]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: move extent_io_tree defs to their own header
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e 16#include "extent_io.h"
9c7d3a54 17#include "extent-io-tree.h"
d1310b2e 18#include "extent_map.h"
902b22f3
DW
19#include "ctree.h"
20#include "btrfs_inode.h"
4a54c8c1 21#include "volumes.h"
21adbd5c 22#include "check-integrity.h"
0b32f4bb 23#include "locking.h"
606686ee 24#include "rcu-string.h"
fe09e16c 25#include "backref.h"
6af49dbd 26#include "disk-io.h"
d1310b2e 27
d1310b2e
CM
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 30static struct bio_set btrfs_bioset;
d1310b2e 31
27a3507d
FM
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
6d49ba1b 37#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
38static LIST_HEAD(buffers);
39static LIST_HEAD(states);
4bef0848 40
d397712b 41static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
42
43static inline
44void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45{
46 unsigned long flags;
47
48 spin_lock_irqsave(&leak_lock, flags);
49 list_add(new, head);
50 spin_unlock_irqrestore(&leak_lock, flags);
51}
52
53static inline
54void btrfs_leak_debug_del(struct list_head *entry)
55{
56 unsigned long flags;
57
58 spin_lock_irqsave(&leak_lock, flags);
59 list_del(entry);
60 spin_unlock_irqrestore(&leak_lock, flags);
61}
62
33ca832f 63static inline void btrfs_extent_buffer_leak_debug_check(void)
6d49ba1b 64{
6d49ba1b
ES
65 struct extent_buffer *eb;
66
33ca832f
JB
67 while (!list_empty(&buffers)) {
68 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71 list_del(&eb->leak_list);
72 kmem_cache_free(extent_buffer_cache, eb);
73 }
74}
75
76static inline void btrfs_extent_state_leak_debug_check(void)
77{
78 struct extent_state *state;
79
6d49ba1b
ES
80 while (!list_empty(&states)) {
81 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 82 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
83 state->start, state->end, state->state,
84 extent_state_in_tree(state),
b7ac31b7 85 refcount_read(&state->refs));
6d49ba1b
ES
86 list_del(&state->leak_list);
87 kmem_cache_free(extent_state_cache, state);
88 }
6d49ba1b 89}
8d599ae1 90
a5dee37d
JB
91#define btrfs_debug_check_extent_io_range(tree, start, end) \
92 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 93static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 94 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 95{
65a680f6
NB
96 struct inode *inode = tree->private_data;
97 u64 isize;
98
99 if (!inode || !is_data_inode(inode))
100 return;
101
102 isize = i_size_read(inode);
103 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105 "%s: ino %llu isize %llu odd range [%llu,%llu]",
106 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
107 }
8d599ae1 108}
6d49ba1b
ES
109#else
110#define btrfs_leak_debug_add(new, head) do {} while (0)
111#define btrfs_leak_debug_del(entry) do {} while (0)
33ca832f
JB
112#define btrfs_extent_buffer_leak_debug_check() do {} while (0)
113#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 114#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 115#endif
d1310b2e 116
d1310b2e
CM
117struct tree_entry {
118 u64 start;
119 u64 end;
d1310b2e
CM
120 struct rb_node rb_node;
121};
122
123struct extent_page_data {
124 struct bio *bio;
125 struct extent_io_tree *tree;
771ed689
CM
126 /* tells writepage not to lock the state bits for this range
127 * it still does the unlocking
128 */
ffbd517d
CM
129 unsigned int extent_locked:1;
130
70fd7614 131 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 132 unsigned int sync_io:1;
d1310b2e
CM
133};
134
57599c7e 135static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
136 struct extent_changeset *changeset,
137 int set)
138{
139 int ret;
140
141 if (!changeset)
57599c7e 142 return 0;
d38ed27f 143 if (set && (state->state & bits) == bits)
57599c7e 144 return 0;
fefdc557 145 if (!set && (state->state & bits) == 0)
57599c7e 146 return 0;
d38ed27f 147 changeset->bytes_changed += state->end - state->start + 1;
53d32359 148 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 149 GFP_ATOMIC);
57599c7e 150 return ret;
d38ed27f
QW
151}
152
bb58eb9e
QW
153static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154 unsigned long bio_flags)
155{
156 blk_status_t ret = 0;
bb58eb9e 157 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
158
159 bio->bi_private = NULL;
160
161 if (tree->ops)
162 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 163 mirror_num, bio_flags);
bb58eb9e
QW
164 else
165 btrfsic_submit_bio(bio);
166
167 return blk_status_to_errno(ret);
168}
169
3065976b
QW
170/* Cleanup unsubmitted bios */
171static void end_write_bio(struct extent_page_data *epd, int ret)
172{
173 if (epd->bio) {
174 epd->bio->bi_status = errno_to_blk_status(ret);
175 bio_endio(epd->bio);
176 epd->bio = NULL;
177 }
178}
179
f4340622
QW
180/*
181 * Submit bio from extent page data via submit_one_bio
182 *
183 * Return 0 if everything is OK.
184 * Return <0 for error.
185 */
186static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 187{
f4340622 188 int ret = 0;
bb58eb9e 189
f4340622 190 if (epd->bio) {
bb58eb9e 191 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
192 /*
193 * Clean up of epd->bio is handled by its endio function.
194 * And endio is either triggered by successful bio execution
195 * or the error handler of submit bio hook.
196 * So at this point, no matter what happened, we don't need
197 * to clean up epd->bio.
198 */
bb58eb9e
QW
199 epd->bio = NULL;
200 }
f4340622 201 return ret;
bb58eb9e 202}
e2932ee0 203
6f0d04f8 204int __init extent_state_cache_init(void)
d1310b2e 205{
837e1972 206 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 207 sizeof(struct extent_state), 0,
fba4b697 208 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
209 if (!extent_state_cache)
210 return -ENOMEM;
6f0d04f8
JB
211 return 0;
212}
d1310b2e 213
6f0d04f8
JB
214int __init extent_io_init(void)
215{
837e1972 216 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 217 sizeof(struct extent_buffer), 0,
fba4b697 218 SLAB_MEM_SPREAD, NULL);
d1310b2e 219 if (!extent_buffer_cache)
6f0d04f8 220 return -ENOMEM;
9be3395b 221
8ac9f7c1
KO
222 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223 offsetof(struct btrfs_io_bio, bio),
224 BIOSET_NEED_BVECS))
9be3395b 225 goto free_buffer_cache;
b208c2f7 226
8ac9f7c1 227 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
228 goto free_bioset;
229
d1310b2e
CM
230 return 0;
231
b208c2f7 232free_bioset:
8ac9f7c1 233 bioset_exit(&btrfs_bioset);
b208c2f7 234
9be3395b
CM
235free_buffer_cache:
236 kmem_cache_destroy(extent_buffer_cache);
237 extent_buffer_cache = NULL;
6f0d04f8
JB
238 return -ENOMEM;
239}
9be3395b 240
6f0d04f8
JB
241void __cold extent_state_cache_exit(void)
242{
243 btrfs_extent_state_leak_debug_check();
d1310b2e 244 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
245}
246
e67c718b 247void __cold extent_io_exit(void)
d1310b2e 248{
33ca832f 249 btrfs_extent_buffer_leak_debug_check();
8c0a8537
KS
250
251 /*
252 * Make sure all delayed rcu free are flushed before we
253 * destroy caches.
254 */
255 rcu_barrier();
5598e900 256 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 257 bioset_exit(&btrfs_bioset);
d1310b2e
CM
258}
259
c258d6e3 260void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
261 struct extent_io_tree *tree, unsigned int owner,
262 void *private_data)
d1310b2e 263{
c258d6e3 264 tree->fs_info = fs_info;
6bef4d31 265 tree->state = RB_ROOT;
d1310b2e
CM
266 tree->ops = NULL;
267 tree->dirty_bytes = 0;
70dec807 268 spin_lock_init(&tree->lock);
c6100a4b 269 tree->private_data = private_data;
43eb5f29 270 tree->owner = owner;
d1310b2e 271}
d1310b2e 272
41e7acd3
NB
273void extent_io_tree_release(struct extent_io_tree *tree)
274{
275 spin_lock(&tree->lock);
276 /*
277 * Do a single barrier for the waitqueue_active check here, the state
278 * of the waitqueue should not change once extent_io_tree_release is
279 * called.
280 */
281 smp_mb();
282 while (!RB_EMPTY_ROOT(&tree->state)) {
283 struct rb_node *node;
284 struct extent_state *state;
285
286 node = rb_first(&tree->state);
287 state = rb_entry(node, struct extent_state, rb_node);
288 rb_erase(&state->rb_node, &tree->state);
289 RB_CLEAR_NODE(&state->rb_node);
290 /*
291 * btree io trees aren't supposed to have tasks waiting for
292 * changes in the flags of extent states ever.
293 */
294 ASSERT(!waitqueue_active(&state->wq));
295 free_extent_state(state);
296
297 cond_resched_lock(&tree->lock);
298 }
299 spin_unlock(&tree->lock);
300}
301
b2950863 302static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
303{
304 struct extent_state *state;
d1310b2e 305
3ba7ab22
MH
306 /*
307 * The given mask might be not appropriate for the slab allocator,
308 * drop the unsupported bits
309 */
310 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 311 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 312 if (!state)
d1310b2e
CM
313 return state;
314 state->state = 0;
47dc196a 315 state->failrec = NULL;
27a3507d 316 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 317 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 318 refcount_set(&state->refs, 1);
d1310b2e 319 init_waitqueue_head(&state->wq);
143bede5 320 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
321 return state;
322}
d1310b2e 323
4845e44f 324void free_extent_state(struct extent_state *state)
d1310b2e 325{
d1310b2e
CM
326 if (!state)
327 return;
b7ac31b7 328 if (refcount_dec_and_test(&state->refs)) {
27a3507d 329 WARN_ON(extent_state_in_tree(state));
6d49ba1b 330 btrfs_leak_debug_del(&state->leak_list);
143bede5 331 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
332 kmem_cache_free(extent_state_cache, state);
333 }
334}
d1310b2e 335
f2071b21
FM
336static struct rb_node *tree_insert(struct rb_root *root,
337 struct rb_node *search_start,
338 u64 offset,
12cfbad9
FDBM
339 struct rb_node *node,
340 struct rb_node ***p_in,
341 struct rb_node **parent_in)
d1310b2e 342{
f2071b21 343 struct rb_node **p;
d397712b 344 struct rb_node *parent = NULL;
d1310b2e
CM
345 struct tree_entry *entry;
346
12cfbad9
FDBM
347 if (p_in && parent_in) {
348 p = *p_in;
349 parent = *parent_in;
350 goto do_insert;
351 }
352
f2071b21 353 p = search_start ? &search_start : &root->rb_node;
d397712b 354 while (*p) {
d1310b2e
CM
355 parent = *p;
356 entry = rb_entry(parent, struct tree_entry, rb_node);
357
358 if (offset < entry->start)
359 p = &(*p)->rb_left;
360 else if (offset > entry->end)
361 p = &(*p)->rb_right;
362 else
363 return parent;
364 }
365
12cfbad9 366do_insert:
d1310b2e
CM
367 rb_link_node(node, parent, p);
368 rb_insert_color(node, root);
369 return NULL;
370}
371
8666e638
NB
372/**
373 * __etree_search - searche @tree for an entry that contains @offset. Such
374 * entry would have entry->start <= offset && entry->end >= offset.
375 *
376 * @tree - the tree to search
377 * @offset - offset that should fall within an entry in @tree
378 * @next_ret - pointer to the first entry whose range ends after @offset
379 * @prev - pointer to the first entry whose range begins before @offset
380 * @p_ret - pointer where new node should be anchored (used when inserting an
381 * entry in the tree)
382 * @parent_ret - points to entry which would have been the parent of the entry,
383 * containing @offset
384 *
385 * This function returns a pointer to the entry that contains @offset byte
386 * address. If no such entry exists, then NULL is returned and the other
387 * pointer arguments to the function are filled, otherwise the found entry is
388 * returned and other pointers are left untouched.
389 */
80ea96b1 390static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 391 struct rb_node **next_ret,
352646c7 392 struct rb_node **prev_ret,
12cfbad9
FDBM
393 struct rb_node ***p_ret,
394 struct rb_node **parent_ret)
d1310b2e 395{
80ea96b1 396 struct rb_root *root = &tree->state;
12cfbad9 397 struct rb_node **n = &root->rb_node;
d1310b2e
CM
398 struct rb_node *prev = NULL;
399 struct rb_node *orig_prev = NULL;
400 struct tree_entry *entry;
401 struct tree_entry *prev_entry = NULL;
402
12cfbad9
FDBM
403 while (*n) {
404 prev = *n;
405 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
406 prev_entry = entry;
407
408 if (offset < entry->start)
12cfbad9 409 n = &(*n)->rb_left;
d1310b2e 410 else if (offset > entry->end)
12cfbad9 411 n = &(*n)->rb_right;
d397712b 412 else
12cfbad9 413 return *n;
d1310b2e
CM
414 }
415
12cfbad9
FDBM
416 if (p_ret)
417 *p_ret = n;
418 if (parent_ret)
419 *parent_ret = prev;
420
352646c7 421 if (next_ret) {
d1310b2e 422 orig_prev = prev;
d397712b 423 while (prev && offset > prev_entry->end) {
d1310b2e
CM
424 prev = rb_next(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 }
352646c7 427 *next_ret = prev;
d1310b2e
CM
428 prev = orig_prev;
429 }
430
352646c7 431 if (prev_ret) {
d1310b2e 432 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 433 while (prev && offset < prev_entry->start) {
d1310b2e
CM
434 prev = rb_prev(prev);
435 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
436 }
352646c7 437 *prev_ret = prev;
d1310b2e
CM
438 }
439 return NULL;
440}
441
12cfbad9
FDBM
442static inline struct rb_node *
443tree_search_for_insert(struct extent_io_tree *tree,
444 u64 offset,
445 struct rb_node ***p_ret,
446 struct rb_node **parent_ret)
d1310b2e 447{
352646c7 448 struct rb_node *next= NULL;
d1310b2e 449 struct rb_node *ret;
70dec807 450
352646c7 451 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 452 if (!ret)
352646c7 453 return next;
d1310b2e
CM
454 return ret;
455}
456
12cfbad9
FDBM
457static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458 u64 offset)
459{
460 return tree_search_for_insert(tree, offset, NULL, NULL);
461}
462
d1310b2e
CM
463/*
464 * utility function to look for merge candidates inside a given range.
465 * Any extents with matching state are merged together into a single
466 * extent in the tree. Extents with EXTENT_IO in their state field
467 * are not merged because the end_io handlers need to be able to do
468 * operations on them without sleeping (or doing allocations/splits).
469 *
470 * This should be called with the tree lock held.
471 */
1bf85046
JM
472static void merge_state(struct extent_io_tree *tree,
473 struct extent_state *state)
d1310b2e
CM
474{
475 struct extent_state *other;
476 struct rb_node *other_node;
477
8882679e 478 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 479 return;
d1310b2e
CM
480
481 other_node = rb_prev(&state->rb_node);
482 if (other_node) {
483 other = rb_entry(other_node, struct extent_state, rb_node);
484 if (other->end == state->start - 1 &&
485 other->state == state->state) {
5c848198
NB
486 if (tree->private_data &&
487 is_data_inode(tree->private_data))
488 btrfs_merge_delalloc_extent(tree->private_data,
489 state, other);
d1310b2e 490 state->start = other->start;
d1310b2e 491 rb_erase(&other->rb_node, &tree->state);
27a3507d 492 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
493 free_extent_state(other);
494 }
495 }
496 other_node = rb_next(&state->rb_node);
497 if (other_node) {
498 other = rb_entry(other_node, struct extent_state, rb_node);
499 if (other->start == state->end + 1 &&
500 other->state == state->state) {
5c848198
NB
501 if (tree->private_data &&
502 is_data_inode(tree->private_data))
503 btrfs_merge_delalloc_extent(tree->private_data,
504 state, other);
df98b6e2 505 state->end = other->end;
df98b6e2 506 rb_erase(&other->rb_node, &tree->state);
27a3507d 507 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 508 free_extent_state(other);
d1310b2e
CM
509 }
510 }
d1310b2e
CM
511}
512
3150b699 513static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
514 struct extent_state *state, unsigned *bits,
515 struct extent_changeset *changeset);
3150b699 516
d1310b2e
CM
517/*
518 * insert an extent_state struct into the tree. 'bits' are set on the
519 * struct before it is inserted.
520 *
521 * This may return -EEXIST if the extent is already there, in which case the
522 * state struct is freed.
523 *
524 * The tree lock is not taken internally. This is a utility function and
525 * probably isn't what you want to call (see set/clear_extent_bit).
526 */
527static int insert_state(struct extent_io_tree *tree,
528 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
529 struct rb_node ***p,
530 struct rb_node **parent,
d38ed27f 531 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
532{
533 struct rb_node *node;
534
2792237d
DS
535 if (end < start) {
536 btrfs_err(tree->fs_info,
537 "insert state: end < start %llu %llu", end, start);
538 WARN_ON(1);
539 }
d1310b2e
CM
540 state->start = start;
541 state->end = end;
9ed74f2d 542
d38ed27f 543 set_state_bits(tree, state, bits, changeset);
3150b699 544
f2071b21 545 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
546 if (node) {
547 struct extent_state *found;
548 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
549 btrfs_err(tree->fs_info,
550 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 551 found->start, found->end, start, end);
d1310b2e
CM
552 return -EEXIST;
553 }
554 merge_state(tree, state);
555 return 0;
556}
557
558/*
559 * split a given extent state struct in two, inserting the preallocated
560 * struct 'prealloc' as the newly created second half. 'split' indicates an
561 * offset inside 'orig' where it should be split.
562 *
563 * Before calling,
564 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
565 * are two extent state structs in the tree:
566 * prealloc: [orig->start, split - 1]
567 * orig: [ split, orig->end ]
568 *
569 * The tree locks are not taken by this function. They need to be held
570 * by the caller.
571 */
572static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573 struct extent_state *prealloc, u64 split)
574{
575 struct rb_node *node;
9ed74f2d 576
abbb55f4
NB
577 if (tree->private_data && is_data_inode(tree->private_data))
578 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 579
d1310b2e
CM
580 prealloc->start = orig->start;
581 prealloc->end = split - 1;
582 prealloc->state = orig->state;
583 orig->start = split;
584
f2071b21
FM
585 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586 &prealloc->rb_node, NULL, NULL);
d1310b2e 587 if (node) {
d1310b2e
CM
588 free_extent_state(prealloc);
589 return -EEXIST;
590 }
591 return 0;
592}
593
cdc6a395
LZ
594static struct extent_state *next_state(struct extent_state *state)
595{
596 struct rb_node *next = rb_next(&state->rb_node);
597 if (next)
598 return rb_entry(next, struct extent_state, rb_node);
599 else
600 return NULL;
601}
602
d1310b2e
CM
603/*
604 * utility function to clear some bits in an extent state struct.
52042d8e 605 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
606 *
607 * If no bits are set on the state struct after clearing things, the
608 * struct is freed and removed from the tree
609 */
cdc6a395
LZ
610static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611 struct extent_state *state,
fefdc557
QW
612 unsigned *bits, int wake,
613 struct extent_changeset *changeset)
d1310b2e 614{
cdc6a395 615 struct extent_state *next;
9ee49a04 616 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 617 int ret;
d1310b2e 618
0ca1f7ce 619 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
620 u64 range = state->end - state->start + 1;
621 WARN_ON(range > tree->dirty_bytes);
622 tree->dirty_bytes -= range;
623 }
a36bb5f9
NB
624
625 if (tree->private_data && is_data_inode(tree->private_data))
626 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
627
57599c7e
DS
628 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629 BUG_ON(ret < 0);
32c00aff 630 state->state &= ~bits_to_clear;
d1310b2e
CM
631 if (wake)
632 wake_up(&state->wq);
0ca1f7ce 633 if (state->state == 0) {
cdc6a395 634 next = next_state(state);
27a3507d 635 if (extent_state_in_tree(state)) {
d1310b2e 636 rb_erase(&state->rb_node, &tree->state);
27a3507d 637 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
638 free_extent_state(state);
639 } else {
640 WARN_ON(1);
641 }
642 } else {
643 merge_state(tree, state);
cdc6a395 644 next = next_state(state);
d1310b2e 645 }
cdc6a395 646 return next;
d1310b2e
CM
647}
648
8233767a
XG
649static struct extent_state *
650alloc_extent_state_atomic(struct extent_state *prealloc)
651{
652 if (!prealloc)
653 prealloc = alloc_extent_state(GFP_ATOMIC);
654
655 return prealloc;
656}
657
48a3b636 658static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 659{
05912a3c
DS
660 struct inode *inode = tree->private_data;
661
662 btrfs_panic(btrfs_sb(inode->i_sb), err,
663 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
664}
665
d1310b2e
CM
666/*
667 * clear some bits on a range in the tree. This may require splitting
668 * or inserting elements in the tree, so the gfp mask is used to
669 * indicate which allocations or sleeping are allowed.
670 *
671 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672 * the given range from the tree regardless of state (ie for truncate).
673 *
674 * the range [start, end] is inclusive.
675 *
6763af84 676 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 677 */
66b0c887 678int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
679 unsigned bits, int wake, int delete,
680 struct extent_state **cached_state,
681 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
682{
683 struct extent_state *state;
2c64c53d 684 struct extent_state *cached;
d1310b2e
CM
685 struct extent_state *prealloc = NULL;
686 struct rb_node *node;
5c939df5 687 u64 last_end;
d1310b2e 688 int err;
2ac55d41 689 int clear = 0;
d1310b2e 690
a5dee37d 691 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 692 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 693
7ee9e440
JB
694 if (bits & EXTENT_DELALLOC)
695 bits |= EXTENT_NORESERVE;
696
0ca1f7ce
YZ
697 if (delete)
698 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 699
8882679e 700 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 701 clear = 1;
d1310b2e 702again:
d0164adc 703 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
704 /*
705 * Don't care for allocation failure here because we might end
706 * up not needing the pre-allocated extent state at all, which
707 * is the case if we only have in the tree extent states that
708 * cover our input range and don't cover too any other range.
709 * If we end up needing a new extent state we allocate it later.
710 */
d1310b2e 711 prealloc = alloc_extent_state(mask);
d1310b2e
CM
712 }
713
cad321ad 714 spin_lock(&tree->lock);
2c64c53d
CM
715 if (cached_state) {
716 cached = *cached_state;
2ac55d41
JB
717
718 if (clear) {
719 *cached_state = NULL;
720 cached_state = NULL;
721 }
722
27a3507d
FM
723 if (cached && extent_state_in_tree(cached) &&
724 cached->start <= start && cached->end > start) {
2ac55d41 725 if (clear)
b7ac31b7 726 refcount_dec(&cached->refs);
2c64c53d 727 state = cached;
42daec29 728 goto hit_next;
2c64c53d 729 }
2ac55d41
JB
730 if (clear)
731 free_extent_state(cached);
2c64c53d 732 }
d1310b2e
CM
733 /*
734 * this search will find the extents that end after
735 * our range starts
736 */
80ea96b1 737 node = tree_search(tree, start);
d1310b2e
CM
738 if (!node)
739 goto out;
740 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 741hit_next:
d1310b2e
CM
742 if (state->start > end)
743 goto out;
744 WARN_ON(state->end < start);
5c939df5 745 last_end = state->end;
d1310b2e 746
0449314a 747 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
748 if (!(state->state & bits)) {
749 state = next_state(state);
0449314a 750 goto next;
cdc6a395 751 }
0449314a 752
d1310b2e
CM
753 /*
754 * | ---- desired range ---- |
755 * | state | or
756 * | ------------- state -------------- |
757 *
758 * We need to split the extent we found, and may flip
759 * bits on second half.
760 *
761 * If the extent we found extends past our range, we
762 * just split and search again. It'll get split again
763 * the next time though.
764 *
765 * If the extent we found is inside our range, we clear
766 * the desired bit on it.
