]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
Btrfs: change scrub to support big blocks
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
4bef0848 29
b47eda86 30#define LEAK_DEBUG 0
3935127c 31#if LEAK_DEBUG
d397712b 32static DEFINE_SPINLOCK(leak_lock);
4bef0848 33#endif
d1310b2e 34
d1310b2e
CM
35#define BUFFER_LRU_MAX 64
36
37struct tree_entry {
38 u64 start;
39 u64 end;
d1310b2e
CM
40 struct rb_node rb_node;
41};
42
43struct extent_page_data {
44 struct bio *bio;
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
771ed689
CM
47
48 /* tells writepage not to lock the state bits for this range
49 * it still does the unlocking
50 */
ffbd517d
CM
51 unsigned int extent_locked:1;
52
53 /* tells the submit_bio code to use a WRITE_SYNC */
54 unsigned int sync_io:1;
d1310b2e
CM
55};
56
0b32f4bb
JB
57static noinline void flush_write_bio(void *data);
58
d1310b2e
CM
59int __init extent_io_init(void)
60{
9601e3f6
CH
61 extent_state_cache = kmem_cache_create("extent_state",
62 sizeof(struct extent_state), 0,
63 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
64 if (!extent_state_cache)
65 return -ENOMEM;
66
9601e3f6
CH
67 extent_buffer_cache = kmem_cache_create("extent_buffers",
68 sizeof(struct extent_buffer), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
70 if (!extent_buffer_cache)
71 goto free_state_cache;
72 return 0;
73
74free_state_cache:
75 kmem_cache_destroy(extent_state_cache);
76 return -ENOMEM;
77}
78
79void extent_io_exit(void)
80{
81 struct extent_state *state;
2d2ae547 82 struct extent_buffer *eb;
d1310b2e
CM
83
84 while (!list_empty(&states)) {
2d2ae547 85 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
86 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
87 "state %lu in tree %p refs %d\n",
88 (unsigned long long)state->start,
89 (unsigned long long)state->end,
90 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 91 list_del(&state->leak_list);
d1310b2e
CM
92 kmem_cache_free(extent_state_cache, state);
93
94 }
95
2d2ae547
CM
96 while (!list_empty(&buffers)) {
97 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
98 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
99 "refs %d\n", (unsigned long long)eb->start,
100 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
101 list_del(&eb->leak_list);
102 kmem_cache_free(extent_buffer_cache, eb);
103 }
d1310b2e
CM
104 if (extent_state_cache)
105 kmem_cache_destroy(extent_state_cache);
106 if (extent_buffer_cache)
107 kmem_cache_destroy(extent_buffer_cache);
108}
109
110void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 111 struct address_space *mapping)
d1310b2e 112{
6bef4d31 113 tree->state = RB_ROOT;
19fe0a8b 114 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
115 tree->ops = NULL;
116 tree->dirty_bytes = 0;
70dec807 117 spin_lock_init(&tree->lock);
6af118ce 118 spin_lock_init(&tree->buffer_lock);
d1310b2e 119 tree->mapping = mapping;
d1310b2e 120}
d1310b2e 121
b2950863 122static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
123{
124 struct extent_state *state;
3935127c 125#if LEAK_DEBUG
2d2ae547 126 unsigned long flags;
4bef0848 127#endif
d1310b2e
CM
128
129 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 130 if (!state)
d1310b2e
CM
131 return state;
132 state->state = 0;
d1310b2e 133 state->private = 0;
70dec807 134 state->tree = NULL;
3935127c 135#if LEAK_DEBUG
2d2ae547
CM
136 spin_lock_irqsave(&leak_lock, flags);
137 list_add(&state->leak_list, &states);
138 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 139#endif
d1310b2e
CM
140 atomic_set(&state->refs, 1);
141 init_waitqueue_head(&state->wq);
142 return state;
143}
d1310b2e 144
4845e44f 145void free_extent_state(struct extent_state *state)
d1310b2e 146{
d1310b2e
CM
147 if (!state)
148 return;
149 if (atomic_dec_and_test(&state->refs)) {
3935127c 150#if LEAK_DEBUG
2d2ae547 151 unsigned long flags;
4bef0848 152#endif
70dec807 153 WARN_ON(state->tree);
3935127c 154#if LEAK_DEBUG
2d2ae547
CM
155 spin_lock_irqsave(&leak_lock, flags);
156 list_del(&state->leak_list);
157 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 158#endif
d1310b2e
CM
159 kmem_cache_free(extent_state_cache, state);
160 }
161}
d1310b2e
CM
162
163static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
164 struct rb_node *node)
165{
d397712b
CM
166 struct rb_node **p = &root->rb_node;
167 struct rb_node *parent = NULL;
d1310b2e
CM
168 struct tree_entry *entry;
169
d397712b 170 while (*p) {
d1310b2e
CM
171 parent = *p;
172 entry = rb_entry(parent, struct tree_entry, rb_node);
173
174 if (offset < entry->start)
175 p = &(*p)->rb_left;
176 else if (offset > entry->end)
177 p = &(*p)->rb_right;
178 else
179 return parent;
180 }
181
182 entry = rb_entry(node, struct tree_entry, rb_node);
d1310b2e
CM
183 rb_link_node(node, parent, p);
184 rb_insert_color(node, root);
185 return NULL;
186}
187
80ea96b1 188static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
189 struct rb_node **prev_ret,
190 struct rb_node **next_ret)
191{
80ea96b1 192 struct rb_root *root = &tree->state;
d397712b 193 struct rb_node *n = root->rb_node;
d1310b2e
CM
194 struct rb_node *prev = NULL;
195 struct rb_node *orig_prev = NULL;
196 struct tree_entry *entry;
197 struct tree_entry *prev_entry = NULL;
198
d397712b 199 while (n) {
d1310b2e
CM
200 entry = rb_entry(n, struct tree_entry, rb_node);
201 prev = n;
202 prev_entry = entry;
203
204 if (offset < entry->start)
205 n = n->rb_left;
206 else if (offset > entry->end)
207 n = n->rb_right;
d397712b 208 else
d1310b2e
CM
209 return n;
210 }
211
212 if (prev_ret) {
213 orig_prev = prev;
d397712b 214 while (prev && offset > prev_entry->end) {
d1310b2e
CM
215 prev = rb_next(prev);
216 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
217 }
218 *prev_ret = prev;
219 prev = orig_prev;
220 }
221
222 if (next_ret) {
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 224 while (prev && offset < prev_entry->start) {
d1310b2e
CM
225 prev = rb_prev(prev);
226 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
227 }
228 *next_ret = prev;
229 }
230 return NULL;
231}
232
80ea96b1
CM
233static inline struct rb_node *tree_search(struct extent_io_tree *tree,
234 u64 offset)
d1310b2e 235{
70dec807 236 struct rb_node *prev = NULL;
d1310b2e 237 struct rb_node *ret;
70dec807 238
80ea96b1 239 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 240 if (!ret)
d1310b2e
CM
241 return prev;
242 return ret;
243}
244
9ed74f2d
JB
245static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
246 struct extent_state *other)
247{
248 if (tree->ops && tree->ops->merge_extent_hook)
249 tree->ops->merge_extent_hook(tree->mapping->host, new,
250 other);
251}
252
d1310b2e
CM
253/*
254 * utility function to look for merge candidates inside a given range.
255 * Any extents with matching state are merged together into a single
256 * extent in the tree. Extents with EXTENT_IO in their state field
257 * are not merged because the end_io handlers need to be able to do
258 * operations on them without sleeping (or doing allocations/splits).
259 *
260 * This should be called with the tree lock held.
261 */
1bf85046
JM
262static void merge_state(struct extent_io_tree *tree,
263 struct extent_state *state)
d1310b2e
CM
264{
265 struct extent_state *other;
266 struct rb_node *other_node;
267
5b21f2ed 268 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 269 return;
d1310b2e
CM
270
271 other_node = rb_prev(&state->rb_node);
272 if (other_node) {
273 other = rb_entry(other_node, struct extent_state, rb_node);
274 if (other->end == state->start - 1 &&
275 other->state == state->state) {
9ed74f2d 276 merge_cb(tree, state, other);
d1310b2e 277 state->start = other->start;
70dec807 278 other->tree = NULL;
d1310b2e
CM
279 rb_erase(&other->rb_node, &tree->state);
280 free_extent_state(other);
281 }
282 }
283 other_node = rb_next(&state->rb_node);
284 if (other_node) {
285 other = rb_entry(other_node, struct extent_state, rb_node);
286 if (other->start == state->end + 1 &&
287 other->state == state->state) {
9ed74f2d 288 merge_cb(tree, state, other);
df98b6e2
JB
289 state->end = other->end;
290 other->tree = NULL;
291 rb_erase(&other->rb_node, &tree->state);
292 free_extent_state(other);
d1310b2e
CM
293 }
294 }
d1310b2e
CM
295}
296
1bf85046 297static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 298 struct extent_state *state, int *bits)
291d673e 299{
1bf85046
JM
300 if (tree->ops && tree->ops->set_bit_hook)
301 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
302}
303
304static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 305 struct extent_state *state, int *bits)
291d673e 306{
9ed74f2d
JB
307 if (tree->ops && tree->ops->clear_bit_hook)
308 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
309}
310
3150b699
XG
311static void set_state_bits(struct extent_io_tree *tree,
312 struct extent_state *state, int *bits);
313
d1310b2e
CM
314/*
315 * insert an extent_state struct into the tree. 'bits' are set on the
316 * struct before it is inserted.
317 *
318 * This may return -EEXIST if the extent is already there, in which case the
319 * state struct is freed.
320 *
321 * The tree lock is not taken internally. This is a utility function and
322 * probably isn't what you want to call (see set/clear_extent_bit).
323 */
324static int insert_state(struct extent_io_tree *tree,
325 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 326 int *bits)
d1310b2e
CM
327{
328 struct rb_node *node;
329
330 if (end < start) {
d397712b
CM
331 printk(KERN_ERR "btrfs end < start %llu %llu\n",
332 (unsigned long long)end,
333 (unsigned long long)start);
d1310b2e
CM
334 WARN_ON(1);
335 }
d1310b2e
CM
336 state->start = start;
337 state->end = end;
9ed74f2d 338
3150b699
XG
339 set_state_bits(tree, state, bits);
340
d1310b2e
CM
341 node = tree_insert(&tree->state, end, &state->rb_node);
342 if (node) {
343 struct extent_state *found;
344 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
345 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
346 "%llu %llu\n", (unsigned long long)found->start,
347 (unsigned long long)found->end,
348 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
349 return -EEXIST;
350 }
70dec807 351 state->tree = tree;
d1310b2e
CM
352 merge_state(tree, state);
353 return 0;
354}
355
1bf85046 356static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
357 u64 split)
358{
359 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 360 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
361}
362
d1310b2e
CM
363/*
364 * split a given extent state struct in two, inserting the preallocated
365 * struct 'prealloc' as the newly created second half. 'split' indicates an
366 * offset inside 'orig' where it should be split.
367 *
368 * Before calling,
369 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
370 * are two extent state structs in the tree:
371 * prealloc: [orig->start, split - 1]
372 * orig: [ split, orig->end ]
373 *
374 * The tree locks are not taken by this function. They need to be held
375 * by the caller.
376 */
377static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
378 struct extent_state *prealloc, u64 split)
379{
380 struct rb_node *node;
9ed74f2d
JB
381
382 split_cb(tree, orig, split);
383
d1310b2e
CM
384 prealloc->start = orig->start;
385 prealloc->end = split - 1;
386 prealloc->state = orig->state;
387 orig->start = split;
388
389 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
390 if (node) {
d1310b2e
CM
391 free_extent_state(prealloc);
392 return -EEXIST;
393 }
70dec807 394 prealloc->tree = tree;
d1310b2e
CM
395 return 0;
396}
397
398/*
399 * utility function to clear some bits in an extent state struct.
400 * it will optionally wake up any one waiting on this state (wake == 1), or
401 * forcibly remove the state from the tree (delete == 1).
402 *
403 * If no bits are set on the state struct after clearing things, the
404 * struct is freed and removed from the tree
405 */
406static int clear_state_bit(struct extent_io_tree *tree,
0ca1f7ce
YZ
407 struct extent_state *state,
408 int *bits, int wake)
d1310b2e 409{
0ca1f7ce 410 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
32c00aff 411 int ret = state->state & bits_to_clear;
d1310b2e 412
0ca1f7ce 413 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
414 u64 range = state->end - state->start + 1;
415 WARN_ON(range > tree->dirty_bytes);
416 tree->dirty_bytes -= range;
417 }
291d673e 418 clear_state_cb(tree, state, bits);
32c00aff 419 state->state &= ~bits_to_clear;
d1310b2e
CM
420 if (wake)
421 wake_up(&state->wq);
0ca1f7ce 422 if (state->state == 0) {
70dec807 423 if (state->tree) {
d1310b2e 424 rb_erase(&state->rb_node, &tree->state);
70dec807 425 state->tree = NULL;
d1310b2e
CM
426 free_extent_state(state);
427 } else {
428 WARN_ON(1);
429 }
430 } else {
431 merge_state(tree, state);
432 }
433 return ret;
434}
435
8233767a
XG
436static struct extent_state *
437alloc_extent_state_atomic(struct extent_state *prealloc)
438{
439 if (!prealloc)
440 prealloc = alloc_extent_state(GFP_ATOMIC);
441
442 return prealloc;
443}
444
d1310b2e
CM
445/*
446 * clear some bits on a range in the tree. This may require splitting
447 * or inserting elements in the tree, so the gfp mask is used to
448 * indicate which allocations or sleeping are allowed.
449 *
450 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
451 * the given range from the tree regardless of state (ie for truncate).
452 *
453 * the range [start, end] is inclusive.
454 *
455 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
456 * bits were already set, or zero if none of the bits were already set.
457 */
458int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
459 int bits, int wake, int delete,
460 struct extent_state **cached_state,
461 gfp_t mask)
d1310b2e
CM
462{
463 struct extent_state *state;
2c64c53d 464 struct extent_state *cached;
d1310b2e 465 struct extent_state *prealloc = NULL;
2c64c53d 466 struct rb_node *next_node;
d1310b2e 467 struct rb_node *node;
5c939df5 468 u64 last_end;
d1310b2e
CM
469 int err;
470 int set = 0;
2ac55d41 471 int clear = 0;
d1310b2e 472
0ca1f7ce
YZ
473 if (delete)
474 bits |= ~EXTENT_CTLBITS;
475 bits |= EXTENT_FIRST_DELALLOC;
476
2ac55d41
JB
477 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
478 clear = 1;
d1310b2e
CM
479again:
480 if (!prealloc && (mask & __GFP_WAIT)) {
481 prealloc = alloc_extent_state(mask);
482 if (!prealloc)
483 return -ENOMEM;
484 }
485
cad321ad 486 spin_lock(&tree->lock);
2c64c53d
CM
487 if (cached_state) {
488 cached = *cached_state;
2ac55d41
JB
489
490 if (clear) {
491 *cached_state = NULL;
492 cached_state = NULL;
493 }
494
df98b6e2
JB
495 if (cached && cached->tree && cached->start <= start &&
496 cached->end > start) {
2ac55d41
JB
497 if (clear)
498 atomic_dec(&cached->refs);
2c64c53d 499 state = cached;
42daec29 500 goto hit_next;
2c64c53d 501 }
2ac55d41
JB
502 if (clear)
503 free_extent_state(cached);
2c64c53d 504 }
d1310b2e
CM
505 /*
506 * this search will find the extents that end after
507 * our range starts
508 */
80ea96b1 509 node = tree_search(tree, start);
d1310b2e
CM
510 if (!node)
511 goto out;
512 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 513hit_next:
d1310b2e
CM
514 if (state->start > end)
515 goto out;
516 WARN_ON(state->end < start);
5c939df5 517 last_end = state->end;
d1310b2e 518
0449314a
LB
519 if (state->end < end && !need_resched())
520 next_node = rb_next(&state->rb_node);
521 else
522 next_node = NULL;
523
524 /* the state doesn't have the wanted bits, go ahead */
525 if (!(state->state & bits))
526 goto next;
527
d1310b2e
CM
528 /*
529 * | ---- desired range ---- |
530 * | state | or
531 * | ------------- state -------------- |
532 *
533 * We need to split the extent we found, and may flip
534 * bits on second half.
535 *
536 * If the extent we found extends past our range, we
537 * just split and search again. It'll get split again
538 * the next time though.
539 *
540 * If the extent we found is inside our range, we clear
541 * the desired bit on it.
542 */
543
544 if (state->start < start) {
8233767a
XG
545 prealloc = alloc_extent_state_atomic(prealloc);
546 BUG_ON(!prealloc);
d1310b2e
CM
547 err = split_state(tree, state, prealloc, start);
548 BUG_ON(err == -EEXIST);
549 prealloc = NULL;
550 if (err)
551 goto out;
552 if (state->end <= end) {
0ca1f7ce 553 set |= clear_state_bit(tree, state, &bits, wake);
5c939df5
YZ
554 if (last_end == (u64)-1)
555 goto out;
556 start = last_end + 1;
d1310b2e
CM
557 }
558 goto search_again;
559 }
560 /*
561 * | ---- desired range ---- |
562 * | state |
563 * We need to split the extent, and clear the bit
564 * on the first half
565 */
566 if (state->start <= end && state->end > end) {
8233767a
XG
567 prealloc = alloc_extent_state_atomic(prealloc);
568 BUG_ON(!prealloc);
d1310b2e
CM
569 err = split_state(tree, state, prealloc, end + 1);
570 BUG_ON(err == -EEXIST);
d1310b2e
CM
571 if (wake)
572 wake_up(&state->wq);
42daec29 573
0ca1f7ce 574 set |= clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 575
d1310b2e
CM
576 prealloc = NULL;
577 goto out;
578 }
42daec29 579
0ca1f7ce 580 set |= clear_state_bit(tree, state, &bits, wake);
0449314a 581next:
5c939df5
YZ
582 if (last_end == (u64)-1)
583 goto out;
584 start = last_end + 1;
2c64c53d
CM
585 if (start <= end && next_node) {
586 state = rb_entry(next_node, struct extent_state,
587 rb_node);
692e5759 588 goto hit_next;
2c64c53d 589 }
d1310b2e
CM
590 goto search_again;
591
592out:
cad321ad 593 spin_unlock(&tree->lock);
d1310b2e
CM
594 if (prealloc)
595 free_extent_state(prealloc);
596
597 return set;
598
599search_again:
600 if (start > end)
601 goto out;
cad321ad 602 spin_unlock(&tree->lock);
d1310b2e
CM
603 if (mask & __GFP_WAIT)
604 cond_resched();
605 goto again;
606}
d1310b2e
CM
607
608static int wait_on_state(struct extent_io_tree *tree,
609 struct extent_state *state)
641f5219
CH
610 __releases(tree->lock)
611 __acquires(tree->lock)
d1310b2e
CM
612{
613 DEFINE_WAIT(wait);
614 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 615 spin_unlock(&tree->lock);
d1310b2e 616 schedule();
cad321ad 617 spin_lock(&tree->lock);
d1310b2e
CM
618 finish_wait(&state->wq, &wait);
619 return 0;
620}
621
622/*
623 * waits for one or more bits to clear on a range in the state tree.
