]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: Remove unused extent_state argument from btrfs_writepage_endio_finish_ordered
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e
CM
16#include "extent_io.h"
17#include "extent_map.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
fe09e16c 24#include "backref.h"
6af49dbd 25#include "disk-io.h"
d1310b2e 26
d1310b2e
CM
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 29static struct bio_set btrfs_bioset;
d1310b2e 30
27a3507d
FM
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
6d49ba1b 36#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
4bef0848 39
d397712b 40static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
b7ac31b7 73 refcount_read(&state->refs));
6d49ba1b
ES
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
af2679e4
LB
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
6d49ba1b
ES
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
8d599ae1 86
a5dee37d
JB
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 90 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 91{
65a680f6
NB
92 struct inode *inode = tree->private_data;
93 u64 isize;
94
95 if (!inode || !is_data_inode(inode))
96 return;
97
98 isize = i_size_read(inode);
99 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
100 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
101 "%s: ino %llu isize %llu odd range [%llu,%llu]",
102 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
103 }
8d599ae1 104}
6d49ba1b
ES
105#else
106#define btrfs_leak_debug_add(new, head) do {} while (0)
107#define btrfs_leak_debug_del(entry) do {} while (0)
108#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 109#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 110#endif
d1310b2e 111
d1310b2e
CM
112#define BUFFER_LRU_MAX 64
113
114struct tree_entry {
115 u64 start;
116 u64 end;
d1310b2e
CM
117 struct rb_node rb_node;
118};
119
120struct extent_page_data {
121 struct bio *bio;
122 struct extent_io_tree *tree;
771ed689
CM
123 /* tells writepage not to lock the state bits for this range
124 * it still does the unlocking
125 */
ffbd517d
CM
126 unsigned int extent_locked:1;
127
70fd7614 128 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 129 unsigned int sync_io:1;
d1310b2e
CM
130};
131
57599c7e 132static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
133 struct extent_changeset *changeset,
134 int set)
135{
136 int ret;
137
138 if (!changeset)
57599c7e 139 return 0;
d38ed27f 140 if (set && (state->state & bits) == bits)
57599c7e 141 return 0;
fefdc557 142 if (!set && (state->state & bits) == 0)
57599c7e 143 return 0;
d38ed27f 144 changeset->bytes_changed += state->end - state->start + 1;
53d32359 145 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 146 GFP_ATOMIC);
57599c7e 147 return ret;
d38ed27f
QW
148}
149
aab6e9ed 150static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b 165
8ac9f7c1
KO
166 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio),
168 BIOSET_NEED_BVECS))
9be3395b 169 goto free_buffer_cache;
b208c2f7 170
8ac9f7c1 171 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7 176free_bioset:
8ac9f7c1 177 bioset_exit(&btrfs_bioset);
b208c2f7 178
9be3395b
CM
179free_buffer_cache:
180 kmem_cache_destroy(extent_buffer_cache);
181 extent_buffer_cache = NULL;
182
d1310b2e
CM
183free_state_cache:
184 kmem_cache_destroy(extent_state_cache);
9be3395b 185 extent_state_cache = NULL;
d1310b2e
CM
186 return -ENOMEM;
187}
188
e67c718b 189void __cold extent_io_exit(void)
d1310b2e 190{
6d49ba1b 191 btrfs_leak_debug_check();
8c0a8537
KS
192
193 /*
194 * Make sure all delayed rcu free are flushed before we
195 * destroy caches.
196 */
197 rcu_barrier();
5598e900
KM
198 kmem_cache_destroy(extent_state_cache);
199 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 200 bioset_exit(&btrfs_bioset);
d1310b2e
CM
201}
202
203void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 204 void *private_data)
d1310b2e 205{
6bef4d31 206 tree->state = RB_ROOT;
d1310b2e
CM
207 tree->ops = NULL;
208 tree->dirty_bytes = 0;
70dec807 209 spin_lock_init(&tree->lock);
c6100a4b 210 tree->private_data = private_data;
d1310b2e 211}
d1310b2e 212
b2950863 213static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
214{
215 struct extent_state *state;
d1310b2e 216
3ba7ab22
MH
217 /*
218 * The given mask might be not appropriate for the slab allocator,
219 * drop the unsupported bits
220 */
221 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 222 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 223 if (!state)
d1310b2e
CM
224 return state;
225 state->state = 0;
47dc196a 226 state->failrec = NULL;
27a3507d 227 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 228 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 229 refcount_set(&state->refs, 1);
d1310b2e 230 init_waitqueue_head(&state->wq);
143bede5 231 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
232 return state;
233}
d1310b2e 234
4845e44f 235void free_extent_state(struct extent_state *state)
d1310b2e 236{
d1310b2e
CM
237 if (!state)
238 return;
b7ac31b7 239 if (refcount_dec_and_test(&state->refs)) {
27a3507d 240 WARN_ON(extent_state_in_tree(state));
6d49ba1b 241 btrfs_leak_debug_del(&state->leak_list);
143bede5 242 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
243 kmem_cache_free(extent_state_cache, state);
244 }
245}
d1310b2e 246
f2071b21
FM
247static struct rb_node *tree_insert(struct rb_root *root,
248 struct rb_node *search_start,
249 u64 offset,
12cfbad9
FDBM
250 struct rb_node *node,
251 struct rb_node ***p_in,
252 struct rb_node **parent_in)
d1310b2e 253{
f2071b21 254 struct rb_node **p;
d397712b 255 struct rb_node *parent = NULL;
d1310b2e
CM
256 struct tree_entry *entry;
257
12cfbad9
FDBM
258 if (p_in && parent_in) {
259 p = *p_in;
260 parent = *parent_in;
261 goto do_insert;
262 }
263
f2071b21 264 p = search_start ? &search_start : &root->rb_node;
d397712b 265 while (*p) {
d1310b2e
CM
266 parent = *p;
267 entry = rb_entry(parent, struct tree_entry, rb_node);
268
269 if (offset < entry->start)
270 p = &(*p)->rb_left;
271 else if (offset > entry->end)
272 p = &(*p)->rb_right;
273 else
274 return parent;
275 }
276
12cfbad9 277do_insert:
d1310b2e
CM
278 rb_link_node(node, parent, p);
279 rb_insert_color(node, root);
280 return NULL;
281}
282
80ea96b1 283static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
284 struct rb_node **prev_ret,
285 struct rb_node **next_ret,
286 struct rb_node ***p_ret,
287 struct rb_node **parent_ret)
d1310b2e 288{
80ea96b1 289 struct rb_root *root = &tree->state;
12cfbad9 290 struct rb_node **n = &root->rb_node;
d1310b2e
CM
291 struct rb_node *prev = NULL;
292 struct rb_node *orig_prev = NULL;
293 struct tree_entry *entry;
294 struct tree_entry *prev_entry = NULL;
295
12cfbad9
FDBM
296 while (*n) {
297 prev = *n;
298 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
299 prev_entry = entry;
300
301 if (offset < entry->start)
12cfbad9 302 n = &(*n)->rb_left;
d1310b2e 303 else if (offset > entry->end)
12cfbad9 304 n = &(*n)->rb_right;
d397712b 305 else
12cfbad9 306 return *n;
d1310b2e
CM
307 }
308
12cfbad9
FDBM
309 if (p_ret)
310 *p_ret = n;
311 if (parent_ret)
312 *parent_ret = prev;
313
d1310b2e
CM
314 if (prev_ret) {
315 orig_prev = prev;
d397712b 316 while (prev && offset > prev_entry->end) {
d1310b2e
CM
317 prev = rb_next(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *prev_ret = prev;
321 prev = orig_prev;
322 }
323
324 if (next_ret) {
325 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 326 while (prev && offset < prev_entry->start) {
d1310b2e
CM
327 prev = rb_prev(prev);
328 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
329 }
330 *next_ret = prev;
331 }
332 return NULL;
333}
334
12cfbad9
FDBM
335static inline struct rb_node *
336tree_search_for_insert(struct extent_io_tree *tree,
337 u64 offset,
338 struct rb_node ***p_ret,
339 struct rb_node **parent_ret)
d1310b2e 340{
70dec807 341 struct rb_node *prev = NULL;
d1310b2e 342 struct rb_node *ret;
70dec807 343
12cfbad9 344 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 345 if (!ret)
d1310b2e
CM
346 return prev;
347 return ret;
348}
349
12cfbad9
FDBM
350static inline struct rb_node *tree_search(struct extent_io_tree *tree,
351 u64 offset)
352{
353 return tree_search_for_insert(tree, offset, NULL, NULL);
354}
355
d1310b2e
CM
356/*
357 * utility function to look for merge candidates inside a given range.
358 * Any extents with matching state are merged together into a single
359 * extent in the tree. Extents with EXTENT_IO in their state field
360 * are not merged because the end_io handlers need to be able to do
361 * operations on them without sleeping (or doing allocations/splits).
362 *
363 * This should be called with the tree lock held.
364 */
1bf85046
JM
365static void merge_state(struct extent_io_tree *tree,
366 struct extent_state *state)
d1310b2e
CM
367{
368 struct extent_state *other;
369 struct rb_node *other_node;
370
5b21f2ed 371 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 372 return;
d1310b2e
CM
373
374 other_node = rb_prev(&state->rb_node);
375 if (other_node) {
376 other = rb_entry(other_node, struct extent_state, rb_node);
377 if (other->end == state->start - 1 &&
378 other->state == state->state) {
5c848198
NB
379 if (tree->private_data &&
380 is_data_inode(tree->private_data))
381 btrfs_merge_delalloc_extent(tree->private_data,
382 state, other);
d1310b2e 383 state->start = other->start;
d1310b2e 384 rb_erase(&other->rb_node, &tree->state);
27a3507d 385 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
386 free_extent_state(other);
387 }
388 }
389 other_node = rb_next(&state->rb_node);
390 if (other_node) {
391 other = rb_entry(other_node, struct extent_state, rb_node);
392 if (other->start == state->end + 1 &&
393 other->state == state->state) {
5c848198
NB
394 if (tree->private_data &&
395 is_data_inode(tree->private_data))
396 btrfs_merge_delalloc_extent(tree->private_data,
397 state, other);
df98b6e2 398 state->end = other->end;
df98b6e2 399 rb_erase(&other->rb_node, &tree->state);
27a3507d 400 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 401 free_extent_state(other);
d1310b2e
CM
402 }
403 }
d1310b2e
CM
404}
405
3150b699 406static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
407 struct extent_state *state, unsigned *bits,
408 struct extent_changeset *changeset);
3150b699 409
d1310b2e
CM
410/*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
422 struct rb_node ***p,
423 struct rb_node **parent,
d38ed27f 424 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
425{
426 struct rb_node *node;
427
31b1a2bd 428 if (end < start)
efe120a0 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 430 end, start);
d1310b2e
CM
431 state->start = start;
432 state->end = end;
9ed74f2d 433
d38ed27f 434 set_state_bits(tree, state, bits, changeset);
3150b699 435
f2071b21 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
62e85577 440 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 441 found->start, found->end, start, end);
d1310b2e
CM
442 return -EEXIST;
443 }
444 merge_state(tree, state);
445 return 0;
446}
447
448/*
449 * split a given extent state struct in two, inserting the preallocated
450 * struct 'prealloc' as the newly created second half. 'split' indicates an
451 * offset inside 'orig' where it should be split.
452 *
453 * Before calling,
454 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
455 * are two extent state structs in the tree:
456 * prealloc: [orig->start, split - 1]
457 * orig: [ split, orig->end ]
458 *
459 * The tree locks are not taken by this function. They need to be held
460 * by the caller.
461 */
462static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
463 struct extent_state *prealloc, u64 split)
464{
465 struct rb_node *node;
9ed74f2d 466
abbb55f4
NB
467 if (tree->private_data && is_data_inode(tree->private_data))
468 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 469
d1310b2e
CM
470 prealloc->start = orig->start;
471 prealloc->end = split - 1;
472 prealloc->state = orig->state;
473 orig->start = split;
474
f2071b21
FM
475 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
476 &prealloc->rb_node, NULL, NULL);
d1310b2e 477 if (node) {
d1310b2e
CM
478 free_extent_state(prealloc);
479 return -EEXIST;
480 }
481 return 0;
482}
483
cdc6a395
LZ
484static struct extent_state *next_state(struct extent_state *state)
485{
486 struct rb_node *next = rb_next(&state->rb_node);
487 if (next)
488 return rb_entry(next, struct extent_state, rb_node);
489 else
490 return NULL;
491}
492
d1310b2e
CM
493/*
494 * utility function to clear some bits in an extent state struct.
1b303fc0 495 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
496 *
497 * If no bits are set on the state struct after clearing things, the
498 * struct is freed and removed from the tree
499 */
cdc6a395
LZ
500static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
501 struct extent_state *state,
fefdc557
QW
502 unsigned *bits, int wake,
503 struct extent_changeset *changeset)
d1310b2e 504{
cdc6a395 505 struct extent_state *next;
9ee49a04 506 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 507 int ret;
d1310b2e 508
0ca1f7ce 509 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
510 u64 range = state->end - state->start + 1;
511 WARN_ON(range > tree->dirty_bytes);
512 tree->dirty_bytes -= range;
513 }
a36bb5f9
NB
514
515 if (tree->private_data && is_data_inode(tree->private_data))
516 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
517
57599c7e
DS
518 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
519 BUG_ON(ret < 0);
32c00aff 520 state->state &= ~bits_to_clear;
d1310b2e
CM
521 if (wake)
522 wake_up(&state->wq);
0ca1f7ce 523 if (state->state == 0) {
cdc6a395 524 next = next_state(state);
27a3507d 525 if (extent_state_in_tree(state)) {
d1310b2e 526 rb_erase(&state->rb_node, &tree->state);
27a3507d 527 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
528 free_extent_state(state);
529 } else {
530 WARN_ON(1);
531 }
532 } else {
533 merge_state(tree, state);
cdc6a395 534 next = next_state(state);
d1310b2e 535 }
cdc6a395 536 return next;
d1310b2e
CM
537}
538
8233767a
XG
539static struct extent_state *
540alloc_extent_state_atomic(struct extent_state *prealloc)
541{
542 if (!prealloc)
543 prealloc = alloc_extent_state(GFP_ATOMIC);
544
545 return prealloc;
546}
547
48a3b636 548static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 549{
05912a3c
DS
550 struct inode *inode = tree->private_data;
551
552 btrfs_panic(btrfs_sb(inode->i_sb), err,
553 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
554}
555
d1310b2e
CM
556/*
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
560 *
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
563 *
564 * the range [start, end] is inclusive.
565 *
6763af84 566 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 567 */
66b0c887 568int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
569 unsigned bits, int wake, int delete,
570 struct extent_state **cached_state,
571 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
572{
573 struct extent_state *state;
2c64c53d 574 struct extent_state *cached;
d1310b2e
CM
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
5c939df5 577 u64 last_end;
d1310b2e 578 int err;
2ac55d41 579 int clear = 0;
d1310b2e 580
a5dee37d 581 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 582
7ee9e440
JB
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
585
0ca1f7ce
YZ
586 if (delete)
587 bits |= ~EXTENT_CTLBITS;
588 bits |= EXTENT_FIRST_DELALLOC;
589
2ac55d41
JB
590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591 clear = 1;
d1310b2e 592again:
d0164adc 593 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
594 /*
595 * Don't care for allocation failure here because we might end
596 * up not needing the pre-allocated extent state at all, which
597 * is the case if we only have in the tree extent states that
598 * cover our input range and don't cover too any other range.
599 * If we end up needing a new extent state we allocate it later.
600 */
d1310b2e 601 prealloc = alloc_extent_state(mask);
d1310b2e
CM
602 }
603
cad321ad 604 spin_lock(&tree->lock);
2c64c53d
CM
605 if (cached_state) {
606 cached = *cached_state;
2ac55d41
JB
607
608 if (clear) {
609 *cached_state = NULL;
610 cached_state = NULL;
611 }
612
27a3507d
FM
613 if (cached && extent_state_in_tree(cached) &&
614 cached->start <= start && cached->end > start) {
2ac55d41 615 if (clear)
b7ac31b7 616 refcount_dec(&cached->refs);
2c64c53d 617 state = cached;
42daec29 618 goto hit_next;
2c64c53d 619 }
2ac55d41
JB
620 if (clear)
621 free_extent_state(cached);
2c64c53d 622 }
d1310b2e
CM
623 /*
624 * this search will find the extents that end after
625 * our range starts
626 */
80ea96b1 627 node = tree_search(tree, start);
d1310b2e
CM
628 if (!node)
629 goto out;
630 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 631hit_next:
d1310b2e
CM
632 if (state->start > end)
633 goto out;
634 WARN_ON(state->end < start);
5c939df5 635 last_end = state->end;
d1310b2e 636
0449314a 637 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
638 if (!(state->state & bits)) {
639 state = next_state(state);
0449314a 640 goto next;
cdc6a395 641 }
0449314a 642
d1310b2e
CM
643 /*
644 * | ---- desired range ---- |
645 * | state | or
646 * | ------------- state -------------- |
647 *
648 * We need to split the extent we found, and may flip
649 * bits on second half.
650 *
651 * If the extent we found extends past our range, we
652 * just split and search again. It'll get split again
653 * the next time though.
654 *
655 * If the extent we found is inside our range, we clear
656 * the desired bit on it.
657 */
658
659 if (state->start < start) {
8233767a
XG
660 prealloc = alloc_extent_state_atomic(prealloc);
661 BUG_ON(!prealloc);
d1310b2e 662 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
663 if (err)
664 extent_io_tree_panic(tree, err);
665
d1310b2e
CM
666 prealloc = NULL;
667 if (err)
668 goto out;
669 if (state->end <= end) {
fefdc557
QW
670 state = clear_state_bit(tree, state, &bits, wake,
671 changeset);
d1ac6e41 672 goto next;
d1310b2e
CM
673 }
674 goto search_again;
675 }
676 /*
677 * | ---- desired range ---- |
678 * | state |
679 * We need to split the extent, and clear the bit
680 * on the first half
681 */
682 if (state->start <= end && state->end > end) {
8233767a
XG
683 prealloc = alloc_extent_state_atomic(prealloc);
684 BUG_ON(!prealloc);
d1310b2e 685 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
686 if (err)
687 extent_io_tree_panic(tree, err);
688
d1310b2e
CM
689 if (wake)
690 wake_up(&state->wq);
42daec29 691
fefdc557 692 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 693
d1310b2e
CM
694 prealloc = NULL;
695 goto out;
696 }
42daec29 697
fefdc557 698 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 699next:
5c939df5
YZ
700 if (last_end == (u64)-1)
701 goto out;
702 start = last_end + 1;
cdc6a395 703 if (start <= end && state && !need_resched())
692e5759 704 goto hit_next;
d1310b2e
CM
705
706search_again:
707 if (start > end)
708 goto out;
cad321ad 709 spin_unlock(&tree->lock);
d0164adc 710 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
711 cond_resched();
712 goto again;
7ab5cb2a
DS
713
714out:
715 spin_unlock(&tree->lock);
716 if (prealloc)
717 free_extent_state(prealloc);
718
719 return 0;
720
d1310b2e 721}
d1310b2e 722
143bede5
JM
723static void wait_on_state(struct extent_io_tree *tree,
724 struct extent_state *state)
641f5219
CH
725 __releases(tree->lock)
726 __acquires(tree->lock)
d1310b2e
CM
727{
728 DEFINE_WAIT(wait);
729 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 730 spin_unlock(&tree->lock);
d1310b2e 731 schedule();
cad321ad 732 spin_lock(&tree->lock);
d1310b2e 733 finish_wait(&state->wq, &wait);
d1310b2e
CM
734}
735
736/*
737 * waits for one or more bits to clear on a range in the state tree.
738 * The range [start, end] is inclusive.
739 * The tree lock is taken by this function
740 */
41074888
DS
741static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
742 unsigned long bits)
d1310b2e
CM
743{
744 struct extent_state *state;
745 struct rb_node *node;
746
a5dee37d 747 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 748
cad321ad 749 spin_lock(&tree->lock);
d1310b2e
CM
750again:
751 while (1) {
752 /*
753 * this search will find all the extents that end after
754 * our range starts
755 */
80ea96b1 756 node = tree_search(tree, start);
c50d3e71 757process_node:
d1310b2e
CM
758 if (!node)
759 break;
760
761 state = rb_entry(node, struct extent_state, rb_node);
762
763 if (state->start > end)
764 goto out;
765
766 if (state->state & bits) {
767 start = state->start;
b7ac31b7 768 refcount_inc(&state->refs);
d1310b2e
CM
769 wait_on_state(tree, state);
770 free_extent_state(state);
771 goto again;
772 }
773 start = state->end + 1;
774
775 if (start > end)
776 break;
777
c50d3e71
FM
778 if (!cond_resched_lock(&tree->lock)) {
779 node = rb_next(node);
780 goto process_node;
781 }
d1310b2e
CM
782 }
783out:
cad321ad 784 spin_unlock(&tree->lock);
d1310b2e 785}
d1310b2e 786
1bf85046 787static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 788 struct extent_state *state,
d38ed27f 789 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 790{
9ee49a04 791 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 792 int ret;
9ed74f2d 793
e06a1fc9
NB
794 if (tree->private_data && is_data_inode(tree->private_data))
795 btrfs_set_delalloc_extent(tree->private_data, state, bits);
796
0ca1f7ce 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
800 }
57599c7e
DS
801 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
802 BUG_ON(ret < 0);
0ca1f7ce 803 state->state |= bits_to_set;
d1310b2e
CM
804}
805
e38e2ed7
FM
806static void cache_state_if_flags(struct extent_state *state,
807 struct extent_state **cached_ptr,
9ee49a04 808 unsigned flags)
2c64c53d
CM
809{
810 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 811 if (!flags || (state->state & flags)) {
2c64c53d 812 *cached_ptr = state;
b7ac31b7 813 refcount_inc(&state->refs);
2c64c53d
CM
814 }
815 }
816}
817
e38e2ed7
FM
818static void cache_state(struct extent_state *state,
819 struct extent_state **cached_ptr)
820{
821 return cache_state_if_flags(state, cached_ptr,
822 EXTENT_IOBITS | EXTENT_BOUNDARY);
823}
824
d1310b2e 825/*
1edbb734
CM
826 * set some bits on a range in the tree. This may require allocations or
827 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 828 *
1edbb734
CM
829 * If any of the exclusive bits are set, this will fail with -EEXIST if some
830 * part of the range already has the desired bits set. The start of the
831 * existing range is returned in failed_start in this case.
d1310b2e 832 *
1edbb734 833 * [start, end] is inclusive This takes the tree lock.
d1310b2e 834 */
1edbb734 835
3fbe5c02
JM
836static int __must_check
837__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 838 unsigned bits, unsigned exclusive_bits,
41074888 839 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 840 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
841{
842 struct extent_state *state;
843 struct extent_state *prealloc = NULL;
844 struct rb_node *node;
12cfbad9
FDBM
845 struct rb_node **p;
846 struct rb_node *parent;
d1310b2e 847 int err = 0;
d1310b2e
CM
848 u64 last_start;
849 u64 last_end;
42daec29 850
a5dee37d 851 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 852
0ca1f7ce 853 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 854again:
d0164adc 855 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
856 /*
857 * Don't care for allocation failure here because we might end
858 * up not needing the pre-allocated extent state at all, which
859 * is the case if we only have in the tree extent states that
860 * cover our input range and don't cover too any other range.