767 */
768
769 if (state->start < start) {
8233767a
XG
770 prealloc = alloc_extent_state_atomic(prealloc);
771 BUG_ON(!prealloc);
d1310b2e 772 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
773 if (err)
774 extent_io_tree_panic(tree, err);
775
d1310b2e
CM
776 prealloc = NULL;
777 if (err)
778 goto out;
779 if (state->end <= end) {
fefdc557
QW
780 state = clear_state_bit(tree, state, &bits, wake,
781 changeset);
d1ac6e41 782 goto next;
d1310b2e
CM
783 }
784 goto search_again;
785 }
786 /*
787 * | ---- desired range ---- |
788 * | state |
789 * We need to split the extent, and clear the bit
790 * on the first half
791 */
792 if (state->start <= end && state->end > end) {
8233767a
XG
793 prealloc = alloc_extent_state_atomic(prealloc);
794 BUG_ON(!prealloc);
d1310b2e 795 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
796 if (err)
797 extent_io_tree_panic(tree, err);
798
d1310b2e
CM
799 if (wake)
800 wake_up(&state->wq);
42daec29 801
fefdc557 802 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 803
d1310b2e
CM
804 prealloc = NULL;
805 goto out;
806 }
42daec29 807
fefdc557 808 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 809next:
5c939df5
YZ
810 if (last_end == (u64)-1)
811 goto out;
812 start = last_end + 1;
cdc6a395 813 if (start <= end && state && !need_resched())
692e5759 814 goto hit_next;
d1310b2e
CM
815
816search_again:
817 if (start > end)
818 goto out;
cad321ad 819 spin_unlock(&tree->lock);
d0164adc 820 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
821 cond_resched();
822 goto again;
7ab5cb2a
DS
823
824out:
825 spin_unlock(&tree->lock);
826 if (prealloc)
827 free_extent_state(prealloc);
828
829 return 0;
830
d1310b2e 831}
d1310b2e 832
143bede5
JM
833static void wait_on_state(struct extent_io_tree *tree,
834 struct extent_state *state)
641f5219
CH
835 __releases(tree->lock)
836 __acquires(tree->lock)
d1310b2e
CM
837{
838 DEFINE_WAIT(wait);
839 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 840 spin_unlock(&tree->lock);
d1310b2e 841 schedule();
cad321ad 842 spin_lock(&tree->lock);
d1310b2e 843 finish_wait(&state->wq, &wait);
d1310b2e
CM
844}
845
846/*
847 * waits for one or more bits to clear on a range in the state tree.
848 * The range [start, end] is inclusive.
849 * The tree lock is taken by this function
850 */
41074888
DS
851static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852 unsigned long bits)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct rb_node *node;
856
a5dee37d 857 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 858
cad321ad 859 spin_lock(&tree->lock);
d1310b2e
CM
860again:
861 while (1) {
862 /*
863 * this search will find all the extents that end after
864 * our range starts
865 */
80ea96b1 866 node = tree_search(tree, start);
c50d3e71 867process_node:
d1310b2e
CM
868 if (!node)
869 break;
870
871 state = rb_entry(node, struct extent_state, rb_node);
872
873 if (state->start > end)
874 goto out;
875
876 if (state->state & bits) {
877 start = state->start;
b7ac31b7 878 refcount_inc(&state->refs);
d1310b2e
CM
879 wait_on_state(tree, state);
880 free_extent_state(state);
881 goto again;
882 }
883 start = state->end + 1;
884
885 if (start > end)
886 break;
887
c50d3e71
FM
888 if (!cond_resched_lock(&tree->lock)) {
889 node = rb_next(node);
890 goto process_node;
891 }
d1310b2e
CM
892 }
893out:
cad321ad 894 spin_unlock(&tree->lock);
d1310b2e 895}
d1310b2e 896
1bf85046 897static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 898 struct extent_state *state,
d38ed27f 899 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 900{
9ee49a04 901 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 902 int ret;
9ed74f2d 903
e06a1fc9
NB
904 if (tree->private_data && is_data_inode(tree->private_data))
905 btrfs_set_delalloc_extent(tree->private_data, state, bits);
906
0ca1f7ce 907 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
908 u64 range = state->end - state->start + 1;
909 tree->dirty_bytes += range;
910 }
57599c7e
DS
911 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912 BUG_ON(ret < 0);
0ca1f7ce 913 state->state |= bits_to_set;
d1310b2e
CM
914}
915
e38e2ed7
FM
916static void cache_state_if_flags(struct extent_state *state,
917 struct extent_state **cached_ptr,
9ee49a04 918 unsigned flags)
2c64c53d
CM
919{
920 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 921 if (!flags || (state->state & flags)) {
2c64c53d 922 *cached_ptr = state;
b7ac31b7 923 refcount_inc(&state->refs);
2c64c53d
CM
924 }
925 }
926}
927
e38e2ed7
FM
928static void cache_state(struct extent_state *state,
929 struct extent_state **cached_ptr)
930{
931 return cache_state_if_flags(state, cached_ptr,
8882679e 932 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
933}
934
d1310b2e 935/*
1edbb734
CM
936 * set some bits on a range in the tree. This may require allocations or
937 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 938 *
1edbb734
CM
939 * If any of the exclusive bits are set, this will fail with -EEXIST if some
940 * part of the range already has the desired bits set. The start of the
941 * existing range is returned in failed_start in this case.
d1310b2e 942 *
1edbb734 943 * [start, end] is inclusive This takes the tree lock.
d1310b2e 944 */
1edbb734 945
3fbe5c02
JM
946static int __must_check
947__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 948 unsigned bits, unsigned exclusive_bits,
41074888 949 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 950 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
951{
952 struct extent_state *state;
953 struct extent_state *prealloc = NULL;
954 struct rb_node *node;
12cfbad9
FDBM
955 struct rb_node **p;
956 struct rb_node *parent;
d1310b2e 957 int err = 0;
d1310b2e
CM
958 u64 last_start;
959 u64 last_end;
42daec29 960
a5dee37d 961 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 962 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 963
d1310b2e 964again:
d0164adc 965 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
966 /*
967 * Don't care for allocation failure here because we might end
968 * up not needing the pre-allocated extent state at all, which
969 * is the case if we only have in the tree extent states that
970 * cover our input range and don't cover too any other range.
971 * If we end up needing a new extent state we allocate it later.
972 */
d1310b2e 973 prealloc = alloc_extent_state(mask);
d1310b2e
CM
974 }
975
cad321ad 976 spin_lock(&tree->lock);
9655d298
CM
977 if (cached_state && *cached_state) {
978 state = *cached_state;
df98b6e2 979 if (state->start <= start && state->end > start &&
27a3507d 980 extent_state_in_tree(state)) {
9655d298
CM
981 node = &state->rb_node;
982 goto hit_next;
983 }
984 }
d1310b2e
CM
985 /*
986 * this search will find all the extents that end after
987 * our range starts.
988 */
12cfbad9 989 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 990 if (!node) {
8233767a
XG
991 prealloc = alloc_extent_state_atomic(prealloc);
992 BUG_ON(!prealloc);
12cfbad9 993 err = insert_state(tree, prealloc, start, end,
d38ed27f 994 &p, &parent, &bits, changeset);
c2d904e0
JM
995 if (err)
996 extent_io_tree_panic(tree, err);
997
c42ac0bc 998 cache_state(prealloc, cached_state);
d1310b2e 999 prealloc = NULL;
d1310b2e
CM
1000 goto out;
1001 }
d1310b2e 1002 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1003hit_next:
d1310b2e
CM
1004 last_start = state->start;
1005 last_end = state->end;
1006
1007 /*
1008 * | ---- desired range ---- |
1009 * | state |
1010 *
1011 * Just lock what we found and keep going
1012 */
1013 if (state->start == start && state->end <= end) {
1edbb734 1014 if (state->state & exclusive_bits) {
d1310b2e
CM
1015 *failed_start = state->start;
1016 err = -EEXIST;
1017 goto out;
1018 }
42daec29 1019
d38ed27f 1020 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1021 cache_state(state, cached_state);
d1310b2e 1022 merge_state(tree, state);
5c939df5
YZ
1023 if (last_end == (u64)-1)
1024 goto out;
1025 start = last_end + 1;
d1ac6e41
LB
1026 state = next_state(state);
1027 if (start < end && state && state->start == start &&
1028 !need_resched())
1029 goto hit_next;
d1310b2e
CM
1030 goto search_again;
1031 }
1032
1033 /*
1034 * | ---- desired range ---- |
1035 * | state |
1036 * or
1037 * | ------------- state -------------- |
1038 *
1039 * We need to split the extent we found, and may flip bits on
1040 * second half.
1041 *
1042 * If the extent we found extends past our
1043 * range, we just split and search again. It'll get split
1044 * again the next time though.
1045 *
1046 * If the extent we found is inside our range, we set the
1047 * desired bit on it.
1048 */
1049 if (state->start < start) {
1edbb734 1050 if (state->state & exclusive_bits) {
d1310b2e
CM
1051 *failed_start = start;
1052 err = -EEXIST;
1053 goto out;
1054 }
8233767a
XG
1055
1056 prealloc = alloc_extent_state_atomic(prealloc);
1057 BUG_ON(!prealloc);
d1310b2e 1058 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1059 if (err)
1060 extent_io_tree_panic(tree, err);
1061
d1310b2e
CM
1062 prealloc = NULL;
1063 if (err)
1064 goto out;
1065 if (state->end <= end) {
d38ed27f 1066 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1067 cache_state(state, cached_state);
d1310b2e 1068 merge_state(tree, state);
5c939df5
YZ
1069 if (last_end == (u64)-1)
1070 goto out;
1071 start = last_end + 1;
d1ac6e41
LB
1072 state = next_state(state);
1073 if (start < end && state && state->start == start &&
1074 !need_resched())
1075 goto hit_next;
d1310b2e
CM
1076 }
1077 goto search_again;
1078 }
1079 /*
1080 * | ---- desired range ---- |
1081 * | state | or | state |
1082 *
1083 * There's a hole, we need to insert something in it and
1084 * ignore the extent we found.
1085 */
1086 if (state->start > start) {
1087 u64 this_end;
1088 if (end < last_start)
1089 this_end = end;
1090 else
d397712b 1091 this_end = last_start - 1;
8233767a
XG
1092
1093 prealloc = alloc_extent_state_atomic(prealloc);
1094 BUG_ON(!prealloc);
c7f895a2
XG
1095
1096 /*
1097 * Avoid to free 'prealloc' if it can be merged with
1098 * the later extent.
1099 */
d1310b2e 1100 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1101 NULL, NULL, &bits, changeset);
c2d904e0
JM
1102 if (err)
1103 extent_io_tree_panic(tree, err);
1104
9ed74f2d
JB
1105 cache_state(prealloc, cached_state);
1106 prealloc = NULL;
d1310b2e
CM
1107 start = this_end + 1;
1108 goto search_again;
1109 }
1110 /*
1111 * | ---- desired range ---- |
1112 * | state |
1113 * We need to split the extent, and set the bit
1114 * on the first half
1115 */
1116 if (state->start <= end && state->end > end) {
1edbb734 1117 if (state->state & exclusive_bits) {
d1310b2e
CM
1118 *failed_start = start;
1119 err = -EEXIST;
1120 goto out;
1121 }
8233767a
XG
1122
1123 prealloc = alloc_extent_state_atomic(prealloc);
1124 BUG_ON(!prealloc);
d1310b2e 1125 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1126 if (err)
1127 extent_io_tree_panic(tree, err);
d1310b2e 1128
d38ed27f 1129 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1130 cache_state(prealloc, cached_state);
d1310b2e
CM
1131 merge_state(tree, prealloc);
1132 prealloc = NULL;
1133 goto out;
1134 }
1135
b5a4ba14
DS
1136search_again:
1137 if (start > end)
1138 goto out;
1139 spin_unlock(&tree->lock);
1140 if (gfpflags_allow_blocking(mask))
1141 cond_resched();
1142 goto again;
d1310b2e
CM
1143
1144out:
cad321ad 1145 spin_unlock(&tree->lock);
d1310b2e
CM
1146 if (prealloc)
1147 free_extent_state(prealloc);
1148
1149 return err;
1150
d1310b2e 1151}
d1310b2e 1152
41074888 1153int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1154 unsigned bits, u64 * failed_start,
41074888 1155 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1156{
1157 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1158 cached_state, mask, NULL);
3fbe5c02
JM
1159}
1160
1161
462d6fac 1162/**
10983f2e
LB
1163 * convert_extent_bit - convert all bits in a given range from one bit to
1164 * another
462d6fac
JB
1165 * @tree: the io tree to search
1166 * @start: the start offset in bytes
1167 * @end: the end offset in bytes (inclusive)
1168 * @bits: the bits to set in this range
1169 * @clear_bits: the bits to clear in this range
e6138876 1170 * @cached_state: state that we're going to cache
462d6fac
JB
1171 *
1172 * This will go through and set bits for the given range. If any states exist
1173 * already in this range they are set with the given bit and cleared of the
1174 * clear_bits. This is only meant to be used by things that are mergeable, ie
1175 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1176 * boundary bits like LOCK.
210aa277
DS
1177 *
1178 * All allocations are done with GFP_NOFS.
462d6fac
JB
1179 */
1180int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1181 unsigned bits, unsigned clear_bits,
210aa277 1182 struct extent_state **cached_state)
462d6fac
JB
1183{
1184 struct extent_state *state;
1185 struct extent_state *prealloc = NULL;
1186 struct rb_node *node;
12cfbad9
FDBM
1187 struct rb_node **p;
1188 struct rb_node *parent;
462d6fac
JB
1189 int err = 0;
1190 u64 last_start;
1191 u64 last_end;
c8fd3de7 1192 bool first_iteration = true;
462d6fac 1193
a5dee37d 1194 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1195 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196 clear_bits);
8d599ae1 1197
462d6fac 1198again:
210aa277 1199 if (!prealloc) {
c8fd3de7
FM
1200 /*
1201 * Best effort, don't worry if extent state allocation fails
1202 * here for the first iteration. We might have a cached state
1203 * that matches exactly the target range, in which case no
1204 * extent state allocations are needed. We'll only know this
1205 * after locking the tree.
1206 */
210aa277 1207 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1208 if (!prealloc && !first_iteration)
462d6fac
JB
1209 return -ENOMEM;
1210 }
1211
1212 spin_lock(&tree->lock);
e6138876
JB
1213 if (cached_state && *cached_state) {
1214 state = *cached_state;
1215 if (state->start <= start && state->end > start &&
27a3507d 1216 extent_state_in_tree(state)) {
e6138876
JB
1217 node = &state->rb_node;
1218 goto hit_next;
1219 }
1220 }
1221
462d6fac
JB
1222 /*
1223 * this search will find all the extents that end after
1224 * our range starts.
1225 */
12cfbad9 1226 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1227 if (!node) {
1228 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1229 if (!prealloc) {
1230 err = -ENOMEM;
1231 goto out;
1232 }
12cfbad9 1233 err = insert_state(tree, prealloc, start, end,
d38ed27f 1234 &p, &parent, &bits, NULL);
c2d904e0
JM
1235 if (err)
1236 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1237 cache_state(prealloc, cached_state);
1238 prealloc = NULL;
462d6fac
JB
1239 goto out;
1240 }
1241 state = rb_entry(node, struct extent_state, rb_node);
1242hit_next:
1243 last_start = state->start;
1244 last_end = state->end;
1245
1246 /*
1247 * | ---- desired range ---- |
1248 * | state |
1249 *
1250 * Just lock what we found and keep going
1251 */
1252 if (state->start == start && state->end <= end) {
d38ed27f 1253 set_state_bits(tree, state, &bits, NULL);
e6138876 1254 cache_state(state, cached_state);
fefdc557 1255 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1256 if (last_end == (u64)-1)
1257 goto out;
462d6fac 1258 start = last_end + 1;
d1ac6e41
LB
1259 if (start < end && state && state->start == start &&
1260 !need_resched())
1261 goto hit_next;
462d6fac
JB
1262 goto search_again;
1263 }
1264
1265 /*
1266 * | ---- desired range ---- |
1267 * | state |
1268 * or
1269 * | ------------- state -------------- |
1270 *
1271 * We need to split the extent we found, and may flip bits on
1272 * second half.
1273 *
1274 * If the extent we found extends past our
1275 * range, we just split and search again. It'll get split
1276 * again the next time though.
1277 *
1278 * If the extent we found is inside our range, we set the
1279 * desired bit on it.
1280 */
1281 if (state->start < start) {
1282 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1283 if (!prealloc) {
1284 err = -ENOMEM;
1285 goto out;
1286 }
462d6fac 1287 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1288 if (err)
1289 extent_io_tree_panic(tree, err);
462d6fac
JB
1290 prealloc = NULL;
1291 if (err)
1292 goto out;
1293 if (state->end <= end) {
d38ed27f 1294 set_state_bits(tree, state, &bits, NULL);
e6138876 1295 cache_state(state, cached_state);
fefdc557
QW
1296 state = clear_state_bit(tree, state, &clear_bits, 0,
1297 NULL);
462d6fac
JB
1298 if (last_end == (u64)-1)
1299 goto out;
1300 start = last_end + 1;
d1ac6e41
LB
1301 if (start < end && state && state->start == start &&
1302 !need_resched())
1303 goto hit_next;
462d6fac
JB
1304 }
1305 goto search_again;
1306 }
1307 /*
1308 * | ---- desired range ---- |
1309 * | state | or | state |
1310 *
1311 * There's a hole, we need to insert something in it and
1312 * ignore the extent we found.
1313 */
1314 if (state->start > start) {
1315 u64 this_end;
1316 if (end < last_start)
1317 this_end = end;
1318 else
1319 this_end = last_start - 1;
1320
1321 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1322 if (!prealloc) {
1323 err = -ENOMEM;
1324 goto out;
1325 }
462d6fac
JB
1326
1327 /*
1328 * Avoid to free 'prealloc' if it can be merged with
1329 * the later extent.
1330 */
1331 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1332 NULL, NULL, &bits, NULL);
c2d904e0
JM
1333 if (err)
1334 extent_io_tree_panic(tree, err);
e6138876 1335 cache_state(prealloc, cached_state);
462d6fac
JB
1336 prealloc = NULL;
1337 start = this_end + 1;
1338 goto search_again;
1339 }
1340 /*
1341 * | ---- desired range ---- |
1342 * | state |
1343 * We need to split the extent, and set the bit
1344 * on the first half
1345 */
1346 if (state->start <= end && state->end > end) {
1347 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1348 if (!prealloc) {
1349 err = -ENOMEM;
1350 goto out;
1351 }
462d6fac
JB
1352
1353 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1354 if (err)
1355 extent_io_tree_panic(tree, err);
462d6fac 1356
d38ed27f 1357 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1358 cache_state(prealloc, cached_state);
fefdc557 1359 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1360 prealloc = NULL;
1361 goto out;
1362 }
1363
462d6fac
JB
1364search_again:
1365 if (start > end)
1366 goto out;
1367 spin_unlock(&tree->lock);
210aa277 1368 cond_resched();
c8fd3de7 1369 first_iteration = false;
462d6fac 1370 goto again;
462d6fac
JB
1371
1372out:
1373 spin_unlock(&tree->lock);
1374 if (prealloc)
1375 free_extent_state(prealloc);
1376
1377 return err;
462d6fac
JB
1378}
1379
d1310b2e 1380/* wrappers around set/clear extent bit */
d38ed27f 1381int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1382 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1383{
1384 /*
1385 * We don't support EXTENT_LOCKED yet, as current changeset will
1386 * record any bits changed, so for EXTENT_LOCKED case, it will
1387 * either fail with -EEXIST or changeset will record the whole
1388 * range.
1389 */
1390 BUG_ON(bits & EXTENT_LOCKED);
1391
2c53b912 1392 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1393 changeset);
1394}
1395
4ca73656
NB
1396int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397 unsigned bits)
1398{
1399 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400 GFP_NOWAIT, NULL);
1401}
1402
fefdc557
QW
1403int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404 unsigned bits, int wake, int delete,
ae0f1625 1405 struct extent_state **cached)
fefdc557
QW
1406{
1407 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1408 cached, GFP_NOFS, NULL);
fefdc557
QW
1409}
1410
fefdc557 1411int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1412 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1413{
1414 /*
1415 * Don't support EXTENT_LOCKED case, same reason as
1416 * set_record_extent_bits().
1417 */
1418 BUG_ON(bits & EXTENT_LOCKED);
1419
f734c44a 1420 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1421 changeset);
1422}
1423
d352ac68
CM
1424/*
1425 * either insert or lock state struct between start and end use mask to tell
1426 * us if waiting is desired.
1427 */
1edbb734 1428int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1429 struct extent_state **cached_state)
d1310b2e
CM
1430{
1431 int err;
1432 u64 failed_start;
9ee49a04 1433
d1310b2e 1434 while (1) {
ff13db41 1435 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1436 EXTENT_LOCKED, &failed_start,
d38ed27f 1437 cached_state, GFP_NOFS, NULL);
d0082371 1438 if (err == -EEXIST) {
d1310b2e
CM
1439 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440 start = failed_start;
d0082371 1441 } else
d1310b2e 1442 break;
d1310b2e
CM
1443 WARN_ON(start > end);
1444 }
1445 return err;
1446}
d1310b2e 1447
d0082371 1448int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1449{
1450 int err;
1451 u64 failed_start;
1452
3fbe5c02 1453 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1454 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1455 if (err == -EEXIST) {
1456 if (failed_start > start)
1457 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1458 EXTENT_LOCKED, 1, 0, NULL);
25179201 1459 return 0;
6643558d 1460 }
25179201
JB
1461 return 1;
1462}
25179201 1463
bd1fa4f0 1464void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1465{
09cbfeaf
KS
1466 unsigned long index = start >> PAGE_SHIFT;
1467 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1468 struct page *page;
1469
1470 while (index <= end_index) {
1471 page = find_get_page(inode->i_mapping, index);
1472 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473 clear_page_dirty_for_io(page);
09cbfeaf 1474 put_page(page);
4adaa611
CM
1475 index++;
1476 }
4adaa611
CM
1477}
1478
f6311572 1479void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1480{
09cbfeaf
KS
1481 unsigned long index = start >> PAGE_SHIFT;
1482 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1483 struct page *page;
1484
1485 while (index <= end_index) {
1486 page = find_get_page(inode->i_mapping, index);
1487 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1488 __set_page_dirty_nobuffers(page);
8d38633c 1489 account_page_redirty(page);
09cbfeaf 1490 put_page(page);
4adaa611
CM
1491 index++;
1492 }
4adaa611
CM
1493}
1494
d352ac68
CM
1495/* find the first state struct with 'bits' set after 'start', and
1496 * return it. tree->lock must be held. NULL will returned if
1497 * nothing was found after 'start'
1498 */
48a3b636
ES
1499static struct extent_state *
1500find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1501 u64 start, unsigned bits)
d7fc640e
CM
1502{
1503 struct rb_node *node;
1504 struct extent_state *state;
1505
1506 /*
1507 * this search will find all the extents that end after
1508 * our range starts.
1509 */
1510 node = tree_search(tree, start);
d397712b 1511 if (!node)
d7fc640e 1512 goto out;
d7fc640e 1513
d397712b 1514 while (1) {
d7fc640e 1515 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1516 if (state->end >= start && (state->state & bits))
d7fc640e 1517 return state;
d397712b 1518
d7fc640e
CM
1519 node = rb_next(node);
1520 if (!node)
1521 break;
1522 }
1523out:
1524 return NULL;
1525}
d7fc640e 1526
69261c4b
XG
1527/*
1528 * find the first offset in the io tree with 'bits' set. zero is
1529 * returned if we find something, and *start_ret and *end_ret are
1530 * set to reflect the state struct that was found.
1531 *
477d7eaf 1532 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1533 */
1534int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1535 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1536 struct extent_state **cached_state)
69261c4b
XG
1537{
1538 struct extent_state *state;
1539 int ret = 1;
1540
1541 spin_lock(&tree->lock);
e6138876
JB
1542 if (cached_state && *cached_state) {
1543 state = *cached_state;
27a3507d 1544 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1545 while ((state = next_state(state)) != NULL) {
e6138876
JB
1546 if (state->state & bits)
1547 goto got_it;
e6138876
JB
1548 }
1549 free_extent_state(*cached_state);
1550 *cached_state = NULL;
1551 goto out;
1552 }
1553 free_extent_state(*cached_state);
1554 *cached_state = NULL;
1555 }
1556
69261c4b 1557 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1558got_it:
69261c4b 1559 if (state) {
e38e2ed7 1560 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1561 *start_ret = state->start;
1562 *end_ret = state->end;
1563 ret = 0;
1564 }
e6138876 1565out:
69261c4b
XG
1566 spin_unlock(&tree->lock);
1567 return ret;
1568}
1569
45bfcfc1 1570/**
1eaebb34
NB
1571 * find_first_clear_extent_bit - find the first range that has @bits not set.
1572 * This range could start before @start.
45bfcfc1
NB
1573 *
1574 * @tree - the tree to search
1575 * @start - the offset at/after which the found extent should start
1576 * @start_ret - records the beginning of the range
1577 * @end_ret - records the end of the range (inclusive)
1578 * @bits - the set of bits which must be unset
1579 *
1580 * Since unallocated range is also considered one which doesn't have the bits
1581 * set it's possible that @end_ret contains -1, this happens in case the range
1582 * spans (last_range_end, end of device]. In this case it's up to the caller to
1583 * trim @end_ret to the appropriate size.
