]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: untangle gotos a bit in __set_extent_bit
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e
CM
228
229 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 230 if (!state)
d1310b2e
CM
231 return state;
232 state->state = 0;
47dc196a 233 state->failrec = NULL;
27a3507d 234 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 235 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
236 atomic_set(&state->refs, 1);
237 init_waitqueue_head(&state->wq);
143bede5 238 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
239 return state;
240}
d1310b2e 241
4845e44f 242void free_extent_state(struct extent_state *state)
d1310b2e 243{
d1310b2e
CM
244 if (!state)
245 return;
246 if (atomic_dec_and_test(&state->refs)) {
27a3507d 247 WARN_ON(extent_state_in_tree(state));
6d49ba1b 248 btrfs_leak_debug_del(&state->leak_list);
143bede5 249 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
250 kmem_cache_free(extent_state_cache, state);
251 }
252}
d1310b2e 253
f2071b21
FM
254static struct rb_node *tree_insert(struct rb_root *root,
255 struct rb_node *search_start,
256 u64 offset,
12cfbad9
FDBM
257 struct rb_node *node,
258 struct rb_node ***p_in,
259 struct rb_node **parent_in)
d1310b2e 260{
f2071b21 261 struct rb_node **p;
d397712b 262 struct rb_node *parent = NULL;
d1310b2e
CM
263 struct tree_entry *entry;
264
12cfbad9
FDBM
265 if (p_in && parent_in) {
266 p = *p_in;
267 parent = *parent_in;
268 goto do_insert;
269 }
270
f2071b21 271 p = search_start ? &search_start : &root->rb_node;
d397712b 272 while (*p) {
d1310b2e
CM
273 parent = *p;
274 entry = rb_entry(parent, struct tree_entry, rb_node);
275
276 if (offset < entry->start)
277 p = &(*p)->rb_left;
278 else if (offset > entry->end)
279 p = &(*p)->rb_right;
280 else
281 return parent;
282 }
283
12cfbad9 284do_insert:
d1310b2e
CM
285 rb_link_node(node, parent, p);
286 rb_insert_color(node, root);
287 return NULL;
288}
289
80ea96b1 290static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
291 struct rb_node **prev_ret,
292 struct rb_node **next_ret,
293 struct rb_node ***p_ret,
294 struct rb_node **parent_ret)
d1310b2e 295{
80ea96b1 296 struct rb_root *root = &tree->state;
12cfbad9 297 struct rb_node **n = &root->rb_node;
d1310b2e
CM
298 struct rb_node *prev = NULL;
299 struct rb_node *orig_prev = NULL;
300 struct tree_entry *entry;
301 struct tree_entry *prev_entry = NULL;
302
12cfbad9
FDBM
303 while (*n) {
304 prev = *n;
305 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
306 prev_entry = entry;
307
308 if (offset < entry->start)
12cfbad9 309 n = &(*n)->rb_left;
d1310b2e 310 else if (offset > entry->end)
12cfbad9 311 n = &(*n)->rb_right;
d397712b 312 else
12cfbad9 313 return *n;
d1310b2e
CM
314 }
315
12cfbad9
FDBM
316 if (p_ret)
317 *p_ret = n;
318 if (parent_ret)
319 *parent_ret = prev;
320
d1310b2e
CM
321 if (prev_ret) {
322 orig_prev = prev;
d397712b 323 while (prev && offset > prev_entry->end) {
d1310b2e
CM
324 prev = rb_next(prev);
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
326 }
327 *prev_ret = prev;
328 prev = orig_prev;
329 }
330
331 if (next_ret) {
332 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 333 while (prev && offset < prev_entry->start) {
d1310b2e
CM
334 prev = rb_prev(prev);
335 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
336 }
337 *next_ret = prev;
338 }
339 return NULL;
340}
341
12cfbad9
FDBM
342static inline struct rb_node *
343tree_search_for_insert(struct extent_io_tree *tree,
344 u64 offset,
345 struct rb_node ***p_ret,
346 struct rb_node **parent_ret)
d1310b2e 347{
70dec807 348 struct rb_node *prev = NULL;
d1310b2e 349 struct rb_node *ret;
70dec807 350
12cfbad9 351 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 352 if (!ret)
d1310b2e
CM
353 return prev;
354 return ret;
355}
356
12cfbad9
FDBM
357static inline struct rb_node *tree_search(struct extent_io_tree *tree,
358 u64 offset)
359{
360 return tree_search_for_insert(tree, offset, NULL, NULL);
361}
362
9ed74f2d
JB
363static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
364 struct extent_state *other)
365{
366 if (tree->ops && tree->ops->merge_extent_hook)
367 tree->ops->merge_extent_hook(tree->mapping->host, new,
368 other);
369}
370
d1310b2e
CM
371/*
372 * utility function to look for merge candidates inside a given range.
373 * Any extents with matching state are merged together into a single
374 * extent in the tree. Extents with EXTENT_IO in their state field
375 * are not merged because the end_io handlers need to be able to do
376 * operations on them without sleeping (or doing allocations/splits).
377 *
378 * This should be called with the tree lock held.
379 */
1bf85046
JM
380static void merge_state(struct extent_io_tree *tree,
381 struct extent_state *state)
d1310b2e
CM
382{
383 struct extent_state *other;
384 struct rb_node *other_node;
385
5b21f2ed 386 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 387 return;
d1310b2e
CM
388
389 other_node = rb_prev(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->end == state->start - 1 &&
393 other->state == state->state) {
9ed74f2d 394 merge_cb(tree, state, other);
d1310b2e 395 state->start = other->start;
d1310b2e 396 rb_erase(&other->rb_node, &tree->state);
27a3507d 397 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
398 free_extent_state(other);
399 }
400 }
401 other_node = rb_next(&state->rb_node);
402 if (other_node) {
403 other = rb_entry(other_node, struct extent_state, rb_node);
404 if (other->start == state->end + 1 &&
405 other->state == state->state) {
9ed74f2d 406 merge_cb(tree, state, other);
df98b6e2 407 state->end = other->end;
df98b6e2 408 rb_erase(&other->rb_node, &tree->state);
27a3507d 409 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 410 free_extent_state(other);
d1310b2e
CM
411 }
412 }
d1310b2e
CM
413}
414
1bf85046 415static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 416 struct extent_state *state, unsigned *bits)
291d673e 417{
1bf85046
JM
418 if (tree->ops && tree->ops->set_bit_hook)
419 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
420}
421
422static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 423 struct extent_state *state, unsigned *bits)
291d673e 424{
9ed74f2d
JB
425 if (tree->ops && tree->ops->clear_bit_hook)
426 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
427}
428
3150b699 429static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
430 struct extent_state *state, unsigned *bits,
431 struct extent_changeset *changeset);
3150b699 432
d1310b2e
CM
433/*
434 * insert an extent_state struct into the tree. 'bits' are set on the
435 * struct before it is inserted.
436 *
437 * This may return -EEXIST if the extent is already there, in which case the
438 * state struct is freed.
439 *
440 * The tree lock is not taken internally. This is a utility function and
441 * probably isn't what you want to call (see set/clear_extent_bit).
442 */
443static int insert_state(struct extent_io_tree *tree,
444 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
445 struct rb_node ***p,
446 struct rb_node **parent,
d38ed27f 447 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
448{
449 struct rb_node *node;
450
31b1a2bd 451 if (end < start)
efe120a0 452 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 453 end, start);
d1310b2e
CM
454 state->start = start;
455 state->end = end;
9ed74f2d 456
d38ed27f 457 set_state_bits(tree, state, bits, changeset);
3150b699 458
f2071b21 459 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
460 if (node) {
461 struct extent_state *found;
462 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 463 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
464 "%llu %llu\n",
465 found->start, found->end, start, end);
d1310b2e
CM
466 return -EEXIST;
467 }
468 merge_state(tree, state);
469 return 0;
470}
471
1bf85046 472static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
473 u64 split)
474{
475 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 476 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
477}
478
d1310b2e
CM
479/*
480 * split a given extent state struct in two, inserting the preallocated
481 * struct 'prealloc' as the newly created second half. 'split' indicates an
482 * offset inside 'orig' where it should be split.
483 *
484 * Before calling,
485 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
486 * are two extent state structs in the tree:
487 * prealloc: [orig->start, split - 1]
488 * orig: [ split, orig->end ]
489 *
490 * The tree locks are not taken by this function. They need to be held
491 * by the caller.
492 */
493static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
494 struct extent_state *prealloc, u64 split)
495{
496 struct rb_node *node;
9ed74f2d
JB
497
498 split_cb(tree, orig, split);
499
d1310b2e
CM
500 prealloc->start = orig->start;
501 prealloc->end = split - 1;
502 prealloc->state = orig->state;
503 orig->start = split;
504
f2071b21
FM
505 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
506 &prealloc->rb_node, NULL, NULL);
d1310b2e 507 if (node) {
d1310b2e
CM
508 free_extent_state(prealloc);
509 return -EEXIST;
510 }
511 return 0;
512}
513
cdc6a395
LZ
514static struct extent_state *next_state(struct extent_state *state)
515{
516 struct rb_node *next = rb_next(&state->rb_node);
517 if (next)
518 return rb_entry(next, struct extent_state, rb_node);
519 else
520 return NULL;
521}
522
d1310b2e
CM
523/*
524 * utility function to clear some bits in an extent state struct.
1b303fc0 525 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
526 *
527 * If no bits are set on the state struct after clearing things, the
528 * struct is freed and removed from the tree
529 */
cdc6a395
LZ
530static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
531 struct extent_state *state,
fefdc557
QW
532 unsigned *bits, int wake,
533 struct extent_changeset *changeset)
d1310b2e 534{
cdc6a395 535 struct extent_state *next;
9ee49a04 536 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 537
0ca1f7ce 538 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
539 u64 range = state->end - state->start + 1;
540 WARN_ON(range > tree->dirty_bytes);
541 tree->dirty_bytes -= range;
542 }
291d673e 543 clear_state_cb(tree, state, bits);
fefdc557 544 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 545 state->state &= ~bits_to_clear;
d1310b2e
CM
546 if (wake)
547 wake_up(&state->wq);
0ca1f7ce 548 if (state->state == 0) {
cdc6a395 549 next = next_state(state);
27a3507d 550 if (extent_state_in_tree(state)) {
d1310b2e 551 rb_erase(&state->rb_node, &tree->state);
27a3507d 552 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
553 free_extent_state(state);
554 } else {
555 WARN_ON(1);
556 }
557 } else {
558 merge_state(tree, state);
cdc6a395 559 next = next_state(state);
d1310b2e 560 }
cdc6a395 561 return next;
d1310b2e
CM
562}
563
8233767a
XG
564static struct extent_state *
565alloc_extent_state_atomic(struct extent_state *prealloc)
566{
567 if (!prealloc)
568 prealloc = alloc_extent_state(GFP_ATOMIC);
569
570 return prealloc;
571}
572
48a3b636 573static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
574{
575 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
576 "Extent tree was modified by another "
577 "thread while locked.");
578}
579
d1310b2e
CM
580/*
581 * clear some bits on a range in the tree. This may require splitting
582 * or inserting elements in the tree, so the gfp mask is used to
583 * indicate which allocations or sleeping are allowed.
584 *
585 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
586 * the given range from the tree regardless of state (ie for truncate).
587 *
588 * the range [start, end] is inclusive.
589 *
6763af84 590 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 591 */
fefdc557
QW
592static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
593 unsigned bits, int wake, int delete,
594 struct extent_state **cached_state,
595 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
596{
597 struct extent_state *state;
2c64c53d 598 struct extent_state *cached;
d1310b2e
CM
599 struct extent_state *prealloc = NULL;
600 struct rb_node *node;
5c939df5 601 u64 last_end;
d1310b2e 602 int err;
2ac55d41 603 int clear = 0;
d1310b2e 604
a5dee37d 605 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 606
7ee9e440
JB
607 if (bits & EXTENT_DELALLOC)
608 bits |= EXTENT_NORESERVE;
609
0ca1f7ce
YZ
610 if (delete)
611 bits |= ~EXTENT_CTLBITS;
612 bits |= EXTENT_FIRST_DELALLOC;
613
2ac55d41
JB
614 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
615 clear = 1;
d1310b2e 616again:
d0164adc 617 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
618 /*
619 * Don't care for allocation failure here because we might end
620 * up not needing the pre-allocated extent state at all, which
621 * is the case if we only have in the tree extent states that
622 * cover our input range and don't cover too any other range.
623 * If we end up needing a new extent state we allocate it later.
624 */
d1310b2e 625 prealloc = alloc_extent_state(mask);
d1310b2e
CM
626 }
627
cad321ad 628 spin_lock(&tree->lock);
2c64c53d
CM
629 if (cached_state) {
630 cached = *cached_state;
2ac55d41
JB
631
632 if (clear) {
633 *cached_state = NULL;
634 cached_state = NULL;
635 }
636
27a3507d
FM
637 if (cached && extent_state_in_tree(cached) &&
638 cached->start <= start && cached->end > start) {
2ac55d41
JB
639 if (clear)
640 atomic_dec(&cached->refs);
2c64c53d 641 state = cached;
42daec29 642 goto hit_next;
2c64c53d 643 }
2ac55d41
JB
644 if (clear)
645 free_extent_state(cached);
2c64c53d 646 }
d1310b2e
CM
647 /*
648 * this search will find the extents that end after
649 * our range starts
650 */
80ea96b1 651 node = tree_search(tree, start);
d1310b2e
CM
652 if (!node)
653 goto out;
654 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 655hit_next:
d1310b2e
CM
656 if (state->start > end)
657 goto out;
658 WARN_ON(state->end < start);
5c939df5 659 last_end = state->end;
d1310b2e 660
0449314a 661 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
662 if (!(state->state & bits)) {
663 state = next_state(state);
0449314a 664 goto next;
cdc6a395 665 }
0449314a 666
d1310b2e
CM
667 /*
668 * | ---- desired range ---- |
669 * | state | or
670 * | ------------- state -------------- |
671 *
672 * We need to split the extent we found, and may flip
673 * bits on second half.
674 *
675 * If the extent we found extends past our range, we
676 * just split and search again. It'll get split again
677 * the next time though.
678 *
679 * If the extent we found is inside our range, we clear
680 * the desired bit on it.
681 */
682
683 if (state->start < start) {
8233767a
XG
684 prealloc = alloc_extent_state_atomic(prealloc);
685 BUG_ON(!prealloc);
d1310b2e 686 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
687 if (err)
688 extent_io_tree_panic(tree, err);
689
d1310b2e
CM
690 prealloc = NULL;
691 if (err)
692 goto out;
693 if (state->end <= end) {
fefdc557
QW
694 state = clear_state_bit(tree, state, &bits, wake,
695 changeset);
d1ac6e41 696 goto next;
d1310b2e
CM
697 }
698 goto search_again;
699 }
700 /*
701 * | ---- desired range ---- |
702 * | state |
703 * We need to split the extent, and clear the bit
704 * on the first half
705 */
706 if (state->start <= end && state->end > end) {
8233767a
XG
707 prealloc = alloc_extent_state_atomic(prealloc);
708 BUG_ON(!prealloc);
d1310b2e 709 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
710 if (err)
711 extent_io_tree_panic(tree, err);
712
d1310b2e
CM
713 if (wake)
714 wake_up(&state->wq);
42daec29 715
fefdc557 716 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 717
d1310b2e
CM
718 prealloc = NULL;
719 goto out;
720 }
42daec29 721
fefdc557 722 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 723next:
5c939df5
YZ
724 if (last_end == (u64)-1)
725 goto out;
726 start = last_end + 1;
cdc6a395 727 if (start <= end && state && !need_resched())
692e5759 728 goto hit_next;
d1310b2e
CM
729 goto search_again;
730
731out:
cad321ad 732 spin_unlock(&tree->lock);
d1310b2e
CM
733 if (prealloc)
734 free_extent_state(prealloc);
735
6763af84 736 return 0;
d1310b2e
CM
737
738search_again:
739 if (start > end)
740 goto out;
cad321ad 741 spin_unlock(&tree->lock);
d0164adc 742 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
743 cond_resched();
744 goto again;
745}
d1310b2e 746
143bede5
JM
747static void wait_on_state(struct extent_io_tree *tree,
748 struct extent_state *state)
641f5219
CH
749 __releases(tree->lock)
750 __acquires(tree->lock)
d1310b2e
CM
751{
752 DEFINE_WAIT(wait);
753 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 754 spin_unlock(&tree->lock);
d1310b2e 755 schedule();
cad321ad 756 spin_lock(&tree->lock);
d1310b2e 757 finish_wait(&state->wq, &wait);
d1310b2e
CM
758}
759
760/*
761 * waits for one or more bits to clear on a range in the state tree.
762 * The range [start, end] is inclusive.
763 * The tree lock is taken by this function
764 */
41074888
DS
765static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
766 unsigned long bits)
d1310b2e
CM
767{
768 struct extent_state *state;
769 struct rb_node *node;
770
a5dee37d 771 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 772
cad321ad 773 spin_lock(&tree->lock);
d1310b2e
CM
774again:
775 while (1) {
776 /*
777 * this search will find all the extents that end after
778 * our range starts
779 */
80ea96b1 780 node = tree_search(tree, start);
c50d3e71 781process_node:
d1310b2e
CM
782 if (!node)
783 break;
784
785 state = rb_entry(node, struct extent_state, rb_node);
786
787 if (state->start > end)
788 goto out;
789
790 if (state->state & bits) {
791 start = state->start;
792 atomic_inc(&state->refs);
793 wait_on_state(tree, state);
794 free_extent_state(state);
795 goto again;
796 }
797 start = state->end + 1;
798
799 if (start > end)
800 break;
801
c50d3e71
FM
802 if (!cond_resched_lock(&tree->lock)) {
803 node = rb_next(node);
804 goto process_node;
805 }
d1310b2e
CM
806 }
807out:
cad321ad 808 spin_unlock(&tree->lock);
d1310b2e 809}
d1310b2e 810
1bf85046 811static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 812 struct extent_state *state,
d38ed27f 813 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 814{
9ee49a04 815 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 816
1bf85046 817 set_state_cb(tree, state, bits);
0ca1f7ce 818 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
819 u64 range = state->end - state->start + 1;
820 tree->dirty_bytes += range;
821 }
d38ed27f 822 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 823 state->state |= bits_to_set;
d1310b2e
CM
824}
825
e38e2ed7
FM
826static void cache_state_if_flags(struct extent_state *state,
827 struct extent_state **cached_ptr,
9ee49a04 828 unsigned flags)
2c64c53d
CM
829{
830 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 831 if (!flags || (state->state & flags)) {
2c64c53d
CM
832 *cached_ptr = state;
833 atomic_inc(&state->refs);
834 }
835 }
836}
837
e38e2ed7
FM
838static void cache_state(struct extent_state *state,
839 struct extent_state **cached_ptr)
840{
841 return cache_state_if_flags(state, cached_ptr,
842 EXTENT_IOBITS | EXTENT_BOUNDARY);
843}
844
d1310b2e 845/*
1edbb734
CM
846 * set some bits on a range in the tree. This may require allocations or
847 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 848 *
1edbb734
CM
849 * If any of the exclusive bits are set, this will fail with -EEXIST if some
850 * part of the range already has the desired bits set. The start of the
851 * existing range is returned in failed_start in this case.
d1310b2e 852 *
1edbb734 853 * [start, end] is inclusive This takes the tree lock.
d1310b2e 854 */
1edbb734 855
3fbe5c02
JM
856static int __must_check
857__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 858 unsigned bits, unsigned exclusive_bits,
41074888 859 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 860 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
861{
862 struct extent_state *state;
863 struct extent_state *prealloc = NULL;
864 struct rb_node *node;
12cfbad9
FDBM
865 struct rb_node **p;
866 struct rb_node *parent;
d1310b2e 867 int err = 0;
d1310b2e
CM
868 u64 last_start;
869 u64 last_end;
42daec29 870
a5dee37d 871 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 872
0ca1f7ce 873 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 874again:
d0164adc 875 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 876 prealloc = alloc_extent_state(mask);
8233767a 877 BUG_ON(!prealloc);
d1310b2e
CM
878 }
879
cad321ad 880 spin_lock(&tree->lock);
9655d298
CM
881 if (cached_state && *cached_state) {
882 state = *cached_state;
df98b6e2 883 if (state->start <= start && state->end > start &&
27a3507d 884 extent_state_in_tree(state)) {
9655d298
CM
885 node = &state->rb_node;
886 goto hit_next;
887 }
888 }
d1310b2e
CM
889 /*
890 * this search will find all the extents that end after
891 * our range starts.
892 */
12cfbad9 893 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 894 if (!node) {
8233767a
XG
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
12cfbad9 897 err = insert_state(tree, prealloc, start, end,
d38ed27f 898 &p, &parent, &bits, changeset);
c2d904e0
JM
899 if (err)
900 extent_io_tree_panic(tree, err);
901
c42ac0bc 902 cache_state(prealloc, cached_state);
d1310b2e 903 prealloc = NULL;
d1310b2e
CM
904 goto out;
905 }
d1310b2e 906 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 907hit_next:
d1310b2e
CM
908 last_start = state->start;
909 last_end = state->end;
910
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 *
915 * Just lock what we found and keep going
916 */
917 if (state->start == start && state->end <= end) {
1edbb734 918 if (state->state & exclusive_bits) {
d1310b2e
CM
919 *failed_start = state->start;
920 err = -EEXIST;
921 goto out;
922 }
42daec29 923
d38ed27f 924 set_state_bits(tree, state, &bits, changeset);
2c64c53d 925 cache_state(state, cached_state);
d1310b2e 926 merge_state(tree, state);
5c939df5
YZ
927 if (last_end == (u64)-1)
928 goto out;
929 start = last_end + 1;
d1ac6e41
LB
930 state = next_state(state);
931 if (start < end && state && state->start == start &&
932 !need_resched())
933 goto hit_next;
d1310b2e
CM
934 goto search_again;
935 }
936
937 /*
938 * | ---- desired range ---- |
939 * | state |
940 * or
941 * | ------------- state -------------- |
942 *
943 * We need to split the extent we found, and may flip bits on
944 * second half.