861 * If we end up needing a new extent state we allocate it later.
862 */
d1310b2e 863 prealloc = alloc_extent_state(mask);
d1310b2e
CM
864 }
865
cad321ad 866 spin_lock(&tree->lock);
9655d298
CM
867 if (cached_state && *cached_state) {
868 state = *cached_state;
df98b6e2 869 if (state->start <= start && state->end > start &&
27a3507d 870 extent_state_in_tree(state)) {
9655d298
CM
871 node = &state->rb_node;
872 goto hit_next;
873 }
874 }
d1310b2e
CM
875 /*
876 * this search will find all the extents that end after
877 * our range starts.
878 */
12cfbad9 879 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 880 if (!node) {
8233767a
XG
881 prealloc = alloc_extent_state_atomic(prealloc);
882 BUG_ON(!prealloc);
12cfbad9 883 err = insert_state(tree, prealloc, start, end,
d38ed27f 884 &p, &parent, &bits, changeset);
c2d904e0
JM
885 if (err)
886 extent_io_tree_panic(tree, err);
887
c42ac0bc 888 cache_state(prealloc, cached_state);
d1310b2e 889 prealloc = NULL;
d1310b2e
CM
890 goto out;
891 }
d1310b2e 892 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 893hit_next:
d1310b2e
CM
894 last_start = state->start;
895 last_end = state->end;
896
897 /*
898 * | ---- desired range ---- |
899 * | state |
900 *
901 * Just lock what we found and keep going
902 */
903 if (state->start == start && state->end <= end) {
1edbb734 904 if (state->state & exclusive_bits) {
d1310b2e
CM
905 *failed_start = state->start;
906 err = -EEXIST;
907 goto out;
908 }
42daec29 909
d38ed27f 910 set_state_bits(tree, state, &bits, changeset);
2c64c53d 911 cache_state(state, cached_state);
d1310b2e 912 merge_state(tree, state);
5c939df5
YZ
913 if (last_end == (u64)-1)
914 goto out;
915 start = last_end + 1;
d1ac6e41
LB
916 state = next_state(state);
917 if (start < end && state && state->start == start &&
918 !need_resched())
919 goto hit_next;
d1310b2e
CM
920 goto search_again;
921 }
922
923 /*
924 * | ---- desired range ---- |
925 * | state |
926 * or
927 * | ------------- state -------------- |
928 *
929 * We need to split the extent we found, and may flip bits on
930 * second half.
931 *
932 * If the extent we found extends past our
933 * range, we just split and search again. It'll get split
934 * again the next time though.
935 *
936 * If the extent we found is inside our range, we set the
937 * desired bit on it.
938 */
939 if (state->start < start) {
1edbb734 940 if (state->state & exclusive_bits) {
d1310b2e
CM
941 *failed_start = start;
942 err = -EEXIST;
943 goto out;
944 }
8233767a
XG
945
946 prealloc = alloc_extent_state_atomic(prealloc);
947 BUG_ON(!prealloc);
d1310b2e 948 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
949 if (err)
950 extent_io_tree_panic(tree, err);
951
d1310b2e
CM
952 prealloc = NULL;
953 if (err)
954 goto out;
955 if (state->end <= end) {
d38ed27f 956 set_state_bits(tree, state, &bits, changeset);
2c64c53d 957 cache_state(state, cached_state);
d1310b2e 958 merge_state(tree, state);
5c939df5
YZ
959 if (last_end == (u64)-1)
960 goto out;
961 start = last_end + 1;
d1ac6e41
LB
962 state = next_state(state);
963 if (start < end && state && state->start == start &&
964 !need_resched())
965 goto hit_next;
d1310b2e
CM
966 }
967 goto search_again;
968 }
969 /*
970 * | ---- desired range ---- |
971 * | state | or | state |
972 *
973 * There's a hole, we need to insert something in it and
974 * ignore the extent we found.
975 */
976 if (state->start > start) {
977 u64 this_end;
978 if (end < last_start)
979 this_end = end;
980 else
d397712b 981 this_end = last_start - 1;
8233767a
XG
982
983 prealloc = alloc_extent_state_atomic(prealloc);
984 BUG_ON(!prealloc);
c7f895a2
XG
985
986 /*
987 * Avoid to free 'prealloc' if it can be merged with
988 * the later extent.
989 */
d1310b2e 990 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 991 NULL, NULL, &bits, changeset);
c2d904e0
JM
992 if (err)
993 extent_io_tree_panic(tree, err);
994
9ed74f2d
JB
995 cache_state(prealloc, cached_state);
996 prealloc = NULL;
d1310b2e
CM
997 start = this_end + 1;
998 goto search_again;
999 }
1000 /*
1001 * | ---- desired range ---- |
1002 * | state |
1003 * We need to split the extent, and set the bit
1004 * on the first half
1005 */
1006 if (state->start <= end && state->end > end) {
1edbb734 1007 if (state->state & exclusive_bits) {
d1310b2e
CM
1008 *failed_start = start;
1009 err = -EEXIST;
1010 goto out;
1011 }
8233767a
XG
1012
1013 prealloc = alloc_extent_state_atomic(prealloc);
1014 BUG_ON(!prealloc);
d1310b2e 1015 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1016 if (err)
1017 extent_io_tree_panic(tree, err);
d1310b2e 1018
d38ed27f 1019 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1020 cache_state(prealloc, cached_state);
d1310b2e
CM
1021 merge_state(tree, prealloc);
1022 prealloc = NULL;
1023 goto out;
1024 }
1025
b5a4ba14
DS
1026search_again:
1027 if (start > end)
1028 goto out;
1029 spin_unlock(&tree->lock);
1030 if (gfpflags_allow_blocking(mask))
1031 cond_resched();
1032 goto again;
d1310b2e
CM
1033
1034out:
cad321ad 1035 spin_unlock(&tree->lock);
d1310b2e
CM
1036 if (prealloc)
1037 free_extent_state(prealloc);
1038
1039 return err;
1040
d1310b2e 1041}
d1310b2e 1042
41074888 1043int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1044 unsigned bits, u64 * failed_start,
41074888 1045 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1046{
1047 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1048 cached_state, mask, NULL);
3fbe5c02
JM
1049}
1050
1051
462d6fac 1052/**
10983f2e
LB
1053 * convert_extent_bit - convert all bits in a given range from one bit to
1054 * another
462d6fac
JB
1055 * @tree: the io tree to search
1056 * @start: the start offset in bytes
1057 * @end: the end offset in bytes (inclusive)
1058 * @bits: the bits to set in this range
1059 * @clear_bits: the bits to clear in this range
e6138876 1060 * @cached_state: state that we're going to cache
462d6fac
JB
1061 *
1062 * This will go through and set bits for the given range. If any states exist
1063 * already in this range they are set with the given bit and cleared of the
1064 * clear_bits. This is only meant to be used by things that are mergeable, ie
1065 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1066 * boundary bits like LOCK.
210aa277
DS
1067 *
1068 * All allocations are done with GFP_NOFS.
462d6fac
JB
1069 */
1070int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1071 unsigned bits, unsigned clear_bits,
210aa277 1072 struct extent_state **cached_state)
462d6fac
JB
1073{
1074 struct extent_state *state;
1075 struct extent_state *prealloc = NULL;
1076 struct rb_node *node;
12cfbad9
FDBM
1077 struct rb_node **p;
1078 struct rb_node *parent;
462d6fac
JB
1079 int err = 0;
1080 u64 last_start;
1081 u64 last_end;
c8fd3de7 1082 bool first_iteration = true;
462d6fac 1083
a5dee37d 1084 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1085
462d6fac 1086again:
210aa277 1087 if (!prealloc) {
c8fd3de7
FM
1088 /*
1089 * Best effort, don't worry if extent state allocation fails
1090 * here for the first iteration. We might have a cached state
1091 * that matches exactly the target range, in which case no
1092 * extent state allocations are needed. We'll only know this
1093 * after locking the tree.
1094 */
210aa277 1095 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1096 if (!prealloc && !first_iteration)
462d6fac
JB
1097 return -ENOMEM;
1098 }
1099
1100 spin_lock(&tree->lock);
e6138876
JB
1101 if (cached_state && *cached_state) {
1102 state = *cached_state;
1103 if (state->start <= start && state->end > start &&
27a3507d 1104 extent_state_in_tree(state)) {
e6138876
JB
1105 node = &state->rb_node;
1106 goto hit_next;
1107 }
1108 }
1109
462d6fac
JB
1110 /*
1111 * this search will find all the extents that end after
1112 * our range starts.
1113 */
12cfbad9 1114 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1115 if (!node) {
1116 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1117 if (!prealloc) {
1118 err = -ENOMEM;
1119 goto out;
1120 }
12cfbad9 1121 err = insert_state(tree, prealloc, start, end,
d38ed27f 1122 &p, &parent, &bits, NULL);
c2d904e0
JM
1123 if (err)
1124 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1125 cache_state(prealloc, cached_state);
1126 prealloc = NULL;
462d6fac
JB
1127 goto out;
1128 }
1129 state = rb_entry(node, struct extent_state, rb_node);
1130hit_next:
1131 last_start = state->start;
1132 last_end = state->end;
1133
1134 /*
1135 * | ---- desired range ---- |
1136 * | state |
1137 *
1138 * Just lock what we found and keep going
1139 */
1140 if (state->start == start && state->end <= end) {
d38ed27f 1141 set_state_bits(tree, state, &bits, NULL);
e6138876 1142 cache_state(state, cached_state);
fefdc557 1143 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1144 if (last_end == (u64)-1)
1145 goto out;
462d6fac 1146 start = last_end + 1;
d1ac6e41
LB
1147 if (start < end && state && state->start == start &&
1148 !need_resched())
1149 goto hit_next;
462d6fac
JB
1150 goto search_again;
1151 }
1152
1153 /*
1154 * | ---- desired range ---- |
1155 * | state |
1156 * or
1157 * | ------------- state -------------- |
1158 *
1159 * We need to split the extent we found, and may flip bits on
1160 * second half.
1161 *
1162 * If the extent we found extends past our
1163 * range, we just split and search again. It'll get split
1164 * again the next time though.
1165 *
1166 * If the extent we found is inside our range, we set the
1167 * desired bit on it.
1168 */
1169 if (state->start < start) {
1170 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1171 if (!prealloc) {
1172 err = -ENOMEM;
1173 goto out;
1174 }
462d6fac 1175 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1176 if (err)
1177 extent_io_tree_panic(tree, err);
462d6fac
JB
1178 prealloc = NULL;
1179 if (err)
1180 goto out;
1181 if (state->end <= end) {
d38ed27f 1182 set_state_bits(tree, state, &bits, NULL);
e6138876 1183 cache_state(state, cached_state);
fefdc557
QW
1184 state = clear_state_bit(tree, state, &clear_bits, 0,
1185 NULL);
462d6fac
JB
1186 if (last_end == (u64)-1)
1187 goto out;
1188 start = last_end + 1;
d1ac6e41
LB
1189 if (start < end && state && state->start == start &&
1190 !need_resched())
1191 goto hit_next;
462d6fac
JB
1192 }
1193 goto search_again;
1194 }
1195 /*
1196 * | ---- desired range ---- |
1197 * | state | or | state |
1198 *
1199 * There's a hole, we need to insert something in it and
1200 * ignore the extent we found.
1201 */
1202 if (state->start > start) {
1203 u64 this_end;
1204 if (end < last_start)
1205 this_end = end;
1206 else
1207 this_end = last_start - 1;
1208
1209 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1210 if (!prealloc) {
1211 err = -ENOMEM;
1212 goto out;
1213 }
462d6fac
JB
1214
1215 /*
1216 * Avoid to free 'prealloc' if it can be merged with
1217 * the later extent.
1218 */
1219 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1220 NULL, NULL, &bits, NULL);
c2d904e0
JM
1221 if (err)
1222 extent_io_tree_panic(tree, err);
e6138876 1223 cache_state(prealloc, cached_state);
462d6fac
JB
1224 prealloc = NULL;
1225 start = this_end + 1;
1226 goto search_again;
1227 }
1228 /*
1229 * | ---- desired range ---- |
1230 * | state |
1231 * We need to split the extent, and set the bit
1232 * on the first half
1233 */
1234 if (state->start <= end && state->end > end) {
1235 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1236 if (!prealloc) {
1237 err = -ENOMEM;
1238 goto out;
1239 }
462d6fac
JB
1240
1241 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1242 if (err)
1243 extent_io_tree_panic(tree, err);
462d6fac 1244
d38ed27f 1245 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1246 cache_state(prealloc, cached_state);
fefdc557 1247 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1248 prealloc = NULL;
1249 goto out;
1250 }
1251
462d6fac
JB
1252search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
210aa277 1256 cond_resched();
c8fd3de7 1257 first_iteration = false;
462d6fac 1258 goto again;
462d6fac
JB
1259
1260out:
1261 spin_unlock(&tree->lock);
1262 if (prealloc)
1263 free_extent_state(prealloc);
1264
1265 return err;
462d6fac
JB
1266}
1267
d1310b2e 1268/* wrappers around set/clear extent bit */
d38ed27f 1269int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1270 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1271{
1272 /*
1273 * We don't support EXTENT_LOCKED yet, as current changeset will
1274 * record any bits changed, so for EXTENT_LOCKED case, it will
1275 * either fail with -EEXIST or changeset will record the whole
1276 * range.
1277 */
1278 BUG_ON(bits & EXTENT_LOCKED);
1279
2c53b912 1280 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1281 changeset);
1282}
1283
fefdc557
QW
1284int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1285 unsigned bits, int wake, int delete,
ae0f1625 1286 struct extent_state **cached)
fefdc557
QW
1287{
1288 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1289 cached, GFP_NOFS, NULL);
fefdc557
QW
1290}
1291
fefdc557 1292int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1293 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1294{
1295 /*
1296 * Don't support EXTENT_LOCKED case, same reason as
1297 * set_record_extent_bits().
1298 */
1299 BUG_ON(bits & EXTENT_LOCKED);
1300
f734c44a 1301 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1302 changeset);
1303}
1304
d352ac68
CM
1305/*
1306 * either insert or lock state struct between start and end use mask to tell
1307 * us if waiting is desired.
1308 */
1edbb734 1309int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1310 struct extent_state **cached_state)
d1310b2e
CM
1311{
1312 int err;
1313 u64 failed_start;
9ee49a04 1314
d1310b2e 1315 while (1) {
ff13db41 1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1317 EXTENT_LOCKED, &failed_start,
d38ed27f 1318 cached_state, GFP_NOFS, NULL);
d0082371 1319 if (err == -EEXIST) {
d1310b2e
CM
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
d0082371 1322 } else
d1310b2e 1323 break;
d1310b2e
CM
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327}
d1310b2e 1328
d0082371 1329int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1330{
1331 int err;
1332 u64 failed_start;
1333
3fbe5c02 1334 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1335 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1336 if (err == -EEXIST) {
1337 if (failed_start > start)
1338 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1339 EXTENT_LOCKED, 1, 0, NULL);
25179201 1340 return 0;
6643558d 1341 }
25179201
JB
1342 return 1;
1343}
25179201 1344
bd1fa4f0 1345void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1346{
09cbfeaf
KS
1347 unsigned long index = start >> PAGE_SHIFT;
1348 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1349 struct page *page;
1350
1351 while (index <= end_index) {
1352 page = find_get_page(inode->i_mapping, index);
1353 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1354 clear_page_dirty_for_io(page);
09cbfeaf 1355 put_page(page);
4adaa611
CM
1356 index++;
1357 }
4adaa611
CM
1358}
1359
f6311572 1360void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1361{
09cbfeaf
KS
1362 unsigned long index = start >> PAGE_SHIFT;
1363 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1364 struct page *page;
1365
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1369 __set_page_dirty_nobuffers(page);
8d38633c 1370 account_page_redirty(page);
09cbfeaf 1371 put_page(page);
4adaa611
CM
1372 index++;
1373 }
4adaa611
CM
1374}
1375
d352ac68
CM
1376/* find the first state struct with 'bits' set after 'start', and
1377 * return it. tree->lock must be held. NULL will returned if
1378 * nothing was found after 'start'
1379 */
48a3b636
ES
1380static struct extent_state *
1381find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1382 u64 start, unsigned bits)
d7fc640e
CM
1383{
1384 struct rb_node *node;
1385 struct extent_state *state;
1386
1387 /*
1388 * this search will find all the extents that end after
1389 * our range starts.
1390 */
1391 node = tree_search(tree, start);
d397712b 1392 if (!node)
d7fc640e 1393 goto out;
d7fc640e 1394
d397712b 1395 while (1) {
d7fc640e 1396 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1397 if (state->end >= start && (state->state & bits))
d7fc640e 1398 return state;
d397712b 1399
d7fc640e
CM
1400 node = rb_next(node);
1401 if (!node)
1402 break;
1403 }
1404out:
1405 return NULL;
1406}
d7fc640e 1407
69261c4b
XG
1408/*
1409 * find the first offset in the io tree with 'bits' set. zero is
1410 * returned if we find something, and *start_ret and *end_ret are
1411 * set to reflect the state struct that was found.
1412 *
477d7eaf 1413 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1414 */
1415int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1416 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1417 struct extent_state **cached_state)
69261c4b
XG
1418{
1419 struct extent_state *state;
1420 int ret = 1;
1421
1422 spin_lock(&tree->lock);
e6138876
JB
1423 if (cached_state && *cached_state) {
1424 state = *cached_state;
27a3507d 1425 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1426 while ((state = next_state(state)) != NULL) {
e6138876
JB
1427 if (state->state & bits)
1428 goto got_it;
e6138876
JB
1429 }
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1432 goto out;
1433 }
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1436 }
1437
69261c4b 1438 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1439got_it:
69261c4b 1440 if (state) {
e38e2ed7 1441 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1444 ret = 0;
1445 }
e6138876 1446out:
69261c4b
XG
1447 spin_unlock(&tree->lock);
1448 return ret;
1449}
1450
d352ac68
CM
1451/*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1454 *
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1456 */
c8b97818 1457static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
d1310b2e
CM
1460{
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
1464 u64 found = 0;
1465 u64 total_bytes = 0;
1466
cad321ad 1467 spin_lock(&tree->lock);
c8b97818 1468
d1310b2e
CM
1469 /*
1470 * this search will find all the extents that end after
1471 * our range starts.
1472 */
80ea96b1 1473 node = tree_search(tree, cur_start);
2b114d1d 1474 if (!node) {
3b951516
CM
1475 if (!found)
1476 *end = (u64)-1;
d1310b2e
CM
1477 goto out;
1478 }
1479
d397712b 1480 while (1) {
d1310b2e 1481 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1482 if (found && (state->start != cur_start ||
1483 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1484 goto out;
1485 }
1486 if (!(state->state & EXTENT_DELALLOC)) {
1487 if (!found)
1488 *end = state->end;
1489 goto out;
1490 }
c2a128d2 1491 if (!found) {
d1310b2e 1492 *start = state->start;
c2a128d2 1493 *cached_state = state;
b7ac31b7 1494 refcount_inc(&state->refs);
c2a128d2 1495 }
d1310b2e
CM
1496 found++;
1497 *end = state->end;
1498 cur_start = state->end + 1;
1499 node = rb_next(node);
d1310b2e 1500 total_bytes += state->end - state->start + 1;
7bf811a5 1501 if (total_bytes >= max_bytes)
573aecaf 1502 break;
573aecaf 1503 if (!node)
d1310b2e
CM
1504 break;
1505 }
1506out:
cad321ad 1507 spin_unlock(&tree->lock);
d1310b2e
CM
1508 return found;
1509}
1510
da2c7009
LB
1511static int __process_pages_contig(struct address_space *mapping,
1512 struct page *locked_page,
1513 pgoff_t start_index, pgoff_t end_index,
1514 unsigned long page_ops, pgoff_t *index_ret);
1515
143bede5
JM
1516static noinline void __unlock_for_delalloc(struct inode *inode,
1517 struct page *locked_page,
1518 u64 start, u64 end)
c8b97818 1519{
09cbfeaf
KS
1520 unsigned long index = start >> PAGE_SHIFT;
1521 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1522
76c0021d 1523 ASSERT(locked_page);
c8b97818 1524 if (index == locked_page->index && end_index == index)
143bede5 1525 return;
c8b97818 1526
76c0021d
LB
1527 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1528 PAGE_UNLOCK, NULL);
c8b97818
CM
1529}
1530
1531static noinline int lock_delalloc_pages(struct inode *inode,
1532 struct page *locked_page,
1533 u64 delalloc_start,
1534 u64 delalloc_end)
1535{
09cbfeaf 1536 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1537 unsigned long index_ret = index;
09cbfeaf 1538 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1539 int ret;
c8b97818 1540
76c0021d 1541 ASSERT(locked_page);
c8b97818
CM
1542 if (index == locked_page->index && index == end_index)
1543 return 0;
1544
76c0021d
LB
1545 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1546 end_index, PAGE_LOCK, &index_ret);
1547 if (ret == -EAGAIN)
1548 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1549 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1550 return ret;
1551}
1552
1553/*
1554 * find a contiguous range of bytes in the file marked as delalloc, not
1555 * more than 'max_bytes'. start and end are used to return the range,
1556 *
1557 * 1 is returned if we find something, 0 if nothing was in the tree
1558 */
9c36396c 1559static noinline_for_stack u64 find_lock_delalloc_range(struct inode *inode,
294e30fe
JB
1560 struct extent_io_tree *tree,
1561 struct page *locked_page, u64 *start,
1562 u64 *end, u64 max_bytes)
c8b97818
CM
1563{
1564 u64 delalloc_start;
1565 u64 delalloc_end;
1566 u64 found;
9655d298 1567 struct extent_state *cached_state = NULL;
c8b97818
CM
1568 int ret;
1569 int loops = 0;
1570
1571again:
1572 /* step one, find a bunch of delalloc bytes starting at start */
1573 delalloc_start = *start;
1574 delalloc_end = 0;
1575 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1576 max_bytes, &cached_state);
70b99e69 1577 if (!found || delalloc_end <= *start) {
c8b97818
CM
1578 *start = delalloc_start;
1579 *end = delalloc_end;
c2a128d2 1580 free_extent_state(cached_state);
385fe0be 1581 return 0;
c8b97818
CM
1582 }
1583
70b99e69
CM
1584 /*
1585 * start comes from the offset of locked_page. We have to lock
1586 * pages in order, so we can't process delalloc bytes before
1587 * locked_page
1588 */
d397712b 1589 if (delalloc_start < *start)
70b99e69 1590 delalloc_start = *start;
70b99e69 1591
c8b97818
CM
1592 /*
1593 * make sure to limit the number of pages we try to lock down
c8b97818 1594 */
7bf811a5
JB
1595 if (delalloc_end + 1 - delalloc_start > max_bytes)
1596 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1597
c8b97818
CM
1598 /* step two, lock all the pages after the page that has start */
1599 ret = lock_delalloc_pages(inode, locked_page,
1600 delalloc_start, delalloc_end);
1601 if (ret == -EAGAIN) {
1602 /* some of the pages are gone, lets avoid looping by
1603 * shortening the size of the delalloc range we're searching
1604 */
9655d298 1605 free_extent_state(cached_state);
7d788742 1606 cached_state = NULL;
c8b97818 1607 if (!loops) {
09cbfeaf 1608 max_bytes = PAGE_SIZE;
c8b97818
CM
1609 loops = 1;
1610 goto again;
1611 } else {
1612 found = 0;
1613 goto out_failed;
1614 }
1615 }
79787eaa 1616 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1617
1618 /* step three, lock the state bits for the whole range */
ff13db41 1619 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1620
1621 /* then test to make sure it is all still delalloc */
1622 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1623 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1624 if (!ret) {
9655d298 1625 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1626 &cached_state);
c8b97818
CM
1627 __unlock_for_delalloc(inode, locked_page,
1628 delalloc_start, delalloc_end);
1629 cond_resched();
1630 goto again;
1631 }
9655d298 1632 free_extent_state(cached_state);
c8b97818
CM
1633 *start = delalloc_start;
1634 *end = delalloc_end;
1635out_failed:
1636 return found;
1637}
1638
9c36396c
DS
1639#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1640u64 btrfs_find_lock_delalloc_range(struct inode *inode,
1641 struct extent_io_tree *tree,
1642 struct page *locked_page, u64 *start,
1643 u64 *end, u64 max_bytes)
1644{
1645 return find_lock_delalloc_range(inode, tree, locked_page, start, end,
1646 max_bytes);
1647}
1648#endif
1649
da2c7009
LB
1650static int __process_pages_contig(struct address_space *mapping,
1651 struct page *locked_page,
1652 pgoff_t start_index, pgoff_t end_index,
1653 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1654{
873695b3 1655 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1656 unsigned long pages_locked = 0;
873695b3 1657 pgoff_t index = start_index;
c8b97818 1658 struct page *pages[16];
873695b3 1659 unsigned ret;
da2c7009 1660 int err = 0;
c8b97818 1661 int i;
771ed689 1662
da2c7009
LB
1663 if (page_ops & PAGE_LOCK) {
1664 ASSERT(page_ops == PAGE_LOCK);
1665 ASSERT(index_ret && *index_ret == start_index);
1666 }
1667
704de49d 1668 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1669 mapping_set_error(mapping, -EIO);
704de49d 1670
d397712b 1671 while (nr_pages > 0) {
873695b3 1672 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1673 min_t(unsigned long,
1674 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1675 if (ret == 0) {
1676 /*
1677 * Only if we're going to lock these pages,
1678 * can we find nothing at @index.