1584 */
1585void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586 u64 *start_ret, u64 *end_ret, unsigned bits)
1587{
1588 struct extent_state *state;
1589 struct rb_node *node, *prev = NULL, *next;
1590
1591 spin_lock(&tree->lock);
1592
1593 /* Find first extent with bits cleared */
1594 while (1) {
1595 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596 if (!node) {
1597 node = next;
1598 if (!node) {
1599 /*
1600 * We are past the last allocated chunk,
1601 * set start at the end of the last extent. The
1602 * device alloc tree should never be empty so
1603 * prev is always set.
1604 */
1605 ASSERT(prev);
1606 state = rb_entry(prev, struct extent_state, rb_node);
1607 *start_ret = state->end + 1;
1608 *end_ret = -1;
1609 goto out;
1610 }
1611 }
1eaebb34
NB
1612 /*
1613 * At this point 'node' either contains 'start' or start is
1614 * before 'node'
1615 */
45bfcfc1 1616 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1617
1618 if (in_range(start, state->start, state->end - state->start + 1)) {
1619 if (state->state & bits) {
1620 /*
1621 * |--range with bits sets--|
1622 * |
1623 * start
1624 */
1625 start = state->end + 1;
1626 } else {
1627 /*
1628 * 'start' falls within a range that doesn't
1629 * have the bits set, so take its start as
1630 * the beginning of the desired range
1631 *
1632 * |--range with bits cleared----|
1633 * |
1634 * start
1635 */
1636 *start_ret = state->start;
1637 break;
1638 }
45bfcfc1 1639 } else {
1eaebb34
NB
1640 /*
1641 * |---prev range---|---hole/unset---|---node range---|
1642 * |
1643 * start
1644 *
1645 * or
1646 *
1647 * |---hole/unset--||--first node--|
1648 * 0 |
1649 * start
1650 */
1651 if (prev) {
1652 state = rb_entry(prev, struct extent_state,
1653 rb_node);
1654 *start_ret = state->end + 1;
1655 } else {
1656 *start_ret = 0;
1657 }
45bfcfc1
NB
1658 break;
1659 }
1660 }
1661
1662 /*
1663 * Find the longest stretch from start until an entry which has the
1664 * bits set
1665 */
1666 while (1) {
1667 state = rb_entry(node, struct extent_state, rb_node);
1668 if (state->end >= start && !(state->state & bits)) {
1669 *end_ret = state->end;
1670 } else {
1671 *end_ret = state->start - 1;
1672 break;
1673 }
1674
1675 node = rb_next(node);
1676 if (!node)
1677 break;
1678 }
1679out:
1680 spin_unlock(&tree->lock);
1681}
1682
d352ac68
CM
1683/*
1684 * find a contiguous range of bytes in the file marked as delalloc, not
1685 * more than 'max_bytes'. start and end are used to return the range,
1686 *
3522e903 1687 * true is returned if we find something, false if nothing was in the tree
d352ac68 1688 */
3522e903 1689static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1690 u64 *start, u64 *end, u64 max_bytes,
1691 struct extent_state **cached_state)
d1310b2e
CM
1692{
1693 struct rb_node *node;
1694 struct extent_state *state;
1695 u64 cur_start = *start;
3522e903 1696 bool found = false;
d1310b2e
CM
1697 u64 total_bytes = 0;
1698
cad321ad 1699 spin_lock(&tree->lock);
c8b97818 1700
d1310b2e
CM
1701 /*
1702 * this search will find all the extents that end after
1703 * our range starts.
1704 */
80ea96b1 1705 node = tree_search(tree, cur_start);
2b114d1d 1706 if (!node) {
3522e903 1707 *end = (u64)-1;
d1310b2e
CM
1708 goto out;
1709 }
1710
d397712b 1711 while (1) {
d1310b2e 1712 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1713 if (found && (state->start != cur_start ||
1714 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1715 goto out;
1716 }
1717 if (!(state->state & EXTENT_DELALLOC)) {
1718 if (!found)
1719 *end = state->end;
1720 goto out;
1721 }
c2a128d2 1722 if (!found) {
d1310b2e 1723 *start = state->start;
c2a128d2 1724 *cached_state = state;
b7ac31b7 1725 refcount_inc(&state->refs);
c2a128d2 1726 }
3522e903 1727 found = true;
d1310b2e
CM
1728 *end = state->end;
1729 cur_start = state->end + 1;
1730 node = rb_next(node);
d1310b2e 1731 total_bytes += state->end - state->start + 1;
7bf811a5 1732 if (total_bytes >= max_bytes)
573aecaf 1733 break;
573aecaf 1734 if (!node)
d1310b2e
CM
1735 break;
1736 }
1737out:
cad321ad 1738 spin_unlock(&tree->lock);
d1310b2e
CM
1739 return found;
1740}
1741
da2c7009
LB
1742static int __process_pages_contig(struct address_space *mapping,
1743 struct page *locked_page,
1744 pgoff_t start_index, pgoff_t end_index,
1745 unsigned long page_ops, pgoff_t *index_ret);
1746
143bede5
JM
1747static noinline void __unlock_for_delalloc(struct inode *inode,
1748 struct page *locked_page,
1749 u64 start, u64 end)
c8b97818 1750{
09cbfeaf
KS
1751 unsigned long index = start >> PAGE_SHIFT;
1752 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1753
76c0021d 1754 ASSERT(locked_page);
c8b97818 1755 if (index == locked_page->index && end_index == index)
143bede5 1756 return;
c8b97818 1757
76c0021d
LB
1758 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1759 PAGE_UNLOCK, NULL);
c8b97818
CM
1760}
1761
1762static noinline int lock_delalloc_pages(struct inode *inode,
1763 struct page *locked_page,
1764 u64 delalloc_start,
1765 u64 delalloc_end)
1766{
09cbfeaf 1767 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1768 unsigned long index_ret = index;
09cbfeaf 1769 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1770 int ret;
c8b97818 1771
76c0021d 1772 ASSERT(locked_page);
c8b97818
CM
1773 if (index == locked_page->index && index == end_index)
1774 return 0;
1775
76c0021d
LB
1776 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1777 end_index, PAGE_LOCK, &index_ret);
1778 if (ret == -EAGAIN)
1779 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1780 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1781 return ret;
1782}
1783
1784/*
3522e903
LF
1785 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1786 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1787 *
3522e903
LF
1788 * Return: true if we find something
1789 * false if nothing was in the tree
c8b97818 1790 */
ce9f967f 1791EXPORT_FOR_TESTS
3522e903 1792noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1793 struct page *locked_page, u64 *start,
917aacec 1794 u64 *end)
c8b97818 1795{
9978059b 1796 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1797 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1798 u64 delalloc_start;
1799 u64 delalloc_end;
3522e903 1800 bool found;
9655d298 1801 struct extent_state *cached_state = NULL;
c8b97818
CM
1802 int ret;
1803 int loops = 0;
1804
1805again:
1806 /* step one, find a bunch of delalloc bytes starting at start */
1807 delalloc_start = *start;
1808 delalloc_end = 0;
1809 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1810 max_bytes, &cached_state);
70b99e69 1811 if (!found || delalloc_end <= *start) {
c8b97818
CM
1812 *start = delalloc_start;
1813 *end = delalloc_end;
c2a128d2 1814 free_extent_state(cached_state);
3522e903 1815 return false;
c8b97818
CM
1816 }
1817
70b99e69
CM
1818 /*
1819 * start comes from the offset of locked_page. We have to lock
1820 * pages in order, so we can't process delalloc bytes before
1821 * locked_page
1822 */
d397712b 1823 if (delalloc_start < *start)
70b99e69 1824 delalloc_start = *start;
70b99e69 1825
c8b97818
CM
1826 /*
1827 * make sure to limit the number of pages we try to lock down
c8b97818 1828 */
7bf811a5
JB
1829 if (delalloc_end + 1 - delalloc_start > max_bytes)
1830 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1831
c8b97818
CM
1832 /* step two, lock all the pages after the page that has start */
1833 ret = lock_delalloc_pages(inode, locked_page,
1834 delalloc_start, delalloc_end);
9bfd61d9 1835 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1836 if (ret == -EAGAIN) {
1837 /* some of the pages are gone, lets avoid looping by
1838 * shortening the size of the delalloc range we're searching
1839 */
9655d298 1840 free_extent_state(cached_state);
7d788742 1841 cached_state = NULL;
c8b97818 1842 if (!loops) {
09cbfeaf 1843 max_bytes = PAGE_SIZE;
c8b97818
CM
1844 loops = 1;
1845 goto again;
1846 } else {
3522e903 1847 found = false;
c8b97818
CM
1848 goto out_failed;
1849 }
1850 }
c8b97818
CM
1851
1852 /* step three, lock the state bits for the whole range */
ff13db41 1853 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1854
1855 /* then test to make sure it is all still delalloc */
1856 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1857 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1858 if (!ret) {
9655d298 1859 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1860 &cached_state);
c8b97818
CM
1861 __unlock_for_delalloc(inode, locked_page,
1862 delalloc_start, delalloc_end);
1863 cond_resched();
1864 goto again;
1865 }
9655d298 1866 free_extent_state(cached_state);
c8b97818
CM
1867 *start = delalloc_start;
1868 *end = delalloc_end;
1869out_failed:
1870 return found;
1871}
1872
da2c7009
LB
1873static int __process_pages_contig(struct address_space *mapping,
1874 struct page *locked_page,
1875 pgoff_t start_index, pgoff_t end_index,
1876 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1877{
873695b3 1878 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1879 unsigned long pages_locked = 0;
873695b3 1880 pgoff_t index = start_index;
c8b97818 1881 struct page *pages[16];
873695b3 1882 unsigned ret;
da2c7009 1883 int err = 0;
c8b97818 1884 int i;
771ed689 1885
da2c7009
LB
1886 if (page_ops & PAGE_LOCK) {
1887 ASSERT(page_ops == PAGE_LOCK);
1888 ASSERT(index_ret && *index_ret == start_index);
1889 }
1890
704de49d 1891 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1892 mapping_set_error(mapping, -EIO);
704de49d 1893
d397712b 1894 while (nr_pages > 0) {
873695b3 1895 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1896 min_t(unsigned long,
1897 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1898 if (ret == 0) {
1899 /*
1900 * Only if we're going to lock these pages,
1901 * can we find nothing at @index.
1902 */
1903 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1904 err = -EAGAIN;
1905 goto out;
da2c7009 1906 }
8b62b72b 1907
da2c7009 1908 for (i = 0; i < ret; i++) {
c2790a2e 1909 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1910 SetPagePrivate2(pages[i]);
1911
c8b97818 1912 if (pages[i] == locked_page) {
09cbfeaf 1913 put_page(pages[i]);
da2c7009 1914 pages_locked++;
c8b97818
CM
1915 continue;
1916 }
c2790a2e 1917 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1918 clear_page_dirty_for_io(pages[i]);
c2790a2e 1919 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1920 set_page_writeback(pages[i]);
704de49d
FM
1921 if (page_ops & PAGE_SET_ERROR)
1922 SetPageError(pages[i]);
c2790a2e 1923 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1924 end_page_writeback(pages[i]);
c2790a2e 1925 if (page_ops & PAGE_UNLOCK)
771ed689 1926 unlock_page(pages[i]);
da2c7009
LB
1927 if (page_ops & PAGE_LOCK) {
1928 lock_page(pages[i]);
1929 if (!PageDirty(pages[i]) ||
1930 pages[i]->mapping != mapping) {
1931 unlock_page(pages[i]);
1932 put_page(pages[i]);
1933 err = -EAGAIN;
1934 goto out;
1935 }
1936 }
09cbfeaf 1937 put_page(pages[i]);
da2c7009 1938 pages_locked++;
c8b97818
CM
1939 }
1940 nr_pages -= ret;
1941 index += ret;
1942 cond_resched();
1943 }
da2c7009
LB
1944out:
1945 if (err && index_ret)
1946 *index_ret = start_index + pages_locked - 1;
1947 return err;
c8b97818 1948}
c8b97818 1949
873695b3 1950void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
74e9194a
NB
1951 struct page *locked_page,
1952 unsigned clear_bits,
1953 unsigned long page_ops)
873695b3
LB
1954{
1955 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1956 NULL);
873695b3
LB
1957
1958 __process_pages_contig(inode->i_mapping, locked_page,
1959 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1960 page_ops, NULL);
873695b3
LB
1961}
1962
d352ac68
CM
1963/*
1964 * count the number of bytes in the tree that have a given bit(s)
1965 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1966 * cached. The total number found is returned.
1967 */
d1310b2e
CM
1968u64 count_range_bits(struct extent_io_tree *tree,
1969 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1970 unsigned bits, int contig)
d1310b2e
CM
1971{
1972 struct rb_node *node;
1973 struct extent_state *state;
1974 u64 cur_start = *start;
1975 u64 total_bytes = 0;
ec29ed5b 1976 u64 last = 0;
d1310b2e
CM
1977 int found = 0;
1978
fae7f21c 1979 if (WARN_ON(search_end <= cur_start))
d1310b2e 1980 return 0;
d1310b2e 1981
cad321ad 1982 spin_lock(&tree->lock);
d1310b2e
CM
1983 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1984 total_bytes = tree->dirty_bytes;
1985 goto out;
1986 }
1987 /*
1988 * this search will find all the extents that end after
1989 * our range starts.
1990 */
80ea96b1 1991 node = tree_search(tree, cur_start);
d397712b 1992 if (!node)
d1310b2e 1993 goto out;
d1310b2e 1994
d397712b 1995 while (1) {
d1310b2e
CM
1996 state = rb_entry(node, struct extent_state, rb_node);
1997 if (state->start > search_end)
1998 break;
ec29ed5b
CM
1999 if (contig && found && state->start > last + 1)
2000 break;
2001 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2002 total_bytes += min(search_end, state->end) + 1 -
2003 max(cur_start, state->start);
2004 if (total_bytes >= max_bytes)
2005 break;
2006 if (!found) {
af60bed2 2007 *start = max(cur_start, state->start);
d1310b2e
CM
2008 found = 1;
2009 }
ec29ed5b
CM
2010 last = state->end;
2011 } else if (contig && found) {
2012 break;
d1310b2e
CM
2013 }
2014 node = rb_next(node);
2015 if (!node)
2016 break;
2017 }
2018out:
cad321ad 2019 spin_unlock(&tree->lock);
d1310b2e
CM
2020 return total_bytes;
2021}
b2950863 2022
d352ac68
CM
2023/*
2024 * set the private field for a given byte offset in the tree. If there isn't
2025 * an extent_state there already, this does nothing.
2026 */
f827ba9a 2027static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 2028 struct io_failure_record *failrec)
d1310b2e
CM
2029{
2030 struct rb_node *node;
2031 struct extent_state *state;
2032 int ret = 0;
2033
cad321ad 2034 spin_lock(&tree->lock);
d1310b2e
CM
2035 /*
2036 * this search will find all the extents that end after
2037 * our range starts.
2038 */
80ea96b1 2039 node = tree_search(tree, start);
2b114d1d 2040 if (!node) {
d1310b2e
CM
2041 ret = -ENOENT;
2042 goto out;
2043 }
2044 state = rb_entry(node, struct extent_state, rb_node);
2045 if (state->start != start) {
2046 ret = -ENOENT;
2047 goto out;
2048 }
47dc196a 2049 state->failrec = failrec;
d1310b2e 2050out:
cad321ad 2051 spin_unlock(&tree->lock);
d1310b2e
CM
2052 return ret;
2053}
2054
f827ba9a 2055static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 2056 struct io_failure_record **failrec)
d1310b2e
CM
2057{
2058 struct rb_node *node;
2059 struct extent_state *state;
2060 int ret = 0;
2061
cad321ad 2062 spin_lock(&tree->lock);
d1310b2e
CM
2063 /*
2064 * this search will find all the extents that end after
2065 * our range starts.
2066 */
80ea96b1 2067 node = tree_search(tree, start);
2b114d1d 2068 if (!node) {
d1310b2e
CM
2069 ret = -ENOENT;
2070 goto out;
2071 }
2072 state = rb_entry(node, struct extent_state, rb_node);
2073 if (state->start != start) {
2074 ret = -ENOENT;
2075 goto out;
2076 }
47dc196a 2077 *failrec = state->failrec;
d1310b2e 2078out:
cad321ad 2079 spin_unlock(&tree->lock);
d1310b2e
CM
2080 return ret;
2081}
2082
2083/*
2084 * searches a range in the state tree for a given mask.
70dec807 2085 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2086 * has the bits set. Otherwise, 1 is returned if any bit in the
2087 * range is found set.
2088 */
2089int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2090 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2091{
2092 struct extent_state *state = NULL;
2093 struct rb_node *node;
2094 int bitset = 0;
d1310b2e 2095
cad321ad 2096 spin_lock(&tree->lock);
27a3507d 2097 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2098 cached->end > start)
9655d298
CM
2099 node = &cached->rb_node;
2100 else
2101 node = tree_search(tree, start);
d1310b2e
CM
2102 while (node && start <= end) {
2103 state = rb_entry(node, struct extent_state, rb_node);
2104
2105 if (filled && state->start > start) {
2106 bitset = 0;
2107 break;
2108 }
2109
2110 if (state->start > end)
2111 break;
2112
2113 if (state->state & bits) {
2114 bitset = 1;
2115 if (!filled)
2116 break;
2117 } else if (filled) {
2118 bitset = 0;
2119 break;
2120 }
46562cec
CM
2121
2122 if (state->end == (u64)-1)
2123 break;
2124
d1310b2e
CM
2125 start = state->end + 1;
2126 if (start > end)
2127 break;
2128 node = rb_next(node);
2129 if (!node) {
2130 if (filled)
2131 bitset = 0;
2132 break;
2133 }
2134 }
cad321ad 2135 spin_unlock(&tree->lock);
d1310b2e
CM
2136 return bitset;
2137}
d1310b2e
CM
2138
2139/*
2140 * helper function to set a given page up to date if all the
2141 * extents in the tree for that page are up to date
2142 */
143bede5 2143static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2144{
4eee4fa4 2145 u64 start = page_offset(page);
09cbfeaf 2146 u64 end = start + PAGE_SIZE - 1;
9655d298 2147 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2148 SetPageUptodate(page);
d1310b2e
CM
2149}
2150
7870d082
JB
2151int free_io_failure(struct extent_io_tree *failure_tree,
2152 struct extent_io_tree *io_tree,
2153 struct io_failure_record *rec)
4a54c8c1
JS
2154{
2155 int ret;
2156 int err = 0;
4a54c8c1 2157
47dc196a 2158 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2159 ret = clear_extent_bits(failure_tree, rec->start,
2160 rec->start + rec->len - 1,
91166212 2161 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2162 if (ret)
2163 err = ret;
2164
7870d082 2165 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2166 rec->start + rec->len - 1,
91166212 2167 EXTENT_DAMAGED);
53b381b3
DW
2168 if (ret && !err)
2169 err = ret;
4a54c8c1
JS
2170
2171 kfree(rec);
2172 return err;
2173}
2174
4a54c8c1
JS
2175/*
2176 * this bypasses the standard btrfs submit functions deliberately, as
2177 * the standard behavior is to write all copies in a raid setup. here we only
2178 * want to write the one bad copy. so we do the mapping for ourselves and issue
2179 * submit_bio directly.
3ec706c8 2180 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2181 * actually prevents the read that triggered the error from finishing.
2182 * currently, there can be no more than two copies of every data bit. thus,
2183 * exactly one rewrite is required.
2184 */
6ec656bc
JB
2185int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2186 u64 length, u64 logical, struct page *page,
2187 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2188{
2189 struct bio *bio;
2190 struct btrfs_device *dev;
4a54c8c1
JS
2191 u64 map_length = 0;
2192 u64 sector;
2193 struct btrfs_bio *bbio = NULL;
2194 int ret;
2195
1751e8a6 2196 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2197 BUG_ON(!mirror_num);
2198
c5e4c3d7 2199 bio = btrfs_io_bio_alloc(1);
4f024f37 2200 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2201 map_length = length;
2202
b5de8d0d
FM
2203 /*
2204 * Avoid races with device replace and make sure our bbio has devices
2205 * associated to its stripes that don't go away while we are doing the
2206 * read repair operation.
2207 */
2208 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2209 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2210 /*
2211 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2212 * to update all raid stripes, but here we just want to correct
2213 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2214 * stripe's dev and sector.
2215 */
2216 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2217 &map_length, &bbio, 0);
2218 if (ret) {
2219 btrfs_bio_counter_dec(fs_info);
2220 bio_put(bio);
2221 return -EIO;
2222 }
2223 ASSERT(bbio->mirror_num == 1);
2224 } else {
2225 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2226 &map_length, &bbio, mirror_num);
2227 if (ret) {
2228 btrfs_bio_counter_dec(fs_info);
2229 bio_put(bio);
2230 return -EIO;
2231 }
2232 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2233 }
c725328c
LB
2234
2235 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2236 bio->bi_iter.bi_sector = sector;
c725328c 2237 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2238 btrfs_put_bbio(bbio);
ebbede42
AJ
2239 if (!dev || !dev->bdev ||
2240 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2241 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2242 bio_put(bio);
2243 return -EIO;
2244 }
74d46992 2245 bio_set_dev(bio, dev->bdev);
70fd7614 2246 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2247 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2248
4e49ea4a 2249 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2250 /* try to remap that extent elsewhere? */
b5de8d0d 2251 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2252 bio_put(bio);
442a4f63 2253 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2254 return -EIO;
2255 }
2256
b14af3b4
DS
2257 btrfs_info_rl_in_rcu(fs_info,
2258 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2259 ino, start,
1203b681 2260 rcu_str_deref(dev->name), sector);
b5de8d0d 2261 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2262 bio_put(bio);
2263 return 0;
2264}
2265
20a1fbf9 2266int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2267{
20a1fbf9 2268 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2269 u64 start = eb->start;
cc5e31a4 2270 int i, num_pages = num_extent_pages(eb);
d95603b2 2271 int ret = 0;
ea466794 2272
bc98a42c 2273 if (sb_rdonly(fs_info->sb))
908960c6
ID
2274 return -EROFS;
2275
ea466794 2276 for (i = 0; i < num_pages; i++) {
fb85fc9a 2277 struct page *p = eb->pages[i];
1203b681 2278
6ec656bc 2279 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2280 start - page_offset(p), mirror_num);
ea466794
JB
2281 if (ret)
2282 break;
09cbfeaf 2283 start += PAGE_SIZE;
ea466794
JB
2284 }
2285
2286 return ret;
2287}
2288
4a54c8c1
JS
2289/*
2290 * each time an IO finishes, we do a fast check in the IO failure tree
2291 * to see if we need to process or clean up an io_failure_record
2292 */
7870d082
JB
2293int clean_io_failure(struct btrfs_fs_info *fs_info,
2294 struct extent_io_tree *failure_tree,
2295 struct extent_io_tree *io_tree, u64 start,
2296 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2297{
2298 u64 private;
4a54c8c1 2299 struct io_failure_record *failrec;
4a54c8c1
JS
2300 struct extent_state *state;
2301 int num_copies;
4a54c8c1 2302 int ret;
4a54c8c1
JS
2303
2304 private = 0;
7870d082
JB
2305 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2306 EXTENT_DIRTY, 0);
4a54c8c1
JS
2307 if (!ret)
2308 return 0;
2309
7870d082 2310 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2311 if (ret)
2312 return 0;
2313
4a54c8c1
JS
2314 BUG_ON(!failrec->this_mirror);
2315
2316 if (failrec->in_validation) {
2317 /* there was no real error, just free the record */
ab8d0fc4
JM
2318 btrfs_debug(fs_info,
2319 "clean_io_failure: freeing dummy error at %llu",
2320 failrec->start);
4a54c8c1
JS
2321 goto out;
2322 }
bc98a42c 2323 if (sb_rdonly(fs_info->sb))
908960c6 2324 goto out;
4a54c8c1 2325
7870d082
JB
2326 spin_lock(&io_tree->lock);
2327 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2328 failrec->start,
2329 EXTENT_LOCKED);
7870d082 2330 spin_unlock(&io_tree->lock);
4a54c8c1 2331
883d0de4
MX
2332 if (state && state->start <= failrec->start &&
2333 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2334 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2335 failrec->len);
4a54c8c1 2336 if (num_copies > 1) {
7870d082
JB
2337 repair_io_failure(fs_info, ino, start, failrec->len,
2338 failrec->logical, page, pg_offset,
2339 failrec->failed_mirror);
4a54c8c1
JS
2340 }
2341 }
2342
2343out:
7870d082 2344 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2345
454ff3de 2346 return 0;
4a54c8c1
JS
2347}
2348
f612496b
MX
2349/*
2350 * Can be called when
2351 * - hold extent lock
2352 * - under ordered extent
2353 * - the inode is freeing
2354 */
7ab7956e 2355void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2356{
7ab7956e 2357 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2358 struct io_failure_record *failrec;
2359 struct extent_state *state, *next;
2360
2361 if (RB_EMPTY_ROOT(&failure_tree->state))
2362 return;
2363
2364 spin_lock(&failure_tree->lock);
2365 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2366 while (state) {
2367 if (state->start > end)
2368 break;
2369
2370 ASSERT(state->end <= end);
2371
2372 next = next_state(state);
2373
47dc196a 2374 failrec = state->failrec;
f612496b
MX
2375 free_extent_state(state);
2376 kfree(failrec);
2377
2378 state = next;
2379 }
2380 spin_unlock(&failure_tree->lock);
2381}
2382
2fe6303e 2383int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2384 struct io_failure_record **failrec_ret)
4a54c8c1 2385{
ab8d0fc4 2386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2387 struct io_failure_record *failrec;
4a54c8c1 2388 struct extent_map *em;
4a54c8c1
JS
2389 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2390 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2391 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2392 int ret;
4a54c8c1
JS
2393 u64 logical;
2394
47dc196a 2395 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2396 if (ret) {
2397 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2398 if (!failrec)
2399 return -ENOMEM;
2fe6303e 2400
4a54c8c1
JS
2401 failrec->start = start;
2402 failrec->len = end - start + 1;
2403 failrec->this_mirror = 0;
2404 failrec->bio_flags = 0;
2405 failrec->in_validation = 0;
2406
2407 read_lock(&em_tree->lock);
2408 em = lookup_extent_mapping(em_tree, start, failrec->len);
2409 if (!em) {
2410 read_unlock(&em_tree->lock);
2411 kfree(failrec);
2412 return -EIO;
2413 }
2414
68ba990f 2415 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2416 free_extent_map(em);
2417 em = NULL;
2418 }
2419 read_unlock(&em_tree->lock);
7a2d6a64 2420 if (!em) {
4a54c8c1
JS
2421 kfree(failrec);
2422 return -EIO;
2423 }
2fe6303e 2424
4a54c8c1
JS
2425 logical = start - em->start;
2426 logical = em->block_start + logical;
2427 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2428 logical = em->block_start;
2429 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2430 extent_set_compress_type(&failrec->bio_flags,
2431 em->compress_type);
2432 }
2fe6303e 2433
ab8d0fc4
JM
2434 btrfs_debug(fs_info,
2435 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2436 logical, start, failrec->len);
2fe6303e 2437
4a54c8c1
JS
2438 failrec->logical = logical;
2439 free_extent_map(em);
2440
2441 /* set the bits in the private failure tree */
2442 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2443 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2444 if (ret >= 0)
47dc196a 2445 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2446 /* set the bits in the inode's tree */
2447 if (ret >= 0)
ceeb0ae7 2448 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2449 if (ret < 0) {
2450 kfree(failrec);
2451 return ret;
2452 }
2453 } else {
ab8d0fc4
JM
2454 btrfs_debug(fs_info,
2455 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2456 failrec->logical, failrec->start, failrec->len,
2457 failrec->in_validation);
4a54c8c1
JS
2458 /*
2459 * when data can be on disk more than twice, add to failrec here
2460 * (e.g. with a list for failed_mirror) to make
2461 * clean_io_failure() clean all those errors at once.