945 *
946 * If the extent we found extends past our
947 * range, we just split and search again. It'll get split
948 * again the next time though.
949 *
950 * If the extent we found is inside our range, we set the
951 * desired bit on it.
952 */
953 if (state->start < start) {
1edbb734 954 if (state->state & exclusive_bits) {
d1310b2e
CM
955 *failed_start = start;
956 err = -EEXIST;
957 goto out;
958 }
8233767a
XG
959
960 prealloc = alloc_extent_state_atomic(prealloc);
961 BUG_ON(!prealloc);
d1310b2e 962 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
963 if (err)
964 extent_io_tree_panic(tree, err);
965
d1310b2e
CM
966 prealloc = NULL;
967 if (err)
968 goto out;
969 if (state->end <= end) {
d38ed27f 970 set_state_bits(tree, state, &bits, changeset);
2c64c53d 971 cache_state(state, cached_state);
d1310b2e 972 merge_state(tree, state);
5c939df5
YZ
973 if (last_end == (u64)-1)
974 goto out;
975 start = last_end + 1;
d1ac6e41
LB
976 state = next_state(state);
977 if (start < end && state && state->start == start &&
978 !need_resched())
979 goto hit_next;
d1310b2e
CM
980 }
981 goto search_again;
982 }
983 /*
984 * | ---- desired range ---- |
985 * | state | or | state |
986 *
987 * There's a hole, we need to insert something in it and
988 * ignore the extent we found.
989 */
990 if (state->start > start) {
991 u64 this_end;
992 if (end < last_start)
993 this_end = end;
994 else
d397712b 995 this_end = last_start - 1;
8233767a
XG
996
997 prealloc = alloc_extent_state_atomic(prealloc);
998 BUG_ON(!prealloc);
c7f895a2
XG
999
1000 /*
1001 * Avoid to free 'prealloc' if it can be merged with
1002 * the later extent.
1003 */
d1310b2e 1004 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1005 NULL, NULL, &bits, changeset);
c2d904e0
JM
1006 if (err)
1007 extent_io_tree_panic(tree, err);
1008
9ed74f2d
JB
1009 cache_state(prealloc, cached_state);
1010 prealloc = NULL;
d1310b2e
CM
1011 start = this_end + 1;
1012 goto search_again;
1013 }
1014 /*
1015 * | ---- desired range ---- |
1016 * | state |
1017 * We need to split the extent, and set the bit
1018 * on the first half
1019 */
1020 if (state->start <= end && state->end > end) {
1edbb734 1021 if (state->state & exclusive_bits) {
d1310b2e
CM
1022 *failed_start = start;
1023 err = -EEXIST;
1024 goto out;
1025 }
8233767a
XG
1026
1027 prealloc = alloc_extent_state_atomic(prealloc);
1028 BUG_ON(!prealloc);
d1310b2e 1029 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1030 if (err)
1031 extent_io_tree_panic(tree, err);
d1310b2e 1032
d38ed27f 1033 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1034 cache_state(prealloc, cached_state);
d1310b2e
CM
1035 merge_state(tree, prealloc);
1036 prealloc = NULL;
1037 goto out;
1038 }
1039
b5a4ba14
DS
1040search_again:
1041 if (start > end)
1042 goto out;
1043 spin_unlock(&tree->lock);
1044 if (gfpflags_allow_blocking(mask))
1045 cond_resched();
1046 goto again;
d1310b2e
CM
1047
1048out:
cad321ad 1049 spin_unlock(&tree->lock);
d1310b2e
CM
1050 if (prealloc)
1051 free_extent_state(prealloc);
1052
1053 return err;
1054
d1310b2e 1055}
d1310b2e 1056
41074888 1057int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1058 unsigned bits, u64 * failed_start,
41074888 1059 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1060{
1061 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1062 cached_state, mask, NULL);
3fbe5c02
JM
1063}
1064
1065
462d6fac 1066/**
10983f2e
LB
1067 * convert_extent_bit - convert all bits in a given range from one bit to
1068 * another
462d6fac
JB
1069 * @tree: the io tree to search
1070 * @start: the start offset in bytes
1071 * @end: the end offset in bytes (inclusive)
1072 * @bits: the bits to set in this range
1073 * @clear_bits: the bits to clear in this range
e6138876 1074 * @cached_state: state that we're going to cache
462d6fac
JB
1075 * @mask: the allocation mask
1076 *
1077 * This will go through and set bits for the given range. If any states exist
1078 * already in this range they are set with the given bit and cleared of the
1079 * clear_bits. This is only meant to be used by things that are mergeable, ie
1080 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1081 * boundary bits like LOCK.
1082 */
1083int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1084 unsigned bits, unsigned clear_bits,
e6138876 1085 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1086{
1087 struct extent_state *state;
1088 struct extent_state *prealloc = NULL;
1089 struct rb_node *node;
12cfbad9
FDBM
1090 struct rb_node **p;
1091 struct rb_node *parent;
462d6fac
JB
1092 int err = 0;
1093 u64 last_start;
1094 u64 last_end;
c8fd3de7 1095 bool first_iteration = true;
462d6fac 1096
a5dee37d 1097 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1098
462d6fac 1099again:
d0164adc 1100 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1101 /*
1102 * Best effort, don't worry if extent state allocation fails
1103 * here for the first iteration. We might have a cached state
1104 * that matches exactly the target range, in which case no
1105 * extent state allocations are needed. We'll only know this
1106 * after locking the tree.
1107 */
462d6fac 1108 prealloc = alloc_extent_state(mask);
c8fd3de7 1109 if (!prealloc && !first_iteration)
462d6fac
JB
1110 return -ENOMEM;
1111 }
1112
1113 spin_lock(&tree->lock);
e6138876
JB
1114 if (cached_state && *cached_state) {
1115 state = *cached_state;
1116 if (state->start <= start && state->end > start &&
27a3507d 1117 extent_state_in_tree(state)) {
e6138876
JB
1118 node = &state->rb_node;
1119 goto hit_next;
1120 }
1121 }
1122
462d6fac
JB
1123 /*
1124 * this search will find all the extents that end after
1125 * our range starts.
1126 */
12cfbad9 1127 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1128 if (!node) {
1129 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1130 if (!prealloc) {
1131 err = -ENOMEM;
1132 goto out;
1133 }
12cfbad9 1134 err = insert_state(tree, prealloc, start, end,
d38ed27f 1135 &p, &parent, &bits, NULL);
c2d904e0
JM
1136 if (err)
1137 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1138 cache_state(prealloc, cached_state);
1139 prealloc = NULL;
462d6fac
JB
1140 goto out;
1141 }
1142 state = rb_entry(node, struct extent_state, rb_node);
1143hit_next:
1144 last_start = state->start;
1145 last_end = state->end;
1146
1147 /*
1148 * | ---- desired range ---- |
1149 * | state |
1150 *
1151 * Just lock what we found and keep going
1152 */
1153 if (state->start == start && state->end <= end) {
d38ed27f 1154 set_state_bits(tree, state, &bits, NULL);
e6138876 1155 cache_state(state, cached_state);
fefdc557 1156 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1157 if (last_end == (u64)-1)
1158 goto out;
462d6fac 1159 start = last_end + 1;
d1ac6e41
LB
1160 if (start < end && state && state->start == start &&
1161 !need_resched())
1162 goto hit_next;
462d6fac
JB
1163 goto search_again;
1164 }
1165
1166 /*
1167 * | ---- desired range ---- |
1168 * | state |
1169 * or
1170 * | ------------- state -------------- |
1171 *
1172 * We need to split the extent we found, and may flip bits on
1173 * second half.
1174 *
1175 * If the extent we found extends past our
1176 * range, we just split and search again. It'll get split
1177 * again the next time though.
1178 *
1179 * If the extent we found is inside our range, we set the
1180 * desired bit on it.
1181 */
1182 if (state->start < start) {
1183 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1184 if (!prealloc) {
1185 err = -ENOMEM;
1186 goto out;
1187 }
462d6fac 1188 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1189 if (err)
1190 extent_io_tree_panic(tree, err);
462d6fac
JB
1191 prealloc = NULL;
1192 if (err)
1193 goto out;
1194 if (state->end <= end) {
d38ed27f 1195 set_state_bits(tree, state, &bits, NULL);
e6138876 1196 cache_state(state, cached_state);
fefdc557
QW
1197 state = clear_state_bit(tree, state, &clear_bits, 0,
1198 NULL);
462d6fac
JB
1199 if (last_end == (u64)-1)
1200 goto out;
1201 start = last_end + 1;
d1ac6e41
LB
1202 if (start < end && state && state->start == start &&
1203 !need_resched())
1204 goto hit_next;
462d6fac
JB
1205 }
1206 goto search_again;
1207 }
1208 /*
1209 * | ---- desired range ---- |
1210 * | state | or | state |
1211 *
1212 * There's a hole, we need to insert something in it and
1213 * ignore the extent we found.
1214 */
1215 if (state->start > start) {
1216 u64 this_end;
1217 if (end < last_start)
1218 this_end = end;
1219 else
1220 this_end = last_start - 1;
1221
1222 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1223 if (!prealloc) {
1224 err = -ENOMEM;
1225 goto out;
1226 }
462d6fac
JB
1227
1228 /*
1229 * Avoid to free 'prealloc' if it can be merged with
1230 * the later extent.
1231 */
1232 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1233 NULL, NULL, &bits, NULL);
c2d904e0
JM
1234 if (err)
1235 extent_io_tree_panic(tree, err);
e6138876 1236 cache_state(prealloc, cached_state);
462d6fac
JB
1237 prealloc = NULL;
1238 start = this_end + 1;
1239 goto search_again;
1240 }
1241 /*
1242 * | ---- desired range ---- |
1243 * | state |
1244 * We need to split the extent, and set the bit
1245 * on the first half
1246 */
1247 if (state->start <= end && state->end > end) {
1248 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1249 if (!prealloc) {
1250 err = -ENOMEM;
1251 goto out;
1252 }
462d6fac
JB
1253
1254 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1255 if (err)
1256 extent_io_tree_panic(tree, err);
462d6fac 1257
d38ed27f 1258 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1259 cache_state(prealloc, cached_state);
fefdc557 1260 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1261 prealloc = NULL;
1262 goto out;
1263 }
1264
1265 goto search_again;
1266
1267out:
1268 spin_unlock(&tree->lock);
1269 if (prealloc)
1270 free_extent_state(prealloc);
1271
1272 return err;
1273
1274search_again:
1275 if (start > end)
1276 goto out;
1277 spin_unlock(&tree->lock);
d0164adc 1278 if (gfpflags_allow_blocking(mask))
462d6fac 1279 cond_resched();
c8fd3de7 1280 first_iteration = false;
462d6fac
JB
1281 goto again;
1282}
1283
d1310b2e 1284/* wrappers around set/clear extent bit */
d38ed27f 1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1286 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1287{
1288 /*
1289 * We don't support EXTENT_LOCKED yet, as current changeset will
1290 * record any bits changed, so for EXTENT_LOCKED case, it will
1291 * either fail with -EEXIST or changeset will record the whole
1292 * range.
1293 */
1294 BUG_ON(bits & EXTENT_LOCKED);
1295
2c53b912 1296 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1297 changeset);
1298}
1299
fefdc557
QW
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301 unsigned bits, int wake, int delete,
1302 struct extent_state **cached, gfp_t mask)
1303{
1304 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305 cached, mask, NULL);
1306}
1307
fefdc557 1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1309 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1310{
1311 /*
1312 * Don't support EXTENT_LOCKED case, same reason as
1313 * set_record_extent_bits().
1314 */
1315 BUG_ON(bits & EXTENT_LOCKED);
1316
f734c44a 1317 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1318 changeset);
1319}
1320
d352ac68
CM
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1edbb734 1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1326 struct extent_state **cached_state)
d1310b2e
CM
1327{
1328 int err;
1329 u64 failed_start;
9ee49a04 1330
d1310b2e 1331 while (1) {
ff13db41 1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1333 EXTENT_LOCKED, &failed_start,
d38ed27f 1334 cached_state, GFP_NOFS, NULL);
d0082371 1335 if (err == -EEXIST) {
d1310b2e
CM
1336 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337 start = failed_start;
d0082371 1338 } else
d1310b2e 1339 break;
d1310b2e
CM
1340 WARN_ON(start > end);
1341 }
1342 return err;
1343}
d1310b2e 1344
d0082371 1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1346{
1347 int err;
1348 u64 failed_start;
1349
3fbe5c02 1350 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1351 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1352 if (err == -EEXIST) {
1353 if (failed_start > start)
1354 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1355 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1356 return 0;
6643558d 1357 }
25179201
JB
1358 return 1;
1359}
25179201 1360
bd1fa4f0 1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1362{
09cbfeaf
KS
1363 unsigned long index = start >> PAGE_SHIFT;
1364 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1365 struct page *page;
1366
1367 while (index <= end_index) {
1368 page = find_get_page(inode->i_mapping, index);
1369 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370 clear_page_dirty_for_io(page);
09cbfeaf 1371 put_page(page);
4adaa611
CM
1372 index++;
1373 }
4adaa611
CM
1374}
1375
f6311572 1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1377{
09cbfeaf
KS
1378 unsigned long index = start >> PAGE_SHIFT;
1379 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1385 __set_page_dirty_nobuffers(page);
8d38633c 1386 account_page_redirty(page);
09cbfeaf 1387 put_page(page);
4adaa611
CM
1388 index++;
1389 }
4adaa611
CM
1390}
1391
d1310b2e
CM
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
35de6db2 1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1396{
09cbfeaf
KS
1397 unsigned long index = start >> PAGE_SHIFT;
1398 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1399 struct page *page;
1400
1401 while (index <= end_index) {
1402 page = find_get_page(tree->mapping, index);
79787eaa 1403 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1404 set_page_writeback(page);
09cbfeaf 1405 put_page(page);
d1310b2e
CM
1406 index++;
1407 }
d1310b2e 1408}
d1310b2e 1409
d352ac68
CM
1410/* find the first state struct with 'bits' set after 'start', and
1411 * return it. tree->lock must be held. NULL will returned if
1412 * nothing was found after 'start'
1413 */
48a3b636
ES
1414static struct extent_state *
1415find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1416 u64 start, unsigned bits)
d7fc640e
CM
1417{
1418 struct rb_node *node;
1419 struct extent_state *state;
1420
1421 /*
1422 * this search will find all the extents that end after
1423 * our range starts.
1424 */
1425 node = tree_search(tree, start);
d397712b 1426 if (!node)
d7fc640e 1427 goto out;
d7fc640e 1428
d397712b 1429 while (1) {
d7fc640e 1430 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1431 if (state->end >= start && (state->state & bits))
d7fc640e 1432 return state;
d397712b 1433
d7fc640e
CM
1434 node = rb_next(node);
1435 if (!node)
1436 break;
1437 }
1438out:
1439 return NULL;
1440}
d7fc640e 1441
69261c4b
XG
1442/*
1443 * find the first offset in the io tree with 'bits' set. zero is
1444 * returned if we find something, and *start_ret and *end_ret are
1445 * set to reflect the state struct that was found.
1446 *
477d7eaf 1447 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1448 */
1449int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1450 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1451 struct extent_state **cached_state)
69261c4b
XG
1452{
1453 struct extent_state *state;
e6138876 1454 struct rb_node *n;
69261c4b
XG
1455 int ret = 1;
1456
1457 spin_lock(&tree->lock);
e6138876
JB
1458 if (cached_state && *cached_state) {
1459 state = *cached_state;
27a3507d 1460 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1461 n = rb_next(&state->rb_node);
1462 while (n) {
1463 state = rb_entry(n, struct extent_state,
1464 rb_node);
1465 if (state->state & bits)
1466 goto got_it;
1467 n = rb_next(n);
1468 }
1469 free_extent_state(*cached_state);
1470 *cached_state = NULL;
1471 goto out;
1472 }
1473 free_extent_state(*cached_state);
1474 *cached_state = NULL;
1475 }
1476
69261c4b 1477 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1478got_it:
69261c4b 1479 if (state) {
e38e2ed7 1480 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1481 *start_ret = state->start;
1482 *end_ret = state->end;
1483 ret = 0;
1484 }
e6138876 1485out:
69261c4b
XG
1486 spin_unlock(&tree->lock);
1487 return ret;
1488}
1489
d352ac68
CM
1490/*
1491 * find a contiguous range of bytes in the file marked as delalloc, not
1492 * more than 'max_bytes'. start and end are used to return the range,
1493 *
1494 * 1 is returned if we find something, 0 if nothing was in the tree
1495 */
c8b97818 1496static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1497 u64 *start, u64 *end, u64 max_bytes,
1498 struct extent_state **cached_state)
d1310b2e
CM
1499{
1500 struct rb_node *node;
1501 struct extent_state *state;
1502 u64 cur_start = *start;
1503 u64 found = 0;
1504 u64 total_bytes = 0;
1505
cad321ad 1506 spin_lock(&tree->lock);
c8b97818 1507
d1310b2e
CM
1508 /*
1509 * this search will find all the extents that end after
1510 * our range starts.
1511 */
80ea96b1 1512 node = tree_search(tree, cur_start);
2b114d1d 1513 if (!node) {
3b951516
CM
1514 if (!found)
1515 *end = (u64)-1;
d1310b2e
CM
1516 goto out;
1517 }
1518
d397712b 1519 while (1) {
d1310b2e 1520 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1521 if (found && (state->start != cur_start ||
1522 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1523 goto out;
1524 }
1525 if (!(state->state & EXTENT_DELALLOC)) {
1526 if (!found)
1527 *end = state->end;
1528 goto out;
1529 }
c2a128d2 1530 if (!found) {
d1310b2e 1531 *start = state->start;
c2a128d2
JB
1532 *cached_state = state;
1533 atomic_inc(&state->refs);
1534 }
d1310b2e
CM
1535 found++;
1536 *end = state->end;
1537 cur_start = state->end + 1;
1538 node = rb_next(node);
d1310b2e 1539 total_bytes += state->end - state->start + 1;
7bf811a5 1540 if (total_bytes >= max_bytes)
573aecaf 1541 break;
573aecaf 1542 if (!node)
d1310b2e
CM
1543 break;
1544 }
1545out:
cad321ad 1546 spin_unlock(&tree->lock);
d1310b2e
CM
1547 return found;
1548}
1549
143bede5
JM
1550static noinline void __unlock_for_delalloc(struct inode *inode,
1551 struct page *locked_page,
1552 u64 start, u64 end)
c8b97818
CM
1553{
1554 int ret;
1555 struct page *pages[16];
09cbfeaf
KS
1556 unsigned long index = start >> PAGE_SHIFT;
1557 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1558 unsigned long nr_pages = end_index - index + 1;
1559 int i;
1560
1561 if (index == locked_page->index && end_index == index)
143bede5 1562 return;
c8b97818 1563
d397712b 1564 while (nr_pages > 0) {
c8b97818 1565 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1566 min_t(unsigned long, nr_pages,
1567 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1568 for (i = 0; i < ret; i++) {
1569 if (pages[i] != locked_page)
1570 unlock_page(pages[i]);
09cbfeaf 1571 put_page(pages[i]);
c8b97818
CM
1572 }
1573 nr_pages -= ret;
1574 index += ret;
1575 cond_resched();
1576 }
c8b97818
CM
1577}
1578
1579static noinline int lock_delalloc_pages(struct inode *inode,
1580 struct page *locked_page,
1581 u64 delalloc_start,
1582 u64 delalloc_end)
1583{
09cbfeaf 1584 unsigned long index = delalloc_start >> PAGE_SHIFT;
c8b97818 1585 unsigned long start_index = index;
09cbfeaf 1586 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818
CM
1587 unsigned long pages_locked = 0;
1588 struct page *pages[16];
1589 unsigned long nrpages;
1590 int ret;
1591 int i;
1592
1593 /* the caller is responsible for locking the start index */
1594 if (index == locked_page->index && index == end_index)
1595 return 0;
1596
1597 /* skip the page at the start index */
1598 nrpages = end_index - index + 1;
d397712b 1599 while (nrpages > 0) {
c8b97818 1600 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1601 min_t(unsigned long,
1602 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1603 if (ret == 0) {
1604 ret = -EAGAIN;
1605 goto done;
1606 }
1607 /* now we have an array of pages, lock them all */
1608 for (i = 0; i < ret; i++) {
1609 /*
1610 * the caller is taking responsibility for
1611 * locked_page
1612 */
771ed689 1613 if (pages[i] != locked_page) {
c8b97818 1614 lock_page(pages[i]);
f2b1c41c
CM
1615 if (!PageDirty(pages[i]) ||
1616 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1617 ret = -EAGAIN;
1618 unlock_page(pages[i]);
09cbfeaf 1619 put_page(pages[i]);
771ed689
CM
1620 goto done;
1621 }
1622 }
09cbfeaf 1623 put_page(pages[i]);
771ed689 1624 pages_locked++;
c8b97818 1625 }
c8b97818
CM
1626 nrpages -= ret;
1627 index += ret;
1628 cond_resched();
1629 }
1630 ret = 0;
1631done:
1632 if (ret && pages_locked) {
1633 __unlock_for_delalloc(inode, locked_page,
1634 delalloc_start,
1635 ((u64)(start_index + pages_locked - 1)) <<
09cbfeaf 1636 PAGE_SHIFT);
c8b97818
CM
1637 }
1638 return ret;
1639}
1640
1641/*
1642 * find a contiguous range of bytes in the file marked as delalloc, not
1643 * more than 'max_bytes'. start and end are used to return the range,
1644 *
1645 * 1 is returned if we find something, 0 if nothing was in the tree
1646 */
294e30fe
JB
1647STATIC u64 find_lock_delalloc_range(struct inode *inode,
1648 struct extent_io_tree *tree,
1649 struct page *locked_page, u64 *start,
1650 u64 *end, u64 max_bytes)
c8b97818
CM
1651{
1652 u64 delalloc_start;
1653 u64 delalloc_end;
1654 u64 found;
9655d298 1655 struct extent_state *cached_state = NULL;
c8b97818
CM
1656 int ret;
1657 int loops = 0;
1658
1659again:
1660 /* step one, find a bunch of delalloc bytes starting at start */
1661 delalloc_start = *start;
1662 delalloc_end = 0;
1663 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1664 max_bytes, &cached_state);
70b99e69 1665 if (!found || delalloc_end <= *start) {
c8b97818
CM
1666 *start = delalloc_start;
1667 *end = delalloc_end;
c2a128d2 1668 free_extent_state(cached_state);
385fe0be 1669 return 0;
c8b97818
CM
1670 }
1671
70b99e69
CM
1672 /*
1673 * start comes from the offset of locked_page. We have to lock
1674 * pages in order, so we can't process delalloc bytes before
1675 * locked_page
1676 */
d397712b 1677 if (delalloc_start < *start)
70b99e69 1678 delalloc_start = *start;
70b99e69 1679
c8b97818
CM
1680 /*
1681 * make sure to limit the number of pages we try to lock down
c8b97818 1682 */
7bf811a5
JB
1683 if (delalloc_end + 1 - delalloc_start > max_bytes)
1684 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1685
c8b97818
CM
1686 /* step two, lock all the pages after the page that has start */
1687 ret = lock_delalloc_pages(inode, locked_page,
1688 delalloc_start, delalloc_end);
1689 if (ret == -EAGAIN) {
1690 /* some of the pages are gone, lets avoid looping by
1691 * shortening the size of the delalloc range we're searching
1692 */
9655d298 1693 free_extent_state(cached_state);
7d788742 1694 cached_state = NULL;
c8b97818 1695 if (!loops) {
09cbfeaf 1696 max_bytes = PAGE_SIZE;
c8b97818
CM
1697 loops = 1;
1698 goto again;
1699 } else {
1700 found = 0;
1701 goto out_failed;
1702 }
1703 }
79787eaa 1704 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1705
1706 /* step three, lock the state bits for the whole range */
ff13db41 1707 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1708
1709 /* then test to make sure it is all still delalloc */
1710 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1711 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1712 if (!ret) {
9655d298
CM
1713 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1714 &cached_state, GFP_NOFS);
c8b97818
CM
1715 __unlock_for_delalloc(inode, locked_page,
1716 delalloc_start, delalloc_end);
1717 cond_resched();
1718 goto again;
1719 }
9655d298 1720 free_extent_state(cached_state);
c8b97818
CM
1721 *start = delalloc_start;
1722 *end = delalloc_end;
1723out_failed:
1724 return found;
1725}
1726
a9d93e17 1727void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1728 struct page *locked_page,
9ee49a04 1729 unsigned clear_bits,
c2790a2e 1730 unsigned long page_ops)
c8b97818 1731{
c2790a2e 1732 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1733 int ret;
1734 struct page *pages[16];
09cbfeaf
KS
1735 unsigned long index = start >> PAGE_SHIFT;
1736 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818
CM
1737 unsigned long nr_pages = end_index - index + 1;
1738 int i;
771ed689 1739
2c64c53d 1740 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1741 if (page_ops == 0)
a9d93e17 1742 return;
c8b97818 1743
704de49d
FM
1744 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1745 mapping_set_error(inode->i_mapping, -EIO);
1746
d397712b 1747 while (nr_pages > 0) {
c8b97818 1748 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1749 min_t(unsigned long,
1750 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1751 for (i = 0; i < ret; i++) {
8b62b72b 1752
c2790a2e 1753 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1754 SetPagePrivate2(pages[i]);
1755
c8b97818 1756 if (pages[i] == locked_page) {
09cbfeaf 1757 put_page(pages[i]);
c8b97818
CM
1758 continue;
1759 }
c2790a2e 1760 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1761 clear_page_dirty_for_io(pages[i]);
c2790a2e 1762 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1763 set_page_writeback(pages[i]);
704de49d
FM
1764 if (page_ops & PAGE_SET_ERROR)
1765 SetPageError(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1767 end_page_writeback(pages[i]);
c2790a2e 1768 if (page_ops & PAGE_UNLOCK)
771ed689 1769 unlock_page(pages[i]);
09cbfeaf 1770 put_page(pages[i]);
c8b97818
CM
1771 }
1772 nr_pages -= ret;
1773 index += ret;
1774 cond_resched();
1775 }
c8b97818 1776}
c8b97818 1777
d352ac68
CM
1778/*
1779 * count the number of bytes in the tree that have a given bit(s)
1780 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1781 * cached. The total number found is returned.