1679 */
1680 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1681 err = -EAGAIN;
1682 goto out;
da2c7009 1683 }
8b62b72b 1684
da2c7009 1685 for (i = 0; i < ret; i++) {
c2790a2e 1686 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1687 SetPagePrivate2(pages[i]);
1688
c8b97818 1689 if (pages[i] == locked_page) {
09cbfeaf 1690 put_page(pages[i]);
da2c7009 1691 pages_locked++;
c8b97818
CM
1692 continue;
1693 }
c2790a2e 1694 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1695 clear_page_dirty_for_io(pages[i]);
c2790a2e 1696 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1697 set_page_writeback(pages[i]);
704de49d
FM
1698 if (page_ops & PAGE_SET_ERROR)
1699 SetPageError(pages[i]);
c2790a2e 1700 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1701 end_page_writeback(pages[i]);
c2790a2e 1702 if (page_ops & PAGE_UNLOCK)
771ed689 1703 unlock_page(pages[i]);
da2c7009
LB
1704 if (page_ops & PAGE_LOCK) {
1705 lock_page(pages[i]);
1706 if (!PageDirty(pages[i]) ||
1707 pages[i]->mapping != mapping) {
1708 unlock_page(pages[i]);
1709 put_page(pages[i]);
1710 err = -EAGAIN;
1711 goto out;
1712 }
1713 }
09cbfeaf 1714 put_page(pages[i]);
da2c7009 1715 pages_locked++;
c8b97818
CM
1716 }
1717 nr_pages -= ret;
1718 index += ret;
1719 cond_resched();
1720 }
da2c7009
LB
1721out:
1722 if (err && index_ret)
1723 *index_ret = start_index + pages_locked - 1;
1724 return err;
c8b97818 1725}
c8b97818 1726
873695b3
LB
1727void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1728 u64 delalloc_end, struct page *locked_page,
1729 unsigned clear_bits,
1730 unsigned long page_ops)
1731{
1732 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1733 NULL);
873695b3
LB
1734
1735 __process_pages_contig(inode->i_mapping, locked_page,
1736 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1737 page_ops, NULL);
873695b3
LB
1738}
1739
d352ac68
CM
1740/*
1741 * count the number of bytes in the tree that have a given bit(s)
1742 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1743 * cached. The total number found is returned.
1744 */
d1310b2e
CM
1745u64 count_range_bits(struct extent_io_tree *tree,
1746 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1747 unsigned bits, int contig)
d1310b2e
CM
1748{
1749 struct rb_node *node;
1750 struct extent_state *state;
1751 u64 cur_start = *start;
1752 u64 total_bytes = 0;
ec29ed5b 1753 u64 last = 0;
d1310b2e
CM
1754 int found = 0;
1755
fae7f21c 1756 if (WARN_ON(search_end <= cur_start))
d1310b2e 1757 return 0;
d1310b2e 1758
cad321ad 1759 spin_lock(&tree->lock);
d1310b2e
CM
1760 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1761 total_bytes = tree->dirty_bytes;
1762 goto out;
1763 }
1764 /*
1765 * this search will find all the extents that end after
1766 * our range starts.
1767 */
80ea96b1 1768 node = tree_search(tree, cur_start);
d397712b 1769 if (!node)
d1310b2e 1770 goto out;
d1310b2e 1771
d397712b 1772 while (1) {
d1310b2e
CM
1773 state = rb_entry(node, struct extent_state, rb_node);
1774 if (state->start > search_end)
1775 break;
ec29ed5b
CM
1776 if (contig && found && state->start > last + 1)
1777 break;
1778 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1779 total_bytes += min(search_end, state->end) + 1 -
1780 max(cur_start, state->start);
1781 if (total_bytes >= max_bytes)
1782 break;
1783 if (!found) {
af60bed2 1784 *start = max(cur_start, state->start);
d1310b2e
CM
1785 found = 1;
1786 }
ec29ed5b
CM
1787 last = state->end;
1788 } else if (contig && found) {
1789 break;
d1310b2e
CM
1790 }
1791 node = rb_next(node);
1792 if (!node)
1793 break;
1794 }
1795out:
cad321ad 1796 spin_unlock(&tree->lock);
d1310b2e
CM
1797 return total_bytes;
1798}
b2950863 1799
d352ac68
CM
1800/*
1801 * set the private field for a given byte offset in the tree. If there isn't
1802 * an extent_state there already, this does nothing.
1803 */
f827ba9a 1804static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1805 struct io_failure_record *failrec)
d1310b2e
CM
1806{
1807 struct rb_node *node;
1808 struct extent_state *state;
1809 int ret = 0;
1810
cad321ad 1811 spin_lock(&tree->lock);
d1310b2e
CM
1812 /*
1813 * this search will find all the extents that end after
1814 * our range starts.
1815 */
80ea96b1 1816 node = tree_search(tree, start);
2b114d1d 1817 if (!node) {
d1310b2e
CM
1818 ret = -ENOENT;
1819 goto out;
1820 }
1821 state = rb_entry(node, struct extent_state, rb_node);
1822 if (state->start != start) {
1823 ret = -ENOENT;
1824 goto out;
1825 }
47dc196a 1826 state->failrec = failrec;
d1310b2e 1827out:
cad321ad 1828 spin_unlock(&tree->lock);
d1310b2e
CM
1829 return ret;
1830}
1831
f827ba9a 1832static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1833 struct io_failure_record **failrec)
d1310b2e
CM
1834{
1835 struct rb_node *node;
1836 struct extent_state *state;
1837 int ret = 0;
1838
cad321ad 1839 spin_lock(&tree->lock);
d1310b2e
CM
1840 /*
1841 * this search will find all the extents that end after
1842 * our range starts.
1843 */
80ea96b1 1844 node = tree_search(tree, start);
2b114d1d 1845 if (!node) {
d1310b2e
CM
1846 ret = -ENOENT;
1847 goto out;
1848 }
1849 state = rb_entry(node, struct extent_state, rb_node);
1850 if (state->start != start) {
1851 ret = -ENOENT;
1852 goto out;
1853 }
47dc196a 1854 *failrec = state->failrec;
d1310b2e 1855out:
cad321ad 1856 spin_unlock(&tree->lock);
d1310b2e
CM
1857 return ret;
1858}
1859
1860/*
1861 * searches a range in the state tree for a given mask.
70dec807 1862 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1863 * has the bits set. Otherwise, 1 is returned if any bit in the
1864 * range is found set.
1865 */
1866int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1867 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1868{
1869 struct extent_state *state = NULL;
1870 struct rb_node *node;
1871 int bitset = 0;
d1310b2e 1872
cad321ad 1873 spin_lock(&tree->lock);
27a3507d 1874 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1875 cached->end > start)
9655d298
CM
1876 node = &cached->rb_node;
1877 else
1878 node = tree_search(tree, start);
d1310b2e
CM
1879 while (node && start <= end) {
1880 state = rb_entry(node, struct extent_state, rb_node);
1881
1882 if (filled && state->start > start) {
1883 bitset = 0;
1884 break;
1885 }
1886
1887 if (state->start > end)
1888 break;
1889
1890 if (state->state & bits) {
1891 bitset = 1;
1892 if (!filled)
1893 break;
1894 } else if (filled) {
1895 bitset = 0;
1896 break;
1897 }
46562cec
CM
1898
1899 if (state->end == (u64)-1)
1900 break;
1901
d1310b2e
CM
1902 start = state->end + 1;
1903 if (start > end)
1904 break;
1905 node = rb_next(node);
1906 if (!node) {
1907 if (filled)
1908 bitset = 0;
1909 break;
1910 }
1911 }
cad321ad 1912 spin_unlock(&tree->lock);
d1310b2e
CM
1913 return bitset;
1914}
d1310b2e
CM
1915
1916/*
1917 * helper function to set a given page up to date if all the
1918 * extents in the tree for that page are up to date
1919 */
143bede5 1920static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1921{
4eee4fa4 1922 u64 start = page_offset(page);
09cbfeaf 1923 u64 end = start + PAGE_SIZE - 1;
9655d298 1924 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1925 SetPageUptodate(page);
d1310b2e
CM
1926}
1927
7870d082
JB
1928int free_io_failure(struct extent_io_tree *failure_tree,
1929 struct extent_io_tree *io_tree,
1930 struct io_failure_record *rec)
4a54c8c1
JS
1931{
1932 int ret;
1933 int err = 0;
4a54c8c1 1934
47dc196a 1935 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1936 ret = clear_extent_bits(failure_tree, rec->start,
1937 rec->start + rec->len - 1,
91166212 1938 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1939 if (ret)
1940 err = ret;
1941
7870d082 1942 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1943 rec->start + rec->len - 1,
91166212 1944 EXTENT_DAMAGED);
53b381b3
DW
1945 if (ret && !err)
1946 err = ret;
4a54c8c1
JS
1947
1948 kfree(rec);
1949 return err;
1950}
1951
4a54c8c1
JS
1952/*
1953 * this bypasses the standard btrfs submit functions deliberately, as
1954 * the standard behavior is to write all copies in a raid setup. here we only
1955 * want to write the one bad copy. so we do the mapping for ourselves and issue
1956 * submit_bio directly.
3ec706c8 1957 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1958 * actually prevents the read that triggered the error from finishing.
1959 * currently, there can be no more than two copies of every data bit. thus,
1960 * exactly one rewrite is required.
1961 */
6ec656bc
JB
1962int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1963 u64 length, u64 logical, struct page *page,
1964 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1965{
1966 struct bio *bio;
1967 struct btrfs_device *dev;
4a54c8c1
JS
1968 u64 map_length = 0;
1969 u64 sector;
1970 struct btrfs_bio *bbio = NULL;
1971 int ret;
1972
1751e8a6 1973 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1974 BUG_ON(!mirror_num);
1975
c5e4c3d7 1976 bio = btrfs_io_bio_alloc(1);
4f024f37 1977 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1978 map_length = length;
1979
b5de8d0d
FM
1980 /*
1981 * Avoid races with device replace and make sure our bbio has devices
1982 * associated to its stripes that don't go away while we are doing the
1983 * read repair operation.
1984 */
1985 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 1986 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
1987 /*
1988 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1989 * to update all raid stripes, but here we just want to correct
1990 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1991 * stripe's dev and sector.
1992 */
1993 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1994 &map_length, &bbio, 0);
1995 if (ret) {
1996 btrfs_bio_counter_dec(fs_info);
1997 bio_put(bio);
1998 return -EIO;
1999 }
2000 ASSERT(bbio->mirror_num == 1);
2001 } else {
2002 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2003 &map_length, &bbio, mirror_num);
2004 if (ret) {
2005 btrfs_bio_counter_dec(fs_info);
2006 bio_put(bio);
2007 return -EIO;
2008 }
2009 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2010 }
c725328c
LB
2011
2012 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2013 bio->bi_iter.bi_sector = sector;
c725328c 2014 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2015 btrfs_put_bbio(bbio);
ebbede42
AJ
2016 if (!dev || !dev->bdev ||
2017 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2018 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2019 bio_put(bio);
2020 return -EIO;
2021 }
74d46992 2022 bio_set_dev(bio, dev->bdev);
70fd7614 2023 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2024 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2025
4e49ea4a 2026 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2027 /* try to remap that extent elsewhere? */
b5de8d0d 2028 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2029 bio_put(bio);
442a4f63 2030 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2031 return -EIO;
2032 }
2033
b14af3b4
DS
2034 btrfs_info_rl_in_rcu(fs_info,
2035 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2036 ino, start,
1203b681 2037 rcu_str_deref(dev->name), sector);
b5de8d0d 2038 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2039 bio_put(bio);
2040 return 0;
2041}
2042
2ff7e61e
JM
2043int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2044 struct extent_buffer *eb, int mirror_num)
ea466794 2045{
ea466794 2046 u64 start = eb->start;
cc5e31a4 2047 int i, num_pages = num_extent_pages(eb);
d95603b2 2048 int ret = 0;
ea466794 2049
bc98a42c 2050 if (sb_rdonly(fs_info->sb))
908960c6
ID
2051 return -EROFS;
2052
ea466794 2053 for (i = 0; i < num_pages; i++) {
fb85fc9a 2054 struct page *p = eb->pages[i];
1203b681 2055
6ec656bc 2056 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2057 start - page_offset(p), mirror_num);
ea466794
JB
2058 if (ret)
2059 break;
09cbfeaf 2060 start += PAGE_SIZE;
ea466794
JB
2061 }
2062
2063 return ret;
2064}
2065
4a54c8c1
JS
2066/*
2067 * each time an IO finishes, we do a fast check in the IO failure tree
2068 * to see if we need to process or clean up an io_failure_record
2069 */
7870d082
JB
2070int clean_io_failure(struct btrfs_fs_info *fs_info,
2071 struct extent_io_tree *failure_tree,
2072 struct extent_io_tree *io_tree, u64 start,
2073 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2074{
2075 u64 private;
4a54c8c1 2076 struct io_failure_record *failrec;
4a54c8c1
JS
2077 struct extent_state *state;
2078 int num_copies;
4a54c8c1 2079 int ret;
4a54c8c1
JS
2080
2081 private = 0;
7870d082
JB
2082 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2083 EXTENT_DIRTY, 0);
4a54c8c1
JS
2084 if (!ret)
2085 return 0;
2086
7870d082 2087 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2088 if (ret)
2089 return 0;
2090
4a54c8c1
JS
2091 BUG_ON(!failrec->this_mirror);
2092
2093 if (failrec->in_validation) {
2094 /* there was no real error, just free the record */
ab8d0fc4
JM
2095 btrfs_debug(fs_info,
2096 "clean_io_failure: freeing dummy error at %llu",
2097 failrec->start);
4a54c8c1
JS
2098 goto out;
2099 }
bc98a42c 2100 if (sb_rdonly(fs_info->sb))
908960c6 2101 goto out;
4a54c8c1 2102
7870d082
JB
2103 spin_lock(&io_tree->lock);
2104 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2105 failrec->start,
2106 EXTENT_LOCKED);
7870d082 2107 spin_unlock(&io_tree->lock);
4a54c8c1 2108
883d0de4
MX
2109 if (state && state->start <= failrec->start &&
2110 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2111 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2112 failrec->len);
4a54c8c1 2113 if (num_copies > 1) {
7870d082
JB
2114 repair_io_failure(fs_info, ino, start, failrec->len,
2115 failrec->logical, page, pg_offset,
2116 failrec->failed_mirror);
4a54c8c1
JS
2117 }
2118 }
2119
2120out:
7870d082 2121 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2122
454ff3de 2123 return 0;
4a54c8c1
JS
2124}
2125
f612496b
MX
2126/*
2127 * Can be called when
2128 * - hold extent lock
2129 * - under ordered extent
2130 * - the inode is freeing
2131 */
7ab7956e 2132void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2133{
7ab7956e 2134 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2135 struct io_failure_record *failrec;
2136 struct extent_state *state, *next;
2137
2138 if (RB_EMPTY_ROOT(&failure_tree->state))
2139 return;
2140
2141 spin_lock(&failure_tree->lock);
2142 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2143 while (state) {
2144 if (state->start > end)
2145 break;
2146
2147 ASSERT(state->end <= end);
2148
2149 next = next_state(state);
2150
47dc196a 2151 failrec = state->failrec;
f612496b
MX
2152 free_extent_state(state);
2153 kfree(failrec);
2154
2155 state = next;
2156 }
2157 spin_unlock(&failure_tree->lock);
2158}
2159
2fe6303e 2160int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2161 struct io_failure_record **failrec_ret)
4a54c8c1 2162{
ab8d0fc4 2163 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2164 struct io_failure_record *failrec;
4a54c8c1 2165 struct extent_map *em;
4a54c8c1
JS
2166 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2167 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2168 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2169 int ret;
4a54c8c1
JS
2170 u64 logical;
2171
47dc196a 2172 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2173 if (ret) {
2174 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2175 if (!failrec)
2176 return -ENOMEM;
2fe6303e 2177
4a54c8c1
JS
2178 failrec->start = start;
2179 failrec->len = end - start + 1;
2180 failrec->this_mirror = 0;
2181 failrec->bio_flags = 0;
2182 failrec->in_validation = 0;
2183
2184 read_lock(&em_tree->lock);
2185 em = lookup_extent_mapping(em_tree, start, failrec->len);
2186 if (!em) {
2187 read_unlock(&em_tree->lock);
2188 kfree(failrec);
2189 return -EIO;
2190 }
2191
68ba990f 2192 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2193 free_extent_map(em);
2194 em = NULL;
2195 }
2196 read_unlock(&em_tree->lock);
7a2d6a64 2197 if (!em) {
4a54c8c1
JS
2198 kfree(failrec);
2199 return -EIO;
2200 }
2fe6303e 2201
4a54c8c1
JS
2202 logical = start - em->start;
2203 logical = em->block_start + logical;
2204 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2205 logical = em->block_start;
2206 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2207 extent_set_compress_type(&failrec->bio_flags,
2208 em->compress_type);
2209 }
2fe6303e 2210
ab8d0fc4
JM
2211 btrfs_debug(fs_info,
2212 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2213 logical, start, failrec->len);
2fe6303e 2214
4a54c8c1
JS
2215 failrec->logical = logical;
2216 free_extent_map(em);
2217
2218 /* set the bits in the private failure tree */
2219 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2220 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2221 if (ret >= 0)
47dc196a 2222 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2223 /* set the bits in the inode's tree */
2224 if (ret >= 0)
ceeb0ae7 2225 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2226 if (ret < 0) {
2227 kfree(failrec);
2228 return ret;
2229 }
2230 } else {
ab8d0fc4
JM
2231 btrfs_debug(fs_info,
2232 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2233 failrec->logical, failrec->start, failrec->len,
2234 failrec->in_validation);
4a54c8c1
JS
2235 /*
2236 * when data can be on disk more than twice, add to failrec here
2237 * (e.g. with a list for failed_mirror) to make
2238 * clean_io_failure() clean all those errors at once.
2239 */
2240 }
2fe6303e
MX
2241
2242 *failrec_ret = failrec;
2243
2244 return 0;
2245}
2246
a0b60d72 2247bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2248 struct io_failure_record *failrec, int failed_mirror)
2249{
ab8d0fc4 2250 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2251 int num_copies;
2252
ab8d0fc4 2253 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2254 if (num_copies == 1) {
2255 /*
2256 * we only have a single copy of the data, so don't bother with
2257 * all the retry and error correction code that follows. no
2258 * matter what the error is, it is very likely to persist.
2259 */
ab8d0fc4
JM
2260 btrfs_debug(fs_info,
2261 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2262 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2263 return false;
4a54c8c1
JS
2264 }
2265
4a54c8c1
JS
2266 /*
2267 * there are two premises:
2268 * a) deliver good data to the caller
2269 * b) correct the bad sectors on disk
2270 */
a0b60d72 2271 if (failed_bio_pages > 1) {
4a54c8c1
JS
2272 /*
2273 * to fulfill b), we need to know the exact failing sectors, as
2274 * we don't want to rewrite any more than the failed ones. thus,
2275 * we need separate read requests for the failed bio
2276 *
2277 * if the following BUG_ON triggers, our validation request got
2278 * merged. we need separate requests for our algorithm to work.
2279 */
2280 BUG_ON(failrec->in_validation);
2281 failrec->in_validation = 1;
2282 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2283 } else {
2284 /*
2285 * we're ready to fulfill a) and b) alongside. get a good copy
2286 * of the failed sector and if we succeed, we have setup
2287 * everything for repair_io_failure to do the rest for us.
