]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: Remove EXTENT_FIRST_DELALLOC bit
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112#define BUFFER_LRU_MAX 64
113
114struct tree_entry {
115 u64 start;
116 u64 end;
d1310b2e
CM
117 struct rb_node rb_node;
118};
119
120struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
771ed689
CM
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
125 */
ffbd517d
CM
126 unsigned int extent_locked:1;
127
70fd7614 128 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 129 unsigned int sync_io:1;
d1310b2e
CM
130};
131
57599c7e 132static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
133 struct extent_changeset *changeset,
134 int set)
135{
136 int ret;
137
138 if (!changeset)
57599c7e 139 return 0;
d38ed27f 140 if (set && (state->state & bits) == bits)
57599c7e 141 return 0;
fefdc557 142 if (!set && (state->state & bits) == 0)
57599c7e 143 return 0;
d38ed27f 144 changeset->bytes_changed += state->end - state->start + 1;
53d32359 145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 146 GFP_ATOMIC);
57599c7e 147 return ret;
d38ed27f
QW
148}
149
aab6e9ed 150static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b 165
8ac9f7c1
KO
166 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
168 BIOSET_NEED_BVECS))
9be3395b 169 goto free_buffer_cache;
b208c2f7 170
8ac9f7c1 171 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7 176free_bioset:
8ac9f7c1 177 bioset_exit(&btrfs_bioset);
b208c2f7 178
9be3395b
CM
179free_buffer_cache:
180 kmem_cache_destroy(extent_buffer_cache);
181 extent_buffer_cache = NULL;
182
d1310b2e
CM
183free_state_cache:
184 kmem_cache_destroy(extent_state_cache);
9be3395b 185 extent_state_cache = NULL;
d1310b2e
CM
186 return -ENOMEM;
187}
188
e67c718b 189void __cold extent_io_exit(void)
d1310b2e 190{
6d49ba1b 191 btrfs_leak_debug_check();
8c0a8537
KS
192
193 /*
194 * Make sure all delayed rcu free are flushed before we
195 * destroy caches.
196 */
197 rcu_barrier();
5598e900
KM
198 kmem_cache_destroy(extent_state_cache);
199 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 200 bioset_exit(&btrfs_bioset);
d1310b2e
CM
201}
202
203void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 204 void *private_data)
d1310b2e 205{
6bef4d31 206 tree->state = RB_ROOT;
d1310b2e
CM
207 tree->ops = NULL;
208 tree->dirty_bytes = 0;
70dec807 209 spin_lock_init(&tree->lock);
c6100a4b 210 tree->private_data = private_data;
d1310b2e 211}
d1310b2e 212
b2950863 213static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
214{
215 struct extent_state *state;
d1310b2e 216
3ba7ab22
MH
217 /*
218 * The given mask might be not appropriate for the slab allocator,
219 * drop the unsupported bits
220 */
221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 222 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 223 if (!state)
d1310b2e
CM
224 return state;
225 state->state = 0;
47dc196a 226 state->failrec = NULL;
27a3507d 227 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 228 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 229 refcount_set(&state->refs, 1);
d1310b2e 230 init_waitqueue_head(&state->wq);
143bede5 231 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
232 return state;
233}
d1310b2e 234
4845e44f 235void free_extent_state(struct extent_state *state)
d1310b2e 236{
d1310b2e
CM
237 if (!state)
238 return;
b7ac31b7 239 if (refcount_dec_and_test(&state->refs)) {
27a3507d 240 WARN_ON(extent_state_in_tree(state));
6d49ba1b 241 btrfs_leak_debug_del(&state->leak_list);
143bede5 242 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
243 kmem_cache_free(extent_state_cache, state);
244 }
245}
d1310b2e 246
f2071b21
FM
247static struct rb_node *tree_insert(struct rb_root *root,
248 struct rb_node *search_start,
249 u64 offset,
12cfbad9
FDBM
250 struct rb_node *node,
251 struct rb_node ***p_in,
252 struct rb_node **parent_in)
d1310b2e 253{
f2071b21 254 struct rb_node **p;
d397712b 255 struct rb_node *parent = NULL;
d1310b2e
CM
256 struct tree_entry *entry;
257
12cfbad9
FDBM
258 if (p_in && parent_in) {
259 p = *p_in;
260 parent = *parent_in;
261 goto do_insert;
262 }
263
f2071b21 264 p = search_start ? &search_start : &root->rb_node;
d397712b 265 while (*p) {
d1310b2e
CM
266 parent = *p;
267 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269 if (offset < entry->start)
270 p = &(*p)->rb_left;
271 else if (offset > entry->end)
272 p = &(*p)->rb_right;
273 else
274 return parent;
275 }
276
12cfbad9 277do_insert:
d1310b2e
CM
278 rb_link_node(node, parent, p);
279 rb_insert_color(node, root);
280 return NULL;
281}
282
80ea96b1 283static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
284 struct rb_node **prev_ret,
285 struct rb_node **next_ret,
286 struct rb_node ***p_ret,
287 struct rb_node **parent_ret)
d1310b2e 288{
80ea96b1 289 struct rb_root *root = &tree->state;
12cfbad9 290 struct rb_node **n = &root->rb_node;
d1310b2e
CM
291 struct rb_node *prev = NULL;
292 struct rb_node *orig_prev = NULL;
293 struct tree_entry *entry;
294 struct tree_entry *prev_entry = NULL;
295
12cfbad9
FDBM
296 while (*n) {
297 prev = *n;
298 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
299 prev_entry = entry;
300
301 if (offset < entry->start)
12cfbad9 302 n = &(*n)->rb_left;
d1310b2e 303 else if (offset > entry->end)
12cfbad9 304 n = &(*n)->rb_right;
d397712b 305 else
12cfbad9 306 return *n;
d1310b2e
CM
307 }
308
12cfbad9
FDBM
309 if (p_ret)
310 *p_ret = n;
311 if (parent_ret)
312 *parent_ret = prev;
313
d1310b2e
CM
314 if (prev_ret) {
315 orig_prev = prev;
d397712b 316 while (prev && offset > prev_entry->end) {
d1310b2e
CM
317 prev = rb_next(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *prev_ret = prev;
321 prev = orig_prev;
322 }
323
324 if (next_ret) {
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 326 while (prev && offset < prev_entry->start) {
d1310b2e
CM
327 prev = rb_prev(prev);
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 }
330 *next_ret = prev;
331 }
332 return NULL;
333}
334
12cfbad9
FDBM
335static inline struct rb_node *
336tree_search_for_insert(struct extent_io_tree *tree,
337 u64 offset,
338 struct rb_node ***p_ret,
339 struct rb_node **parent_ret)
d1310b2e 340{
70dec807 341 struct rb_node *prev = NULL;
d1310b2e 342 struct rb_node *ret;
70dec807 343
12cfbad9 344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 345 if (!ret)
d1310b2e
CM
346 return prev;
347 return ret;
348}
349
12cfbad9
FDBM
350static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351 u64 offset)
352{
353 return tree_search_for_insert(tree, offset, NULL, NULL);
354}
355
d1310b2e
CM
356/*
357 * utility function to look for merge candidates inside a given range.
358 * Any extents with matching state are merged together into a single
359 * extent in the tree. Extents with EXTENT_IO in their state field
360 * are not merged because the end_io handlers need to be able to do
361 * operations on them without sleeping (or doing allocations/splits).
362 *
363 * This should be called with the tree lock held.
364 */
1bf85046
JM
365static void merge_state(struct extent_io_tree *tree,
366 struct extent_state *state)
d1310b2e
CM
367{
368 struct extent_state *other;
369 struct rb_node *other_node;
370
5b21f2ed 371 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 372 return;
d1310b2e
CM
373
374 other_node = rb_prev(&state->rb_node);
375 if (other_node) {
376 other = rb_entry(other_node, struct extent_state, rb_node);
377 if (other->end == state->start - 1 &&
378 other->state == state->state) {
5c848198
NB
379 if (tree->private_data &&
380 is_data_inode(tree->private_data))
381 btrfs_merge_delalloc_extent(tree->private_data,
382 state, other);
d1310b2e 383 state->start = other->start;
d1310b2e 384 rb_erase(&other->rb_node, &tree->state);
27a3507d 385 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
386 free_extent_state(other);
387 }
388 }
389 other_node = rb_next(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->start == state->end + 1 &&
393 other->state == state->state) {
5c848198
NB
394 if (tree->private_data &&
395 is_data_inode(tree->private_data))
396 btrfs_merge_delalloc_extent(tree->private_data,
397 state, other);
df98b6e2 398 state->end = other->end;
df98b6e2 399 rb_erase(&other->rb_node, &tree->state);
27a3507d 400 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 401 free_extent_state(other);
d1310b2e
CM
402 }
403 }
d1310b2e
CM
404}
405
3150b699 406static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
407 struct extent_state *state, unsigned *bits,
408 struct extent_changeset *changeset);
3150b699 409
d1310b2e
CM
410/*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
422 struct rb_node ***p,
423 struct rb_node **parent,
d38ed27f 424 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
425{
426 struct rb_node *node;
427
31b1a2bd 428 if (end < start)
efe120a0 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 430 end, start);
d1310b2e
CM
431 state->start = start;
432 state->end = end;
9ed74f2d 433
d38ed27f 434 set_state_bits(tree, state, bits, changeset);
3150b699 435
f2071b21 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
62e85577 440 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 441 found->start, found->end, start, end);
d1310b2e
CM
442 return -EEXIST;
443 }
444 merge_state(tree, state);
445 return 0;
446}
447
448/*
449 * split a given extent state struct in two, inserting the preallocated
450 * struct 'prealloc' as the newly created second half. 'split' indicates an
451 * offset inside 'orig' where it should be split.
452 *
453 * Before calling,
454 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
455 * are two extent state structs in the tree:
456 * prealloc: [orig->start, split - 1]
457 * orig: [ split, orig->end ]
458 *
459 * The tree locks are not taken by this function. They need to be held
460 * by the caller.
461 */
462static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463 struct extent_state *prealloc, u64 split)
464{
465 struct rb_node *node;
9ed74f2d 466
abbb55f4
NB
467 if (tree->private_data && is_data_inode(tree->private_data))
468 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 469
d1310b2e
CM
470 prealloc->start = orig->start;
471 prealloc->end = split - 1;
472 prealloc->state = orig->state;
473 orig->start = split;
474
f2071b21
FM
475 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476 &prealloc->rb_node, NULL, NULL);
d1310b2e 477 if (node) {
d1310b2e
CM
478 free_extent_state(prealloc);
479 return -EEXIST;
480 }
481 return 0;
482}
483
cdc6a395
LZ
484static struct extent_state *next_state(struct extent_state *state)
485{
486 struct rb_node *next = rb_next(&state->rb_node);
487 if (next)
488 return rb_entry(next, struct extent_state, rb_node);
489 else
490 return NULL;
491}
492
d1310b2e
CM
493/*
494 * utility function to clear some bits in an extent state struct.
52042d8e 495 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
496 *
497 * If no bits are set on the state struct after clearing things, the
498 * struct is freed and removed from the tree
499 */
cdc6a395
LZ
500static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501 struct extent_state *state,
fefdc557
QW
502 unsigned *bits, int wake,
503 struct extent_changeset *changeset)
d1310b2e 504{
cdc6a395 505 struct extent_state *next;
9ee49a04 506 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 507 int ret;
d1310b2e 508
0ca1f7ce 509 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
510 u64 range = state->end - state->start + 1;
511 WARN_ON(range > tree->dirty_bytes);
512 tree->dirty_bytes -= range;
513 }
a36bb5f9
NB
514
515 if (tree->private_data && is_data_inode(tree->private_data))
516 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
57599c7e
DS
518 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519 BUG_ON(ret < 0);
32c00aff 520 state->state &= ~bits_to_clear;
d1310b2e
CM
521 if (wake)
522 wake_up(&state->wq);
0ca1f7ce 523 if (state->state == 0) {
cdc6a395 524 next = next_state(state);
27a3507d 525 if (extent_state_in_tree(state)) {
d1310b2e 526 rb_erase(&state->rb_node, &tree->state);
27a3507d 527 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
528 free_extent_state(state);
529 } else {
530 WARN_ON(1);
531 }
532 } else {
533 merge_state(tree, state);
cdc6a395 534 next = next_state(state);
d1310b2e 535 }
cdc6a395 536 return next;
d1310b2e
CM
537}
538
8233767a
XG
539static struct extent_state *
540alloc_extent_state_atomic(struct extent_state *prealloc)
541{
542 if (!prealloc)
543 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545 return prealloc;
546}
547
48a3b636 548static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 549{
05912a3c
DS
550 struct inode *inode = tree->private_data;
551
552 btrfs_panic(btrfs_sb(inode->i_sb), err,
553 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
554}
555
d1310b2e
CM
556/*
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
560 *
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
563 *
564 * the range [start, end] is inclusive.
565 *
6763af84 566 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 567 */
66b0c887 568int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
569 unsigned bits, int wake, int delete,
570 struct extent_state **cached_state,
571 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
572{
573 struct extent_state *state;
2c64c53d 574 struct extent_state *cached;
d1310b2e
CM
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
5c939df5 577 u64 last_end;
d1310b2e 578 int err;
2ac55d41 579 int clear = 0;
d1310b2e 580
a5dee37d 581 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 582
7ee9e440
JB
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
585
0ca1f7ce
YZ
586 if (delete)
587 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 588
2ac55d41
JB
589 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
590 clear = 1;
d1310b2e 591again:
d0164adc 592 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
593 /*
594 * Don't care for allocation failure here because we might end
595 * up not needing the pre-allocated extent state at all, which
596 * is the case if we only have in the tree extent states that
597 * cover our input range and don't cover too any other range.
598 * If we end up needing a new extent state we allocate it later.
599 */
d1310b2e 600 prealloc = alloc_extent_state(mask);
d1310b2e
CM
601 }
602
cad321ad 603 spin_lock(&tree->lock);
2c64c53d
CM
604 if (cached_state) {
605 cached = *cached_state;
2ac55d41
JB
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
27a3507d
FM
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
2ac55d41 614 if (clear)
b7ac31b7 615 refcount_dec(&cached->refs);
2c64c53d 616 state = cached;
42daec29 617 goto hit_next;
2c64c53d 618 }
2ac55d41
JB
619 if (clear)
620 free_extent_state(cached);
2c64c53d 621 }
d1310b2e
CM
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
80ea96b1 626 node = tree_search(tree, start);
d1310b2e
CM
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 630hit_next:
d1310b2e
CM
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
5c939df5 634 last_end = state->end;
d1310b2e 635
0449314a 636 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
637 if (!(state->state & bits)) {
638 state = next_state(state);
0449314a 639 goto next;
cdc6a395 640 }
0449314a 641
d1310b2e
CM
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
8233767a
XG
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
d1310b2e 661 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
662 if (err)
663 extent_io_tree_panic(tree, err);
664
d1310b2e
CM
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
fefdc557
QW
669 state = clear_state_bit(tree, state, &bits, wake,
670 changeset);
d1ac6e41 671 goto next;
d1310b2e
CM
672 }
673 goto search_again;
674 }
675 /*
676 * | ---- desired range ---- |
677 * | state |
678 * We need to split the extent, and clear the bit
679 * on the first half
680 */
681 if (state->start <= end && state->end > end) {
8233767a
XG
682 prealloc = alloc_extent_state_atomic(prealloc);
683 BUG_ON(!prealloc);
d1310b2e 684 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
685 if (err)
686 extent_io_tree_panic(tree, err);
687
d1310b2e
CM
688 if (wake)
689 wake_up(&state->wq);
42daec29 690
fefdc557 691 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 692
d1310b2e
CM
693 prealloc = NULL;
694 goto out;
695 }
42daec29 696
fefdc557 697 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 698next:
5c939df5
YZ
699 if (last_end == (u64)-1)
700 goto out;
701 start = last_end + 1;
cdc6a395 702 if (start <= end && state && !need_resched())
692e5759 703 goto hit_next;
d1310b2e
CM
704
705search_again:
706 if (start > end)
707 goto out;
cad321ad 708 spin_unlock(&tree->lock);
d0164adc 709 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
710 cond_resched();
711 goto again;
7ab5cb2a
DS
712
713out:
714 spin_unlock(&tree->lock);
715 if (prealloc)
716 free_extent_state(prealloc);
717
718 return 0;
719
d1310b2e 720}
d1310b2e 721
143bede5
JM
722static void wait_on_state(struct extent_io_tree *tree,
723 struct extent_state *state)
641f5219
CH
724 __releases(tree->lock)
725 __acquires(tree->lock)
d1310b2e
CM
726{
727 DEFINE_WAIT(wait);
728 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 729 spin_unlock(&tree->lock);
d1310b2e 730 schedule();
cad321ad 731 spin_lock(&tree->lock);
d1310b2e 732 finish_wait(&state->wq, &wait);
d1310b2e
CM
733}
734
735/*
736 * waits for one or more bits to clear on a range in the state tree.
737 * The range [start, end] is inclusive.
738 * The tree lock is taken by this function
739 */
41074888
DS
740static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
741 unsigned long bits)
d1310b2e
CM
742{
743 struct extent_state *state;
744 struct rb_node *node;
745
a5dee37d 746 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 747
cad321ad 748 spin_lock(&tree->lock);
d1310b2e
CM
749again:
750 while (1) {
751 /*
752 * this search will find all the extents that end after
753 * our range starts
754 */
80ea96b1 755 node = tree_search(tree, start);
c50d3e71 756process_node:
d1310b2e
CM
757 if (!node)
758 break;
759
760 state = rb_entry(node, struct extent_state, rb_node);
761
762 if (state->start > end)
763 goto out;
764
765 if (state->state & bits) {
766 start = state->start;
b7ac31b7 767 refcount_inc(&state->refs);
d1310b2e
CM
768 wait_on_state(tree, state);
769 free_extent_state(state);
770 goto again;
771 }
772 start = state->end + 1;
773
774 if (start > end)
775 break;
776
c50d3e71
FM
777 if (!cond_resched_lock(&tree->lock)) {
778 node = rb_next(node);
779 goto process_node;
780 }
d1310b2e
CM
781 }
782out:
cad321ad 783 spin_unlock(&tree->lock);
d1310b2e 784}
d1310b2e 785
1bf85046 786static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 787 struct extent_state *state,
d38ed27f 788 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 789{
9ee49a04 790 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 791 int ret;
9ed74f2d 792
e06a1fc9
NB
793 if (tree->private_data && is_data_inode(tree->private_data))
794 btrfs_set_delalloc_extent(tree->private_data, state, bits);
795
0ca1f7ce 796 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
797 u64 range = state->end - state->start + 1;
798 tree->dirty_bytes += range;
799 }
57599c7e
DS
800 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
801 BUG_ON(ret < 0);
0ca1f7ce 802 state->state |= bits_to_set;
d1310b2e
CM
803}
804
e38e2ed7
FM
805static void cache_state_if_flags(struct extent_state *state,
806 struct extent_state **cached_ptr,
9ee49a04 807 unsigned flags)
2c64c53d
CM
808{
809 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 810 if (!flags || (state->state & flags)) {
2c64c53d 811 *cached_ptr = state;
b7ac31b7 812 refcount_inc(&state->refs);
2c64c53d
CM
813 }
814 }
815}
816
e38e2ed7
FM
817static void cache_state(struct extent_state *state,
818 struct extent_state **cached_ptr)
819{
820 return cache_state_if_flags(state, cached_ptr,
821 EXTENT_IOBITS | EXTENT_BOUNDARY);
822}
823
d1310b2e 824/*
1edbb734
CM
825 * set some bits on a range in the tree. This may require allocations or
826 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 827 *
1edbb734
CM
828 * If any of the exclusive bits are set, this will fail with -EEXIST if some
829 * part of the range already has the desired bits set. The start of the
830 * existing range is returned in failed_start in this case.
d1310b2e 831 *
1edbb734 832 * [start, end] is inclusive This takes the tree lock.
d1310b2e 833 */
1edbb734 834
3fbe5c02
JM
835static int __must_check
836__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 837 unsigned bits, unsigned exclusive_bits,
41074888 838 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 839 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
840{
841 struct extent_state *state;
842 struct extent_state *prealloc = NULL;
843 struct rb_node *node;
12cfbad9
FDBM
844 struct rb_node **p;
845 struct rb_node *parent;
d1310b2e 846 int err = 0;
d1310b2e
CM
847 u64 last_start;
848 u64 last_end;
42daec29 849
a5dee37d 850 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 851
d1310b2e 852again:
d0164adc 853 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
854 /*
855 * Don't care for allocation failure here because we might end
856 * up not needing the pre-allocated extent state at all, which
857 * is the case if we only have in the tree extent states that
858 * cover our input range and don't cover too any other range.
859 * If we end up needing a new extent state we allocate it later.
860 */
d1310b2e 861 prealloc = alloc_extent_state(mask);
d1310b2e
CM
862 }
863
cad321ad 864 spin_lock(&tree->lock);
9655d298
CM
865 if (cached_state && *cached_state) {
866 state = *cached_state;
df98b6e2 867 if (state->start <= start && state->end > start &&
27a3507d 868 extent_state_in_tree(state)) {
9655d298
CM
869 node = &state->rb_node;
870 goto hit_next;
871 }
872 }
d1310b2e
CM
873 /*
874 * this search will find all the extents that end after
875 * our range starts.
876 */
12cfbad9 877 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 878 if (!node) {
8233767a
XG
879 prealloc = alloc_extent_state_atomic(prealloc);
880 BUG_ON(!prealloc);
12cfbad9 881 err = insert_state(tree, prealloc, start, end,
d38ed27f 882 &p, &parent, &bits, changeset);
c2d904e0
JM
883 if (err)
884 extent_io_tree_panic(tree, err);
885
c42ac0bc 886 cache_state(prealloc, cached_state);
d1310b2e 887 prealloc = NULL;
d1310b2e
CM
888 goto out;
889 }
d1310b2e 890 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 891hit_next:
d1310b2e
CM
892 last_start = state->start;
893 last_end = state->end;
894
895 /*
896 * | ---- desired range ---- |
897 * | state |
898 *
899 * Just lock what we found and keep going
900 */
901 if (state->start == start && state->end <= end) {
1edbb734 902 if (state->state & exclusive_bits) {
d1310b2e
CM
903 *failed_start = state->start;
904 err = -EEXIST;
905 goto out;
906 }
42daec29 907
d38ed27f 908 set_state_bits(tree, state, &bits, changeset);
2c64c53d 909 cache_state(state, cached_state);
d1310b2e 910 merge_state(tree, state);
5c939df5
YZ
911 if (last_end == (u64)-1)
912 goto out;
913 start = last_end + 1;
d1ac6e41
LB
914 state = next_state(state);
915 if (start < end && state && state->start == start &&
916 !need_resched())
917 goto hit_next;
d1310b2e
CM
918 goto search_again;
919 }
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 * or
925 * | ------------- state -------------- |
926 *
927 * We need to split the extent we found, and may flip bits on
928 * second half.
929 *
930 * If the extent we found extends past our
931 * range, we just split and search again. It'll get split
932 * again the next time though.