1782 */
d1310b2e
CM
1783u64 count_range_bits(struct extent_io_tree *tree,
1784 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1785 unsigned bits, int contig)
d1310b2e
CM
1786{
1787 struct rb_node *node;
1788 struct extent_state *state;
1789 u64 cur_start = *start;
1790 u64 total_bytes = 0;
ec29ed5b 1791 u64 last = 0;
d1310b2e
CM
1792 int found = 0;
1793
fae7f21c 1794 if (WARN_ON(search_end <= cur_start))
d1310b2e 1795 return 0;
d1310b2e 1796
cad321ad 1797 spin_lock(&tree->lock);
d1310b2e
CM
1798 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1799 total_bytes = tree->dirty_bytes;
1800 goto out;
1801 }
1802 /*
1803 * this search will find all the extents that end after
1804 * our range starts.
1805 */
80ea96b1 1806 node = tree_search(tree, cur_start);
d397712b 1807 if (!node)
d1310b2e 1808 goto out;
d1310b2e 1809
d397712b 1810 while (1) {
d1310b2e
CM
1811 state = rb_entry(node, struct extent_state, rb_node);
1812 if (state->start > search_end)
1813 break;
ec29ed5b
CM
1814 if (contig && found && state->start > last + 1)
1815 break;
1816 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1817 total_bytes += min(search_end, state->end) + 1 -
1818 max(cur_start, state->start);
1819 if (total_bytes >= max_bytes)
1820 break;
1821 if (!found) {
af60bed2 1822 *start = max(cur_start, state->start);
d1310b2e
CM
1823 found = 1;
1824 }
ec29ed5b
CM
1825 last = state->end;
1826 } else if (contig && found) {
1827 break;
d1310b2e
CM
1828 }
1829 node = rb_next(node);
1830 if (!node)
1831 break;
1832 }
1833out:
cad321ad 1834 spin_unlock(&tree->lock);
d1310b2e
CM
1835 return total_bytes;
1836}
b2950863 1837
d352ac68
CM
1838/*
1839 * set the private field for a given byte offset in the tree. If there isn't
1840 * an extent_state there already, this does nothing.
1841 */
f827ba9a 1842static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1843 struct io_failure_record *failrec)
d1310b2e
CM
1844{
1845 struct rb_node *node;
1846 struct extent_state *state;
1847 int ret = 0;
1848
cad321ad 1849 spin_lock(&tree->lock);
d1310b2e
CM
1850 /*
1851 * this search will find all the extents that end after
1852 * our range starts.
1853 */
80ea96b1 1854 node = tree_search(tree, start);
2b114d1d 1855 if (!node) {
d1310b2e
CM
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 state = rb_entry(node, struct extent_state, rb_node);
1860 if (state->start != start) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
47dc196a 1864 state->failrec = failrec;
d1310b2e 1865out:
cad321ad 1866 spin_unlock(&tree->lock);
d1310b2e
CM
1867 return ret;
1868}
1869
f827ba9a 1870static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1871 struct io_failure_record **failrec)
d1310b2e
CM
1872{
1873 struct rb_node *node;
1874 struct extent_state *state;
1875 int ret = 0;
1876
cad321ad 1877 spin_lock(&tree->lock);
d1310b2e
CM
1878 /*
1879 * this search will find all the extents that end after
1880 * our range starts.
1881 */
80ea96b1 1882 node = tree_search(tree, start);
2b114d1d 1883 if (!node) {
d1310b2e
CM
1884 ret = -ENOENT;
1885 goto out;
1886 }
1887 state = rb_entry(node, struct extent_state, rb_node);
1888 if (state->start != start) {
1889 ret = -ENOENT;
1890 goto out;
1891 }
47dc196a 1892 *failrec = state->failrec;
d1310b2e 1893out:
cad321ad 1894 spin_unlock(&tree->lock);
d1310b2e
CM
1895 return ret;
1896}
1897
1898/*
1899 * searches a range in the state tree for a given mask.
70dec807 1900 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1901 * has the bits set. Otherwise, 1 is returned if any bit in the
1902 * range is found set.
1903 */
1904int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1905 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1906{
1907 struct extent_state *state = NULL;
1908 struct rb_node *node;
1909 int bitset = 0;
d1310b2e 1910
cad321ad 1911 spin_lock(&tree->lock);
27a3507d 1912 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1913 cached->end > start)
9655d298
CM
1914 node = &cached->rb_node;
1915 else
1916 node = tree_search(tree, start);
d1310b2e
CM
1917 while (node && start <= end) {
1918 state = rb_entry(node, struct extent_state, rb_node);
1919
1920 if (filled && state->start > start) {
1921 bitset = 0;
1922 break;
1923 }
1924
1925 if (state->start > end)
1926 break;
1927
1928 if (state->state & bits) {
1929 bitset = 1;
1930 if (!filled)
1931 break;
1932 } else if (filled) {
1933 bitset = 0;
1934 break;
1935 }
46562cec
CM
1936
1937 if (state->end == (u64)-1)
1938 break;
1939
d1310b2e
CM
1940 start = state->end + 1;
1941 if (start > end)
1942 break;
1943 node = rb_next(node);
1944 if (!node) {
1945 if (filled)
1946 bitset = 0;
1947 break;
1948 }
1949 }
cad321ad 1950 spin_unlock(&tree->lock);
d1310b2e
CM
1951 return bitset;
1952}
d1310b2e
CM
1953
1954/*
1955 * helper function to set a given page up to date if all the
1956 * extents in the tree for that page are up to date
1957 */
143bede5 1958static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1959{
4eee4fa4 1960 u64 start = page_offset(page);
09cbfeaf 1961 u64 end = start + PAGE_SIZE - 1;
9655d298 1962 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1963 SetPageUptodate(page);
d1310b2e
CM
1964}
1965
8b110e39 1966int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1967{
1968 int ret;
1969 int err = 0;
1970 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1971
47dc196a 1972 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1973 ret = clear_extent_bits(failure_tree, rec->start,
1974 rec->start + rec->len - 1,
91166212 1975 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1976 if (ret)
1977 err = ret;
1978
53b381b3
DW
1979 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1980 rec->start + rec->len - 1,
91166212 1981 EXTENT_DAMAGED);
53b381b3
DW
1982 if (ret && !err)
1983 err = ret;
4a54c8c1
JS
1984
1985 kfree(rec);
1986 return err;
1987}
1988
4a54c8c1
JS
1989/*
1990 * this bypasses the standard btrfs submit functions deliberately, as
1991 * the standard behavior is to write all copies in a raid setup. here we only
1992 * want to write the one bad copy. so we do the mapping for ourselves and issue
1993 * submit_bio directly.
3ec706c8 1994 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1995 * actually prevents the read that triggered the error from finishing.
1996 * currently, there can be no more than two copies of every data bit. thus,
1997 * exactly one rewrite is required.
1998 */
1203b681
MX
1999int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2000 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2001{
1203b681 2002 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2003 struct bio *bio;
2004 struct btrfs_device *dev;
4a54c8c1
JS
2005 u64 map_length = 0;
2006 u64 sector;
2007 struct btrfs_bio *bbio = NULL;
53b381b3 2008 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2009 int ret;
2010
908960c6 2011 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2012 BUG_ON(!mirror_num);
2013
53b381b3
DW
2014 /* we can't repair anything in raid56 yet */
2015 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2016 return 0;
2017
9be3395b 2018 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2019 if (!bio)
2020 return -EIO;
4f024f37 2021 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2022 map_length = length;
2023
3ec706c8 2024 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2025 &map_length, &bbio, mirror_num);
2026 if (ret) {
2027 bio_put(bio);
2028 return -EIO;
2029 }
2030 BUG_ON(mirror_num != bbio->mirror_num);
2031 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2032 bio->bi_iter.bi_sector = sector;
4a54c8c1 2033 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2034 btrfs_put_bbio(bbio);
4a54c8c1
JS
2035 if (!dev || !dev->bdev || !dev->writeable) {
2036 bio_put(bio);
2037 return -EIO;
2038 }
2039 bio->bi_bdev = dev->bdev;
ffdd2018 2040 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2041
33879d45 2042 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2043 /* try to remap that extent elsewhere? */
2044 bio_put(bio);
442a4f63 2045 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2046 return -EIO;
2047 }
2048
b14af3b4
DS
2049 btrfs_info_rl_in_rcu(fs_info,
2050 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2051 btrfs_ino(inode), start,
2052 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2053 bio_put(bio);
2054 return 0;
2055}
2056
ea466794
JB
2057int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2058 int mirror_num)
2059{
ea466794
JB
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2062 int ret = 0;
ea466794 2063
908960c6
ID
2064 if (root->fs_info->sb->s_flags & MS_RDONLY)
2065 return -EROFS;
2066
ea466794 2067 for (i = 0; i < num_pages; i++) {
fb85fc9a 2068 struct page *p = eb->pages[i];
1203b681
MX
2069
2070 ret = repair_io_failure(root->fs_info->btree_inode, start,
09cbfeaf 2071 PAGE_SIZE, start, p,
1203b681 2072 start - page_offset(p), mirror_num);
ea466794
JB
2073 if (ret)
2074 break;
09cbfeaf 2075 start += PAGE_SIZE;
ea466794
JB
2076 }
2077
2078 return ret;
2079}
2080
4a54c8c1
JS
2081/*
2082 * each time an IO finishes, we do a fast check in the IO failure tree
2083 * to see if we need to process or clean up an io_failure_record
2084 */
8b110e39
MX
2085int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2086 unsigned int pg_offset)
4a54c8c1
JS
2087{
2088 u64 private;
4a54c8c1 2089 struct io_failure_record *failrec;
908960c6 2090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2091 struct extent_state *state;
2092 int num_copies;
4a54c8c1 2093 int ret;
4a54c8c1
JS
2094
2095 private = 0;
2096 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2097 (u64)-1, 1, EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
47dc196a
DS
2101 ret = get_state_failrec(&BTRFS_I(inode)->io_failure_tree, start,
2102 &failrec);
4a54c8c1
JS
2103 if (ret)
2104 return 0;
2105
4a54c8c1
JS
2106 BUG_ON(!failrec->this_mirror);
2107
2108 if (failrec->in_validation) {
2109 /* there was no real error, just free the record */
2110 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2111 failrec->start);
4a54c8c1
JS
2112 goto out;
2113 }
908960c6
ID
2114 if (fs_info->sb->s_flags & MS_RDONLY)
2115 goto out;
4a54c8c1
JS
2116
2117 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2118 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2119 failrec->start,
2120 EXTENT_LOCKED);
2121 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2122
883d0de4
MX
2123 if (state && state->start <= failrec->start &&
2124 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2125 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 failrec->len);
4a54c8c1 2127 if (num_copies > 1) {
1203b681 2128 repair_io_failure(inode, start, failrec->len,
454ff3de 2129 failrec->logical, page,
1203b681 2130 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2131 }
2132 }
2133
2134out:
454ff3de 2135 free_io_failure(inode, failrec);
4a54c8c1 2136
454ff3de 2137 return 0;
4a54c8c1
JS
2138}
2139
f612496b
MX
2140/*
2141 * Can be called when
2142 * - hold extent lock
2143 * - under ordered extent
2144 * - the inode is freeing
2145 */
2146void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2147{
2148 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2149 struct io_failure_record *failrec;
2150 struct extent_state *state, *next;
2151
2152 if (RB_EMPTY_ROOT(&failure_tree->state))
2153 return;
2154
2155 spin_lock(&failure_tree->lock);
2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 while (state) {
2158 if (state->start > end)
2159 break;
2160
2161 ASSERT(state->end <= end);
2162
2163 next = next_state(state);
2164
47dc196a 2165 failrec = state->failrec;
f612496b
MX
2166 free_extent_state(state);
2167 kfree(failrec);
2168
2169 state = next;
2170 }
2171 spin_unlock(&failure_tree->lock);
2172}
2173
2fe6303e 2174int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2175 struct io_failure_record **failrec_ret)
4a54c8c1 2176{
2fe6303e 2177 struct io_failure_record *failrec;
4a54c8c1 2178 struct extent_map *em;
4a54c8c1
JS
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2182 int ret;
4a54c8c1
JS
2183 u64 logical;
2184
47dc196a 2185 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2fe6303e 2190
4a54c8c1
JS
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
68ba990f 2205 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
7a2d6a64 2210 if (!em) {
4a54c8c1
JS
2211 kfree(failrec);
2212 return -EIO;
2213 }
2fe6303e 2214
4a54c8c1
JS
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2fe6303e
MX
2223
2224 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2225 logical, start, failrec->len);
2226
4a54c8c1
JS
2227 failrec->logical = logical;
2228 free_extent_map(em);
2229
2230 /* set the bits in the private failure tree */
2231 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2232 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2233 if (ret >= 0)
47dc196a 2234 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2235 /* set the bits in the inode's tree */
2236 if (ret >= 0)
ceeb0ae7 2237 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2238 if (ret < 0) {
2239 kfree(failrec);
2240 return ret;
2241 }
2242 } else {
2fe6303e 2243 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2244 failrec->logical, failrec->start, failrec->len,
2245 failrec->in_validation);
2246 /*
2247 * when data can be on disk more than twice, add to failrec here
2248 * (e.g. with a list for failed_mirror) to make
2249 * clean_io_failure() clean all those errors at once.
2250 */
2251 }
2fe6303e
MX
2252
2253 *failrec_ret = failrec;
2254
2255 return 0;
2256}
2257
2258int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2259 struct io_failure_record *failrec, int failed_mirror)
2260{
2261 int num_copies;
2262
5d964051
SB
2263 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2264 failrec->logical, failrec->len);
4a54c8c1
JS
2265 if (num_copies == 1) {
2266 /*
2267 * we only have a single copy of the data, so don't bother with
2268 * all the retry and error correction code that follows. no
2269 * matter what the error is, it is very likely to persist.
2270 */
2fe6303e 2271 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2272 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2273 return 0;
4a54c8c1
JS
2274 }
2275
4a54c8c1
JS
2276 /*
2277 * there are two premises:
2278 * a) deliver good data to the caller
2279 * b) correct the bad sectors on disk
2280 */
2281 if (failed_bio->bi_vcnt > 1) {
2282 /*
2283 * to fulfill b), we need to know the exact failing sectors, as
2284 * we don't want to rewrite any more than the failed ones. thus,
2285 * we need separate read requests for the failed bio
2286 *
2287 * if the following BUG_ON triggers, our validation request got
2288 * merged. we need separate requests for our algorithm to work.
2289 */
2290 BUG_ON(failrec->in_validation);
2291 failrec->in_validation = 1;
2292 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2293 } else {
2294 /*
2295 * we're ready to fulfill a) and b) alongside. get a good copy
2296 * of the failed sector and if we succeed, we have setup
2297 * everything for repair_io_failure to do the rest for us.
2298 */
2299 if (failrec->in_validation) {
2300 BUG_ON(failrec->this_mirror != failed_mirror);
2301 failrec->in_validation = 0;
2302 failrec->this_mirror = 0;
2303 }
2304 failrec->failed_mirror = failed_mirror;
2305 failrec->this_mirror++;
2306 if (failrec->this_mirror == failed_mirror)
2307 failrec->this_mirror++;
4a54c8c1
JS
2308 }
2309
facc8a22 2310 if (failrec->this_mirror > num_copies) {
2fe6303e 2311 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2312 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2313 return 0;
4a54c8c1
JS
2314 }
2315
2fe6303e
MX
2316 return 1;
2317}
2318
2319
2320struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2321 struct io_failure_record *failrec,
2322 struct page *page, int pg_offset, int icsum,
8b110e39 2323 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2324{
2325 struct bio *bio;
2326 struct btrfs_io_bio *btrfs_failed_bio;
2327 struct btrfs_io_bio *btrfs_bio;
2328
9be3395b 2329 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2330 if (!bio)
2331 return NULL;
2332
2333 bio->bi_end_io = endio_func;
4f024f37 2334 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2335 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2336 bio->bi_iter.bi_size = 0;
8b110e39 2337 bio->bi_private = data;
4a54c8c1 2338
facc8a22
MX
2339 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2340 if (btrfs_failed_bio->csum) {
2341 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2342 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2343
2344 btrfs_bio = btrfs_io_bio(bio);
2345 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2346 icsum *= csum_size;
2347 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2348 csum_size);
2349 }
2350
2fe6303e
MX
2351 bio_add_page(bio, page, failrec->len, pg_offset);
2352
2353 return bio;
2354}
2355
2356/*
2357 * this is a generic handler for readpage errors (default
2358 * readpage_io_failed_hook). if other copies exist, read those and write back
2359 * good data to the failed position. does not investigate in remapping the
2360 * failed extent elsewhere, hoping the device will be smart enough to do this as
2361 * needed
2362 */
2363
2364static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2365 struct page *page, u64 start, u64 end,
2366 int failed_mirror)
2367{
2368 struct io_failure_record *failrec;
2369 struct inode *inode = page->mapping->host;
2370 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2371 struct bio *bio;
2372 int read_mode;
2373 int ret;
2374
2375 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2376
2377 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2378 if (ret)
2379 return ret;
2380
2381 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2382 if (!ret) {
2383 free_io_failure(inode, failrec);
2384 return -EIO;
2385 }
2386
2387 if (failed_bio->bi_vcnt > 1)
2388 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2389 else
2390 read_mode = READ_SYNC;
2391
2392 phy_offset >>= inode->i_sb->s_blocksize_bits;
2393 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2394 start - page_offset(page),
8b110e39
MX
2395 (int)phy_offset, failed_bio->bi_end_io,
2396 NULL);
2fe6303e
MX
2397 if (!bio) {
2398 free_io_failure(inode, failrec);
2399 return -EIO;
2400 }
4a54c8c1 2401
2fe6303e
MX
2402 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2403 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2404
013bd4c3
TI
2405 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2406 failrec->this_mirror,
2407 failrec->bio_flags, 0);
6c387ab2 2408 if (ret) {
454ff3de 2409 free_io_failure(inode, failrec);
6c387ab2
MX
2410 bio_put(bio);
2411 }
2412
013bd4c3 2413 return ret;
4a54c8c1
JS
2414}
2415
d1310b2e
CM
2416/* lots and lots of room for performance fixes in the end_bio funcs */
2417
b5227c07 2418void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2419{
2420 int uptodate = (err == 0);
2421 struct extent_io_tree *tree;
3e2426bd 2422 int ret = 0;
87826df0
JM
2423
2424 tree = &BTRFS_I(page->mapping->host)->io_tree;
2425
2426 if (tree->ops && tree->ops->writepage_end_io_hook) {
2427 ret = tree->ops->writepage_end_io_hook(page, start,
2428 end, NULL, uptodate);
2429 if (ret)
2430 uptodate = 0;
2431 }
2432
87826df0 2433 if (!uptodate) {
87826df0
JM
2434 ClearPageUptodate(page);
2435 SetPageError(page);
5dca6eea
LB
2436 ret = ret < 0 ? ret : -EIO;
2437 mapping_set_error(page->mapping, ret);
87826df0 2438 }
87826df0
JM
2439}
2440
d1310b2e
CM
2441/*
2442 * after a writepage IO is done, we need to:
2443 * clear the uptodate bits on error
2444 * clear the writeback bits in the extent tree for this IO
2445 * end_page_writeback if the page has no more pending IO
2446 *
2447 * Scheduling is not allowed, so the extent state tree is expected
2448 * to have one and only one object corresponding to this IO.
