad 1990 spin_unlock(&tree->lock);
d1310b2e
CM
1991 return bitset;
1992}
d1310b2e
CM
1993
1994/*
1995 * helper function to set a given page up to date if all the
1996 * extents in the tree for that page are up to date
1997 */
143bede5 1998static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1999{
4eee4fa4 2000 u64 start = page_offset(page);
09cbfeaf 2001 u64 end = start + PAGE_SIZE - 1;
9655d298 2002 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2003 SetPageUptodate(page);
d1310b2e
CM
2004}
2005
7870d082
JB
2006int free_io_failure(struct extent_io_tree *failure_tree,
2007 struct extent_io_tree *io_tree,
2008 struct io_failure_record *rec)
4a54c8c1
JS
2009{
2010 int ret;
2011 int err = 0;
4a54c8c1 2012
47dc196a 2013 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2014 ret = clear_extent_bits(failure_tree, rec->start,
2015 rec->start + rec->len - 1,
91166212 2016 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2017 if (ret)
2018 err = ret;
2019
7870d082 2020 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2021 rec->start + rec->len - 1,
91166212 2022 EXTENT_DAMAGED);
53b381b3
DW
2023 if (ret && !err)
2024 err = ret;
4a54c8c1
JS
2025
2026 kfree(rec);
2027 return err;
2028}
2029
4a54c8c1
JS
2030/*
2031 * this bypasses the standard btrfs submit functions deliberately, as
2032 * the standard behavior is to write all copies in a raid setup. here we only
2033 * want to write the one bad copy. so we do the mapping for ourselves and issue
2034 * submit_bio directly.
3ec706c8 2035 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2036 * actually prevents the read that triggered the error from finishing.
2037 * currently, there can be no more than two copies of every data bit. thus,
2038 * exactly one rewrite is required.
2039 */
6ec656bc
JB
2040int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2041 u64 length, u64 logical, struct page *page,
2042 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2043{
2044 struct bio *bio;
2045 struct btrfs_device *dev;
4a54c8c1
JS
2046 u64 map_length = 0;
2047 u64 sector;
2048 struct btrfs_bio *bbio = NULL;
2049 int ret;
2050
1751e8a6 2051 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2052 BUG_ON(!mirror_num);
2053
c5e4c3d7 2054 bio = btrfs_io_bio_alloc(1);
4f024f37 2055 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2056 map_length = length;
2057
b5de8d0d
FM
2058 /*
2059 * Avoid races with device replace and make sure our bbio has devices
2060 * associated to its stripes that don't go away while we are doing the
2061 * read repair operation.
2062 */
2063 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2064 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2065 /*
2066 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2067 * to update all raid stripes, but here we just want to correct
2068 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2069 * stripe's dev and sector.
2070 */
2071 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2072 &map_length, &bbio, 0);
2073 if (ret) {
2074 btrfs_bio_counter_dec(fs_info);
2075 bio_put(bio);
2076 return -EIO;
2077 }
2078 ASSERT(bbio->mirror_num == 1);
2079 } else {
2080 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2081 &map_length, &bbio, mirror_num);
2082 if (ret) {
2083 btrfs_bio_counter_dec(fs_info);
2084 bio_put(bio);
2085 return -EIO;
2086 }
2087 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2088 }
c725328c
LB
2089
2090 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2091 bio->bi_iter.bi_sector = sector;
c725328c 2092 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2093 btrfs_put_bbio(bbio);
ebbede42
AJ
2094 if (!dev || !dev->bdev ||
2095 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2096 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2097 bio_put(bio);
2098 return -EIO;
2099 }
74d46992 2100 bio_set_dev(bio, dev->bdev);
70fd7614 2101 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2102 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2103
4e49ea4a 2104 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2105 /* try to remap that extent elsewhere? */
b5de8d0d 2106 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2107 bio_put(bio);
442a4f63 2108 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2109 return -EIO;
2110 }
2111
b14af3b4
DS
2112 btrfs_info_rl_in_rcu(fs_info,
2113 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2114 ino, start,
1203b681 2115 rcu_str_deref(dev->name), sector);
b5de8d0d 2116 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2117 bio_put(bio);
2118 return 0;
2119}
2120
20a1fbf9 2121int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2122{
20a1fbf9 2123 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2124 u64 start = eb->start;
cc5e31a4 2125 int i, num_pages = num_extent_pages(eb);
d95603b2 2126 int ret = 0;
ea466794 2127
bc98a42c 2128 if (sb_rdonly(fs_info->sb))
908960c6
ID
2129 return -EROFS;
2130
ea466794 2131 for (i = 0; i < num_pages; i++) {
fb85fc9a 2132 struct page *p = eb->pages[i];
1203b681 2133
6ec656bc 2134 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2135 start - page_offset(p), mirror_num);
ea466794
JB
2136 if (ret)
2137 break;
09cbfeaf 2138 start += PAGE_SIZE;
ea466794
JB
2139 }
2140
2141 return ret;
2142}
2143
4a54c8c1
JS
2144/*
2145 * each time an IO finishes, we do a fast check in the IO failure tree
2146 * to see if we need to process or clean up an io_failure_record
2147 */
7870d082
JB
2148int clean_io_failure(struct btrfs_fs_info *fs_info,
2149 struct extent_io_tree *failure_tree,
2150 struct extent_io_tree *io_tree, u64 start,
2151 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2152{
2153 u64 private;
4a54c8c1 2154 struct io_failure_record *failrec;
4a54c8c1
JS
2155 struct extent_state *state;
2156 int num_copies;
4a54c8c1 2157 int ret;
4a54c8c1
JS
2158
2159 private = 0;
7870d082
JB
2160 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2161 EXTENT_DIRTY, 0);
4a54c8c1
JS
2162 if (!ret)
2163 return 0;
2164
7870d082 2165 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2166 if (ret)
2167 return 0;
2168
4a54c8c1
JS
2169 BUG_ON(!failrec->this_mirror);
2170
2171 if (failrec->in_validation) {
2172 /* there was no real error, just free the record */
ab8d0fc4
JM
2173 btrfs_debug(fs_info,
2174 "clean_io_failure: freeing dummy error at %llu",
2175 failrec->start);
4a54c8c1
JS
2176 goto out;
2177 }
bc98a42c 2178 if (sb_rdonly(fs_info->sb))
908960c6 2179 goto out;
4a54c8c1 2180
7870d082
JB
2181 spin_lock(&io_tree->lock);
2182 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2183 failrec->start,
2184 EXTENT_LOCKED);
7870d082 2185 spin_unlock(&io_tree->lock);
4a54c8c1 2186
883d0de4
MX
2187 if (state && state->start <= failrec->start &&
2188 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2189 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2190 failrec->len);
4a54c8c1 2191 if (num_copies > 1) {
7870d082
JB
2192 repair_io_failure(fs_info, ino, start, failrec->len,
2193 failrec->logical, page, pg_offset,
2194 failrec->failed_mirror);
4a54c8c1
JS
2195 }
2196 }
2197
2198out:
7870d082 2199 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2200
454ff3de 2201 return 0;
4a54c8c1
JS
2202}
2203
f612496b
MX
2204/*
2205 * Can be called when
2206 * - hold extent lock
2207 * - under ordered extent
2208 * - the inode is freeing
2209 */
7ab7956e 2210void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2211{
7ab7956e 2212 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2213 struct io_failure_record *failrec;
2214 struct extent_state *state, *next;
2215
2216 if (RB_EMPTY_ROOT(&failure_tree->state))
2217 return;
2218
2219 spin_lock(&failure_tree->lock);
2220 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2221 while (state) {
2222 if (state->start > end)
2223 break;
2224
2225 ASSERT(state->end <= end);
2226
2227 next = next_state(state);
2228
47dc196a 2229 failrec = state->failrec;
f612496b
MX
2230 free_extent_state(state);
2231 kfree(failrec);
2232
2233 state = next;
2234 }
2235 spin_unlock(&failure_tree->lock);
2236}
2237
2fe6303e 2238int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2239 struct io_failure_record **failrec_ret)
4a54c8c1 2240{
ab8d0fc4 2241 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2242 struct io_failure_record *failrec;
4a54c8c1 2243 struct extent_map *em;
4a54c8c1
JS
2244 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2245 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2246 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2247 int ret;
4a54c8c1
JS
2248 u64 logical;
2249
47dc196a 2250 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2251 if (ret) {
2252 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2253 if (!failrec)
2254 return -ENOMEM;
2fe6303e 2255
4a54c8c1
JS
2256 failrec->start = start;
2257 failrec->len = end - start + 1;
2258 failrec->this_mirror = 0;
2259 failrec->bio_flags = 0;
2260 failrec->in_validation = 0;
2261
2262 read_lock(&em_tree->lock);
2263 em = lookup_extent_mapping(em_tree, start, failrec->len);
2264 if (!em) {
2265 read_unlock(&em_tree->lock);
2266 kfree(failrec);
2267 return -EIO;
2268 }
2269
68ba990f 2270 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2271 free_extent_map(em);
2272 em = NULL;
2273 }
2274 read_unlock(&em_tree->lock);
7a2d6a64 2275 if (!em) {
4a54c8c1
JS
2276 kfree(failrec);
2277 return -EIO;
2278 }
2fe6303e 2279
4a54c8c1
JS
2280 logical = start - em->start;
2281 logical = em->block_start + logical;
2282 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2283 logical = em->block_start;
2284 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2285 extent_set_compress_type(&failrec->bio_flags,
2286 em->compress_type);
2287 }
2fe6303e 2288
ab8d0fc4
JM
2289 btrfs_debug(fs_info,
2290 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2291 logical, start, failrec->len);
2fe6303e 2292
4a54c8c1
JS
2293 failrec->logical = logical;
2294 free_extent_map(em);
2295
2296 /* set the bits in the private failure tree */
2297 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2298 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2299 if (ret >= 0)
47dc196a 2300 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2301 /* set the bits in the inode's tree */
2302 if (ret >= 0)
ceeb0ae7 2303 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2304 if (ret < 0) {
2305 kfree(failrec);
2306 return ret;
2307 }
2308 } else {
ab8d0fc4
JM
2309 btrfs_debug(fs_info,
2310 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2311 failrec->logical, failrec->start, failrec->len,
2312 failrec->in_validation);
4a54c8c1
JS
2313 /*
2314 * when data can be on disk more than twice, add to failrec here
2315 * (e.g. with a list for failed_mirror) to make
2316 * clean_io_failure() clean all those errors at once.
2317 */
2318 }
2fe6303e
MX
2319
2320 *failrec_ret = failrec;
2321
2322 return 0;
2323}
2324
a0b60d72 2325bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2326 struct io_failure_record *failrec, int failed_mirror)
2327{
ab8d0fc4 2328 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2329 int num_copies;
2330
ab8d0fc4 2331 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2332 if (num_copies == 1) {
2333 /*
2334 * we only have a single copy of the data, so don't bother with
2335 * all the retry and error correction code that follows. no
2336 * matter what the error is, it is very likely to persist.
2337 */
ab8d0fc4
JM
2338 btrfs_debug(fs_info,
2339 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2340 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2341 return false;
4a54c8c1
JS
2342 }
2343
4a54c8c1
JS
2344 /*
2345 * there are two premises:
2346 * a) deliver good data to the caller
2347 * b) correct the bad sectors on disk
2348 */
a0b60d72 2349 if (failed_bio_pages > 1) {
4a54c8c1
JS
2350 /*
2351 * to fulfill b), we need to know the exact failing sectors, as
2352 * we don't want to rewrite any more than the failed ones. thus,
2353 * we need separate read requests for the failed bio
2354 *
2355 * if the following BUG_ON triggers, our validation request got
2356 * merged. we need separate requests for our algorithm to work.
2357 */
2358 BUG_ON(failrec->in_validation);
2359 failrec->in_validation = 1;
2360 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2361 } else {
2362 /*
2363 * we're ready to fulfill a) and b) alongside. get a good copy
2364 * of the failed sector and if we succeed, we have setup
2365 * everything for repair_io_failure to do the rest for us.
2366 */
2367 if (failrec->in_validation) {
2368 BUG_ON(failrec->this_mirror != failed_mirror);
2369 failrec->in_validation = 0;
2370 failrec->this_mirror = 0;
2371 }
2372 failrec->failed_mirror = failed_mirror;
2373 failrec->this_mirror++;
2374 if (failrec->this_mirror == failed_mirror)
2375 failrec->this_mirror++;
4a54c8c1
JS
2376 }
2377
facc8a22 2378 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2379 btrfs_debug(fs_info,
2380 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2381 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2382 return false;
4a54c8c1
JS
2383 }
2384
c3cfb656 2385 return true;
2fe6303e
MX
2386}
2387
2388
2389struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2390 struct io_failure_record *failrec,
2391 struct page *page, int pg_offset, int icsum,
8b110e39 2392 bio_end_io_t *endio_func, void *data)
2fe6303e 2393{
0b246afa 2394 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2395 struct bio *bio;
2396 struct btrfs_io_bio *btrfs_failed_bio;
2397 struct btrfs_io_bio *btrfs_bio;
2398
c5e4c3d7 2399 bio = btrfs_io_bio_alloc(1);
2fe6303e 2400 bio->bi_end_io = endio_func;
4f024f37 2401 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2402 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2403 bio->bi_iter.bi_size = 0;
8b110e39 2404 bio->bi_private = data;
4a54c8c1 2405
facc8a22
MX
2406 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2407 if (btrfs_failed_bio->csum) {
facc8a22
MX
2408 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2409
2410 btrfs_bio = btrfs_io_bio(bio);
2411 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2412 icsum *= csum_size;
2413 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2414 csum_size);
2415 }
2416
2fe6303e
MX
2417 bio_add_page(bio, page, failrec->len, pg_offset);
2418
2419 return bio;
2420}
2421
2422/*
78e62c02
NB
2423 * This is a generic handler for readpage errors. If other copies exist, read
2424 * those and write back good data to the failed position. Does not investigate
2425 * in remapping the failed extent elsewhere, hoping the device will be smart
2426 * enough to do this as needed
2fe6303e 2427 */
2fe6303e
MX
2428static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2429 struct page *page, u64 start, u64 end,
2430 int failed_mirror)
2431{
2432 struct io_failure_record *failrec;
2433 struct inode *inode = page->mapping->host;
2434 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2435 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2436 struct bio *bio;
70fd7614 2437 int read_mode = 0;
4e4cbee9 2438 blk_status_t status;
2fe6303e 2439 int ret;
8a2ee44a 2440 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2441
1f7ad75b 2442 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2443
2444 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2445 if (ret)
2446 return ret;
2447
a0b60d72 2448 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2449 failed_mirror)) {
7870d082 2450 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2451 return -EIO;
2452 }
2453
a0b60d72 2454 if (failed_bio_pages > 1)
70fd7614 2455 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2456
2457 phy_offset >>= inode->i_sb->s_blocksize_bits;
2458 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2459 start - page_offset(page),
8b110e39
MX
2460 (int)phy_offset, failed_bio->bi_end_io,
2461 NULL);
ebcc3263 2462 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2463
ab8d0fc4
JM
2464 btrfs_debug(btrfs_sb(inode->i_sb),
2465 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2466 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2467
8c27cb35 2468 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2469 failrec->bio_flags, 0);
4e4cbee9 2470 if (status) {
7870d082 2471 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2472 bio_put(bio);
4e4cbee9 2473 ret = blk_status_to_errno(status);
6c387ab2
MX
2474 }
2475
013bd4c3 2476 return ret;
4a54c8c1
JS
2477}
2478
d1310b2e
CM
2479/* lots and lots of room for performance fixes in the end_bio funcs */
2480
b5227c07 2481void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2482{
2483 int uptodate = (err == 0);
3e2426bd 2484 int ret = 0;
87826df0 2485
c629732d 2486 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2487
87826df0 2488 if (!uptodate) {
87826df0
JM
2489 ClearPageUptodate(page);
2490 SetPageError(page);
bff5baf8 2491 ret = err < 0 ? err : -EIO;
5dca6eea 2492 mapping_set_error(page->mapping, ret);
87826df0 2493 }
87826df0
JM
2494}
2495
d1310b2e
CM
2496/*
2497 * after a writepage IO is done, we need to:
2498 * clear the uptodate bits on error
2499 * clear the writeback bits in the extent tree for this IO
2500 * end_page_writeback if the page has no more pending IO
2501 *
2502 * Scheduling is not allowed, so the extent state tree is expected
2503 * to have one and only one object corresponding to this IO.
