]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
fs: convert mpage_readpages to mpage_readahead
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
c1d7c514 2
d1310b2e
CM
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
d1310b2e
CM
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
d1310b2e
CM
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
d1310b2e
CM
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
268bb0ce 14#include <linux/prefetch.h>
90a887c9 15#include <linux/cleancache.h>
d1310b2e 16#include "extent_io.h"
9c7d3a54 17#include "extent-io-tree.h"
d1310b2e 18#include "extent_map.h"
902b22f3
DW
19#include "ctree.h"
20#include "btrfs_inode.h"
4a54c8c1 21#include "volumes.h"
21adbd5c 22#include "check-integrity.h"
0b32f4bb 23#include "locking.h"
606686ee 24#include "rcu-string.h"
fe09e16c 25#include "backref.h"
6af49dbd 26#include "disk-io.h"
d1310b2e 27
d1310b2e
CM
28static struct kmem_cache *extent_state_cache;
29static struct kmem_cache *extent_buffer_cache;
8ac9f7c1 30static struct bio_set btrfs_bioset;
d1310b2e 31
27a3507d
FM
32static inline bool extent_state_in_tree(const struct extent_state *state)
33{
34 return !RB_EMPTY_NODE(&state->rb_node);
35}
36
6d49ba1b 37#ifdef CONFIG_BTRFS_DEBUG
d1310b2e 38static LIST_HEAD(states);
d397712b 39static DEFINE_SPINLOCK(leak_lock);
6d49ba1b 40
3fd63727
JB
41static inline void btrfs_leak_debug_add(spinlock_t *lock,
42 struct list_head *new,
43 struct list_head *head)
6d49ba1b
ES
44{
45 unsigned long flags;
46
3fd63727 47 spin_lock_irqsave(lock, flags);
6d49ba1b 48 list_add(new, head);
3fd63727 49 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
50}
51
3fd63727
JB
52static inline void btrfs_leak_debug_del(spinlock_t *lock,
53 struct list_head *entry)
6d49ba1b
ES
54{
55 unsigned long flags;
56
3fd63727 57 spin_lock_irqsave(lock, flags);
6d49ba1b 58 list_del(entry);
3fd63727 59 spin_unlock_irqrestore(lock, flags);
6d49ba1b
ES
60}
61
3fd63727 62void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
6d49ba1b 63{
6d49ba1b 64 struct extent_buffer *eb;
3fd63727 65 unsigned long flags;
6d49ba1b 66
8c38938c
JB
67 /*
68 * If we didn't get into open_ctree our allocated_ebs will not be
69 * initialized, so just skip this.
70 */
71 if (!fs_info->allocated_ebs.next)
72 return;
73
3fd63727
JB
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
8c38938c
JB
78 pr_err(
79 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
33ca832f
JB
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
3fd63727 85 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
33ca832f
JB
86}
87
88static inline void btrfs_extent_state_leak_debug_check(void)
89{
90 struct extent_state *state;
91
6d49ba1b
ES
92 while (!list_empty(&states)) {
93 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 94 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
95 state->start, state->end, state->state,
96 extent_state_in_tree(state),
b7ac31b7 97 refcount_read(&state->refs));
6d49ba1b
ES
98 list_del(&state->leak_list);
99 kmem_cache_free(extent_state_cache, state);
100 }
6d49ba1b 101}
8d599ae1 102
a5dee37d
JB
103#define btrfs_debug_check_extent_io_range(tree, start, end) \
104 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 105static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 106 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 107{
65a680f6
NB
108 struct inode *inode = tree->private_data;
109 u64 isize;
110
111 if (!inode || !is_data_inode(inode))
112 return;
113
114 isize = i_size_read(inode);
115 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
116 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
117 "%s: ino %llu isize %llu odd range [%llu,%llu]",
118 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
119 }
8d599ae1 120}
6d49ba1b 121#else
3fd63727
JB
122#define btrfs_leak_debug_add(lock, new, head) do {} while (0)
123#define btrfs_leak_debug_del(lock, entry) do {} while (0)
33ca832f 124#define btrfs_extent_state_leak_debug_check() do {} while (0)
8d599ae1 125#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 126#endif
d1310b2e 127
d1310b2e
CM
128struct tree_entry {
129 u64 start;
130 u64 end;
d1310b2e
CM
131 struct rb_node rb_node;
132};
133
134struct extent_page_data {
135 struct bio *bio;
771ed689
CM
136 /* tells writepage not to lock the state bits for this range
137 * it still does the unlocking
138 */
ffbd517d
CM
139 unsigned int extent_locked:1;
140
70fd7614 141 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 142 unsigned int sync_io:1;
d1310b2e
CM
143};
144
57599c7e 145static int add_extent_changeset(struct extent_state *state, unsigned bits,
d38ed27f
QW
146 struct extent_changeset *changeset,
147 int set)
148{
149 int ret;
150
151 if (!changeset)
57599c7e 152 return 0;
d38ed27f 153 if (set && (state->state & bits) == bits)
57599c7e 154 return 0;
fefdc557 155 if (!set && (state->state & bits) == 0)
57599c7e 156 return 0;
d38ed27f 157 changeset->bytes_changed += state->end - state->start + 1;
53d32359 158 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f 159 GFP_ATOMIC);
57599c7e 160 return ret;
d38ed27f
QW
161}
162
bb58eb9e
QW
163static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
164 unsigned long bio_flags)
165{
166 blk_status_t ret = 0;
bb58eb9e 167 struct extent_io_tree *tree = bio->bi_private;
bb58eb9e
QW
168
169 bio->bi_private = NULL;
170
171 if (tree->ops)
172 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
50489a57 173 mirror_num, bio_flags);
bb58eb9e
QW
174 else
175 btrfsic_submit_bio(bio);
176
177 return blk_status_to_errno(ret);
178}
179
3065976b
QW
180/* Cleanup unsubmitted bios */
181static void end_write_bio(struct extent_page_data *epd, int ret)
182{
183 if (epd->bio) {
184 epd->bio->bi_status = errno_to_blk_status(ret);
185 bio_endio(epd->bio);
186 epd->bio = NULL;
187 }
188}
189
f4340622
QW
190/*
191 * Submit bio from extent page data via submit_one_bio
192 *
193 * Return 0 if everything is OK.
194 * Return <0 for error.
195 */
196static int __must_check flush_write_bio(struct extent_page_data *epd)
bb58eb9e 197{
f4340622 198 int ret = 0;
bb58eb9e 199
f4340622 200 if (epd->bio) {
bb58eb9e 201 ret = submit_one_bio(epd->bio, 0, 0);
f4340622
QW
202 /*
203 * Clean up of epd->bio is handled by its endio function.
204 * And endio is either triggered by successful bio execution
205 * or the error handler of submit bio hook.
206 * So at this point, no matter what happened, we don't need
207 * to clean up epd->bio.
208 */
bb58eb9e
QW
209 epd->bio = NULL;
210 }
f4340622 211 return ret;
bb58eb9e 212}
e2932ee0 213
6f0d04f8 214int __init extent_state_cache_init(void)
d1310b2e 215{
837e1972 216 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 217 sizeof(struct extent_state), 0,
fba4b697 218 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
219 if (!extent_state_cache)
220 return -ENOMEM;
6f0d04f8
JB
221 return 0;
222}
d1310b2e 223
6f0d04f8
JB
224int __init extent_io_init(void)
225{
837e1972 226 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 227 sizeof(struct extent_buffer), 0,
fba4b697 228 SLAB_MEM_SPREAD, NULL);
d1310b2e 229 if (!extent_buffer_cache)
6f0d04f8 230 return -ENOMEM;
9be3395b 231
8ac9f7c1
KO
232 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
233 offsetof(struct btrfs_io_bio, bio),
234 BIOSET_NEED_BVECS))
9be3395b 235 goto free_buffer_cache;
b208c2f7 236
8ac9f7c1 237 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
b208c2f7
DW
238 goto free_bioset;
239
d1310b2e
CM
240 return 0;
241
b208c2f7 242free_bioset:
8ac9f7c1 243 bioset_exit(&btrfs_bioset);
b208c2f7 244
9be3395b
CM
245free_buffer_cache:
246 kmem_cache_destroy(extent_buffer_cache);
247 extent_buffer_cache = NULL;
6f0d04f8
JB
248 return -ENOMEM;
249}
9be3395b 250
6f0d04f8
JB
251void __cold extent_state_cache_exit(void)
252{
253 btrfs_extent_state_leak_debug_check();
d1310b2e 254 kmem_cache_destroy(extent_state_cache);
d1310b2e
CM
255}
256
e67c718b 257void __cold extent_io_exit(void)
d1310b2e 258{
8c0a8537
KS
259 /*
260 * Make sure all delayed rcu free are flushed before we
261 * destroy caches.
262 */
263 rcu_barrier();
5598e900 264 kmem_cache_destroy(extent_buffer_cache);
8ac9f7c1 265 bioset_exit(&btrfs_bioset);
d1310b2e
CM
266}
267
41a2ee75
JB
268/*
269 * For the file_extent_tree, we want to hold the inode lock when we lookup and
270 * update the disk_i_size, but lockdep will complain because our io_tree we hold
271 * the tree lock and get the inode lock when setting delalloc. These two things
272 * are unrelated, so make a class for the file_extent_tree so we don't get the
273 * two locking patterns mixed up.
274 */
275static struct lock_class_key file_extent_tree_class;
276
c258d6e3 277void extent_io_tree_init(struct btrfs_fs_info *fs_info,
43eb5f29
QW
278 struct extent_io_tree *tree, unsigned int owner,
279 void *private_data)
d1310b2e 280{
c258d6e3 281 tree->fs_info = fs_info;
6bef4d31 282 tree->state = RB_ROOT;
d1310b2e
CM
283 tree->ops = NULL;
284 tree->dirty_bytes = 0;
70dec807 285 spin_lock_init(&tree->lock);
c6100a4b 286 tree->private_data = private_data;
43eb5f29 287 tree->owner = owner;
41a2ee75
JB
288 if (owner == IO_TREE_INODE_FILE_EXTENT)
289 lockdep_set_class(&tree->lock, &file_extent_tree_class);
d1310b2e 290}
d1310b2e 291
41e7acd3
NB
292void extent_io_tree_release(struct extent_io_tree *tree)
293{
294 spin_lock(&tree->lock);
295 /*
296 * Do a single barrier for the waitqueue_active check here, the state
297 * of the waitqueue should not change once extent_io_tree_release is
298 * called.
299 */
300 smp_mb();
301 while (!RB_EMPTY_ROOT(&tree->state)) {
302 struct rb_node *node;
303 struct extent_state *state;
304
305 node = rb_first(&tree->state);
306 state = rb_entry(node, struct extent_state, rb_node);
307 rb_erase(&state->rb_node, &tree->state);
308 RB_CLEAR_NODE(&state->rb_node);
309 /*
310 * btree io trees aren't supposed to have tasks waiting for
311 * changes in the flags of extent states ever.
312 */
313 ASSERT(!waitqueue_active(&state->wq));
314 free_extent_state(state);
315
316 cond_resched_lock(&tree->lock);
317 }
318 spin_unlock(&tree->lock);
319}
320
b2950863 321static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
322{
323 struct extent_state *state;
d1310b2e 324
3ba7ab22
MH
325 /*
326 * The given mask might be not appropriate for the slab allocator,
327 * drop the unsupported bits
328 */
329 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 330 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 331 if (!state)
d1310b2e
CM
332 return state;
333 state->state = 0;
47dc196a 334 state->failrec = NULL;
27a3507d 335 RB_CLEAR_NODE(&state->rb_node);
3fd63727 336 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
b7ac31b7 337 refcount_set(&state->refs, 1);
d1310b2e 338 init_waitqueue_head(&state->wq);
143bede5 339 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
340 return state;
341}
d1310b2e 342
4845e44f 343void free_extent_state(struct extent_state *state)
d1310b2e 344{
d1310b2e
CM
345 if (!state)
346 return;
b7ac31b7 347 if (refcount_dec_and_test(&state->refs)) {
27a3507d 348 WARN_ON(extent_state_in_tree(state));
3fd63727 349 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
143bede5 350 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
351 kmem_cache_free(extent_state_cache, state);
352 }
353}
d1310b2e 354
f2071b21
FM
355static struct rb_node *tree_insert(struct rb_root *root,
356 struct rb_node *search_start,
357 u64 offset,
12cfbad9
FDBM
358 struct rb_node *node,
359 struct rb_node ***p_in,
360 struct rb_node **parent_in)
d1310b2e 361{
f2071b21 362 struct rb_node **p;
d397712b 363 struct rb_node *parent = NULL;
d1310b2e
CM
364 struct tree_entry *entry;
365
12cfbad9
FDBM
366 if (p_in && parent_in) {
367 p = *p_in;
368 parent = *parent_in;
369 goto do_insert;
370 }
371
f2071b21 372 p = search_start ? &search_start : &root->rb_node;
d397712b 373 while (*p) {
d1310b2e
CM
374 parent = *p;
375 entry = rb_entry(parent, struct tree_entry, rb_node);
376
377 if (offset < entry->start)
378 p = &(*p)->rb_left;
379 else if (offset > entry->end)
380 p = &(*p)->rb_right;
381 else
382 return parent;
383 }
384
12cfbad9 385do_insert:
d1310b2e
CM
386 rb_link_node(node, parent, p);
387 rb_insert_color(node, root);
388 return NULL;
389}
390
8666e638
NB
391/**
392 * __etree_search - searche @tree for an entry that contains @offset. Such
393 * entry would have entry->start <= offset && entry->end >= offset.
394 *
395 * @tree - the tree to search
396 * @offset - offset that should fall within an entry in @tree
397 * @next_ret - pointer to the first entry whose range ends after @offset
398 * @prev - pointer to the first entry whose range begins before @offset
399 * @p_ret - pointer where new node should be anchored (used when inserting an
400 * entry in the tree)
401 * @parent_ret - points to entry which would have been the parent of the entry,
402 * containing @offset
403 *
404 * This function returns a pointer to the entry that contains @offset byte
405 * address. If no such entry exists, then NULL is returned and the other
406 * pointer arguments to the function are filled, otherwise the found entry is
407 * returned and other pointers are left untouched.
408 */
80ea96b1 409static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9 410 struct rb_node **next_ret,
352646c7 411 struct rb_node **prev_ret,
12cfbad9
FDBM
412 struct rb_node ***p_ret,
413 struct rb_node **parent_ret)
d1310b2e 414{
80ea96b1 415 struct rb_root *root = &tree->state;
12cfbad9 416 struct rb_node **n = &root->rb_node;
d1310b2e
CM
417 struct rb_node *prev = NULL;
418 struct rb_node *orig_prev = NULL;
419 struct tree_entry *entry;
420 struct tree_entry *prev_entry = NULL;
421
12cfbad9
FDBM
422 while (*n) {
423 prev = *n;
424 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
425 prev_entry = entry;
426
427 if (offset < entry->start)
12cfbad9 428 n = &(*n)->rb_left;
d1310b2e 429 else if (offset > entry->end)
12cfbad9 430 n = &(*n)->rb_right;
d397712b 431 else
12cfbad9 432 return *n;
d1310b2e
CM
433 }
434
12cfbad9
FDBM
435 if (p_ret)
436 *p_ret = n;
437 if (parent_ret)
438 *parent_ret = prev;
439
352646c7 440 if (next_ret) {
d1310b2e 441 orig_prev = prev;
d397712b 442 while (prev && offset > prev_entry->end) {
d1310b2e
CM
443 prev = rb_next(prev);
444 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
445 }
352646c7 446 *next_ret = prev;
d1310b2e
CM
447 prev = orig_prev;
448 }
449
352646c7 450 if (prev_ret) {
d1310b2e 451 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 452 while (prev && offset < prev_entry->start) {
d1310b2e
CM
453 prev = rb_prev(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
352646c7 456 *prev_ret = prev;
d1310b2e
CM
457 }
458 return NULL;
459}
460
12cfbad9
FDBM
461static inline struct rb_node *
462tree_search_for_insert(struct extent_io_tree *tree,
463 u64 offset,
464 struct rb_node ***p_ret,
465 struct rb_node **parent_ret)
d1310b2e 466{
352646c7 467 struct rb_node *next= NULL;
d1310b2e 468 struct rb_node *ret;
70dec807 469
352646c7 470 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
d397712b 471 if (!ret)
352646c7 472 return next;
d1310b2e
CM
473 return ret;
474}
475
12cfbad9
FDBM
476static inline struct rb_node *tree_search(struct extent_io_tree *tree,
477 u64 offset)
478{
479 return tree_search_for_insert(tree, offset, NULL, NULL);
480}
481
d1310b2e
CM
482/*
483 * utility function to look for merge candidates inside a given range.
484 * Any extents with matching state are merged together into a single
485 * extent in the tree. Extents with EXTENT_IO in their state field
486 * are not merged because the end_io handlers need to be able to do
487 * operations on them without sleeping (or doing allocations/splits).
488 *
489 * This should be called with the tree lock held.
490 */
1bf85046
JM
491static void merge_state(struct extent_io_tree *tree,
492 struct extent_state *state)
d1310b2e
CM
493{
494 struct extent_state *other;
495 struct rb_node *other_node;
496
8882679e 497 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
1bf85046 498 return;
d1310b2e
CM
499
500 other_node = rb_prev(&state->rb_node);
501 if (other_node) {
502 other = rb_entry(other_node, struct extent_state, rb_node);
503 if (other->end == state->start - 1 &&
504 other->state == state->state) {
5c848198
NB
505 if (tree->private_data &&
506 is_data_inode(tree->private_data))
507 btrfs_merge_delalloc_extent(tree->private_data,
508 state, other);
d1310b2e 509 state->start = other->start;
d1310b2e 510 rb_erase(&other->rb_node, &tree->state);
27a3507d 511 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
512 free_extent_state(other);
513 }
514 }
515 other_node = rb_next(&state->rb_node);
516 if (other_node) {
517 other = rb_entry(other_node, struct extent_state, rb_node);
518 if (other->start == state->end + 1 &&
519 other->state == state->state) {
5c848198
NB
520 if (tree->private_data &&
521 is_data_inode(tree->private_data))
522 btrfs_merge_delalloc_extent(tree->private_data,
523 state, other);
df98b6e2 524 state->end = other->end;
df98b6e2 525 rb_erase(&other->rb_node, &tree->state);
27a3507d 526 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 527 free_extent_state(other);
d1310b2e
CM
528 }
529 }
d1310b2e
CM
530}
531
3150b699 532static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
533 struct extent_state *state, unsigned *bits,
534 struct extent_changeset *changeset);
3150b699 535
d1310b2e
CM
536/*
537 * insert an extent_state struct into the tree. 'bits' are set on the
538 * struct before it is inserted.
539 *
540 * This may return -EEXIST if the extent is already there, in which case the
541 * state struct is freed.
542 *
543 * The tree lock is not taken internally. This is a utility function and
544 * probably isn't what you want to call (see set/clear_extent_bit).
545 */
546static int insert_state(struct extent_io_tree *tree,
547 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
548 struct rb_node ***p,
549 struct rb_node **parent,
d38ed27f 550 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
551{
552 struct rb_node *node;
553
2792237d
DS
554 if (end < start) {
555 btrfs_err(tree->fs_info,
556 "insert state: end < start %llu %llu", end, start);
557 WARN_ON(1);
558 }
d1310b2e
CM
559 state->start = start;
560 state->end = end;
9ed74f2d 561
d38ed27f 562 set_state_bits(tree, state, bits, changeset);
3150b699 563
f2071b21 564 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
565 if (node) {
566 struct extent_state *found;
567 found = rb_entry(node, struct extent_state, rb_node);
2792237d
DS
568 btrfs_err(tree->fs_info,
569 "found node %llu %llu on insert of %llu %llu",
c1c9ff7c 570 found->start, found->end, start, end);
d1310b2e
CM
571 return -EEXIST;
572 }
573 merge_state(tree, state);
574 return 0;
575}
576
577/*
578 * split a given extent state struct in two, inserting the preallocated
579 * struct 'prealloc' as the newly created second half. 'split' indicates an
580 * offset inside 'orig' where it should be split.
581 *
582 * Before calling,
583 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
584 * are two extent state structs in the tree:
585 * prealloc: [orig->start, split - 1]
586 * orig: [ split, orig->end ]
587 *
588 * The tree locks are not taken by this function. They need to be held
589 * by the caller.
590 */
591static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
592 struct extent_state *prealloc, u64 split)
593{
594 struct rb_node *node;
9ed74f2d 595
abbb55f4
NB
596 if (tree->private_data && is_data_inode(tree->private_data))
597 btrfs_split_delalloc_extent(tree->private_data, orig, split);
9ed74f2d 598
d1310b2e
CM
599 prealloc->start = orig->start;
600 prealloc->end = split - 1;
601 prealloc->state = orig->state;
602 orig->start = split;
603
f2071b21
FM
604 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
605 &prealloc->rb_node, NULL, NULL);
d1310b2e 606 if (node) {
d1310b2e
CM
607 free_extent_state(prealloc);
608 return -EEXIST;
609 }
610 return 0;
611}
612
cdc6a395
LZ
613static struct extent_state *next_state(struct extent_state *state)
614{
615 struct rb_node *next = rb_next(&state->rb_node);
616 if (next)
617 return rb_entry(next, struct extent_state, rb_node);
618 else
619 return NULL;
620}
621
d1310b2e
CM
622/*
623 * utility function to clear some bits in an extent state struct.
52042d8e 624 * it will optionally wake up anyone waiting on this state (wake == 1).
d1310b2e
CM
625 *
626 * If no bits are set on the state struct after clearing things, the
627 * struct is freed and removed from the tree
628 */
cdc6a395
LZ
629static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
630 struct extent_state *state,
fefdc557
QW
631 unsigned *bits, int wake,
632 struct extent_changeset *changeset)
d1310b2e 633{
cdc6a395 634 struct extent_state *next;
9ee49a04 635 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
57599c7e 636 int ret;
d1310b2e 637
0ca1f7ce 638 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
639 u64 range = state->end - state->start + 1;
640 WARN_ON(range > tree->dirty_bytes);
641 tree->dirty_bytes -= range;
642 }
a36bb5f9
NB
643
644 if (tree->private_data && is_data_inode(tree->private_data))
645 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
646
57599c7e
DS
647 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
648 BUG_ON(ret < 0);
32c00aff 649 state->state &= ~bits_to_clear;
d1310b2e
CM
650 if (wake)
651 wake_up(&state->wq);
0ca1f7ce 652 if (state->state == 0) {
cdc6a395 653 next = next_state(state);
27a3507d 654 if (extent_state_in_tree(state)) {
d1310b2e 655 rb_erase(&state->rb_node, &tree->state);
27a3507d 656 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
657 free_extent_state(state);
658 } else {
659 WARN_ON(1);
660 }
661 } else {
662 merge_state(tree, state);
cdc6a395 663 next = next_state(state);
d1310b2e 664 }
cdc6a395 665 return next;
d1310b2e
CM
666}
667
8233767a
XG
668static struct extent_state *
669alloc_extent_state_atomic(struct extent_state *prealloc)
670{
671 if (!prealloc)
672 prealloc = alloc_extent_state(GFP_ATOMIC);
673
674 return prealloc;
675}
676
48a3b636 677static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 678{
05912a3c
DS
679 struct inode *inode = tree->private_data;
680
681 btrfs_panic(btrfs_sb(inode->i_sb), err,
682 "locking error: extent tree was modified by another thread while locked");
c2d904e0
JM
683}
684
d1310b2e
CM
685/*
686 * clear some bits on a range in the tree. This may require splitting
687 * or inserting elements in the tree, so the gfp mask is used to
688 * indicate which allocations or sleeping are allowed.
689 *
690 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
691 * the given range from the tree regardless of state (ie for truncate).
692 *
693 * the range [start, end] is inclusive.
694 *
6763af84 695 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 696 */
66b0c887 697int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
698 unsigned bits, int wake, int delete,
699 struct extent_state **cached_state,
700 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
701{
702 struct extent_state *state;
2c64c53d 703 struct extent_state *cached;
d1310b2e
CM
704 struct extent_state *prealloc = NULL;
705 struct rb_node *node;
5c939df5 706 u64 last_end;
d1310b2e 707 int err;
2ac55d41 708 int clear = 0;
d1310b2e 709
a5dee37d 710 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 711 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 712
7ee9e440
JB
713 if (bits & EXTENT_DELALLOC)
714 bits |= EXTENT_NORESERVE;
715
0ca1f7ce
YZ
716 if (delete)
717 bits |= ~EXTENT_CTLBITS;
0ca1f7ce 718
8882679e 719 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
2ac55d41 720 clear = 1;
d1310b2e 721again:
d0164adc 722 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
723 /*
724 * Don't care for allocation failure here because we might end
725 * up not needing the pre-allocated extent state at all, which
726 * is the case if we only have in the tree extent states that
727 * cover our input range and don't cover too any other range.