933 *
934 * If the extent we found is inside our range, we set the
935 * desired bit on it.
936 */
937 if (state->start < start) {
1edbb734 938 if (state->state & exclusive_bits) {
d1310b2e
CM
939 *failed_start = start;
940 err = -EEXIST;
941 goto out;
942 }
8233767a
XG
943
944 prealloc = alloc_extent_state_atomic(prealloc);
945 BUG_ON(!prealloc);
d1310b2e 946 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
947 if (err)
948 extent_io_tree_panic(tree, err);
949
d1310b2e
CM
950 prealloc = NULL;
951 if (err)
952 goto out;
953 if (state->end <= end) {
d38ed27f 954 set_state_bits(tree, state, &bits, changeset);
2c64c53d 955 cache_state(state, cached_state);
d1310b2e 956 merge_state(tree, state);
5c939df5
YZ
957 if (last_end == (u64)-1)
958 goto out;
959 start = last_end + 1;
d1ac6e41
LB
960 state = next_state(state);
961 if (start < end && state && state->start == start &&
962 !need_resched())
963 goto hit_next;
d1310b2e
CM
964 }
965 goto search_again;
966 }
967 /*
968 * | ---- desired range ---- |
969 * | state | or | state |
970 *
971 * There's a hole, we need to insert something in it and
972 * ignore the extent we found.
973 */
974 if (state->start > start) {
975 u64 this_end;
976 if (end < last_start)
977 this_end = end;
978 else
d397712b 979 this_end = last_start - 1;
8233767a
XG
980
981 prealloc = alloc_extent_state_atomic(prealloc);
982 BUG_ON(!prealloc);
c7f895a2
XG
983
984 /*
985 * Avoid to free 'prealloc' if it can be merged with
986 * the later extent.
987 */
d1310b2e 988 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 989 NULL, NULL, &bits, changeset);
c2d904e0
JM
990 if (err)
991 extent_io_tree_panic(tree, err);
992
9ed74f2d
JB
993 cache_state(prealloc, cached_state);
994 prealloc = NULL;
d1310b2e
CM
995 start = this_end + 1;
996 goto search_again;
997 }
998 /*
999 * | ---- desired range ---- |
1000 * | state |
1001 * We need to split the extent, and set the bit
1002 * on the first half
1003 */
1004 if (state->start <= end && state->end > end) {
1edbb734 1005 if (state->state & exclusive_bits) {
d1310b2e
CM
1006 *failed_start = start;
1007 err = -EEXIST;
1008 goto out;
1009 }
8233767a
XG
1010
1011 prealloc = alloc_extent_state_atomic(prealloc);
1012 BUG_ON(!prealloc);
d1310b2e 1013 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1014 if (err)
1015 extent_io_tree_panic(tree, err);
d1310b2e 1016
d38ed27f 1017 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1018 cache_state(prealloc, cached_state);
d1310b2e
CM
1019 merge_state(tree, prealloc);
1020 prealloc = NULL;
1021 goto out;
1022 }
1023
b5a4ba14
DS
1024search_again:
1025 if (start > end)
1026 goto out;
1027 spin_unlock(&tree->lock);
1028 if (gfpflags_allow_blocking(mask))
1029 cond_resched();
1030 goto again;
d1310b2e
CM
1031
1032out:
cad321ad 1033 spin_unlock(&tree->lock);
d1310b2e
CM
1034 if (prealloc)
1035 free_extent_state(prealloc);
1036
1037 return err;
1038
d1310b2e 1039}
d1310b2e 1040
41074888 1041int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1042 unsigned bits, u64 * failed_start,
41074888 1043 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1044{
1045 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1046 cached_state, mask, NULL);
3fbe5c02
JM
1047}
1048
1049
462d6fac 1050/**
10983f2e
LB
1051 * convert_extent_bit - convert all bits in a given range from one bit to
1052 * another
462d6fac
JB
1053 * @tree: the io tree to search
1054 * @start: the start offset in bytes
1055 * @end: the end offset in bytes (inclusive)
1056 * @bits: the bits to set in this range
1057 * @clear_bits: the bits to clear in this range
e6138876 1058 * @cached_state: state that we're going to cache
462d6fac
JB
1059 *
1060 * This will go through and set bits for the given range. If any states exist
1061 * already in this range they are set with the given bit and cleared of the
1062 * clear_bits. This is only meant to be used by things that are mergeable, ie
1063 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1064 * boundary bits like LOCK.
210aa277
DS
1065 *
1066 * All allocations are done with GFP_NOFS.
462d6fac
JB
1067 */
1068int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1069 unsigned bits, unsigned clear_bits,
210aa277 1070 struct extent_state **cached_state)
462d6fac
JB
1071{
1072 struct extent_state *state;
1073 struct extent_state *prealloc = NULL;
1074 struct rb_node *node;
12cfbad9
FDBM
1075 struct rb_node **p;
1076 struct rb_node *parent;
462d6fac
JB
1077 int err = 0;
1078 u64 last_start;
1079 u64 last_end;
c8fd3de7 1080 bool first_iteration = true;
462d6fac 1081
a5dee37d 1082 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1083
462d6fac 1084again:
210aa277 1085 if (!prealloc) {
c8fd3de7
FM
1086 /*
1087 * Best effort, don't worry if extent state allocation fails
1088 * here for the first iteration. We might have a cached state
1089 * that matches exactly the target range, in which case no
1090 * extent state allocations are needed. We'll only know this
1091 * after locking the tree.
1092 */
210aa277 1093 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1094 if (!prealloc && !first_iteration)
462d6fac
JB
1095 return -ENOMEM;
1096 }
1097
1098 spin_lock(&tree->lock);
e6138876
JB
1099 if (cached_state && *cached_state) {
1100 state = *cached_state;
1101 if (state->start <= start && state->end > start &&
27a3507d 1102 extent_state_in_tree(state)) {
e6138876
JB
1103 node = &state->rb_node;
1104 goto hit_next;
1105 }
1106 }
1107
462d6fac
JB
1108 /*
1109 * this search will find all the extents that end after
1110 * our range starts.
1111 */
12cfbad9 1112 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1113 if (!node) {
1114 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1115 if (!prealloc) {
1116 err = -ENOMEM;
1117 goto out;
1118 }
12cfbad9 1119 err = insert_state(tree, prealloc, start, end,
d38ed27f 1120 &p, &parent, &bits, NULL);
c2d904e0
JM
1121 if (err)
1122 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1123 cache_state(prealloc, cached_state);
1124 prealloc = NULL;
462d6fac
JB
1125 goto out;
1126 }
1127 state = rb_entry(node, struct extent_state, rb_node);
1128hit_next:
1129 last_start = state->start;
1130 last_end = state->end;
1131
1132 /*
1133 * | ---- desired range ---- |
1134 * | state |
1135 *
1136 * Just lock what we found and keep going
1137 */
1138 if (state->start == start && state->end <= end) {
d38ed27f 1139 set_state_bits(tree, state, &bits, NULL);
e6138876 1140 cache_state(state, cached_state);
fefdc557 1141 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1142 if (last_end == (u64)-1)
1143 goto out;
462d6fac 1144 start = last_end + 1;
d1ac6e41
LB
1145 if (start < end && state && state->start == start &&
1146 !need_resched())
1147 goto hit_next;
462d6fac
JB
1148 goto search_again;
1149 }
1150
1151 /*
1152 * | ---- desired range ---- |
1153 * | state |
1154 * or
1155 * | ------------- state -------------- |
1156 *
1157 * We need to split the extent we found, and may flip bits on
1158 * second half.
1159 *
1160 * If the extent we found extends past our
1161 * range, we just split and search again. It'll get split
1162 * again the next time though.
1163 *
1164 * If the extent we found is inside our range, we set the
1165 * desired bit on it.
1166 */
1167 if (state->start < start) {
1168 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1169 if (!prealloc) {
1170 err = -ENOMEM;
1171 goto out;
1172 }
462d6fac 1173 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1174 if (err)
1175 extent_io_tree_panic(tree, err);
462d6fac
JB
1176 prealloc = NULL;
1177 if (err)
1178 goto out;
1179 if (state->end <= end) {
d38ed27f 1180 set_state_bits(tree, state, &bits, NULL);
e6138876 1181 cache_state(state, cached_state);
fefdc557
QW
1182 state = clear_state_bit(tree, state, &clear_bits, 0,
1183 NULL);
462d6fac
JB
1184 if (last_end == (u64)-1)
1185 goto out;
1186 start = last_end + 1;
d1ac6e41
LB
1187 if (start < end && state && state->start == start &&
1188 !need_resched())
1189 goto hit_next;
462d6fac
JB
1190 }
1191 goto search_again;
1192 }
1193 /*
1194 * | ---- desired range ---- |
1195 * | state | or | state |
1196 *
1197 * There's a hole, we need to insert something in it and
1198 * ignore the extent we found.
1199 */
1200 if (state->start > start) {
1201 u64 this_end;
1202 if (end < last_start)
1203 this_end = end;
1204 else
1205 this_end = last_start - 1;
1206
1207 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1208 if (!prealloc) {
1209 err = -ENOMEM;
1210 goto out;
1211 }
462d6fac
JB
1212
1213 /*
1214 * Avoid to free 'prealloc' if it can be merged with
1215 * the later extent.
1216 */
1217 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1218 NULL, NULL, &bits, NULL);
c2d904e0
JM
1219 if (err)
1220 extent_io_tree_panic(tree, err);
e6138876 1221 cache_state(prealloc, cached_state);
462d6fac
JB
1222 prealloc = NULL;
1223 start = this_end + 1;
1224 goto search_again;
1225 }
1226 /*
1227 * | ---- desired range ---- |
1228 * | state |
1229 * We need to split the extent, and set the bit
1230 * on the first half
1231 */
1232 if (state->start <= end && state->end > end) {
1233 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
462d6fac
JB
1238
1239 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1240 if (err)
1241 extent_io_tree_panic(tree, err);
462d6fac 1242
d38ed27f 1243 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1244 cache_state(prealloc, cached_state);
fefdc557 1245 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1246 prealloc = NULL;
1247 goto out;
1248 }
1249
462d6fac
JB
1250search_again:
1251 if (start > end)
1252 goto out;
1253 spin_unlock(&tree->lock);
210aa277 1254 cond_resched();
c8fd3de7 1255 first_iteration = false;
462d6fac 1256 goto again;
462d6fac
JB
1257
1258out:
1259 spin_unlock(&tree->lock);
1260 if (prealloc)
1261 free_extent_state(prealloc);
1262
1263 return err;
462d6fac
JB
1264}
1265
d1310b2e 1266/* wrappers around set/clear extent bit */
d38ed27f 1267int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1268 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1269{
1270 /*
1271 * We don't support EXTENT_LOCKED yet, as current changeset will
1272 * record any bits changed, so for EXTENT_LOCKED case, it will
1273 * either fail with -EEXIST or changeset will record the whole
1274 * range.
1275 */
1276 BUG_ON(bits & EXTENT_LOCKED);
1277
2c53b912 1278 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1279 changeset);
1280}
1281
fefdc557
QW
1282int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1283 unsigned bits, int wake, int delete,
ae0f1625 1284 struct extent_state **cached)
fefdc557
QW
1285{
1286 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1287 cached, GFP_NOFS, NULL);
fefdc557
QW
1288}
1289
fefdc557 1290int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1291 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1292{
1293 /*
1294 * Don't support EXTENT_LOCKED case, same reason as
1295 * set_record_extent_bits().
1296 */
1297 BUG_ON(bits & EXTENT_LOCKED);
1298
f734c44a 1299 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1300 changeset);
1301}
1302
d352ac68
CM
1303/*
1304 * either insert or lock state struct between start and end use mask to tell
1305 * us if waiting is desired.
1306 */
1edbb734 1307int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1308 struct extent_state **cached_state)
d1310b2e
CM
1309{
1310 int err;
1311 u64 failed_start;
9ee49a04 1312
d1310b2e 1313 while (1) {
ff13db41 1314 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1315 EXTENT_LOCKED, &failed_start,
d38ed27f 1316 cached_state, GFP_NOFS, NULL);
d0082371 1317 if (err == -EEXIST) {
d1310b2e
CM
1318 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1319 start = failed_start;
d0082371 1320 } else
d1310b2e 1321 break;
d1310b2e
CM
1322 WARN_ON(start > end);
1323 }
1324 return err;
1325}
d1310b2e 1326
d0082371 1327int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1328{
1329 int err;
1330 u64 failed_start;
1331
3fbe5c02 1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1333 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1334 if (err == -EEXIST) {
1335 if (failed_start > start)
1336 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1337 EXTENT_LOCKED, 1, 0, NULL);
25179201 1338 return 0;
6643558d 1339 }
25179201
JB
1340 return 1;
1341}
25179201 1342
bd1fa4f0 1343void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1344{
09cbfeaf
KS
1345 unsigned long index = start >> PAGE_SHIFT;
1346 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1347 struct page *page;
1348
1349 while (index <= end_index) {
1350 page = find_get_page(inode->i_mapping, index);
1351 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1352 clear_page_dirty_for_io(page);
09cbfeaf 1353 put_page(page);
4adaa611
CM
1354 index++;
1355 }
4adaa611
CM
1356}
1357
f6311572 1358void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1359{
09cbfeaf
KS
1360 unsigned long index = start >> PAGE_SHIFT;
1361 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1362 struct page *page;
1363
1364 while (index <= end_index) {
1365 page = find_get_page(inode->i_mapping, index);
1366 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1367 __set_page_dirty_nobuffers(page);
8d38633c 1368 account_page_redirty(page);
09cbfeaf 1369 put_page(page);
4adaa611
CM
1370 index++;
1371 }
4adaa611
CM
1372}
1373
d352ac68
CM
1374/* find the first state struct with 'bits' set after 'start', and
1375 * return it. tree->lock must be held. NULL will returned if
1376 * nothing was found after 'start'
1377 */
48a3b636
ES
1378static struct extent_state *
1379find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1380 u64 start, unsigned bits)
d7fc640e
CM
1381{
1382 struct rb_node *node;
1383 struct extent_state *state;
1384
1385 /*
1386 * this search will find all the extents that end after
1387 * our range starts.
1388 */
1389 node = tree_search(tree, start);
d397712b 1390 if (!node)
d7fc640e 1391 goto out;
d7fc640e 1392
d397712b 1393 while (1) {
d7fc640e 1394 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1395 if (state->end >= start && (state->state & bits))
d7fc640e 1396 return state;
d397712b 1397
d7fc640e
CM
1398 node = rb_next(node);
1399 if (!node)
1400 break;
1401 }
1402out:
1403 return NULL;
1404}
d7fc640e 1405
69261c4b
XG
1406/*
1407 * find the first offset in the io tree with 'bits' set. zero is
1408 * returned if we find something, and *start_ret and *end_ret are
1409 * set to reflect the state struct that was found.
1410 *
477d7eaf 1411 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1412 */
1413int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1414 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1415 struct extent_state **cached_state)
69261c4b
XG
1416{
1417 struct extent_state *state;
1418 int ret = 1;
1419
1420 spin_lock(&tree->lock);
e6138876
JB
1421 if (cached_state && *cached_state) {
1422 state = *cached_state;
27a3507d 1423 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1424 while ((state = next_state(state)) != NULL) {
e6138876
JB
1425 if (state->state & bits)
1426 goto got_it;
e6138876
JB
1427 }
1428 free_extent_state(*cached_state);
1429 *cached_state = NULL;
1430 goto out;
1431 }
1432 free_extent_state(*cached_state);
1433 *cached_state = NULL;
1434 }
1435
69261c4b 1436 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1437got_it:
69261c4b 1438 if (state) {
e38e2ed7 1439 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1440 *start_ret = state->start;
1441 *end_ret = state->end;
1442 ret = 0;
1443 }
e6138876 1444out:
69261c4b
XG
1445 spin_unlock(&tree->lock);
1446 return ret;
1447}
1448
d352ac68
CM
1449/*
1450 * find a contiguous range of bytes in the file marked as delalloc, not
1451 * more than 'max_bytes'. start and end are used to return the range,
1452 *
3522e903 1453 * true is returned if we find something, false if nothing was in the tree
d352ac68 1454 */
3522e903 1455static noinline bool find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1456 u64 *start, u64 *end, u64 max_bytes,
1457 struct extent_state **cached_state)
d1310b2e
CM
1458{
1459 struct rb_node *node;
1460 struct extent_state *state;
1461 u64 cur_start = *start;
3522e903 1462 bool found = false;
d1310b2e
CM
1463 u64 total_bytes = 0;
1464
cad321ad 1465 spin_lock(&tree->lock);
c8b97818 1466
d1310b2e
CM
1467 /*
1468 * this search will find all the extents that end after
1469 * our range starts.
1470 */
80ea96b1 1471 node = tree_search(tree, cur_start);
2b114d1d 1472 if (!node) {
3522e903 1473 *end = (u64)-1;
d1310b2e
CM
1474 goto out;
1475 }
1476
d397712b 1477 while (1) {
d1310b2e 1478 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1479 if (found && (state->start != cur_start ||
1480 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1481 goto out;
1482 }
1483 if (!(state->state & EXTENT_DELALLOC)) {
1484 if (!found)
1485 *end = state->end;
1486 goto out;
1487 }
c2a128d2 1488 if (!found) {
d1310b2e 1489 *start = state->start;
c2a128d2 1490 *cached_state = state;
b7ac31b7 1491 refcount_inc(&state->refs);
c2a128d2 1492 }
3522e903 1493 found = true;
d1310b2e
CM
1494 *end = state->end;
1495 cur_start = state->end + 1;
1496 node = rb_next(node);
d1310b2e 1497 total_bytes += state->end - state->start + 1;
7bf811a5 1498 if (total_bytes >= max_bytes)
573aecaf 1499 break;
573aecaf 1500 if (!node)
d1310b2e
CM
1501 break;
1502 }
1503out:
cad321ad 1504 spin_unlock(&tree->lock);
d1310b2e
CM
1505 return found;
1506}
1507
da2c7009
LB
1508static int __process_pages_contig(struct address_space *mapping,
1509 struct page *locked_page,
1510 pgoff_t start_index, pgoff_t end_index,
1511 unsigned long page_ops, pgoff_t *index_ret);
1512
143bede5
JM
1513static noinline void __unlock_for_delalloc(struct inode *inode,
1514 struct page *locked_page,
1515 u64 start, u64 end)
c8b97818 1516{
09cbfeaf
KS
1517 unsigned long index = start >> PAGE_SHIFT;
1518 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1519
76c0021d 1520 ASSERT(locked_page);
c8b97818 1521 if (index == locked_page->index && end_index == index)
143bede5 1522 return;
c8b97818 1523
76c0021d
LB
1524 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1525 PAGE_UNLOCK, NULL);
c8b97818
CM
1526}
1527
1528static noinline int lock_delalloc_pages(struct inode *inode,
1529 struct page *locked_page,
1530 u64 delalloc_start,
1531 u64 delalloc_end)
1532{
09cbfeaf 1533 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1534 unsigned long index_ret = index;
09cbfeaf 1535 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1536 int ret;
c8b97818 1537
76c0021d 1538 ASSERT(locked_page);
c8b97818
CM
1539 if (index == locked_page->index && index == end_index)
1540 return 0;
1541
76c0021d
LB
1542 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1543 end_index, PAGE_LOCK, &index_ret);
1544 if (ret == -EAGAIN)
1545 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1546 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1547 return ret;
1548}
1549
1550/*
3522e903
LF
1551 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1552 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1553 *
3522e903
LF
1554 * Return: true if we find something
1555 * false if nothing was in the tree
c8b97818 1556 */
ce9f967f 1557EXPORT_FOR_TESTS
3522e903 1558noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe
JB
1559 struct extent_io_tree *tree,
1560 struct page *locked_page, u64 *start,
917aacec 1561 u64 *end)
c8b97818 1562{
917aacec 1563 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1564 u64 delalloc_start;
1565 u64 delalloc_end;
3522e903 1566 bool found;
9655d298 1567 struct extent_state *cached_state = NULL;
c8b97818
CM
1568 int ret;
1569 int loops = 0;
1570
1571again:
1572 /* step one, find a bunch of delalloc bytes starting at start */
1573 delalloc_start = *start;
1574 delalloc_end = 0;
1575 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1576 max_bytes, &cached_state);
70b99e69 1577 if (!found || delalloc_end <= *start) {
c8b97818
CM
1578 *start = delalloc_start;
1579 *end = delalloc_end;
c2a128d2 1580 free_extent_state(cached_state);
3522e903 1581 return false;
c8b97818
CM
1582 }
1583
70b99e69
CM
1584 /*
1585 * start comes from the offset of locked_page. We have to lock
1586 * pages in order, so we can't process delalloc bytes before
1587 * locked_page
1588 */
d397712b 1589 if (delalloc_start < *start)
70b99e69 1590 delalloc_start = *start;
70b99e69 1591
c8b97818
CM
1592 /*
1593 * make sure to limit the number of pages we try to lock down
c8b97818 1594 */
7bf811a5
JB
1595 if (delalloc_end + 1 - delalloc_start > max_bytes)
1596 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1597
c8b97818
CM
1598 /* step two, lock all the pages after the page that has start */
1599 ret = lock_delalloc_pages(inode, locked_page,
1600 delalloc_start, delalloc_end);
9bfd61d9 1601 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1602 if (ret == -EAGAIN) {
1603 /* some of the pages are gone, lets avoid looping by
1604 * shortening the size of the delalloc range we're searching
1605 */
9655d298 1606 free_extent_state(cached_state);
7d788742 1607 cached_state = NULL;
c8b97818 1608 if (!loops) {
09cbfeaf 1609 max_bytes = PAGE_SIZE;
c8b97818
CM
1610 loops = 1;
1611 goto again;
1612 } else {
3522e903 1613 found = false;
c8b97818
CM
1614 goto out_failed;
1615 }
1616 }
c8b97818
CM
1617
1618 /* step three, lock the state bits for the whole range */
ff13db41 1619 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1620
1621 /* then test to make sure it is all still delalloc */
1622 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1623 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1624 if (!ret) {
9655d298 1625 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1626 &cached_state);
c8b97818
CM
1627 __unlock_for_delalloc(inode, locked_page,
1628 delalloc_start, delalloc_end);
1629 cond_resched();
1630 goto again;
1631 }
9655d298 1632 free_extent_state(cached_state);
c8b97818
CM
1633 *start = delalloc_start;
1634 *end = delalloc_end;
1635out_failed:
1636 return found;
1637}
1638
da2c7009
LB
1639static int __process_pages_contig(struct address_space *mapping,
1640 struct page *locked_page,
1641 pgoff_t start_index, pgoff_t end_index,
1642 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1643{
873695b3 1644 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1645 unsigned long pages_locked = 0;
873695b3 1646 pgoff_t index = start_index;
c8b97818 1647 struct page *pages[16];
873695b3 1648 unsigned ret;
da2c7009 1649 int err = 0;
c8b97818 1650 int i;
771ed689 1651
da2c7009
LB
1652 if (page_ops & PAGE_LOCK) {
1653 ASSERT(page_ops == PAGE_LOCK);
1654 ASSERT(index_ret && *index_ret == start_index);
1655 }
1656
704de49d 1657 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1658 mapping_set_error(mapping, -EIO);
704de49d 1659
d397712b 1660 while (nr_pages > 0) {
873695b3 1661 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1662 min_t(unsigned long,
1663 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1664 if (ret == 0) {
1665 /*
1666 * Only if we're going to lock these pages,
1667 * can we find nothing at @index.