2504 */
4246a0b6 2505static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2506{
4e4cbee9 2507 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2508 struct bio_vec *bvec;
d1310b2e
CM
2509 u64 start;
2510 u64 end;
2c30c71b 2511 int i;
6dc4f100 2512 struct bvec_iter_all iter_all;
d1310b2e 2513
c09abff8 2514 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 2515 bio_for_each_segment_all(bvec, bio, i, iter_all) {
d1310b2e 2516 struct page *page = bvec->bv_page;
0b246afa
JM
2517 struct inode *inode = page->mapping->host;
2518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2519
17a5adcc
AO
2520 /* We always issue full-page reads, but if some block
2521 * in a page fails to read, blk_update_request() will
2522 * advance bv_offset and adjust bv_len to compensate.
2523 * Print a warning for nonzero offsets, and an error
2524 * if they don't add up to a full page. */
09cbfeaf
KS
2525 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2526 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2527 btrfs_err(fs_info,
efe120a0
FH
2528 "partial page write in btrfs with offset %u and length %u",
2529 bvec->bv_offset, bvec->bv_len);
2530 else
0b246afa 2531 btrfs_info(fs_info,
5d163e0e 2532 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2533 bvec->bv_offset, bvec->bv_len);
2534 }
d1310b2e 2535
17a5adcc
AO
2536 start = page_offset(page);
2537 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2538
4e4cbee9 2539 end_extent_writepage(page, error, start, end);
17a5adcc 2540 end_page_writeback(page);
2c30c71b 2541 }
2b1f55b0 2542
d1310b2e 2543 bio_put(bio);
d1310b2e
CM
2544}
2545
883d0de4
MX
2546static void
2547endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2548 int uptodate)
2549{
2550 struct extent_state *cached = NULL;
2551 u64 end = start + len - 1;
2552
2553 if (uptodate && tree->track_uptodate)
2554 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2555 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2556}
2557
d1310b2e
CM
2558/*
2559 * after a readpage IO is done, we need to:
2560 * clear the uptodate bits on error
2561 * set the uptodate bits if things worked
2562 * set the page up to date if all extents in the tree are uptodate
2563 * clear the lock bit in the extent tree
2564 * unlock the page if there are no other extents locked for it
2565 *
2566 * Scheduling is not allowed, so the extent state tree is expected
2567 * to have one and only one object corresponding to this IO.
2568 */
4246a0b6 2569static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2570{
2c30c71b 2571 struct bio_vec *bvec;
4e4cbee9 2572 int uptodate = !bio->bi_status;
facc8a22 2573 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2574 struct extent_io_tree *tree, *failure_tree;
facc8a22 2575 u64 offset = 0;
d1310b2e
CM
2576 u64 start;
2577 u64 end;
facc8a22 2578 u64 len;
883d0de4
MX
2579 u64 extent_start = 0;
2580 u64 extent_len = 0;
5cf1ab56 2581 int mirror;
d1310b2e 2582 int ret;
2c30c71b 2583 int i;
6dc4f100 2584 struct bvec_iter_all iter_all;
d1310b2e 2585
c09abff8 2586 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 2587 bio_for_each_segment_all(bvec, bio, i, iter_all) {
d1310b2e 2588 struct page *page = bvec->bv_page;
a71754fc 2589 struct inode *inode = page->mapping->host;
ab8d0fc4 2590 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2591 bool data_inode = btrfs_ino(BTRFS_I(inode))
2592 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2593
ab8d0fc4
JM
2594 btrfs_debug(fs_info,
2595 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2596 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2597 io_bio->mirror_num);
a71754fc 2598 tree = &BTRFS_I(inode)->io_tree;
7870d082 2599 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2600
17a5adcc
AO
2601 /* We always issue full-page reads, but if some block
2602 * in a page fails to read, blk_update_request() will
2603 * advance bv_offset and adjust bv_len to compensate.
2604 * Print a warning for nonzero offsets, and an error
2605 * if they don't add up to a full page. */
09cbfeaf
KS
2606 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2607 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2608 btrfs_err(fs_info,
2609 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2610 bvec->bv_offset, bvec->bv_len);
2611 else
ab8d0fc4
JM
2612 btrfs_info(fs_info,
2613 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2614 bvec->bv_offset, bvec->bv_len);
2615 }
d1310b2e 2616
17a5adcc
AO
2617 start = page_offset(page);
2618 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2619 len = bvec->bv_len;
d1310b2e 2620
9be3395b 2621 mirror = io_bio->mirror_num;
78e62c02 2622 if (likely(uptodate)) {
facc8a22
MX
2623 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2624 page, start, end,
2625 mirror);
5ee0844d 2626 if (ret)
d1310b2e 2627 uptodate = 0;
5ee0844d 2628 else
7870d082
JB
2629 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2630 failure_tree, tree, start,
2631 page,
2632 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2633 }
ea466794 2634
f2a09da9
MX
2635 if (likely(uptodate))
2636 goto readpage_ok;
2637
78e62c02 2638 if (data_inode) {
9d0d1c8b 2639
f4a8e656 2640 /*
78e62c02
NB
2641 * The generic bio_readpage_error handles errors the
2642 * following way: If possible, new read requests are
2643 * created and submitted and will end up in
2644 * end_bio_extent_readpage as well (if we're lucky,
2645 * not in the !uptodate case). In that case it returns
2646 * 0 and we just go on with the next page in our bio.
2647 * If it can't handle the error it will return -EIO and
2648 * we remain responsible for that page.
f4a8e656 2649 */
78e62c02
NB
2650 ret = bio_readpage_error(bio, offset, page, start, end,
2651 mirror);
2652 if (ret == 0) {
2653 uptodate = !bio->bi_status;
2654 offset += len;
2655 continue;
2656 }
2657 } else {
2658 struct extent_buffer *eb;
2659
2660 eb = (struct extent_buffer *)page->private;
2661 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2662 eb->read_mirror = mirror;
2663 atomic_dec(&eb->io_pages);
2664 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2665 &eb->bflags))
2666 btree_readahead_hook(eb, -EIO);
7e38326f 2667 }
f2a09da9 2668readpage_ok:
883d0de4 2669 if (likely(uptodate)) {
a71754fc 2670 loff_t i_size = i_size_read(inode);
09cbfeaf 2671 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2672 unsigned off;
a71754fc
JB
2673
2674 /* Zero out the end if this page straddles i_size */
7073017a 2675 off = offset_in_page(i_size);
a583c026 2676 if (page->index == end_index && off)
09cbfeaf 2677 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2678 SetPageUptodate(page);
70dec807 2679 } else {
17a5adcc
AO
2680 ClearPageUptodate(page);
2681 SetPageError(page);
70dec807 2682 }
17a5adcc 2683 unlock_page(page);
facc8a22 2684 offset += len;
883d0de4
MX
2685
2686 if (unlikely(!uptodate)) {
2687 if (extent_len) {
2688 endio_readpage_release_extent(tree,
2689 extent_start,
2690 extent_len, 1);
2691 extent_start = 0;
2692 extent_len = 0;
2693 }
2694 endio_readpage_release_extent(tree, start,
2695 end - start + 1, 0);
2696 } else if (!extent_len) {
2697 extent_start = start;
2698 extent_len = end + 1 - start;
2699 } else if (extent_start + extent_len == start) {
2700 extent_len += end + 1 - start;
2701 } else {
2702 endio_readpage_release_extent(tree, extent_start,
2703 extent_len, uptodate);
2704 extent_start = start;
2705 extent_len = end + 1 - start;
2706 }
2c30c71b 2707 }
d1310b2e 2708
883d0de4
MX
2709 if (extent_len)
2710 endio_readpage_release_extent(tree, extent_start, extent_len,
2711 uptodate);
b3a0dd50 2712 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2713 bio_put(bio);
d1310b2e
CM
2714}
2715
9be3395b 2716/*
184f999e
DS
2717 * Initialize the members up to but not including 'bio'. Use after allocating a
2718 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2719 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2720 */
184f999e 2721static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2722{
184f999e
DS
2723 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2724}
d1310b2e 2725
9be3395b 2726/*
6e707bcd
DS
2727 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2728 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2729 * for the appropriate container_of magic
9be3395b 2730 */
c821e7f3 2731struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2732{
2733 struct bio *bio;
d1310b2e 2734
8ac9f7c1 2735 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2736 bio_set_dev(bio, bdev);
c821e7f3 2737 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2738 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2739 return bio;
2740}
2741
8b6c1d56 2742struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2743{
23ea8e5a
MX
2744 struct btrfs_io_bio *btrfs_bio;
2745 struct bio *new;
9be3395b 2746
6e707bcd 2747 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2748 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2749 btrfs_bio = btrfs_io_bio(new);
184f999e 2750 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2751 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2752 return new;
2753}
9be3395b 2754
c5e4c3d7 2755struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2756{
facc8a22
MX
2757 struct bio *bio;
2758
6e707bcd 2759 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2760 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2761 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2762 return bio;
9be3395b
CM
2763}
2764
e477094f 2765struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2766{
2767 struct bio *bio;
2768 struct btrfs_io_bio *btrfs_bio;
2769
2770 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2771 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2772 ASSERT(bio);
2773
2774 btrfs_bio = btrfs_io_bio(bio);
184f999e 2775 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2776
2777 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2778 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2779 return bio;
2780}
9be3395b 2781
4b81ba48
DS
2782/*
2783 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2784 * @tree: tree so we can call our merge_bio hook
2785 * @wbc: optional writeback control for io accounting
2786 * @page: page to add to the bio
2787 * @pg_offset: offset of the new bio or to check whether we are adding
2788 * a contiguous page to the previous one
2789 * @size: portion of page that we want to write
2790 * @offset: starting offset in the page
2791 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2792 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2793 * @end_io_func: end_io callback for new bio
2794 * @mirror_num: desired mirror to read/write
2795 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2796 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2797 */
2798static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2799 struct writeback_control *wbc,
6273b7f8 2800 struct page *page, u64 offset,
6c5a4e2c 2801 size_t size, unsigned long pg_offset,
d1310b2e
CM
2802 struct block_device *bdev,
2803 struct bio **bio_ret,
f188591e 2804 bio_end_io_t end_io_func,
c8b97818
CM
2805 int mirror_num,
2806 unsigned long prev_bio_flags,
005efedf
FM
2807 unsigned long bio_flags,
2808 bool force_bio_submit)
d1310b2e
CM
2809{
2810 int ret = 0;
2811 struct bio *bio;
09cbfeaf 2812 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2813 sector_t sector = offset >> 9;
d1310b2e 2814
5c2b1fd7
DS
2815 ASSERT(bio_ret);
2816
2817 if (*bio_ret) {
0c8508a6
DS
2818 bool contig;
2819 bool can_merge = true;
2820
d1310b2e 2821 bio = *bio_ret;
0c8508a6 2822 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2823 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2824 else
f73a1c7d 2825 contig = bio_end_sector(bio) == sector;
c8b97818 2826
da12fe54
NB
2827 ASSERT(tree->ops);
2828 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2829 can_merge = false;
2830
2831 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2832 force_bio_submit ||
6c5a4e2c 2833 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2834 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2835 if (ret < 0) {
2836 *bio_ret = NULL;
79787eaa 2837 return ret;
289454ad 2838 }
d1310b2e
CM
2839 bio = NULL;
2840 } else {
da2f0f74
CM
2841 if (wbc)
2842 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2843 return 0;
2844 }
2845 }
c8b97818 2846
6273b7f8 2847 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2848 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2849 bio->bi_end_io = end_io_func;
2850 bio->bi_private = tree;
e6959b93 2851 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2852 bio->bi_opf = opf;
da2f0f74
CM
2853 if (wbc) {
2854 wbc_init_bio(wbc, bio);
2855 wbc_account_io(wbc, page, page_size);
2856 }
70dec807 2857
5c2b1fd7 2858 *bio_ret = bio;
d1310b2e
CM
2859
2860 return ret;
2861}
2862
48a3b636
ES
2863static void attach_extent_buffer_page(struct extent_buffer *eb,
2864 struct page *page)
d1310b2e
CM
2865{
2866 if (!PagePrivate(page)) {
2867 SetPagePrivate(page);
09cbfeaf 2868 get_page(page);
4f2de97a
JB
2869 set_page_private(page, (unsigned long)eb);
2870 } else {
2871 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2872 }
2873}
2874
4f2de97a 2875void set_page_extent_mapped(struct page *page)
d1310b2e 2876{
4f2de97a
JB
2877 if (!PagePrivate(page)) {
2878 SetPagePrivate(page);
09cbfeaf 2879 get_page(page);
4f2de97a
JB
2880 set_page_private(page, EXTENT_PAGE_PRIVATE);
2881 }
d1310b2e
CM
2882}
2883
125bac01
MX
2884static struct extent_map *
2885__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2886 u64 start, u64 len, get_extent_t *get_extent,
2887 struct extent_map **em_cached)
2888{
2889 struct extent_map *em;
2890
2891 if (em_cached && *em_cached) {
2892 em = *em_cached;
cbc0e928 2893 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2894 start < extent_map_end(em)) {
490b54d6 2895 refcount_inc(&em->refs);
125bac01
MX
2896 return em;
2897 }
2898
2899 free_extent_map(em);
2900 *em_cached = NULL;
2901 }
2902
fc4f21b1 2903 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2904 if (em_cached && !IS_ERR_OR_NULL(em)) {
2905 BUG_ON(*em_cached);
490b54d6 2906 refcount_inc(&em->refs);
125bac01
MX
2907 *em_cached = em;
2908 }
2909 return em;
2910}
d1310b2e
CM
2911/*
2912 * basic readpage implementation. Locked extent state structs are inserted
2913 * into the tree that are removed when the IO is done (by the end_io
2914 * handlers)
79787eaa 2915 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2916 * return 0 on success, otherwise return error
d1310b2e 2917 */
9974090b
MX
2918static int __do_readpage(struct extent_io_tree *tree,
2919 struct page *page,
2920 get_extent_t *get_extent,
125bac01 2921 struct extent_map **em_cached,
9974090b 2922 struct bio **bio, int mirror_num,
f1c77c55 2923 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2924 u64 *prev_em_start)
d1310b2e
CM
2925{
2926 struct inode *inode = page->mapping->host;
4eee4fa4 2927 u64 start = page_offset(page);
8eec8296 2928 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2929 u64 cur = start;
2930 u64 extent_offset;
2931 u64 last_byte = i_size_read(inode);
2932 u64 block_start;
2933 u64 cur_end;
d1310b2e
CM
2934 struct extent_map *em;
2935 struct block_device *bdev;
baf863b9 2936 int ret = 0;
d1310b2e 2937 int nr = 0;
306e16ce 2938 size_t pg_offset = 0;
d1310b2e 2939 size_t iosize;
c8b97818 2940 size_t disk_io_size;
d1310b2e 2941 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2942 unsigned long this_bio_flag = 0;
d1310b2e
CM
2943
2944 set_page_extent_mapped(page);
2945
90a887c9
DM
2946 if (!PageUptodate(page)) {
2947 if (cleancache_get_page(page) == 0) {
2948 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2949 unlock_extent(tree, start, end);
90a887c9
DM
2950 goto out;
2951 }
2952 }
2953
09cbfeaf 2954 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2955 char *userpage;
7073017a 2956 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
2957
2958 if (zero_offset) {
09cbfeaf 2959 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2960 userpage = kmap_atomic(page);
c8b97818
CM
2961 memset(userpage + zero_offset, 0, iosize);
2962 flush_dcache_page(page);
7ac687d9 2963 kunmap_atomic(userpage);
c8b97818
CM
2964 }
2965 }
d1310b2e 2966 while (cur <= end) {
005efedf 2967 bool force_bio_submit = false;
6273b7f8 2968 u64 offset;
c8f2f24b 2969
d1310b2e
CM
2970 if (cur >= last_byte) {
2971 char *userpage;
507903b8
AJ
2972 struct extent_state *cached = NULL;
2973
09cbfeaf 2974 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2975 userpage = kmap_atomic(page);
306e16ce 2976 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2977 flush_dcache_page(page);
7ac687d9 2978 kunmap_atomic(userpage);
d1310b2e 2979 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2980 &cached, GFP_NOFS);
7f042a83 2981 unlock_extent_cached(tree, cur,
e43bbe5e 2982 cur + iosize - 1, &cached);
d1310b2e
CM
2983 break;
2984 }
125bac01
MX
2985 em = __get_extent_map(inode, page, pg_offset, cur,
2986 end - cur + 1, get_extent, em_cached);
c704005d 2987 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2988 SetPageError(page);
7f042a83 2989 unlock_extent(tree, cur, end);
d1310b2e
CM
2990 break;
2991 }
d1310b2e
CM
2992 extent_offset = cur - em->start;
2993 BUG_ON(extent_map_end(em) <= cur);
2994 BUG_ON(end < cur);
2995
261507a0 2996 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2997 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2998 extent_set_compress_type(&this_bio_flag,
2999 em->compress_type);
3000 }
c8b97818 3001
d1310b2e
CM
3002 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3003 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3004 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3005 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3006 disk_io_size = em->block_len;
6273b7f8 3007 offset = em->block_start;
c8b97818 3008 } else {
6273b7f8 3009 offset = em->block_start + extent_offset;
c8b97818
CM
3010 disk_io_size = iosize;
3011 }
d1310b2e
CM
3012 bdev = em->bdev;
3013 block_start = em->block_start;
d899e052
YZ
3014 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3015 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3016
3017 /*
3018 * If we have a file range that points to a compressed extent
3019 * and it's followed by a consecutive file range that points to
3020 * to the same compressed extent (possibly with a different
3021 * offset and/or length, so it either points to the whole extent
3022 * or only part of it), we must make sure we do not submit a
3023 * single bio to populate the pages for the 2 ranges because
3024 * this makes the compressed extent read zero out the pages
3025 * belonging to the 2nd range. Imagine the following scenario:
3026 *
3027 * File layout
3028 * [0 - 8K] [8K - 24K]
3029 * | |
3030 * | |
3031 * points to extent X, points to extent X,
3032 * offset 4K, length of 8K offset 0, length 16K
3033 *
3034 * [extent X, compressed length = 4K uncompressed length = 16K]
3035 *
3036 * If the bio to read the compressed extent covers both ranges,
3037 * it will decompress extent X into the pages belonging to the
3038 * first range and then it will stop, zeroing out the remaining
3039 * pages that belong to the other range that points to extent X.