2288 */
2289 if (failrec->in_validation) {
2290 BUG_ON(failrec->this_mirror != failed_mirror);
2291 failrec->in_validation = 0;
2292 failrec->this_mirror = 0;
2293 }
2294 failrec->failed_mirror = failed_mirror;
2295 failrec->this_mirror++;
2296 if (failrec->this_mirror == failed_mirror)
2297 failrec->this_mirror++;
4a54c8c1
JS
2298 }
2299
facc8a22 2300 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2301 btrfs_debug(fs_info,
2302 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2303 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2304 return false;
4a54c8c1
JS
2305 }
2306
c3cfb656 2307 return true;
2fe6303e
MX
2308}
2309
2310
2311struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2312 struct io_failure_record *failrec,
2313 struct page *page, int pg_offset, int icsum,
8b110e39 2314 bio_end_io_t *endio_func, void *data)
2fe6303e 2315{
0b246afa 2316 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2317 struct bio *bio;
2318 struct btrfs_io_bio *btrfs_failed_bio;
2319 struct btrfs_io_bio *btrfs_bio;
2320
c5e4c3d7 2321 bio = btrfs_io_bio_alloc(1);
2fe6303e 2322 bio->bi_end_io = endio_func;
4f024f37 2323 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2324 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2325 bio->bi_iter.bi_size = 0;
8b110e39 2326 bio->bi_private = data;
4a54c8c1 2327
facc8a22
MX
2328 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2329 if (btrfs_failed_bio->csum) {
facc8a22
MX
2330 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2331
2332 btrfs_bio = btrfs_io_bio(bio);
2333 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2334 icsum *= csum_size;
2335 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2336 csum_size);
2337 }
2338
2fe6303e
MX
2339 bio_add_page(bio, page, failrec->len, pg_offset);
2340
2341 return bio;
2342}
2343
2344/*
2345 * this is a generic handler for readpage errors (default
2346 * readpage_io_failed_hook). if other copies exist, read those and write back
2347 * good data to the failed position. does not investigate in remapping the
2348 * failed extent elsewhere, hoping the device will be smart enough to do this as
2349 * needed
2350 */
2351
2352static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2353 struct page *page, u64 start, u64 end,
2354 int failed_mirror)
2355{
2356 struct io_failure_record *failrec;
2357 struct inode *inode = page->mapping->host;
2358 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2359 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2360 struct bio *bio;
70fd7614 2361 int read_mode = 0;
4e4cbee9 2362 blk_status_t status;
2fe6303e 2363 int ret;
a0b60d72 2364 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2fe6303e 2365
1f7ad75b 2366 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2367
2368 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2369 if (ret)
2370 return ret;
2371
a0b60d72 2372 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2373 failed_mirror)) {
7870d082 2374 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2375 return -EIO;
2376 }
2377
a0b60d72 2378 if (failed_bio_pages > 1)
70fd7614 2379 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2380
2381 phy_offset >>= inode->i_sb->s_blocksize_bits;
2382 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2383 start - page_offset(page),
8b110e39
MX
2384 (int)phy_offset, failed_bio->bi_end_io,
2385 NULL);
ebcc3263 2386 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2387
ab8d0fc4
JM
2388 btrfs_debug(btrfs_sb(inode->i_sb),
2389 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2390 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2391
8c27cb35 2392 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2393 failrec->bio_flags, 0);
4e4cbee9 2394 if (status) {
7870d082 2395 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2396 bio_put(bio);
4e4cbee9 2397 ret = blk_status_to_errno(status);
6c387ab2
MX
2398 }
2399
013bd4c3 2400 return ret;
4a54c8c1
JS
2401}
2402
d1310b2e
CM
2403/* lots and lots of room for performance fixes in the end_bio funcs */
2404
b5227c07 2405void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2406{
2407 int uptodate = (err == 0);
3e2426bd 2408 int ret = 0;
87826df0 2409
c629732d 2410 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2411
87826df0 2412 if (!uptodate) {
87826df0
JM
2413 ClearPageUptodate(page);
2414 SetPageError(page);
bff5baf8 2415 ret = err < 0 ? err : -EIO;
5dca6eea 2416 mapping_set_error(page->mapping, ret);
87826df0 2417 }
87826df0
JM
2418}
2419
d1310b2e
CM
2420/*
2421 * after a writepage IO is done, we need to:
2422 * clear the uptodate bits on error
2423 * clear the writeback bits in the extent tree for this IO
2424 * end_page_writeback if the page has no more pending IO
2425 *
2426 * Scheduling is not allowed, so the extent state tree is expected
2427 * to have one and only one object corresponding to this IO.
2428 */
4246a0b6 2429static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2430{
4e4cbee9 2431 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2432 struct bio_vec *bvec;
d1310b2e
CM
2433 u64 start;
2434 u64 end;
2c30c71b 2435 int i;
d1310b2e 2436
c09abff8 2437 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2438 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2439 struct page *page = bvec->bv_page;
0b246afa
JM
2440 struct inode *inode = page->mapping->host;
2441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2442
17a5adcc
AO
2443 /* We always issue full-page reads, but if some block
2444 * in a page fails to read, blk_update_request() will
2445 * advance bv_offset and adjust bv_len to compensate.
2446 * Print a warning for nonzero offsets, and an error
2447 * if they don't add up to a full page. */
09cbfeaf
KS
2448 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2449 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2450 btrfs_err(fs_info,
efe120a0
FH
2451 "partial page write in btrfs with offset %u and length %u",
2452 bvec->bv_offset, bvec->bv_len);
2453 else
0b246afa 2454 btrfs_info(fs_info,
5d163e0e 2455 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2456 bvec->bv_offset, bvec->bv_len);
2457 }
d1310b2e 2458
17a5adcc
AO
2459 start = page_offset(page);
2460 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2461
4e4cbee9 2462 end_extent_writepage(page, error, start, end);
17a5adcc 2463 end_page_writeback(page);
2c30c71b 2464 }
2b1f55b0 2465
d1310b2e 2466 bio_put(bio);
d1310b2e
CM
2467}
2468
883d0de4
MX
2469static void
2470endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2471 int uptodate)
2472{
2473 struct extent_state *cached = NULL;
2474 u64 end = start + len - 1;
2475
2476 if (uptodate && tree->track_uptodate)
2477 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2478 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2479}
2480
d1310b2e
CM
2481/*
2482 * after a readpage IO is done, we need to:
2483 * clear the uptodate bits on error
2484 * set the uptodate bits if things worked
2485 * set the page up to date if all extents in the tree are uptodate
2486 * clear the lock bit in the extent tree
2487 * unlock the page if there are no other extents locked for it
2488 *
2489 * Scheduling is not allowed, so the extent state tree is expected
2490 * to have one and only one object corresponding to this IO.
2491 */
4246a0b6 2492static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2493{
2c30c71b 2494 struct bio_vec *bvec;
4e4cbee9 2495 int uptodate = !bio->bi_status;
facc8a22 2496 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2497 struct extent_io_tree *tree, *failure_tree;
facc8a22 2498 u64 offset = 0;
d1310b2e
CM
2499 u64 start;
2500 u64 end;
facc8a22 2501 u64 len;
883d0de4
MX
2502 u64 extent_start = 0;
2503 u64 extent_len = 0;
5cf1ab56 2504 int mirror;
d1310b2e 2505 int ret;
2c30c71b 2506 int i;
d1310b2e 2507
c09abff8 2508 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2509 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2510 struct page *page = bvec->bv_page;
a71754fc 2511 struct inode *inode = page->mapping->host;
ab8d0fc4 2512 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2513
ab8d0fc4
JM
2514 btrfs_debug(fs_info,
2515 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2516 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2517 io_bio->mirror_num);
a71754fc 2518 tree = &BTRFS_I(inode)->io_tree;
7870d082 2519 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2520
17a5adcc
AO
2521 /* We always issue full-page reads, but if some block
2522 * in a page fails to read, blk_update_request() will
2523 * advance bv_offset and adjust bv_len to compensate.
2524 * Print a warning for nonzero offsets, and an error
2525 * if they don't add up to a full page. */
09cbfeaf
KS
2526 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2527 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2528 btrfs_err(fs_info,
2529 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2530 bvec->bv_offset, bvec->bv_len);
2531 else
ab8d0fc4
JM
2532 btrfs_info(fs_info,
2533 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2534 bvec->bv_offset, bvec->bv_len);
2535 }
d1310b2e 2536
17a5adcc
AO
2537 start = page_offset(page);
2538 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2539 len = bvec->bv_len;
d1310b2e 2540
9be3395b 2541 mirror = io_bio->mirror_num;
20c9801d 2542 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2543 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2544 page, start, end,
2545 mirror);
5ee0844d 2546 if (ret)
d1310b2e 2547 uptodate = 0;
5ee0844d 2548 else
7870d082
JB
2549 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2550 failure_tree, tree, start,
2551 page,
2552 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2553 }
ea466794 2554
f2a09da9
MX
2555 if (likely(uptodate))
2556 goto readpage_ok;
2557
20a7db8a 2558 if (tree->ops) {
5cf1ab56 2559 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2560 if (ret == -EAGAIN) {
2561 /*
2562 * Data inode's readpage_io_failed_hook() always
2563 * returns -EAGAIN.
2564 *
2565 * The generic bio_readpage_error handles errors
2566 * the following way: If possible, new read
2567 * requests are created and submitted and will
2568 * end up in end_bio_extent_readpage as well (if
2569 * we're lucky, not in the !uptodate case). In
2570 * that case it returns 0 and we just go on with
2571 * the next page in our bio. If it can't handle
2572 * the error it will return -EIO and we remain
2573 * responsible for that page.
2574 */
2575 ret = bio_readpage_error(bio, offset, page,
2576 start, end, mirror);
2577 if (ret == 0) {
4e4cbee9 2578 uptodate = !bio->bi_status;
9d0d1c8b
LB
2579 offset += len;
2580 continue;
2581 }
2582 }
2583
f4a8e656 2584 /*
9d0d1c8b
LB
2585 * metadata's readpage_io_failed_hook() always returns
2586 * -EIO and fixes nothing. -EIO is also returned if
2587 * data inode error could not be fixed.
f4a8e656 2588 */
9d0d1c8b 2589 ASSERT(ret == -EIO);
7e38326f 2590 }
f2a09da9 2591readpage_ok:
883d0de4 2592 if (likely(uptodate)) {
a71754fc 2593 loff_t i_size = i_size_read(inode);
09cbfeaf 2594 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2595 unsigned off;
a71754fc
JB
2596
2597 /* Zero out the end if this page straddles i_size */
09cbfeaf 2598 off = i_size & (PAGE_SIZE-1);
a583c026 2599 if (page->index == end_index && off)
09cbfeaf 2600 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2601 SetPageUptodate(page);
70dec807 2602 } else {
17a5adcc
AO
2603 ClearPageUptodate(page);
2604 SetPageError(page);
70dec807 2605 }
17a5adcc 2606 unlock_page(page);
facc8a22 2607 offset += len;
883d0de4
MX
2608
2609 if (unlikely(!uptodate)) {
2610 if (extent_len) {
2611 endio_readpage_release_extent(tree,
2612 extent_start,
2613 extent_len, 1);
2614 extent_start = 0;
2615 extent_len = 0;
2616 }
2617 endio_readpage_release_extent(tree, start,
2618 end - start + 1, 0);
2619 } else if (!extent_len) {
2620 extent_start = start;
2621 extent_len = end + 1 - start;
2622 } else if (extent_start + extent_len == start) {
2623 extent_len += end + 1 - start;
2624 } else {
2625 endio_readpage_release_extent(tree, extent_start,
2626 extent_len, uptodate);
2627 extent_start = start;
2628 extent_len = end + 1 - start;
2629 }
2c30c71b 2630 }
d1310b2e 2631
883d0de4
MX
2632 if (extent_len)
2633 endio_readpage_release_extent(tree, extent_start, extent_len,
2634 uptodate);
facc8a22 2635 if (io_bio->end_io)
4e4cbee9 2636 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2637 bio_put(bio);
d1310b2e
CM
2638}
2639
9be3395b 2640/*
184f999e
DS
2641 * Initialize the members up to but not including 'bio'. Use after allocating a
2642 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2643 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2644 */
184f999e 2645static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2646{
184f999e
DS
2647 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2648}
d1310b2e 2649
9be3395b 2650/*
6e707bcd
DS
2651 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2652 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2653 * for the appropriate container_of magic
9be3395b 2654 */
c821e7f3 2655struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2656{
2657 struct bio *bio;
d1310b2e 2658
8ac9f7c1 2659 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
74d46992 2660 bio_set_dev(bio, bdev);
c821e7f3 2661 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2662 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2663 return bio;
2664}
2665
8b6c1d56 2666struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2667{
23ea8e5a
MX
2668 struct btrfs_io_bio *btrfs_bio;
2669 struct bio *new;
9be3395b 2670
6e707bcd 2671 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2672 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2673 btrfs_bio = btrfs_io_bio(new);
184f999e 2674 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2675 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2676 return new;
2677}
9be3395b 2678
c5e4c3d7 2679struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2680{
facc8a22
MX
2681 struct bio *bio;
2682
6e707bcd 2683 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2684 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2685 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2686 return bio;
9be3395b
CM
2687}
2688
e477094f 2689struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2690{
2691 struct bio *bio;
2692 struct btrfs_io_bio *btrfs_bio;
2693
2694 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2695 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2696 ASSERT(bio);
2697
2698 btrfs_bio = btrfs_io_bio(bio);
184f999e 2699 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2700
2701 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2702 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2703 return bio;
2704}
9be3395b 2705
1f7ad75b
MC
2706static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2707 unsigned long bio_flags)
d1310b2e 2708{
4e4cbee9 2709 blk_status_t ret = 0;
c45a8f2d 2710 struct bio_vec *bvec = bio_last_bvec_all(bio);
70dec807
CM
2711 struct page *page = bvec->bv_page;
2712 struct extent_io_tree *tree = bio->bi_private;
70dec807 2713 u64 start;
70dec807 2714
4eee4fa4 2715 start = page_offset(page) + bvec->bv_offset;
70dec807 2716
902b22f3 2717 bio->bi_private = NULL;
d1310b2e 2718
20c9801d 2719 if (tree->ops)
c6100a4b 2720 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2721 mirror_num, bio_flags, start);
0b86a832 2722 else
4e49ea4a 2723 btrfsic_submit_bio(bio);
4a54c8c1 2724
4e4cbee9 2725 return blk_status_to_errno(ret);
d1310b2e
CM
2726}
2727
4b81ba48
DS
2728/*
2729 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2730 * @tree: tree so we can call our merge_bio hook
2731 * @wbc: optional writeback control for io accounting
2732 * @page: page to add to the bio
2733 * @pg_offset: offset of the new bio or to check whether we are adding
2734 * a contiguous page to the previous one
2735 * @size: portion of page that we want to write
2736 * @offset: starting offset in the page
2737 * @bdev: attach newly created bios to this bdev
5c2b1fd7 2738 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
2739 * @end_io_func: end_io callback for new bio
2740 * @mirror_num: desired mirror to read/write
2741 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2742 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48
DS
2743 */
2744static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2745 struct writeback_control *wbc,
6273b7f8 2746 struct page *page, u64 offset,
6c5a4e2c 2747 size_t size, unsigned long pg_offset,
d1310b2e
CM
2748 struct block_device *bdev,
2749 struct bio **bio_ret,
f188591e 2750 bio_end_io_t end_io_func,
c8b97818
CM
2751 int mirror_num,
2752 unsigned long prev_bio_flags,
005efedf
FM
2753 unsigned long bio_flags,
2754 bool force_bio_submit)
d1310b2e
CM
2755{
2756 int ret = 0;
2757 struct bio *bio;
09cbfeaf 2758 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2759 sector_t sector = offset >> 9;
d1310b2e 2760
5c2b1fd7
DS
2761 ASSERT(bio_ret);
2762
2763 if (*bio_ret) {
0c8508a6
DS
2764 bool contig;
2765 bool can_merge = true;
2766
d1310b2e 2767 bio = *bio_ret;
0c8508a6 2768 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 2769 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2770 else
f73a1c7d 2771 contig = bio_end_sector(bio) == sector;
c8b97818 2772
00032d38
DS
2773 if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2774 bio, bio_flags))
0c8508a6
DS
2775 can_merge = false;
2776
2777 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 2778 force_bio_submit ||
6c5a4e2c 2779 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2780 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2781 if (ret < 0) {
2782 *bio_ret = NULL;
79787eaa 2783 return ret;
289454ad 2784 }
d1310b2e
CM
2785 bio = NULL;
2786 } else {
da2f0f74
CM
2787 if (wbc)
2788 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2789 return 0;
2790 }
2791 }
c8b97818 2792
6273b7f8 2793 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2794 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2795 bio->bi_end_io = end_io_func;
2796 bio->bi_private = tree;
e6959b93 2797 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2798 bio->bi_opf = opf;
da2f0f74
CM
2799 if (wbc) {
2800 wbc_init_bio(wbc, bio);
2801 wbc_account_io(wbc, page, page_size);
2802 }
70dec807 2803
5c2b1fd7 2804 *bio_ret = bio;
d1310b2e
CM
2805
2806 return ret;
2807}
2808
48a3b636
ES
2809static void attach_extent_buffer_page(struct extent_buffer *eb,
2810 struct page *page)
d1310b2e
CM
2811{
2812 if (!PagePrivate(page)) {
2813 SetPagePrivate(page);
09cbfeaf 2814 get_page(page);
4f2de97a
JB
2815 set_page_private(page, (unsigned long)eb);
2816 } else {
2817 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2818 }
2819}
2820
4f2de97a 2821void set_page_extent_mapped(struct page *page)
d1310b2e 2822{
4f2de97a
JB
2823 if (!PagePrivate(page)) {
2824 SetPagePrivate(page);
09cbfeaf 2825 get_page(page);
4f2de97a
JB
2826 set_page_private(page, EXTENT_PAGE_PRIVATE);
2827 }
d1310b2e
CM
2828}
2829
125bac01
MX
2830static struct extent_map *
2831__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2832 u64 start, u64 len, get_extent_t *get_extent,
2833 struct extent_map **em_cached)
2834{
2835 struct extent_map *em;
2836
2837 if (em_cached && *em_cached) {
2838 em = *em_cached;
cbc0e928 2839 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2840 start < extent_map_end(em)) {
490b54d6 2841 refcount_inc(&em->refs);
125bac01
MX
2842 return em;
2843 }
2844
2845 free_extent_map(em);
2846 *em_cached = NULL;
2847 }
2848
fc4f21b1 2849 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2850 if (em_cached && !IS_ERR_OR_NULL(em)) {
2851 BUG_ON(*em_cached);
490b54d6 2852 refcount_inc(&em->refs);
125bac01
MX
2853 *em_cached = em;
2854 }
2855 return em;
2856}
d1310b2e
CM
2857/*
2858 * basic readpage implementation. Locked extent state structs are inserted
2859 * into the tree that are removed when the IO is done (by the end_io
2860 * handlers)
79787eaa 2861 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2862 * return 0 on success, otherwise return error
d1310b2e 2863 */
9974090b
MX
2864static int __do_readpage(struct extent_io_tree *tree,
2865 struct page *page,
2866 get_extent_t *get_extent,
125bac01 2867 struct extent_map **em_cached,
9974090b 2868 struct bio **bio, int mirror_num,
f1c77c55 2869 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2870 u64 *prev_em_start)
d1310b2e
CM
2871{
2872 struct inode *inode = page->mapping->host;
4eee4fa4 2873 u64 start = page_offset(page);
8eec8296 2874 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
2875 u64 cur = start;
2876 u64 extent_offset;
2877 u64 last_byte = i_size_read(inode);
2878 u64 block_start;
2879 u64 cur_end;
d1310b2e
CM
2880 struct extent_map *em;
2881 struct block_device *bdev;
baf863b9 2882 int ret = 0;
d1310b2e 2883 int nr = 0;
306e16ce 2884 size_t pg_offset = 0;
d1310b2e 2885 size_t iosize;
c8b97818 2886 size_t disk_io_size;
d1310b2e 2887 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2888 unsigned long this_bio_flag = 0;
d1310b2e
CM
2889
2890 set_page_extent_mapped(page);
2891
90a887c9
DM
2892 if (!PageUptodate(page)) {
2893 if (cleancache_get_page(page) == 0) {
2894 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2895 unlock_extent(tree, start, end);
90a887c9
DM
2896 goto out;
2897 }
2898 }
2899
09cbfeaf 2900 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2901 char *userpage;
09cbfeaf 2902 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2903
2904 if (zero_offset) {
09cbfeaf 2905 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2906 userpage = kmap_atomic(page);
c8b97818
CM
2907 memset(userpage + zero_offset, 0, iosize);
2908 flush_dcache_page(page);
7ac687d9 2909 kunmap_atomic(userpage);
c8b97818
CM
2910 }
2911 }
d1310b2e 2912 while (cur <= end) {
005efedf 2913 bool force_bio_submit = false;
6273b7f8 2914 u64 offset;
c8f2f24b 2915
d1310b2e
CM
2916 if (cur >= last_byte) {
2917 char *userpage;
507903b8
AJ
2918 struct extent_state *cached = NULL;
2919
09cbfeaf 2920 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2921 userpage = kmap_atomic(page);
306e16ce 2922 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2923 flush_dcache_page(page);
7ac687d9 2924 kunmap_atomic(userpage);
d1310b2e 2925 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2926 &cached, GFP_NOFS);
7f042a83 2927 unlock_extent_cached(tree, cur,
e43bbe5e 2928 cur + iosize - 1, &cached);
d1310b2e
CM
2929 break;
2930 }
125bac01
MX
2931 em = __get_extent_map(inode, page, pg_offset, cur,
2932 end - cur + 1, get_extent, em_cached);
c704005d 2933 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2934 SetPageError(page);
7f042a83 2935 unlock_extent(tree, cur, end);
d1310b2e
CM
2936 break;
2937 }
d1310b2e
CM
2938 extent_offset = cur - em->start;
2939 BUG_ON(extent_map_end(em) <= cur);
2940 BUG_ON(end < cur);
2941
261507a0 2942 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2943 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2944 extent_set_compress_type(&this_bio_flag,
2945 em->compress_type);
2946 }
c8b97818 2947
d1310b2e
CM
2948 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2949 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2950 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2951 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2952 disk_io_size = em->block_len;
6273b7f8 2953 offset = em->block_start;
c8b97818 2954 } else {
6273b7f8 2955 offset = em->block_start + extent_offset;
c8b97818
CM
2956 disk_io_size = iosize;
2957 }
d1310b2e
CM
2958 bdev = em->bdev;
2959 block_start = em->block_start;
d899e052
YZ
2960 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2961 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2962
2963 /*
2964 * If we have a file range that points to a compressed extent
2965 * and it's followed by a consecutive file range that points to
2966 * to the same compressed extent (possibly with a different
2967 * offset and/or length, so it either points to the whole extent
2968 * or only part of it), we must make sure we do not submit a
2969 * single bio to populate the pages for the 2 ranges because
2970 * this makes the compressed extent read zero out the pages
2971 * belonging to the 2nd range. Imagine the following scenario:
2972 *
2973 * File layout
2974 * [0 - 8K] [8K - 24K]
2975 * | |
2976 * | |
2977 * points to extent X, points to extent X,
2978 * offset 4K, length of 8K offset 0, length 16K
2979 *
2980 * [extent X, compressed length = 4K uncompressed length = 16K]
2981 *
2982 * If the bio to read the compressed extent covers both ranges,
2983 * it will decompress extent X into the pages belonging to the
2984 * first range and then it will stop, zeroing out the remaining
2985 * pages that belong to the other range that points to extent X.
2986 * So here we make sure we submit 2 bios, one for the first
2987 * range and another one for the third range. Both will target
2988 * the same physical extent from disk, but we can't currently
2989 * make the compressed bio endio callback populate the pages
2990 * for both ranges because each compressed bio is tightly
2991 * coupled with a single extent map, and each range can have
2992 * an extent map with a different offset value relative to the
2993 * uncompressed data of our extent and different lengths. This
2994 * is a corner case so we prioritize correctness over
2995 * non-optimal behavior (submitting 2 bios for the same extent).