624 * The range [start, end] is inclusive.
625 * The tree lock is taken by this function
626 */
627int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
628{
629 struct extent_state *state;
630 struct rb_node *node;
631
cad321ad 632 spin_lock(&tree->lock);
d1310b2e
CM
633again:
634 while (1) {
635 /*
636 * this search will find all the extents that end after
637 * our range starts
638 */
80ea96b1 639 node = tree_search(tree, start);
d1310b2e
CM
640 if (!node)
641 break;
642
643 state = rb_entry(node, struct extent_state, rb_node);
644
645 if (state->start > end)
646 goto out;
647
648 if (state->state & bits) {
649 start = state->start;
650 atomic_inc(&state->refs);
651 wait_on_state(tree, state);
652 free_extent_state(state);
653 goto again;
654 }
655 start = state->end + 1;
656
657 if (start > end)
658 break;
659
ded91f08 660 cond_resched_lock(&tree->lock);
d1310b2e
CM
661 }
662out:
cad321ad 663 spin_unlock(&tree->lock);
d1310b2e
CM
664 return 0;
665}
d1310b2e 666
1bf85046 667static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 668 struct extent_state *state,
0ca1f7ce 669 int *bits)
d1310b2e 670{
0ca1f7ce 671 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 672
1bf85046 673 set_state_cb(tree, state, bits);
0ca1f7ce 674 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
675 u64 range = state->end - state->start + 1;
676 tree->dirty_bytes += range;
677 }
0ca1f7ce 678 state->state |= bits_to_set;
d1310b2e
CM
679}
680
2c64c53d
CM
681static void cache_state(struct extent_state *state,
682 struct extent_state **cached_ptr)
683{
684 if (cached_ptr && !(*cached_ptr)) {
685 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
686 *cached_ptr = state;
687 atomic_inc(&state->refs);
688 }
689 }
690}
691
507903b8
AJ
692static void uncache_state(struct extent_state **cached_ptr)
693{
694 if (cached_ptr && (*cached_ptr)) {
695 struct extent_state *state = *cached_ptr;
109b36a2
CM
696 *cached_ptr = NULL;
697 free_extent_state(state);
507903b8
AJ
698 }
699}
700
d1310b2e 701/*
1edbb734
CM
702 * set some bits on a range in the tree. This may require allocations or
703 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 704 *
1edbb734
CM
705 * If any of the exclusive bits are set, this will fail with -EEXIST if some
706 * part of the range already has the desired bits set. The start of the
707 * existing range is returned in failed_start in this case.
d1310b2e 708 *
1edbb734 709 * [start, end] is inclusive This takes the tree lock.
d1310b2e 710 */
1edbb734 711
4845e44f
CM
712int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
713 int bits, int exclusive_bits, u64 *failed_start,
714 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
715{
716 struct extent_state *state;
717 struct extent_state *prealloc = NULL;
718 struct rb_node *node;
d1310b2e 719 int err = 0;
d1310b2e
CM
720 u64 last_start;
721 u64 last_end;
42daec29 722
0ca1f7ce 723 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
724again:
725 if (!prealloc && (mask & __GFP_WAIT)) {
726 prealloc = alloc_extent_state(mask);
8233767a 727 BUG_ON(!prealloc);
d1310b2e
CM
728 }
729
cad321ad 730 spin_lock(&tree->lock);
9655d298
CM
731 if (cached_state && *cached_state) {
732 state = *cached_state;
df98b6e2
JB
733 if (state->start <= start && state->end > start &&
734 state->tree) {
9655d298
CM
735 node = &state->rb_node;
736 goto hit_next;
737 }
738 }
d1310b2e
CM
739 /*
740 * this search will find all the extents that end after
741 * our range starts.
742 */
80ea96b1 743 node = tree_search(tree, start);
d1310b2e 744 if (!node) {
8233767a
XG
745 prealloc = alloc_extent_state_atomic(prealloc);
746 BUG_ON(!prealloc);
0ca1f7ce 747 err = insert_state(tree, prealloc, start, end, &bits);
d1310b2e
CM
748 prealloc = NULL;
749 BUG_ON(err == -EEXIST);
750 goto out;
751 }
d1310b2e 752 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 753hit_next:
d1310b2e
CM
754 last_start = state->start;
755 last_end = state->end;
756
757 /*
758 * | ---- desired range ---- |
759 * | state |
760 *
761 * Just lock what we found and keep going
762 */
763 if (state->start == start && state->end <= end) {
40431d6c 764 struct rb_node *next_node;
1edbb734 765 if (state->state & exclusive_bits) {
d1310b2e
CM
766 *failed_start = state->start;
767 err = -EEXIST;
768 goto out;
769 }
42daec29 770
1bf85046 771 set_state_bits(tree, state, &bits);
9ed74f2d 772
2c64c53d 773 cache_state(state, cached_state);
d1310b2e 774 merge_state(tree, state);
5c939df5
YZ
775 if (last_end == (u64)-1)
776 goto out;
40431d6c 777
5c939df5 778 start = last_end + 1;
df98b6e2 779 next_node = rb_next(&state->rb_node);
c7f895a2
XG
780 if (next_node && start < end && prealloc && !need_resched()) {
781 state = rb_entry(next_node, struct extent_state,
782 rb_node);
783 if (state->start == start)
784 goto hit_next;
40431d6c 785 }
d1310b2e
CM
786 goto search_again;
787 }
788
789 /*
790 * | ---- desired range ---- |
791 * | state |
792 * or
793 * | ------------- state -------------- |
794 *
795 * We need to split the extent we found, and may flip bits on
796 * second half.
797 *
798 * If the extent we found extends past our
799 * range, we just split and search again. It'll get split
800 * again the next time though.
801 *
802 * If the extent we found is inside our range, we set the
803 * desired bit on it.
804 */
805 if (state->start < start) {
1edbb734 806 if (state->state & exclusive_bits) {
d1310b2e
CM
807 *failed_start = start;
808 err = -EEXIST;
809 goto out;
810 }
8233767a
XG
811
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
d1310b2e
CM
814 err = split_state(tree, state, prealloc, start);
815 BUG_ON(err == -EEXIST);
816 prealloc = NULL;
817 if (err)
818 goto out;
819 if (state->end <= end) {
1bf85046 820 set_state_bits(tree, state, &bits);
2c64c53d 821 cache_state(state, cached_state);
d1310b2e 822 merge_state(tree, state);
5c939df5
YZ
823 if (last_end == (u64)-1)
824 goto out;
825 start = last_end + 1;
d1310b2e
CM
826 }
827 goto search_again;
828 }
829 /*
830 * | ---- desired range ---- |
831 * | state | or | state |
832 *
833 * There's a hole, we need to insert something in it and
834 * ignore the extent we found.
835 */
836 if (state->start > start) {
837 u64 this_end;
838 if (end < last_start)
839 this_end = end;
840 else
d397712b 841 this_end = last_start - 1;
8233767a
XG
842
843 prealloc = alloc_extent_state_atomic(prealloc);
844 BUG_ON(!prealloc);
c7f895a2
XG
845
846 /*
847 * Avoid to free 'prealloc' if it can be merged with
848 * the later extent.
849 */
d1310b2e 850 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 851 &bits);
d1310b2e 852 BUG_ON(err == -EEXIST);
9ed74f2d 853 if (err) {
c7f895a2 854 free_extent_state(prealloc);
9ed74f2d 855 prealloc = NULL;
d1310b2e 856 goto out;
9ed74f2d
JB
857 }
858 cache_state(prealloc, cached_state);
859 prealloc = NULL;
d1310b2e
CM
860 start = this_end + 1;
861 goto search_again;
862 }
863 /*
864 * | ---- desired range ---- |
865 * | state |
866 * We need to split the extent, and set the bit
867 * on the first half
868 */
869 if (state->start <= end && state->end > end) {
1edbb734 870 if (state->state & exclusive_bits) {
d1310b2e
CM
871 *failed_start = start;
872 err = -EEXIST;
873 goto out;
874 }
8233767a
XG
875
876 prealloc = alloc_extent_state_atomic(prealloc);
877 BUG_ON(!prealloc);
d1310b2e
CM
878 err = split_state(tree, state, prealloc, end + 1);
879 BUG_ON(err == -EEXIST);
880
1bf85046 881 set_state_bits(tree, prealloc, &bits);
2c64c53d 882 cache_state(prealloc, cached_state);
d1310b2e
CM
883 merge_state(tree, prealloc);
884 prealloc = NULL;
885 goto out;
886 }
887
888 goto search_again;
889
890out:
cad321ad 891 spin_unlock(&tree->lock);
d1310b2e
CM
892 if (prealloc)
893 free_extent_state(prealloc);
894
895 return err;
896
897search_again:
898 if (start > end)
899 goto out;
cad321ad 900 spin_unlock(&tree->lock);
d1310b2e
CM
901 if (mask & __GFP_WAIT)
902 cond_resched();
903 goto again;
904}
d1310b2e 905
462d6fac
JB
906/**
907 * convert_extent - convert all bits in a given range from one bit to another
908 * @tree: the io tree to search
909 * @start: the start offset in bytes
910 * @end: the end offset in bytes (inclusive)
911 * @bits: the bits to set in this range
912 * @clear_bits: the bits to clear in this range
913 * @mask: the allocation mask
914 *
915 * This will go through and set bits for the given range. If any states exist
916 * already in this range they are set with the given bit and cleared of the
917 * clear_bits. This is only meant to be used by things that are mergeable, ie
918 * converting from say DELALLOC to DIRTY. This is not meant to be used with
919 * boundary bits like LOCK.
920 */
921int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
922 int bits, int clear_bits, gfp_t mask)
923{
924 struct extent_state *state;
925 struct extent_state *prealloc = NULL;
926 struct rb_node *node;
927 int err = 0;
928 u64 last_start;
929 u64 last_end;
930
931again:
932 if (!prealloc && (mask & __GFP_WAIT)) {
933 prealloc = alloc_extent_state(mask);
934 if (!prealloc)
935 return -ENOMEM;
936 }
937
938 spin_lock(&tree->lock);
939 /*
940 * this search will find all the extents that end after
941 * our range starts.
942 */
943 node = tree_search(tree, start);
944 if (!node) {
945 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
946 if (!prealloc) {
947 err = -ENOMEM;
948 goto out;
949 }
462d6fac
JB
950 err = insert_state(tree, prealloc, start, end, &bits);
951 prealloc = NULL;
952 BUG_ON(err == -EEXIST);
953 goto out;
954 }
955 state = rb_entry(node, struct extent_state, rb_node);
956hit_next:
957 last_start = state->start;
958 last_end = state->end;
959
960 /*
961 * | ---- desired range ---- |
962 * | state |
963 *
964 * Just lock what we found and keep going
965 */
966 if (state->start == start && state->end <= end) {
967 struct rb_node *next_node;
968
969 set_state_bits(tree, state, &bits);
970 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
971 if (last_end == (u64)-1)
972 goto out;
973
974 start = last_end + 1;
975 next_node = rb_next(&state->rb_node);
976 if (next_node && start < end && prealloc && !need_resched()) {
977 state = rb_entry(next_node, struct extent_state,
978 rb_node);
979 if (state->start == start)
980 goto hit_next;
981 }
982 goto search_again;
983 }
984
985 /*
986 * | ---- desired range ---- |
987 * | state |
988 * or
989 * | ------------- state -------------- |
990 *
991 * We need to split the extent we found, and may flip bits on
992 * second half.
993 *
994 * If the extent we found extends past our
995 * range, we just split and search again. It'll get split
996 * again the next time though.
997 *
998 * If the extent we found is inside our range, we set the
999 * desired bit on it.
1000 */
1001 if (state->start < start) {
1002 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1003 if (!prealloc) {
1004 err = -ENOMEM;
1005 goto out;
1006 }
462d6fac
JB
1007 err = split_state(tree, state, prealloc, start);
1008 BUG_ON(err == -EEXIST);
1009 prealloc = NULL;
1010 if (err)
1011 goto out;
1012 if (state->end <= end) {
1013 set_state_bits(tree, state, &bits);
1014 clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1015 if (last_end == (u64)-1)
1016 goto out;
1017 start = last_end + 1;
1018 }
1019 goto search_again;
1020 }
1021 /*
1022 * | ---- desired range ---- |
1023 * | state | or | state |
1024 *
1025 * There's a hole, we need to insert something in it and
1026 * ignore the extent we found.
1027 */
1028 if (state->start > start) {
1029 u64 this_end;
1030 if (end < last_start)
1031 this_end = end;
1032 else
1033 this_end = last_start - 1;
1034
1035 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1036 if (!prealloc) {
1037 err = -ENOMEM;
1038 goto out;
1039 }
462d6fac
JB
1040
1041 /*
1042 * Avoid to free 'prealloc' if it can be merged with
1043 * the later extent.
1044 */
1045 err = insert_state(tree, prealloc, start, this_end,
1046 &bits);
1047 BUG_ON(err == -EEXIST);
1048 if (err) {
1049 free_extent_state(prealloc);
1050 prealloc = NULL;
1051 goto out;
1052 }
1053 prealloc = NULL;
1054 start = this_end + 1;
1055 goto search_again;
1056 }
1057 /*
1058 * | ---- desired range ---- |
1059 * | state |
1060 * We need to split the extent, and set the bit
1061 * on the first half
1062 */
1063 if (state->start <= end && state->end > end) {
1064 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1065 if (!prealloc) {
1066 err = -ENOMEM;
1067 goto out;
1068 }
462d6fac
JB
1069
1070 err = split_state(tree, state, prealloc, end + 1);
1071 BUG_ON(err == -EEXIST);
1072
1073 set_state_bits(tree, prealloc, &bits);
1074 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1075 prealloc = NULL;
1076 goto out;
1077 }
1078
1079 goto search_again;
1080
1081out:
1082 spin_unlock(&tree->lock);
1083 if (prealloc)
1084 free_extent_state(prealloc);
1085
1086 return err;
1087
1088search_again:
1089 if (start > end)
1090 goto out;
1091 spin_unlock(&tree->lock);
1092 if (mask & __GFP_WAIT)
1093 cond_resched();
1094 goto again;
1095}
1096
d1310b2e
CM
1097/* wrappers around set/clear extent bit */
1098int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1099 gfp_t mask)
1100{
1101 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
2c64c53d 1102 NULL, mask);
d1310b2e 1103}
d1310b2e
CM
1104
1105int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1106 int bits, gfp_t mask)
1107{
1108 return set_extent_bit(tree, start, end, bits, 0, NULL,
2c64c53d 1109 NULL, mask);
d1310b2e 1110}
d1310b2e
CM
1111
1112int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1113 int bits, gfp_t mask)
1114{
2c64c53d 1115 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1116}
d1310b2e
CM
1117
1118int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1119 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1120{
1121 return set_extent_bit(tree, start, end,
fee187d9 1122 EXTENT_DELALLOC | EXTENT_UPTODATE,
2ac55d41 1123 0, NULL, cached_state, mask);
d1310b2e 1124}
d1310b2e
CM
1125
1126int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1127 gfp_t mask)
1128{
1129 return clear_extent_bit(tree, start, end,
32c00aff 1130 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1131 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1132}
d1310b2e
CM
1133
1134int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1135 gfp_t mask)
1136{
1137 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
2c64c53d 1138 NULL, mask);
d1310b2e 1139}
d1310b2e 1140
d1310b2e 1141int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1142 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1143{
507903b8
AJ
1144 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
1145 NULL, cached_state, mask);
d1310b2e 1146}
d1310b2e 1147
d397712b 1148static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
2ac55d41
JB
1149 u64 end, struct extent_state **cached_state,
1150 gfp_t mask)
d1310b2e 1151{
2c64c53d 1152 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1153 cached_state, mask);
d1310b2e 1154}
d1310b2e 1155
d352ac68
CM
1156/*
1157 * either insert or lock state struct between start and end use mask to tell
1158 * us if waiting is desired.
1159 */
1edbb734 1160int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d 1161 int bits, struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1162{
1163 int err;
1164 u64 failed_start;
1165 while (1) {
1edbb734 1166 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
2c64c53d
CM
1167 EXTENT_LOCKED, &failed_start,
1168 cached_state, mask);
d1310b2e
CM
1169 if (err == -EEXIST && (mask & __GFP_WAIT)) {
1170 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1171 start = failed_start;
1172 } else {
1173 break;
1174 }
1175 WARN_ON(start > end);
1176 }
1177 return err;
1178}
d1310b2e 1179
1edbb734
CM
1180int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1181{
2c64c53d 1182 return lock_extent_bits(tree, start, end, 0, NULL, mask);
1edbb734
CM
1183}
1184
25179201
JB
1185int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
1186 gfp_t mask)
1187{
1188 int err;
1189 u64 failed_start;
1190
2c64c53d
CM
1191 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1192 &failed_start, NULL, mask);
6643558d
YZ
1193 if (err == -EEXIST) {
1194 if (failed_start > start)
1195 clear_extent_bit(tree, start, failed_start - 1,
2c64c53d 1196 EXTENT_LOCKED, 1, 0, NULL, mask);
25179201 1197 return 0;
6643558d 1198 }
25179201
JB
1199 return 1;
1200}
25179201 1201
2c64c53d
CM
1202int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1203 struct extent_state **cached, gfp_t mask)
1204{
1205 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1206 mask);
1207}
1208
507903b8 1209int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
d1310b2e 1210{
2c64c53d
CM
1211 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1212 mask);
d1310b2e 1213}
d1310b2e 1214
d1310b2e
CM
1215/*
1216 * helper function to set both pages and extents in the tree writeback
1217 */
b2950863 1218static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1219{
1220 unsigned long index = start >> PAGE_CACHE_SHIFT;
1221 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1222 struct page *page;
1223
1224 while (index <= end_index) {
1225 page = find_get_page(tree->mapping, index);
1226 BUG_ON(!page);
1227 set_page_writeback(page);
1228 page_cache_release(page);
1229 index++;
1230 }
d1310b2e
CM
1231 return 0;
1232}
d1310b2e 1233
d352ac68
CM
1234/* find the first state struct with 'bits' set after 'start', and
1235 * return it. tree->lock must be held. NULL will returned if
1236 * nothing was found after 'start'
1237 */
d7fc640e
CM
1238struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1239 u64 start, int bits)
1240{
1241 struct rb_node *node;
1242 struct extent_state *state;
1243
1244 /*
1245 * this search will find all the extents that end after
1246 * our range starts.
1247 */
1248 node = tree_search(tree, start);
d397712b 1249 if (!node)
d7fc640e 1250 goto out;
d7fc640e 1251
d397712b 1252 while (1) {
d7fc640e 1253 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1254 if (state->end >= start && (state->state & bits))
d7fc640e 1255 return state;
d397712b 1256
d7fc640e
CM
1257 node = rb_next(node);
1258 if (!node)
1259 break;
1260 }
1261out:
1262 return NULL;
1263}
d7fc640e 1264
69261c4b
XG
1265/*
1266 * find the first offset in the io tree with 'bits' set. zero is
1267 * returned if we find something, and *start_ret and *end_ret are
1268 * set to reflect the state struct that was found.