728 * If we end up needing a new extent state we allocate it later.
729 */
d1310b2e 730 prealloc = alloc_extent_state(mask);
d1310b2e
CM
731 }
732
cad321ad 733 spin_lock(&tree->lock);
2c64c53d
CM
734 if (cached_state) {
735 cached = *cached_state;
2ac55d41
JB
736
737 if (clear) {
738 *cached_state = NULL;
739 cached_state = NULL;
740 }
741
27a3507d
FM
742 if (cached && extent_state_in_tree(cached) &&
743 cached->start <= start && cached->end > start) {
2ac55d41 744 if (clear)
b7ac31b7 745 refcount_dec(&cached->refs);
2c64c53d 746 state = cached;
42daec29 747 goto hit_next;
2c64c53d 748 }
2ac55d41
JB
749 if (clear)
750 free_extent_state(cached);
2c64c53d 751 }
d1310b2e
CM
752 /*
753 * this search will find the extents that end after
754 * our range starts
755 */
80ea96b1 756 node = tree_search(tree, start);
d1310b2e
CM
757 if (!node)
758 goto out;
759 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 760hit_next:
d1310b2e
CM
761 if (state->start > end)
762 goto out;
763 WARN_ON(state->end < start);
5c939df5 764 last_end = state->end;
d1310b2e 765
0449314a 766 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
767 if (!(state->state & bits)) {
768 state = next_state(state);
0449314a 769 goto next;
cdc6a395 770 }
0449314a 771
d1310b2e
CM
772 /*
773 * | ---- desired range ---- |
774 * | state | or
775 * | ------------- state -------------- |
776 *
777 * We need to split the extent we found, and may flip
778 * bits on second half.
779 *
780 * If the extent we found extends past our range, we
781 * just split and search again. It'll get split again
782 * the next time though.
783 *
784 * If the extent we found is inside our range, we clear
785 * the desired bit on it.
786 */
787
788 if (state->start < start) {
8233767a
XG
789 prealloc = alloc_extent_state_atomic(prealloc);
790 BUG_ON(!prealloc);
d1310b2e 791 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
792 if (err)
793 extent_io_tree_panic(tree, err);
794
d1310b2e
CM
795 prealloc = NULL;
796 if (err)
797 goto out;
798 if (state->end <= end) {
fefdc557
QW
799 state = clear_state_bit(tree, state, &bits, wake,
800 changeset);
d1ac6e41 801 goto next;
d1310b2e
CM
802 }
803 goto search_again;
804 }
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * We need to split the extent, and clear the bit
809 * on the first half
810 */
811 if (state->start <= end && state->end > end) {
8233767a
XG
812 prealloc = alloc_extent_state_atomic(prealloc);
813 BUG_ON(!prealloc);
d1310b2e 814 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
815 if (err)
816 extent_io_tree_panic(tree, err);
817
d1310b2e
CM
818 if (wake)
819 wake_up(&state->wq);
42daec29 820
fefdc557 821 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 822
d1310b2e
CM
823 prealloc = NULL;
824 goto out;
825 }
42daec29 826
fefdc557 827 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 828next:
5c939df5
YZ
829 if (last_end == (u64)-1)
830 goto out;
831 start = last_end + 1;
cdc6a395 832 if (start <= end && state && !need_resched())
692e5759 833 goto hit_next;
d1310b2e
CM
834
835search_again:
836 if (start > end)
837 goto out;
cad321ad 838 spin_unlock(&tree->lock);
d0164adc 839 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
840 cond_resched();
841 goto again;
7ab5cb2a
DS
842
843out:
844 spin_unlock(&tree->lock);
845 if (prealloc)
846 free_extent_state(prealloc);
847
848 return 0;
849
d1310b2e 850}
d1310b2e 851
143bede5
JM
852static void wait_on_state(struct extent_io_tree *tree,
853 struct extent_state *state)
641f5219
CH
854 __releases(tree->lock)
855 __acquires(tree->lock)
d1310b2e
CM
856{
857 DEFINE_WAIT(wait);
858 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 859 spin_unlock(&tree->lock);
d1310b2e 860 schedule();
cad321ad 861 spin_lock(&tree->lock);
d1310b2e 862 finish_wait(&state->wq, &wait);
d1310b2e
CM
863}
864
865/*
866 * waits for one or more bits to clear on a range in the state tree.
867 * The range [start, end] is inclusive.
868 * The tree lock is taken by this function
869 */
41074888
DS
870static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
871 unsigned long bits)
d1310b2e
CM
872{
873 struct extent_state *state;
874 struct rb_node *node;
875
a5dee37d 876 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 877
cad321ad 878 spin_lock(&tree->lock);
d1310b2e
CM
879again:
880 while (1) {
881 /*
882 * this search will find all the extents that end after
883 * our range starts
884 */
80ea96b1 885 node = tree_search(tree, start);
c50d3e71 886process_node:
d1310b2e
CM
887 if (!node)
888 break;
889
890 state = rb_entry(node, struct extent_state, rb_node);
891
892 if (state->start > end)
893 goto out;
894
895 if (state->state & bits) {
896 start = state->start;
b7ac31b7 897 refcount_inc(&state->refs);
d1310b2e
CM
898 wait_on_state(tree, state);
899 free_extent_state(state);
900 goto again;
901 }
902 start = state->end + 1;
903
904 if (start > end)
905 break;
906
c50d3e71
FM
907 if (!cond_resched_lock(&tree->lock)) {
908 node = rb_next(node);
909 goto process_node;
910 }
d1310b2e
CM
911 }
912out:
cad321ad 913 spin_unlock(&tree->lock);
d1310b2e 914}
d1310b2e 915
1bf85046 916static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 917 struct extent_state *state,
d38ed27f 918 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 919{
9ee49a04 920 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
57599c7e 921 int ret;
9ed74f2d 922
e06a1fc9
NB
923 if (tree->private_data && is_data_inode(tree->private_data))
924 btrfs_set_delalloc_extent(tree->private_data, state, bits);
925
0ca1f7ce 926 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
927 u64 range = state->end - state->start + 1;
928 tree->dirty_bytes += range;
929 }
57599c7e
DS
930 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
931 BUG_ON(ret < 0);
0ca1f7ce 932 state->state |= bits_to_set;
d1310b2e
CM
933}
934
e38e2ed7
FM
935static void cache_state_if_flags(struct extent_state *state,
936 struct extent_state **cached_ptr,
9ee49a04 937 unsigned flags)
2c64c53d
CM
938{
939 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 940 if (!flags || (state->state & flags)) {
2c64c53d 941 *cached_ptr = state;
b7ac31b7 942 refcount_inc(&state->refs);
2c64c53d
CM
943 }
944 }
945}
946
e38e2ed7
FM
947static void cache_state(struct extent_state *state,
948 struct extent_state **cached_ptr)
949{
950 return cache_state_if_flags(state, cached_ptr,
8882679e 951 EXTENT_LOCKED | EXTENT_BOUNDARY);
e38e2ed7
FM
952}
953
d1310b2e 954/*
1edbb734
CM
955 * set some bits on a range in the tree. This may require allocations or
956 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 957 *
1edbb734
CM
958 * If any of the exclusive bits are set, this will fail with -EEXIST if some
959 * part of the range already has the desired bits set. The start of the
960 * existing range is returned in failed_start in this case.
d1310b2e 961 *
1edbb734 962 * [start, end] is inclusive This takes the tree lock.
d1310b2e 963 */
1edbb734 964
3fbe5c02
JM
965static int __must_check
966__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 967 unsigned bits, unsigned exclusive_bits,
41074888 968 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 969 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
970{
971 struct extent_state *state;
972 struct extent_state *prealloc = NULL;
973 struct rb_node *node;
12cfbad9
FDBM
974 struct rb_node **p;
975 struct rb_node *parent;
d1310b2e 976 int err = 0;
d1310b2e
CM
977 u64 last_start;
978 u64 last_end;
42daec29 979
a5dee37d 980 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847 981 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
8d599ae1 982
d1310b2e 983again:
d0164adc 984 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
985 /*
986 * Don't care for allocation failure here because we might end
987 * up not needing the pre-allocated extent state at all, which
988 * is the case if we only have in the tree extent states that
989 * cover our input range and don't cover too any other range.
990 * If we end up needing a new extent state we allocate it later.
991 */
d1310b2e 992 prealloc = alloc_extent_state(mask);
d1310b2e
CM
993 }
994
cad321ad 995 spin_lock(&tree->lock);
9655d298
CM
996 if (cached_state && *cached_state) {
997 state = *cached_state;
df98b6e2 998 if (state->start <= start && state->end > start &&
27a3507d 999 extent_state_in_tree(state)) {
9655d298
CM
1000 node = &state->rb_node;
1001 goto hit_next;
1002 }
1003 }
d1310b2e
CM
1004 /*
1005 * this search will find all the extents that end after
1006 * our range starts.
1007 */
12cfbad9 1008 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 1009 if (!node) {
8233767a
XG
1010 prealloc = alloc_extent_state_atomic(prealloc);
1011 BUG_ON(!prealloc);
12cfbad9 1012 err = insert_state(tree, prealloc, start, end,
d38ed27f 1013 &p, &parent, &bits, changeset);
c2d904e0
JM
1014 if (err)
1015 extent_io_tree_panic(tree, err);
1016
c42ac0bc 1017 cache_state(prealloc, cached_state);
d1310b2e 1018 prealloc = NULL;
d1310b2e
CM
1019 goto out;
1020 }
d1310b2e 1021 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 1022hit_next:
d1310b2e
CM
1023 last_start = state->start;
1024 last_end = state->end;
1025
1026 /*
1027 * | ---- desired range ---- |
1028 * | state |
1029 *
1030 * Just lock what we found and keep going
1031 */
1032 if (state->start == start && state->end <= end) {
1edbb734 1033 if (state->state & exclusive_bits) {
d1310b2e
CM
1034 *failed_start = state->start;
1035 err = -EEXIST;
1036 goto out;
1037 }
42daec29 1038
d38ed27f 1039 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1040 cache_state(state, cached_state);
d1310b2e 1041 merge_state(tree, state);
5c939df5
YZ
1042 if (last_end == (u64)-1)
1043 goto out;
1044 start = last_end + 1;
d1ac6e41
LB
1045 state = next_state(state);
1046 if (start < end && state && state->start == start &&
1047 !need_resched())
1048 goto hit_next;
d1310b2e
CM
1049 goto search_again;
1050 }
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 * or
1056 * | ------------- state -------------- |
1057 *
1058 * We need to split the extent we found, and may flip bits on
1059 * second half.
1060 *
1061 * If the extent we found extends past our
1062 * range, we just split and search again. It'll get split
1063 * again the next time though.
1064 *
1065 * If the extent we found is inside our range, we set the
1066 * desired bit on it.
1067 */
1068 if (state->start < start) {
1edbb734 1069 if (state->state & exclusive_bits) {
d1310b2e
CM
1070 *failed_start = start;
1071 err = -EEXIST;
1072 goto out;
1073 }
8233767a 1074
55ffaabe
FM
1075 /*
1076 * If this extent already has all the bits we want set, then
1077 * skip it, not necessary to split it or do anything with it.
1078 */
1079 if ((state->state & bits) == bits) {
1080 start = state->end + 1;
1081 cache_state(state, cached_state);
1082 goto search_again;
1083 }
1084
8233767a
XG
1085 prealloc = alloc_extent_state_atomic(prealloc);
1086 BUG_ON(!prealloc);
d1310b2e 1087 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1088 if (err)
1089 extent_io_tree_panic(tree, err);
1090
d1310b2e
CM
1091 prealloc = NULL;
1092 if (err)
1093 goto out;
1094 if (state->end <= end) {
d38ed27f 1095 set_state_bits(tree, state, &bits, changeset);
2c64c53d 1096 cache_state(state, cached_state);
d1310b2e 1097 merge_state(tree, state);
5c939df5
YZ
1098 if (last_end == (u64)-1)
1099 goto out;
1100 start = last_end + 1;
d1ac6e41
LB
1101 state = next_state(state);
1102 if (start < end && state && state->start == start &&
1103 !need_resched())
1104 goto hit_next;
d1310b2e
CM
1105 }
1106 goto search_again;
1107 }
1108 /*
1109 * | ---- desired range ---- |
1110 * | state | or | state |
1111 *
1112 * There's a hole, we need to insert something in it and
1113 * ignore the extent we found.
1114 */
1115 if (state->start > start) {
1116 u64 this_end;
1117 if (end < last_start)
1118 this_end = end;
1119 else
d397712b 1120 this_end = last_start - 1;
8233767a
XG
1121
1122 prealloc = alloc_extent_state_atomic(prealloc);
1123 BUG_ON(!prealloc);
c7f895a2
XG
1124
1125 /*
1126 * Avoid to free 'prealloc' if it can be merged with
1127 * the later extent.
1128 */
d1310b2e 1129 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1130 NULL, NULL, &bits, changeset);
c2d904e0
JM
1131 if (err)
1132 extent_io_tree_panic(tree, err);
1133
9ed74f2d
JB
1134 cache_state(prealloc, cached_state);
1135 prealloc = NULL;
d1310b2e
CM
1136 start = this_end + 1;
1137 goto search_again;
1138 }
1139 /*
1140 * | ---- desired range ---- |
1141 * | state |
1142 * We need to split the extent, and set the bit
1143 * on the first half
1144 */
1145 if (state->start <= end && state->end > end) {
1edbb734 1146 if (state->state & exclusive_bits) {
d1310b2e
CM
1147 *failed_start = start;
1148 err = -EEXIST;
1149 goto out;
1150 }
8233767a
XG
1151
1152 prealloc = alloc_extent_state_atomic(prealloc);
1153 BUG_ON(!prealloc);
d1310b2e 1154 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1155 if (err)
1156 extent_io_tree_panic(tree, err);
d1310b2e 1157
d38ed27f 1158 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1159 cache_state(prealloc, cached_state);
d1310b2e
CM
1160 merge_state(tree, prealloc);
1161 prealloc = NULL;
1162 goto out;
1163 }
1164
b5a4ba14
DS
1165search_again:
1166 if (start > end)
1167 goto out;
1168 spin_unlock(&tree->lock);
1169 if (gfpflags_allow_blocking(mask))
1170 cond_resched();
1171 goto again;
d1310b2e
CM
1172
1173out:
cad321ad 1174 spin_unlock(&tree->lock);
d1310b2e
CM
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
d1310b2e 1180}
d1310b2e 1181
41074888 1182int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1183 unsigned bits, u64 * failed_start,
41074888 1184 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1185{
1186 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1187 cached_state, mask, NULL);
3fbe5c02
JM
1188}
1189
1190
462d6fac 1191/**
10983f2e
LB
1192 * convert_extent_bit - convert all bits in a given range from one bit to
1193 * another
462d6fac
JB
1194 * @tree: the io tree to search
1195 * @start: the start offset in bytes
1196 * @end: the end offset in bytes (inclusive)
1197 * @bits: the bits to set in this range
1198 * @clear_bits: the bits to clear in this range
e6138876 1199 * @cached_state: state that we're going to cache
462d6fac
JB
1200 *
1201 * This will go through and set bits for the given range. If any states exist
1202 * already in this range they are set with the given bit and cleared of the
1203 * clear_bits. This is only meant to be used by things that are mergeable, ie
1204 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1205 * boundary bits like LOCK.
210aa277
DS
1206 *
1207 * All allocations are done with GFP_NOFS.
462d6fac
JB
1208 */
1209int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1210 unsigned bits, unsigned clear_bits,
210aa277 1211 struct extent_state **cached_state)
462d6fac
JB
1212{
1213 struct extent_state *state;
1214 struct extent_state *prealloc = NULL;
1215 struct rb_node *node;
12cfbad9
FDBM
1216 struct rb_node **p;
1217 struct rb_node *parent;
462d6fac
JB
1218 int err = 0;
1219 u64 last_start;
1220 u64 last_end;
c8fd3de7 1221 bool first_iteration = true;
462d6fac 1222
a5dee37d 1223 btrfs_debug_check_extent_io_range(tree, start, end);
a1d19847
QW
1224 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1225 clear_bits);
8d599ae1 1226
462d6fac 1227again:
210aa277 1228 if (!prealloc) {
c8fd3de7
FM
1229 /*
1230 * Best effort, don't worry if extent state allocation fails
1231 * here for the first iteration. We might have a cached state
1232 * that matches exactly the target range, in which case no
1233 * extent state allocations are needed. We'll only know this
1234 * after locking the tree.
1235 */
210aa277 1236 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1237 if (!prealloc && !first_iteration)
462d6fac
JB
1238 return -ENOMEM;
1239 }
1240
1241 spin_lock(&tree->lock);
e6138876
JB
1242 if (cached_state && *cached_state) {
1243 state = *cached_state;
1244 if (state->start <= start && state->end > start &&
27a3507d 1245 extent_state_in_tree(state)) {
e6138876
JB
1246 node = &state->rb_node;
1247 goto hit_next;
1248 }
1249 }
1250
462d6fac
JB
1251 /*
1252 * this search will find all the extents that end after
1253 * our range starts.
1254 */
12cfbad9 1255 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1256 if (!node) {
1257 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1258 if (!prealloc) {
1259 err = -ENOMEM;
1260 goto out;
1261 }
12cfbad9 1262 err = insert_state(tree, prealloc, start, end,
d38ed27f 1263 &p, &parent, &bits, NULL);
c2d904e0
JM
1264 if (err)
1265 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1266 cache_state(prealloc, cached_state);
1267 prealloc = NULL;
462d6fac
JB
1268 goto out;
1269 }
1270 state = rb_entry(node, struct extent_state, rb_node);
1271hit_next:
1272 last_start = state->start;
1273 last_end = state->end;
1274
1275 /*
1276 * | ---- desired range ---- |
1277 * | state |
1278 *
1279 * Just lock what we found and keep going
1280 */
1281 if (state->start == start && state->end <= end) {
d38ed27f 1282 set_state_bits(tree, state, &bits, NULL);
e6138876 1283 cache_state(state, cached_state);
fefdc557 1284 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1285 if (last_end == (u64)-1)
1286 goto out;
462d6fac 1287 start = last_end + 1;
d1ac6e41
LB
1288 if (start < end && state && state->start == start &&
1289 !need_resched())
1290 goto hit_next;
462d6fac
JB
1291 goto search_again;
1292 }
1293
1294 /*
1295 * | ---- desired range ---- |
1296 * | state |
1297 * or
1298 * | ------------- state -------------- |
1299 *
1300 * We need to split the extent we found, and may flip bits on
1301 * second half.
1302 *
1303 * If the extent we found extends past our
1304 * range, we just split and search again. It'll get split
1305 * again the next time though.
1306 *
1307 * If the extent we found is inside our range, we set the
1308 * desired bit on it.
1309 */
1310 if (state->start < start) {
1311 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1312 if (!prealloc) {
1313 err = -ENOMEM;
1314 goto out;
1315 }
462d6fac 1316 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1317 if (err)
1318 extent_io_tree_panic(tree, err);
462d6fac
JB
1319 prealloc = NULL;
1320 if (err)
1321 goto out;
1322 if (state->end <= end) {
d38ed27f 1323 set_state_bits(tree, state, &bits, NULL);
e6138876 1324 cache_state(state, cached_state);
fefdc557
QW
1325 state = clear_state_bit(tree, state, &clear_bits, 0,
1326 NULL);
462d6fac
JB
1327 if (last_end == (u64)-1)
1328 goto out;
1329 start = last_end + 1;
d1ac6e41
LB
1330 if (start < end && state && state->start == start &&
1331 !need_resched())
1332 goto hit_next;
462d6fac
JB
1333 }
1334 goto search_again;
1335 }
1336 /*
1337 * | ---- desired range ---- |
1338 * | state | or | state |
1339 *
1340 * There's a hole, we need to insert something in it and
1341 * ignore the extent we found.
1342 */
1343 if (state->start > start) {
1344 u64 this_end;
1345 if (end < last_start)
1346 this_end = end;
1347 else
1348 this_end = last_start - 1;
1349
1350 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1351 if (!prealloc) {
1352 err = -ENOMEM;
1353 goto out;
1354 }
462d6fac
JB
1355
1356 /*
1357 * Avoid to free 'prealloc' if it can be merged with
1358 * the later extent.
1359 */
1360 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1361 NULL, NULL, &bits, NULL);
c2d904e0
JM
1362 if (err)
1363 extent_io_tree_panic(tree, err);
e6138876 1364 cache_state(prealloc, cached_state);
462d6fac
JB
1365 prealloc = NULL;
1366 start = this_end + 1;
1367 goto search_again;
1368 }
1369 /*
1370 * | ---- desired range ---- |
1371 * | state |
1372 * We need to split the extent, and set the bit
1373 * on the first half
1374 */
1375 if (state->start <= end && state->end > end) {
1376 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1377 if (!prealloc) {
1378 err = -ENOMEM;
1379 goto out;
1380 }
462d6fac
JB
1381
1382 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1383 if (err)
1384 extent_io_tree_panic(tree, err);
462d6fac 1385
d38ed27f 1386 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1387 cache_state(prealloc, cached_state);
fefdc557 1388 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1389 prealloc = NULL;
1390 goto out;
1391 }
1392
462d6fac
JB
1393search_again:
1394 if (start > end)
1395 goto out;
1396 spin_unlock(&tree->lock);
210aa277 1397 cond_resched();
c8fd3de7 1398 first_iteration = false;
462d6fac 1399 goto again;
462d6fac
JB
1400
1401out:
1402 spin_unlock(&tree->lock);
1403 if (prealloc)
1404 free_extent_state(prealloc);
1405
1406 return err;
462d6fac
JB
1407}
1408
d1310b2e 1409/* wrappers around set/clear extent bit */
d38ed27f 1410int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1411 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1412{
1413 /*
1414 * We don't support EXTENT_LOCKED yet, as current changeset will
1415 * record any bits changed, so for EXTENT_LOCKED case, it will
1416 * either fail with -EEXIST or changeset will record the whole
1417 * range.
1418 */
1419 BUG_ON(bits & EXTENT_LOCKED);
1420
2c53b912 1421 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1422 changeset);
1423}
1424
4ca73656
NB
1425int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1426 unsigned bits)
1427{
1428 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1429 GFP_NOWAIT, NULL);
1430}
1431
fefdc557
QW
1432int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1433 unsigned bits, int wake, int delete,
ae0f1625 1434 struct extent_state **cached)
fefdc557
QW
1435{
1436 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1437 cached, GFP_NOFS, NULL);
fefdc557
QW
1438}
1439
fefdc557 1440int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1441 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1442{
1443 /*
1444 * Don't support EXTENT_LOCKED case, same reason as
1445 * set_record_extent_bits().
1446 */
1447 BUG_ON(bits & EXTENT_LOCKED);
1448
f734c44a 1449 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1450 changeset);
1451}
1452
d352ac68
CM
1453/*
1454 * either insert or lock state struct between start and end use mask to tell
1455 * us if waiting is desired.