2996 */
2997 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
2998 prev_em_start && *prev_em_start != (u64)-1 &&
2999 *prev_em_start != em->orig_start)
3000 force_bio_submit = true;
3001
3002 if (prev_em_start)
3003 *prev_em_start = em->orig_start;
3004
d1310b2e
CM
3005 free_extent_map(em);
3006 em = NULL;
3007
3008 /* we've found a hole, just zero and go on */
3009 if (block_start == EXTENT_MAP_HOLE) {
3010 char *userpage;
507903b8
AJ
3011 struct extent_state *cached = NULL;
3012
7ac687d9 3013 userpage = kmap_atomic(page);
306e16ce 3014 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3015 flush_dcache_page(page);
7ac687d9 3016 kunmap_atomic(userpage);
d1310b2e
CM
3017
3018 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3019 &cached, GFP_NOFS);
7f042a83 3020 unlock_extent_cached(tree, cur,
e43bbe5e 3021 cur + iosize - 1, &cached);
d1310b2e 3022 cur = cur + iosize;
306e16ce 3023 pg_offset += iosize;
d1310b2e
CM
3024 continue;
3025 }
3026 /* the get_extent function already copied into the page */
9655d298
CM
3027 if (test_range_bit(tree, cur, cur_end,
3028 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3029 check_page_uptodate(tree, page);
7f042a83 3030 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3031 cur = cur + iosize;
306e16ce 3032 pg_offset += iosize;
d1310b2e
CM
3033 continue;
3034 }
70dec807
CM
3035 /* we have an inline extent but it didn't get marked up
3036 * to date. Error out
3037 */
3038 if (block_start == EXTENT_MAP_INLINE) {
3039 SetPageError(page);
7f042a83 3040 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3041 cur = cur + iosize;
306e16ce 3042 pg_offset += iosize;
70dec807
CM
3043 continue;
3044 }
d1310b2e 3045
4b81ba48 3046 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3047 page, offset, disk_io_size,
3048 pg_offset, bdev, bio,
c8b97818
CM
3049 end_bio_extent_readpage, mirror_num,
3050 *bio_flags,
005efedf
FM
3051 this_bio_flag,
3052 force_bio_submit);
c8f2f24b
JB
3053 if (!ret) {
3054 nr++;
3055 *bio_flags = this_bio_flag;
3056 } else {
d1310b2e 3057 SetPageError(page);
7f042a83 3058 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3059 goto out;
edd33c99 3060 }
d1310b2e 3061 cur = cur + iosize;
306e16ce 3062 pg_offset += iosize;
d1310b2e 3063 }
90a887c9 3064out:
d1310b2e
CM
3065 if (!nr) {
3066 if (!PageError(page))
3067 SetPageUptodate(page);
3068 unlock_page(page);
3069 }
baf863b9 3070 return ret;
d1310b2e
CM
3071}
3072
9974090b
MX
3073static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3074 struct page *pages[], int nr_pages,
3075 u64 start, u64 end,
125bac01 3076 struct extent_map **em_cached,
d3fac6ba 3077 struct bio **bio,
1f7ad75b 3078 unsigned long *bio_flags,
808f80b4 3079 u64 *prev_em_start)
9974090b
MX
3080{
3081 struct inode *inode;
3082 struct btrfs_ordered_extent *ordered;
3083 int index;
3084
3085 inode = pages[0]->mapping->host;
3086 while (1) {
3087 lock_extent(tree, start, end);
a776c6fa 3088 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3089 end - start + 1);
3090 if (!ordered)
3091 break;
3092 unlock_extent(tree, start, end);
3093 btrfs_start_ordered_extent(inode, ordered, 1);
3094 btrfs_put_ordered_extent(ordered);
3095 }
3096
3097 for (index = 0; index < nr_pages; index++) {
4ef77695 3098 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
5e9d3982 3099 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3100 put_page(pages[index]);
9974090b
MX
3101 }
3102}
3103
3104static void __extent_readpages(struct extent_io_tree *tree,
3105 struct page *pages[],
e4d17ef5 3106 int nr_pages,
125bac01 3107 struct extent_map **em_cached,
d3fac6ba 3108 struct bio **bio, unsigned long *bio_flags,
808f80b4 3109 u64 *prev_em_start)
9974090b 3110{
35a3621b 3111 u64 start = 0;
9974090b
MX
3112 u64 end = 0;
3113 u64 page_start;
3114 int index;
35a3621b 3115 int first_index = 0;
9974090b
MX
3116
3117 for (index = 0; index < nr_pages; index++) {
3118 page_start = page_offset(pages[index]);
3119 if (!end) {
3120 start = page_start;
09cbfeaf 3121 end = start + PAGE_SIZE - 1;
9974090b
MX
3122 first_index = index;
3123 } else if (end + 1 == page_start) {
09cbfeaf 3124 end += PAGE_SIZE;
9974090b
MX
3125 } else {
3126 __do_contiguous_readpages(tree, &pages[first_index],
3127 index - first_index, start,
4ef77695 3128 end, em_cached,
d3fac6ba 3129 bio, bio_flags,
1f7ad75b 3130 prev_em_start);
9974090b 3131 start = page_start;
09cbfeaf 3132 end = start + PAGE_SIZE - 1;
9974090b
MX
3133 first_index = index;
3134 }
3135 }
3136
3137 if (end)
3138 __do_contiguous_readpages(tree, &pages[first_index],
3139 index - first_index, start,
4ef77695 3140 end, em_cached, bio,
d3fac6ba 3141 bio_flags, prev_em_start);
9974090b
MX
3142}
3143
3144static int __extent_read_full_page(struct extent_io_tree *tree,
3145 struct page *page,
3146 get_extent_t *get_extent,
3147 struct bio **bio, int mirror_num,
f1c77c55
DS
3148 unsigned long *bio_flags,
3149 unsigned int read_flags)
9974090b
MX
3150{
3151 struct inode *inode = page->mapping->host;
3152 struct btrfs_ordered_extent *ordered;
3153 u64 start = page_offset(page);
09cbfeaf 3154 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3155 int ret;
3156
3157 while (1) {
3158 lock_extent(tree, start, end);
a776c6fa 3159 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3160 PAGE_SIZE);
9974090b
MX
3161 if (!ordered)
3162 break;
3163 unlock_extent(tree, start, end);
3164 btrfs_start_ordered_extent(inode, ordered, 1);
3165 btrfs_put_ordered_extent(ordered);
3166 }
3167
125bac01 3168 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3169 bio_flags, read_flags, NULL);
9974090b
MX
3170 return ret;
3171}
3172
d1310b2e 3173int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3174 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3175{
3176 struct bio *bio = NULL;
c8b97818 3177 unsigned long bio_flags = 0;
d1310b2e
CM
3178 int ret;
3179
8ddc7d9c 3180 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3181 &bio_flags, 0);
d1310b2e 3182 if (bio)
1f7ad75b 3183 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3184 return ret;
3185}
d1310b2e 3186
3d4b9496 3187static void update_nr_written(struct writeback_control *wbc,
a9132667 3188 unsigned long nr_written)
11c8349b
CM
3189{
3190 wbc->nr_to_write -= nr_written;
11c8349b
CM
3191}
3192
d1310b2e 3193/*
40f76580
CM
3194 * helper for __extent_writepage, doing all of the delayed allocation setup.
3195 *
5eaad97a 3196 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3197 * to write the page (copy into inline extent). In this case the IO has
3198 * been started and the page is already unlocked.
3199 *
3200 * This returns 0 if all went well (page still locked)
3201 * This returns < 0 if there were errors (page still locked)
d1310b2e 3202 */
40f76580 3203static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3204 struct page *page, struct writeback_control *wbc,
3205 u64 delalloc_start, unsigned long *nr_written)
40f76580 3206{
8cc0237a 3207 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
09cbfeaf 3208 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3209 u64 nr_delalloc;
3210 u64 delalloc_to_write = 0;
3211 u64 delalloc_end = 0;
3212 int ret;
3213 int page_started = 0;
3214
40f76580
CM
3215
3216 while (delalloc_end < page_end) {
3217 nr_delalloc = find_lock_delalloc_range(inode, tree,
3218 page,
3219 &delalloc_start,
3220 &delalloc_end,
dcab6a3b 3221 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3222 if (nr_delalloc == 0) {
3223 delalloc_start = delalloc_end + 1;
3224 continue;
3225 }
5eaad97a
NB
3226 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3227 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3228 /* File system has been set read-only */
3229 if (ret) {
3230 SetPageError(page);
5eaad97a
NB
3231 /*
3232 * btrfs_run_delalloc_range should return < 0 for error
3233 * but just in case, we use > 0 here meaning the IO is
3234 * started, so we don't want to return > 0 unless
3235 * things are going well.
40f76580
CM
3236 */
3237 ret = ret < 0 ? ret : -EIO;
3238 goto done;
3239 }
3240 /*
ea1754a0
KS
3241 * delalloc_end is already one less than the total length, so
3242 * we don't subtract one from PAGE_SIZE
40f76580
CM
3243 */
3244 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3245 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3246 delalloc_start = delalloc_end + 1;
3247 }
3248 if (wbc->nr_to_write < delalloc_to_write) {
3249 int thresh = 8192;
3250
3251 if (delalloc_to_write < thresh * 2)
3252 thresh = delalloc_to_write;
3253 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3254 thresh);
3255 }
3256
3257 /* did the fill delalloc function already unlock and start
3258 * the IO?
3259 */
3260 if (page_started) {
3261 /*
3262 * we've unlocked the page, so we can't update
3263 * the mapping's writeback index, just update
3264 * nr_to_write.
3265 */
3266 wbc->nr_to_write -= *nr_written;
3267 return 1;
3268 }
3269
3270 ret = 0;
3271
3272done:
3273 return ret;
3274}
3275
3276/*
3277 * helper for __extent_writepage. This calls the writepage start hooks,
3278 * and does the loop to map the page into extents and bios.
3279 *
3280 * We return 1 if the IO is started and the page is unlocked,
3281 * 0 if all went well (page still locked)
3282 * < 0 if there were errors (page still locked)
3283 */
3284static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3285 struct page *page,
3286 struct writeback_control *wbc,
3287 struct extent_page_data *epd,
3288 loff_t i_size,
3289 unsigned long nr_written,
f1c77c55 3290 unsigned int write_flags, int *nr_ret)
d1310b2e 3291{
d1310b2e 3292 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3293 u64 start = page_offset(page);
09cbfeaf 3294 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3295 u64 end;
3296 u64 cur = start;
3297 u64 extent_offset;
d1310b2e
CM
3298 u64 block_start;
3299 u64 iosize;
d1310b2e
CM
3300 struct extent_map *em;
3301 struct block_device *bdev;
7f3c74fb 3302 size_t pg_offset = 0;
d1310b2e 3303 size_t blocksize;
40f76580
CM
3304 int ret = 0;
3305 int nr = 0;
3306 bool compressed;
c8b97818 3307
d75855b4
NB
3308 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3309 if (ret) {
3310 /* Fixup worker will requeue */
3311 if (ret == -EBUSY)
3312 wbc->pages_skipped++;
3313 else
3314 redirty_page_for_writepage(wbc, page);
40f76580 3315
d75855b4
NB
3316 update_nr_written(wbc, nr_written);
3317 unlock_page(page);
3318 return 1;
247e743c
CM
3319 }
3320
11c8349b
CM
3321 /*
3322 * we don't want to touch the inode after unlocking the page,
3323 * so we update the mapping writeback index now
3324 */
3d4b9496 3325 update_nr_written(wbc, nr_written + 1);
771ed689 3326
d1310b2e 3327 end = page_end;
40f76580 3328 if (i_size <= start) {
c629732d 3329 btrfs_writepage_endio_finish_ordered(page, start, page_end, 1);
d1310b2e
CM
3330 goto done;
3331 }
3332
d1310b2e
CM
3333 blocksize = inode->i_sb->s_blocksize;
3334
3335 while (cur <= end) {
40f76580 3336 u64 em_end;
6273b7f8 3337 u64 offset;
58409edd 3338
40f76580 3339 if (cur >= i_size) {
7087a9d8 3340 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3341 page_end, 1);
d1310b2e
CM
3342 break;
3343 }
3c98c62f 3344 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3345 end - cur + 1, 1);
c704005d 3346 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3347 SetPageError(page);
61391d56 3348 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3349 break;
3350 }
3351
3352 extent_offset = cur - em->start;
40f76580
CM
3353 em_end = extent_map_end(em);
3354 BUG_ON(em_end <= cur);
d1310b2e 3355 BUG_ON(end < cur);
40f76580 3356 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3357 iosize = ALIGN(iosize, blocksize);
6273b7f8 3358 offset = em->block_start + extent_offset;
d1310b2e
CM
3359 bdev = em->bdev;
3360 block_start = em->block_start;
c8b97818 3361 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3362 free_extent_map(em);
3363 em = NULL;
3364
c8b97818
CM
3365 /*
3366 * compressed and inline extents are written through other
3367 * paths in the FS
3368 */
3369 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3370 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3371 /*
3372 * end_io notification does not happen here for
3373 * compressed extents
3374 */
7087a9d8
NB
3375 if (!compressed)
3376 btrfs_writepage_endio_finish_ordered(page, cur,
3377 cur + iosize - 1,
c629732d 3378 1);
c8b97818
CM
3379 else if (compressed) {
3380 /* we don't want to end_page_writeback on
3381 * a compressed extent. this happens
3382 * elsewhere
3383 */
3384 nr++;
3385 }
3386
3387 cur += iosize;
7f3c74fb 3388 pg_offset += iosize;
d1310b2e
CM
3389 continue;
3390 }
c8b97818 3391
5cdc84bf 3392 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3393 if (!PageWriteback(page)) {
3394 btrfs_err(BTRFS_I(inode)->root->fs_info,
3395 "page %lu not writeback, cur %llu end %llu",
3396 page->index, cur, end);
d1310b2e 3397 }
7f3c74fb 3398
4b81ba48 3399 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3400 page, offset, iosize, pg_offset,
c2df8bb4 3401 bdev, &epd->bio,
58409edd
DS
3402 end_bio_extent_writepage,
3403 0, 0, 0, false);
fe01aa65 3404 if (ret) {
58409edd 3405 SetPageError(page);
fe01aa65
TK
3406 if (PageWriteback(page))
3407 end_page_writeback(page);
3408 }
d1310b2e 3409
d1310b2e 3410 cur = cur + iosize;
7f3c74fb 3411 pg_offset += iosize;
d1310b2e
CM
3412 nr++;
3413 }
40f76580
CM
3414done:
3415 *nr_ret = nr;
40f76580
CM
3416 return ret;
3417}
3418
3419/*
3420 * the writepage semantics are similar to regular writepage. extent
3421 * records are inserted to lock ranges in the tree, and as dirty areas
3422 * are found, they are marked writeback. Then the lock bits are removed
3423 * and the end_io handler clears the writeback ranges
3424 */
3425static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3426 struct extent_page_data *epd)
40f76580
CM
3427{
3428 struct inode *inode = page->mapping->host;
40f76580 3429 u64 start = page_offset(page);
09cbfeaf 3430 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3431 int ret;
3432 int nr = 0;
3433 size_t pg_offset = 0;
3434 loff_t i_size = i_size_read(inode);
09cbfeaf 3435 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3436 unsigned int write_flags = 0;
40f76580
CM
3437 unsigned long nr_written = 0;
3438
ff40adf7 3439 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3440
3441 trace___extent_writepage(page, inode, wbc);
3442
3443 WARN_ON(!PageLocked(page));
3444
3445 ClearPageError(page);
3446
09cbfeaf 3447 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3448 if (page->index > end_index ||
3449 (page->index == end_index && !pg_offset)) {
09cbfeaf 3450 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3451 unlock_page(page);
3452 return 0;
3453 }
3454
3455 if (page->index == end_index) {
3456 char *userpage;
3457
3458 userpage = kmap_atomic(page);
3459 memset(userpage + pg_offset, 0,
09cbfeaf 3460 PAGE_SIZE - pg_offset);
40f76580
CM
3461 kunmap_atomic(userpage);
3462 flush_dcache_page(page);
3463 }
3464
3465 pg_offset = 0;
3466
3467 set_page_extent_mapped(page);
3468
7789a55a 3469 if (!epd->extent_locked) {
8cc0237a 3470 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a
NB
3471 if (ret == 1)
3472 goto done_unlocked;
3473 if (ret)
3474 goto done;
3475 }
40f76580
CM
3476
3477 ret = __extent_writepage_io(inode, page, wbc, epd,
3478 i_size, nr_written, write_flags, &nr);
3479 if (ret == 1)
3480 goto done_unlocked;
3481
d1310b2e
CM
3482done:
3483 if (nr == 0) {
3484 /* make sure the mapping tag for page dirty gets cleared */
3485 set_page_writeback(page);
3486 end_page_writeback(page);
3487 }
61391d56
FM
3488 if (PageError(page)) {
3489 ret = ret < 0 ? ret : -EIO;
3490 end_extent_writepage(page, ret, start, page_end);
3491 }
d1310b2e 3492 unlock_page(page);
40f76580 3493 return ret;
771ed689 3494
11c8349b 3495done_unlocked:
d1310b2e
CM
3496 return 0;
3497}
3498
fd8b2b61 3499void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3500{
74316201
N
3501 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3502 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3503}
3504
0e378df1
CM
3505static noinline_for_stack int
3506lock_extent_buffer_for_io(struct extent_buffer *eb,
3507 struct btrfs_fs_info *fs_info,
3508 struct extent_page_data *epd)
0b32f4bb 3509{
cc5e31a4 3510 int i, num_pages;
0b32f4bb
JB
3511 int flush = 0;
3512 int ret = 0;
3513
3514 if (!btrfs_try_tree_write_lock(eb)) {
3515 flush = 1;
3516 flush_write_bio(epd);
3517 btrfs_tree_lock(eb);
3518 }
3519
3520 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3521 btrfs_tree_unlock(eb);
3522 if (!epd->sync_io)
3523 return 0;
3524 if (!flush) {
3525 flush_write_bio(epd);
3526 flush = 1;
3527 }
a098d8e8
CM
3528 while (1) {
3529 wait_on_extent_buffer_writeback(eb);
3530 btrfs_tree_lock(eb);
3531 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3532 break;
0b32f4bb 3533 btrfs_tree_unlock(eb);
0b32f4bb
JB
3534 }
3535 }
3536
51561ffe
JB
3537 /*
3538 * We need to do this to prevent races in people who check if the eb is
3539 * under IO since we can end up having no IO bits set for a short period
3540 * of time.
3541 */
3542 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3543 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3544 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3545 spin_unlock(&eb->refs_lock);
0b32f4bb 3546 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3547 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3548 -eb->len,
3549 fs_info->dirty_metadata_batch);
0b32f4bb 3550 ret = 1;
51561ffe
JB
3551 } else {
3552 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3553 }
3554
3555 btrfs_tree_unlock(eb);
3556
3557 if (!ret)
3558 return ret;
3559
65ad0104 3560 num_pages = num_extent_pages(eb);
0b32f4bb 3561 for (i = 0; i < num_pages; i++) {
fb85fc9a 3562 struct page *p = eb->pages[i];
0b32f4bb
JB
3563
3564 if (!trylock_page(p)) {
3565 if (!flush) {
3566 flush_write_bio(epd);
3567 flush = 1;
3568 }
3569 lock_page(p);
3570 }
3571 }
3572
3573 return ret;
3574}
3575
3576static void end_extent_buffer_writeback(struct extent_buffer *eb)
3577{
3578 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3579 smp_mb__after_atomic();
0b32f4bb
JB
3580 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3581}
3582
656f30db
FM
3583static void set_btree_ioerr(struct page *page)
3584{
3585 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3586
3587 SetPageError(page);
3588 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3589 return;
3590
3591 /*
3592 * If writeback for a btree extent that doesn't belong to a log tree
3593 * failed, increment the counter transaction->eb_write_errors.
3594 * We do this because while the transaction is running and before it's
3595 * committing (when we call filemap_fdata[write|wait]_range against
3596 * the btree inode), we might have
3597 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3598 * returns an error or an error happens during writeback, when we're
3599 * committing the transaction we wouldn't know about it, since the pages
3600 * can be no longer dirty nor marked anymore for writeback (if a
3601 * subsequent modification to the extent buffer didn't happen before the
3602 * transaction commit), which makes filemap_fdata[write|wait]_range not
3603 * able to find the pages tagged with SetPageError at transaction
3604 * commit time. So if this happens we must abort the transaction,
3605 * otherwise we commit a super block with btree roots that point to
3606 * btree nodes/leafs whose content on disk is invalid - either garbage
3607 * or the content of some node/leaf from a past generation that got
3608 * cowed or deleted and is no longer valid.
3609 *
3610 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3611 * not be enough - we need to distinguish between log tree extents vs
3612 * non-log tree extents, and the next filemap_fdatawait_range() call
3613 * will catch and clear such errors in the mapping - and that call might
3614 * be from a log sync and not from a transaction commit. Also, checking
3615 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3616 * not done and would not be reliable - the eb might have been released
3617 * from memory and reading it back again means that flag would not be
3618 * set (since it's a runtime flag, not persisted on disk).
3619 *
3620 * Using the flags below in the btree inode also makes us achieve the
3621 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3622 * writeback for all dirty pages and before filemap_fdatawait_range()
3623 * is called, the writeback for all dirty pages had already finished
3624 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3625 * filemap_fdatawait_range() would return success, as it could not know
3626 * that writeback errors happened (the pages were no longer tagged for
3627 * writeback).
3628 */
3629 switch (eb->log_index) {
3630 case -1:
afcdd129 3631 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3632 break;
3633 case 0:
afcdd129 3634 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3635 break;
3636 case 1:
afcdd129 3637 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3638 break;
3639 default:
3640 BUG(); /* unexpected, logic error */
3641 }
3642}
3643
4246a0b6 3644static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3645{
2c30c71b 3646 struct bio_vec *bvec;
0b32f4bb 3647 struct extent_buffer *eb;
2c30c71b 3648 int i, done;
0b32f4bb 3649
c09abff8 3650 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3651 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3652 struct page *page = bvec->bv_page;
3653
0b32f4bb
JB
3654 eb = (struct extent_buffer *)page->private;
3655 BUG_ON(!eb);
3656 done = atomic_dec_and_test(&eb->io_pages);
3657
4e4cbee9 3658 if (bio->bi_status ||
4246a0b6 3659 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3660 ClearPageUptodate(page);
656f30db 3661 set_btree_ioerr(page);
0b32f4bb
JB
3662 }
3663
3664 end_page_writeback(page);
3665
3666 if (!done)
3667 continue;
3668
3669 end_extent_buffer_writeback(eb);
2c30c71b 3670 }
0b32f4bb
JB
3671
3672 bio_put(bio);
0b32f4bb
JB
3673}
3674
0e378df1 3675static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3676 struct btrfs_fs_info *fs_info,
3677 struct writeback_control *wbc,
3678 struct extent_page_data *epd)
3679{
3680 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3681 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3682 u64 offset = eb->start;
851cd173 3683 u32 nritems;
cc5e31a4 3684 int i, num_pages;
851cd173 3685 unsigned long start, end;
ff40adf7 3686 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3687 int ret = 0;
0b32f4bb 3688
656f30db 3689 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3690 num_pages = num_extent_pages(eb);
0b32f4bb 3691 atomic_set(&eb->io_pages, num_pages);
de0022b9 3692
851cd173
LB
3693 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3694 nritems = btrfs_header_nritems(eb);
3eb548ee 3695 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3696 end = btrfs_node_key_ptr_offset(nritems);
3697
b159fa28 3698 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3699 } else {
3700 /*
3701 * leaf:
3702 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3703 */
3704 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3705 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3706 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3707 }
3708
0b32f4bb 3709 for (i = 0; i < num_pages; i++) {
fb85fc9a 3710 struct page *p = eb->pages[i];
0b32f4bb
JB
3711
3712 clear_page_dirty_for_io(p);
3713 set_page_writeback(p);
4b81ba48 3714 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3715 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3716 &epd->bio,
1f7ad75b 3717 end_bio_extent_buffer_writepage,
18fdc679 3718 0, 0, 0, false);
0b32f4bb 3719 if (ret) {
656f30db 3720 set_btree_ioerr(p);
fe01aa65
TK
3721 if (PageWriteback(p))
3722 end_page_writeback(p);
0b32f4bb
JB
3723 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3724 end_extent_buffer_writeback(eb);
3725 ret = -EIO;
3726 break;
3727 }
09cbfeaf 3728 offset += PAGE_SIZE;
3d4b9496 3729 update_nr_written(wbc, 1);
0b32f4bb
JB
3730 unlock_page(p);
3731 }
3732
3733 if (unlikely(ret)) {
3734 for (; i < num_pages; i++) {
bbf65cf0 3735 struct page *p = eb->pages[i];
81465028 3736 clear_page_dirty_for_io(p);
0b32f4bb
JB
3737 unlock_page(p);
3738 }
3739 }
3740
3741 return ret;
3742}
3743
3744int btree_write_cache_pages(struct address_space *mapping,
3745 struct writeback_control *wbc)
3746{
3747 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3748 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3749 struct extent_buffer *eb, *prev_eb = NULL;
3750 struct extent_page_data epd = {
3751 .bio = NULL,
3752 .tree = tree,
3753 .extent_locked = 0,
3754 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3755 };
3756 int ret = 0;
3757 int done = 0;
3758 int nr_to_write_done = 0;
3759 struct pagevec pvec;
3760 int nr_pages;
3761 pgoff_t index;
3762 pgoff_t end; /* Inclusive */
3763 int scanned = 0;
10bbd235 3764 xa_mark_t tag;
0b32f4bb 3765
86679820 3766 pagevec_init(&pvec);
0b32f4bb
JB
3767 if (wbc->range_cyclic) {
3768 index = mapping->writeback_index; /* Start from prev offset */
3769 end = -1;
3770 } else {
09cbfeaf
KS
3771 index = wbc->range_start >> PAGE_SHIFT;
3772 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3773 scanned = 1;
3774 }
3775 if (wbc->sync_mode == WB_SYNC_ALL)
3776 tag = PAGECACHE_TAG_TOWRITE;
3777 else
3778 tag = PAGECACHE_TAG_DIRTY;
3779retry:
3780 if (wbc->sync_mode == WB_SYNC_ALL)
3781 tag_pages_for_writeback(mapping, index, end);
3782 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3783 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3784 tag))) {
0b32f4bb
JB
3785 unsigned i;
3786
3787 scanned = 1;
3788 for (i = 0; i < nr_pages; i++) {
3789 struct page *page = pvec.pages[i];
3790
3791 if (!PagePrivate(page))
3792 continue;
3793
b5bae261
JB
3794 spin_lock(&mapping->private_lock);
3795 if (!PagePrivate(page)) {
3796 spin_unlock(&mapping->private_lock);
3797 continue;
3798 }
3799
0b32f4bb 3800 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3801
3802 /*
3803 * Shouldn't happen and normally this would be a BUG_ON
3804 * but no sense in crashing the users box for something
3805 * we can survive anyway.
