]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: remove extent_map::bdev
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e 16#include "extent_io.h"
9c7d3a54 17#include "extent-io-tree.h"
d1310b2e 18#include "extent_map.h"
902b22f3
DW
19#include "ctree.h"
20#include "btrfs_inode.h"
4a54c8c1 21#include "volumes.h"
21adbd5c 22#include "check-integrity.h"
0b32f4bb 23#include "locking.h"
606686ee 24#include "rcu-string.h"
fe09e16c 25#include "backref.h"
6af49dbd 26#include "disk-io.h"
d1310b2e 27
d1310b2e
CM
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 30static struct bio_set btrfs_bioset;
d1310b2e 31
27a3507d
FM
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
6d49ba1b 37#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
38static LIST_HEAD(buffers);
39static LIST_HEAD(states);
4bef0848 40
d397712b 41static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
42
43static inline
44void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
45{
46 unsigned long flags;
47
48 spin_lock_irqsave(&leak_lock, flags);
49 list_add(new, head);
50 spin_unlock_irqrestore(&leak_lock, flags);
51}
52
53static inline
54void btrfs_leak_debug_del(struct list_head *entry)
55{
56 unsigned long flags;
57
58 spin_lock_irqsave(&leak_lock, flags);
59 list_del(entry);
60 spin_unlock_irqrestore(&leak_lock, flags);
61}
62
33ca832f 63static inline void btrfs_extent_buffer_leak_debug_check(void)
6d49ba1b 64{
6d49ba1b
ES
65 struct extent_buffer *eb;
66
33ca832f
JB
67 while (!list_empty(&buffers)) {
68 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
69 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
70 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
71 list_del(&eb->leak_list);
72 kmem_cache_free(extent_buffer_cache, eb);
73 }
74}
75
76static inline void btrfs_extent_state_leak_debug_check(void)
77{
78 struct extent_state *state;
79
6d49ba1b
ES
80 while (!list_empty(&states)) {
81 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 82 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
83 state->start, state->end, state->state,
84 extent_state_in_tree(state),
b7ac31b7 85 refcount_read(&state->refs));
6d49ba1b
ES
86 list_del(&state->leak_list);
87 kmem_cache_free(extent_state_cache, state);
88 }
6d49ba1b 89}
8d599ae1 90
a5dee37d
JB
91#define btrfs_debug_check_extent_io_range(tree, start, end) \
92 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 93static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 94 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 95{
65a680f6
NB
96 struct inode *inode = tree->private_data;
97 u64 isize;
98
99 if (!inode || !is_data_inode(inode))
100 return;
101
102 isize = i_size_read(inode);
103 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
104 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
105 "%s: ino %llu isize %llu odd range [%llu,%llu]",
106 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
107 }
8d599ae1 108}
6d49ba1b
ES
109#else
110#define btrfs_leak_debug_add(new, head) do {} while (0)
111#define btrfs_leak_debug_del(entry) do {} while (0)
33ca832f
JB
112#define btrfs_extent_buffer_leak_debug_check() do {} while (0)
113#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 114#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 115#endif
d1310b2e 116
d1310b2e
CM
117struct tree_entry {
118 u64 start;
119 u64 end;
d1310b2e
CM
120 struct rb_node rb_node;
121};
122
123struct extent_page_data {
124 struct bio *bio;
125 struct extent_io_tree *tree;
771ed689
CM
126 /* tells writepage not to lock the state bits for this range
127 * it still does the unlocking
128 */
ffbd517d
CM
129 unsigned int extent_locked:1;
130
70fd7614 131 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 132 unsigned int sync_io:1;
d1310b2e
CM
133};
134
57599c7e 135static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
136 struct extent_changeset *changeset,
137 int set)
138{
139 int ret;
140
141 if (!changeset)
57599c7e 142 return 0;
d38ed27f 143 if (set && (state->state & bits) == bits)
57599c7e 144 return 0;
fefdc557 145 if (!set && (state->state & bits) == 0)
57599c7e 146 return 0;
d38ed27f 147 changeset->bytes_changed += state->end - state->start + 1;
53d32359 148 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 149 GFP_ATOMIC);
57599c7e 150 return ret;
d38ed27f
QW
151}
152
bb58eb9e
QW
153static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
154 unsigned long bio_flags)
155{
156 blk_status_t ret = 0;
bb58eb9e 157 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
158
159 bio->bi_private = NULL;
160
161 if (tree->ops)
162 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 163 mirror_num, bio_flags);
bb58eb9e
QW
164 else
165 btrfsic_submit_bio(bio);
166
167 return blk_status_to_errno(ret);
168}
169
3065976b
QW
170/* Cleanup unsubmitted bios */
171static void end_write_bio(struct extent_page_data *epd, int ret)
172{
173 if (epd->bio) {
174 epd->bio->bi_status = errno_to_blk_status(ret);
175 bio_endio(epd->bio);
176 epd->bio = NULL;
177 }
178}
179
f4340622
QW
180/*
181 * Submit bio from extent page data via submit_one_bio
182 *
183 * Return 0 if everything is OK.
184 * Return <0 for error.
185 */
186static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 187{
f4340622 188 int ret = 0;
bb58eb9e 189
f4340622 190 if (epd->bio) {
bb58eb9e 191 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
192 /*
193 * Clean up of epd->bio is handled by its endio function.
194 * And endio is either triggered by successful bio execution
195 * or the error handler of submit bio hook.
196 * So at this point, no matter what happened, we don't need
197 * to clean up epd->bio.
198 */
bb58eb9e
QW
199 epd->bio = NULL;
200 }
f4340622 201 return ret;
bb58eb9e 202}
e2932ee0 203
6f0d04f8 204int __init extent_state_cache_init(void)
d1310b2e 205{
837e1972 206 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 207 sizeof(struct extent_state), 0,
fba4b697 208 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
209 if (!extent_state_cache)
210 return -ENOMEM;
6f0d04f8
JB
211 return 0;
212}
d1310b2e 213
6f0d04f8
JB
214int __init extent_io_init(void)
215{
837e1972 216 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 217 sizeof(struct extent_buffer), 0,
fba4b697 218 SLAB_MEM_SPREAD, NULL);
d1310b2e 219 if (!extent_buffer_cache)
6f0d04f8 220 return -ENOMEM;
9be3395b 221
8ac9f7c1
KO
222 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
223 offsetof(struct btrfs_io_bio, bio),
224 BIOSET_NEED_BVECS))
9be3395b 225 goto free_buffer_cache;
b208c2f7 226
8ac9f7c1 227 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
228 goto free_bioset;
229
d1310b2e
CM
230 return 0;
231
b208c2f7 232free_bioset:
8ac9f7c1 233 bioset_exit(&btrfs_bioset);
b208c2f7 234
9be3395b
CM
235free_buffer_cache:
236 kmem_cache_destroy(extent_buffer_cache);
237 extent_buffer_cache = NULL;
6f0d04f8
JB
238 return -ENOMEM;
239}
9be3395b 240
6f0d04f8
JB
241void __cold extent_state_cache_exit(void)
242{
243 btrfs_extent_state_leak_debug_check();
d1310b2e 244 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
245}
246
e67c718b 247void __cold extent_io_exit(void)
d1310b2e 248{
33ca832f 249 btrfs_extent_buffer_leak_debug_check();
8c0a8537
KS
250
251 /*
252 * Make sure all delayed rcu free are flushed before we
253 * destroy caches.
254 */
255 rcu_barrier();
5598e900 256 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 257 bioset_exit(&btrfs_bioset);
d1310b2e
CM
258}
259
c258d6e3 260void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
261 struct extent_io_tree *tree, unsigned int owner,
262 void *private_data)
d1310b2e 263{
c258d6e3 264 tree->fs_info = fs_info;
6bef4d31 265 tree->state = RB_ROOT;
d1310b2e
CM
266 tree->ops = NULL;
267 tree->dirty_bytes = 0;
70dec807 268 spin_lock_init(&tree->lock);
c6100a4b 269 tree->private_data = private_data;
43eb5f29 270 tree->owner = owner;
d1310b2e 271}
d1310b2e 272
41e7acd3
NB
273void extent_io_tree_release(struct extent_io_tree *tree)
274{
275 spin_lock(&tree->lock);
276 /*
277 * Do a single barrier for the waitqueue_active check here, the state
278 * of the waitqueue should not change once extent_io_tree_release is
279 * called.
280 */
281 smp_mb();
282 while (!RB_EMPTY_ROOT(&tree->state)) {
283 struct rb_node *node;
284 struct extent_state *state;
285
286 node = rb_first(&tree->state);
287 state = rb_entry(node, struct extent_state, rb_node);
288 rb_erase(&state->rb_node, &tree->state);
289 RB_CLEAR_NODE(&state->rb_node);
290 /*
291 * btree io trees aren't supposed to have tasks waiting for
292 * changes in the flags of extent states ever.
293 */
294 ASSERT(!waitqueue_active(&state->wq));
295 free_extent_state(state);
296
297 cond_resched_lock(&tree->lock);
298 }
299 spin_unlock(&tree->lock);
300}
301
b2950863 302static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
303{
304 struct extent_state *state;
d1310b2e 305
3ba7ab22
MH
306 /*
307 * The given mask might be not appropriate for the slab allocator,
308 * drop the unsupported bits
309 */
310 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 311 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 312 if (!state)
d1310b2e
CM
313 return state;
314 state->state = 0;
47dc196a 315 state->failrec = NULL;
27a3507d 316 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 317 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 318 refcount_set(&state->refs, 1);
d1310b2e 319 init_waitqueue_head(&state->wq);
143bede5 320 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
321 return state;
322}
d1310b2e 323
4845e44f 324void free_extent_state(struct extent_state *state)
d1310b2e 325{
d1310b2e
CM
326 if (!state)
327 return;
b7ac31b7 328 if (refcount_dec_and_test(&state->refs)) {
27a3507d 329 WARN_ON(extent_state_in_tree(state));
6d49ba1b 330 btrfs_leak_debug_del(&state->leak_list);
143bede5 331 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
332 kmem_cache_free(extent_state_cache, state);
333 }
334}
d1310b2e 335
f2071b21
FM
336static struct rb_node *tree_insert(struct rb_root *root,
337 struct rb_node *search_start,
338 u64 offset,
12cfbad9
FDBM
339 struct rb_node *node,
340 struct rb_node ***p_in,
341 struct rb_node **parent_in)
d1310b2e 342{
f2071b21 343 struct rb_node **p;
d397712b 344 struct rb_node *parent = NULL;
d1310b2e
CM
345 struct tree_entry *entry;
346
12cfbad9
FDBM
347 if (p_in && parent_in) {
348 p = *p_in;
349 parent = *parent_in;
350 goto do_insert;
351 }
352
f2071b21 353 p = search_start ? &search_start : &root->rb_node;
d397712b 354 while (*p) {
d1310b2e
CM
355 parent = *p;
356 entry = rb_entry(parent, struct tree_entry, rb_node);
357
358 if (offset < entry->start)
359 p = &(*p)->rb_left;
360 else if (offset > entry->end)
361 p = &(*p)->rb_right;
362 else
363 return parent;
364 }
365
12cfbad9 366do_insert:
d1310b2e
CM
367 rb_link_node(node, parent, p);
368 rb_insert_color(node, root);
369 return NULL;
370}
371
8666e638
NB
372/**
373 * __etree_search - searche @tree for an entry that contains @offset. Such
374 * entry would have entry->start <= offset && entry->end >= offset.
375 *
376 * @tree - the tree to search
377 * @offset - offset that should fall within an entry in @tree
378 * @next_ret - pointer to the first entry whose range ends after @offset
379 * @prev - pointer to the first entry whose range begins before @offset
380 * @p_ret - pointer where new node should be anchored (used when inserting an
381 * entry in the tree)
382 * @parent_ret - points to entry which would have been the parent of the entry,
383 * containing @offset
384 *
385 * This function returns a pointer to the entry that contains @offset byte
386 * address. If no such entry exists, then NULL is returned and the other
387 * pointer arguments to the function are filled, otherwise the found entry is
388 * returned and other pointers are left untouched.
389 */
80ea96b1 390static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 391 struct rb_node **next_ret,
352646c7 392 struct rb_node **prev_ret,
12cfbad9
FDBM
393 struct rb_node ***p_ret,
394 struct rb_node **parent_ret)
d1310b2e 395{
80ea96b1 396 struct rb_root *root = &tree->state;
12cfbad9 397 struct rb_node **n = &root->rb_node;
d1310b2e
CM
398 struct rb_node *prev = NULL;
399 struct rb_node *orig_prev = NULL;
400 struct tree_entry *entry;
401 struct tree_entry *prev_entry = NULL;
402
12cfbad9
FDBM
403 while (*n) {
404 prev = *n;
405 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
406 prev_entry = entry;
407
408 if (offset < entry->start)
12cfbad9 409 n = &(*n)->rb_left;
d1310b2e 410 else if (offset > entry->end)
12cfbad9 411 n = &(*n)->rb_right;
d397712b 412 else
12cfbad9 413 return *n;
d1310b2e
CM
414 }
415
12cfbad9
FDBM
416 if (p_ret)
417 *p_ret = n;
418 if (parent_ret)
419 *parent_ret = prev;
420
352646c7 421 if (next_ret) {
d1310b2e 422 orig_prev = prev;
d397712b 423 while (prev && offset > prev_entry->end) {
d1310b2e
CM
424 prev = rb_next(prev);
425 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
426 }
352646c7 427 *next_ret = prev;
d1310b2e
CM
428 prev = orig_prev;
429 }
430
352646c7 431 if (prev_ret) {
d1310b2e 432 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 433 while (prev && offset < prev_entry->start) {
d1310b2e
CM
434 prev = rb_prev(prev);
435 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
436 }
352646c7 437 *prev_ret = prev;
d1310b2e
CM
438 }
439 return NULL;
440}
441
12cfbad9
FDBM
442static inline struct rb_node *
443tree_search_for_insert(struct extent_io_tree *tree,
444 u64 offset,
445 struct rb_node ***p_ret,
446 struct rb_node **parent_ret)
d1310b2e 447{
352646c7 448 struct rb_node *next= NULL;
d1310b2e 449 struct rb_node *ret;
70dec807 450
352646c7 451 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 452 if (!ret)
352646c7 453 return next;
d1310b2e
CM
454 return ret;
455}
456
12cfbad9
FDBM
457static inline struct rb_node *tree_search(struct extent_io_tree *tree,
458 u64 offset)
459{
460 return tree_search_for_insert(tree, offset, NULL, NULL);
461}
462
d1310b2e
CM
463/*
464 * utility function to look for merge candidates inside a given range.
465 * Any extents with matching state are merged together into a single
466 * extent in the tree. Extents with EXTENT_IO in their state field
467 * are not merged because the end_io handlers need to be able to do
468 * operations on them without sleeping (or doing allocations/splits).
469 *
470 * This should be called with the tree lock held.
471 */
1bf85046
JM
472static void merge_state(struct extent_io_tree *tree,
473 struct extent_state *state)
d1310b2e
CM
474{
475 struct extent_state *other;
476 struct rb_node *other_node;
477
8882679e 478 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 479 return;
d1310b2e
CM
480
481 other_node = rb_prev(&state->rb_node);
482 if (other_node) {
483 other = rb_entry(other_node, struct extent_state, rb_node);
484 if (other->end == state->start - 1 &&
485 other->state == state->state) {
5c848198
NB
486 if (tree->private_data &&
487 is_data_inode(tree->private_data))
488 btrfs_merge_delalloc_extent(tree->private_data,
489 state, other);
d1310b2e 490 state->start = other->start;
d1310b2e 491 rb_erase(&other->rb_node, &tree->state);
27a3507d 492 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
493 free_extent_state(other);
494 }
495 }
496 other_node = rb_next(&state->rb_node);
497 if (other_node) {
498 other = rb_entry(other_node, struct extent_state, rb_node);
499 if (other->start == state->end + 1 &&
500 other->state == state->state) {
5c848198
NB
501 if (tree->private_data &&
502 is_data_inode(tree->private_data))
503 btrfs_merge_delalloc_extent(tree->private_data,
504 state, other);
df98b6e2 505 state->end = other->end;
df98b6e2 506 rb_erase(&other->rb_node, &tree->state);
27a3507d 507 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 508 free_extent_state(other);
d1310b2e
CM
509 }
510 }
d1310b2e
CM
511}
512
3150b699 513static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
514 struct extent_state *state, unsigned *bits,
515 struct extent_changeset *changeset);
3150b699 516
d1310b2e
CM
517/*
518 * insert an extent_state struct into the tree. 'bits' are set on the
519 * struct before it is inserted.
520 *
521 * This may return -EEXIST if the extent is already there, in which case the
522 * state struct is freed.
523 *
524 * The tree lock is not taken internally. This is a utility function and
525 * probably isn't what you want to call (see set/clear_extent_bit).
526 */
527static int insert_state(struct extent_io_tree *tree,
528 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
529 struct rb_node ***p,
530 struct rb_node **parent,
d38ed27f 531 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
532{
533 struct rb_node *node;
534
2792237d
DS
535 if (end < start) {
536 btrfs_err(tree->fs_info,
537 "insert state: end < start %llu %llu", end, start);
538 WARN_ON(1);
539 }
d1310b2e
CM
540 state->start = start;
541 state->end = end;
9ed74f2d 542
d38ed27f 543 set_state_bits(tree, state, bits, changeset);
3150b699 544
f2071b21 545 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
546 if (node) {
547 struct extent_state *found;
548 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
549 btrfs_err(tree->fs_info,
550 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 551 found->start, found->end, start, end);
d1310b2e
CM
552 return -EEXIST;
553 }
554 merge_state(tree, state);
555 return 0;
556}
557
558/*
559 * split a given extent state struct in two, inserting the preallocated
560 * struct 'prealloc' as the newly created second half. 'split' indicates an
561 * offset inside 'orig' where it should be split.
562 *
563 * Before calling,
564 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
565 * are two extent state structs in the tree:
566 * prealloc: [orig->start, split - 1]
567 * orig: [ split, orig->end ]
568 *
569 * The tree locks are not taken by this function. They need to be held
570 * by the caller.
571 */
572static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
573 struct extent_state *prealloc, u64 split)
574{
575 struct rb_node *node;
9ed74f2d 576
abbb55f4
NB
577 if (tree->private_data && is_data_inode(tree->private_data))
578 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 579
d1310b2e
CM
580 prealloc->start = orig->start;
581 prealloc->end = split - 1;
582 prealloc->state = orig->state;
583 orig->start = split;
584
f2071b21
FM
585 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
586 &prealloc->rb_node, NULL, NULL);
d1310b2e 587 if (node) {
d1310b2e
CM
588 free_extent_state(prealloc);
589 return -EEXIST;
590 }
591 return 0;
592}
593
cdc6a395
LZ
594static struct extent_state *next_state(struct extent_state *state)
595{
596 struct rb_node *next = rb_next(&state->rb_node);
597 if (next)
598 return rb_entry(next, struct extent_state, rb_node);
599 else
600 return NULL;
601}
602
d1310b2e
CM
603/*
604 * utility function to clear some bits in an extent state struct.
52042d8e 605 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
606 *
607 * If no bits are set on the state struct after clearing things, the
608 * struct is freed and removed from the tree
609 */
cdc6a395
LZ
610static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
611 struct extent_state *state,
fefdc557
QW
612 unsigned *bits, int wake,
613 struct extent_changeset *changeset)
d1310b2e 614{
cdc6a395 615 struct extent_state *next;
9ee49a04 616 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 617 int ret;
d1310b2e 618
0ca1f7ce 619 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
620 u64 range = state->end - state->start + 1;
621 WARN_ON(range > tree->dirty_bytes);
622 tree->dirty_bytes -= range;
623 }
a36bb5f9
NB
624
625 if (tree->private_data && is_data_inode(tree->private_data))
626 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
627
57599c7e
DS
628 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
629 BUG_ON(ret < 0);
32c00aff 630 state->state &= ~bits_to_clear;
d1310b2e
CM
631 if (wake)
632 wake_up(&state->wq);
0ca1f7ce 633 if (state->state == 0) {
cdc6a395 634 next = next_state(state);
27a3507d 635 if (extent_state_in_tree(state)) {
d1310b2e 636 rb_erase(&state->rb_node, &tree->state);
27a3507d 637 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
638 free_extent_state(state);
639 } else {
640 WARN_ON(1);
641 }
642 } else {
643 merge_state(tree, state);
cdc6a395 644 next = next_state(state);
d1310b2e 645 }
cdc6a395 646 return next;
d1310b2e
CM
647}
648
8233767a
XG
649static struct extent_state *
650alloc_extent_state_atomic(struct extent_state *prealloc)
651{
652 if (!prealloc)
653 prealloc = alloc_extent_state(GFP_ATOMIC);
654
655 return prealloc;
656}
657
48a3b636 658static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 659{
05912a3c
DS
660 struct inode *inode = tree->private_data;
661
662 btrfs_panic(btrfs_sb(inode->i_sb), err,
663 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
664}
665
d1310b2e
CM
666/*
667 * clear some bits on a range in the tree. This may require splitting
668 * or inserting elements in the tree, so the gfp mask is used to
669 * indicate which allocations or sleeping are allowed.
670 *
671 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
672 * the given range from the tree regardless of state (ie for truncate).
673 *
674 * the range [start, end] is inclusive.
675 *
6763af84 676 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 677 */
66b0c887 678int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
679 unsigned bits, int wake, int delete,
680 struct extent_state **cached_state,
681 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
682{
683 struct extent_state *state;
2c64c53d 684 struct extent_state *cached;
d1310b2e
CM
685 struct extent_state *prealloc = NULL;
686 struct rb_node *node;
5c939df5 687 u64 last_end;
d1310b2e 688 int err;
2ac55d41 689 int clear = 0;
d1310b2e 690
a5dee37d 691 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 692 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 693
7ee9e440
JB
694 if (bits & EXTENT_DELALLOC)
695 bits |= EXTENT_NORESERVE;
696
0ca1f7ce
YZ
697 if (delete)
698 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 699
8882679e 700 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 701 clear = 1;
d1310b2e 702again:
d0164adc 703 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
704 /*
705 * Don't care for allocation failure here because we might end
706 * up not needing the pre-allocated extent state at all, which
707 * is the case if we only have in the tree extent states that
708 * cover our input range and don't cover too any other range.
709 * If we end up needing a new extent state we allocate it later.
710 */
d1310b2e 711 prealloc = alloc_extent_state(mask);
d1310b2e
CM
712 }
713
cad321ad 714 spin_lock(&tree->lock);
2c64c53d
CM
715 if (cached_state) {
716 cached = *cached_state;
2ac55d41
JB
717
718 if (clear) {
719 *cached_state = NULL;
720 cached_state = NULL;
721 }
722
27a3507d
FM
723 if (cached && extent_state_in_tree(cached) &&
724 cached->start <= start && cached->end > start) {
2ac55d41 725 if (clear)
b7ac31b7 726 refcount_dec(&cached->refs);
2c64c53d 727 state = cached;
42daec29 728 goto hit_next;
2c64c53d 729 }
2ac55d41
JB
730 if (clear)
731 free_extent_state(cached);
2c64c53d 732 }
d1310b2e
CM
733 /*
734 * this search will find the extents that end after
735 * our range starts
736 */
80ea96b1 737 node = tree_search(tree, start);
d1310b2e
CM
738 if (!node)
739 goto out;
740 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 741hit_next:
d1310b2e
CM
742 if (state->start > end)
743 goto out;
744 WARN_ON(state->end < start);
5c939df5 745 last_end = state->end;
d1310b2e 746
0449314a 747 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
748 if (!(state->state & bits)) {
749 state = next_state(state);
0449314a 750 goto next;
cdc6a395 751 }
0449314a 752
d1310b2e
CM
753 /*
754 * | ---- desired range ---- |
755 * | state | or
756 * | ------------- state -------------- |
757 *
758 * We need to split the extent we found, and may flip
759 * bits on second half.
760 *
761 * If the extent we found extends past our range, we
762 * just split and search again. It'll get split again
763 * the next time though.
764 *
765 * If the extent we found is inside our range, we clear
766 * the desired bit on it.