1456 */
1edbb734 1457int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1458 struct extent_state **cached_state)
d1310b2e
CM
1459{
1460 int err;
1461 u64 failed_start;
9ee49a04 1462
d1310b2e 1463 while (1) {
ff13db41 1464 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1465 EXTENT_LOCKED, &failed_start,
d38ed27f 1466 cached_state, GFP_NOFS, NULL);
d0082371 1467 if (err == -EEXIST) {
d1310b2e
CM
1468 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1469 start = failed_start;
d0082371 1470 } else
d1310b2e 1471 break;
d1310b2e
CM
1472 WARN_ON(start > end);
1473 }
1474 return err;
1475}
d1310b2e 1476
d0082371 1477int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1478{
1479 int err;
1480 u64 failed_start;
1481
3fbe5c02 1482 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1483 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1484 if (err == -EEXIST) {
1485 if (failed_start > start)
1486 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1487 EXTENT_LOCKED, 1, 0, NULL);
25179201 1488 return 0;
6643558d 1489 }
25179201
JB
1490 return 1;
1491}
25179201 1492
bd1fa4f0 1493void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1494{
09cbfeaf
KS
1495 unsigned long index = start >> PAGE_SHIFT;
1496 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1497 struct page *page;
1498
1499 while (index <= end_index) {
1500 page = find_get_page(inode->i_mapping, index);
1501 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1502 clear_page_dirty_for_io(page);
09cbfeaf 1503 put_page(page);
4adaa611
CM
1504 index++;
1505 }
4adaa611
CM
1506}
1507
f6311572 1508void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1509{
09cbfeaf
KS
1510 unsigned long index = start >> PAGE_SHIFT;
1511 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1512 struct page *page;
1513
1514 while (index <= end_index) {
1515 page = find_get_page(inode->i_mapping, index);
1516 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1517 __set_page_dirty_nobuffers(page);
8d38633c 1518 account_page_redirty(page);
09cbfeaf 1519 put_page(page);
4adaa611
CM
1520 index++;
1521 }
4adaa611
CM
1522}
1523
d352ac68
CM
1524/* find the first state struct with 'bits' set after 'start', and
1525 * return it. tree->lock must be held. NULL will returned if
1526 * nothing was found after 'start'
1527 */
48a3b636
ES
1528static struct extent_state *
1529find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1530 u64 start, unsigned bits)
d7fc640e
CM
1531{
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
d397712b 1540 if (!node)
d7fc640e 1541 goto out;
d7fc640e 1542
d397712b 1543 while (1) {
d7fc640e 1544 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1545 if (state->end >= start && (state->state & bits))
d7fc640e 1546 return state;
d397712b 1547
d7fc640e
CM
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552out:
1553 return NULL;
1554}
d7fc640e 1555
69261c4b
XG
1556/*
1557 * find the first offset in the io tree with 'bits' set. zero is
1558 * returned if we find something, and *start_ret and *end_ret are
1559 * set to reflect the state struct that was found.
1560 *
477d7eaf 1561 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1562 */
1563int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1564 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1565 struct extent_state **cached_state)
69261c4b
XG
1566{
1567 struct extent_state *state;
1568 int ret = 1;
1569
1570 spin_lock(&tree->lock);
e6138876
JB
1571 if (cached_state && *cached_state) {
1572 state = *cached_state;
27a3507d 1573 if (state->end == start - 1 && extent_state_in_tree(state)) {
9688e9a9 1574 while ((state = next_state(state)) != NULL) {
e6138876
JB
1575 if (state->state & bits)
1576 goto got_it;
e6138876
JB
1577 }
1578 free_extent_state(*cached_state);
1579 *cached_state = NULL;
1580 goto out;
1581 }
1582 free_extent_state(*cached_state);
1583 *cached_state = NULL;
1584 }
1585
69261c4b 1586 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1587got_it:
69261c4b 1588 if (state) {
e38e2ed7 1589 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1590 *start_ret = state->start;
1591 *end_ret = state->end;
1592 ret = 0;
1593 }
e6138876 1594out:
69261c4b
XG
1595 spin_unlock(&tree->lock);
1596 return ret;
1597}
1598
41a2ee75
JB
1599/**
1600 * find_contiguous_extent_bit: find a contiguous area of bits
1601 * @tree - io tree to check
1602 * @start - offset to start the search from
1603 * @start_ret - the first offset we found with the bits set
1604 * @end_ret - the final contiguous range of the bits that were set
1605 * @bits - bits to look for
1606 *
1607 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1608 * to set bits appropriately, and then merge them again. During this time it
1609 * will drop the tree->lock, so use this helper if you want to find the actual
1610 * contiguous area for given bits. We will search to the first bit we find, and
1611 * then walk down the tree until we find a non-contiguous area. The area
1612 * returned will be the full contiguous area with the bits set.
1613 */
1614int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1615 u64 *start_ret, u64 *end_ret, unsigned bits)
1616{
1617 struct extent_state *state;
1618 int ret = 1;
1619
1620 spin_lock(&tree->lock);
1621 state = find_first_extent_bit_state(tree, start, bits);
1622 if (state) {
1623 *start_ret = state->start;
1624 *end_ret = state->end;
1625 while ((state = next_state(state)) != NULL) {
1626 if (state->start > (*end_ret + 1))
1627 break;
1628 *end_ret = state->end;
1629 }
1630 ret = 0;
1631 }
1632 spin_unlock(&tree->lock);
1633 return ret;
1634}
1635
45bfcfc1 1636/**
1eaebb34
NB
1637 * find_first_clear_extent_bit - find the first range that has @bits not set.
1638 * This range could start before @start.
45bfcfc1
NB
1639 *
1640 * @tree - the tree to search
1641 * @start - the offset at/after which the found extent should start
1642 * @start_ret - records the beginning of the range
1643 * @end_ret - records the end of the range (inclusive)
1644 * @bits - the set of bits which must be unset
1645 *
1646 * Since unallocated range is also considered one which doesn't have the bits
1647 * set it's possible that @end_ret contains -1, this happens in case the range
1648 * spans (last_range_end, end of device]. In this case it's up to the caller to
1649 * trim @end_ret to the appropriate size.
1650 */
1651void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1652 u64 *start_ret, u64 *end_ret, unsigned bits)
1653{
1654 struct extent_state *state;
1655 struct rb_node *node, *prev = NULL, *next;
1656
1657 spin_lock(&tree->lock);
1658
1659 /* Find first extent with bits cleared */
1660 while (1) {
1661 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
5750c375
NB
1662 if (!node && !next && !prev) {
1663 /*
1664 * Tree is completely empty, send full range and let
1665 * caller deal with it
1666 */
1667 *start_ret = 0;
1668 *end_ret = -1;
1669 goto out;
1670 } else if (!node && !next) {
1671 /*
1672 * We are past the last allocated chunk, set start at
1673 * the end of the last extent.
1674 */
1675 state = rb_entry(prev, struct extent_state, rb_node);
1676 *start_ret = state->end + 1;
1677 *end_ret = -1;
1678 goto out;
1679 } else if (!node) {
45bfcfc1 1680 node = next;
45bfcfc1 1681 }
1eaebb34
NB
1682 /*
1683 * At this point 'node' either contains 'start' or start is
1684 * before 'node'
1685 */
45bfcfc1 1686 state = rb_entry(node, struct extent_state, rb_node);
1eaebb34
NB
1687
1688 if (in_range(start, state->start, state->end - state->start + 1)) {
1689 if (state->state & bits) {
1690 /*
1691 * |--range with bits sets--|
1692 * |
1693 * start
1694 */
1695 start = state->end + 1;
1696 } else {
1697 /*
1698 * 'start' falls within a range that doesn't
1699 * have the bits set, so take its start as
1700 * the beginning of the desired range
1701 *
1702 * |--range with bits cleared----|
1703 * |
1704 * start
1705 */
1706 *start_ret = state->start;
1707 break;
1708 }
45bfcfc1 1709 } else {
1eaebb34
NB
1710 /*
1711 * |---prev range---|---hole/unset---|---node range---|
1712 * |
1713 * start
1714 *
1715 * or
1716 *
1717 * |---hole/unset--||--first node--|
1718 * 0 |
1719 * start
1720 */
1721 if (prev) {
1722 state = rb_entry(prev, struct extent_state,
1723 rb_node);
1724 *start_ret = state->end + 1;
1725 } else {
1726 *start_ret = 0;
1727 }
45bfcfc1
NB
1728 break;
1729 }
1730 }
1731
1732 /*
1733 * Find the longest stretch from start until an entry which has the
1734 * bits set
1735 */
1736 while (1) {
1737 state = rb_entry(node, struct extent_state, rb_node);
1738 if (state->end >= start && !(state->state & bits)) {
1739 *end_ret = state->end;
1740 } else {
1741 *end_ret = state->start - 1;
1742 break;
1743 }
1744
1745 node = rb_next(node);
1746 if (!node)
1747 break;
1748 }
1749out:
1750 spin_unlock(&tree->lock);
1751}
1752
d352ac68
CM
1753/*
1754 * find a contiguous range of bytes in the file marked as delalloc, not
1755 * more than 'max_bytes'. start and end are used to return the range,
1756 *
3522e903 1757 * true is returned if we find something, false if nothing was in the tree
d352ac68 1758 */
083e75e7
JB
1759bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1760 u64 *end, u64 max_bytes,
1761 struct extent_state **cached_state)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
3522e903 1766 bool found = false;
d1310b2e
CM
1767 u64 total_bytes = 0;
1768
cad321ad 1769 spin_lock(&tree->lock);
c8b97818 1770
d1310b2e
CM
1771 /*
1772 * this search will find all the extents that end after
1773 * our range starts.
1774 */
80ea96b1 1775 node = tree_search(tree, cur_start);
2b114d1d 1776 if (!node) {
3522e903 1777 *end = (u64)-1;
d1310b2e
CM
1778 goto out;
1779 }
1780
d397712b 1781 while (1) {
d1310b2e 1782 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1783 if (found && (state->start != cur_start ||
1784 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1785 goto out;
1786 }
1787 if (!(state->state & EXTENT_DELALLOC)) {
1788 if (!found)
1789 *end = state->end;
1790 goto out;
1791 }
c2a128d2 1792 if (!found) {
d1310b2e 1793 *start = state->start;
c2a128d2 1794 *cached_state = state;
b7ac31b7 1795 refcount_inc(&state->refs);
c2a128d2 1796 }
3522e903 1797 found = true;
d1310b2e
CM
1798 *end = state->end;
1799 cur_start = state->end + 1;
1800 node = rb_next(node);
d1310b2e 1801 total_bytes += state->end - state->start + 1;
7bf811a5 1802 if (total_bytes >= max_bytes)
573aecaf 1803 break;
573aecaf 1804 if (!node)
d1310b2e
CM
1805 break;
1806 }
1807out:
cad321ad 1808 spin_unlock(&tree->lock);
d1310b2e
CM
1809 return found;
1810}
1811
da2c7009
LB
1812static int __process_pages_contig(struct address_space *mapping,
1813 struct page *locked_page,
1814 pgoff_t start_index, pgoff_t end_index,
1815 unsigned long page_ops, pgoff_t *index_ret);
1816
143bede5
JM
1817static noinline void __unlock_for_delalloc(struct inode *inode,
1818 struct page *locked_page,
1819 u64 start, u64 end)
c8b97818 1820{
09cbfeaf
KS
1821 unsigned long index = start >> PAGE_SHIFT;
1822 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1823
76c0021d 1824 ASSERT(locked_page);
c8b97818 1825 if (index == locked_page->index && end_index == index)
143bede5 1826 return;
c8b97818 1827
76c0021d
LB
1828 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1829 PAGE_UNLOCK, NULL);
c8b97818
CM
1830}
1831
1832static noinline int lock_delalloc_pages(struct inode *inode,
1833 struct page *locked_page,
1834 u64 delalloc_start,
1835 u64 delalloc_end)
1836{
09cbfeaf 1837 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1838 unsigned long index_ret = index;
09cbfeaf 1839 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1840 int ret;
c8b97818 1841
76c0021d 1842 ASSERT(locked_page);
c8b97818
CM
1843 if (index == locked_page->index && index == end_index)
1844 return 0;
1845
76c0021d
LB
1846 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1847 end_index, PAGE_LOCK, &index_ret);
1848 if (ret == -EAGAIN)
1849 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1850 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1851 return ret;
1852}
1853
1854/*
3522e903
LF
1855 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1856 * more than @max_bytes. @Start and @end are used to return the range,
c8b97818 1857 *
3522e903
LF
1858 * Return: true if we find something
1859 * false if nothing was in the tree
c8b97818 1860 */
ce9f967f 1861EXPORT_FOR_TESTS
3522e903 1862noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
294e30fe 1863 struct page *locked_page, u64 *start,
917aacec 1864 u64 *end)
c8b97818 1865{
9978059b 1866 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
917aacec 1867 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
c8b97818
CM
1868 u64 delalloc_start;
1869 u64 delalloc_end;
3522e903 1870 bool found;
9655d298 1871 struct extent_state *cached_state = NULL;
c8b97818
CM
1872 int ret;
1873 int loops = 0;
1874
1875again:
1876 /* step one, find a bunch of delalloc bytes starting at start */
1877 delalloc_start = *start;
1878 delalloc_end = 0;
083e75e7
JB
1879 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1880 max_bytes, &cached_state);
70b99e69 1881 if (!found || delalloc_end <= *start) {
c8b97818
CM
1882 *start = delalloc_start;
1883 *end = delalloc_end;
c2a128d2 1884 free_extent_state(cached_state);
3522e903 1885 return false;
c8b97818
CM
1886 }
1887
70b99e69
CM
1888 /*
1889 * start comes from the offset of locked_page. We have to lock
1890 * pages in order, so we can't process delalloc bytes before
1891 * locked_page
1892 */
d397712b 1893 if (delalloc_start < *start)
70b99e69 1894 delalloc_start = *start;
70b99e69 1895
c8b97818
CM
1896 /*
1897 * make sure to limit the number of pages we try to lock down
c8b97818 1898 */
7bf811a5
JB
1899 if (delalloc_end + 1 - delalloc_start > max_bytes)
1900 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1901
c8b97818
CM
1902 /* step two, lock all the pages after the page that has start */
1903 ret = lock_delalloc_pages(inode, locked_page,
1904 delalloc_start, delalloc_end);
9bfd61d9 1905 ASSERT(!ret || ret == -EAGAIN);
c8b97818
CM
1906 if (ret == -EAGAIN) {
1907 /* some of the pages are gone, lets avoid looping by
1908 * shortening the size of the delalloc range we're searching
1909 */
9655d298 1910 free_extent_state(cached_state);
7d788742 1911 cached_state = NULL;
c8b97818 1912 if (!loops) {
09cbfeaf 1913 max_bytes = PAGE_SIZE;
c8b97818
CM
1914 loops = 1;
1915 goto again;
1916 } else {
3522e903 1917 found = false;
c8b97818
CM
1918 goto out_failed;
1919 }
1920 }
c8b97818
CM
1921
1922 /* step three, lock the state bits for the whole range */
ff13db41 1923 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1924
1925 /* then test to make sure it is all still delalloc */
1926 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1927 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1928 if (!ret) {
9655d298 1929 unlock_extent_cached(tree, delalloc_start, delalloc_end,
e43bbe5e 1930 &cached_state);
c8b97818
CM
1931 __unlock_for_delalloc(inode, locked_page,
1932 delalloc_start, delalloc_end);
1933 cond_resched();
1934 goto again;
1935 }
9655d298 1936 free_extent_state(cached_state);
c8b97818
CM
1937 *start = delalloc_start;
1938 *end = delalloc_end;
1939out_failed:
1940 return found;
1941}
1942
da2c7009
LB
1943static int __process_pages_contig(struct address_space *mapping,
1944 struct page *locked_page,
1945 pgoff_t start_index, pgoff_t end_index,
1946 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1947{
873695b3 1948 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1949 unsigned long pages_locked = 0;
873695b3 1950 pgoff_t index = start_index;
c8b97818 1951 struct page *pages[16];
873695b3 1952 unsigned ret;
da2c7009 1953 int err = 0;
c8b97818 1954 int i;
771ed689 1955
da2c7009
LB
1956 if (page_ops & PAGE_LOCK) {
1957 ASSERT(page_ops == PAGE_LOCK);
1958 ASSERT(index_ret && *index_ret == start_index);
1959 }
1960
704de49d 1961 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1962 mapping_set_error(mapping, -EIO);
704de49d 1963
d397712b 1964 while (nr_pages > 0) {
873695b3 1965 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1966 min_t(unsigned long,
1967 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1968 if (ret == 0) {
1969 /*
1970 * Only if we're going to lock these pages,
1971 * can we find nothing at @index.
1972 */
1973 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1974 err = -EAGAIN;
1975 goto out;
da2c7009 1976 }
8b62b72b 1977
da2c7009 1978 for (i = 0; i < ret; i++) {
c2790a2e 1979 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1980 SetPagePrivate2(pages[i]);
1981
1d53c9e6 1982 if (locked_page && pages[i] == locked_page) {
09cbfeaf 1983 put_page(pages[i]);
da2c7009 1984 pages_locked++;
c8b97818
CM
1985 continue;
1986 }
c2790a2e 1987 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1988 clear_page_dirty_for_io(pages[i]);
c2790a2e 1989 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1990 set_page_writeback(pages[i]);
704de49d
FM
1991 if (page_ops & PAGE_SET_ERROR)
1992 SetPageError(pages[i]);
c2790a2e 1993 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1994 end_page_writeback(pages[i]);
c2790a2e 1995 if (page_ops & PAGE_UNLOCK)
771ed689 1996 unlock_page(pages[i]);
da2c7009
LB
1997 if (page_ops & PAGE_LOCK) {
1998 lock_page(pages[i]);
1999 if (!PageDirty(pages[i]) ||
2000 pages[i]->mapping != mapping) {
2001 unlock_page(pages[i]);
2002 put_page(pages[i]);
2003 err = -EAGAIN;
2004 goto out;
2005 }
2006 }
09cbfeaf 2007 put_page(pages[i]);
da2c7009 2008 pages_locked++;
c8b97818
CM
2009 }
2010 nr_pages -= ret;
2011 index += ret;
2012 cond_resched();
2013 }
da2c7009
LB
2014out:
2015 if (err && index_ret)
2016 *index_ret = start_index + pages_locked - 1;
2017 return err;
c8b97818 2018}
c8b97818 2019
873695b3 2020void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
74e9194a
NB
2021 struct page *locked_page,
2022 unsigned clear_bits,
2023 unsigned long page_ops)
873695b3
LB
2024{
2025 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 2026 NULL);
873695b3
LB
2027
2028 __process_pages_contig(inode->i_mapping, locked_page,
2029 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 2030 page_ops, NULL);
873695b3
LB
2031}
2032
d352ac68
CM
2033/*
2034 * count the number of bytes in the tree that have a given bit(s)
2035 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2036 * cached. The total number found is returned.
2037 */
d1310b2e
CM
2038u64 count_range_bits(struct extent_io_tree *tree,
2039 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 2040 unsigned bits, int contig)
d1310b2e
CM
2041{
2042 struct rb_node *node;
2043 struct extent_state *state;
2044 u64 cur_start = *start;
2045 u64 total_bytes = 0;
ec29ed5b 2046 u64 last = 0;
d1310b2e
CM
2047 int found = 0;
2048
fae7f21c 2049 if (WARN_ON(search_end <= cur_start))
d1310b2e 2050 return 0;
d1310b2e 2051
cad321ad 2052 spin_lock(&tree->lock);
d1310b2e
CM
2053 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2054 total_bytes = tree->dirty_bytes;
2055 goto out;
2056 }
2057 /*
2058 * this search will find all the extents that end after
2059 * our range starts.
2060 */
80ea96b1 2061 node = tree_search(tree, cur_start);
d397712b 2062 if (!node)
d1310b2e 2063 goto out;
d1310b2e 2064
d397712b 2065 while (1) {
d1310b2e
CM
2066 state = rb_entry(node, struct extent_state, rb_node);
2067 if (state->start > search_end)
2068 break;
ec29ed5b
CM
2069 if (contig && found && state->start > last + 1)
2070 break;
2071 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
2072 total_bytes += min(search_end, state->end) + 1 -
2073 max(cur_start, state->start);
2074 if (total_bytes >= max_bytes)
2075 break;
2076 if (!found) {
af60bed2 2077 *start = max(cur_start, state->start);
d1310b2e
CM
2078 found = 1;
2079 }
ec29ed5b
CM
2080 last = state->end;
2081 } else if (contig && found) {
2082 break;
d1310b2e
CM
2083 }
2084 node = rb_next(node);
2085 if (!node)
2086 break;
2087 }
2088out:
cad321ad 2089 spin_unlock(&tree->lock);
d1310b2e
CM
2090 return total_bytes;
2091}
b2950863 2092
d352ac68
CM
2093/*
2094 * set the private field for a given byte offset in the tree. If there isn't
2095 * an extent_state there already, this does nothing.
2096 */
b3f167aa
JB
2097int set_state_failrec(struct extent_io_tree *tree, u64 start,
2098 struct io_failure_record *failrec)
d1310b2e
CM
2099{
2100 struct rb_node *node;
2101 struct extent_state *state;
2102 int ret = 0;
2103
cad321ad 2104 spin_lock(&tree->lock);
d1310b2e
CM
2105 /*
2106 * this search will find all the extents that end after
2107 * our range starts.
2108 */
80ea96b1 2109 node = tree_search(tree, start);
2b114d1d 2110 if (!node) {
d1310b2e
CM
2111 ret = -ENOENT;
2112 goto out;
2113 }
2114 state = rb_entry(node, struct extent_state, rb_node);
2115 if (state->start != start) {
2116 ret = -ENOENT;
2117 goto out;
2118 }
47dc196a 2119 state->failrec = failrec;
d1310b2e 2120out:
cad321ad 2121 spin_unlock(&tree->lock);
d1310b2e
CM
2122 return ret;
2123}
2124
b3f167aa
JB
2125int get_state_failrec(struct extent_io_tree *tree, u64 start,
2126 struct io_failure_record **failrec)
d1310b2e
CM
2127{
2128 struct rb_node *node;
2129 struct extent_state *state;
2130 int ret = 0;
2131
cad321ad 2132 spin_lock(&tree->lock);
d1310b2e
CM
2133 /*
2134 * this search will find all the extents that end after
2135 * our range starts.
2136 */
80ea96b1 2137 node = tree_search(tree, start);
2b114d1d 2138 if (!node) {
d1310b2e
CM
2139 ret = -ENOENT;
2140 goto out;
2141 }
2142 state = rb_entry(node, struct extent_state, rb_node);
2143 if (state->start != start) {
2144 ret = -ENOENT;
2145 goto out;
2146 }
47dc196a 2147 *failrec = state->failrec;
d1310b2e 2148out:
cad321ad 2149 spin_unlock(&tree->lock);
d1310b2e
CM
2150 return ret;
2151}
2152
2153/*
2154 * searches a range in the state tree for a given mask.
70dec807 2155 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
2156 * has the bits set. Otherwise, 1 is returned if any bit in the
2157 * range is found set.
2158 */
2159int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2160 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2161{
2162 struct extent_state *state = NULL;
2163 struct rb_node *node;
2164 int bitset = 0;
d1310b2e 2165
cad321ad 2166 spin_lock(&tree->lock);
27a3507d 2167 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2168 cached->end > start)
9655d298
CM
2169 node = &cached->rb_node;
2170 else
2171 node = tree_search(tree, start);
d1310b2e
CM
2172 while (node && start <= end) {
2173 state = rb_entry(node, struct extent_state, rb_node);
2174
2175 if (filled && state->start > start) {
2176 bitset = 0;
2177 break;
2178 }
2179
2180 if (state->start > end)
2181 break;
2182
2183 if (state->state & bits) {
2184 bitset = 1;
2185 if (!filled)
2186 break;
2187 } else if (filled) {
2188 bitset = 0;
2189 break;
2190 }
46562cec
CM
2191
2192 if (state->end == (u64)-1)
2193 break;
2194
d1310b2e
CM
2195 start = state->end + 1;
2196 if (start > end)
2197 break;
2198 node = rb_next(node);
2199 if (!node) {
2200 if (filled)
2201 bitset = 0;
2202 break;
2203 }
2204 }
cad321ad 2205 spin_unlock(&tree->lock);
d1310b2e
CM
2206 return bitset;
2207}
d1310b2e
CM
2208
2209/*
2210 * helper function to set a given page up to date if all the
2211 * extents in the tree for that page are up to date
2212 */
143bede5 2213static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2214{
4eee4fa4 2215 u64 start = page_offset(page);
09cbfeaf 2216 u64 end = start + PAGE_SIZE - 1;
9655d298 2217 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2218 SetPageUptodate(page);
d1310b2e
CM
2219}
2220
7870d082
JB
2221int free_io_failure(struct extent_io_tree *failure_tree,
2222 struct extent_io_tree *io_tree,
2223 struct io_failure_record *rec)
4a54c8c1
JS
2224{
2225 int ret;
2226 int err = 0;
4a54c8c1 2227
47dc196a 2228 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
2229 ret = clear_extent_bits(failure_tree, rec->start,
2230 rec->start + rec->len - 1,
91166212 2231 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
2232 if (ret)
2233 err = ret;
2234
7870d082 2235 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 2236 rec->start + rec->len - 1,
91166212 2237 EXTENT_DAMAGED);
53b381b3
DW
2238 if (ret && !err)
2239 err = ret;
4a54c8c1
JS
2240
2241 kfree(rec);
2242 return err;
2243}
2244
4a54c8c1
JS
2245/*
2246 * this bypasses the standard btrfs submit functions deliberately, as
2247 * the standard behavior is to write all copies in a raid setup. here we only
2248 * want to write the one bad copy. so we do the mapping for ourselves and issue
2249 * submit_bio directly.