2449 */
4246a0b6 2450static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2451{
2c30c71b 2452 struct bio_vec *bvec;
d1310b2e
CM
2453 u64 start;
2454 u64 end;
2c30c71b 2455 int i;
d1310b2e 2456
2c30c71b 2457 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2458 struct page *page = bvec->bv_page;
902b22f3 2459
17a5adcc
AO
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
09cbfeaf
KS
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2467 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
2471 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2472 "incomplete page write in btrfs with offset %u and "
2473 "length %u",
2474 bvec->bv_offset, bvec->bv_len);
2475 }
d1310b2e 2476
17a5adcc
AO
2477 start = page_offset(page);
2478 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2479
b5227c07 2480 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2481 end_page_writeback(page);
2c30c71b 2482 }
2b1f55b0 2483
d1310b2e 2484 bio_put(bio);
d1310b2e
CM
2485}
2486
883d0de4
MX
2487static void
2488endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2489 int uptodate)
2490{
2491 struct extent_state *cached = NULL;
2492 u64 end = start + len - 1;
2493
2494 if (uptodate && tree->track_uptodate)
2495 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2496 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2497}
2498
d1310b2e
CM
2499/*
2500 * after a readpage IO is done, we need to:
2501 * clear the uptodate bits on error
2502 * set the uptodate bits if things worked
2503 * set the page up to date if all extents in the tree are uptodate
2504 * clear the lock bit in the extent tree
2505 * unlock the page if there are no other extents locked for it
2506 *
2507 * Scheduling is not allowed, so the extent state tree is expected
2508 * to have one and only one object corresponding to this IO.
2509 */
4246a0b6 2510static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2511{
2c30c71b 2512 struct bio_vec *bvec;
4246a0b6 2513 int uptodate = !bio->bi_error;
facc8a22 2514 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2515 struct extent_io_tree *tree;
facc8a22 2516 u64 offset = 0;
d1310b2e
CM
2517 u64 start;
2518 u64 end;
facc8a22 2519 u64 len;
883d0de4
MX
2520 u64 extent_start = 0;
2521 u64 extent_len = 0;
5cf1ab56 2522 int mirror;
d1310b2e 2523 int ret;
2c30c71b 2524 int i;
d1310b2e 2525
2c30c71b 2526 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2527 struct page *page = bvec->bv_page;
a71754fc 2528 struct inode *inode = page->mapping->host;
507903b8 2529
be3940c0 2530 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2531 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2532 bio->bi_error, io_bio->mirror_num);
a71754fc 2533 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2534
17a5adcc
AO
2535 /* We always issue full-page reads, but if some block
2536 * in a page fails to read, blk_update_request() will
2537 * advance bv_offset and adjust bv_len to compensate.
2538 * Print a warning for nonzero offsets, and an error
2539 * if they don't add up to a full page. */
09cbfeaf
KS
2540 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2541 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
efe120a0
FH
2542 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2543 "partial page read in btrfs with offset %u and length %u",
2544 bvec->bv_offset, bvec->bv_len);
2545 else
2546 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2547 "incomplete page read in btrfs with offset %u and "
2548 "length %u",
2549 bvec->bv_offset, bvec->bv_len);
2550 }
d1310b2e 2551
17a5adcc
AO
2552 start = page_offset(page);
2553 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2554 len = bvec->bv_len;
d1310b2e 2555
9be3395b 2556 mirror = io_bio->mirror_num;
f2a09da9
MX
2557 if (likely(uptodate && tree->ops &&
2558 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2559 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2560 page, start, end,
2561 mirror);
5ee0844d 2562 if (ret)
d1310b2e 2563 uptodate = 0;
5ee0844d 2564 else
1203b681 2565 clean_io_failure(inode, start, page, 0);
d1310b2e 2566 }
ea466794 2567
f2a09da9
MX
2568 if (likely(uptodate))
2569 goto readpage_ok;
2570
2571 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2572 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2573 if (!ret && !bio->bi_error)
ea466794 2574 uptodate = 1;
f2a09da9 2575 } else {
f4a8e656
JS
2576 /*
2577 * The generic bio_readpage_error handles errors the
2578 * following way: If possible, new read requests are
2579 * created and submitted and will end up in
2580 * end_bio_extent_readpage as well (if we're lucky, not
2581 * in the !uptodate case). In that case it returns 0 and
2582 * we just go on with the next page in our bio. If it
2583 * can't handle the error it will return -EIO and we
2584 * remain responsible for that page.
2585 */
facc8a22
MX
2586 ret = bio_readpage_error(bio, offset, page, start, end,
2587 mirror);
7e38326f 2588 if (ret == 0) {
4246a0b6 2589 uptodate = !bio->bi_error;
38c1c2e4 2590 offset += len;
7e38326f
CM
2591 continue;
2592 }
2593 }
f2a09da9 2594readpage_ok:
883d0de4 2595 if (likely(uptodate)) {
a71754fc 2596 loff_t i_size = i_size_read(inode);
09cbfeaf 2597 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2598 unsigned off;
a71754fc
JB
2599
2600 /* Zero out the end if this page straddles i_size */
09cbfeaf 2601 off = i_size & (PAGE_SIZE-1);
a583c026 2602 if (page->index == end_index && off)
09cbfeaf 2603 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2604 SetPageUptodate(page);
70dec807 2605 } else {
17a5adcc
AO
2606 ClearPageUptodate(page);
2607 SetPageError(page);
70dec807 2608 }
17a5adcc 2609 unlock_page(page);
facc8a22 2610 offset += len;
883d0de4
MX
2611
2612 if (unlikely(!uptodate)) {
2613 if (extent_len) {
2614 endio_readpage_release_extent(tree,
2615 extent_start,
2616 extent_len, 1);
2617 extent_start = 0;
2618 extent_len = 0;
2619 }
2620 endio_readpage_release_extent(tree, start,
2621 end - start + 1, 0);
2622 } else if (!extent_len) {
2623 extent_start = start;
2624 extent_len = end + 1 - start;
2625 } else if (extent_start + extent_len == start) {
2626 extent_len += end + 1 - start;
2627 } else {
2628 endio_readpage_release_extent(tree, extent_start,
2629 extent_len, uptodate);
2630 extent_start = start;
2631 extent_len = end + 1 - start;
2632 }
2c30c71b 2633 }
d1310b2e 2634
883d0de4
MX
2635 if (extent_len)
2636 endio_readpage_release_extent(tree, extent_start, extent_len,
2637 uptodate);
facc8a22 2638 if (io_bio->end_io)
4246a0b6 2639 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2640 bio_put(bio);
d1310b2e
CM
2641}
2642
9be3395b
CM
2643/*
2644 * this allocates from the btrfs_bioset. We're returning a bio right now
2645 * but you can call btrfs_io_bio for the appropriate container_of magic
2646 */
88f794ed
MX
2647struct bio *
2648btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2649 gfp_t gfp_flags)
d1310b2e 2650{
facc8a22 2651 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2652 struct bio *bio;
2653
9be3395b 2654 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2655
2656 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2657 while (!bio && (nr_vecs /= 2)) {
2658 bio = bio_alloc_bioset(gfp_flags,
2659 nr_vecs, btrfs_bioset);
2660 }
d1310b2e
CM
2661 }
2662
2663 if (bio) {
2664 bio->bi_bdev = bdev;
4f024f37 2665 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2666 btrfs_bio = btrfs_io_bio(bio);
2667 btrfs_bio->csum = NULL;
2668 btrfs_bio->csum_allocated = NULL;
2669 btrfs_bio->end_io = NULL;
d1310b2e
CM
2670 }
2671 return bio;
2672}
2673
9be3395b
CM
2674struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2675{
23ea8e5a
MX
2676 struct btrfs_io_bio *btrfs_bio;
2677 struct bio *new;
9be3395b 2678
23ea8e5a
MX
2679 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2680 if (new) {
2681 btrfs_bio = btrfs_io_bio(new);
2682 btrfs_bio->csum = NULL;
2683 btrfs_bio->csum_allocated = NULL;
2684 btrfs_bio->end_io = NULL;
3a9508b0
CM
2685
2686#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2687 /* FIXME, put this into bio_clone_bioset */
2688 if (bio->bi_css)
2689 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2690#endif
23ea8e5a
MX
2691 }
2692 return new;
2693}
9be3395b
CM
2694
2695/* this also allocates from the btrfs_bioset */
2696struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2697{
facc8a22
MX
2698 struct btrfs_io_bio *btrfs_bio;
2699 struct bio *bio;
2700
2701 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2702 if (bio) {
2703 btrfs_bio = btrfs_io_bio(bio);
2704 btrfs_bio->csum = NULL;
2705 btrfs_bio->csum_allocated = NULL;
2706 btrfs_bio->end_io = NULL;
2707 }
2708 return bio;
9be3395b
CM
2709}
2710
2711
355808c2
JM
2712static int __must_check submit_one_bio(int rw, struct bio *bio,
2713 int mirror_num, unsigned long bio_flags)
d1310b2e 2714{
d1310b2e 2715 int ret = 0;
70dec807
CM
2716 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2717 struct page *page = bvec->bv_page;
2718 struct extent_io_tree *tree = bio->bi_private;
70dec807 2719 u64 start;
70dec807 2720
4eee4fa4 2721 start = page_offset(page) + bvec->bv_offset;
70dec807 2722
902b22f3 2723 bio->bi_private = NULL;
d1310b2e
CM
2724
2725 bio_get(bio);
2726
065631f6 2727 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2728 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2729 mirror_num, bio_flags, start);
0b86a832 2730 else
21adbd5c 2731 btrfsic_submit_bio(rw, bio);
4a54c8c1 2732
d1310b2e
CM
2733 bio_put(bio);
2734 return ret;
2735}
2736
64a16701 2737static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2738 unsigned long offset, size_t size, struct bio *bio,
2739 unsigned long bio_flags)
2740{
2741 int ret = 0;
2742 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2743 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2744 bio_flags);
2745 BUG_ON(ret < 0);
2746 return ret;
2747
2748}
2749
d1310b2e 2750static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2751 struct writeback_control *wbc,
d1310b2e
CM
2752 struct page *page, sector_t sector,
2753 size_t size, unsigned long offset,
2754 struct block_device *bdev,
2755 struct bio **bio_ret,
2756 unsigned long max_pages,
f188591e 2757 bio_end_io_t end_io_func,
c8b97818
CM
2758 int mirror_num,
2759 unsigned long prev_bio_flags,
005efedf
FM
2760 unsigned long bio_flags,
2761 bool force_bio_submit)
d1310b2e
CM
2762{
2763 int ret = 0;
2764 struct bio *bio;
c8b97818 2765 int contig = 0;
c8b97818 2766 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2767 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2768
2769 if (bio_ret && *bio_ret) {
2770 bio = *bio_ret;
c8b97818 2771 if (old_compressed)
4f024f37 2772 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2773 else
f73a1c7d 2774 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2775
2776 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2777 force_bio_submit ||
64a16701 2778 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2779 bio_add_page(bio, page, page_size, offset) < page_size) {
2780 ret = submit_one_bio(rw, bio, mirror_num,
2781 prev_bio_flags);
289454ad
NA
2782 if (ret < 0) {
2783 *bio_ret = NULL;
79787eaa 2784 return ret;
289454ad 2785 }
d1310b2e
CM
2786 bio = NULL;
2787 } else {
da2f0f74
CM
2788 if (wbc)
2789 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2790 return 0;
2791 }
2792 }
c8b97818 2793
b54ffb73
KO
2794 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2795 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2796 if (!bio)
2797 return -ENOMEM;
70dec807 2798
c8b97818 2799 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2800 bio->bi_end_io = end_io_func;
2801 bio->bi_private = tree;
da2f0f74
CM
2802 if (wbc) {
2803 wbc_init_bio(wbc, bio);
2804 wbc_account_io(wbc, page, page_size);
2805 }
70dec807 2806
d397712b 2807 if (bio_ret)
d1310b2e 2808 *bio_ret = bio;
d397712b 2809 else
c8b97818 2810 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2811
2812 return ret;
2813}
2814
48a3b636
ES
2815static void attach_extent_buffer_page(struct extent_buffer *eb,
2816 struct page *page)
d1310b2e
CM
2817{
2818 if (!PagePrivate(page)) {
2819 SetPagePrivate(page);
09cbfeaf 2820 get_page(page);
4f2de97a
JB
2821 set_page_private(page, (unsigned long)eb);
2822 } else {
2823 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2824 }
2825}
2826
4f2de97a 2827void set_page_extent_mapped(struct page *page)
d1310b2e 2828{
4f2de97a
JB
2829 if (!PagePrivate(page)) {
2830 SetPagePrivate(page);
09cbfeaf 2831 get_page(page);
4f2de97a
JB
2832 set_page_private(page, EXTENT_PAGE_PRIVATE);
2833 }
d1310b2e
CM
2834}
2835
125bac01
MX
2836static struct extent_map *
2837__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2838 u64 start, u64 len, get_extent_t *get_extent,
2839 struct extent_map **em_cached)
2840{
2841 struct extent_map *em;
2842
2843 if (em_cached && *em_cached) {
2844 em = *em_cached;
cbc0e928 2845 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2846 start < extent_map_end(em)) {
2847 atomic_inc(&em->refs);
2848 return em;
2849 }
2850
2851 free_extent_map(em);
2852 *em_cached = NULL;
2853 }
2854
2855 em = get_extent(inode, page, pg_offset, start, len, 0);
2856 if (em_cached && !IS_ERR_OR_NULL(em)) {
2857 BUG_ON(*em_cached);
2858 atomic_inc(&em->refs);
2859 *em_cached = em;
2860 }
2861 return em;
2862}
d1310b2e
CM
2863/*
2864 * basic readpage implementation. Locked extent state structs are inserted
2865 * into the tree that are removed when the IO is done (by the end_io
2866 * handlers)
79787eaa 2867 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2868 */
9974090b
MX
2869static int __do_readpage(struct extent_io_tree *tree,
2870 struct page *page,
2871 get_extent_t *get_extent,
125bac01 2872 struct extent_map **em_cached,
9974090b 2873 struct bio **bio, int mirror_num,
005efedf
FM
2874 unsigned long *bio_flags, int rw,
2875 u64 *prev_em_start)
d1310b2e
CM
2876{
2877 struct inode *inode = page->mapping->host;
4eee4fa4 2878 u64 start = page_offset(page);
09cbfeaf 2879 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2880 u64 end;
2881 u64 cur = start;
2882 u64 extent_offset;
2883 u64 last_byte = i_size_read(inode);
2884 u64 block_start;
2885 u64 cur_end;
2886 sector_t sector;
2887 struct extent_map *em;
2888 struct block_device *bdev;
2889 int ret;
2890 int nr = 0;
306e16ce 2891 size_t pg_offset = 0;
d1310b2e 2892 size_t iosize;
c8b97818 2893 size_t disk_io_size;
d1310b2e 2894 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2895 unsigned long this_bio_flag = 0;
d1310b2e
CM
2896
2897 set_page_extent_mapped(page);
2898
9974090b 2899 end = page_end;
90a887c9
DM
2900 if (!PageUptodate(page)) {
2901 if (cleancache_get_page(page) == 0) {
2902 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2903 unlock_extent(tree, start, end);
90a887c9
DM
2904 goto out;
2905 }
2906 }
2907
09cbfeaf 2908 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2909 char *userpage;
09cbfeaf 2910 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2911
2912 if (zero_offset) {
09cbfeaf 2913 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2914 userpage = kmap_atomic(page);
c8b97818
CM
2915 memset(userpage + zero_offset, 0, iosize);
2916 flush_dcache_page(page);
7ac687d9 2917 kunmap_atomic(userpage);
c8b97818
CM
2918 }
2919 }
d1310b2e 2920 while (cur <= end) {
09cbfeaf 2921 unsigned long pnr = (last_byte >> PAGE_SHIFT) + 1;
005efedf 2922 bool force_bio_submit = false;
c8f2f24b 2923
d1310b2e
CM
2924 if (cur >= last_byte) {
2925 char *userpage;
507903b8
AJ
2926 struct extent_state *cached = NULL;
2927
09cbfeaf 2928 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2929 userpage = kmap_atomic(page);
306e16ce 2930 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2931 flush_dcache_page(page);
7ac687d9 2932 kunmap_atomic(userpage);
d1310b2e 2933 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2934 &cached, GFP_NOFS);
7f042a83
FM
2935 unlock_extent_cached(tree, cur,
2936 cur + iosize - 1,
2937 &cached, GFP_NOFS);
d1310b2e
CM
2938 break;
2939 }
125bac01
MX
2940 em = __get_extent_map(inode, page, pg_offset, cur,
2941 end - cur + 1, get_extent, em_cached);
c704005d 2942 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2943 SetPageError(page);
7f042a83 2944 unlock_extent(tree, cur, end);
d1310b2e
CM
2945 break;
2946 }
d1310b2e
CM
2947 extent_offset = cur - em->start;
2948 BUG_ON(extent_map_end(em) <= cur);
2949 BUG_ON(end < cur);
2950
261507a0 2951 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2952 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2953 extent_set_compress_type(&this_bio_flag,
2954 em->compress_type);
2955 }
c8b97818 2956
d1310b2e
CM
2957 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2958 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2959 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2960 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2961 disk_io_size = em->block_len;
2962 sector = em->block_start >> 9;
2963 } else {
2964 sector = (em->block_start + extent_offset) >> 9;
2965 disk_io_size = iosize;
2966 }
d1310b2e
CM
2967 bdev = em->bdev;
2968 block_start = em->block_start;
d899e052
YZ
2969 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2970 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2971
2972 /*
2973 * If we have a file range that points to a compressed extent
2974 * and it's followed by a consecutive file range that points to
2975 * to the same compressed extent (possibly with a different
2976 * offset and/or length, so it either points to the whole extent
2977 * or only part of it), we must make sure we do not submit a
2978 * single bio to populate the pages for the 2 ranges because
2979 * this makes the compressed extent read zero out the pages
2980 * belonging to the 2nd range. Imagine the following scenario:
2981 *
2982 * File layout
2983 * [0 - 8K] [8K - 24K]
2984 * | |
2985 * | |
2986 * points to extent X, points to extent X,
2987 * offset 4K, length of 8K offset 0, length 16K
2988 *
2989 * [extent X, compressed length = 4K uncompressed length = 16K]
2990 *
2991 * If the bio to read the compressed extent covers both ranges,
2992 * it will decompress extent X into the pages belonging to the
2993 * first range and then it will stop, zeroing out the remaining
2994 * pages that belong to the other range that points to extent X.
2995 * So here we make sure we submit 2 bios, one for the first
2996 * range and another one for the third range. Both will target
2997 * the same physical extent from disk, but we can't currently
2998 * make the compressed bio endio callback populate the pages
2999 * for both ranges because each compressed bio is tightly
3000 * coupled with a single extent map, and each range can have
3001 * an extent map with a different offset value relative to the
3002 * uncompressed data of our extent and different lengths. This
3003 * is a corner case so we prioritize correctness over
3004 * non-optimal behavior (submitting 2 bios for the same extent).