3040 * So here we make sure we submit 2 bios, one for the first
3041 * range and another one for the third range. Both will target
3042 * the same physical extent from disk, but we can't currently
3043 * make the compressed bio endio callback populate the pages
3044 * for both ranges because each compressed bio is tightly
3045 * coupled with a single extent map, and each range can have
3046 * an extent map with a different offset value relative to the
3047 * uncompressed data of our extent and different lengths. This
3048 * is a corner case so we prioritize correctness over
3049 * non-optimal behavior (submitting 2 bios for the same extent).
3050 */
3051 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3052 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3053 *prev_em_start != em->start)
005efedf
FM
3054 force_bio_submit = true;
3055
3056 if (prev_em_start)
8e928218 3057 *prev_em_start = em->start;
005efedf 3058
d1310b2e
CM
3059 free_extent_map(em);
3060 em = NULL;
3061
3062 /* we've found a hole, just zero and go on */
3063 if (block_start == EXTENT_MAP_HOLE) {
3064 char *userpage;
507903b8
AJ
3065 struct extent_state *cached = NULL;
3066
7ac687d9 3067 userpage = kmap_atomic(page);
306e16ce 3068 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3069 flush_dcache_page(page);
7ac687d9 3070 kunmap_atomic(userpage);
d1310b2e
CM
3071
3072 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3073 &cached, GFP_NOFS);
7f042a83 3074 unlock_extent_cached(tree, cur,
e43bbe5e 3075 cur + iosize - 1, &cached);
d1310b2e 3076 cur = cur + iosize;
306e16ce 3077 pg_offset += iosize;
d1310b2e
CM
3078 continue;
3079 }
3080 /* the get_extent function already copied into the page */
9655d298
CM
3081 if (test_range_bit(tree, cur, cur_end,
3082 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3083 check_page_uptodate(tree, page);
7f042a83 3084 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3085 cur = cur + iosize;
306e16ce 3086 pg_offset += iosize;
d1310b2e
CM
3087 continue;
3088 }
70dec807
CM
3089 /* we have an inline extent but it didn't get marked up
3090 * to date. Error out
3091 */
3092 if (block_start == EXTENT_MAP_INLINE) {
3093 SetPageError(page);
7f042a83 3094 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3095 cur = cur + iosize;
306e16ce 3096 pg_offset += iosize;
70dec807
CM
3097 continue;
3098 }
d1310b2e 3099
4b81ba48 3100 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3101 page, offset, disk_io_size,
3102 pg_offset, bdev, bio,
c8b97818
CM
3103 end_bio_extent_readpage, mirror_num,
3104 *bio_flags,
005efedf
FM
3105 this_bio_flag,
3106 force_bio_submit);
c8f2f24b
JB
3107 if (!ret) {
3108 nr++;
3109 *bio_flags = this_bio_flag;
3110 } else {
d1310b2e 3111 SetPageError(page);
7f042a83 3112 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3113 goto out;
edd33c99 3114 }
d1310b2e 3115 cur = cur + iosize;
306e16ce 3116 pg_offset += iosize;
d1310b2e 3117 }
90a887c9 3118out:
d1310b2e
CM
3119 if (!nr) {
3120 if (!PageError(page))
3121 SetPageUptodate(page);
3122 unlock_page(page);
3123 }
baf863b9 3124 return ret;
d1310b2e
CM
3125}
3126
e65ef21e 3127static inline void contiguous_readpages(struct extent_io_tree *tree,
9974090b
MX
3128 struct page *pages[], int nr_pages,
3129 u64 start, u64 end,
125bac01 3130 struct extent_map **em_cached,
d3fac6ba 3131 struct bio **bio,
1f7ad75b 3132 unsigned long *bio_flags,
808f80b4 3133 u64 *prev_em_start)
9974090b
MX
3134{
3135 struct inode *inode;
3136 struct btrfs_ordered_extent *ordered;
3137 int index;
3138
3139 inode = pages[0]->mapping->host;
3140 while (1) {
3141 lock_extent(tree, start, end);
a776c6fa 3142 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3143 end - start + 1);
3144 if (!ordered)
3145 break;
3146 unlock_extent(tree, start, end);
3147 btrfs_start_ordered_extent(inode, ordered, 1);
3148 btrfs_put_ordered_extent(ordered);
3149 }
3150
3151 for (index = 0; index < nr_pages; index++) {
4ef77695 3152 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3153 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3154 put_page(pages[index]);
9974090b
MX
3155 }
3156}
3157
9974090b
MX
3158static int __extent_read_full_page(struct extent_io_tree *tree,
3159 struct page *page,
3160 get_extent_t *get_extent,
3161 struct bio **bio, int mirror_num,
f1c77c55
DS
3162 unsigned long *bio_flags,
3163 unsigned int read_flags)
9974090b
MX
3164{
3165 struct inode *inode = page->mapping->host;
3166 struct btrfs_ordered_extent *ordered;
3167 u64 start = page_offset(page);
09cbfeaf 3168 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3169 int ret;
3170
3171 while (1) {
3172 lock_extent(tree, start, end);
a776c6fa 3173 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3174 PAGE_SIZE);
9974090b
MX
3175 if (!ordered)
3176 break;
3177 unlock_extent(tree, start, end);
3178 btrfs_start_ordered_extent(inode, ordered, 1);
3179 btrfs_put_ordered_extent(ordered);
3180 }
3181
125bac01 3182 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3183 bio_flags, read_flags, NULL);
9974090b
MX
3184 return ret;
3185}
3186
d1310b2e 3187int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3188 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3189{
3190 struct bio *bio = NULL;
c8b97818 3191 unsigned long bio_flags = 0;
d1310b2e
CM
3192 int ret;
3193
8ddc7d9c 3194 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3195 &bio_flags, 0);
d1310b2e 3196 if (bio)
1f7ad75b 3197 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3198 return ret;
3199}
d1310b2e 3200
3d4b9496 3201static void update_nr_written(struct writeback_control *wbc,
a9132667 3202 unsigned long nr_written)
11c8349b
CM
3203{
3204 wbc->nr_to_write -= nr_written;
11c8349b
CM
3205}
3206
d1310b2e 3207/*
40f76580
CM
3208 * helper for __extent_writepage, doing all of the delayed allocation setup.
3209 *
5eaad97a 3210 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3211 * to write the page (copy into inline extent). In this case the IO has
3212 * been started and the page is already unlocked.
3213 *
3214 * This returns 0 if all went well (page still locked)
3215 * This returns < 0 if there were errors (page still locked)
d1310b2e 3216 */
40f76580 3217static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3218 struct page *page, struct writeback_control *wbc,
3219 u64 delalloc_start, unsigned long *nr_written)
40f76580 3220{
8cc0237a 3221 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
09cbfeaf 3222 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3223 bool found;
40f76580
CM
3224 u64 delalloc_to_write = 0;
3225 u64 delalloc_end = 0;
3226 int ret;
3227 int page_started = 0;
3228
40f76580
CM
3229
3230 while (delalloc_end < page_end) {
3522e903 3231 found = find_lock_delalloc_range(inode, tree,
40f76580
CM
3232 page,
3233 &delalloc_start,
917aacec 3234 &delalloc_end);
3522e903 3235 if (!found) {
40f76580
CM
3236 delalloc_start = delalloc_end + 1;
3237 continue;
3238 }
5eaad97a
NB
3239 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3240 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3241 /* File system has been set read-only */
3242 if (ret) {
3243 SetPageError(page);
5eaad97a
NB
3244 /*
3245 * btrfs_run_delalloc_range should return < 0 for error
3246 * but just in case, we use > 0 here meaning the IO is
3247 * started, so we don't want to return > 0 unless
3248 * things are going well.
40f76580
CM
3249 */
3250 ret = ret < 0 ? ret : -EIO;
3251 goto done;
3252 }
3253 /*
ea1754a0
KS
3254 * delalloc_end is already one less than the total length, so
3255 * we don't subtract one from PAGE_SIZE
40f76580
CM
3256 */
3257 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3258 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3259 delalloc_start = delalloc_end + 1;
3260 }
3261 if (wbc->nr_to_write < delalloc_to_write) {
3262 int thresh = 8192;
3263
3264 if (delalloc_to_write < thresh * 2)
3265 thresh = delalloc_to_write;
3266 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3267 thresh);
3268 }
3269
3270 /* did the fill delalloc function already unlock and start
3271 * the IO?
3272 */
3273 if (page_started) {
3274 /*
3275 * we've unlocked the page, so we can't update
3276 * the mapping's writeback index, just update
3277 * nr_to_write.
3278 */
3279 wbc->nr_to_write -= *nr_written;
3280 return 1;
3281 }
3282
3283 ret = 0;
3284
3285done:
3286 return ret;
3287}
3288
3289/*
3290 * helper for __extent_writepage. This calls the writepage start hooks,
3291 * and does the loop to map the page into extents and bios.
3292 *
3293 * We return 1 if the IO is started and the page is unlocked,
3294 * 0 if all went well (page still locked)
3295 * < 0 if there were errors (page still locked)
3296 */
3297static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3298 struct page *page,
3299 struct writeback_control *wbc,
3300 struct extent_page_data *epd,
3301 loff_t i_size,
3302 unsigned long nr_written,
f1c77c55 3303 unsigned int write_flags, int *nr_ret)
d1310b2e 3304{
d1310b2e 3305 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3306 u64 start = page_offset(page);
09cbfeaf 3307 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3308 u64 end;
3309 u64 cur = start;
3310 u64 extent_offset;
d1310b2e
CM
3311 u64 block_start;
3312 u64 iosize;
d1310b2e
CM
3313 struct extent_map *em;
3314 struct block_device *bdev;
7f3c74fb 3315 size_t pg_offset = 0;
d1310b2e 3316 size_t blocksize;
40f76580
CM
3317 int ret = 0;
3318 int nr = 0;
3319 bool compressed;
c8b97818 3320
d75855b4
NB
3321 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3322 if (ret) {
3323 /* Fixup worker will requeue */
3324 if (ret == -EBUSY)
3325 wbc->pages_skipped++;
3326 else
3327 redirty_page_for_writepage(wbc, page);
40f76580 3328
d75855b4
NB
3329 update_nr_written(wbc, nr_written);
3330 unlock_page(page);
3331 return 1;
247e743c
CM
3332 }
3333
11c8349b
CM
3334 /*
3335 * we don't want to touch the inode after unlocking the page,
3336 * so we update the mapping writeback index now
3337 */
3d4b9496 3338 update_nr_written(wbc, nr_written + 1);
771ed689 3339
d1310b2e 3340 end = page_end;
40f76580 3341 if (i_size <= start) {
c629732d 3342 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3343 goto done;
3344 }
3345
d1310b2e
CM
3346 blocksize = inode->i_sb->s_blocksize;
3347
3348 while (cur <= end) {
40f76580 3349 u64 em_end;
6273b7f8 3350 u64 offset;
58409edd 3351
40f76580 3352 if (cur >= i_size) {
7087a9d8 3353 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3354 page_end, 1);
d1310b2e
CM
3355 break;
3356 }
3c98c62f 3357 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3358 end - cur + 1, 1);
c704005d 3359 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3360 SetPageError(page);
61391d56 3361 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3362 break;
3363 }
3364
3365 extent_offset = cur - em->start;
40f76580
CM
3366 em_end = extent_map_end(em);
3367 BUG_ON(em_end <= cur);
d1310b2e 3368 BUG_ON(end < cur);
40f76580 3369 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3370 iosize = ALIGN(iosize, blocksize);
6273b7f8 3371 offset = em->block_start + extent_offset;
d1310b2e
CM
3372 bdev = em->bdev;
3373 block_start = em->block_start;
c8b97818 3374 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3375 free_extent_map(em);
3376 em = NULL;
3377
c8b97818
CM
3378 /*
3379 * compressed and inline extents are written through other
3380 * paths in the FS
3381 */
3382 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3383 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3384 /*
3385 * end_io notification does not happen here for
3386 * compressed extents
3387 */
7087a9d8
NB
3388 if (!compressed)
3389 btrfs_writepage_endio_finish_ordered(page, cur,
3390 cur + iosize - 1,
c629732d 3391 1);
c8b97818
CM
3392 else if (compressed) {
3393 /* we don't want to end_page_writeback on
3394 * a compressed extent. this happens
3395 * elsewhere
3396 */
3397 nr++;
3398 }
3399
3400 cur += iosize;
7f3c74fb 3401 pg_offset += iosize;
d1310b2e
CM
3402 continue;
3403 }
c8b97818 3404
5cdc84bf 3405 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3406 if (!PageWriteback(page)) {
3407 btrfs_err(BTRFS_I(inode)->root->fs_info,
3408 "page %lu not writeback, cur %llu end %llu",
3409 page->index, cur, end);
d1310b2e 3410 }
7f3c74fb 3411
4b81ba48 3412 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3413 page, offset, iosize, pg_offset,
c2df8bb4 3414 bdev, &epd->bio,
58409edd
DS
3415 end_bio_extent_writepage,
3416 0, 0, 0, false);
fe01aa65 3417 if (ret) {
58409edd 3418 SetPageError(page);
fe01aa65
TK
3419 if (PageWriteback(page))
3420 end_page_writeback(page);
3421 }
d1310b2e 3422
d1310b2e 3423 cur = cur + iosize;
7f3c74fb 3424 pg_offset += iosize;
d1310b2e
CM
3425 nr++;
3426 }
40f76580
CM
3427done:
3428 *nr_ret = nr;
40f76580
CM
3429 return ret;
3430}
3431
3432/*
3433 * the writepage semantics are similar to regular writepage. extent
3434 * records are inserted to lock ranges in the tree, and as dirty areas
3435 * are found, they are marked writeback. Then the lock bits are removed
3436 * and the end_io handler clears the writeback ranges
3065976b
QW
3437 *
3438 * Return 0 if everything goes well.
3439 * Return <0 for error.