3ec706c8 2250 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2251 * actually prevents the read that triggered the error from finishing.
2252 * currently, there can be no more than two copies of every data bit. thus,
2253 * exactly one rewrite is required.
2254 */
6ec656bc
JB
2255int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2256 u64 length, u64 logical, struct page *page,
2257 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2258{
2259 struct bio *bio;
2260 struct btrfs_device *dev;
4a54c8c1
JS
2261 u64 map_length = 0;
2262 u64 sector;
2263 struct btrfs_bio *bbio = NULL;
2264 int ret;
2265
1751e8a6 2266 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
2267 BUG_ON(!mirror_num);
2268
c5e4c3d7 2269 bio = btrfs_io_bio_alloc(1);
4f024f37 2270 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2271 map_length = length;
2272
b5de8d0d
FM
2273 /*
2274 * Avoid races with device replace and make sure our bbio has devices
2275 * associated to its stripes that don't go away while we are doing the
2276 * read repair operation.
2277 */
2278 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2279 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2280 /*
2281 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2282 * to update all raid stripes, but here we just want to correct
2283 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2284 * stripe's dev and sector.
2285 */
2286 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2287 &map_length, &bbio, 0);
2288 if (ret) {
2289 btrfs_bio_counter_dec(fs_info);
2290 bio_put(bio);
2291 return -EIO;
2292 }
2293 ASSERT(bbio->mirror_num == 1);
2294 } else {
2295 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2296 &map_length, &bbio, mirror_num);
2297 if (ret) {
2298 btrfs_bio_counter_dec(fs_info);
2299 bio_put(bio);
2300 return -EIO;
2301 }
2302 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2303 }
c725328c
LB
2304
2305 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2306 bio->bi_iter.bi_sector = sector;
c725328c 2307 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2308 btrfs_put_bbio(bbio);
ebbede42
AJ
2309 if (!dev || !dev->bdev ||
2310 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2311 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2312 bio_put(bio);
2313 return -EIO;
2314 }
74d46992 2315 bio_set_dev(bio, dev->bdev);
70fd7614 2316 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2317 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2318
4e49ea4a 2319 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2320 /* try to remap that extent elsewhere? */
b5de8d0d 2321 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2322 bio_put(bio);
442a4f63 2323 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2324 return -EIO;
2325 }
2326
b14af3b4
DS
2327 btrfs_info_rl_in_rcu(fs_info,
2328 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2329 ino, start,
1203b681 2330 rcu_str_deref(dev->name), sector);
b5de8d0d 2331 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2332 bio_put(bio);
2333 return 0;
2334}
2335
20a1fbf9 2336int btrfs_repair_eb_io_failure(struct extent_buffer *eb, int mirror_num)
ea466794 2337{
20a1fbf9 2338 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 2339 u64 start = eb->start;
cc5e31a4 2340 int i, num_pages = num_extent_pages(eb);
d95603b2 2341 int ret = 0;
ea466794 2342
bc98a42c 2343 if (sb_rdonly(fs_info->sb))
908960c6
ID
2344 return -EROFS;
2345
ea466794 2346 for (i = 0; i < num_pages; i++) {
fb85fc9a 2347 struct page *p = eb->pages[i];
1203b681 2348
6ec656bc 2349 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2350 start - page_offset(p), mirror_num);
ea466794
JB
2351 if (ret)
2352 break;
09cbfeaf 2353 start += PAGE_SIZE;
ea466794
JB
2354 }
2355
2356 return ret;
2357}
2358
4a54c8c1
JS
2359/*
2360 * each time an IO finishes, we do a fast check in the IO failure tree
2361 * to see if we need to process or clean up an io_failure_record
2362 */
7870d082
JB
2363int clean_io_failure(struct btrfs_fs_info *fs_info,
2364 struct extent_io_tree *failure_tree,
2365 struct extent_io_tree *io_tree, u64 start,
2366 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2367{
2368 u64 private;
4a54c8c1 2369 struct io_failure_record *failrec;
4a54c8c1
JS
2370 struct extent_state *state;
2371 int num_copies;
4a54c8c1 2372 int ret;
4a54c8c1
JS
2373
2374 private = 0;
7870d082
JB
2375 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2376 EXTENT_DIRTY, 0);
4a54c8c1
JS
2377 if (!ret)
2378 return 0;
2379
7870d082 2380 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2381 if (ret)
2382 return 0;
2383
4a54c8c1
JS
2384 BUG_ON(!failrec->this_mirror);
2385
2386 if (failrec->in_validation) {
2387 /* there was no real error, just free the record */
ab8d0fc4
JM
2388 btrfs_debug(fs_info,
2389 "clean_io_failure: freeing dummy error at %llu",
2390 failrec->start);
4a54c8c1
JS
2391 goto out;
2392 }
bc98a42c 2393 if (sb_rdonly(fs_info->sb))
908960c6 2394 goto out;
4a54c8c1 2395
7870d082
JB
2396 spin_lock(&io_tree->lock);
2397 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2398 failrec->start,
2399 EXTENT_LOCKED);
7870d082 2400 spin_unlock(&io_tree->lock);
4a54c8c1 2401
883d0de4
MX
2402 if (state && state->start <= failrec->start &&
2403 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2404 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2405 failrec->len);
4a54c8c1 2406 if (num_copies > 1) {
7870d082
JB
2407 repair_io_failure(fs_info, ino, start, failrec->len,
2408 failrec->logical, page, pg_offset,
2409 failrec->failed_mirror);
4a54c8c1
JS
2410 }
2411 }
2412
2413out:
7870d082 2414 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2415
454ff3de 2416 return 0;
4a54c8c1
JS
2417}
2418
f612496b
MX
2419/*
2420 * Can be called when
2421 * - hold extent lock
2422 * - under ordered extent
2423 * - the inode is freeing
2424 */
7ab7956e 2425void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2426{
7ab7956e 2427 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2428 struct io_failure_record *failrec;
2429 struct extent_state *state, *next;
2430
2431 if (RB_EMPTY_ROOT(&failure_tree->state))
2432 return;
2433
2434 spin_lock(&failure_tree->lock);
2435 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2436 while (state) {
2437 if (state->start > end)
2438 break;
2439
2440 ASSERT(state->end <= end);
2441
2442 next = next_state(state);
2443
47dc196a 2444 failrec = state->failrec;
f612496b
MX
2445 free_extent_state(state);
2446 kfree(failrec);
2447
2448 state = next;
2449 }
2450 spin_unlock(&failure_tree->lock);
2451}
2452
2fe6303e 2453int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2454 struct io_failure_record **failrec_ret)
4a54c8c1 2455{
ab8d0fc4 2456 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2457 struct io_failure_record *failrec;
4a54c8c1 2458 struct extent_map *em;
4a54c8c1
JS
2459 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2460 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2461 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2462 int ret;
4a54c8c1
JS
2463 u64 logical;
2464
47dc196a 2465 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2466 if (ret) {
2467 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2468 if (!failrec)
2469 return -ENOMEM;
2fe6303e 2470
4a54c8c1
JS
2471 failrec->start = start;
2472 failrec->len = end - start + 1;
2473 failrec->this_mirror = 0;
2474 failrec->bio_flags = 0;
2475 failrec->in_validation = 0;
2476
2477 read_lock(&em_tree->lock);
2478 em = lookup_extent_mapping(em_tree, start, failrec->len);
2479 if (!em) {
2480 read_unlock(&em_tree->lock);
2481 kfree(failrec);
2482 return -EIO;
2483 }
2484
68ba990f 2485 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2486 free_extent_map(em);
2487 em = NULL;
2488 }
2489 read_unlock(&em_tree->lock);
7a2d6a64 2490 if (!em) {
4a54c8c1
JS
2491 kfree(failrec);
2492 return -EIO;
2493 }
2fe6303e 2494
4a54c8c1
JS
2495 logical = start - em->start;
2496 logical = em->block_start + logical;
2497 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2498 logical = em->block_start;
2499 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2500 extent_set_compress_type(&failrec->bio_flags,
2501 em->compress_type);
2502 }
2fe6303e 2503
ab8d0fc4
JM
2504 btrfs_debug(fs_info,
2505 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2506 logical, start, failrec->len);
2fe6303e 2507
4a54c8c1
JS
2508 failrec->logical = logical;
2509 free_extent_map(em);
2510
2511 /* set the bits in the private failure tree */
2512 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2513 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2514 if (ret >= 0)
47dc196a 2515 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2516 /* set the bits in the inode's tree */
2517 if (ret >= 0)
ceeb0ae7 2518 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2519 if (ret < 0) {
2520 kfree(failrec);
2521 return ret;
2522 }
2523 } else {
ab8d0fc4
JM
2524 btrfs_debug(fs_info,
2525 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2526 failrec->logical, failrec->start, failrec->len,
2527 failrec->in_validation);
4a54c8c1
JS
2528 /*
2529 * when data can be on disk more than twice, add to failrec here
2530 * (e.g. with a list for failed_mirror) to make
2531 * clean_io_failure() clean all those errors at once.
2532 */
2533 }
2fe6303e
MX
2534
2535 *failrec_ret = failrec;
2536
2537 return 0;
2538}
2539
a0b60d72 2540bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2fe6303e
MX
2541 struct io_failure_record *failrec, int failed_mirror)
2542{
ab8d0fc4 2543 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2544 int num_copies;
2545
ab8d0fc4 2546 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2547 if (num_copies == 1) {
2548 /*
2549 * we only have a single copy of the data, so don't bother with
2550 * all the retry and error correction code that follows. no
2551 * matter what the error is, it is very likely to persist.
2552 */
ab8d0fc4
JM
2553 btrfs_debug(fs_info,
2554 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2555 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2556 return false;
4a54c8c1
JS
2557 }
2558
4a54c8c1
JS
2559 /*
2560 * there are two premises:
2561 * a) deliver good data to the caller
2562 * b) correct the bad sectors on disk
2563 */
a0b60d72 2564 if (failed_bio_pages > 1) {
4a54c8c1
JS
2565 /*
2566 * to fulfill b), we need to know the exact failing sectors, as
2567 * we don't want to rewrite any more than the failed ones. thus,
2568 * we need separate read requests for the failed bio
2569 *
2570 * if the following BUG_ON triggers, our validation request got
2571 * merged. we need separate requests for our algorithm to work.
2572 */
2573 BUG_ON(failrec->in_validation);
2574 failrec->in_validation = 1;
2575 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2576 } else {
2577 /*
2578 * we're ready to fulfill a) and b) alongside. get a good copy
2579 * of the failed sector and if we succeed, we have setup
2580 * everything for repair_io_failure to do the rest for us.
2581 */
2582 if (failrec->in_validation) {
2583 BUG_ON(failrec->this_mirror != failed_mirror);
2584 failrec->in_validation = 0;
2585 failrec->this_mirror = 0;
2586 }
2587 failrec->failed_mirror = failed_mirror;
2588 failrec->this_mirror++;
2589 if (failrec->this_mirror == failed_mirror)
2590 failrec->this_mirror++;
4a54c8c1
JS
2591 }
2592
facc8a22 2593 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2594 btrfs_debug(fs_info,
2595 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2596 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2597 return false;
4a54c8c1
JS
2598 }
2599
c3cfb656 2600 return true;
2fe6303e
MX
2601}
2602
2603
2604struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2605 struct io_failure_record *failrec,
2606 struct page *page, int pg_offset, int icsum,
8b110e39 2607 bio_end_io_t *endio_func, void *data)
2fe6303e 2608{
0b246afa 2609 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2610 struct bio *bio;
2611 struct btrfs_io_bio *btrfs_failed_bio;
2612 struct btrfs_io_bio *btrfs_bio;
2613
c5e4c3d7 2614 bio = btrfs_io_bio_alloc(1);
2fe6303e 2615 bio->bi_end_io = endio_func;
4f024f37 2616 bio->bi_iter.bi_sector = failrec->logical >> 9;
4f024f37 2617 bio->bi_iter.bi_size = 0;
8b110e39 2618 bio->bi_private = data;
4a54c8c1 2619
facc8a22
MX
2620 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2621 if (btrfs_failed_bio->csum) {
facc8a22
MX
2622 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2623
2624 btrfs_bio = btrfs_io_bio(bio);
2625 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2626 icsum *= csum_size;
2627 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2628 csum_size);
2629 }
2630
2fe6303e
MX
2631 bio_add_page(bio, page, failrec->len, pg_offset);
2632
2633 return bio;
2634}
2635
2636/*
78e62c02
NB
2637 * This is a generic handler for readpage errors. If other copies exist, read
2638 * those and write back good data to the failed position. Does not investigate
2639 * in remapping the failed extent elsewhere, hoping the device will be smart
2640 * enough to do this as needed
2fe6303e 2641 */
2fe6303e
MX
2642static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2643 struct page *page, u64 start, u64 end,
2644 int failed_mirror)
2645{
2646 struct io_failure_record *failrec;
2647 struct inode *inode = page->mapping->host;
2648 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2649 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2650 struct bio *bio;
70fd7614 2651 int read_mode = 0;
4e4cbee9 2652 blk_status_t status;
2fe6303e 2653 int ret;
8a2ee44a 2654 unsigned failed_bio_pages = failed_bio->bi_iter.bi_size >> PAGE_SHIFT;
2fe6303e 2655
1f7ad75b 2656 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2657
2658 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2659 if (ret)
2660 return ret;
2661
a0b60d72 2662 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
c3cfb656 2663 failed_mirror)) {
7870d082 2664 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2665 return -EIO;
2666 }
2667
a0b60d72 2668 if (failed_bio_pages > 1)
70fd7614 2669 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2670
2671 phy_offset >>= inode->i_sb->s_blocksize_bits;
2672 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2673 start - page_offset(page),
8b110e39
MX
2674 (int)phy_offset, failed_bio->bi_end_io,
2675 NULL);
ebcc3263 2676 bio->bi_opf = REQ_OP_READ | read_mode;
4a54c8c1 2677
ab8d0fc4
JM
2678 btrfs_debug(btrfs_sb(inode->i_sb),
2679 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2680 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2681
8c27cb35 2682 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
50489a57 2683 failrec->bio_flags);
4e4cbee9 2684 if (status) {
7870d082 2685 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2686 bio_put(bio);
4e4cbee9 2687 ret = blk_status_to_errno(status);
6c387ab2
MX
2688 }
2689
013bd4c3 2690 return ret;
4a54c8c1
JS
2691}
2692
d1310b2e
CM
2693/* lots and lots of room for performance fixes in the end_bio funcs */
2694
b5227c07 2695void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2696{
2697 int uptodate = (err == 0);
3e2426bd 2698 int ret = 0;
87826df0 2699
c629732d 2700 btrfs_writepage_endio_finish_ordered(page, start, end, uptodate);
87826df0 2701
87826df0 2702 if (!uptodate) {
87826df0
JM
2703 ClearPageUptodate(page);
2704 SetPageError(page);
bff5baf8 2705 ret = err < 0 ? err : -EIO;
5dca6eea 2706 mapping_set_error(page->mapping, ret);
87826df0 2707 }
87826df0
JM
2708}
2709
d1310b2e
CM
2710/*
2711 * after a writepage IO is done, we need to:
2712 * clear the uptodate bits on error
2713 * clear the writeback bits in the extent tree for this IO
2714 * end_page_writeback if the page has no more pending IO
2715 *
2716 * Scheduling is not allowed, so the extent state tree is expected
2717 * to have one and only one object corresponding to this IO.
2718 */
4246a0b6 2719static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2720{
4e4cbee9 2721 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2722 struct bio_vec *bvec;
d1310b2e
CM
2723 u64 start;
2724 u64 end;
6dc4f100 2725 struct bvec_iter_all iter_all;
d1310b2e 2726
c09abff8 2727 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2728 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2729 struct page *page = bvec->bv_page;
0b246afa
JM
2730 struct inode *inode = page->mapping->host;
2731 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2732
17a5adcc
AO
2733 /* We always issue full-page reads, but if some block
2734 * in a page fails to read, blk_update_request() will
2735 * advance bv_offset and adjust bv_len to compensate.
2736 * Print a warning for nonzero offsets, and an error
2737 * if they don't add up to a full page. */
09cbfeaf
KS
2738 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2739 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2740 btrfs_err(fs_info,
efe120a0
FH
2741 "partial page write in btrfs with offset %u and length %u",
2742 bvec->bv_offset, bvec->bv_len);
2743 else
0b246afa 2744 btrfs_info(fs_info,
5d163e0e 2745 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2746 bvec->bv_offset, bvec->bv_len);
2747 }
d1310b2e 2748
17a5adcc
AO
2749 start = page_offset(page);
2750 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2751
4e4cbee9 2752 end_extent_writepage(page, error, start, end);
17a5adcc 2753 end_page_writeback(page);
2c30c71b 2754 }
2b1f55b0 2755
d1310b2e 2756 bio_put(bio);
d1310b2e
CM
2757}
2758
883d0de4
MX
2759static void
2760endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2761 int uptodate)
2762{
2763 struct extent_state *cached = NULL;
2764 u64 end = start + len - 1;
2765
2766 if (uptodate && tree->track_uptodate)
2767 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2768 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2769}
2770
d1310b2e
CM
2771/*
2772 * after a readpage IO is done, we need to:
2773 * clear the uptodate bits on error
2774 * set the uptodate bits if things worked
2775 * set the page up to date if all extents in the tree are uptodate
2776 * clear the lock bit in the extent tree
2777 * unlock the page if there are no other extents locked for it
2778 *
2779 * Scheduling is not allowed, so the extent state tree is expected
2780 * to have one and only one object corresponding to this IO.
2781 */
4246a0b6 2782static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2783{
2c30c71b 2784 struct bio_vec *bvec;
4e4cbee9 2785 int uptodate = !bio->bi_status;
facc8a22 2786 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2787 struct extent_io_tree *tree, *failure_tree;
facc8a22 2788 u64 offset = 0;
d1310b2e
CM
2789 u64 start;
2790 u64 end;
facc8a22 2791 u64 len;
883d0de4
MX
2792 u64 extent_start = 0;
2793 u64 extent_len = 0;
5cf1ab56 2794 int mirror;
d1310b2e 2795 int ret;
6dc4f100 2796 struct bvec_iter_all iter_all;
d1310b2e 2797
c09abff8 2798 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 2799 bio_for_each_segment_all(bvec, bio, iter_all) {
d1310b2e 2800 struct page *page = bvec->bv_page;
a71754fc 2801 struct inode *inode = page->mapping->host;
ab8d0fc4 2802 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
78e62c02
NB
2803 bool data_inode = btrfs_ino(BTRFS_I(inode))
2804 != BTRFS_BTREE_INODE_OBJECTID;
507903b8 2805
ab8d0fc4
JM
2806 btrfs_debug(fs_info,
2807 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2808 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2809 io_bio->mirror_num);
a71754fc 2810 tree = &BTRFS_I(inode)->io_tree;
7870d082 2811 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2812
17a5adcc
AO
2813 /* We always issue full-page reads, but if some block
2814 * in a page fails to read, blk_update_request() will
2815 * advance bv_offset and adjust bv_len to compensate.
2816 * Print a warning for nonzero offsets, and an error
2817 * if they don't add up to a full page. */
09cbfeaf
KS
2818 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2819 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2820 btrfs_err(fs_info,
2821 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2822 bvec->bv_offset, bvec->bv_len);
2823 else
ab8d0fc4
JM
2824 btrfs_info(fs_info,
2825 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2826 bvec->bv_offset, bvec->bv_len);
2827 }
d1310b2e 2828
17a5adcc
AO
2829 start = page_offset(page);
2830 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2831 len = bvec->bv_len;
d1310b2e 2832
9be3395b 2833 mirror = io_bio->mirror_num;
78e62c02 2834 if (likely(uptodate)) {
facc8a22
MX
2835 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2836 page, start, end,
2837 mirror);
5ee0844d 2838 if (ret)
d1310b2e 2839 uptodate = 0;
5ee0844d 2840 else
7870d082
JB
2841 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2842 failure_tree, tree, start,
2843 page,
2844 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2845 }
ea466794 2846
f2a09da9
MX
2847 if (likely(uptodate))
2848 goto readpage_ok;
2849
78e62c02 2850 if (data_inode) {
9d0d1c8b 2851
f4a8e656 2852 /*
78e62c02
NB
2853 * The generic bio_readpage_error handles errors the
2854 * following way: If possible, new read requests are
2855 * created and submitted and will end up in
2856 * end_bio_extent_readpage as well (if we're lucky,
2857 * not in the !uptodate case). In that case it returns
2858 * 0 and we just go on with the next page in our bio.