1668 */
1669 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1670 err = -EAGAIN;
1671 goto out;
da2c7009 1672 }
8b62b72b 1673
da2c7009 1674 for (i = 0; i < ret; i++) {
c2790a2e 1675 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1676 SetPagePrivate2(pages[i]);
1677
c8b97818 1678 if (pages[i] == locked_page) {
09cbfeaf 1679 put_page(pages[i]);
da2c7009 1680 pages_locked++;
c8b97818
CM
1681 continue;
1682 }
c2790a2e 1683 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1684 clear_page_dirty_for_io(pages[i]);
c2790a2e 1685 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1686 set_page_writeback(pages[i]);
704de49d
FM
1687 if (page_ops & PAGE_SET_ERROR)
1688 SetPageError(pages[i]);
c2790a2e 1689 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1690 end_page_writeback(pages[i]);
c2790a2e 1691 if (page_ops & PAGE_UNLOCK)
771ed689 1692 unlock_page(pages[i]);
da2c7009
LB
1693 if (page_ops & PAGE_LOCK) {
1694 lock_page(pages[i]);
1695 if (!PageDirty(pages[i]) ||
1696 pages[i]->mapping != mapping) {
1697 unlock_page(pages[i]);
1698 put_page(pages[i]);
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702 }
09cbfeaf 1703 put_page(pages[i]);
da2c7009 1704 pages_locked++;
c8b97818
CM
1705 }
1706 nr_pages -= ret;
1707 index += ret;
1708 cond_resched();
1709 }
da2c7009
LB
1710out:
1711 if (err && index_ret)
1712 *index_ret = start_index + pages_locked - 1;
1713 return err;
c8b97818 1714}
c8b97818 1715
873695b3
LB
1716void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1717 u64 delalloc_end, struct page *locked_page,
1718 unsigned clear_bits,
1719 unsigned long page_ops)
1720{
1721 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1722 NULL);
873695b3
LB
1723
1724 __process_pages_contig(inode->i_mapping, locked_page,
1725 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1726 page_ops, NULL);
873695b3
LB
1727}
1728
d352ac68
CM
1729/*
1730 * count the number of bytes in the tree that have a given bit(s)
1731 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1732 * cached. The total number found is returned.
1733 */
d1310b2e
CM
1734u64 count_range_bits(struct extent_io_tree *tree,
1735 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1736 unsigned bits, int contig)
d1310b2e
CM
1737{
1738 struct rb_node *node;
1739 struct extent_state *state;
1740 u64 cur_start = *start;
1741 u64 total_bytes = 0;
ec29ed5b 1742 u64 last = 0;
d1310b2e
CM
1743 int found = 0;
1744
fae7f21c 1745 if (WARN_ON(search_end <= cur_start))
d1310b2e 1746 return 0;
d1310b2e 1747
cad321ad 1748 spin_lock(&tree->lock);
d1310b2e
CM
1749 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1750 total_bytes = tree->dirty_bytes;
1751 goto out;
1752 }
1753 /*
1754 * this search will find all the extents that end after
1755 * our range starts.
1756 */
80ea96b1 1757 node = tree_search(tree, cur_start);
d397712b 1758 if (!node)
d1310b2e 1759 goto out;
d1310b2e 1760
d397712b 1761 while (1) {
d1310b2e
CM
1762 state = rb_entry(node, struct extent_state, rb_node);
1763 if (state->start > search_end)
1764 break;
ec29ed5b
CM
1765 if (contig && found && state->start > last + 1)
1766 break;
1767 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1768 total_bytes += min(search_end, state->end) + 1 -
1769 max(cur_start, state->start);
1770 if (total_bytes >= max_bytes)
1771 break;
1772 if (!found) {
af60bed2 1773 *start = max(cur_start, state->start);
d1310b2e
CM
1774 found = 1;
1775 }
ec29ed5b
CM
1776 last = state->end;
1777 } else if (contig && found) {
1778 break;
d1310b2e
CM
1779 }
1780 node = rb_next(node);
1781 if (!node)
1782 break;
1783 }
1784out:
cad321ad 1785 spin_unlock(&tree->lock);
d1310b2e
CM
1786 return total_bytes;
1787}
b2950863 1788
d352ac68
CM
1789/*
1790 * set the private field for a given byte offset in the tree. If there isn't
1791 * an extent_state there already, this does nothing.
1792 */
f827ba9a 1793static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1794 struct io_failure_record *failrec)
d1310b2e
CM
1795{
1796 struct rb_node *node;
1797 struct extent_state *state;
1798 int ret = 0;
1799
cad321ad 1800 spin_lock(&tree->lock);
d1310b2e
CM
1801 /*
1802 * this search will find all the extents that end after
1803 * our range starts.
1804 */
80ea96b1 1805 node = tree_search(tree, start);
2b114d1d 1806 if (!node) {
d1310b2e
CM
1807 ret = -ENOENT;
1808 goto out;
1809 }
1810 state = rb_entry(node, struct extent_state, rb_node);
1811 if (state->start != start) {
1812 ret = -ENOENT;
1813 goto out;
1814 }
47dc196a 1815 state->failrec = failrec;
d1310b2e 1816out:
cad321ad 1817 spin_unlock(&tree->lock);
d1310b2e
CM
1818 return ret;
1819}
1820
f827ba9a 1821static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1822 struct io_failure_record **failrec)
d1310b2e
CM
1823{
1824 struct rb_node *node;
1825 struct extent_state *state;
1826 int ret = 0;
1827
cad321ad 1828 spin_lock(&tree->lock);
d1310b2e
CM
1829 /*
1830 * this search will find all the extents that end after
1831 * our range starts.
1832 */
80ea96b1 1833 node = tree_search(tree, start);
2b114d1d 1834 if (!node) {
d1310b2e
CM
1835 ret = -ENOENT;
1836 goto out;
1837 }
1838 state = rb_entry(node, struct extent_state, rb_node);
1839 if (state->start != start) {
1840 ret = -ENOENT;
1841 goto out;
1842 }
47dc196a 1843 *failrec = state->failrec;
d1310b2e 1844out:
cad321ad 1845 spin_unlock(&tree->lock);
d1310b2e
CM
1846 return ret;
1847}
1848
1849/*
1850 * searches a range in the state tree for a given mask.
70dec807 1851 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1852 * has the bits set. Otherwise, 1 is returned if any bit in the
1853 * range is found set.
1854 */
1855int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1856 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1857{
1858 struct extent_state *state = NULL;
1859 struct rb_node *node;
1860 int bitset = 0;
d1310b2e 1861
cad321ad 1862 spin_lock(&tree->lock);
27a3507d 1863 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1864 cached->end > start)
9655d298
CM
1865 node = &cached->rb_node;
1866 else
1867 node = tree_search(tree, start);
d1310b2e
CM
1868 while (node && start <= end) {
1869 state = rb_entry(node, struct extent_state, rb_node);
1870
1871 if (filled && state->start > start) {
1872 bitset = 0;
1873 break;
1874 }
1875
1876 if (state->start > end)
1877 break;
1878
1879 if (state->state & bits) {
1880 bitset = 1;
1881 if (!filled)
1882 break;
1883 } else if (filled) {
1884 bitset = 0;
1885 break;
1886 }
46562cec
CM
1887
1888 if (state->end == (u64)-1)
1889 break;
1890
d1310b2e
CM
1891 start = state->end + 1;
1892 if (start > end)
1893 break;
1894 node = rb_next(node);
1895 if (!node) {
1896 if (filled)
1897 bitset = 0;
1898 break;
1899 }
1900 }
cad321ad 1901 spin_unlock(&tree->lock);
d1310b2e
CM
1902 return bitset;
1903}
d1310b2e
CM
1904
1905/*
1906 * helper function to set a given page up to date if all the
1907 * extents in the tree for that page are up to date
1908 */
143bede5 1909static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1910{
4eee4fa4 1911 u64 start = page_offset(page);
09cbfeaf 1912 u64 end = start + PAGE_SIZE - 1;
9655d298 1913 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1914 SetPageUptodate(page);
d1310b2e
CM
1915}
1916
7870d082
JB
1917int free_io_failure(struct extent_io_tree *failure_tree,
1918 struct extent_io_tree *io_tree,
1919 struct io_failure_record *rec)
4a54c8c1
JS
1920{
1921 int ret;
1922 int err = 0;
4a54c8c1 1923
47dc196a 1924 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1925 ret = clear_extent_bits(failure_tree, rec->start,
1926 rec->start + rec->len - 1,
91166212 1927 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1928 if (ret)
1929 err = ret;
1930
7870d082 1931 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1932 rec->start + rec->len - 1,
91166212 1933 EXTENT_DAMAGED);
53b381b3
DW
1934 if (ret && !err)
1935 err = ret;
4a54c8c1
JS
1936
1937 kfree(rec);
1938 return err;
1939}
1940
4a54c8c1
JS
1941/*
1942 * this bypasses the standard btrfs submit functions deliberately, as
1943 * the standard behavior is to write all copies in a raid setup. here we only
1944 * want to write the one bad copy. so we do the mapping for ourselves and issue
1945 * submit_bio directly.
3ec706c8 1946 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1947 * actually prevents the read that triggered the error from finishing.
1948 * currently, there can be no more than two copies of every data bit. thus,
1949 * exactly one rewrite is required.
1950 */
6ec656bc
JB
1951int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1952 u64 length, u64 logical, struct page *page,
1953 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1954{
1955 struct bio *bio;
1956 struct btrfs_device *dev;
4a54c8c1
JS
1957 u64 map_length = 0;
1958 u64 sector;
1959 struct btrfs_bio *bbio = NULL;
1960 int ret;
1961
1751e8a6 1962 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1963 BUG_ON(!mirror_num);
1964
c5e4c3d7 1965 bio = btrfs_io_bio_alloc(1);
4f024f37 1966 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1967 map_length = length;
1968
b5de8d0d
FM
1969 /*
1970 * Avoid races with device replace and make sure our bbio has devices
1971 * associated to its stripes that don't go away while we are doing the
1972 * read repair operation.
1973 */
1974 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1975 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
1976 /*
1977 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1978 * to update all raid stripes, but here we just want to correct
1979 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1980 * stripe's dev and sector.
1981 */
1982 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1983 &map_length, &bbio, 0);
1984 if (ret) {
1985 btrfs_bio_counter_dec(fs_info);
1986 bio_put(bio);
1987 return -EIO;
1988 }
1989 ASSERT(bbio->mirror_num == 1);
1990 } else {
1991 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
1992 &map_length, &bbio, mirror_num);
1993 if (ret) {
1994 btrfs_bio_counter_dec(fs_info);
1995 bio_put(bio);
1996 return -EIO;
1997 }
1998 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 1999 }
c725328c
LB
2000
2001 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2002 bio->bi_iter.bi_sector = sector;
c725328c 2003 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2004 btrfs_put_bbio(bbio);
ebbede42
AJ
2005 if (!dev || !dev->bdev ||
2006 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2007 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2008 bio_put(bio);
2009 return -EIO;
2010 }
74d46992 2011 bio_set_dev(bio, dev->bdev);
70fd7614 2012 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2013 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2014
4e49ea4a 2015 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2016 /* try to remap that extent elsewhere? */
b5de8d0d 2017 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2018 bio_put(bio);
442a4f63 2019 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2020 return -EIO;
2021 }
2022
b14af3b4
DS
2023 btrfs_info_rl_in_rcu(fs_info,
2024 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2025 ino, start,
1203b681 2026 rcu_str_deref(dev->name), sector);
b5de8d0d 2027 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2028 bio_put(bio);
2029 return 0;
2030}
2031
2ff7e61e
JM
2032int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2033 struct extent_buffer *eb, int mirror_num)
ea466794 2034{
ea466794 2035 u64 start = eb->start;
cc5e31a4 2036 int i, num_pages = num_extent_pages(eb);
d95603b2 2037 int ret = 0;
ea466794 2038
bc98a42c 2039 if (sb_rdonly(fs_info->sb))
908960c6
ID
2040 return -EROFS;
2041
ea466794 2042 for (i = 0; i < num_pages; i++) {
fb85fc9a 2043 struct page *p = eb->pages[i];
1203b681 2044
6ec656bc 2045 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2046 start - page_offset(p), mirror_num);
ea466794
JB
2047 if (ret)
2048 break;
09cbfeaf 2049 start += PAGE_SIZE;
ea466794
JB
2050 }
2051
2052 return ret;
2053}
2054
4a54c8c1
JS
2055/*
2056 * each time an IO finishes, we do a fast check in the IO failure tree
2057 * to see if we need to process or clean up an io_failure_record
2058 */
7870d082
JB
2059int clean_io_failure(struct btrfs_fs_info *fs_info,
2060 struct extent_io_tree *failure_tree,
2061 struct extent_io_tree *io_tree, u64 start,
2062 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2063{
2064 u64 private;
4a54c8c1 2065 struct io_failure_record *failrec;
4a54c8c1
JS
2066 struct extent_state *state;
2067 int num_copies;
4a54c8c1 2068 int ret;
4a54c8c1
JS
2069
2070 private = 0;
7870d082
JB
2071 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2072 EXTENT_DIRTY, 0);
4a54c8c1
JS
2073 if (!ret)
2074 return 0;
2075
7870d082 2076 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2077 if (ret)
2078 return 0;
2079
4a54c8c1
JS
2080 BUG_ON(!failrec->this_mirror);
2081
2082 if (failrec->in_validation) {
2083 /* there was no real error, just free the record */
ab8d0fc4
JM
2084 btrfs_debug(fs_info,
2085 "clean_io_failure: freeing dummy error at %llu",
2086 failrec->start);
4a54c8c1
JS
2087 goto out;
2088 }
bc98a42c 2089 if (sb_rdonly(fs_info->sb))
908960c6 2090 goto out;
4a54c8c1 2091
7870d082
JB
2092 spin_lock(&io_tree->lock);
2093 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2094 failrec->start,
2095 EXTENT_LOCKED);
7870d082 2096 spin_unlock(&io_tree->lock);
4a54c8c1 2097
883d0de4
MX
2098 if (state && state->start <= failrec->start &&
2099 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2100 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2101 failrec->len);
4a54c8c1 2102 if (num_copies > 1) {
7870d082
JB
2103 repair_io_failure(fs_info, ino, start, failrec->len,
2104 failrec->logical, page, pg_offset,
2105 failrec->failed_mirror);
4a54c8c1
JS
2106 }
2107 }
2108
2109out:
7870d082 2110 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2111
454ff3de 2112 return 0;
4a54c8c1
JS
2113}
2114
f612496b
MX
2115/*
2116 * Can be called when
2117 * - hold extent lock
2118 * - under ordered extent
2119 * - the inode is freeing
2120 */
7ab7956e 2121void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2122{
7ab7956e 2123 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2124 struct io_failure_record *failrec;
2125 struct extent_state *state, *next;
2126
2127 if (RB_EMPTY_ROOT(&failure_tree->state))
2128 return;
2129
2130 spin_lock(&failure_tree->lock);
2131 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2132 while (state) {
2133 if (state->start > end)
2134 break;
2135
2136 ASSERT(state->end <= end);
2137
2138 next = next_state(state);
2139
47dc196a 2140 failrec = state->failrec;
f612496b
MX
2141 free_extent_state(state);
2142 kfree(failrec);
2143
2144 state = next;
2145 }
2146 spin_unlock(&failure_tree->lock);
2147}
2148
2fe6303e 2149int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2150 struct io_failure_record **failrec_ret)
4a54c8c1 2151{
ab8d0fc4 2152 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2153 struct io_failure_record *failrec;
4a54c8c1 2154 struct extent_map *em;
4a54c8c1
JS
2155 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2156 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2157 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2158 int ret;
4a54c8c1
JS
2159 u64 logical;
2160
47dc196a 2161 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2162 if (ret) {
2163 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2164 if (!failrec)
2165 return -ENOMEM;
2fe6303e 2166
4a54c8c1
JS
2167 failrec->start = start;
2168 failrec->len = end - start + 1;
2169 failrec->this_mirror = 0;
2170 failrec->bio_flags = 0;
2171 failrec->in_validation = 0;
2172
2173 read_lock(&em_tree->lock);
2174 em = lookup_extent_mapping(em_tree, start, failrec->len);
2175 if (!em) {
2176 read_unlock(&em_tree->lock);
2177 kfree(failrec);
2178 return -EIO;
2179 }
2180
68ba990f 2181 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2182 free_extent_map(em);
2183 em = NULL;
2184 }
2185 read_unlock(&em_tree->lock);
7a2d6a64 2186 if (!em) {
4a54c8c1
JS
2187 kfree(failrec);
2188 return -EIO;
2189 }
2fe6303e 2190
4a54c8c1
JS
2191 logical = start - em->start;
2192 logical = em->block_start + logical;
2193 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2194 logical = em->block_start;
2195 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2196 extent_set_compress_type(&failrec->bio_flags,
2197 em->compress_type);
2198 }
2fe6303e 2199
ab8d0fc4
JM
2200 btrfs_debug(fs_info,
2201 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2202 logical, start, failrec->len);
2fe6303e 2203
4a54c8c1
JS
2204 failrec->logical = logical;
2205 free_extent_map(em);
2206
2207 /* set the bits in the private failure tree */
2208 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2209 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2210 if (ret >= 0)
47dc196a 2211 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2212 /* set the bits in the inode's tree */
2213 if (ret >= 0)
ceeb0ae7 2214 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2215 if (ret < 0) {
2216 kfree(failrec);
2217 return ret;
2218 }
2219 } else {
ab8d0fc4
JM
2220 btrfs_debug(fs_info,
2221 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2222 failrec->logical, failrec->start, failrec->len,
2223 failrec->in_validation);
4a54c8c1
JS
2224 /*
2225 * when data can be on disk more than twice, add to failrec here
2226 * (e.g. with a list for failed_mirror) to make
2227 * clean_io_failure() clean all those errors at once.
2228 */
2229 }
2fe6303e
MX
2230
2231 *failrec_ret = failrec;
2232
2233 return 0;
2234}
2235
a0b60d72 2236bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2237 struct io_failure_record *failrec, int failed_mirror)
2238{
ab8d0fc4 2239 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2240 int num_copies;
2241
ab8d0fc4 2242 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2243 if (num_copies == 1) {
2244 /*
2245 * we only have a single copy of the data, so don't bother with
2246 * all the retry and error correction code that follows. no
2247 * matter what the error is, it is very likely to persist.
2248 */
ab8d0fc4
JM
2249 btrfs_debug(fs_info,
2250 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2251 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2252 return false;
4a54c8c1
JS
2253 }
2254
4a54c8c1
JS
2255 /*
2256 * there are two premises:
2257 * a) deliver good data to the caller
2258 * b) correct the bad sectors on disk
2259 */
a0b60d72 2260 if (failed_bio_pages > 1) {
4a54c8c1
JS
2261 /*
2262 * to fulfill b), we need to know the exact failing sectors, as
2263 * we don't want to rewrite any more than the failed ones. thus,
2264 * we need separate read requests for the failed bio
2265 *
2266 * if the following BUG_ON triggers, our validation request got
2267 * merged. we need separate requests for our algorithm to work.
2268 */
2269 BUG_ON(failrec->in_validation);
2270 failrec->in_validation = 1;
2271 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2272 } else {
2273 /*
2274 * we're ready to fulfill a) and b) alongside. get a good copy
2275 * of the failed sector and if we succeed, we have setup
2276 * everything for repair_io_failure to do the rest for us.
2277 */
2278 if (failrec->in_validation) {
2279 BUG_ON(failrec->this_mirror != failed_mirror);
2280 failrec->in_validation = 0;
2281 failrec->this_mirror = 0;
2282 }
2283 failrec->failed_mirror = failed_mirror;
2284 failrec->this_mirror++;
2285 if (failrec->this_mirror == failed_mirror)
2286 failrec->this_mirror++;
4a54c8c1
JS
2287 }
2288
facc8a22 2289 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2290 btrfs_debug(fs_info,
2291 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2292 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2293 return false;
4a54c8c1
JS
2294 }
2295
c3cfb656 2296 return true;
2fe6303e
MX
2297}
2298
2299
2300struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2301 struct io_failure_record *failrec,
2302 struct page *page, int pg_offset, int icsum,
8b110e39 2303 bio_end_io_t *endio_func, void *data)
2fe6303e 2304{
0b246afa 2305 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2306 struct bio *bio;
2307 struct btrfs_io_bio *btrfs_failed_bio;
2308 struct btrfs_io_bio *btrfs_bio;
2309
c5e4c3d7 2310 bio = btrfs_io_bio_alloc(1);
2fe6303e 2311 bio->bi_end_io = endio_func;
4f024f37 2312 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2313 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2314 bio->bi_iter.bi_size = 0;
8b110e39 2315 bio->bi_private = data;
4a54c8c1 2316
facc8a22
MX
2317 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2318 if (btrfs_failed_bio->csum) {
facc8a22
MX
2319 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2320
2321 btrfs_bio = btrfs_io_bio(bio);
2322 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2323 icsum *= csum_size;
2324 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2325 csum_size);
2326 }
2327
2fe6303e
MX
2328 bio_add_page(bio, page, failrec->len, pg_offset);
2329
2330 return bio;
2331}
2332
2333/*
78e62c02
NB
2334 * This is a generic handler for readpage errors. If other copies exist, read
2335 * those and write back good data to the failed position. Does not investigate
2336 * in remapping the failed extent elsewhere, hoping the device will be smart
2337 * enough to do this as needed
2fe6303e 2338 */
2fe6303e
MX
2339static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2340 struct page *page, u64 start, u64 end,
2341 int failed_mirror)
2342{
2343 struct io_failure_record *failrec;
2344 struct inode *inode = page->mapping->host;
2345 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2346 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2347 struct bio *bio;
70fd7614 2348 int read_mode = 0;
4e4cbee9 2349 blk_status_t status;
2fe6303e 2350 int ret;
a0b60d72 2351 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2352
1f7ad75b 2353 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2354
2355 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2356 if (ret)
2357 return ret;
2358
a0b60d72 2359 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2360 failed_mirror)) {
7870d082 2361 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2362 return -EIO;
2363 }
2364
a0b60d72 2365 if (failed_bio_pages > 1)
70fd7614 2366 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2367
2368 phy_offset >>= inode->i_sb->s_blocksize_bits;
2369 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2370 start - page_offset(page),
8b110e39
MX
2371 (int)phy_offset, failed_bio->bi_end_io,
2372 NULL);
ebcc3263 2373 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2374
ab8d0fc4
JM
2375 btrfs_debug(btrfs_sb(inode->i_sb),
2376 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2377 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2378
8c27cb35 2379 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2380 failrec->bio_flags, 0);
4e4cbee9 2381 if (status) {
7870d082 2382 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2383 bio_put(bio);
4e4cbee9 2384 ret = blk_status_to_errno(status);
6c387ab2
MX
2385 }
2386
013bd4c3 2387 return ret;
4a54c8c1
JS
2388}
2389
d1310b2e
CM
2390/* lots and lots of room for performance fixes in the end_bio funcs */
2391
b5227c07 2392void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2393{
2394 int uptodate = (err == 0);
3e2426bd 2395 int ret = 0;
87826df0 2396
c629732d 2397 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2398
87826df0 2399 if (!uptodate) {
87826df0
JM
2400 ClearPageUptodate(page);
2401 SetPageError(page);
bff5baf8 2402 ret = err < 0 ? err : -EIO;
5dca6eea 2403 mapping_set_error(page->mapping, ret);
87826df0 2404 }
87826df0
JM
2405}
2406
d1310b2e
CM
2407/*
2408 * after a writepage IO is done, we need to:
2409 * clear the uptodate bits on error
2410 * clear the writeback bits in the extent tree for this IO
2411 * end_page_writeback if the page has no more pending IO
2412 *
2413 * Scheduling is not allowed, so the extent state tree is expected
2414 * to have one and only one object corresponding to this IO.