3806 */
fae7f21c 3807 if (WARN_ON(!eb)) {
b5bae261 3808 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3809 continue;
3810 }
3811
b5bae261
JB
3812 if (eb == prev_eb) {
3813 spin_unlock(&mapping->private_lock);
0b32f4bb 3814 continue;
b5bae261 3815 }
0b32f4bb 3816
b5bae261
JB
3817 ret = atomic_inc_not_zero(&eb->refs);
3818 spin_unlock(&mapping->private_lock);
3819 if (!ret)
0b32f4bb 3820 continue;
0b32f4bb
JB
3821
3822 prev_eb = eb;
3823 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3824 if (!ret) {
3825 free_extent_buffer(eb);
3826 continue;
3827 }
3828
3829 ret = write_one_eb(eb, fs_info, wbc, &epd);
3830 if (ret) {
3831 done = 1;
3832 free_extent_buffer(eb);
3833 break;
3834 }
3835 free_extent_buffer(eb);
3836
3837 /*
3838 * the filesystem may choose to bump up nr_to_write.
3839 * We have to make sure to honor the new nr_to_write
3840 * at any time
3841 */
3842 nr_to_write_done = wbc->nr_to_write <= 0;
3843 }
3844 pagevec_release(&pvec);
3845 cond_resched();
3846 }
3847 if (!scanned && !done) {
3848 /*
3849 * We hit the last page and there is more work to be done: wrap
3850 * back to the start of the file
3851 */
3852 scanned = 1;
3853 index = 0;
3854 goto retry;
3855 }
3856 flush_write_bio(&epd);
3857 return ret;
3858}
3859
d1310b2e 3860/**
4bef0848 3861 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3862 * @mapping: address space structure to write
3863 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3864 * @data: data passed to __extent_writepage function
d1310b2e
CM
3865 *
3866 * If a page is already under I/O, write_cache_pages() skips it, even
3867 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3868 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3869 * and msync() need to guarantee that all the data which was dirty at the time
3870 * the call was made get new I/O started against them. If wbc->sync_mode is
3871 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3872 * existing IO to complete.
3873 */
4242b64a 3874static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3875 struct writeback_control *wbc,
aab6e9ed 3876 struct extent_page_data *epd)
d1310b2e 3877{
7fd1a3f7 3878 struct inode *inode = mapping->host;
d1310b2e
CM
3879 int ret = 0;
3880 int done = 0;
f85d7d6c 3881 int nr_to_write_done = 0;
d1310b2e
CM
3882 struct pagevec pvec;
3883 int nr_pages;
3884 pgoff_t index;
3885 pgoff_t end; /* Inclusive */
a9132667
LB
3886 pgoff_t done_index;
3887 int range_whole = 0;
d1310b2e 3888 int scanned = 0;
10bbd235 3889 xa_mark_t tag;
d1310b2e 3890
7fd1a3f7
JB
3891 /*
3892 * We have to hold onto the inode so that ordered extents can do their
3893 * work when the IO finishes. The alternative to this is failing to add
3894 * an ordered extent if the igrab() fails there and that is a huge pain
3895 * to deal with, so instead just hold onto the inode throughout the
3896 * writepages operation. If it fails here we are freeing up the inode
3897 * anyway and we'd rather not waste our time writing out stuff that is
3898 * going to be truncated anyway.
3899 */
3900 if (!igrab(inode))
3901 return 0;
3902
86679820 3903 pagevec_init(&pvec);
d1310b2e
CM
3904 if (wbc->range_cyclic) {
3905 index = mapping->writeback_index; /* Start from prev offset */
3906 end = -1;
3907 } else {
09cbfeaf
KS
3908 index = wbc->range_start >> PAGE_SHIFT;
3909 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3910 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3911 range_whole = 1;
d1310b2e
CM
3912 scanned = 1;
3913 }
f7aaa06b
JB
3914 if (wbc->sync_mode == WB_SYNC_ALL)
3915 tag = PAGECACHE_TAG_TOWRITE;
3916 else
3917 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3918retry:
f7aaa06b
JB
3919 if (wbc->sync_mode == WB_SYNC_ALL)
3920 tag_pages_for_writeback(mapping, index, end);
a9132667 3921 done_index = index;
f85d7d6c 3922 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3923 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3924 &index, end, tag))) {
d1310b2e
CM
3925 unsigned i;
3926
3927 scanned = 1;
3928 for (i = 0; i < nr_pages; i++) {
3929 struct page *page = pvec.pages[i];
3930
a9132667 3931 done_index = page->index;
d1310b2e 3932 /*
b93b0163
MW
3933 * At this point we hold neither the i_pages lock nor
3934 * the page lock: the page may be truncated or
3935 * invalidated (changing page->mapping to NULL),
3936 * or even swizzled back from swapper_space to
3937 * tmpfs file mapping
d1310b2e 3938 */
c8f2f24b 3939 if (!trylock_page(page)) {
aab6e9ed 3940 flush_write_bio(epd);
c8f2f24b 3941 lock_page(page);
01d658f2 3942 }
d1310b2e
CM
3943
3944 if (unlikely(page->mapping != mapping)) {
3945 unlock_page(page);
3946 continue;
3947 }
3948
d2c3f4f6 3949 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3950 if (PageWriteback(page))
aab6e9ed 3951 flush_write_bio(epd);
d1310b2e 3952 wait_on_page_writeback(page);
d2c3f4f6 3953 }
d1310b2e
CM
3954
3955 if (PageWriteback(page) ||
3956 !clear_page_dirty_for_io(page)) {
3957 unlock_page(page);
3958 continue;
3959 }
3960
aab6e9ed 3961 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3962
3963 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3964 unlock_page(page);
3965 ret = 0;
3966 }
a9132667
LB
3967 if (ret < 0) {
3968 /*
3969 * done_index is set past this page,
3970 * so media errors will not choke
3971 * background writeout for the entire
3972 * file. This has consequences for
3973 * range_cyclic semantics (ie. it may
3974 * not be suitable for data integrity
3975 * writeout).
3976 */
3977 done_index = page->index + 1;
3978 done = 1;
3979 break;
3980 }
f85d7d6c
CM
3981
3982 /*
3983 * the filesystem may choose to bump up nr_to_write.
3984 * We have to make sure to honor the new nr_to_write
3985 * at any time
3986 */
3987 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3988 }
3989 pagevec_release(&pvec);
3990 cond_resched();
3991 }
894b36e3 3992 if (!scanned && !done) {
d1310b2e
CM
3993 /*
3994 * We hit the last page and there is more work to be done: wrap
3995 * back to the start of the file
3996 */
3997 scanned = 1;
3998 index = 0;
3999 goto retry;
4000 }
a9132667
LB
4001
4002 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4003 mapping->writeback_index = done_index;
4004
7fd1a3f7 4005 btrfs_add_delayed_iput(inode);
894b36e3 4006 return ret;
d1310b2e 4007}
d1310b2e 4008
aab6e9ed 4009static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4010{
d2c3f4f6 4011 if (epd->bio) {
355808c2
JM
4012 int ret;
4013
18fdc679 4014 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4015 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4016 epd->bio = NULL;
4017 }
4018}
4019
0a9b0e53 4020int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4021{
4022 int ret;
d1310b2e
CM
4023 struct extent_page_data epd = {
4024 .bio = NULL,
0a9b0e53 4025 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4026 .extent_locked = 0,
ffbd517d 4027 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4028 };
d1310b2e 4029
d1310b2e
CM
4030 ret = __extent_writepage(page, wbc, &epd);
4031
e2932ee0 4032 flush_write_bio(&epd);
d1310b2e
CM
4033 return ret;
4034}
d1310b2e 4035
5e3ee236 4036int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4037 int mode)
4038{
4039 int ret = 0;
4040 struct address_space *mapping = inode->i_mapping;
5e3ee236 4041 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4042 struct page *page;
09cbfeaf
KS
4043 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4044 PAGE_SHIFT;
771ed689
CM
4045
4046 struct extent_page_data epd = {
4047 .bio = NULL,
4048 .tree = tree,
771ed689 4049 .extent_locked = 1,
ffbd517d 4050 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4051 };
4052 struct writeback_control wbc_writepages = {
771ed689 4053 .sync_mode = mode,
771ed689
CM
4054 .nr_to_write = nr_pages * 2,
4055 .range_start = start,
4056 .range_end = end + 1,
4057 };
4058
d397712b 4059 while (start <= end) {
09cbfeaf 4060 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4061 if (clear_page_dirty_for_io(page))
4062 ret = __extent_writepage(page, &wbc_writepages, &epd);
4063 else {
7087a9d8 4064 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4065 start + PAGE_SIZE - 1, 1);
771ed689
CM
4066 unlock_page(page);
4067 }
09cbfeaf
KS
4068 put_page(page);
4069 start += PAGE_SIZE;
771ed689
CM
4070 }
4071
e2932ee0 4072 flush_write_bio(&epd);
771ed689
CM
4073 return ret;
4074}
d1310b2e 4075
8ae225a8 4076int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4077 struct writeback_control *wbc)
4078{
4079 int ret = 0;
4080 struct extent_page_data epd = {
4081 .bio = NULL,
8ae225a8 4082 .tree = &BTRFS_I(mapping->host)->io_tree,
771ed689 4083 .extent_locked = 0,
ffbd517d 4084 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4085 };
4086
935db853 4087 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4088 flush_write_bio(&epd);
d1310b2e
CM
4089 return ret;
4090}
d1310b2e 4091
2a3ff0ad
NB
4092int extent_readpages(struct address_space *mapping, struct list_head *pages,
4093 unsigned nr_pages)
d1310b2e
CM
4094{
4095 struct bio *bio = NULL;
4096 unsigned page_idx;
c8b97818 4097 unsigned long bio_flags = 0;
67c9684f
LB
4098 struct page *pagepool[16];
4099 struct page *page;
125bac01 4100 struct extent_map *em_cached = NULL;
2a3ff0ad 4101 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
67c9684f 4102 int nr = 0;
808f80b4 4103 u64 prev_em_start = (u64)-1;
d1310b2e 4104
d1310b2e 4105 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4106 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4107
4108 prefetchw(&page->flags);
4109 list_del(&page->lru);
67c9684f 4110 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4111 page->index,
4112 readahead_gfp_mask(mapping))) {
09cbfeaf 4113 put_page(page);
67c9684f 4114 continue;
d1310b2e 4115 }
67c9684f
LB
4116
4117 pagepool[nr++] = page;
4118 if (nr < ARRAY_SIZE(pagepool))
4119 continue;
e4d17ef5
DS
4120 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4121 &bio_flags, &prev_em_start);
67c9684f 4122 nr = 0;
d1310b2e 4123 }
9974090b 4124 if (nr)
e4d17ef5
DS
4125 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4126 &bio_flags, &prev_em_start);
67c9684f 4127
125bac01
MX
4128 if (em_cached)
4129 free_extent_map(em_cached);
4130
d1310b2e
CM
4131 BUG_ON(!list_empty(pages));
4132 if (bio)
1f7ad75b 4133 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4134 return 0;
4135}
d1310b2e
CM
4136
4137/*
4138 * basic invalidatepage code, this waits on any locked or writeback
4139 * ranges corresponding to the page, and then deletes any extent state
4140 * records from the tree
4141 */
4142int extent_invalidatepage(struct extent_io_tree *tree,
4143 struct page *page, unsigned long offset)
4144{
2ac55d41 4145 struct extent_state *cached_state = NULL;
4eee4fa4 4146 u64 start = page_offset(page);
09cbfeaf 4147 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4148 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4149
fda2832f 4150 start += ALIGN(offset, blocksize);
d1310b2e
CM
4151 if (start > end)
4152 return 0;
4153
ff13db41 4154 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4155 wait_on_page_writeback(page);
d1310b2e 4156 clear_extent_bit(tree, start, end,
32c00aff
JB
4157 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4158 EXTENT_DO_ACCOUNTING,
ae0f1625 4159 1, 1, &cached_state);
d1310b2e
CM
4160 return 0;
4161}
d1310b2e 4162
7b13b7b1
CM
4163/*
4164 * a helper for releasepage, this tests for areas of the page that
4165 * are locked or under IO and drops the related state bits if it is safe
4166 * to drop the page.
4167 */
29c68b2d 4168static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4169 struct page *page, gfp_t mask)
7b13b7b1 4170{
4eee4fa4 4171 u64 start = page_offset(page);
09cbfeaf 4172 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4173 int ret = 1;
4174
211f90e6 4175 if (test_range_bit(tree, start, end,
8b62b72b 4176 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4177 ret = 0;
4178 else {
11ef160f
CM
4179 /*
4180 * at this point we can safely clear everything except the
4181 * locked bit and the nodatasum bit
4182 */
66b0c887 4183 ret = __clear_extent_bit(tree, start, end,
11ef160f 4184 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4185 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4186
4187 /* if clear_extent_bit failed for enomem reasons,
4188 * we can't allow the release to continue.
4189 */
4190 if (ret < 0)
4191 ret = 0;
4192 else
4193 ret = 1;
7b13b7b1
CM
4194 }
4195 return ret;
4196}
7b13b7b1 4197
d1310b2e
CM
4198/*
4199 * a helper for releasepage. As long as there are no locked extents
4200 * in the range corresponding to the page, both state records and extent
4201 * map records are removed
4202 */
477a30ba 4203int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4204{
4205 struct extent_map *em;
4eee4fa4 4206 u64 start = page_offset(page);
09cbfeaf 4207 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4208 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4209 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4210 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4211
d0164adc 4212 if (gfpflags_allow_blocking(mask) &&
ee22184b 4213 page->mapping->host->i_size > SZ_16M) {
39b5637f 4214 u64 len;
70dec807 4215 while (start <= end) {
39b5637f 4216 len = end - start + 1;
890871be 4217 write_lock(&map->lock);
39b5637f 4218 em = lookup_extent_mapping(map, start, len);
285190d9 4219 if (!em) {
890871be 4220 write_unlock(&map->lock);
70dec807
CM
4221 break;
4222 }
7f3c74fb
CM
4223 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4224 em->start != start) {
890871be 4225 write_unlock(&map->lock);
70dec807
CM
4226 free_extent_map(em);
4227 break;
4228 }
4229 if (!test_range_bit(tree, em->start,
4230 extent_map_end(em) - 1,
8b62b72b 4231 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4232 0, NULL)) {
bd3599a0
FM
4233 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4234 &btrfs_inode->runtime_flags);
70dec807
CM
4235 remove_extent_mapping(map, em);
4236 /* once for the rb tree */
4237 free_extent_map(em);
4238 }
4239 start = extent_map_end(em);
890871be 4240 write_unlock(&map->lock);
70dec807
CM
4241
4242 /* once for us */
d1310b2e
CM
4243 free_extent_map(em);
4244 }
d1310b2e 4245 }
29c68b2d 4246 return try_release_extent_state(tree, page, mask);
d1310b2e 4247}
d1310b2e 4248
ec29ed5b
CM
4249/*
4250 * helper function for fiemap, which doesn't want to see any holes.
4251 * This maps until we find something past 'last'
4252 */
4253static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4254 u64 offset, u64 last)
ec29ed5b 4255{
da17066c 4256 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4257 struct extent_map *em;
4258 u64 len;
4259
4260 if (offset >= last)
4261 return NULL;
4262
67871254 4263 while (1) {
ec29ed5b
CM
4264 len = last - offset;
4265 if (len == 0)
4266 break;
fda2832f 4267 len = ALIGN(len, sectorsize);
e3350e16
DS
4268 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4269 len, 0);
c704005d 4270 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4271 return em;
4272
4273 /* if this isn't a hole return it */
4a2d25cd 4274 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4275 return em;
ec29ed5b
CM
4276
4277 /* this is a hole, advance to the next extent */
4278 offset = extent_map_end(em);
4279 free_extent_map(em);
4280 if (offset >= last)
4281 break;
4282 }
4283 return NULL;
4284}
4285
4751832d
QW
4286/*
4287 * To cache previous fiemap extent
4288 *
4289 * Will be used for merging fiemap extent
4290 */
4291struct fiemap_cache {
4292 u64 offset;
4293 u64 phys;
4294 u64 len;
4295 u32 flags;
4296 bool cached;
4297};
4298
4299/*
4300 * Helper to submit fiemap extent.
4301 *
4302 * Will try to merge current fiemap extent specified by @offset, @phys,
4303 * @len and @flags with cached one.
4304 * And only when we fails to merge, cached one will be submitted as
4305 * fiemap extent.
4306 *
4307 * Return value is the same as fiemap_fill_next_extent().
4308 */
4309static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4310 struct fiemap_cache *cache,
4311 u64 offset, u64 phys, u64 len, u32 flags)
4312{
4313 int ret = 0;
4314
4315 if (!cache->cached)
4316 goto assign;
4317
4318 /*
4319 * Sanity check, extent_fiemap() should have ensured that new
4320 * fiemap extent won't overlap with cahced one.
4321 * Not recoverable.
4322 *
4323 * NOTE: Physical address can overlap, due to compression
4324 */
4325 if (cache->offset + cache->len > offset) {
4326 WARN_ON(1);
4327 return -EINVAL;
4328 }
4329
4330 /*
4331 * Only merges fiemap extents if
4332 * 1) Their logical addresses are continuous
4333 *
4334 * 2) Their physical addresses are continuous
4335 * So truly compressed (physical size smaller than logical size)
4336 * extents won't get merged with each other
4337 *
4338 * 3) Share same flags except FIEMAP_EXTENT_LAST
4339 * So regular extent won't get merged with prealloc extent
4340 */
4341 if (cache->offset + cache->len == offset &&
4342 cache->phys + cache->len == phys &&
4343 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4344 (flags & ~FIEMAP_EXTENT_LAST)) {
4345 cache->len += len;
4346 cache->flags |= flags;
4347 goto try_submit_last;
4348 }
4349
4350 /* Not mergeable, need to submit cached one */
4351 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4352 cache->len, cache->flags);
4353 cache->cached = false;
4354 if (ret)
4355 return ret;
4356assign:
4357 cache->cached = true;
4358 cache->offset = offset;
4359 cache->phys = phys;
4360 cache->len = len;
4361 cache->flags = flags;
4362try_submit_last:
4363 if (cache->flags & FIEMAP_EXTENT_LAST) {
4364 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4365 cache->phys, cache->len, cache->flags);
4366 cache->cached = false;
4367 }
4368 return ret;
4369}
4370
4371/*
848c23b7 4372 * Emit last fiemap cache
4751832d 4373 *
848c23b7
QW
4374 * The last fiemap cache may still be cached in the following case:
4375 * 0 4k 8k
4376 * |<- Fiemap range ->|
4377 * |<------------ First extent ----------->|
4378 *
4379 * In this case, the first extent range will be cached but not emitted.
4380 * So we must emit it before ending extent_fiemap().