767 */
768
769 if (state->start < start) {
8233767a
XG
770 prealloc = alloc_extent_state_atomic(prealloc);
771 BUG_ON(!prealloc);
d1310b2e 772 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
773 if (err)
774 extent_io_tree_panic(tree, err);
775
d1310b2e
CM
776 prealloc = NULL;
777 if (err)
778 goto out;
779 if (state->end <= end) {
fefdc557
QW
780 state = clear_state_bit(tree, state, &bits, wake,
781 changeset);
d1ac6e41 782 goto next;
d1310b2e
CM
783 }
784 goto search_again;
785 }
786 /*
787 * | ---- desired range ---- |
788 * | state |
789 * We need to split the extent, and clear the bit
790 * on the first half
791 */
792 if (state->start <= end && state->end > end) {
8233767a
XG
793 prealloc = alloc_extent_state_atomic(prealloc);
794 BUG_ON(!prealloc);
d1310b2e 795 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
796 if (err)
797 extent_io_tree_panic(tree, err);
798
d1310b2e
CM
799 if (wake)
800 wake_up(&state->wq);
42daec29 801
fefdc557 802 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 803
d1310b2e
CM
804 prealloc = NULL;
805 goto out;
806 }
42daec29 807
fefdc557 808 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 809next:
5c939df5
YZ
810 if (last_end == (u64)-1)
811 goto out;
812 start = last_end + 1;
cdc6a395 813 if (start <= end && state && !need_resched())
692e5759 814 goto hit_next;
d1310b2e
CM
815
816search_again:
817 if (start > end)
818 goto out;
cad321ad 819 spin_unlock(&tree->lock);
d0164adc 820 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
821 cond_resched();
822 goto again;
7ab5cb2a
DS
823
824out:
825 spin_unlock(&tree->lock);
826 if (prealloc)
827 free_extent_state(prealloc);
828
829 return 0;
830
d1310b2e 831}
d1310b2e 832
143bede5
JM
833static void wait_on_state(struct extent_io_tree *tree,
834 struct extent_state *state)
641f5219
CH
835 __releases(tree->lock)
836 __acquires(tree->lock)
d1310b2e
CM
837{
838 DEFINE_WAIT(wait);
839 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 840 spin_unlock(&tree->lock);
d1310b2e 841 schedule();
cad321ad 842 spin_lock(&tree->lock);
d1310b2e 843 finish_wait(&state->wq, &wait);
d1310b2e
CM
844}
845
846/*
847 * waits for one or more bits to clear on a range in the state tree.
848 * The range [start, end] is inclusive.
849 * The tree lock is taken by this function
850 */
41074888
DS
851static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
852 unsigned long bits)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct rb_node *node;
856
a5dee37d 857 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 858
cad321ad 859 spin_lock(&tree->lock);
d1310b2e
CM
860again:
861 while (1) {
862 /*
863 * this search will find all the extents that end after
864 * our range starts
865 */
80ea96b1 866 node = tree_search(tree, start);
c50d3e71 867process_node:
d1310b2e
CM
868 if (!node)
869 break;
870
871 state = rb_entry(node, struct extent_state, rb_node);
872
873 if (state->start > end)
874 goto out;
875
876 if (state->state & bits) {
877 start = state->start;
b7ac31b7 878 refcount_inc(&state->refs);
d1310b2e
CM
879 wait_on_state(tree, state);
880 free_extent_state(state);
881 goto again;
882 }
883 start = state->end + 1;
884
885 if (start > end)
886 break;
887
c50d3e71
FM
888 if (!cond_resched_lock(&tree->lock)) {
889 node = rb_next(node);
890 goto process_node;
891 }
d1310b2e
CM
892 }
893out:
cad321ad 894 spin_unlock(&tree->lock);
d1310b2e 895}
d1310b2e 896
1bf85046 897static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 898 struct extent_state *state,
d38ed27f 899 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 900{
9ee49a04 901 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 902 int ret;
9ed74f2d 903
e06a1fc9
NB
904 if (tree->private_data && is_data_inode(tree->private_data))
905 btrfs_set_delalloc_extent(tree->private_data, state, bits);
906
0ca1f7ce 907 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
908 u64 range = state->end - state->start + 1;
909 tree->dirty_bytes += range;
910 }
57599c7e
DS
911 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
912 BUG_ON(ret < 0);
0ca1f7ce 913 state->state |= bits_to_set;
d1310b2e
CM
914}
915
e38e2ed7
FM
916static void cache_state_if_flags(struct extent_state *state,
917 struct extent_state **cached_ptr,
9ee49a04 918 unsigned flags)
2c64c53d
CM
919{
920 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 921 if (!flags || (state->state & flags)) {
2c64c53d 922 *cached_ptr = state;
b7ac31b7 923 refcount_inc(&state->refs);
2c64c53d
CM
924 }
925 }
926}
927
e38e2ed7
FM
928static void cache_state(struct extent_state *state,
929 struct extent_state **cached_ptr)
930{
931 return cache_state_if_flags(state, cached_ptr,
8882679e 932 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
933}
934
d1310b2e 935/*
1edbb734
CM
936 * set some bits on a range in the tree. This may require allocations or
937 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 938 *
1edbb734
CM
939 * If any of the exclusive bits are set, this will fail with -EEXIST if some
940 * part of the range already has the desired bits set. The start of the
941 * existing range is returned in failed_start in this case.
d1310b2e 942 *
1edbb734 943 * [start, end] is inclusive This takes the tree lock.
d1310b2e 944 */
1edbb734 945
3fbe5c02
JM
946static int __must_check
947__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 948 unsigned bits, unsigned exclusive_bits,
41074888 949 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 950 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
951{
952 struct extent_state *state;
953 struct extent_state *prealloc = NULL;
954 struct rb_node *node;
12cfbad9
FDBM
955 struct rb_node **p;
956 struct rb_node *parent;
d1310b2e 957 int err = 0;
d1310b2e
CM
958 u64 last_start;
959 u64 last_end;
42daec29 960
a5dee37d 961 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 962 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 963
d1310b2e 964again:
d0164adc 965 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
966 /*
967 * Don't care for allocation failure here because we might end
968 * up not needing the pre-allocated extent state at all, which
969 * is the case if we only have in the tree extent states that
970 * cover our input range and don't cover too any other range.
971 * If we end up needing a new extent state we allocate it later.
972 */
d1310b2e 973 prealloc = alloc_extent_state(mask);
d1310b2e
CM
974 }
975
cad321ad 976 spin_lock(&tree->lock);
9655d298
CM
977 if (cached_state && *cached_state) {
978 state = *cached_state;
df98b6e2 979 if (state->start <= start && state->end > start &&
27a3507d 980 extent_state_in_tree(state)) {
9655d298
CM
981 node = &state->rb_node;
982 goto hit_next;
983 }
984 }
d1310b2e
CM
985 /*
986 * this search will find all the extents that end after
987 * our range starts.
988 */
12cfbad9 989 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 990 if (!node) {
8233767a
XG
991 prealloc = alloc_extent_state_atomic(prealloc);
992 BUG_ON(!prealloc);
12cfbad9 993 err = insert_state(tree, prealloc, start, end,
d38ed27f 994 &p, &parent, &bits, changeset);
c2d904e0
JM
995 if (err)
996 extent_io_tree_panic(tree, err);
997
c42ac0bc 998 cache_state(prealloc, cached_state);
d1310b2e 999 prealloc = NULL;
d1310b2e
CM
1000 goto out;
1001 }
d1310b2e 1002 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1003hit_next:
d1310b2e
CM
1004 last_start = state->start;
1005 last_end = state->end;
1006
1007 /*
1008 * | ---- desired range ---- |
1009 * | state |
1010 *
1011 * Just lock what we found and keep going
1012 */
1013 if (state->start == start && state->end <= end) {
1edbb734 1014 if (state->state & exclusive_bits) {
d1310b2e
CM
1015 *failed_start = state->start;
1016 err = -EEXIST;
1017 goto out;
1018 }
42daec29 1019
d38ed27f 1020 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1021 cache_state(state, cached_state);
d1310b2e 1022 merge_state(tree, state);
5c939df5
YZ
1023 if (last_end == (u64)-1)
1024 goto out;
1025 start = last_end + 1;
d1ac6e41
LB
1026 state = next_state(state);
1027 if (start < end && state && state->start == start &&
1028 !need_resched())
1029 goto hit_next;
d1310b2e
CM
1030 goto search_again;
1031 }
1032
1033 /*
1034 * | ---- desired range ---- |
1035 * | state |
1036 * or
1037 * | ------------- state -------------- |
1038 *
1039 * We need to split the extent we found, and may flip bits on
1040 * second half.
1041 *
1042 * If the extent we found extends past our
1043 * range, we just split and search again. It'll get split
1044 * again the next time though.
1045 *
1046 * If the extent we found is inside our range, we set the
1047 * desired bit on it.
1048 */
1049 if (state->start < start) {
1edbb734 1050 if (state->state & exclusive_bits) {
d1310b2e
CM
1051 *failed_start = start;
1052 err = -EEXIST;
1053 goto out;
1054 }
8233767a
XG
1055
1056 prealloc = alloc_extent_state_atomic(prealloc);
1057 BUG_ON(!prealloc);
d1310b2e 1058 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1059 if (err)
1060 extent_io_tree_panic(tree, err);
1061
d1310b2e
CM
1062 prealloc = NULL;
1063 if (err)
1064 goto out;
1065 if (state->end <= end) {
d38ed27f 1066 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1067 cache_state(state, cached_state);
d1310b2e 1068 merge_state(tree, state);
5c939df5
YZ
1069 if (last_end == (u64)-1)
1070 goto out;
1071 start = last_end + 1;
d1ac6e41
LB
1072 state = next_state(state);
1073 if (start < end && state && state->start == start &&
1074 !need_resched())
1075 goto hit_next;
d1310b2e
CM
1076 }
1077 goto search_again;
1078 }
1079 /*
1080 * | ---- desired range ---- |
1081 * | state | or | state |
1082 *
1083 * There's a hole, we need to insert something in it and
1084 * ignore the extent we found.
1085 */
1086 if (state->start > start) {
1087 u64 this_end;
1088 if (end < last_start)
1089 this_end = end;
1090 else
d397712b 1091 this_end = last_start - 1;
8233767a
XG
1092
1093 prealloc = alloc_extent_state_atomic(prealloc);
1094 BUG_ON(!prealloc);
c7f895a2
XG
1095
1096 /*
1097 * Avoid to free 'prealloc' if it can be merged with
1098 * the later extent.
1099 */
d1310b2e 1100 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1101 NULL, NULL, &bits, changeset);
c2d904e0
JM
1102 if (err)
1103 extent_io_tree_panic(tree, err);
1104
9ed74f2d
JB
1105 cache_state(prealloc, cached_state);
1106 prealloc = NULL;
d1310b2e
CM
1107 start = this_end + 1;
1108 goto search_again;
1109 }
1110 /*
1111 * | ---- desired range ---- |
1112 * | state |
1113 * We need to split the extent, and set the bit
1114 * on the first half
1115 */
1116 if (state->start <= end && state->end > end) {
1edbb734 1117 if (state->state & exclusive_bits) {
d1310b2e
CM
1118 *failed_start = start;
1119 err = -EEXIST;
1120 goto out;
1121 }
8233767a
XG
1122
1123 prealloc = alloc_extent_state_atomic(prealloc);
1124 BUG_ON(!prealloc);
d1310b2e 1125 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1126 if (err)
1127 extent_io_tree_panic(tree, err);
d1310b2e 1128
d38ed27f 1129 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1130 cache_state(prealloc, cached_state);
d1310b2e
CM
1131 merge_state(tree, prealloc);
1132 prealloc = NULL;
1133 goto out;
1134 }
1135
b5a4ba14
DS
1136search_again:
1137 if (start > end)
1138 goto out;
1139 spin_unlock(&tree->lock);
1140 if (gfpflags_allow_blocking(mask))
1141 cond_resched();
1142 goto again;
d1310b2e
CM
1143
1144out:
cad321ad 1145 spin_unlock(&tree->lock);
d1310b2e
CM
1146 if (prealloc)
1147 free_extent_state(prealloc);
1148
1149 return err;
1150
d1310b2e 1151}
d1310b2e 1152
41074888 1153int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1154 unsigned bits, u64 * failed_start,
41074888 1155 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1156{
1157 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1158 cached_state, mask, NULL);
3fbe5c02
JM
1159}
1160
1161
462d6fac 1162/**
10983f2e
LB
1163 * convert_extent_bit - convert all bits in a given range from one bit to
1164 * another
462d6fac
JB
1165 * @tree: the io tree to search
1166 * @start: the start offset in bytes
1167 * @end: the end offset in bytes (inclusive)
1168 * @bits: the bits to set in this range
1169 * @clear_bits: the bits to clear in this range
e6138876 1170 * @cached_state: state that we're going to cache
462d6fac
JB
1171 *
1172 * This will go through and set bits for the given range. If any states exist
1173 * already in this range they are set with the given bit and cleared of the
1174 * clear_bits. This is only meant to be used by things that are mergeable, ie
1175 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1176 * boundary bits like LOCK.
210aa277
DS
1177 *
1178 * All allocations are done with GFP_NOFS.
462d6fac
JB
1179 */
1180int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1181 unsigned bits, unsigned clear_bits,
210aa277 1182 struct extent_state **cached_state)
462d6fac
JB
1183{
1184 struct extent_state *state;
1185 struct extent_state *prealloc = NULL;
1186 struct rb_node *node;
12cfbad9
FDBM
1187 struct rb_node **p;
1188 struct rb_node *parent;
462d6fac
JB
1189 int err = 0;
1190 u64 last_start;
1191 u64 last_end;
c8fd3de7 1192 bool first_iteration = true;
462d6fac 1193
a5dee37d 1194 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1195 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1196 clear_bits);
8d599ae1 1197
462d6fac 1198again:
210aa277 1199 if (!prealloc) {
c8fd3de7
FM
1200 /*
1201 * Best effort, don't worry if extent state allocation fails
1202 * here for the first iteration. We might have a cached state
1203 * that matches exactly the target range, in which case no
1204 * extent state allocations are needed. We'll only know this
1205 * after locking the tree.
1206 */
210aa277 1207 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1208 if (!prealloc && !first_iteration)
462d6fac
JB
1209 return -ENOMEM;
1210 }
1211
1212 spin_lock(&tree->lock);
e6138876
JB
1213 if (cached_state && *cached_state) {
1214 state = *cached_state;
1215 if (state->start <= start && state->end > start &&
27a3507d 1216 extent_state_in_tree(state)) {
e6138876
JB
1217 node = &state->rb_node;
1218 goto hit_next;
1219 }
1220 }
1221
462d6fac
JB
1222 /*
1223 * this search will find all the extents that end after
1224 * our range starts.
1225 */
12cfbad9 1226 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1227 if (!node) {
1228 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1229 if (!prealloc) {
1230 err = -ENOMEM;
1231 goto out;
1232 }
12cfbad9 1233 err = insert_state(tree, prealloc, start, end,
d38ed27f 1234 &p, &parent, &bits, NULL);
c2d904e0
JM
1235 if (err)
1236 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1237 cache_state(prealloc, cached_state);
1238 prealloc = NULL;
462d6fac
JB
1239 goto out;
1240 }
1241 state = rb_entry(node, struct extent_state, rb_node);
1242hit_next:
1243 last_start = state->start;
1244 last_end = state->end;
1245
1246 /*
1247 * | ---- desired range ---- |
1248 * | state |
1249 *
1250 * Just lock what we found and keep going
1251 */
1252 if (state->start == start && state->end <= end) {
d38ed27f 1253 set_state_bits(tree, state, &bits, NULL);
e6138876 1254 cache_state(state, cached_state);
fefdc557 1255 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1256 if (last_end == (u64)-1)
1257 goto out;
462d6fac 1258 start = last_end + 1;
d1ac6e41
LB
1259 if (start < end && state && state->start == start &&
1260 !need_resched())
1261 goto hit_next;
462d6fac
JB
1262 goto search_again;
1263 }
1264
1265 /*
1266 * | ---- desired range ---- |
1267 * | state |
1268 * or
1269 * | ------------- state -------------- |
1270 *
1271 * We need to split the extent we found, and may flip bits on
1272 * second half.
1273 *
1274 * If the extent we found extends past our
1275 * range, we just split and search again. It'll get split
1276 * again the next time though.
1277 *
1278 * If the extent we found is inside our range, we set the
1279 * desired bit on it.
1280 */
1281 if (state->start < start) {
1282 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1283 if (!prealloc) {
1284 err = -ENOMEM;
1285 goto out;
1286 }
462d6fac 1287 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1288 if (err)
1289 extent_io_tree_panic(tree, err);
462d6fac
JB
1290 prealloc = NULL;
1291 if (err)
1292 goto out;
1293 if (state->end <= end) {
d38ed27f 1294 set_state_bits(tree, state, &bits, NULL);
e6138876 1295 cache_state(state, cached_state);
fefdc557
QW
1296 state = clear_state_bit(tree, state, &clear_bits, 0,
1297 NULL);
462d6fac
JB
1298 if (last_end == (u64)-1)
1299 goto out;
1300 start = last_end + 1;
d1ac6e41
LB
1301 if (start < end && state && state->start == start &&
1302 !need_resched())
1303 goto hit_next;
462d6fac
JB
1304 }
1305 goto search_again;
1306 }
1307 /*
1308 * | ---- desired range ---- |
1309 * | state | or | state |
1310 *
1311 * There's a hole, we need to insert something in it and
1312 * ignore the extent we found.
1313 */
1314 if (state->start > start) {
1315 u64 this_end;
1316 if (end < last_start)
1317 this_end = end;
1318 else
1319 this_end = last_start - 1;
1320
1321 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1322 if (!prealloc) {
1323 err = -ENOMEM;
1324 goto out;
1325 }
462d6fac
JB
1326
1327 /*
1328 * Avoid to free 'prealloc' if it can be merged with
1329 * the later extent.
1330 */
1331 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1332 NULL, NULL, &bits, NULL);
c2d904e0
JM
1333 if (err)
1334 extent_io_tree_panic(tree, err);
e6138876 1335 cache_state(prealloc, cached_state);
462d6fac
JB
1336 prealloc = NULL;
1337 start = this_end + 1;
1338 goto search_again;
1339 }
1340 /*
1341 * | ---- desired range ---- |
1342 * | state |
1343 * We need to split the extent, and set the bit
1344 * on the first half
1345 */
1346 if (state->start <= end && state->end > end) {
1347 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1348 if (!prealloc) {
1349 err = -ENOMEM;
1350 goto out;
1351 }
462d6fac
JB
1352
1353 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1354 if (err)
1355 extent_io_tree_panic(tree, err);
462d6fac 1356
d38ed27f 1357 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1358 cache_state(prealloc, cached_state);
fefdc557 1359 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1360 prealloc = NULL;
1361 goto out;
1362 }
1363
462d6fac
JB
1364search_again:
1365 if (start > end)
1366 goto out;
1367 spin_unlock(&tree->lock);
210aa277 1368 cond_resched();
c8fd3de7 1369 first_iteration = false;
462d6fac 1370 goto again;
462d6fac
JB
1371
1372out:
1373 spin_unlock(&tree->lock);
1374 if (prealloc)
1375 free_extent_state(prealloc);
1376
1377 return err;
462d6fac
JB
1378}
1379
d1310b2e 1380/* wrappers around set/clear extent bit */
d38ed27f 1381int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1382 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1383{
1384 /*
1385 * We don't support EXTENT_LOCKED yet, as current changeset will
1386 * record any bits changed, so for EXTENT_LOCKED case, it will
1387 * either fail with -EEXIST or changeset will record the whole
1388 * range.
1389 */
1390 BUG_ON(bits & EXTENT_LOCKED);
1391
2c53b912 1392 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1393 changeset);
1394}
1395
4ca73656
NB
1396int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1397 unsigned bits)
1398{
1399 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1400 GFP_NOWAIT, NULL);
1401}
1402
fefdc557
QW
1403int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1404 unsigned bits, int wake, int delete,
ae0f1625 1405 struct extent_state **cached)
fefdc557
QW
1406{
1407 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1408 cached, GFP_NOFS, NULL);
fefdc557
QW
1409}
1410
fefdc557 1411int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1412 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1413{
1414 /*
1415 * Don't support EXTENT_LOCKED case, same reason as
1416 * set_record_extent_bits().
1417 */
1418 BUG_ON(bits & EXTENT_LOCKED);
1419
f734c44a 1420 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1421 changeset);
1422}
1423
d352ac68
CM
1424/*
1425 * either insert or lock state struct between start and end use mask to tell
1426 * us if waiting is desired.
1427 */
1edbb734 1428int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1429 struct extent_state **cached_state)
d1310b2e
CM
1430{
1431 int err;
1432 u64 failed_start;
9ee49a04 1433
d1310b2e 1434 while (1) {
ff13db41 1435 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1436 EXTENT_LOCKED, &failed_start,
d38ed27f 1437 cached_state, GFP_NOFS, NULL);
d0082371 1438 if (err == -EEXIST) {
d1310b2e
CM
1439 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1440 start = failed_start;
d0082371 1441 } else
d1310b2e 1442 break;
d1310b2e
CM
1443 WARN_ON(start > end);
1444 }
1445 return err;
1446}
d1310b2e 1447
d0082371 1448int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1449{
1450 int err;
1451 u64 failed_start;
1452
3fbe5c02 1453 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1454 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1455 if (err == -EEXIST) {
1456 if (failed_start > start)
1457 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1458 EXTENT_LOCKED, 1, 0, NULL);
25179201 1459 return 0;
6643558d 1460 }
25179201
JB
1461 return 1;
1462}
25179201 1463
bd1fa4f0 1464void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1465{
09cbfeaf
KS
1466 unsigned long index = start >> PAGE_SHIFT;
1467 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1468 struct page *page;
1469
1470 while (index <= end_index) {
1471 page = find_get_page(inode->i_mapping, index);
1472 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1473 clear_page_dirty_for_io(page);
09cbfeaf 1474 put_page(page);
4adaa611
CM
1475 index++;
1476 }
4adaa611
CM
1477}
1478
f6311572 1479void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1480{
09cbfeaf
KS
1481 unsigned long index = start >> PAGE_SHIFT;
1482 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1483 struct page *page;
1484
1485 while (index <= end_index) {
1486 page = find_get_page(inode->i_mapping, index);
1487 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1488 __set_page_dirty_nobuffers(page);
8d38633c 1489 account_page_redirty(page);
09cbfeaf 1490 put_page(page);
4adaa611
CM
1491 index++;
1492 }
4adaa611
CM
1493}
1494
d352ac68
CM
1495/* find the first state struct with 'bits' set after 'start', and
1496 * return it. tree->lock must be held. NULL will returned if
1497 * nothing was found after 'start'
1498 */
48a3b636
ES
1499static struct extent_state *
1500find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1501 u64 start, unsigned bits)
d7fc640e
CM
1502{
1503 struct rb_node *node;
1504 struct extent_state *state;
1505
1506 /*
1507 * this search will find all the extents that end after
1508 * our range starts.
1509 */
1510 node = tree_search(tree, start);
d397712b 1511 if (!node)
d7fc640e 1512 goto out;
d7fc640e 1513
d397712b 1514 while (1) {
d7fc640e 1515 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1516 if (state->end >= start && (state->state & bits))
d7fc640e 1517 return state;
d397712b 1518
d7fc640e
CM
1519 node = rb_next(node);
1520 if (!node)
1521 break;
1522 }
1523out:
1524 return NULL;
1525}
d7fc640e 1526
69261c4b
XG
1527/*
1528 * find the first offset in the io tree with 'bits' set. zero is
1529 * returned if we find something, and *start_ret and *end_ret are
1530 * set to reflect the state struct that was found.
1531 *
477d7eaf 1532 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1533 */
1534int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1535 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1536 struct extent_state **cached_state)
69261c4b
XG
1537{
1538 struct extent_state *state;
1539 int ret = 1;
1540
1541 spin_lock(&tree->lock);
e6138876
JB
1542 if (cached_state && *cached_state) {
1543 state = *cached_state;
27a3507d 1544 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1545 while ((state = next_state(state)) != NULL) {
e6138876
JB
1546 if (state->state & bits)
1547 goto got_it;
e6138876
JB
1548 }
1549 free_extent_state(*cached_state);
1550 *cached_state = NULL;
1551 goto out;
1552 }
1553 free_extent_state(*cached_state);
1554 *cached_state = NULL;
1555 }
1556
69261c4b 1557 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1558got_it:
69261c4b 1559 if (state) {
e38e2ed7 1560 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1561 *start_ret = state->start;
1562 *end_ret = state->end;
1563 ret = 0;
1564 }
e6138876 1565out:
69261c4b
XG
1566 spin_unlock(&tree->lock);
1567 return ret;
1568}
1569
45bfcfc1 1570/**
1eaebb34
NB
1571 * find_first_clear_extent_bit - find the first range that has @bits not set.
1572 * This range could start before @start.
45bfcfc1
NB
1573 *
1574 * @tree - the tree to search
1575 * @start - the offset at/after which the found extent should start
1576 * @start_ret - records the beginning of the range
1577 * @end_ret - records the end of the range (inclusive)
1578 * @bits - the set of bits which must be unset
1579 *
1580 * Since unallocated range is also considered one which doesn't have the bits
1581 * set it's possible that @end_ret contains -1, this happens in case the range
1582 * spans (last_range_end, end of device]. In this case it's up to the caller to
1583 * trim @end_ret to the appropriate size.