2462 */
2463 }
2fe6303e
MX
2464
2465 *failrec_ret = failrec;
2466
2467 return 0;
2468}
2469
a0b60d72 2470bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2471 struct io_failure_record *failrec, int failed_mirror)
2472{
ab8d0fc4 2473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2474 int num_copies;
2475
ab8d0fc4 2476 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2477 if (num_copies == 1) {
2478 /*
2479 * we only have a single copy of the data, so don't bother with
2480 * all the retry and error correction code that follows. no
2481 * matter what the error is, it is very likely to persist.
2482 */
ab8d0fc4
JM
2483 btrfs_debug(fs_info,
2484 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2485 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2486 return false;
4a54c8c1
JS
2487 }
2488
4a54c8c1
JS
2489 /*
2490 * there are two premises:
2491 * a) deliver good data to the caller
2492 * b) correct the bad sectors on disk
2493 */
a0b60d72 2494 if (failed_bio_pages > 1) {
4a54c8c1
JS
2495 /*
2496 * to fulfill b), we need to know the exact failing sectors, as
2497 * we don't want to rewrite any more than the failed ones. thus,
2498 * we need separate read requests for the failed bio
2499 *
2500 * if the following BUG_ON triggers, our validation request got
2501 * merged. we need separate requests for our algorithm to work.
2502 */
2503 BUG_ON(failrec->in_validation);
2504 failrec->in_validation = 1;
2505 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2506 } else {
2507 /*
2508 * we're ready to fulfill a) and b) alongside. get a good copy
2509 * of the failed sector and if we succeed, we have setup
2510 * everything for repair_io_failure to do the rest for us.
2511 */
2512 if (failrec->in_validation) {
2513 BUG_ON(failrec->this_mirror != failed_mirror);
2514 failrec->in_validation = 0;
2515 failrec->this_mirror = 0;
2516 }
2517 failrec->failed_mirror = failed_mirror;
2518 failrec->this_mirror++;
2519 if (failrec->this_mirror == failed_mirror)
2520 failrec->this_mirror++;
4a54c8c1
JS
2521 }
2522
facc8a22 2523 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2524 btrfs_debug(fs_info,
2525 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2526 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2527 return false;
4a54c8c1
JS
2528 }
2529
c3cfb656 2530 return true;
2fe6303e
MX
2531}
2532
2533
2534struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2535 struct io_failure_record *failrec,
2536 struct page *page, int pg_offset, int icsum,
8b110e39 2537 bio_end_io_t *endio_func, void *data)
2fe6303e 2538{
0b246afa 2539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2540 struct bio *bio;
2541 struct btrfs_io_bio *btrfs_failed_bio;
2542 struct btrfs_io_bio *btrfs_bio;
2543
c5e4c3d7 2544 bio = btrfs_io_bio_alloc(1);
2fe6303e 2545 bio->bi_end_io = endio_func;
4f024f37 2546 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2547 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2548 bio->bi_iter.bi_size = 0;
8b110e39 2549 bio->bi_private = data;
4a54c8c1 2550
facc8a22
MX
2551 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2552 if (btrfs_failed_bio->csum) {
facc8a22
MX
2553 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2554
2555 btrfs_bio = btrfs_io_bio(bio);
2556 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2557 icsum *= csum_size;
2558 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2559 csum_size);
2560 }
2561
2fe6303e
MX
2562 bio_add_page(bio, page, failrec->len, pg_offset);
2563
2564 return bio;
2565}
2566
2567/*
78e62c02
NB
2568 * This is a generic handler for readpage errors. If other copies exist, read
2569 * those and write back good data to the failed position. Does not investigate
2570 * in remapping the failed extent elsewhere, hoping the device will be smart
2571 * enough to do this as needed
2fe6303e 2572 */
2fe6303e
MX
2573static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2574 struct page *page, u64 start, u64 end,
2575 int failed_mirror)
2576{
2577 struct io_failure_record *failrec;
2578 struct inode *inode = page->mapping->host;
2579 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2580 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2581 struct bio *bio;
70fd7614 2582 int read_mode = 0;
4e4cbee9 2583 blk_status_t status;
2fe6303e 2584 int ret;
8a2ee44a 2585 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2586
1f7ad75b 2587 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2588
2589 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2590 if (ret)
2591 return ret;
2592
a0b60d72 2593 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2594 failed_mirror)) {
7870d082 2595 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2596 return -EIO;
2597 }
2598
a0b60d72 2599 if (failed_bio_pages > 1)
70fd7614 2600 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2601
2602 phy_offset >>= inode->i_sb->s_blocksize_bits;
2603 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2604 start - page_offset(page),
8b110e39
MX
2605 (int)phy_offset, failed_bio->bi_end_io,
2606 NULL);
ebcc3263 2607 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2608
ab8d0fc4
JM
2609 btrfs_debug(btrfs_sb(inode->i_sb),
2610 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2611 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2612
8c27cb35 2613 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
50489a57 2614 failrec->bio_flags);
4e4cbee9 2615 if (status) {
7870d082 2616 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2617 bio_put(bio);
4e4cbee9 2618 ret = blk_status_to_errno(status);
6c387ab2
MX
2619 }
2620
013bd4c3 2621 return ret;
4a54c8c1
JS
2622}
2623
d1310b2e
CM
2624/* lots and lots of room for performance fixes in the end_bio funcs */
2625
b5227c07 2626void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2627{
2628 int uptodate = (err == 0);
3e2426bd 2629 int ret = 0;
87826df0 2630
c629732d 2631 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2632
87826df0 2633 if (!uptodate) {
87826df0
JM
2634 ClearPageUptodate(page);
2635 SetPageError(page);
bff5baf8 2636 ret = err < 0 ? err : -EIO;
5dca6eea 2637 mapping_set_error(page->mapping, ret);
87826df0 2638 }
87826df0
JM
2639}
2640
d1310b2e
CM
2641/*
2642 * after a writepage IO is done, we need to:
2643 * clear the uptodate bits on error
2644 * clear the writeback bits in the extent tree for this IO
2645 * end_page_writeback if the page has no more pending IO
2646 *
2647 * Scheduling is not allowed, so the extent state tree is expected
2648 * to have one and only one object corresponding to this IO.
2649 */
4246a0b6 2650static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2651{
4e4cbee9 2652 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2653 struct bio_vec *bvec;
d1310b2e
CM
2654 u64 start;
2655 u64 end;
6dc4f100 2656 struct bvec_iter_all iter_all;
d1310b2e 2657
c09abff8 2658 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2659 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2660 struct page *page = bvec->bv_page;
0b246afa
JM
2661 struct inode *inode = page->mapping->host;
2662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2663
17a5adcc
AO
2664 /* We always issue full-page reads, but if some block
2665 * in a page fails to read, blk_update_request() will
2666 * advance bv_offset and adjust bv_len to compensate.
2667 * Print a warning for nonzero offsets, and an error
2668 * if they don't add up to a full page. */
09cbfeaf
KS
2669 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2670 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2671 btrfs_err(fs_info,
efe120a0
FH
2672 "partial page write in btrfs with offset %u and length %u",
2673 bvec->bv_offset, bvec->bv_len);
2674 else
0b246afa 2675 btrfs_info(fs_info,
5d163e0e 2676 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2677 bvec->bv_offset, bvec->bv_len);
2678 }
d1310b2e 2679
17a5adcc
AO
2680 start = page_offset(page);
2681 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2682
4e4cbee9 2683 end_extent_writepage(page, error, start, end);
17a5adcc 2684 end_page_writeback(page);
2c30c71b 2685 }
2b1f55b0 2686
d1310b2e 2687 bio_put(bio);
d1310b2e
CM
2688}
2689
883d0de4
MX
2690static void
2691endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2692 int uptodate)
2693{
2694 struct extent_state *cached = NULL;
2695 u64 end = start + len - 1;
2696
2697 if (uptodate && tree->track_uptodate)
2698 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2699 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2700}
2701
d1310b2e
CM
2702/*
2703 * after a readpage IO is done, we need to:
2704 * clear the uptodate bits on error
2705 * set the uptodate bits if things worked
2706 * set the page up to date if all extents in the tree are uptodate
2707 * clear the lock bit in the extent tree
2708 * unlock the page if there are no other extents locked for it
2709 *
2710 * Scheduling is not allowed, so the extent state tree is expected
2711 * to have one and only one object corresponding to this IO.
2712 */
4246a0b6 2713static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2714{
2c30c71b 2715 struct bio_vec *bvec;
4e4cbee9 2716 int uptodate = !bio->bi_status;
facc8a22 2717 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2718 struct extent_io_tree *tree, *failure_tree;
facc8a22 2719 u64 offset = 0;
d1310b2e
CM
2720 u64 start;
2721 u64 end;
facc8a22 2722 u64 len;
883d0de4
MX
2723 u64 extent_start = 0;
2724 u64 extent_len = 0;
5cf1ab56 2725 int mirror;
d1310b2e 2726 int ret;
6dc4f100 2727 struct bvec_iter_all iter_all;
d1310b2e 2728
c09abff8 2729 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2730 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2731 struct page *page = bvec->bv_page;
a71754fc 2732 struct inode *inode = page->mapping->host;
ab8d0fc4 2733 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2734 bool data_inode = btrfs_ino(BTRFS_I(inode))
2735 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2736
ab8d0fc4
JM
2737 btrfs_debug(fs_info,
2738 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2739 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2740 io_bio->mirror_num);
a71754fc 2741 tree = &BTRFS_I(inode)->io_tree;
7870d082 2742 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2743
17a5adcc
AO
2744 /* We always issue full-page reads, but if some block
2745 * in a page fails to read, blk_update_request() will
2746 * advance bv_offset and adjust bv_len to compensate.
2747 * Print a warning for nonzero offsets, and an error
2748 * if they don't add up to a full page. */
09cbfeaf
KS
2749 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2750 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2751 btrfs_err(fs_info,
2752 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2753 bvec->bv_offset, bvec->bv_len);
2754 else
ab8d0fc4
JM
2755 btrfs_info(fs_info,
2756 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2757 bvec->bv_offset, bvec->bv_len);
2758 }
d1310b2e 2759
17a5adcc
AO
2760 start = page_offset(page);
2761 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2762 len = bvec->bv_len;
d1310b2e 2763
9be3395b 2764 mirror = io_bio->mirror_num;
78e62c02 2765 if (likely(uptodate)) {
facc8a22
MX
2766 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2767 page, start, end,
2768 mirror);
5ee0844d 2769 if (ret)
d1310b2e 2770 uptodate = 0;
5ee0844d 2771 else
7870d082
JB
2772 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2773 failure_tree, tree, start,
2774 page,
2775 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2776 }
ea466794 2777
f2a09da9
MX
2778 if (likely(uptodate))
2779 goto readpage_ok;
2780
78e62c02 2781 if (data_inode) {
9d0d1c8b 2782
f4a8e656 2783 /*
78e62c02
NB
2784 * The generic bio_readpage_error handles errors the
2785 * following way: If possible, new read requests are
2786 * created and submitted and will end up in
2787 * end_bio_extent_readpage as well (if we're lucky,
2788 * not in the !uptodate case). In that case it returns
2789 * 0 and we just go on with the next page in our bio.
2790 * If it can't handle the error it will return -EIO and
2791 * we remain responsible for that page.
f4a8e656 2792 */
78e62c02
NB
2793 ret = bio_readpage_error(bio, offset, page, start, end,
2794 mirror);
2795 if (ret == 0) {
2796 uptodate = !bio->bi_status;
2797 offset += len;
2798 continue;
2799 }
2800 } else {
2801 struct extent_buffer *eb;
2802
2803 eb = (struct extent_buffer *)page->private;
2804 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2805 eb->read_mirror = mirror;
2806 atomic_dec(&eb->io_pages);
2807 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2808 &eb->bflags))
2809 btree_readahead_hook(eb, -EIO);
7e38326f 2810 }
f2a09da9 2811readpage_ok:
883d0de4 2812 if (likely(uptodate)) {
a71754fc 2813 loff_t i_size = i_size_read(inode);
09cbfeaf 2814 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2815 unsigned off;
a71754fc
JB
2816
2817 /* Zero out the end if this page straddles i_size */
7073017a 2818 off = offset_in_page(i_size);
a583c026 2819 if (page->index == end_index && off)
09cbfeaf 2820 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2821 SetPageUptodate(page);
70dec807 2822 } else {
17a5adcc
AO
2823 ClearPageUptodate(page);
2824 SetPageError(page);
70dec807 2825 }
17a5adcc 2826 unlock_page(page);
facc8a22 2827 offset += len;
883d0de4
MX
2828
2829 if (unlikely(!uptodate)) {
2830 if (extent_len) {
2831 endio_readpage_release_extent(tree,
2832 extent_start,
2833 extent_len, 1);
2834 extent_start = 0;
2835 extent_len = 0;
2836 }
2837 endio_readpage_release_extent(tree, start,
2838 end - start + 1, 0);
2839 } else if (!extent_len) {
2840 extent_start = start;
2841 extent_len = end + 1 - start;
2842 } else if (extent_start + extent_len == start) {
2843 extent_len += end + 1 - start;
2844 } else {
2845 endio_readpage_release_extent(tree, extent_start,
2846 extent_len, uptodate);
2847 extent_start = start;
2848 extent_len = end + 1 - start;
2849 }
2c30c71b 2850 }
d1310b2e 2851
883d0de4
MX
2852 if (extent_len)
2853 endio_readpage_release_extent(tree, extent_start, extent_len,
2854 uptodate);
b3a0dd50 2855 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2856 bio_put(bio);
d1310b2e
CM
2857}
2858
9be3395b 2859/*
184f999e
DS
2860 * Initialize the members up to but not including 'bio'. Use after allocating a
2861 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2862 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2863 */
184f999e 2864static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2865{
184f999e
DS
2866 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2867}
d1310b2e 2868
9be3395b 2869/*
6e707bcd
DS
2870 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2871 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2872 * for the appropriate container_of magic
9be3395b 2873 */
e749af44 2874struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2875{
2876 struct bio *bio;
d1310b2e 2877
8ac9f7c1 2878 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2879 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2880 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2881 return bio;
2882}
2883
8b6c1d56 2884struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2885{
23ea8e5a
MX
2886 struct btrfs_io_bio *btrfs_bio;
2887 struct bio *new;
9be3395b 2888
6e707bcd 2889 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2890 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2891 btrfs_bio = btrfs_io_bio(new);
184f999e 2892 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2893 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2894 return new;
2895}
9be3395b 2896
c5e4c3d7 2897struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2898{
facc8a22
MX
2899 struct bio *bio;
2900
6e707bcd 2901 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2902 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2903 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2904 return bio;
9be3395b
CM
2905}
2906
e477094f 2907struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2908{
2909 struct bio *bio;
2910 struct btrfs_io_bio *btrfs_bio;
2911
2912 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2913 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2914 ASSERT(bio);
2915
2916 btrfs_bio = btrfs_io_bio(bio);
184f999e 2917 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2918
2919 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2920 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2921 return bio;
2922}
9be3395b 2923
4b81ba48
DS
2924/*
2925 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2926 * @tree: tree so we can call our merge_bio hook
2927 * @wbc: optional writeback control for io accounting
2928 * @page: page to add to the bio
2929 * @pg_offset: offset of the new bio or to check whether we are adding
2930 * a contiguous page to the previous one
2931 * @size: portion of page that we want to write
2932 * @offset: starting offset in the page
2933 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2934 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2935 * @end_io_func: end_io callback for new bio
2936 * @mirror_num: desired mirror to read/write
2937 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2938 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2939 */
2940static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2941 struct writeback_control *wbc,
6273b7f8 2942 struct page *page, u64 offset,
6c5a4e2c 2943 size_t size, unsigned long pg_offset,
d1310b2e
CM
2944 struct block_device *bdev,
2945 struct bio **bio_ret,
f188591e 2946 bio_end_io_t end_io_func,
c8b97818
CM
2947 int mirror_num,
2948 unsigned long prev_bio_flags,
005efedf
FM
2949 unsigned long bio_flags,
2950 bool force_bio_submit)
d1310b2e
CM
2951{
2952 int ret = 0;
2953 struct bio *bio;
09cbfeaf 2954 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2955 sector_t sector = offset >> 9;
d1310b2e 2956
5c2b1fd7
DS
2957 ASSERT(bio_ret);
2958
2959 if (*bio_ret) {
0c8508a6
DS
2960 bool contig;
2961 bool can_merge = true;
2962
d1310b2e 2963 bio = *bio_ret;
0c8508a6 2964 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2965 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2966 else
f73a1c7d 2967 contig = bio_end_sector(bio) == sector;
c8b97818 2968
da12fe54
NB
2969 ASSERT(tree->ops);
2970 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2971 can_merge = false;
2972
2973 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2974 force_bio_submit ||
6c5a4e2c 2975 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2976 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2977 if (ret < 0) {
2978 *bio_ret = NULL;
79787eaa 2979 return ret;
289454ad 2980 }
d1310b2e
CM
2981 bio = NULL;
2982 } else {
da2f0f74 2983 if (wbc)
34e51a5e 2984 wbc_account_cgroup_owner(wbc, page, page_size);
d1310b2e
CM
2985 return 0;
2986 }
2987 }
c8b97818 2988
e749af44
DS
2989 bio = btrfs_bio_alloc(offset);
2990 bio_set_dev(bio, bdev);
6c5a4e2c 2991 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2992 bio->bi_end_io = end_io_func;
2993 bio->bi_private = tree;
e6959b93 2994 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2995 bio->bi_opf = opf;
da2f0f74
CM
2996 if (wbc) {
2997 wbc_init_bio(wbc, bio);
34e51a5e 2998 wbc_account_cgroup_owner(wbc, page, page_size);
da2f0f74 2999 }
70dec807 3000
5c2b1fd7 3001 *bio_ret = bio;
d1310b2e
CM
3002
3003 return ret;
3004}
3005
48a3b636
ES
3006static void attach_extent_buffer_page(struct extent_buffer *eb,
3007 struct page *page)
d1310b2e
CM
3008{
3009 if (!PagePrivate(page)) {
3010 SetPagePrivate(page);
09cbfeaf 3011 get_page(page);
4f2de97a
JB
3012 set_page_private(page, (unsigned long)eb);
3013 } else {
3014 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3015 }
3016}
3017
4f2de97a 3018void set_page_extent_mapped(struct page *page)
d1310b2e 3019{
4f2de97a
JB
3020 if (!PagePrivate(page)) {
3021 SetPagePrivate(page);
09cbfeaf 3022 get_page(page);
4f2de97a
JB
3023 set_page_private(page, EXTENT_PAGE_PRIVATE);
3024 }
d1310b2e
CM
3025}
3026
125bac01
MX
3027static struct extent_map *
3028__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3029 u64 start, u64 len, get_extent_t *get_extent,
3030 struct extent_map **em_cached)
3031{
3032 struct extent_map *em;
3033
3034 if (em_cached && *em_cached) {
3035 em = *em_cached;
cbc0e928 3036 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3037 start < extent_map_end(em)) {
490b54d6 3038 refcount_inc(&em->refs);
125bac01
MX
3039 return em;
3040 }
3041
3042 free_extent_map(em);
3043 *em_cached = NULL;
3044 }
3045
fc4f21b1 3046 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
3047 if (em_cached && !IS_ERR_OR_NULL(em)) {
3048 BUG_ON(*em_cached);
490b54d6 3049 refcount_inc(&em->refs);
125bac01
MX
3050 *em_cached = em;
3051 }
3052 return em;
3053}
d1310b2e
CM
3054/*
3055 * basic readpage implementation. Locked extent state structs are inserted
3056 * into the tree that are removed when the IO is done (by the end_io
3057 * handlers)
79787eaa 3058 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3059 * return 0 on success, otherwise return error
d1310b2e 3060 */
9974090b
MX
3061static int __do_readpage(struct extent_io_tree *tree,
3062 struct page *page,
3063 get_extent_t *get_extent,
125bac01 3064 struct extent_map **em_cached,
9974090b 3065 struct bio **bio, int mirror_num,
f1c77c55 3066 unsigned long *bio_flags, unsigned int read_flags,
005efedf 3067 u64 *prev_em_start)
d1310b2e
CM
3068{
3069 struct inode *inode = page->mapping->host;
4eee4fa4 3070 u64 start = page_offset(page);
8eec8296 3071 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3072 u64 cur = start;
3073 u64 extent_offset;
3074 u64 last_byte = i_size_read(inode);
3075 u64 block_start;
3076 u64 cur_end;
d1310b2e
CM
3077 struct extent_map *em;
3078 struct block_device *bdev;
baf863b9 3079 int ret = 0;
d1310b2e 3080 int nr = 0;
306e16ce 3081 size_t pg_offset = 0;
d1310b2e 3082 size_t iosize;
c8b97818 3083 size_t disk_io_size;
d1310b2e 3084 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3085 unsigned long this_bio_flag = 0;
d1310b2e
CM
3086
3087 set_page_extent_mapped(page);
3088
90a887c9
DM
3089 if (!PageUptodate(page)) {
3090 if (cleancache_get_page(page) == 0) {
3091 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3092 unlock_extent(tree, start, end);
90a887c9
DM
3093 goto out;
3094 }
3095 }
3096
09cbfeaf 3097 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3098 char *userpage;
7073017a 3099 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3100
3101 if (zero_offset) {
09cbfeaf 3102 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3103 userpage = kmap_atomic(page);
c8b97818
CM
3104 memset(userpage + zero_offset, 0, iosize);
3105 flush_dcache_page(page);
7ac687d9 3106 kunmap_atomic(userpage);
c8b97818
CM
3107 }
3108 }
d1310b2e 3109 while (cur <= end) {
005efedf 3110 bool force_bio_submit = false;
6273b7f8 3111 u64 offset;
c8f2f24b 3112
d1310b2e
CM
3113 if (cur >= last_byte) {
3114 char *userpage;
507903b8
AJ
3115 struct extent_state *cached = NULL;
3116
09cbfeaf 3117 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3118 userpage = kmap_atomic(page);
306e16ce 3119 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3120 flush_dcache_page(page);
7ac687d9 3121 kunmap_atomic(userpage);
d1310b2e 3122 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3123 &cached, GFP_NOFS);
7f042a83 3124 unlock_extent_cached(tree, cur,
e43bbe5e 3125 cur + iosize - 1, &cached);
d1310b2e
CM
3126 break;
3127 }
125bac01
MX
3128 em = __get_extent_map(inode, page, pg_offset, cur,
3129 end - cur + 1, get_extent, em_cached);
c704005d 3130 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3131 SetPageError(page);
7f042a83 3132 unlock_extent(tree, cur, end);
d1310b2e
CM
3133 break;
3134 }
d1310b2e
CM
3135 extent_offset = cur - em->start;
3136 BUG_ON(extent_map_end(em) <= cur);
3137 BUG_ON(end < cur);
3138
261507a0 3139 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3140 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3141 extent_set_compress_type(&this_bio_flag,
3142 em->compress_type);
3143 }
c8b97818 3144
d1310b2e
CM
3145 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3146 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3147 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3148 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3149 disk_io_size = em->block_len;
6273b7f8 3150 offset = em->block_start;
c8b97818 3151 } else {
6273b7f8 3152 offset = em->block_start + extent_offset;
c8b97818
CM
3153 disk_io_size = iosize;
3154 }
d1310b2e
CM
3155 bdev = em->bdev;
3156 block_start = em->block_start;
d899e052
YZ
3157 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3158 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3159
3160 /*
3161 * If we have a file range that points to a compressed extent
3162 * and it's followed by a consecutive file range that points to
3163 * to the same compressed extent (possibly with a different
3164 * offset and/or length, so it either points to the whole extent
3165 * or only part of it), we must make sure we do not submit a
3166 * single bio to populate the pages for the 2 ranges because
3167 * this makes the compressed extent read zero out the pages
3168 * belonging to the 2nd range. Imagine the following scenario:
3169 *
3170 * File layout
3171 * [0 - 8K] [8K - 24K]
3172 * | |
3173 * | |
3174 * points to extent X, points to extent X,
3175 * offset 4K, length of 8K offset 0, length 16K
3176 *
3177 * [extent X, compressed length = 4K uncompressed length = 16K]
3178 *
3179 * If the bio to read the compressed extent covers both ranges,
3180 * it will decompress extent X into the pages belonging to the
3181 * first range and then it will stop, zeroing out the remaining
3182 * pages that belong to the other range that points to extent X.