4751832d 4381 */
848c23b7
QW
4382static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4383 struct fiemap_extent_info *fieinfo,
4384 struct fiemap_cache *cache)
4751832d
QW
4385{
4386 int ret;
4387
4388 if (!cache->cached)
4389 return 0;
4390
4751832d
QW
4391 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4392 cache->len, cache->flags);
4393 cache->cached = false;
4394 if (ret > 0)
4395 ret = 0;
4396 return ret;
4397}
4398
1506fcc8 4399int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4400 __u64 start, __u64 len)
1506fcc8 4401{
975f84fe 4402 int ret = 0;
1506fcc8
YS
4403 u64 off = start;
4404 u64 max = start + len;
4405 u32 flags = 0;
975f84fe
JB
4406 u32 found_type;
4407 u64 last;
ec29ed5b 4408 u64 last_for_get_extent = 0;
1506fcc8 4409 u64 disko = 0;
ec29ed5b 4410 u64 isize = i_size_read(inode);
975f84fe 4411 struct btrfs_key found_key;
1506fcc8 4412 struct extent_map *em = NULL;
2ac55d41 4413 struct extent_state *cached_state = NULL;
975f84fe 4414 struct btrfs_path *path;
dc046b10 4415 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4416 struct fiemap_cache cache = { 0 };
1506fcc8 4417 int end = 0;
ec29ed5b
CM
4418 u64 em_start = 0;
4419 u64 em_len = 0;
4420 u64 em_end = 0;
1506fcc8
YS
4421
4422 if (len == 0)
4423 return -EINVAL;
4424
975f84fe
JB
4425 path = btrfs_alloc_path();
4426 if (!path)
4427 return -ENOMEM;
4428 path->leave_spinning = 1;
4429
da17066c
JM
4430 start = round_down(start, btrfs_inode_sectorsize(inode));
4431 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4432
ec29ed5b
CM
4433 /*
4434 * lookup the last file extent. We're not using i_size here
4435 * because there might be preallocation past i_size
4436 */
f85b7379
DS
4437 ret = btrfs_lookup_file_extent(NULL, root, path,
4438 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4439 if (ret < 0) {
4440 btrfs_free_path(path);
4441 return ret;
2d324f59
LB
4442 } else {
4443 WARN_ON(!ret);
4444 if (ret == 1)
4445 ret = 0;
975f84fe 4446 }
2d324f59 4447
975f84fe 4448 path->slots[0]--;
975f84fe 4449 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4450 found_type = found_key.type;
975f84fe 4451
ec29ed5b 4452 /* No extents, but there might be delalloc bits */
4a0cc7ca 4453 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4454 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4455 /* have to trust i_size as the end */
4456 last = (u64)-1;
4457 last_for_get_extent = isize;
4458 } else {
4459 /*
4460 * remember the start of the last extent. There are a
4461 * bunch of different factors that go into the length of the
4462 * extent, so its much less complex to remember where it started
4463 */
4464 last = found_key.offset;
4465 last_for_get_extent = last + 1;
975f84fe 4466 }
fe09e16c 4467 btrfs_release_path(path);
975f84fe 4468
ec29ed5b
CM
4469 /*
4470 * we might have some extents allocated but more delalloc past those
4471 * extents. so, we trust isize unless the start of the last extent is
4472 * beyond isize
4473 */
4474 if (last < isize) {
4475 last = (u64)-1;
4476 last_for_get_extent = isize;
4477 }
4478
ff13db41 4479 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4480 &cached_state);
ec29ed5b 4481
e3350e16 4482 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4483 if (!em)
4484 goto out;
4485 if (IS_ERR(em)) {
4486 ret = PTR_ERR(em);
4487 goto out;
4488 }
975f84fe 4489
1506fcc8 4490 while (!end) {
b76bb701 4491 u64 offset_in_extent = 0;
ea8efc74
CM
4492
4493 /* break if the extent we found is outside the range */
4494 if (em->start >= max || extent_map_end(em) < off)
4495 break;
4496
4497 /*
4498 * get_extent may return an extent that starts before our
4499 * requested range. We have to make sure the ranges
4500 * we return to fiemap always move forward and don't
4501 * overlap, so adjust the offsets here
4502 */
4503 em_start = max(em->start, off);
1506fcc8 4504
ea8efc74
CM
4505 /*
4506 * record the offset from the start of the extent
b76bb701
JB
4507 * for adjusting the disk offset below. Only do this if the
4508 * extent isn't compressed since our in ram offset may be past
4509 * what we have actually allocated on disk.
ea8efc74 4510 */
b76bb701
JB
4511 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4512 offset_in_extent = em_start - em->start;
ec29ed5b 4513 em_end = extent_map_end(em);
ea8efc74 4514 em_len = em_end - em_start;
1506fcc8 4515 flags = 0;
f0986318
FM
4516 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4517 disko = em->block_start + offset_in_extent;
4518 else
4519 disko = 0;
1506fcc8 4520
ea8efc74
CM
4521 /*
4522 * bump off for our next call to get_extent
4523 */
4524 off = extent_map_end(em);
4525 if (off >= max)
4526 end = 1;
4527
93dbfad7 4528 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4529 end = 1;
4530 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4531 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4532 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4533 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4534 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4535 flags |= (FIEMAP_EXTENT_DELALLOC |
4536 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4537 } else if (fieinfo->fi_extents_max) {
4538 u64 bytenr = em->block_start -
4539 (em->start - em->orig_start);
fe09e16c 4540
fe09e16c
LB
4541 /*
4542 * As btrfs supports shared space, this information
4543 * can be exported to userspace tools via
dc046b10
JB
4544 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4545 * then we're just getting a count and we can skip the
4546 * lookup stuff.
fe09e16c 4547 */
bb739cf0
EN
4548 ret = btrfs_check_shared(root,
4549 btrfs_ino(BTRFS_I(inode)),
4550 bytenr);
dc046b10 4551 if (ret < 0)
fe09e16c 4552 goto out_free;
dc046b10 4553 if (ret)
fe09e16c 4554 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4555 ret = 0;
1506fcc8
YS
4556 }
4557 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4558 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4559 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4560 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4561
1506fcc8
YS
4562 free_extent_map(em);
4563 em = NULL;
ec29ed5b
CM
4564 if ((em_start >= last) || em_len == (u64)-1 ||
4565 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4566 flags |= FIEMAP_EXTENT_LAST;
4567 end = 1;
4568 }
4569
ec29ed5b 4570 /* now scan forward to see if this is really the last extent. */
e3350e16 4571 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4572 if (IS_ERR(em)) {
4573 ret = PTR_ERR(em);
4574 goto out;
4575 }
4576 if (!em) {
975f84fe
JB
4577 flags |= FIEMAP_EXTENT_LAST;
4578 end = 1;
4579 }
4751832d
QW
4580 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4581 em_len, flags);
26e726af
CS
4582 if (ret) {
4583 if (ret == 1)
4584 ret = 0;
ec29ed5b 4585 goto out_free;
26e726af 4586 }
1506fcc8
YS
4587 }
4588out_free:
4751832d 4589 if (!ret)
848c23b7 4590 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4591 free_extent_map(em);
4592out:
fe09e16c 4593 btrfs_free_path(path);
a52f4cd2 4594 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4595 &cached_state);
1506fcc8
YS
4596 return ret;
4597}
4598
727011e0
CM
4599static void __free_extent_buffer(struct extent_buffer *eb)
4600{
6d49ba1b 4601 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4602 kmem_cache_free(extent_buffer_cache, eb);
4603}
4604
a26e8c9f 4605int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4606{
4607 return (atomic_read(&eb->io_pages) ||
4608 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4609 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4610}
4611
4612/*
55ac0139 4613 * Release all pages attached to the extent buffer.
db7f3436 4614 */
55ac0139 4615static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4616{
d64766fd
NB
4617 int i;
4618 int num_pages;
b0132a3b 4619 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4620
4621 BUG_ON(extent_buffer_under_io(eb));
4622
d64766fd
NB
4623 num_pages = num_extent_pages(eb);
4624 for (i = 0; i < num_pages; i++) {
4625 struct page *page = eb->pages[i];
db7f3436 4626
5d2361db
FL
4627 if (!page)
4628 continue;
4629 if (mapped)
db7f3436 4630 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4631 /*
4632 * We do this since we'll remove the pages after we've
4633 * removed the eb from the radix tree, so we could race
4634 * and have this page now attached to the new eb. So
4635 * only clear page_private if it's still connected to
4636 * this eb.
4637 */
4638 if (PagePrivate(page) &&
4639 page->private == (unsigned long)eb) {
4640 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4641 BUG_ON(PageDirty(page));
4642 BUG_ON(PageWriteback(page));
db7f3436 4643 /*
5d2361db
FL
4644 * We need to make sure we haven't be attached
4645 * to a new eb.
db7f3436 4646 */
5d2361db
FL
4647 ClearPagePrivate(page);
4648 set_page_private(page, 0);
4649 /* One for the page private */
09cbfeaf 4650 put_page(page);
db7f3436 4651 }
5d2361db
FL
4652
4653 if (mapped)
4654 spin_unlock(&page->mapping->private_lock);
4655
01327610 4656 /* One for when we allocated the page */
09cbfeaf 4657 put_page(page);
d64766fd 4658 }
db7f3436
JB
4659}
4660
4661/*
4662 * Helper for releasing the extent buffer.
4663 */
4664static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4665{
55ac0139 4666 btrfs_release_extent_buffer_pages(eb);
db7f3436
JB
4667 __free_extent_buffer(eb);
4668}
4669
f28491e0
JB
4670static struct extent_buffer *
4671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4672 unsigned long len)
d1310b2e
CM
4673{
4674 struct extent_buffer *eb = NULL;
4675
d1b5c567 4676 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4677 eb->start = start;
4678 eb->len = len;
f28491e0 4679 eb->fs_info = fs_info;
815a51c7 4680 eb->bflags = 0;
bd681513
CM
4681 rwlock_init(&eb->lock);
4682 atomic_set(&eb->write_locks, 0);
4683 atomic_set(&eb->read_locks, 0);
4684 atomic_set(&eb->blocking_readers, 0);
4685 atomic_set(&eb->blocking_writers, 0);
4686 atomic_set(&eb->spinning_readers, 0);
4687 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4688 eb->lock_nested = 0;
bd681513
CM
4689 init_waitqueue_head(&eb->write_lock_wq);
4690 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4691
6d49ba1b
ES
4692 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4693
3083ee2e 4694 spin_lock_init(&eb->refs_lock);
d1310b2e 4695 atomic_set(&eb->refs, 1);
0b32f4bb 4696 atomic_set(&eb->io_pages, 0);
727011e0 4697
b8dae313
DS
4698 /*
4699 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4700 */
4701 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4702 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4703 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4704
4705 return eb;
4706}
4707
815a51c7
JS
4708struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4709{
cc5e31a4 4710 int i;
815a51c7
JS
4711 struct page *p;
4712 struct extent_buffer *new;
cc5e31a4 4713 int num_pages = num_extent_pages(src);
815a51c7 4714
3f556f78 4715 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4716 if (new == NULL)
4717 return NULL;
4718
4719 for (i = 0; i < num_pages; i++) {
9ec72677 4720 p = alloc_page(GFP_NOFS);
db7f3436
JB
4721 if (!p) {
4722 btrfs_release_extent_buffer(new);
4723 return NULL;
4724 }
815a51c7
JS
4725 attach_extent_buffer_page(new, p);
4726 WARN_ON(PageDirty(p));
4727 SetPageUptodate(p);
4728 new->pages[i] = p;
fba1acf9 4729 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4730 }
4731
815a51c7 4732 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 4733 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
4734
4735 return new;
4736}
4737
0f331229
OS
4738struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4739 u64 start, unsigned long len)
815a51c7
JS
4740{
4741 struct extent_buffer *eb;
cc5e31a4
DS
4742 int num_pages;
4743 int i;
815a51c7 4744
3f556f78 4745 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4746 if (!eb)
4747 return NULL;
4748
65ad0104 4749 num_pages = num_extent_pages(eb);
815a51c7 4750 for (i = 0; i < num_pages; i++) {
9ec72677 4751 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4752 if (!eb->pages[i])
4753 goto err;
4754 }
4755 set_extent_buffer_uptodate(eb);
4756 btrfs_set_header_nritems(eb, 0);
b0132a3b 4757 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
4758
4759 return eb;
4760err:
84167d19
SB
4761 for (; i > 0; i--)
4762 __free_page(eb->pages[i - 1]);
815a51c7
JS
4763 __free_extent_buffer(eb);
4764 return NULL;
4765}
4766
0f331229 4767struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4768 u64 start)
0f331229 4769{
da17066c 4770 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4771}
4772
0b32f4bb
JB
4773static void check_buffer_tree_ref(struct extent_buffer *eb)
4774{
242e18c7 4775 int refs;
0b32f4bb
JB
4776 /* the ref bit is tricky. We have to make sure it is set
4777 * if we have the buffer dirty. Otherwise the
4778 * code to free a buffer can end up dropping a dirty
4779 * page
4780 *
4781 * Once the ref bit is set, it won't go away while the
4782 * buffer is dirty or in writeback, and it also won't
4783 * go away while we have the reference count on the
4784 * eb bumped.
4785 *
4786 * We can't just set the ref bit without bumping the
4787 * ref on the eb because free_extent_buffer might
4788 * see the ref bit and try to clear it. If this happens
4789 * free_extent_buffer might end up dropping our original
4790 * ref by mistake and freeing the page before we are able
4791 * to add one more ref.
4792 *
4793 * So bump the ref count first, then set the bit. If someone
4794 * beat us to it, drop the ref we added.
4795 */
242e18c7
CM
4796 refs = atomic_read(&eb->refs);
4797 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4798 return;
4799
594831c4
JB
4800 spin_lock(&eb->refs_lock);
4801 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4802 atomic_inc(&eb->refs);
594831c4 4803 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4804}
4805
2457aec6
MG
4806static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4807 struct page *accessed)
5df4235e 4808{
cc5e31a4 4809 int num_pages, i;
5df4235e 4810
0b32f4bb
JB
4811 check_buffer_tree_ref(eb);
4812
65ad0104 4813 num_pages = num_extent_pages(eb);
5df4235e 4814 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4815 struct page *p = eb->pages[i];
4816
2457aec6
MG
4817 if (p != accessed)
4818 mark_page_accessed(p);
5df4235e
JB
4819 }
4820}
4821
f28491e0
JB
4822struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4823 u64 start)
452c75c3
CS
4824{
4825 struct extent_buffer *eb;
4826
4827 rcu_read_lock();
f28491e0 4828 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4829 start >> PAGE_SHIFT);
452c75c3
CS
4830 if (eb && atomic_inc_not_zero(&eb->refs)) {
4831 rcu_read_unlock();
062c19e9
FM
4832 /*
4833 * Lock our eb's refs_lock to avoid races with
4834 * free_extent_buffer. When we get our eb it might be flagged
4835 * with EXTENT_BUFFER_STALE and another task running
4836 * free_extent_buffer might have seen that flag set,
4837 * eb->refs == 2, that the buffer isn't under IO (dirty and
4838 * writeback flags not set) and it's still in the tree (flag
4839 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4840 * of decrementing the extent buffer's reference count twice.
4841 * So here we could race and increment the eb's reference count,
4842 * clear its stale flag, mark it as dirty and drop our reference
4843 * before the other task finishes executing free_extent_buffer,
4844 * which would later result in an attempt to free an extent
4845 * buffer that is dirty.
4846 */
4847 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4848 spin_lock(&eb->refs_lock);
4849 spin_unlock(&eb->refs_lock);
4850 }
2457aec6 4851 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4852 return eb;
4853 }
4854 rcu_read_unlock();
4855
4856 return NULL;
4857}
4858
faa2dbf0
JB
4859#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4860struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4861 u64 start)
faa2dbf0
JB
4862{
4863 struct extent_buffer *eb, *exists = NULL;
4864 int ret;
4865
4866 eb = find_extent_buffer(fs_info, start);
4867 if (eb)
4868 return eb;
da17066c 4869 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4870 if (!eb)
4871 return NULL;
4872 eb->fs_info = fs_info;
4873again:
e1860a77 4874 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4875 if (ret)
4876 goto free_eb;
4877 spin_lock(&fs_info->buffer_lock);
4878 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4879 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4880 spin_unlock(&fs_info->buffer_lock);
4881 radix_tree_preload_end();
4882 if (ret == -EEXIST) {
4883 exists = find_extent_buffer(fs_info, start);
4884 if (exists)
4885 goto free_eb;
4886 else
4887 goto again;
4888 }
4889 check_buffer_tree_ref(eb);
4890 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4891
faa2dbf0
JB
4892 return eb;
4893free_eb:
4894 btrfs_release_extent_buffer(eb);
4895 return exists;
4896}
4897#endif
4898
f28491e0 4899struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4900 u64 start)
d1310b2e 4901{
da17066c 4902 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
4903 int num_pages;
4904 int i;
09cbfeaf 4905 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4906 struct extent_buffer *eb;
6af118ce 4907 struct extent_buffer *exists = NULL;
d1310b2e 4908 struct page *p;
f28491e0 4909 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4910 int uptodate = 1;
19fe0a8b 4911 int ret;
d1310b2e 4912
da17066c 4913 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4914 btrfs_err(fs_info, "bad tree block start %llu", start);
4915 return ERR_PTR(-EINVAL);
4916 }
4917
f28491e0 4918 eb = find_extent_buffer(fs_info, start);
452c75c3 4919 if (eb)
6af118ce 4920 return eb;
6af118ce 4921
23d79d81 4922 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4923 if (!eb)
c871b0f2 4924 return ERR_PTR(-ENOMEM);
d1310b2e 4925
65ad0104 4926 num_pages = num_extent_pages(eb);
727011e0 4927 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4928 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4929 if (!p) {
4930 exists = ERR_PTR(-ENOMEM);
6af118ce 4931 goto free_eb;
c871b0f2 4932 }
4f2de97a
JB
4933
4934 spin_lock(&mapping->private_lock);
4935 if (PagePrivate(p)) {
4936 /*
4937 * We could have already allocated an eb for this page
4938 * and attached one so lets see if we can get a ref on
4939 * the existing eb, and if we can we know it's good and
4940 * we can just return that one, else we know we can just
4941 * overwrite page->private.
4942 */
4943 exists = (struct extent_buffer *)p->private;
4944 if (atomic_inc_not_zero(&exists->refs)) {
4945 spin_unlock(&mapping->private_lock);
4946 unlock_page(p);
09cbfeaf 4947 put_page(p);
2457aec6 4948 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4949 goto free_eb;
4950 }
5ca64f45 4951 exists = NULL;
4f2de97a 4952
0b32f4bb 4953 /*
4f2de97a
JB
4954 * Do this so attach doesn't complain and we need to
4955 * drop the ref the old guy had.
4956 */
4957 ClearPagePrivate(p);
0b32f4bb 4958 WARN_ON(PageDirty(p));
09cbfeaf 4959 put_page(p);
d1310b2e 4960 }
4f2de97a
JB
4961 attach_extent_buffer_page(eb, p);
4962 spin_unlock(&mapping->private_lock);
0b32f4bb 4963 WARN_ON(PageDirty(p));
727011e0 4964 eb->pages[i] = p;
d1310b2e
CM
4965 if (!PageUptodate(p))
4966 uptodate = 0;
eb14ab8e
CM
4967
4968 /*
b16d011e
NB
4969 * We can't unlock the pages just yet since the extent buffer
4970 * hasn't been properly inserted in the radix tree, this
4971 * opens a race with btree_releasepage which can free a page
4972 * while we are still filling in all pages for the buffer and
4973 * we could crash.
eb14ab8e 4974 */
d1310b2e
CM
4975 }
4976 if (uptodate)
b4ce94de 4977 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4978again:
e1860a77 4979 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4980 if (ret) {
4981 exists = ERR_PTR(ret);
19fe0a8b 4982 goto free_eb;
c871b0f2 4983 }
19fe0a8b 4984
f28491e0
JB
4985 spin_lock(&fs_info->buffer_lock);
4986 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4987 start >> PAGE_SHIFT, eb);
f28491e0 4988 spin_unlock(&fs_info->buffer_lock);
452c75c3 4989 radix_tree_preload_end();
19fe0a8b 4990 if (ret == -EEXIST) {
f28491e0 4991 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4992 if (exists)
4993 goto free_eb;
4994 else
115391d2 4995 goto again;
6af118ce 4996 }
6af118ce 4997 /* add one reference for the tree */
0b32f4bb 4998 check_buffer_tree_ref(eb);
34b41ace 4999 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5000
5001 /*
b16d011e
NB
5002 * Now it's safe to unlock the pages because any calls to
5003 * btree_releasepage will correctly detect that a page belongs to a
5004 * live buffer and won't free them prematurely.
eb14ab8e 5005 */
28187ae5
NB
5006 for (i = 0; i < num_pages; i++)
5007 unlock_page(eb->pages[i]);
d1310b2e
CM
5008 return eb;
5009
6af118ce 5010free_eb:
5ca64f45 5011 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5012 for (i = 0; i < num_pages; i++) {
5013 if (eb->pages[i])
5014 unlock_page(eb->pages[i]);
5015 }
eb14ab8e 5016
897ca6e9 5017 btrfs_release_extent_buffer(eb);
6af118ce 5018 return exists;
d1310b2e 5019}
d1310b2e 5020
3083ee2e
JB
5021static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5022{
5023 struct extent_buffer *eb =
5024 container_of(head, struct extent_buffer, rcu_head);
5025
5026 __free_extent_buffer(eb);
5027}
5028
f7a52a40 5029static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e 5030{
07e21c4d
NB
5031 lockdep_assert_held(&eb->refs_lock);
5032
3083ee2e
JB
5033 WARN_ON(atomic_read(&eb->refs) == 0);
5034 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5035 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5036 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5037
815a51c7 5038 spin_unlock(&eb->refs_lock);
3083ee2e 5039
f28491e0
JB
5040 spin_lock(&fs_info->buffer_lock);
5041 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5042 eb->start >> PAGE_SHIFT);
f28491e0 5043 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5044 } else {
5045 spin_unlock(&eb->refs_lock);
815a51c7 5046 }
3083ee2e
JB
5047
5048 /* Should be safe to release our pages at this point */
55ac0139 5049 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5050#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5051 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5052 __free_extent_buffer(eb);
5053 return 1;
5054 }
5055#endif
3083ee2e 5056 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5057 return 1;
3083ee2e
JB
5058 }
5059 spin_unlock(&eb->refs_lock);
e64860aa
JB
5060
5061 return 0;
3083ee2e
JB
5062}
5063
d1310b2e
CM
5064void free_extent_buffer(struct extent_buffer *eb)
5065{
242e18c7
CM
5066 int refs;
5067 int old;
d1310b2e
CM
5068 if (!eb)
5069 return;
5070
242e18c7
CM
5071 while (1) {
5072 refs = atomic_read(&eb->refs);
46cc775e
NB
5073 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5074 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5075 refs == 1))
242e18c7
CM
5076 break;
5077 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5078 if (old == refs)
5079 return;
5080 }
5081
3083ee2e
JB
5082 spin_lock(&eb->refs_lock);
5083 if (atomic_read(&eb->refs) == 2 &&
5084 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5085 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5086 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5087 atomic_dec(&eb->refs);
5088
5089 /*
5090 * I know this is terrible, but it's temporary until we stop tracking
5091 * the uptodate bits and such for the extent buffers.