3005 */
3006 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3007 prev_em_start && *prev_em_start != (u64)-1 &&
3008 *prev_em_start != em->orig_start)
3009 force_bio_submit = true;
3010
3011 if (prev_em_start)
3012 *prev_em_start = em->orig_start;
3013
d1310b2e
CM
3014 free_extent_map(em);
3015 em = NULL;
3016
3017 /* we've found a hole, just zero and go on */
3018 if (block_start == EXTENT_MAP_HOLE) {
3019 char *userpage;
507903b8
AJ
3020 struct extent_state *cached = NULL;
3021
7ac687d9 3022 userpage = kmap_atomic(page);
306e16ce 3023 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3024 flush_dcache_page(page);
7ac687d9 3025 kunmap_atomic(userpage);
d1310b2e
CM
3026
3027 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3028 &cached, GFP_NOFS);
7f042a83
FM
3029 unlock_extent_cached(tree, cur,
3030 cur + iosize - 1,
3031 &cached, GFP_NOFS);
d1310b2e 3032 cur = cur + iosize;
306e16ce 3033 pg_offset += iosize;
d1310b2e
CM
3034 continue;
3035 }
3036 /* the get_extent function already copied into the page */
9655d298
CM
3037 if (test_range_bit(tree, cur, cur_end,
3038 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3039 check_page_uptodate(tree, page);
7f042a83 3040 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3041 cur = cur + iosize;
306e16ce 3042 pg_offset += iosize;
d1310b2e
CM
3043 continue;
3044 }
70dec807
CM
3045 /* we have an inline extent but it didn't get marked up
3046 * to date. Error out
3047 */
3048 if (block_start == EXTENT_MAP_INLINE) {
3049 SetPageError(page);
7f042a83 3050 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3051 cur = cur + iosize;
306e16ce 3052 pg_offset += iosize;
70dec807
CM
3053 continue;
3054 }
d1310b2e 3055
c8f2f24b 3056 pnr -= page->index;
da2f0f74 3057 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3058 sector, disk_io_size, pg_offset,
89642229 3059 bdev, bio, pnr,
c8b97818
CM
3060 end_bio_extent_readpage, mirror_num,
3061 *bio_flags,
005efedf
FM
3062 this_bio_flag,
3063 force_bio_submit);
c8f2f24b
JB
3064 if (!ret) {
3065 nr++;
3066 *bio_flags = this_bio_flag;
3067 } else {
d1310b2e 3068 SetPageError(page);
7f042a83 3069 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3070 }
d1310b2e 3071 cur = cur + iosize;
306e16ce 3072 pg_offset += iosize;
d1310b2e 3073 }
90a887c9 3074out:
d1310b2e
CM
3075 if (!nr) {
3076 if (!PageError(page))
3077 SetPageUptodate(page);
3078 unlock_page(page);
3079 }
3080 return 0;
3081}
3082
9974090b
MX
3083static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3084 struct page *pages[], int nr_pages,
3085 u64 start, u64 end,
3086 get_extent_t *get_extent,
125bac01 3087 struct extent_map **em_cached,
9974090b 3088 struct bio **bio, int mirror_num,
808f80b4
FM
3089 unsigned long *bio_flags, int rw,
3090 u64 *prev_em_start)
9974090b
MX
3091{
3092 struct inode *inode;
3093 struct btrfs_ordered_extent *ordered;
3094 int index;
3095
3096 inode = pages[0]->mapping->host;
3097 while (1) {
3098 lock_extent(tree, start, end);
3099 ordered = btrfs_lookup_ordered_range(inode, start,
3100 end - start + 1);
3101 if (!ordered)
3102 break;
3103 unlock_extent(tree, start, end);
3104 btrfs_start_ordered_extent(inode, ordered, 1);
3105 btrfs_put_ordered_extent(ordered);
3106 }
3107
3108 for (index = 0; index < nr_pages; index++) {
125bac01 3109 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3110 mirror_num, bio_flags, rw, prev_em_start);
09cbfeaf 3111 put_page(pages[index]);
9974090b
MX
3112 }
3113}
3114
3115static void __extent_readpages(struct extent_io_tree *tree,
3116 struct page *pages[],
3117 int nr_pages, get_extent_t *get_extent,
125bac01 3118 struct extent_map **em_cached,
9974090b 3119 struct bio **bio, int mirror_num,
808f80b4
FM
3120 unsigned long *bio_flags, int rw,
3121 u64 *prev_em_start)
9974090b 3122{
35a3621b 3123 u64 start = 0;
9974090b
MX
3124 u64 end = 0;
3125 u64 page_start;
3126 int index;
35a3621b 3127 int first_index = 0;
9974090b
MX
3128
3129 for (index = 0; index < nr_pages; index++) {
3130 page_start = page_offset(pages[index]);
3131 if (!end) {
3132 start = page_start;
09cbfeaf 3133 end = start + PAGE_SIZE - 1;
9974090b
MX
3134 first_index = index;
3135 } else if (end + 1 == page_start) {
09cbfeaf 3136 end += PAGE_SIZE;
9974090b
MX
3137 } else {
3138 __do_contiguous_readpages(tree, &pages[first_index],
3139 index - first_index, start,
125bac01
MX
3140 end, get_extent, em_cached,
3141 bio, mirror_num, bio_flags,
808f80b4 3142 rw, prev_em_start);
9974090b 3143 start = page_start;
09cbfeaf 3144 end = start + PAGE_SIZE - 1;
9974090b
MX
3145 first_index = index;
3146 }
3147 }
3148
3149 if (end)
3150 __do_contiguous_readpages(tree, &pages[first_index],
3151 index - first_index, start,
125bac01 3152 end, get_extent, em_cached, bio,
808f80b4
FM
3153 mirror_num, bio_flags, rw,
3154 prev_em_start);
9974090b
MX
3155}
3156
3157static int __extent_read_full_page(struct extent_io_tree *tree,
3158 struct page *page,
3159 get_extent_t *get_extent,
3160 struct bio **bio, int mirror_num,
3161 unsigned long *bio_flags, int rw)
3162{
3163 struct inode *inode = page->mapping->host;
3164 struct btrfs_ordered_extent *ordered;
3165 u64 start = page_offset(page);
09cbfeaf 3166 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3167 int ret;
3168
3169 while (1) {
3170 lock_extent(tree, start, end);
dbfdb6d1 3171 ordered = btrfs_lookup_ordered_range(inode, start,
09cbfeaf 3172 PAGE_SIZE);
9974090b
MX
3173 if (!ordered)
3174 break;
3175 unlock_extent(tree, start, end);
3176 btrfs_start_ordered_extent(inode, ordered, 1);
3177 btrfs_put_ordered_extent(ordered);
3178 }
3179
125bac01 3180 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3181 bio_flags, rw, NULL);
9974090b
MX
3182 return ret;
3183}
3184
d1310b2e 3185int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3186 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3187{
3188 struct bio *bio = NULL;
c8b97818 3189 unsigned long bio_flags = 0;
d1310b2e
CM
3190 int ret;
3191
8ddc7d9c 3192 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3193 &bio_flags, READ);
d1310b2e 3194 if (bio)
8ddc7d9c 3195 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3196 return ret;
3197}
d1310b2e 3198
11c8349b
CM
3199static noinline void update_nr_written(struct page *page,
3200 struct writeback_control *wbc,
3201 unsigned long nr_written)
3202{
3203 wbc->nr_to_write -= nr_written;
3204 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3205 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3206 page->mapping->writeback_index = page->index + nr_written;
3207}
3208
d1310b2e 3209/*
40f76580
CM
3210 * helper for __extent_writepage, doing all of the delayed allocation setup.
3211 *
3212 * This returns 1 if our fill_delalloc function did all the work required
3213 * to write the page (copy into inline extent). In this case the IO has
3214 * been started and the page is already unlocked.
3215 *
3216 * This returns 0 if all went well (page still locked)
3217 * This returns < 0 if there were errors (page still locked)
d1310b2e 3218 */
40f76580
CM
3219static noinline_for_stack int writepage_delalloc(struct inode *inode,
3220 struct page *page, struct writeback_control *wbc,
3221 struct extent_page_data *epd,
3222 u64 delalloc_start,
3223 unsigned long *nr_written)
3224{
3225 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3226 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3227 u64 nr_delalloc;
3228 u64 delalloc_to_write = 0;
3229 u64 delalloc_end = 0;
3230 int ret;
3231 int page_started = 0;
3232
3233 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3234 return 0;
3235
3236 while (delalloc_end < page_end) {
3237 nr_delalloc = find_lock_delalloc_range(inode, tree,
3238 page,
3239 &delalloc_start,
3240 &delalloc_end,
dcab6a3b 3241 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3242 if (nr_delalloc == 0) {
3243 delalloc_start = delalloc_end + 1;
3244 continue;
3245 }
3246 ret = tree->ops->fill_delalloc(inode, page,
3247 delalloc_start,
3248 delalloc_end,
3249 &page_started,
3250 nr_written);
3251 /* File system has been set read-only */
3252 if (ret) {
3253 SetPageError(page);
3254 /* fill_delalloc should be return < 0 for error
3255 * but just in case, we use > 0 here meaning the
3256 * IO is started, so we don't want to return > 0
3257 * unless things are going well.
3258 */
3259 ret = ret < 0 ? ret : -EIO;
3260 goto done;
3261 }
3262 /*
ea1754a0
KS
3263 * delalloc_end is already one less than the total length, so
3264 * we don't subtract one from PAGE_SIZE
40f76580
CM
3265 */
3266 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3267 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3268 delalloc_start = delalloc_end + 1;
3269 }
3270 if (wbc->nr_to_write < delalloc_to_write) {
3271 int thresh = 8192;
3272
3273 if (delalloc_to_write < thresh * 2)
3274 thresh = delalloc_to_write;
3275 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3276 thresh);
3277 }
3278
3279 /* did the fill delalloc function already unlock and start
3280 * the IO?
3281 */
3282 if (page_started) {
3283 /*
3284 * we've unlocked the page, so we can't update
3285 * the mapping's writeback index, just update
3286 * nr_to_write.
3287 */
3288 wbc->nr_to_write -= *nr_written;
3289 return 1;
3290 }
3291
3292 ret = 0;
3293
3294done:
3295 return ret;
3296}
3297
3298/*
3299 * helper for __extent_writepage. This calls the writepage start hooks,
3300 * and does the loop to map the page into extents and bios.
3301 *
3302 * We return 1 if the IO is started and the page is unlocked,
3303 * 0 if all went well (page still locked)
3304 * < 0 if there were errors (page still locked)
3305 */
3306static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3307 struct page *page,
3308 struct writeback_control *wbc,
3309 struct extent_page_data *epd,
3310 loff_t i_size,
3311 unsigned long nr_written,
3312 int write_flags, int *nr_ret)
d1310b2e 3313{
d1310b2e 3314 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3315 u64 start = page_offset(page);
09cbfeaf 3316 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3317 u64 end;
3318 u64 cur = start;
3319 u64 extent_offset;
d1310b2e
CM
3320 u64 block_start;
3321 u64 iosize;
3322 sector_t sector;
2c64c53d 3323 struct extent_state *cached_state = NULL;
d1310b2e
CM
3324 struct extent_map *em;
3325 struct block_device *bdev;
7f3c74fb 3326 size_t pg_offset = 0;
d1310b2e 3327 size_t blocksize;
40f76580
CM
3328 int ret = 0;
3329 int nr = 0;
3330 bool compressed;
c8b97818 3331
247e743c 3332 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3333 ret = tree->ops->writepage_start_hook(page, start,
3334 page_end);
87826df0
JM
3335 if (ret) {
3336 /* Fixup worker will requeue */
3337 if (ret == -EBUSY)
3338 wbc->pages_skipped++;
3339 else
3340 redirty_page_for_writepage(wbc, page);
40f76580 3341
11c8349b 3342 update_nr_written(page, wbc, nr_written);
247e743c 3343 unlock_page(page);
40f76580 3344 ret = 1;
11c8349b 3345 goto done_unlocked;
247e743c
CM
3346 }
3347 }
3348
11c8349b
CM
3349 /*
3350 * we don't want to touch the inode after unlocking the page,
3351 * so we update the mapping writeback index now
3352 */
3353 update_nr_written(page, wbc, nr_written + 1);
771ed689 3354
d1310b2e 3355 end = page_end;
40f76580 3356 if (i_size <= start) {
e6dcd2dc
CM
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, start,
3359 page_end, NULL, 1);
d1310b2e
CM
3360 goto done;
3361 }
3362
d1310b2e
CM
3363 blocksize = inode->i_sb->s_blocksize;
3364
3365 while (cur <= end) {
40f76580
CM
3366 u64 em_end;
3367 if (cur >= i_size) {
e6dcd2dc
CM
3368 if (tree->ops && tree->ops->writepage_end_io_hook)
3369 tree->ops->writepage_end_io_hook(page, cur,
3370 page_end, NULL, 1);
d1310b2e
CM
3371 break;
3372 }
7f3c74fb 3373 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3374 end - cur + 1, 1);
c704005d 3375 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3376 SetPageError(page);
61391d56 3377 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3378 break;
3379 }
3380
3381 extent_offset = cur - em->start;
40f76580
CM
3382 em_end = extent_map_end(em);
3383 BUG_ON(em_end <= cur);
d1310b2e 3384 BUG_ON(end < cur);
40f76580 3385 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3386 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3387 sector = (em->block_start + extent_offset) >> 9;
3388 bdev = em->bdev;
3389 block_start = em->block_start;
c8b97818 3390 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3391 free_extent_map(em);
3392 em = NULL;
3393
c8b97818
CM
3394 /*
3395 * compressed and inline extents are written through other
3396 * paths in the FS
3397 */
3398 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3399 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3400 /*
3401 * end_io notification does not happen here for
3402 * compressed extents
3403 */
3404 if (!compressed && tree->ops &&
3405 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3406 tree->ops->writepage_end_io_hook(page, cur,
3407 cur + iosize - 1,
3408 NULL, 1);
c8b97818
CM
3409 else if (compressed) {
3410 /* we don't want to end_page_writeback on
3411 * a compressed extent. this happens
3412 * elsewhere
3413 */
3414 nr++;
3415 }
3416
3417 cur += iosize;
7f3c74fb 3418 pg_offset += iosize;
d1310b2e
CM
3419 continue;
3420 }
c8b97818 3421
d1310b2e
CM
3422 if (tree->ops && tree->ops->writepage_io_hook) {
3423 ret = tree->ops->writepage_io_hook(page, cur,
3424 cur + iosize - 1);
3425 } else {
3426 ret = 0;
3427 }
1259ab75 3428 if (ret) {
d1310b2e 3429 SetPageError(page);
1259ab75 3430 } else {
09cbfeaf 3431 unsigned long max_nr = (i_size >> PAGE_SHIFT) + 1;
7f3c74fb 3432
d1310b2e
CM
3433 set_range_writeback(tree, cur, cur + iosize - 1);
3434 if (!PageWriteback(page)) {
efe120a0
FH
3435 btrfs_err(BTRFS_I(inode)->root->fs_info,
3436 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3437 page->index, cur, end);
d1310b2e
CM
3438 }
3439
da2f0f74 3440 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3441 sector, iosize, pg_offset,
3442 bdev, &epd->bio, max_nr,
c8b97818 3443 end_bio_extent_writepage,
005efedf 3444 0, 0, 0, false);
d1310b2e
CM
3445 if (ret)
3446 SetPageError(page);
3447 }
3448 cur = cur + iosize;
7f3c74fb 3449 pg_offset += iosize;
d1310b2e
CM
3450 nr++;
3451 }
40f76580
CM
3452done:
3453 *nr_ret = nr;
3454
3455done_unlocked:
3456
3457 /* drop our reference on any cached states */
3458 free_extent_state(cached_state);
3459 return ret;
3460}
3461
3462/*
3463 * the writepage semantics are similar to regular writepage. extent
3464 * records are inserted to lock ranges in the tree, and as dirty areas
3465 * are found, they are marked writeback. Then the lock bits are removed
3466 * and the end_io handler clears the writeback ranges
3467 */
3468static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3469 void *data)
3470{
3471 struct inode *inode = page->mapping->host;
3472 struct extent_page_data *epd = data;
3473 u64 start = page_offset(page);
09cbfeaf 3474 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3475 int ret;
3476 int nr = 0;
3477 size_t pg_offset = 0;
3478 loff_t i_size = i_size_read(inode);
09cbfeaf 3479 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3480 int write_flags;
3481 unsigned long nr_written = 0;
3482
3483 if (wbc->sync_mode == WB_SYNC_ALL)
3484 write_flags = WRITE_SYNC;
3485 else
3486 write_flags = WRITE;
3487
3488 trace___extent_writepage(page, inode, wbc);
3489
3490 WARN_ON(!PageLocked(page));
3491
3492 ClearPageError(page);
3493
09cbfeaf 3494 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3495 if (page->index > end_index ||
3496 (page->index == end_index && !pg_offset)) {
09cbfeaf 3497 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3498 unlock_page(page);
3499 return 0;
3500 }
3501
3502 if (page->index == end_index) {
3503 char *userpage;
3504
3505 userpage = kmap_atomic(page);
3506 memset(userpage + pg_offset, 0,
09cbfeaf 3507 PAGE_SIZE - pg_offset);
40f76580
CM
3508 kunmap_atomic(userpage);
3509 flush_dcache_page(page);
3510 }
3511
3512 pg_offset = 0;
3513
3514 set_page_extent_mapped(page);
3515
3516 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3517 if (ret == 1)
3518 goto done_unlocked;
3519 if (ret)
3520 goto done;
3521
3522 ret = __extent_writepage_io(inode, page, wbc, epd,
3523 i_size, nr_written, write_flags, &nr);
3524 if (ret == 1)
3525 goto done_unlocked;
3526
d1310b2e
CM
3527done:
3528 if (nr == 0) {
3529 /* make sure the mapping tag for page dirty gets cleared */
3530 set_page_writeback(page);
3531 end_page_writeback(page);
3532 }
61391d56
FM
3533 if (PageError(page)) {
3534 ret = ret < 0 ? ret : -EIO;
3535 end_extent_writepage(page, ret, start, page_end);
3536 }
d1310b2e 3537 unlock_page(page);
40f76580 3538 return ret;
771ed689 3539
11c8349b 3540done_unlocked:
d1310b2e
CM
3541 return 0;
3542}
3543
fd8b2b61 3544void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3545{
74316201
N
3546 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3547 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3548}
3549
0e378df1
CM
3550static noinline_for_stack int
3551lock_extent_buffer_for_io(struct extent_buffer *eb,
3552 struct btrfs_fs_info *fs_info,
3553 struct extent_page_data *epd)
0b32f4bb
JB
3554{
3555 unsigned long i, num_pages;
3556 int flush = 0;
3557 int ret = 0;
3558
3559 if (!btrfs_try_tree_write_lock(eb)) {
3560 flush = 1;
3561 flush_write_bio(epd);
3562 btrfs_tree_lock(eb);
3563 }
3564
3565 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3566 btrfs_tree_unlock(eb);
3567 if (!epd->sync_io)
3568 return 0;
3569 if (!flush) {
3570 flush_write_bio(epd);
3571 flush = 1;
3572 }
a098d8e8
CM
3573 while (1) {
3574 wait_on_extent_buffer_writeback(eb);
3575 btrfs_tree_lock(eb);
3576 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3577 break;
0b32f4bb 3578 btrfs_tree_unlock(eb);
0b32f4bb
JB
3579 }
3580 }
3581
51561ffe
JB
3582 /*
3583 * We need to do this to prevent races in people who check if the eb is
3584 * under IO since we can end up having no IO bits set for a short period
3585 * of time.
3586 */
3587 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3588 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3589 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3590 spin_unlock(&eb->refs_lock);
0b32f4bb 3591 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3592 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3593 -eb->len,
3594 fs_info->dirty_metadata_batch);
0b32f4bb 3595 ret = 1;
51561ffe
JB
3596 } else {
3597 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3598 }
3599
3600 btrfs_tree_unlock(eb);
3601
3602 if (!ret)
3603 return ret;
3604
3605 num_pages = num_extent_pages(eb->start, eb->len);
3606 for (i = 0; i < num_pages; i++) {
fb85fc9a 3607 struct page *p = eb->pages[i];
0b32f4bb
JB
3608
3609 if (!trylock_page(p)) {
3610 if (!flush) {
3611 flush_write_bio(epd);
3612 flush = 1;
3613 }
3614 lock_page(p);
3615 }
3616 }
3617
3618 return ret;
3619}
3620
3621static void end_extent_buffer_writeback(struct extent_buffer *eb)
3622{
3623 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3624 smp_mb__after_atomic();
0b32f4bb
JB
3625 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3626}
3627
656f30db
FM
3628static void set_btree_ioerr(struct page *page)
3629{
3630 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3631 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3632
3633 SetPageError(page);
3634 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3635 return;
3636
3637 /*
3638 * If writeback for a btree extent that doesn't belong to a log tree
3639 * failed, increment the counter transaction->eb_write_errors.
3640 * We do this because while the transaction is running and before it's
3641 * committing (when we call filemap_fdata[write|wait]_range against
3642 * the btree inode), we might have
3643 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3644 * returns an error or an error happens during writeback, when we're
3645 * committing the transaction we wouldn't know about it, since the pages
3646 * can be no longer dirty nor marked anymore for writeback (if a
3647 * subsequent modification to the extent buffer didn't happen before the
3648 * transaction commit), which makes filemap_fdata[write|wait]_range not
3649 * able to find the pages tagged with SetPageError at transaction
3650 * commit time. So if this happens we must abort the transaction,
3651 * otherwise we commit a super block with btree roots that point to
3652 * btree nodes/leafs whose content on disk is invalid - either garbage
3653 * or the content of some node/leaf from a past generation that got
3654 * cowed or deleted and is no longer valid.
3655 *
3656 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3657 * not be enough - we need to distinguish between log tree extents vs
3658 * non-log tree extents, and the next filemap_fdatawait_range() call
3659 * will catch and clear such errors in the mapping - and that call might
3660 * be from a log sync and not from a transaction commit. Also, checking
3661 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3662 * not done and would not be reliable - the eb might have been released
3663 * from memory and reading it back again means that flag would not be
3664 * set (since it's a runtime flag, not persisted on disk).
3665 *
3666 * Using the flags below in the btree inode also makes us achieve the
3667 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3668 * writeback for all dirty pages and before filemap_fdatawait_range()
3669 * is called, the writeback for all dirty pages had already finished
3670 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3671 * filemap_fdatawait_range() would return success, as it could not know
3672 * that writeback errors happened (the pages were no longer tagged for
3673 * writeback).