3183 * So here we make sure we submit 2 bios, one for the first
3184 * range and another one for the third range. Both will target
3185 * the same physical extent from disk, but we can't currently
3186 * make the compressed bio endio callback populate the pages
3187 * for both ranges because each compressed bio is tightly
3188 * coupled with a single extent map, and each range can have
3189 * an extent map with a different offset value relative to the
3190 * uncompressed data of our extent and different lengths. This
3191 * is a corner case so we prioritize correctness over
3192 * non-optimal behavior (submitting 2 bios for the same extent).
3193 */
3194 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3195 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3196 *prev_em_start != em->start)
005efedf
FM
3197 force_bio_submit = true;
3198
3199 if (prev_em_start)
8e928218 3200 *prev_em_start = em->start;
005efedf 3201
d1310b2e
CM
3202 free_extent_map(em);
3203 em = NULL;
3204
3205 /* we've found a hole, just zero and go on */
3206 if (block_start == EXTENT_MAP_HOLE) {
3207 char *userpage;
507903b8
AJ
3208 struct extent_state *cached = NULL;
3209
7ac687d9 3210 userpage = kmap_atomic(page);
306e16ce 3211 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3212 flush_dcache_page(page);
7ac687d9 3213 kunmap_atomic(userpage);
d1310b2e
CM
3214
3215 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3216 &cached, GFP_NOFS);
7f042a83 3217 unlock_extent_cached(tree, cur,
e43bbe5e 3218 cur + iosize - 1, &cached);
d1310b2e 3219 cur = cur + iosize;
306e16ce 3220 pg_offset += iosize;
d1310b2e
CM
3221 continue;
3222 }
3223 /* the get_extent function already copied into the page */
9655d298
CM
3224 if (test_range_bit(tree, cur, cur_end,
3225 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3226 check_page_uptodate(tree, page);
7f042a83 3227 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3228 cur = cur + iosize;
306e16ce 3229 pg_offset += iosize;
d1310b2e
CM
3230 continue;
3231 }
70dec807
CM
3232 /* we have an inline extent but it didn't get marked up
3233 * to date. Error out
3234 */
3235 if (block_start == EXTENT_MAP_INLINE) {
3236 SetPageError(page);
7f042a83 3237 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3238 cur = cur + iosize;
306e16ce 3239 pg_offset += iosize;
70dec807
CM
3240 continue;
3241 }
d1310b2e 3242
4b81ba48 3243 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3244 page, offset, disk_io_size,
3245 pg_offset, bdev, bio,
c8b97818
CM
3246 end_bio_extent_readpage, mirror_num,
3247 *bio_flags,
005efedf
FM
3248 this_bio_flag,
3249 force_bio_submit);
c8f2f24b
JB
3250 if (!ret) {
3251 nr++;
3252 *bio_flags = this_bio_flag;
3253 } else {
d1310b2e 3254 SetPageError(page);
7f042a83 3255 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3256 goto out;
edd33c99 3257 }
d1310b2e 3258 cur = cur + iosize;
306e16ce 3259 pg_offset += iosize;
d1310b2e 3260 }
90a887c9 3261out:
d1310b2e
CM
3262 if (!nr) {
3263 if (!PageError(page))
3264 SetPageUptodate(page);
3265 unlock_page(page);
3266 }
baf863b9 3267 return ret;
d1310b2e
CM
3268}
3269
e65ef21e 3270static inline void contiguous_readpages(struct extent_io_tree *tree,
9974090b
MX
3271 struct page *pages[], int nr_pages,
3272 u64 start, u64 end,
125bac01 3273 struct extent_map **em_cached,
d3fac6ba 3274 struct bio **bio,
1f7ad75b 3275 unsigned long *bio_flags,
808f80b4 3276 u64 *prev_em_start)
9974090b 3277{
23d31bd4 3278 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3279 int index;
3280
23d31bd4 3281 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
9974090b
MX
3282
3283 for (index = 0; index < nr_pages; index++) {
4ef77695 3284 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3285 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3286 put_page(pages[index]);
9974090b
MX
3287 }
3288}
3289
9974090b
MX
3290static int __extent_read_full_page(struct extent_io_tree *tree,
3291 struct page *page,
3292 get_extent_t *get_extent,
3293 struct bio **bio, int mirror_num,
f1c77c55
DS
3294 unsigned long *bio_flags,
3295 unsigned int read_flags)
9974090b 3296{
23d31bd4 3297 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
9974090b 3298 u64 start = page_offset(page);
09cbfeaf 3299 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3300 int ret;
3301
23d31bd4 3302 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
9974090b 3303
125bac01 3304 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3305 bio_flags, read_flags, NULL);
9974090b
MX
3306 return ret;
3307}
3308
d1310b2e 3309int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3310 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3311{
3312 struct bio *bio = NULL;
c8b97818 3313 unsigned long bio_flags = 0;
d1310b2e
CM
3314 int ret;
3315
8ddc7d9c 3316 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3317 &bio_flags, 0);
d1310b2e 3318 if (bio)
1f7ad75b 3319 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3320 return ret;
3321}
d1310b2e 3322
3d4b9496 3323static void update_nr_written(struct writeback_control *wbc,
a9132667 3324 unsigned long nr_written)
11c8349b
CM
3325{
3326 wbc->nr_to_write -= nr_written;
11c8349b
CM
3327}
3328
d1310b2e 3329/*
40f76580
CM
3330 * helper for __extent_writepage, doing all of the delayed allocation setup.
3331 *
5eaad97a 3332 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3333 * to write the page (copy into inline extent). In this case the IO has
3334 * been started and the page is already unlocked.
3335 *
3336 * This returns 0 if all went well (page still locked)
3337 * This returns < 0 if there were errors (page still locked)
d1310b2e 3338 */
40f76580 3339static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3340 struct page *page, struct writeback_control *wbc,
3341 u64 delalloc_start, unsigned long *nr_written)
40f76580 3342{
09cbfeaf 3343 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3344 bool found;
40f76580
CM
3345 u64 delalloc_to_write = 0;
3346 u64 delalloc_end = 0;
3347 int ret;
3348 int page_started = 0;
3349
40f76580
CM
3350
3351 while (delalloc_end < page_end) {
9978059b 3352 found = find_lock_delalloc_range(inode, page,
40f76580 3353 &delalloc_start,
917aacec 3354 &delalloc_end);
3522e903 3355 if (!found) {
40f76580
CM
3356 delalloc_start = delalloc_end + 1;
3357 continue;
3358 }
5eaad97a
NB
3359 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3360 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3361 if (ret) {
3362 SetPageError(page);
5eaad97a
NB
3363 /*
3364 * btrfs_run_delalloc_range should return < 0 for error
3365 * but just in case, we use > 0 here meaning the IO is
3366 * started, so we don't want to return > 0 unless
3367 * things are going well.
40f76580
CM
3368 */
3369 ret = ret < 0 ? ret : -EIO;
3370 goto done;
3371 }
3372 /*
ea1754a0
KS
3373 * delalloc_end is already one less than the total length, so
3374 * we don't subtract one from PAGE_SIZE
40f76580
CM
3375 */
3376 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3377 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3378 delalloc_start = delalloc_end + 1;
3379 }
3380 if (wbc->nr_to_write < delalloc_to_write) {
3381 int thresh = 8192;
3382
3383 if (delalloc_to_write < thresh * 2)
3384 thresh = delalloc_to_write;
3385 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3386 thresh);
3387 }
3388
3389 /* did the fill delalloc function already unlock and start
3390 * the IO?
3391 */
3392 if (page_started) {
3393 /*
3394 * we've unlocked the page, so we can't update
3395 * the mapping's writeback index, just update
3396 * nr_to_write.
3397 */
3398 wbc->nr_to_write -= *nr_written;
3399 return 1;
3400 }
3401
3402 ret = 0;
3403
3404done:
3405 return ret;
3406}
3407
3408/*
3409 * helper for __extent_writepage. This calls the writepage start hooks,
3410 * and does the loop to map the page into extents and bios.
3411 *
3412 * We return 1 if the IO is started and the page is unlocked,
3413 * 0 if all went well (page still locked)
3414 * < 0 if there were errors (page still locked)
3415 */
3416static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3417 struct page *page,
3418 struct writeback_control *wbc,
3419 struct extent_page_data *epd,
3420 loff_t i_size,
3421 unsigned long nr_written,
f1c77c55 3422 unsigned int write_flags, int *nr_ret)
d1310b2e 3423{
d1310b2e 3424 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3425 u64 start = page_offset(page);
09cbfeaf 3426 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3427 u64 end;
3428 u64 cur = start;
3429 u64 extent_offset;
d1310b2e
CM
3430 u64 block_start;
3431 u64 iosize;
d1310b2e
CM
3432 struct extent_map *em;
3433 struct block_device *bdev;
7f3c74fb 3434 size_t pg_offset = 0;
d1310b2e 3435 size_t blocksize;
40f76580
CM
3436 int ret = 0;
3437 int nr = 0;
3438 bool compressed;
c8b97818 3439
d75855b4
NB
3440 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3441 if (ret) {
3442 /* Fixup worker will requeue */
3443 if (ret == -EBUSY)
3444 wbc->pages_skipped++;
3445 else
3446 redirty_page_for_writepage(wbc, page);
40f76580 3447
d75855b4
NB
3448 update_nr_written(wbc, nr_written);
3449 unlock_page(page);
3450 return 1;
247e743c
CM
3451 }
3452
11c8349b
CM
3453 /*
3454 * we don't want to touch the inode after unlocking the page,
3455 * so we update the mapping writeback index now
3456 */
3d4b9496 3457 update_nr_written(wbc, nr_written + 1);
771ed689 3458
d1310b2e 3459 end = page_end;
40f76580 3460 if (i_size <= start) {
c629732d 3461 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3462 goto done;
3463 }
3464
d1310b2e
CM
3465 blocksize = inode->i_sb->s_blocksize;
3466
3467 while (cur <= end) {
40f76580 3468 u64 em_end;
6273b7f8 3469 u64 offset;
58409edd 3470
40f76580 3471 if (cur >= i_size) {
7087a9d8 3472 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3473 page_end, 1);
d1310b2e
CM
3474 break;
3475 }
3c98c62f 3476 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3477 end - cur + 1, 1);
c704005d 3478 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3479 SetPageError(page);
61391d56 3480 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3481 break;
3482 }
3483
3484 extent_offset = cur - em->start;
40f76580
CM
3485 em_end = extent_map_end(em);
3486 BUG_ON(em_end <= cur);
d1310b2e 3487 BUG_ON(end < cur);
40f76580 3488 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3489 iosize = ALIGN(iosize, blocksize);
6273b7f8 3490 offset = em->block_start + extent_offset;
d1310b2e
CM
3491 bdev = em->bdev;
3492 block_start = em->block_start;
c8b97818 3493 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3494 free_extent_map(em);
3495 em = NULL;
3496
c8b97818
CM
3497 /*
3498 * compressed and inline extents are written through other
3499 * paths in the FS
3500 */
3501 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3502 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3503 /*
3504 * end_io notification does not happen here for
3505 * compressed extents
3506 */
7087a9d8
NB
3507 if (!compressed)
3508 btrfs_writepage_endio_finish_ordered(page, cur,
3509 cur + iosize - 1,
c629732d 3510 1);
c8b97818
CM
3511 else if (compressed) {
3512 /* we don't want to end_page_writeback on
3513 * a compressed extent. this happens
3514 * elsewhere
3515 */
3516 nr++;
3517 }
3518
3519 cur += iosize;
7f3c74fb 3520 pg_offset += iosize;
d1310b2e
CM
3521 continue;
3522 }
c8b97818 3523
5cdc84bf 3524 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3525 if (!PageWriteback(page)) {
3526 btrfs_err(BTRFS_I(inode)->root->fs_info,
3527 "page %lu not writeback, cur %llu end %llu",
3528 page->index, cur, end);
d1310b2e 3529 }
7f3c74fb 3530
4b81ba48 3531 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3532 page, offset, iosize, pg_offset,
c2df8bb4 3533 bdev, &epd->bio,
58409edd
DS
3534 end_bio_extent_writepage,
3535 0, 0, 0, false);
fe01aa65 3536 if (ret) {
58409edd 3537 SetPageError(page);
fe01aa65
TK
3538 if (PageWriteback(page))
3539 end_page_writeback(page);
3540 }
d1310b2e 3541
d1310b2e 3542 cur = cur + iosize;
7f3c74fb 3543 pg_offset += iosize;
d1310b2e
CM
3544 nr++;
3545 }
40f76580
CM
3546done:
3547 *nr_ret = nr;
40f76580
CM
3548 return ret;
3549}
3550
3551/*
3552 * the writepage semantics are similar to regular writepage. extent
3553 * records are inserted to lock ranges in the tree, and as dirty areas
3554 * are found, they are marked writeback. Then the lock bits are removed
3555 * and the end_io handler clears the writeback ranges
3065976b
QW
3556 *
3557 * Return 0 if everything goes well.
3558 * Return <0 for error.
40f76580
CM
3559 */
3560static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3561 struct extent_page_data *epd)
40f76580
CM
3562{
3563 struct inode *inode = page->mapping->host;
40f76580 3564 u64 start = page_offset(page);
09cbfeaf 3565 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3566 int ret;
3567 int nr = 0;
3568 size_t pg_offset = 0;
3569 loff_t i_size = i_size_read(inode);
09cbfeaf 3570 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3571 unsigned int write_flags = 0;
40f76580
CM
3572 unsigned long nr_written = 0;
3573
ff40adf7 3574 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3575
3576 trace___extent_writepage(page, inode, wbc);
3577
3578 WARN_ON(!PageLocked(page));
3579
3580 ClearPageError(page);
3581
7073017a 3582 pg_offset = offset_in_page(i_size);
40f76580
CM
3583 if (page->index > end_index ||
3584 (page->index == end_index && !pg_offset)) {
09cbfeaf 3585 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3586 unlock_page(page);
3587 return 0;
3588 }
3589
3590 if (page->index == end_index) {
3591 char *userpage;
3592
3593 userpage = kmap_atomic(page);
3594 memset(userpage + pg_offset, 0,
09cbfeaf 3595 PAGE_SIZE - pg_offset);
40f76580
CM
3596 kunmap_atomic(userpage);
3597 flush_dcache_page(page);
3598 }
3599
3600 pg_offset = 0;
3601
3602 set_page_extent_mapped(page);
3603
7789a55a 3604 if (!epd->extent_locked) {
8cc0237a 3605 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3606 if (ret == 1)
3607 goto done_unlocked;
3608 if (ret)
3609 goto done;
3610 }
40f76580
CM
3611
3612 ret = __extent_writepage_io(inode, page, wbc, epd,
3613 i_size, nr_written, write_flags, &nr);
3614 if (ret == 1)
3615 goto done_unlocked;
3616
d1310b2e
CM
3617done:
3618 if (nr == 0) {
3619 /* make sure the mapping tag for page dirty gets cleared */
3620 set_page_writeback(page);
3621 end_page_writeback(page);
3622 }
61391d56
FM
3623 if (PageError(page)) {
3624 ret = ret < 0 ? ret : -EIO;
3625 end_extent_writepage(page, ret, start, page_end);
3626 }
d1310b2e 3627 unlock_page(page);
3065976b 3628 ASSERT(ret <= 0);
40f76580 3629 return ret;
771ed689 3630
11c8349b 3631done_unlocked:
d1310b2e
CM
3632 return 0;
3633}
3634
fd8b2b61 3635void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3636{
74316201
N
3637 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3638 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3639}
3640
18dfa711
FM
3641static void end_extent_buffer_writeback(struct extent_buffer *eb)
3642{
3643 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3644 smp_mb__after_atomic();
3645 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3646}
3647
2e3c2513
QW
3648/*
3649 * Lock eb pages and flush the bio if we can't the locks
3650 *
3651 * Return 0 if nothing went wrong
3652 * Return >0 is same as 0, except bio is not submitted
3653 * Return <0 if something went wrong, no page is locked
3654 */
9df76fb5 3655static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3656 struct extent_page_data *epd)
0b32f4bb 3657{
9df76fb5 3658 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3659 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3660 int flush = 0;
3661 int ret = 0;
3662
3663 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3664 ret = flush_write_bio(epd);
2e3c2513
QW
3665 if (ret < 0)
3666 return ret;
3667 flush = 1;
0b32f4bb
JB
3668 btrfs_tree_lock(eb);
3669 }
3670
3671 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3672 btrfs_tree_unlock(eb);
3673 if (!epd->sync_io)
3674 return 0;
3675 if (!flush) {
f4340622 3676 ret = flush_write_bio(epd);
2e3c2513
QW
3677 if (ret < 0)
3678 return ret;
0b32f4bb
JB
3679 flush = 1;
3680 }
a098d8e8
CM
3681 while (1) {
3682 wait_on_extent_buffer_writeback(eb);
3683 btrfs_tree_lock(eb);
3684 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3685 break;
0b32f4bb 3686 btrfs_tree_unlock(eb);
0b32f4bb
JB
3687 }
3688 }
3689
51561ffe
JB
3690 /*
3691 * We need to do this to prevent races in people who check if the eb is
3692 * under IO since we can end up having no IO bits set for a short period
3693 * of time.
3694 */
3695 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3696 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3697 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3698 spin_unlock(&eb->refs_lock);
0b32f4bb 3699 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3700 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3701 -eb->len,
3702 fs_info->dirty_metadata_batch);
0b32f4bb 3703 ret = 1;
51561ffe
JB
3704 } else {
3705 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3706 }
3707
3708 btrfs_tree_unlock(eb);
3709
3710 if (!ret)
3711 return ret;
3712
65ad0104 3713 num_pages = num_extent_pages(eb);
0b32f4bb 3714 for (i = 0; i < num_pages; i++) {
fb85fc9a 3715 struct page *p = eb->pages[i];
0b32f4bb
JB
3716
3717 if (!trylock_page(p)) {
3718 if (!flush) {
18dfa711
FM
3719 int err;
3720
3721 err = flush_write_bio(epd);
3722 if (err < 0) {
3723 ret = err;
2e3c2513
QW
3724 failed_page_nr = i;
3725 goto err_unlock;
3726 }
0b32f4bb
JB
3727 flush = 1;
3728 }
3729 lock_page(p);
3730 }
3731 }
3732
3733 return ret;
2e3c2513
QW
3734err_unlock:
3735 /* Unlock already locked pages */
3736 for (i = 0; i < failed_page_nr; i++)
3737 unlock_page(eb->pages[i]);
18dfa711
FM
3738 /*
3739 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3740 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3741 * be made and undo everything done before.
3742 */
3743 btrfs_tree_lock(eb);
3744 spin_lock(&eb->refs_lock);
3745 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3746 end_extent_buffer_writeback(eb);
3747 spin_unlock(&eb->refs_lock);
3748 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3749 fs_info->dirty_metadata_batch);
3750 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3751 btrfs_tree_unlock(eb);
2e3c2513 3752 return ret;
0b32f4bb
JB
3753}
3754
656f30db
FM
3755static void set_btree_ioerr(struct page *page)
3756{
3757 struct extent_buffer *eb = (struct extent_buffer *)page->private;
eb5b64f1 3758 struct btrfs_fs_info *fs_info;
656f30db
FM
3759
3760 SetPageError(page);
3761 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3762 return;
3763
eb5b64f1
DZ
3764 /*
3765 * If we error out, we should add back the dirty_metadata_bytes
3766 * to make it consistent.
3767 */
3768 fs_info = eb->fs_info;
3769 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3770 eb->len, fs_info->dirty_metadata_batch);
3771
656f30db
FM
3772 /*
3773 * If writeback for a btree extent that doesn't belong to a log tree
3774 * failed, increment the counter transaction->eb_write_errors.
3775 * We do this because while the transaction is running and before it's
3776 * committing (when we call filemap_fdata[write|wait]_range against
3777 * the btree inode), we might have
3778 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3779 * returns an error or an error happens during writeback, when we're
3780 * committing the transaction we wouldn't know about it, since the pages
3781 * can be no longer dirty nor marked anymore for writeback (if a
3782 * subsequent modification to the extent buffer didn't happen before the
3783 * transaction commit), which makes filemap_fdata[write|wait]_range not
3784 * able to find the pages tagged with SetPageError at transaction
3785 * commit time. So if this happens we must abort the transaction,
3786 * otherwise we commit a super block with btree roots that point to
3787 * btree nodes/leafs whose content on disk is invalid - either garbage
3788 * or the content of some node/leaf from a past generation that got
3789 * cowed or deleted and is no longer valid.
3790 *
3791 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3792 * not be enough - we need to distinguish between log tree extents vs
3793 * non-log tree extents, and the next filemap_fdatawait_range() call
3794 * will catch and clear such errors in the mapping - and that call might
3795 * be from a log sync and not from a transaction commit. Also, checking
3796 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3797 * not done and would not be reliable - the eb might have been released
3798 * from memory and reading it back again means that flag would not be
3799 * set (since it's a runtime flag, not persisted on disk).
3800 *
3801 * Using the flags below in the btree inode also makes us achieve the
3802 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3803 * writeback for all dirty pages and before filemap_fdatawait_range()
3804 * is called, the writeback for all dirty pages had already finished
3805 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3806 * filemap_fdatawait_range() would return success, as it could not know
3807 * that writeback errors happened (the pages were no longer tagged for
3808 * writeback).