1584 */
1585void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1586 u64 *start_ret, u64 *end_ret, unsigned bits)
1587{
1588 struct extent_state *state;
1589 struct rb_node *node, *prev = NULL, *next;
1590
1591 spin_lock(&tree->lock);
1592
1593 /* Find first extent with bits cleared */
1594 while (1) {
1595 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1596 if (!node) {
1597 node = next;
1598 if (!node) {
1599 /*
1600 * We are past the last allocated chunk,
1601 * set start at the end of the last extent. The
1602 * device alloc tree should never be empty so
1603 * prev is always set.
1604 */
1605 ASSERT(prev);
1606 state = rb_entry(prev, struct extent_state, rb_node);
1607 *start_ret = state->end + 1;
1608 *end_ret = -1;
1609 goto out;
1610 }
1611 }
1eaebb34
NB
1612 /*
1613 * At this point 'node' either contains 'start' or start is
1614 * before 'node'
1615 */
45bfcfc1 1616 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1617
1618 if (in_range(start, state->start, state->end - state->start + 1)) {
1619 if (state->state & bits) {
1620 /*
1621 * |--range with bits sets--|
1622 * |
1623 * start
1624 */
1625 start = state->end + 1;
1626 } else {
1627 /*
1628 * 'start' falls within a range that doesn't
1629 * have the bits set, so take its start as
1630 * the beginning of the desired range
1631 *
1632 * |--range with bits cleared----|
1633 * |
1634 * start
1635 */
1636 *start_ret = state->start;
1637 break;
1638 }
45bfcfc1 1639 } else {
1eaebb34
NB
1640 /*
1641 * |---prev range---|---hole/unset---|---node range---|
1642 * |
1643 * start
1644 *
1645 * or
1646 *
1647 * |---hole/unset--||--first node--|
1648 * 0 |
1649 * start
1650 */
1651 if (prev) {
1652 state = rb_entry(prev, struct extent_state,
1653 rb_node);
1654 *start_ret = state->end + 1;
1655 } else {
1656 *start_ret = 0;
1657 }
45bfcfc1
NB
1658 break;
1659 }
1660 }
1661
1662 /*
1663 * Find the longest stretch from start until an entry which has the
1664 * bits set
1665 */
1666 while (1) {
1667 state = rb_entry(node, struct extent_state, rb_node);
1668 if (state->end >= start && !(state->state & bits)) {
1669 *end_ret = state->end;
1670 } else {
1671 *end_ret = state->start - 1;
1672 break;
1673 }
1674
1675 node = rb_next(node);
1676 if (!node)
1677 break;
1678 }
1679out:
1680 spin_unlock(&tree->lock);
1681}
1682
d352ac68
CM
1683/*
1684 * find a contiguous range of bytes in the file marked as delalloc, not
1685 * more than 'max_bytes'. start and end are used to return the range,
1686 *
3522e903 1687 * true is returned if we find something, false if nothing was in the tree
d352ac68 1688 */
083e75e7
JB
1689bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1690 u64 *end, u64 max_bytes,
1691 struct extent_state **cached_state)
d1310b2e
CM
1692{
1693 struct rb_node *node;
1694 struct extent_state *state;
1695 u64 cur_start = *start;
3522e903 1696 bool found = false;
d1310b2e
CM
1697 u64 total_bytes = 0;
1698
cad321ad 1699 spin_lock(&tree->lock);
c8b97818 1700
d1310b2e
CM
1701 /*
1702 * this search will find all the extents that end after
1703 * our range starts.
1704 */
80ea96b1 1705 node = tree_search(tree, cur_start);
2b114d1d 1706 if (!node) {
3522e903 1707 *end = (u64)-1;
d1310b2e
CM
1708 goto out;
1709 }
1710
d397712b 1711 while (1) {
d1310b2e 1712 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1713 if (found && (state->start != cur_start ||
1714 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1715 goto out;
1716 }
1717 if (!(state->state & EXTENT_DELALLOC)) {
1718 if (!found)
1719 *end = state->end;
1720 goto out;
1721 }
c2a128d2 1722 if (!found) {
d1310b2e 1723 *start = state->start;
c2a128d2 1724 *cached_state = state;
b7ac31b7 1725 refcount_inc(&state->refs);
c2a128d2 1726 }
3522e903 1727 found = true;
d1310b2e
CM
1728 *end = state->end;
1729 cur_start = state->end + 1;
1730 node = rb_next(node);
d1310b2e 1731 total_bytes += state->end - state->start + 1;
7bf811a5 1732 if (total_bytes >= max_bytes)
573aecaf 1733 break;
573aecaf 1734 if (!node)
d1310b2e
CM
1735 break;
1736 }
1737out:
cad321ad 1738 spin_unlock(&tree->lock);
d1310b2e
CM
1739 return found;
1740}
1741
da2c7009
LB
1742static int __process_pages_contig(struct address_space *mapping,
1743 struct page *locked_page,
1744 pgoff_t start_index, pgoff_t end_index,
1745 unsigned long page_ops, pgoff_t *index_ret);
1746
143bede5
JM
1747static noinline void __unlock_for_delalloc(struct inode *inode,
1748 struct page *locked_page,
1749 u64 start, u64 end)
c8b97818 1750{
09cbfeaf
KS
1751 unsigned long index = start >> PAGE_SHIFT;
1752 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1753
76c0021d 1754 ASSERT(locked_page);
c8b97818 1755 if (index == locked_page->index && end_index == index)
143bede5 1756 return;
c8b97818 1757
76c0021d
LB
1758 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1759 PAGE_UNLOCK, NULL);
c8b97818
CM
1760}
1761
1762static noinline int lock_delalloc_pages(struct inode *inode,
1763 struct page *locked_page,
1764 u64 delalloc_start,
1765 u64 delalloc_end)
1766{
09cbfeaf 1767 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1768 unsigned long index_ret = index;
09cbfeaf 1769 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1770 int ret;
c8b97818 1771
76c0021d 1772 ASSERT(locked_page);
c8b97818
CM
1773 if (index == locked_page->index && index == end_index)
1774 return 0;
1775
76c0021d
LB
1776 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1777 end_index, PAGE_LOCK, &index_ret);
1778 if (ret == -EAGAIN)
1779 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1780 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1781 return ret;
1782}
1783
1784/*
3522e903
LF
1785 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1786 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1787 *
3522e903
LF
1788 * Return: true if we find something
1789 * false if nothing was in the tree
c8b97818 1790 */
ce9f967f 1791EXPORT_FOR_TESTS
3522e903 1792noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1793 struct page *locked_page, u64 *start,
917aacec 1794 u64 *end)
c8b97818 1795{
9978059b 1796 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1797 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1798 u64 delalloc_start;
1799 u64 delalloc_end;
3522e903 1800 bool found;
9655d298 1801 struct extent_state *cached_state = NULL;
c8b97818
CM
1802 int ret;
1803 int loops = 0;
1804
1805again:
1806 /* step one, find a bunch of delalloc bytes starting at start */
1807 delalloc_start = *start;
1808 delalloc_end = 0;
083e75e7
JB
1809 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1810 max_bytes, &cached_state);
70b99e69 1811 if (!found || delalloc_end <= *start) {
c8b97818
CM
1812 *start = delalloc_start;
1813 *end = delalloc_end;
c2a128d2 1814 free_extent_state(cached_state);
3522e903 1815 return false;
c8b97818
CM
1816 }
1817
70b99e69
CM
1818 /*
1819 * start comes from the offset of locked_page. We have to lock
1820 * pages in order, so we can't process delalloc bytes before
1821 * locked_page
1822 */
d397712b 1823 if (delalloc_start < *start)
70b99e69 1824 delalloc_start = *start;
70b99e69 1825
c8b97818
CM
1826 /*
1827 * make sure to limit the number of pages we try to lock down
c8b97818 1828 */
7bf811a5
JB
1829 if (delalloc_end + 1 - delalloc_start > max_bytes)
1830 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1831
c8b97818
CM
1832 /* step two, lock all the pages after the page that has start */
1833 ret = lock_delalloc_pages(inode, locked_page,
1834 delalloc_start, delalloc_end);
9bfd61d9 1835 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1836 if (ret == -EAGAIN) {
1837 /* some of the pages are gone, lets avoid looping by
1838 * shortening the size of the delalloc range we're searching
1839 */
9655d298 1840 free_extent_state(cached_state);
7d788742 1841 cached_state = NULL;
c8b97818 1842 if (!loops) {
09cbfeaf 1843 max_bytes = PAGE_SIZE;
c8b97818
CM
1844 loops = 1;
1845 goto again;
1846 } else {
3522e903 1847 found = false;
c8b97818
CM
1848 goto out_failed;
1849 }
1850 }
c8b97818
CM
1851
1852 /* step three, lock the state bits for the whole range */
ff13db41 1853 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1854
1855 /* then test to make sure it is all still delalloc */
1856 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1857 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1858 if (!ret) {
9655d298 1859 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1860 &cached_state);
c8b97818
CM
1861 __unlock_for_delalloc(inode, locked_page,
1862 delalloc_start, delalloc_end);
1863 cond_resched();
1864 goto again;
1865 }
9655d298 1866 free_extent_state(cached_state);
c8b97818
CM
1867 *start = delalloc_start;
1868 *end = delalloc_end;
1869out_failed:
1870 return found;
1871}
1872
da2c7009
LB
1873static int __process_pages_contig(struct address_space *mapping,
1874 struct page *locked_page,
1875 pgoff_t start_index, pgoff_t end_index,
1876 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1877{
873695b3 1878 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1879 unsigned long pages_locked = 0;
873695b3 1880 pgoff_t index = start_index;
c8b97818 1881 struct page *pages[16];
873695b3 1882 unsigned ret;
da2c7009 1883 int err = 0;
c8b97818 1884 int i;
771ed689 1885
da2c7009
LB
1886 if (page_ops & PAGE_LOCK) {
1887 ASSERT(page_ops == PAGE_LOCK);
1888 ASSERT(index_ret && *index_ret == start_index);
1889 }
1890
704de49d 1891 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1892 mapping_set_error(mapping, -EIO);
704de49d 1893
d397712b 1894 while (nr_pages > 0) {
873695b3 1895 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1896 min_t(unsigned long,
1897 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1898 if (ret == 0) {
1899 /*
1900 * Only if we're going to lock these pages,
1901 * can we find nothing at @index.
1902 */
1903 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1904 err = -EAGAIN;
1905 goto out;
da2c7009 1906 }
8b62b72b 1907
da2c7009 1908 for (i = 0; i < ret; i++) {
c2790a2e 1909 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1910 SetPagePrivate2(pages[i]);
1911
1d53c9e6 1912 if (locked_page && pages[i] == locked_page) {
09cbfeaf 1913 put_page(pages[i]);
da2c7009 1914 pages_locked++;
c8b97818
CM
1915 continue;
1916 }
c2790a2e 1917 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1918 clear_page_dirty_for_io(pages[i]);
c2790a2e 1919 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1920 set_page_writeback(pages[i]);
704de49d
FM
1921 if (page_ops & PAGE_SET_ERROR)
1922 SetPageError(pages[i]);
c2790a2e 1923 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1924 end_page_writeback(pages[i]);
c2790a2e 1925 if (page_ops & PAGE_UNLOCK)
771ed689 1926 unlock_page(pages[i]);
da2c7009
LB
1927 if (page_ops & PAGE_LOCK) {
1928 lock_page(pages[i]);
1929 if (!PageDirty(pages[i]) ||
1930 pages[i]->mapping != mapping) {
1931 unlock_page(pages[i]);
1932 put_page(pages[i]);
1933 err = -EAGAIN;
1934 goto out;
1935 }
1936 }
09cbfeaf 1937 put_page(pages[i]);
da2c7009 1938 pages_locked++;
c8b97818
CM
1939 }
1940 nr_pages -= ret;
1941 index += ret;
1942 cond_resched();
1943 }
da2c7009
LB
1944out:
1945 if (err && index_ret)
1946 *index_ret = start_index + pages_locked - 1;
1947 return err;
c8b97818 1948}
c8b97818 1949
873695b3 1950void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
74e9194a
NB
1951 struct page *locked_page,
1952 unsigned clear_bits,
1953 unsigned long page_ops)
873695b3
LB
1954{
1955 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1956 NULL);
873695b3
LB
1957
1958 __process_pages_contig(inode->i_mapping, locked_page,
1959 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1960 page_ops, NULL);
873695b3
LB
1961}
1962
d352ac68
CM
1963/*
1964 * count the number of bytes in the tree that have a given bit(s)
1965 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1966 * cached. The total number found is returned.
1967 */
d1310b2e
CM
1968u64 count_range_bits(struct extent_io_tree *tree,
1969 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1970 unsigned bits, int contig)
d1310b2e
CM
1971{
1972 struct rb_node *node;
1973 struct extent_state *state;
1974 u64 cur_start = *start;
1975 u64 total_bytes = 0;
ec29ed5b 1976 u64 last = 0;
d1310b2e
CM
1977 int found = 0;
1978
fae7f21c 1979 if (WARN_ON(search_end <= cur_start))
d1310b2e 1980 return 0;
d1310b2e 1981
cad321ad 1982 spin_lock(&tree->lock);
d1310b2e
CM
1983 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1984 total_bytes = tree->dirty_bytes;
1985 goto out;
1986 }
1987 /*
1988 * this search will find all the extents that end after
1989 * our range starts.
1990 */
80ea96b1 1991 node = tree_search(tree, cur_start);
d397712b 1992 if (!node)
d1310b2e 1993 goto out;
d1310b2e 1994
d397712b 1995 while (1) {
d1310b2e
CM
1996 state = rb_entry(node, struct extent_state, rb_node);
1997 if (state->start > search_end)
1998 break;
ec29ed5b
CM
1999 if (contig && found && state->start > last + 1)
2000 break;
2001 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2002 total_bytes += min(search_end, state->end) + 1 -
2003 max(cur_start, state->start);
2004 if (total_bytes >= max_bytes)
2005 break;
2006 if (!found) {
af60bed2 2007 *start = max(cur_start, state->start);
d1310b2e
CM
2008 found = 1;
2009 }
ec29ed5b
CM
2010 last = state->end;
2011 } else if (contig && found) {
2012 break;
d1310b2e
CM
2013 }
2014 node = rb_next(node);
2015 if (!node)
2016 break;
2017 }
2018out:
cad321ad 2019 spin_unlock(&tree->lock);
d1310b2e
CM
2020 return total_bytes;
2021}
b2950863 2022
d352ac68
CM
2023/*
2024 * set the private field for a given byte offset in the tree. If there isn't
2025 * an extent_state there already, this does nothing.
2026 */
b3f167aa
JB
2027int set_state_failrec(struct extent_io_tree *tree, u64 start,
2028 struct io_failure_record *failrec)
d1310b2e
CM
2029{
2030 struct rb_node *node;
2031 struct extent_state *state;
2032 int ret = 0;
2033
cad321ad 2034 spin_lock(&tree->lock);
d1310b2e
CM
2035 /*
2036 * this search will find all the extents that end after
2037 * our range starts.
2038 */
80ea96b1 2039 node = tree_search(tree, start);
2b114d1d 2040 if (!node) {
d1310b2e
CM
2041 ret = -ENOENT;
2042 goto out;
2043 }
2044 state = rb_entry(node, struct extent_state, rb_node);
2045 if (state->start != start) {
2046 ret = -ENOENT;
2047 goto out;
2048 }
47dc196a 2049 state->failrec = failrec;
d1310b2e 2050out:
cad321ad 2051 spin_unlock(&tree->lock);
d1310b2e
CM
2052 return ret;
2053}
2054
b3f167aa
JB
2055int get_state_failrec(struct extent_io_tree *tree, u64 start,
2056 struct io_failure_record **failrec)
d1310b2e
CM
2057{
2058 struct rb_node *node;
2059 struct extent_state *state;
2060 int ret = 0;
2061
cad321ad 2062 spin_lock(&tree->lock);
d1310b2e
CM
2063 /*
2064 * this search will find all the extents that end after
2065 * our range starts.
2066 */
80ea96b1 2067 node = tree_search(tree, start);
2b114d1d 2068 if (!node) {
d1310b2e
CM
2069 ret = -ENOENT;
2070 goto out;
2071 }
2072 state = rb_entry(node, struct extent_state, rb_node);
2073 if (state->start != start) {
2074 ret = -ENOENT;
2075 goto out;
2076 }
47dc196a 2077 *failrec = state->failrec;
d1310b2e 2078out:
cad321ad 2079 spin_unlock(&tree->lock);
d1310b2e
CM
2080 return ret;
2081}
2082
2083/*
2084 * searches a range in the state tree for a given mask.
70dec807 2085 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2086 * has the bits set. Otherwise, 1 is returned if any bit in the
2087 * range is found set.
2088 */
2089int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2090 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2091{
2092 struct extent_state *state = NULL;
2093 struct rb_node *node;
2094 int bitset = 0;
d1310b2e 2095
cad321ad 2096 spin_lock(&tree->lock);
27a3507d 2097 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2098 cached->end > start)
9655d298
CM
2099 node = &cached->rb_node;
2100 else
2101 node = tree_search(tree, start);
d1310b2e
CM
2102 while (node && start <= end) {
2103 state = rb_entry(node, struct extent_state, rb_node);
2104
2105 if (filled && state->start > start) {
2106 bitset = 0;
2107 break;
2108 }
2109
2110 if (state->start > end)
2111 break;
2112
2113 if (state->state & bits) {
2114 bitset = 1;
2115 if (!filled)
2116 break;
2117 } else if (filled) {
2118 bitset = 0;
2119 break;
2120 }
46562cec
CM
2121
2122 if (state->end == (u64)-1)
2123 break;
2124
d1310b2e
CM
2125 start = state->end + 1;
2126 if (start > end)
2127 break;
2128 node = rb_next(node);
2129 if (!node) {
2130 if (filled)
2131 bitset = 0;
2132 break;
2133 }
2134 }
cad321ad 2135 spin_unlock(&tree->lock);
d1310b2e
CM
2136 return bitset;
2137}
d1310b2e
CM
2138
2139/*
2140 * helper function to set a given page up to date if all the
2141 * extents in the tree for that page are up to date
2142 */
143bede5 2143static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2144{
4eee4fa4 2145 u64 start = page_offset(page);
09cbfeaf 2146 u64 end = start + PAGE_SIZE - 1;
9655d298 2147 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2148 SetPageUptodate(page);
d1310b2e
CM
2149}
2150
7870d082
JB
2151int free_io_failure(struct extent_io_tree *failure_tree,
2152 struct extent_io_tree *io_tree,
2153 struct io_failure_record *rec)
4a54c8c1
JS
2154{
2155 int ret;
2156 int err = 0;
4a54c8c1 2157
47dc196a 2158 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2159 ret = clear_extent_bits(failure_tree, rec->start,
2160 rec->start + rec->len - 1,
91166212 2161 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2162 if (ret)
2163 err = ret;
2164
7870d082 2165 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2166 rec->start + rec->len - 1,
91166212 2167 EXTENT_DAMAGED);
53b381b3
DW
2168 if (ret && !err)
2169 err = ret;
4a54c8c1
JS
2170
2171 kfree(rec);
2172 return err;
2173}
2174
4a54c8c1
JS
2175/*
2176 * this bypasses the standard btrfs submit functions deliberately, as
2177 * the standard behavior is to write all copies in a raid setup. here we only
2178 * want to write the one bad copy. so we do the mapping for ourselves and issue
2179 * submit_bio directly.
3ec706c8 2180 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2181 * actually prevents the read that triggered the error from finishing.
2182 * currently, there can be no more than two copies of every data bit. thus,
2183 * exactly one rewrite is required.
2184 */
6ec656bc
JB
2185int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2186 u64 length, u64 logical, struct page *page,
2187 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2188{
2189 struct bio *bio;
2190 struct btrfs_device *dev;
4a54c8c1
JS
2191 u64 map_length = 0;
2192 u64 sector;
2193 struct btrfs_bio *bbio = NULL;
2194 int ret;
2195
1751e8a6 2196 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2197 BUG_ON(!mirror_num);
2198
c5e4c3d7 2199 bio = btrfs_io_bio_alloc(1);
4f024f37 2200 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2201 map_length = length;
2202
b5de8d0d
FM
2203 /*
2204 * Avoid races with device replace and make sure our bbio has devices
2205 * associated to its stripes that don't go away while we are doing the
2206 * read repair operation.
2207 */
2208 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2209 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2210 /*
2211 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2212 * to update all raid stripes, but here we just want to correct
2213 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2214 * stripe's dev and sector.
2215 */
2216 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2217 &map_length, &bbio, 0);
2218 if (ret) {
2219 btrfs_bio_counter_dec(fs_info);
2220 bio_put(bio);
2221 return -EIO;
2222 }
2223 ASSERT(bbio->mirror_num == 1);
2224 } else {
2225 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2226 &map_length, &bbio, mirror_num);
2227 if (ret) {
2228 btrfs_bio_counter_dec(fs_info);
2229 bio_put(bio);
2230 return -EIO;
2231 }
2232 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2233 }
c725328c
LB
2234
2235 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2236 bio->bi_iter.bi_sector = sector;
c725328c 2237 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2238 btrfs_put_bbio(bbio);
ebbede42
AJ
2239 if (!dev || !dev->bdev ||
2240 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2241 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2242 bio_put(bio);
2243 return -EIO;
2244 }
74d46992 2245 bio_set_dev(bio, dev->bdev);
70fd7614 2246 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2247 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2248
4e49ea4a 2249 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2250 /* try to remap that extent elsewhere? */
b5de8d0d 2251 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2252 bio_put(bio);
442a4f63 2253 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2254 return -EIO;
2255 }
2256
b14af3b4
DS
2257 btrfs_info_rl_in_rcu(fs_info,
2258 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2259 ino, start,
1203b681 2260 rcu_str_deref(dev->name), sector);
b5de8d0d 2261 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2262 bio_put(bio);
2263 return 0;
2264}
2265
20a1fbf9 2266int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2267{
20a1fbf9 2268 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2269 u64 start = eb->start;
cc5e31a4 2270 int i, num_pages = num_extent_pages(eb);
d95603b2 2271 int ret = 0;
ea466794 2272
bc98a42c 2273 if (sb_rdonly(fs_info->sb))
908960c6
ID
2274 return -EROFS;
2275
ea466794 2276 for (i = 0; i < num_pages; i++) {
fb85fc9a 2277 struct page *p = eb->pages[i];
1203b681 2278
6ec656bc 2279 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2280 start - page_offset(p), mirror_num);
ea466794
JB
2281 if (ret)
2282 break;
09cbfeaf 2283 start += PAGE_SIZE;
ea466794
JB
2284 }
2285
2286 return ret;
2287}
2288
4a54c8c1
JS
2289/*
2290 * each time an IO finishes, we do a fast check in the IO failure tree
2291 * to see if we need to process or clean up an io_failure_record
2292 */
7870d082
JB
2293int clean_io_failure(struct btrfs_fs_info *fs_info,
2294 struct extent_io_tree *failure_tree,
2295 struct extent_io_tree *io_tree, u64 start,
2296 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2297{
2298 u64 private;
4a54c8c1 2299 struct io_failure_record *failrec;
4a54c8c1
JS
2300 struct extent_state *state;
2301 int num_copies;
4a54c8c1 2302 int ret;
4a54c8c1
JS
2303
2304 private = 0;
7870d082
JB
2305 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2306 EXTENT_DIRTY, 0);
4a54c8c1
JS
2307 if (!ret)
2308 return 0;
2309
7870d082 2310 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2311 if (ret)
2312 return 0;
2313
4a54c8c1
JS
2314 BUG_ON(!failrec->this_mirror);
2315
2316 if (failrec->in_validation) {
2317 /* there was no real error, just free the record */
ab8d0fc4
JM
2318 btrfs_debug(fs_info,
2319 "clean_io_failure: freeing dummy error at %llu",
2320 failrec->start);
4a54c8c1
JS
2321 goto out;
2322 }
bc98a42c 2323 if (sb_rdonly(fs_info->sb))
908960c6 2324 goto out;
4a54c8c1 2325
7870d082
JB
2326 spin_lock(&io_tree->lock);
2327 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2328 failrec->start,
2329 EXTENT_LOCKED);
7870d082 2330 spin_unlock(&io_tree->lock);
4a54c8c1 2331
883d0de4
MX
2332 if (state && state->start <= failrec->start &&
2333 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2334 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2335 failrec->len);
4a54c8c1 2336 if (num_copies > 1) {
7870d082
JB
2337 repair_io_failure(fs_info, ino, start, failrec->len,
2338 failrec->logical, page, pg_offset,
2339 failrec->failed_mirror);
4a54c8c1
JS
2340 }
2341 }
2342
2343out:
7870d082 2344 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2345
454ff3de 2346 return 0;
4a54c8c1
JS
2347}
2348
f612496b
MX
2349/*
2350 * Can be called when
2351 * - hold extent lock
2352 * - under ordered extent
2353 * - the inode is freeing
2354 */
7ab7956e 2355void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2356{
7ab7956e 2357 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2358 struct io_failure_record *failrec;
2359 struct extent_state *state, *next;
2360
2361 if (RB_EMPTY_ROOT(&failure_tree->state))
2362 return;
2363
2364 spin_lock(&failure_tree->lock);
2365 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2366 while (state) {
2367 if (state->start > end)
2368 break;
2369
2370 ASSERT(state->end <= end);
2371
2372 next = next_state(state);
2373
47dc196a 2374 failrec = state->failrec;
f612496b
MX
2375 free_extent_state(state);
2376 kfree(failrec);
2377
2378 state = next;
2379 }
2380 spin_unlock(&failure_tree->lock);
2381}
2382
2fe6303e 2383int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2384 struct io_failure_record **failrec_ret)
4a54c8c1 2385{
ab8d0fc4 2386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2387 struct io_failure_record *failrec;
4a54c8c1 2388 struct extent_map *em;
4a54c8c1
JS
2389 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2390 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2391 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2392 int ret;
4a54c8c1
JS
2393 u64 logical;
2394
47dc196a 2395 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2396 if (ret) {
2397 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2398 if (!failrec)
2399 return -ENOMEM;
2fe6303e 2400
4a54c8c1
JS
2401 failrec->start = start;
2402 failrec->len = end - start + 1;
2403 failrec->this_mirror = 0;
2404 failrec->bio_flags = 0;
2405 failrec->in_validation = 0;
2406
2407 read_lock(&em_tree->lock);
2408 em = lookup_extent_mapping(em_tree, start, failrec->len);
2409 if (!em) {
2410 read_unlock(&em_tree->lock);
2411 kfree(failrec);
2412 return -EIO;
2413 }
2414
68ba990f 2415 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2416 free_extent_map(em);
2417 em = NULL;
2418 }
2419 read_unlock(&em_tree->lock);
7a2d6a64 2420 if (!em) {
4a54c8c1
JS
2421 kfree(failrec);
2422 return -EIO;
2423 }
2fe6303e 2424
4a54c8c1
JS
2425 logical = start - em->start;
2426 logical = em->block_start + logical;
2427 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2428 logical = em->block_start;
2429 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2430 extent_set_compress_type(&failrec->bio_flags,
2431 em->compress_type);
2432 }
2fe6303e 2433
ab8d0fc4
JM
2434 btrfs_debug(fs_info,
2435 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2436 logical, start, failrec->len);
2fe6303e 2437
4a54c8c1
JS
2438 failrec->logical = logical;
2439 free_extent_map(em);
2440
2441 /* set the bits in the private failure tree */
2442 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2443 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2444 if (ret >= 0)
47dc196a 2445 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2446 /* set the bits in the inode's tree */
2447 if (ret >= 0)
ceeb0ae7 2448 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2449 if (ret < 0) {
2450 kfree(failrec);
2451 return ret;
2452 }
2453 } else {
ab8d0fc4
JM
2454 btrfs_debug(fs_info,
2455 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2456 failrec->logical, failrec->start, failrec->len,
2457 failrec->in_validation);
4a54c8c1
JS
2458 /*
2459 * when data can be on disk more than twice, add to failrec here
2460 * (e.g. with a list for failed_mirror) to make
2461 * clean_io_failure() clean all those errors at once.