2859 * If it can't handle the error it will return -EIO and
2860 * we remain responsible for that page.
f4a8e656 2861 */
78e62c02
NB
2862 ret = bio_readpage_error(bio, offset, page, start, end,
2863 mirror);
2864 if (ret == 0) {
2865 uptodate = !bio->bi_status;
2866 offset += len;
2867 continue;
2868 }
2869 } else {
2870 struct extent_buffer *eb;
2871
2872 eb = (struct extent_buffer *)page->private;
2873 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
2874 eb->read_mirror = mirror;
2875 atomic_dec(&eb->io_pages);
2876 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
2877 &eb->bflags))
2878 btree_readahead_hook(eb, -EIO);
7e38326f 2879 }
f2a09da9 2880readpage_ok:
883d0de4 2881 if (likely(uptodate)) {
a71754fc 2882 loff_t i_size = i_size_read(inode);
09cbfeaf 2883 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2884 unsigned off;
a71754fc
JB
2885
2886 /* Zero out the end if this page straddles i_size */
7073017a 2887 off = offset_in_page(i_size);
a583c026 2888 if (page->index == end_index && off)
09cbfeaf 2889 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2890 SetPageUptodate(page);
70dec807 2891 } else {
17a5adcc
AO
2892 ClearPageUptodate(page);
2893 SetPageError(page);
70dec807 2894 }
17a5adcc 2895 unlock_page(page);
facc8a22 2896 offset += len;
883d0de4
MX
2897
2898 if (unlikely(!uptodate)) {
2899 if (extent_len) {
2900 endio_readpage_release_extent(tree,
2901 extent_start,
2902 extent_len, 1);
2903 extent_start = 0;
2904 extent_len = 0;
2905 }
2906 endio_readpage_release_extent(tree, start,
2907 end - start + 1, 0);
2908 } else if (!extent_len) {
2909 extent_start = start;
2910 extent_len = end + 1 - start;
2911 } else if (extent_start + extent_len == start) {
2912 extent_len += end + 1 - start;
2913 } else {
2914 endio_readpage_release_extent(tree, extent_start,
2915 extent_len, uptodate);
2916 extent_start = start;
2917 extent_len = end + 1 - start;
2918 }
2c30c71b 2919 }
d1310b2e 2920
883d0de4
MX
2921 if (extent_len)
2922 endio_readpage_release_extent(tree, extent_start, extent_len,
2923 uptodate);
b3a0dd50 2924 btrfs_io_bio_free_csum(io_bio);
d1310b2e 2925 bio_put(bio);
d1310b2e
CM
2926}
2927
9be3395b 2928/*
184f999e
DS
2929 * Initialize the members up to but not including 'bio'. Use after allocating a
2930 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2931 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2932 */
184f999e 2933static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2934{
184f999e
DS
2935 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2936}
d1310b2e 2937
9be3395b 2938/*
6e707bcd
DS
2939 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2940 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2941 * for the appropriate container_of magic
9be3395b 2942 */
e749af44 2943struct bio *btrfs_bio_alloc(u64 first_byte)
d1310b2e
CM
2944{
2945 struct bio *bio;
d1310b2e 2946
8ac9f7c1 2947 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
c821e7f3 2948 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2949 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2950 return bio;
2951}
2952
8b6c1d56 2953struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2954{
23ea8e5a
MX
2955 struct btrfs_io_bio *btrfs_bio;
2956 struct bio *new;
9be3395b 2957
6e707bcd 2958 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2959 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
6e707bcd 2960 btrfs_bio = btrfs_io_bio(new);
184f999e 2961 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2962 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2963 return new;
2964}
9be3395b 2965
c5e4c3d7 2966struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2967{
facc8a22
MX
2968 struct bio *bio;
2969
6e707bcd 2970 /* Bio allocation backed by a bioset does not fail */
8ac9f7c1 2971 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
184f999e 2972 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2973 return bio;
9be3395b
CM
2974}
2975
e477094f 2976struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2977{
2978 struct bio *bio;
2979 struct btrfs_io_bio *btrfs_bio;
2980
2981 /* this will never fail when it's backed by a bioset */
8ac9f7c1 2982 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2f8e9140
LB
2983 ASSERT(bio);
2984
2985 btrfs_bio = btrfs_io_bio(bio);
184f999e 2986 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2987
2988 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2989 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2990 return bio;
2991}
9be3395b 2992
4b81ba48
DS
2993/*
2994 * @opf: bio REQ_OP_* and REQ_* flags as one value
b8b3d625
DS
2995 * @wbc: optional writeback control for io accounting
2996 * @page: page to add to the bio
2997 * @pg_offset: offset of the new bio or to check whether we are adding
2998 * a contiguous page to the previous one
2999 * @size: portion of page that we want to write
3000 * @offset: starting offset in the page
5c2b1fd7 3001 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
b8b3d625
DS
3002 * @end_io_func: end_io callback for new bio
3003 * @mirror_num: desired mirror to read/write
3004 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3005 * @bio_flags: flags of the current bio to see if we can merge them
4b81ba48 3006 */
0ceb34bf 3007static int submit_extent_page(unsigned int opf,
da2f0f74 3008 struct writeback_control *wbc,
6273b7f8 3009 struct page *page, u64 offset,
6c5a4e2c 3010 size_t size, unsigned long pg_offset,
d1310b2e 3011 struct bio **bio_ret,
f188591e 3012 bio_end_io_t end_io_func,
c8b97818
CM
3013 int mirror_num,
3014 unsigned long prev_bio_flags,
005efedf
FM
3015 unsigned long bio_flags,
3016 bool force_bio_submit)
d1310b2e
CM
3017{
3018 int ret = 0;
3019 struct bio *bio;
09cbfeaf 3020 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 3021 sector_t sector = offset >> 9;
0ceb34bf 3022 struct extent_io_tree *tree = &BTRFS_I(page->mapping->host)->io_tree;
d1310b2e 3023
5c2b1fd7
DS
3024 ASSERT(bio_ret);
3025
3026 if (*bio_ret) {
0c8508a6
DS
3027 bool contig;
3028 bool can_merge = true;
3029
d1310b2e 3030 bio = *bio_ret;
0c8508a6 3031 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
4f024f37 3032 contig = bio->bi_iter.bi_sector == sector;
c8b97818 3033 else
f73a1c7d 3034 contig = bio_end_sector(bio) == sector;
c8b97818 3035
da12fe54
NB
3036 ASSERT(tree->ops);
3037 if (btrfs_bio_fits_in_stripe(page, page_size, bio, bio_flags))
0c8508a6
DS
3038 can_merge = false;
3039
3040 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
005efedf 3041 force_bio_submit ||
6c5a4e2c 3042 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 3043 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
3044 if (ret < 0) {
3045 *bio_ret = NULL;
79787eaa 3046 return ret;
289454ad 3047 }
d1310b2e
CM
3048 bio = NULL;
3049 } else {
da2f0f74 3050 if (wbc)
34e51a5e 3051 wbc_account_cgroup_owner(wbc, page, page_size);
d1310b2e
CM
3052 return 0;
3053 }
3054 }
c8b97818 3055
e749af44 3056 bio = btrfs_bio_alloc(offset);
6c5a4e2c 3057 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
3058 bio->bi_end_io = end_io_func;
3059 bio->bi_private = tree;
e6959b93 3060 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 3061 bio->bi_opf = opf;
da2f0f74 3062 if (wbc) {
429aebc0
DS
3063 struct block_device *bdev;
3064
3065 bdev = BTRFS_I(page->mapping->host)->root->fs_info->fs_devices->latest_bdev;
3066 bio_set_dev(bio, bdev);
da2f0f74 3067 wbc_init_bio(wbc, bio);
34e51a5e 3068 wbc_account_cgroup_owner(wbc, page, page_size);
da2f0f74 3069 }
70dec807 3070
5c2b1fd7 3071 *bio_ret = bio;
d1310b2e
CM
3072
3073 return ret;
3074}
3075
48a3b636
ES
3076static void attach_extent_buffer_page(struct extent_buffer *eb,
3077 struct page *page)
d1310b2e
CM
3078{
3079 if (!PagePrivate(page)) {
3080 SetPagePrivate(page);
09cbfeaf 3081 get_page(page);
4f2de97a
JB
3082 set_page_private(page, (unsigned long)eb);
3083 } else {
3084 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
3085 }
3086}
3087
4f2de97a 3088void set_page_extent_mapped(struct page *page)
d1310b2e 3089{
4f2de97a
JB
3090 if (!PagePrivate(page)) {
3091 SetPagePrivate(page);
09cbfeaf 3092 get_page(page);
4f2de97a
JB
3093 set_page_private(page, EXTENT_PAGE_PRIVATE);
3094 }
d1310b2e
CM
3095}
3096
125bac01
MX
3097static struct extent_map *
3098__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3099 u64 start, u64 len, get_extent_t *get_extent,
3100 struct extent_map **em_cached)
3101{
3102 struct extent_map *em;
3103
3104 if (em_cached && *em_cached) {
3105 em = *em_cached;
cbc0e928 3106 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 3107 start < extent_map_end(em)) {
490b54d6 3108 refcount_inc(&em->refs);
125bac01
MX
3109 return em;
3110 }
3111
3112 free_extent_map(em);
3113 *em_cached = NULL;
3114 }
3115
39b07b5d 3116 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len);
125bac01
MX
3117 if (em_cached && !IS_ERR_OR_NULL(em)) {
3118 BUG_ON(*em_cached);
490b54d6 3119 refcount_inc(&em->refs);
125bac01
MX
3120 *em_cached = em;
3121 }
3122 return em;
3123}
d1310b2e
CM
3124/*
3125 * basic readpage implementation. Locked extent state structs are inserted
3126 * into the tree that are removed when the IO is done (by the end_io
3127 * handlers)
79787eaa 3128 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 3129 * return 0 on success, otherwise return error
d1310b2e 3130 */
f657a31c 3131static int __do_readpage(struct page *page,
9974090b 3132 get_extent_t *get_extent,
125bac01 3133 struct extent_map **em_cached,
9974090b 3134 struct bio **bio, int mirror_num,
f1c77c55 3135 unsigned long *bio_flags, unsigned int read_flags,
005efedf 3136 u64 *prev_em_start)
d1310b2e
CM
3137{
3138 struct inode *inode = page->mapping->host;
4eee4fa4 3139 u64 start = page_offset(page);
8eec8296 3140 const u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
3141 u64 cur = start;
3142 u64 extent_offset;
3143 u64 last_byte = i_size_read(inode);
3144 u64 block_start;
3145 u64 cur_end;
d1310b2e 3146 struct extent_map *em;
baf863b9 3147 int ret = 0;
d1310b2e 3148 int nr = 0;
306e16ce 3149 size_t pg_offset = 0;
d1310b2e 3150 size_t iosize;
c8b97818 3151 size_t disk_io_size;
d1310b2e 3152 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 3153 unsigned long this_bio_flag = 0;
f657a31c 3154 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
ae6957eb 3155
d1310b2e
CM
3156 set_page_extent_mapped(page);
3157
90a887c9
DM
3158 if (!PageUptodate(page)) {
3159 if (cleancache_get_page(page) == 0) {
3160 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3161 unlock_extent(tree, start, end);
90a887c9
DM
3162 goto out;
3163 }
3164 }
3165
09cbfeaf 3166 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 3167 char *userpage;
7073017a 3168 size_t zero_offset = offset_in_page(last_byte);
c8b97818
CM
3169
3170 if (zero_offset) {
09cbfeaf 3171 iosize = PAGE_SIZE - zero_offset;
7ac687d9 3172 userpage = kmap_atomic(page);
c8b97818
CM
3173 memset(userpage + zero_offset, 0, iosize);
3174 flush_dcache_page(page);
7ac687d9 3175 kunmap_atomic(userpage);
c8b97818
CM
3176 }
3177 }
d1310b2e 3178 while (cur <= end) {
005efedf 3179 bool force_bio_submit = false;
6273b7f8 3180 u64 offset;
c8f2f24b 3181
d1310b2e
CM
3182 if (cur >= last_byte) {
3183 char *userpage;
507903b8
AJ
3184 struct extent_state *cached = NULL;
3185
09cbfeaf 3186 iosize = PAGE_SIZE - pg_offset;
7ac687d9 3187 userpage = kmap_atomic(page);
306e16ce 3188 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3189 flush_dcache_page(page);
7ac687d9 3190 kunmap_atomic(userpage);
d1310b2e 3191 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3192 &cached, GFP_NOFS);
7f042a83 3193 unlock_extent_cached(tree, cur,
e43bbe5e 3194 cur + iosize - 1, &cached);
d1310b2e
CM
3195 break;
3196 }
125bac01
MX
3197 em = __get_extent_map(inode, page, pg_offset, cur,
3198 end - cur + 1, get_extent, em_cached);
c704005d 3199 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3200 SetPageError(page);
7f042a83 3201 unlock_extent(tree, cur, end);
d1310b2e
CM
3202 break;
3203 }
d1310b2e
CM
3204 extent_offset = cur - em->start;
3205 BUG_ON(extent_map_end(em) <= cur);
3206 BUG_ON(end < cur);
3207
261507a0 3208 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3209 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3210 extent_set_compress_type(&this_bio_flag,
3211 em->compress_type);
3212 }
c8b97818 3213
d1310b2e
CM
3214 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3215 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3216 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3217 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3218 disk_io_size = em->block_len;
6273b7f8 3219 offset = em->block_start;
c8b97818 3220 } else {
6273b7f8 3221 offset = em->block_start + extent_offset;
c8b97818
CM
3222 disk_io_size = iosize;
3223 }
d1310b2e 3224 block_start = em->block_start;
d899e052
YZ
3225 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3226 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3227
3228 /*
3229 * If we have a file range that points to a compressed extent
3230 * and it's followed by a consecutive file range that points to
3231 * to the same compressed extent (possibly with a different
3232 * offset and/or length, so it either points to the whole extent
3233 * or only part of it), we must make sure we do not submit a
3234 * single bio to populate the pages for the 2 ranges because
3235 * this makes the compressed extent read zero out the pages
3236 * belonging to the 2nd range. Imagine the following scenario:
3237 *
3238 * File layout
3239 * [0 - 8K] [8K - 24K]
3240 * | |
3241 * | |
3242 * points to extent X, points to extent X,
3243 * offset 4K, length of 8K offset 0, length 16K
3244 *
3245 * [extent X, compressed length = 4K uncompressed length = 16K]
3246 *
3247 * If the bio to read the compressed extent covers both ranges,
3248 * it will decompress extent X into the pages belonging to the
3249 * first range and then it will stop, zeroing out the remaining
3250 * pages that belong to the other range that points to extent X.
3251 * So here we make sure we submit 2 bios, one for the first
3252 * range and another one for the third range. Both will target
3253 * the same physical extent from disk, but we can't currently
3254 * make the compressed bio endio callback populate the pages
3255 * for both ranges because each compressed bio is tightly
3256 * coupled with a single extent map, and each range can have
3257 * an extent map with a different offset value relative to the
3258 * uncompressed data of our extent and different lengths. This
3259 * is a corner case so we prioritize correctness over
3260 * non-optimal behavior (submitting 2 bios for the same extent).
3261 */
3262 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3263 prev_em_start && *prev_em_start != (u64)-1 &&
8e928218 3264 *prev_em_start != em->start)
005efedf
FM
3265 force_bio_submit = true;
3266
3267 if (prev_em_start)
8e928218 3268 *prev_em_start = em->start;
005efedf 3269
d1310b2e
CM
3270 free_extent_map(em);
3271 em = NULL;
3272
3273 /* we've found a hole, just zero and go on */
3274 if (block_start == EXTENT_MAP_HOLE) {
3275 char *userpage;
507903b8
AJ
3276 struct extent_state *cached = NULL;
3277
7ac687d9 3278 userpage = kmap_atomic(page);
306e16ce 3279 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3280 flush_dcache_page(page);
7ac687d9 3281 kunmap_atomic(userpage);
d1310b2e
CM
3282
3283 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3284 &cached, GFP_NOFS);
7f042a83 3285 unlock_extent_cached(tree, cur,
e43bbe5e 3286 cur + iosize - 1, &cached);
d1310b2e 3287 cur = cur + iosize;
306e16ce 3288 pg_offset += iosize;
d1310b2e
CM
3289 continue;
3290 }
3291 /* the get_extent function already copied into the page */
9655d298
CM
3292 if (test_range_bit(tree, cur, cur_end,
3293 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3294 check_page_uptodate(tree, page);
7f042a83 3295 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3296 cur = cur + iosize;
306e16ce 3297 pg_offset += iosize;
d1310b2e
CM
3298 continue;
3299 }
70dec807
CM
3300 /* we have an inline extent but it didn't get marked up
3301 * to date. Error out
3302 */
3303 if (block_start == EXTENT_MAP_INLINE) {
3304 SetPageError(page);
7f042a83 3305 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3306 cur = cur + iosize;
306e16ce 3307 pg_offset += iosize;
70dec807
CM
3308 continue;
3309 }
d1310b2e 3310
0ceb34bf 3311 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
6273b7f8 3312 page, offset, disk_io_size,
fa17ed06 3313 pg_offset, bio,
c8b97818
CM
3314 end_bio_extent_readpage, mirror_num,
3315 *bio_flags,
005efedf
FM
3316 this_bio_flag,
3317 force_bio_submit);
c8f2f24b
JB
3318 if (!ret) {
3319 nr++;
3320 *bio_flags = this_bio_flag;
3321 } else {
d1310b2e 3322 SetPageError(page);
7f042a83 3323 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3324 goto out;
edd33c99 3325 }
d1310b2e 3326 cur = cur + iosize;
306e16ce 3327 pg_offset += iosize;
d1310b2e 3328 }
90a887c9 3329out:
d1310b2e
CM
3330 if (!nr) {
3331 if (!PageError(page))
3332 SetPageUptodate(page);
3333 unlock_page(page);
3334 }
baf863b9 3335 return ret;
d1310b2e
CM
3336}
3337
b6660e80 3338static inline void contiguous_readpages(struct page *pages[], int nr_pages,
9974090b 3339 u64 start, u64 end,
125bac01 3340 struct extent_map **em_cached,
d3fac6ba 3341 struct bio **bio,
1f7ad75b 3342 unsigned long *bio_flags,
808f80b4 3343 u64 *prev_em_start)
9974090b 3344{
23d31bd4 3345 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
9974090b
MX
3346 int index;
3347
b272ae22 3348 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b
MX
3349
3350 for (index = 0; index < nr_pages; index++) {
f657a31c 3351 __do_readpage(pages[index], btrfs_get_extent, em_cached,
5e9d3982 3352 bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
09cbfeaf 3353 put_page(pages[index]);
9974090b
MX
3354 }
3355}
3356
0d44fea7 3357static int __extent_read_full_page(struct page *page,
9974090b
MX
3358 get_extent_t *get_extent,
3359 struct bio **bio, int mirror_num,
f1c77c55
DS
3360 unsigned long *bio_flags,
3361 unsigned int read_flags)
9974090b 3362{
23d31bd4 3363 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
9974090b 3364 u64 start = page_offset(page);
09cbfeaf 3365 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3366 int ret;
3367
b272ae22 3368 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
9974090b 3369
f657a31c 3370 ret = __do_readpage(page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3371 bio_flags, read_flags, NULL);
9974090b
MX
3372 return ret;
3373}
3374
71ad38b4
DS
3375int extent_read_full_page(struct page *page, get_extent_t *get_extent,
3376 int mirror_num)
d1310b2e
CM
3377{
3378 struct bio *bio = NULL;
c8b97818 3379 unsigned long bio_flags = 0;
d1310b2e
CM
3380 int ret;
3381
0d44fea7 3382 ret = __extent_read_full_page(page, get_extent, &bio, mirror_num,
1f7ad75b 3383 &bio_flags, 0);
d1310b2e 3384 if (bio)
1f7ad75b 3385 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3386 return ret;
3387}
d1310b2e 3388
3d4b9496 3389static void update_nr_written(struct writeback_control *wbc,
a9132667 3390 unsigned long nr_written)
11c8349b
CM
3391{
3392 wbc->nr_to_write -= nr_written;
11c8349b
CM
3393}
3394
d1310b2e 3395/*
40f76580
CM
3396 * helper for __extent_writepage, doing all of the delayed allocation setup.
3397 *
5eaad97a 3398 * This returns 1 if btrfs_run_delalloc_range function did all the work required
40f76580
CM
3399 * to write the page (copy into inline extent). In this case the IO has
3400 * been started and the page is already unlocked.
3401 *
3402 * This returns 0 if all went well (page still locked)
3403 * This returns < 0 if there were errors (page still locked)
d1310b2e 3404 */
40f76580 3405static noinline_for_stack int writepage_delalloc(struct inode *inode,
8cc0237a
NB
3406 struct page *page, struct writeback_control *wbc,
3407 u64 delalloc_start, unsigned long *nr_written)
40f76580 3408{
09cbfeaf 3409 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3522e903 3410 bool found;
40f76580
CM
3411 u64 delalloc_to_write = 0;
3412 u64 delalloc_end = 0;
3413 int ret;
3414 int page_started = 0;
3415
40f76580
CM
3416
3417 while (delalloc_end < page_end) {
9978059b 3418 found = find_lock_delalloc_range(inode, page,
40f76580 3419 &delalloc_start,
917aacec 3420 &delalloc_end);
3522e903 3421 if (!found) {
40f76580
CM
3422 delalloc_start = delalloc_end + 1;
3423 continue;
3424 }
5eaad97a
NB
3425 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3426 delalloc_end, &page_started, nr_written, wbc);
40f76580
CM
3427 if (ret) {
3428 SetPageError(page);
5eaad97a
NB
3429 /*
3430 * btrfs_run_delalloc_range should return < 0 for error
3431 * but just in case, we use > 0 here meaning the IO is
3432 * started, so we don't want to return > 0 unless
3433 * things are going well.
40f76580
CM
3434 */
3435 ret = ret < 0 ? ret : -EIO;
3436 goto done;
3437 }
3438 /*
ea1754a0
KS
3439 * delalloc_end is already one less than the total length, so
3440 * we don't subtract one from PAGE_SIZE
40f76580
CM
3441 */
3442 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3443 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3444 delalloc_start = delalloc_end + 1;
3445 }
3446 if (wbc->nr_to_write < delalloc_to_write) {
3447 int thresh = 8192;
3448
3449 if (delalloc_to_write < thresh * 2)
3450 thresh = delalloc_to_write;
3451 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3452 thresh);
3453 }
3454
3455 /* did the fill delalloc function already unlock and start
3456 * the IO?
3457 */
3458 if (page_started) {
3459 /*
3460 * we've unlocked the page, so we can't update
3461 * the mapping's writeback index, just update
3462 * nr_to_write.
3463 */
3464 wbc->nr_to_write -= *nr_written;
3465 return 1;
3466 }
3467
3468 ret = 0;
3469
3470done:
3471 return ret;
3472}
3473
3474/*
3475 * helper for __extent_writepage. This calls the writepage start hooks,
3476 * and does the loop to map the page into extents and bios.
3477 *
3478 * We return 1 if the IO is started and the page is unlocked,
3479 * 0 if all went well (page still locked)
3480 * < 0 if there were errors (page still locked)
3481 */
3482static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3483 struct page *page,
3484 struct writeback_control *wbc,
3485 struct extent_page_data *epd,
3486 loff_t i_size,
3487 unsigned long nr_written,
57e5ffeb 3488 int *nr_ret)
d1310b2e 3489{
45b08405 3490 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4eee4fa4 3491 u64 start = page_offset(page);
09cbfeaf 3492 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3493 u64 end;
3494 u64 cur = start;
3495 u64 extent_offset;
d1310b2e
CM
3496 u64 block_start;
3497 u64 iosize;
d1310b2e 3498 struct extent_map *em;
7f3c74fb 3499 size_t pg_offset = 0;
d1310b2e 3500 size_t blocksize;
40f76580
CM
3501 int ret = 0;
3502 int nr = 0;
57e5ffeb 3503 const unsigned int write_flags = wbc_to_write_flags(wbc);
40f76580 3504 bool compressed;
c8b97818 3505
d75855b4
NB
3506 ret = btrfs_writepage_cow_fixup(page, start, page_end);
3507 if (ret) {
3508 /* Fixup worker will requeue */
5ab58055 3509 redirty_page_for_writepage(wbc, page);
d75855b4
NB
3510 update_nr_written(wbc, nr_written);
3511 unlock_page(page);
3512 return 1;
247e743c
CM
3513 }
3514
11c8349b
CM
3515 /*
3516 * we don't want to touch the inode after unlocking the page,
3517 * so we update the mapping writeback index now
3518 */
3d4b9496 3519 update_nr_written(wbc, nr_written + 1);
771ed689 3520
d1310b2e 3521 end = page_end;
d1310b2e
CM
3522 blocksize = inode->i_sb->s_blocksize;
3523
3524 while (cur <= end) {
40f76580 3525 u64 em_end;
6273b7f8 3526 u64 offset;
58409edd 3527
40f76580 3528 if (cur >= i_size) {
7087a9d8 3529 btrfs_writepage_endio_finish_ordered(page, cur,
c629732d 3530 page_end, 1);
d1310b2e
CM
3531 break;
3532 }
39b07b5d
OS
3533 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur,
3534 end - cur + 1);
c704005d 3535 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3536 SetPageError(page);
61391d56 3537 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3538 break;
3539 }
3540
3541 extent_offset = cur - em->start;
40f76580
CM
3542 em_end = extent_map_end(em);
3543 BUG_ON(em_end <= cur);
d1310b2e 3544 BUG_ON(end < cur);
40f76580 3545 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3546 iosize = ALIGN(iosize, blocksize);
6273b7f8 3547 offset = em->block_start + extent_offset;
d1310b2e 3548 block_start = em->block_start;
c8b97818 3549 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3550 free_extent_map(em);
3551 em = NULL;
3552
c8b97818
CM
3553 /*
3554 * compressed and inline extents are written through other
3555 * paths in the FS
3556 */
3557 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3558 block_start == EXTENT_MAP_INLINE) {
c8b04030 3559 if (compressed)
c8b97818 3560 nr++;
c8b04030
OS
3561 else
3562 btrfs_writepage_endio_finish_ordered(page, cur,
3563 cur + iosize - 1, 1);
c8b97818 3564 cur += iosize;
7f3c74fb 3565 pg_offset += iosize;
d1310b2e
CM
3566 continue;
3567 }
c8b97818 3568
5cdc84bf 3569 btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
58409edd
DS
3570 if (!PageWriteback(page)) {
3571 btrfs_err(BTRFS_I(inode)->root->fs_info,
3572 "page %lu not writeback, cur %llu end %llu",
3573 page->index, cur, end);
d1310b2e 3574 }
7f3c74fb 3575
0ceb34bf 3576 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
6273b7f8 3577 page, offset, iosize, pg_offset,
fa17ed06 3578 &epd->bio,
58409edd
DS
3579 end_bio_extent_writepage,
3580 0, 0, 0, false);
fe01aa65 3581 if (ret) {
58409edd 3582 SetPageError(page);
fe01aa65
TK
3583 if (PageWriteback(page))
3584 end_page_writeback(page);
3585 }
d1310b2e 3586
d1310b2e 3587 cur = cur + iosize;
7f3c74fb 3588 pg_offset += iosize;
d1310b2e
CM
3589 nr++;
3590 }
40f76580 3591 *nr_ret = nr;
40f76580
CM
3592 return ret;
3593}
3594
3595/*
3596 * the writepage semantics are similar to regular writepage. extent
3597 * records are inserted to lock ranges in the tree, and as dirty areas
3598 * are found, they are marked writeback. Then the lock bits are removed
3599 * and the end_io handler clears the writeback ranges
3065976b
QW
3600 *
3601 * Return 0 if everything goes well.
3602 * Return <0 for error.