3809 */
3810 switch (eb->log_index) {
3811 case -1:
afcdd129 3812 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3813 break;
3814 case 0:
afcdd129 3815 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3816 break;
3817 case 1:
afcdd129 3818 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3819 break;
3820 default:
3821 BUG(); /* unexpected, logic error */
3822 }
3823}
3824
4246a0b6 3825static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3826{
2c30c71b 3827 struct bio_vec *bvec;
0b32f4bb 3828 struct extent_buffer *eb;
2b070cfe 3829 int done;
6dc4f100 3830 struct bvec_iter_all iter_all;
0b32f4bb 3831
c09abff8 3832 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3833 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3834 struct page *page = bvec->bv_page;
3835
0b32f4bb
JB
3836 eb = (struct extent_buffer *)page->private;
3837 BUG_ON(!eb);
3838 done = atomic_dec_and_test(&eb->io_pages);
3839
4e4cbee9 3840 if (bio->bi_status ||
4246a0b6 3841 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3842 ClearPageUptodate(page);
656f30db 3843 set_btree_ioerr(page);
0b32f4bb
JB
3844 }
3845
3846 end_page_writeback(page);
3847
3848 if (!done)
3849 continue;
3850
3851 end_extent_buffer_writeback(eb);
2c30c71b 3852 }
0b32f4bb
JB
3853
3854 bio_put(bio);
0b32f4bb
JB
3855}
3856
0e378df1 3857static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3858 struct writeback_control *wbc,
3859 struct extent_page_data *epd)
3860{
0ab02063 3861 struct btrfs_fs_info *fs_info = eb->fs_info;
0b32f4bb 3862 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3863 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3864 u64 offset = eb->start;
851cd173 3865 u32 nritems;
cc5e31a4 3866 int i, num_pages;
851cd173 3867 unsigned long start, end;
ff40adf7 3868 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3869 int ret = 0;
0b32f4bb 3870
656f30db 3871 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3872 num_pages = num_extent_pages(eb);
0b32f4bb 3873 atomic_set(&eb->io_pages, num_pages);
de0022b9 3874
851cd173
LB
3875 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3876 nritems = btrfs_header_nritems(eb);
3eb548ee 3877 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3878 end = btrfs_node_key_ptr_offset(nritems);
3879
b159fa28 3880 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3881 } else {
3882 /*
3883 * leaf:
3884 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3885 */
3886 start = btrfs_item_nr_offset(nritems);
8f881e8c 3887 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3888 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3889 }
3890
0b32f4bb 3891 for (i = 0; i < num_pages; i++) {
fb85fc9a 3892 struct page *p = eb->pages[i];
0b32f4bb
JB
3893
3894 clear_page_dirty_for_io(p);
3895 set_page_writeback(p);
4b81ba48 3896 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3897 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3898 &epd->bio,
1f7ad75b 3899 end_bio_extent_buffer_writepage,
18fdc679 3900 0, 0, 0, false);
0b32f4bb 3901 if (ret) {
656f30db 3902 set_btree_ioerr(p);
fe01aa65
TK
3903 if (PageWriteback(p))
3904 end_page_writeback(p);
0b32f4bb
JB
3905 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3906 end_extent_buffer_writeback(eb);
3907 ret = -EIO;
3908 break;
3909 }
09cbfeaf 3910 offset += PAGE_SIZE;
3d4b9496 3911 update_nr_written(wbc, 1);
0b32f4bb
JB
3912 unlock_page(p);
3913 }
3914
3915 if (unlikely(ret)) {
3916 for (; i < num_pages; i++) {
bbf65cf0 3917 struct page *p = eb->pages[i];
81465028 3918 clear_page_dirty_for_io(p);
0b32f4bb
JB
3919 unlock_page(p);
3920 }
3921 }
3922
3923 return ret;
3924}
3925
3926int btree_write_cache_pages(struct address_space *mapping,
3927 struct writeback_control *wbc)
3928{
3929 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
0b32f4bb
JB
3930 struct extent_buffer *eb, *prev_eb = NULL;
3931 struct extent_page_data epd = {
3932 .bio = NULL,
3933 .tree = tree,
3934 .extent_locked = 0,
3935 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3936 };
3937 int ret = 0;
3938 int done = 0;
3939 int nr_to_write_done = 0;
3940 struct pagevec pvec;
3941 int nr_pages;
3942 pgoff_t index;
3943 pgoff_t end; /* Inclusive */
3944 int scanned = 0;
10bbd235 3945 xa_mark_t tag;
0b32f4bb 3946
86679820 3947 pagevec_init(&pvec);
0b32f4bb
JB
3948 if (wbc->range_cyclic) {
3949 index = mapping->writeback_index; /* Start from prev offset */
3950 end = -1;
3951 } else {
09cbfeaf
KS
3952 index = wbc->range_start >> PAGE_SHIFT;
3953 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3954 scanned = 1;
3955 }
3956 if (wbc->sync_mode == WB_SYNC_ALL)
3957 tag = PAGECACHE_TAG_TOWRITE;
3958 else
3959 tag = PAGECACHE_TAG_DIRTY;
3960retry:
3961 if (wbc->sync_mode == WB_SYNC_ALL)
3962 tag_pages_for_writeback(mapping, index, end);
3963 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3964 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3965 tag))) {
0b32f4bb
JB
3966 unsigned i;
3967
3968 scanned = 1;
3969 for (i = 0; i < nr_pages; i++) {
3970 struct page *page = pvec.pages[i];
3971
3972 if (!PagePrivate(page))
3973 continue;
3974
b5bae261
JB
3975 spin_lock(&mapping->private_lock);
3976 if (!PagePrivate(page)) {
3977 spin_unlock(&mapping->private_lock);
3978 continue;
3979 }
3980
0b32f4bb 3981 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3982
3983 /*
3984 * Shouldn't happen and normally this would be a BUG_ON
3985 * but no sense in crashing the users box for something
3986 * we can survive anyway.
3987 */
fae7f21c 3988 if (WARN_ON(!eb)) {
b5bae261 3989 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3990 continue;
3991 }
3992
b5bae261
JB
3993 if (eb == prev_eb) {
3994 spin_unlock(&mapping->private_lock);
0b32f4bb 3995 continue;
b5bae261 3996 }
0b32f4bb 3997
b5bae261
JB
3998 ret = atomic_inc_not_zero(&eb->refs);
3999 spin_unlock(&mapping->private_lock);
4000 if (!ret)
0b32f4bb 4001 continue;
0b32f4bb
JB
4002
4003 prev_eb = eb;
9df76fb5 4004 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
4005 if (!ret) {
4006 free_extent_buffer(eb);
4007 continue;
0607eb1d
FM
4008 } else if (ret < 0) {
4009 done = 1;
4010 free_extent_buffer(eb);
4011 break;
0b32f4bb
JB
4012 }
4013
0ab02063 4014 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
4015 if (ret) {
4016 done = 1;
4017 free_extent_buffer(eb);
4018 break;
4019 }
4020 free_extent_buffer(eb);
4021
4022 /*
4023 * the filesystem may choose to bump up nr_to_write.
4024 * We have to make sure to honor the new nr_to_write
4025 * at any time
4026 */
4027 nr_to_write_done = wbc->nr_to_write <= 0;
4028 }
4029 pagevec_release(&pvec);
4030 cond_resched();
4031 }
4032 if (!scanned && !done) {
4033 /*
4034 * We hit the last page and there is more work to be done: wrap
4035 * back to the start of the file
4036 */
4037 scanned = 1;
4038 index = 0;
4039 goto retry;
4040 }
2b952eea
QW
4041 ASSERT(ret <= 0);
4042 if (ret < 0) {
4043 end_write_bio(&epd, ret);
4044 return ret;
4045 }
4046 ret = flush_write_bio(&epd);
0b32f4bb
JB
4047 return ret;
4048}
4049
d1310b2e 4050/**
4bef0848 4051 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4052 * @mapping: address space structure to write
4053 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4054 * @data: data passed to __extent_writepage function
d1310b2e
CM
4055 *
4056 * If a page is already under I/O, write_cache_pages() skips it, even
4057 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4058 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4059 * and msync() need to guarantee that all the data which was dirty at the time
4060 * the call was made get new I/O started against them. If wbc->sync_mode is
4061 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4062 * existing IO to complete.
4063 */
4242b64a 4064static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4065 struct writeback_control *wbc,
aab6e9ed 4066 struct extent_page_data *epd)
d1310b2e 4067{
7fd1a3f7 4068 struct inode *inode = mapping->host;
d1310b2e
CM
4069 int ret = 0;
4070 int done = 0;
f85d7d6c 4071 int nr_to_write_done = 0;
d1310b2e
CM
4072 struct pagevec pvec;
4073 int nr_pages;
4074 pgoff_t index;
4075 pgoff_t end; /* Inclusive */
a9132667
LB
4076 pgoff_t done_index;
4077 int range_whole = 0;
d1310b2e 4078 int scanned = 0;
10bbd235 4079 xa_mark_t tag;
d1310b2e 4080
7fd1a3f7
JB
4081 /*
4082 * We have to hold onto the inode so that ordered extents can do their
4083 * work when the IO finishes. The alternative to this is failing to add
4084 * an ordered extent if the igrab() fails there and that is a huge pain
4085 * to deal with, so instead just hold onto the inode throughout the
4086 * writepages operation. If it fails here we are freeing up the inode
4087 * anyway and we'd rather not waste our time writing out stuff that is
4088 * going to be truncated anyway.
4089 */
4090 if (!igrab(inode))
4091 return 0;
4092
86679820 4093 pagevec_init(&pvec);
d1310b2e
CM
4094 if (wbc->range_cyclic) {
4095 index = mapping->writeback_index; /* Start from prev offset */
4096 end = -1;
4097 } else {
09cbfeaf
KS
4098 index = wbc->range_start >> PAGE_SHIFT;
4099 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4100 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4101 range_whole = 1;
d1310b2e
CM
4102 scanned = 1;
4103 }
3cd24c69
EL
4104
4105 /*
4106 * We do the tagged writepage as long as the snapshot flush bit is set
4107 * and we are the first one who do the filemap_flush() on this inode.
4108 *
4109 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4110 * not race in and drop the bit.
4111 */
4112 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4113 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4114 &BTRFS_I(inode)->runtime_flags))
4115 wbc->tagged_writepages = 1;
4116
4117 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4118 tag = PAGECACHE_TAG_TOWRITE;
4119 else
4120 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4121retry:
3cd24c69 4122 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4123 tag_pages_for_writeback(mapping, index, end);
a9132667 4124 done_index = index;
f85d7d6c 4125 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4126 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4127 &index, end, tag))) {
d1310b2e
CM
4128 unsigned i;
4129
4130 scanned = 1;
4131 for (i = 0; i < nr_pages; i++) {
4132 struct page *page = pvec.pages[i];
4133
a9132667 4134 done_index = page->index;
d1310b2e 4135 /*
b93b0163
MW
4136 * At this point we hold neither the i_pages lock nor
4137 * the page lock: the page may be truncated or
4138 * invalidated (changing page->mapping to NULL),
4139 * or even swizzled back from swapper_space to
4140 * tmpfs file mapping
d1310b2e 4141 */
c8f2f24b 4142 if (!trylock_page(page)) {
f4340622
QW
4143 ret = flush_write_bio(epd);
4144 BUG_ON(ret < 0);
c8f2f24b 4145 lock_page(page);
01d658f2 4146 }
d1310b2e
CM
4147
4148 if (unlikely(page->mapping != mapping)) {
4149 unlock_page(page);
4150 continue;
4151 }
4152
d2c3f4f6 4153 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4154 if (PageWriteback(page)) {
4155 ret = flush_write_bio(epd);
4156 BUG_ON(ret < 0);
4157 }
d1310b2e 4158 wait_on_page_writeback(page);
d2c3f4f6 4159 }
d1310b2e
CM
4160
4161 if (PageWriteback(page) ||
4162 !clear_page_dirty_for_io(page)) {
4163 unlock_page(page);
4164 continue;
4165 }
4166
aab6e9ed 4167 ret = __extent_writepage(page, wbc, epd);
a9132667
LB
4168 if (ret < 0) {
4169 /*
4170 * done_index is set past this page,
4171 * so media errors will not choke
4172 * background writeout for the entire
4173 * file. This has consequences for
4174 * range_cyclic semantics (ie. it may
4175 * not be suitable for data integrity
4176 * writeout).
4177 */
4178 done_index = page->index + 1;
4179 done = 1;
4180 break;
4181 }
f85d7d6c
CM
4182
4183 /*
4184 * the filesystem may choose to bump up nr_to_write.
4185 * We have to make sure to honor the new nr_to_write
4186 * at any time
4187 */
4188 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4189 }
4190 pagevec_release(&pvec);
4191 cond_resched();
4192 }
894b36e3 4193 if (!scanned && !done) {
d1310b2e
CM
4194 /*
4195 * We hit the last page and there is more work to be done: wrap
4196 * back to the start of the file
4197 */
4198 scanned = 1;
4199 index = 0;
4200 goto retry;
4201 }
a9132667
LB
4202
4203 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4204 mapping->writeback_index = done_index;
4205
7fd1a3f7 4206 btrfs_add_delayed_iput(inode);
894b36e3 4207 return ret;
d1310b2e 4208}
d1310b2e 4209
0a9b0e53 4210int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4211{
4212 int ret;
d1310b2e
CM
4213 struct extent_page_data epd = {
4214 .bio = NULL,
0a9b0e53 4215 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4216 .extent_locked = 0,
ffbd517d 4217 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4218 };
d1310b2e 4219
d1310b2e 4220 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4221 ASSERT(ret <= 0);
4222 if (ret < 0) {
4223 end_write_bio(&epd, ret);
4224 return ret;
4225 }
d1310b2e 4226
3065976b
QW
4227 ret = flush_write_bio(&epd);
4228 ASSERT(ret <= 0);
d1310b2e
CM
4229 return ret;
4230}
d1310b2e 4231
5e3ee236 4232int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4233 int mode)
4234{
4235 int ret = 0;
4236 struct address_space *mapping = inode->i_mapping;
5e3ee236 4237 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4238 struct page *page;
09cbfeaf
KS
4239 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4240 PAGE_SHIFT;
771ed689
CM
4241
4242 struct extent_page_data epd = {
4243 .bio = NULL,
4244 .tree = tree,
771ed689 4245 .extent_locked = 1,
ffbd517d 4246 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4247 };
4248 struct writeback_control wbc_writepages = {
771ed689 4249 .sync_mode = mode,
771ed689
CM
4250 .nr_to_write = nr_pages * 2,
4251 .range_start = start,
4252 .range_end = end + 1,
4253 };
4254
d397712b 4255 while (start <= end) {
09cbfeaf 4256 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4257 if (clear_page_dirty_for_io(page))
4258 ret = __extent_writepage(page, &wbc_writepages, &epd);
4259 else {
7087a9d8 4260 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4261 start + PAGE_SIZE - 1, 1);
771ed689
CM
4262 unlock_page(page);
4263 }
09cbfeaf
KS
4264 put_page(page);
4265 start += PAGE_SIZE;
771ed689
CM
4266 }
4267
02c6db4f
QW
4268 ASSERT(ret <= 0);
4269 if (ret < 0) {
4270 end_write_bio(&epd, ret);
4271 return ret;
4272 }
4273 ret = flush_write_bio(&epd);
771ed689
CM
4274 return ret;
4275}
d1310b2e 4276
8ae225a8 4277int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4278 struct writeback_control *wbc)
4279{
4280 int ret = 0;
4281 struct extent_page_data epd = {
4282 .bio = NULL,
8ae225a8 4283 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4284 .extent_locked = 0,
ffbd517d 4285 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4286 };
4287
935db853 4288 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4289 ASSERT(ret <= 0);
4290 if (ret < 0) {
4291 end_write_bio(&epd, ret);
4292 return ret;
4293 }
4294 ret = flush_write_bio(&epd);
d1310b2e
CM
4295 return ret;
4296}
d1310b2e 4297
2a3ff0ad
NB
4298int extent_readpages(struct address_space *mapping, struct list_head *pages,
4299 unsigned nr_pages)
d1310b2e
CM
4300{
4301 struct bio *bio = NULL;
c8b97818 4302 unsigned long bio_flags = 0;
67c9684f 4303 struct page *pagepool[16];
125bac01 4304 struct extent_map *em_cached = NULL;
2a3ff0ad 4305 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4306 int nr = 0;
808f80b4 4307 u64 prev_em_start = (u64)-1;
d1310b2e 4308
61ed3a14 4309 while (!list_empty(pages)) {
e65ef21e
NB
4310 u64 contig_end = 0;
4311
61ed3a14 4312 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4313 struct page *page = lru_to_page(pages);
d1310b2e 4314
61ed3a14
NB
4315 prefetchw(&page->flags);
4316 list_del(&page->lru);
4317 if (add_to_page_cache_lru(page, mapping, page->index,
4318 readahead_gfp_mask(mapping))) {
4319 put_page(page);
e65ef21e 4320 break;
61ed3a14
NB
4321 }
4322
4323 pagepool[nr++] = page;
e65ef21e 4324 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4325 }
67c9684f 4326
e65ef21e
NB
4327 if (nr) {
4328 u64 contig_start = page_offset(pagepool[0]);
4329
4330 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4331
4332 contiguous_readpages(tree, pagepool, nr, contig_start,
4333 contig_end, &em_cached, &bio, &bio_flags,
4334 &prev_em_start);
4335 }
d1310b2e 4336 }
67c9684f 4337
125bac01
MX
4338 if (em_cached)
4339 free_extent_map(em_cached);
4340
d1310b2e 4341 if (bio)
1f7ad75b 4342 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4343 return 0;
4344}
d1310b2e
CM
4345
4346/*
4347 * basic invalidatepage code, this waits on any locked or writeback
4348 * ranges corresponding to the page, and then deletes any extent state
4349 * records from the tree
4350 */
4351int extent_invalidatepage(struct extent_io_tree *tree,
4352 struct page *page, unsigned long offset)
4353{
2ac55d41 4354 struct extent_state *cached_state = NULL;
4eee4fa4 4355 u64 start = page_offset(page);
09cbfeaf 4356 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4357 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4358
fda2832f 4359 start += ALIGN(offset, blocksize);
d1310b2e
CM
4360 if (start > end)
4361 return 0;
4362
ff13db41 4363 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4364 wait_on_page_writeback(page);
e182163d
OS
4365 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4366 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4367 return 0;
4368}
d1310b2e 4369
7b13b7b1
CM
4370/*
4371 * a helper for releasepage, this tests for areas of the page that
4372 * are locked or under IO and drops the related state bits if it is safe
4373 * to drop the page.
4374 */
29c68b2d 4375static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4376 struct page *page, gfp_t mask)
7b13b7b1 4377{
4eee4fa4 4378 u64 start = page_offset(page);
09cbfeaf 4379 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4380 int ret = 1;
4381
8882679e 4382 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4383 ret = 0;
8882679e 4384 } else {
11ef160f
CM
4385 /*
4386 * at this point we can safely clear everything except the
4387 * locked bit and the nodatasum bit
4388 */
66b0c887 4389 ret = __clear_extent_bit(tree, start, end,
11ef160f 4390 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4391 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4392
4393 /* if clear_extent_bit failed for enomem reasons,
4394 * we can't allow the release to continue.
4395 */
4396 if (ret < 0)
4397 ret = 0;
4398 else
4399 ret = 1;
7b13b7b1
CM
4400 }
4401 return ret;
4402}
7b13b7b1 4403
d1310b2e
CM
4404/*
4405 * a helper for releasepage. As long as there are no locked extents
4406 * in the range corresponding to the page, both state records and extent
4407 * map records are removed
4408 */
477a30ba 4409int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4410{
4411 struct extent_map *em;
4eee4fa4 4412 u64 start = page_offset(page);
09cbfeaf 4413 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4414 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4415 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4416 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4417
d0164adc 4418 if (gfpflags_allow_blocking(mask) &&
ee22184b 4419 page->mapping->host->i_size > SZ_16M) {
39b5637f 4420 u64 len;
70dec807 4421 while (start <= end) {
39b5637f 4422 len = end - start + 1;
890871be 4423 write_lock(&map->lock);
39b5637f 4424 em = lookup_extent_mapping(map, start, len);
285190d9 4425 if (!em) {
890871be 4426 write_unlock(&map->lock);
70dec807
CM
4427 break;
4428 }
7f3c74fb
CM
4429 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4430 em->start != start) {
890871be 4431 write_unlock(&map->lock);
70dec807
CM
4432 free_extent_map(em);
4433 break;
4434 }
4435 if (!test_range_bit(tree, em->start,
4436 extent_map_end(em) - 1,
4e586ca3 4437 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4438 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4439 &btrfs_inode->runtime_flags);
70dec807
CM
4440 remove_extent_mapping(map, em);
4441 /* once for the rb tree */
4442 free_extent_map(em);
4443 }
4444 start = extent_map_end(em);
890871be 4445 write_unlock(&map->lock);
70dec807
CM
4446
4447 /* once for us */
d1310b2e
CM
4448 free_extent_map(em);
4449 }
d1310b2e 4450 }
29c68b2d 4451 return try_release_extent_state(tree, page, mask);
d1310b2e 4452}
d1310b2e 4453
ec29ed5b
CM
4454/*
4455 * helper function for fiemap, which doesn't want to see any holes.
4456 * This maps until we find something past 'last'
4457 */
4458static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4459 u64 offset, u64 last)
ec29ed5b 4460{
da17066c 4461 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4462 struct extent_map *em;
4463 u64 len;
4464
4465 if (offset >= last)
4466 return NULL;
4467
67871254 4468 while (1) {
ec29ed5b
CM
4469 len = last - offset;
4470 if (len == 0)
4471 break;
fda2832f 4472 len = ALIGN(len, sectorsize);
4ab47a8d 4473 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4474 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4475 return em;
4476
4477 /* if this isn't a hole return it */
4a2d25cd 4478 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4479 return em;
ec29ed5b
CM
4480
4481 /* this is a hole, advance to the next extent */
4482 offset = extent_map_end(em);
4483 free_extent_map(em);
4484 if (offset >= last)
4485 break;
4486 }
4487 return NULL;
4488}
4489
4751832d
QW
4490/*
4491 * To cache previous fiemap extent
4492 *
4493 * Will be used for merging fiemap extent
4494 */
4495struct fiemap_cache {
4496 u64 offset;
4497 u64 phys;
4498 u64 len;
4499 u32 flags;
4500 bool cached;
4501};
4502
4503/*
4504 * Helper to submit fiemap extent.
4505 *
4506 * Will try to merge current fiemap extent specified by @offset, @phys,
4507 * @len and @flags with cached one.
4508 * And only when we fails to merge, cached one will be submitted as
4509 * fiemap extent.
4510 *
4511 * Return value is the same as fiemap_fill_next_extent().
4512 */
4513static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4514 struct fiemap_cache *cache,
4515 u64 offset, u64 phys, u64 len, u32 flags)
4516{
4517 int ret = 0;
4518
4519 if (!cache->cached)
4520 goto assign;
4521
4522 /*
4523 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4524 * fiemap extent won't overlap with cached one.
4751832d
QW
4525 * Not recoverable.
4526 *
4527 * NOTE: Physical address can overlap, due to compression
4528 */
4529 if (cache->offset + cache->len > offset) {
4530 WARN_ON(1);
4531 return -EINVAL;
4532 }
4533
4534 /*
4535 * Only merges fiemap extents if
4536 * 1) Their logical addresses are continuous
4537 *
4538 * 2) Their physical addresses are continuous
4539 * So truly compressed (physical size smaller than logical size)
4540 * extents won't get merged with each other
4541 *
4542 * 3) Share same flags except FIEMAP_EXTENT_LAST
4543 * So regular extent won't get merged with prealloc extent
4544 */
4545 if (cache->offset + cache->len == offset &&
4546 cache->phys + cache->len == phys &&
4547 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4548 (flags & ~FIEMAP_EXTENT_LAST)) {
4549 cache->len += len;
4550 cache->flags |= flags;
4551 goto try_submit_last;
4552 }
4553
4554 /* Not mergeable, need to submit cached one */
4555 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4556 cache->len, cache->flags);
4557 cache->cached = false;
4558 if (ret)
4559 return ret;
4560assign:
4561 cache->cached = true;
4562 cache->offset = offset;
4563 cache->phys = phys;
4564 cache->len = len;
4565 cache->flags = flags;
4566try_submit_last:
4567 if (cache->flags & FIEMAP_EXTENT_LAST) {
4568 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4569 cache->phys, cache->len, cache->flags);
4570 cache->cached = false;
4571 }
4572 return ret;
4573}
4574
4575/*
848c23b7 4576 * Emit last fiemap cache
4751832d 4577 *
848c23b7
QW
4578 * The last fiemap cache may still be cached in the following case:
4579 * 0 4k 8k
4580 * |<- Fiemap range ->|
4581 * |<------------ First extent ----------->|
4582 *
4583 * In this case, the first extent range will be cached but not emitted.
4584 * So we must emit it before ending extent_fiemap().