2462 */
2463 }
2fe6303e
MX
2464
2465 *failrec_ret = failrec;
2466
2467 return 0;
2468}
2469
a0b60d72 2470bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2471 struct io_failure_record *failrec, int failed_mirror)
2472{
ab8d0fc4 2473 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2474 int num_copies;
2475
ab8d0fc4 2476 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2477 if (num_copies == 1) {
2478 /*
2479 * we only have a single copy of the data, so don't bother with
2480 * all the retry and error correction code that follows. no
2481 * matter what the error is, it is very likely to persist.
2482 */
ab8d0fc4
JM
2483 btrfs_debug(fs_info,
2484 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2485 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2486 return false;
4a54c8c1
JS
2487 }
2488
4a54c8c1
JS
2489 /*
2490 * there are two premises:
2491 * a) deliver good data to the caller
2492 * b) correct the bad sectors on disk
2493 */
a0b60d72 2494 if (failed_bio_pages > 1) {
4a54c8c1
JS
2495 /*
2496 * to fulfill b), we need to know the exact failing sectors, as
2497 * we don't want to rewrite any more than the failed ones. thus,
2498 * we need separate read requests for the failed bio
2499 *
2500 * if the following BUG_ON triggers, our validation request got
2501 * merged. we need separate requests for our algorithm to work.
2502 */
2503 BUG_ON(failrec->in_validation);
2504 failrec->in_validation = 1;
2505 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2506 } else {
2507 /*
2508 * we're ready to fulfill a) and b) alongside. get a good copy
2509 * of the failed sector and if we succeed, we have setup
2510 * everything for repair_io_failure to do the rest for us.
2511 */
2512 if (failrec->in_validation) {
2513 BUG_ON(failrec->this_mirror != failed_mirror);
2514 failrec->in_validation = 0;
2515 failrec->this_mirror = 0;
2516 }
2517 failrec->failed_mirror = failed_mirror;
2518 failrec->this_mirror++;
2519 if (failrec->this_mirror == failed_mirror)
2520 failrec->this_mirror++;
4a54c8c1
JS
2521 }
2522
facc8a22 2523 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2524 btrfs_debug(fs_info,
2525 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2526 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2527 return false;
4a54c8c1
JS
2528 }
2529
c3cfb656 2530 return true;
2fe6303e
MX
2531}
2532
2533
2534struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2535 struct io_failure_record *failrec,
2536 struct page *page, int pg_offset, int icsum,
8b110e39 2537 bio_end_io_t *endio_func, void *data)
2fe6303e 2538{
0b246afa 2539 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2540 struct bio *bio;
2541 struct btrfs_io_bio *btrfs_failed_bio;
2542 struct btrfs_io_bio *btrfs_bio;
2543
c5e4c3d7 2544 bio = btrfs_io_bio_alloc(1);
2fe6303e 2545 bio->bi_end_io = endio_func;
4f024f37 2546 bio->bi_iter.bi_sector = failrec->logical >> 9;
4f024f37 2547 bio->bi_iter.bi_size = 0;
8b110e39 2548 bio->bi_private = data;
4a54c8c1 2549
facc8a22
MX
2550 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2551 if (btrfs_failed_bio->csum) {
facc8a22
MX
2552 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2553
2554 btrfs_bio = btrfs_io_bio(bio);
2555 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2556 icsum *= csum_size;
2557 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2558 csum_size);
2559 }
2560
2fe6303e
MX
2561 bio_add_page(bio, page, failrec->len, pg_offset);
2562
2563 return bio;
2564}
2565
2566/*
78e62c02
NB
2567 * This is a generic handler for readpage errors. If other copies exist, read
2568 * those and write back good data to the failed position. Does not investigate
2569 * in remapping the failed extent elsewhere, hoping the device will be smart
2570 * enough to do this as needed
2fe6303e 2571 */
2fe6303e
MX
2572static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2573 struct page *page, u64 start, u64 end,
2574 int failed_mirror)
2575{
2576 struct io_failure_record *failrec;
2577 struct inode *inode = page->mapping->host;
2578 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2579 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2580 struct bio *bio;
70fd7614 2581 int read_mode = 0;
4e4cbee9 2582 blk_status_t status;
2fe6303e 2583 int ret;
8a2ee44a 2584 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2585
1f7ad75b 2586 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2587
2588 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2589 if (ret)
2590 return ret;
2591
a0b60d72 2592 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2593 failed_mirror)) {
7870d082 2594 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2595 return -EIO;
2596 }
2597
a0b60d72 2598 if (failed_bio_pages > 1)
70fd7614 2599 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2600
2601 phy_offset >>= inode->i_sb->s_blocksize_bits;
2602 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2603 start - page_offset(page),
8b110e39
MX
2604 (int)phy_offset, failed_bio->bi_end_io,
2605 NULL);
ebcc3263 2606 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2607
ab8d0fc4
JM
2608 btrfs_debug(btrfs_sb(inode->i_sb),
2609 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2610 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2611
8c27cb35 2612 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
50489a57 2613 failrec->bio_flags);
4e4cbee9 2614 if (status) {
7870d082 2615 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2616 bio_put(bio);
4e4cbee9 2617 ret = blk_status_to_errno(status);
6c387ab2
MX
2618 }
2619
013bd4c3 2620 return ret;
4a54c8c1
JS
2621}
2622
d1310b2e
CM
2623/* lots and lots of room for performance fixes in the end_bio funcs */
2624
b5227c07 2625void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2626{
2627 int uptodate = (err == 0);
3e2426bd 2628 int ret = 0;
87826df0 2629
c629732d 2630 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2631
87826df0 2632 if (!uptodate) {
87826df0
JM
2633 ClearPageUptodate(page);
2634 SetPageError(page);
bff5baf8 2635 ret = err < 0 ? err : -EIO;
5dca6eea 2636 mapping_set_error(page->mapping, ret);
87826df0 2637 }
87826df0
JM
2638}
2639
d1310b2e
CM
2640/*
2641 * after a writepage IO is done, we need to:
2642 * clear the uptodate bits on error
2643 * clear the writeback bits in the extent tree for this IO
2644 * end_page_writeback if the page has no more pending IO
2645 *
2646 * Scheduling is not allowed, so the extent state tree is expected
2647 * to have one and only one object corresponding to this IO.
2648 */
4246a0b6 2649static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2650{
4e4cbee9 2651 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2652 struct bio_vec *bvec;
d1310b2e
CM
2653 u64 start;
2654 u64 end;
6dc4f100 2655 struct bvec_iter_all iter_all;
d1310b2e 2656
c09abff8 2657 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2658 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2659 struct page *page = bvec->bv_page;
0b246afa
JM
2660 struct inode *inode = page->mapping->host;
2661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2662
17a5adcc
AO
2663 /* We always issue full-page reads, but if some block
2664 * in a page fails to read, blk_update_request() will
2665 * advance bv_offset and adjust bv_len to compensate.
2666 * Print a warning for nonzero offsets, and an error
2667 * if they don't add up to a full page. */
09cbfeaf
KS
2668 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2669 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2670 btrfs_err(fs_info,
efe120a0
FH
2671 "partial page write in btrfs with offset %u and length %u",
2672 bvec->bv_offset, bvec->bv_len);
2673 else
0b246afa 2674 btrfs_info(fs_info,
5d163e0e 2675 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2676 bvec->bv_offset, bvec->bv_len);
2677 }
d1310b2e 2678
17a5adcc
AO
2679 start = page_offset(page);
2680 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2681
4e4cbee9 2682 end_extent_writepage(page, error, start, end);
17a5adcc 2683 end_page_writeback(page);
2c30c71b 2684 }
2b1f55b0 2685
d1310b2e 2686 bio_put(bio);
d1310b2e
CM
2687}
2688
883d0de4
MX
2689static void
2690endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2691 int uptodate)
2692{
2693 struct extent_state *cached = NULL;
2694 u64 end = start + len - 1;
2695
2696 if (uptodate && tree->track_uptodate)
2697 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2698 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2699}
2700
d1310b2e
CM
2701/*
2702 * after a readpage IO is done, we need to:
2703 * clear the uptodate bits on error
2704 * set the uptodate bits if things worked
2705 * set the page up to date if all extents in the tree are uptodate
2706 * clear the lock bit in the extent tree
2707 * unlock the page if there are no other extents locked for it
2708 *
2709 * Scheduling is not allowed, so the extent state tree is expected
2710 * to have one and only one object corresponding to this IO.
2711 */
4246a0b6 2712static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2713{
2c30c71b 2714 struct bio_vec *bvec;
4e4cbee9 2715 int uptodate = !bio->bi_status;
facc8a22 2716 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2717 struct extent_io_tree *tree, *failure_tree;
facc8a22 2718 u64 offset = 0;
d1310b2e
CM
2719 u64 start;
2720 u64 end;
facc8a22 2721 u64 len;
883d0de4
MX
2722 u64 extent_start = 0;
2723 u64 extent_len = 0;
5cf1ab56 2724 int mirror;
d1310b2e 2725 int ret;
6dc4f100 2726 struct bvec_iter_all iter_all;
d1310b2e 2727
c09abff8 2728 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2729 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2730 struct page *page = bvec->bv_page;
a71754fc 2731 struct inode *inode = page->mapping->host;
ab8d0fc4 2732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2733 bool data_inode = btrfs_ino(BTRFS_I(inode))
2734 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2735
ab8d0fc4
JM
2736 btrfs_debug(fs_info,
2737 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2738 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2739 io_bio->mirror_num);
a71754fc 2740 tree = &BTRFS_I(inode)->io_tree;
7870d082 2741 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2742
17a5adcc
AO
2743 /* We always issue full-page reads, but if some block
2744 * in a page fails to read, blk_update_request() will
2745 * advance bv_offset and adjust bv_len to compensate.
2746 * Print a warning for nonzero offsets, and an error
2747 * if they don't add up to a full page. */
09cbfeaf
KS
2748 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2749 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2750 btrfs_err(fs_info,
2751 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2752 bvec->bv_offset, bvec->bv_len);
2753 else
ab8d0fc4
JM
2754 btrfs_info(fs_info,
2755 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2756 bvec->bv_offset, bvec->bv_len);
2757 }
d1310b2e 2758
17a5adcc
AO
2759 start = page_offset(page);
2760 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2761 len = bvec->bv_len;
d1310b2e 2762
9be3395b 2763 mirror = io_bio->mirror_num;
78e62c02 2764 if (likely(uptodate)) {
facc8a22
MX
2765 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2766 page, start, end,
2767 mirror);
5ee0844d 2768 if (ret)
d1310b2e 2769 uptodate = 0;
5ee0844d 2770 else
7870d082
JB
2771 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2772 failure_tree, tree, start,
2773 page,
2774 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2775 }
ea466794 2776
f2a09da9
MX
2777 if (likely(uptodate))
2778 goto readpage_ok;
2779
78e62c02 2780 if (data_inode) {
9d0d1c8b 2781
f4a8e656 2782 /*
78e62c02
NB
2783 * The generic bio_readpage_error handles errors the
2784 * following way: If possible, new read requests are
2785 * created and submitted and will end up in
2786 * end_bio_extent_readpage as well (if we're lucky,
2787 * not in the !uptodate case). In that case it returns
2788 * 0 and we just go on with the next page in our bio.
2789 * If it can't handle the error it will return -EIO and
2790 * we remain responsible for that page.
f4a8e656 2791 */
78e62c02
NB
2792 ret = bio_readpage_error(bio, offset, page, start, end,
2793 mirror);
2794 if (ret == 0) {
2795 uptodate = !bio->bi_status;
2796 offset += len;
2797 continue;
2798 }
2799 } else {
2800 struct extent_buffer *eb;
2801
2802 eb = (struct extent_buffer *)page->private;
2803 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2804 eb->read_mirror = mirror;
2805 atomic_dec(&eb->io_pages);
2806 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2807 &eb->bflags))
2808 btree_readahead_hook(eb, -EIO);
7e38326f 2809 }
f2a09da9 2810readpage_ok:
883d0de4 2811 if (likely(uptodate)) {
a71754fc 2812 loff_t i_size = i_size_read(inode);
09cbfeaf 2813 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2814 unsigned off;
a71754fc
JB
2815
2816 /* Zero out the end if this page straddles i_size */
7073017a 2817 off = offset_in_page(i_size);
a583c026 2818 if (page->index == end_index && off)
09cbfeaf 2819 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2820 SetPageUptodate(page);
70dec807 2821 } else {
17a5adcc
AO
2822 ClearPageUptodate(page);
2823 SetPageError(page);
70dec807 2824 }
17a5adcc 2825 unlock_page(page);
facc8a22 2826 offset += len;
883d0de4
MX
2827
2828 if (unlikely(!uptodate)) {
2829 if (extent_len) {
2830 endio_readpage_release_extent(tree,
2831 extent_start,
2832 extent_len, 1);
2833 extent_start = 0;
2834 extent_len = 0;
2835 }
2836 endio_readpage_release_extent(tree, start,
2837 end - start + 1, 0);
2838 } else if (!extent_len) {
2839 extent_start = start;
2840 extent_len = end + 1 - start;
2841 } else if (extent_start + extent_len == start) {
2842 extent_len += end + 1 - start;
2843 } else {
2844 endio_readpage_release_extent(tree, extent_start,
2845 extent_len, uptodate);
2846 extent_start = start;
2847 extent_len = end + 1 - start;
2848 }
2c30c71b 2849 }
d1310b2e 2850
883d0de4
MX
2851 if (extent_len)
2852 endio_readpage_release_extent(tree, extent_start, extent_len,
2853 uptodate);
b3a0dd50 2854 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2855 bio_put(bio);
d1310b2e
CM
2856}
2857
9be3395b 2858/*
184f999e
DS
2859 * Initialize the members up to but not including 'bio'. Use after allocating a
2860 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2861 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2862 */
184f999e 2863static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2864{
184f999e
DS
2865 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2866}
d1310b2e 2867
9be3395b 2868/*
6e707bcd
DS
2869 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2870 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2871 * for the appropriate container_of magic
9be3395b 2872 */
e749af44 2873struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2874{
2875 struct bio *bio;
d1310b2e 2876
8ac9f7c1 2877 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2878 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2879 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2880 return bio;
2881}
2882
8b6c1d56 2883struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2884{
23ea8e5a
MX
2885 struct btrfs_io_bio *btrfs_bio;
2886 struct bio *new;
9be3395b 2887
6e707bcd 2888 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2889 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2890 btrfs_bio = btrfs_io_bio(new);
184f999e 2891 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2892 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2893 return new;
2894}
9be3395b 2895
c5e4c3d7 2896struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2897{
facc8a22
MX
2898 struct bio *bio;
2899
6e707bcd 2900 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2901 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2902 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2903 return bio;
9be3395b
CM
2904}
2905
e477094f 2906struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2907{
2908 struct bio *bio;
2909 struct btrfs_io_bio *btrfs_bio;
2910
2911 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2912 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2913 ASSERT(bio);
2914
2915 btrfs_bio = btrfs_io_bio(bio);
184f999e 2916 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2917
2918 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2919 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2920 return bio;
2921}
9be3395b 2922
4b81ba48
DS
2923/*
2924 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2925 * @tree: tree so we can call our merge_bio hook
2926 * @wbc: optional writeback control for io accounting
2927 * @page: page to add to the bio
2928 * @pg_offset: offset of the new bio or to check whether we are adding
2929 * a contiguous page to the previous one
2930 * @size: portion of page that we want to write
2931 * @offset: starting offset in the page
2932 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2933 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2934 * @end_io_func: end_io callback for new bio
2935 * @mirror_num: desired mirror to read/write
2936 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2937 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2938 */
2939static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2940 struct writeback_control *wbc,
6273b7f8 2941 struct page *page, u64 offset,
6c5a4e2c 2942 size_t size, unsigned long pg_offset,
d1310b2e
CM
2943 struct block_device *bdev,
2944 struct bio **bio_ret,
f188591e 2945 bio_end_io_t end_io_func,
c8b97818
CM
2946 int mirror_num,
2947 unsigned long prev_bio_flags,
005efedf
FM
2948 unsigned long bio_flags,
2949 bool force_bio_submit)
d1310b2e
CM
2950{
2951 int ret = 0;
2952 struct bio *bio;
09cbfeaf 2953 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2954 sector_t sector = offset >> 9;
d1310b2e 2955
5c2b1fd7
DS
2956 ASSERT(bio_ret);
2957
2958 if (*bio_ret) {
0c8508a6
DS
2959 bool contig;
2960 bool can_merge = true;
2961
d1310b2e 2962 bio = *bio_ret;
0c8508a6 2963 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2964 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2965 else
f73a1c7d 2966 contig = bio_end_sector(bio) == sector;
c8b97818 2967
da12fe54
NB
2968 ASSERT(tree->ops);
2969 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2970 can_merge = false;
2971
2972 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2973 force_bio_submit ||
6c5a4e2c 2974 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2975 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2976 if (ret < 0) {
2977 *bio_ret = NULL;
79787eaa 2978 return ret;
289454ad 2979 }
d1310b2e
CM
2980 bio = NULL;
2981 } else {
da2f0f74 2982 if (wbc)
34e51a5e 2983 wbc_account_cgroup_owner(wbc, page, page_size);
d1310b2e
CM
2984 return 0;
2985 }
2986 }
c8b97818 2987
e749af44 2988 bio = btrfs_bio_alloc(offset);
6c5a4e2c 2989 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2990 bio->bi_end_io = end_io_func;
2991 bio->bi_private = tree;
e6959b93 2992 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2993 bio->bi_opf = opf;
da2f0f74 2994 if (wbc) {
429aebc0
DS
2995 struct block_device *bdev;
2996
2997 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
2998 bio_set_dev(bio, bdev);
da2f0f74 2999 wbc_init_bio(wbc, bio);
34e51a5e 3000 wbc_account_cgroup_owner(wbc, page, page_size);
da2f0f74 3001 }
70dec807 3002
5c2b1fd7 3003 *bio_ret = bio;
d1310b2e
CM
3004
3005 return ret;
3006}
3007
48a3b636
ES
3008static void attach_extent_buffer_page(struct extent_buffer *eb,
3009 struct page *page)
d1310b2e
CM
3010{
3011 if (!PagePrivate(page)) {
3012 SetPagePrivate(page);
09cbfeaf 3013 get_page(page);
4f2de97a
JB
3014 set_page_private(page, (unsigned long)eb);
3015 } else {
3016 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3017 }
3018}
3019
4f2de97a 3020void set_page_extent_mapped(struct page *page)
d1310b2e 3021{
4f2de97a
JB
3022 if (!PagePrivate(page)) {
3023 SetPagePrivate(page);
09cbfeaf 3024 get_page(page);
4f2de97a
JB
3025 set_page_private(page, EXTENT_PAGE_PRIVATE);
3026 }
d1310b2e
CM
3027}
3028
125bac01
MX
3029static struct extent_map *
3030__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3031 u64 start, u64 len, get_extent_t *get_extent,
3032 struct extent_map **em_cached)
3033{
3034 struct extent_map *em;
3035
3036 if (em_cached && *em_cached) {
3037 em = *em_cached;
cbc0e928 3038 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3039 start < extent_map_end(em)) {
490b54d6 3040 refcount_inc(&em->refs);
125bac01
MX
3041 return em;
3042 }
3043
3044 free_extent_map(em);
3045 *em_cached = NULL;
3046 }
3047
fc4f21b1 3048 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
3049 if (em_cached && !IS_ERR_OR_NULL(em)) {
3050 BUG_ON(*em_cached);
490b54d6 3051 refcount_inc(&em->refs);
125bac01
MX
3052 *em_cached = em;
3053 }
3054 return em;
3055}
d1310b2e
CM
3056/*
3057 * basic readpage implementation. Locked extent state structs are inserted
3058 * into the tree that are removed when the IO is done (by the end_io
3059 * handlers)
79787eaa 3060 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3061 * return 0 on success, otherwise return error
d1310b2e 3062 */
9974090b
MX
3063static int __do_readpage(struct extent_io_tree *tree,
3064 struct page *page,
3065 get_extent_t *get_extent,
125bac01 3066 struct extent_map **em_cached,
9974090b 3067 struct bio **bio, int mirror_num,
f1c77c55 3068 unsigned long *bio_flags, unsigned int read_flags,
005efedf 3069 u64 *prev_em_start)
d1310b2e
CM
3070{
3071 struct inode *inode = page->mapping->host;
4eee4fa4 3072 u64 start = page_offset(page);
8eec8296 3073 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3074 u64 cur = start;
3075 u64 extent_offset;
3076 u64 last_byte = i_size_read(inode);
3077 u64 block_start;
3078 u64 cur_end;
d1310b2e
CM
3079 struct extent_map *em;
3080 struct block_device *bdev;
baf863b9 3081 int ret = 0;
d1310b2e 3082 int nr = 0;
306e16ce 3083 size_t pg_offset = 0;
d1310b2e 3084 size_t iosize;
c8b97818 3085 size_t disk_io_size;
d1310b2e 3086 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3087 unsigned long this_bio_flag = 0;
d1310b2e
CM
3088
3089 set_page_extent_mapped(page);
3090
90a887c9
DM
3091 if (!PageUptodate(page)) {
3092 if (cleancache_get_page(page) == 0) {
3093 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3094 unlock_extent(tree, start, end);
90a887c9
DM
3095 goto out;
3096 }
3097 }
3098
09cbfeaf 3099 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3100 char *userpage;
7073017a 3101 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3102
3103 if (zero_offset) {
09cbfeaf 3104 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3105 userpage = kmap_atomic(page);
c8b97818
CM
3106 memset(userpage + zero_offset, 0, iosize);
3107 flush_dcache_page(page);
7ac687d9 3108 kunmap_atomic(userpage);
c8b97818
CM
3109 }
3110 }
d1310b2e 3111 while (cur <= end) {
005efedf 3112 bool force_bio_submit = false;
6273b7f8 3113 u64 offset;
c8f2f24b 3114
d1310b2e
CM
3115 if (cur >= last_byte) {
3116 char *userpage;
507903b8
AJ
3117 struct extent_state *cached = NULL;
3118
09cbfeaf 3119 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3120 userpage = kmap_atomic(page);
306e16ce 3121 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3122 flush_dcache_page(page);
7ac687d9 3123 kunmap_atomic(userpage);
d1310b2e 3124 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3125 &cached, GFP_NOFS);
7f042a83 3126 unlock_extent_cached(tree, cur,
e43bbe5e 3127 cur + iosize - 1, &cached);
d1310b2e
CM
3128 break;
3129 }
125bac01
MX
3130 em = __get_extent_map(inode, page, pg_offset, cur,
3131 end - cur + 1, get_extent, em_cached);
c704005d 3132 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3133 SetPageError(page);
7f042a83 3134 unlock_extent(tree, cur, end);
d1310b2e
CM
3135 break;
3136 }
d1310b2e
CM
3137 extent_offset = cur - em->start;
3138 BUG_ON(extent_map_end(em) <= cur);
3139 BUG_ON(end < cur);
3140
261507a0 3141 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3142 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3143 extent_set_compress_type(&this_bio_flag,
3144 em->compress_type);
3145 }
c8b97818 3146
d1310b2e
CM
3147 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3148 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3149 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3150 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3151 disk_io_size = em->block_len;
6273b7f8 3152 offset = em->block_start;
c8b97818 3153 } else {
6273b7f8 3154 offset = em->block_start + extent_offset;
c8b97818
CM
3155 disk_io_size = iosize;
3156 }
d1310b2e 3157 block_start = em->block_start;
d899e052
YZ
3158 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3159 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3160
3161 /*
3162 * If we have a file range that points to a compressed extent
3163 * and it's followed by a consecutive file range that points to
3164 * to the same compressed extent (possibly with a different
3165 * offset and/or length, so it either points to the whole extent
3166 * or only part of it), we must make sure we do not submit a
3167 * single bio to populate the pages for the 2 ranges because
3168 * this makes the compressed extent read zero out the pages
3169 * belonging to the 2nd range. Imagine the following scenario:
3170 *
3171 * File layout
3172 * [0 - 8K] [8K - 24K]
3173 * | |
3174 * | |
3175 * points to extent X, points to extent X,
3176 * offset 4K, length of 8K offset 0, length 16K
3177 *
3178 * [extent X, compressed length = 4K uncompressed length = 16K]
3179 *
3180 * If the bio to read the compressed extent covers both ranges,
3181 * it will decompress extent X into the pages belonging to the
3182 * first range and then it will stop, zeroing out the remaining
3183 * pages that belong to the other range that points to extent X.