40f76580
CM
3603 */
3604static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3605 struct extent_page_data *epd)
40f76580
CM
3606{
3607 struct inode *inode = page->mapping->host;
40f76580 3608 u64 start = page_offset(page);
09cbfeaf 3609 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3610 int ret;
3611 int nr = 0;
eb70d222 3612 size_t pg_offset;
40f76580 3613 loff_t i_size = i_size_read(inode);
09cbfeaf 3614 unsigned long end_index = i_size >> PAGE_SHIFT;
40f76580
CM
3615 unsigned long nr_written = 0;
3616
40f76580
CM
3617 trace___extent_writepage(page, inode, wbc);
3618
3619 WARN_ON(!PageLocked(page));
3620
3621 ClearPageError(page);
3622
7073017a 3623 pg_offset = offset_in_page(i_size);
40f76580
CM
3624 if (page->index > end_index ||
3625 (page->index == end_index && !pg_offset)) {
09cbfeaf 3626 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3627 unlock_page(page);
3628 return 0;
3629 }
3630
3631 if (page->index == end_index) {
3632 char *userpage;
3633
3634 userpage = kmap_atomic(page);
3635 memset(userpage + pg_offset, 0,
09cbfeaf 3636 PAGE_SIZE - pg_offset);
40f76580
CM
3637 kunmap_atomic(userpage);
3638 flush_dcache_page(page);
3639 }
3640
40f76580
CM
3641 set_page_extent_mapped(page);
3642
7789a55a 3643 if (!epd->extent_locked) {
8cc0237a 3644 ret = writepage_delalloc(inode, page, wbc, start, &nr_written);
7789a55a 3645 if (ret == 1)
169d2c87 3646 return 0;
7789a55a
NB
3647 if (ret)
3648 goto done;
3649 }
40f76580
CM
3650
3651 ret = __extent_writepage_io(inode, page, wbc, epd,
57e5ffeb 3652 i_size, nr_written, &nr);
40f76580 3653 if (ret == 1)
169d2c87 3654 return 0;
40f76580 3655
d1310b2e
CM
3656done:
3657 if (nr == 0) {
3658 /* make sure the mapping tag for page dirty gets cleared */
3659 set_page_writeback(page);
3660 end_page_writeback(page);
3661 }
61391d56
FM
3662 if (PageError(page)) {
3663 ret = ret < 0 ? ret : -EIO;
3664 end_extent_writepage(page, ret, start, page_end);
3665 }
d1310b2e 3666 unlock_page(page);
3065976b 3667 ASSERT(ret <= 0);
40f76580 3668 return ret;
d1310b2e
CM
3669}
3670
fd8b2b61 3671void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3672{
74316201
N
3673 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3674 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3675}
3676
18dfa711
FM
3677static void end_extent_buffer_writeback(struct extent_buffer *eb)
3678{
3679 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3680 smp_mb__after_atomic();
3681 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3682}
3683
2e3c2513
QW
3684/*
3685 * Lock eb pages and flush the bio if we can't the locks
3686 *
3687 * Return 0 if nothing went wrong
3688 * Return >0 is same as 0, except bio is not submitted
3689 * Return <0 if something went wrong, no page is locked
3690 */
9df76fb5 3691static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
0e378df1 3692 struct extent_page_data *epd)
0b32f4bb 3693{
9df76fb5 3694 struct btrfs_fs_info *fs_info = eb->fs_info;
2e3c2513 3695 int i, num_pages, failed_page_nr;
0b32f4bb
JB
3696 int flush = 0;
3697 int ret = 0;
3698
3699 if (!btrfs_try_tree_write_lock(eb)) {
f4340622 3700 ret = flush_write_bio(epd);
2e3c2513
QW
3701 if (ret < 0)
3702 return ret;
3703 flush = 1;
0b32f4bb
JB
3704 btrfs_tree_lock(eb);
3705 }
3706
3707 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3708 btrfs_tree_unlock(eb);
3709 if (!epd->sync_io)
3710 return 0;
3711 if (!flush) {
f4340622 3712 ret = flush_write_bio(epd);
2e3c2513
QW
3713 if (ret < 0)
3714 return ret;
0b32f4bb
JB
3715 flush = 1;
3716 }
a098d8e8
CM
3717 while (1) {
3718 wait_on_extent_buffer_writeback(eb);
3719 btrfs_tree_lock(eb);
3720 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3721 break;
0b32f4bb 3722 btrfs_tree_unlock(eb);
0b32f4bb
JB
3723 }
3724 }
3725
51561ffe
JB
3726 /*
3727 * We need to do this to prevent races in people who check if the eb is
3728 * under IO since we can end up having no IO bits set for a short period
3729 * of time.
3730 */
3731 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3732 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3733 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3734 spin_unlock(&eb->refs_lock);
0b32f4bb 3735 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3736 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3737 -eb->len,
3738 fs_info->dirty_metadata_batch);
0b32f4bb 3739 ret = 1;
51561ffe
JB
3740 } else {
3741 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3742 }
3743
3744 btrfs_tree_unlock(eb);
3745
3746 if (!ret)
3747 return ret;
3748
65ad0104 3749 num_pages = num_extent_pages(eb);
0b32f4bb 3750 for (i = 0; i < num_pages; i++) {
fb85fc9a 3751 struct page *p = eb->pages[i];
0b32f4bb
JB
3752
3753 if (!trylock_page(p)) {
3754 if (!flush) {
18dfa711
FM
3755 int err;
3756
3757 err = flush_write_bio(epd);
3758 if (err < 0) {
3759 ret = err;
2e3c2513
QW
3760 failed_page_nr = i;
3761 goto err_unlock;
3762 }
0b32f4bb
JB
3763 flush = 1;
3764 }
3765 lock_page(p);
3766 }
3767 }
3768
3769 return ret;
2e3c2513
QW
3770err_unlock:
3771 /* Unlock already locked pages */
3772 for (i = 0; i < failed_page_nr; i++)
3773 unlock_page(eb->pages[i]);
18dfa711
FM
3774 /*
3775 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
3776 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
3777 * be made and undo everything done before.
3778 */
3779 btrfs_tree_lock(eb);
3780 spin_lock(&eb->refs_lock);
3781 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3782 end_extent_buffer_writeback(eb);
3783 spin_unlock(&eb->refs_lock);
3784 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
3785 fs_info->dirty_metadata_batch);
3786 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3787 btrfs_tree_unlock(eb);
2e3c2513 3788 return ret;
0b32f4bb
JB
3789}
3790
656f30db
FM
3791static void set_btree_ioerr(struct page *page)
3792{
3793 struct extent_buffer *eb = (struct extent_buffer *)page->private;
eb5b64f1 3794 struct btrfs_fs_info *fs_info;
656f30db
FM
3795
3796 SetPageError(page);
3797 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3798 return;
3799
eb5b64f1
DZ
3800 /*
3801 * If we error out, we should add back the dirty_metadata_bytes
3802 * to make it consistent.
3803 */
3804 fs_info = eb->fs_info;
3805 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3806 eb->len, fs_info->dirty_metadata_batch);
3807
656f30db
FM
3808 /*
3809 * If writeback for a btree extent that doesn't belong to a log tree
3810 * failed, increment the counter transaction->eb_write_errors.
3811 * We do this because while the transaction is running and before it's
3812 * committing (when we call filemap_fdata[write|wait]_range against
3813 * the btree inode), we might have
3814 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3815 * returns an error or an error happens during writeback, when we're
3816 * committing the transaction we wouldn't know about it, since the pages
3817 * can be no longer dirty nor marked anymore for writeback (if a
3818 * subsequent modification to the extent buffer didn't happen before the
3819 * transaction commit), which makes filemap_fdata[write|wait]_range not
3820 * able to find the pages tagged with SetPageError at transaction
3821 * commit time. So if this happens we must abort the transaction,
3822 * otherwise we commit a super block with btree roots that point to
3823 * btree nodes/leafs whose content on disk is invalid - either garbage
3824 * or the content of some node/leaf from a past generation that got
3825 * cowed or deleted and is no longer valid.
3826 *
3827 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3828 * not be enough - we need to distinguish between log tree extents vs
3829 * non-log tree extents, and the next filemap_fdatawait_range() call
3830 * will catch and clear such errors in the mapping - and that call might
3831 * be from a log sync and not from a transaction commit. Also, checking
3832 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3833 * not done and would not be reliable - the eb might have been released
3834 * from memory and reading it back again means that flag would not be
3835 * set (since it's a runtime flag, not persisted on disk).
3836 *
3837 * Using the flags below in the btree inode also makes us achieve the
3838 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3839 * writeback for all dirty pages and before filemap_fdatawait_range()
3840 * is called, the writeback for all dirty pages had already finished
3841 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3842 * filemap_fdatawait_range() would return success, as it could not know
3843 * that writeback errors happened (the pages were no longer tagged for
3844 * writeback).
3845 */
3846 switch (eb->log_index) {
3847 case -1:
afcdd129 3848 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3849 break;
3850 case 0:
afcdd129 3851 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3852 break;
3853 case 1:
afcdd129 3854 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3855 break;
3856 default:
3857 BUG(); /* unexpected, logic error */
3858 }
3859}
3860
4246a0b6 3861static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3862{
2c30c71b 3863 struct bio_vec *bvec;
0b32f4bb 3864 struct extent_buffer *eb;
2b070cfe 3865 int done;
6dc4f100 3866 struct bvec_iter_all iter_all;
0b32f4bb 3867
c09abff8 3868 ASSERT(!bio_flagged(bio, BIO_CLONED));
2b070cfe 3869 bio_for_each_segment_all(bvec, bio, iter_all) {
0b32f4bb
JB
3870 struct page *page = bvec->bv_page;
3871
0b32f4bb
JB
3872 eb = (struct extent_buffer *)page->private;
3873 BUG_ON(!eb);
3874 done = atomic_dec_and_test(&eb->io_pages);
3875
4e4cbee9 3876 if (bio->bi_status ||
4246a0b6 3877 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3878 ClearPageUptodate(page);
656f30db 3879 set_btree_ioerr(page);
0b32f4bb
JB
3880 }
3881
3882 end_page_writeback(page);
3883
3884 if (!done)
3885 continue;
3886
3887 end_extent_buffer_writeback(eb);
2c30c71b 3888 }
0b32f4bb
JB
3889
3890 bio_put(bio);
0b32f4bb
JB
3891}
3892
0e378df1 3893static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3894 struct writeback_control *wbc,
3895 struct extent_page_data *epd)
3896{
0b32f4bb 3897 u64 offset = eb->start;
851cd173 3898 u32 nritems;
cc5e31a4 3899 int i, num_pages;
851cd173 3900 unsigned long start, end;
ff40adf7 3901 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3902 int ret = 0;
0b32f4bb 3903
656f30db 3904 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
65ad0104 3905 num_pages = num_extent_pages(eb);
0b32f4bb 3906 atomic_set(&eb->io_pages, num_pages);
de0022b9 3907
851cd173
LB
3908 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3909 nritems = btrfs_header_nritems(eb);
3eb548ee 3910 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3911 end = btrfs_node_key_ptr_offset(nritems);
3912
b159fa28 3913 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3914 } else {
3915 /*
3916 * leaf:
3917 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3918 */
3919 start = btrfs_item_nr_offset(nritems);
8f881e8c 3920 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
b159fa28 3921 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3922 }
3923
0b32f4bb 3924 for (i = 0; i < num_pages; i++) {
fb85fc9a 3925 struct page *p = eb->pages[i];
0b32f4bb
JB
3926
3927 clear_page_dirty_for_io(p);
3928 set_page_writeback(p);
0ceb34bf 3929 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
fa17ed06 3930 p, offset, PAGE_SIZE, 0,
c2df8bb4 3931 &epd->bio,
1f7ad75b 3932 end_bio_extent_buffer_writepage,
18fdc679 3933 0, 0, 0, false);
0b32f4bb 3934 if (ret) {
656f30db 3935 set_btree_ioerr(p);
fe01aa65
TK
3936 if (PageWriteback(p))
3937 end_page_writeback(p);
0b32f4bb
JB
3938 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3939 end_extent_buffer_writeback(eb);
3940 ret = -EIO;
3941 break;
3942 }
09cbfeaf 3943 offset += PAGE_SIZE;
3d4b9496 3944 update_nr_written(wbc, 1);
0b32f4bb
JB
3945 unlock_page(p);
3946 }
3947
3948 if (unlikely(ret)) {
3949 for (; i < num_pages; i++) {
bbf65cf0 3950 struct page *p = eb->pages[i];
81465028 3951 clear_page_dirty_for_io(p);
0b32f4bb
JB
3952 unlock_page(p);
3953 }
3954 }
3955
3956 return ret;
3957}
3958
3959int btree_write_cache_pages(struct address_space *mapping,
3960 struct writeback_control *wbc)
3961{
0b32f4bb
JB
3962 struct extent_buffer *eb, *prev_eb = NULL;
3963 struct extent_page_data epd = {
3964 .bio = NULL,
0b32f4bb
JB
3965 .extent_locked = 0,
3966 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3967 };
b3ff8f1d 3968 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
0b32f4bb
JB
3969 int ret = 0;
3970 int done = 0;
3971 int nr_to_write_done = 0;
3972 struct pagevec pvec;
3973 int nr_pages;
3974 pgoff_t index;
3975 pgoff_t end; /* Inclusive */
3976 int scanned = 0;
10bbd235 3977 xa_mark_t tag;
0b32f4bb 3978
86679820 3979 pagevec_init(&pvec);
0b32f4bb
JB
3980 if (wbc->range_cyclic) {
3981 index = mapping->writeback_index; /* Start from prev offset */
3982 end = -1;
556755a8
JB
3983 /*
3984 * Start from the beginning does not need to cycle over the
3985 * range, mark it as scanned.
3986 */
3987 scanned = (index == 0);
0b32f4bb 3988 } else {
09cbfeaf
KS
3989 index = wbc->range_start >> PAGE_SHIFT;
3990 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3991 scanned = 1;
3992 }
3993 if (wbc->sync_mode == WB_SYNC_ALL)
3994 tag = PAGECACHE_TAG_TOWRITE;
3995 else
3996 tag = PAGECACHE_TAG_DIRTY;
3997retry:
3998 if (wbc->sync_mode == WB_SYNC_ALL)
3999 tag_pages_for_writeback(mapping, index, end);
4000 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 4001 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 4002 tag))) {
0b32f4bb
JB
4003 unsigned i;
4004
0b32f4bb
JB
4005 for (i = 0; i < nr_pages; i++) {
4006 struct page *page = pvec.pages[i];
4007
4008 if (!PagePrivate(page))
4009 continue;
4010
b5bae261
JB
4011 spin_lock(&mapping->private_lock);
4012 if (!PagePrivate(page)) {
4013 spin_unlock(&mapping->private_lock);
4014 continue;
4015 }
4016
0b32f4bb 4017 eb = (struct extent_buffer *)page->private;
b5bae261
JB
4018
4019 /*
4020 * Shouldn't happen and normally this would be a BUG_ON
4021 * but no sense in crashing the users box for something
4022 * we can survive anyway.
4023 */
fae7f21c 4024 if (WARN_ON(!eb)) {
b5bae261 4025 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
4026 continue;
4027 }
4028
b5bae261
JB
4029 if (eb == prev_eb) {
4030 spin_unlock(&mapping->private_lock);
0b32f4bb 4031 continue;
b5bae261 4032 }
0b32f4bb 4033
b5bae261
JB
4034 ret = atomic_inc_not_zero(&eb->refs);
4035 spin_unlock(&mapping->private_lock);
4036 if (!ret)
0b32f4bb 4037 continue;
0b32f4bb
JB
4038
4039 prev_eb = eb;
9df76fb5 4040 ret = lock_extent_buffer_for_io(eb, &epd);
0b32f4bb
JB
4041 if (!ret) {
4042 free_extent_buffer(eb);
4043 continue;
0607eb1d
FM
4044 } else if (ret < 0) {
4045 done = 1;
4046 free_extent_buffer(eb);
4047 break;
0b32f4bb
JB
4048 }
4049
0ab02063 4050 ret = write_one_eb(eb, wbc, &epd);
0b32f4bb
JB
4051 if (ret) {
4052 done = 1;
4053 free_extent_buffer(eb);
4054 break;
4055 }
4056 free_extent_buffer(eb);
4057
4058 /*
4059 * the filesystem may choose to bump up nr_to_write.
4060 * We have to make sure to honor the new nr_to_write
4061 * at any time
4062 */
4063 nr_to_write_done = wbc->nr_to_write <= 0;
4064 }
4065 pagevec_release(&pvec);
4066 cond_resched();
4067 }
4068 if (!scanned && !done) {
4069 /*
4070 * We hit the last page and there is more work to be done: wrap
4071 * back to the start of the file
4072 */
4073 scanned = 1;
4074 index = 0;
4075 goto retry;
4076 }
2b952eea
QW
4077 ASSERT(ret <= 0);
4078 if (ret < 0) {
4079 end_write_bio(&epd, ret);
4080 return ret;
4081 }
b3ff8f1d
QW
4082 /*
4083 * If something went wrong, don't allow any metadata write bio to be
4084 * submitted.
4085 *
4086 * This would prevent use-after-free if we had dirty pages not
4087 * cleaned up, which can still happen by fuzzed images.
4088 *
4089 * - Bad extent tree
4090 * Allowing existing tree block to be allocated for other trees.
4091 *
4092 * - Log tree operations
4093 * Exiting tree blocks get allocated to log tree, bumps its
4094 * generation, then get cleaned in tree re-balance.
4095 * Such tree block will not be written back, since it's clean,
4096 * thus no WRITTEN flag set.
4097 * And after log writes back, this tree block is not traced by
4098 * any dirty extent_io_tree.
4099 *
4100 * - Offending tree block gets re-dirtied from its original owner
4101 * Since it has bumped generation, no WRITTEN flag, it can be
4102 * reused without COWing. This tree block will not be traced
4103 * by btrfs_transaction::dirty_pages.
4104 *
4105 * Now such dirty tree block will not be cleaned by any dirty
4106 * extent io tree. Thus we don't want to submit such wild eb
4107 * if the fs already has error.
4108 */
4109 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4110 ret = flush_write_bio(&epd);
4111 } else {
4112 ret = -EUCLEAN;
4113 end_write_bio(&epd, ret);
4114 }
0b32f4bb
JB
4115 return ret;
4116}
4117
d1310b2e 4118/**
4bef0848 4119 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4120 * @mapping: address space structure to write
4121 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 4122 * @data: data passed to __extent_writepage function
d1310b2e
CM
4123 *
4124 * If a page is already under I/O, write_cache_pages() skips it, even
4125 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4126 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4127 * and msync() need to guarantee that all the data which was dirty at the time
4128 * the call was made get new I/O started against them. If wbc->sync_mode is
4129 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4130 * existing IO to complete.
4131 */
4242b64a 4132static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 4133 struct writeback_control *wbc,
aab6e9ed 4134 struct extent_page_data *epd)
d1310b2e 4135{
7fd1a3f7 4136 struct inode *inode = mapping->host;
d1310b2e
CM
4137 int ret = 0;
4138 int done = 0;
f85d7d6c 4139 int nr_to_write_done = 0;
d1310b2e
CM
4140 struct pagevec pvec;
4141 int nr_pages;
4142 pgoff_t index;
4143 pgoff_t end; /* Inclusive */
a9132667
LB
4144 pgoff_t done_index;
4145 int range_whole = 0;
d1310b2e 4146 int scanned = 0;
10bbd235 4147 xa_mark_t tag;
d1310b2e 4148
7fd1a3f7
JB
4149 /*
4150 * We have to hold onto the inode so that ordered extents can do their
4151 * work when the IO finishes. The alternative to this is failing to add
4152 * an ordered extent if the igrab() fails there and that is a huge pain
4153 * to deal with, so instead just hold onto the inode throughout the
4154 * writepages operation. If it fails here we are freeing up the inode
4155 * anyway and we'd rather not waste our time writing out stuff that is
4156 * going to be truncated anyway.
4157 */
4158 if (!igrab(inode))
4159 return 0;
4160
86679820 4161 pagevec_init(&pvec);
d1310b2e
CM
4162 if (wbc->range_cyclic) {
4163 index = mapping->writeback_index; /* Start from prev offset */
4164 end = -1;
556755a8
JB
4165 /*
4166 * Start from the beginning does not need to cycle over the
4167 * range, mark it as scanned.
4168 */
4169 scanned = (index == 0);
d1310b2e 4170 } else {
09cbfeaf
KS
4171 index = wbc->range_start >> PAGE_SHIFT;
4172 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
4173 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4174 range_whole = 1;
d1310b2e
CM
4175 scanned = 1;
4176 }
3cd24c69
EL
4177
4178 /*
4179 * We do the tagged writepage as long as the snapshot flush bit is set
4180 * and we are the first one who do the filemap_flush() on this inode.
4181 *
4182 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4183 * not race in and drop the bit.
4184 */
4185 if (range_whole && wbc->nr_to_write == LONG_MAX &&
4186 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4187 &BTRFS_I(inode)->runtime_flags))
4188 wbc->tagged_writepages = 1;
4189
4190 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b
JB
4191 tag = PAGECACHE_TAG_TOWRITE;
4192 else
4193 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4194retry:
3cd24c69 4195 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f7aaa06b 4196 tag_pages_for_writeback(mapping, index, end);
a9132667 4197 done_index = index;
f85d7d6c 4198 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
4199 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4200 &index, end, tag))) {
d1310b2e
CM
4201 unsigned i;
4202
d1310b2e
CM
4203 for (i = 0; i < nr_pages; i++) {
4204 struct page *page = pvec.pages[i];
4205
f7bddf1e 4206 done_index = page->index + 1;
d1310b2e 4207 /*
b93b0163
MW
4208 * At this point we hold neither the i_pages lock nor
4209 * the page lock: the page may be truncated or
4210 * invalidated (changing page->mapping to NULL),
4211 * or even swizzled back from swapper_space to
4212 * tmpfs file mapping
d1310b2e 4213 */
c8f2f24b 4214 if (!trylock_page(page)) {
f4340622
QW
4215 ret = flush_write_bio(epd);
4216 BUG_ON(ret < 0);
c8f2f24b 4217 lock_page(page);
01d658f2 4218 }
d1310b2e
CM
4219
4220 if (unlikely(page->mapping != mapping)) {
4221 unlock_page(page);
4222 continue;
4223 }
4224
d2c3f4f6 4225 if (wbc->sync_mode != WB_SYNC_NONE) {
f4340622
QW
4226 if (PageWriteback(page)) {
4227 ret = flush_write_bio(epd);
4228 BUG_ON(ret < 0);
4229 }
d1310b2e 4230 wait_on_page_writeback(page);
d2c3f4f6 4231 }
d1310b2e
CM
4232
4233 if (PageWriteback(page) ||
4234 !clear_page_dirty_for_io(page)) {
4235 unlock_page(page);
4236 continue;
4237 }
4238
aab6e9ed 4239 ret = __extent_writepage(page, wbc, epd);
a9132667 4240 if (ret < 0) {
a9132667
LB
4241 done = 1;
4242 break;
4243 }
f85d7d6c
CM
4244
4245 /*
4246 * the filesystem may choose to bump up nr_to_write.
4247 * We have to make sure to honor the new nr_to_write
4248 * at any time
4249 */
4250 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4251 }
4252 pagevec_release(&pvec);
4253 cond_resched();
4254 }
894b36e3 4255 if (!scanned && !done) {
d1310b2e
CM
4256 /*
4257 * We hit the last page and there is more work to be done: wrap
4258 * back to the start of the file
4259 */
4260 scanned = 1;
4261 index = 0;
42ffb0bf
JB
4262
4263 /*
4264 * If we're looping we could run into a page that is locked by a
4265 * writer and that writer could be waiting on writeback for a
4266 * page in our current bio, and thus deadlock, so flush the
4267 * write bio here.