4751832d 4585 */
5c5aff98 4586static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4587 struct fiemap_cache *cache)
4751832d
QW
4588{
4589 int ret;
4590
4591 if (!cache->cached)
4592 return 0;
4593
4751832d
QW
4594 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4595 cache->len, cache->flags);
4596 cache->cached = false;
4597 if (ret > 0)
4598 ret = 0;
4599 return ret;
4600}
4601
1506fcc8 4602int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4603 __u64 start, __u64 len)
1506fcc8 4604{
975f84fe 4605 int ret = 0;
1506fcc8
YS
4606 u64 off = start;
4607 u64 max = start + len;
4608 u32 flags = 0;
975f84fe
JB
4609 u32 found_type;
4610 u64 last;
ec29ed5b 4611 u64 last_for_get_extent = 0;
1506fcc8 4612 u64 disko = 0;
ec29ed5b 4613 u64 isize = i_size_read(inode);
975f84fe 4614 struct btrfs_key found_key;
1506fcc8 4615 struct extent_map *em = NULL;
2ac55d41 4616 struct extent_state *cached_state = NULL;
975f84fe 4617 struct btrfs_path *path;
dc046b10 4618 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4619 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4620 struct ulist *roots;
4621 struct ulist *tmp_ulist;
1506fcc8 4622 int end = 0;
ec29ed5b
CM
4623 u64 em_start = 0;
4624 u64 em_len = 0;
4625 u64 em_end = 0;
1506fcc8
YS
4626
4627 if (len == 0)
4628 return -EINVAL;
4629
975f84fe
JB
4630 path = btrfs_alloc_path();
4631 if (!path)
4632 return -ENOMEM;
4633 path->leave_spinning = 1;
4634
5911c8fe
DS
4635 roots = ulist_alloc(GFP_KERNEL);
4636 tmp_ulist = ulist_alloc(GFP_KERNEL);
4637 if (!roots || !tmp_ulist) {
4638 ret = -ENOMEM;
4639 goto out_free_ulist;
4640 }
4641
da17066c
JM
4642 start = round_down(start, btrfs_inode_sectorsize(inode));
4643 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4644
ec29ed5b
CM
4645 /*
4646 * lookup the last file extent. We're not using i_size here
4647 * because there might be preallocation past i_size
4648 */
f85b7379
DS
4649 ret = btrfs_lookup_file_extent(NULL, root, path,
4650 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe 4651 if (ret < 0) {
5911c8fe 4652 goto out_free_ulist;
2d324f59
LB
4653 } else {
4654 WARN_ON(!ret);
4655 if (ret == 1)
4656 ret = 0;
975f84fe 4657 }
2d324f59 4658
975f84fe 4659 path->slots[0]--;
975f84fe 4660 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4661 found_type = found_key.type;
975f84fe 4662
ec29ed5b 4663 /* No extents, but there might be delalloc bits */
4a0cc7ca 4664 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4665 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4666 /* have to trust i_size as the end */
4667 last = (u64)-1;
4668 last_for_get_extent = isize;
4669 } else {
4670 /*
4671 * remember the start of the last extent. There are a
4672 * bunch of different factors that go into the length of the
4673 * extent, so its much less complex to remember where it started
4674 */
4675 last = found_key.offset;
4676 last_for_get_extent = last + 1;
975f84fe 4677 }
fe09e16c 4678 btrfs_release_path(path);
975f84fe 4679
ec29ed5b
CM
4680 /*
4681 * we might have some extents allocated but more delalloc past those
4682 * extents. so, we trust isize unless the start of the last extent is
4683 * beyond isize
4684 */
4685 if (last < isize) {
4686 last = (u64)-1;
4687 last_for_get_extent = isize;
4688 }
4689
ff13db41 4690 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4691 &cached_state);
ec29ed5b 4692
e3350e16 4693 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4694 if (!em)
4695 goto out;
4696 if (IS_ERR(em)) {
4697 ret = PTR_ERR(em);
4698 goto out;
4699 }
975f84fe 4700
1506fcc8 4701 while (!end) {
b76bb701 4702 u64 offset_in_extent = 0;
ea8efc74
CM
4703
4704 /* break if the extent we found is outside the range */
4705 if (em->start >= max || extent_map_end(em) < off)
4706 break;
4707
4708 /*
4709 * get_extent may return an extent that starts before our
4710 * requested range. We have to make sure the ranges
4711 * we return to fiemap always move forward and don't
4712 * overlap, so adjust the offsets here
4713 */
4714 em_start = max(em->start, off);
1506fcc8 4715
ea8efc74
CM
4716 /*
4717 * record the offset from the start of the extent
b76bb701
JB
4718 * for adjusting the disk offset below. Only do this if the
4719 * extent isn't compressed since our in ram offset may be past
4720 * what we have actually allocated on disk.
ea8efc74 4721 */
b76bb701
JB
4722 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4723 offset_in_extent = em_start - em->start;
ec29ed5b 4724 em_end = extent_map_end(em);
ea8efc74 4725 em_len = em_end - em_start;
1506fcc8 4726 flags = 0;
f0986318
FM
4727 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4728 disko = em->block_start + offset_in_extent;
4729 else
4730 disko = 0;
1506fcc8 4731
ea8efc74
CM
4732 /*
4733 * bump off for our next call to get_extent
4734 */
4735 off = extent_map_end(em);
4736 if (off >= max)
4737 end = 1;
4738
93dbfad7 4739 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4740 end = 1;
4741 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4742 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4743 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4744 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4745 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4746 flags |= (FIEMAP_EXTENT_DELALLOC |
4747 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4748 } else if (fieinfo->fi_extents_max) {
4749 u64 bytenr = em->block_start -
4750 (em->start - em->orig_start);
fe09e16c 4751
fe09e16c
LB
4752 /*
4753 * As btrfs supports shared space, this information
4754 * can be exported to userspace tools via
dc046b10
JB
4755 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4756 * then we're just getting a count and we can skip the
4757 * lookup stuff.
fe09e16c 4758 */
bb739cf0
EN
4759 ret = btrfs_check_shared(root,
4760 btrfs_ino(BTRFS_I(inode)),
5911c8fe 4761 bytenr, roots, tmp_ulist);
dc046b10 4762 if (ret < 0)
fe09e16c 4763 goto out_free;
dc046b10 4764 if (ret)
fe09e16c 4765 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4766 ret = 0;
1506fcc8
YS
4767 }
4768 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4769 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4770 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4771 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4772
1506fcc8
YS
4773 free_extent_map(em);
4774 em = NULL;
ec29ed5b
CM
4775 if ((em_start >= last) || em_len == (u64)-1 ||
4776 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4777 flags |= FIEMAP_EXTENT_LAST;
4778 end = 1;
4779 }
4780
ec29ed5b 4781 /* now scan forward to see if this is really the last extent. */
e3350e16 4782 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4783 if (IS_ERR(em)) {
4784 ret = PTR_ERR(em);
4785 goto out;
4786 }
4787 if (!em) {
975f84fe
JB
4788 flags |= FIEMAP_EXTENT_LAST;
4789 end = 1;
4790 }
4751832d
QW
4791 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4792 em_len, flags);
26e726af
CS
4793 if (ret) {
4794 if (ret == 1)
4795 ret = 0;
ec29ed5b 4796 goto out_free;
26e726af 4797 }
1506fcc8
YS
4798 }
4799out_free:
4751832d 4800 if (!ret)
5c5aff98 4801 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4802 free_extent_map(em);
4803out:
a52f4cd2 4804 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4805 &cached_state);
5911c8fe
DS
4806
4807out_free_ulist:
e02d48ea 4808 btrfs_free_path(path);
5911c8fe
DS
4809 ulist_free(roots);
4810 ulist_free(tmp_ulist);
1506fcc8
YS
4811 return ret;
4812}
4813
727011e0
CM
4814static void __free_extent_buffer(struct extent_buffer *eb)
4815{
6d49ba1b 4816 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4817 kmem_cache_free(extent_buffer_cache, eb);
4818}
4819
a26e8c9f 4820int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4821{
4822 return (atomic_read(&eb->io_pages) ||
4823 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4824 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4825}
4826
4827/*
55ac0139 4828 * Release all pages attached to the extent buffer.
db7f3436 4829 */
55ac0139 4830static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4831{
d64766fd
NB
4832 int i;
4833 int num_pages;
b0132a3b 4834 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4835
4836 BUG_ON(extent_buffer_under_io(eb));
4837
d64766fd
NB
4838 num_pages = num_extent_pages(eb);
4839 for (i = 0; i < num_pages; i++) {
4840 struct page *page = eb->pages[i];
db7f3436 4841
5d2361db
FL
4842 if (!page)
4843 continue;
4844 if (mapped)
db7f3436 4845 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4846 /*
4847 * We do this since we'll remove the pages after we've
4848 * removed the eb from the radix tree, so we could race
4849 * and have this page now attached to the new eb. So
4850 * only clear page_private if it's still connected to
4851 * this eb.
4852 */
4853 if (PagePrivate(page) &&
4854 page->private == (unsigned long)eb) {
4855 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4856 BUG_ON(PageDirty(page));
4857 BUG_ON(PageWriteback(page));
db7f3436 4858 /*
5d2361db
FL
4859 * We need to make sure we haven't be attached
4860 * to a new eb.
db7f3436 4861 */
5d2361db
FL
4862 ClearPagePrivate(page);
4863 set_page_private(page, 0);
4864 /* One for the page private */
09cbfeaf 4865 put_page(page);
db7f3436 4866 }
5d2361db
FL
4867
4868 if (mapped)
4869 spin_unlock(&page->mapping->private_lock);
4870
01327610 4871 /* One for when we allocated the page */
09cbfeaf 4872 put_page(page);
d64766fd 4873 }
db7f3436
JB
4874}
4875
4876/*
4877 * Helper for releasing the extent buffer.
4878 */
4879static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4880{
55ac0139 4881 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4882 __free_extent_buffer(eb);
4883}
4884
f28491e0
JB
4885static struct extent_buffer *
4886__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4887 unsigned long len)
d1310b2e
CM
4888{
4889 struct extent_buffer *eb = NULL;
4890
d1b5c567 4891 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4892 eb->start = start;
4893 eb->len = len;
f28491e0 4894 eb->fs_info = fs_info;
815a51c7 4895 eb->bflags = 0;
bd681513 4896 rwlock_init(&eb->lock);
bd681513 4897 atomic_set(&eb->blocking_readers, 0);
06297d8c 4898 eb->blocking_writers = 0;
ed1b4ed7 4899 eb->lock_nested = false;
bd681513
CM
4900 init_waitqueue_head(&eb->write_lock_wq);
4901 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4902
6d49ba1b
ES
4903 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4904
3083ee2e 4905 spin_lock_init(&eb->refs_lock);
d1310b2e 4906 atomic_set(&eb->refs, 1);
0b32f4bb 4907 atomic_set(&eb->io_pages, 0);
727011e0 4908
b8dae313
DS
4909 /*
4910 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4911 */
4912 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4913 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4914 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4915
843ccf9f 4916#ifdef CONFIG_BTRFS_DEBUG
f3dc24c5 4917 eb->spinning_writers = 0;
afd495a8 4918 atomic_set(&eb->spinning_readers, 0);
5c9c799a 4919 atomic_set(&eb->read_locks, 0);
00801ae4 4920 eb->write_locks = 0;
843ccf9f
DS
4921#endif
4922
d1310b2e
CM
4923 return eb;
4924}
4925
815a51c7
JS
4926struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4927{
cc5e31a4 4928 int i;
815a51c7
JS
4929 struct page *p;
4930 struct extent_buffer *new;
cc5e31a4 4931 int num_pages = num_extent_pages(src);
815a51c7 4932
3f556f78 4933 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4934 if (new == NULL)
4935 return NULL;
4936
4937 for (i = 0; i < num_pages; i++) {
9ec72677 4938 p = alloc_page(GFP_NOFS);
db7f3436
JB
4939 if (!p) {
4940 btrfs_release_extent_buffer(new);
4941 return NULL;
4942 }
815a51c7
JS
4943 attach_extent_buffer_page(new, p);
4944 WARN_ON(PageDirty(p));
4945 SetPageUptodate(p);
4946 new->pages[i] = p;
fba1acf9 4947 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4948 }
4949
815a51c7 4950 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4951 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4952
4953 return new;
4954}
4955
0f331229
OS
4956struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4957 u64 start, unsigned long len)
815a51c7
JS
4958{
4959 struct extent_buffer *eb;
cc5e31a4
DS
4960 int num_pages;
4961 int i;
815a51c7 4962
3f556f78 4963 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4964 if (!eb)
4965 return NULL;
4966
65ad0104 4967 num_pages = num_extent_pages(eb);
815a51c7 4968 for (i = 0; i < num_pages; i++) {
9ec72677 4969 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4970 if (!eb->pages[i])
4971 goto err;
4972 }
4973 set_extent_buffer_uptodate(eb);
4974 btrfs_set_header_nritems(eb, 0);
b0132a3b 4975 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4976
4977 return eb;
4978err:
84167d19
SB
4979 for (; i > 0; i--)
4980 __free_page(eb->pages[i - 1]);
815a51c7
JS
4981 __free_extent_buffer(eb);
4982 return NULL;
4983}
4984
0f331229 4985struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4986 u64 start)
0f331229 4987{
da17066c 4988 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4989}
4990
0b32f4bb
JB
4991static void check_buffer_tree_ref(struct extent_buffer *eb)
4992{
242e18c7 4993 int refs;
0b32f4bb
JB
4994 /* the ref bit is tricky. We have to make sure it is set
4995 * if we have the buffer dirty. Otherwise the
4996 * code to free a buffer can end up dropping a dirty
4997 * page
4998 *
4999 * Once the ref bit is set, it won't go away while the
5000 * buffer is dirty or in writeback, and it also won't
5001 * go away while we have the reference count on the
5002 * eb bumped.
5003 *
5004 * We can't just set the ref bit without bumping the
5005 * ref on the eb because free_extent_buffer might
5006 * see the ref bit and try to clear it. If this happens
5007 * free_extent_buffer might end up dropping our original
5008 * ref by mistake and freeing the page before we are able
5009 * to add one more ref.
5010 *
5011 * So bump the ref count first, then set the bit. If someone
5012 * beat us to it, drop the ref we added.
5013 */
242e18c7
CM
5014 refs = atomic_read(&eb->refs);
5015 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5016 return;
5017
594831c4
JB
5018 spin_lock(&eb->refs_lock);
5019 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5020 atomic_inc(&eb->refs);
594831c4 5021 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5022}
5023
2457aec6
MG
5024static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5025 struct page *accessed)
5df4235e 5026{
cc5e31a4 5027 int num_pages, i;
5df4235e 5028
0b32f4bb
JB
5029 check_buffer_tree_ref(eb);
5030
65ad0104 5031 num_pages = num_extent_pages(eb);
5df4235e 5032 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5033 struct page *p = eb->pages[i];
5034
2457aec6
MG
5035 if (p != accessed)
5036 mark_page_accessed(p);
5df4235e
JB
5037 }
5038}
5039
f28491e0
JB
5040struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5041 u64 start)
452c75c3
CS
5042{
5043 struct extent_buffer *eb;
5044
5045 rcu_read_lock();
f28491e0 5046 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5047 start >> PAGE_SHIFT);
452c75c3
CS
5048 if (eb && atomic_inc_not_zero(&eb->refs)) {
5049 rcu_read_unlock();
062c19e9
FM
5050 /*
5051 * Lock our eb's refs_lock to avoid races with
5052 * free_extent_buffer. When we get our eb it might be flagged
5053 * with EXTENT_BUFFER_STALE and another task running
5054 * free_extent_buffer might have seen that flag set,
5055 * eb->refs == 2, that the buffer isn't under IO (dirty and
5056 * writeback flags not set) and it's still in the tree (flag
5057 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5058 * of decrementing the extent buffer's reference count twice.
5059 * So here we could race and increment the eb's reference count,
5060 * clear its stale flag, mark it as dirty and drop our reference
5061 * before the other task finishes executing free_extent_buffer,
5062 * which would later result in an attempt to free an extent
5063 * buffer that is dirty.
5064 */
5065 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5066 spin_lock(&eb->refs_lock);
5067 spin_unlock(&eb->refs_lock);
5068 }
2457aec6 5069 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5070 return eb;
5071 }
5072 rcu_read_unlock();
5073
5074 return NULL;
5075}
5076
faa2dbf0
JB
5077#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5078struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5079 u64 start)
faa2dbf0
JB
5080{
5081 struct extent_buffer *eb, *exists = NULL;
5082 int ret;
5083
5084 eb = find_extent_buffer(fs_info, start);
5085 if (eb)
5086 return eb;
da17066c 5087 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
5088 if (!eb)
5089 return NULL;
5090 eb->fs_info = fs_info;
5091again:
e1860a77 5092 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
5093 if (ret)
5094 goto free_eb;
5095 spin_lock(&fs_info->buffer_lock);
5096 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5097 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5098 spin_unlock(&fs_info->buffer_lock);
5099 radix_tree_preload_end();
5100 if (ret == -EEXIST) {
5101 exists = find_extent_buffer(fs_info, start);
5102 if (exists)
5103 goto free_eb;
5104 else
5105 goto again;
5106 }
5107 check_buffer_tree_ref(eb);
5108 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5109
faa2dbf0
JB
5110 return eb;
5111free_eb:
5112 btrfs_release_extent_buffer(eb);
5113 return exists;
5114}
5115#endif
5116
f28491e0 5117struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5118 u64 start)
d1310b2e 5119{
da17066c 5120 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5121 int num_pages;
5122 int i;
09cbfeaf 5123 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5124 struct extent_buffer *eb;
6af118ce 5125 struct extent_buffer *exists = NULL;
d1310b2e 5126 struct page *p;
f28491e0 5127 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5128 int uptodate = 1;
19fe0a8b 5129 int ret;
d1310b2e 5130
da17066c 5131 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5132 btrfs_err(fs_info, "bad tree block start %llu", start);
5133 return ERR_PTR(-EINVAL);
5134 }
5135
f28491e0 5136 eb = find_extent_buffer(fs_info, start);
452c75c3 5137 if (eb)
6af118ce 5138 return eb;
6af118ce 5139
23d79d81 5140 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5141 if (!eb)
c871b0f2 5142 return ERR_PTR(-ENOMEM);
d1310b2e 5143
65ad0104 5144 num_pages = num_extent_pages(eb);
727011e0 5145 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5146 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5147 if (!p) {
5148 exists = ERR_PTR(-ENOMEM);
6af118ce 5149 goto free_eb;
c871b0f2 5150 }
4f2de97a
JB
5151
5152 spin_lock(&mapping->private_lock);
5153 if (PagePrivate(p)) {
5154 /*
5155 * We could have already allocated an eb for this page
5156 * and attached one so lets see if we can get a ref on
5157 * the existing eb, and if we can we know it's good and
5158 * we can just return that one, else we know we can just
5159 * overwrite page->private.
5160 */
5161 exists = (struct extent_buffer *)p->private;
5162 if (atomic_inc_not_zero(&exists->refs)) {
5163 spin_unlock(&mapping->private_lock);
5164 unlock_page(p);
09cbfeaf 5165 put_page(p);
2457aec6 5166 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5167 goto free_eb;
5168 }
5ca64f45 5169 exists = NULL;
4f2de97a 5170
0b32f4bb 5171 /*
4f2de97a
JB
5172 * Do this so attach doesn't complain and we need to
5173 * drop the ref the old guy had.
5174 */
5175 ClearPagePrivate(p);
0b32f4bb 5176 WARN_ON(PageDirty(p));
09cbfeaf 5177 put_page(p);
d1310b2e 5178 }
4f2de97a
JB
5179 attach_extent_buffer_page(eb, p);
5180 spin_unlock(&mapping->private_lock);
0b32f4bb 5181 WARN_ON(PageDirty(p));
727011e0 5182 eb->pages[i] = p;
d1310b2e
CM
5183 if (!PageUptodate(p))
5184 uptodate = 0;
eb14ab8e
CM
5185
5186 /*
b16d011e
NB
5187 * We can't unlock the pages just yet since the extent buffer
5188 * hasn't been properly inserted in the radix tree, this
5189 * opens a race with btree_releasepage which can free a page
5190 * while we are still filling in all pages for the buffer and
5191 * we could crash.
eb14ab8e 5192 */
d1310b2e
CM
5193 }
5194 if (uptodate)
b4ce94de 5195 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5196again:
e1860a77 5197 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5198 if (ret) {
5199 exists = ERR_PTR(ret);
19fe0a8b 5200 goto free_eb;
c871b0f2 5201 }
19fe0a8b 5202
f28491e0
JB
5203 spin_lock(&fs_info->buffer_lock);
5204 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5205 start >> PAGE_SHIFT, eb);
f28491e0 5206 spin_unlock(&fs_info->buffer_lock);
452c75c3 5207 radix_tree_preload_end();
19fe0a8b 5208 if (ret == -EEXIST) {
f28491e0 5209 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5210 if (exists)
5211 goto free_eb;
5212 else
115391d2 5213 goto again;
6af118ce 5214 }
6af118ce 5215 /* add one reference for the tree */
0b32f4bb 5216 check_buffer_tree_ref(eb);
34b41ace 5217 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5218
5219 /*
b16d011e
NB
5220 * Now it's safe to unlock the pages because any calls to
5221 * btree_releasepage will correctly detect that a page belongs to a
5222 * live buffer and won't free them prematurely.
eb14ab8e 5223 */
28187ae5
NB
5224 for (i = 0; i < num_pages; i++)
5225 unlock_page(eb->pages[i]);
d1310b2e
CM
5226 return eb;
5227
6af118ce 5228free_eb:
5ca64f45 5229 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5230 for (i = 0; i < num_pages; i++) {
5231 if (eb->pages[i])
5232 unlock_page(eb->pages[i]);
5233 }
eb14ab8e 5234
897ca6e9 5235 btrfs_release_extent_buffer(eb);
6af118ce 5236 return exists;
d1310b2e 5237}
d1310b2e 5238
3083ee2e
JB
5239static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5240{
5241 struct extent_buffer *eb =
5242 container_of(head, struct extent_buffer, rcu_head);
5243
5244 __free_extent_buffer(eb);
5245}
5246
f7a52a40 5247static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5248{
07e21c4d
NB
5249 lockdep_assert_held(&eb->refs_lock);
5250
3083ee2e
JB
5251 WARN_ON(atomic_read(&eb->refs) == 0);
5252 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5253 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5254 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5255
815a51c7 5256 spin_unlock(&eb->refs_lock);
3083ee2e 5257
f28491e0
JB
5258 spin_lock(&fs_info->buffer_lock);
5259 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5260 eb->start >> PAGE_SHIFT);
f28491e0 5261 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5262 } else {
5263 spin_unlock(&eb->refs_lock);
815a51c7 5264 }
3083ee2e
JB
5265
5266 /* Should be safe to release our pages at this point */
55ac0139 5267 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5268#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5269 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5270 __free_extent_buffer(eb);
5271 return 1;
5272 }
5273#endif
3083ee2e 5274 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5275 return 1;
3083ee2e
JB
5276 }
5277 spin_unlock(&eb->refs_lock);
e64860aa
JB
5278
5279 return 0;
3083ee2e
JB
5280}
5281
d1310b2e
CM
5282void free_extent_buffer(struct extent_buffer *eb)
5283{
242e18c7
CM
5284 int refs;
5285 int old;
d1310b2e
CM
5286 if (!eb)
5287 return;
5288
242e18c7
CM
5289 while (1) {
5290 refs = atomic_read(&eb->refs);
46cc775e
NB
5291 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5292 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5293 refs == 1))
242e18c7
CM
5294 break;
5295 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5296 if (old == refs)
5297 return;
5298 }
5299
3083ee2e
JB
5300 spin_lock(&eb->refs_lock);
5301 if (atomic_read(&eb->refs) == 2 &&
5302 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5303 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5304 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5305 atomic_dec(&eb->refs);
5306
5307 /*
5308 * I know this is terrible, but it's temporary until we stop tracking
5309 * the uptodate bits and such for the extent buffers.