2415 */
4246a0b6 2416static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2417{
4e4cbee9 2418 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2419 struct bio_vec *bvec;
d1310b2e
CM
2420 u64 start;
2421 u64 end;
2c30c71b 2422 int i;
d1310b2e 2423
c09abff8 2424 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2425 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2426 struct page *page = bvec->bv_page;
0b246afa
JM
2427 struct inode *inode = page->mapping->host;
2428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2429
17a5adcc
AO
2430 /* We always issue full-page reads, but if some block
2431 * in a page fails to read, blk_update_request() will
2432 * advance bv_offset and adjust bv_len to compensate.
2433 * Print a warning for nonzero offsets, and an error
2434 * if they don't add up to a full page. */
09cbfeaf
KS
2435 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2436 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2437 btrfs_err(fs_info,
efe120a0
FH
2438 "partial page write in btrfs with offset %u and length %u",
2439 bvec->bv_offset, bvec->bv_len);
2440 else
0b246afa 2441 btrfs_info(fs_info,
5d163e0e 2442 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2443 bvec->bv_offset, bvec->bv_len);
2444 }
d1310b2e 2445
17a5adcc
AO
2446 start = page_offset(page);
2447 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2448
4e4cbee9 2449 end_extent_writepage(page, error, start, end);
17a5adcc 2450 end_page_writeback(page);
2c30c71b 2451 }
2b1f55b0 2452
d1310b2e 2453 bio_put(bio);
d1310b2e
CM
2454}
2455
883d0de4
MX
2456static void
2457endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2458 int uptodate)
2459{
2460 struct extent_state *cached = NULL;
2461 u64 end = start + len - 1;
2462
2463 if (uptodate && tree->track_uptodate)
2464 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2465 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2466}
2467
d1310b2e
CM
2468/*
2469 * after a readpage IO is done, we need to:
2470 * clear the uptodate bits on error
2471 * set the uptodate bits if things worked
2472 * set the page up to date if all extents in the tree are uptodate
2473 * clear the lock bit in the extent tree
2474 * unlock the page if there are no other extents locked for it
2475 *
2476 * Scheduling is not allowed, so the extent state tree is expected
2477 * to have one and only one object corresponding to this IO.
2478 */
4246a0b6 2479static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2480{
2c30c71b 2481 struct bio_vec *bvec;
4e4cbee9 2482 int uptodate = !bio->bi_status;
facc8a22 2483 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2484 struct extent_io_tree *tree, *failure_tree;
facc8a22 2485 u64 offset = 0;
d1310b2e
CM
2486 u64 start;
2487 u64 end;
facc8a22 2488 u64 len;
883d0de4
MX
2489 u64 extent_start = 0;
2490 u64 extent_len = 0;
5cf1ab56 2491 int mirror;
d1310b2e 2492 int ret;
2c30c71b 2493 int i;
d1310b2e 2494
c09abff8 2495 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2496 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2497 struct page *page = bvec->bv_page;
a71754fc 2498 struct inode *inode = page->mapping->host;
ab8d0fc4 2499 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2500 bool data_inode = btrfs_ino(BTRFS_I(inode))
2501 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2502
ab8d0fc4
JM
2503 btrfs_debug(fs_info,
2504 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2505 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2506 io_bio->mirror_num);
a71754fc 2507 tree = &BTRFS_I(inode)->io_tree;
7870d082 2508 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2509
17a5adcc
AO
2510 /* We always issue full-page reads, but if some block
2511 * in a page fails to read, blk_update_request() will
2512 * advance bv_offset and adjust bv_len to compensate.
2513 * Print a warning for nonzero offsets, and an error
2514 * if they don't add up to a full page. */
09cbfeaf
KS
2515 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2516 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2517 btrfs_err(fs_info,
2518 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2519 bvec->bv_offset, bvec->bv_len);
2520 else
ab8d0fc4
JM
2521 btrfs_info(fs_info,
2522 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2523 bvec->bv_offset, bvec->bv_len);
2524 }
d1310b2e 2525
17a5adcc
AO
2526 start = page_offset(page);
2527 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2528 len = bvec->bv_len;
d1310b2e 2529
9be3395b 2530 mirror = io_bio->mirror_num;
78e62c02 2531 if (likely(uptodate)) {
facc8a22
MX
2532 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2533 page, start, end,
2534 mirror);
5ee0844d 2535 if (ret)
d1310b2e 2536 uptodate = 0;
5ee0844d 2537 else
7870d082
JB
2538 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2539 failure_tree, tree, start,
2540 page,
2541 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2542 }
ea466794 2543
f2a09da9
MX
2544 if (likely(uptodate))
2545 goto readpage_ok;
2546
78e62c02 2547 if (data_inode) {
9d0d1c8b 2548
f4a8e656 2549 /*
78e62c02
NB
2550 * The generic bio_readpage_error handles errors the
2551 * following way: If possible, new read requests are
2552 * created and submitted and will end up in
2553 * end_bio_extent_readpage as well (if we're lucky,
2554 * not in the !uptodate case). In that case it returns
2555 * 0 and we just go on with the next page in our bio.
2556 * If it can't handle the error it will return -EIO and
2557 * we remain responsible for that page.
f4a8e656 2558 */
78e62c02
NB
2559 ret = bio_readpage_error(bio, offset, page, start, end,
2560 mirror);
2561 if (ret == 0) {
2562 uptodate = !bio->bi_status;
2563 offset += len;
2564 continue;
2565 }
2566 } else {
2567 struct extent_buffer *eb;
2568
2569 eb = (struct extent_buffer *)page->private;
2570 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2571 eb->read_mirror = mirror;
2572 atomic_dec(&eb->io_pages);
2573 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2574 &eb->bflags))
2575 btree_readahead_hook(eb, -EIO);
2576
2577 ret = -EIO;
7e38326f 2578 }
f2a09da9 2579readpage_ok:
883d0de4 2580 if (likely(uptodate)) {
a71754fc 2581 loff_t i_size = i_size_read(inode);
09cbfeaf 2582 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2583 unsigned off;
a71754fc
JB
2584
2585 /* Zero out the end if this page straddles i_size */
7073017a 2586 off = offset_in_page(i_size);
a583c026 2587 if (page->index == end_index && off)
09cbfeaf 2588 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2589 SetPageUptodate(page);
70dec807 2590 } else {
17a5adcc
AO
2591 ClearPageUptodate(page);
2592 SetPageError(page);
70dec807 2593 }
17a5adcc 2594 unlock_page(page);
facc8a22 2595 offset += len;
883d0de4
MX
2596
2597 if (unlikely(!uptodate)) {
2598 if (extent_len) {
2599 endio_readpage_release_extent(tree,
2600 extent_start,
2601 extent_len, 1);
2602 extent_start = 0;
2603 extent_len = 0;
2604 }
2605 endio_readpage_release_extent(tree, start,
2606 end - start + 1, 0);
2607 } else if (!extent_len) {
2608 extent_start = start;
2609 extent_len = end + 1 - start;
2610 } else if (extent_start + extent_len == start) {
2611 extent_len += end + 1 - start;
2612 } else {
2613 endio_readpage_release_extent(tree, extent_start,
2614 extent_len, uptodate);
2615 extent_start = start;
2616 extent_len = end + 1 - start;
2617 }
2c30c71b 2618 }
d1310b2e 2619
883d0de4
MX
2620 if (extent_len)
2621 endio_readpage_release_extent(tree, extent_start, extent_len,
2622 uptodate);
b3a0dd50 2623 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2624 bio_put(bio);
d1310b2e
CM
2625}
2626
9be3395b 2627/*
184f999e
DS
2628 * Initialize the members up to but not including 'bio'. Use after allocating a
2629 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2630 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2631 */
184f999e 2632static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2633{
184f999e
DS
2634 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2635}
d1310b2e 2636
9be3395b 2637/*
6e707bcd
DS
2638 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2639 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2640 * for the appropriate container_of magic
9be3395b 2641 */
c821e7f3 2642struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2643{
2644 struct bio *bio;
d1310b2e 2645
8ac9f7c1 2646 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2647 bio_set_dev(bio, bdev);
c821e7f3 2648 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2649 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2650 return bio;
2651}
2652
8b6c1d56 2653struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2654{
23ea8e5a
MX
2655 struct btrfs_io_bio *btrfs_bio;
2656 struct bio *new;
9be3395b 2657
6e707bcd 2658 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2659 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2660 btrfs_bio = btrfs_io_bio(new);
184f999e 2661 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2662 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2663 return new;
2664}
9be3395b 2665
c5e4c3d7 2666struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2667{
facc8a22
MX
2668 struct bio *bio;
2669
6e707bcd 2670 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2671 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2672 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2673 return bio;
9be3395b
CM
2674}
2675
e477094f 2676struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2677{
2678 struct bio *bio;
2679 struct btrfs_io_bio *btrfs_bio;
2680
2681 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2682 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2683 ASSERT(bio);
2684
2685 btrfs_bio = btrfs_io_bio(bio);
184f999e 2686 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2687
2688 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2689 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2690 return bio;
2691}
9be3395b 2692
1f7ad75b
MC
2693static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2694 unsigned long bio_flags)
d1310b2e 2695{
4e4cbee9 2696 blk_status_t ret = 0;
c45a8f2d 2697 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2698 struct page *page = bvec->bv_page;
2699 struct extent_io_tree *tree = bio->bi_private;
70dec807 2700 u64 start;
70dec807 2701
4eee4fa4 2702 start = page_offset(page) + bvec->bv_offset;
70dec807 2703
902b22f3 2704 bio->bi_private = NULL;
d1310b2e 2705
20c9801d 2706 if (tree->ops)
c6100a4b 2707 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2708 mirror_num, bio_flags, start);
0b86a832 2709 else
4e49ea4a 2710 btrfsic_submit_bio(bio);
4a54c8c1 2711
4e4cbee9 2712 return blk_status_to_errno(ret);
d1310b2e
CM
2713}
2714
4b81ba48
DS
2715/*
2716 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2717 * @tree: tree so we can call our merge_bio hook
2718 * @wbc: optional writeback control for io accounting
2719 * @page: page to add to the bio
2720 * @pg_offset: offset of the new bio or to check whether we are adding
2721 * a contiguous page to the previous one
2722 * @size: portion of page that we want to write
2723 * @offset: starting offset in the page
2724 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2725 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2726 * @end_io_func: end_io callback for new bio
2727 * @mirror_num: desired mirror to read/write
2728 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2729 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2730 */
2731static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2732 struct writeback_control *wbc,
6273b7f8 2733 struct page *page, u64 offset,
6c5a4e2c 2734 size_t size, unsigned long pg_offset,
d1310b2e
CM
2735 struct block_device *bdev,
2736 struct bio **bio_ret,
f188591e 2737 bio_end_io_t end_io_func,
c8b97818
CM
2738 int mirror_num,
2739 unsigned long prev_bio_flags,
005efedf
FM
2740 unsigned long bio_flags,
2741 bool force_bio_submit)
d1310b2e
CM
2742{
2743 int ret = 0;
2744 struct bio *bio;
09cbfeaf 2745 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2746 sector_t sector = offset >> 9;
d1310b2e 2747
5c2b1fd7
DS
2748 ASSERT(bio_ret);
2749
2750 if (*bio_ret) {
0c8508a6
DS
2751 bool contig;
2752 bool can_merge = true;
2753
d1310b2e 2754 bio = *bio_ret;
0c8508a6 2755 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2756 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2757 else
f73a1c7d 2758 contig = bio_end_sector(bio) == sector;
c8b97818 2759
da12fe54
NB
2760 ASSERT(tree->ops);
2761 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
2762 can_merge = false;
2763
2764 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2765 force_bio_submit ||
6c5a4e2c 2766 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2767 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2768 if (ret < 0) {
2769 *bio_ret = NULL;
79787eaa 2770 return ret;
289454ad 2771 }
d1310b2e
CM
2772 bio = NULL;
2773 } else {
da2f0f74
CM
2774 if (wbc)
2775 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2776 return 0;
2777 }
2778 }
c8b97818 2779
6273b7f8 2780 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2781 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2782 bio->bi_end_io = end_io_func;
2783 bio->bi_private = tree;
e6959b93 2784 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2785 bio->bi_opf = opf;
da2f0f74
CM
2786 if (wbc) {
2787 wbc_init_bio(wbc, bio);
2788 wbc_account_io(wbc, page, page_size);
2789 }
70dec807 2790
5c2b1fd7 2791 *bio_ret = bio;
d1310b2e
CM
2792
2793 return ret;
2794}
2795
48a3b636
ES
2796static void attach_extent_buffer_page(struct extent_buffer *eb,
2797 struct page *page)
d1310b2e
CM
2798{
2799 if (!PagePrivate(page)) {
2800 SetPagePrivate(page);
09cbfeaf 2801 get_page(page);
4f2de97a
JB
2802 set_page_private(page, (unsigned long)eb);
2803 } else {
2804 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2805 }
2806}
2807
4f2de97a 2808void set_page_extent_mapped(struct page *page)
d1310b2e 2809{
4f2de97a
JB
2810 if (!PagePrivate(page)) {
2811 SetPagePrivate(page);
09cbfeaf 2812 get_page(page);
4f2de97a
JB
2813 set_page_private(page, EXTENT_PAGE_PRIVATE);
2814 }
d1310b2e
CM
2815}
2816
125bac01
MX
2817static struct extent_map *
2818__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2819 u64 start, u64 len, get_extent_t *get_extent,
2820 struct extent_map **em_cached)
2821{
2822 struct extent_map *em;
2823
2824 if (em_cached && *em_cached) {
2825 em = *em_cached;
cbc0e928 2826 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2827 start < extent_map_end(em)) {
490b54d6 2828 refcount_inc(&em->refs);
125bac01
MX
2829 return em;
2830 }
2831
2832 free_extent_map(em);
2833 *em_cached = NULL;
2834 }
2835
fc4f21b1 2836 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2837 if (em_cached && !IS_ERR_OR_NULL(em)) {
2838 BUG_ON(*em_cached);
490b54d6 2839 refcount_inc(&em->refs);
125bac01
MX
2840 *em_cached = em;
2841 }
2842 return em;
2843}
d1310b2e
CM
2844/*
2845 * basic readpage implementation. Locked extent state structs are inserted
2846 * into the tree that are removed when the IO is done (by the end_io
2847 * handlers)
79787eaa 2848 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2849 * return 0 on success, otherwise return error
d1310b2e 2850 */
9974090b
MX
2851static int __do_readpage(struct extent_io_tree *tree,
2852 struct page *page,
2853 get_extent_t *get_extent,
125bac01 2854 struct extent_map **em_cached,
9974090b 2855 struct bio **bio, int mirror_num,
f1c77c55 2856 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2857 u64 *prev_em_start)
d1310b2e
CM
2858{
2859 struct inode *inode = page->mapping->host;
4eee4fa4 2860 u64 start = page_offset(page);
8eec8296 2861 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2862 u64 cur = start;
2863 u64 extent_offset;
2864 u64 last_byte = i_size_read(inode);
2865 u64 block_start;
2866 u64 cur_end;
d1310b2e
CM
2867 struct extent_map *em;
2868 struct block_device *bdev;
baf863b9 2869 int ret = 0;
d1310b2e 2870 int nr = 0;
306e16ce 2871 size_t pg_offset = 0;
d1310b2e 2872 size_t iosize;
c8b97818 2873 size_t disk_io_size;
d1310b2e 2874 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2875 unsigned long this_bio_flag = 0;
d1310b2e
CM
2876
2877 set_page_extent_mapped(page);
2878
90a887c9
DM
2879 if (!PageUptodate(page)) {
2880 if (cleancache_get_page(page) == 0) {
2881 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2882 unlock_extent(tree, start, end);
90a887c9
DM
2883 goto out;
2884 }
2885 }
2886
09cbfeaf 2887 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2888 char *userpage;
7073017a 2889 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
2890
2891 if (zero_offset) {
09cbfeaf 2892 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2893 userpage = kmap_atomic(page);
c8b97818
CM
2894 memset(userpage + zero_offset, 0, iosize);
2895 flush_dcache_page(page);
7ac687d9 2896 kunmap_atomic(userpage);
c8b97818
CM
2897 }
2898 }
d1310b2e 2899 while (cur <= end) {
005efedf 2900 bool force_bio_submit = false;
6273b7f8 2901 u64 offset;
c8f2f24b 2902
d1310b2e
CM
2903 if (cur >= last_byte) {
2904 char *userpage;
507903b8
AJ
2905 struct extent_state *cached = NULL;
2906
09cbfeaf 2907 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2908 userpage = kmap_atomic(page);
306e16ce 2909 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2910 flush_dcache_page(page);
7ac687d9 2911 kunmap_atomic(userpage);
d1310b2e 2912 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2913 &cached, GFP_NOFS);
7f042a83 2914 unlock_extent_cached(tree, cur,
e43bbe5e 2915 cur + iosize - 1, &cached);
d1310b2e
CM
2916 break;
2917 }
125bac01
MX
2918 em = __get_extent_map(inode, page, pg_offset, cur,
2919 end - cur + 1, get_extent, em_cached);
c704005d 2920 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2921 SetPageError(page);
7f042a83 2922 unlock_extent(tree, cur, end);
d1310b2e
CM
2923 break;
2924 }
d1310b2e
CM
2925 extent_offset = cur - em->start;
2926 BUG_ON(extent_map_end(em) <= cur);
2927 BUG_ON(end < cur);
2928
261507a0 2929 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2930 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2931 extent_set_compress_type(&this_bio_flag,
2932 em->compress_type);
2933 }
c8b97818 2934
d1310b2e
CM
2935 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2936 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2937 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2938 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2939 disk_io_size = em->block_len;
6273b7f8 2940 offset = em->block_start;
c8b97818 2941 } else {
6273b7f8 2942 offset = em->block_start + extent_offset;
c8b97818
CM
2943 disk_io_size = iosize;
2944 }
d1310b2e
CM
2945 bdev = em->bdev;
2946 block_start = em->block_start;
d899e052
YZ
2947 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2948 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2949
2950 /*
2951 * If we have a file range that points to a compressed extent
2952 * and it's followed by a consecutive file range that points to
2953 * to the same compressed extent (possibly with a different
2954 * offset and/or length, so it either points to the whole extent
2955 * or only part of it), we must make sure we do not submit a
2956 * single bio to populate the pages for the 2 ranges because
2957 * this makes the compressed extent read zero out the pages
2958 * belonging to the 2nd range. Imagine the following scenario:
2959 *
2960 * File layout
2961 * [0 - 8K] [8K - 24K]
2962 * | |
2963 * | |
2964 * points to extent X, points to extent X,
2965 * offset 4K, length of 8K offset 0, length 16K
2966 *
2967 * [extent X, compressed length = 4K uncompressed length = 16K]
2968 *
2969 * If the bio to read the compressed extent covers both ranges,
2970 * it will decompress extent X into the pages belonging to the
2971 * first range and then it will stop, zeroing out the remaining
2972 * pages that belong to the other range that points to extent X.
2973 * So here we make sure we submit 2 bios, one for the first
2974 * range and another one for the third range. Both will target
2975 * the same physical extent from disk, but we can't currently
2976 * make the compressed bio endio callback populate the pages
2977 * for both ranges because each compressed bio is tightly
2978 * coupled with a single extent map, and each range can have
2979 * an extent map with a different offset value relative to the
2980 * uncompressed data of our extent and different lengths. This
2981 * is a corner case so we prioritize correctness over
2982 * non-optimal behavior (submitting 2 bios for the same extent).