40f76580
CM
3440 */
3441static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3442 struct extent_page_data *epd)
40f76580
CM
3443{
3444 struct inode *inode = page->mapping->host;
40f76580 3445 u64 start = page_offset(page);
09cbfeaf 3446 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3447 int ret;
3448 int nr = 0;
3449 size_t pg_offset = 0;
3450 loff_t i_size = i_size_read(inode);
09cbfeaf 3451 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3452 unsigned int write_flags = 0;
40f76580
CM
3453 unsigned long nr_written = 0;
3454
ff40adf7 3455 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3456
3457 trace___extent_writepage(page, inode, wbc);
3458
3459 WARN_ON(!PageLocked(page));
3460
3461 ClearPageError(page);
3462
7073017a 3463 pg_offset = offset_in_page(i_size);
40f76580
CM
3464 if (page->index > end_index ||
3465 (page->index == end_index && !pg_offset)) {
09cbfeaf 3466 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3467 unlock_page(page);
3468 return 0;
3469 }
3470
3471 if (page->index == end_index) {
3472 char *userpage;
3473
3474 userpage = kmap_atomic(page);
3475 memset(userpage + pg_offset, 0,
09cbfeaf 3476 PAGE_SIZE - pg_offset);
40f76580
CM
3477 kunmap_atomic(userpage);
3478 flush_dcache_page(page);
3479 }
3480
3481 pg_offset = 0;
3482
3483 set_page_extent_mapped(page);
3484
7789a55a 3485 if (!epd->extent_locked) {
8cc0237a 3486 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3487 if (ret == 1)
3488 goto done_unlocked;
3489 if (ret)
3490 goto done;
3491 }
40f76580
CM
3492
3493 ret = __extent_writepage_io(inode, page, wbc, epd,
3494 i_size, nr_written, write_flags, &nr);
3495 if (ret == 1)
3496 goto done_unlocked;
3497
d1310b2e
CM
3498done:
3499 if (nr == 0) {
3500 /* make sure the mapping tag for page dirty gets cleared */
3501 set_page_writeback(page);
3502 end_page_writeback(page);
3503 }
61391d56
FM
3504 if (PageError(page)) {
3505 ret = ret < 0 ? ret : -EIO;
3506 end_extent_writepage(page, ret, start, page_end);
3507 }
d1310b2e 3508 unlock_page(page);
3065976b 3509 ASSERT(ret <= 0);
40f76580 3510 return ret;
771ed689 3511
11c8349b 3512done_unlocked:
d1310b2e
CM
3513 return 0;
3514}
3515
fd8b2b61 3516void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3517{
74316201
N
3518 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3519 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3520}
3521
2e3c2513
QW
3522/*
3523 * Lock eb pages and flush the bio if we can't the locks
3524 *
3525 * Return 0 if nothing went wrong
3526 * Return >0 is same as 0, except bio is not submitted
3527 * Return <0 if something went wrong, no page is locked
3528 */
9df76fb5 3529static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3530 struct extent_page_data *epd)
0b32f4bb 3531{
9df76fb5 3532 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3533 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3534 int flush = 0;
3535 int ret = 0;
3536
3537 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3538 ret = flush_write_bio(epd);
2e3c2513
QW
3539 if (ret < 0)
3540 return ret;
3541 flush = 1;
0b32f4bb
JB
3542 btrfs_tree_lock(eb);
3543 }
3544
3545 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3546 btrfs_tree_unlock(eb);
3547 if (!epd->sync_io)
3548 return 0;
3549 if (!flush) {
f4340622 3550 ret = flush_write_bio(epd);
2e3c2513
QW
3551 if (ret < 0)
3552 return ret;
0b32f4bb
JB
3553 flush = 1;
3554 }
a098d8e8
CM
3555 while (1) {
3556 wait_on_extent_buffer_writeback(eb);
3557 btrfs_tree_lock(eb);
3558 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3559 break;
0b32f4bb 3560 btrfs_tree_unlock(eb);
0b32f4bb
JB
3561 }
3562 }
3563
51561ffe
JB
3564 /*
3565 * We need to do this to prevent races in people who check if the eb is
3566 * under IO since we can end up having no IO bits set for a short period
3567 * of time.
3568 */
3569 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3570 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3571 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3572 spin_unlock(&eb->refs_lock);
0b32f4bb 3573 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3574 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3575 -eb->len,
3576 fs_info->dirty_metadata_batch);
0b32f4bb 3577 ret = 1;
51561ffe
JB
3578 } else {
3579 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3580 }
3581
3582 btrfs_tree_unlock(eb);
3583
3584 if (!ret)
3585 return ret;
3586
65ad0104 3587 num_pages = num_extent_pages(eb);
0b32f4bb 3588 for (i = 0; i < num_pages; i++) {
fb85fc9a 3589 struct page *p = eb->pages[i];
0b32f4bb
JB
3590
3591 if (!trylock_page(p)) {
3592 if (!flush) {
f4340622 3593 ret = flush_write_bio(epd);
2e3c2513
QW
3594 if (ret < 0) {
3595 failed_page_nr = i;
3596 goto err_unlock;
3597 }
0b32f4bb
JB
3598 flush = 1;
3599 }
3600 lock_page(p);
3601 }
3602 }
3603
3604 return ret;
2e3c2513
QW
3605err_unlock:
3606 /* Unlock already locked pages */
3607 for (i = 0; i < failed_page_nr; i++)
3608 unlock_page(eb->pages[i]);
3609 return ret;
0b32f4bb
JB
3610}
3611
3612static void end_extent_buffer_writeback(struct extent_buffer *eb)
3613{
3614 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3615 smp_mb__after_atomic();
0b32f4bb
JB
3616 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3617}
3618
656f30db
FM
3619static void set_btree_ioerr(struct page *page)
3620{
3621 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3622
3623 SetPageError(page);
3624 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3625 return;
3626
3627 /*
3628 * If writeback for a btree extent that doesn't belong to a log tree
3629 * failed, increment the counter transaction->eb_write_errors.
3630 * We do this because while the transaction is running and before it's
3631 * committing (when we call filemap_fdata[write|wait]_range against
3632 * the btree inode), we might have
3633 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3634 * returns an error or an error happens during writeback, when we're
3635 * committing the transaction we wouldn't know about it, since the pages
3636 * can be no longer dirty nor marked anymore for writeback (if a
3637 * subsequent modification to the extent buffer didn't happen before the
3638 * transaction commit), which makes filemap_fdata[write|wait]_range not
3639 * able to find the pages tagged with SetPageError at transaction
3640 * commit time. So if this happens we must abort the transaction,
3641 * otherwise we commit a super block with btree roots that point to
3642 * btree nodes/leafs whose content on disk is invalid - either garbage
3643 * or the content of some node/leaf from a past generation that got
3644 * cowed or deleted and is no longer valid.
3645 *
3646 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3647 * not be enough - we need to distinguish between log tree extents vs
3648 * non-log tree extents, and the next filemap_fdatawait_range() call
3649 * will catch and clear such errors in the mapping - and that call might
3650 * be from a log sync and not from a transaction commit. Also, checking
3651 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3652 * not done and would not be reliable - the eb might have been released
3653 * from memory and reading it back again means that flag would not be
3654 * set (since it's a runtime flag, not persisted on disk).
3655 *
3656 * Using the flags below in the btree inode also makes us achieve the
3657 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3658 * writeback for all dirty pages and before filemap_fdatawait_range()
3659 * is called, the writeback for all dirty pages had already finished
3660 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3661 * filemap_fdatawait_range() would return success, as it could not know
3662 * that writeback errors happened (the pages were no longer tagged for
3663 * writeback).
3664 */
3665 switch (eb->log_index) {
3666 case -1:
afcdd129 3667 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 case 0:
afcdd129 3670 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3671 break;
3672 case 1:
afcdd129 3673 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3674 break;
3675 default:
3676 BUG(); /* unexpected, logic error */
3677 }
3678}
3679
4246a0b6 3680static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3681{
2c30c71b 3682 struct bio_vec *bvec;
0b32f4bb 3683 struct extent_buffer *eb;
2c30c71b 3684 int i, done;
6dc4f100 3685 struct bvec_iter_all iter_all;
0b32f4bb 3686
c09abff8 3687 ASSERT(!bio_flagged(bio, BIO_CLONED));
6dc4f100 3688 bio_for_each_segment_all(bvec, bio, i, iter_all) {
0b32f4bb
JB
3689 struct page *page = bvec->bv_page;
3690
0b32f4bb
JB
3691 eb = (struct extent_buffer *)page->private;
3692 BUG_ON(!eb);
3693 done = atomic_dec_and_test(&eb->io_pages);
3694
4e4cbee9 3695 if (bio->bi_status ||
4246a0b6 3696 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3697 ClearPageUptodate(page);
656f30db 3698 set_btree_ioerr(page);
0b32f4bb
JB
3699 }
3700
3701 end_page_writeback(page);
3702
3703 if (!done)
3704 continue;
3705
3706 end_extent_buffer_writeback(eb);
2c30c71b 3707 }
0b32f4bb
JB
3708
3709 bio_put(bio);
0b32f4bb
JB
3710}
3711
0e378df1 3712static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3713 struct writeback_control *wbc,
3714 struct extent_page_data *epd)
3715{
0ab02063 3716 struct btrfs_fs_info *fs_info = eb->fs_info;
0b32f4bb 3717 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3718 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3719 u64 offset = eb->start;
851cd173 3720 u32 nritems;
cc5e31a4 3721 int i, num_pages;
851cd173 3722 unsigned long start, end;
ff40adf7 3723 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3724 int ret = 0;
0b32f4bb 3725
656f30db 3726 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3727 num_pages = num_extent_pages(eb);
0b32f4bb 3728 atomic_set(&eb->io_pages, num_pages);
de0022b9 3729
851cd173
LB
3730 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3731 nritems = btrfs_header_nritems(eb);
3eb548ee 3732 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3733 end = btrfs_node_key_ptr_offset(nritems);
3734
b159fa28 3735 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3736 } else {
3737 /*
3738 * leaf:
3739 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3740 */
3741 start = btrfs_item_nr_offset(nritems);
8f881e8c 3742 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3743 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3744 }
3745
0b32f4bb 3746 for (i = 0; i < num_pages; i++) {
fb85fc9a 3747 struct page *p = eb->pages[i];
0b32f4bb
JB
3748
3749 clear_page_dirty_for_io(p);
3750 set_page_writeback(p);
4b81ba48 3751 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3752 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3753 &epd->bio,
1f7ad75b 3754 end_bio_extent_buffer_writepage,
18fdc679 3755 0, 0, 0, false);
0b32f4bb 3756 if (ret) {
656f30db 3757 set_btree_ioerr(p);
fe01aa65
TK
3758 if (PageWriteback(p))
3759 end_page_writeback(p);
0b32f4bb
JB
3760 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3761 end_extent_buffer_writeback(eb);
3762 ret = -EIO;
3763 break;
3764 }
09cbfeaf 3765 offset += PAGE_SIZE;
3d4b9496 3766 update_nr_written(wbc, 1);
0b32f4bb
JB
3767 unlock_page(p);
3768 }
3769
3770 if (unlikely(ret)) {
3771 for (; i < num_pages; i++) {
bbf65cf0 3772 struct page *p = eb->pages[i];
81465028 3773 clear_page_dirty_for_io(p);
0b32f4bb
JB
3774 unlock_page(p);
3775 }
3776 }
3777
3778 return ret;
3779}
3780
3781int btree_write_cache_pages(struct address_space *mapping,
3782 struct writeback_control *wbc)
3783{
3784 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
0b32f4bb
JB
3785 struct extent_buffer *eb, *prev_eb = NULL;
3786 struct extent_page_data epd = {
3787 .bio = NULL,
3788 .tree = tree,
3789 .extent_locked = 0,
3790 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3791 };
3792 int ret = 0;
3793 int done = 0;
3794 int nr_to_write_done = 0;
3795 struct pagevec pvec;
3796 int nr_pages;
3797 pgoff_t index;
3798 pgoff_t end; /* Inclusive */
3799 int scanned = 0;
10bbd235 3800 xa_mark_t tag;
0b32f4bb 3801
86679820 3802 pagevec_init(&pvec);
0b32f4bb
JB
3803 if (wbc->range_cyclic) {
3804 index = mapping->writeback_index; /* Start from prev offset */
3805 end = -1;
3806 } else {
09cbfeaf
KS
3807 index = wbc->range_start >> PAGE_SHIFT;
3808 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3809 scanned = 1;
3810 }
3811 if (wbc->sync_mode == WB_SYNC_ALL)
3812 tag = PAGECACHE_TAG_TOWRITE;
3813 else
3814 tag = PAGECACHE_TAG_DIRTY;
3815retry:
3816 if (wbc->sync_mode == WB_SYNC_ALL)
3817 tag_pages_for_writeback(mapping, index, end);
3818 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3819 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3820 tag))) {
0b32f4bb
JB
3821 unsigned i;
3822
3823 scanned = 1;
3824 for (i = 0; i < nr_pages; i++) {
3825 struct page *page = pvec.pages[i];
3826
3827 if (!PagePrivate(page))
3828 continue;
3829
b5bae261
JB
3830 spin_lock(&mapping->private_lock);
3831 if (!PagePrivate(page)) {
3832 spin_unlock(&mapping->private_lock);
3833 continue;
3834 }
3835
0b32f4bb 3836 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3837
3838 /*
3839 * Shouldn't happen and normally this would be a BUG_ON
3840 * but no sense in crashing the users box for something
3841 * we can survive anyway.
3842 */
fae7f21c 3843 if (WARN_ON(!eb)) {
b5bae261 3844 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3845 continue;
3846 }
3847
b5bae261
JB
3848 if (eb == prev_eb) {
3849 spin_unlock(&mapping->private_lock);
0b32f4bb 3850 continue;
b5bae261 3851 }
0b32f4bb 3852
b5bae261
JB
3853 ret = atomic_inc_not_zero(&eb->refs);
3854 spin_unlock(&mapping->private_lock);
3855 if (!ret)
0b32f4bb 3856 continue;
0b32f4bb
JB
3857
3858 prev_eb = eb;
9df76fb5 3859 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
3860 if (!ret) {
3861 free_extent_buffer(eb);
3862 continue;
3863 }
3864
0ab02063 3865 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
3866 if (ret) {
3867 done = 1;
3868 free_extent_buffer(eb);
3869 break;
3870 }
3871 free_extent_buffer(eb);
3872
3873 /*
3874 * the filesystem may choose to bump up nr_to_write.
3875 * We have to make sure to honor the new nr_to_write
3876 * at any time
3877 */
3878 nr_to_write_done = wbc->nr_to_write <= 0;
3879 }
3880 pagevec_release(&pvec);
3881 cond_resched();
3882 }
3883 if (!scanned && !done) {
3884 /*
3885 * We hit the last page and there is more work to be done: wrap
3886 * back to the start of the file
3887 */
3888 scanned = 1;
3889 index = 0;
3890 goto retry;
3891 }
2b952eea
QW
3892 ASSERT(ret <= 0);
3893 if (ret < 0) {
3894 end_write_bio(&epd, ret);
3895 return ret;
3896 }
3897 ret = flush_write_bio(&epd);
0b32f4bb
JB
3898 return ret;
3899}
3900
d1310b2e 3901/**
4bef0848 3902 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3903 * @mapping: address space structure to write
3904 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3905 * @data: data passed to __extent_writepage function
d1310b2e
CM
3906 *
3907 * If a page is already under I/O, write_cache_pages() skips it, even
3908 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3909 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3910 * and msync() need to guarantee that all the data which was dirty at the time
3911 * the call was made get new I/O started against them. If wbc->sync_mode is
3912 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3913 * existing IO to complete.
3914 */
4242b64a 3915static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3916 struct writeback_control *wbc,
aab6e9ed 3917 struct extent_page_data *epd)
d1310b2e 3918{
7fd1a3f7 3919 struct inode *inode = mapping->host;
d1310b2e
CM
3920 int ret = 0;
3921 int done = 0;
f85d7d6c 3922 int nr_to_write_done = 0;
d1310b2e
CM
3923 struct pagevec pvec;
3924 int nr_pages;
3925 pgoff_t index;
3926 pgoff_t end; /* Inclusive */
a9132667
LB
3927 pgoff_t done_index;
3928 int range_whole = 0;
d1310b2e 3929 int scanned = 0;
10bbd235 3930 xa_mark_t tag;
d1310b2e 3931
7fd1a3f7
JB
3932 /*
3933 * We have to hold onto the inode so that ordered extents can do their
3934 * work when the IO finishes. The alternative to this is failing to add
3935 * an ordered extent if the igrab() fails there and that is a huge pain
3936 * to deal with, so instead just hold onto the inode throughout the
3937 * writepages operation. If it fails here we are freeing up the inode
3938 * anyway and we'd rather not waste our time writing out stuff that is
3939 * going to be truncated anyway.