3184 * So here we make sure we submit 2 bios, one for the first
3185 * range and another one for the third range. Both will target
3186 * the same physical extent from disk, but we can't currently
3187 * make the compressed bio endio callback populate the pages
3188 * for both ranges because each compressed bio is tightly
3189 * coupled with a single extent map, and each range can have
3190 * an extent map with a different offset value relative to the
3191 * uncompressed data of our extent and different lengths. This
3192 * is a corner case so we prioritize correctness over
3193 * non-optimal behavior (submitting 2 bios for the same extent).
3194 */
3195 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3196 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3197 *prev_em_start != em->start)
005efedf
FM
3198 force_bio_submit = true;
3199
3200 if (prev_em_start)
8e928218 3201 *prev_em_start = em->start;
005efedf 3202
d1310b2e
CM
3203 free_extent_map(em);
3204 em = NULL;
3205
3206 /* we've found a hole, just zero and go on */
3207 if (block_start == EXTENT_MAP_HOLE) {
3208 char *userpage;
507903b8
AJ
3209 struct extent_state *cached = NULL;
3210
7ac687d9 3211 userpage = kmap_atomic(page);
306e16ce 3212 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3213 flush_dcache_page(page);
7ac687d9 3214 kunmap_atomic(userpage);
d1310b2e
CM
3215
3216 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3217 &cached, GFP_NOFS);
7f042a83 3218 unlock_extent_cached(tree, cur,
e43bbe5e 3219 cur + iosize - 1, &cached);
d1310b2e 3220 cur = cur + iosize;
306e16ce 3221 pg_offset += iosize;
d1310b2e
CM
3222 continue;
3223 }
3224 /* the get_extent function already copied into the page */
9655d298
CM
3225 if (test_range_bit(tree, cur, cur_end,
3226 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3227 check_page_uptodate(tree, page);
7f042a83 3228 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3229 cur = cur + iosize;
306e16ce 3230 pg_offset += iosize;
d1310b2e
CM
3231 continue;
3232 }
70dec807
CM
3233 /* we have an inline extent but it didn't get marked up
3234 * to date. Error out
3235 */
3236 if (block_start == EXTENT_MAP_INLINE) {
3237 SetPageError(page);
7f042a83 3238 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3239 cur = cur + iosize;
306e16ce 3240 pg_offset += iosize;
70dec807
CM
3241 continue;
3242 }
d1310b2e 3243
4b81ba48 3244 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3245 page, offset, disk_io_size,
3246 pg_offset, bdev, bio,
c8b97818
CM
3247 end_bio_extent_readpage, mirror_num,
3248 *bio_flags,
005efedf
FM
3249 this_bio_flag,
3250 force_bio_submit);
c8f2f24b
JB
3251 if (!ret) {
3252 nr++;
3253 *bio_flags = this_bio_flag;
3254 } else {
d1310b2e 3255 SetPageError(page);
7f042a83 3256 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3257 goto out;
edd33c99 3258 }
d1310b2e 3259 cur = cur + iosize;
306e16ce 3260 pg_offset += iosize;
d1310b2e 3261 }
90a887c9 3262out:
d1310b2e
CM
3263 if (!nr) {
3264 if (!PageError(page))
3265 SetPageUptodate(page);
3266 unlock_page(page);
3267 }
baf863b9 3268 return ret;
d1310b2e
CM
3269}
3270
e65ef21e 3271static inline void contiguous_readpages(struct extent_io_tree *tree,
9974090b
MX
3272 struct page *pages[], int nr_pages,
3273 u64 start, u64 end,
125bac01 3274 struct extent_map **em_cached,
d3fac6ba 3275 struct bio **bio,
1f7ad75b 3276 unsigned long *bio_flags,
808f80b4 3277 u64 *prev_em_start)
9974090b 3278{
23d31bd4 3279 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3280 int index;
3281
23d31bd4 3282 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
9974090b
MX
3283
3284 for (index = 0; index < nr_pages; index++) {
4ef77695 3285 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3286 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3287 put_page(pages[index]);
9974090b
MX
3288 }
3289}
3290
9974090b
MX
3291static int __extent_read_full_page(struct extent_io_tree *tree,
3292 struct page *page,
3293 get_extent_t *get_extent,
3294 struct bio **bio, int mirror_num,
f1c77c55
DS
3295 unsigned long *bio_flags,
3296 unsigned int read_flags)
9974090b 3297{
23d31bd4 3298 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
9974090b 3299 u64 start = page_offset(page);
09cbfeaf 3300 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3301 int ret;
3302
23d31bd4 3303 btrfs_lock_and_flush_ordered_range(tree, inode, start, end, NULL);
9974090b 3304
125bac01 3305 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3306 bio_flags, read_flags, NULL);
9974090b
MX
3307 return ret;
3308}
3309
d1310b2e 3310int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3311 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3312{
3313 struct bio *bio = NULL;
c8b97818 3314 unsigned long bio_flags = 0;
d1310b2e
CM
3315 int ret;
3316
8ddc7d9c 3317 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3318 &bio_flags, 0);
d1310b2e 3319 if (bio)
1f7ad75b 3320 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3321 return ret;
3322}
d1310b2e 3323
3d4b9496 3324static void update_nr_written(struct writeback_control *wbc,
a9132667 3325 unsigned long nr_written)
11c8349b
CM
3326{
3327 wbc->nr_to_write -= nr_written;
11c8349b
CM
3328}
3329
d1310b2e 3330/*
40f76580
CM
3331 * helper for __extent_writepage, doing all of the delayed allocation setup.
3332 *
5eaad97a 3333 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3334 * to write the page (copy into inline extent). In this case the IO has
3335 * been started and the page is already unlocked.
3336 *
3337 * This returns 0 if all went well (page still locked)
3338 * This returns < 0 if there were errors (page still locked)
d1310b2e 3339 */
40f76580 3340static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3341 struct page *page, struct writeback_control *wbc,
3342 u64 delalloc_start, unsigned long *nr_written)
40f76580 3343{
09cbfeaf 3344 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3345 bool found;
40f76580
CM
3346 u64 delalloc_to_write = 0;
3347 u64 delalloc_end = 0;
3348 int ret;
3349 int page_started = 0;
3350
40f76580
CM
3351
3352 while (delalloc_end < page_end) {
9978059b 3353 found = find_lock_delalloc_range(inode, page,
40f76580 3354 &delalloc_start,
917aacec 3355 &delalloc_end);
3522e903 3356 if (!found) {
40f76580
CM
3357 delalloc_start = delalloc_end + 1;
3358 continue;
3359 }
5eaad97a
NB
3360 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3361 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3362 if (ret) {
3363 SetPageError(page);
5eaad97a
NB
3364 /*
3365 * btrfs_run_delalloc_range should return < 0 for error
3366 * but just in case, we use > 0 here meaning the IO is
3367 * started, so we don't want to return > 0 unless
3368 * things are going well.
40f76580
CM
3369 */
3370 ret = ret < 0 ? ret : -EIO;
3371 goto done;
3372 }
3373 /*
ea1754a0
KS
3374 * delalloc_end is already one less than the total length, so
3375 * we don't subtract one from PAGE_SIZE
40f76580
CM
3376 */
3377 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3378 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3379 delalloc_start = delalloc_end + 1;
3380 }
3381 if (wbc->nr_to_write < delalloc_to_write) {
3382 int thresh = 8192;
3383
3384 if (delalloc_to_write < thresh * 2)
3385 thresh = delalloc_to_write;
3386 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3387 thresh);
3388 }
3389
3390 /* did the fill delalloc function already unlock and start
3391 * the IO?
3392 */
3393 if (page_started) {
3394 /*
3395 * we've unlocked the page, so we can't update
3396 * the mapping's writeback index, just update
3397 * nr_to_write.
3398 */
3399 wbc->nr_to_write -= *nr_written;
3400 return 1;
3401 }
3402
3403 ret = 0;
3404
3405done:
3406 return ret;
3407}
3408
3409/*
3410 * helper for __extent_writepage. This calls the writepage start hooks,
3411 * and does the loop to map the page into extents and bios.
3412 *
3413 * We return 1 if the IO is started and the page is unlocked,
3414 * 0 if all went well (page still locked)
3415 * < 0 if there were errors (page still locked)
3416 */
3417static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3418 struct page *page,
3419 struct writeback_control *wbc,
3420 struct extent_page_data *epd,
3421 loff_t i_size,
3422 unsigned long nr_written,
57e5ffeb 3423 int *nr_ret)
d1310b2e 3424{
d1310b2e 3425 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3426 u64 start = page_offset(page);
09cbfeaf 3427 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3428 u64 end;
3429 u64 cur = start;
3430 u64 extent_offset;
d1310b2e
CM
3431 u64 block_start;
3432 u64 iosize;
d1310b2e
CM
3433 struct extent_map *em;
3434 struct block_device *bdev;
7f3c74fb 3435 size_t pg_offset = 0;
d1310b2e 3436 size_t blocksize;
40f76580
CM
3437 int ret = 0;
3438 int nr = 0;
57e5ffeb 3439 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3440 bool compressed;
c8b97818 3441
d75855b4
NB
3442 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3443 if (ret) {
3444 /* Fixup worker will requeue */
3445 if (ret == -EBUSY)
3446 wbc->pages_skipped++;
3447 else
3448 redirty_page_for_writepage(wbc, page);
40f76580 3449
d75855b4
NB
3450 update_nr_written(wbc, nr_written);
3451 unlock_page(page);
3452 return 1;
247e743c
CM
3453 }
3454
11c8349b
CM
3455 /*
3456 * we don't want to touch the inode after unlocking the page,
3457 * so we update the mapping writeback index now
3458 */
3d4b9496 3459 update_nr_written(wbc, nr_written + 1);
771ed689 3460
d1310b2e 3461 end = page_end;
40f76580 3462 if (i_size <= start) {
c629732d 3463 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3464 goto done;
3465 }
3466
d1310b2e
CM
3467 blocksize = inode->i_sb->s_blocksize;
3468
3469 while (cur <= end) {
40f76580 3470 u64 em_end;
6273b7f8 3471 u64 offset;
58409edd 3472
40f76580 3473 if (cur >= i_size) {
7087a9d8 3474 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3475 page_end, 1);
d1310b2e
CM
3476 break;
3477 }
3c98c62f 3478 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3479 end - cur + 1, 1);
c704005d 3480 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3481 SetPageError(page);
61391d56 3482 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3483 break;
3484 }
3485
3486 extent_offset = cur - em->start;
40f76580
CM
3487 em_end = extent_map_end(em);
3488 BUG_ON(em_end <= cur);
d1310b2e 3489 BUG_ON(end < cur);
40f76580 3490 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3491 iosize = ALIGN(iosize, blocksize);
6273b7f8 3492 offset = em->block_start + extent_offset;
d1310b2e 3493 block_start = em->block_start;
c8b97818 3494 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3495 free_extent_map(em);
3496 em = NULL;
3497
c8b97818
CM
3498 /*
3499 * compressed and inline extents are written through other
3500 * paths in the FS
3501 */
3502 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3503 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3504 /*
3505 * end_io notification does not happen here for
3506 * compressed extents
3507 */
7087a9d8
NB
3508 if (!compressed)
3509 btrfs_writepage_endio_finish_ordered(page, cur,
3510 cur + iosize - 1,
c629732d 3511 1);
c8b97818
CM
3512 else if (compressed) {
3513 /* we don't want to end_page_writeback on
3514 * a compressed extent. this happens
3515 * elsewhere
3516 */
3517 nr++;
3518 }
3519
3520 cur += iosize;
7f3c74fb 3521 pg_offset += iosize;
d1310b2e
CM
3522 continue;
3523 }
c8b97818 3524
5cdc84bf 3525 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3526 if (!PageWriteback(page)) {
3527 btrfs_err(BTRFS_I(inode)->root->fs_info,
3528 "page %lu not writeback, cur %llu end %llu",
3529 page->index, cur, end);
d1310b2e 3530 }
7f3c74fb 3531
4b81ba48 3532 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3533 page, offset, iosize, pg_offset,
c2df8bb4 3534 bdev, &epd->bio,
58409edd
DS
3535 end_bio_extent_writepage,
3536 0, 0, 0, false);
fe01aa65 3537 if (ret) {
58409edd 3538 SetPageError(page);
fe01aa65
TK
3539 if (PageWriteback(page))
3540 end_page_writeback(page);
3541 }
d1310b2e 3542
d1310b2e 3543 cur = cur + iosize;
7f3c74fb 3544 pg_offset += iosize;
d1310b2e
CM
3545 nr++;
3546 }
40f76580
CM
3547done:
3548 *nr_ret = nr;
40f76580
CM
3549 return ret;
3550}
3551
3552/*
3553 * the writepage semantics are similar to regular writepage. extent
3554 * records are inserted to lock ranges in the tree, and as dirty areas
3555 * are found, they are marked writeback. Then the lock bits are removed
3556 * and the end_io handler clears the writeback ranges
3065976b
QW
3557 *
3558 * Return 0 if everything goes well.
3559 * Return <0 for error.
40f76580
CM
3560 */
3561static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3562 struct extent_page_data *epd)
40f76580
CM
3563{
3564 struct inode *inode = page->mapping->host;
40f76580 3565 u64 start = page_offset(page);
09cbfeaf 3566 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3567 int ret;
3568 int nr = 0;
3569 size_t pg_offset = 0;
3570 loff_t i_size = i_size_read(inode);
09cbfeaf 3571 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3572 unsigned long nr_written = 0;
3573
40f76580
CM
3574 trace___extent_writepage(page, inode, wbc);
3575
3576 WARN_ON(!PageLocked(page));
3577
3578 ClearPageError(page);
3579
7073017a 3580 pg_offset = offset_in_page(i_size);
40f76580
CM
3581 if (page->index > end_index ||
3582 (page->index == end_index && !pg_offset)) {
09cbfeaf 3583 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3584 unlock_page(page);
3585 return 0;
3586 }
3587
3588 if (page->index == end_index) {
3589 char *userpage;
3590
3591 userpage = kmap_atomic(page);
3592 memset(userpage + pg_offset, 0,
09cbfeaf 3593 PAGE_SIZE - pg_offset);
40f76580
CM
3594 kunmap_atomic(userpage);
3595 flush_dcache_page(page);
3596 }
3597
3598 pg_offset = 0;
3599
3600 set_page_extent_mapped(page);
3601
7789a55a 3602 if (!epd->extent_locked) {
8cc0237a 3603 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3604 if (ret == 1)
3605 goto done_unlocked;
3606 if (ret)
3607 goto done;
3608 }
40f76580
CM
3609
3610 ret = __extent_writepage_io(inode, page, wbc, epd,
57e5ffeb 3611 i_size, nr_written, &nr);
40f76580
CM
3612 if (ret == 1)
3613 goto done_unlocked;
3614
d1310b2e
CM
3615done:
3616 if (nr == 0) {
3617 /* make sure the mapping tag for page dirty gets cleared */
3618 set_page_writeback(page);
3619 end_page_writeback(page);
3620 }
61391d56
FM
3621 if (PageError(page)) {
3622 ret = ret < 0 ? ret : -EIO;
3623 end_extent_writepage(page, ret, start, page_end);
3624 }
d1310b2e 3625 unlock_page(page);
3065976b 3626 ASSERT(ret <= 0);
40f76580 3627 return ret;
771ed689 3628
11c8349b 3629done_unlocked:
d1310b2e
CM
3630 return 0;
3631}
3632
fd8b2b61 3633void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3634{
74316201
N
3635 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3636 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3637}
3638
18dfa711
FM
3639static void end_extent_buffer_writeback(struct extent_buffer *eb)
3640{
3641 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3642 smp_mb__after_atomic();
3643 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3644}
3645
2e3c2513
QW
3646/*
3647 * Lock eb pages and flush the bio if we can't the locks
3648 *
3649 * Return 0 if nothing went wrong
3650 * Return >0 is same as 0, except bio is not submitted
3651 * Return <0 if something went wrong, no page is locked
3652 */
9df76fb5 3653static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3654 struct extent_page_data *epd)
0b32f4bb 3655{
9df76fb5 3656 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3657 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3658 int flush = 0;
3659 int ret = 0;
3660
3661 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3662 ret = flush_write_bio(epd);
2e3c2513
QW
3663 if (ret < 0)
3664 return ret;
3665 flush = 1;
0b32f4bb
JB
3666 btrfs_tree_lock(eb);
3667 }
3668
3669 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3670 btrfs_tree_unlock(eb);
3671 if (!epd->sync_io)
3672 return 0;
3673 if (!flush) {
f4340622 3674 ret = flush_write_bio(epd);
2e3c2513
QW
3675 if (ret < 0)
3676 return ret;
0b32f4bb
JB
3677 flush = 1;
3678 }
a098d8e8
CM
3679 while (1) {
3680 wait_on_extent_buffer_writeback(eb);
3681 btrfs_tree_lock(eb);
3682 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3683 break;
0b32f4bb 3684 btrfs_tree_unlock(eb);
0b32f4bb
JB
3685 }
3686 }
3687
51561ffe
JB
3688 /*
3689 * We need to do this to prevent races in people who check if the eb is
3690 * under IO since we can end up having no IO bits set for a short period
3691 * of time.
3692 */
3693 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3694 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3695 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3696 spin_unlock(&eb->refs_lock);
0b32f4bb 3697 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3698 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3699 -eb->len,
3700 fs_info->dirty_metadata_batch);
0b32f4bb 3701 ret = 1;
51561ffe
JB
3702 } else {
3703 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3704 }
3705
3706 btrfs_tree_unlock(eb);
3707
3708 if (!ret)
3709 return ret;
3710
65ad0104 3711 num_pages = num_extent_pages(eb);
0b32f4bb 3712 for (i = 0; i < num_pages; i++) {
fb85fc9a 3713 struct page *p = eb->pages[i];
0b32f4bb
JB
3714
3715 if (!trylock_page(p)) {
3716 if (!flush) {
18dfa711
FM
3717 int err;
3718
3719 err = flush_write_bio(epd);
3720 if (err < 0) {
3721 ret = err;
2e3c2513
QW
3722 failed_page_nr = i;
3723 goto err_unlock;
3724 }
0b32f4bb
JB
3725 flush = 1;
3726 }
3727 lock_page(p);
3728 }
3729 }
3730
3731 return ret;
2e3c2513
QW
3732err_unlock:
3733 /* Unlock already locked pages */
3734 for (i = 0; i < failed_page_nr; i++)
3735 unlock_page(eb->pages[i]);
18dfa711
FM
3736 /*
3737 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3738 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3739 * be made and undo everything done before.
3740 */
3741 btrfs_tree_lock(eb);
3742 spin_lock(&eb->refs_lock);
3743 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3744 end_extent_buffer_writeback(eb);
3745 spin_unlock(&eb->refs_lock);
3746 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3747 fs_info->dirty_metadata_batch);
3748 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3749 btrfs_tree_unlock(eb);
2e3c2513 3750 return ret;
0b32f4bb
JB
3751}
3752
656f30db
FM
3753static void set_btree_ioerr(struct page *page)
3754{
3755 struct extent_buffer *eb = (struct extent_buffer *)page->private;
eb5b64f1 3756 struct btrfs_fs_info *fs_info;
656f30db
FM
3757
3758 SetPageError(page);
3759 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3760 return;
3761
eb5b64f1
DZ
3762 /*
3763 * If we error out, we should add back the dirty_metadata_bytes
3764 * to make it consistent.
3765 */
3766 fs_info = eb->fs_info;
3767 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3768 eb->len, fs_info->dirty_metadata_batch);
3769
656f30db
FM
3770 /*
3771 * If writeback for a btree extent that doesn't belong to a log tree
3772 * failed, increment the counter transaction->eb_write_errors.
3773 * We do this because while the transaction is running and before it's
3774 * committing (when we call filemap_fdata[write|wait]_range against
3775 * the btree inode), we might have
3776 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3777 * returns an error or an error happens during writeback, when we're
3778 * committing the transaction we wouldn't know about it, since the pages
3779 * can be no longer dirty nor marked anymore for writeback (if a
3780 * subsequent modification to the extent buffer didn't happen before the
3781 * transaction commit), which makes filemap_fdata[write|wait]_range not
3782 * able to find the pages tagged with SetPageError at transaction
3783 * commit time. So if this happens we must abort the transaction,
3784 * otherwise we commit a super block with btree roots that point to
3785 * btree nodes/leafs whose content on disk is invalid - either garbage
3786 * or the content of some node/leaf from a past generation that got
3787 * cowed or deleted and is no longer valid.
3788 *
3789 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3790 * not be enough - we need to distinguish between log tree extents vs
3791 * non-log tree extents, and the next filemap_fdatawait_range() call
3792 * will catch and clear such errors in the mapping - and that call might
3793 * be from a log sync and not from a transaction commit. Also, checking
3794 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3795 * not done and would not be reliable - the eb might have been released
3796 * from memory and reading it back again means that flag would not be
3797 * set (since it's a runtime flag, not persisted on disk).
3798 *
3799 * Using the flags below in the btree inode also makes us achieve the
3800 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3801 * writeback for all dirty pages and before filemap_fdatawait_range()
3802 * is called, the writeback for all dirty pages had already finished
3803 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3804 * filemap_fdatawait_range() would return success, as it could not know
3805 * that writeback errors happened (the pages were no longer tagged for
3806 * writeback).