2983 */
2984 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2985 prev_em_start && *prev_em_start != (u64)-1 &&
2986 *prev_em_start != em->orig_start)
2987 force_bio_submit = true;
2988
2989 if (prev_em_start)
2990 *prev_em_start = em->orig_start;
2991
d1310b2e
CM
2992 free_extent_map(em);
2993 em = NULL;
2994
2995 /* we've found a hole, just zero and go on */
2996 if (block_start == EXTENT_MAP_HOLE) {
2997 char *userpage;
507903b8
AJ
2998 struct extent_state *cached = NULL;
2999
7ac687d9 3000 userpage = kmap_atomic(page);
306e16ce 3001 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3002 flush_dcache_page(page);
7ac687d9 3003 kunmap_atomic(userpage);
d1310b2e
CM
3004
3005 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3006 &cached, GFP_NOFS);
7f042a83 3007 unlock_extent_cached(tree, cur,
e43bbe5e 3008 cur + iosize - 1, &cached);
d1310b2e 3009 cur = cur + iosize;
306e16ce 3010 pg_offset += iosize;
d1310b2e
CM
3011 continue;
3012 }
3013 /* the get_extent function already copied into the page */
9655d298
CM
3014 if (test_range_bit(tree, cur, cur_end,
3015 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3016 check_page_uptodate(tree, page);
7f042a83 3017 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3018 cur = cur + iosize;
306e16ce 3019 pg_offset += iosize;
d1310b2e
CM
3020 continue;
3021 }
70dec807
CM
3022 /* we have an inline extent but it didn't get marked up
3023 * to date. Error out
3024 */
3025 if (block_start == EXTENT_MAP_INLINE) {
3026 SetPageError(page);
7f042a83 3027 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3028 cur = cur + iosize;
306e16ce 3029 pg_offset += iosize;
70dec807
CM
3030 continue;
3031 }
d1310b2e 3032
4b81ba48 3033 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3034 page, offset, disk_io_size,
3035 pg_offset, bdev, bio,
c8b97818
CM
3036 end_bio_extent_readpage, mirror_num,
3037 *bio_flags,
005efedf
FM
3038 this_bio_flag,
3039 force_bio_submit);
c8f2f24b
JB
3040 if (!ret) {
3041 nr++;
3042 *bio_flags = this_bio_flag;
3043 } else {
d1310b2e 3044 SetPageError(page);
7f042a83 3045 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3046 goto out;
edd33c99 3047 }
d1310b2e 3048 cur = cur + iosize;
306e16ce 3049 pg_offset += iosize;
d1310b2e 3050 }
90a887c9 3051out:
d1310b2e
CM
3052 if (!nr) {
3053 if (!PageError(page))
3054 SetPageUptodate(page);
3055 unlock_page(page);
3056 }
baf863b9 3057 return ret;
d1310b2e
CM
3058}
3059
9974090b
MX
3060static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3061 struct page *pages[], int nr_pages,
3062 u64 start, u64 end,
125bac01 3063 struct extent_map **em_cached,
d3fac6ba 3064 struct bio **bio,
1f7ad75b 3065 unsigned long *bio_flags,
808f80b4 3066 u64 *prev_em_start)
9974090b
MX
3067{
3068 struct inode *inode;
3069 struct btrfs_ordered_extent *ordered;
3070 int index;
3071
3072 inode = pages[0]->mapping->host;
3073 while (1) {
3074 lock_extent(tree, start, end);
a776c6fa 3075 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3076 end - start + 1);
3077 if (!ordered)
3078 break;
3079 unlock_extent(tree, start, end);
3080 btrfs_start_ordered_extent(inode, ordered, 1);
3081 btrfs_put_ordered_extent(ordered);
3082 }
3083
3084 for (index = 0; index < nr_pages; index++) {
4ef77695 3085 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3086 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3087 put_page(pages[index]);
9974090b
MX
3088 }
3089}
3090
3091static void __extent_readpages(struct extent_io_tree *tree,
3092 struct page *pages[],
e4d17ef5 3093 int nr_pages,
125bac01 3094 struct extent_map **em_cached,
d3fac6ba 3095 struct bio **bio, unsigned long *bio_flags,
808f80b4 3096 u64 *prev_em_start)
9974090b 3097{
35a3621b 3098 u64 start = 0;
9974090b
MX
3099 u64 end = 0;
3100 u64 page_start;
3101 int index;
35a3621b 3102 int first_index = 0;
9974090b
MX
3103
3104 for (index = 0; index < nr_pages; index++) {
3105 page_start = page_offset(pages[index]);
3106 if (!end) {
3107 start = page_start;
09cbfeaf 3108 end = start + PAGE_SIZE - 1;
9974090b
MX
3109 first_index = index;
3110 } else if (end + 1 == page_start) {
09cbfeaf 3111 end += PAGE_SIZE;
9974090b
MX
3112 } else {
3113 __do_contiguous_readpages(tree, &pages[first_index],
3114 index - first_index, start,
4ef77695 3115 end, em_cached,
d3fac6ba 3116 bio, bio_flags,
1f7ad75b 3117 prev_em_start);
9974090b 3118 start = page_start;
09cbfeaf 3119 end = start + PAGE_SIZE - 1;
9974090b
MX
3120 first_index = index;
3121 }
3122 }
3123
3124 if (end)
3125 __do_contiguous_readpages(tree, &pages[first_index],
3126 index - first_index, start,
4ef77695 3127 end, em_cached, bio,
d3fac6ba 3128 bio_flags, prev_em_start);
9974090b
MX
3129}
3130
3131static int __extent_read_full_page(struct extent_io_tree *tree,
3132 struct page *page,
3133 get_extent_t *get_extent,
3134 struct bio **bio, int mirror_num,
f1c77c55
DS
3135 unsigned long *bio_flags,
3136 unsigned int read_flags)
9974090b
MX
3137{
3138 struct inode *inode = page->mapping->host;
3139 struct btrfs_ordered_extent *ordered;
3140 u64 start = page_offset(page);
09cbfeaf 3141 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3142 int ret;
3143
3144 while (1) {
3145 lock_extent(tree, start, end);
a776c6fa 3146 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3147 PAGE_SIZE);
9974090b
MX
3148 if (!ordered)
3149 break;
3150 unlock_extent(tree, start, end);
3151 btrfs_start_ordered_extent(inode, ordered, 1);
3152 btrfs_put_ordered_extent(ordered);
3153 }
3154
125bac01 3155 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3156 bio_flags, read_flags, NULL);
9974090b
MX
3157 return ret;
3158}
3159
d1310b2e 3160int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3161 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3162{
3163 struct bio *bio = NULL;
c8b97818 3164 unsigned long bio_flags = 0;
d1310b2e
CM
3165 int ret;
3166
8ddc7d9c 3167 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3168 &bio_flags, 0);
d1310b2e 3169 if (bio)
1f7ad75b 3170 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3171 return ret;
3172}
d1310b2e 3173
3d4b9496 3174static void update_nr_written(struct writeback_control *wbc,
a9132667 3175 unsigned long nr_written)
11c8349b
CM
3176{
3177 wbc->nr_to_write -= nr_written;
11c8349b
CM
3178}
3179
d1310b2e 3180/*
40f76580
CM
3181 * helper for __extent_writepage, doing all of the delayed allocation setup.
3182 *
5eaad97a 3183 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3184 * to write the page (copy into inline extent). In this case the IO has
3185 * been started and the page is already unlocked.
3186 *
3187 * This returns 0 if all went well (page still locked)
3188 * This returns < 0 if there were errors (page still locked)
d1310b2e 3189 */
40f76580 3190static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3191 struct page *page, struct writeback_control *wbc,
3192 u64 delalloc_start, unsigned long *nr_written)
40f76580 3193{
8cc0237a 3194 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
09cbfeaf 3195 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3196 bool found;
40f76580
CM
3197 u64 delalloc_to_write = 0;
3198 u64 delalloc_end = 0;
3199 int ret;
3200 int page_started = 0;
3201
40f76580
CM
3202
3203 while (delalloc_end < page_end) {
3522e903 3204 found = find_lock_delalloc_range(inode, tree,
40f76580
CM
3205 page,
3206 &delalloc_start,
917aacec 3207 &delalloc_end);
3522e903 3208 if (!found) {
40f76580
CM
3209 delalloc_start = delalloc_end + 1;
3210 continue;
3211 }
5eaad97a
NB
3212 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3213 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3214 /* File system has been set read-only */
3215 if (ret) {
3216 SetPageError(page);
5eaad97a
NB
3217 /*
3218 * btrfs_run_delalloc_range should return < 0 for error
3219 * but just in case, we use > 0 here meaning the IO is
3220 * started, so we don't want to return > 0 unless
3221 * things are going well.
40f76580
CM
3222 */
3223 ret = ret < 0 ? ret : -EIO;
3224 goto done;
3225 }
3226 /*
ea1754a0
KS
3227 * delalloc_end is already one less than the total length, so
3228 * we don't subtract one from PAGE_SIZE
40f76580
CM
3229 */
3230 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3231 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3232 delalloc_start = delalloc_end + 1;
3233 }
3234 if (wbc->nr_to_write < delalloc_to_write) {
3235 int thresh = 8192;
3236
3237 if (delalloc_to_write < thresh * 2)
3238 thresh = delalloc_to_write;
3239 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3240 thresh);
3241 }
3242
3243 /* did the fill delalloc function already unlock and start
3244 * the IO?
3245 */
3246 if (page_started) {
3247 /*
3248 * we've unlocked the page, so we can't update
3249 * the mapping's writeback index, just update
3250 * nr_to_write.
3251 */
3252 wbc->nr_to_write -= *nr_written;
3253 return 1;
3254 }
3255
3256 ret = 0;
3257
3258done:
3259 return ret;
3260}
3261
3262/*
3263 * helper for __extent_writepage. This calls the writepage start hooks,
3264 * and does the loop to map the page into extents and bios.
3265 *
3266 * We return 1 if the IO is started and the page is unlocked,
3267 * 0 if all went well (page still locked)
3268 * < 0 if there were errors (page still locked)
3269 */
3270static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3271 struct page *page,
3272 struct writeback_control *wbc,
3273 struct extent_page_data *epd,
3274 loff_t i_size,
3275 unsigned long nr_written,
f1c77c55 3276 unsigned int write_flags, int *nr_ret)
d1310b2e 3277{
d1310b2e 3278 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3279 u64 start = page_offset(page);
09cbfeaf 3280 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3281 u64 end;
3282 u64 cur = start;
3283 u64 extent_offset;
d1310b2e
CM
3284 u64 block_start;
3285 u64 iosize;
d1310b2e
CM
3286 struct extent_map *em;
3287 struct block_device *bdev;
7f3c74fb 3288 size_t pg_offset = 0;
d1310b2e 3289 size_t blocksize;
40f76580
CM
3290 int ret = 0;
3291 int nr = 0;
3292 bool compressed;
c8b97818 3293
d75855b4
NB
3294 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3295 if (ret) {
3296 /* Fixup worker will requeue */
3297 if (ret == -EBUSY)
3298 wbc->pages_skipped++;
3299 else
3300 redirty_page_for_writepage(wbc, page);
40f76580 3301
d75855b4
NB
3302 update_nr_written(wbc, nr_written);
3303 unlock_page(page);
3304 return 1;
247e743c
CM
3305 }
3306
11c8349b
CM
3307 /*
3308 * we don't want to touch the inode after unlocking the page,
3309 * so we update the mapping writeback index now
3310 */
3d4b9496 3311 update_nr_written(wbc, nr_written + 1);
771ed689 3312
d1310b2e 3313 end = page_end;
40f76580 3314 if (i_size <= start) {
c629732d 3315 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3316 goto done;
3317 }
3318
d1310b2e
CM
3319 blocksize = inode->i_sb->s_blocksize;
3320
3321 while (cur <= end) {
40f76580 3322 u64 em_end;
6273b7f8 3323 u64 offset;
58409edd 3324
40f76580 3325 if (cur >= i_size) {
7087a9d8 3326 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3327 page_end, 1);
d1310b2e
CM
3328 break;
3329 }
3c98c62f 3330 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3331 end - cur + 1, 1);
c704005d 3332 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3333 SetPageError(page);
61391d56 3334 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3335 break;
3336 }
3337
3338 extent_offset = cur - em->start;
40f76580
CM
3339 em_end = extent_map_end(em);
3340 BUG_ON(em_end <= cur);
d1310b2e 3341 BUG_ON(end < cur);
40f76580 3342 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3343 iosize = ALIGN(iosize, blocksize);
6273b7f8 3344 offset = em->block_start + extent_offset;
d1310b2e
CM
3345 bdev = em->bdev;
3346 block_start = em->block_start;
c8b97818 3347 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3348 free_extent_map(em);
3349 em = NULL;
3350
c8b97818
CM
3351 /*
3352 * compressed and inline extents are written through other
3353 * paths in the FS
3354 */
3355 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3356 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3357 /*
3358 * end_io notification does not happen here for
3359 * compressed extents
3360 */
7087a9d8
NB
3361 if (!compressed)
3362 btrfs_writepage_endio_finish_ordered(page, cur,
3363 cur + iosize - 1,
c629732d 3364 1);
c8b97818
CM
3365 else if (compressed) {
3366 /* we don't want to end_page_writeback on
3367 * a compressed extent. this happens
3368 * elsewhere
3369 */
3370 nr++;
3371 }
3372
3373 cur += iosize;
7f3c74fb 3374 pg_offset += iosize;
d1310b2e
CM
3375 continue;
3376 }
c8b97818 3377
5cdc84bf 3378 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3379 if (!PageWriteback(page)) {
3380 btrfs_err(BTRFS_I(inode)->root->fs_info,
3381 "page %lu not writeback, cur %llu end %llu",
3382 page->index, cur, end);
d1310b2e 3383 }
7f3c74fb 3384
4b81ba48 3385 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3386 page, offset, iosize, pg_offset,
c2df8bb4 3387 bdev, &epd->bio,
58409edd
DS
3388 end_bio_extent_writepage,
3389 0, 0, 0, false);
fe01aa65 3390 if (ret) {
58409edd 3391 SetPageError(page);
fe01aa65
TK
3392 if (PageWriteback(page))
3393 end_page_writeback(page);
3394 }
d1310b2e 3395
d1310b2e 3396 cur = cur + iosize;
7f3c74fb 3397 pg_offset += iosize;
d1310b2e
CM
3398 nr++;
3399 }
40f76580
CM
3400done:
3401 *nr_ret = nr;
40f76580
CM
3402 return ret;
3403}
3404
3405/*
3406 * the writepage semantics are similar to regular writepage. extent
3407 * records are inserted to lock ranges in the tree, and as dirty areas
3408 * are found, they are marked writeback. Then the lock bits are removed
3409 * and the end_io handler clears the writeback ranges
3410 */
3411static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3412 struct extent_page_data *epd)
40f76580
CM
3413{
3414 struct inode *inode = page->mapping->host;
40f76580 3415 u64 start = page_offset(page);
09cbfeaf 3416 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3417 int ret;
3418 int nr = 0;
3419 size_t pg_offset = 0;
3420 loff_t i_size = i_size_read(inode);
09cbfeaf 3421 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3422 unsigned int write_flags = 0;
40f76580
CM
3423 unsigned long nr_written = 0;
3424
ff40adf7 3425 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3426
3427 trace___extent_writepage(page, inode, wbc);
3428
3429 WARN_ON(!PageLocked(page));
3430
3431 ClearPageError(page);
3432
7073017a 3433 pg_offset = offset_in_page(i_size);
40f76580
CM
3434 if (page->index > end_index ||
3435 (page->index == end_index && !pg_offset)) {
09cbfeaf 3436 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3437 unlock_page(page);
3438 return 0;
3439 }
3440
3441 if (page->index == end_index) {
3442 char *userpage;
3443
3444 userpage = kmap_atomic(page);
3445 memset(userpage + pg_offset, 0,
09cbfeaf 3446 PAGE_SIZE - pg_offset);
40f76580
CM
3447 kunmap_atomic(userpage);
3448 flush_dcache_page(page);
3449 }
3450
3451 pg_offset = 0;
3452
3453 set_page_extent_mapped(page);
3454
7789a55a 3455 if (!epd->extent_locked) {
8cc0237a 3456 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3457 if (ret == 1)
3458 goto done_unlocked;
3459 if (ret)
3460 goto done;
3461 }
40f76580
CM
3462
3463 ret = __extent_writepage_io(inode, page, wbc, epd,
3464 i_size, nr_written, write_flags, &nr);
3465 if (ret == 1)
3466 goto done_unlocked;
3467
d1310b2e
CM
3468done:
3469 if (nr == 0) {
3470 /* make sure the mapping tag for page dirty gets cleared */
3471 set_page_writeback(page);
3472 end_page_writeback(page);
3473 }
61391d56
FM
3474 if (PageError(page)) {
3475 ret = ret < 0 ? ret : -EIO;
3476 end_extent_writepage(page, ret, start, page_end);
3477 }
d1310b2e 3478 unlock_page(page);
40f76580 3479 return ret;
771ed689 3480
11c8349b 3481done_unlocked:
d1310b2e
CM
3482 return 0;
3483}
3484
fd8b2b61 3485void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3486{
74316201
N
3487 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3488 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3489}
3490
0e378df1
CM
3491static noinline_for_stack int
3492lock_extent_buffer_for_io(struct extent_buffer *eb,
3493 struct btrfs_fs_info *fs_info,
3494 struct extent_page_data *epd)
0b32f4bb 3495{
cc5e31a4 3496 int i, num_pages;
0b32f4bb
JB
3497 int flush = 0;
3498 int ret = 0;
3499
3500 if (!btrfs_try_tree_write_lock(eb)) {
3501 flush = 1;
3502 flush_write_bio(epd);
3503 btrfs_tree_lock(eb);
3504 }
3505
3506 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3507 btrfs_tree_unlock(eb);
3508 if (!epd->sync_io)
3509 return 0;
3510 if (!flush) {
3511 flush_write_bio(epd);
3512 flush = 1;
3513 }
a098d8e8
CM
3514 while (1) {
3515 wait_on_extent_buffer_writeback(eb);
3516 btrfs_tree_lock(eb);
3517 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3518 break;
0b32f4bb 3519 btrfs_tree_unlock(eb);
0b32f4bb
JB
3520 }
3521 }
3522
51561ffe
JB
3523 /*
3524 * We need to do this to prevent races in people who check if the eb is
3525 * under IO since we can end up having no IO bits set for a short period
3526 * of time.
3527 */
3528 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3529 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3530 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3531 spin_unlock(&eb->refs_lock);
0b32f4bb 3532 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3533 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3534 -eb->len,
3535 fs_info->dirty_metadata_batch);
0b32f4bb 3536 ret = 1;
51561ffe
JB
3537 } else {
3538 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3539 }
3540
3541 btrfs_tree_unlock(eb);
3542
3543 if (!ret)
3544 return ret;
3545
65ad0104 3546 num_pages = num_extent_pages(eb);
0b32f4bb 3547 for (i = 0; i < num_pages; i++) {
fb85fc9a 3548 struct page *p = eb->pages[i];
0b32f4bb
JB
3549
3550 if (!trylock_page(p)) {
3551 if (!flush) {
3552 flush_write_bio(epd);
3553 flush = 1;
3554 }
3555 lock_page(p);
3556 }
3557 }
3558
3559 return ret;
3560}
3561
3562static void end_extent_buffer_writeback(struct extent_buffer *eb)
3563{
3564 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3565 smp_mb__after_atomic();
0b32f4bb
JB
3566 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3567}
3568
656f30db
FM
3569static void set_btree_ioerr(struct page *page)
3570{
3571 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3572
3573 SetPageError(page);
3574 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3575 return;
3576
3577 /*
3578 * If writeback for a btree extent that doesn't belong to a log tree
3579 * failed, increment the counter transaction->eb_write_errors.
3580 * We do this because while the transaction is running and before it's
3581 * committing (when we call filemap_fdata[write|wait]_range against
3582 * the btree inode), we might have
3583 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3584 * returns an error or an error happens during writeback, when we're
3585 * committing the transaction we wouldn't know about it, since the pages
3586 * can be no longer dirty nor marked anymore for writeback (if a
3587 * subsequent modification to the extent buffer didn't happen before the
3588 * transaction commit), which makes filemap_fdata[write|wait]_range not
3589 * able to find the pages tagged with SetPageError at transaction
3590 * commit time. So if this happens we must abort the transaction,
3591 * otherwise we commit a super block with btree roots that point to
3592 * btree nodes/leafs whose content on disk is invalid - either garbage
3593 * or the content of some node/leaf from a past generation that got
3594 * cowed or deleted and is no longer valid.
3595 *
3596 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3597 * not be enough - we need to distinguish between log tree extents vs
3598 * non-log tree extents, and the next filemap_fdatawait_range() call
3599 * will catch and clear such errors in the mapping - and that call might
3600 * be from a log sync and not from a transaction commit. Also, checking
3601 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3602 * not done and would not be reliable - the eb might have been released
3603 * from memory and reading it back again means that flag would not be
3604 * set (since it's a runtime flag, not persisted on disk).
3605 *
3606 * Using the flags below in the btree inode also makes us achieve the
3607 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3608 * writeback for all dirty pages and before filemap_fdatawait_range()
3609 * is called, the writeback for all dirty pages had already finished
3610 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3611 * filemap_fdatawait_range() would return success, as it could not know
3612 * that writeback errors happened (the pages were no longer tagged for
3613 * writeback).
3614 */
3615 switch (eb->log_index) {
3616 case -1:
afcdd129 3617 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3618 break;
3619 case 0:
afcdd129 3620 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3621 break;
3622 case 1:
afcdd129 3623 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3624 break;
3625 default:
3626 BUG(); /* unexpected, logic error */
3627 }
3628}
3629
4246a0b6 3630static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3631{
2c30c71b 3632 struct bio_vec *bvec;
0b32f4bb 3633 struct extent_buffer *eb;
2c30c71b 3634 int i, done;
0b32f4bb 3635
c09abff8 3636 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3637 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3638 struct page *page = bvec->bv_page;
3639
0b32f4bb
JB
3640 eb = (struct extent_buffer *)page->private;
3641 BUG_ON(!eb);
3642 done = atomic_dec_and_test(&eb->io_pages);
3643
4e4cbee9 3644 if (bio->bi_status ||
4246a0b6 3645 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3646 ClearPageUptodate(page);
656f30db 3647 set_btree_ioerr(page);
0b32f4bb
JB
3648 }
3649
3650 end_page_writeback(page);
3651
3652 if (!done)
3653 continue;
3654
3655 end_extent_buffer_writeback(eb);
2c30c71b 3656 }
0b32f4bb
JB
3657
3658 bio_put(bio);
0b32f4bb
JB
3659}
3660
0e378df1 3661static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3662 struct btrfs_fs_info *fs_info,
3663 struct writeback_control *wbc,
3664 struct extent_page_data *epd)
3665{
3666 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3667 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3668 u64 offset = eb->start;
851cd173 3669 u32 nritems;
cc5e31a4 3670 int i, num_pages;
851cd173 3671 unsigned long start, end;
ff40adf7 3672 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3673 int ret = 0;
0b32f4bb 3674
656f30db 3675 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3676 num_pages = num_extent_pages(eb);
0b32f4bb 3677 atomic_set(&eb->io_pages, num_pages);
de0022b9 3678
851cd173
LB
3679 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3680 nritems = btrfs_header_nritems(eb);
3eb548ee 3681 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3682 end = btrfs_node_key_ptr_offset(nritems);
3683
b159fa28 3684 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3685 } else {
3686 /*
3687 * leaf:
3688 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3689 */
3690 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3691 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3692 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3693 }
3694
0b32f4bb 3695 for (i = 0; i < num_pages; i++) {
fb85fc9a 3696 struct page *p = eb->pages[i];
0b32f4bb
JB
3697
3698 clear_page_dirty_for_io(p);
3699 set_page_writeback(p);
4b81ba48 3700 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3701 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3702 &epd->bio,
1f7ad75b 3703 end_bio_extent_buffer_writepage,
18fdc679 3704 0, 0, 0, false);
0b32f4bb 3705 if (ret) {
656f30db 3706 set_btree_ioerr(p);
fe01aa65
TK
3707 if (PageWriteback(p))
3708 end_page_writeback(p);
0b32f4bb
JB
3709 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3710 end_extent_buffer_writeback(eb);
3711 ret = -EIO;
3712 break;
3713 }
09cbfeaf 3714 offset += PAGE_SIZE;
3d4b9496 3715 update_nr_written(wbc, 1);
0b32f4bb
JB
3716 unlock_page(p);
3717 }
3718
3719 if (unlikely(ret)) {
3720 for (; i < num_pages; i++) {
bbf65cf0 3721 struct page *p = eb->pages[i];
81465028 3722 clear_page_dirty_for_io(p);
0b32f4bb
JB
3723 unlock_page(p);
3724 }
3725 }
3726
3727 return ret;
3728}
3729
3730int btree_write_cache_pages(struct address_space *mapping,
3731 struct writeback_control *wbc)
3732{
3733 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3734 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3735 struct extent_buffer *eb, *prev_eb = NULL;
3736 struct extent_page_data epd = {
3737 .bio = NULL,
3738 .tree = tree,
3739 .extent_locked = 0,
3740 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3741 };
3742 int ret = 0;
3743 int done = 0;
3744 int nr_to_write_done = 0;
3745 struct pagevec pvec;
3746 int nr_pages;
3747 pgoff_t index;
3748 pgoff_t end; /* Inclusive */
3749 int scanned = 0;
10bbd235 3750 xa_mark_t tag;
0b32f4bb 3751
86679820 3752 pagevec_init(&pvec);
0b32f4bb
JB
3753 if (wbc->range_cyclic) {
3754 index = mapping->writeback_index; /* Start from prev offset */
3755 end = -1;
3756 } else {
09cbfeaf
KS
3757 index = wbc->range_start >> PAGE_SHIFT;
3758 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3759 scanned = 1;
3760 }
3761 if (wbc->sync_mode == WB_SYNC_ALL)
3762 tag = PAGECACHE_TAG_TOWRITE;
3763 else
3764 tag = PAGECACHE_TAG_DIRTY;
3765retry:
3766 if (wbc->sync_mode == WB_SYNC_ALL)
3767 tag_pages_for_writeback(mapping, index, end);
3768 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3769 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3770 tag))) {
0b32f4bb
JB
3771 unsigned i;
3772
3773 scanned = 1;
3774 for (i = 0; i < nr_pages; i++) {
3775 struct page *page = pvec.pages[i];
3776
3777 if (!PagePrivate(page))
3778 continue;
3779
b5bae261
JB
3780 spin_lock(&mapping->private_lock);
3781 if (!PagePrivate(page)) {
3782 spin_unlock(&mapping->private_lock);
3783 continue;
3784 }
3785
0b32f4bb 3786 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3787
3788 /*
3789 * Shouldn't happen and normally this would be a BUG_ON
3790 * but no sense in crashing the users box for something
3791 * we can survive anyway.