1269 *
1270 * If nothing was found, 1 is returned, < 0 on error
1271 */
1272int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1273 u64 *start_ret, u64 *end_ret, int bits)
1274{
1275 struct extent_state *state;
1276 int ret = 1;
1277
1278 spin_lock(&tree->lock);
1279 state = find_first_extent_bit_state(tree, start, bits);
1280 if (state) {
1281 *start_ret = state->start;
1282 *end_ret = state->end;
1283 ret = 0;
1284 }
1285 spin_unlock(&tree->lock);
1286 return ret;
1287}
1288
d352ac68
CM
1289/*
1290 * find a contiguous range of bytes in the file marked as delalloc, not
1291 * more than 'max_bytes'. start and end are used to return the range,
1292 *
1293 * 1 is returned if we find something, 0 if nothing was in the tree
1294 */
c8b97818 1295static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1296 u64 *start, u64 *end, u64 max_bytes,
1297 struct extent_state **cached_state)
d1310b2e
CM
1298{
1299 struct rb_node *node;
1300 struct extent_state *state;
1301 u64 cur_start = *start;
1302 u64 found = 0;
1303 u64 total_bytes = 0;
1304
cad321ad 1305 spin_lock(&tree->lock);
c8b97818 1306
d1310b2e
CM
1307 /*
1308 * this search will find all the extents that end after
1309 * our range starts.
1310 */
80ea96b1 1311 node = tree_search(tree, cur_start);
2b114d1d 1312 if (!node) {
3b951516
CM
1313 if (!found)
1314 *end = (u64)-1;
d1310b2e
CM
1315 goto out;
1316 }
1317
d397712b 1318 while (1) {
d1310b2e 1319 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1320 if (found && (state->start != cur_start ||
1321 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1322 goto out;
1323 }
1324 if (!(state->state & EXTENT_DELALLOC)) {
1325 if (!found)
1326 *end = state->end;
1327 goto out;
1328 }
c2a128d2 1329 if (!found) {
d1310b2e 1330 *start = state->start;
c2a128d2
JB
1331 *cached_state = state;
1332 atomic_inc(&state->refs);
1333 }
d1310b2e
CM
1334 found++;
1335 *end = state->end;
1336 cur_start = state->end + 1;
1337 node = rb_next(node);
1338 if (!node)
1339 break;
1340 total_bytes += state->end - state->start + 1;
1341 if (total_bytes >= max_bytes)
1342 break;
1343 }
1344out:
cad321ad 1345 spin_unlock(&tree->lock);
d1310b2e
CM
1346 return found;
1347}
1348
c8b97818
CM
1349static noinline int __unlock_for_delalloc(struct inode *inode,
1350 struct page *locked_page,
1351 u64 start, u64 end)
1352{
1353 int ret;
1354 struct page *pages[16];
1355 unsigned long index = start >> PAGE_CACHE_SHIFT;
1356 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1357 unsigned long nr_pages = end_index - index + 1;
1358 int i;
1359
1360 if (index == locked_page->index && end_index == index)
1361 return 0;
1362
d397712b 1363 while (nr_pages > 0) {
c8b97818 1364 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1365 min_t(unsigned long, nr_pages,
1366 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1367 for (i = 0; i < ret; i++) {
1368 if (pages[i] != locked_page)
1369 unlock_page(pages[i]);
1370 page_cache_release(pages[i]);
1371 }
1372 nr_pages -= ret;
1373 index += ret;
1374 cond_resched();
1375 }
1376 return 0;
1377}
1378
1379static noinline int lock_delalloc_pages(struct inode *inode,
1380 struct page *locked_page,
1381 u64 delalloc_start,
1382 u64 delalloc_end)
1383{
1384 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1385 unsigned long start_index = index;
1386 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1387 unsigned long pages_locked = 0;
1388 struct page *pages[16];
1389 unsigned long nrpages;
1390 int ret;
1391 int i;
1392
1393 /* the caller is responsible for locking the start index */
1394 if (index == locked_page->index && index == end_index)
1395 return 0;
1396
1397 /* skip the page at the start index */
1398 nrpages = end_index - index + 1;
d397712b 1399 while (nrpages > 0) {
c8b97818 1400 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1401 min_t(unsigned long,
1402 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1403 if (ret == 0) {
1404 ret = -EAGAIN;
1405 goto done;
1406 }
1407 /* now we have an array of pages, lock them all */
1408 for (i = 0; i < ret; i++) {
1409 /*
1410 * the caller is taking responsibility for
1411 * locked_page
1412 */
771ed689 1413 if (pages[i] != locked_page) {
c8b97818 1414 lock_page(pages[i]);
f2b1c41c
CM
1415 if (!PageDirty(pages[i]) ||
1416 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1417 ret = -EAGAIN;
1418 unlock_page(pages[i]);
1419 page_cache_release(pages[i]);
1420 goto done;
1421 }
1422 }
c8b97818 1423 page_cache_release(pages[i]);
771ed689 1424 pages_locked++;
c8b97818 1425 }
c8b97818
CM
1426 nrpages -= ret;
1427 index += ret;
1428 cond_resched();
1429 }
1430 ret = 0;
1431done:
1432 if (ret && pages_locked) {
1433 __unlock_for_delalloc(inode, locked_page,
1434 delalloc_start,
1435 ((u64)(start_index + pages_locked - 1)) <<
1436 PAGE_CACHE_SHIFT);
1437 }
1438 return ret;
1439}
1440
1441/*
1442 * find a contiguous range of bytes in the file marked as delalloc, not
1443 * more than 'max_bytes'. start and end are used to return the range,
1444 *
1445 * 1 is returned if we find something, 0 if nothing was in the tree
1446 */
1447static noinline u64 find_lock_delalloc_range(struct inode *inode,
1448 struct extent_io_tree *tree,
1449 struct page *locked_page,
1450 u64 *start, u64 *end,
1451 u64 max_bytes)
1452{
1453 u64 delalloc_start;
1454 u64 delalloc_end;
1455 u64 found;
9655d298 1456 struct extent_state *cached_state = NULL;
c8b97818
CM
1457 int ret;
1458 int loops = 0;
1459
1460again:
1461 /* step one, find a bunch of delalloc bytes starting at start */
1462 delalloc_start = *start;
1463 delalloc_end = 0;
1464 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1465 max_bytes, &cached_state);
70b99e69 1466 if (!found || delalloc_end <= *start) {
c8b97818
CM
1467 *start = delalloc_start;
1468 *end = delalloc_end;
c2a128d2 1469 free_extent_state(cached_state);
c8b97818
CM
1470 return found;
1471 }
1472
70b99e69
CM
1473 /*
1474 * start comes from the offset of locked_page. We have to lock
1475 * pages in order, so we can't process delalloc bytes before
1476 * locked_page
1477 */
d397712b 1478 if (delalloc_start < *start)
70b99e69 1479 delalloc_start = *start;
70b99e69 1480
c8b97818
CM
1481 /*
1482 * make sure to limit the number of pages we try to lock down
1483 * if we're looping.
1484 */
d397712b 1485 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1486 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1487
c8b97818
CM
1488 /* step two, lock all the pages after the page that has start */
1489 ret = lock_delalloc_pages(inode, locked_page,
1490 delalloc_start, delalloc_end);
1491 if (ret == -EAGAIN) {
1492 /* some of the pages are gone, lets avoid looping by
1493 * shortening the size of the delalloc range we're searching
1494 */
9655d298 1495 free_extent_state(cached_state);
c8b97818
CM
1496 if (!loops) {
1497 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1498 max_bytes = PAGE_CACHE_SIZE - offset;
1499 loops = 1;
1500 goto again;
1501 } else {
1502 found = 0;
1503 goto out_failed;
1504 }
1505 }
1506 BUG_ON(ret);
1507
1508 /* step three, lock the state bits for the whole range */
9655d298
CM
1509 lock_extent_bits(tree, delalloc_start, delalloc_end,
1510 0, &cached_state, GFP_NOFS);
c8b97818
CM
1511
1512 /* then test to make sure it is all still delalloc */
1513 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1514 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1515 if (!ret) {
9655d298
CM
1516 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1517 &cached_state, GFP_NOFS);
c8b97818
CM
1518 __unlock_for_delalloc(inode, locked_page,
1519 delalloc_start, delalloc_end);
1520 cond_resched();
1521 goto again;
1522 }
9655d298 1523 free_extent_state(cached_state);
c8b97818
CM
1524 *start = delalloc_start;
1525 *end = delalloc_end;
1526out_failed:
1527 return found;
1528}
1529
1530int extent_clear_unlock_delalloc(struct inode *inode,
1531 struct extent_io_tree *tree,
1532 u64 start, u64 end, struct page *locked_page,
a791e35e 1533 unsigned long op)
c8b97818
CM
1534{
1535 int ret;
1536 struct page *pages[16];
1537 unsigned long index = start >> PAGE_CACHE_SHIFT;
1538 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1539 unsigned long nr_pages = end_index - index + 1;
1540 int i;
771ed689 1541 int clear_bits = 0;
c8b97818 1542
a791e35e 1543 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1544 clear_bits |= EXTENT_LOCKED;
a791e35e 1545 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1546 clear_bits |= EXTENT_DIRTY;
1547
a791e35e 1548 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1549 clear_bits |= EXTENT_DELALLOC;
1550
2c64c53d 1551 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1552 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1553 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1554 EXTENT_SET_PRIVATE2)))
771ed689 1555 return 0;
c8b97818 1556
d397712b 1557 while (nr_pages > 0) {
c8b97818 1558 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1559 min_t(unsigned long,
1560 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1561 for (i = 0; i < ret; i++) {
8b62b72b 1562
a791e35e 1563 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1564 SetPagePrivate2(pages[i]);
1565
c8b97818
CM
1566 if (pages[i] == locked_page) {
1567 page_cache_release(pages[i]);
1568 continue;
1569 }
a791e35e 1570 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1571 clear_page_dirty_for_io(pages[i]);
a791e35e 1572 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1573 set_page_writeback(pages[i]);
a791e35e 1574 if (op & EXTENT_END_WRITEBACK)
c8b97818 1575 end_page_writeback(pages[i]);
a791e35e 1576 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1577 unlock_page(pages[i]);
c8b97818
CM
1578 page_cache_release(pages[i]);
1579 }
1580 nr_pages -= ret;
1581 index += ret;
1582 cond_resched();
1583 }
1584 return 0;
1585}
c8b97818 1586
d352ac68
CM
1587/*
1588 * count the number of bytes in the tree that have a given bit(s)
1589 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1590 * cached. The total number found is returned.
1591 */
d1310b2e
CM
1592u64 count_range_bits(struct extent_io_tree *tree,
1593 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1594 unsigned long bits, int contig)
d1310b2e
CM
1595{
1596 struct rb_node *node;
1597 struct extent_state *state;
1598 u64 cur_start = *start;
1599 u64 total_bytes = 0;
ec29ed5b 1600 u64 last = 0;
d1310b2e
CM
1601 int found = 0;
1602
1603 if (search_end <= cur_start) {
d1310b2e
CM
1604 WARN_ON(1);
1605 return 0;
1606 }
1607
cad321ad 1608 spin_lock(&tree->lock);
d1310b2e
CM
1609 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1610 total_bytes = tree->dirty_bytes;
1611 goto out;
1612 }
1613 /*
1614 * this search will find all the extents that end after
1615 * our range starts.
1616 */
80ea96b1 1617 node = tree_search(tree, cur_start);
d397712b 1618 if (!node)
d1310b2e 1619 goto out;
d1310b2e 1620
d397712b 1621 while (1) {
d1310b2e
CM
1622 state = rb_entry(node, struct extent_state, rb_node);
1623 if (state->start > search_end)
1624 break;
ec29ed5b
CM
1625 if (contig && found && state->start > last + 1)
1626 break;
1627 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1628 total_bytes += min(search_end, state->end) + 1 -
1629 max(cur_start, state->start);
1630 if (total_bytes >= max_bytes)
1631 break;
1632 if (!found) {
af60bed2 1633 *start = max(cur_start, state->start);
d1310b2e
CM
1634 found = 1;
1635 }
ec29ed5b
CM
1636 last = state->end;
1637 } else if (contig && found) {
1638 break;
d1310b2e
CM
1639 }
1640 node = rb_next(node);
1641 if (!node)
1642 break;
1643 }
1644out:
cad321ad 1645 spin_unlock(&tree->lock);
d1310b2e
CM
1646 return total_bytes;
1647}
b2950863 1648
d352ac68
CM
1649/*
1650 * set the private field for a given byte offset in the tree. If there isn't
1651 * an extent_state there already, this does nothing.
1652 */
d1310b2e
CM
1653int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1654{
1655 struct rb_node *node;
1656 struct extent_state *state;
1657 int ret = 0;
1658
cad321ad 1659 spin_lock(&tree->lock);
d1310b2e
CM
1660 /*
1661 * this search will find all the extents that end after
1662 * our range starts.
1663 */
80ea96b1 1664 node = tree_search(tree, start);
2b114d1d 1665 if (!node) {
d1310b2e
CM
1666 ret = -ENOENT;
1667 goto out;
1668 }
1669 state = rb_entry(node, struct extent_state, rb_node);
1670 if (state->start != start) {
1671 ret = -ENOENT;
1672 goto out;
1673 }
1674 state->private = private;
1675out:
cad321ad 1676 spin_unlock(&tree->lock);
d1310b2e
CM
1677 return ret;
1678}
1679
1680int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1681{
1682 struct rb_node *node;
1683 struct extent_state *state;
1684 int ret = 0;
1685
cad321ad 1686 spin_lock(&tree->lock);
d1310b2e
CM
1687 /*
1688 * this search will find all the extents that end after
1689 * our range starts.
1690 */
80ea96b1 1691 node = tree_search(tree, start);
2b114d1d 1692 if (!node) {
d1310b2e
CM
1693 ret = -ENOENT;
1694 goto out;
1695 }
1696 state = rb_entry(node, struct extent_state, rb_node);
1697 if (state->start != start) {
1698 ret = -ENOENT;
1699 goto out;
1700 }
1701 *private = state->private;
1702out:
cad321ad 1703 spin_unlock(&tree->lock);
d1310b2e
CM
1704 return ret;
1705}
1706
1707/*
1708 * searches a range in the state tree for a given mask.
70dec807 1709 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1710 * has the bits set. Otherwise, 1 is returned if any bit in the
1711 * range is found set.
1712 */
1713int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1714 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1715{
1716 struct extent_state *state = NULL;
1717 struct rb_node *node;
1718 int bitset = 0;
d1310b2e 1719
cad321ad 1720 spin_lock(&tree->lock);
df98b6e2
JB
1721 if (cached && cached->tree && cached->start <= start &&
1722 cached->end > start)
9655d298
CM
1723 node = &cached->rb_node;
1724 else
1725 node = tree_search(tree, start);
d1310b2e
CM
1726 while (node && start <= end) {
1727 state = rb_entry(node, struct extent_state, rb_node);
1728
1729 if (filled && state->start > start) {
1730 bitset = 0;
1731 break;
1732 }
1733
1734 if (state->start > end)
1735 break;
1736
1737 if (state->state & bits) {
1738 bitset = 1;
1739 if (!filled)
1740 break;
1741 } else if (filled) {
1742 bitset = 0;
1743 break;
1744 }
46562cec
CM
1745
1746 if (state->end == (u64)-1)
1747 break;
1748
d1310b2e
CM
1749 start = state->end + 1;
1750 if (start > end)
1751 break;
1752 node = rb_next(node);
1753 if (!node) {
1754 if (filled)
1755 bitset = 0;
1756 break;
1757 }
1758 }
cad321ad 1759 spin_unlock(&tree->lock);
d1310b2e
CM
1760 return bitset;
1761}
d1310b2e
CM
1762
1763/*
1764 * helper function to set a given page up to date if all the
1765 * extents in the tree for that page are up to date
1766 */
1767static int check_page_uptodate(struct extent_io_tree *tree,
1768 struct page *page)
1769{
1770 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1771 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1772 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e
CM
1773 SetPageUptodate(page);
1774 return 0;
1775}
1776
1777/*
1778 * helper function to unlock a page if all the extents in the tree
1779 * for that page are unlocked
1780 */
1781static int check_page_locked(struct extent_io_tree *tree,
1782 struct page *page)
1783{
1784 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1785 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1786 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e
CM
1787 unlock_page(page);
1788 return 0;
1789}
1790
1791/*
1792 * helper function to end page writeback if all the extents
1793 * in the tree for that page are done with writeback
1794 */
1795static int check_page_writeback(struct extent_io_tree *tree,
1796 struct page *page)
1797{
1edbb734 1798 end_page_writeback(page);
d1310b2e
CM
1799 return 0;
1800}
1801
4a54c8c1
JS
1802/*
1803 * When IO fails, either with EIO or csum verification fails, we
1804 * try other mirrors that might have a good copy of the data. This
1805 * io_failure_record is used to record state as we go through all the
1806 * mirrors. If another mirror has good data, the page is set up to date
1807 * and things continue. If a good mirror can't be found, the original
1808 * bio end_io callback is called to indicate things have failed.
1809 */
1810struct io_failure_record {
1811 struct page *page;
1812 u64 start;
1813 u64 len;
1814 u64 logical;
1815 unsigned long bio_flags;
1816 int this_mirror;
1817 int failed_mirror;
1818 int in_validation;
1819};
1820
1821static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1822 int did_repair)
1823{
1824 int ret;
1825 int err = 0;
1826 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1827
1828 set_state_private(failure_tree, rec->start, 0);
1829 ret = clear_extent_bits(failure_tree, rec->start,
1830 rec->start + rec->len - 1,
1831 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1832 if (ret)
1833 err = ret;
1834
1835 if (did_repair) {
1836 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1837 rec->start + rec->len - 1,
1838 EXTENT_DAMAGED, GFP_NOFS);
1839 if (ret && !err)
1840 err = ret;
1841 }
1842
1843 kfree(rec);
1844 return err;
1845}
1846
1847static void repair_io_failure_callback(struct bio *bio, int err)
1848{
1849 complete(bio->bi_private);
1850}
1851
1852/*
1853 * this bypasses the standard btrfs submit functions deliberately, as
1854 * the standard behavior is to write all copies in a raid setup. here we only
1855 * want to write the one bad copy. so we do the mapping for ourselves and issue
1856 * submit_bio directly.
1857 * to avoid any synchonization issues, wait for the data after writing, which
1858 * actually prevents the read that triggered the error from finishing.
1859 * currently, there can be no more than two copies of every data bit. thus,
1860 * exactly one rewrite is required.