5092 */
f7a52a40 5093 release_extent_buffer(eb);
3083ee2e
JB
5094}
5095
5096void free_extent_buffer_stale(struct extent_buffer *eb)
5097{
5098 if (!eb)
d1310b2e
CM
5099 return;
5100
3083ee2e
JB
5101 spin_lock(&eb->refs_lock);
5102 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5103
0b32f4bb 5104 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5105 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5106 atomic_dec(&eb->refs);
f7a52a40 5107 release_extent_buffer(eb);
d1310b2e 5108}
d1310b2e 5109
1d4284bd 5110void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5111{
cc5e31a4
DS
5112 int i;
5113 int num_pages;
d1310b2e
CM
5114 struct page *page;
5115
65ad0104 5116 num_pages = num_extent_pages(eb);
d1310b2e
CM
5117
5118 for (i = 0; i < num_pages; i++) {
fb85fc9a 5119 page = eb->pages[i];
b9473439 5120 if (!PageDirty(page))
d2c3f4f6
CM
5121 continue;
5122
a61e6f29 5123 lock_page(page);
eb14ab8e
CM
5124 WARN_ON(!PagePrivate(page));
5125
d1310b2e 5126 clear_page_dirty_for_io(page);
b93b0163 5127 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5128 if (!PageDirty(page))
5129 __xa_clear_mark(&page->mapping->i_pages,
5130 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5131 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5132 ClearPageError(page);
a61e6f29 5133 unlock_page(page);
d1310b2e 5134 }
0b32f4bb 5135 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5136}
d1310b2e 5137
abb57ef3 5138bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5139{
cc5e31a4
DS
5140 int i;
5141 int num_pages;
abb57ef3 5142 bool was_dirty;
d1310b2e 5143
0b32f4bb
JB
5144 check_buffer_tree_ref(eb);
5145
b9473439 5146 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5147
65ad0104 5148 num_pages = num_extent_pages(eb);
3083ee2e 5149 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5150 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5151
abb57ef3
LB
5152 if (!was_dirty)
5153 for (i = 0; i < num_pages; i++)
5154 set_page_dirty(eb->pages[i]);
51995c39
LB
5155
5156#ifdef CONFIG_BTRFS_DEBUG
5157 for (i = 0; i < num_pages; i++)
5158 ASSERT(PageDirty(eb->pages[i]));
5159#endif
5160
b9473439 5161 return was_dirty;
d1310b2e 5162}
d1310b2e 5163
69ba3927 5164void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5165{
cc5e31a4 5166 int i;
1259ab75 5167 struct page *page;
cc5e31a4 5168 int num_pages;
1259ab75 5169
b4ce94de 5170 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5171 num_pages = num_extent_pages(eb);
1259ab75 5172 for (i = 0; i < num_pages; i++) {
fb85fc9a 5173 page = eb->pages[i];
33958dc6
CM
5174 if (page)
5175 ClearPageUptodate(page);
1259ab75 5176 }
1259ab75
CM
5177}
5178
09c25a8c 5179void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5180{
cc5e31a4 5181 int i;
d1310b2e 5182 struct page *page;
cc5e31a4 5183 int num_pages;
d1310b2e 5184
0b32f4bb 5185 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5186 num_pages = num_extent_pages(eb);
d1310b2e 5187 for (i = 0; i < num_pages; i++) {
fb85fc9a 5188 page = eb->pages[i];
d1310b2e
CM
5189 SetPageUptodate(page);
5190 }
d1310b2e 5191}
d1310b2e 5192
d1310b2e 5193int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5194 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5195{
cc5e31a4 5196 int i;
d1310b2e
CM
5197 struct page *page;
5198 int err;
5199 int ret = 0;
ce9adaa5
CM
5200 int locked_pages = 0;
5201 int all_uptodate = 1;
cc5e31a4 5202 int num_pages;
727011e0 5203 unsigned long num_reads = 0;
a86c12c7 5204 struct bio *bio = NULL;
c8b97818 5205 unsigned long bio_flags = 0;
a86c12c7 5206
b4ce94de 5207 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5208 return 0;
5209
65ad0104 5210 num_pages = num_extent_pages(eb);
8436ea91 5211 for (i = 0; i < num_pages; i++) {
fb85fc9a 5212 page = eb->pages[i];
bb82ab88 5213 if (wait == WAIT_NONE) {
2db04966 5214 if (!trylock_page(page))
ce9adaa5 5215 goto unlock_exit;
d1310b2e
CM
5216 } else {
5217 lock_page(page);
5218 }
ce9adaa5 5219 locked_pages++;
2571e739
LB
5220 }
5221 /*
5222 * We need to firstly lock all pages to make sure that
5223 * the uptodate bit of our pages won't be affected by
5224 * clear_extent_buffer_uptodate().
5225 */
8436ea91 5226 for (i = 0; i < num_pages; i++) {
2571e739 5227 page = eb->pages[i];
727011e0
CM
5228 if (!PageUptodate(page)) {
5229 num_reads++;
ce9adaa5 5230 all_uptodate = 0;
727011e0 5231 }
ce9adaa5 5232 }
2571e739 5233
ce9adaa5 5234 if (all_uptodate) {
8436ea91 5235 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5236 goto unlock_exit;
5237 }
5238
656f30db 5239 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5240 eb->read_mirror = 0;
0b32f4bb 5241 atomic_set(&eb->io_pages, num_reads);
8436ea91 5242 for (i = 0; i < num_pages; i++) {
fb85fc9a 5243 page = eb->pages[i];
baf863b9 5244
ce9adaa5 5245 if (!PageUptodate(page)) {
baf863b9
LB
5246 if (ret) {
5247 atomic_dec(&eb->io_pages);
5248 unlock_page(page);
5249 continue;
5250 }
5251
f188591e 5252 ClearPageError(page);
a86c12c7 5253 err = __extent_read_full_page(tree, page,
6af49dbd 5254 btree_get_extent, &bio,
d4c7ca86 5255 mirror_num, &bio_flags,
1f7ad75b 5256 REQ_META);
baf863b9 5257 if (err) {
d1310b2e 5258 ret = err;
baf863b9
LB
5259 /*
5260 * We use &bio in above __extent_read_full_page,
5261 * so we ensure that if it returns error, the
5262 * current page fails to add itself to bio and
5263 * it's been unlocked.
5264 *
5265 * We must dec io_pages by ourselves.
5266 */
5267 atomic_dec(&eb->io_pages);
5268 }
d1310b2e
CM
5269 } else {
5270 unlock_page(page);
5271 }
5272 }
5273
355808c2 5274 if (bio) {
1f7ad75b 5275 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5276 if (err)
5277 return err;
355808c2 5278 }
a86c12c7 5279
bb82ab88 5280 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5281 return ret;
d397712b 5282
8436ea91 5283 for (i = 0; i < num_pages; i++) {
fb85fc9a 5284 page = eb->pages[i];
d1310b2e 5285 wait_on_page_locked(page);
d397712b 5286 if (!PageUptodate(page))
d1310b2e 5287 ret = -EIO;
d1310b2e 5288 }
d397712b 5289
d1310b2e 5290 return ret;
ce9adaa5
CM
5291
5292unlock_exit:
d397712b 5293 while (locked_pages > 0) {
ce9adaa5 5294 locked_pages--;
8436ea91
JB
5295 page = eb->pages[locked_pages];
5296 unlock_page(page);
ce9adaa5
CM
5297 }
5298 return ret;
d1310b2e 5299}
d1310b2e 5300
1cbb1f45
JM
5301void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5302 unsigned long start, unsigned long len)
d1310b2e
CM
5303{
5304 size_t cur;
5305 size_t offset;
5306 struct page *page;
5307 char *kaddr;
5308 char *dst = (char *)dstv;
09cbfeaf
KS
5309 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5310 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5311
f716abd5
LB
5312 if (start + len > eb->len) {
5313 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5314 eb->start, eb->len, start, len);
5315 memset(dst, 0, len);
5316 return;
5317 }
d1310b2e 5318
09cbfeaf 5319 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5320
d397712b 5321 while (len > 0) {
fb85fc9a 5322 page = eb->pages[i];
d1310b2e 5323
09cbfeaf 5324 cur = min(len, (PAGE_SIZE - offset));
a6591715 5325 kaddr = page_address(page);
d1310b2e 5326 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5327
5328 dst += cur;
5329 len -= cur;
5330 offset = 0;
5331 i++;
5332 }
5333}
d1310b2e 5334
1cbb1f45
JM
5335int read_extent_buffer_to_user(const struct extent_buffer *eb,
5336 void __user *dstv,
5337 unsigned long start, unsigned long len)
550ac1d8
GH
5338{
5339 size_t cur;
5340 size_t offset;
5341 struct page *page;
5342 char *kaddr;
5343 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5344 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5345 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5346 int ret = 0;
5347
5348 WARN_ON(start > eb->len);
5349 WARN_ON(start + len > eb->start + eb->len);
5350
09cbfeaf 5351 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5352
5353 while (len > 0) {
fb85fc9a 5354 page = eb->pages[i];
550ac1d8 5355
09cbfeaf 5356 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5357 kaddr = page_address(page);
5358 if (copy_to_user(dst, kaddr + offset, cur)) {
5359 ret = -EFAULT;
5360 break;
5361 }
5362
5363 dst += cur;
5364 len -= cur;
5365 offset = 0;
5366 i++;
5367 }
5368
5369 return ret;
5370}
5371
415b35a5
LB
5372/*
5373 * return 0 if the item is found within a page.
5374 * return 1 if the item spans two pages.
5375 * return -EINVAL otherwise.
5376 */
1cbb1f45
JM
5377int map_private_extent_buffer(const struct extent_buffer *eb,
5378 unsigned long start, unsigned long min_len,
5379 char **map, unsigned long *map_start,
5380 unsigned long *map_len)
d1310b2e 5381{
09cbfeaf 5382 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5383 char *kaddr;
5384 struct page *p;
09cbfeaf
KS
5385 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5386 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5387 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5388 PAGE_SHIFT;
d1310b2e 5389
f716abd5
LB
5390 if (start + min_len > eb->len) {
5391 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5392 eb->start, eb->len, start, min_len);
5393 return -EINVAL;
5394 }
5395
d1310b2e 5396 if (i != end_i)
415b35a5 5397 return 1;
d1310b2e
CM
5398
5399 if (i == 0) {
5400 offset = start_offset;
5401 *map_start = 0;
5402 } else {
5403 offset = 0;
09cbfeaf 5404 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5405 }
d397712b 5406
fb85fc9a 5407 p = eb->pages[i];
a6591715 5408 kaddr = page_address(p);
d1310b2e 5409 *map = kaddr + offset;
09cbfeaf 5410 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5411 return 0;
5412}
d1310b2e 5413
1cbb1f45
JM
5414int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5415 unsigned long start, unsigned long len)
d1310b2e
CM
5416{
5417 size_t cur;
5418 size_t offset;
5419 struct page *page;
5420 char *kaddr;
5421 char *ptr = (char *)ptrv;
09cbfeaf
KS
5422 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5423 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5424 int ret = 0;
5425
5426 WARN_ON(start > eb->len);
5427 WARN_ON(start + len > eb->start + eb->len);
5428
09cbfeaf 5429 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5430
d397712b 5431 while (len > 0) {
fb85fc9a 5432 page = eb->pages[i];
d1310b2e 5433
09cbfeaf 5434 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5435
a6591715 5436 kaddr = page_address(page);
d1310b2e 5437 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5438 if (ret)
5439 break;
5440
5441 ptr += cur;
5442 len -= cur;
5443 offset = 0;
5444 i++;
5445 }
5446 return ret;
5447}
d1310b2e 5448
f157bf76
DS
5449void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5450 const void *srcv)
5451{
5452 char *kaddr;
5453
5454 WARN_ON(!PageUptodate(eb->pages[0]));
5455 kaddr = page_address(eb->pages[0]);
5456 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5457 BTRFS_FSID_SIZE);
5458}
5459
5460void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5461{
5462 char *kaddr;
5463
5464 WARN_ON(!PageUptodate(eb->pages[0]));
5465 kaddr = page_address(eb->pages[0]);
5466 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5467 BTRFS_FSID_SIZE);
5468}
5469
d1310b2e
CM
5470void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5471 unsigned long start, unsigned long len)
5472{
5473 size_t cur;
5474 size_t offset;
5475 struct page *page;
5476 char *kaddr;
5477 char *src = (char *)srcv;
09cbfeaf
KS
5478 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5479 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5480
5481 WARN_ON(start > eb->len);
5482 WARN_ON(start + len > eb->start + eb->len);
5483
09cbfeaf 5484 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5485
d397712b 5486 while (len > 0) {
fb85fc9a 5487 page = eb->pages[i];
d1310b2e
CM
5488 WARN_ON(!PageUptodate(page));
5489
09cbfeaf 5490 cur = min(len, PAGE_SIZE - offset);
a6591715 5491 kaddr = page_address(page);
d1310b2e 5492 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5493
5494 src += cur;
5495 len -= cur;
5496 offset = 0;
5497 i++;
5498 }
5499}
d1310b2e 5500
b159fa28
DS
5501void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5502 unsigned long len)
d1310b2e
CM
5503{
5504 size_t cur;
5505 size_t offset;
5506 struct page *page;
5507 char *kaddr;
09cbfeaf
KS
5508 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5509 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5510
5511 WARN_ON(start > eb->len);
5512 WARN_ON(start + len > eb->start + eb->len);
5513
09cbfeaf 5514 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5515
d397712b 5516 while (len > 0) {
fb85fc9a 5517 page = eb->pages[i];
d1310b2e
CM
5518 WARN_ON(!PageUptodate(page));
5519
09cbfeaf 5520 cur = min(len, PAGE_SIZE - offset);
a6591715 5521 kaddr = page_address(page);
b159fa28 5522 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5523
5524 len -= cur;
5525 offset = 0;
5526 i++;
5527 }
5528}
d1310b2e 5529
58e8012c
DS
5530void copy_extent_buffer_full(struct extent_buffer *dst,
5531 struct extent_buffer *src)
5532{
5533 int i;
cc5e31a4 5534 int num_pages;
58e8012c
DS
5535
5536 ASSERT(dst->len == src->len);
5537
65ad0104 5538 num_pages = num_extent_pages(dst);
58e8012c
DS
5539 for (i = 0; i < num_pages; i++)
5540 copy_page(page_address(dst->pages[i]),
5541 page_address(src->pages[i]));
5542}
5543
d1310b2e
CM
5544void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5545 unsigned long dst_offset, unsigned long src_offset,
5546 unsigned long len)
5547{
5548 u64 dst_len = dst->len;
5549 size_t cur;
5550 size_t offset;
5551 struct page *page;
5552 char *kaddr;
09cbfeaf
KS
5553 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5554 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5555
5556 WARN_ON(src->len != dst_len);
5557
5558 offset = (start_offset + dst_offset) &
09cbfeaf 5559 (PAGE_SIZE - 1);
d1310b2e 5560
d397712b 5561 while (len > 0) {
fb85fc9a 5562 page = dst->pages[i];
d1310b2e
CM
5563 WARN_ON(!PageUptodate(page));
5564
09cbfeaf 5565 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5566
a6591715 5567 kaddr = page_address(page);
d1310b2e 5568 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5569
5570 src_offset += cur;
5571 len -= cur;
5572 offset = 0;
5573 i++;
5574 }
5575}
d1310b2e 5576
3e1e8bb7
OS
5577/*
5578 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5579 * given bit number
5580 * @eb: the extent buffer
5581 * @start: offset of the bitmap item in the extent buffer
5582 * @nr: bit number
5583 * @page_index: return index of the page in the extent buffer that contains the
5584 * given bit number
5585 * @page_offset: return offset into the page given by page_index
5586 *
5587 * This helper hides the ugliness of finding the byte in an extent buffer which
5588 * contains a given bit.
5589 */
5590static inline void eb_bitmap_offset(struct extent_buffer *eb,
5591 unsigned long start, unsigned long nr,
5592 unsigned long *page_index,
5593 size_t *page_offset)
5594{
09cbfeaf 5595 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5596 size_t byte_offset = BIT_BYTE(nr);
5597 size_t offset;
5598
5599 /*
5600 * The byte we want is the offset of the extent buffer + the offset of
5601 * the bitmap item in the extent buffer + the offset of the byte in the
5602 * bitmap item.
5603 */
5604 offset = start_offset + start + byte_offset;
5605
09cbfeaf
KS
5606 *page_index = offset >> PAGE_SHIFT;
5607 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5608}
5609
5610/**
5611 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5612 * @eb: the extent buffer
5613 * @start: offset of the bitmap item in the extent buffer
5614 * @nr: bit number to test
5615 */
5616int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5617 unsigned long nr)
5618{
2fe1d551 5619 u8 *kaddr;
3e1e8bb7
OS
5620 struct page *page;
5621 unsigned long i;
5622 size_t offset;
5623
5624 eb_bitmap_offset(eb, start, nr, &i, &offset);
5625 page = eb->pages[i];
5626 WARN_ON(!PageUptodate(page));
5627 kaddr = page_address(page);
5628 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5629}
5630
5631/**
5632 * extent_buffer_bitmap_set - set an area of a bitmap
5633 * @eb: the extent buffer
5634 * @start: offset of the bitmap item in the extent buffer
5635 * @pos: bit number of the first bit
5636 * @len: number of bits to set
5637 */
5638void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5639 unsigned long pos, unsigned long len)
5640{
2fe1d551 5641 u8 *kaddr;
3e1e8bb7
OS
5642 struct page *page;
5643 unsigned long i;
5644 size_t offset;
5645 const unsigned int size = pos + len;
5646 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5647 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5648
5649 eb_bitmap_offset(eb, start, pos, &i, &offset);
5650 page = eb->pages[i];
5651 WARN_ON(!PageUptodate(page));
5652 kaddr = page_address(page);
5653
5654 while (len >= bits_to_set) {
5655 kaddr[offset] |= mask_to_set;
5656 len -= bits_to_set;
5657 bits_to_set = BITS_PER_BYTE;
9c894696 5658 mask_to_set = ~0;
09cbfeaf 5659 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5660 offset = 0;
5661 page = eb->pages[++i];
5662 WARN_ON(!PageUptodate(page));
5663 kaddr = page_address(page);
5664 }
5665 }
5666 if (len) {
5667 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5668 kaddr[offset] |= mask_to_set;
5669 }
5670}
5671
5672
5673/**
5674 * extent_buffer_bitmap_clear - clear an area of a bitmap
5675 * @eb: the extent buffer
5676 * @start: offset of the bitmap item in the extent buffer
5677 * @pos: bit number of the first bit
5678 * @len: number of bits to clear
5679 */
5680void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5681 unsigned long pos, unsigned long len)
5682{
2fe1d551 5683 u8 *kaddr;
3e1e8bb7
OS
5684 struct page *page;
5685 unsigned long i;
5686 size_t offset;
5687 const unsigned int size = pos + len;
5688 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5689 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5690
5691 eb_bitmap_offset(eb, start, pos, &i, &offset);
5692 page = eb->pages[i];
5693 WARN_ON(!PageUptodate(page));
5694 kaddr = page_address(page);
5695
5696 while (len >= bits_to_clear) {
5697 kaddr[offset] &= ~mask_to_clear;
5698 len -= bits_to_clear;
5699 bits_to_clear = BITS_PER_BYTE;
9c894696 5700 mask_to_clear = ~0;
09cbfeaf 5701 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5702 offset = 0;
5703 page = eb->pages[++i];
5704 WARN_ON(!PageUptodate(page));
5705 kaddr = page_address(page);
5706 }
5707 }
5708 if (len) {
5709 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5710 kaddr[offset] &= ~mask_to_clear;
5711 }
5712}
5713
3387206f
ST
5714static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5715{
5716 unsigned long distance = (src > dst) ? src - dst : dst - src;
5717 return distance < len;
5718}
5719
d1310b2e
CM
5720static void copy_pages(struct page *dst_page, struct page *src_page,
5721 unsigned long dst_off, unsigned long src_off,
5722 unsigned long len)
5723{
a6591715 5724 char *dst_kaddr = page_address(dst_page);
d1310b2e 5725 char *src_kaddr;
727011e0 5726 int must_memmove = 0;
d1310b2e 5727
3387206f 5728 if (dst_page != src_page) {
a6591715 5729 src_kaddr = page_address(src_page);
3387206f 5730 } else {
d1310b2e 5731 src_kaddr = dst_kaddr;
727011e0
CM
5732 if (areas_overlap(src_off, dst_off, len))
5733 must_memmove = 1;
3387206f 5734 }
d1310b2e 5735
727011e0
CM
5736 if (must_memmove)
5737 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5738 else
5739 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5740}
5741
5742void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5743 unsigned long src_offset, unsigned long len)
5744{
0b246afa 5745 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5746 size_t cur;
5747 size_t dst_off_in_page;
5748 size_t src_off_in_page;
09cbfeaf 5749 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5750 unsigned long dst_i;
5751 unsigned long src_i;
5752
5753 if (src_offset + len > dst->len) {
0b246afa 5754 btrfs_err(fs_info,
5d163e0e
JM
5755 "memmove bogus src_offset %lu move len %lu dst len %lu",
5756 src_offset, len, dst->len);
d1310b2e
CM
5757 BUG_ON(1);
5758 }
5759 if (dst_offset + len > dst->len) {
0b246afa 5760 btrfs_err(fs_info,
5d163e0e
JM
5761 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5762 dst_offset, len, dst->len);
d1310b2e
CM
5763 BUG_ON(1);
5764 }
5765
d397712b 5766 while (len > 0) {
d1310b2e 5767 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5768 (PAGE_SIZE - 1);
d1310b2e 5769 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5770 (PAGE_SIZE - 1);
d1310b2e 5771
09cbfeaf
KS
5772 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5773 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5774
09cbfeaf 5775 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5776 src_off_in_page));
5777 cur = min_t(unsigned long, cur,
09cbfeaf 5778 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5779
fb85fc9a 5780 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5781 dst_off_in_page, src_off_in_page, cur);
5782
5783 src_offset += cur;
5784 dst_offset += cur;
5785 len -= cur;
5786 }
5787}
d1310b2e
CM
5788
5789void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5790 unsigned long src_offset, unsigned long len)
5791{
0b246afa 5792 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5793 size_t cur;
5794 size_t dst_off_in_page;
5795 size_t src_off_in_page;
5796 unsigned long dst_end = dst_offset + len - 1;
5797 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5798 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5799 unsigned long dst_i;
5800 unsigned long src_i;
5801
5802 if (src_offset + len > dst->len) {
0b246afa 5803 btrfs_err(fs_info,
5d163e0e
JM
5804 "memmove bogus src_offset %lu move len %lu len %lu",
5805 src_offset, len, dst->len);
d1310b2e
CM
5806 BUG_ON(1);
5807 }
5808 if (dst_offset + len > dst->len) {
0b246afa 5809 btrfs_err(fs_info,
5d163e0e
JM
5810 "memmove bogus dst_offset %lu move len %lu len %lu",
5811 dst_offset, len, dst->len);
d1310b2e
CM
5812 BUG_ON(1);
5813 }
727011e0 5814 if (dst_offset < src_offset) {
d1310b2e
CM
5815 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5816 return;
5817 }
d397712b 5818 while (len > 0) {
09cbfeaf
KS
5819 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5820 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5821
5822 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5823 (PAGE_SIZE - 1);
d1310b2e 5824 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5825 (PAGE_SIZE - 1);
d1310b2e
CM
5826
5827 cur = min_t(unsigned long, len, src_off_in_page + 1);
5828 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5829 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5830 dst_off_in_page - cur + 1,
5831 src_off_in_page - cur + 1, cur);
5832
5833 dst_end -= cur;
5834 src_end -= cur;
5835 len -= cur;
5836 }
5837}
6af118ce 5838
f7a52a40 5839int try_release_extent_buffer(struct page *page)
19fe0a8b 5840{
6af118ce 5841 struct extent_buffer *eb;
6af118ce 5842
3083ee2e 5843 /*
01327610 5844 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5845 * now.
5846 */
5847 spin_lock(&page->mapping->private_lock);
5848 if (!PagePrivate(page)) {
5849 spin_unlock(&page->mapping->private_lock);
4f2de97a 5850 return 1;
45f49bce 5851 }
6af118ce 5852
3083ee2e
JB
5853 eb = (struct extent_buffer *)page->private;
5854 BUG_ON(!eb);
19fe0a8b
MX
5855
5856 /*
3083ee2e
JB
5857 * This is a little awful but should be ok, we need to make sure that
5858 * the eb doesn't disappear out from under us while we're looking at
5859 * this page.
19fe0a8b 5860 */
3083ee2e 5861 spin_lock(&eb->refs_lock);
0b32f4bb 5862 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5863 spin_unlock(&eb->refs_lock);
5864 spin_unlock(&page->mapping->private_lock);
5865 return 0;
b9473439 5866 }
3083ee2e 5867 spin_unlock(&page->mapping->private_lock);
897ca6e9 5868
19fe0a8b 5869 /*
3083ee2e
JB
5870 * If tree ref isn't set then we know the ref on this eb is a real ref,
5871 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5872 */
3083ee2e
JB
5873 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5874 spin_unlock(&eb->refs_lock);
5875 return 0;
b9473439 5876 }
19fe0a8b 5877
f7a52a40 5878 return release_extent_buffer(eb);
6af118ce 5879}