3807 */
3808 switch (eb->log_index) {
3809 case -1:
afcdd129 3810 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3811 break;
3812 case 0:
afcdd129 3813 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3814 break;
3815 case 1:
afcdd129 3816 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3817 break;
3818 default:
3819 BUG(); /* unexpected, logic error */
3820 }
3821}
3822
4246a0b6 3823static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3824{
2c30c71b 3825 struct bio_vec *bvec;
0b32f4bb 3826 struct extent_buffer *eb;
2b070cfe 3827 int done;
6dc4f100 3828 struct bvec_iter_all iter_all;
0b32f4bb 3829
c09abff8 3830 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3831 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3832 struct page *page = bvec->bv_page;
3833
0b32f4bb
JB
3834 eb = (struct extent_buffer *)page->private;
3835 BUG_ON(!eb);
3836 done = atomic_dec_and_test(&eb->io_pages);
3837
4e4cbee9 3838 if (bio->bi_status ||
4246a0b6 3839 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3840 ClearPageUptodate(page);
656f30db 3841 set_btree_ioerr(page);
0b32f4bb
JB
3842 }
3843
3844 end_page_writeback(page);
3845
3846 if (!done)
3847 continue;
3848
3849 end_extent_buffer_writeback(eb);
2c30c71b 3850 }
0b32f4bb
JB
3851
3852 bio_put(bio);
0b32f4bb
JB
3853}
3854
0e378df1 3855static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3856 struct writeback_control *wbc,
3857 struct extent_page_data *epd)
3858{
0ab02063 3859 struct btrfs_fs_info *fs_info = eb->fs_info;
0b32f4bb 3860 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3861 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3862 u64 offset = eb->start;
851cd173 3863 u32 nritems;
cc5e31a4 3864 int i, num_pages;
851cd173 3865 unsigned long start, end;
ff40adf7 3866 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3867 int ret = 0;
0b32f4bb 3868
656f30db 3869 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3870 num_pages = num_extent_pages(eb);
0b32f4bb 3871 atomic_set(&eb->io_pages, num_pages);
de0022b9 3872
851cd173
LB
3873 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3874 nritems = btrfs_header_nritems(eb);
3eb548ee 3875 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3876 end = btrfs_node_key_ptr_offset(nritems);
3877
b159fa28 3878 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3879 } else {
3880 /*
3881 * leaf:
3882 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3883 */
3884 start = btrfs_item_nr_offset(nritems);
8f881e8c 3885 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3886 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3887 }
3888
0b32f4bb 3889 for (i = 0; i < num_pages; i++) {
fb85fc9a 3890 struct page *p = eb->pages[i];
0b32f4bb
JB
3891
3892 clear_page_dirty_for_io(p);
3893 set_page_writeback(p);
4b81ba48 3894 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3895 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3896 &epd->bio,
1f7ad75b 3897 end_bio_extent_buffer_writepage,
18fdc679 3898 0, 0, 0, false);
0b32f4bb 3899 if (ret) {
656f30db 3900 set_btree_ioerr(p);
fe01aa65
TK
3901 if (PageWriteback(p))
3902 end_page_writeback(p);
0b32f4bb
JB
3903 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3904 end_extent_buffer_writeback(eb);
3905 ret = -EIO;
3906 break;
3907 }
09cbfeaf 3908 offset += PAGE_SIZE;
3d4b9496 3909 update_nr_written(wbc, 1);
0b32f4bb
JB
3910 unlock_page(p);
3911 }
3912
3913 if (unlikely(ret)) {
3914 for (; i < num_pages; i++) {
bbf65cf0 3915 struct page *p = eb->pages[i];
81465028 3916 clear_page_dirty_for_io(p);
0b32f4bb
JB
3917 unlock_page(p);
3918 }
3919 }
3920
3921 return ret;
3922}
3923
3924int btree_write_cache_pages(struct address_space *mapping,
3925 struct writeback_control *wbc)
3926{
3927 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
0b32f4bb
JB
3928 struct extent_buffer *eb, *prev_eb = NULL;
3929 struct extent_page_data epd = {
3930 .bio = NULL,
3931 .tree = tree,
3932 .extent_locked = 0,
3933 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3934 };
3935 int ret = 0;
3936 int done = 0;
3937 int nr_to_write_done = 0;
3938 struct pagevec pvec;
3939 int nr_pages;
3940 pgoff_t index;
3941 pgoff_t end; /* Inclusive */
3942 int scanned = 0;
10bbd235 3943 xa_mark_t tag;
0b32f4bb 3944
86679820 3945 pagevec_init(&pvec);
0b32f4bb
JB
3946 if (wbc->range_cyclic) {
3947 index = mapping->writeback_index; /* Start from prev offset */
3948 end = -1;
3949 } else {
09cbfeaf
KS
3950 index = wbc->range_start >> PAGE_SHIFT;
3951 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3952 scanned = 1;
3953 }
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag = PAGECACHE_TAG_TOWRITE;
3956 else
3957 tag = PAGECACHE_TAG_DIRTY;
3958retry:
3959 if (wbc->sync_mode == WB_SYNC_ALL)
3960 tag_pages_for_writeback(mapping, index, end);
3961 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3962 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3963 tag))) {
0b32f4bb
JB
3964 unsigned i;
3965
3966 scanned = 1;
3967 for (i = 0; i < nr_pages; i++) {
3968 struct page *page = pvec.pages[i];
3969
3970 if (!PagePrivate(page))
3971 continue;
3972
b5bae261
JB
3973 spin_lock(&mapping->private_lock);
3974 if (!PagePrivate(page)) {
3975 spin_unlock(&mapping->private_lock);
3976 continue;
3977 }
3978
0b32f4bb 3979 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3980
3981 /*
3982 * Shouldn't happen and normally this would be a BUG_ON
3983 * but no sense in crashing the users box for something
3984 * we can survive anyway.
3985 */
fae7f21c 3986 if (WARN_ON(!eb)) {
b5bae261 3987 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3988 continue;
3989 }
3990
b5bae261
JB
3991 if (eb == prev_eb) {
3992 spin_unlock(&mapping->private_lock);
0b32f4bb 3993 continue;
b5bae261 3994 }
0b32f4bb 3995
b5bae261
JB
3996 ret = atomic_inc_not_zero(&eb->refs);
3997 spin_unlock(&mapping->private_lock);
3998 if (!ret)
0b32f4bb 3999 continue;
0b32f4bb
JB
4000
4001 prev_eb = eb;
9df76fb5 4002 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
4003 if (!ret) {
4004 free_extent_buffer(eb);
4005 continue;
0607eb1d
FM
4006 } else if (ret < 0) {
4007 done = 1;
4008 free_extent_buffer(eb);
4009 break;
0b32f4bb
JB
4010 }
4011
0ab02063 4012 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
4013 if (ret) {
4014 done = 1;
4015 free_extent_buffer(eb);
4016 break;
4017 }
4018 free_extent_buffer(eb);
4019
4020 /*
4021 * the filesystem may choose to bump up nr_to_write.
4022 * We have to make sure to honor the new nr_to_write
4023 * at any time
4024 */
4025 nr_to_write_done = wbc->nr_to_write <= 0;
4026 }
4027 pagevec_release(&pvec);
4028 cond_resched();
4029 }
4030 if (!scanned && !done) {
4031 /*
4032 * We hit the last page and there is more work to be done: wrap
4033 * back to the start of the file
4034 */
4035 scanned = 1;
4036 index = 0;
4037 goto retry;
4038 }
2b952eea
QW
4039 ASSERT(ret <= 0);
4040 if (ret < 0) {
4041 end_write_bio(&epd, ret);
4042 return ret;
4043 }
4044 ret = flush_write_bio(&epd);
0b32f4bb
JB
4045 return ret;
4046}
4047
d1310b2e 4048/**
4bef0848 4049 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4050 * @mapping: address space structure to write
4051 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4052 * @data: data passed to __extent_writepage function
d1310b2e
CM
4053 *
4054 * If a page is already under I/O, write_cache_pages() skips it, even
4055 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4056 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4057 * and msync() need to guarantee that all the data which was dirty at the time
4058 * the call was made get new I/O started against them. If wbc->sync_mode is
4059 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4060 * existing IO to complete.
4061 */
4242b64a 4062static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4063 struct writeback_control *wbc,
aab6e9ed 4064 struct extent_page_data *epd)
d1310b2e 4065{
7fd1a3f7 4066 struct inode *inode = mapping->host;
d1310b2e
CM
4067 int ret = 0;
4068 int done = 0;
f85d7d6c 4069 int nr_to_write_done = 0;
d1310b2e
CM
4070 struct pagevec pvec;
4071 int nr_pages;
4072 pgoff_t index;
4073 pgoff_t end; /* Inclusive */
a9132667
LB
4074 pgoff_t done_index;
4075 int range_whole = 0;
d1310b2e 4076 int scanned = 0;
10bbd235 4077 xa_mark_t tag;
d1310b2e 4078
7fd1a3f7
JB
4079 /*
4080 * We have to hold onto the inode so that ordered extents can do their
4081 * work when the IO finishes. The alternative to this is failing to add
4082 * an ordered extent if the igrab() fails there and that is a huge pain
4083 * to deal with, so instead just hold onto the inode throughout the
4084 * writepages operation. If it fails here we are freeing up the inode
4085 * anyway and we'd rather not waste our time writing out stuff that is
4086 * going to be truncated anyway.
4087 */
4088 if (!igrab(inode))
4089 return 0;
4090
86679820 4091 pagevec_init(&pvec);
d1310b2e
CM
4092 if (wbc->range_cyclic) {
4093 index = mapping->writeback_index; /* Start from prev offset */
4094 end = -1;
4095 } else {
09cbfeaf
KS
4096 index = wbc->range_start >> PAGE_SHIFT;
4097 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4098 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4099 range_whole = 1;
d1310b2e
CM
4100 scanned = 1;
4101 }
3cd24c69
EL
4102
4103 /*
4104 * We do the tagged writepage as long as the snapshot flush bit is set
4105 * and we are the first one who do the filemap_flush() on this inode.
4106 *
4107 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4108 * not race in and drop the bit.
4109 */
4110 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4111 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4112 &BTRFS_I(inode)->runtime_flags))
4113 wbc->tagged_writepages = 1;
4114
4115 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4116 tag = PAGECACHE_TAG_TOWRITE;
4117 else
4118 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4119retry:
3cd24c69 4120 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4121 tag_pages_for_writeback(mapping, index, end);
a9132667 4122 done_index = index;
f85d7d6c 4123 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4124 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4125 &index, end, tag))) {
d1310b2e
CM
4126 unsigned i;
4127
4128 scanned = 1;
4129 for (i = 0; i < nr_pages; i++) {
4130 struct page *page = pvec.pages[i];
4131
f7bddf1e 4132 done_index = page->index + 1;
d1310b2e 4133 /*
b93b0163
MW
4134 * At this point we hold neither the i_pages lock nor
4135 * the page lock: the page may be truncated or
4136 * invalidated (changing page->mapping to NULL),
4137 * or even swizzled back from swapper_space to
4138 * tmpfs file mapping
d1310b2e 4139 */
c8f2f24b 4140 if (!trylock_page(page)) {
f4340622
QW
4141 ret = flush_write_bio(epd);
4142 BUG_ON(ret < 0);
c8f2f24b 4143 lock_page(page);
01d658f2 4144 }
d1310b2e
CM
4145
4146 if (unlikely(page->mapping != mapping)) {
4147 unlock_page(page);
4148 continue;
4149 }
4150
d2c3f4f6 4151 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4152 if (PageWriteback(page)) {
4153 ret = flush_write_bio(epd);
4154 BUG_ON(ret < 0);
4155 }
d1310b2e 4156 wait_on_page_writeback(page);
d2c3f4f6 4157 }
d1310b2e
CM
4158
4159 if (PageWriteback(page) ||
4160 !clear_page_dirty_for_io(page)) {
4161 unlock_page(page);
4162 continue;
4163 }
4164
aab6e9ed 4165 ret = __extent_writepage(page, wbc, epd);
a9132667 4166 if (ret < 0) {
a9132667
LB
4167 done = 1;
4168 break;
4169 }
f85d7d6c
CM
4170
4171 /*
4172 * the filesystem may choose to bump up nr_to_write.
4173 * We have to make sure to honor the new nr_to_write
4174 * at any time
4175 */
4176 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4177 }
4178 pagevec_release(&pvec);
4179 cond_resched();
4180 }
894b36e3 4181 if (!scanned && !done) {
d1310b2e
CM
4182 /*
4183 * We hit the last page and there is more work to be done: wrap
4184 * back to the start of the file
4185 */
4186 scanned = 1;
4187 index = 0;
4188 goto retry;
4189 }
a9132667
LB
4190
4191 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4192 mapping->writeback_index = done_index;
4193
7fd1a3f7 4194 btrfs_add_delayed_iput(inode);
894b36e3 4195 return ret;
d1310b2e 4196}
d1310b2e 4197
0a9b0e53 4198int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4199{
4200 int ret;
d1310b2e
CM
4201 struct extent_page_data epd = {
4202 .bio = NULL,
0a9b0e53 4203 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4204 .extent_locked = 0,
ffbd517d 4205 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4206 };
d1310b2e 4207
d1310b2e 4208 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4209 ASSERT(ret <= 0);
4210 if (ret < 0) {
4211 end_write_bio(&epd, ret);
4212 return ret;
4213 }
d1310b2e 4214
3065976b
QW
4215 ret = flush_write_bio(&epd);
4216 ASSERT(ret <= 0);
d1310b2e
CM
4217 return ret;
4218}
d1310b2e 4219
5e3ee236 4220int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4221 int mode)
4222{
4223 int ret = 0;
4224 struct address_space *mapping = inode->i_mapping;
5e3ee236 4225 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4226 struct page *page;
09cbfeaf
KS
4227 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4228 PAGE_SHIFT;
771ed689
CM
4229
4230 struct extent_page_data epd = {
4231 .bio = NULL,
4232 .tree = tree,
771ed689 4233 .extent_locked = 1,
ffbd517d 4234 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4235 };
4236 struct writeback_control wbc_writepages = {
771ed689 4237 .sync_mode = mode,
771ed689
CM
4238 .nr_to_write = nr_pages * 2,
4239 .range_start = start,
4240 .range_end = end + 1,
ec39f769
CM
4241 /* We're called from an async helper function */
4242 .punt_to_cgroup = 1,
4243 .no_cgroup_owner = 1,
771ed689
CM
4244 };
4245
dbb70bec 4246 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 4247 while (start <= end) {
09cbfeaf 4248 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4249 if (clear_page_dirty_for_io(page))
4250 ret = __extent_writepage(page, &wbc_writepages, &epd);
4251 else {
7087a9d8 4252 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4253 start + PAGE_SIZE - 1, 1);
771ed689
CM
4254 unlock_page(page);
4255 }
09cbfeaf
KS
4256 put_page(page);
4257 start += PAGE_SIZE;
771ed689
CM
4258 }
4259
02c6db4f 4260 ASSERT(ret <= 0);
dbb70bec
CM
4261 if (ret == 0)
4262 ret = flush_write_bio(&epd);
4263 else
02c6db4f 4264 end_write_bio(&epd, ret);
dbb70bec
CM
4265
4266 wbc_detach_inode(&wbc_writepages);
771ed689
CM
4267 return ret;
4268}
d1310b2e 4269
8ae225a8 4270int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4271 struct writeback_control *wbc)
4272{
4273 int ret = 0;
4274 struct extent_page_data epd = {
4275 .bio = NULL,
8ae225a8 4276 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4277 .extent_locked = 0,
ffbd517d 4278 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4279 };
4280
935db853 4281 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4282 ASSERT(ret <= 0);
4283 if (ret < 0) {
4284 end_write_bio(&epd, ret);
4285 return ret;
4286 }
4287 ret = flush_write_bio(&epd);
d1310b2e
CM
4288 return ret;
4289}
d1310b2e 4290
2a3ff0ad
NB
4291int extent_readpages(struct address_space *mapping, struct list_head *pages,
4292 unsigned nr_pages)
d1310b2e
CM
4293{
4294 struct bio *bio = NULL;
c8b97818 4295 unsigned long bio_flags = 0;
67c9684f 4296 struct page *pagepool[16];
125bac01 4297 struct extent_map *em_cached = NULL;
2a3ff0ad 4298 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4299 int nr = 0;
808f80b4 4300 u64 prev_em_start = (u64)-1;
d1310b2e 4301
61ed3a14 4302 while (!list_empty(pages)) {
e65ef21e
NB
4303 u64 contig_end = 0;
4304
61ed3a14 4305 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4306 struct page *page = lru_to_page(pages);
d1310b2e 4307
61ed3a14
NB
4308 prefetchw(&page->flags);
4309 list_del(&page->lru);
4310 if (add_to_page_cache_lru(page, mapping, page->index,
4311 readahead_gfp_mask(mapping))) {
4312 put_page(page);
e65ef21e 4313 break;
61ed3a14
NB
4314 }
4315
4316 pagepool[nr++] = page;
e65ef21e 4317 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4318 }
67c9684f 4319
e65ef21e
NB
4320 if (nr) {
4321 u64 contig_start = page_offset(pagepool[0]);
4322
4323 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4324
4325 contiguous_readpages(tree, pagepool, nr, contig_start,
4326 contig_end, &em_cached, &bio, &bio_flags,
4327 &prev_em_start);
4328 }
d1310b2e 4329 }
67c9684f 4330
125bac01
MX
4331 if (em_cached)
4332 free_extent_map(em_cached);
4333
d1310b2e 4334 if (bio)
1f7ad75b 4335 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4336 return 0;
4337}
d1310b2e
CM
4338
4339/*
4340 * basic invalidatepage code, this waits on any locked or writeback
4341 * ranges corresponding to the page, and then deletes any extent state
4342 * records from the tree
4343 */
4344int extent_invalidatepage(struct extent_io_tree *tree,
4345 struct page *page, unsigned long offset)
4346{
2ac55d41 4347 struct extent_state *cached_state = NULL;
4eee4fa4 4348 u64 start = page_offset(page);
09cbfeaf 4349 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4350 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4351
fda2832f 4352 start += ALIGN(offset, blocksize);
d1310b2e
CM
4353 if (start > end)
4354 return 0;
4355
ff13db41 4356 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4357 wait_on_page_writeback(page);
e182163d
OS
4358 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4359 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4360 return 0;
4361}
d1310b2e 4362
7b13b7b1
CM
4363/*
4364 * a helper for releasepage, this tests for areas of the page that
4365 * are locked or under IO and drops the related state bits if it is safe
4366 * to drop the page.
4367 */
29c68b2d 4368static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4369 struct page *page, gfp_t mask)
7b13b7b1 4370{
4eee4fa4 4371 u64 start = page_offset(page);
09cbfeaf 4372 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4373 int ret = 1;
4374
8882679e 4375 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4376 ret = 0;
8882679e 4377 } else {
11ef160f
CM
4378 /*
4379 * at this point we can safely clear everything except the
4380 * locked bit and the nodatasum bit
4381 */
66b0c887 4382 ret = __clear_extent_bit(tree, start, end,
11ef160f 4383 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4384 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4385
4386 /* if clear_extent_bit failed for enomem reasons,
4387 * we can't allow the release to continue.
4388 */
4389 if (ret < 0)
4390 ret = 0;
4391 else
4392 ret = 1;
7b13b7b1
CM
4393 }
4394 return ret;
4395}
7b13b7b1 4396
d1310b2e
CM
4397/*
4398 * a helper for releasepage. As long as there are no locked extents
4399 * in the range corresponding to the page, both state records and extent
4400 * map records are removed
4401 */
477a30ba 4402int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4403{
4404 struct extent_map *em;
4eee4fa4 4405 u64 start = page_offset(page);
09cbfeaf 4406 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4407 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4408 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4409 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4410
d0164adc 4411 if (gfpflags_allow_blocking(mask) &&
ee22184b 4412 page->mapping->host->i_size > SZ_16M) {
39b5637f 4413 u64 len;
70dec807 4414 while (start <= end) {
39b5637f 4415 len = end - start + 1;
890871be 4416 write_lock(&map->lock);
39b5637f 4417 em = lookup_extent_mapping(map, start, len);
285190d9 4418 if (!em) {
890871be 4419 write_unlock(&map->lock);
70dec807
CM
4420 break;
4421 }
7f3c74fb
CM
4422 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4423 em->start != start) {
890871be 4424 write_unlock(&map->lock);
70dec807
CM
4425 free_extent_map(em);
4426 break;
4427 }
4428 if (!test_range_bit(tree, em->start,
4429 extent_map_end(em) - 1,
4e586ca3 4430 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4431 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4432 &btrfs_inode->runtime_flags);
70dec807
CM
4433 remove_extent_mapping(map, em);
4434 /* once for the rb tree */
4435 free_extent_map(em);
4436 }
4437 start = extent_map_end(em);
890871be 4438 write_unlock(&map->lock);
70dec807
CM
4439
4440 /* once for us */
d1310b2e
CM
4441 free_extent_map(em);
4442 }
d1310b2e 4443 }
29c68b2d 4444 return try_release_extent_state(tree, page, mask);
d1310b2e 4445}
d1310b2e 4446
ec29ed5b
CM
4447/*
4448 * helper function for fiemap, which doesn't want to see any holes.
4449 * This maps until we find something past 'last'
4450 */
4451static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4452 u64 offset, u64 last)
ec29ed5b 4453{
da17066c 4454 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4455 struct extent_map *em;
4456 u64 len;
4457
4458 if (offset >= last)
4459 return NULL;
4460
67871254 4461 while (1) {
ec29ed5b
CM
4462 len = last - offset;
4463 if (len == 0)
4464 break;
fda2832f 4465 len = ALIGN(len, sectorsize);
4ab47a8d 4466 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4467 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4468 return em;
4469
4470 /* if this isn't a hole return it */
4a2d25cd 4471 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4472 return em;
ec29ed5b
CM
4473
4474 /* this is a hole, advance to the next extent */
4475 offset = extent_map_end(em);
4476 free_extent_map(em);
4477 if (offset >= last)
4478 break;
4479 }
4480 return NULL;
4481}
4482
4751832d
QW
4483/*
4484 * To cache previous fiemap extent
4485 *
4486 * Will be used for merging fiemap extent
4487 */
4488struct fiemap_cache {
4489 u64 offset;
4490 u64 phys;
4491 u64 len;
4492 u32 flags;
4493 bool cached;
4494};
4495
4496/*
4497 * Helper to submit fiemap extent.
4498 *
4499 * Will try to merge current fiemap extent specified by @offset, @phys,
4500 * @len and @flags with cached one.
4501 * And only when we fails to merge, cached one will be submitted as
4502 * fiemap extent.
4503 *
4504 * Return value is the same as fiemap_fill_next_extent().
4505 */
4506static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4507 struct fiemap_cache *cache,
4508 u64 offset, u64 phys, u64 len, u32 flags)
4509{
4510 int ret = 0;
4511
4512 if (!cache->cached)
4513 goto assign;
4514
4515 /*
4516 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4517 * fiemap extent won't overlap with cached one.
4751832d
QW
4518 * Not recoverable.
4519 *
4520 * NOTE: Physical address can overlap, due to compression
4521 */
4522 if (cache->offset + cache->len > offset) {
4523 WARN_ON(1);
4524 return -EINVAL;
4525 }
4526
4527 /*
4528 * Only merges fiemap extents if
4529 * 1) Their logical addresses are continuous
4530 *
4531 * 2) Their physical addresses are continuous
4532 * So truly compressed (physical size smaller than logical size)
4533 * extents won't get merged with each other
4534 *
4535 * 3) Share same flags except FIEMAP_EXTENT_LAST
4536 * So regular extent won't get merged with prealloc extent
4537 */
4538 if (cache->offset + cache->len == offset &&
4539 cache->phys + cache->len == phys &&
4540 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4541 (flags & ~FIEMAP_EXTENT_LAST)) {
4542 cache->len += len;
4543 cache->flags |= flags;
4544 goto try_submit_last;
4545 }
4546
4547 /* Not mergeable, need to submit cached one */
4548 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4549 cache->len, cache->flags);
4550 cache->cached = false;
4551 if (ret)
4552 return ret;
4553assign:
4554 cache->cached = true;
4555 cache->offset = offset;
4556 cache->phys = phys;
4557 cache->len = len;
4558 cache->flags = flags;
4559try_submit_last:
4560 if (cache->flags & FIEMAP_EXTENT_LAST) {
4561 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4562 cache->phys, cache->len, cache->flags);
4563 cache->cached = false;
4564 }
4565 return ret;
4566}
4567
4568/*
848c23b7 4569 * Emit last fiemap cache
4751832d 4570 *
848c23b7
QW
4571 * The last fiemap cache may still be cached in the following case:
4572 * 0 4k 8k
4573 * |<- Fiemap range ->|
4574 * |<------------ First extent ----------->|
4575 *
4576 * In this case, the first extent range will be cached but not emitted.