5310 */
f7a52a40 5311 release_extent_buffer(eb);
3083ee2e
JB
5312}
5313
5314void free_extent_buffer_stale(struct extent_buffer *eb)
5315{
5316 if (!eb)
d1310b2e
CM
5317 return;
5318
3083ee2e
JB
5319 spin_lock(&eb->refs_lock);
5320 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5321
0b32f4bb 5322 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5323 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5324 atomic_dec(&eb->refs);
f7a52a40 5325 release_extent_buffer(eb);
d1310b2e 5326}
d1310b2e 5327
1d4284bd 5328void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5329{
cc5e31a4
DS
5330 int i;
5331 int num_pages;
d1310b2e
CM
5332 struct page *page;
5333
65ad0104 5334 num_pages = num_extent_pages(eb);
d1310b2e
CM
5335
5336 for (i = 0; i < num_pages; i++) {
fb85fc9a 5337 page = eb->pages[i];
b9473439 5338 if (!PageDirty(page))
d2c3f4f6
CM
5339 continue;
5340
a61e6f29 5341 lock_page(page);
eb14ab8e
CM
5342 WARN_ON(!PagePrivate(page));
5343
d1310b2e 5344 clear_page_dirty_for_io(page);
b93b0163 5345 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5346 if (!PageDirty(page))
5347 __xa_clear_mark(&page->mapping->i_pages,
5348 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5349 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5350 ClearPageError(page);
a61e6f29 5351 unlock_page(page);
d1310b2e 5352 }
0b32f4bb 5353 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5354}
d1310b2e 5355
abb57ef3 5356bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5357{
cc5e31a4
DS
5358 int i;
5359 int num_pages;
abb57ef3 5360 bool was_dirty;
d1310b2e 5361
0b32f4bb
JB
5362 check_buffer_tree_ref(eb);
5363
b9473439 5364 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5365
65ad0104 5366 num_pages = num_extent_pages(eb);
3083ee2e 5367 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5368 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5369
abb57ef3
LB
5370 if (!was_dirty)
5371 for (i = 0; i < num_pages; i++)
5372 set_page_dirty(eb->pages[i]);
51995c39
LB
5373
5374#ifdef CONFIG_BTRFS_DEBUG
5375 for (i = 0; i < num_pages; i++)
5376 ASSERT(PageDirty(eb->pages[i]));
5377#endif
5378
b9473439 5379 return was_dirty;
d1310b2e 5380}
d1310b2e 5381
69ba3927 5382void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5383{
cc5e31a4 5384 int i;
1259ab75 5385 struct page *page;
cc5e31a4 5386 int num_pages;
1259ab75 5387
b4ce94de 5388 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5389 num_pages = num_extent_pages(eb);
1259ab75 5390 for (i = 0; i < num_pages; i++) {
fb85fc9a 5391 page = eb->pages[i];
33958dc6
CM
5392 if (page)
5393 ClearPageUptodate(page);
1259ab75 5394 }
1259ab75
CM
5395}
5396
09c25a8c 5397void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5398{
cc5e31a4 5399 int i;
d1310b2e 5400 struct page *page;
cc5e31a4 5401 int num_pages;
d1310b2e 5402
0b32f4bb 5403 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5404 num_pages = num_extent_pages(eb);
d1310b2e 5405 for (i = 0; i < num_pages; i++) {
fb85fc9a 5406 page = eb->pages[i];
d1310b2e
CM
5407 SetPageUptodate(page);
5408 }
d1310b2e 5409}
d1310b2e 5410
c2ccfbc6 5411int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5412{
cc5e31a4 5413 int i;
d1310b2e
CM
5414 struct page *page;
5415 int err;
5416 int ret = 0;
ce9adaa5
CM
5417 int locked_pages = 0;
5418 int all_uptodate = 1;
cc5e31a4 5419 int num_pages;
727011e0 5420 unsigned long num_reads = 0;
a86c12c7 5421 struct bio *bio = NULL;
c8b97818 5422 unsigned long bio_flags = 0;
c2ccfbc6 5423 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
a86c12c7 5424
b4ce94de 5425 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5426 return 0;
5427
65ad0104 5428 num_pages = num_extent_pages(eb);
8436ea91 5429 for (i = 0; i < num_pages; i++) {
fb85fc9a 5430 page = eb->pages[i];
bb82ab88 5431 if (wait == WAIT_NONE) {
2db04966 5432 if (!trylock_page(page))
ce9adaa5 5433 goto unlock_exit;
d1310b2e
CM
5434 } else {
5435 lock_page(page);
5436 }
ce9adaa5 5437 locked_pages++;
2571e739
LB
5438 }
5439 /*
5440 * We need to firstly lock all pages to make sure that
5441 * the uptodate bit of our pages won't be affected by
5442 * clear_extent_buffer_uptodate().
5443 */
8436ea91 5444 for (i = 0; i < num_pages; i++) {
2571e739 5445 page = eb->pages[i];
727011e0
CM
5446 if (!PageUptodate(page)) {
5447 num_reads++;
ce9adaa5 5448 all_uptodate = 0;
727011e0 5449 }
ce9adaa5 5450 }
2571e739 5451
ce9adaa5 5452 if (all_uptodate) {
8436ea91 5453 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5454 goto unlock_exit;
5455 }
5456
656f30db 5457 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5458 eb->read_mirror = 0;
0b32f4bb 5459 atomic_set(&eb->io_pages, num_reads);
8436ea91 5460 for (i = 0; i < num_pages; i++) {
fb85fc9a 5461 page = eb->pages[i];
baf863b9 5462
ce9adaa5 5463 if (!PageUptodate(page)) {
baf863b9
LB
5464 if (ret) {
5465 atomic_dec(&eb->io_pages);
5466 unlock_page(page);
5467 continue;
5468 }
5469
f188591e 5470 ClearPageError(page);
a86c12c7 5471 err = __extent_read_full_page(tree, page,
6af49dbd 5472 btree_get_extent, &bio,
d4c7ca86 5473 mirror_num, &bio_flags,
1f7ad75b 5474 REQ_META);
baf863b9 5475 if (err) {
d1310b2e 5476 ret = err;
baf863b9
LB
5477 /*
5478 * We use &bio in above __extent_read_full_page,
5479 * so we ensure that if it returns error, the
5480 * current page fails to add itself to bio and
5481 * it's been unlocked.
5482 *
5483 * We must dec io_pages by ourselves.
5484 */
5485 atomic_dec(&eb->io_pages);
5486 }
d1310b2e
CM
5487 } else {
5488 unlock_page(page);
5489 }
5490 }
5491
355808c2 5492 if (bio) {
1f7ad75b 5493 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5494 if (err)
5495 return err;
355808c2 5496 }
a86c12c7 5497
bb82ab88 5498 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5499 return ret;
d397712b 5500
8436ea91 5501 for (i = 0; i < num_pages; i++) {
fb85fc9a 5502 page = eb->pages[i];
d1310b2e 5503 wait_on_page_locked(page);
d397712b 5504 if (!PageUptodate(page))
d1310b2e 5505 ret = -EIO;
d1310b2e 5506 }
d397712b 5507
d1310b2e 5508 return ret;
ce9adaa5
CM
5509
5510unlock_exit:
d397712b 5511 while (locked_pages > 0) {
ce9adaa5 5512 locked_pages--;
8436ea91
JB
5513 page = eb->pages[locked_pages];
5514 unlock_page(page);
ce9adaa5
CM
5515 }
5516 return ret;
d1310b2e 5517}
d1310b2e 5518
1cbb1f45
JM
5519void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5520 unsigned long start, unsigned long len)
d1310b2e
CM
5521{
5522 size_t cur;
5523 size_t offset;
5524 struct page *page;
5525 char *kaddr;
5526 char *dst = (char *)dstv;
7073017a 5527 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5528 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5529
f716abd5
LB
5530 if (start + len > eb->len) {
5531 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5532 eb->start, eb->len, start, len);
5533 memset(dst, 0, len);
5534 return;
5535 }
d1310b2e 5536
7073017a 5537 offset = offset_in_page(start_offset + start);
d1310b2e 5538
d397712b 5539 while (len > 0) {
fb85fc9a 5540 page = eb->pages[i];
d1310b2e 5541
09cbfeaf 5542 cur = min(len, (PAGE_SIZE - offset));
a6591715 5543 kaddr = page_address(page);
d1310b2e 5544 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5545
5546 dst += cur;
5547 len -= cur;
5548 offset = 0;
5549 i++;
5550 }
5551}
d1310b2e 5552
1cbb1f45
JM
5553int read_extent_buffer_to_user(const struct extent_buffer *eb,
5554 void __user *dstv,
5555 unsigned long start, unsigned long len)
550ac1d8
GH
5556{
5557 size_t cur;
5558 size_t offset;
5559 struct page *page;
5560 char *kaddr;
5561 char __user *dst = (char __user *)dstv;
7073017a 5562 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5563 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5564 int ret = 0;
5565
5566 WARN_ON(start > eb->len);
5567 WARN_ON(start + len > eb->start + eb->len);
5568
7073017a 5569 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5570
5571 while (len > 0) {
fb85fc9a 5572 page = eb->pages[i];
550ac1d8 5573
09cbfeaf 5574 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5575 kaddr = page_address(page);
5576 if (copy_to_user(dst, kaddr + offset, cur)) {
5577 ret = -EFAULT;
5578 break;
5579 }
5580
5581 dst += cur;
5582 len -= cur;
5583 offset = 0;
5584 i++;
5585 }
5586
5587 return ret;
5588}
5589
415b35a5
LB
5590/*
5591 * return 0 if the item is found within a page.
5592 * return 1 if the item spans two pages.
5593 * return -EINVAL otherwise.
5594 */
1cbb1f45
JM
5595int map_private_extent_buffer(const struct extent_buffer *eb,
5596 unsigned long start, unsigned long min_len,
5597 char **map, unsigned long *map_start,
5598 unsigned long *map_len)
d1310b2e 5599{
cc2c39d6 5600 size_t offset;
d1310b2e
CM
5601 char *kaddr;
5602 struct page *p;
7073017a 5603 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5604 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5605 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5606 PAGE_SHIFT;
d1310b2e 5607
f716abd5
LB
5608 if (start + min_len > eb->len) {
5609 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5610 eb->start, eb->len, start, min_len);
5611 return -EINVAL;
5612 }
5613
d1310b2e 5614 if (i != end_i)
415b35a5 5615 return 1;
d1310b2e
CM
5616
5617 if (i == 0) {
5618 offset = start_offset;
5619 *map_start = 0;
5620 } else {
5621 offset = 0;
09cbfeaf 5622 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5623 }
d397712b 5624
fb85fc9a 5625 p = eb->pages[i];
a6591715 5626 kaddr = page_address(p);
d1310b2e 5627 *map = kaddr + offset;
09cbfeaf 5628 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5629 return 0;
5630}
d1310b2e 5631
1cbb1f45
JM
5632int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5633 unsigned long start, unsigned long len)
d1310b2e
CM
5634{
5635 size_t cur;
5636 size_t offset;
5637 struct page *page;
5638 char *kaddr;
5639 char *ptr = (char *)ptrv;
7073017a 5640 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5641 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5642 int ret = 0;
5643
5644 WARN_ON(start > eb->len);
5645 WARN_ON(start + len > eb->start + eb->len);
5646
7073017a 5647 offset = offset_in_page(start_offset + start);
d1310b2e 5648
d397712b 5649 while (len > 0) {
fb85fc9a 5650 page = eb->pages[i];
d1310b2e 5651
09cbfeaf 5652 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5653
a6591715 5654 kaddr = page_address(page);
d1310b2e 5655 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5656 if (ret)
5657 break;
5658
5659 ptr += cur;
5660 len -= cur;
5661 offset = 0;
5662 i++;
5663 }
5664 return ret;
5665}
d1310b2e 5666
f157bf76
DS
5667void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5668 const void *srcv)
5669{
5670 char *kaddr;
5671
5672 WARN_ON(!PageUptodate(eb->pages[0]));
5673 kaddr = page_address(eb->pages[0]);
5674 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5675 BTRFS_FSID_SIZE);
5676}
5677
5678void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5679{
5680 char *kaddr;
5681
5682 WARN_ON(!PageUptodate(eb->pages[0]));
5683 kaddr = page_address(eb->pages[0]);
5684 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5685 BTRFS_FSID_SIZE);
5686}
5687
d1310b2e
CM
5688void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5689 unsigned long start, unsigned long len)
5690{
5691 size_t cur;
5692 size_t offset;
5693 struct page *page;
5694 char *kaddr;
5695 char *src = (char *)srcv;
7073017a 5696 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5697 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5698
5699 WARN_ON(start > eb->len);
5700 WARN_ON(start + len > eb->start + eb->len);
5701
7073017a 5702 offset = offset_in_page(start_offset + start);
d1310b2e 5703
d397712b 5704 while (len > 0) {
fb85fc9a 5705 page = eb->pages[i];
d1310b2e
CM
5706 WARN_ON(!PageUptodate(page));
5707
09cbfeaf 5708 cur = min(len, PAGE_SIZE - offset);
a6591715 5709 kaddr = page_address(page);
d1310b2e 5710 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5711
5712 src += cur;
5713 len -= cur;
5714 offset = 0;
5715 i++;
5716 }
5717}
d1310b2e 5718
b159fa28
DS
5719void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5720 unsigned long len)
d1310b2e
CM
5721{
5722 size_t cur;
5723 size_t offset;
5724 struct page *page;
5725 char *kaddr;
7073017a 5726 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5727 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5728
5729 WARN_ON(start > eb->len);
5730 WARN_ON(start + len > eb->start + eb->len);
5731
7073017a 5732 offset = offset_in_page(start_offset + start);
d1310b2e 5733
d397712b 5734 while (len > 0) {
fb85fc9a 5735 page = eb->pages[i];
d1310b2e
CM
5736 WARN_ON(!PageUptodate(page));
5737
09cbfeaf 5738 cur = min(len, PAGE_SIZE - offset);
a6591715 5739 kaddr = page_address(page);
b159fa28 5740 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5741
5742 len -= cur;
5743 offset = 0;
5744 i++;
5745 }
5746}
d1310b2e 5747
58e8012c
DS
5748void copy_extent_buffer_full(struct extent_buffer *dst,
5749 struct extent_buffer *src)
5750{
5751 int i;
cc5e31a4 5752 int num_pages;
58e8012c
DS
5753
5754 ASSERT(dst->len == src->len);
5755
65ad0104 5756 num_pages = num_extent_pages(dst);
58e8012c
DS
5757 for (i = 0; i < num_pages; i++)
5758 copy_page(page_address(dst->pages[i]),
5759 page_address(src->pages[i]));
5760}
5761
d1310b2e
CM
5762void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5763 unsigned long dst_offset, unsigned long src_offset,
5764 unsigned long len)
5765{
5766 u64 dst_len = dst->len;
5767 size_t cur;
5768 size_t offset;
5769 struct page *page;
5770 char *kaddr;
7073017a 5771 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5772 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5773
5774 WARN_ON(src->len != dst_len);
5775
7073017a 5776 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5777
d397712b 5778 while (len > 0) {
fb85fc9a 5779 page = dst->pages[i];
d1310b2e
CM
5780 WARN_ON(!PageUptodate(page));
5781
09cbfeaf 5782 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5783
a6591715 5784 kaddr = page_address(page);
d1310b2e 5785 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5786
5787 src_offset += cur;
5788 len -= cur;
5789 offset = 0;
5790 i++;
5791 }
5792}
d1310b2e 5793
3e1e8bb7
OS
5794/*
5795 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5796 * given bit number
5797 * @eb: the extent buffer
5798 * @start: offset of the bitmap item in the extent buffer
5799 * @nr: bit number
5800 * @page_index: return index of the page in the extent buffer that contains the
5801 * given bit number
5802 * @page_offset: return offset into the page given by page_index
5803 *
5804 * This helper hides the ugliness of finding the byte in an extent buffer which
5805 * contains a given bit.
5806 */
5807static inline void eb_bitmap_offset(struct extent_buffer *eb,
5808 unsigned long start, unsigned long nr,
5809 unsigned long *page_index,
5810 size_t *page_offset)
5811{
7073017a 5812 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5813 size_t byte_offset = BIT_BYTE(nr);
5814 size_t offset;
5815
5816 /*
5817 * The byte we want is the offset of the extent buffer + the offset of
5818 * the bitmap item in the extent buffer + the offset of the byte in the
5819 * bitmap item.
5820 */
5821 offset = start_offset + start + byte_offset;
5822
09cbfeaf 5823 *page_index = offset >> PAGE_SHIFT;
7073017a 5824 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5825}
5826
5827/**
5828 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5829 * @eb: the extent buffer
5830 * @start: offset of the bitmap item in the extent buffer
5831 * @nr: bit number to test
5832 */
5833int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5834 unsigned long nr)
5835{
2fe1d551 5836 u8 *kaddr;
3e1e8bb7
OS
5837 struct page *page;
5838 unsigned long i;
5839 size_t offset;
5840
5841 eb_bitmap_offset(eb, start, nr, &i, &offset);
5842 page = eb->pages[i];
5843 WARN_ON(!PageUptodate(page));
5844 kaddr = page_address(page);
5845 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5846}
5847
5848/**
5849 * extent_buffer_bitmap_set - set an area of a bitmap
5850 * @eb: the extent buffer
5851 * @start: offset of the bitmap item in the extent buffer
5852 * @pos: bit number of the first bit
5853 * @len: number of bits to set
5854 */
5855void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5856 unsigned long pos, unsigned long len)
5857{
2fe1d551 5858 u8 *kaddr;
3e1e8bb7
OS
5859 struct page *page;
5860 unsigned long i;
5861 size_t offset;
5862 const unsigned int size = pos + len;
5863 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5864 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5865
5866 eb_bitmap_offset(eb, start, pos, &i, &offset);
5867 page = eb->pages[i];
5868 WARN_ON(!PageUptodate(page));
5869 kaddr = page_address(page);
5870
5871 while (len >= bits_to_set) {
5872 kaddr[offset] |= mask_to_set;
5873 len -= bits_to_set;
5874 bits_to_set = BITS_PER_BYTE;
9c894696 5875 mask_to_set = ~0;
09cbfeaf 5876 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5877 offset = 0;
5878 page = eb->pages[++i];
5879 WARN_ON(!PageUptodate(page));
5880 kaddr = page_address(page);
5881 }
5882 }
5883 if (len) {
5884 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5885 kaddr[offset] |= mask_to_set;
5886 }
5887}
5888
5889
5890/**
5891 * extent_buffer_bitmap_clear - clear an area of a bitmap
5892 * @eb: the extent buffer
5893 * @start: offset of the bitmap item in the extent buffer
5894 * @pos: bit number of the first bit
5895 * @len: number of bits to clear
5896 */
5897void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5898 unsigned long pos, unsigned long len)
5899{
2fe1d551 5900 u8 *kaddr;
3e1e8bb7
OS
5901 struct page *page;
5902 unsigned long i;
5903 size_t offset;
5904 const unsigned int size = pos + len;
5905 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5906 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5907
5908 eb_bitmap_offset(eb, start, pos, &i, &offset);
5909 page = eb->pages[i];
5910 WARN_ON(!PageUptodate(page));
5911 kaddr = page_address(page);
5912
5913 while (len >= bits_to_clear) {
5914 kaddr[offset] &= ~mask_to_clear;
5915 len -= bits_to_clear;
5916 bits_to_clear = BITS_PER_BYTE;
9c894696 5917 mask_to_clear = ~0;
09cbfeaf 5918 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5919 offset = 0;
5920 page = eb->pages[++i];
5921 WARN_ON(!PageUptodate(page));
5922 kaddr = page_address(page);
5923 }
5924 }
5925 if (len) {
5926 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5927 kaddr[offset] &= ~mask_to_clear;
5928 }
5929}
5930
3387206f
ST
5931static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5932{
5933 unsigned long distance = (src > dst) ? src - dst : dst - src;
5934 return distance < len;
5935}
5936
d1310b2e
CM
5937static void copy_pages(struct page *dst_page, struct page *src_page,
5938 unsigned long dst_off, unsigned long src_off,
5939 unsigned long len)
5940{
a6591715 5941 char *dst_kaddr = page_address(dst_page);
d1310b2e 5942 char *src_kaddr;
727011e0 5943 int must_memmove = 0;
d1310b2e 5944
3387206f 5945 if (dst_page != src_page) {
a6591715 5946 src_kaddr = page_address(src_page);
3387206f 5947 } else {
d1310b2e 5948 src_kaddr = dst_kaddr;
727011e0
CM
5949 if (areas_overlap(src_off, dst_off, len))
5950 must_memmove = 1;
3387206f 5951 }
d1310b2e 5952
727011e0
CM
5953 if (must_memmove)
5954 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5955 else
5956 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5957}
5958
5959void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5960 unsigned long src_offset, unsigned long len)
5961{
0b246afa 5962 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5963 size_t cur;
5964 size_t dst_off_in_page;
5965 size_t src_off_in_page;
7073017a 5966 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5967 unsigned long dst_i;
5968 unsigned long src_i;
5969
5970 if (src_offset + len > dst->len) {
0b246afa 5971 btrfs_err(fs_info,
5d163e0e
JM
5972 "memmove bogus src_offset %lu move len %lu dst len %lu",
5973 src_offset, len, dst->len);
290342f6 5974 BUG();
d1310b2e
CM
5975 }
5976 if (dst_offset + len > dst->len) {
0b246afa 5977 btrfs_err(fs_info,
5d163e0e
JM
5978 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5979 dst_offset, len, dst->len);
290342f6 5980 BUG();
d1310b2e
CM
5981 }
5982
d397712b 5983 while (len > 0) {
7073017a
JT
5984 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5985 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5986
09cbfeaf
KS
5987 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5988 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5989
09cbfeaf 5990 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5991 src_off_in_page));
5992 cur = min_t(unsigned long, cur,
09cbfeaf 5993 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5994
fb85fc9a 5995 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5996 dst_off_in_page, src_off_in_page, cur);
5997
5998 src_offset += cur;
5999 dst_offset += cur;
6000 len -= cur;
6001 }
6002}
d1310b2e
CM
6003
6004void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6005 unsigned long src_offset, unsigned long len)
6006{
0b246afa 6007 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6008 size_t cur;
6009 size_t dst_off_in_page;
6010 size_t src_off_in_page;
6011 unsigned long dst_end = dst_offset + len - 1;
6012 unsigned long src_end = src_offset + len - 1;
7073017a 6013 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
6014 unsigned long dst_i;
6015 unsigned long src_i;
6016
6017 if (src_offset + len > dst->len) {
0b246afa 6018 btrfs_err(fs_info,
5d163e0e
JM
6019 "memmove bogus src_offset %lu move len %lu len %lu",
6020 src_offset, len, dst->len);
290342f6 6021 BUG();
d1310b2e
CM
6022 }
6023 if (dst_offset + len > dst->len) {
0b246afa 6024 btrfs_err(fs_info,
5d163e0e
JM
6025 "memmove bogus dst_offset %lu move len %lu len %lu",
6026 dst_offset, len, dst->len);
290342f6 6027 BUG();
d1310b2e 6028 }
727011e0 6029 if (dst_offset < src_offset) {
d1310b2e
CM
6030 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6031 return;
6032 }
d397712b 6033 while (len > 0) {
09cbfeaf
KS
6034 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6035 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 6036
7073017a
JT
6037 dst_off_in_page = offset_in_page(start_offset + dst_end);
6038 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
6039
6040 cur = min_t(unsigned long, len, src_off_in_page + 1);
6041 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6042 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6043 dst_off_in_page - cur + 1,
6044 src_off_in_page - cur + 1, cur);
6045
6046 dst_end -= cur;
6047 src_end -= cur;
6048 len -= cur;
6049 }
6050}
6af118ce 6051
f7a52a40 6052int try_release_extent_buffer(struct page *page)
19fe0a8b 6053{
6af118ce 6054 struct extent_buffer *eb;
6af118ce 6055
3083ee2e 6056 /*
01327610 6057 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6058 * now.
6059 */
6060 spin_lock(&page->mapping->private_lock);
6061 if (!PagePrivate(page)) {
6062 spin_unlock(&page->mapping->private_lock);
4f2de97a 6063 return 1;
45f49bce 6064 }
6af118ce 6065
3083ee2e
JB
6066 eb = (struct extent_buffer *)page->private;
6067 BUG_ON(!eb);
19fe0a8b
MX
6068
6069 /*
3083ee2e
JB
6070 * This is a little awful but should be ok, we need to make sure that
6071 * the eb doesn't disappear out from under us while we're looking at
6072 * this page.
19fe0a8b 6073 */
3083ee2e 6074 spin_lock(&eb->refs_lock);
0b32f4bb 6075 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6076 spin_unlock(&eb->refs_lock);
6077 spin_unlock(&page->mapping->private_lock);
6078 return 0;
b9473439 6079 }
3083ee2e 6080 spin_unlock(&page->mapping->private_lock);
897ca6e9 6081
19fe0a8b 6082 /*
3083ee2e
JB
6083 * If tree ref isn't set then we know the ref on this eb is a real ref,
6084 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6085 */
3083ee2e
JB
6086 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6087 spin_unlock(&eb->refs_lock);
6088 return 0;
b9473439 6089 }
19fe0a8b 6090
f7a52a40 6091 return release_extent_buffer(eb);
6af118ce 6092}