3792 */
fae7f21c 3793 if (WARN_ON(!eb)) {
b5bae261 3794 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3795 continue;
3796 }
3797
b5bae261
JB
3798 if (eb == prev_eb) {
3799 spin_unlock(&mapping->private_lock);
0b32f4bb 3800 continue;
b5bae261 3801 }
0b32f4bb 3802
b5bae261
JB
3803 ret = atomic_inc_not_zero(&eb->refs);
3804 spin_unlock(&mapping->private_lock);
3805 if (!ret)
0b32f4bb 3806 continue;
0b32f4bb
JB
3807
3808 prev_eb = eb;
3809 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3810 if (!ret) {
3811 free_extent_buffer(eb);
3812 continue;
3813 }
3814
3815 ret = write_one_eb(eb, fs_info, wbc, &epd);
3816 if (ret) {
3817 done = 1;
3818 free_extent_buffer(eb);
3819 break;
3820 }
3821 free_extent_buffer(eb);
3822
3823 /*
3824 * the filesystem may choose to bump up nr_to_write.
3825 * We have to make sure to honor the new nr_to_write
3826 * at any time
3827 */
3828 nr_to_write_done = wbc->nr_to_write <= 0;
3829 }
3830 pagevec_release(&pvec);
3831 cond_resched();
3832 }
3833 if (!scanned && !done) {
3834 /*
3835 * We hit the last page and there is more work to be done: wrap
3836 * back to the start of the file
3837 */
3838 scanned = 1;
3839 index = 0;
3840 goto retry;
3841 }
3842 flush_write_bio(&epd);
3843 return ret;
3844}
3845
d1310b2e 3846/**
4bef0848 3847 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3848 * @mapping: address space structure to write
3849 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3850 * @data: data passed to __extent_writepage function
d1310b2e
CM
3851 *
3852 * If a page is already under I/O, write_cache_pages() skips it, even
3853 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3854 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3855 * and msync() need to guarantee that all the data which was dirty at the time
3856 * the call was made get new I/O started against them. If wbc->sync_mode is
3857 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3858 * existing IO to complete.
3859 */
4242b64a 3860static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3861 struct writeback_control *wbc,
aab6e9ed 3862 struct extent_page_data *epd)
d1310b2e 3863{
7fd1a3f7 3864 struct inode *inode = mapping->host;
d1310b2e
CM
3865 int ret = 0;
3866 int done = 0;
f85d7d6c 3867 int nr_to_write_done = 0;
d1310b2e
CM
3868 struct pagevec pvec;
3869 int nr_pages;
3870 pgoff_t index;
3871 pgoff_t end; /* Inclusive */
a9132667
LB
3872 pgoff_t done_index;
3873 int range_whole = 0;
d1310b2e 3874 int scanned = 0;
10bbd235 3875 xa_mark_t tag;
d1310b2e 3876
7fd1a3f7
JB
3877 /*
3878 * We have to hold onto the inode so that ordered extents can do their
3879 * work when the IO finishes. The alternative to this is failing to add
3880 * an ordered extent if the igrab() fails there and that is a huge pain
3881 * to deal with, so instead just hold onto the inode throughout the
3882 * writepages operation. If it fails here we are freeing up the inode
3883 * anyway and we'd rather not waste our time writing out stuff that is
3884 * going to be truncated anyway.
3885 */
3886 if (!igrab(inode))
3887 return 0;
3888
86679820 3889 pagevec_init(&pvec);
d1310b2e
CM
3890 if (wbc->range_cyclic) {
3891 index = mapping->writeback_index; /* Start from prev offset */
3892 end = -1;
3893 } else {
09cbfeaf
KS
3894 index = wbc->range_start >> PAGE_SHIFT;
3895 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3896 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3897 range_whole = 1;
d1310b2e
CM
3898 scanned = 1;
3899 }
3cd24c69
EL
3900
3901 /*
3902 * We do the tagged writepage as long as the snapshot flush bit is set
3903 * and we are the first one who do the filemap_flush() on this inode.
3904 *
3905 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
3906 * not race in and drop the bit.
3907 */
3908 if (range_whole && wbc->nr_to_write == LONG_MAX &&
3909 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
3910 &BTRFS_I(inode)->runtime_flags))
3911 wbc->tagged_writepages = 1;
3912
3913 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
3914 tag = PAGECACHE_TAG_TOWRITE;
3915 else
3916 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3917retry:
3cd24c69 3918 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 3919 tag_pages_for_writeback(mapping, index, end);
a9132667 3920 done_index = index;
f85d7d6c 3921 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3922 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3923 &index, end, tag))) {
d1310b2e
CM
3924 unsigned i;
3925
3926 scanned = 1;
3927 for (i = 0; i < nr_pages; i++) {
3928 struct page *page = pvec.pages[i];
3929
a9132667 3930 done_index = page->index;
d1310b2e 3931 /*
b93b0163
MW
3932 * At this point we hold neither the i_pages lock nor
3933 * the page lock: the page may be truncated or
3934 * invalidated (changing page->mapping to NULL),
3935 * or even swizzled back from swapper_space to
3936 * tmpfs file mapping
d1310b2e 3937 */
c8f2f24b 3938 if (!trylock_page(page)) {
aab6e9ed 3939 flush_write_bio(epd);
c8f2f24b 3940 lock_page(page);
01d658f2 3941 }
d1310b2e
CM
3942
3943 if (unlikely(page->mapping != mapping)) {
3944 unlock_page(page);
3945 continue;
3946 }
3947
d2c3f4f6 3948 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3949 if (PageWriteback(page))
aab6e9ed 3950 flush_write_bio(epd);
d1310b2e 3951 wait_on_page_writeback(page);
d2c3f4f6 3952 }
d1310b2e
CM
3953
3954 if (PageWriteback(page) ||
3955 !clear_page_dirty_for_io(page)) {
3956 unlock_page(page);
3957 continue;
3958 }
3959
aab6e9ed 3960 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3961
3962 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3963 unlock_page(page);
3964 ret = 0;
3965 }
a9132667
LB
3966 if (ret < 0) {
3967 /*
3968 * done_index is set past this page,
3969 * so media errors will not choke
3970 * background writeout for the entire
3971 * file. This has consequences for
3972 * range_cyclic semantics (ie. it may
3973 * not be suitable for data integrity
3974 * writeout).
3975 */
3976 done_index = page->index + 1;
3977 done = 1;
3978 break;
3979 }
f85d7d6c
CM
3980
3981 /*
3982 * the filesystem may choose to bump up nr_to_write.
3983 * We have to make sure to honor the new nr_to_write
3984 * at any time
3985 */
3986 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3987 }
3988 pagevec_release(&pvec);
3989 cond_resched();
3990 }
894b36e3 3991 if (!scanned && !done) {
d1310b2e
CM
3992 /*
3993 * We hit the last page and there is more work to be done: wrap
3994 * back to the start of the file
3995 */
3996 scanned = 1;
3997 index = 0;
3998 goto retry;
3999 }
a9132667
LB
4000
4001 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4002 mapping->writeback_index = done_index;
4003
7fd1a3f7 4004 btrfs_add_delayed_iput(inode);
894b36e3 4005 return ret;
d1310b2e 4006}
d1310b2e 4007
aab6e9ed 4008static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4009{
d2c3f4f6 4010 if (epd->bio) {
355808c2
JM
4011 int ret;
4012
18fdc679 4013 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4014 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4015 epd->bio = NULL;
4016 }
4017}
4018
0a9b0e53 4019int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4020{
4021 int ret;
d1310b2e
CM
4022 struct extent_page_data epd = {
4023 .bio = NULL,
0a9b0e53 4024 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4025 .extent_locked = 0,
ffbd517d 4026 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4027 };
d1310b2e 4028
d1310b2e
CM
4029 ret = __extent_writepage(page, wbc, &epd);
4030
e2932ee0 4031 flush_write_bio(&epd);
d1310b2e
CM
4032 return ret;
4033}
d1310b2e 4034
5e3ee236 4035int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4036 int mode)
4037{
4038 int ret = 0;
4039 struct address_space *mapping = inode->i_mapping;
5e3ee236 4040 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4041 struct page *page;
09cbfeaf
KS
4042 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4043 PAGE_SHIFT;
771ed689
CM
4044
4045 struct extent_page_data epd = {
4046 .bio = NULL,
4047 .tree = tree,
771ed689 4048 .extent_locked = 1,
ffbd517d 4049 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4050 };
4051 struct writeback_control wbc_writepages = {
771ed689 4052 .sync_mode = mode,
771ed689
CM
4053 .nr_to_write = nr_pages * 2,
4054 .range_start = start,
4055 .range_end = end + 1,
4056 };
4057
d397712b 4058 while (start <= end) {
09cbfeaf 4059 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4060 if (clear_page_dirty_for_io(page))
4061 ret = __extent_writepage(page, &wbc_writepages, &epd);
4062 else {
7087a9d8 4063 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4064 start + PAGE_SIZE - 1, 1);
771ed689
CM
4065 unlock_page(page);
4066 }
09cbfeaf
KS
4067 put_page(page);
4068 start += PAGE_SIZE;
771ed689
CM
4069 }
4070
e2932ee0 4071 flush_write_bio(&epd);
771ed689
CM
4072 return ret;
4073}
d1310b2e 4074
8ae225a8 4075int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4076 struct writeback_control *wbc)
4077{
4078 int ret = 0;
4079 struct extent_page_data epd = {
4080 .bio = NULL,
8ae225a8 4081 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4082 .extent_locked = 0,
ffbd517d 4083 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4084 };
4085
935db853 4086 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4087 flush_write_bio(&epd);
d1310b2e
CM
4088 return ret;
4089}
d1310b2e 4090
2a3ff0ad
NB
4091int extent_readpages(struct address_space *mapping, struct list_head *pages,
4092 unsigned nr_pages)
d1310b2e
CM
4093{
4094 struct bio *bio = NULL;
c8b97818 4095 unsigned long bio_flags = 0;
67c9684f 4096 struct page *pagepool[16];
125bac01 4097 struct extent_map *em_cached = NULL;
2a3ff0ad 4098 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4099 int nr = 0;
808f80b4 4100 u64 prev_em_start = (u64)-1;
d1310b2e 4101
61ed3a14
NB
4102 while (!list_empty(pages)) {
4103 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4104 struct page *page = lru_to_page(pages);
d1310b2e 4105
61ed3a14
NB
4106 prefetchw(&page->flags);
4107 list_del(&page->lru);
4108 if (add_to_page_cache_lru(page, mapping, page->index,
4109 readahead_gfp_mask(mapping))) {
4110 put_page(page);
4111 continue;
4112 }
4113
4114 pagepool[nr++] = page;
d1310b2e 4115 }
67c9684f 4116
e4d17ef5 4117 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
61ed3a14 4118 &bio_flags, &prev_em_start);
d1310b2e 4119 }
67c9684f 4120
125bac01
MX
4121 if (em_cached)
4122 free_extent_map(em_cached);
4123
d1310b2e 4124 if (bio)
1f7ad75b 4125 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4126 return 0;
4127}
d1310b2e
CM
4128
4129/*
4130 * basic invalidatepage code, this waits on any locked or writeback
4131 * ranges corresponding to the page, and then deletes any extent state
4132 * records from the tree
4133 */
4134int extent_invalidatepage(struct extent_io_tree *tree,
4135 struct page *page, unsigned long offset)
4136{
2ac55d41 4137 struct extent_state *cached_state = NULL;
4eee4fa4 4138 u64 start = page_offset(page);
09cbfeaf 4139 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4140 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4141
fda2832f 4142 start += ALIGN(offset, blocksize);
d1310b2e
CM
4143 if (start > end)
4144 return 0;
4145
ff13db41 4146 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4147 wait_on_page_writeback(page);
d1310b2e 4148 clear_extent_bit(tree, start, end,
32c00aff
JB
4149 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4150 EXTENT_DO_ACCOUNTING,
ae0f1625 4151 1, 1, &cached_state);
d1310b2e
CM
4152 return 0;
4153}
d1310b2e 4154
7b13b7b1
CM
4155/*
4156 * a helper for releasepage, this tests for areas of the page that
4157 * are locked or under IO and drops the related state bits if it is safe
4158 * to drop the page.
4159 */
29c68b2d 4160static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4161 struct page *page, gfp_t mask)
7b13b7b1 4162{
4eee4fa4 4163 u64 start = page_offset(page);
09cbfeaf 4164 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4165 int ret = 1;
4166
211f90e6 4167 if (test_range_bit(tree, start, end,
8b62b72b 4168 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4169 ret = 0;
4170 else {
11ef160f
CM
4171 /*
4172 * at this point we can safely clear everything except the
4173 * locked bit and the nodatasum bit
4174 */
66b0c887 4175 ret = __clear_extent_bit(tree, start, end,
11ef160f 4176 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4177 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4178
4179 /* if clear_extent_bit failed for enomem reasons,
4180 * we can't allow the release to continue.
4181 */
4182 if (ret < 0)
4183 ret = 0;
4184 else
4185 ret = 1;
7b13b7b1
CM
4186 }
4187 return ret;
4188}
7b13b7b1 4189
d1310b2e
CM
4190/*
4191 * a helper for releasepage. As long as there are no locked extents
4192 * in the range corresponding to the page, both state records and extent
4193 * map records are removed
4194 */
477a30ba 4195int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4196{
4197 struct extent_map *em;
4eee4fa4 4198 u64 start = page_offset(page);
09cbfeaf 4199 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4200 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4201 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4202 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4203
d0164adc 4204 if (gfpflags_allow_blocking(mask) &&
ee22184b 4205 page->mapping->host->i_size > SZ_16M) {
39b5637f 4206 u64 len;
70dec807 4207 while (start <= end) {
39b5637f 4208 len = end - start + 1;
890871be 4209 write_lock(&map->lock);
39b5637f 4210 em = lookup_extent_mapping(map, start, len);
285190d9 4211 if (!em) {
890871be 4212 write_unlock(&map->lock);
70dec807
CM
4213 break;
4214 }
7f3c74fb
CM
4215 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4216 em->start != start) {
890871be 4217 write_unlock(&map->lock);
70dec807
CM
4218 free_extent_map(em);
4219 break;
4220 }
4221 if (!test_range_bit(tree, em->start,
4222 extent_map_end(em) - 1,
8b62b72b 4223 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4224 0, NULL)) {
bd3599a0
FM
4225 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4226 &btrfs_inode->runtime_flags);
70dec807
CM
4227 remove_extent_mapping(map, em);
4228 /* once for the rb tree */
4229 free_extent_map(em);
4230 }
4231 start = extent_map_end(em);
890871be 4232 write_unlock(&map->lock);
70dec807
CM
4233
4234 /* once for us */
d1310b2e
CM
4235 free_extent_map(em);
4236 }
d1310b2e 4237 }
29c68b2d 4238 return try_release_extent_state(tree, page, mask);
d1310b2e 4239}
d1310b2e 4240
ec29ed5b
CM
4241/*
4242 * helper function for fiemap, which doesn't want to see any holes.
4243 * This maps until we find something past 'last'
4244 */
4245static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4246 u64 offset, u64 last)
ec29ed5b 4247{
da17066c 4248 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4249 struct extent_map *em;
4250 u64 len;
4251
4252 if (offset >= last)
4253 return NULL;
4254
67871254 4255 while (1) {
ec29ed5b
CM
4256 len = last - offset;
4257 if (len == 0)
4258 break;
fda2832f 4259 len = ALIGN(len, sectorsize);
4ab47a8d 4260 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4261 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4262 return em;
4263
4264 /* if this isn't a hole return it */
4a2d25cd 4265 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4266 return em;
ec29ed5b
CM
4267
4268 /* this is a hole, advance to the next extent */
4269 offset = extent_map_end(em);
4270 free_extent_map(em);
4271 if (offset >= last)
4272 break;
4273 }
4274 return NULL;
4275}
4276
4751832d
QW
4277/*
4278 * To cache previous fiemap extent
4279 *
4280 * Will be used for merging fiemap extent
4281 */
4282struct fiemap_cache {
4283 u64 offset;
4284 u64 phys;
4285 u64 len;
4286 u32 flags;
4287 bool cached;
4288};
4289
4290/*
4291 * Helper to submit fiemap extent.
4292 *
4293 * Will try to merge current fiemap extent specified by @offset, @phys,
4294 * @len and @flags with cached one.
4295 * And only when we fails to merge, cached one will be submitted as
4296 * fiemap extent.
4297 *
4298 * Return value is the same as fiemap_fill_next_extent().
4299 */
4300static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4301 struct fiemap_cache *cache,
4302 u64 offset, u64 phys, u64 len, u32 flags)
4303{
4304 int ret = 0;
4305
4306 if (!cache->cached)
4307 goto assign;
4308
4309 /*
4310 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4311 * fiemap extent won't overlap with cached one.
4751832d
QW
4312 * Not recoverable.
4313 *
4314 * NOTE: Physical address can overlap, due to compression
4315 */
4316 if (cache->offset + cache->len > offset) {
4317 WARN_ON(1);
4318 return -EINVAL;
4319 }
4320
4321 /*
4322 * Only merges fiemap extents if
4323 * 1) Their logical addresses are continuous
4324 *
4325 * 2) Their physical addresses are continuous
4326 * So truly compressed (physical size smaller than logical size)
4327 * extents won't get merged with each other
4328 *
4329 * 3) Share same flags except FIEMAP_EXTENT_LAST
4330 * So regular extent won't get merged with prealloc extent
4331 */
4332 if (cache->offset + cache->len == offset &&
4333 cache->phys + cache->len == phys &&
4334 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4335 (flags & ~FIEMAP_EXTENT_LAST)) {
4336 cache->len += len;
4337 cache->flags |= flags;
4338 goto try_submit_last;
4339 }
4340
4341 /* Not mergeable, need to submit cached one */
4342 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4343 cache->len, cache->flags);
4344 cache->cached = false;
4345 if (ret)
4346 return ret;
4347assign:
4348 cache->cached = true;
4349 cache->offset = offset;
4350 cache->phys = phys;
4351 cache->len = len;
4352 cache->flags = flags;
4353try_submit_last:
4354 if (cache->flags & FIEMAP_EXTENT_LAST) {
4355 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4356 cache->phys, cache->len, cache->flags);
4357 cache->cached = false;
4358 }
4359 return ret;
4360}
4361
4362/*
848c23b7 4363 * Emit last fiemap cache
4751832d 4364 *
848c23b7
QW
4365 * The last fiemap cache may still be cached in the following case:
4366 * 0 4k 8k
4367 * |<- Fiemap range ->|
4368 * |<------------ First extent ----------->|
4369 *
4370 * In this case, the first extent range will be cached but not emitted.
4371 * So we must emit it before ending extent_fiemap().