1861 */
1862int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1863 u64 length, u64 logical, struct page *page,
1864 int mirror_num)
1865{
1866 struct bio *bio;
1867 struct btrfs_device *dev;
1868 DECLARE_COMPLETION_ONSTACK(compl);
1869 u64 map_length = 0;
1870 u64 sector;
1871 struct btrfs_bio *bbio = NULL;
1872 int ret;
1873
1874 BUG_ON(!mirror_num);
1875
1876 bio = bio_alloc(GFP_NOFS, 1);
1877 if (!bio)
1878 return -EIO;
1879 bio->bi_private = &compl;
1880 bio->bi_end_io = repair_io_failure_callback;
1881 bio->bi_size = 0;
1882 map_length = length;
1883
1884 ret = btrfs_map_block(map_tree, WRITE, logical,
1885 &map_length, &bbio, mirror_num);
1886 if (ret) {
1887 bio_put(bio);
1888 return -EIO;
1889 }
1890 BUG_ON(mirror_num != bbio->mirror_num);
1891 sector = bbio->stripes[mirror_num-1].physical >> 9;
1892 bio->bi_sector = sector;
1893 dev = bbio->stripes[mirror_num-1].dev;
1894 kfree(bbio);
1895 if (!dev || !dev->bdev || !dev->writeable) {
1896 bio_put(bio);
1897 return -EIO;
1898 }
1899 bio->bi_bdev = dev->bdev;
1900 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1901 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1902 wait_for_completion(&compl);
1903
1904 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1905 /* try to remap that extent elsewhere? */
1906 bio_put(bio);
1907 return -EIO;
1908 }
1909
1910 printk(KERN_INFO "btrfs read error corrected: ino %lu off %llu (dev %s "
1911 "sector %llu)\n", page->mapping->host->i_ino, start,
1912 dev->name, sector);
1913
1914 bio_put(bio);
1915 return 0;
1916}
1917
ea466794
JB
1918int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1919 int mirror_num)
1920{
1921 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1922 u64 start = eb->start;
1923 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
1924 int ret;
1925
1926 for (i = 0; i < num_pages; i++) {
1927 struct page *p = extent_buffer_page(eb, i);
1928 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1929 start, p, mirror_num);
1930 if (ret)
1931 break;
1932 start += PAGE_CACHE_SIZE;
1933 }
1934
1935 return ret;
1936}
1937
4a54c8c1
JS
1938/*
1939 * each time an IO finishes, we do a fast check in the IO failure tree
1940 * to see if we need to process or clean up an io_failure_record
1941 */
1942static int clean_io_failure(u64 start, struct page *page)
1943{
1944 u64 private;
1945 u64 private_failure;
1946 struct io_failure_record *failrec;
1947 struct btrfs_mapping_tree *map_tree;
1948 struct extent_state *state;
1949 int num_copies;
1950 int did_repair = 0;
1951 int ret;
1952 struct inode *inode = page->mapping->host;
1953
1954 private = 0;
1955 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1956 (u64)-1, 1, EXTENT_DIRTY, 0);
1957 if (!ret)
1958 return 0;
1959
1960 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1961 &private_failure);
1962 if (ret)
1963 return 0;
1964
1965 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1966 BUG_ON(!failrec->this_mirror);
1967
1968 if (failrec->in_validation) {
1969 /* there was no real error, just free the record */
1970 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1971 failrec->start);
1972 did_repair = 1;
1973 goto out;
1974 }
1975
1976 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1977 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1978 failrec->start,
1979 EXTENT_LOCKED);
1980 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1981
1982 if (state && state->start == failrec->start) {
1983 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1984 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1985 failrec->len);
1986 if (num_copies > 1) {
1987 ret = repair_io_failure(map_tree, start, failrec->len,
1988 failrec->logical, page,
1989 failrec->failed_mirror);
1990 did_repair = !ret;
1991 }
1992 }
1993
1994out:
1995 if (!ret)
1996 ret = free_io_failure(inode, failrec, did_repair);
1997
1998 return ret;
1999}
2000
2001/*
2002 * this is a generic handler for readpage errors (default
2003 * readpage_io_failed_hook). if other copies exist, read those and write back
2004 * good data to the failed position. does not investigate in remapping the
2005 * failed extent elsewhere, hoping the device will be smart enough to do this as
2006 * needed
2007 */
2008
2009static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2010 u64 start, u64 end, int failed_mirror,
2011 struct extent_state *state)
2012{
2013 struct io_failure_record *failrec = NULL;
2014 u64 private;
2015 struct extent_map *em;
2016 struct inode *inode = page->mapping->host;
2017 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2018 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2019 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2020 struct bio *bio;
2021 int num_copies;
2022 int ret;
2023 int read_mode;
2024 u64 logical;
2025
2026 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2027
2028 ret = get_state_private(failure_tree, start, &private);
2029 if (ret) {
2030 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2031 if (!failrec)
2032 return -ENOMEM;
2033 failrec->start = start;
2034 failrec->len = end - start + 1;
2035 failrec->this_mirror = 0;
2036 failrec->bio_flags = 0;
2037 failrec->in_validation = 0;
2038
2039 read_lock(&em_tree->lock);
2040 em = lookup_extent_mapping(em_tree, start, failrec->len);
2041 if (!em) {
2042 read_unlock(&em_tree->lock);
2043 kfree(failrec);
2044 return -EIO;
2045 }
2046
2047 if (em->start > start || em->start + em->len < start) {
2048 free_extent_map(em);
2049 em = NULL;
2050 }
2051 read_unlock(&em_tree->lock);
2052
2053 if (!em || IS_ERR(em)) {
2054 kfree(failrec);
2055 return -EIO;
2056 }
2057 logical = start - em->start;
2058 logical = em->block_start + logical;
2059 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2060 logical = em->block_start;
2061 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2062 extent_set_compress_type(&failrec->bio_flags,
2063 em->compress_type);
2064 }
2065 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2066 "len=%llu\n", logical, start, failrec->len);
2067 failrec->logical = logical;
2068 free_extent_map(em);
2069
2070 /* set the bits in the private failure tree */
2071 ret = set_extent_bits(failure_tree, start, end,
2072 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2073 if (ret >= 0)
2074 ret = set_state_private(failure_tree, start,
2075 (u64)(unsigned long)failrec);
2076 /* set the bits in the inode's tree */
2077 if (ret >= 0)
2078 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2079 GFP_NOFS);
2080 if (ret < 0) {
2081 kfree(failrec);
2082 return ret;
2083 }
2084 } else {
2085 failrec = (struct io_failure_record *)(unsigned long)private;
2086 pr_debug("bio_readpage_error: (found) logical=%llu, "
2087 "start=%llu, len=%llu, validation=%d\n",
2088 failrec->logical, failrec->start, failrec->len,
2089 failrec->in_validation);
2090 /*
2091 * when data can be on disk more than twice, add to failrec here
2092 * (e.g. with a list for failed_mirror) to make
2093 * clean_io_failure() clean all those errors at once.
2094 */
2095 }
2096 num_copies = btrfs_num_copies(
2097 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2098 failrec->logical, failrec->len);
2099 if (num_copies == 1) {
2100 /*
2101 * we only have a single copy of the data, so don't bother with
2102 * all the retry and error correction code that follows. no
2103 * matter what the error is, it is very likely to persist.
2104 */
2105 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2106 "state=%p, num_copies=%d, next_mirror %d, "
2107 "failed_mirror %d\n", state, num_copies,
2108 failrec->this_mirror, failed_mirror);
2109 free_io_failure(inode, failrec, 0);
2110 return -EIO;
2111 }
2112
2113 if (!state) {
2114 spin_lock(&tree->lock);
2115 state = find_first_extent_bit_state(tree, failrec->start,
2116 EXTENT_LOCKED);
2117 if (state && state->start != failrec->start)
2118 state = NULL;
2119 spin_unlock(&tree->lock);
2120 }
2121
2122 /*
2123 * there are two premises:
2124 * a) deliver good data to the caller
2125 * b) correct the bad sectors on disk
2126 */
2127 if (failed_bio->bi_vcnt > 1) {
2128 /*
2129 * to fulfill b), we need to know the exact failing sectors, as
2130 * we don't want to rewrite any more than the failed ones. thus,
2131 * we need separate read requests for the failed bio
2132 *
2133 * if the following BUG_ON triggers, our validation request got
2134 * merged. we need separate requests for our algorithm to work.
2135 */
2136 BUG_ON(failrec->in_validation);
2137 failrec->in_validation = 1;
2138 failrec->this_mirror = failed_mirror;
2139 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2140 } else {
2141 /*
2142 * we're ready to fulfill a) and b) alongside. get a good copy
2143 * of the failed sector and if we succeed, we have setup
2144 * everything for repair_io_failure to do the rest for us.
2145 */
2146 if (failrec->in_validation) {
2147 BUG_ON(failrec->this_mirror != failed_mirror);
2148 failrec->in_validation = 0;
2149 failrec->this_mirror = 0;
2150 }
2151 failrec->failed_mirror = failed_mirror;
2152 failrec->this_mirror++;
2153 if (failrec->this_mirror == failed_mirror)
2154 failrec->this_mirror++;
2155 read_mode = READ_SYNC;
2156 }
2157
2158 if (!state || failrec->this_mirror > num_copies) {
2159 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2160 "next_mirror %d, failed_mirror %d\n", state,
2161 num_copies, failrec->this_mirror, failed_mirror);
2162 free_io_failure(inode, failrec, 0);
2163 return -EIO;
2164 }
2165
2166 bio = bio_alloc(GFP_NOFS, 1);
2167 bio->bi_private = state;
2168 bio->bi_end_io = failed_bio->bi_end_io;
2169 bio->bi_sector = failrec->logical >> 9;
2170 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2171 bio->bi_size = 0;
2172
2173 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2174
2175 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2176 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2177 failrec->this_mirror, num_copies, failrec->in_validation);
2178
013bd4c3
TI
2179 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2180 failrec->this_mirror,
2181 failrec->bio_flags, 0);
2182 return ret;
4a54c8c1
JS
2183}
2184
d1310b2e
CM
2185/* lots and lots of room for performance fixes in the end_bio funcs */
2186
87826df0
JM
2187int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2188{
2189 int uptodate = (err == 0);
2190 struct extent_io_tree *tree;
2191 int ret;
2192
2193 tree = &BTRFS_I(page->mapping->host)->io_tree;
2194
2195 if (tree->ops && tree->ops->writepage_end_io_hook) {
2196 ret = tree->ops->writepage_end_io_hook(page, start,
2197 end, NULL, uptodate);
2198 if (ret)
2199 uptodate = 0;
2200 }
2201
2202 if (!uptodate && tree->ops &&
2203 tree->ops->writepage_io_failed_hook) {
2204 ret = tree->ops->writepage_io_failed_hook(NULL, page,
2205 start, end, NULL);
2206 /* Writeback already completed */
2207 if (ret == 0)
2208 return 1;
2209 }
2210
2211 if (!uptodate) {
2212 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
2213 ClearPageUptodate(page);
2214 SetPageError(page);
2215 }
2216 return 0;
2217}
2218
d1310b2e
CM
2219/*
2220 * after a writepage IO is done, we need to:
2221 * clear the uptodate bits on error
2222 * clear the writeback bits in the extent tree for this IO
2223 * end_page_writeback if the page has no more pending IO
2224 *
2225 * Scheduling is not allowed, so the extent state tree is expected
2226 * to have one and only one object corresponding to this IO.
2227 */
d1310b2e 2228static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2229{
d1310b2e 2230 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2231 struct extent_io_tree *tree;
d1310b2e
CM
2232 u64 start;
2233 u64 end;
2234 int whole_page;
2235
d1310b2e
CM
2236 do {
2237 struct page *page = bvec->bv_page;
902b22f3
DW
2238 tree = &BTRFS_I(page->mapping->host)->io_tree;
2239
d1310b2e
CM
2240 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2241 bvec->bv_offset;
2242 end = start + bvec->bv_len - 1;
2243
2244 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2245 whole_page = 1;
2246 else
2247 whole_page = 0;
2248
2249 if (--bvec >= bio->bi_io_vec)
2250 prefetchw(&bvec->bv_page->flags);
1259ab75 2251
87826df0
JM
2252 if (end_extent_writepage(page, err, start, end))
2253 continue;
70dec807 2254
d1310b2e
CM
2255 if (whole_page)
2256 end_page_writeback(page);
2257 else
2258 check_page_writeback(tree, page);
d1310b2e 2259 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2260
d1310b2e 2261 bio_put(bio);
d1310b2e
CM
2262}
2263
2264/*
2265 * after a readpage IO is done, we need to:
2266 * clear the uptodate bits on error
2267 * set the uptodate bits if things worked
2268 * set the page up to date if all extents in the tree are uptodate
2269 * clear the lock bit in the extent tree
2270 * unlock the page if there are no other extents locked for it
2271 *
2272 * Scheduling is not allowed, so the extent state tree is expected
2273 * to have one and only one object corresponding to this IO.
2274 */
d1310b2e 2275static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2276{
2277 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2278 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2279 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2280 struct extent_io_tree *tree;
d1310b2e
CM
2281 u64 start;
2282 u64 end;
2283 int whole_page;
ea466794 2284 int failed_mirror;
d1310b2e
CM
2285 int ret;
2286
d20f7043
CM
2287 if (err)
2288 uptodate = 0;
2289
d1310b2e
CM
2290 do {
2291 struct page *page = bvec->bv_page;
507903b8
AJ
2292 struct extent_state *cached = NULL;
2293 struct extent_state *state;
2294
4a54c8c1
JS
2295 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2296 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2297 (long int)bio->bi_bdev);
902b22f3
DW
2298 tree = &BTRFS_I(page->mapping->host)->io_tree;
2299
d1310b2e
CM
2300 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2301 bvec->bv_offset;
2302 end = start + bvec->bv_len - 1;
2303
2304 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2305 whole_page = 1;
2306 else
2307 whole_page = 0;
2308
4125bf76 2309 if (++bvec <= bvec_end)
d1310b2e
CM
2310 prefetchw(&bvec->bv_page->flags);
2311
507903b8 2312 spin_lock(&tree->lock);
0d399205 2313 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2314 if (state && state->start == start) {
507903b8
AJ
2315 /*
2316 * take a reference on the state, unlock will drop
2317 * the ref
2318 */
2319 cache_state(state, &cached);
2320 }
2321 spin_unlock(&tree->lock);
2322
d1310b2e 2323 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2324 ret = tree->ops->readpage_end_io_hook(page, start, end,
507903b8 2325 state);
d1310b2e
CM
2326 if (ret)
2327 uptodate = 0;
4a54c8c1
JS
2328 else
2329 clean_io_failure(start, page);
d1310b2e 2330 }
ea466794
JB
2331
2332 if (!uptodate)
32240a91 2333 failed_mirror = (int)(unsigned long)bio->bi_bdev;
ea466794
JB
2334
2335 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2336 ret = tree->ops->readpage_io_failed_hook(page, failed_mirror);
2337 if (!ret && !err &&
2338 test_bit(BIO_UPTODATE, &bio->bi_flags))
2339 uptodate = 1;
2340 } else if (!uptodate) {
f4a8e656
JS
2341 /*
2342 * The generic bio_readpage_error handles errors the
2343 * following way: If possible, new read requests are
2344 * created and submitted and will end up in
2345 * end_bio_extent_readpage as well (if we're lucky, not
2346 * in the !uptodate case). In that case it returns 0 and
2347 * we just go on with the next page in our bio. If it
2348 * can't handle the error it will return -EIO and we
2349 * remain responsible for that page.