4577 * So we must emit it before ending extent_fiemap().
4751832d 4578 */
5c5aff98 4579static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4580 struct fiemap_cache *cache)
4751832d
QW
4581{
4582 int ret;
4583
4584 if (!cache->cached)
4585 return 0;
4586
4751832d
QW
4587 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4588 cache->len, cache->flags);
4589 cache->cached = false;
4590 if (ret > 0)
4591 ret = 0;
4592 return ret;
4593}
4594
1506fcc8 4595int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4596 __u64 start, __u64 len)
1506fcc8 4597{
975f84fe 4598 int ret = 0;
1506fcc8
YS
4599 u64 off = start;
4600 u64 max = start + len;
4601 u32 flags = 0;
975f84fe
JB
4602 u32 found_type;
4603 u64 last;
ec29ed5b 4604 u64 last_for_get_extent = 0;
1506fcc8 4605 u64 disko = 0;
ec29ed5b 4606 u64 isize = i_size_read(inode);
975f84fe 4607 struct btrfs_key found_key;
1506fcc8 4608 struct extent_map *em = NULL;
2ac55d41 4609 struct extent_state *cached_state = NULL;
975f84fe 4610 struct btrfs_path *path;
dc046b10 4611 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4612 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4613 struct ulist *roots;
4614 struct ulist *tmp_ulist;
1506fcc8 4615 int end = 0;
ec29ed5b
CM
4616 u64 em_start = 0;
4617 u64 em_len = 0;
4618 u64 em_end = 0;
1506fcc8
YS
4619
4620 if (len == 0)
4621 return -EINVAL;
4622
975f84fe
JB
4623 path = btrfs_alloc_path();
4624 if (!path)
4625 return -ENOMEM;
4626 path->leave_spinning = 1;
4627
5911c8fe
DS
4628 roots = ulist_alloc(GFP_KERNEL);
4629 tmp_ulist = ulist_alloc(GFP_KERNEL);
4630 if (!roots || !tmp_ulist) {
4631 ret = -ENOMEM;
4632 goto out_free_ulist;
4633 }
4634
da17066c
JM
4635 start = round_down(start, btrfs_inode_sectorsize(inode));
4636 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4637
ec29ed5b
CM
4638 /*
4639 * lookup the last file extent. We're not using i_size here
4640 * because there might be preallocation past i_size
4641 */
f85b7379
DS
4642 ret = btrfs_lookup_file_extent(NULL, root, path,
4643 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe 4644 if (ret < 0) {
5911c8fe 4645 goto out_free_ulist;
2d324f59
LB
4646 } else {
4647 WARN_ON(!ret);
4648 if (ret == 1)
4649 ret = 0;
975f84fe 4650 }
2d324f59 4651
975f84fe 4652 path->slots[0]--;
975f84fe 4653 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4654 found_type = found_key.type;
975f84fe 4655
ec29ed5b 4656 /* No extents, but there might be delalloc bits */
4a0cc7ca 4657 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4658 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4659 /* have to trust i_size as the end */
4660 last = (u64)-1;
4661 last_for_get_extent = isize;
4662 } else {
4663 /*
4664 * remember the start of the last extent. There are a
4665 * bunch of different factors that go into the length of the
4666 * extent, so its much less complex to remember where it started
4667 */
4668 last = found_key.offset;
4669 last_for_get_extent = last + 1;
975f84fe 4670 }
fe09e16c 4671 btrfs_release_path(path);
975f84fe 4672
ec29ed5b
CM
4673 /*
4674 * we might have some extents allocated but more delalloc past those
4675 * extents. so, we trust isize unless the start of the last extent is
4676 * beyond isize
4677 */
4678 if (last < isize) {
4679 last = (u64)-1;
4680 last_for_get_extent = isize;
4681 }
4682
ff13db41 4683 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4684 &cached_state);
ec29ed5b 4685
e3350e16 4686 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4687 if (!em)
4688 goto out;
4689 if (IS_ERR(em)) {
4690 ret = PTR_ERR(em);
4691 goto out;
4692 }
975f84fe 4693
1506fcc8 4694 while (!end) {
b76bb701 4695 u64 offset_in_extent = 0;
ea8efc74
CM
4696
4697 /* break if the extent we found is outside the range */
4698 if (em->start >= max || extent_map_end(em) < off)
4699 break;
4700
4701 /*
4702 * get_extent may return an extent that starts before our
4703 * requested range. We have to make sure the ranges
4704 * we return to fiemap always move forward and don't
4705 * overlap, so adjust the offsets here
4706 */
4707 em_start = max(em->start, off);
1506fcc8 4708
ea8efc74
CM
4709 /*
4710 * record the offset from the start of the extent
b76bb701
JB
4711 * for adjusting the disk offset below. Only do this if the
4712 * extent isn't compressed since our in ram offset may be past
4713 * what we have actually allocated on disk.
ea8efc74 4714 */
b76bb701
JB
4715 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4716 offset_in_extent = em_start - em->start;
ec29ed5b 4717 em_end = extent_map_end(em);
ea8efc74 4718 em_len = em_end - em_start;
1506fcc8 4719 flags = 0;
f0986318
FM
4720 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4721 disko = em->block_start + offset_in_extent;
4722 else
4723 disko = 0;
1506fcc8 4724
ea8efc74
CM
4725 /*
4726 * bump off for our next call to get_extent
4727 */
4728 off = extent_map_end(em);
4729 if (off >= max)
4730 end = 1;
4731
93dbfad7 4732 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4733 end = 1;
4734 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4735 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4736 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4737 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4738 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4739 flags |= (FIEMAP_EXTENT_DELALLOC |
4740 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4741 } else if (fieinfo->fi_extents_max) {
4742 u64 bytenr = em->block_start -
4743 (em->start - em->orig_start);
fe09e16c 4744
fe09e16c
LB
4745 /*
4746 * As btrfs supports shared space, this information
4747 * can be exported to userspace tools via
dc046b10
JB
4748 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4749 * then we're just getting a count and we can skip the
4750 * lookup stuff.
fe09e16c 4751 */
bb739cf0
EN
4752 ret = btrfs_check_shared(root,
4753 btrfs_ino(BTRFS_I(inode)),
5911c8fe 4754 bytenr, roots, tmp_ulist);
dc046b10 4755 if (ret < 0)
fe09e16c 4756 goto out_free;
dc046b10 4757 if (ret)
fe09e16c 4758 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4759 ret = 0;
1506fcc8
YS
4760 }
4761 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4762 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4763 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4764 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4765
1506fcc8
YS
4766 free_extent_map(em);
4767 em = NULL;
ec29ed5b
CM
4768 if ((em_start >= last) || em_len == (u64)-1 ||
4769 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4770 flags |= FIEMAP_EXTENT_LAST;
4771 end = 1;
4772 }
4773
ec29ed5b 4774 /* now scan forward to see if this is really the last extent. */
e3350e16 4775 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4776 if (IS_ERR(em)) {
4777 ret = PTR_ERR(em);
4778 goto out;
4779 }
4780 if (!em) {
975f84fe
JB
4781 flags |= FIEMAP_EXTENT_LAST;
4782 end = 1;
4783 }
4751832d
QW
4784 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4785 em_len, flags);
26e726af
CS
4786 if (ret) {
4787 if (ret == 1)
4788 ret = 0;
ec29ed5b 4789 goto out_free;
26e726af 4790 }
1506fcc8
YS
4791 }
4792out_free:
4751832d 4793 if (!ret)
5c5aff98 4794 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4795 free_extent_map(em);
4796out:
a52f4cd2 4797 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4798 &cached_state);
5911c8fe
DS
4799
4800out_free_ulist:
e02d48ea 4801 btrfs_free_path(path);
5911c8fe
DS
4802 ulist_free(roots);
4803 ulist_free(tmp_ulist);
1506fcc8
YS
4804 return ret;
4805}
4806
727011e0
CM
4807static void __free_extent_buffer(struct extent_buffer *eb)
4808{
6d49ba1b 4809 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4810 kmem_cache_free(extent_buffer_cache, eb);
4811}
4812
a26e8c9f 4813int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4814{
4815 return (atomic_read(&eb->io_pages) ||
4816 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4817 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4818}
4819
4820/*
55ac0139 4821 * Release all pages attached to the extent buffer.
db7f3436 4822 */
55ac0139 4823static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4824{
d64766fd
NB
4825 int i;
4826 int num_pages;
b0132a3b 4827 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4828
4829 BUG_ON(extent_buffer_under_io(eb));
4830
d64766fd
NB
4831 num_pages = num_extent_pages(eb);
4832 for (i = 0; i < num_pages; i++) {
4833 struct page *page = eb->pages[i];
db7f3436 4834
5d2361db
FL
4835 if (!page)
4836 continue;
4837 if (mapped)
db7f3436 4838 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4839 /*
4840 * We do this since we'll remove the pages after we've
4841 * removed the eb from the radix tree, so we could race
4842 * and have this page now attached to the new eb. So
4843 * only clear page_private if it's still connected to
4844 * this eb.
4845 */
4846 if (PagePrivate(page) &&
4847 page->private == (unsigned long)eb) {
4848 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4849 BUG_ON(PageDirty(page));
4850 BUG_ON(PageWriteback(page));
db7f3436 4851 /*
5d2361db
FL
4852 * We need to make sure we haven't be attached
4853 * to a new eb.
db7f3436 4854 */
5d2361db
FL
4855 ClearPagePrivate(page);
4856 set_page_private(page, 0);
4857 /* One for the page private */
09cbfeaf 4858 put_page(page);
db7f3436 4859 }
5d2361db
FL
4860
4861 if (mapped)
4862 spin_unlock(&page->mapping->private_lock);
4863
01327610 4864 /* One for when we allocated the page */
09cbfeaf 4865 put_page(page);
d64766fd 4866 }
db7f3436
JB
4867}
4868
4869/*
4870 * Helper for releasing the extent buffer.
4871 */
4872static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4873{
55ac0139 4874 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4875 __free_extent_buffer(eb);
4876}
4877
f28491e0
JB
4878static struct extent_buffer *
4879__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4880 unsigned long len)
d1310b2e
CM
4881{
4882 struct extent_buffer *eb = NULL;
4883
d1b5c567 4884 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4885 eb->start = start;
4886 eb->len = len;
f28491e0 4887 eb->fs_info = fs_info;
815a51c7 4888 eb->bflags = 0;
bd681513 4889 rwlock_init(&eb->lock);
bd681513 4890 atomic_set(&eb->blocking_readers, 0);
06297d8c 4891 eb->blocking_writers = 0;
ed1b4ed7 4892 eb->lock_nested = false;
bd681513
CM
4893 init_waitqueue_head(&eb->write_lock_wq);
4894 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4895
6d49ba1b
ES
4896 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4897
3083ee2e 4898 spin_lock_init(&eb->refs_lock);
d1310b2e 4899 atomic_set(&eb->refs, 1);
0b32f4bb 4900 atomic_set(&eb->io_pages, 0);
727011e0 4901
b8dae313
DS
4902 /*
4903 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4904 */
4905 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4906 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4907 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4908
843ccf9f 4909#ifdef CONFIG_BTRFS_DEBUG
f3dc24c5 4910 eb->spinning_writers = 0;
afd495a8 4911 atomic_set(&eb->spinning_readers, 0);
5c9c799a 4912 atomic_set(&eb->read_locks, 0);
00801ae4 4913 eb->write_locks = 0;
843ccf9f
DS
4914#endif
4915
d1310b2e
CM
4916 return eb;
4917}
4918
815a51c7
JS
4919struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4920{
cc5e31a4 4921 int i;
815a51c7
JS
4922 struct page *p;
4923 struct extent_buffer *new;
cc5e31a4 4924 int num_pages = num_extent_pages(src);
815a51c7 4925
3f556f78 4926 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4927 if (new == NULL)
4928 return NULL;
4929
4930 for (i = 0; i < num_pages; i++) {
9ec72677 4931 p = alloc_page(GFP_NOFS);
db7f3436
JB
4932 if (!p) {
4933 btrfs_release_extent_buffer(new);
4934 return NULL;
4935 }
815a51c7
JS
4936 attach_extent_buffer_page(new, p);
4937 WARN_ON(PageDirty(p));
4938 SetPageUptodate(p);
4939 new->pages[i] = p;
fba1acf9 4940 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4941 }
4942
815a51c7 4943 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4944 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4945
4946 return new;
4947}
4948
0f331229
OS
4949struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4950 u64 start, unsigned long len)
815a51c7
JS
4951{
4952 struct extent_buffer *eb;
cc5e31a4
DS
4953 int num_pages;
4954 int i;
815a51c7 4955
3f556f78 4956 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4957 if (!eb)
4958 return NULL;
4959
65ad0104 4960 num_pages = num_extent_pages(eb);
815a51c7 4961 for (i = 0; i < num_pages; i++) {
9ec72677 4962 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4963 if (!eb->pages[i])
4964 goto err;
4965 }
4966 set_extent_buffer_uptodate(eb);
4967 btrfs_set_header_nritems(eb, 0);
b0132a3b 4968 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4969
4970 return eb;
4971err:
84167d19
SB
4972 for (; i > 0; i--)
4973 __free_page(eb->pages[i - 1]);
815a51c7
JS
4974 __free_extent_buffer(eb);
4975 return NULL;
4976}
4977
0f331229 4978struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4979 u64 start)
0f331229 4980{
da17066c 4981 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4982}
4983
0b32f4bb
JB
4984static void check_buffer_tree_ref(struct extent_buffer *eb)
4985{
242e18c7 4986 int refs;
0b32f4bb
JB
4987 /* the ref bit is tricky. We have to make sure it is set
4988 * if we have the buffer dirty. Otherwise the
4989 * code to free a buffer can end up dropping a dirty
4990 * page
4991 *
4992 * Once the ref bit is set, it won't go away while the
4993 * buffer is dirty or in writeback, and it also won't
4994 * go away while we have the reference count on the
4995 * eb bumped.
4996 *
4997 * We can't just set the ref bit without bumping the
4998 * ref on the eb because free_extent_buffer might
4999 * see the ref bit and try to clear it. If this happens
5000 * free_extent_buffer might end up dropping our original
5001 * ref by mistake and freeing the page before we are able
5002 * to add one more ref.
5003 *
5004 * So bump the ref count first, then set the bit. If someone
5005 * beat us to it, drop the ref we added.
5006 */
242e18c7
CM
5007 refs = atomic_read(&eb->refs);
5008 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5009 return;
5010
594831c4
JB
5011 spin_lock(&eb->refs_lock);
5012 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5013 atomic_inc(&eb->refs);
594831c4 5014 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5015}
5016
2457aec6
MG
5017static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5018 struct page *accessed)
5df4235e 5019{
cc5e31a4 5020 int num_pages, i;
5df4235e 5021
0b32f4bb
JB
5022 check_buffer_tree_ref(eb);
5023
65ad0104 5024 num_pages = num_extent_pages(eb);
5df4235e 5025 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5026 struct page *p = eb->pages[i];
5027
2457aec6
MG
5028 if (p != accessed)
5029 mark_page_accessed(p);
5df4235e
JB
5030 }
5031}
5032
f28491e0
JB
5033struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5034 u64 start)
452c75c3
CS
5035{
5036 struct extent_buffer *eb;
5037
5038 rcu_read_lock();
f28491e0 5039 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5040 start >> PAGE_SHIFT);
452c75c3
CS
5041 if (eb && atomic_inc_not_zero(&eb->refs)) {
5042 rcu_read_unlock();
062c19e9
FM
5043 /*
5044 * Lock our eb's refs_lock to avoid races with
5045 * free_extent_buffer. When we get our eb it might be flagged
5046 * with EXTENT_BUFFER_STALE and another task running
5047 * free_extent_buffer might have seen that flag set,
5048 * eb->refs == 2, that the buffer isn't under IO (dirty and
5049 * writeback flags not set) and it's still in the tree (flag
5050 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5051 * of decrementing the extent buffer's reference count twice.
5052 * So here we could race and increment the eb's reference count,
5053 * clear its stale flag, mark it as dirty and drop our reference
5054 * before the other task finishes executing free_extent_buffer,
5055 * which would later result in an attempt to free an extent
5056 * buffer that is dirty.
5057 */
5058 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5059 spin_lock(&eb->refs_lock);
5060 spin_unlock(&eb->refs_lock);
5061 }
2457aec6 5062 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5063 return eb;
5064 }
5065 rcu_read_unlock();
5066
5067 return NULL;
5068}
5069
faa2dbf0
JB
5070#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5071struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5072 u64 start)
faa2dbf0
JB
5073{
5074 struct extent_buffer *eb, *exists = NULL;
5075 int ret;
5076
5077 eb = find_extent_buffer(fs_info, start);
5078 if (eb)
5079 return eb;
da17066c 5080 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
5081 if (!eb)
5082 return NULL;
5083 eb->fs_info = fs_info;
5084again:
e1860a77 5085 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
5086 if (ret)
5087 goto free_eb;
5088 spin_lock(&fs_info->buffer_lock);
5089 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5090 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5091 spin_unlock(&fs_info->buffer_lock);
5092 radix_tree_preload_end();
5093 if (ret == -EEXIST) {
5094 exists = find_extent_buffer(fs_info, start);
5095 if (exists)
5096 goto free_eb;
5097 else
5098 goto again;
5099 }
5100 check_buffer_tree_ref(eb);
5101 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5102
faa2dbf0
JB
5103 return eb;
5104free_eb:
5105 btrfs_release_extent_buffer(eb);
5106 return exists;
5107}
5108#endif
5109
f28491e0 5110struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5111 u64 start)
d1310b2e 5112{
da17066c 5113 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5114 int num_pages;
5115 int i;
09cbfeaf 5116 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5117 struct extent_buffer *eb;
6af118ce 5118 struct extent_buffer *exists = NULL;
d1310b2e 5119 struct page *p;
f28491e0 5120 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5121 int uptodate = 1;
19fe0a8b 5122 int ret;
d1310b2e 5123
da17066c 5124 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5125 btrfs_err(fs_info, "bad tree block start %llu", start);
5126 return ERR_PTR(-EINVAL);
5127 }
5128
f28491e0 5129 eb = find_extent_buffer(fs_info, start);
452c75c3 5130 if (eb)
6af118ce 5131 return eb;
6af118ce 5132
23d79d81 5133 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5134 if (!eb)
c871b0f2 5135 return ERR_PTR(-ENOMEM);
d1310b2e 5136
65ad0104 5137 num_pages = num_extent_pages(eb);
727011e0 5138 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5139 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5140 if (!p) {
5141 exists = ERR_PTR(-ENOMEM);
6af118ce 5142 goto free_eb;
c871b0f2 5143 }
4f2de97a
JB
5144
5145 spin_lock(&mapping->private_lock);
5146 if (PagePrivate(p)) {
5147 /*
5148 * We could have already allocated an eb for this page
5149 * and attached one so lets see if we can get a ref on
5150 * the existing eb, and if we can we know it's good and
5151 * we can just return that one, else we know we can just
5152 * overwrite page->private.
5153 */
5154 exists = (struct extent_buffer *)p->private;
5155 if (atomic_inc_not_zero(&exists->refs)) {
5156 spin_unlock(&mapping->private_lock);
5157 unlock_page(p);
09cbfeaf 5158 put_page(p);
2457aec6 5159 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5160 goto free_eb;
5161 }
5ca64f45 5162 exists = NULL;
4f2de97a 5163
0b32f4bb 5164 /*
4f2de97a
JB
5165 * Do this so attach doesn't complain and we need to
5166 * drop the ref the old guy had.
5167 */
5168 ClearPagePrivate(p);
0b32f4bb 5169 WARN_ON(PageDirty(p));
09cbfeaf 5170 put_page(p);
d1310b2e 5171 }
4f2de97a
JB
5172 attach_extent_buffer_page(eb, p);
5173 spin_unlock(&mapping->private_lock);
0b32f4bb 5174 WARN_ON(PageDirty(p));
727011e0 5175 eb->pages[i] = p;
d1310b2e
CM
5176 if (!PageUptodate(p))
5177 uptodate = 0;
eb14ab8e
CM
5178
5179 /*
b16d011e
NB
5180 * We can't unlock the pages just yet since the extent buffer
5181 * hasn't been properly inserted in the radix tree, this
5182 * opens a race with btree_releasepage which can free a page
5183 * while we are still filling in all pages for the buffer and
5184 * we could crash.
eb14ab8e 5185 */
d1310b2e
CM
5186 }
5187 if (uptodate)
b4ce94de 5188 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5189again:
e1860a77 5190 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5191 if (ret) {
5192 exists = ERR_PTR(ret);
19fe0a8b 5193 goto free_eb;
c871b0f2 5194 }
19fe0a8b 5195
f28491e0
JB
5196 spin_lock(&fs_info->buffer_lock);
5197 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5198 start >> PAGE_SHIFT, eb);
f28491e0 5199 spin_unlock(&fs_info->buffer_lock);
452c75c3 5200 radix_tree_preload_end();
19fe0a8b 5201 if (ret == -EEXIST) {
f28491e0 5202 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5203 if (exists)
5204 goto free_eb;
5205 else
115391d2 5206 goto again;
6af118ce 5207 }
6af118ce 5208 /* add one reference for the tree */
0b32f4bb 5209 check_buffer_tree_ref(eb);
34b41ace 5210 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5211
5212 /*
b16d011e
NB
5213 * Now it's safe to unlock the pages because any calls to
5214 * btree_releasepage will correctly detect that a page belongs to a
5215 * live buffer and won't free them prematurely.
eb14ab8e 5216 */
28187ae5
NB
5217 for (i = 0; i < num_pages; i++)
5218 unlock_page(eb->pages[i]);
d1310b2e
CM
5219 return eb;
5220
6af118ce 5221free_eb:
5ca64f45 5222 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5223 for (i = 0; i < num_pages; i++) {
5224 if (eb->pages[i])
5225 unlock_page(eb->pages[i]);
5226 }
eb14ab8e 5227
897ca6e9 5228 btrfs_release_extent_buffer(eb);
6af118ce 5229 return exists;
d1310b2e 5230}
d1310b2e 5231
3083ee2e
JB
5232static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5233{
5234 struct extent_buffer *eb =
5235 container_of(head, struct extent_buffer, rcu_head);
5236
5237 __free_extent_buffer(eb);
5238}
5239
f7a52a40 5240static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5241{
07e21c4d
NB
5242 lockdep_assert_held(&eb->refs_lock);
5243
3083ee2e
JB
5244 WARN_ON(atomic_read(&eb->refs) == 0);
5245 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5246 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5247 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5248
815a51c7 5249 spin_unlock(&eb->refs_lock);
3083ee2e 5250
f28491e0
JB
5251 spin_lock(&fs_info->buffer_lock);
5252 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5253 eb->start >> PAGE_SHIFT);
f28491e0 5254 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5255 } else {
5256 spin_unlock(&eb->refs_lock);
815a51c7 5257 }
3083ee2e
JB
5258
5259 /* Should be safe to release our pages at this point */
55ac0139 5260 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5261#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5262 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5263 __free_extent_buffer(eb);
5264 return 1;
5265 }
5266#endif
3083ee2e 5267 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5268 return 1;
3083ee2e
JB
5269 }
5270 spin_unlock(&eb->refs_lock);
e64860aa
JB
5271
5272 return 0;
3083ee2e
JB
5273}
5274
d1310b2e
CM
5275void free_extent_buffer(struct extent_buffer *eb)
5276{
242e18c7
CM
5277 int refs;
5278 int old;
d1310b2e
CM
5279 if (!eb)
5280 return;
5281
242e18c7
CM
5282 while (1) {
5283 refs = atomic_read(&eb->refs);
46cc775e
NB
5284 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5285 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5286 refs == 1))
242e18c7
CM
5287 break;
5288 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5289 if (old == refs)
5290 return;
5291 }
5292
3083ee2e
JB
5293 spin_lock(&eb->refs_lock);
5294 if (atomic_read(&eb->refs) == 2 &&
5295 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5296 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5297 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5298 atomic_dec(&eb->refs);
5299
5300 /*
5301 * I know this is terrible, but it's temporary until we stop tracking
5302 * the uptodate bits and such for the extent buffers.