4751832d 4372 */
848c23b7
QW
4373static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4374 struct fiemap_extent_info *fieinfo,
4375 struct fiemap_cache *cache)
4751832d
QW
4376{
4377 int ret;
4378
4379 if (!cache->cached)
4380 return 0;
4381
4751832d
QW
4382 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4383 cache->len, cache->flags);
4384 cache->cached = false;
4385 if (ret > 0)
4386 ret = 0;
4387 return ret;
4388}
4389
1506fcc8 4390int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4391 __u64 start, __u64 len)
1506fcc8 4392{
975f84fe 4393 int ret = 0;
1506fcc8
YS
4394 u64 off = start;
4395 u64 max = start + len;
4396 u32 flags = 0;
975f84fe
JB
4397 u32 found_type;
4398 u64 last;
ec29ed5b 4399 u64 last_for_get_extent = 0;
1506fcc8 4400 u64 disko = 0;
ec29ed5b 4401 u64 isize = i_size_read(inode);
975f84fe 4402 struct btrfs_key found_key;
1506fcc8 4403 struct extent_map *em = NULL;
2ac55d41 4404 struct extent_state *cached_state = NULL;
975f84fe 4405 struct btrfs_path *path;
dc046b10 4406 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4407 struct fiemap_cache cache = { 0 };
1506fcc8 4408 int end = 0;
ec29ed5b
CM
4409 u64 em_start = 0;
4410 u64 em_len = 0;
4411 u64 em_end = 0;
1506fcc8
YS
4412
4413 if (len == 0)
4414 return -EINVAL;
4415
975f84fe
JB
4416 path = btrfs_alloc_path();
4417 if (!path)
4418 return -ENOMEM;
4419 path->leave_spinning = 1;
4420
da17066c
JM
4421 start = round_down(start, btrfs_inode_sectorsize(inode));
4422 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4423
ec29ed5b
CM
4424 /*
4425 * lookup the last file extent. We're not using i_size here
4426 * because there might be preallocation past i_size
4427 */
f85b7379
DS
4428 ret = btrfs_lookup_file_extent(NULL, root, path,
4429 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4430 if (ret < 0) {
4431 btrfs_free_path(path);
4432 return ret;
2d324f59
LB
4433 } else {
4434 WARN_ON(!ret);
4435 if (ret == 1)
4436 ret = 0;
975f84fe 4437 }
2d324f59 4438
975f84fe 4439 path->slots[0]--;
975f84fe 4440 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4441 found_type = found_key.type;
975f84fe 4442
ec29ed5b 4443 /* No extents, but there might be delalloc bits */
4a0cc7ca 4444 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4445 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4446 /* have to trust i_size as the end */
4447 last = (u64)-1;
4448 last_for_get_extent = isize;
4449 } else {
4450 /*
4451 * remember the start of the last extent. There are a
4452 * bunch of different factors that go into the length of the
4453 * extent, so its much less complex to remember where it started
4454 */
4455 last = found_key.offset;
4456 last_for_get_extent = last + 1;
975f84fe 4457 }
fe09e16c 4458 btrfs_release_path(path);
975f84fe 4459
ec29ed5b
CM
4460 /*
4461 * we might have some extents allocated but more delalloc past those
4462 * extents. so, we trust isize unless the start of the last extent is
4463 * beyond isize
4464 */
4465 if (last < isize) {
4466 last = (u64)-1;
4467 last_for_get_extent = isize;
4468 }
4469
ff13db41 4470 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4471 &cached_state);
ec29ed5b 4472
e3350e16 4473 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4474 if (!em)
4475 goto out;
4476 if (IS_ERR(em)) {
4477 ret = PTR_ERR(em);
4478 goto out;
4479 }
975f84fe 4480
1506fcc8 4481 while (!end) {
b76bb701 4482 u64 offset_in_extent = 0;
ea8efc74
CM
4483
4484 /* break if the extent we found is outside the range */
4485 if (em->start >= max || extent_map_end(em) < off)
4486 break;
4487
4488 /*
4489 * get_extent may return an extent that starts before our
4490 * requested range. We have to make sure the ranges
4491 * we return to fiemap always move forward and don't
4492 * overlap, so adjust the offsets here
4493 */
4494 em_start = max(em->start, off);
1506fcc8 4495
ea8efc74
CM
4496 /*
4497 * record the offset from the start of the extent
b76bb701
JB
4498 * for adjusting the disk offset below. Only do this if the
4499 * extent isn't compressed since our in ram offset may be past
4500 * what we have actually allocated on disk.
ea8efc74 4501 */
b76bb701
JB
4502 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4503 offset_in_extent = em_start - em->start;
ec29ed5b 4504 em_end = extent_map_end(em);
ea8efc74 4505 em_len = em_end - em_start;
1506fcc8 4506 flags = 0;
f0986318
FM
4507 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4508 disko = em->block_start + offset_in_extent;
4509 else
4510 disko = 0;
1506fcc8 4511
ea8efc74
CM
4512 /*
4513 * bump off for our next call to get_extent
4514 */
4515 off = extent_map_end(em);
4516 if (off >= max)
4517 end = 1;
4518
93dbfad7 4519 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4520 end = 1;
4521 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4522 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4523 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4524 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4525 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4526 flags |= (FIEMAP_EXTENT_DELALLOC |
4527 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4528 } else if (fieinfo->fi_extents_max) {
4529 u64 bytenr = em->block_start -
4530 (em->start - em->orig_start);
fe09e16c 4531
fe09e16c
LB
4532 /*
4533 * As btrfs supports shared space, this information
4534 * can be exported to userspace tools via
dc046b10
JB
4535 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4536 * then we're just getting a count and we can skip the
4537 * lookup stuff.
fe09e16c 4538 */
bb739cf0
EN
4539 ret = btrfs_check_shared(root,
4540 btrfs_ino(BTRFS_I(inode)),
4541 bytenr);
dc046b10 4542 if (ret < 0)
fe09e16c 4543 goto out_free;
dc046b10 4544 if (ret)
fe09e16c 4545 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4546 ret = 0;
1506fcc8
YS
4547 }
4548 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4549 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4550 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4551 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4552
1506fcc8
YS
4553 free_extent_map(em);
4554 em = NULL;
ec29ed5b
CM
4555 if ((em_start >= last) || em_len == (u64)-1 ||
4556 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4557 flags |= FIEMAP_EXTENT_LAST;
4558 end = 1;
4559 }
4560
ec29ed5b 4561 /* now scan forward to see if this is really the last extent. */
e3350e16 4562 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4563 if (IS_ERR(em)) {
4564 ret = PTR_ERR(em);
4565 goto out;
4566 }
4567 if (!em) {
975f84fe
JB
4568 flags |= FIEMAP_EXTENT_LAST;
4569 end = 1;
4570 }
4751832d
QW
4571 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4572 em_len, flags);
26e726af
CS
4573 if (ret) {
4574 if (ret == 1)
4575 ret = 0;
ec29ed5b 4576 goto out_free;
26e726af 4577 }
1506fcc8
YS
4578 }
4579out_free:
4751832d 4580 if (!ret)
848c23b7 4581 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4582 free_extent_map(em);
4583out:
fe09e16c 4584 btrfs_free_path(path);
a52f4cd2 4585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4586 &cached_state);
1506fcc8
YS
4587 return ret;
4588}
4589
727011e0
CM
4590static void __free_extent_buffer(struct extent_buffer *eb)
4591{
6d49ba1b 4592 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4593 kmem_cache_free(extent_buffer_cache, eb);
4594}
4595
a26e8c9f 4596int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4597{
4598 return (atomic_read(&eb->io_pages) ||
4599 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4600 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4601}
4602
4603/*
55ac0139 4604 * Release all pages attached to the extent buffer.
db7f3436 4605 */
55ac0139 4606static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4607{
d64766fd
NB
4608 int i;
4609 int num_pages;
b0132a3b 4610 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4611
4612 BUG_ON(extent_buffer_under_io(eb));
4613
d64766fd
NB
4614 num_pages = num_extent_pages(eb);
4615 for (i = 0; i < num_pages; i++) {
4616 struct page *page = eb->pages[i];
db7f3436 4617
5d2361db
FL
4618 if (!page)
4619 continue;
4620 if (mapped)
db7f3436 4621 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4622 /*
4623 * We do this since we'll remove the pages after we've
4624 * removed the eb from the radix tree, so we could race
4625 * and have this page now attached to the new eb. So
4626 * only clear page_private if it's still connected to
4627 * this eb.
4628 */
4629 if (PagePrivate(page) &&
4630 page->private == (unsigned long)eb) {
4631 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4632 BUG_ON(PageDirty(page));
4633 BUG_ON(PageWriteback(page));
db7f3436 4634 /*
5d2361db
FL
4635 * We need to make sure we haven't be attached
4636 * to a new eb.
db7f3436 4637 */
5d2361db
FL
4638 ClearPagePrivate(page);
4639 set_page_private(page, 0);
4640 /* One for the page private */
09cbfeaf 4641 put_page(page);
db7f3436 4642 }
5d2361db
FL
4643
4644 if (mapped)
4645 spin_unlock(&page->mapping->private_lock);
4646
01327610 4647 /* One for when we allocated the page */
09cbfeaf 4648 put_page(page);
d64766fd 4649 }
db7f3436
JB
4650}
4651
4652/*
4653 * Helper for releasing the extent buffer.
4654 */
4655static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4656{
55ac0139 4657 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4658 __free_extent_buffer(eb);
4659}
4660
f28491e0
JB
4661static struct extent_buffer *
4662__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4663 unsigned long len)
d1310b2e
CM
4664{
4665 struct extent_buffer *eb = NULL;
4666
d1b5c567 4667 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4668 eb->start = start;
4669 eb->len = len;
f28491e0 4670 eb->fs_info = fs_info;
815a51c7 4671 eb->bflags = 0;
bd681513
CM
4672 rwlock_init(&eb->lock);
4673 atomic_set(&eb->write_locks, 0);
4674 atomic_set(&eb->read_locks, 0);
4675 atomic_set(&eb->blocking_readers, 0);
4676 atomic_set(&eb->blocking_writers, 0);
4677 atomic_set(&eb->spinning_readers, 0);
4678 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4679 eb->lock_nested = 0;
bd681513
CM
4680 init_waitqueue_head(&eb->write_lock_wq);
4681 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4682
6d49ba1b
ES
4683 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4684
3083ee2e 4685 spin_lock_init(&eb->refs_lock);
d1310b2e 4686 atomic_set(&eb->refs, 1);
0b32f4bb 4687 atomic_set(&eb->io_pages, 0);
727011e0 4688
b8dae313
DS
4689 /*
4690 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4691 */
4692 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4693 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4694 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4695
4696 return eb;
4697}
4698
815a51c7
JS
4699struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4700{
cc5e31a4 4701 int i;
815a51c7
JS
4702 struct page *p;
4703 struct extent_buffer *new;
cc5e31a4 4704 int num_pages = num_extent_pages(src);
815a51c7 4705
3f556f78 4706 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4707 if (new == NULL)
4708 return NULL;
4709
4710 for (i = 0; i < num_pages; i++) {
9ec72677 4711 p = alloc_page(GFP_NOFS);
db7f3436
JB
4712 if (!p) {
4713 btrfs_release_extent_buffer(new);
4714 return NULL;
4715 }
815a51c7
JS
4716 attach_extent_buffer_page(new, p);
4717 WARN_ON(PageDirty(p));
4718 SetPageUptodate(p);
4719 new->pages[i] = p;
fba1acf9 4720 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4721 }
4722
815a51c7 4723 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4724 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4725
4726 return new;
4727}
4728
0f331229
OS
4729struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4730 u64 start, unsigned long len)
815a51c7
JS
4731{
4732 struct extent_buffer *eb;
cc5e31a4
DS
4733 int num_pages;
4734 int i;
815a51c7 4735
3f556f78 4736 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4737 if (!eb)
4738 return NULL;
4739
65ad0104 4740 num_pages = num_extent_pages(eb);
815a51c7 4741 for (i = 0; i < num_pages; i++) {
9ec72677 4742 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4743 if (!eb->pages[i])
4744 goto err;
4745 }
4746 set_extent_buffer_uptodate(eb);
4747 btrfs_set_header_nritems(eb, 0);
b0132a3b 4748 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4749
4750 return eb;
4751err:
84167d19
SB
4752 for (; i > 0; i--)
4753 __free_page(eb->pages[i - 1]);
815a51c7
JS
4754 __free_extent_buffer(eb);
4755 return NULL;
4756}
4757
0f331229 4758struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4759 u64 start)
0f331229 4760{
da17066c 4761 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4762}
4763
0b32f4bb
JB
4764static void check_buffer_tree_ref(struct extent_buffer *eb)
4765{
242e18c7 4766 int refs;
0b32f4bb
JB
4767 /* the ref bit is tricky. We have to make sure it is set
4768 * if we have the buffer dirty. Otherwise the
4769 * code to free a buffer can end up dropping a dirty
4770 * page
4771 *
4772 * Once the ref bit is set, it won't go away while the
4773 * buffer is dirty or in writeback, and it also won't
4774 * go away while we have the reference count on the
4775 * eb bumped.
4776 *
4777 * We can't just set the ref bit without bumping the
4778 * ref on the eb because free_extent_buffer might
4779 * see the ref bit and try to clear it. If this happens
4780 * free_extent_buffer might end up dropping our original
4781 * ref by mistake and freeing the page before we are able
4782 * to add one more ref.
4783 *
4784 * So bump the ref count first, then set the bit. If someone
4785 * beat us to it, drop the ref we added.
4786 */
242e18c7
CM
4787 refs = atomic_read(&eb->refs);
4788 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4789 return;
4790
594831c4
JB
4791 spin_lock(&eb->refs_lock);
4792 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4793 atomic_inc(&eb->refs);
594831c4 4794 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4795}
4796
2457aec6
MG
4797static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4798 struct page *accessed)
5df4235e 4799{
cc5e31a4 4800 int num_pages, i;
5df4235e 4801
0b32f4bb
JB
4802 check_buffer_tree_ref(eb);
4803
65ad0104 4804 num_pages = num_extent_pages(eb);
5df4235e 4805 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4806 struct page *p = eb->pages[i];
4807
2457aec6
MG
4808 if (p != accessed)
4809 mark_page_accessed(p);
5df4235e
JB
4810 }
4811}
4812
f28491e0
JB
4813struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4814 u64 start)
452c75c3
CS
4815{
4816 struct extent_buffer *eb;
4817
4818 rcu_read_lock();
f28491e0 4819 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4820 start >> PAGE_SHIFT);
452c75c3
CS
4821 if (eb && atomic_inc_not_zero(&eb->refs)) {
4822 rcu_read_unlock();
062c19e9
FM
4823 /*
4824 * Lock our eb's refs_lock to avoid races with
4825 * free_extent_buffer. When we get our eb it might be flagged
4826 * with EXTENT_BUFFER_STALE and another task running
4827 * free_extent_buffer might have seen that flag set,
4828 * eb->refs == 2, that the buffer isn't under IO (dirty and
4829 * writeback flags not set) and it's still in the tree (flag
4830 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4831 * of decrementing the extent buffer's reference count twice.
4832 * So here we could race and increment the eb's reference count,
4833 * clear its stale flag, mark it as dirty and drop our reference
4834 * before the other task finishes executing free_extent_buffer,
4835 * which would later result in an attempt to free an extent
4836 * buffer that is dirty.
4837 */
4838 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4839 spin_lock(&eb->refs_lock);
4840 spin_unlock(&eb->refs_lock);
4841 }
2457aec6 4842 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4843 return eb;
4844 }
4845 rcu_read_unlock();
4846
4847 return NULL;
4848}
4849
faa2dbf0
JB
4850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4852 u64 start)
faa2dbf0
JB
4853{
4854 struct extent_buffer *eb, *exists = NULL;
4855 int ret;
4856
4857 eb = find_extent_buffer(fs_info, start);
4858 if (eb)
4859 return eb;
da17066c 4860 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4861 if (!eb)
4862 return NULL;
4863 eb->fs_info = fs_info;
4864again:
e1860a77 4865 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4866 if (ret)
4867 goto free_eb;
4868 spin_lock(&fs_info->buffer_lock);
4869 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4870 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4871 spin_unlock(&fs_info->buffer_lock);
4872 radix_tree_preload_end();
4873 if (ret == -EEXIST) {
4874 exists = find_extent_buffer(fs_info, start);
4875 if (exists)
4876 goto free_eb;
4877 else
4878 goto again;
4879 }
4880 check_buffer_tree_ref(eb);
4881 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4882
faa2dbf0
JB
4883 return eb;
4884free_eb:
4885 btrfs_release_extent_buffer(eb);
4886 return exists;
4887}
4888#endif
4889
f28491e0 4890struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4891 u64 start)
d1310b2e 4892{
da17066c 4893 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4894 int num_pages;
4895 int i;
09cbfeaf 4896 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4897 struct extent_buffer *eb;
6af118ce 4898 struct extent_buffer *exists = NULL;
d1310b2e 4899 struct page *p;
f28491e0 4900 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4901 int uptodate = 1;
19fe0a8b 4902 int ret;
d1310b2e 4903
da17066c 4904 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4905 btrfs_err(fs_info, "bad tree block start %llu", start);
4906 return ERR_PTR(-EINVAL);
4907 }
4908
f28491e0 4909 eb = find_extent_buffer(fs_info, start);
452c75c3 4910 if (eb)
6af118ce 4911 return eb;
6af118ce 4912
23d79d81 4913 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4914 if (!eb)
c871b0f2 4915 return ERR_PTR(-ENOMEM);
d1310b2e 4916
65ad0104 4917 num_pages = num_extent_pages(eb);
727011e0 4918 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4919 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4920 if (!p) {
4921 exists = ERR_PTR(-ENOMEM);
6af118ce 4922 goto free_eb;
c871b0f2 4923 }
4f2de97a
JB
4924
4925 spin_lock(&mapping->private_lock);
4926 if (PagePrivate(p)) {
4927 /*
4928 * We could have already allocated an eb for this page
4929 * and attached one so lets see if we can get a ref on
4930 * the existing eb, and if we can we know it's good and
4931 * we can just return that one, else we know we can just
4932 * overwrite page->private.
4933 */
4934 exists = (struct extent_buffer *)p->private;
4935 if (atomic_inc_not_zero(&exists->refs)) {
4936 spin_unlock(&mapping->private_lock);
4937 unlock_page(p);
09cbfeaf 4938 put_page(p);
2457aec6 4939 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4940 goto free_eb;
4941 }
5ca64f45 4942 exists = NULL;
4f2de97a 4943
0b32f4bb 4944 /*
4f2de97a
JB
4945 * Do this so attach doesn't complain and we need to
4946 * drop the ref the old guy had.
4947 */
4948 ClearPagePrivate(p);
0b32f4bb 4949 WARN_ON(PageDirty(p));
09cbfeaf 4950 put_page(p);
d1310b2e 4951 }
4f2de97a
JB
4952 attach_extent_buffer_page(eb, p);
4953 spin_unlock(&mapping->private_lock);
0b32f4bb 4954 WARN_ON(PageDirty(p));
727011e0 4955 eb->pages[i] = p;
d1310b2e
CM
4956 if (!PageUptodate(p))
4957 uptodate = 0;
eb14ab8e
CM
4958
4959 /*
b16d011e
NB
4960 * We can't unlock the pages just yet since the extent buffer
4961 * hasn't been properly inserted in the radix tree, this
4962 * opens a race with btree_releasepage which can free a page
4963 * while we are still filling in all pages for the buffer and
4964 * we could crash.
eb14ab8e 4965 */
d1310b2e
CM
4966 }
4967 if (uptodate)
b4ce94de 4968 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4969again:
e1860a77 4970 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4971 if (ret) {
4972 exists = ERR_PTR(ret);
19fe0a8b 4973 goto free_eb;
c871b0f2 4974 }
19fe0a8b 4975
f28491e0
JB
4976 spin_lock(&fs_info->buffer_lock);
4977 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4978 start >> PAGE_SHIFT, eb);
f28491e0 4979 spin_unlock(&fs_info->buffer_lock);
452c75c3 4980 radix_tree_preload_end();
19fe0a8b 4981 if (ret == -EEXIST) {
f28491e0 4982 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4983 if (exists)
4984 goto free_eb;
4985 else
115391d2 4986 goto again;
6af118ce 4987 }
6af118ce 4988 /* add one reference for the tree */
0b32f4bb 4989 check_buffer_tree_ref(eb);
34b41ace 4990 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4991
4992 /*
b16d011e
NB
4993 * Now it's safe to unlock the pages because any calls to
4994 * btree_releasepage will correctly detect that a page belongs to a
4995 * live buffer and won't free them prematurely.
eb14ab8e 4996 */
28187ae5
NB
4997 for (i = 0; i < num_pages; i++)
4998 unlock_page(eb->pages[i]);
d1310b2e
CM
4999 return eb;
5000
6af118ce 5001free_eb:
5ca64f45 5002 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5003 for (i = 0; i < num_pages; i++) {
5004 if (eb->pages[i])
5005 unlock_page(eb->pages[i]);
5006 }
eb14ab8e 5007
897ca6e9 5008 btrfs_release_extent_buffer(eb);
6af118ce 5009 return exists;
d1310b2e 5010}
d1310b2e 5011
3083ee2e
JB
5012static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5013{
5014 struct extent_buffer *eb =
5015 container_of(head, struct extent_buffer, rcu_head);
5016
5017 __free_extent_buffer(eb);
5018}
5019
f7a52a40 5020static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5021{
07e21c4d
NB
5022 lockdep_assert_held(&eb->refs_lock);
5023
3083ee2e
JB
5024 WARN_ON(atomic_read(&eb->refs) == 0);
5025 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5026 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5027 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5028
815a51c7 5029 spin_unlock(&eb->refs_lock);
3083ee2e 5030
f28491e0
JB
5031 spin_lock(&fs_info->buffer_lock);
5032 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5033 eb->start >> PAGE_SHIFT);
f28491e0 5034 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5035 } else {
5036 spin_unlock(&eb->refs_lock);
815a51c7 5037 }
3083ee2e
JB
5038
5039 /* Should be safe to release our pages at this point */
55ac0139 5040 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5041#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5042 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5043 __free_extent_buffer(eb);
5044 return 1;
5045 }
5046#endif
3083ee2e 5047 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5048 return 1;
3083ee2e
JB
5049 }
5050 spin_unlock(&eb->refs_lock);
e64860aa
JB
5051
5052 return 0;
3083ee2e
JB
5053}
5054
d1310b2e
CM
5055void free_extent_buffer(struct extent_buffer *eb)
5056{
242e18c7
CM
5057 int refs;
5058 int old;
d1310b2e
CM
5059 if (!eb)
5060 return;
5061
242e18c7
CM
5062 while (1) {
5063 refs = atomic_read(&eb->refs);
46cc775e
NB
5064 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5065 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5066 refs == 1))
242e18c7
CM
5067 break;
5068 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5069 if (old == refs)
5070 return;
5071 }
5072
3083ee2e
JB
5073 spin_lock(&eb->refs_lock);
5074 if (atomic_read(&eb->refs) == 2 &&
5075 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5076 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5077 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5078 atomic_dec(&eb->refs);
5079
5080 /*
5081 * I know this is terrible, but it's temporary until we stop tracking
5082 * the uptodate bits and such for the extent buffers.