2350 */
2351 ret = bio_readpage_error(bio, page, start, end,
2352 failed_mirror, NULL);
7e38326f 2353 if (ret == 0) {
3b951516
CM
2354 uptodate =
2355 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2356 if (err)
2357 uptodate = 0;
507903b8 2358 uncache_state(&cached);
7e38326f
CM
2359 continue;
2360 }
2361 }
d1310b2e 2362
0b32f4bb 2363 if (uptodate && tree->track_uptodate) {
507903b8 2364 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2365 GFP_ATOMIC);
771ed689 2366 }
507903b8 2367 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2368
70dec807
CM
2369 if (whole_page) {
2370 if (uptodate) {
2371 SetPageUptodate(page);
2372 } else {
2373 ClearPageUptodate(page);
2374 SetPageError(page);
2375 }
d1310b2e 2376 unlock_page(page);
70dec807
CM
2377 } else {
2378 if (uptodate) {
2379 check_page_uptodate(tree, page);
2380 } else {
2381 ClearPageUptodate(page);
2382 SetPageError(page);
2383 }
d1310b2e 2384 check_page_locked(tree, page);
70dec807 2385 }
4125bf76 2386 } while (bvec <= bvec_end);
d1310b2e
CM
2387
2388 bio_put(bio);
d1310b2e
CM
2389}
2390
88f794ed
MX
2391struct bio *
2392btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2393 gfp_t gfp_flags)
d1310b2e
CM
2394{
2395 struct bio *bio;
2396
2397 bio = bio_alloc(gfp_flags, nr_vecs);
2398
2399 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2400 while (!bio && (nr_vecs /= 2))
2401 bio = bio_alloc(gfp_flags, nr_vecs);
2402 }
2403
2404 if (bio) {
e1c4b745 2405 bio->bi_size = 0;
d1310b2e
CM
2406 bio->bi_bdev = bdev;
2407 bio->bi_sector = first_sector;
2408 }
2409 return bio;
2410}
2411
c8b97818
CM
2412static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
2413 unsigned long bio_flags)
d1310b2e 2414{
d1310b2e 2415 int ret = 0;
70dec807
CM
2416 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2417 struct page *page = bvec->bv_page;
2418 struct extent_io_tree *tree = bio->bi_private;
70dec807 2419 u64 start;
70dec807
CM
2420
2421 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2422
902b22f3 2423 bio->bi_private = NULL;
d1310b2e
CM
2424
2425 bio_get(bio);
2426
065631f6 2427 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2428 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2429 mirror_num, bio_flags, start);
0b86a832 2430 else
21adbd5c 2431 btrfsic_submit_bio(rw, bio);
4a54c8c1 2432
d1310b2e
CM
2433 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2434 ret = -EOPNOTSUPP;
2435 bio_put(bio);
2436 return ret;
2437}
2438
2439static int submit_extent_page(int rw, struct extent_io_tree *tree,
2440 struct page *page, sector_t sector,
2441 size_t size, unsigned long offset,
2442 struct block_device *bdev,
2443 struct bio **bio_ret,
2444 unsigned long max_pages,
f188591e 2445 bio_end_io_t end_io_func,
c8b97818
CM
2446 int mirror_num,
2447 unsigned long prev_bio_flags,
2448 unsigned long bio_flags)
d1310b2e
CM
2449{
2450 int ret = 0;
2451 struct bio *bio;
2452 int nr;
c8b97818
CM
2453 int contig = 0;
2454 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2455 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2456 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2457
2458 if (bio_ret && *bio_ret) {
2459 bio = *bio_ret;
c8b97818
CM
2460 if (old_compressed)
2461 contig = bio->bi_sector == sector;
2462 else
2463 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2464 sector;
2465
2466 if (prev_bio_flags != bio_flags || !contig ||
239b14b3 2467 (tree->ops && tree->ops->merge_bio_hook &&
c8b97818
CM
2468 tree->ops->merge_bio_hook(page, offset, page_size, bio,
2469 bio_flags)) ||
2470 bio_add_page(bio, page, page_size, offset) < page_size) {
2471 ret = submit_one_bio(rw, bio, mirror_num,
2472 prev_bio_flags);
d1310b2e
CM
2473 bio = NULL;
2474 } else {
2475 return 0;
2476 }
2477 }
c8b97818
CM
2478 if (this_compressed)
2479 nr = BIO_MAX_PAGES;
2480 else
2481 nr = bio_get_nr_vecs(bdev);
2482
88f794ed 2483 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2484 if (!bio)
2485 return -ENOMEM;
70dec807 2486
c8b97818 2487 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2488 bio->bi_end_io = end_io_func;
2489 bio->bi_private = tree;
70dec807 2490
d397712b 2491 if (bio_ret)
d1310b2e 2492 *bio_ret = bio;
d397712b 2493 else
c8b97818 2494 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2495
2496 return ret;
2497}
2498
4f2de97a 2499void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2500{
2501 if (!PagePrivate(page)) {
2502 SetPagePrivate(page);
d1310b2e 2503 page_cache_get(page);
4f2de97a
JB
2504 set_page_private(page, (unsigned long)eb);
2505 } else {
2506 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2507 }
2508}
2509
4f2de97a 2510void set_page_extent_mapped(struct page *page)
d1310b2e 2511{
4f2de97a
JB
2512 if (!PagePrivate(page)) {
2513 SetPagePrivate(page);
2514 page_cache_get(page);
2515 set_page_private(page, EXTENT_PAGE_PRIVATE);
2516 }
d1310b2e
CM
2517}
2518
2519/*
2520 * basic readpage implementation. Locked extent state structs are inserted
2521 * into the tree that are removed when the IO is done (by the end_io
2522 * handlers)
2523 */
2524static int __extent_read_full_page(struct extent_io_tree *tree,
2525 struct page *page,
2526 get_extent_t *get_extent,
c8b97818
CM
2527 struct bio **bio, int mirror_num,
2528 unsigned long *bio_flags)
d1310b2e
CM
2529{
2530 struct inode *inode = page->mapping->host;
2531 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2532 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2533 u64 end;
2534 u64 cur = start;
2535 u64 extent_offset;
2536 u64 last_byte = i_size_read(inode);
2537 u64 block_start;
2538 u64 cur_end;
2539 sector_t sector;
2540 struct extent_map *em;
2541 struct block_device *bdev;
11c65dcc 2542 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2543 int ret;
2544 int nr = 0;
306e16ce 2545 size_t pg_offset = 0;
d1310b2e 2546 size_t iosize;
c8b97818 2547 size_t disk_io_size;
d1310b2e 2548 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2549 unsigned long this_bio_flag = 0;
d1310b2e
CM
2550
2551 set_page_extent_mapped(page);
2552
90a887c9
DM
2553 if (!PageUptodate(page)) {
2554 if (cleancache_get_page(page) == 0) {
2555 BUG_ON(blocksize != PAGE_SIZE);
2556 goto out;
2557 }
2558 }
2559
d1310b2e 2560 end = page_end;
11c65dcc
JB
2561 while (1) {
2562 lock_extent(tree, start, end, GFP_NOFS);
2563 ordered = btrfs_lookup_ordered_extent(inode, start);
2564 if (!ordered)
2565 break;
2566 unlock_extent(tree, start, end, GFP_NOFS);
2567 btrfs_start_ordered_extent(inode, ordered, 1);
2568 btrfs_put_ordered_extent(ordered);
2569 }
d1310b2e 2570
c8b97818
CM
2571 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2572 char *userpage;
2573 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2574
2575 if (zero_offset) {
2576 iosize = PAGE_CACHE_SIZE - zero_offset;
2577 userpage = kmap_atomic(page, KM_USER0);
2578 memset(userpage + zero_offset, 0, iosize);
2579 flush_dcache_page(page);
2580 kunmap_atomic(userpage, KM_USER0);
2581 }
2582 }
d1310b2e
CM
2583 while (cur <= end) {
2584 if (cur >= last_byte) {
2585 char *userpage;
507903b8
AJ
2586 struct extent_state *cached = NULL;
2587
306e16ce 2588 iosize = PAGE_CACHE_SIZE - pg_offset;
d1310b2e 2589 userpage = kmap_atomic(page, KM_USER0);
306e16ce 2590 memset(userpage + pg_offset, 0, iosize);
d1310b2e
CM
2591 flush_dcache_page(page);
2592 kunmap_atomic(userpage, KM_USER0);
2593 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2594 &cached, GFP_NOFS);
2595 unlock_extent_cached(tree, cur, cur + iosize - 1,
2596 &cached, GFP_NOFS);
d1310b2e
CM
2597 break;
2598 }
306e16ce 2599 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2600 end - cur + 1, 0);
c704005d 2601 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2602 SetPageError(page);
2603 unlock_extent(tree, cur, end, GFP_NOFS);
2604 break;
2605 }
d1310b2e
CM
2606 extent_offset = cur - em->start;
2607 BUG_ON(extent_map_end(em) <= cur);
2608 BUG_ON(end < cur);
2609
261507a0 2610 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2611 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2612 extent_set_compress_type(&this_bio_flag,
2613 em->compress_type);
2614 }
c8b97818 2615
d1310b2e
CM
2616 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2617 cur_end = min(extent_map_end(em) - 1, end);
2618 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2619 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2620 disk_io_size = em->block_len;
2621 sector = em->block_start >> 9;
2622 } else {
2623 sector = (em->block_start + extent_offset) >> 9;
2624 disk_io_size = iosize;
2625 }
d1310b2e
CM
2626 bdev = em->bdev;
2627 block_start = em->block_start;
d899e052
YZ
2628 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2629 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2630 free_extent_map(em);
2631 em = NULL;
2632
2633 /* we've found a hole, just zero and go on */
2634 if (block_start == EXTENT_MAP_HOLE) {
2635 char *userpage;
507903b8
AJ
2636 struct extent_state *cached = NULL;
2637
d1310b2e 2638 userpage = kmap_atomic(page, KM_USER0);
306e16ce 2639 memset(userpage + pg_offset, 0, iosize);
d1310b2e
CM
2640 flush_dcache_page(page);
2641 kunmap_atomic(userpage, KM_USER0);
2642
2643 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2644 &cached, GFP_NOFS);
2645 unlock_extent_cached(tree, cur, cur + iosize - 1,
2646 &cached, GFP_NOFS);
d1310b2e 2647 cur = cur + iosize;
306e16ce 2648 pg_offset += iosize;
d1310b2e
CM
2649 continue;
2650 }
2651 /* the get_extent function already copied into the page */
9655d298
CM
2652 if (test_range_bit(tree, cur, cur_end,
2653 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2654 check_page_uptodate(tree, page);
d1310b2e
CM
2655 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2656 cur = cur + iosize;
306e16ce 2657 pg_offset += iosize;
d1310b2e
CM
2658 continue;
2659 }
70dec807
CM
2660 /* we have an inline extent but it didn't get marked up
2661 * to date. Error out
2662 */
2663 if (block_start == EXTENT_MAP_INLINE) {
2664 SetPageError(page);
2665 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2666 cur = cur + iosize;
306e16ce 2667 pg_offset += iosize;
70dec807
CM
2668 continue;
2669 }
d1310b2e
CM
2670
2671 ret = 0;
2672 if (tree->ops && tree->ops->readpage_io_hook) {
2673 ret = tree->ops->readpage_io_hook(page, cur,
2674 cur + iosize - 1);
2675 }
2676 if (!ret) {
89642229
CM
2677 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2678 pnr -= page->index;
d1310b2e 2679 ret = submit_extent_page(READ, tree, page,
306e16ce 2680 sector, disk_io_size, pg_offset,
89642229 2681 bdev, bio, pnr,
c8b97818
CM
2682 end_bio_extent_readpage, mirror_num,
2683 *bio_flags,
2684 this_bio_flag);
89642229 2685 nr++;
c8b97818 2686 *bio_flags = this_bio_flag;
d1310b2e
CM
2687 }
2688 if (ret)
2689 SetPageError(page);
2690 cur = cur + iosize;
306e16ce 2691 pg_offset += iosize;
d1310b2e 2692 }
90a887c9 2693out:
d1310b2e
CM
2694 if (!nr) {
2695 if (!PageError(page))
2696 SetPageUptodate(page);
2697 unlock_page(page);
2698 }
2699 return 0;
2700}
2701
2702int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2703 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2704{
2705 struct bio *bio = NULL;
c8b97818 2706 unsigned long bio_flags = 0;
d1310b2e
CM
2707 int ret;
2708
8ddc7d9c 2709 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2710 &bio_flags);
d1310b2e 2711 if (bio)
8ddc7d9c 2712 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2713 return ret;
2714}
d1310b2e 2715
11c8349b
CM
2716static noinline void update_nr_written(struct page *page,
2717 struct writeback_control *wbc,
2718 unsigned long nr_written)
2719{
2720 wbc->nr_to_write -= nr_written;
2721 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2722 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2723 page->mapping->writeback_index = page->index + nr_written;
2724}
2725
d1310b2e
CM
2726/*
2727 * the writepage semantics are similar to regular writepage. extent
2728 * records are inserted to lock ranges in the tree, and as dirty areas
2729 * are found, they are marked writeback. Then the lock bits are removed
2730 * and the end_io handler clears the writeback ranges
2731 */
2732static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2733 void *data)
2734{
2735 struct inode *inode = page->mapping->host;
2736 struct extent_page_data *epd = data;
2737 struct extent_io_tree *tree = epd->tree;
2738 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2739 u64 delalloc_start;
2740 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2741 u64 end;
2742 u64 cur = start;
2743 u64 extent_offset;
2744 u64 last_byte = i_size_read(inode);
2745 u64 block_start;
2746 u64 iosize;
2747 sector_t sector;
2c64c53d 2748 struct extent_state *cached_state = NULL;
d1310b2e
CM
2749 struct extent_map *em;
2750 struct block_device *bdev;
2751 int ret;
2752 int nr = 0;
7f3c74fb 2753 size_t pg_offset = 0;
d1310b2e
CM
2754 size_t blocksize;
2755 loff_t i_size = i_size_read(inode);
2756 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2757 u64 nr_delalloc;
2758 u64 delalloc_end;
c8b97818
CM
2759 int page_started;
2760 int compressed;
ffbd517d 2761 int write_flags;
771ed689 2762 unsigned long nr_written = 0;
9e487107 2763 bool fill_delalloc = true;
d1310b2e 2764
ffbd517d 2765 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2766 write_flags = WRITE_SYNC;
ffbd517d
CM
2767 else
2768 write_flags = WRITE;
2769
1abe9b8a 2770 trace___extent_writepage(page, inode, wbc);
2771
d1310b2e 2772 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2773
2774 ClearPageError(page);
2775
7f3c74fb 2776 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2777 if (page->index > end_index ||
7f3c74fb 2778 (page->index == end_index && !pg_offset)) {
39be25cd 2779 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2780 unlock_page(page);
2781 return 0;
2782 }
2783
2784 if (page->index == end_index) {
2785 char *userpage;
2786
d1310b2e 2787 userpage = kmap_atomic(page, KM_USER0);
7f3c74fb
CM
2788 memset(userpage + pg_offset, 0,
2789 PAGE_CACHE_SIZE - pg_offset);
d1310b2e 2790 kunmap_atomic(userpage, KM_USER0);
211c17f5 2791 flush_dcache_page(page);
d1310b2e 2792 }
7f3c74fb 2793 pg_offset = 0;
d1310b2e
CM
2794
2795 set_page_extent_mapped(page);
2796
9e487107
JB
2797 if (!tree->ops || !tree->ops->fill_delalloc)
2798 fill_delalloc = false;
2799
d1310b2e
CM
2800 delalloc_start = start;
2801 delalloc_end = 0;
c8b97818 2802 page_started = 0;
9e487107 2803 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2804 u64 delalloc_to_write = 0;
11c8349b
CM
2805 /*
2806 * make sure the wbc mapping index is at least updated
2807 * to this page.
2808 */
2809 update_nr_written(page, wbc, 0);
2810
d397712b 2811 while (delalloc_end < page_end) {
771ed689 2812 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2813 page,
2814 &delalloc_start,
d1310b2e
CM
2815 &delalloc_end,
2816 128 * 1024 * 1024);
771ed689
CM
2817 if (nr_delalloc == 0) {
2818 delalloc_start = delalloc_end + 1;
2819 continue;
2820 }
013bd4c3
TI
2821 ret = tree->ops->fill_delalloc(inode, page,
2822 delalloc_start,
2823 delalloc_end,
2824 &page_started,
2825 &nr_written);
2826 BUG_ON(ret);
f85d7d6c
CM
2827 /*
2828 * delalloc_end is already one less than the total
2829 * length, so we don't subtract one from
2830 * PAGE_CACHE_SIZE
2831 */
2832 delalloc_to_write += (delalloc_end - delalloc_start +
2833 PAGE_CACHE_SIZE) >>
2834 PAGE_CACHE_SHIFT;
d1310b2e 2835 delalloc_start = delalloc_end + 1;
d1310b2e 2836 }
f85d7d6c
CM
2837 if (wbc->nr_to_write < delalloc_to_write) {
2838 int thresh = 8192;
2839
2840 if (delalloc_to_write < thresh * 2)
2841 thresh = delalloc_to_write;
2842 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2843 thresh);
2844 }
c8b97818 2845
771ed689
CM
2846 /* did the fill delalloc function already unlock and start
2847 * the IO?
2848 */
2849 if (page_started) {
2850 ret = 0;
11c8349b
CM
2851 /*
2852 * we've unlocked the page, so we can't update
2853 * the mapping's writeback index, just update
2854 * nr_to_write.
2855 */
2856 wbc->nr_to_write -= nr_written;
2857 goto done_unlocked;
771ed689 2858 }
c8b97818 2859 }
247e743c 2860 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2861 ret = tree->ops->writepage_start_hook(page, start,
2862 page_end);
87826df0
JM
2863 if (ret) {
2864 /* Fixup worker will requeue */
2865 if (ret == -EBUSY)
2866 wbc->pages_skipped++;
2867 else
2868 redirty_page_for_writepage(wbc, page);
11c8349b 2869 update_nr_written(page, wbc, nr_written);
247e743c 2870 unlock_page(page);
771ed689 2871 ret = 0;
11c8349b 2872 goto done_unlocked;
247e743c
CM
2873 }
2874 }
2875
11c8349b
CM
2876 /*
2877 * we don't want to touch the inode after unlocking the page,
2878 * so we update the mapping writeback index now
2879 */
2880 update_nr_written(page, wbc, nr_written + 1);
771ed689 2881
d1310b2e 2882 end = page_end;
d1310b2e 2883 if (last_byte <= start) {
e6dcd2dc
CM
2884 if (tree->ops && tree->ops->writepage_end_io_hook)
2885 tree->ops->writepage_end_io_hook(page, start,
2886 page_end, NULL, 1);
d1310b2e
CM
2887 goto done;
2888 }
2889
d1310b2e
CM
2890 blocksize = inode->i_sb->s_blocksize;
2891
2892 while (cur <= end) {
2893 if (cur >= last_byte) {
e6dcd2dc
CM
2894 if (tree->ops && tree->ops->writepage_end_io_hook)
2895 tree->ops->writepage_end_io_hook(page, cur,
2896 page_end, NULL, 1);
d1310b2e
CM
2897 break;
2898 }
7f3c74fb 2899 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2900 end - cur + 1, 1);
c704005d 2901 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2902 SetPageError(page);
2903 break;
2904 }
2905
2906 extent_offset = cur - em->start;
2907 BUG_ON(extent_map_end(em) <= cur);
2908 BUG_ON(end < cur);
2909 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2910 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2911 sector = (em->block_start + extent_offset) >> 9;
2912 bdev = em->bdev;
2913 block_start = em->block_start;
c8b97818 2914 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2915 free_extent_map(em);
2916 em = NULL;
2917
c8b97818
CM
2918 /*
2919 * compressed and inline extents are written through other
2920 * paths in the FS
2921 */
2922 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2923 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2924 /*
2925 * end_io notification does not happen here for
2926 * compressed extents
2927 */
2928 if (!compressed && tree->ops &&
2929 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2930 tree->ops->writepage_end_io_hook(page, cur,
2931 cur + iosize - 1,
2932 NULL, 1);
c8b97818
CM
2933 else if (compressed) {
2934 /* we don't want to end_page_writeback on
2935 * a compressed extent. this happens
2936 * elsewhere
2937 */
2938 nr++;
2939 }
2940
2941 cur += iosize;
7f3c74fb 2942 pg_offset += iosize;
d1310b2e
CM
2943 continue;
2944 }
d1310b2e
CM
2945 /* leave this out until we have a page_mkwrite call */
2946 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2947 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2948 cur = cur + iosize;
7f3c74fb 2949 pg_offset += iosize;
d1310b2e
CM
2950 continue;
2951 }
c8b97818 2952
d1310b2e
CM
2953 if (tree->ops && tree->ops->writepage_io_hook) {
2954 ret = tree->ops->writepage_io_hook(page, cur,
2955 cur + iosize - 1);
2956 } else {
2957 ret = 0;
2958 }
1259ab75 2959 if (ret) {
d1310b2e 2960 SetPageError(page);
1259ab75 2961 } else {
d1310b2e 2962 unsigned long max_nr = end_index + 1;
7f3c74fb 2963
d1310b2e
CM
2964 set_range_writeback(tree, cur, cur + iosize - 1);
2965 if (!PageWriteback(page)) {
d397712b
CM