3940 */
3941 if (!igrab(inode))
3942 return 0;
3943
86679820 3944 pagevec_init(&pvec);
d1310b2e
CM
3945 if (wbc->range_cyclic) {
3946 index = mapping->writeback_index; /* Start from prev offset */
3947 end = -1;
3948 } else {
09cbfeaf
KS
3949 index = wbc->range_start >> PAGE_SHIFT;
3950 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3952 range_whole = 1;
d1310b2e
CM
3953 scanned = 1;
3954 }
3cd24c69
EL
3955
3956 /*
3957 * We do the tagged writepage as long as the snapshot flush bit is set
3958 * and we are the first one who do the filemap_flush() on this inode.
3959 *
3960 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3961 * not race in and drop the bit.
3962 */
3963 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3964 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3965 &BTRFS_I(inode)->runtime_flags))
3966 wbc->tagged_writepages = 1;
3967
3968 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
3969 tag = PAGECACHE_TAG_TOWRITE;
3970 else
3971 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3972retry:
3cd24c69 3973 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 3974 tag_pages_for_writeback(mapping, index, end);
a9132667 3975 done_index = index;
f85d7d6c 3976 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3977 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3978 &index, end, tag))) {
d1310b2e
CM
3979 unsigned i;
3980
3981 scanned = 1;
3982 for (i = 0; i < nr_pages; i++) {
3983 struct page *page = pvec.pages[i];
3984
a9132667 3985 done_index = page->index;
d1310b2e 3986 /*
b93b0163
MW
3987 * At this point we hold neither the i_pages lock nor
3988 * the page lock: the page may be truncated or
3989 * invalidated (changing page->mapping to NULL),
3990 * or even swizzled back from swapper_space to
3991 * tmpfs file mapping
d1310b2e 3992 */
c8f2f24b 3993 if (!trylock_page(page)) {
f4340622
QW
3994 ret = flush_write_bio(epd);
3995 BUG_ON(ret < 0);
c8f2f24b 3996 lock_page(page);
01d658f2 3997 }
d1310b2e
CM
3998
3999 if (unlikely(page->mapping != mapping)) {
4000 unlock_page(page);
4001 continue;
4002 }
4003
d2c3f4f6 4004 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4005 if (PageWriteback(page)) {
4006 ret = flush_write_bio(epd);
4007 BUG_ON(ret < 0);
4008 }
d1310b2e 4009 wait_on_page_writeback(page);
d2c3f4f6 4010 }
d1310b2e
CM
4011
4012 if (PageWriteback(page) ||
4013 !clear_page_dirty_for_io(page)) {
4014 unlock_page(page);
4015 continue;
4016 }
4017
aab6e9ed 4018 ret = __extent_writepage(page, wbc, epd);
a9132667
LB
4019 if (ret < 0) {
4020 /*
4021 * done_index is set past this page,
4022 * so media errors will not choke
4023 * background writeout for the entire
4024 * file. This has consequences for
4025 * range_cyclic semantics (ie. it may
4026 * not be suitable for data integrity
4027 * writeout).
4028 */
4029 done_index = page->index + 1;
4030 done = 1;
4031 break;
4032 }
f85d7d6c
CM
4033
4034 /*
4035 * the filesystem may choose to bump up nr_to_write.
4036 * We have to make sure to honor the new nr_to_write
4037 * at any time
4038 */
4039 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4040 }
4041 pagevec_release(&pvec);
4042 cond_resched();
4043 }
894b36e3 4044 if (!scanned && !done) {
d1310b2e
CM
4045 /*
4046 * We hit the last page and there is more work to be done: wrap
4047 * back to the start of the file
4048 */
4049 scanned = 1;
4050 index = 0;
4051 goto retry;
4052 }
a9132667
LB
4053
4054 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4055 mapping->writeback_index = done_index;
4056
7fd1a3f7 4057 btrfs_add_delayed_iput(inode);
894b36e3 4058 return ret;
d1310b2e 4059}
d1310b2e 4060
0a9b0e53 4061int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4062{
4063 int ret;
d1310b2e
CM
4064 struct extent_page_data epd = {
4065 .bio = NULL,
0a9b0e53 4066 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4067 .extent_locked = 0,
ffbd517d 4068 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4069 };
d1310b2e 4070
d1310b2e 4071 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4072 ASSERT(ret <= 0);
4073 if (ret < 0) {
4074 end_write_bio(&epd, ret);
4075 return ret;
4076 }
d1310b2e 4077
3065976b
QW
4078 ret = flush_write_bio(&epd);
4079 ASSERT(ret <= 0);
d1310b2e
CM
4080 return ret;
4081}
d1310b2e 4082
5e3ee236 4083int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4084 int mode)
4085{
4086 int ret = 0;
4087 struct address_space *mapping = inode->i_mapping;
5e3ee236 4088 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4089 struct page *page;
09cbfeaf
KS
4090 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4091 PAGE_SHIFT;
771ed689
CM
4092
4093 struct extent_page_data epd = {
4094 .bio = NULL,
4095 .tree = tree,
771ed689 4096 .extent_locked = 1,
ffbd517d 4097 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4098 };
4099 struct writeback_control wbc_writepages = {
771ed689 4100 .sync_mode = mode,
771ed689
CM
4101 .nr_to_write = nr_pages * 2,
4102 .range_start = start,
4103 .range_end = end + 1,
4104 };
4105
d397712b 4106 while (start <= end) {
09cbfeaf 4107 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4108 if (clear_page_dirty_for_io(page))
4109 ret = __extent_writepage(page, &wbc_writepages, &epd);
4110 else {
7087a9d8 4111 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4112 start + PAGE_SIZE - 1, 1);
771ed689
CM
4113 unlock_page(page);
4114 }
09cbfeaf
KS
4115 put_page(page);
4116 start += PAGE_SIZE;
771ed689
CM
4117 }
4118
02c6db4f
QW
4119 ASSERT(ret <= 0);
4120 if (ret < 0) {
4121 end_write_bio(&epd, ret);
4122 return ret;
4123 }
4124 ret = flush_write_bio(&epd);
771ed689
CM
4125 return ret;
4126}
d1310b2e 4127
8ae225a8 4128int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4129 struct writeback_control *wbc)
4130{
4131 int ret = 0;
4132 struct extent_page_data epd = {
4133 .bio = NULL,
8ae225a8 4134 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4135 .extent_locked = 0,
ffbd517d 4136 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4137 };
4138
935db853 4139 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4140 ASSERT(ret <= 0);
4141 if (ret < 0) {
4142 end_write_bio(&epd, ret);
4143 return ret;
4144 }
4145 ret = flush_write_bio(&epd);
d1310b2e
CM
4146 return ret;
4147}
d1310b2e 4148
2a3ff0ad
NB
4149int extent_readpages(struct address_space *mapping, struct list_head *pages,
4150 unsigned nr_pages)
d1310b2e
CM
4151{
4152 struct bio *bio = NULL;
c8b97818 4153 unsigned long bio_flags = 0;
67c9684f 4154 struct page *pagepool[16];
125bac01 4155 struct extent_map *em_cached = NULL;
2a3ff0ad 4156 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4157 int nr = 0;
808f80b4 4158 u64 prev_em_start = (u64)-1;
d1310b2e 4159
61ed3a14 4160 while (!list_empty(pages)) {
e65ef21e
NB
4161 u64 contig_end = 0;
4162
61ed3a14 4163 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4164 struct page *page = lru_to_page(pages);
d1310b2e 4165
61ed3a14
NB
4166 prefetchw(&page->flags);
4167 list_del(&page->lru);
4168 if (add_to_page_cache_lru(page, mapping, page->index,
4169 readahead_gfp_mask(mapping))) {
4170 put_page(page);
e65ef21e 4171 break;
61ed3a14
NB
4172 }
4173
4174 pagepool[nr++] = page;
e65ef21e 4175 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4176 }
67c9684f 4177
e65ef21e
NB
4178 if (nr) {
4179 u64 contig_start = page_offset(pagepool[0]);
4180
4181 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4182
4183 contiguous_readpages(tree, pagepool, nr, contig_start,
4184 contig_end, &em_cached, &bio, &bio_flags,
4185 &prev_em_start);
4186 }
d1310b2e 4187 }
67c9684f 4188
125bac01
MX
4189 if (em_cached)
4190 free_extent_map(em_cached);
4191
d1310b2e 4192 if (bio)
1f7ad75b 4193 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4194 return 0;
4195}
d1310b2e
CM
4196
4197/*
4198 * basic invalidatepage code, this waits on any locked or writeback
4199 * ranges corresponding to the page, and then deletes any extent state
4200 * records from the tree
4201 */
4202int extent_invalidatepage(struct extent_io_tree *tree,
4203 struct page *page, unsigned long offset)
4204{
2ac55d41 4205 struct extent_state *cached_state = NULL;
4eee4fa4 4206 u64 start = page_offset(page);
09cbfeaf 4207 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4208 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4209
fda2832f 4210 start += ALIGN(offset, blocksize);
d1310b2e
CM
4211 if (start > end)
4212 return 0;
4213
ff13db41 4214 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4215 wait_on_page_writeback(page);
d1310b2e 4216 clear_extent_bit(tree, start, end,
32c00aff
JB
4217 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4218 EXTENT_DO_ACCOUNTING,
ae0f1625 4219 1, 1, &cached_state);
d1310b2e
CM
4220 return 0;
4221}
d1310b2e 4222
7b13b7b1
CM
4223/*
4224 * a helper for releasepage, this tests for areas of the page that
4225 * are locked or under IO and drops the related state bits if it is safe
4226 * to drop the page.
4227 */
29c68b2d 4228static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4229 struct page *page, gfp_t mask)
7b13b7b1 4230{
4eee4fa4 4231 u64 start = page_offset(page);
09cbfeaf 4232 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4233 int ret = 1;
4234
8882679e 4235 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4236 ret = 0;
8882679e 4237 } else {
11ef160f
CM
4238 /*
4239 * at this point we can safely clear everything except the
4240 * locked bit and the nodatasum bit
4241 */
66b0c887 4242 ret = __clear_extent_bit(tree, start, end,
11ef160f 4243 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4244 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4245
4246 /* if clear_extent_bit failed for enomem reasons,
4247 * we can't allow the release to continue.
4248 */
4249 if (ret < 0)
4250 ret = 0;
4251 else
4252 ret = 1;
7b13b7b1
CM
4253 }
4254 return ret;
4255}
7b13b7b1 4256
d1310b2e
CM
4257/*
4258 * a helper for releasepage. As long as there are no locked extents
4259 * in the range corresponding to the page, both state records and extent
4260 * map records are removed
4261 */
477a30ba 4262int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4263{
4264 struct extent_map *em;
4eee4fa4 4265 u64 start = page_offset(page);
09cbfeaf 4266 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4267 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4268 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4269 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4270
d0164adc 4271 if (gfpflags_allow_blocking(mask) &&
ee22184b 4272 page->mapping->host->i_size > SZ_16M) {
39b5637f 4273 u64 len;
70dec807 4274 while (start <= end) {
39b5637f 4275 len = end - start + 1;
890871be 4276 write_lock(&map->lock);
39b5637f 4277 em = lookup_extent_mapping(map, start, len);
285190d9 4278 if (!em) {
890871be 4279 write_unlock(&map->lock);
70dec807
CM
4280 break;
4281 }
7f3c74fb
CM
4282 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4283 em->start != start) {
890871be 4284 write_unlock(&map->lock);
70dec807
CM
4285 free_extent_map(em);
4286 break;
4287 }
4288 if (!test_range_bit(tree, em->start,
4289 extent_map_end(em) - 1,
4e586ca3 4290 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4291 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4292 &btrfs_inode->runtime_flags);
70dec807
CM
4293 remove_extent_mapping(map, em);
4294 /* once for the rb tree */
4295 free_extent_map(em);
4296 }
4297 start = extent_map_end(em);
890871be 4298 write_unlock(&map->lock);
70dec807
CM
4299
4300 /* once for us */
d1310b2e
CM
4301 free_extent_map(em);
4302 }
d1310b2e 4303 }
29c68b2d 4304 return try_release_extent_state(tree, page, mask);
d1310b2e 4305}
d1310b2e 4306
ec29ed5b
CM
4307/*
4308 * helper function for fiemap, which doesn't want to see any holes.
4309 * This maps until we find something past 'last'
4310 */
4311static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4312 u64 offset, u64 last)
ec29ed5b 4313{
da17066c 4314 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4315 struct extent_map *em;
4316 u64 len;
4317
4318 if (offset >= last)
4319 return NULL;
4320
67871254 4321 while (1) {
ec29ed5b
CM
4322 len = last - offset;
4323 if (len == 0)
4324 break;
fda2832f 4325 len = ALIGN(len, sectorsize);
4ab47a8d 4326 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4327 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4328 return em;
4329
4330 /* if this isn't a hole return it */
4a2d25cd 4331 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4332 return em;
ec29ed5b
CM
4333
4334 /* this is a hole, advance to the next extent */
4335 offset = extent_map_end(em);
4336 free_extent_map(em);
4337 if (offset >= last)
4338 break;
4339 }
4340 return NULL;
4341}
4342
4751832d
QW
4343/*
4344 * To cache previous fiemap extent
4345 *
4346 * Will be used for merging fiemap extent
4347 */
4348struct fiemap_cache {
4349 u64 offset;
4350 u64 phys;
4351 u64 len;
4352 u32 flags;
4353 bool cached;
4354};
4355
4356/*
4357 * Helper to submit fiemap extent.
4358 *
4359 * Will try to merge current fiemap extent specified by @offset, @phys,
4360 * @len and @flags with cached one.
4361 * And only when we fails to merge, cached one will be submitted as
4362 * fiemap extent.
4363 *
4364 * Return value is the same as fiemap_fill_next_extent().
4365 */
4366static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4367 struct fiemap_cache *cache,
4368 u64 offset, u64 phys, u64 len, u32 flags)
4369{
4370 int ret = 0;
4371
4372 if (!cache->cached)
4373 goto assign;
4374
4375 /*
4376 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4377 * fiemap extent won't overlap with cached one.
4751832d
QW
4378 * Not recoverable.
4379 *
4380 * NOTE: Physical address can overlap, due to compression
4381 */
4382 if (cache->offset + cache->len > offset) {
4383 WARN_ON(1);
4384 return -EINVAL;
4385 }
4386
4387 /*
4388 * Only merges fiemap extents if
4389 * 1) Their logical addresses are continuous
4390 *
4391 * 2) Their physical addresses are continuous
4392 * So truly compressed (physical size smaller than logical size)
4393 * extents won't get merged with each other
4394 *
4395 * 3) Share same flags except FIEMAP_EXTENT_LAST
4396 * So regular extent won't get merged with prealloc extent
4397 */
4398 if (cache->offset + cache->len == offset &&
4399 cache->phys + cache->len == phys &&
4400 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4401 (flags & ~FIEMAP_EXTENT_LAST)) {
4402 cache->len += len;
4403 cache->flags |= flags;
4404 goto try_submit_last;
4405 }
4406
4407 /* Not mergeable, need to submit cached one */
4408 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4409 cache->len, cache->flags);
4410 cache->cached = false;
4411 if (ret)
4412 return ret;
4413assign:
4414 cache->cached = true;
4415 cache->offset = offset;
4416 cache->phys = phys;
4417 cache->len = len;
4418 cache->flags = flags;
4419try_submit_last:
4420 if (cache->flags & FIEMAP_EXTENT_LAST) {
4421 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4422 cache->phys, cache->len, cache->flags);
4423 cache->cached = false;
4424 }
4425 return ret;
4426}
4427
4428/*
848c23b7 4429 * Emit last fiemap cache
4751832d 4430 *
848c23b7
QW
4431 * The last fiemap cache may still be cached in the following case:
4432 * 0 4k 8k
4433 * |<- Fiemap range ->|
4434 * |<------------ First extent ----------->|
4435 *
4436 * In this case, the first extent range will be cached but not emitted.
4437 * So we must emit it before ending extent_fiemap().