4268 */
4269 ret = flush_write_bio(epd);
4270 if (!ret)
4271 goto retry;
d1310b2e 4272 }
a9132667
LB
4273
4274 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4275 mapping->writeback_index = done_index;
4276
7fd1a3f7 4277 btrfs_add_delayed_iput(inode);
894b36e3 4278 return ret;
d1310b2e 4279}
d1310b2e 4280
0a9b0e53 4281int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4282{
4283 int ret;
d1310b2e
CM
4284 struct extent_page_data epd = {
4285 .bio = NULL,
771ed689 4286 .extent_locked = 0,
ffbd517d 4287 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4288 };
d1310b2e 4289
d1310b2e 4290 ret = __extent_writepage(page, wbc, &epd);
3065976b
QW
4291 ASSERT(ret <= 0);
4292 if (ret < 0) {
4293 end_write_bio(&epd, ret);
4294 return ret;
4295 }
d1310b2e 4296
3065976b
QW
4297 ret = flush_write_bio(&epd);
4298 ASSERT(ret <= 0);
d1310b2e
CM
4299 return ret;
4300}
d1310b2e 4301
5e3ee236 4302int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
771ed689
CM
4303 int mode)
4304{
4305 int ret = 0;
4306 struct address_space *mapping = inode->i_mapping;
4307 struct page *page;
09cbfeaf
KS
4308 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4309 PAGE_SHIFT;
771ed689
CM
4310
4311 struct extent_page_data epd = {
4312 .bio = NULL,
771ed689 4313 .extent_locked = 1,
ffbd517d 4314 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4315 };
4316 struct writeback_control wbc_writepages = {
771ed689 4317 .sync_mode = mode,
771ed689
CM
4318 .nr_to_write = nr_pages * 2,
4319 .range_start = start,
4320 .range_end = end + 1,
ec39f769
CM
4321 /* We're called from an async helper function */
4322 .punt_to_cgroup = 1,
4323 .no_cgroup_owner = 1,
771ed689
CM
4324 };
4325
dbb70bec 4326 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
d397712b 4327 while (start <= end) {
09cbfeaf 4328 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4329 if (clear_page_dirty_for_io(page))
4330 ret = __extent_writepage(page, &wbc_writepages, &epd);
4331 else {
7087a9d8 4332 btrfs_writepage_endio_finish_ordered(page, start,
c629732d 4333 start + PAGE_SIZE - 1, 1);
771ed689
CM
4334 unlock_page(page);
4335 }
09cbfeaf
KS
4336 put_page(page);
4337 start += PAGE_SIZE;
771ed689
CM
4338 }
4339
02c6db4f 4340 ASSERT(ret <= 0);
dbb70bec
CM
4341 if (ret == 0)
4342 ret = flush_write_bio(&epd);
4343 else
02c6db4f 4344 end_write_bio(&epd, ret);
dbb70bec
CM
4345
4346 wbc_detach_inode(&wbc_writepages);
771ed689
CM
4347 return ret;
4348}
d1310b2e 4349
8ae225a8 4350int extent_writepages(struct address_space *mapping,
d1310b2e
CM
4351 struct writeback_control *wbc)
4352{
4353 int ret = 0;
4354 struct extent_page_data epd = {
4355 .bio = NULL,
771ed689 4356 .extent_locked = 0,
ffbd517d 4357 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4358 };
4359
935db853 4360 ret = extent_write_cache_pages(mapping, wbc, &epd);
a2a72fbd
QW
4361 ASSERT(ret <= 0);
4362 if (ret < 0) {
4363 end_write_bio(&epd, ret);
4364 return ret;
4365 }
4366 ret = flush_write_bio(&epd);
d1310b2e
CM
4367 return ret;
4368}
d1310b2e 4369
2a3ff0ad
NB
4370int extent_readpages(struct address_space *mapping, struct list_head *pages,
4371 unsigned nr_pages)
d1310b2e
CM
4372{
4373 struct bio *bio = NULL;
c8b97818 4374 unsigned long bio_flags = 0;
67c9684f 4375 struct page *pagepool[16];
125bac01 4376 struct extent_map *em_cached = NULL;
67c9684f 4377 int nr = 0;
808f80b4 4378 u64 prev_em_start = (u64)-1;
d1310b2e 4379
61ed3a14 4380 while (!list_empty(pages)) {
e65ef21e
NB
4381 u64 contig_end = 0;
4382
61ed3a14 4383 for (nr = 0; nr < ARRAY_SIZE(pagepool) && !list_empty(pages);) {
f86196ea 4384 struct page *page = lru_to_page(pages);
d1310b2e 4385
61ed3a14
NB
4386 prefetchw(&page->flags);
4387 list_del(&page->lru);
4388 if (add_to_page_cache_lru(page, mapping, page->index,
4389 readahead_gfp_mask(mapping))) {
4390 put_page(page);
e65ef21e 4391 break;
61ed3a14
NB
4392 }
4393
4394 pagepool[nr++] = page;
e65ef21e 4395 contig_end = page_offset(page) + PAGE_SIZE - 1;
d1310b2e 4396 }
67c9684f 4397
e65ef21e
NB
4398 if (nr) {
4399 u64 contig_start = page_offset(pagepool[0]);
4400
4401 ASSERT(contig_start + nr * PAGE_SIZE - 1 == contig_end);
4402
b6660e80 4403 contiguous_readpages(pagepool, nr, contig_start,
e65ef21e
NB
4404 contig_end, &em_cached, &bio, &bio_flags,
4405 &prev_em_start);
4406 }
d1310b2e 4407 }
67c9684f 4408
125bac01
MX
4409 if (em_cached)
4410 free_extent_map(em_cached);
4411
d1310b2e 4412 if (bio)
1f7ad75b 4413 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4414 return 0;
4415}
d1310b2e
CM
4416
4417/*
4418 * basic invalidatepage code, this waits on any locked or writeback
4419 * ranges corresponding to the page, and then deletes any extent state
4420 * records from the tree
4421 */
4422int extent_invalidatepage(struct extent_io_tree *tree,
4423 struct page *page, unsigned long offset)
4424{
2ac55d41 4425 struct extent_state *cached_state = NULL;
4eee4fa4 4426 u64 start = page_offset(page);
09cbfeaf 4427 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4428 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4429
fda2832f 4430 start += ALIGN(offset, blocksize);
d1310b2e
CM
4431 if (start > end)
4432 return 0;
4433
ff13db41 4434 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4435 wait_on_page_writeback(page);
e182163d
OS
4436 clear_extent_bit(tree, start, end, EXTENT_LOCKED | EXTENT_DELALLOC |
4437 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state);
d1310b2e
CM
4438 return 0;
4439}
d1310b2e 4440
7b13b7b1
CM
4441/*
4442 * a helper for releasepage, this tests for areas of the page that
4443 * are locked or under IO and drops the related state bits if it is safe
4444 * to drop the page.
4445 */
29c68b2d 4446static int try_release_extent_state(struct extent_io_tree *tree,
48a3b636 4447 struct page *page, gfp_t mask)
7b13b7b1 4448{
4eee4fa4 4449 u64 start = page_offset(page);
09cbfeaf 4450 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4451 int ret = 1;
4452
8882679e 4453 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
7b13b7b1 4454 ret = 0;
8882679e 4455 } else {
11ef160f
CM
4456 /*
4457 * at this point we can safely clear everything except the
4458 * locked bit and the nodatasum bit
4459 */
66b0c887 4460 ret = __clear_extent_bit(tree, start, end,
11ef160f 4461 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4462 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4463
4464 /* if clear_extent_bit failed for enomem reasons,
4465 * we can't allow the release to continue.
4466 */
4467 if (ret < 0)
4468 ret = 0;
4469 else
4470 ret = 1;
7b13b7b1
CM
4471 }
4472 return ret;
4473}
7b13b7b1 4474
d1310b2e
CM
4475/*
4476 * a helper for releasepage. As long as there are no locked extents
4477 * in the range corresponding to the page, both state records and extent
4478 * map records are removed
4479 */
477a30ba 4480int try_release_extent_mapping(struct page *page, gfp_t mask)
d1310b2e
CM
4481{
4482 struct extent_map *em;
4eee4fa4 4483 u64 start = page_offset(page);
09cbfeaf 4484 u64 end = start + PAGE_SIZE - 1;
bd3599a0
FM
4485 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4486 struct extent_io_tree *tree = &btrfs_inode->io_tree;
4487 struct extent_map_tree *map = &btrfs_inode->extent_tree;
7b13b7b1 4488
d0164adc 4489 if (gfpflags_allow_blocking(mask) &&
ee22184b 4490 page->mapping->host->i_size > SZ_16M) {
39b5637f 4491 u64 len;
70dec807 4492 while (start <= end) {
39b5637f 4493 len = end - start + 1;
890871be 4494 write_lock(&map->lock);
39b5637f 4495 em = lookup_extent_mapping(map, start, len);
285190d9 4496 if (!em) {
890871be 4497 write_unlock(&map->lock);
70dec807
CM
4498 break;
4499 }
7f3c74fb
CM
4500 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4501 em->start != start) {
890871be 4502 write_unlock(&map->lock);
70dec807
CM
4503 free_extent_map(em);
4504 break;
4505 }
4506 if (!test_range_bit(tree, em->start,
4507 extent_map_end(em) - 1,
4e586ca3 4508 EXTENT_LOCKED, 0, NULL)) {
bd3599a0
FM
4509 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4510 &btrfs_inode->runtime_flags);
70dec807
CM
4511 remove_extent_mapping(map, em);
4512 /* once for the rb tree */
4513 free_extent_map(em);
4514 }
4515 start = extent_map_end(em);
890871be 4516 write_unlock(&map->lock);
70dec807
CM
4517
4518 /* once for us */
d1310b2e
CM
4519 free_extent_map(em);
4520 }
d1310b2e 4521 }
29c68b2d 4522 return try_release_extent_state(tree, page, mask);
d1310b2e 4523}
d1310b2e 4524
ec29ed5b
CM
4525/*
4526 * helper function for fiemap, which doesn't want to see any holes.
4527 * This maps until we find something past 'last'
4528 */
4529static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4530 u64 offset, u64 last)
ec29ed5b 4531{
da17066c 4532 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4533 struct extent_map *em;
4534 u64 len;
4535
4536 if (offset >= last)
4537 return NULL;
4538
67871254 4539 while (1) {
ec29ed5b
CM
4540 len = last - offset;
4541 if (len == 0)
4542 break;
fda2832f 4543 len = ALIGN(len, sectorsize);
4ab47a8d 4544 em = btrfs_get_extent_fiemap(BTRFS_I(inode), offset, len);
c704005d 4545 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4546 return em;
4547
4548 /* if this isn't a hole return it */
4a2d25cd 4549 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4550 return em;
ec29ed5b
CM
4551
4552 /* this is a hole, advance to the next extent */
4553 offset = extent_map_end(em);
4554 free_extent_map(em);
4555 if (offset >= last)
4556 break;
4557 }
4558 return NULL;
4559}
4560
4751832d
QW
4561/*
4562 * To cache previous fiemap extent
4563 *
4564 * Will be used for merging fiemap extent
4565 */
4566struct fiemap_cache {
4567 u64 offset;
4568 u64 phys;
4569 u64 len;
4570 u32 flags;
4571 bool cached;
4572};
4573
4574/*
4575 * Helper to submit fiemap extent.
4576 *
4577 * Will try to merge current fiemap extent specified by @offset, @phys,
4578 * @len and @flags with cached one.
4579 * And only when we fails to merge, cached one will be submitted as
4580 * fiemap extent.
4581 *
4582 * Return value is the same as fiemap_fill_next_extent().
4583 */
4584static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4585 struct fiemap_cache *cache,
4586 u64 offset, u64 phys, u64 len, u32 flags)
4587{
4588 int ret = 0;
4589
4590 if (!cache->cached)
4591 goto assign;
4592
4593 /*
4594 * Sanity check, extent_fiemap() should have ensured that new
52042d8e 4595 * fiemap extent won't overlap with cached one.
4751832d
QW
4596 * Not recoverable.
4597 *
4598 * NOTE: Physical address can overlap, due to compression
4599 */
4600 if (cache->offset + cache->len > offset) {
4601 WARN_ON(1);
4602 return -EINVAL;
4603 }
4604
4605 /*
4606 * Only merges fiemap extents if
4607 * 1) Their logical addresses are continuous
4608 *
4609 * 2) Their physical addresses are continuous
4610 * So truly compressed (physical size smaller than logical size)
4611 * extents won't get merged with each other
4612 *
4613 * 3) Share same flags except FIEMAP_EXTENT_LAST
4614 * So regular extent won't get merged with prealloc extent
4615 */
4616 if (cache->offset + cache->len == offset &&
4617 cache->phys + cache->len == phys &&
4618 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4619 (flags & ~FIEMAP_EXTENT_LAST)) {
4620 cache->len += len;
4621 cache->flags |= flags;
4622 goto try_submit_last;
4623 }
4624
4625 /* Not mergeable, need to submit cached one */
4626 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4627 cache->len, cache->flags);
4628 cache->cached = false;
4629 if (ret)
4630 return ret;
4631assign:
4632 cache->cached = true;
4633 cache->offset = offset;
4634 cache->phys = phys;
4635 cache->len = len;
4636 cache->flags = flags;
4637try_submit_last:
4638 if (cache->flags & FIEMAP_EXTENT_LAST) {
4639 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4640 cache->phys, cache->len, cache->flags);
4641 cache->cached = false;
4642 }
4643 return ret;
4644}
4645
4646/*
848c23b7 4647 * Emit last fiemap cache
4751832d 4648 *
848c23b7
QW
4649 * The last fiemap cache may still be cached in the following case:
4650 * 0 4k 8k
4651 * |<- Fiemap range ->|
4652 * |<------------ First extent ----------->|
4653 *
4654 * In this case, the first extent range will be cached but not emitted.
4655 * So we must emit it before ending extent_fiemap().
4751832d 4656 */
5c5aff98 4657static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
848c23b7 4658 struct fiemap_cache *cache)
4751832d
QW
4659{
4660 int ret;
4661
4662 if (!cache->cached)
4663 return 0;
4664
4751832d
QW
4665 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4666 cache->len, cache->flags);
4667 cache->cached = false;
4668 if (ret > 0)
4669 ret = 0;
4670 return ret;
4671}
4672
1506fcc8 4673int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4674 __u64 start, __u64 len)
1506fcc8 4675{
975f84fe 4676 int ret = 0;
1506fcc8
YS
4677 u64 off = start;
4678 u64 max = start + len;
4679 u32 flags = 0;
975f84fe
JB
4680 u32 found_type;
4681 u64 last;
ec29ed5b 4682 u64 last_for_get_extent = 0;
1506fcc8 4683 u64 disko = 0;
ec29ed5b 4684 u64 isize = i_size_read(inode);
975f84fe 4685 struct btrfs_key found_key;
1506fcc8 4686 struct extent_map *em = NULL;
2ac55d41 4687 struct extent_state *cached_state = NULL;
975f84fe 4688 struct btrfs_path *path;
dc046b10 4689 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4690 struct fiemap_cache cache = { 0 };
5911c8fe
DS
4691 struct ulist *roots;
4692 struct ulist *tmp_ulist;
1506fcc8 4693 int end = 0;
ec29ed5b
CM
4694 u64 em_start = 0;
4695 u64 em_len = 0;
4696 u64 em_end = 0;
1506fcc8
YS
4697
4698 if (len == 0)
4699 return -EINVAL;
4700
975f84fe
JB
4701 path = btrfs_alloc_path();
4702 if (!path)
4703 return -ENOMEM;
4704 path->leave_spinning = 1;
4705
5911c8fe
DS
4706 roots = ulist_alloc(GFP_KERNEL);
4707 tmp_ulist = ulist_alloc(GFP_KERNEL);
4708 if (!roots || !tmp_ulist) {
4709 ret = -ENOMEM;
4710 goto out_free_ulist;
4711 }
4712
da17066c
JM
4713 start = round_down(start, btrfs_inode_sectorsize(inode));
4714 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4715
ec29ed5b
CM
4716 /*
4717 * lookup the last file extent. We're not using i_size here
4718 * because there might be preallocation past i_size
4719 */
f85b7379
DS
4720 ret = btrfs_lookup_file_extent(NULL, root, path,
4721 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe 4722 if (ret < 0) {
5911c8fe 4723 goto out_free_ulist;
2d324f59
LB
4724 } else {
4725 WARN_ON(!ret);
4726 if (ret == 1)
4727 ret = 0;
975f84fe 4728 }
2d324f59 4729
975f84fe 4730 path->slots[0]--;
975f84fe 4731 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4732 found_type = found_key.type;
975f84fe 4733
ec29ed5b 4734 /* No extents, but there might be delalloc bits */
4a0cc7ca 4735 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4736 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4737 /* have to trust i_size as the end */
4738 last = (u64)-1;
4739 last_for_get_extent = isize;
4740 } else {
4741 /*
4742 * remember the start of the last extent. There are a
4743 * bunch of different factors that go into the length of the
4744 * extent, so its much less complex to remember where it started
4745 */
4746 last = found_key.offset;
4747 last_for_get_extent = last + 1;
975f84fe 4748 }
fe09e16c 4749 btrfs_release_path(path);
975f84fe 4750
ec29ed5b
CM
4751 /*
4752 * we might have some extents allocated but more delalloc past those
4753 * extents. so, we trust isize unless the start of the last extent is
4754 * beyond isize
4755 */
4756 if (last < isize) {
4757 last = (u64)-1;
4758 last_for_get_extent = isize;
4759 }
4760
ff13db41 4761 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4762 &cached_state);
ec29ed5b 4763
e3350e16 4764 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4765 if (!em)
4766 goto out;
4767 if (IS_ERR(em)) {
4768 ret = PTR_ERR(em);
4769 goto out;
4770 }
975f84fe 4771
1506fcc8 4772 while (!end) {
b76bb701 4773 u64 offset_in_extent = 0;
ea8efc74
CM
4774
4775 /* break if the extent we found is outside the range */
4776 if (em->start >= max || extent_map_end(em) < off)
4777 break;
4778
4779 /*
4780 * get_extent may return an extent that starts before our
4781 * requested range. We have to make sure the ranges
4782 * we return to fiemap always move forward and don't
4783 * overlap, so adjust the offsets here
4784 */
4785 em_start = max(em->start, off);
1506fcc8 4786
ea8efc74
CM
4787 /*
4788 * record the offset from the start of the extent
b76bb701
JB
4789 * for adjusting the disk offset below. Only do this if the
4790 * extent isn't compressed since our in ram offset may be past
4791 * what we have actually allocated on disk.
ea8efc74 4792 */
b76bb701
JB
4793 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4794 offset_in_extent = em_start - em->start;
ec29ed5b 4795 em_end = extent_map_end(em);
ea8efc74 4796 em_len = em_end - em_start;
1506fcc8 4797 flags = 0;
f0986318
FM
4798 if (em->block_start < EXTENT_MAP_LAST_BYTE)
4799 disko = em->block_start + offset_in_extent;
4800 else
4801 disko = 0;
1506fcc8 4802
ea8efc74
CM
4803 /*
4804 * bump off for our next call to get_extent
4805 */
4806 off = extent_map_end(em);
4807 if (off >= max)
4808 end = 1;
4809
93dbfad7 4810 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4811 end = 1;
4812 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4813 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4814 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4815 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4816 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4817 flags |= (FIEMAP_EXTENT_DELALLOC |
4818 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4819 } else if (fieinfo->fi_extents_max) {
4820 u64 bytenr = em->block_start -
4821 (em->start - em->orig_start);
fe09e16c 4822
fe09e16c
LB
4823 /*
4824 * As btrfs supports shared space, this information
4825 * can be exported to userspace tools via
dc046b10
JB
4826 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4827 * then we're just getting a count and we can skip the
4828 * lookup stuff.
fe09e16c 4829 */
bb739cf0
EN
4830 ret = btrfs_check_shared(root,
4831 btrfs_ino(BTRFS_I(inode)),
5911c8fe 4832 bytenr, roots, tmp_ulist);
dc046b10 4833 if (ret < 0)
fe09e16c 4834 goto out_free;
dc046b10 4835 if (ret)
fe09e16c 4836 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4837 ret = 0;
1506fcc8
YS
4838 }
4839 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4840 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4841 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4842 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4843
1506fcc8
YS
4844 free_extent_map(em);
4845 em = NULL;
ec29ed5b
CM
4846 if ((em_start >= last) || em_len == (u64)-1 ||
4847 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4848 flags |= FIEMAP_EXTENT_LAST;
4849 end = 1;
4850 }
4851
ec29ed5b 4852 /* now scan forward to see if this is really the last extent. */
e3350e16 4853 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4854 if (IS_ERR(em)) {
4855 ret = PTR_ERR(em);
4856 goto out;
4857 }
4858 if (!em) {
975f84fe
JB
4859 flags |= FIEMAP_EXTENT_LAST;
4860 end = 1;
4861 }
4751832d
QW
4862 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4863 em_len, flags);
26e726af
CS
4864 if (ret) {
4865 if (ret == 1)
4866 ret = 0;
ec29ed5b 4867 goto out_free;
26e726af 4868 }
1506fcc8
YS
4869 }
4870out_free:
4751832d 4871 if (!ret)
5c5aff98 4872 ret = emit_last_fiemap_cache(fieinfo, &cache);
1506fcc8
YS
4873 free_extent_map(em);
4874out:
a52f4cd2 4875 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
e43bbe5e 4876 &cached_state);
5911c8fe
DS
4877
4878out_free_ulist:
e02d48ea 4879 btrfs_free_path(path);
5911c8fe
DS
4880 ulist_free(roots);
4881 ulist_free(tmp_ulist);
1506fcc8
YS
4882 return ret;
4883}
4884
727011e0
CM
4885static void __free_extent_buffer(struct extent_buffer *eb)
4886{
727011e0
CM
4887 kmem_cache_free(extent_buffer_cache, eb);
4888}
4889
a26e8c9f 4890int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4891{
4892 return (atomic_read(&eb->io_pages) ||
4893 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4894 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4895}
4896
4897/*
55ac0139 4898 * Release all pages attached to the extent buffer.
db7f3436 4899 */
55ac0139 4900static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
db7f3436 4901{
d64766fd
NB
4902 int i;
4903 int num_pages;
b0132a3b 4904 int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
db7f3436
JB
4905
4906 BUG_ON(extent_buffer_under_io(eb));
4907
d64766fd
NB
4908 num_pages = num_extent_pages(eb);
4909 for (i = 0; i < num_pages; i++) {
4910 struct page *page = eb->pages[i];
db7f3436 4911
5d2361db
FL
4912 if (!page)
4913 continue;
4914 if (mapped)
db7f3436 4915 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4916 /*
4917 * We do this since we'll remove the pages after we've
4918 * removed the eb from the radix tree, so we could race
4919 * and have this page now attached to the new eb. So
4920 * only clear page_private if it's still connected to
4921 * this eb.
4922 */
4923 if (PagePrivate(page) &&
4924 page->private == (unsigned long)eb) {
4925 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4926 BUG_ON(PageDirty(page));
4927 BUG_ON(PageWriteback(page));
db7f3436 4928 /*
5d2361db
FL
4929 * We need to make sure we haven't be attached
4930 * to a new eb.
db7f3436 4931 */
5d2361db
FL
4932 ClearPagePrivate(page);
4933 set_page_private(page, 0);
4934 /* One for the page private */
09cbfeaf 4935 put_page(page);
db7f3436 4936 }
5d2361db
FL
4937
4938 if (mapped)
4939 spin_unlock(&page->mapping->private_lock);
4940
01327610 4941 /* One for when we allocated the page */
09cbfeaf 4942 put_page(page);
d64766fd 4943 }
db7f3436
JB
4944}
4945
4946/*
4947 * Helper for releasing the extent buffer.