2966 printk(KERN_ERR "btrfs warning page %lu not "
2967 "writeback, cur %llu end %llu\n",
2968 page->index, (unsigned long long)cur,
d1310b2e
CM
2969 (unsigned long long)end);
2970 }
2971
ffbd517d
CM
2972 ret = submit_extent_page(write_flags, tree, page,
2973 sector, iosize, pg_offset,
2974 bdev, &epd->bio, max_nr,
c8b97818
CM
2975 end_bio_extent_writepage,
2976 0, 0, 0);
d1310b2e
CM
2977 if (ret)
2978 SetPageError(page);
2979 }
2980 cur = cur + iosize;
7f3c74fb 2981 pg_offset += iosize;
d1310b2e
CM
2982 nr++;
2983 }
2984done:
2985 if (nr == 0) {
2986 /* make sure the mapping tag for page dirty gets cleared */
2987 set_page_writeback(page);
2988 end_page_writeback(page);
2989 }
d1310b2e 2990 unlock_page(page);
771ed689 2991
11c8349b
CM
2992done_unlocked:
2993
2c64c53d
CM
2994 /* drop our reference on any cached states */
2995 free_extent_state(cached_state);
d1310b2e
CM
2996 return 0;
2997}
2998
0b32f4bb
JB
2999static int eb_wait(void *word)
3000{
3001 io_schedule();
3002 return 0;
3003}
3004
3005static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3006{
3007 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3008 TASK_UNINTERRUPTIBLE);
3009}
3010
3011static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3012 struct btrfs_fs_info *fs_info,
3013 struct extent_page_data *epd)
3014{
3015 unsigned long i, num_pages;
3016 int flush = 0;
3017 int ret = 0;
3018
3019 if (!btrfs_try_tree_write_lock(eb)) {
3020 flush = 1;
3021 flush_write_bio(epd);
3022 btrfs_tree_lock(eb);
3023 }
3024
3025 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3026 btrfs_tree_unlock(eb);
3027 if (!epd->sync_io)
3028 return 0;
3029 if (!flush) {
3030 flush_write_bio(epd);
3031 flush = 1;
3032 }
a098d8e8
CM
3033 while (1) {
3034 wait_on_extent_buffer_writeback(eb);
3035 btrfs_tree_lock(eb);
3036 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3037 break;
0b32f4bb 3038 btrfs_tree_unlock(eb);
0b32f4bb
JB
3039 }
3040 }
3041
3042 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3043 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3044 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3045 spin_lock(&fs_info->delalloc_lock);
3046 if (fs_info->dirty_metadata_bytes >= eb->len)
3047 fs_info->dirty_metadata_bytes -= eb->len;
3048 else
3049 WARN_ON(1);
3050 spin_unlock(&fs_info->delalloc_lock);
3051 ret = 1;
3052 }
3053
3054 btrfs_tree_unlock(eb);
3055
3056 if (!ret)
3057 return ret;
3058
3059 num_pages = num_extent_pages(eb->start, eb->len);
3060 for (i = 0; i < num_pages; i++) {
3061 struct page *p = extent_buffer_page(eb, i);
3062
3063 if (!trylock_page(p)) {
3064 if (!flush) {
3065 flush_write_bio(epd);
3066 flush = 1;
3067 }
3068 lock_page(p);
3069 }
3070 }
3071
3072 return ret;
3073}
3074
3075static void end_extent_buffer_writeback(struct extent_buffer *eb)
3076{
3077 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3078 smp_mb__after_clear_bit();
3079 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3080}
3081
3082static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3083{
3084 int uptodate = err == 0;
3085 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3086 struct extent_buffer *eb;
3087 int done;
3088
3089 do {
3090 struct page *page = bvec->bv_page;
3091
3092 bvec--;
3093 eb = (struct extent_buffer *)page->private;
3094 BUG_ON(!eb);
3095 done = atomic_dec_and_test(&eb->io_pages);
3096
3097 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3098 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3099 ClearPageUptodate(page);
3100 SetPageError(page);
3101 }
3102
3103 end_page_writeback(page);
3104
3105 if (!done)
3106 continue;
3107
3108 end_extent_buffer_writeback(eb);
3109 } while (bvec >= bio->bi_io_vec);
3110
3111 bio_put(bio);
3112
3113}
3114
3115static int write_one_eb(struct extent_buffer *eb,
3116 struct btrfs_fs_info *fs_info,
3117 struct writeback_control *wbc,
3118 struct extent_page_data *epd)
3119{
3120 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3121 u64 offset = eb->start;
3122 unsigned long i, num_pages;
3123 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
3124 int ret;
3125
3126 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3127 num_pages = num_extent_pages(eb->start, eb->len);
3128 atomic_set(&eb->io_pages, num_pages);
3129 for (i = 0; i < num_pages; i++) {
3130 struct page *p = extent_buffer_page(eb, i);
3131
3132 clear_page_dirty_for_io(p);
3133 set_page_writeback(p);
3134 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3135 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3136 -1, end_bio_extent_buffer_writepage,
3137 0, 0, 0);
3138 if (ret) {
3139 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3140 SetPageError(p);
3141 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3142 end_extent_buffer_writeback(eb);
3143 ret = -EIO;
3144 break;
3145 }
3146 offset += PAGE_CACHE_SIZE;
3147 update_nr_written(p, wbc, 1);
3148 unlock_page(p);
3149 }
3150
3151 if (unlikely(ret)) {
3152 for (; i < num_pages; i++) {
3153 struct page *p = extent_buffer_page(eb, i);
3154 unlock_page(p);
3155 }
3156 }
3157
3158 return ret;
3159}
3160
3161int btree_write_cache_pages(struct address_space *mapping,
3162 struct writeback_control *wbc)
3163{
3164 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3165 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3166 struct extent_buffer *eb, *prev_eb = NULL;
3167 struct extent_page_data epd = {
3168 .bio = NULL,
3169 .tree = tree,
3170 .extent_locked = 0,
3171 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3172 };
3173 int ret = 0;
3174 int done = 0;
3175 int nr_to_write_done = 0;
3176 struct pagevec pvec;
3177 int nr_pages;
3178 pgoff_t index;
3179 pgoff_t end; /* Inclusive */
3180 int scanned = 0;
3181 int tag;
3182
3183 pagevec_init(&pvec, 0);
3184 if (wbc->range_cyclic) {
3185 index = mapping->writeback_index; /* Start from prev offset */
3186 end = -1;
3187 } else {
3188 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3189 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3190 scanned = 1;
3191 }
3192 if (wbc->sync_mode == WB_SYNC_ALL)
3193 tag = PAGECACHE_TAG_TOWRITE;
3194 else
3195 tag = PAGECACHE_TAG_DIRTY;
3196retry:
3197 if (wbc->sync_mode == WB_SYNC_ALL)
3198 tag_pages_for_writeback(mapping, index, end);
3199 while (!done && !nr_to_write_done && (index <= end) &&
3200 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3201 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3202 unsigned i;
3203
3204 scanned = 1;
3205 for (i = 0; i < nr_pages; i++) {
3206 struct page *page = pvec.pages[i];
3207
3208 if (!PagePrivate(page))
3209 continue;
3210
3211 if (!wbc->range_cyclic && page->index > end) {
3212 done = 1;
3213 break;
3214 }
3215
3216 eb = (struct extent_buffer *)page->private;
3217 if (!eb) {
3218 WARN_ON(1);
3219 continue;
3220 }
3221
3222 if (eb == prev_eb)
3223 continue;
3224
3225 if (!atomic_inc_not_zero(&eb->refs)) {
3226 WARN_ON(1);
3227 continue;
3228 }
3229
3230 prev_eb = eb;
3231 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3232 if (!ret) {
3233 free_extent_buffer(eb);
3234 continue;
3235 }
3236
3237 ret = write_one_eb(eb, fs_info, wbc, &epd);
3238 if (ret) {
3239 done = 1;
3240 free_extent_buffer(eb);
3241 break;
3242 }
3243 free_extent_buffer(eb);
3244
3245 /*
3246 * the filesystem may choose to bump up nr_to_write.
3247 * We have to make sure to honor the new nr_to_write
3248 * at any time
3249 */
3250 nr_to_write_done = wbc->nr_to_write <= 0;
3251 }
3252 pagevec_release(&pvec);
3253 cond_resched();
3254 }
3255 if (!scanned && !done) {
3256 /*
3257 * We hit the last page and there is more work to be done: wrap
3258 * back to the start of the file
3259 */
3260 scanned = 1;
3261 index = 0;
3262 goto retry;
3263 }
3264 flush_write_bio(&epd);
3265 return ret;
3266}
3267
d1310b2e 3268/**
4bef0848 3269 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3270 * @mapping: address space structure to write
3271 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3272 * @writepage: function called for each page
3273 * @data: data passed to writepage function
3274 *
3275 * If a page is already under I/O, write_cache_pages() skips it, even
3276 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3277 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3278 * and msync() need to guarantee that all the data which was dirty at the time
3279 * the call was made get new I/O started against them. If wbc->sync_mode is
3280 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3281 * existing IO to complete.
3282 */
b2950863 3283static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3284 struct address_space *mapping,
3285 struct writeback_control *wbc,
d2c3f4f6
CM
3286 writepage_t writepage, void *data,
3287 void (*flush_fn)(void *))
d1310b2e 3288{
d1310b2e
CM
3289 int ret = 0;
3290 int done = 0;
f85d7d6c 3291 int nr_to_write_done = 0;
d1310b2e
CM
3292 struct pagevec pvec;
3293 int nr_pages;
3294 pgoff_t index;
3295 pgoff_t end; /* Inclusive */
3296 int scanned = 0;
f7aaa06b 3297 int tag;
d1310b2e 3298
d1310b2e
CM
3299 pagevec_init(&pvec, 0);
3300 if (wbc->range_cyclic) {
3301 index = mapping->writeback_index; /* Start from prev offset */
3302 end = -1;
3303 } else {
3304 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3305 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3306 scanned = 1;
3307 }
f7aaa06b
JB
3308 if (wbc->sync_mode == WB_SYNC_ALL)
3309 tag = PAGECACHE_TAG_TOWRITE;
3310 else
3311 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3312retry:
f7aaa06b
JB
3313 if (wbc->sync_mode == WB_SYNC_ALL)
3314 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3315 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3316 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3317 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3318 unsigned i;
3319
3320 scanned = 1;
3321 for (i = 0; i < nr_pages; i++) {
3322 struct page *page = pvec.pages[i];
3323
3324 /*
3325 * At this point we hold neither mapping->tree_lock nor
3326 * lock on the page itself: the page may be truncated or
3327 * invalidated (changing page->mapping to NULL), or even
3328 * swizzled back from swapper_space to tmpfs file
3329 * mapping
3330 */
01d658f2
CM
3331 if (tree->ops &&
3332 tree->ops->write_cache_pages_lock_hook) {
3333 tree->ops->write_cache_pages_lock_hook(page,
3334 data, flush_fn);
3335 } else {
3336 if (!trylock_page(page)) {
3337 flush_fn(data);
3338 lock_page(page);
3339 }
3340 }
d1310b2e
CM
3341
3342 if (unlikely(page->mapping != mapping)) {
3343 unlock_page(page);
3344 continue;
3345 }
3346
3347 if (!wbc->range_cyclic && page->index > end) {
3348 done = 1;
3349 unlock_page(page);
3350 continue;
3351 }
3352
d2c3f4f6 3353 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3354 if (PageWriteback(page))
3355 flush_fn(data);
d1310b2e 3356 wait_on_page_writeback(page);
d2c3f4f6 3357 }
d1310b2e
CM
3358
3359 if (PageWriteback(page) ||
3360 !clear_page_dirty_for_io(page)) {
3361 unlock_page(page);
3362 continue;
3363 }
3364
3365 ret = (*writepage)(page, wbc, data);
3366
3367 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3368 unlock_page(page);
3369 ret = 0;
3370 }
f85d7d6c 3371 if (ret)
d1310b2e 3372 done = 1;
f85d7d6c
CM
3373
3374 /*
3375 * the filesystem may choose to bump up nr_to_write.
3376 * We have to make sure to honor the new nr_to_write
3377 * at any time
3378 */
3379 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3380 }
3381 pagevec_release(&pvec);
3382 cond_resched();
3383 }
3384 if (!scanned && !done) {
3385 /*
3386 * We hit the last page and there is more work to be done: wrap
3387 * back to the start of the file
3388 */
3389 scanned = 1;
3390 index = 0;
3391 goto retry;
3392 }
d1310b2e
CM
3393 return ret;
3394}
d1310b2e 3395
ffbd517d 3396static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3397{
d2c3f4f6 3398 if (epd->bio) {
ffbd517d
CM
3399 if (epd->sync_io)
3400 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
3401 else
3402 submit_one_bio(WRITE, epd->bio, 0, 0);
d2c3f4f6
CM
3403 epd->bio = NULL;
3404 }
3405}
3406
ffbd517d
CM
3407static noinline void flush_write_bio(void *data)
3408{
3409 struct extent_page_data *epd = data;
3410 flush_epd_write_bio(epd);
3411}
3412
d1310b2e
CM
3413int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3414 get_extent_t *get_extent,
3415 struct writeback_control *wbc)
3416{
3417 int ret;
d1310b2e
CM
3418 struct extent_page_data epd = {
3419 .bio = NULL,
3420 .tree = tree,
3421 .get_extent = get_extent,
771ed689 3422 .extent_locked = 0,
ffbd517d 3423 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3424 };
d1310b2e 3425
d1310b2e
CM
3426 ret = __extent_writepage(page, wbc, &epd);
3427
ffbd517d 3428 flush_epd_write_bio(&epd);
d1310b2e
CM
3429 return ret;
3430}
d1310b2e 3431
771ed689
CM
3432int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3433 u64 start, u64 end, get_extent_t *get_extent,
3434 int mode)
3435{
3436 int ret = 0;
3437 struct address_space *mapping = inode->i_mapping;
3438 struct page *page;
3439 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3440 PAGE_CACHE_SHIFT;
3441
3442 struct extent_page_data epd = {
3443 .bio = NULL,
3444 .tree = tree,
3445 .get_extent = get_extent,
3446 .extent_locked = 1,
ffbd517d 3447 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3448 };
3449 struct writeback_control wbc_writepages = {
771ed689 3450 .sync_mode = mode,
771ed689
CM
3451 .nr_to_write = nr_pages * 2,
3452 .range_start = start,
3453 .range_end = end + 1,
3454 };
3455
d397712b 3456 while (start <= end) {
771ed689
CM
3457 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3458 if (clear_page_dirty_for_io(page))
3459 ret = __extent_writepage(page, &wbc_writepages, &epd);
3460 else {
3461 if (tree->ops && tree->ops->writepage_end_io_hook)
3462 tree->ops->writepage_end_io_hook(page, start,
3463 start + PAGE_CACHE_SIZE - 1,
3464 NULL, 1);
3465 unlock_page(page);
3466 }
3467 page_cache_release(page);
3468 start += PAGE_CACHE_SIZE;
3469 }
3470
ffbd517d 3471 flush_epd_write_bio(&epd);
771ed689
CM
3472 return ret;
3473}
d1310b2e
CM
3474
3475int extent_writepages(struct extent_io_tree *tree,
3476 struct address_space *mapping,
3477 get_extent_t *get_extent,
3478 struct writeback_control *wbc)
3479{
3480 int ret = 0;
3481 struct extent_page_data epd = {
3482 .bio = NULL,
3483 .tree = tree,
3484 .get_extent = get_extent,
771ed689 3485 .extent_locked = 0,
ffbd517d 3486 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3487 };
3488
4bef0848 3489 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3490 __extent_writepage, &epd,
3491 flush_write_bio);
ffbd517d 3492 flush_epd_write_bio(&epd);
d1310b2e
CM
3493 return ret;
3494}
d1310b2e
CM
3495
3496int extent_readpages(struct extent_io_tree *tree,
3497 struct address_space *mapping,
3498 struct list_head *pages, unsigned nr_pages,
3499 get_extent_t get_extent)
3500{
3501 struct bio *bio = NULL;
3502 unsigned page_idx;
c8b97818 3503 unsigned long bio_flags = 0;
d1310b2e 3504
d1310b2e
CM
3505 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3506 struct page *page = list_entry(pages->prev, struct page, lru);
3507
3508 prefetchw(&page->flags);
3509 list_del(&page->lru);
28ecb609 3510 if (!add_to_page_cache_lru(page, mapping,
43e817a1 3511 page->index, GFP_NOFS)) {
f188591e 3512 __extent_read_full_page(tree, page, get_extent,
c8b97818 3513 &bio, 0, &bio_flags);
d1310b2e
CM
3514 }
3515 page_cache_release(page);
3516 }
d1310b2e
CM
3517 BUG_ON(!list_empty(pages));
3518 if (bio)
c8b97818 3519 submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3520 return 0;
3521}
d1310b2e
CM
3522
3523/*
3524 * basic invalidatepage code, this waits on any locked or writeback
3525 * ranges corresponding to the page, and then deletes any extent state
3526 * records from the tree
3527 */
3528int extent_invalidatepage(struct extent_io_tree *tree,
3529 struct page *page, unsigned long offset)
3530{
2ac55d41 3531 struct extent_state *cached_state = NULL;
d1310b2e
CM
3532 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3533 u64 end = start + PAGE_CACHE_SIZE - 1;
3534 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3535
d397712b 3536 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3537 if (start > end)
3538 return 0;
3539
2ac55d41 3540 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
1edbb734 3541 wait_on_page_writeback(page);
d1310b2e 3542 clear_extent_bit(tree, start, end,
32c00aff
JB
3543 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3544 EXTENT_DO_ACCOUNTING,
2ac55d41 3545 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3546 return 0;
3547}
d1310b2e 3548
7b13b7b1
CM
3549/*
3550 * a helper for releasepage, this tests for areas of the page that
3551 * are locked or under IO and drops the related state bits if it is safe
3552 * to drop the page.
3553 */
3554int try_release_extent_state(struct extent_map_tree *map,
3555 struct extent_io_tree *tree, struct page *page,
3556 gfp_t mask)
3557{
3558 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3559 u64 end = start + PAGE_CACHE_SIZE - 1;
3560 int ret = 1;
3561
211f90e6 3562 if (test_range_bit(tree, start, end,
8b62b72b 3563 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3564 ret = 0;
3565 else {
3566 if ((mask & GFP_NOFS) == GFP_NOFS)
3567 mask = GFP_NOFS;
11ef160f
CM
3568 /*
3569 * at this point we can safely clear everything except the
3570 * locked bit and the nodatasum bit
3571 */
e3f24cc5 3572 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3573 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3574 0, 0, NULL, mask);
e3f24cc5
CM
3575
3576 /* if clear_extent_bit failed for enomem reasons,
3577 * we can't allow the release to continue.
3578 */
3579 if (ret < 0)
3580 ret = 0;
3581 else
3582 ret = 1;
7b13b7b1
CM
3583 }
3584 return ret;
3585}
7b13b7b1 3586
d1310b2e
CM
3587/*
3588 * a helper for releasepage. As long as there are no locked extents
3589 * in the range corresponding to the page, both state records and extent
3590 * map records are removed
3591 */
3592int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3593 struct extent_io_tree *tree, struct page *page,
3594 gfp_t mask)
d1310b2e
CM
3595{
3596 struct extent_map *em;
3597 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3598 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3599
70dec807
CM
3600 if ((mask & __GFP_WAIT) &&
3601 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3602 u64 len;
70dec807 3603 while (start <= end) {
39b5637f 3604 len = end - start + 1;
890871be 3605 write_lock(&map->lock);
39b5637f 3606 em = lookup_extent_mapping(map, start, len);
285190d9 3607 if (!em) {
890871be 3608 write_unlock(&map->lock);
70dec807
CM
3609 break;
3610 }
7f3c74fb
CM
3611 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3612 em->start != start) {
890871be 3613 write_unlock(&map->lock);
70dec807
CM
3614 free_extent_map(em);
3615 break;
3616 }
3617 if (!test_range_bit(tree, em->start,
3618 extent_map_end(em) - 1,
8b62b72b 3619 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3620 0, NULL)) {
70dec807
CM
3621 remove_extent_mapping(map, em);
3622 /* once for the rb tree */
3623 free_extent_map(em);
3624 }
3625 start = extent_map_end(em);
890871be 3626 write_unlock(&map->lock);
70dec807
CM
3627
3628 /* once for us */
d1310b2e
CM
3629 free_extent_map(em);
3630 }
d1310b2e 3631 }
7b13b7b1 3632 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3633}
d1310b2e 3634
ec29ed5b
CM
3635/*
3636 * helper function for fiemap, which doesn't want to see any holes.