4751832d 4438 */
848c23b7
QW
4439static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4440 struct fiemap_extent_info *fieinfo,
4441 struct fiemap_cache *cache)
4751832d
QW
4442{
4443 int ret;
4444
4445 if (!cache->cached)
4446 return 0;
4447
4751832d
QW
4448 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4449 cache->len, cache->flags);
4450 cache->cached = false;
4451 if (ret > 0)
4452 ret = 0;
4453 return ret;
4454}
4455
1506fcc8 4456int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4457 __u64 start, __u64 len)
1506fcc8 4458{
975f84fe 4459 int ret = 0;
1506fcc8
YS
4460 u64 off = start;
4461 u64 max = start + len;
4462 u32 flags = 0;
975f84fe
JB
4463 u32 found_type;
4464 u64 last;
ec29ed5b 4465 u64 last_for_get_extent = 0;
1506fcc8 4466 u64 disko = 0;
ec29ed5b 4467 u64 isize = i_size_read(inode);
975f84fe 4468 struct btrfs_key found_key;
1506fcc8 4469 struct extent_map *em = NULL;
2ac55d41 4470 struct extent_state *cached_state = NULL;
975f84fe 4471 struct btrfs_path *path;
dc046b10 4472 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4473 struct fiemap_cache cache = { 0 };
1506fcc8 4474 int end = 0;
ec29ed5b
CM
4475 u64 em_start = 0;
4476 u64 em_len = 0;
4477 u64 em_end = 0;
1506fcc8
YS
4478
4479 if (len == 0)
4480 return -EINVAL;
4481
975f84fe
JB
4482 path = btrfs_alloc_path();
4483 if (!path)
4484 return -ENOMEM;
4485 path->leave_spinning = 1;
4486
da17066c
JM
4487 start = round_down(start, btrfs_inode_sectorsize(inode));
4488 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4489
ec29ed5b
CM
4490 /*
4491 * lookup the last file extent. We're not using i_size here
4492 * because there might be preallocation past i_size
4493 */
f85b7379
DS
4494 ret = btrfs_lookup_file_extent(NULL, root, path,
4495 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4496 if (ret < 0) {
4497 btrfs_free_path(path);
4498 return ret;
2d324f59
LB
4499 } else {
4500 WARN_ON(!ret);
4501 if (ret == 1)
4502 ret = 0;
975f84fe 4503 }
2d324f59 4504
975f84fe 4505 path->slots[0]--;
975f84fe 4506 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4507 found_type = found_key.type;
975f84fe 4508
ec29ed5b 4509 /* No extents, but there might be delalloc bits */
4a0cc7ca 4510 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4511 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4512 /* have to trust i_size as the end */
4513 last = (u64)-1;
4514 last_for_get_extent = isize;
4515 } else {
4516 /*
4517 * remember the start of the last extent. There are a
4518 * bunch of different factors that go into the length of the
4519 * extent, so its much less complex to remember where it started
4520 */
4521 last = found_key.offset;
4522 last_for_get_extent = last + 1;
975f84fe 4523 }
fe09e16c 4524 btrfs_release_path(path);
975f84fe 4525
ec29ed5b
CM
4526 /*
4527 * we might have some extents allocated but more delalloc past those
4528 * extents. so, we trust isize unless the start of the last extent is
4529 * beyond isize
4530 */
4531 if (last < isize) {
4532 last = (u64)-1;
4533 last_for_get_extent = isize;
4534 }
4535
ff13db41 4536 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4537 &cached_state);
ec29ed5b 4538
e3350e16 4539 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4540 if (!em)
4541 goto out;
4542 if (IS_ERR(em)) {
4543 ret = PTR_ERR(em);
4544 goto out;
4545 }
975f84fe 4546
1506fcc8 4547 while (!end) {
b76bb701 4548 u64 offset_in_extent = 0;
ea8efc74
CM
4549
4550 /* break if the extent we found is outside the range */
4551 if (em->start >= max || extent_map_end(em) < off)
4552 break;
4553
4554 /*
4555 * get_extent may return an extent that starts before our
4556 * requested range. We have to make sure the ranges
4557 * we return to fiemap always move forward and don't
4558 * overlap, so adjust the offsets here
4559 */
4560 em_start = max(em->start, off);
1506fcc8 4561
ea8efc74
CM
4562 /*
4563 * record the offset from the start of the extent
b76bb701
JB
4564 * for adjusting the disk offset below. Only do this if the
4565 * extent isn't compressed since our in ram offset may be past
4566 * what we have actually allocated on disk.
ea8efc74 4567 */
b76bb701
JB
4568 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4569 offset_in_extent = em_start - em->start;
ec29ed5b 4570 em_end = extent_map_end(em);
ea8efc74 4571 em_len = em_end - em_start;
1506fcc8 4572 flags = 0;
f0986318
FM
4573 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4574 disko = em->block_start + offset_in_extent;
4575 else
4576 disko = 0;
1506fcc8 4577
ea8efc74
CM
4578 /*
4579 * bump off for our next call to get_extent
4580 */
4581 off = extent_map_end(em);
4582 if (off >= max)
4583 end = 1;
4584
93dbfad7 4585 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4586 end = 1;
4587 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4588 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4589 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4590 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4591 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4592 flags |= (FIEMAP_EXTENT_DELALLOC |
4593 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4594 } else if (fieinfo->fi_extents_max) {
4595 u64 bytenr = em->block_start -
4596 (em->start - em->orig_start);
fe09e16c 4597
fe09e16c
LB
4598 /*
4599 * As btrfs supports shared space, this information
4600 * can be exported to userspace tools via
dc046b10
JB
4601 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4602 * then we're just getting a count and we can skip the
4603 * lookup stuff.
fe09e16c 4604 */
bb739cf0
EN
4605 ret = btrfs_check_shared(root,
4606 btrfs_ino(BTRFS_I(inode)),
4607 bytenr);
dc046b10 4608 if (ret < 0)
fe09e16c 4609 goto out_free;
dc046b10 4610 if (ret)
fe09e16c 4611 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4612 ret = 0;
1506fcc8
YS
4613 }
4614 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4615 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4616 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4617 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4618
1506fcc8
YS
4619 free_extent_map(em);
4620 em = NULL;
ec29ed5b
CM
4621 if ((em_start >= last) || em_len == (u64)-1 ||
4622 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4623 flags |= FIEMAP_EXTENT_LAST;
4624 end = 1;
4625 }
4626
ec29ed5b 4627 /* now scan forward to see if this is really the last extent. */
e3350e16 4628 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4629 if (IS_ERR(em)) {
4630 ret = PTR_ERR(em);
4631 goto out;
4632 }
4633 if (!em) {
975f84fe
JB
4634 flags |= FIEMAP_EXTENT_LAST;
4635 end = 1;
4636 }
4751832d
QW
4637 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4638 em_len, flags);
26e726af
CS
4639 if (ret) {
4640 if (ret == 1)
4641 ret = 0;
ec29ed5b 4642 goto out_free;
26e726af 4643 }
1506fcc8
YS
4644 }
4645out_free:
4751832d 4646 if (!ret)
848c23b7 4647 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4648 free_extent_map(em);
4649out:
fe09e16c 4650 btrfs_free_path(path);
a52f4cd2 4651 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4652 &cached_state);
1506fcc8
YS
4653 return ret;
4654}
4655
727011e0
CM
4656static void __free_extent_buffer(struct extent_buffer *eb)
4657{
6d49ba1b 4658 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4659 kmem_cache_free(extent_buffer_cache, eb);
4660}
4661
a26e8c9f 4662int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4663{
4664 return (atomic_read(&eb->io_pages) ||
4665 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4666 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4667}
4668
4669/*
55ac0139 4670 * Release all pages attached to the extent buffer.
db7f3436 4671 */
55ac0139 4672static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4673{
d64766fd
NB
4674 int i;
4675 int num_pages;
b0132a3b 4676 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4677
4678 BUG_ON(extent_buffer_under_io(eb));
4679
d64766fd
NB
4680 num_pages = num_extent_pages(eb);
4681 for (i = 0; i < num_pages; i++) {
4682 struct page *page = eb->pages[i];
db7f3436 4683
5d2361db
FL
4684 if (!page)
4685 continue;
4686 if (mapped)
db7f3436 4687 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4688 /*
4689 * We do this since we'll remove the pages after we've
4690 * removed the eb from the radix tree, so we could race
4691 * and have this page now attached to the new eb. So
4692 * only clear page_private if it's still connected to
4693 * this eb.
4694 */
4695 if (PagePrivate(page) &&
4696 page->private == (unsigned long)eb) {
4697 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4698 BUG_ON(PageDirty(page));
4699 BUG_ON(PageWriteback(page));
db7f3436 4700 /*
5d2361db
FL
4701 * We need to make sure we haven't be attached
4702 * to a new eb.
db7f3436 4703 */
5d2361db
FL
4704 ClearPagePrivate(page);
4705 set_page_private(page, 0);
4706 /* One for the page private */
09cbfeaf 4707 put_page(page);
db7f3436 4708 }
5d2361db
FL
4709
4710 if (mapped)
4711 spin_unlock(&page->mapping->private_lock);
4712
01327610 4713 /* One for when we allocated the page */
09cbfeaf 4714 put_page(page);
d64766fd 4715 }
db7f3436
JB
4716}
4717
4718/*
4719 * Helper for releasing the extent buffer.
4720 */
4721static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4722{
55ac0139 4723 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4724 __free_extent_buffer(eb);
4725}
4726
f28491e0
JB
4727static struct extent_buffer *
4728__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4729 unsigned long len)
d1310b2e
CM
4730{
4731 struct extent_buffer *eb = NULL;
4732
d1b5c567 4733 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4734 eb->start = start;
4735 eb->len = len;
f28491e0 4736 eb->fs_info = fs_info;
815a51c7 4737 eb->bflags = 0;
bd681513 4738 rwlock_init(&eb->lock);
bd681513
CM
4739 atomic_set(&eb->blocking_readers, 0);
4740 atomic_set(&eb->blocking_writers, 0);
ed1b4ed7 4741 eb->lock_nested = false;
bd681513
CM
4742 init_waitqueue_head(&eb->write_lock_wq);
4743 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4744
6d49ba1b
ES
4745 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4746
3083ee2e 4747 spin_lock_init(&eb->refs_lock);
d1310b2e 4748 atomic_set(&eb->refs, 1);
0b32f4bb 4749 atomic_set(&eb->io_pages, 0);
727011e0 4750
b8dae313
DS
4751 /*
4752 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4753 */
4754 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4755 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4756 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4757
843ccf9f
DS
4758#ifdef CONFIG_BTRFS_DEBUG
4759 atomic_set(&eb->spinning_writers, 0);
afd495a8 4760 atomic_set(&eb->spinning_readers, 0);
5c9c799a 4761 atomic_set(&eb->read_locks, 0);
c79adfc0 4762 atomic_set(&eb->write_locks, 0);
843ccf9f
DS
4763#endif
4764
d1310b2e
CM
4765 return eb;
4766}
4767
815a51c7
JS
4768struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4769{
cc5e31a4 4770 int i;
815a51c7
JS
4771 struct page *p;
4772 struct extent_buffer *new;
cc5e31a4 4773 int num_pages = num_extent_pages(src);
815a51c7 4774
3f556f78 4775 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4776 if (new == NULL)
4777 return NULL;
4778
4779 for (i = 0; i < num_pages; i++) {
9ec72677 4780 p = alloc_page(GFP_NOFS);
db7f3436
JB
4781 if (!p) {
4782 btrfs_release_extent_buffer(new);
4783 return NULL;
4784 }
815a51c7
JS
4785 attach_extent_buffer_page(new, p);
4786 WARN_ON(PageDirty(p));
4787 SetPageUptodate(p);
4788 new->pages[i] = p;
fba1acf9 4789 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4790 }
4791
815a51c7 4792 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4793 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4794
4795 return new;
4796}
4797
0f331229
OS
4798struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4799 u64 start, unsigned long len)
815a51c7
JS
4800{
4801 struct extent_buffer *eb;
cc5e31a4
DS
4802 int num_pages;
4803 int i;
815a51c7 4804
3f556f78 4805 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4806 if (!eb)
4807 return NULL;
4808
65ad0104 4809 num_pages = num_extent_pages(eb);
815a51c7 4810 for (i = 0; i < num_pages; i++) {
9ec72677 4811 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4812 if (!eb->pages[i])
4813 goto err;
4814 }
4815 set_extent_buffer_uptodate(eb);
4816 btrfs_set_header_nritems(eb, 0);
b0132a3b 4817 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4818
4819 return eb;
4820err:
84167d19
SB
4821 for (; i > 0; i--)
4822 __free_page(eb->pages[i - 1]);
815a51c7
JS
4823 __free_extent_buffer(eb);
4824 return NULL;
4825}
4826
0f331229 4827struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4828 u64 start)
0f331229 4829{
da17066c 4830 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4831}
4832
0b32f4bb
JB
4833static void check_buffer_tree_ref(struct extent_buffer *eb)
4834{
242e18c7 4835 int refs;
0b32f4bb
JB
4836 /* the ref bit is tricky. We have to make sure it is set
4837 * if we have the buffer dirty. Otherwise the
4838 * code to free a buffer can end up dropping a dirty
4839 * page
4840 *
4841 * Once the ref bit is set, it won't go away while the
4842 * buffer is dirty or in writeback, and it also won't
4843 * go away while we have the reference count on the
4844 * eb bumped.
4845 *
4846 * We can't just set the ref bit without bumping the
4847 * ref on the eb because free_extent_buffer might
4848 * see the ref bit and try to clear it. If this happens
4849 * free_extent_buffer might end up dropping our original
4850 * ref by mistake and freeing the page before we are able
4851 * to add one more ref.
4852 *
4853 * So bump the ref count first, then set the bit. If someone
4854 * beat us to it, drop the ref we added.
4855 */
242e18c7
CM
4856 refs = atomic_read(&eb->refs);
4857 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4858 return;
4859
594831c4
JB
4860 spin_lock(&eb->refs_lock);
4861 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4862 atomic_inc(&eb->refs);
594831c4 4863 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4864}
4865
2457aec6
MG
4866static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4867 struct page *accessed)
5df4235e 4868{
cc5e31a4 4869 int num_pages, i;
5df4235e 4870
0b32f4bb
JB
4871 check_buffer_tree_ref(eb);
4872
65ad0104 4873 num_pages = num_extent_pages(eb);
5df4235e 4874 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4875 struct page *p = eb->pages[i];
4876
2457aec6
MG
4877 if (p != accessed)
4878 mark_page_accessed(p);
5df4235e
JB
4879 }
4880}
4881
f28491e0
JB
4882struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4883 u64 start)
452c75c3
CS
4884{
4885 struct extent_buffer *eb;
4886
4887 rcu_read_lock();
f28491e0 4888 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4889 start >> PAGE_SHIFT);
452c75c3
CS
4890 if (eb && atomic_inc_not_zero(&eb->refs)) {
4891 rcu_read_unlock();
062c19e9
FM
4892 /*
4893 * Lock our eb's refs_lock to avoid races with
4894 * free_extent_buffer. When we get our eb it might be flagged
4895 * with EXTENT_BUFFER_STALE and another task running
4896 * free_extent_buffer might have seen that flag set,
4897 * eb->refs == 2, that the buffer isn't under IO (dirty and
4898 * writeback flags not set) and it's still in the tree (flag
4899 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4900 * of decrementing the extent buffer's reference count twice.
4901 * So here we could race and increment the eb's reference count,
4902 * clear its stale flag, mark it as dirty and drop our reference
4903 * before the other task finishes executing free_extent_buffer,
4904 * which would later result in an attempt to free an extent
4905 * buffer that is dirty.