3674 */
3675 switch (eb->log_index) {
3676 case -1:
3677 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3678 break;
3679 case 0:
3680 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3681 break;
3682 case 1:
3683 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3684 break;
3685 default:
3686 BUG(); /* unexpected, logic error */
3687 }
3688}
3689
4246a0b6 3690static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3691{
2c30c71b 3692 struct bio_vec *bvec;
0b32f4bb 3693 struct extent_buffer *eb;
2c30c71b 3694 int i, done;
0b32f4bb 3695
2c30c71b 3696 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3697 struct page *page = bvec->bv_page;
3698
0b32f4bb
JB
3699 eb = (struct extent_buffer *)page->private;
3700 BUG_ON(!eb);
3701 done = atomic_dec_and_test(&eb->io_pages);
3702
4246a0b6
CH
3703 if (bio->bi_error ||
3704 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3705 ClearPageUptodate(page);
656f30db 3706 set_btree_ioerr(page);
0b32f4bb
JB
3707 }
3708
3709 end_page_writeback(page);
3710
3711 if (!done)
3712 continue;
3713
3714 end_extent_buffer_writeback(eb);
2c30c71b 3715 }
0b32f4bb
JB
3716
3717 bio_put(bio);
0b32f4bb
JB
3718}
3719
0e378df1 3720static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3721 struct btrfs_fs_info *fs_info,
3722 struct writeback_control *wbc,
3723 struct extent_page_data *epd)
3724{
3725 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3726 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3727 u64 offset = eb->start;
3728 unsigned long i, num_pages;
de0022b9 3729 unsigned long bio_flags = 0;
d4c7ca86 3730 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3731 int ret = 0;
0b32f4bb 3732
656f30db 3733 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3734 num_pages = num_extent_pages(eb->start, eb->len);
3735 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3736 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3737 bio_flags = EXTENT_BIO_TREE_LOG;
3738
0b32f4bb 3739 for (i = 0; i < num_pages; i++) {
fb85fc9a 3740 struct page *p = eb->pages[i];
0b32f4bb
JB
3741
3742 clear_page_dirty_for_io(p);
3743 set_page_writeback(p);
da2f0f74 3744 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
09cbfeaf 3745 PAGE_SIZE, 0, bdev, &epd->bio,
0b32f4bb 3746 -1, end_bio_extent_buffer_writepage,
005efedf 3747 0, epd->bio_flags, bio_flags, false);
de0022b9 3748 epd->bio_flags = bio_flags;
0b32f4bb 3749 if (ret) {
656f30db 3750 set_btree_ioerr(p);
55e3bd2e 3751 end_page_writeback(p);
0b32f4bb
JB
3752 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3753 end_extent_buffer_writeback(eb);
3754 ret = -EIO;
3755 break;
3756 }
09cbfeaf 3757 offset += PAGE_SIZE;
0b32f4bb
JB
3758 update_nr_written(p, wbc, 1);
3759 unlock_page(p);
3760 }
3761
3762 if (unlikely(ret)) {
3763 for (; i < num_pages; i++) {
bbf65cf0 3764 struct page *p = eb->pages[i];
81465028 3765 clear_page_dirty_for_io(p);
0b32f4bb
JB
3766 unlock_page(p);
3767 }
3768 }
3769
3770 return ret;
3771}
3772
3773int btree_write_cache_pages(struct address_space *mapping,
3774 struct writeback_control *wbc)
3775{
3776 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3777 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3778 struct extent_buffer *eb, *prev_eb = NULL;
3779 struct extent_page_data epd = {
3780 .bio = NULL,
3781 .tree = tree,
3782 .extent_locked = 0,
3783 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3784 .bio_flags = 0,
0b32f4bb
JB
3785 };
3786 int ret = 0;
3787 int done = 0;
3788 int nr_to_write_done = 0;
3789 struct pagevec pvec;
3790 int nr_pages;
3791 pgoff_t index;
3792 pgoff_t end; /* Inclusive */
3793 int scanned = 0;
3794 int tag;
3795
3796 pagevec_init(&pvec, 0);
3797 if (wbc->range_cyclic) {
3798 index = mapping->writeback_index; /* Start from prev offset */
3799 end = -1;
3800 } else {
09cbfeaf
KS
3801 index = wbc->range_start >> PAGE_SHIFT;
3802 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3803 scanned = 1;
3804 }
3805 if (wbc->sync_mode == WB_SYNC_ALL)
3806 tag = PAGECACHE_TAG_TOWRITE;
3807 else
3808 tag = PAGECACHE_TAG_DIRTY;
3809retry:
3810 if (wbc->sync_mode == WB_SYNC_ALL)
3811 tag_pages_for_writeback(mapping, index, end);
3812 while (!done && !nr_to_write_done && (index <= end) &&
3813 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3814 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3815 unsigned i;
3816
3817 scanned = 1;
3818 for (i = 0; i < nr_pages; i++) {
3819 struct page *page = pvec.pages[i];
3820
3821 if (!PagePrivate(page))
3822 continue;
3823
3824 if (!wbc->range_cyclic && page->index > end) {
3825 done = 1;
3826 break;
3827 }
3828
b5bae261
JB
3829 spin_lock(&mapping->private_lock);
3830 if (!PagePrivate(page)) {
3831 spin_unlock(&mapping->private_lock);
3832 continue;
3833 }
3834
0b32f4bb 3835 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3836
3837 /*
3838 * Shouldn't happen and normally this would be a BUG_ON
3839 * but no sense in crashing the users box for something
3840 * we can survive anyway.
3841 */
fae7f21c 3842 if (WARN_ON(!eb)) {
b5bae261 3843 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3844 continue;
3845 }
3846
b5bae261
JB
3847 if (eb == prev_eb) {
3848 spin_unlock(&mapping->private_lock);
0b32f4bb 3849 continue;
b5bae261 3850 }
0b32f4bb 3851
b5bae261
JB
3852 ret = atomic_inc_not_zero(&eb->refs);
3853 spin_unlock(&mapping->private_lock);
3854 if (!ret)
0b32f4bb 3855 continue;
0b32f4bb
JB
3856
3857 prev_eb = eb;
3858 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3859 if (!ret) {
3860 free_extent_buffer(eb);
3861 continue;
3862 }
3863
3864 ret = write_one_eb(eb, fs_info, wbc, &epd);
3865 if (ret) {
3866 done = 1;
3867 free_extent_buffer(eb);
3868 break;
3869 }
3870 free_extent_buffer(eb);
3871
3872 /*
3873 * the filesystem may choose to bump up nr_to_write.
3874 * We have to make sure to honor the new nr_to_write
3875 * at any time
3876 */
3877 nr_to_write_done = wbc->nr_to_write <= 0;
3878 }
3879 pagevec_release(&pvec);
3880 cond_resched();
3881 }
3882 if (!scanned && !done) {
3883 /*
3884 * We hit the last page and there is more work to be done: wrap
3885 * back to the start of the file
3886 */
3887 scanned = 1;
3888 index = 0;
3889 goto retry;
3890 }
3891 flush_write_bio(&epd);
3892 return ret;
3893}
3894
d1310b2e 3895/**
4bef0848 3896 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3897 * @mapping: address space structure to write
3898 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3899 * @writepage: function called for each page
3900 * @data: data passed to writepage function
3901 *
3902 * If a page is already under I/O, write_cache_pages() skips it, even
3903 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3904 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3905 * and msync() need to guarantee that all the data which was dirty at the time
3906 * the call was made get new I/O started against them. If wbc->sync_mode is
3907 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3908 * existing IO to complete.
3909 */
b2950863 3910static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3911 struct address_space *mapping,
3912 struct writeback_control *wbc,
d2c3f4f6
CM
3913 writepage_t writepage, void *data,
3914 void (*flush_fn)(void *))
d1310b2e 3915{
7fd1a3f7 3916 struct inode *inode = mapping->host;
d1310b2e
CM
3917 int ret = 0;
3918 int done = 0;
61391d56 3919 int err = 0;
f85d7d6c 3920 int nr_to_write_done = 0;
d1310b2e
CM
3921 struct pagevec pvec;
3922 int nr_pages;
3923 pgoff_t index;
3924 pgoff_t end; /* Inclusive */
3925 int scanned = 0;
f7aaa06b 3926 int tag;
d1310b2e 3927
7fd1a3f7
JB
3928 /*
3929 * We have to hold onto the inode so that ordered extents can do their
3930 * work when the IO finishes. The alternative to this is failing to add
3931 * an ordered extent if the igrab() fails there and that is a huge pain
3932 * to deal with, so instead just hold onto the inode throughout the
3933 * writepages operation. If it fails here we are freeing up the inode
3934 * anyway and we'd rather not waste our time writing out stuff that is
3935 * going to be truncated anyway.
3936 */
3937 if (!igrab(inode))
3938 return 0;
3939
d1310b2e
CM
3940 pagevec_init(&pvec, 0);
3941 if (wbc->range_cyclic) {
3942 index = mapping->writeback_index; /* Start from prev offset */
3943 end = -1;
3944 } else {
09cbfeaf
KS
3945 index = wbc->range_start >> PAGE_SHIFT;
3946 end = wbc->range_end >> PAGE_SHIFT;
d1310b2e
CM
3947 scanned = 1;
3948 }
f7aaa06b
JB
3949 if (wbc->sync_mode == WB_SYNC_ALL)
3950 tag = PAGECACHE_TAG_TOWRITE;
3951 else
3952 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3953retry:
f7aaa06b
JB
3954 if (wbc->sync_mode == WB_SYNC_ALL)
3955 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3956 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3957 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3958 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3959 unsigned i;
3960
3961 scanned = 1;
3962 for (i = 0; i < nr_pages; i++) {
3963 struct page *page = pvec.pages[i];
3964
3965 /*
3966 * At this point we hold neither mapping->tree_lock nor
3967 * lock on the page itself: the page may be truncated or
3968 * invalidated (changing page->mapping to NULL), or even
3969 * swizzled back from swapper_space to tmpfs file
3970 * mapping
3971 */
c8f2f24b
JB
3972 if (!trylock_page(page)) {
3973 flush_fn(data);
3974 lock_page(page);
01d658f2 3975 }
d1310b2e
CM
3976
3977 if (unlikely(page->mapping != mapping)) {
3978 unlock_page(page);
3979 continue;
3980 }
3981
3982 if (!wbc->range_cyclic && page->index > end) {
3983 done = 1;
3984 unlock_page(page);
3985 continue;
3986 }
3987
d2c3f4f6 3988 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3989 if (PageWriteback(page))
3990 flush_fn(data);
d1310b2e 3991 wait_on_page_writeback(page);
d2c3f4f6 3992 }
d1310b2e
CM
3993
3994 if (PageWriteback(page) ||
3995 !clear_page_dirty_for_io(page)) {
3996 unlock_page(page);
3997 continue;
3998 }
3999
4000 ret = (*writepage)(page, wbc, data);
4001
4002 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4003 unlock_page(page);
4004 ret = 0;
4005 }
61391d56
FM
4006 if (!err && ret < 0)
4007 err = ret;
f85d7d6c
CM
4008
4009 /*
4010 * the filesystem may choose to bump up nr_to_write.
4011 * We have to make sure to honor the new nr_to_write
4012 * at any time
4013 */
4014 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4015 }
4016 pagevec_release(&pvec);
4017 cond_resched();
4018 }
61391d56 4019 if (!scanned && !done && !err) {
d1310b2e
CM
4020 /*
4021 * We hit the last page and there is more work to be done: wrap
4022 * back to the start of the file
4023 */
4024 scanned = 1;
4025 index = 0;
4026 goto retry;
4027 }
7fd1a3f7 4028 btrfs_add_delayed_iput(inode);
61391d56 4029 return err;
d1310b2e 4030}
d1310b2e 4031
ffbd517d 4032static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4033{
d2c3f4f6 4034 if (epd->bio) {
355808c2
JM
4035 int rw = WRITE;
4036 int ret;
4037
ffbd517d 4038 if (epd->sync_io)
355808c2
JM
4039 rw = WRITE_SYNC;
4040
de0022b9 4041 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4042 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4043 epd->bio = NULL;
4044 }
4045}
4046
ffbd517d
CM
4047static noinline void flush_write_bio(void *data)
4048{
4049 struct extent_page_data *epd = data;
4050 flush_epd_write_bio(epd);
4051}
4052
d1310b2e
CM
4053int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4054 get_extent_t *get_extent,
4055 struct writeback_control *wbc)
4056{
4057 int ret;
d1310b2e
CM
4058 struct extent_page_data epd = {
4059 .bio = NULL,
4060 .tree = tree,
4061 .get_extent = get_extent,
771ed689 4062 .extent_locked = 0,
ffbd517d 4063 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4064 .bio_flags = 0,
d1310b2e 4065 };
d1310b2e 4066
d1310b2e
CM
4067 ret = __extent_writepage(page, wbc, &epd);
4068
ffbd517d 4069 flush_epd_write_bio(&epd);
d1310b2e
CM
4070 return ret;
4071}
d1310b2e 4072
771ed689
CM
4073int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4074 u64 start, u64 end, get_extent_t *get_extent,
4075 int mode)
4076{
4077 int ret = 0;
4078 struct address_space *mapping = inode->i_mapping;
4079 struct page *page;
09cbfeaf
KS
4080 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4081 PAGE_SHIFT;
771ed689
CM
4082
4083 struct extent_page_data epd = {
4084 .bio = NULL,
4085 .tree = tree,
4086 .get_extent = get_extent,
4087 .extent_locked = 1,
ffbd517d 4088 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4089 .bio_flags = 0,
771ed689
CM
4090 };
4091 struct writeback_control wbc_writepages = {
771ed689 4092 .sync_mode = mode,
771ed689
CM
4093 .nr_to_write = nr_pages * 2,
4094 .range_start = start,
4095 .range_end = end + 1,
4096 };
4097
d397712b 4098 while (start <= end) {
09cbfeaf 4099 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4100 if (clear_page_dirty_for_io(page))
4101 ret = __extent_writepage(page, &wbc_writepages, &epd);
4102 else {
4103 if (tree->ops && tree->ops->writepage_end_io_hook)
4104 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4105 start + PAGE_SIZE - 1,
771ed689
CM
4106 NULL, 1);
4107 unlock_page(page);
4108 }
09cbfeaf
KS
4109 put_page(page);
4110 start += PAGE_SIZE;
771ed689
CM
4111 }
4112
ffbd517d 4113 flush_epd_write_bio(&epd);
771ed689
CM
4114 return ret;
4115}
d1310b2e
CM
4116
4117int extent_writepages(struct extent_io_tree *tree,
4118 struct address_space *mapping,
4119 get_extent_t *get_extent,
4120 struct writeback_control *wbc)
4121{
4122 int ret = 0;
4123 struct extent_page_data epd = {
4124 .bio = NULL,
4125 .tree = tree,
4126 .get_extent = get_extent,
771ed689 4127 .extent_locked = 0,
ffbd517d 4128 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4129 .bio_flags = 0,
d1310b2e
CM
4130 };
4131
4bef0848 4132 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4133 __extent_writepage, &epd,
4134 flush_write_bio);
ffbd517d 4135 flush_epd_write_bio(&epd);
d1310b2e
CM
4136 return ret;
4137}
d1310b2e
CM
4138
4139int extent_readpages(struct extent_io_tree *tree,
4140 struct address_space *mapping,
4141 struct list_head *pages, unsigned nr_pages,
4142 get_extent_t get_extent)
4143{
4144 struct bio *bio = NULL;
4145 unsigned page_idx;
c8b97818 4146 unsigned long bio_flags = 0;
67c9684f
LB
4147 struct page *pagepool[16];
4148 struct page *page;
125bac01 4149 struct extent_map *em_cached = NULL;
67c9684f 4150 int nr = 0;
808f80b4 4151 u64 prev_em_start = (u64)-1;
d1310b2e 4152
d1310b2e 4153 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4154 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4155
4156 prefetchw(&page->flags);
4157 list_del(&page->lru);
67c9684f 4158 if (add_to_page_cache_lru(page, mapping,
43e817a1 4159 page->index, GFP_NOFS)) {
09cbfeaf 4160 put_page(page);
67c9684f 4161 continue;
d1310b2e 4162 }
67c9684f
LB
4163
4164 pagepool[nr++] = page;
4165 if (nr < ARRAY_SIZE(pagepool))
4166 continue;
125bac01 4167 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4168 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4169 nr = 0;
d1310b2e 4170 }
9974090b 4171 if (nr)
125bac01 4172 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4173 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4174
125bac01
MX
4175 if (em_cached)
4176 free_extent_map(em_cached);
4177
d1310b2e
CM
4178 BUG_ON(!list_empty(pages));
4179 if (bio)
79787eaa 4180 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4181 return 0;
4182}
d1310b2e
CM
4183
4184/*
4185 * basic invalidatepage code, this waits on any locked or writeback
4186 * ranges corresponding to the page, and then deletes any extent state
4187 * records from the tree
4188 */
4189int extent_invalidatepage(struct extent_io_tree *tree,
4190 struct page *page, unsigned long offset)
4191{
2ac55d41 4192 struct extent_state *cached_state = NULL;
4eee4fa4 4193 u64 start = page_offset(page);
09cbfeaf 4194 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4195 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4196
fda2832f 4197 start += ALIGN(offset, blocksize);
d1310b2e
CM
4198 if (start > end)
4199 return 0;
4200
ff13db41 4201 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4202 wait_on_page_writeback(page);
d1310b2e 4203 clear_extent_bit(tree, start, end,
32c00aff
JB
4204 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4205 EXTENT_DO_ACCOUNTING,
2ac55d41 4206 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4207 return 0;
4208}
d1310b2e 4209
7b13b7b1
CM
4210/*
4211 * a helper for releasepage, this tests for areas of the page that
4212 * are locked or under IO and drops the related state bits if it is safe
4213 * to drop the page.
4214 */
48a3b636
ES
4215static int try_release_extent_state(struct extent_map_tree *map,
4216 struct extent_io_tree *tree,
4217 struct page *page, gfp_t mask)
7b13b7b1 4218{
4eee4fa4 4219 u64 start = page_offset(page);
09cbfeaf 4220 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4221 int ret = 1;
4222
211f90e6 4223 if (test_range_bit(tree, start, end,
8b62b72b 4224 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4225 ret = 0;
4226 else {
4227 if ((mask & GFP_NOFS) == GFP_NOFS)
4228 mask = GFP_NOFS;
11ef160f
CM
4229 /*
4230 * at this point we can safely clear everything except the
4231 * locked bit and the nodatasum bit
4232 */
e3f24cc5 4233 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4234 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4235 0, 0, NULL, mask);
e3f24cc5
CM
4236
4237 /* if clear_extent_bit failed for enomem reasons,
4238 * we can't allow the release to continue.
4239 */
4240 if (ret < 0)
4241 ret = 0;
4242 else
4243 ret = 1;
7b13b7b1
CM
4244 }
4245 return ret;
4246}
7b13b7b1 4247
d1310b2e
CM
4248/*
4249 * a helper for releasepage. As long as there are no locked extents
4250 * in the range corresponding to the page, both state records and extent
4251 * map records are removed
4252 */
4253int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4254 struct extent_io_tree *tree, struct page *page,
4255 gfp_t mask)
d1310b2e
CM
4256{
4257 struct extent_map *em;
4eee4fa4 4258 u64 start = page_offset(page);
09cbfeaf 4259 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4260
d0164adc 4261 if (gfpflags_allow_blocking(mask) &&
ee22184b 4262 page->mapping->host->i_size > SZ_16M) {
39b5637f 4263 u64 len;
70dec807 4264 while (start <= end) {
39b5637f 4265 len = end - start + 1;
890871be 4266 write_lock(&map->lock);
39b5637f 4267 em = lookup_extent_mapping(map, start, len);
285190d9 4268 if (!em) {
890871be 4269 write_unlock(&map->lock);
70dec807
CM
4270 break;
4271 }
7f3c74fb
CM
4272 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4273 em->start != start) {
890871be 4274 write_unlock(&map->lock);
70dec807
CM
4275 free_extent_map(em);
4276 break;
4277 }
4278 if (!test_range_bit(tree, em->start,
4279 extent_map_end(em) - 1,
8b62b72b 4280 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4281 0, NULL)) {
70dec807
CM
4282 remove_extent_mapping(map, em);
4283 /* once for the rb tree */
4284 free_extent_map(em);
4285 }
4286 start = extent_map_end(em);
890871be 4287 write_unlock(&map->lock);
70dec807
CM
4288
4289 /* once for us */
d1310b2e
CM
4290 free_extent_map(em);
4291 }
d1310b2e 4292 }
7b13b7b1 4293 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4294}
d1310b2e 4295
ec29ed5b
CM
4296/*
4297 * helper function for fiemap, which doesn't want to see any holes.