3637 * This maps until we find something past 'last'
3638 */
3639static struct extent_map *get_extent_skip_holes(struct inode *inode,
3640 u64 offset,
3641 u64 last,
3642 get_extent_t *get_extent)
3643{
3644 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3645 struct extent_map *em;
3646 u64 len;
3647
3648 if (offset >= last)
3649 return NULL;
3650
3651 while(1) {
3652 len = last - offset;
3653 if (len == 0)
3654 break;
3655 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3656 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3657 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3658 return em;
3659
3660 /* if this isn't a hole return it */
3661 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3662 em->block_start != EXTENT_MAP_HOLE) {
3663 return em;
3664 }
3665
3666 /* this is a hole, advance to the next extent */
3667 offset = extent_map_end(em);
3668 free_extent_map(em);
3669 if (offset >= last)
3670 break;
3671 }
3672 return NULL;
3673}
3674
1506fcc8
YS
3675int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3676 __u64 start, __u64 len, get_extent_t *get_extent)
3677{
975f84fe 3678 int ret = 0;
1506fcc8
YS
3679 u64 off = start;
3680 u64 max = start + len;
3681 u32 flags = 0;
975f84fe
JB
3682 u32 found_type;
3683 u64 last;
ec29ed5b 3684 u64 last_for_get_extent = 0;
1506fcc8 3685 u64 disko = 0;
ec29ed5b 3686 u64 isize = i_size_read(inode);
975f84fe 3687 struct btrfs_key found_key;
1506fcc8 3688 struct extent_map *em = NULL;
2ac55d41 3689 struct extent_state *cached_state = NULL;
975f84fe
JB
3690 struct btrfs_path *path;
3691 struct btrfs_file_extent_item *item;
1506fcc8 3692 int end = 0;
ec29ed5b
CM
3693 u64 em_start = 0;
3694 u64 em_len = 0;
3695 u64 em_end = 0;
1506fcc8 3696 unsigned long emflags;
1506fcc8
YS
3697
3698 if (len == 0)
3699 return -EINVAL;
3700
975f84fe
JB
3701 path = btrfs_alloc_path();
3702 if (!path)
3703 return -ENOMEM;
3704 path->leave_spinning = 1;
3705
4d479cf0
JB
3706 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3707 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3708
ec29ed5b
CM
3709 /*
3710 * lookup the last file extent. We're not using i_size here
3711 * because there might be preallocation past i_size
3712 */
975f84fe 3713 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3714 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3715 if (ret < 0) {
3716 btrfs_free_path(path);
3717 return ret;
3718 }
3719 WARN_ON(!ret);
3720 path->slots[0]--;
3721 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3722 struct btrfs_file_extent_item);
3723 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3724 found_type = btrfs_key_type(&found_key);
3725
ec29ed5b 3726 /* No extents, but there might be delalloc bits */
33345d01 3727 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3728 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3729 /* have to trust i_size as the end */
3730 last = (u64)-1;
3731 last_for_get_extent = isize;
3732 } else {
3733 /*
3734 * remember the start of the last extent. There are a
3735 * bunch of different factors that go into the length of the
3736 * extent, so its much less complex to remember where it started
3737 */
3738 last = found_key.offset;
3739 last_for_get_extent = last + 1;
975f84fe 3740 }
975f84fe
JB
3741 btrfs_free_path(path);
3742
ec29ed5b
CM
3743 /*
3744 * we might have some extents allocated but more delalloc past those
3745 * extents. so, we trust isize unless the start of the last extent is
3746 * beyond isize
3747 */
3748 if (last < isize) {
3749 last = (u64)-1;
3750 last_for_get_extent = isize;
3751 }
3752
2ac55d41
JB
3753 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
3754 &cached_state, GFP_NOFS);
ec29ed5b 3755
4d479cf0 3756 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3757 get_extent);
1506fcc8
YS
3758 if (!em)
3759 goto out;
3760 if (IS_ERR(em)) {
3761 ret = PTR_ERR(em);
3762 goto out;
3763 }
975f84fe 3764
1506fcc8 3765 while (!end) {
ea8efc74
CM
3766 u64 offset_in_extent;
3767
3768 /* break if the extent we found is outside the range */
3769 if (em->start >= max || extent_map_end(em) < off)
3770 break;
3771
3772 /*
3773 * get_extent may return an extent that starts before our
3774 * requested range. We have to make sure the ranges
3775 * we return to fiemap always move forward and don't
3776 * overlap, so adjust the offsets here
3777 */
3778 em_start = max(em->start, off);
1506fcc8 3779
ea8efc74
CM
3780 /*
3781 * record the offset from the start of the extent
3782 * for adjusting the disk offset below
3783 */
3784 offset_in_extent = em_start - em->start;
ec29ed5b 3785 em_end = extent_map_end(em);
ea8efc74 3786 em_len = em_end - em_start;
ec29ed5b 3787 emflags = em->flags;
1506fcc8
YS
3788 disko = 0;
3789 flags = 0;
3790
ea8efc74
CM
3791 /*
3792 * bump off for our next call to get_extent
3793 */
3794 off = extent_map_end(em);
3795 if (off >= max)
3796 end = 1;
3797
93dbfad7 3798 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3799 end = 1;
3800 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3801 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3802 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3803 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3804 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3805 flags |= (FIEMAP_EXTENT_DELALLOC |
3806 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3807 } else {
ea8efc74 3808 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3809 }
3810 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3811 flags |= FIEMAP_EXTENT_ENCODED;
3812
1506fcc8
YS
3813 free_extent_map(em);
3814 em = NULL;
ec29ed5b
CM
3815 if ((em_start >= last) || em_len == (u64)-1 ||
3816 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3817 flags |= FIEMAP_EXTENT_LAST;
3818 end = 1;
3819 }
3820
ec29ed5b
CM
3821 /* now scan forward to see if this is really the last extent. */
3822 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3823 get_extent);
3824 if (IS_ERR(em)) {
3825 ret = PTR_ERR(em);
3826 goto out;
3827 }
3828 if (!em) {
975f84fe
JB
3829 flags |= FIEMAP_EXTENT_LAST;
3830 end = 1;
3831 }
ec29ed5b
CM
3832 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3833 em_len, flags);
3834 if (ret)
3835 goto out_free;
1506fcc8
YS
3836 }
3837out_free:
3838 free_extent_map(em);
3839out:
2ac55d41
JB
3840 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3841 &cached_state, GFP_NOFS);
1506fcc8
YS
3842 return ret;
3843}
3844
4a54c8c1 3845inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3846 unsigned long i)
3847{
727011e0 3848 return eb->pages[i];
d1310b2e
CM
3849}
3850
4a54c8c1 3851inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3852{
6af118ce
CM
3853 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3854 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3855}
3856
727011e0
CM
3857static void __free_extent_buffer(struct extent_buffer *eb)
3858{
3859#if LEAK_DEBUG
3860 unsigned long flags;
3861 spin_lock_irqsave(&leak_lock, flags);
3862 list_del(&eb->leak_list);
3863 spin_unlock_irqrestore(&leak_lock, flags);
3864#endif
3865 if (eb->pages && eb->pages != eb->inline_pages)
3866 kfree(eb->pages);
3867 kmem_cache_free(extent_buffer_cache, eb);
3868}
3869
d1310b2e
CM
3870static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3871 u64 start,
3872 unsigned long len,
3873 gfp_t mask)
3874{
3875 struct extent_buffer *eb = NULL;
3935127c 3876#if LEAK_DEBUG
2d2ae547 3877 unsigned long flags;
4bef0848 3878#endif
d1310b2e 3879
d1310b2e 3880 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3881 if (eb == NULL)
3882 return NULL;
d1310b2e
CM
3883 eb->start = start;
3884 eb->len = len;
4f2de97a 3885 eb->tree = tree;
bd681513
CM
3886 rwlock_init(&eb->lock);
3887 atomic_set(&eb->write_locks, 0);
3888 atomic_set(&eb->read_locks, 0);
3889 atomic_set(&eb->blocking_readers, 0);
3890 atomic_set(&eb->blocking_writers, 0);
3891 atomic_set(&eb->spinning_readers, 0);
3892 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3893 eb->lock_nested = 0;
bd681513
CM
3894 init_waitqueue_head(&eb->write_lock_wq);
3895 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3896
3935127c 3897#if LEAK_DEBUG
2d2ae547
CM
3898 spin_lock_irqsave(&leak_lock, flags);
3899 list_add(&eb->leak_list, &buffers);
3900 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3901#endif
3083ee2e 3902 spin_lock_init(&eb->refs_lock);
d1310b2e 3903 atomic_set(&eb->refs, 1);
0b32f4bb 3904 atomic_set(&eb->io_pages, 0);
727011e0
CM
3905
3906 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3907 struct page **pages;
3908 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3909 PAGE_CACHE_SHIFT;
3910 pages = kzalloc(num_pages, mask);
3911 if (!pages) {
3912 __free_extent_buffer(eb);
3913 return NULL;
3914 }
3915 eb->pages = pages;
3916 } else {
3917 eb->pages = eb->inline_pages;
3918 }
d1310b2e
CM
3919
3920 return eb;
3921}
3922
0b32f4bb
JB
3923static int extent_buffer_under_io(struct extent_buffer *eb)
3924{
3925 return (atomic_read(&eb->io_pages) ||
3926 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
3927 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3928}
3929
897ca6e9
MX
3930/*
3931 * Helper for releasing extent buffer page.
3932 */
3933static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3934 unsigned long start_idx)
3935{
3936 unsigned long index;
3937 struct page *page;
3938
0b32f4bb
JB
3939 BUG_ON(extent_buffer_under_io(eb));
3940
897ca6e9
MX
3941 index = num_extent_pages(eb->start, eb->len);
3942 if (start_idx >= index)
3943 return;
3944
3945 do {
3946 index--;
3947 page = extent_buffer_page(eb, index);
4f2de97a
JB
3948 if (page) {
3949 spin_lock(&page->mapping->private_lock);
3950 /*
3951 * We do this since we'll remove the pages after we've
3952 * removed the eb from the radix tree, so we could race
3953 * and have this page now attached to the new eb. So
3954 * only clear page_private if it's still connected to
3955 * this eb.
3956 */
3957 if (PagePrivate(page) &&
3958 page->private == (unsigned long)eb) {
0b32f4bb 3959 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
3960 BUG_ON(PageDirty(page));
3961 BUG_ON(PageWriteback(page));
4f2de97a
JB
3962 /*
3963 * We need to make sure we haven't be attached
3964 * to a new eb.
3965 */
3966 ClearPagePrivate(page);
3967 set_page_private(page, 0);
3968 /* One for the page private */
3969 page_cache_release(page);
3970 }
3971 spin_unlock(&page->mapping->private_lock);
3972
3973 /* One for when we alloced the page */
897ca6e9 3974 page_cache_release(page);
4f2de97a 3975 }
897ca6e9
MX
3976 } while (index != start_idx);
3977}
3978
3979/*
3980 * Helper for releasing the extent buffer.
3981 */
3982static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
3983{
3984 btrfs_release_extent_buffer_page(eb, 0);
3985 __free_extent_buffer(eb);
3986}
3987
0b32f4bb
JB
3988static void check_buffer_tree_ref(struct extent_buffer *eb)
3989{
3990 /* the ref bit is tricky. We have to make sure it is set
3991 * if we have the buffer dirty. Otherwise the
3992 * code to free a buffer can end up dropping a dirty
3993 * page
3994 *
3995 * Once the ref bit is set, it won't go away while the
3996 * buffer is dirty or in writeback, and it also won't
3997 * go away while we have the reference count on the
3998 * eb bumped.
3999 *
4000 * We can't just set the ref bit without bumping the
4001 * ref on the eb because free_extent_buffer might
4002 * see the ref bit and try to clear it. If this happens
4003 * free_extent_buffer might end up dropping our original
4004 * ref by mistake and freeing the page before we are able
4005 * to add one more ref.
4006 *
4007 * So bump the ref count first, then set the bit. If someone
4008 * beat us to it, drop the ref we added.
4009 */
4010 if (!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4011 atomic_inc(&eb->refs);
4012 if (test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4013 atomic_dec(&eb->refs);
4014 }
4015}
4016
5df4235e
JB
4017static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4018{
4019 unsigned long num_pages, i;
4020
0b32f4bb
JB
4021 check_buffer_tree_ref(eb);
4022
5df4235e
JB
4023 num_pages = num_extent_pages(eb->start, eb->len);
4024 for (i = 0; i < num_pages; i++) {
4025 struct page *p = extent_buffer_page(eb, i);
4026 mark_page_accessed(p);
4027 }
4028}
4029
d1310b2e 4030struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4031 u64 start, unsigned long len)
d1310b2e
CM
4032{
4033 unsigned long num_pages = num_extent_pages(start, len);
4034 unsigned long i;
4035 unsigned long index = start >> PAGE_CACHE_SHIFT;
4036 struct extent_buffer *eb;
6af118ce 4037 struct extent_buffer *exists = NULL;
d1310b2e
CM
4038 struct page *p;
4039 struct address_space *mapping = tree->mapping;
4040 int uptodate = 1;
19fe0a8b 4041 int ret;
d1310b2e 4042
19fe0a8b
MX
4043 rcu_read_lock();
4044 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4045 if (eb && atomic_inc_not_zero(&eb->refs)) {
4046 rcu_read_unlock();
5df4235e 4047 mark_extent_buffer_accessed(eb);
6af118ce
CM
4048 return eb;
4049 }
19fe0a8b 4050 rcu_read_unlock();
6af118ce 4051
ba144192 4052 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4053 if (!eb)
d1310b2e
CM
4054 return NULL;
4055
727011e0 4056 for (i = 0; i < num_pages; i++, index++) {
a6591715 4057 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4058 if (!p) {
4059 WARN_ON(1);
6af118ce 4060 goto free_eb;
d1310b2e 4061 }
4f2de97a
JB
4062
4063 spin_lock(&mapping->private_lock);
4064 if (PagePrivate(p)) {
4065 /*
4066 * We could have already allocated an eb for this page
4067 * and attached one so lets see if we can get a ref on
4068 * the existing eb, and if we can we know it's good and
4069 * we can just return that one, else we know we can just
4070 * overwrite page->private.
4071 */
4072 exists = (struct extent_buffer *)p->private;
4073 if (atomic_inc_not_zero(&exists->refs)) {
4074 spin_unlock(&mapping->private_lock);
4075 unlock_page(p);
5df4235e 4076 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4077 goto free_eb;
4078 }
4079
0b32f4bb 4080 /*
4f2de97a
JB
4081 * Do this so attach doesn't complain and we need to
4082 * drop the ref the old guy had.
4083 */
4084 ClearPagePrivate(p);
0b32f4bb 4085 WARN_ON(PageDirty(p));
4f2de97a
JB
4086 page_cache_release(p);
4087 }
4088 attach_extent_buffer_page(eb, p);
4089 spin_unlock(&mapping->private_lock);
0b32f4bb 4090 WARN_ON(PageDirty(p));
d1310b2e 4091 mark_page_accessed(p);
727011e0 4092 eb->pages[i] = p;
d1310b2e
CM
4093 if (!PageUptodate(p))
4094 uptodate = 0;
eb14ab8e
CM
4095
4096 /*
4097 * see below about how we avoid a nasty race with release page
4098 * and why we unlock later
4099 */
d1310b2e
CM
4100 }
4101 if (uptodate)
b4ce94de 4102 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4103again:
19fe0a8b
MX
4104 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4105 if (ret)
4106 goto free_eb;
4107
6af118ce 4108 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4109 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4110 if (ret == -EEXIST) {
4111 exists = radix_tree_lookup(&tree->buffer,
4112 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4113 if (!atomic_inc_not_zero(&exists->refs)) {
4114 spin_unlock(&tree->buffer_lock);
4115 radix_tree_preload_end();
115391d2
JB
4116 exists = NULL;
4117 goto again;
4118 }
6af118ce 4119 spin_unlock(&tree->buffer_lock);
19fe0a8b 4120 radix_tree_preload_end();
5df4235e 4121 mark_extent_buffer_accessed(exists);
6af118ce
CM
4122 goto free_eb;
4123 }
6af118ce 4124 /* add one reference for the tree */
3083ee2e 4125 spin_lock(&eb->refs_lock);
0b32f4bb 4126 check_buffer_tree_ref(eb);
3083ee2e 4127 spin_unlock(&eb->refs_lock);
f044ba78 4128 spin_unlock(&tree->buffer_lock);
19fe0a8b 4129 radix_tree_preload_end();
eb14ab8e
CM
4130
4131 /*
4132 * there is a race where release page may have
4133 * tried to find this extent buffer in the radix
4134 * but failed. It will tell the VM it is safe to
4135 * reclaim the, and it will clear the page private bit.
4136 * We must make sure to set the page private bit properly
4137 * after the extent buffer is in the radix tree so
4138 * it doesn't get lost
4139 */
727011e0
CM
4140 SetPageChecked(eb->pages[0]);
4141 for (i = 1; i < num_pages; i++) {
4142 p = extent_buffer_page(eb, i);
727011e0
CM
4143 ClearPageChecked(p);
4144 unlock_page(p);
4145 }
4146 unlock_page(eb->pages[0]);
d1310b2e
CM
4147 return eb;
4148
6af118ce 4149free_eb:
727011e0
CM
4150 for (i = 0; i < num_pages; i++) {
4151 if (eb->pages[i])
4152 unlock_page(eb->pages[i]);
4153 }
eb14ab8e 4154
d1310b2e 4155 if (!atomic_dec_and_test(&eb->refs))
6af118ce 4156 return exists;
897ca6e9 4157 btrfs_release_extent_buffer(eb);
6af118ce 4158 return exists;
d1310b2e 4159}
d1310b2e
CM
4160
4161struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4162 u64 start, unsigned long len)
d1310b2e 4163{
d1310b2e 4164 struct extent_buffer *eb;
d1310b2e 4165
19fe0a8b
MX
4166 rcu_read_lock();
4167 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4168 if (eb && atomic_inc_not_zero(&eb->refs)) {
4169 rcu_read_unlock();
5df4235e 4170 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4171 return eb;
4172 }
4173 rcu_read_unlock();
0f9dd46c 4174
19fe0a8b 4175 return NULL;
d1310b2e 4176}
d1310b2e 4177
3083ee2e
JB
4178static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4179{
4180 struct extent_buffer *eb =
4181 container_of(head, struct extent_buffer, rcu_head);
4182
4183 __free_extent_buffer(eb);
4184}
4185
3083ee2e
JB
4186/* Expects to have eb->eb_lock already held */
4187static void release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
4188{
4189 WARN_ON(atomic_read(&eb->refs) == 0);
4190 if (atomic_dec_and_test(&eb->refs)) {
4191 struct extent_io_tree *tree = eb->tree;
3083ee2e
JB
4192
4193 spin_unlock(&eb->refs_lock);
4194
3083ee2e
JB
4195 spin_lock(&tree->buffer_lock);
4196 radix_tree_delete(&tree->buffer,
4197 eb->start >> PAGE_CACHE_SHIFT);
4198 spin_unlock(&tree->buffer_lock);
4199
4200 /* Should be safe to release our pages at this point */
4201 btrfs_release_extent_buffer_page(eb, 0);
4202
4203 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4204 return;
4205 }
4206 spin_unlock(&eb->refs_lock);
4207}
4208
d1310b2e
CM
4209void free_extent_buffer(struct extent_buffer *eb)
4210{
d1310b2e
CM
4211 if (!eb)
4212 return;
4213
3083ee2e
JB
4214 spin_lock(&eb->refs_lock);
4215 if (atomic_read(&eb->refs) == 2 &&
4216 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4217 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4218 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4219 atomic_dec(&eb->refs);
4220
4221 /*
4222 * I know this is terrible, but it's temporary until we stop tracking
4223 * the uptodate bits and such for the extent buffers.