4906 */
4907 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4908 spin_lock(&eb->refs_lock);
4909 spin_unlock(&eb->refs_lock);
4910 }
2457aec6 4911 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4912 return eb;
4913 }
4914 rcu_read_unlock();
4915
4916 return NULL;
4917}
4918
faa2dbf0
JB
4919#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4920struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4921 u64 start)
faa2dbf0
JB
4922{
4923 struct extent_buffer *eb, *exists = NULL;
4924 int ret;
4925
4926 eb = find_extent_buffer(fs_info, start);
4927 if (eb)
4928 return eb;
da17066c 4929 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4930 if (!eb)
4931 return NULL;
4932 eb->fs_info = fs_info;
4933again:
e1860a77 4934 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4935 if (ret)
4936 goto free_eb;
4937 spin_lock(&fs_info->buffer_lock);
4938 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4939 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4940 spin_unlock(&fs_info->buffer_lock);
4941 radix_tree_preload_end();
4942 if (ret == -EEXIST) {
4943 exists = find_extent_buffer(fs_info, start);
4944 if (exists)
4945 goto free_eb;
4946 else
4947 goto again;
4948 }
4949 check_buffer_tree_ref(eb);
4950 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4951
faa2dbf0
JB
4952 return eb;
4953free_eb:
4954 btrfs_release_extent_buffer(eb);
4955 return exists;
4956}
4957#endif
4958
f28491e0 4959struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4960 u64 start)
d1310b2e 4961{
da17066c 4962 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4963 int num_pages;
4964 int i;
09cbfeaf 4965 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4966 struct extent_buffer *eb;
6af118ce 4967 struct extent_buffer *exists = NULL;
d1310b2e 4968 struct page *p;
f28491e0 4969 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4970 int uptodate = 1;
19fe0a8b 4971 int ret;
d1310b2e 4972
da17066c 4973 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4974 btrfs_err(fs_info, "bad tree block start %llu", start);
4975 return ERR_PTR(-EINVAL);
4976 }
4977
f28491e0 4978 eb = find_extent_buffer(fs_info, start);
452c75c3 4979 if (eb)
6af118ce 4980 return eb;
6af118ce 4981
23d79d81 4982 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4983 if (!eb)
c871b0f2 4984 return ERR_PTR(-ENOMEM);
d1310b2e 4985
65ad0104 4986 num_pages = num_extent_pages(eb);
727011e0 4987 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4988 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4989 if (!p) {
4990 exists = ERR_PTR(-ENOMEM);
6af118ce 4991 goto free_eb;
c871b0f2 4992 }
4f2de97a
JB
4993
4994 spin_lock(&mapping->private_lock);
4995 if (PagePrivate(p)) {
4996 /*
4997 * We could have already allocated an eb for this page
4998 * and attached one so lets see if we can get a ref on
4999 * the existing eb, and if we can we know it's good and
5000 * we can just return that one, else we know we can just
5001 * overwrite page->private.
5002 */
5003 exists = (struct extent_buffer *)p->private;
5004 if (atomic_inc_not_zero(&exists->refs)) {
5005 spin_unlock(&mapping->private_lock);
5006 unlock_page(p);
09cbfeaf 5007 put_page(p);
2457aec6 5008 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5009 goto free_eb;
5010 }
5ca64f45 5011 exists = NULL;
4f2de97a 5012
0b32f4bb 5013 /*
4f2de97a
JB
5014 * Do this so attach doesn't complain and we need to
5015 * drop the ref the old guy had.
5016 */
5017 ClearPagePrivate(p);
0b32f4bb 5018 WARN_ON(PageDirty(p));
09cbfeaf 5019 put_page(p);
d1310b2e 5020 }
4f2de97a
JB
5021 attach_extent_buffer_page(eb, p);
5022 spin_unlock(&mapping->private_lock);
0b32f4bb 5023 WARN_ON(PageDirty(p));
727011e0 5024 eb->pages[i] = p;
d1310b2e
CM
5025 if (!PageUptodate(p))
5026 uptodate = 0;
eb14ab8e
CM
5027
5028 /*
b16d011e
NB
5029 * We can't unlock the pages just yet since the extent buffer
5030 * hasn't been properly inserted in the radix tree, this
5031 * opens a race with btree_releasepage which can free a page
5032 * while we are still filling in all pages for the buffer and
5033 * we could crash.
eb14ab8e 5034 */
d1310b2e
CM
5035 }
5036 if (uptodate)
b4ce94de 5037 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5038again:
e1860a77 5039 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5040 if (ret) {
5041 exists = ERR_PTR(ret);
19fe0a8b 5042 goto free_eb;
c871b0f2 5043 }
19fe0a8b 5044
f28491e0
JB
5045 spin_lock(&fs_info->buffer_lock);
5046 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5047 start >> PAGE_SHIFT, eb);
f28491e0 5048 spin_unlock(&fs_info->buffer_lock);
452c75c3 5049 radix_tree_preload_end();
19fe0a8b 5050 if (ret == -EEXIST) {
f28491e0 5051 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5052 if (exists)
5053 goto free_eb;
5054 else
115391d2 5055 goto again;
6af118ce 5056 }
6af118ce 5057 /* add one reference for the tree */
0b32f4bb 5058 check_buffer_tree_ref(eb);
34b41ace 5059 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5060
5061 /*
b16d011e
NB
5062 * Now it's safe to unlock the pages because any calls to
5063 * btree_releasepage will correctly detect that a page belongs to a
5064 * live buffer and won't free them prematurely.
eb14ab8e 5065 */
28187ae5
NB
5066 for (i = 0; i < num_pages; i++)
5067 unlock_page(eb->pages[i]);
d1310b2e
CM
5068 return eb;
5069
6af118ce 5070free_eb:
5ca64f45 5071 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5072 for (i = 0; i < num_pages; i++) {
5073 if (eb->pages[i])
5074 unlock_page(eb->pages[i]);
5075 }
eb14ab8e 5076
897ca6e9 5077 btrfs_release_extent_buffer(eb);
6af118ce 5078 return exists;
d1310b2e 5079}
d1310b2e 5080
3083ee2e
JB
5081static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5082{
5083 struct extent_buffer *eb =
5084 container_of(head, struct extent_buffer, rcu_head);
5085
5086 __free_extent_buffer(eb);
5087}
5088
f7a52a40 5089static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5090{
07e21c4d
NB
5091 lockdep_assert_held(&eb->refs_lock);
5092
3083ee2e
JB
5093 WARN_ON(atomic_read(&eb->refs) == 0);
5094 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5095 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5096 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5097
815a51c7 5098 spin_unlock(&eb->refs_lock);
3083ee2e 5099
f28491e0
JB
5100 spin_lock(&fs_info->buffer_lock);
5101 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5102 eb->start >> PAGE_SHIFT);
f28491e0 5103 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5104 } else {
5105 spin_unlock(&eb->refs_lock);
815a51c7 5106 }
3083ee2e
JB
5107
5108 /* Should be safe to release our pages at this point */
55ac0139 5109 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5110#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5111 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5112 __free_extent_buffer(eb);
5113 return 1;
5114 }
5115#endif
3083ee2e 5116 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5117 return 1;
3083ee2e
JB
5118 }
5119 spin_unlock(&eb->refs_lock);
e64860aa
JB
5120
5121 return 0;
3083ee2e
JB
5122}
5123
d1310b2e
CM
5124void free_extent_buffer(struct extent_buffer *eb)
5125{
242e18c7
CM
5126 int refs;
5127 int old;
d1310b2e
CM
5128 if (!eb)
5129 return;
5130
242e18c7
CM
5131 while (1) {
5132 refs = atomic_read(&eb->refs);
46cc775e
NB
5133 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5134 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5135 refs == 1))
242e18c7
CM
5136 break;
5137 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5138 if (old == refs)
5139 return;
5140 }
5141
3083ee2e
JB
5142 spin_lock(&eb->refs_lock);
5143 if (atomic_read(&eb->refs) == 2 &&
5144 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5145 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5146 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5147 atomic_dec(&eb->refs);
5148
5149 /*
5150 * I know this is terrible, but it's temporary until we stop tracking
5151 * the uptodate bits and such for the extent buffers.
5152 */
f7a52a40 5153 release_extent_buffer(eb);
3083ee2e
JB
5154}
5155
5156void free_extent_buffer_stale(struct extent_buffer *eb)
5157{
5158 if (!eb)
d1310b2e
CM
5159 return;
5160
3083ee2e
JB
5161 spin_lock(&eb->refs_lock);
5162 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5163
0b32f4bb 5164 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5165 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5166 atomic_dec(&eb->refs);
f7a52a40 5167 release_extent_buffer(eb);
d1310b2e 5168}
d1310b2e 5169
1d4284bd 5170void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5171{
cc5e31a4
DS
5172 int i;
5173 int num_pages;
d1310b2e
CM
5174 struct page *page;
5175
65ad0104 5176 num_pages = num_extent_pages(eb);
d1310b2e
CM
5177
5178 for (i = 0; i < num_pages; i++) {
fb85fc9a 5179 page = eb->pages[i];
b9473439 5180 if (!PageDirty(page))
d2c3f4f6
CM
5181 continue;
5182
a61e6f29 5183 lock_page(page);
eb14ab8e
CM
5184 WARN_ON(!PagePrivate(page));
5185
d1310b2e 5186 clear_page_dirty_for_io(page);
b93b0163 5187 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5188 if (!PageDirty(page))
5189 __xa_clear_mark(&page->mapping->i_pages,
5190 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5191 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5192 ClearPageError(page);
a61e6f29 5193 unlock_page(page);
d1310b2e 5194 }
0b32f4bb 5195 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5196}
d1310b2e 5197
abb57ef3 5198bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5199{
cc5e31a4
DS
5200 int i;
5201 int num_pages;
abb57ef3 5202 bool was_dirty;
d1310b2e 5203
0b32f4bb
JB
5204 check_buffer_tree_ref(eb);
5205
b9473439 5206 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5207
65ad0104 5208 num_pages = num_extent_pages(eb);
3083ee2e 5209 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5210 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5211
abb57ef3
LB
5212 if (!was_dirty)
5213 for (i = 0; i < num_pages; i++)
5214 set_page_dirty(eb->pages[i]);
51995c39
LB
5215
5216#ifdef CONFIG_BTRFS_DEBUG
5217 for (i = 0; i < num_pages; i++)
5218 ASSERT(PageDirty(eb->pages[i]));
5219#endif
5220
b9473439 5221 return was_dirty;
d1310b2e 5222}
d1310b2e 5223
69ba3927 5224void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5225{
cc5e31a4 5226 int i;
1259ab75 5227 struct page *page;
cc5e31a4 5228 int num_pages;
1259ab75 5229
b4ce94de 5230 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5231 num_pages = num_extent_pages(eb);
1259ab75 5232 for (i = 0; i < num_pages; i++) {
fb85fc9a 5233 page = eb->pages[i];
33958dc6
CM
5234 if (page)
5235 ClearPageUptodate(page);
1259ab75 5236 }
1259ab75
CM
5237}
5238
09c25a8c 5239void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5240{
cc5e31a4 5241 int i;
d1310b2e 5242 struct page *page;
cc5e31a4 5243 int num_pages;
d1310b2e 5244
0b32f4bb 5245 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5246 num_pages = num_extent_pages(eb);
d1310b2e 5247 for (i = 0; i < num_pages; i++) {
fb85fc9a 5248 page = eb->pages[i];
d1310b2e
CM
5249 SetPageUptodate(page);
5250 }
d1310b2e 5251}
d1310b2e 5252
d1310b2e 5253int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5254 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5255{
cc5e31a4 5256 int i;
d1310b2e
CM
5257 struct page *page;
5258 int err;
5259 int ret = 0;
ce9adaa5
CM
5260 int locked_pages = 0;
5261 int all_uptodate = 1;
cc5e31a4 5262 int num_pages;
727011e0 5263 unsigned long num_reads = 0;
a86c12c7 5264 struct bio *bio = NULL;
c8b97818 5265 unsigned long bio_flags = 0;
a86c12c7 5266
b4ce94de 5267 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5268 return 0;
5269
65ad0104 5270 num_pages = num_extent_pages(eb);
8436ea91 5271 for (i = 0; i < num_pages; i++) {
fb85fc9a 5272 page = eb->pages[i];
bb82ab88 5273 if (wait == WAIT_NONE) {
2db04966 5274 if (!trylock_page(page))
ce9adaa5 5275 goto unlock_exit;
d1310b2e
CM
5276 } else {
5277 lock_page(page);
5278 }
ce9adaa5 5279 locked_pages++;
2571e739
LB
5280 }
5281 /*
5282 * We need to firstly lock all pages to make sure that
5283 * the uptodate bit of our pages won't be affected by
5284 * clear_extent_buffer_uptodate().
5285 */
8436ea91 5286 for (i = 0; i < num_pages; i++) {
2571e739 5287 page = eb->pages[i];
727011e0
CM
5288 if (!PageUptodate(page)) {
5289 num_reads++;
ce9adaa5 5290 all_uptodate = 0;
727011e0 5291 }
ce9adaa5 5292 }
2571e739 5293
ce9adaa5 5294 if (all_uptodate) {
8436ea91 5295 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5296 goto unlock_exit;
5297 }
5298
656f30db 5299 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5300 eb->read_mirror = 0;
0b32f4bb 5301 atomic_set(&eb->io_pages, num_reads);
8436ea91 5302 for (i = 0; i < num_pages; i++) {
fb85fc9a 5303 page = eb->pages[i];
baf863b9 5304
ce9adaa5 5305 if (!PageUptodate(page)) {
baf863b9
LB
5306 if (ret) {
5307 atomic_dec(&eb->io_pages);
5308 unlock_page(page);
5309 continue;
5310 }
5311
f188591e 5312 ClearPageError(page);
a86c12c7 5313 err = __extent_read_full_page(tree, page,
6af49dbd 5314 btree_get_extent, &bio,
d4c7ca86 5315 mirror_num, &bio_flags,
1f7ad75b 5316 REQ_META);
baf863b9 5317 if (err) {
d1310b2e 5318 ret = err;
baf863b9
LB
5319 /*
5320 * We use &bio in above __extent_read_full_page,
5321 * so we ensure that if it returns error, the
5322 * current page fails to add itself to bio and
5323 * it's been unlocked.
5324 *
5325 * We must dec io_pages by ourselves.
5326 */
5327 atomic_dec(&eb->io_pages);
5328 }
d1310b2e
CM
5329 } else {
5330 unlock_page(page);
5331 }
5332 }
5333
355808c2 5334 if (bio) {
1f7ad75b 5335 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5336 if (err)
5337 return err;
355808c2 5338 }
a86c12c7 5339
bb82ab88 5340 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5341 return ret;
d397712b 5342
8436ea91 5343 for (i = 0; i < num_pages; i++) {
fb85fc9a 5344 page = eb->pages[i];
d1310b2e 5345 wait_on_page_locked(page);
d397712b 5346 if (!PageUptodate(page))
d1310b2e 5347 ret = -EIO;
d1310b2e 5348 }
d397712b 5349
d1310b2e 5350 return ret;
ce9adaa5
CM
5351
5352unlock_exit:
d397712b 5353 while (locked_pages > 0) {
ce9adaa5 5354 locked_pages--;
8436ea91
JB
5355 page = eb->pages[locked_pages];
5356 unlock_page(page);
ce9adaa5
CM
5357 }
5358 return ret;
d1310b2e 5359}
d1310b2e 5360
1cbb1f45
JM
5361void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5362 unsigned long start, unsigned long len)
d1310b2e
CM
5363{
5364 size_t cur;
5365 size_t offset;
5366 struct page *page;
5367 char *kaddr;
5368 char *dst = (char *)dstv;
7073017a 5369 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5370 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5371
f716abd5
LB
5372 if (start + len > eb->len) {
5373 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5374 eb->start, eb->len, start, len);
5375 memset(dst, 0, len);
5376 return;
5377 }
d1310b2e 5378
7073017a 5379 offset = offset_in_page(start_offset + start);
d1310b2e 5380
d397712b 5381 while (len > 0) {
fb85fc9a 5382 page = eb->pages[i];
d1310b2e 5383
09cbfeaf 5384 cur = min(len, (PAGE_SIZE - offset));
a6591715 5385 kaddr = page_address(page);
d1310b2e 5386 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5387
5388 dst += cur;
5389 len -= cur;
5390 offset = 0;
5391 i++;
5392 }
5393}
d1310b2e 5394
1cbb1f45
JM
5395int read_extent_buffer_to_user(const struct extent_buffer *eb,
5396 void __user *dstv,
5397 unsigned long start, unsigned long len)
550ac1d8
GH
5398{
5399 size_t cur;
5400 size_t offset;
5401 struct page *page;
5402 char *kaddr;
5403 char __user *dst = (char __user *)dstv;
7073017a 5404 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5405 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5406 int ret = 0;
5407
5408 WARN_ON(start > eb->len);
5409 WARN_ON(start + len > eb->start + eb->len);
5410
7073017a 5411 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5412
5413 while (len > 0) {
fb85fc9a 5414 page = eb->pages[i];
550ac1d8 5415
09cbfeaf 5416 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5417 kaddr = page_address(page);
5418 if (copy_to_user(dst, kaddr + offset, cur)) {
5419 ret = -EFAULT;
5420 break;
5421 }
5422
5423 dst += cur;
5424 len -= cur;
5425 offset = 0;
5426 i++;
5427 }
5428
5429 return ret;
5430}
5431
415b35a5
LB
5432/*
5433 * return 0 if the item is found within a page.