4298 * This maps until we find something past 'last'
4299 */
4300static struct extent_map *get_extent_skip_holes(struct inode *inode,
4301 u64 offset,
4302 u64 last,
4303 get_extent_t *get_extent)
4304{
4305 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4306 struct extent_map *em;
4307 u64 len;
4308
4309 if (offset >= last)
4310 return NULL;
4311
67871254 4312 while (1) {
ec29ed5b
CM
4313 len = last - offset;
4314 if (len == 0)
4315 break;
fda2832f 4316 len = ALIGN(len, sectorsize);
ec29ed5b 4317 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4318 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4319 return em;
4320
4321 /* if this isn't a hole return it */
4322 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4323 em->block_start != EXTENT_MAP_HOLE) {
4324 return em;
4325 }
4326
4327 /* this is a hole, advance to the next extent */
4328 offset = extent_map_end(em);
4329 free_extent_map(em);
4330 if (offset >= last)
4331 break;
4332 }
4333 return NULL;
4334}
4335
1506fcc8
YS
4336int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4337 __u64 start, __u64 len, get_extent_t *get_extent)
4338{
975f84fe 4339 int ret = 0;
1506fcc8
YS
4340 u64 off = start;
4341 u64 max = start + len;
4342 u32 flags = 0;
975f84fe
JB
4343 u32 found_type;
4344 u64 last;
ec29ed5b 4345 u64 last_for_get_extent = 0;
1506fcc8 4346 u64 disko = 0;
ec29ed5b 4347 u64 isize = i_size_read(inode);
975f84fe 4348 struct btrfs_key found_key;
1506fcc8 4349 struct extent_map *em = NULL;
2ac55d41 4350 struct extent_state *cached_state = NULL;
975f84fe 4351 struct btrfs_path *path;
dc046b10 4352 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4353 int end = 0;
ec29ed5b
CM
4354 u64 em_start = 0;
4355 u64 em_len = 0;
4356 u64 em_end = 0;
1506fcc8
YS
4357
4358 if (len == 0)
4359 return -EINVAL;
4360
975f84fe
JB
4361 path = btrfs_alloc_path();
4362 if (!path)
4363 return -ENOMEM;
4364 path->leave_spinning = 1;
4365
2c91943b
QW
4366 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4367 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4368
ec29ed5b
CM
4369 /*
4370 * lookup the last file extent. We're not using i_size here
4371 * because there might be preallocation past i_size
4372 */
dc046b10
JB
4373 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4374 0);
975f84fe
JB
4375 if (ret < 0) {
4376 btrfs_free_path(path);
4377 return ret;
4378 }
4379 WARN_ON(!ret);
4380 path->slots[0]--;
975f84fe 4381 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4382 found_type = found_key.type;
975f84fe 4383
ec29ed5b 4384 /* No extents, but there might be delalloc bits */
33345d01 4385 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4386 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4387 /* have to trust i_size as the end */
4388 last = (u64)-1;
4389 last_for_get_extent = isize;
4390 } else {
4391 /*
4392 * remember the start of the last extent. There are a
4393 * bunch of different factors that go into the length of the
4394 * extent, so its much less complex to remember where it started
4395 */
4396 last = found_key.offset;
4397 last_for_get_extent = last + 1;
975f84fe 4398 }
fe09e16c 4399 btrfs_release_path(path);
975f84fe 4400
ec29ed5b
CM
4401 /*
4402 * we might have some extents allocated but more delalloc past those
4403 * extents. so, we trust isize unless the start of the last extent is
4404 * beyond isize
4405 */
4406 if (last < isize) {
4407 last = (u64)-1;
4408 last_for_get_extent = isize;
4409 }
4410
ff13db41 4411 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4412 &cached_state);
ec29ed5b 4413
4d479cf0 4414 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4415 get_extent);
1506fcc8
YS
4416 if (!em)
4417 goto out;
4418 if (IS_ERR(em)) {
4419 ret = PTR_ERR(em);
4420 goto out;
4421 }
975f84fe 4422
1506fcc8 4423 while (!end) {
b76bb701 4424 u64 offset_in_extent = 0;
ea8efc74
CM
4425
4426 /* break if the extent we found is outside the range */
4427 if (em->start >= max || extent_map_end(em) < off)
4428 break;
4429
4430 /*
4431 * get_extent may return an extent that starts before our
4432 * requested range. We have to make sure the ranges
4433 * we return to fiemap always move forward and don't
4434 * overlap, so adjust the offsets here
4435 */
4436 em_start = max(em->start, off);
1506fcc8 4437
ea8efc74
CM
4438 /*
4439 * record the offset from the start of the extent
b76bb701
JB
4440 * for adjusting the disk offset below. Only do this if the
4441 * extent isn't compressed since our in ram offset may be past
4442 * what we have actually allocated on disk.
ea8efc74 4443 */
b76bb701
JB
4444 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4445 offset_in_extent = em_start - em->start;
ec29ed5b 4446 em_end = extent_map_end(em);
ea8efc74 4447 em_len = em_end - em_start;
1506fcc8
YS
4448 disko = 0;
4449 flags = 0;
4450
ea8efc74
CM
4451 /*
4452 * bump off for our next call to get_extent
4453 */
4454 off = extent_map_end(em);
4455 if (off >= max)
4456 end = 1;
4457
93dbfad7 4458 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4459 end = 1;
4460 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4461 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4462 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4463 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4464 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4465 flags |= (FIEMAP_EXTENT_DELALLOC |
4466 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4467 } else if (fieinfo->fi_extents_max) {
4468 u64 bytenr = em->block_start -
4469 (em->start - em->orig_start);
fe09e16c 4470
ea8efc74 4471 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4472
4473 /*
4474 * As btrfs supports shared space, this information
4475 * can be exported to userspace tools via
dc046b10
JB
4476 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4477 * then we're just getting a count and we can skip the
4478 * lookup stuff.
fe09e16c 4479 */
dc046b10
JB
4480 ret = btrfs_check_shared(NULL, root->fs_info,
4481 root->objectid,
4482 btrfs_ino(inode), bytenr);
4483 if (ret < 0)
fe09e16c 4484 goto out_free;
dc046b10 4485 if (ret)
fe09e16c 4486 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4487 ret = 0;
1506fcc8
YS
4488 }
4489 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4490 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4491 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4492 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4493
1506fcc8
YS
4494 free_extent_map(em);
4495 em = NULL;
ec29ed5b
CM
4496 if ((em_start >= last) || em_len == (u64)-1 ||
4497 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4498 flags |= FIEMAP_EXTENT_LAST;
4499 end = 1;
4500 }
4501
ec29ed5b
CM
4502 /* now scan forward to see if this is really the last extent. */
4503 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4504 get_extent);
4505 if (IS_ERR(em)) {
4506 ret = PTR_ERR(em);
4507 goto out;
4508 }
4509 if (!em) {
975f84fe
JB
4510 flags |= FIEMAP_EXTENT_LAST;
4511 end = 1;
4512 }
ec29ed5b
CM
4513 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4514 em_len, flags);
26e726af
CS
4515 if (ret) {
4516 if (ret == 1)
4517 ret = 0;
ec29ed5b 4518 goto out_free;
26e726af 4519 }
1506fcc8
YS
4520 }
4521out_free:
4522 free_extent_map(em);
4523out:
fe09e16c 4524 btrfs_free_path(path);
a52f4cd2 4525 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4526 &cached_state, GFP_NOFS);
1506fcc8
YS
4527 return ret;
4528}
4529
727011e0
CM
4530static void __free_extent_buffer(struct extent_buffer *eb)
4531{
6d49ba1b 4532 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4533 kmem_cache_free(extent_buffer_cache, eb);
4534}
4535
a26e8c9f 4536int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4537{
4538 return (atomic_read(&eb->io_pages) ||
4539 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4540 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4541}
4542
4543/*
4544 * Helper for releasing extent buffer page.
4545 */
a50924e3 4546static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4547{
4548 unsigned long index;
db7f3436
JB
4549 struct page *page;
4550 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4551
4552 BUG_ON(extent_buffer_under_io(eb));
4553
a50924e3
DS
4554 index = num_extent_pages(eb->start, eb->len);
4555 if (index == 0)
db7f3436
JB
4556 return;
4557
4558 do {
4559 index--;
fb85fc9a 4560 page = eb->pages[index];
5d2361db
FL
4561 if (!page)
4562 continue;
4563 if (mapped)
db7f3436 4564 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4565 /*
4566 * We do this since we'll remove the pages after we've
4567 * removed the eb from the radix tree, so we could race
4568 * and have this page now attached to the new eb. So
4569 * only clear page_private if it's still connected to
4570 * this eb.
4571 */
4572 if (PagePrivate(page) &&
4573 page->private == (unsigned long)eb) {
4574 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4575 BUG_ON(PageDirty(page));
4576 BUG_ON(PageWriteback(page));
db7f3436 4577 /*
5d2361db
FL
4578 * We need to make sure we haven't be attached
4579 * to a new eb.
db7f3436 4580 */
5d2361db
FL
4581 ClearPagePrivate(page);
4582 set_page_private(page, 0);
4583 /* One for the page private */
09cbfeaf 4584 put_page(page);
db7f3436 4585 }
5d2361db
FL
4586
4587 if (mapped)
4588 spin_unlock(&page->mapping->private_lock);
4589
4590 /* One for when we alloced the page */
09cbfeaf 4591 put_page(page);
a50924e3 4592 } while (index != 0);
db7f3436
JB
4593}
4594
4595/*
4596 * Helper for releasing the extent buffer.
4597 */
4598static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4599{
a50924e3 4600 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4601 __free_extent_buffer(eb);
4602}
4603
f28491e0
JB
4604static struct extent_buffer *
4605__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4606 unsigned long len)
d1310b2e
CM
4607{
4608 struct extent_buffer *eb = NULL;
4609
d1b5c567 4610 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4611 eb->start = start;
4612 eb->len = len;
f28491e0 4613 eb->fs_info = fs_info;
815a51c7 4614 eb->bflags = 0;
bd681513
CM
4615 rwlock_init(&eb->lock);
4616 atomic_set(&eb->write_locks, 0);
4617 atomic_set(&eb->read_locks, 0);
4618 atomic_set(&eb->blocking_readers, 0);
4619 atomic_set(&eb->blocking_writers, 0);
4620 atomic_set(&eb->spinning_readers, 0);
4621 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4622 eb->lock_nested = 0;
bd681513
CM
4623 init_waitqueue_head(&eb->write_lock_wq);
4624 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4625
6d49ba1b
ES
4626 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4627
3083ee2e 4628 spin_lock_init(&eb->refs_lock);
d1310b2e 4629 atomic_set(&eb->refs, 1);
0b32f4bb 4630 atomic_set(&eb->io_pages, 0);
727011e0 4631
b8dae313
DS
4632 /*
4633 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4634 */
4635 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4636 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4637 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4638
4639 return eb;
4640}
4641
815a51c7
JS
4642struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4643{
4644 unsigned long i;
4645 struct page *p;
4646 struct extent_buffer *new;
4647 unsigned long num_pages = num_extent_pages(src->start, src->len);
4648
3f556f78 4649 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4650 if (new == NULL)
4651 return NULL;
4652
4653 for (i = 0; i < num_pages; i++) {
9ec72677 4654 p = alloc_page(GFP_NOFS);
db7f3436
JB
4655 if (!p) {
4656 btrfs_release_extent_buffer(new);
4657 return NULL;
4658 }
815a51c7
JS
4659 attach_extent_buffer_page(new, p);
4660 WARN_ON(PageDirty(p));
4661 SetPageUptodate(p);
4662 new->pages[i] = p;
4663 }
4664
4665 copy_extent_buffer(new, src, 0, 0, src->len);
4666 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4667 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4668
4669 return new;
4670}
4671
0f331229
OS
4672struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4673 u64 start, unsigned long len)
815a51c7
JS
4674{
4675 struct extent_buffer *eb;
3f556f78 4676 unsigned long num_pages;
815a51c7
JS
4677 unsigned long i;
4678
0f331229 4679 num_pages = num_extent_pages(start, len);
3f556f78
DS
4680
4681 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4682 if (!eb)
4683 return NULL;
4684
4685 for (i = 0; i < num_pages; i++) {
9ec72677 4686 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4687 if (!eb->pages[i])
4688 goto err;
4689 }
4690 set_extent_buffer_uptodate(eb);
4691 btrfs_set_header_nritems(eb, 0);
4692 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4693
4694 return eb;
4695err:
84167d19
SB
4696 for (; i > 0; i--)
4697 __free_page(eb->pages[i - 1]);
815a51c7
JS
4698 __free_extent_buffer(eb);
4699 return NULL;
4700}
4701
0f331229
OS
4702struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4703 u64 start)
4704{
4705 unsigned long len;
4706
4707 if (!fs_info) {
4708 /*
4709 * Called only from tests that don't always have a fs_info
4710 * available, but we know that nodesize is 4096
4711 */
4712 len = 4096;
4713 } else {
4714 len = fs_info->tree_root->nodesize;
4715 }
4716
4717 return __alloc_dummy_extent_buffer(fs_info, start, len);
4718}
4719
0b32f4bb
JB
4720static void check_buffer_tree_ref(struct extent_buffer *eb)
4721{
242e18c7 4722 int refs;
0b32f4bb
JB
4723 /* the ref bit is tricky. We have to make sure it is set
4724 * if we have the buffer dirty. Otherwise the
4725 * code to free a buffer can end up dropping a dirty
4726 * page
4727 *
4728 * Once the ref bit is set, it won't go away while the
4729 * buffer is dirty or in writeback, and it also won't
4730 * go away while we have the reference count on the
4731 * eb bumped.
4732 *
4733 * We can't just set the ref bit without bumping the
4734 * ref on the eb because free_extent_buffer might
4735 * see the ref bit and try to clear it. If this happens
4736 * free_extent_buffer might end up dropping our original
4737 * ref by mistake and freeing the page before we are able
4738 * to add one more ref.
4739 *
4740 * So bump the ref count first, then set the bit. If someone
4741 * beat us to it, drop the ref we added.
4742 */
242e18c7
CM
4743 refs = atomic_read(&eb->refs);
4744 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4745 return;
4746
594831c4
JB
4747 spin_lock(&eb->refs_lock);
4748 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4749 atomic_inc(&eb->refs);
594831c4 4750 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4751}
4752
2457aec6
MG
4753static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4754 struct page *accessed)
5df4235e
JB
4755{
4756 unsigned long num_pages, i;
4757
0b32f4bb
JB
4758 check_buffer_tree_ref(eb);
4759
5df4235e
JB
4760 num_pages = num_extent_pages(eb->start, eb->len);
4761 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4762 struct page *p = eb->pages[i];
4763
2457aec6
MG
4764 if (p != accessed)
4765 mark_page_accessed(p);
5df4235e
JB
4766 }
4767}
4768
f28491e0
JB
4769struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4770 u64 start)
452c75c3
CS
4771{
4772 struct extent_buffer *eb;
4773
4774 rcu_read_lock();
f28491e0 4775 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4776 start >> PAGE_SHIFT);
452c75c3
CS
4777 if (eb && atomic_inc_not_zero(&eb->refs)) {
4778 rcu_read_unlock();
062c19e9
FM
4779 /*
4780 * Lock our eb's refs_lock to avoid races with
4781 * free_extent_buffer. When we get our eb it might be flagged
4782 * with EXTENT_BUFFER_STALE and another task running
4783 * free_extent_buffer might have seen that flag set,
4784 * eb->refs == 2, that the buffer isn't under IO (dirty and
4785 * writeback flags not set) and it's still in the tree (flag
4786 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4787 * of decrementing the extent buffer's reference count twice.
4788 * So here we could race and increment the eb's reference count,
4789 * clear its stale flag, mark it as dirty and drop our reference
4790 * before the other task finishes executing free_extent_buffer,
4791 * which would later result in an attempt to free an extent
4792 * buffer that is dirty.
4793 */
4794 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4795 spin_lock(&eb->refs_lock);
4796 spin_unlock(&eb->refs_lock);
4797 }
2457aec6 4798 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4799 return eb;
4800 }
4801 rcu_read_unlock();
4802
4803 return NULL;
4804}
4805
faa2dbf0
JB
4806#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4807struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4808 u64 start)
faa2dbf0
JB
4809{
4810 struct extent_buffer *eb, *exists = NULL;
4811 int ret;
4812
4813 eb = find_extent_buffer(fs_info, start);
4814 if (eb)
4815 return eb;
3f556f78 4816 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4817 if (!eb)
4818 return NULL;
4819 eb->fs_info = fs_info;
4820again:
4821 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4822 if (ret)
4823 goto free_eb;
4824 spin_lock(&fs_info->buffer_lock);
4825 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4826 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4827 spin_unlock(&fs_info->buffer_lock);
4828 radix_tree_preload_end();
4829 if (ret == -EEXIST) {
4830 exists = find_extent_buffer(fs_info, start);
4831 if (exists)
4832 goto free_eb;
4833 else
4834 goto again;
4835 }
4836 check_buffer_tree_ref(eb);
4837 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4838
4839 /*
4840 * We will free dummy extent buffer's if they come into
4841 * free_extent_buffer with a ref count of 2, but if we are using this we
4842 * want the buffers to stay in memory until we're done with them, so
4843 * bump the ref count again.
4844 */
4845 atomic_inc(&eb->refs);
4846 return eb;
4847free_eb:
4848 btrfs_release_extent_buffer(eb);
4849 return exists;
4850}
4851#endif
4852
f28491e0 4853struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4854 u64 start)
d1310b2e 4855{
ce3e6984 4856 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4857 unsigned long num_pages = num_extent_pages(start, len);
4858 unsigned long i;
09cbfeaf 4859 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4860 struct extent_buffer *eb;
6af118ce 4861 struct extent_buffer *exists = NULL;
d1310b2e 4862 struct page *p;
f28491e0 4863 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4864 int uptodate = 1;
19fe0a8b 4865 int ret;
d1310b2e 4866
f28491e0 4867 eb = find_extent_buffer(fs_info, start);
452c75c3 4868 if (eb)
6af118ce 4869 return eb;
6af118ce 4870
23d79d81 4871 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4872 if (!eb)
d1310b2e
CM
4873 return NULL;
4874
727011e0 4875 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4876 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4877 if (!p)
6af118ce 4878 goto free_eb;
4f2de97a
JB
4879
4880 spin_lock(&mapping->private_lock);
4881 if (PagePrivate(p)) {
4882 /*
4883 * We could have already allocated an eb for this page
4884 * and attached one so lets see if we can get a ref on
4885 * the existing eb, and if we can we know it's good and
4886 * we can just return that one, else we know we can just
4887 * overwrite page->private.
4888 */
4889 exists = (struct extent_buffer *)p->private;
4890 if (atomic_inc_not_zero(&exists->refs)) {
4891 spin_unlock(&mapping->private_lock);
4892 unlock_page(p);
09cbfeaf 4893 put_page(p);
2457aec6 4894 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4895 goto free_eb;
4896 }
5ca64f45 4897 exists = NULL;
4f2de97a 4898
0b32f4bb 4899 /*
4f2de97a
JB
4900 * Do this so attach doesn't complain and we need to
4901 * drop the ref the old guy had.
4902 */
4903 ClearPagePrivate(p);
0b32f4bb 4904 WARN_ON(PageDirty(p));
09cbfeaf 4905 put_page(p);
d1310b2e 4906 }
4f2de97a
JB
4907 attach_extent_buffer_page(eb, p);
4908 spin_unlock(&mapping->private_lock);
0b32f4bb 4909 WARN_ON(PageDirty(p));
727011e0 4910 eb->pages[i] = p;
d1310b2e
CM
4911 if (!PageUptodate(p))
4912 uptodate = 0;
eb14ab8e
CM
4913
4914 /*
4915 * see below about how we avoid a nasty race with release page
4916 * and why we unlock later
4917 */
d1310b2e
CM
4918 }
4919 if (uptodate)
b4ce94de 4920 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4921again:
19fe0a8b
MX
4922 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4923 if (ret)
4924 goto free_eb;
4925
f28491e0
JB
4926 spin_lock(&fs_info->buffer_lock);
4927 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4928 start >> PAGE_SHIFT, eb);
f28491e0 4929 spin_unlock(&fs_info->buffer_lock);
452c75c3 4930 radix_tree_preload_end();
19fe0a8b 4931 if (ret == -EEXIST) {
f28491e0 4932 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4933 if (exists)
4934 goto free_eb;
4935 else
115391d2 4936 goto again;
6af118ce 4937 }
6af118ce 4938 /* add one reference for the tree */
0b32f4bb 4939 check_buffer_tree_ref(eb);
34b41ace 4940 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4941
4942 /*
4943 * there is a race where release page may have
4944 * tried to find this extent buffer in the radix
4945 * but failed. It will tell the VM it is safe to
4946 * reclaim the, and it will clear the page private bit.
4947 * We must make sure to set the page private bit properly
4948 * after the extent buffer is in the radix tree so
4949 * it doesn't get lost
4950 */
727011e0
CM
4951 SetPageChecked(eb->pages[0]);
4952 for (i = 1; i < num_pages; i++) {
fb85fc9a 4953 p = eb->pages[i];
727011e0
CM
4954 ClearPageChecked(p);
4955 unlock_page(p);
4956 }
4957 unlock_page(eb->pages[0]);
d1310b2e
CM
4958 return eb;
4959
6af118ce 4960free_eb:
5ca64f45 4961 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4962 for (i = 0; i < num_pages; i++) {
4963 if (eb->pages[i])
4964 unlock_page(eb->pages[i]);
4965 }
eb14ab8e 4966
897ca6e9 4967 btrfs_release_extent_buffer(eb);
6af118ce 4968 return exists;
d1310b2e 4969}
d1310b2e 4970
3083ee2e
JB
4971static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4972{
4973 struct extent_buffer *eb =
4974 container_of(head, struct extent_buffer, rcu_head);
4975
4976 __free_extent_buffer(eb);
4977}
4978
3083ee2e 4979/* Expects to have eb->eb_lock already held */
f7a52a40 4980static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4981{
4982 WARN_ON(atomic_read(&eb->refs) == 0);
4983 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4984 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4985 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4986
815a51c7 4987 spin_unlock(&eb->refs_lock);
3083ee2e 4988
f28491e0
JB
4989 spin_lock(&fs_info->buffer_lock);
4990 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 4991 eb->start >> PAGE_SHIFT);
f28491e0 4992 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4993 } else {
4994 spin_unlock(&eb->refs_lock);
815a51c7 4995 }
3083ee2e
JB
4996
4997 /* Should be safe to release our pages at this point */
a50924e3 4998 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
4999#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5000 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5001 __free_extent_buffer(eb);
5002 return 1;
5003 }
5004#endif
3083ee2e 5005 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5006 return 1;
3083ee2e
JB
5007 }
5008 spin_unlock(&eb->refs_lock);
e64860aa
JB
5009
5010 return 0;
3083ee2e
JB
5011}
5012
d1310b2e
CM
5013void free_extent_buffer(struct extent_buffer *eb)
5014{
242e18c7
CM
5015 int refs;
5016 int old;
d1310b2e
CM
5017 if (!eb)
5018 return;
5019
242e18c7
CM
5020 while (1) {
5021 refs = atomic_read(&eb->refs);
5022 if (refs <= 3)
5023 break;
5024 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5025 if (old == refs)
5026 return;
5027 }
5028
3083ee2e 5029 spin_lock(&eb->refs_lock);
815a51c7
JS
5030 if (atomic_read(&eb->refs) == 2 &&
5031 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5032 atomic_dec(&eb->refs);
5033
3083ee2e
JB
5034 if (atomic_read(&eb->refs) == 2 &&
5035 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5036 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5037 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5038 atomic_dec(&eb->refs);
5039
5040 /*
5041 * I know this is terrible, but it's temporary until we stop tracking
5042 * the uptodate bits and such for the extent buffers.