5083 */
f7a52a40 5084 release_extent_buffer(eb);
3083ee2e
JB
5085}
5086
5087void free_extent_buffer_stale(struct extent_buffer *eb)
5088{
5089 if (!eb)
d1310b2e
CM
5090 return;
5091
3083ee2e
JB
5092 spin_lock(&eb->refs_lock);
5093 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5094
0b32f4bb 5095 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5096 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5097 atomic_dec(&eb->refs);
f7a52a40 5098 release_extent_buffer(eb);
d1310b2e 5099}
d1310b2e 5100
1d4284bd 5101void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5102{
cc5e31a4
DS
5103 int i;
5104 int num_pages;
d1310b2e
CM
5105 struct page *page;
5106
65ad0104 5107 num_pages = num_extent_pages(eb);
d1310b2e
CM
5108
5109 for (i = 0; i < num_pages; i++) {
fb85fc9a 5110 page = eb->pages[i];
b9473439 5111 if (!PageDirty(page))
d2c3f4f6
CM
5112 continue;
5113
a61e6f29 5114 lock_page(page);
eb14ab8e
CM
5115 WARN_ON(!PagePrivate(page));
5116
d1310b2e 5117 clear_page_dirty_for_io(page);
b93b0163 5118 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5119 if (!PageDirty(page))
5120 __xa_clear_mark(&page->mapping->i_pages,
5121 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5122 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5123 ClearPageError(page);
a61e6f29 5124 unlock_page(page);
d1310b2e 5125 }
0b32f4bb 5126 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5127}
d1310b2e 5128
abb57ef3 5129bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5130{
cc5e31a4
DS
5131 int i;
5132 int num_pages;
abb57ef3 5133 bool was_dirty;
d1310b2e 5134
0b32f4bb
JB
5135 check_buffer_tree_ref(eb);
5136
b9473439 5137 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5138
65ad0104 5139 num_pages = num_extent_pages(eb);
3083ee2e 5140 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5141 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5142
abb57ef3
LB
5143 if (!was_dirty)
5144 for (i = 0; i < num_pages; i++)
5145 set_page_dirty(eb->pages[i]);
51995c39
LB
5146
5147#ifdef CONFIG_BTRFS_DEBUG
5148 for (i = 0; i < num_pages; i++)
5149 ASSERT(PageDirty(eb->pages[i]));
5150#endif
5151
b9473439 5152 return was_dirty;
d1310b2e 5153}
d1310b2e 5154
69ba3927 5155void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5156{
cc5e31a4 5157 int i;
1259ab75 5158 struct page *page;
cc5e31a4 5159 int num_pages;
1259ab75 5160
b4ce94de 5161 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5162 num_pages = num_extent_pages(eb);
1259ab75 5163 for (i = 0; i < num_pages; i++) {
fb85fc9a 5164 page = eb->pages[i];
33958dc6
CM
5165 if (page)
5166 ClearPageUptodate(page);
1259ab75 5167 }
1259ab75
CM
5168}
5169
09c25a8c 5170void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5171{
cc5e31a4 5172 int i;
d1310b2e 5173 struct page *page;
cc5e31a4 5174 int num_pages;
d1310b2e 5175
0b32f4bb 5176 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5177 num_pages = num_extent_pages(eb);
d1310b2e 5178 for (i = 0; i < num_pages; i++) {
fb85fc9a 5179 page = eb->pages[i];
d1310b2e
CM
5180 SetPageUptodate(page);
5181 }
d1310b2e 5182}
d1310b2e 5183
d1310b2e 5184int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5185 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5186{
cc5e31a4 5187 int i;
d1310b2e
CM
5188 struct page *page;
5189 int err;
5190 int ret = 0;
ce9adaa5
CM
5191 int locked_pages = 0;
5192 int all_uptodate = 1;
cc5e31a4 5193 int num_pages;
727011e0 5194 unsigned long num_reads = 0;
a86c12c7 5195 struct bio *bio = NULL;
c8b97818 5196 unsigned long bio_flags = 0;
a86c12c7 5197
b4ce94de 5198 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5199 return 0;
5200
65ad0104 5201 num_pages = num_extent_pages(eb);
8436ea91 5202 for (i = 0; i < num_pages; i++) {
fb85fc9a 5203 page = eb->pages[i];
bb82ab88 5204 if (wait == WAIT_NONE) {
2db04966 5205 if (!trylock_page(page))
ce9adaa5 5206 goto unlock_exit;
d1310b2e
CM
5207 } else {
5208 lock_page(page);
5209 }
ce9adaa5 5210 locked_pages++;
2571e739
LB
5211 }
5212 /*
5213 * We need to firstly lock all pages to make sure that
5214 * the uptodate bit of our pages won't be affected by
5215 * clear_extent_buffer_uptodate().
5216 */
8436ea91 5217 for (i = 0; i < num_pages; i++) {
2571e739 5218 page = eb->pages[i];
727011e0
CM
5219 if (!PageUptodate(page)) {
5220 num_reads++;
ce9adaa5 5221 all_uptodate = 0;
727011e0 5222 }
ce9adaa5 5223 }
2571e739 5224
ce9adaa5 5225 if (all_uptodate) {
8436ea91 5226 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5227 goto unlock_exit;
5228 }
5229
656f30db 5230 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5231 eb->read_mirror = 0;
0b32f4bb 5232 atomic_set(&eb->io_pages, num_reads);
8436ea91 5233 for (i = 0; i < num_pages; i++) {
fb85fc9a 5234 page = eb->pages[i];
baf863b9 5235
ce9adaa5 5236 if (!PageUptodate(page)) {
baf863b9
LB
5237 if (ret) {
5238 atomic_dec(&eb->io_pages);
5239 unlock_page(page);
5240 continue;
5241 }
5242
f188591e 5243 ClearPageError(page);
a86c12c7 5244 err = __extent_read_full_page(tree, page,
6af49dbd 5245 btree_get_extent, &bio,
d4c7ca86 5246 mirror_num, &bio_flags,
1f7ad75b 5247 REQ_META);
baf863b9 5248 if (err) {
d1310b2e 5249 ret = err;
baf863b9
LB
5250 /*
5251 * We use &bio in above __extent_read_full_page,
5252 * so we ensure that if it returns error, the
5253 * current page fails to add itself to bio and
5254 * it's been unlocked.
5255 *
5256 * We must dec io_pages by ourselves.
5257 */
5258 atomic_dec(&eb->io_pages);
5259 }
d1310b2e
CM
5260 } else {
5261 unlock_page(page);
5262 }
5263 }
5264
355808c2 5265 if (bio) {
1f7ad75b 5266 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5267 if (err)
5268 return err;
355808c2 5269 }
a86c12c7 5270
bb82ab88 5271 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5272 return ret;
d397712b 5273
8436ea91 5274 for (i = 0; i < num_pages; i++) {
fb85fc9a 5275 page = eb->pages[i];
d1310b2e 5276 wait_on_page_locked(page);
d397712b 5277 if (!PageUptodate(page))
d1310b2e 5278 ret = -EIO;
d1310b2e 5279 }
d397712b 5280
d1310b2e 5281 return ret;
ce9adaa5
CM
5282
5283unlock_exit:
d397712b 5284 while (locked_pages > 0) {
ce9adaa5 5285 locked_pages--;
8436ea91
JB
5286 page = eb->pages[locked_pages];
5287 unlock_page(page);
ce9adaa5
CM
5288 }
5289 return ret;
d1310b2e 5290}
d1310b2e 5291
1cbb1f45
JM
5292void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5293 unsigned long start, unsigned long len)
d1310b2e
CM
5294{
5295 size_t cur;
5296 size_t offset;
5297 struct page *page;
5298 char *kaddr;
5299 char *dst = (char *)dstv;
7073017a 5300 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5301 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5302
f716abd5
LB
5303 if (start + len > eb->len) {
5304 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5305 eb->start, eb->len, start, len);
5306 memset(dst, 0, len);
5307 return;
5308 }
d1310b2e 5309
7073017a 5310 offset = offset_in_page(start_offset + start);
d1310b2e 5311
d397712b 5312 while (len > 0) {
fb85fc9a 5313 page = eb->pages[i];
d1310b2e 5314
09cbfeaf 5315 cur = min(len, (PAGE_SIZE - offset));
a6591715 5316 kaddr = page_address(page);
d1310b2e 5317 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5318
5319 dst += cur;
5320 len -= cur;
5321 offset = 0;
5322 i++;
5323 }
5324}
d1310b2e 5325
1cbb1f45
JM
5326int read_extent_buffer_to_user(const struct extent_buffer *eb,
5327 void __user *dstv,
5328 unsigned long start, unsigned long len)
550ac1d8
GH
5329{
5330 size_t cur;
5331 size_t offset;
5332 struct page *page;
5333 char *kaddr;
5334 char __user *dst = (char __user *)dstv;
7073017a 5335 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5336 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5337 int ret = 0;
5338
5339 WARN_ON(start > eb->len);
5340 WARN_ON(start + len > eb->start + eb->len);
5341
7073017a 5342 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5343
5344 while (len > 0) {
fb85fc9a 5345 page = eb->pages[i];
550ac1d8 5346
09cbfeaf 5347 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5348 kaddr = page_address(page);
5349 if (copy_to_user(dst, kaddr + offset, cur)) {
5350 ret = -EFAULT;
5351 break;
5352 }
5353
5354 dst += cur;
5355 len -= cur;
5356 offset = 0;
5357 i++;
5358 }
5359
5360 return ret;
5361}
5362
415b35a5
LB
5363/*
5364 * return 0 if the item is found within a page.
5365 * return 1 if the item spans two pages.
5366 * return -EINVAL otherwise.
5367 */
1cbb1f45
JM
5368int map_private_extent_buffer(const struct extent_buffer *eb,
5369 unsigned long start, unsigned long min_len,
5370 char **map, unsigned long *map_start,
5371 unsigned long *map_len)
d1310b2e 5372{
cc2c39d6 5373 size_t offset;
d1310b2e
CM
5374 char *kaddr;
5375 struct page *p;
7073017a 5376 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5377 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5378 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5379 PAGE_SHIFT;
d1310b2e 5380
f716abd5
LB
5381 if (start + min_len > eb->len) {
5382 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5383 eb->start, eb->len, start, min_len);
5384 return -EINVAL;
5385 }
5386
d1310b2e 5387 if (i != end_i)
415b35a5 5388 return 1;
d1310b2e
CM
5389
5390 if (i == 0) {
5391 offset = start_offset;
5392 *map_start = 0;
5393 } else {
5394 offset = 0;
09cbfeaf 5395 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5396 }
d397712b 5397
fb85fc9a 5398 p = eb->pages[i];
a6591715 5399 kaddr = page_address(p);
d1310b2e 5400 *map = kaddr + offset;
09cbfeaf 5401 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5402 return 0;
5403}
d1310b2e 5404
1cbb1f45
JM
5405int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5406 unsigned long start, unsigned long len)
d1310b2e
CM
5407{
5408 size_t cur;
5409 size_t offset;
5410 struct page *page;
5411 char *kaddr;
5412 char *ptr = (char *)ptrv;
7073017a 5413 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5414 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5415 int ret = 0;
5416
5417 WARN_ON(start > eb->len);
5418 WARN_ON(start + len > eb->start + eb->len);
5419
7073017a 5420 offset = offset_in_page(start_offset + start);
d1310b2e 5421
d397712b 5422 while (len > 0) {
fb85fc9a 5423 page = eb->pages[i];
d1310b2e 5424
09cbfeaf 5425 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5426
a6591715 5427 kaddr = page_address(page);
d1310b2e 5428 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5429 if (ret)
5430 break;
5431
5432 ptr += cur;
5433 len -= cur;
5434 offset = 0;
5435 i++;
5436 }
5437 return ret;
5438}
d1310b2e 5439
f157bf76
DS
5440void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5441 const void *srcv)
5442{
5443 char *kaddr;
5444
5445 WARN_ON(!PageUptodate(eb->pages[0]));
5446 kaddr = page_address(eb->pages[0]);
5447 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5448 BTRFS_FSID_SIZE);
5449}
5450
5451void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5452{
5453 char *kaddr;
5454
5455 WARN_ON(!PageUptodate(eb->pages[0]));
5456 kaddr = page_address(eb->pages[0]);
5457 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5458 BTRFS_FSID_SIZE);
5459}
5460
d1310b2e
CM
5461void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5462 unsigned long start, unsigned long len)
5463{
5464 size_t cur;
5465 size_t offset;
5466 struct page *page;
5467 char *kaddr;
5468 char *src = (char *)srcv;
7073017a 5469 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5470 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
7073017a 5475 offset = offset_in_page(start_offset + start);
d1310b2e 5476
d397712b 5477 while (len > 0) {
fb85fc9a 5478 page = eb->pages[i];
d1310b2e
CM
5479 WARN_ON(!PageUptodate(page));
5480
09cbfeaf 5481 cur = min(len, PAGE_SIZE - offset);
a6591715 5482 kaddr = page_address(page);
d1310b2e 5483 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5484
5485 src += cur;
5486 len -= cur;
5487 offset = 0;
5488 i++;
5489 }
5490}
d1310b2e 5491
b159fa28
DS
5492void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5493 unsigned long len)
d1310b2e
CM
5494{
5495 size_t cur;
5496 size_t offset;
5497 struct page *page;
5498 char *kaddr;
7073017a 5499 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5500 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5501
5502 WARN_ON(start > eb->len);
5503 WARN_ON(start + len > eb->start + eb->len);
5504
7073017a 5505 offset = offset_in_page(start_offset + start);
d1310b2e 5506
d397712b 5507 while (len > 0) {
fb85fc9a 5508 page = eb->pages[i];
d1310b2e
CM
5509 WARN_ON(!PageUptodate(page));
5510
09cbfeaf 5511 cur = min(len, PAGE_SIZE - offset);
a6591715 5512 kaddr = page_address(page);
b159fa28 5513 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5514
5515 len -= cur;
5516 offset = 0;
5517 i++;
5518 }
5519}
d1310b2e 5520
58e8012c
DS
5521void copy_extent_buffer_full(struct extent_buffer *dst,
5522 struct extent_buffer *src)
5523{
5524 int i;
cc5e31a4 5525 int num_pages;
58e8012c
DS
5526
5527 ASSERT(dst->len == src->len);
5528
65ad0104 5529 num_pages = num_extent_pages(dst);
58e8012c
DS
5530 for (i = 0; i < num_pages; i++)
5531 copy_page(page_address(dst->pages[i]),
5532 page_address(src->pages[i]));
5533}
5534
d1310b2e
CM
5535void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5536 unsigned long dst_offset, unsigned long src_offset,
5537 unsigned long len)
5538{
5539 u64 dst_len = dst->len;
5540 size_t cur;
5541 size_t offset;
5542 struct page *page;
5543 char *kaddr;
7073017a 5544 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5545 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5546
5547 WARN_ON(src->len != dst_len);
5548
7073017a 5549 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5550
d397712b 5551 while (len > 0) {
fb85fc9a 5552 page = dst->pages[i];
d1310b2e
CM
5553 WARN_ON(!PageUptodate(page));
5554
09cbfeaf 5555 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5556
a6591715 5557 kaddr = page_address(page);
d1310b2e 5558 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5559
5560 src_offset += cur;
5561 len -= cur;
5562 offset = 0;
5563 i++;
5564 }
5565}
d1310b2e 5566
3e1e8bb7
OS
5567/*
5568 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5569 * given bit number
5570 * @eb: the extent buffer
5571 * @start: offset of the bitmap item in the extent buffer
5572 * @nr: bit number
5573 * @page_index: return index of the page in the extent buffer that contains the
5574 * given bit number
5575 * @page_offset: return offset into the page given by page_index
5576 *
5577 * This helper hides the ugliness of finding the byte in an extent buffer which
5578 * contains a given bit.
5579 */
5580static inline void eb_bitmap_offset(struct extent_buffer *eb,
5581 unsigned long start, unsigned long nr,
5582 unsigned long *page_index,
5583 size_t *page_offset)
5584{
7073017a 5585 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5586 size_t byte_offset = BIT_BYTE(nr);
5587 size_t offset;
5588
5589 /*
5590 * The byte we want is the offset of the extent buffer + the offset of
5591 * the bitmap item in the extent buffer + the offset of the byte in the
5592 * bitmap item.
5593 */
5594 offset = start_offset + start + byte_offset;
5595
09cbfeaf 5596 *page_index = offset >> PAGE_SHIFT;
7073017a 5597 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5598}
5599
5600/**
5601 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5602 * @eb: the extent buffer
5603 * @start: offset of the bitmap item in the extent buffer
5604 * @nr: bit number to test
5605 */
5606int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5607 unsigned long nr)
5608{
2fe1d551 5609 u8 *kaddr;
3e1e8bb7
OS
5610 struct page *page;
5611 unsigned long i;
5612 size_t offset;
5613
5614 eb_bitmap_offset(eb, start, nr, &i, &offset);
5615 page = eb->pages[i];
5616 WARN_ON(!PageUptodate(page));
5617 kaddr = page_address(page);
5618 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5619}
5620
5621/**
5622 * extent_buffer_bitmap_set - set an area of a bitmap
5623 * @eb: the extent buffer
5624 * @start: offset of the bitmap item in the extent buffer
5625 * @pos: bit number of the first bit
5626 * @len: number of bits to set
5627 */
5628void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5629 unsigned long pos, unsigned long len)
5630{
2fe1d551 5631 u8 *kaddr;
3e1e8bb7
OS
5632 struct page *page;
5633 unsigned long i;
5634 size_t offset;
5635 const unsigned int size = pos + len;
5636 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5637 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5638
5639 eb_bitmap_offset(eb, start, pos, &i, &offset);
5640 page = eb->pages[i];
5641 WARN_ON(!PageUptodate(page));
5642 kaddr = page_address(page);
5643
5644 while (len >= bits_to_set) {
5645 kaddr[offset] |= mask_to_set;
5646 len -= bits_to_set;
5647 bits_to_set = BITS_PER_BYTE;
9c894696 5648 mask_to_set = ~0;
09cbfeaf 5649 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5650 offset = 0;
5651 page = eb->pages[++i];
5652 WARN_ON(!PageUptodate(page));
5653 kaddr = page_address(page);
5654 }
5655 }
5656 if (len) {
5657 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5658 kaddr[offset] |= mask_to_set;
5659 }
5660}
5661
5662
5663/**
5664 * extent_buffer_bitmap_clear - clear an area of a bitmap
5665 * @eb: the extent buffer
5666 * @start: offset of the bitmap item in the extent buffer
5667 * @pos: bit number of the first bit
5668 * @len: number of bits to clear
5669 */
5670void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5671 unsigned long pos, unsigned long len)
5672{
2fe1d551 5673 u8 *kaddr;
3e1e8bb7
OS
5674 struct page *page;
5675 unsigned long i;
5676 size_t offset;
5677 const unsigned int size = pos + len;
5678 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5679 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5680
5681 eb_bitmap_offset(eb, start, pos, &i, &offset);
5682 page = eb->pages[i];
5683 WARN_ON(!PageUptodate(page));
5684 kaddr = page_address(page);
5685
5686 while (len >= bits_to_clear) {
5687 kaddr[offset] &= ~mask_to_clear;
5688 len -= bits_to_clear;
5689 bits_to_clear = BITS_PER_BYTE;
9c894696 5690 mask_to_clear = ~0;
09cbfeaf 5691 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5692 offset = 0;
5693 page = eb->pages[++i];
5694 WARN_ON(!PageUptodate(page));
5695 kaddr = page_address(page);
5696 }
5697 }
5698 if (len) {
5699 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5700 kaddr[offset] &= ~mask_to_clear;
5701 }
5702}
5703
3387206f
ST
5704static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5705{
5706 unsigned long distance = (src > dst) ? src - dst : dst - src;
5707 return distance < len;
5708}
5709
d1310b2e
CM
5710static void copy_pages(struct page *dst_page, struct page *src_page,
5711 unsigned long dst_off, unsigned long src_off,
5712 unsigned long len)
5713{
a6591715 5714 char *dst_kaddr = page_address(dst_page);
d1310b2e 5715 char *src_kaddr;
727011e0 5716 int must_memmove = 0;
d1310b2e 5717
3387206f 5718 if (dst_page != src_page) {
a6591715 5719 src_kaddr = page_address(src_page);
3387206f 5720 } else {
d1310b2e 5721 src_kaddr = dst_kaddr;
727011e0
CM
5722 if (areas_overlap(src_off, dst_off, len))
5723 must_memmove = 1;
3387206f 5724 }
d1310b2e 5725
727011e0
CM
5726 if (must_memmove)
5727 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5728 else
5729 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5730}
5731
5732void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5733 unsigned long src_offset, unsigned long len)
5734{
0b246afa 5735 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5736 size_t cur;
5737 size_t dst_off_in_page;
5738 size_t src_off_in_page;
7073017a 5739 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5740 unsigned long dst_i;
5741 unsigned long src_i;
5742
5743 if (src_offset + len > dst->len) {
0b246afa 5744 btrfs_err(fs_info,
5d163e0e
JM
5745 "memmove bogus src_offset %lu move len %lu dst len %lu",
5746 src_offset, len, dst->len);
d1310b2e
CM
5747 BUG_ON(1);
5748 }
5749 if (dst_offset + len > dst->len) {
0b246afa 5750 btrfs_err(fs_info,
5d163e0e
JM
5751 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5752 dst_offset, len, dst->len);
d1310b2e
CM
5753 BUG_ON(1);
5754 }
5755
d397712b 5756 while (len > 0) {
7073017a
JT
5757 dst_off_in_page = offset_in_page(start_offset + dst_offset);
5758 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 5759
09cbfeaf
KS
5760 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5761 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5762
09cbfeaf 5763 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5764 src_off_in_page));
5765 cur = min_t(unsigned long, cur,
09cbfeaf 5766 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5767
fb85fc9a 5768 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5769 dst_off_in_page, src_off_in_page, cur);
5770
5771 src_offset += cur;
5772 dst_offset += cur;
5773 len -= cur;
5774 }
5775}
d1310b2e
CM
5776
5777void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5778 unsigned long src_offset, unsigned long len)
5779{
0b246afa 5780 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5781 size_t cur;
5782 size_t dst_off_in_page;
5783 size_t src_off_in_page;
5784 unsigned long dst_end = dst_offset + len - 1;
5785 unsigned long src_end = src_offset + len - 1;
7073017a 5786 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
5787 unsigned long dst_i;
5788 unsigned long src_i;
5789
5790 if (src_offset + len > dst->len) {
0b246afa 5791 btrfs_err(fs_info,
5d163e0e
JM
5792 "memmove bogus src_offset %lu move len %lu len %lu",
5793 src_offset, len, dst->len);
d1310b2e
CM
5794 BUG_ON(1);
5795 }
5796 if (dst_offset + len > dst->len) {
0b246afa 5797 btrfs_err(fs_info,
5d163e0e
JM
5798 "memmove bogus dst_offset %lu move len %lu len %lu",
5799 dst_offset, len, dst->len);
d1310b2e
CM
5800 BUG_ON(1);
5801 }
727011e0 5802 if (dst_offset < src_offset) {
d1310b2e
CM
5803 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5804 return;
5805 }
d397712b 5806 while (len > 0) {
09cbfeaf
KS
5807 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5808 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 5809
7073017a
JT
5810 dst_off_in_page = offset_in_page(start_offset + dst_end);
5811 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
5812
5813 cur = min_t(unsigned long, len, src_off_in_page + 1);
5814 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5815 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5816 dst_off_in_page - cur + 1,
5817 src_off_in_page - cur + 1, cur);
5818
5819 dst_end -= cur;
5820 src_end -= cur;
5821 len -= cur;
5822 }
5823}
6af118ce 5824
f7a52a40 5825int try_release_extent_buffer(struct page *page)
19fe0a8b 5826{
6af118ce 5827 struct extent_buffer *eb;
6af118ce 5828
3083ee2e 5829 /*
01327610 5830 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5831 * now.
5832 */
5833 spin_lock(&page->mapping->private_lock);
5834 if (!PagePrivate(page)) {
5835 spin_unlock(&page->mapping->private_lock);
4f2de97a 5836 return 1;
45f49bce 5837 }
6af118ce 5838
3083ee2e
JB
5839 eb = (struct extent_buffer *)page->private;
5840 BUG_ON(!eb);
19fe0a8b
MX
5841
5842 /*
3083ee2e
JB
5843 * This is a little awful but should be ok, we need to make sure that
5844 * the eb doesn't disappear out from under us while we're looking at
5845 * this page.
19fe0a8b 5846 */
3083ee2e 5847 spin_lock(&eb->refs_lock);
0b32f4bb 5848 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5849 spin_unlock(&eb->refs_lock);
5850 spin_unlock(&page->mapping->private_lock);
5851 return 0;
b9473439 5852 }
3083ee2e 5853 spin_unlock(&page->mapping->private_lock);
897ca6e9 5854
19fe0a8b 5855 /*
3083ee2e
JB
5856 * If tree ref isn't set then we know the ref on this eb is a real ref,
5857 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5858 */
3083ee2e
JB
5859 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5860 spin_unlock(&eb->refs_lock);
5861 return 0;
b9473439 5862 }
19fe0a8b 5863
f7a52a40 5864 return release_extent_buffer(eb);
6af118ce 5865}