5434 * return 1 if the item spans two pages.
5435 * return -EINVAL otherwise.
5436 */
1cbb1f45
JM
5437int map_private_extent_buffer(const struct extent_buffer *eb,
5438 unsigned long start, unsigned long min_len,
5439 char **map, unsigned long *map_start,
5440 unsigned long *map_len)
d1310b2e 5441{
cc2c39d6 5442 size_t offset;
d1310b2e
CM
5443 char *kaddr;
5444 struct page *p;
7073017a 5445 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5446 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5447 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5448 PAGE_SHIFT;
d1310b2e 5449
f716abd5
LB
5450 if (start + min_len > eb->len) {
5451 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5452 eb->start, eb->len, start, min_len);
5453 return -EINVAL;
5454 }
5455
d1310b2e 5456 if (i != end_i)
415b35a5 5457 return 1;
d1310b2e
CM
5458
5459 if (i == 0) {
5460 offset = start_offset;
5461 *map_start = 0;
5462 } else {
5463 offset = 0;
09cbfeaf 5464 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5465 }
d397712b 5466
fb85fc9a 5467 p = eb->pages[i];
a6591715 5468 kaddr = page_address(p);
d1310b2e 5469 *map = kaddr + offset;
09cbfeaf 5470 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5471 return 0;
5472}
d1310b2e 5473
1cbb1f45
JM
5474int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5475 unsigned long start, unsigned long len)
d1310b2e
CM
5476{
5477 size_t cur;
5478 size_t offset;
5479 struct page *page;
5480 char *kaddr;
5481 char *ptr = (char *)ptrv;
7073017a 5482 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5483 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5484 int ret = 0;
5485
5486 WARN_ON(start > eb->len);
5487 WARN_ON(start + len > eb->start + eb->len);
5488
7073017a 5489 offset = offset_in_page(start_offset + start);
d1310b2e 5490
d397712b 5491 while (len > 0) {
fb85fc9a 5492 page = eb->pages[i];
d1310b2e 5493
09cbfeaf 5494 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5495
a6591715 5496 kaddr = page_address(page);
d1310b2e 5497 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5498 if (ret)
5499 break;
5500
5501 ptr += cur;
5502 len -= cur;
5503 offset = 0;
5504 i++;
5505 }
5506 return ret;
5507}
d1310b2e 5508
f157bf76
DS
5509void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5510 const void *srcv)
5511{
5512 char *kaddr;
5513
5514 WARN_ON(!PageUptodate(eb->pages[0]));
5515 kaddr = page_address(eb->pages[0]);
5516 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5517 BTRFS_FSID_SIZE);
5518}
5519
5520void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5521{
5522 char *kaddr;
5523
5524 WARN_ON(!PageUptodate(eb->pages[0]));
5525 kaddr = page_address(eb->pages[0]);
5526 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5527 BTRFS_FSID_SIZE);
5528}
5529
d1310b2e
CM
5530void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5531 unsigned long start, unsigned long len)
5532{
5533 size_t cur;
5534 size_t offset;
5535 struct page *page;
5536 char *kaddr;
5537 char *src = (char *)srcv;
7073017a 5538 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5539 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5540
5541 WARN_ON(start > eb->len);
5542 WARN_ON(start + len > eb->start + eb->len);
5543
7073017a 5544 offset = offset_in_page(start_offset + start);
d1310b2e 5545
d397712b 5546 while (len > 0) {
fb85fc9a 5547 page = eb->pages[i];
d1310b2e
CM
5548 WARN_ON(!PageUptodate(page));
5549
09cbfeaf 5550 cur = min(len, PAGE_SIZE - offset);
a6591715 5551 kaddr = page_address(page);
d1310b2e 5552 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5553
5554 src += cur;
5555 len -= cur;
5556 offset = 0;
5557 i++;
5558 }
5559}
d1310b2e 5560
b159fa28
DS
5561void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5562 unsigned long len)
d1310b2e
CM
5563{
5564 size_t cur;
5565 size_t offset;
5566 struct page *page;
5567 char *kaddr;
7073017a 5568 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5569 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5570
5571 WARN_ON(start > eb->len);
5572 WARN_ON(start + len > eb->start + eb->len);
5573
7073017a 5574 offset = offset_in_page(start_offset + start);
d1310b2e 5575
d397712b 5576 while (len > 0) {
fb85fc9a 5577 page = eb->pages[i];
d1310b2e
CM
5578 WARN_ON(!PageUptodate(page));
5579
09cbfeaf 5580 cur = min(len, PAGE_SIZE - offset);
a6591715 5581 kaddr = page_address(page);
b159fa28 5582 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5583
5584 len -= cur;
5585 offset = 0;
5586 i++;
5587 }
5588}
d1310b2e 5589
58e8012c
DS
5590void copy_extent_buffer_full(struct extent_buffer *dst,
5591 struct extent_buffer *src)
5592{
5593 int i;
cc5e31a4 5594 int num_pages;
58e8012c
DS
5595
5596 ASSERT(dst->len == src->len);
5597
65ad0104 5598 num_pages = num_extent_pages(dst);
58e8012c
DS
5599 for (i = 0; i < num_pages; i++)
5600 copy_page(page_address(dst->pages[i]),
5601 page_address(src->pages[i]));
5602}
5603
d1310b2e
CM
5604void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5605 unsigned long dst_offset, unsigned long src_offset,
5606 unsigned long len)
5607{
5608 u64 dst_len = dst->len;
5609 size_t cur;
5610 size_t offset;
5611 struct page *page;
5612 char *kaddr;
7073017a 5613 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5614 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5615
5616 WARN_ON(src->len != dst_len);
5617
7073017a 5618 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5619
d397712b 5620 while (len > 0) {
fb85fc9a 5621 page = dst->pages[i];
d1310b2e
CM
5622 WARN_ON(!PageUptodate(page));
5623
09cbfeaf 5624 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5625
a6591715 5626 kaddr = page_address(page);
d1310b2e 5627 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5628
5629 src_offset += cur;
5630 len -= cur;
5631 offset = 0;
5632 i++;
5633 }
5634}
d1310b2e 5635
3e1e8bb7
OS
5636/*
5637 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5638 * given bit number
5639 * @eb: the extent buffer
5640 * @start: offset of the bitmap item in the extent buffer
5641 * @nr: bit number
5642 * @page_index: return index of the page in the extent buffer that contains the
5643 * given bit number
5644 * @page_offset: return offset into the page given by page_index
5645 *
5646 * This helper hides the ugliness of finding the byte in an extent buffer which
5647 * contains a given bit.
5648 */
5649static inline void eb_bitmap_offset(struct extent_buffer *eb,
5650 unsigned long start, unsigned long nr,
5651 unsigned long *page_index,
5652 size_t *page_offset)
5653{
7073017a 5654 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5655 size_t byte_offset = BIT_BYTE(nr);
5656 size_t offset;
5657
5658 /*
5659 * The byte we want is the offset of the extent buffer + the offset of
5660 * the bitmap item in the extent buffer + the offset of the byte in the
5661 * bitmap item.
5662 */
5663 offset = start_offset + start + byte_offset;
5664
09cbfeaf 5665 *page_index = offset >> PAGE_SHIFT;
7073017a 5666 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5667}
5668
5669/**
5670 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5671 * @eb: the extent buffer
5672 * @start: offset of the bitmap item in the extent buffer
5673 * @nr: bit number to test
5674 */
5675int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5676 unsigned long nr)
5677{
2fe1d551 5678 u8 *kaddr;
3e1e8bb7
OS
5679 struct page *page;
5680 unsigned long i;
5681 size_t offset;
5682
5683 eb_bitmap_offset(eb, start, nr, &i, &offset);
5684 page = eb->pages[i];
5685 WARN_ON(!PageUptodate(page));
5686 kaddr = page_address(page);
5687 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5688}
5689
5690/**
5691 * extent_buffer_bitmap_set - set an area of a bitmap
5692 * @eb: the extent buffer
5693 * @start: offset of the bitmap item in the extent buffer
5694 * @pos: bit number of the first bit
5695 * @len: number of bits to set
5696 */
5697void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5698 unsigned long pos, unsigned long len)
5699{
2fe1d551 5700 u8 *kaddr;
3e1e8bb7
OS
5701 struct page *page;
5702 unsigned long i;
5703 size_t offset;
5704 const unsigned int size = pos + len;
5705 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5706 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5707
5708 eb_bitmap_offset(eb, start, pos, &i, &offset);
5709 page = eb->pages[i];
5710 WARN_ON(!PageUptodate(page));
5711 kaddr = page_address(page);
5712
5713 while (len >= bits_to_set) {
5714 kaddr[offset] |= mask_to_set;
5715 len -= bits_to_set;
5716 bits_to_set = BITS_PER_BYTE;
9c894696 5717 mask_to_set = ~0;
09cbfeaf 5718 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5719 offset = 0;
5720 page = eb->pages[++i];
5721 WARN_ON(!PageUptodate(page));
5722 kaddr = page_address(page);
5723 }
5724 }
5725 if (len) {
5726 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5727 kaddr[offset] |= mask_to_set;
5728 }
5729}
5730
5731
5732/**
5733 * extent_buffer_bitmap_clear - clear an area of a bitmap
5734 * @eb: the extent buffer
5735 * @start: offset of the bitmap item in the extent buffer
5736 * @pos: bit number of the first bit
5737 * @len: number of bits to clear
5738 */
5739void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5740 unsigned long pos, unsigned long len)
5741{
2fe1d551 5742 u8 *kaddr;
3e1e8bb7
OS
5743 struct page *page;
5744 unsigned long i;
5745 size_t offset;
5746 const unsigned int size = pos + len;
5747 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5748 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5749
5750 eb_bitmap_offset(eb, start, pos, &i, &offset);
5751 page = eb->pages[i];
5752 WARN_ON(!PageUptodate(page));
5753 kaddr = page_address(page);
5754
5755 while (len >= bits_to_clear) {
5756 kaddr[offset] &= ~mask_to_clear;
5757 len -= bits_to_clear;
5758 bits_to_clear = BITS_PER_BYTE;
9c894696 5759 mask_to_clear = ~0;
09cbfeaf 5760 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5761 offset = 0;
5762 page = eb->pages[++i];
5763 WARN_ON(!PageUptodate(page));
5764 kaddr = page_address(page);
5765 }
5766 }
5767 if (len) {
5768 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5769 kaddr[offset] &= ~mask_to_clear;
5770 }
5771}
5772
3387206f
ST
5773static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5774{
5775 unsigned long distance = (src > dst) ? src - dst : dst - src;
5776 return distance < len;
5777}
5778
d1310b2e
CM
5779static void copy_pages(struct page *dst_page, struct page *src_page,
5780 unsigned long dst_off, unsigned long src_off,
5781 unsigned long len)
5782{
a6591715 5783 char *dst_kaddr = page_address(dst_page);
d1310b2e 5784 char *src_kaddr;
727011e0 5785 int must_memmove = 0;
d1310b2e 5786
3387206f 5787 if (dst_page != src_page) {
a6591715 5788 src_kaddr = page_address(src_page);
3387206f 5789 } else {
d1310b2e 5790 src_kaddr = dst_kaddr;
727011e0
CM
5791 if (areas_overlap(src_off, dst_off, len))
5792 must_memmove = 1;
3387206f 5793 }
d1310b2e 5794
727011e0
CM
5795 if (must_memmove)
5796 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5797 else
5798 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5799}
5800
5801void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5802 unsigned long src_offset, unsigned long len)
5803{
0b246afa 5804 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5805 size_t cur;
5806 size_t dst_off_in_page;
5807 size_t src_off_in_page;
7073017a 5808 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5809 unsigned long dst_i;
5810 unsigned long src_i;
5811
5812 if (src_offset + len > dst->len) {
0b246afa 5813 btrfs_err(fs_info,
5d163e0e
JM
5814 "memmove bogus src_offset %lu move len %lu dst len %lu",
5815 src_offset, len, dst->len);
290342f6 5816 BUG();
d1310b2e
CM
5817 }
5818 if (dst_offset + len > dst->len) {
0b246afa 5819 btrfs_err(fs_info,
5d163e0e
JM
5820 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5821 dst_offset, len, dst->len);
290342f6 5822 BUG();
d1310b2e
CM
5823 }
5824
d397712b 5825 while (len > 0) {
7073017a
JT
5826 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5827 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5828
09cbfeaf
KS
5829 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5830 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5831
09cbfeaf 5832 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5833 src_off_in_page));
5834 cur = min_t(unsigned long, cur,
09cbfeaf 5835 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5836
fb85fc9a 5837 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5838 dst_off_in_page, src_off_in_page, cur);
5839
5840 src_offset += cur;
5841 dst_offset += cur;
5842 len -= cur;
5843 }
5844}
d1310b2e
CM
5845
5846void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5847 unsigned long src_offset, unsigned long len)
5848{
0b246afa 5849 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5850 size_t cur;
5851 size_t dst_off_in_page;
5852 size_t src_off_in_page;
5853 unsigned long dst_end = dst_offset + len - 1;
5854 unsigned long src_end = src_offset + len - 1;
7073017a 5855 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5856 unsigned long dst_i;
5857 unsigned long src_i;
5858
5859 if (src_offset + len > dst->len) {
0b246afa 5860 btrfs_err(fs_info,
5d163e0e
JM
5861 "memmove bogus src_offset %lu move len %lu len %lu",
5862 src_offset, len, dst->len);
290342f6 5863 BUG();
d1310b2e
CM
5864 }
5865 if (dst_offset + len > dst->len) {
0b246afa 5866 btrfs_err(fs_info,
5d163e0e
JM
5867 "memmove bogus dst_offset %lu move len %lu len %lu",
5868 dst_offset, len, dst->len);
290342f6 5869 BUG();
d1310b2e 5870 }
727011e0 5871 if (dst_offset < src_offset) {
d1310b2e
CM
5872 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5873 return;
5874 }
d397712b 5875 while (len > 0) {
09cbfeaf
KS
5876 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5877 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 5878
7073017a
JT
5879 dst_off_in_page = offset_in_page(start_offset + dst_end);
5880 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
5881
5882 cur = min_t(unsigned long, len, src_off_in_page + 1);
5883 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5884 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5885 dst_off_in_page - cur + 1,
5886 src_off_in_page - cur + 1, cur);
5887
5888 dst_end -= cur;
5889 src_end -= cur;
5890 len -= cur;
5891 }
5892}
6af118ce 5893
f7a52a40 5894int try_release_extent_buffer(struct page *page)
19fe0a8b 5895{
6af118ce 5896 struct extent_buffer *eb;
6af118ce 5897
3083ee2e 5898 /*
01327610 5899 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5900 * now.
5901 */
5902 spin_lock(&page->mapping->private_lock);
5903 if (!PagePrivate(page)) {
5904 spin_unlock(&page->mapping->private_lock);
4f2de97a 5905 return 1;
45f49bce 5906 }
6af118ce 5907
3083ee2e
JB
5908 eb = (struct extent_buffer *)page->private;
5909 BUG_ON(!eb);
19fe0a8b
MX
5910
5911 /*
3083ee2e
JB
5912 * This is a little awful but should be ok, we need to make sure that
5913 * the eb doesn't disappear out from under us while we're looking at
5914 * this page.
19fe0a8b 5915 */
3083ee2e 5916 spin_lock(&eb->refs_lock);
0b32f4bb 5917 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5918 spin_unlock(&eb->refs_lock);
5919 spin_unlock(&page->mapping->private_lock);
5920 return 0;
b9473439 5921 }
3083ee2e 5922 spin_unlock(&page->mapping->private_lock);
897ca6e9 5923
19fe0a8b 5924 /*
3083ee2e
JB
5925 * If tree ref isn't set then we know the ref on this eb is a real ref,
5926 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5927 */
3083ee2e
JB
5928 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5929 spin_unlock(&eb->refs_lock);
5930 return 0;
b9473439 5931 }
19fe0a8b 5932
f7a52a40 5933 return release_extent_buffer(eb);
6af118ce 5934}