5043 */
f7a52a40 5044 release_extent_buffer(eb);
3083ee2e
JB
5045}
5046
5047void free_extent_buffer_stale(struct extent_buffer *eb)
5048{
5049 if (!eb)
d1310b2e
CM
5050 return;
5051
3083ee2e
JB
5052 spin_lock(&eb->refs_lock);
5053 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5054
0b32f4bb 5055 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5056 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5057 atomic_dec(&eb->refs);
f7a52a40 5058 release_extent_buffer(eb);
d1310b2e 5059}
d1310b2e 5060
1d4284bd 5061void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5062{
d1310b2e
CM
5063 unsigned long i;
5064 unsigned long num_pages;
5065 struct page *page;
5066
d1310b2e
CM
5067 num_pages = num_extent_pages(eb->start, eb->len);
5068
5069 for (i = 0; i < num_pages; i++) {
fb85fc9a 5070 page = eb->pages[i];
b9473439 5071 if (!PageDirty(page))
d2c3f4f6
CM
5072 continue;
5073
a61e6f29 5074 lock_page(page);
eb14ab8e
CM
5075 WARN_ON(!PagePrivate(page));
5076
d1310b2e 5077 clear_page_dirty_for_io(page);
0ee0fda0 5078 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5079 if (!PageDirty(page)) {
5080 radix_tree_tag_clear(&page->mapping->page_tree,
5081 page_index(page),
5082 PAGECACHE_TAG_DIRTY);
5083 }
0ee0fda0 5084 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5085 ClearPageError(page);
a61e6f29 5086 unlock_page(page);
d1310b2e 5087 }
0b32f4bb 5088 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5089}
d1310b2e 5090
0b32f4bb 5091int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5092{
5093 unsigned long i;
5094 unsigned long num_pages;
b9473439 5095 int was_dirty = 0;
d1310b2e 5096
0b32f4bb
JB
5097 check_buffer_tree_ref(eb);
5098
b9473439 5099 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5100
d1310b2e 5101 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5102 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5103 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5104
b9473439 5105 for (i = 0; i < num_pages; i++)
fb85fc9a 5106 set_page_dirty(eb->pages[i]);
b9473439 5107 return was_dirty;
d1310b2e 5108}
d1310b2e 5109
69ba3927 5110void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5111{
5112 unsigned long i;
5113 struct page *page;
5114 unsigned long num_pages;
5115
b4ce94de 5116 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5117 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5118 for (i = 0; i < num_pages; i++) {
fb85fc9a 5119 page = eb->pages[i];
33958dc6
CM
5120 if (page)
5121 ClearPageUptodate(page);
1259ab75 5122 }
1259ab75
CM
5123}
5124
09c25a8c 5125void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5126{
5127 unsigned long i;
5128 struct page *page;
5129 unsigned long num_pages;
5130
0b32f4bb 5131 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5132 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5133 for (i = 0; i < num_pages; i++) {
fb85fc9a 5134 page = eb->pages[i];
d1310b2e
CM
5135 SetPageUptodate(page);
5136 }
d1310b2e 5137}
d1310b2e 5138
0b32f4bb 5139int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5140{
0b32f4bb 5141 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5142}
d1310b2e
CM
5143
5144int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5145 struct extent_buffer *eb, u64 start, int wait,
f188591e 5146 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5147{
5148 unsigned long i;
5149 unsigned long start_i;
5150 struct page *page;
5151 int err;
5152 int ret = 0;
ce9adaa5
CM
5153 int locked_pages = 0;
5154 int all_uptodate = 1;
d1310b2e 5155 unsigned long num_pages;
727011e0 5156 unsigned long num_reads = 0;
a86c12c7 5157 struct bio *bio = NULL;
c8b97818 5158 unsigned long bio_flags = 0;
a86c12c7 5159
b4ce94de 5160 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5161 return 0;
5162
d1310b2e
CM
5163 if (start) {
5164 WARN_ON(start < eb->start);
09cbfeaf
KS
5165 start_i = (start >> PAGE_SHIFT) -
5166 (eb->start >> PAGE_SHIFT);
d1310b2e
CM
5167 } else {
5168 start_i = 0;
5169 }
5170
5171 num_pages = num_extent_pages(eb->start, eb->len);
5172 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5173 page = eb->pages[i];
bb82ab88 5174 if (wait == WAIT_NONE) {
2db04966 5175 if (!trylock_page(page))
ce9adaa5 5176 goto unlock_exit;
d1310b2e
CM
5177 } else {
5178 lock_page(page);
5179 }
ce9adaa5 5180 locked_pages++;
727011e0
CM
5181 if (!PageUptodate(page)) {
5182 num_reads++;
ce9adaa5 5183 all_uptodate = 0;
727011e0 5184 }
ce9adaa5
CM
5185 }
5186 if (all_uptodate) {
5187 if (start_i == 0)
b4ce94de 5188 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5189 goto unlock_exit;
5190 }
5191
656f30db 5192 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5193 eb->read_mirror = 0;
0b32f4bb 5194 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5195 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5196 page = eb->pages[i];
ce9adaa5 5197 if (!PageUptodate(page)) {
f188591e 5198 ClearPageError(page);
a86c12c7 5199 err = __extent_read_full_page(tree, page,
f188591e 5200 get_extent, &bio,
d4c7ca86
JB
5201 mirror_num, &bio_flags,
5202 READ | REQ_META);
d397712b 5203 if (err)
d1310b2e 5204 ret = err;
d1310b2e
CM
5205 } else {
5206 unlock_page(page);
5207 }
5208 }
5209
355808c2 5210 if (bio) {
d4c7ca86
JB
5211 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5212 bio_flags);
79787eaa
JM
5213 if (err)
5214 return err;
355808c2 5215 }
a86c12c7 5216
bb82ab88 5217 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5218 return ret;
d397712b 5219
d1310b2e 5220 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5221 page = eb->pages[i];
d1310b2e 5222 wait_on_page_locked(page);
d397712b 5223 if (!PageUptodate(page))
d1310b2e 5224 ret = -EIO;
d1310b2e 5225 }
d397712b 5226
d1310b2e 5227 return ret;
ce9adaa5
CM
5228
5229unlock_exit:
5230 i = start_i;
d397712b 5231 while (locked_pages > 0) {
fb85fc9a 5232 page = eb->pages[i];
ce9adaa5
CM
5233 i++;
5234 unlock_page(page);
5235 locked_pages--;
5236 }
5237 return ret;
d1310b2e 5238}
d1310b2e
CM
5239
5240void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5241 unsigned long start,
5242 unsigned long len)
5243{
5244 size_t cur;
5245 size_t offset;
5246 struct page *page;
5247 char *kaddr;
5248 char *dst = (char *)dstv;
09cbfeaf
KS
5249 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5250 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5251
5252 WARN_ON(start > eb->len);
5253 WARN_ON(start + len > eb->start + eb->len);
5254
09cbfeaf 5255 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5256
d397712b 5257 while (len > 0) {
fb85fc9a 5258 page = eb->pages[i];
d1310b2e 5259
09cbfeaf 5260 cur = min(len, (PAGE_SIZE - offset));
a6591715 5261 kaddr = page_address(page);
d1310b2e 5262 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5263
5264 dst += cur;
5265 len -= cur;
5266 offset = 0;
5267 i++;
5268 }
5269}
d1310b2e 5270
550ac1d8
GH
5271int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5272 unsigned long start,
5273 unsigned long len)
5274{
5275 size_t cur;
5276 size_t offset;
5277 struct page *page;
5278 char *kaddr;
5279 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5280 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5281 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5282 int ret = 0;
5283
5284 WARN_ON(start > eb->len);
5285 WARN_ON(start + len > eb->start + eb->len);
5286
09cbfeaf 5287 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5288
5289 while (len > 0) {
fb85fc9a 5290 page = eb->pages[i];
550ac1d8 5291
09cbfeaf 5292 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5293 kaddr = page_address(page);
5294 if (copy_to_user(dst, kaddr + offset, cur)) {
5295 ret = -EFAULT;
5296 break;
5297 }
5298
5299 dst += cur;
5300 len -= cur;
5301 offset = 0;
5302 i++;
5303 }
5304
5305 return ret;
5306}
5307
d1310b2e 5308int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5309 unsigned long min_len, char **map,
d1310b2e 5310 unsigned long *map_start,
a6591715 5311 unsigned long *map_len)
d1310b2e 5312{
09cbfeaf 5313 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5314 char *kaddr;
5315 struct page *p;
09cbfeaf
KS
5316 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5317 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5318 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5319 PAGE_SHIFT;
d1310b2e
CM
5320
5321 if (i != end_i)
5322 return -EINVAL;
5323
5324 if (i == 0) {
5325 offset = start_offset;
5326 *map_start = 0;
5327 } else {
5328 offset = 0;
09cbfeaf 5329 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5330 }
d397712b 5331
d1310b2e 5332 if (start + min_len > eb->len) {
31b1a2bd 5333 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5334 "wanted %lu %lu\n",
5335 eb->start, eb->len, start, min_len);
85026533 5336 return -EINVAL;
d1310b2e
CM
5337 }
5338
fb85fc9a 5339 p = eb->pages[i];
a6591715 5340 kaddr = page_address(p);
d1310b2e 5341 *map = kaddr + offset;
09cbfeaf 5342 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5343 return 0;
5344}
d1310b2e 5345
d1310b2e
CM
5346int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5347 unsigned long start,
5348 unsigned long len)
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *ptr = (char *)ptrv;
09cbfeaf
KS
5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5357 int ret = 0;
5358
5359 WARN_ON(start > eb->len);
5360 WARN_ON(start + len > eb->start + eb->len);
5361
09cbfeaf 5362 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5363
d397712b 5364 while (len > 0) {
fb85fc9a 5365 page = eb->pages[i];
d1310b2e 5366
09cbfeaf 5367 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5368
a6591715 5369 kaddr = page_address(page);
d1310b2e 5370 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5371 if (ret)
5372 break;
5373
5374 ptr += cur;
5375 len -= cur;
5376 offset = 0;
5377 i++;
5378 }
5379 return ret;
5380}
d1310b2e
CM
5381
5382void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5383 unsigned long start, unsigned long len)
5384{
5385 size_t cur;
5386 size_t offset;
5387 struct page *page;
5388 char *kaddr;
5389 char *src = (char *)srcv;
09cbfeaf
KS
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5392
5393 WARN_ON(start > eb->len);
5394 WARN_ON(start + len > eb->start + eb->len);
5395
09cbfeaf 5396 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5397
d397712b 5398 while (len > 0) {
fb85fc9a 5399 page = eb->pages[i];
d1310b2e
CM
5400 WARN_ON(!PageUptodate(page));
5401
09cbfeaf 5402 cur = min(len, PAGE_SIZE - offset);
a6591715 5403 kaddr = page_address(page);
d1310b2e 5404 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5405
5406 src += cur;
5407 len -= cur;
5408 offset = 0;
5409 i++;
5410 }
5411}
d1310b2e
CM
5412
5413void memset_extent_buffer(struct extent_buffer *eb, char c,
5414 unsigned long start, unsigned long len)
5415{
5416 size_t cur;
5417 size_t offset;
5418 struct page *page;
5419 char *kaddr;
09cbfeaf
KS
5420 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5421 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5422
5423 WARN_ON(start > eb->len);
5424 WARN_ON(start + len > eb->start + eb->len);
5425
09cbfeaf 5426 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5427
d397712b 5428 while (len > 0) {
fb85fc9a 5429 page = eb->pages[i];
d1310b2e
CM
5430 WARN_ON(!PageUptodate(page));
5431
09cbfeaf 5432 cur = min(len, PAGE_SIZE - offset);
a6591715 5433 kaddr = page_address(page);
d1310b2e 5434 memset(kaddr + offset, c, cur);
d1310b2e
CM
5435
5436 len -= cur;
5437 offset = 0;
5438 i++;
5439 }
5440}
d1310b2e
CM
5441
5442void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5443 unsigned long dst_offset, unsigned long src_offset,
5444 unsigned long len)
5445{
5446 u64 dst_len = dst->len;
5447 size_t cur;
5448 size_t offset;
5449 struct page *page;
5450 char *kaddr;
09cbfeaf
KS
5451 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5452 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5453
5454 WARN_ON(src->len != dst_len);
5455
5456 offset = (start_offset + dst_offset) &
09cbfeaf 5457 (PAGE_SIZE - 1);
d1310b2e 5458
d397712b 5459 while (len > 0) {
fb85fc9a 5460 page = dst->pages[i];
d1310b2e
CM
5461 WARN_ON(!PageUptodate(page));
5462
09cbfeaf 5463 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5464
a6591715 5465 kaddr = page_address(page);
d1310b2e 5466 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5467
5468 src_offset += cur;
5469 len -= cur;
5470 offset = 0;
5471 i++;
5472 }
5473}
d1310b2e 5474
3e1e8bb7
OS
5475/*
5476 * The extent buffer bitmap operations are done with byte granularity because
5477 * bitmap items are not guaranteed to be aligned to a word and therefore a
5478 * single word in a bitmap may straddle two pages in the extent buffer.
5479 */
5480#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5481#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5482#define BITMAP_FIRST_BYTE_MASK(start) \
5483 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5484#define BITMAP_LAST_BYTE_MASK(nbits) \
5485 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5486
5487/*
5488 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5489 * given bit number
5490 * @eb: the extent buffer
5491 * @start: offset of the bitmap item in the extent buffer
5492 * @nr: bit number
5493 * @page_index: return index of the page in the extent buffer that contains the
5494 * given bit number
5495 * @page_offset: return offset into the page given by page_index
5496 *
5497 * This helper hides the ugliness of finding the byte in an extent buffer which
5498 * contains a given bit.
5499 */
5500static inline void eb_bitmap_offset(struct extent_buffer *eb,
5501 unsigned long start, unsigned long nr,
5502 unsigned long *page_index,
5503 size_t *page_offset)
5504{
09cbfeaf 5505 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5506 size_t byte_offset = BIT_BYTE(nr);
5507 size_t offset;
5508
5509 /*
5510 * The byte we want is the offset of the extent buffer + the offset of
5511 * the bitmap item in the extent buffer + the offset of the byte in the
5512 * bitmap item.
5513 */
5514 offset = start_offset + start + byte_offset;
5515
09cbfeaf
KS
5516 *page_index = offset >> PAGE_SHIFT;
5517 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5518}
5519
5520/**
5521 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5522 * @eb: the extent buffer
5523 * @start: offset of the bitmap item in the extent buffer
5524 * @nr: bit number to test
5525 */
5526int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5527 unsigned long nr)
5528{
5529 char *kaddr;
5530 struct page *page;
5531 unsigned long i;
5532 size_t offset;
5533
5534 eb_bitmap_offset(eb, start, nr, &i, &offset);
5535 page = eb->pages[i];
5536 WARN_ON(!PageUptodate(page));
5537 kaddr = page_address(page);
5538 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5539}
5540
5541/**
5542 * extent_buffer_bitmap_set - set an area of a bitmap
5543 * @eb: the extent buffer
5544 * @start: offset of the bitmap item in the extent buffer
5545 * @pos: bit number of the first bit
5546 * @len: number of bits to set
5547 */
5548void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5549 unsigned long pos, unsigned long len)
5550{
5551 char *kaddr;
5552 struct page *page;
5553 unsigned long i;
5554 size_t offset;
5555 const unsigned int size = pos + len;
5556 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5557 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5558
5559 eb_bitmap_offset(eb, start, pos, &i, &offset);
5560 page = eb->pages[i];
5561 WARN_ON(!PageUptodate(page));
5562 kaddr = page_address(page);
5563
5564 while (len >= bits_to_set) {
5565 kaddr[offset] |= mask_to_set;
5566 len -= bits_to_set;
5567 bits_to_set = BITS_PER_BYTE;
5568 mask_to_set = ~0U;
09cbfeaf 5569 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5570 offset = 0;
5571 page = eb->pages[++i];
5572 WARN_ON(!PageUptodate(page));
5573 kaddr = page_address(page);
5574 }
5575 }
5576 if (len) {
5577 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5578 kaddr[offset] |= mask_to_set;
5579 }
5580}
5581
5582
5583/**
5584 * extent_buffer_bitmap_clear - clear an area of a bitmap
5585 * @eb: the extent buffer
5586 * @start: offset of the bitmap item in the extent buffer
5587 * @pos: bit number of the first bit
5588 * @len: number of bits to clear
5589 */
5590void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5591 unsigned long pos, unsigned long len)
5592{
5593 char *kaddr;
5594 struct page *page;
5595 unsigned long i;
5596 size_t offset;
5597 const unsigned int size = pos + len;
5598 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5599 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5600
5601 eb_bitmap_offset(eb, start, pos, &i, &offset);
5602 page = eb->pages[i];
5603 WARN_ON(!PageUptodate(page));
5604 kaddr = page_address(page);
5605
5606 while (len >= bits_to_clear) {
5607 kaddr[offset] &= ~mask_to_clear;
5608 len -= bits_to_clear;
5609 bits_to_clear = BITS_PER_BYTE;
5610 mask_to_clear = ~0U;
09cbfeaf 5611 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5612 offset = 0;
5613 page = eb->pages[++i];
5614 WARN_ON(!PageUptodate(page));
5615 kaddr = page_address(page);
5616 }
5617 }
5618 if (len) {
5619 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5620 kaddr[offset] &= ~mask_to_clear;
5621 }
5622}
5623
3387206f
ST
5624static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5625{
5626 unsigned long distance = (src > dst) ? src - dst : dst - src;
5627 return distance < len;
5628}
5629
d1310b2e
CM
5630static void copy_pages(struct page *dst_page, struct page *src_page,
5631 unsigned long dst_off, unsigned long src_off,
5632 unsigned long len)
5633{
a6591715 5634 char *dst_kaddr = page_address(dst_page);
d1310b2e 5635 char *src_kaddr;
727011e0 5636 int must_memmove = 0;
d1310b2e 5637
3387206f 5638 if (dst_page != src_page) {
a6591715 5639 src_kaddr = page_address(src_page);
3387206f 5640 } else {
d1310b2e 5641 src_kaddr = dst_kaddr;
727011e0
CM
5642 if (areas_overlap(src_off, dst_off, len))
5643 must_memmove = 1;
3387206f 5644 }
d1310b2e 5645
727011e0
CM
5646 if (must_memmove)
5647 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5648 else
5649 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5650}
5651
5652void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5653 unsigned long src_offset, unsigned long len)
5654{
5655 size_t cur;
5656 size_t dst_off_in_page;
5657 size_t src_off_in_page;
09cbfeaf 5658 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5659 unsigned long dst_i;
5660 unsigned long src_i;
5661
5662 if (src_offset + len > dst->len) {
f14d104d
DS
5663 btrfs_err(dst->fs_info,
5664 "memmove bogus src_offset %lu move "
5665 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5666 BUG_ON(1);
5667 }
5668 if (dst_offset + len > dst->len) {
f14d104d
DS
5669 btrfs_err(dst->fs_info,
5670 "memmove bogus dst_offset %lu move "
5671 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5672 BUG_ON(1);
5673 }
5674
d397712b 5675 while (len > 0) {
d1310b2e 5676 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5677 (PAGE_SIZE - 1);
d1310b2e 5678 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5679 (PAGE_SIZE - 1);
d1310b2e 5680
09cbfeaf
KS
5681 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5682 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5683
09cbfeaf 5684 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5685 src_off_in_page));
5686 cur = min_t(unsigned long, cur,
09cbfeaf 5687 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5688
fb85fc9a 5689 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5690 dst_off_in_page, src_off_in_page, cur);
5691
5692 src_offset += cur;
5693 dst_offset += cur;
5694 len -= cur;
5695 }
5696}
d1310b2e
CM
5697
5698void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5699 unsigned long src_offset, unsigned long len)
5700{
5701 size_t cur;
5702 size_t dst_off_in_page;
5703 size_t src_off_in_page;
5704 unsigned long dst_end = dst_offset + len - 1;
5705 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5706 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5707 unsigned long dst_i;
5708 unsigned long src_i;
5709
5710 if (src_offset + len > dst->len) {
f14d104d
DS
5711 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5712 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5713 BUG_ON(1);
5714 }
5715 if (dst_offset + len > dst->len) {
f14d104d
DS
5716 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5717 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5718 BUG_ON(1);
5719 }
727011e0 5720 if (dst_offset < src_offset) {
d1310b2e
CM
5721 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5722 return;
5723 }
d397712b 5724 while (len > 0) {
09cbfeaf
KS
5725 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5726 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5727
5728 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5729 (PAGE_SIZE - 1);
d1310b2e 5730 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5731 (PAGE_SIZE - 1);
d1310b2e
CM
5732
5733 cur = min_t(unsigned long, len, src_off_in_page + 1);
5734 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5735 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5736 dst_off_in_page - cur + 1,
5737 src_off_in_page - cur + 1, cur);
5738
5739 dst_end -= cur;
5740 src_end -= cur;
5741 len -= cur;
5742 }
5743}
6af118ce 5744
f7a52a40 5745int try_release_extent_buffer(struct page *page)
19fe0a8b 5746{
6af118ce 5747 struct extent_buffer *eb;
6af118ce 5748
3083ee2e
JB
5749 /*
5750 * We need to make sure noboody is attaching this page to an eb right
5751 * now.
5752 */
5753 spin_lock(&page->mapping->private_lock);
5754 if (!PagePrivate(page)) {
5755 spin_unlock(&page->mapping->private_lock);
4f2de97a 5756 return 1;
45f49bce 5757 }
6af118ce 5758
3083ee2e
JB
5759 eb = (struct extent_buffer *)page->private;
5760 BUG_ON(!eb);
19fe0a8b
MX
5761
5762 /*
3083ee2e
JB
5763 * This is a little awful but should be ok, we need to make sure that
5764 * the eb doesn't disappear out from under us while we're looking at
5765 * this page.
19fe0a8b 5766 */
3083ee2e 5767 spin_lock(&eb->refs_lock);
0b32f4bb 5768 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5769 spin_unlock(&eb->refs_lock);
5770 spin_unlock(&page->mapping->private_lock);
5771 return 0;
b9473439 5772 }
3083ee2e 5773 spin_unlock(&page->mapping->private_lock);
897ca6e9 5774
19fe0a8b 5775 /*
3083ee2e
JB
5776 * If tree ref isn't set then we know the ref on this eb is a real ref,
5777 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5778 */
3083ee2e
JB
5779 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5780 spin_unlock(&eb->refs_lock);
5781 return 0;
b9473439 5782 }
19fe0a8b 5783
f7a52a40 5784 return release_extent_buffer(eb);
6af118ce 5785}