4224 */
4225 release_extent_buffer(eb, GFP_ATOMIC);
4226}
4227
4228void free_extent_buffer_stale(struct extent_buffer *eb)
4229{
4230 if (!eb)
d1310b2e
CM
4231 return;
4232
3083ee2e
JB
4233 spin_lock(&eb->refs_lock);
4234 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4235
0b32f4bb 4236 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4237 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4238 atomic_dec(&eb->refs);
4239 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4240}
d1310b2e 4241
0b32f4bb 4242int clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4243{
d1310b2e
CM
4244 unsigned long i;
4245 unsigned long num_pages;
4246 struct page *page;
4247
d1310b2e 4248 num_pages = num_extent_pages(eb->start, eb->len);
0b32f4bb 4249 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e
CM
4250
4251 for (i = 0; i < num_pages; i++) {
4252 page = extent_buffer_page(eb, i);
b9473439 4253 if (!PageDirty(page))
d2c3f4f6
CM
4254 continue;
4255
a61e6f29 4256 lock_page(page);
eb14ab8e
CM
4257 WARN_ON(!PagePrivate(page));
4258
d1310b2e 4259 clear_page_dirty_for_io(page);
0ee0fda0 4260 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4261 if (!PageDirty(page)) {
4262 radix_tree_tag_clear(&page->mapping->page_tree,
4263 page_index(page),
4264 PAGECACHE_TAG_DIRTY);
4265 }
0ee0fda0 4266 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4267 ClearPageError(page);
a61e6f29 4268 unlock_page(page);
d1310b2e 4269 }
0b32f4bb 4270 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e
CM
4271 return 0;
4272}
d1310b2e 4273
0b32f4bb 4274int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4275{
4276 unsigned long i;
4277 unsigned long num_pages;
b9473439 4278 int was_dirty = 0;
d1310b2e 4279
0b32f4bb
JB
4280 check_buffer_tree_ref(eb);
4281
b9473439 4282 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4283
d1310b2e 4284 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4285 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4286 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4287
b9473439 4288 for (i = 0; i < num_pages; i++)
0b32f4bb 4289 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4290 return was_dirty;
d1310b2e 4291}
d1310b2e 4292
0b32f4bb 4293static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4294{
4295 if (len < PAGE_CACHE_SIZE)
4296 return 1;
4297 if (start & (PAGE_CACHE_SIZE - 1))
4298 return 1;
4299 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4300 return 1;
4301 return 0;
4302}
4303
0b32f4bb 4304int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4305{
4306 unsigned long i;
4307 struct page *page;
4308 unsigned long num_pages;
4309
b4ce94de 4310 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4311 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4312 for (i = 0; i < num_pages; i++) {
4313 page = extent_buffer_page(eb, i);
33958dc6
CM
4314 if (page)
4315 ClearPageUptodate(page);
1259ab75
CM
4316 }
4317 return 0;
4318}
4319
0b32f4bb 4320int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4321{
4322 unsigned long i;
4323 struct page *page;
4324 unsigned long num_pages;
4325
0b32f4bb 4326 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4327 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4328 for (i = 0; i < num_pages; i++) {
4329 page = extent_buffer_page(eb, i);
d1310b2e
CM
4330 SetPageUptodate(page);
4331 }
4332 return 0;
4333}
d1310b2e 4334
ce9adaa5
CM
4335int extent_range_uptodate(struct extent_io_tree *tree,
4336 u64 start, u64 end)
4337{
4338 struct page *page;
4339 int ret;
4340 int pg_uptodate = 1;
4341 int uptodate;
4342 unsigned long index;
4343
0b32f4bb 4344 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4345 ret = test_range_bit(tree, start, end,
4346 EXTENT_UPTODATE, 1, NULL);
4347 if (ret)
4348 return 1;
4349 }
d397712b 4350 while (start <= end) {
ce9adaa5
CM
4351 index = start >> PAGE_CACHE_SHIFT;
4352 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4353 if (!page)
4354 return 1;
ce9adaa5
CM
4355 uptodate = PageUptodate(page);
4356 page_cache_release(page);
4357 if (!uptodate) {
4358 pg_uptodate = 0;
4359 break;
4360 }
4361 start += PAGE_CACHE_SIZE;
4362 }
4363 return pg_uptodate;
4364}
4365
0b32f4bb 4366int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4367{
0b32f4bb 4368 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4369}
d1310b2e
CM
4370
4371int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4372 struct extent_buffer *eb, u64 start, int wait,
f188591e 4373 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4374{
4375 unsigned long i;
4376 unsigned long start_i;
4377 struct page *page;
4378 int err;
4379 int ret = 0;
ce9adaa5
CM
4380 int locked_pages = 0;
4381 int all_uptodate = 1;
d1310b2e 4382 unsigned long num_pages;
727011e0 4383 unsigned long num_reads = 0;
a86c12c7 4384 struct bio *bio = NULL;
c8b97818 4385 unsigned long bio_flags = 0;
a86c12c7 4386
b4ce94de 4387 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4388 return 0;
4389
d1310b2e
CM
4390 if (start) {
4391 WARN_ON(start < eb->start);
4392 start_i = (start >> PAGE_CACHE_SHIFT) -
4393 (eb->start >> PAGE_CACHE_SHIFT);
4394 } else {
4395 start_i = 0;
4396 }
4397
4398 num_pages = num_extent_pages(eb->start, eb->len);
4399 for (i = start_i; i < num_pages; i++) {
4400 page = extent_buffer_page(eb, i);
bb82ab88 4401 if (wait == WAIT_NONE) {
2db04966 4402 if (!trylock_page(page))
ce9adaa5 4403 goto unlock_exit;
d1310b2e
CM
4404 } else {
4405 lock_page(page);
4406 }
ce9adaa5 4407 locked_pages++;
727011e0
CM
4408 if (!PageUptodate(page)) {
4409 num_reads++;
ce9adaa5 4410 all_uptodate = 0;
727011e0 4411 }
ce9adaa5
CM
4412 }
4413 if (all_uptodate) {
4414 if (start_i == 0)
b4ce94de 4415 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4416 goto unlock_exit;
4417 }
4418
ea466794
JB
4419 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4420 eb->failed_mirror = 0;
0b32f4bb 4421 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4422 for (i = start_i; i < num_pages; i++) {
4423 page = extent_buffer_page(eb, i);
ce9adaa5 4424 if (!PageUptodate(page)) {
f188591e 4425 ClearPageError(page);
a86c12c7 4426 err = __extent_read_full_page(tree, page,
f188591e 4427 get_extent, &bio,
c8b97818 4428 mirror_num, &bio_flags);
d397712b 4429 if (err)
d1310b2e 4430 ret = err;
d1310b2e
CM
4431 } else {
4432 unlock_page(page);
4433 }
4434 }
4435
a86c12c7 4436 if (bio)
c8b97818 4437 submit_one_bio(READ, bio, mirror_num, bio_flags);
a86c12c7 4438
bb82ab88 4439 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4440 return ret;
d397712b 4441
d1310b2e
CM
4442 for (i = start_i; i < num_pages; i++) {
4443 page = extent_buffer_page(eb, i);
4444 wait_on_page_locked(page);
d397712b 4445 if (!PageUptodate(page))
d1310b2e 4446 ret = -EIO;
d1310b2e 4447 }
d397712b 4448
d1310b2e 4449 return ret;
ce9adaa5
CM
4450
4451unlock_exit:
4452 i = start_i;
d397712b 4453 while (locked_pages > 0) {
ce9adaa5
CM
4454 page = extent_buffer_page(eb, i);
4455 i++;
4456 unlock_page(page);
4457 locked_pages--;
4458 }
4459 return ret;
d1310b2e 4460}
d1310b2e
CM
4461
4462void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4463 unsigned long start,
4464 unsigned long len)
4465{
4466 size_t cur;
4467 size_t offset;
4468 struct page *page;
4469 char *kaddr;
4470 char *dst = (char *)dstv;
4471 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4472 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4473
4474 WARN_ON(start > eb->len);
4475 WARN_ON(start + len > eb->start + eb->len);
4476
4477 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4478
d397712b 4479 while (len > 0) {
d1310b2e 4480 page = extent_buffer_page(eb, i);
d1310b2e
CM
4481
4482 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4483 kaddr = page_address(page);
d1310b2e 4484 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4485
4486 dst += cur;
4487 len -= cur;
4488 offset = 0;
4489 i++;
4490 }
4491}
d1310b2e
CM
4492
4493int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4494 unsigned long min_len, char **map,
d1310b2e 4495 unsigned long *map_start,
a6591715 4496 unsigned long *map_len)
d1310b2e
CM
4497{
4498 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4499 char *kaddr;
4500 struct page *p;
4501 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4502 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4503 unsigned long end_i = (start_offset + start + min_len - 1) >>
4504 PAGE_CACHE_SHIFT;
4505
4506 if (i != end_i)
4507 return -EINVAL;
4508
4509 if (i == 0) {
4510 offset = start_offset;
4511 *map_start = 0;
4512 } else {
4513 offset = 0;
4514 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4515 }
d397712b 4516
d1310b2e 4517 if (start + min_len > eb->len) {
d397712b
CM
4518 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4519 "wanted %lu %lu\n", (unsigned long long)eb->start,
4520 eb->len, start, min_len);
d1310b2e 4521 WARN_ON(1);
85026533 4522 return -EINVAL;
d1310b2e
CM
4523 }
4524
4525 p = extent_buffer_page(eb, i);
a6591715 4526 kaddr = page_address(p);
d1310b2e
CM
4527 *map = kaddr + offset;
4528 *map_len = PAGE_CACHE_SIZE - offset;
4529 return 0;
4530}
d1310b2e 4531
d1310b2e
CM
4532int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4533 unsigned long start,
4534 unsigned long len)
4535{
4536 size_t cur;
4537 size_t offset;
4538 struct page *page;
4539 char *kaddr;
4540 char *ptr = (char *)ptrv;
4541 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4542 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4543 int ret = 0;
4544
4545 WARN_ON(start > eb->len);
4546 WARN_ON(start + len > eb->start + eb->len);
4547
4548 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4549
d397712b 4550 while (len > 0) {
d1310b2e 4551 page = extent_buffer_page(eb, i);
d1310b2e
CM
4552
4553 cur = min(len, (PAGE_CACHE_SIZE - offset));
4554
a6591715 4555 kaddr = page_address(page);
d1310b2e 4556 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4557 if (ret)
4558 break;
4559
4560 ptr += cur;
4561 len -= cur;
4562 offset = 0;
4563 i++;
4564 }
4565 return ret;
4566}
d1310b2e
CM
4567
4568void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4569 unsigned long start, unsigned long len)
4570{
4571 size_t cur;
4572 size_t offset;
4573 struct page *page;
4574 char *kaddr;
4575 char *src = (char *)srcv;
4576 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4577 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4578
4579 WARN_ON(start > eb->len);
4580 WARN_ON(start + len > eb->start + eb->len);
4581
4582 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4583
d397712b 4584 while (len > 0) {
d1310b2e
CM
4585 page = extent_buffer_page(eb, i);
4586 WARN_ON(!PageUptodate(page));
4587
4588 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4589 kaddr = page_address(page);
d1310b2e 4590 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4591
4592 src += cur;
4593 len -= cur;
4594 offset = 0;
4595 i++;
4596 }
4597}
d1310b2e
CM
4598
4599void memset_extent_buffer(struct extent_buffer *eb, char c,
4600 unsigned long start, unsigned long len)
4601{
4602 size_t cur;
4603 size_t offset;
4604 struct page *page;
4605 char *kaddr;
4606 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4607 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4608
4609 WARN_ON(start > eb->len);
4610 WARN_ON(start + len > eb->start + eb->len);
4611
4612 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4613
d397712b 4614 while (len > 0) {
d1310b2e
CM
4615 page = extent_buffer_page(eb, i);
4616 WARN_ON(!PageUptodate(page));
4617
4618 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4619 kaddr = page_address(page);
d1310b2e 4620 memset(kaddr + offset, c, cur);
d1310b2e
CM
4621
4622 len -= cur;
4623 offset = 0;
4624 i++;
4625 }
4626}
d1310b2e
CM
4627
4628void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4629 unsigned long dst_offset, unsigned long src_offset,
4630 unsigned long len)
4631{
4632 u64 dst_len = dst->len;
4633 size_t cur;
4634 size_t offset;
4635 struct page *page;
4636 char *kaddr;
4637 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4638 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4639
4640 WARN_ON(src->len != dst_len);
4641
4642 offset = (start_offset + dst_offset) &
4643 ((unsigned long)PAGE_CACHE_SIZE - 1);
4644
d397712b 4645 while (len > 0) {
d1310b2e
CM
4646 page = extent_buffer_page(dst, i);
4647 WARN_ON(!PageUptodate(page));
4648
4649 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4650
a6591715 4651 kaddr = page_address(page);
d1310b2e 4652 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4653
4654 src_offset += cur;
4655 len -= cur;
4656 offset = 0;
4657 i++;
4658 }
4659}
d1310b2e
CM
4660
4661static void move_pages(struct page *dst_page, struct page *src_page,
4662 unsigned long dst_off, unsigned long src_off,
4663 unsigned long len)
4664{
a6591715 4665 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4666 if (dst_page == src_page) {
4667 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4668 } else {
a6591715 4669 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4670 char *p = dst_kaddr + dst_off + len;
4671 char *s = src_kaddr + src_off + len;
4672
4673 while (len--)
4674 *--p = *--s;
d1310b2e 4675 }
d1310b2e
CM
4676}
4677
3387206f
ST
4678static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4679{
4680 unsigned long distance = (src > dst) ? src - dst : dst - src;
4681 return distance < len;
4682}
4683
d1310b2e
CM
4684static void copy_pages(struct page *dst_page, struct page *src_page,
4685 unsigned long dst_off, unsigned long src_off,
4686 unsigned long len)
4687{
a6591715 4688 char *dst_kaddr = page_address(dst_page);
d1310b2e 4689 char *src_kaddr;
727011e0 4690 int must_memmove = 0;
d1310b2e 4691
3387206f 4692 if (dst_page != src_page) {
a6591715 4693 src_kaddr = page_address(src_page);
3387206f 4694 } else {
d1310b2e 4695 src_kaddr = dst_kaddr;
727011e0
CM
4696 if (areas_overlap(src_off, dst_off, len))
4697 must_memmove = 1;
3387206f 4698 }
d1310b2e 4699
727011e0
CM
4700 if (must_memmove)
4701 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4702 else
4703 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4704}
4705
4706void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4707 unsigned long src_offset, unsigned long len)
4708{
4709 size_t cur;
4710 size_t dst_off_in_page;
4711 size_t src_off_in_page;
4712 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4713 unsigned long dst_i;
4714 unsigned long src_i;
4715
4716 if (src_offset + len > dst->len) {
d397712b
CM
4717 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4718 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4719 BUG_ON(1);
4720 }
4721 if (dst_offset + len > dst->len) {
d397712b
CM
4722 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4723 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4724 BUG_ON(1);
4725 }
4726
d397712b 4727 while (len > 0) {
d1310b2e
CM
4728 dst_off_in_page = (start_offset + dst_offset) &
4729 ((unsigned long)PAGE_CACHE_SIZE - 1);
4730 src_off_in_page = (start_offset + src_offset) &
4731 ((unsigned long)PAGE_CACHE_SIZE - 1);
4732
4733 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4734 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4735
4736 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4737 src_off_in_page));
4738 cur = min_t(unsigned long, cur,
4739 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4740
4741 copy_pages(extent_buffer_page(dst, dst_i),
4742 extent_buffer_page(dst, src_i),
4743 dst_off_in_page, src_off_in_page, cur);
4744
4745 src_offset += cur;
4746 dst_offset += cur;
4747 len -= cur;
4748 }
4749}
d1310b2e
CM
4750
4751void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4752 unsigned long src_offset, unsigned long len)
4753{
4754 size_t cur;
4755 size_t dst_off_in_page;
4756 size_t src_off_in_page;
4757 unsigned long dst_end = dst_offset + len - 1;
4758 unsigned long src_end = src_offset + len - 1;
4759 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4760 unsigned long dst_i;
4761 unsigned long src_i;
4762
4763 if (src_offset + len > dst->len) {
d397712b
CM
4764 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4765 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4766 BUG_ON(1);
4767 }
4768 if (dst_offset + len > dst->len) {
d397712b
CM
4769 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4770 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4771 BUG_ON(1);
4772 }
727011e0 4773 if (dst_offset < src_offset) {
d1310b2e
CM
4774 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4775 return;
4776 }
d397712b 4777 while (len > 0) {
d1310b2e
CM
4778 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4779 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4780
4781 dst_off_in_page = (start_offset + dst_end) &
4782 ((unsigned long)PAGE_CACHE_SIZE - 1);
4783 src_off_in_page = (start_offset + src_end) &
4784 ((unsigned long)PAGE_CACHE_SIZE - 1);
4785
4786 cur = min_t(unsigned long, len, src_off_in_page + 1);
4787 cur = min(cur, dst_off_in_page + 1);
4788 move_pages(extent_buffer_page(dst, dst_i),
4789 extent_buffer_page(dst, src_i),
4790 dst_off_in_page - cur + 1,
4791 src_off_in_page - cur + 1, cur);
4792
4793 dst_end -= cur;
4794 src_end -= cur;
4795 len -= cur;
4796 }
4797}
6af118ce 4798
3083ee2e 4799int try_release_extent_buffer(struct page *page, gfp_t mask)
6af118ce 4800{
3083ee2e 4801 struct extent_buffer *eb;
6af118ce 4802
3083ee2e
JB
4803 /*
4804 * We need to make sure noboody is attaching this page to an eb right
4805 * now.
4806 */
4807 spin_lock(&page->mapping->private_lock);
4808 if (!PagePrivate(page)) {
4809 spin_unlock(&page->mapping->private_lock);
4f2de97a 4810 return 1;
3083ee2e 4811 }
6af118ce 4812
3083ee2e
JB
4813 eb = (struct extent_buffer *)page->private;
4814 BUG_ON(!eb);
4815
0b32f4bb 4816 /*
3083ee2e
JB
4817 * This is a little awful but should be ok, we need to make sure that
4818 * the eb doesn't disappear out from under us while we're looking at
4819 * this page.
4820 */
4821 spin_lock(&eb->refs_lock);
0b32f4bb 4822 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4823 spin_unlock(&eb->refs_lock);
4824 spin_unlock(&page->mapping->private_lock);
4825 return 0;
6af118ce 4826 }
3083ee2e
JB
4827 spin_unlock(&page->mapping->private_lock);
4828
4829 if ((mask & GFP_NOFS) == GFP_NOFS)
4830 mask = GFP_NOFS;
19fe0a8b
MX
4831
4832 /*
3083ee2e
JB
4833 * If tree ref isn't set then we know the ref on this eb is a real ref,
4834 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4835 */
3083ee2e
JB
4836 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4837 spin_unlock(&eb->refs_lock);
4838 return 0;
b9473439 4839 }
3083ee2e 4840 release_extent_buffer(eb, mask);
19fe0a8b 4841
3083ee2e 4842 return 1;
6af118ce 4843}