5303 */
f7a52a40 5304 release_extent_buffer(eb);
3083ee2e
JB
5305}
5306
5307void free_extent_buffer_stale(struct extent_buffer *eb)
5308{
5309 if (!eb)
d1310b2e
CM
5310 return;
5311
3083ee2e
JB
5312 spin_lock(&eb->refs_lock);
5313 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5314
0b32f4bb 5315 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5316 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5317 atomic_dec(&eb->refs);
f7a52a40 5318 release_extent_buffer(eb);
d1310b2e 5319}
d1310b2e 5320
1d4284bd 5321void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5322{
cc5e31a4
DS
5323 int i;
5324 int num_pages;
d1310b2e
CM
5325 struct page *page;
5326
65ad0104 5327 num_pages = num_extent_pages(eb);
d1310b2e
CM
5328
5329 for (i = 0; i < num_pages; i++) {
fb85fc9a 5330 page = eb->pages[i];
b9473439 5331 if (!PageDirty(page))
d2c3f4f6
CM
5332 continue;
5333
a61e6f29 5334 lock_page(page);
eb14ab8e
CM
5335 WARN_ON(!PagePrivate(page));
5336
d1310b2e 5337 clear_page_dirty_for_io(page);
b93b0163 5338 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5339 if (!PageDirty(page))
5340 __xa_clear_mark(&page->mapping->i_pages,
5341 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5342 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5343 ClearPageError(page);
a61e6f29 5344 unlock_page(page);
d1310b2e 5345 }
0b32f4bb 5346 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5347}
d1310b2e 5348
abb57ef3 5349bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5350{
cc5e31a4
DS
5351 int i;
5352 int num_pages;
abb57ef3 5353 bool was_dirty;
d1310b2e 5354
0b32f4bb
JB
5355 check_buffer_tree_ref(eb);
5356
b9473439 5357 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5358
65ad0104 5359 num_pages = num_extent_pages(eb);
3083ee2e 5360 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5361 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5362
abb57ef3
LB
5363 if (!was_dirty)
5364 for (i = 0; i < num_pages; i++)
5365 set_page_dirty(eb->pages[i]);
51995c39
LB
5366
5367#ifdef CONFIG_BTRFS_DEBUG
5368 for (i = 0; i < num_pages; i++)
5369 ASSERT(PageDirty(eb->pages[i]));
5370#endif
5371
b9473439 5372 return was_dirty;
d1310b2e 5373}
d1310b2e 5374
69ba3927 5375void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5376{
cc5e31a4 5377 int i;
1259ab75 5378 struct page *page;
cc5e31a4 5379 int num_pages;
1259ab75 5380
b4ce94de 5381 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5382 num_pages = num_extent_pages(eb);
1259ab75 5383 for (i = 0; i < num_pages; i++) {
fb85fc9a 5384 page = eb->pages[i];
33958dc6
CM
5385 if (page)
5386 ClearPageUptodate(page);
1259ab75 5387 }
1259ab75
CM
5388}
5389
09c25a8c 5390void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5391{
cc5e31a4 5392 int i;
d1310b2e 5393 struct page *page;
cc5e31a4 5394 int num_pages;
d1310b2e 5395
0b32f4bb 5396 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5397 num_pages = num_extent_pages(eb);
d1310b2e 5398 for (i = 0; i < num_pages; i++) {
fb85fc9a 5399 page = eb->pages[i];
d1310b2e
CM
5400 SetPageUptodate(page);
5401 }
d1310b2e 5402}
d1310b2e 5403
c2ccfbc6 5404int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5405{
cc5e31a4 5406 int i;
d1310b2e
CM
5407 struct page *page;
5408 int err;
5409 int ret = 0;
ce9adaa5
CM
5410 int locked_pages = 0;
5411 int all_uptodate = 1;
cc5e31a4 5412 int num_pages;
727011e0 5413 unsigned long num_reads = 0;
a86c12c7 5414 struct bio *bio = NULL;
c8b97818 5415 unsigned long bio_flags = 0;
c2ccfbc6 5416 struct extent_io_tree *tree = &BTRFS_I(eb->fs_info->btree_inode)->io_tree;
a86c12c7 5417
b4ce94de 5418 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5419 return 0;
5420
65ad0104 5421 num_pages = num_extent_pages(eb);
8436ea91 5422 for (i = 0; i < num_pages; i++) {
fb85fc9a 5423 page = eb->pages[i];
bb82ab88 5424 if (wait == WAIT_NONE) {
2db04966 5425 if (!trylock_page(page))
ce9adaa5 5426 goto unlock_exit;
d1310b2e
CM
5427 } else {
5428 lock_page(page);
5429 }
ce9adaa5 5430 locked_pages++;
2571e739
LB
5431 }
5432 /*
5433 * We need to firstly lock all pages to make sure that
5434 * the uptodate bit of our pages won't be affected by
5435 * clear_extent_buffer_uptodate().
5436 */
8436ea91 5437 for (i = 0; i < num_pages; i++) {
2571e739 5438 page = eb->pages[i];
727011e0
CM
5439 if (!PageUptodate(page)) {
5440 num_reads++;
ce9adaa5 5441 all_uptodate = 0;
727011e0 5442 }
ce9adaa5 5443 }
2571e739 5444
ce9adaa5 5445 if (all_uptodate) {
8436ea91 5446 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5447 goto unlock_exit;
5448 }
5449
656f30db 5450 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5451 eb->read_mirror = 0;
0b32f4bb 5452 atomic_set(&eb->io_pages, num_reads);
8436ea91 5453 for (i = 0; i < num_pages; i++) {
fb85fc9a 5454 page = eb->pages[i];
baf863b9 5455
ce9adaa5 5456 if (!PageUptodate(page)) {
baf863b9
LB
5457 if (ret) {
5458 atomic_dec(&eb->io_pages);
5459 unlock_page(page);
5460 continue;
5461 }
5462
f188591e 5463 ClearPageError(page);
a86c12c7 5464 err = __extent_read_full_page(tree, page,
6af49dbd 5465 btree_get_extent, &bio,
d4c7ca86 5466 mirror_num, &bio_flags,
1f7ad75b 5467 REQ_META);
baf863b9 5468 if (err) {
d1310b2e 5469 ret = err;
baf863b9
LB
5470 /*
5471 * We use &bio in above __extent_read_full_page,
5472 * so we ensure that if it returns error, the
5473 * current page fails to add itself to bio and
5474 * it's been unlocked.
5475 *
5476 * We must dec io_pages by ourselves.
5477 */
5478 atomic_dec(&eb->io_pages);
5479 }
d1310b2e
CM
5480 } else {
5481 unlock_page(page);
5482 }
5483 }
5484
355808c2 5485 if (bio) {
1f7ad75b 5486 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5487 if (err)
5488 return err;
355808c2 5489 }
a86c12c7 5490
bb82ab88 5491 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5492 return ret;
d397712b 5493
8436ea91 5494 for (i = 0; i < num_pages; i++) {
fb85fc9a 5495 page = eb->pages[i];
d1310b2e 5496 wait_on_page_locked(page);
d397712b 5497 if (!PageUptodate(page))
d1310b2e 5498 ret = -EIO;
d1310b2e 5499 }
d397712b 5500
d1310b2e 5501 return ret;
ce9adaa5
CM
5502
5503unlock_exit:
d397712b 5504 while (locked_pages > 0) {
ce9adaa5 5505 locked_pages--;
8436ea91
JB
5506 page = eb->pages[locked_pages];
5507 unlock_page(page);
ce9adaa5
CM
5508 }
5509 return ret;
d1310b2e 5510}
d1310b2e 5511
1cbb1f45
JM
5512void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5513 unsigned long start, unsigned long len)
d1310b2e
CM
5514{
5515 size_t cur;
5516 size_t offset;
5517 struct page *page;
5518 char *kaddr;
5519 char *dst = (char *)dstv;
7073017a 5520 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5521 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5522
f716abd5
LB
5523 if (start + len > eb->len) {
5524 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5525 eb->start, eb->len, start, len);
5526 memset(dst, 0, len);
5527 return;
5528 }
d1310b2e 5529
7073017a 5530 offset = offset_in_page(start_offset + start);
d1310b2e 5531
d397712b 5532 while (len > 0) {
fb85fc9a 5533 page = eb->pages[i];
d1310b2e 5534
09cbfeaf 5535 cur = min(len, (PAGE_SIZE - offset));
a6591715 5536 kaddr = page_address(page);
d1310b2e 5537 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5538
5539 dst += cur;
5540 len -= cur;
5541 offset = 0;
5542 i++;
5543 }
5544}
d1310b2e 5545
1cbb1f45
JM
5546int read_extent_buffer_to_user(const struct extent_buffer *eb,
5547 void __user *dstv,
5548 unsigned long start, unsigned long len)
550ac1d8
GH
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
5554 char __user *dst = (char __user *)dstv;
7073017a 5555 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5556 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5557 int ret = 0;
5558
5559 WARN_ON(start > eb->len);
5560 WARN_ON(start + len > eb->start + eb->len);
5561
7073017a 5562 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5563
5564 while (len > 0) {
fb85fc9a 5565 page = eb->pages[i];
550ac1d8 5566
09cbfeaf 5567 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5568 kaddr = page_address(page);
5569 if (copy_to_user(dst, kaddr + offset, cur)) {
5570 ret = -EFAULT;
5571 break;
5572 }
5573
5574 dst += cur;
5575 len -= cur;
5576 offset = 0;
5577 i++;
5578 }
5579
5580 return ret;
5581}
5582
415b35a5
LB
5583/*
5584 * return 0 if the item is found within a page.
5585 * return 1 if the item spans two pages.
5586 * return -EINVAL otherwise.
5587 */
1cbb1f45
JM
5588int map_private_extent_buffer(const struct extent_buffer *eb,
5589 unsigned long start, unsigned long min_len,
5590 char **map, unsigned long *map_start,
5591 unsigned long *map_len)
d1310b2e 5592{
cc2c39d6 5593 size_t offset;
d1310b2e
CM
5594 char *kaddr;
5595 struct page *p;
7073017a 5596 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5597 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5598 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5599 PAGE_SHIFT;
d1310b2e 5600
f716abd5
LB
5601 if (start + min_len > eb->len) {
5602 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5603 eb->start, eb->len, start, min_len);
5604 return -EINVAL;
5605 }
5606
d1310b2e 5607 if (i != end_i)
415b35a5 5608 return 1;
d1310b2e
CM
5609
5610 if (i == 0) {
5611 offset = start_offset;
5612 *map_start = 0;
5613 } else {
5614 offset = 0;
09cbfeaf 5615 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5616 }
d397712b 5617
fb85fc9a 5618 p = eb->pages[i];
a6591715 5619 kaddr = page_address(p);
d1310b2e 5620 *map = kaddr + offset;
09cbfeaf 5621 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5622 return 0;
5623}
d1310b2e 5624
1cbb1f45
JM
5625int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5626 unsigned long start, unsigned long len)
d1310b2e
CM
5627{
5628 size_t cur;
5629 size_t offset;
5630 struct page *page;
5631 char *kaddr;
5632 char *ptr = (char *)ptrv;
7073017a 5633 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5634 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5635 int ret = 0;
5636
5637 WARN_ON(start > eb->len);
5638 WARN_ON(start + len > eb->start + eb->len);
5639
7073017a 5640 offset = offset_in_page(start_offset + start);
d1310b2e 5641
d397712b 5642 while (len > 0) {
fb85fc9a 5643 page = eb->pages[i];
d1310b2e 5644
09cbfeaf 5645 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5646
a6591715 5647 kaddr = page_address(page);
d1310b2e 5648 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5649 if (ret)
5650 break;
5651
5652 ptr += cur;
5653 len -= cur;
5654 offset = 0;
5655 i++;
5656 }
5657 return ret;
5658}
d1310b2e 5659
f157bf76
DS
5660void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5661 const void *srcv)
5662{
5663 char *kaddr;
5664
5665 WARN_ON(!PageUptodate(eb->pages[0]));
5666 kaddr = page_address(eb->pages[0]);
5667 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5668 BTRFS_FSID_SIZE);
5669}
5670
5671void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5672{
5673 char *kaddr;
5674
5675 WARN_ON(!PageUptodate(eb->pages[0]));
5676 kaddr = page_address(eb->pages[0]);
5677 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5678 BTRFS_FSID_SIZE);
5679}
5680
d1310b2e
CM
5681void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5682 unsigned long start, unsigned long len)
5683{
5684 size_t cur;
5685 size_t offset;
5686 struct page *page;
5687 char *kaddr;
5688 char *src = (char *)srcv;
7073017a 5689 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5690 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5691
5692 WARN_ON(start > eb->len);
5693 WARN_ON(start + len > eb->start + eb->len);
5694
7073017a 5695 offset = offset_in_page(start_offset + start);
d1310b2e 5696
d397712b 5697 while (len > 0) {
fb85fc9a 5698 page = eb->pages[i];
d1310b2e
CM
5699 WARN_ON(!PageUptodate(page));
5700
09cbfeaf 5701 cur = min(len, PAGE_SIZE - offset);
a6591715 5702 kaddr = page_address(page);
d1310b2e 5703 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5704
5705 src += cur;
5706 len -= cur;
5707 offset = 0;
5708 i++;
5709 }
5710}
d1310b2e 5711
b159fa28
DS
5712void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5713 unsigned long len)
d1310b2e
CM
5714{
5715 size_t cur;
5716 size_t offset;
5717 struct page *page;
5718 char *kaddr;
7073017a 5719 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5720 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5721
5722 WARN_ON(start > eb->len);
5723 WARN_ON(start + len > eb->start + eb->len);
5724
7073017a 5725 offset = offset_in_page(start_offset + start);
d1310b2e 5726
d397712b 5727 while (len > 0) {
fb85fc9a 5728 page = eb->pages[i];
d1310b2e
CM
5729 WARN_ON(!PageUptodate(page));
5730
09cbfeaf 5731 cur = min(len, PAGE_SIZE - offset);
a6591715 5732 kaddr = page_address(page);
b159fa28 5733 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5734
5735 len -= cur;
5736 offset = 0;
5737 i++;
5738 }
5739}
d1310b2e 5740
58e8012c
DS
5741void copy_extent_buffer_full(struct extent_buffer *dst,
5742 struct extent_buffer *src)
5743{
5744 int i;
cc5e31a4 5745 int num_pages;
58e8012c
DS
5746
5747 ASSERT(dst->len == src->len);
5748
65ad0104 5749 num_pages = num_extent_pages(dst);
58e8012c
DS
5750 for (i = 0; i < num_pages; i++)
5751 copy_page(page_address(dst->pages[i]),
5752 page_address(src->pages[i]));
5753}
5754
d1310b2e
CM
5755void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5756 unsigned long dst_offset, unsigned long src_offset,
5757 unsigned long len)
5758{
5759 u64 dst_len = dst->len;
5760 size_t cur;
5761 size_t offset;
5762 struct page *page;
5763 char *kaddr;
7073017a 5764 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5765 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5766
5767 WARN_ON(src->len != dst_len);
5768
7073017a 5769 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5770
d397712b 5771 while (len > 0) {
fb85fc9a 5772 page = dst->pages[i];
d1310b2e
CM
5773 WARN_ON(!PageUptodate(page));
5774
09cbfeaf 5775 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5776
a6591715 5777 kaddr = page_address(page);
d1310b2e 5778 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5779
5780 src_offset += cur;
5781 len -= cur;
5782 offset = 0;
5783 i++;
5784 }
5785}
d1310b2e 5786
3e1e8bb7
OS
5787/*
5788 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5789 * given bit number
5790 * @eb: the extent buffer
5791 * @start: offset of the bitmap item in the extent buffer
5792 * @nr: bit number
5793 * @page_index: return index of the page in the extent buffer that contains the
5794 * given bit number
5795 * @page_offset: return offset into the page given by page_index
5796 *
5797 * This helper hides the ugliness of finding the byte in an extent buffer which
5798 * contains a given bit.
5799 */
5800static inline void eb_bitmap_offset(struct extent_buffer *eb,
5801 unsigned long start, unsigned long nr,
5802 unsigned long *page_index,
5803 size_t *page_offset)
5804{
7073017a 5805 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5806 size_t byte_offset = BIT_BYTE(nr);
5807 size_t offset;
5808
5809 /*
5810 * The byte we want is the offset of the extent buffer + the offset of
5811 * the bitmap item in the extent buffer + the offset of the byte in the
5812 * bitmap item.
5813 */
5814 offset = start_offset + start + byte_offset;
5815
09cbfeaf 5816 *page_index = offset >> PAGE_SHIFT;
7073017a 5817 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5818}
5819
5820/**
5821 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5822 * @eb: the extent buffer
5823 * @start: offset of the bitmap item in the extent buffer
5824 * @nr: bit number to test
5825 */
5826int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5827 unsigned long nr)
5828{
2fe1d551 5829 u8 *kaddr;
3e1e8bb7
OS
5830 struct page *page;
5831 unsigned long i;
5832 size_t offset;
5833
5834 eb_bitmap_offset(eb, start, nr, &i, &offset);
5835 page = eb->pages[i];
5836 WARN_ON(!PageUptodate(page));
5837 kaddr = page_address(page);
5838 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5839}
5840
5841/**
5842 * extent_buffer_bitmap_set - set an area of a bitmap
5843 * @eb: the extent buffer
5844 * @start: offset of the bitmap item in the extent buffer
5845 * @pos: bit number of the first bit
5846 * @len: number of bits to set
5847 */
5848void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5849 unsigned long pos, unsigned long len)
5850{
2fe1d551 5851 u8 *kaddr;
3e1e8bb7
OS
5852 struct page *page;
5853 unsigned long i;
5854 size_t offset;
5855 const unsigned int size = pos + len;
5856 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5857 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5858
5859 eb_bitmap_offset(eb, start, pos, &i, &offset);
5860 page = eb->pages[i];
5861 WARN_ON(!PageUptodate(page));
5862 kaddr = page_address(page);
5863
5864 while (len >= bits_to_set) {
5865 kaddr[offset] |= mask_to_set;
5866 len -= bits_to_set;
5867 bits_to_set = BITS_PER_BYTE;
9c894696 5868 mask_to_set = ~0;
09cbfeaf 5869 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5870 offset = 0;
5871 page = eb->pages[++i];
5872 WARN_ON(!PageUptodate(page));
5873 kaddr = page_address(page);
5874 }
5875 }
5876 if (len) {
5877 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5878 kaddr[offset] |= mask_to_set;
5879 }
5880}
5881
5882
5883/**
5884 * extent_buffer_bitmap_clear - clear an area of a bitmap
5885 * @eb: the extent buffer
5886 * @start: offset of the bitmap item in the extent buffer
5887 * @pos: bit number of the first bit
5888 * @len: number of bits to clear
5889 */
5890void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5891 unsigned long pos, unsigned long len)
5892{
2fe1d551 5893 u8 *kaddr;
3e1e8bb7
OS
5894 struct page *page;
5895 unsigned long i;
5896 size_t offset;
5897 const unsigned int size = pos + len;
5898 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5899 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5900
5901 eb_bitmap_offset(eb, start, pos, &i, &offset);
5902 page = eb->pages[i];
5903 WARN_ON(!PageUptodate(page));
5904 kaddr = page_address(page);
5905
5906 while (len >= bits_to_clear) {
5907 kaddr[offset] &= ~mask_to_clear;
5908 len -= bits_to_clear;
5909 bits_to_clear = BITS_PER_BYTE;
9c894696 5910 mask_to_clear = ~0;
09cbfeaf 5911 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5912 offset = 0;
5913 page = eb->pages[++i];
5914 WARN_ON(!PageUptodate(page));
5915 kaddr = page_address(page);
5916 }
5917 }
5918 if (len) {
5919 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5920 kaddr[offset] &= ~mask_to_clear;
5921 }
5922}
5923
3387206f
ST
5924static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5925{
5926 unsigned long distance = (src > dst) ? src - dst : dst - src;
5927 return distance < len;
5928}
5929
d1310b2e
CM
5930static void copy_pages(struct page *dst_page, struct page *src_page,
5931 unsigned long dst_off, unsigned long src_off,
5932 unsigned long len)
5933{
a6591715 5934 char *dst_kaddr = page_address(dst_page);
d1310b2e 5935 char *src_kaddr;
727011e0 5936 int must_memmove = 0;
d1310b2e 5937
3387206f 5938 if (dst_page != src_page) {
a6591715 5939 src_kaddr = page_address(src_page);
3387206f 5940 } else {
d1310b2e 5941 src_kaddr = dst_kaddr;
727011e0
CM
5942 if (areas_overlap(src_off, dst_off, len))
5943 must_memmove = 1;
3387206f 5944 }
d1310b2e 5945
727011e0
CM
5946 if (must_memmove)
5947 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5948 else
5949 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5950}
5951
5952void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5953 unsigned long src_offset, unsigned long len)
5954{
0b246afa 5955 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5956 size_t cur;
5957 size_t dst_off_in_page;
5958 size_t src_off_in_page;
7073017a 5959 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5960 unsigned long dst_i;
5961 unsigned long src_i;
5962
5963 if (src_offset + len > dst->len) {
0b246afa 5964 btrfs_err(fs_info,
5d163e0e
JM
5965 "memmove bogus src_offset %lu move len %lu dst len %lu",
5966 src_offset, len, dst->len);
290342f6 5967 BUG();
d1310b2e
CM
5968 }
5969 if (dst_offset + len > dst->len) {
0b246afa 5970 btrfs_err(fs_info,
5d163e0e
JM
5971 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5972 dst_offset, len, dst->len);
290342f6 5973 BUG();
d1310b2e
CM
5974 }
5975
d397712b 5976 while (len > 0) {
7073017a
JT
5977 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5978 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5979
09cbfeaf
KS
5980 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5981 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5982
09cbfeaf 5983 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5984 src_off_in_page));
5985 cur = min_t(unsigned long, cur,
09cbfeaf 5986 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5987
fb85fc9a 5988 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5989 dst_off_in_page, src_off_in_page, cur);
5990
5991 src_offset += cur;
5992 dst_offset += cur;
5993 len -= cur;
5994 }
5995}
d1310b2e
CM
5996
5997void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5998 unsigned long src_offset, unsigned long len)
5999{
0b246afa 6000 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6001 size_t cur;
6002 size_t dst_off_in_page;
6003 size_t src_off_in_page;
6004 unsigned long dst_end = dst_offset + len - 1;
6005 unsigned long src_end = src_offset + len - 1;
7073017a 6006 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
6007 unsigned long dst_i;
6008 unsigned long src_i;
6009
6010 if (src_offset + len > dst->len) {
0b246afa 6011 btrfs_err(fs_info,
5d163e0e
JM
6012 "memmove bogus src_offset %lu move len %lu len %lu",
6013 src_offset, len, dst->len);
290342f6 6014 BUG();
d1310b2e
CM
6015 }
6016 if (dst_offset + len > dst->len) {
0b246afa 6017 btrfs_err(fs_info,
5d163e0e
JM
6018 "memmove bogus dst_offset %lu move len %lu len %lu",
6019 dst_offset, len, dst->len);
290342f6 6020 BUG();
d1310b2e 6021 }
727011e0 6022 if (dst_offset < src_offset) {
d1310b2e
CM
6023 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6024 return;
6025 }
d397712b 6026 while (len > 0) {
09cbfeaf
KS
6027 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6028 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 6029
7073017a
JT
6030 dst_off_in_page = offset_in_page(start_offset + dst_end);
6031 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
6032
6033 cur = min_t(unsigned long, len, src_off_in_page + 1);
6034 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6035 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6036 dst_off_in_page - cur + 1,
6037 src_off_in_page - cur + 1, cur);
6038
6039 dst_end -= cur;
6040 src_end -= cur;
6041 len -= cur;
6042 }
6043}
6af118ce 6044
f7a52a40 6045int try_release_extent_buffer(struct page *page)
19fe0a8b 6046{
6af118ce 6047 struct extent_buffer *eb;
6af118ce 6048
3083ee2e 6049 /*
01327610 6050 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6051 * now.
6052 */
6053 spin_lock(&page->mapping->private_lock);
6054 if (!PagePrivate(page)) {
6055 spin_unlock(&page->mapping->private_lock);
4f2de97a 6056 return 1;
45f49bce 6057 }
6af118ce 6058
3083ee2e
JB
6059 eb = (struct extent_buffer *)page->private;
6060 BUG_ON(!eb);
19fe0a8b
MX
6061
6062 /*
3083ee2e
JB
6063 * This is a little awful but should be ok, we need to make sure that
6064 * the eb doesn't disappear out from under us while we're looking at
6065 * this page.
19fe0a8b 6066 */
3083ee2e 6067 spin_lock(&eb->refs_lock);
0b32f4bb 6068 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6069 spin_unlock(&eb->refs_lock);
6070 spin_unlock(&page->mapping->private_lock);
6071 return 0;
b9473439 6072 }
3083ee2e 6073 spin_unlock(&page->mapping->private_lock);
897ca6e9 6074
19fe0a8b 6075 /*
3083ee2e
JB
6076 * If tree ref isn't set then we know the ref on this eb is a real ref,
6077 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6078 */
3083ee2e
JB
6079 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6080 spin_unlock(&eb->refs_lock);
6081 return 0;
b9473439 6082 }
19fe0a8b 6083
f7a52a40 6084 return release_extent_buffer(eb);
6af118ce 6085}