4948 */
4949static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4950{
55ac0139 4951 btrfs_release_extent_buffer_pages(eb);
8c38938c 4952 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
db7f3436
JB
4953 __free_extent_buffer(eb);
4954}
4955
f28491e0
JB
4956static struct extent_buffer *
4957__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4958 unsigned long len)
d1310b2e
CM
4959{
4960 struct extent_buffer *eb = NULL;
4961
d1b5c567 4962 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4963 eb->start = start;
4964 eb->len = len;
f28491e0 4965 eb->fs_info = fs_info;
815a51c7 4966 eb->bflags = 0;
bd681513 4967 rwlock_init(&eb->lock);
bd681513 4968 atomic_set(&eb->blocking_readers, 0);
06297d8c 4969 eb->blocking_writers = 0;
ed1b4ed7 4970 eb->lock_nested = false;
bd681513
CM
4971 init_waitqueue_head(&eb->write_lock_wq);
4972 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4973
3fd63727
JB
4974 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
4975 &fs_info->allocated_ebs);
6d49ba1b 4976
3083ee2e 4977 spin_lock_init(&eb->refs_lock);
d1310b2e 4978 atomic_set(&eb->refs, 1);
0b32f4bb 4979 atomic_set(&eb->io_pages, 0);
727011e0 4980
b8dae313
DS
4981 /*
4982 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4983 */
4984 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4985 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4986 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e 4987
843ccf9f 4988#ifdef CONFIG_BTRFS_DEBUG
f3dc24c5 4989 eb->spinning_writers = 0;
afd495a8 4990 atomic_set(&eb->spinning_readers, 0);
5c9c799a 4991 atomic_set(&eb->read_locks, 0);
00801ae4 4992 eb->write_locks = 0;
843ccf9f
DS
4993#endif
4994
d1310b2e
CM
4995 return eb;
4996}
4997
815a51c7
JS
4998struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4999{
cc5e31a4 5000 int i;
815a51c7
JS
5001 struct page *p;
5002 struct extent_buffer *new;
cc5e31a4 5003 int num_pages = num_extent_pages(src);
815a51c7 5004
3f556f78 5005 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
5006 if (new == NULL)
5007 return NULL;
5008
5009 for (i = 0; i < num_pages; i++) {
9ec72677 5010 p = alloc_page(GFP_NOFS);
db7f3436
JB
5011 if (!p) {
5012 btrfs_release_extent_buffer(new);
5013 return NULL;
5014 }
815a51c7
JS
5015 attach_extent_buffer_page(new, p);
5016 WARN_ON(PageDirty(p));
5017 SetPageUptodate(p);
5018 new->pages[i] = p;
fba1acf9 5019 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
5020 }
5021
815a51c7 5022 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
b0132a3b 5023 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
815a51c7
JS
5024
5025 return new;
5026}
5027
0f331229
OS
5028struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5029 u64 start, unsigned long len)
815a51c7
JS
5030{
5031 struct extent_buffer *eb;
cc5e31a4
DS
5032 int num_pages;
5033 int i;
815a51c7 5034
3f556f78 5035 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
5036 if (!eb)
5037 return NULL;
5038
65ad0104 5039 num_pages = num_extent_pages(eb);
815a51c7 5040 for (i = 0; i < num_pages; i++) {
9ec72677 5041 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
5042 if (!eb->pages[i])
5043 goto err;
5044 }
5045 set_extent_buffer_uptodate(eb);
5046 btrfs_set_header_nritems(eb, 0);
b0132a3b 5047 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
815a51c7
JS
5048
5049 return eb;
5050err:
84167d19
SB
5051 for (; i > 0; i--)
5052 __free_page(eb->pages[i - 1]);
815a51c7
JS
5053 __free_extent_buffer(eb);
5054 return NULL;
5055}
5056
0f331229 5057struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5058 u64 start)
0f331229 5059{
da17066c 5060 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
5061}
5062
0b32f4bb
JB
5063static void check_buffer_tree_ref(struct extent_buffer *eb)
5064{
242e18c7 5065 int refs;
0b32f4bb
JB
5066 /* the ref bit is tricky. We have to make sure it is set
5067 * if we have the buffer dirty. Otherwise the
5068 * code to free a buffer can end up dropping a dirty
5069 * page
5070 *
5071 * Once the ref bit is set, it won't go away while the
5072 * buffer is dirty or in writeback, and it also won't
5073 * go away while we have the reference count on the
5074 * eb bumped.
5075 *
5076 * We can't just set the ref bit without bumping the
5077 * ref on the eb because free_extent_buffer might
5078 * see the ref bit and try to clear it. If this happens
5079 * free_extent_buffer might end up dropping our original
5080 * ref by mistake and freeing the page before we are able
5081 * to add one more ref.
5082 *
5083 * So bump the ref count first, then set the bit. If someone
5084 * beat us to it, drop the ref we added.
5085 */
242e18c7
CM
5086 refs = atomic_read(&eb->refs);
5087 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5088 return;
5089
594831c4
JB
5090 spin_lock(&eb->refs_lock);
5091 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 5092 atomic_inc(&eb->refs);
594831c4 5093 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
5094}
5095
2457aec6
MG
5096static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5097 struct page *accessed)
5df4235e 5098{
cc5e31a4 5099 int num_pages, i;
5df4235e 5100
0b32f4bb
JB
5101 check_buffer_tree_ref(eb);
5102
65ad0104 5103 num_pages = num_extent_pages(eb);
5df4235e 5104 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
5105 struct page *p = eb->pages[i];
5106
2457aec6
MG
5107 if (p != accessed)
5108 mark_page_accessed(p);
5df4235e
JB
5109 }
5110}
5111
f28491e0
JB
5112struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5113 u64 start)
452c75c3
CS
5114{
5115 struct extent_buffer *eb;
5116
5117 rcu_read_lock();
f28491e0 5118 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 5119 start >> PAGE_SHIFT);
452c75c3
CS
5120 if (eb && atomic_inc_not_zero(&eb->refs)) {
5121 rcu_read_unlock();
062c19e9
FM
5122 /*
5123 * Lock our eb's refs_lock to avoid races with
5124 * free_extent_buffer. When we get our eb it might be flagged
5125 * with EXTENT_BUFFER_STALE and another task running
5126 * free_extent_buffer might have seen that flag set,
5127 * eb->refs == 2, that the buffer isn't under IO (dirty and
5128 * writeback flags not set) and it's still in the tree (flag
5129 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
5130 * of decrementing the extent buffer's reference count twice.
5131 * So here we could race and increment the eb's reference count,
5132 * clear its stale flag, mark it as dirty and drop our reference
5133 * before the other task finishes executing free_extent_buffer,
5134 * which would later result in an attempt to free an extent
5135 * buffer that is dirty.
5136 */
5137 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5138 spin_lock(&eb->refs_lock);
5139 spin_unlock(&eb->refs_lock);
5140 }
2457aec6 5141 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
5142 return eb;
5143 }
5144 rcu_read_unlock();
5145
5146 return NULL;
5147}
5148
faa2dbf0
JB
5149#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5150struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 5151 u64 start)
faa2dbf0
JB
5152{
5153 struct extent_buffer *eb, *exists = NULL;
5154 int ret;
5155
5156 eb = find_extent_buffer(fs_info, start);
5157 if (eb)
5158 return eb;
da17066c 5159 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0 5160 if (!eb)
b6293c82 5161 return ERR_PTR(-ENOMEM);
faa2dbf0
JB
5162 eb->fs_info = fs_info;
5163again:
e1860a77 5164 ret = radix_tree_preload(GFP_NOFS);
b6293c82
DC
5165 if (ret) {
5166 exists = ERR_PTR(ret);
faa2dbf0 5167 goto free_eb;
b6293c82 5168 }
faa2dbf0
JB
5169 spin_lock(&fs_info->buffer_lock);
5170 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5171 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
5172 spin_unlock(&fs_info->buffer_lock);
5173 radix_tree_preload_end();
5174 if (ret == -EEXIST) {
5175 exists = find_extent_buffer(fs_info, start);
5176 if (exists)
5177 goto free_eb;
5178 else
5179 goto again;
5180 }
5181 check_buffer_tree_ref(eb);
5182 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5183
faa2dbf0
JB
5184 return eb;
5185free_eb:
5186 btrfs_release_extent_buffer(eb);
5187 return exists;
5188}
5189#endif
5190
f28491e0 5191struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5192 u64 start)
d1310b2e 5193{
da17066c 5194 unsigned long len = fs_info->nodesize;
cc5e31a4
DS
5195 int num_pages;
5196 int i;
09cbfeaf 5197 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5198 struct extent_buffer *eb;
6af118ce 5199 struct extent_buffer *exists = NULL;
d1310b2e 5200 struct page *p;
f28491e0 5201 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5202 int uptodate = 1;
19fe0a8b 5203 int ret;
d1310b2e 5204
da17066c 5205 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5206 btrfs_err(fs_info, "bad tree block start %llu", start);
5207 return ERR_PTR(-EINVAL);
5208 }
5209
f28491e0 5210 eb = find_extent_buffer(fs_info, start);
452c75c3 5211 if (eb)
6af118ce 5212 return eb;
6af118ce 5213
23d79d81 5214 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5215 if (!eb)
c871b0f2 5216 return ERR_PTR(-ENOMEM);
d1310b2e 5217
65ad0104 5218 num_pages = num_extent_pages(eb);
727011e0 5219 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5220 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5221 if (!p) {
5222 exists = ERR_PTR(-ENOMEM);
6af118ce 5223 goto free_eb;
c871b0f2 5224 }
4f2de97a
JB
5225
5226 spin_lock(&mapping->private_lock);
5227 if (PagePrivate(p)) {
5228 /*
5229 * We could have already allocated an eb for this page
5230 * and attached one so lets see if we can get a ref on
5231 * the existing eb, and if we can we know it's good and
5232 * we can just return that one, else we know we can just
5233 * overwrite page->private.
5234 */
5235 exists = (struct extent_buffer *)p->private;
5236 if (atomic_inc_not_zero(&exists->refs)) {
5237 spin_unlock(&mapping->private_lock);
5238 unlock_page(p);
09cbfeaf 5239 put_page(p);
2457aec6 5240 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5241 goto free_eb;
5242 }
5ca64f45 5243 exists = NULL;
4f2de97a 5244
0b32f4bb 5245 /*
4f2de97a
JB
5246 * Do this so attach doesn't complain and we need to
5247 * drop the ref the old guy had.
5248 */
5249 ClearPagePrivate(p);
0b32f4bb 5250 WARN_ON(PageDirty(p));
09cbfeaf 5251 put_page(p);
d1310b2e 5252 }
4f2de97a
JB
5253 attach_extent_buffer_page(eb, p);
5254 spin_unlock(&mapping->private_lock);
0b32f4bb 5255 WARN_ON(PageDirty(p));
727011e0 5256 eb->pages[i] = p;
d1310b2e
CM
5257 if (!PageUptodate(p))
5258 uptodate = 0;
eb14ab8e
CM
5259
5260 /*
b16d011e
NB
5261 * We can't unlock the pages just yet since the extent buffer
5262 * hasn't been properly inserted in the radix tree, this
5263 * opens a race with btree_releasepage which can free a page
5264 * while we are still filling in all pages for the buffer and
5265 * we could crash.
eb14ab8e 5266 */
d1310b2e
CM
5267 }
5268 if (uptodate)
b4ce94de 5269 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5270again:
e1860a77 5271 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5272 if (ret) {
5273 exists = ERR_PTR(ret);
19fe0a8b 5274 goto free_eb;
c871b0f2 5275 }
19fe0a8b 5276
f28491e0
JB
5277 spin_lock(&fs_info->buffer_lock);
5278 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5279 start >> PAGE_SHIFT, eb);
f28491e0 5280 spin_unlock(&fs_info->buffer_lock);
452c75c3 5281 radix_tree_preload_end();
19fe0a8b 5282 if (ret == -EEXIST) {
f28491e0 5283 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5284 if (exists)
5285 goto free_eb;
5286 else
115391d2 5287 goto again;
6af118ce 5288 }
6af118ce 5289 /* add one reference for the tree */
0b32f4bb 5290 check_buffer_tree_ref(eb);
34b41ace 5291 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5292
5293 /*
b16d011e
NB
5294 * Now it's safe to unlock the pages because any calls to
5295 * btree_releasepage will correctly detect that a page belongs to a
5296 * live buffer and won't free them prematurely.
eb14ab8e 5297 */
28187ae5
NB
5298 for (i = 0; i < num_pages; i++)
5299 unlock_page(eb->pages[i]);
d1310b2e
CM
5300 return eb;
5301
6af118ce 5302free_eb:
5ca64f45 5303 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5304 for (i = 0; i < num_pages; i++) {
5305 if (eb->pages[i])
5306 unlock_page(eb->pages[i]);
5307 }
eb14ab8e 5308
897ca6e9 5309 btrfs_release_extent_buffer(eb);
6af118ce 5310 return exists;
d1310b2e 5311}
d1310b2e 5312
3083ee2e
JB
5313static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5314{
5315 struct extent_buffer *eb =
5316 container_of(head, struct extent_buffer, rcu_head);
5317
5318 __free_extent_buffer(eb);
5319}
5320
f7a52a40 5321static int release_extent_buffer(struct extent_buffer *eb)
5ce48d0f 5322 __releases(&eb->refs_lock)
3083ee2e 5323{
07e21c4d
NB
5324 lockdep_assert_held(&eb->refs_lock);
5325
3083ee2e
JB
5326 WARN_ON(atomic_read(&eb->refs) == 0);
5327 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5328 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5329 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5330
815a51c7 5331 spin_unlock(&eb->refs_lock);
3083ee2e 5332
f28491e0
JB
5333 spin_lock(&fs_info->buffer_lock);
5334 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5335 eb->start >> PAGE_SHIFT);
f28491e0 5336 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5337 } else {
5338 spin_unlock(&eb->refs_lock);
815a51c7 5339 }
3083ee2e 5340
8c38938c 5341 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
3083ee2e 5342 /* Should be safe to release our pages at this point */
55ac0139 5343 btrfs_release_extent_buffer_pages(eb);
bcb7e449 5344#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
b0132a3b 5345 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
bcb7e449
JB
5346 __free_extent_buffer(eb);
5347 return 1;
5348 }
5349#endif
3083ee2e 5350 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5351 return 1;
3083ee2e
JB
5352 }
5353 spin_unlock(&eb->refs_lock);
e64860aa
JB
5354
5355 return 0;
3083ee2e
JB
5356}
5357
d1310b2e
CM
5358void free_extent_buffer(struct extent_buffer *eb)
5359{
242e18c7
CM
5360 int refs;
5361 int old;
d1310b2e
CM
5362 if (!eb)
5363 return;
5364
242e18c7
CM
5365 while (1) {
5366 refs = atomic_read(&eb->refs);
46cc775e
NB
5367 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
5368 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
5369 refs == 1))
242e18c7
CM
5370 break;
5371 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5372 if (old == refs)
5373 return;
5374 }
5375
3083ee2e
JB
5376 spin_lock(&eb->refs_lock);
5377 if (atomic_read(&eb->refs) == 2 &&
5378 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5379 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5380 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5381 atomic_dec(&eb->refs);
5382
5383 /*
5384 * I know this is terrible, but it's temporary until we stop tracking
5385 * the uptodate bits and such for the extent buffers.
5386 */
f7a52a40 5387 release_extent_buffer(eb);
3083ee2e
JB
5388}
5389
5390void free_extent_buffer_stale(struct extent_buffer *eb)
5391{
5392 if (!eb)
d1310b2e
CM
5393 return;
5394
3083ee2e
JB
5395 spin_lock(&eb->refs_lock);
5396 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5397
0b32f4bb 5398 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5399 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5400 atomic_dec(&eb->refs);
f7a52a40 5401 release_extent_buffer(eb);
d1310b2e 5402}
d1310b2e 5403
1d4284bd 5404void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5405{
cc5e31a4
DS
5406 int i;
5407 int num_pages;
d1310b2e
CM
5408 struct page *page;
5409
65ad0104 5410 num_pages = num_extent_pages(eb);
d1310b2e
CM
5411
5412 for (i = 0; i < num_pages; i++) {
fb85fc9a 5413 page = eb->pages[i];
b9473439 5414 if (!PageDirty(page))
d2c3f4f6
CM
5415 continue;
5416
a61e6f29 5417 lock_page(page);
eb14ab8e
CM
5418 WARN_ON(!PagePrivate(page));
5419
d1310b2e 5420 clear_page_dirty_for_io(page);
b93b0163 5421 xa_lock_irq(&page->mapping->i_pages);
0a943c65
MW
5422 if (!PageDirty(page))
5423 __xa_clear_mark(&page->mapping->i_pages,
5424 page_index(page), PAGECACHE_TAG_DIRTY);
b93b0163 5425 xa_unlock_irq(&page->mapping->i_pages);
bf0da8c1 5426 ClearPageError(page);
a61e6f29 5427 unlock_page(page);
d1310b2e 5428 }
0b32f4bb 5429 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5430}
d1310b2e 5431
abb57ef3 5432bool set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5433{
cc5e31a4
DS
5434 int i;
5435 int num_pages;
abb57ef3 5436 bool was_dirty;
d1310b2e 5437
0b32f4bb
JB
5438 check_buffer_tree_ref(eb);
5439
b9473439 5440 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5441
65ad0104 5442 num_pages = num_extent_pages(eb);
3083ee2e 5443 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5444 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5445
abb57ef3
LB
5446 if (!was_dirty)
5447 for (i = 0; i < num_pages; i++)
5448 set_page_dirty(eb->pages[i]);
51995c39
LB
5449
5450#ifdef CONFIG_BTRFS_DEBUG
5451 for (i = 0; i < num_pages; i++)
5452 ASSERT(PageDirty(eb->pages[i]));
5453#endif
5454
b9473439 5455 return was_dirty;
d1310b2e 5456}
d1310b2e 5457
69ba3927 5458void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75 5459{
cc5e31a4 5460 int i;
1259ab75 5461 struct page *page;
cc5e31a4 5462 int num_pages;
1259ab75 5463
b4ce94de 5464 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5465 num_pages = num_extent_pages(eb);
1259ab75 5466 for (i = 0; i < num_pages; i++) {
fb85fc9a 5467 page = eb->pages[i];
33958dc6
CM
5468 if (page)
5469 ClearPageUptodate(page);
1259ab75 5470 }
1259ab75
CM
5471}
5472
09c25a8c 5473void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5474{
cc5e31a4 5475 int i;
d1310b2e 5476 struct page *page;
cc5e31a4 5477 int num_pages;
d1310b2e 5478
0b32f4bb 5479 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
65ad0104 5480 num_pages = num_extent_pages(eb);
d1310b2e 5481 for (i = 0; i < num_pages; i++) {
fb85fc9a 5482 page = eb->pages[i];
d1310b2e
CM
5483 SetPageUptodate(page);
5484 }
d1310b2e 5485}
d1310b2e 5486
c2ccfbc6 5487int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e 5488{
cc5e31a4 5489 int i;
d1310b2e
CM
5490 struct page *page;
5491 int err;
5492 int ret = 0;
ce9adaa5
CM
5493 int locked_pages = 0;
5494 int all_uptodate = 1;
cc5e31a4 5495 int num_pages;
727011e0 5496 unsigned long num_reads = 0;
a86c12c7 5497 struct bio *bio = NULL;
c8b97818 5498 unsigned long bio_flags = 0;
a86c12c7 5499
b4ce94de 5500 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5501 return 0;
5502
65ad0104 5503 num_pages = num_extent_pages(eb);
8436ea91 5504 for (i = 0; i < num_pages; i++) {
fb85fc9a 5505 page = eb->pages[i];
bb82ab88 5506 if (wait == WAIT_NONE) {
2db04966 5507 if (!trylock_page(page))
ce9adaa5 5508 goto unlock_exit;
d1310b2e
CM
5509 } else {
5510 lock_page(page);
5511 }
ce9adaa5 5512 locked_pages++;
2571e739
LB
5513 }
5514 /*
5515 * We need to firstly lock all pages to make sure that
5516 * the uptodate bit of our pages won't be affected by
5517 * clear_extent_buffer_uptodate().
5518 */
8436ea91 5519 for (i = 0; i < num_pages; i++) {
2571e739 5520 page = eb->pages[i];
727011e0
CM
5521 if (!PageUptodate(page)) {
5522 num_reads++;
ce9adaa5 5523 all_uptodate = 0;
727011e0 5524 }
ce9adaa5 5525 }
2571e739 5526
ce9adaa5 5527 if (all_uptodate) {
8436ea91 5528 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5529 goto unlock_exit;
5530 }
5531
656f30db 5532 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5533 eb->read_mirror = 0;
0b32f4bb 5534 atomic_set(&eb->io_pages, num_reads);
8436ea91 5535 for (i = 0; i < num_pages; i++) {
fb85fc9a 5536 page = eb->pages[i];
baf863b9 5537
ce9adaa5 5538 if (!PageUptodate(page)) {
baf863b9
LB
5539 if (ret) {
5540 atomic_dec(&eb->io_pages);
5541 unlock_page(page);
5542 continue;
5543 }
5544
f188591e 5545 ClearPageError(page);
0d44fea7 5546 err = __extent_read_full_page(page,
6af49dbd 5547 btree_get_extent, &bio,
d4c7ca86 5548 mirror_num, &bio_flags,
1f7ad75b 5549 REQ_META);
baf863b9 5550 if (err) {
d1310b2e 5551 ret = err;
baf863b9
LB
5552 /*
5553 * We use &bio in above __extent_read_full_page,
5554 * so we ensure that if it returns error, the
5555 * current page fails to add itself to bio and
5556 * it's been unlocked.
5557 *
5558 * We must dec io_pages by ourselves.
5559 */
5560 atomic_dec(&eb->io_pages);
5561 }
d1310b2e
CM
5562 } else {
5563 unlock_page(page);
5564 }
5565 }
5566
355808c2 5567 if (bio) {
1f7ad75b 5568 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5569 if (err)
5570 return err;
355808c2 5571 }
a86c12c7 5572
bb82ab88 5573 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5574 return ret;
d397712b 5575
8436ea91 5576 for (i = 0; i < num_pages; i++) {
fb85fc9a 5577 page = eb->pages[i];
d1310b2e 5578 wait_on_page_locked(page);
d397712b 5579 if (!PageUptodate(page))
d1310b2e 5580 ret = -EIO;
d1310b2e 5581 }
d397712b 5582
d1310b2e 5583 return ret;
ce9adaa5
CM
5584
5585unlock_exit:
d397712b 5586 while (locked_pages > 0) {
ce9adaa5 5587 locked_pages--;
8436ea91
JB
5588 page = eb->pages[locked_pages];
5589 unlock_page(page);
ce9adaa5
CM
5590 }
5591 return ret;
d1310b2e 5592}
d1310b2e 5593
1cbb1f45
JM
5594void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5595 unsigned long start, unsigned long len)
d1310b2e
CM
5596{
5597 size_t cur;
5598 size_t offset;
5599 struct page *page;
5600 char *kaddr;
5601 char *dst = (char *)dstv;
7073017a 5602 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5603 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5604
f716abd5
LB
5605 if (start + len > eb->len) {
5606 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5607 eb->start, eb->len, start, len);
5608 memset(dst, 0, len);
5609 return;
5610 }
d1310b2e 5611
7073017a 5612 offset = offset_in_page(start_offset + start);
d1310b2e 5613
d397712b 5614 while (len > 0) {
fb85fc9a 5615 page = eb->pages[i];
d1310b2e 5616
09cbfeaf 5617 cur = min(len, (PAGE_SIZE - offset));
a6591715 5618 kaddr = page_address(page);
d1310b2e 5619 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5620
5621 dst += cur;
5622 len -= cur;
5623 offset = 0;
5624 i++;
5625 }
5626}
d1310b2e 5627
1cbb1f45
JM
5628int read_extent_buffer_to_user(const struct extent_buffer *eb,
5629 void __user *dstv,
5630 unsigned long start, unsigned long len)
550ac1d8
GH
5631{
5632 size_t cur;
5633 size_t offset;
5634 struct page *page;
5635 char *kaddr;
5636 char __user *dst = (char __user *)dstv;
7073017a 5637 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5638 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5639 int ret = 0;
5640
5641 WARN_ON(start > eb->len);
5642 WARN_ON(start + len > eb->start + eb->len);
5643
7073017a 5644 offset = offset_in_page(start_offset + start);
550ac1d8
GH
5645
5646 while (len > 0) {
fb85fc9a 5647 page = eb->pages[i];
550ac1d8 5648
09cbfeaf 5649 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5650 kaddr = page_address(page);
5651 if (copy_to_user(dst, kaddr + offset, cur)) {
5652 ret = -EFAULT;
5653 break;
5654 }
5655
5656 dst += cur;
5657 len -= cur;
5658 offset = 0;
5659 i++;
5660 }
5661
5662 return ret;
5663}
5664
415b35a5
LB
5665/*
5666 * return 0 if the item is found within a page.
5667 * return 1 if the item spans two pages.
5668 * return -EINVAL otherwise.
5669 */
1cbb1f45
JM
5670int map_private_extent_buffer(const struct extent_buffer *eb,
5671 unsigned long start, unsigned long min_len,
5672 char **map, unsigned long *map_start,
5673 unsigned long *map_len)
d1310b2e 5674{
cc2c39d6 5675 size_t offset;
d1310b2e
CM
5676 char *kaddr;
5677 struct page *p;
7073017a 5678 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5679 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5680 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5681 PAGE_SHIFT;
d1310b2e 5682
f716abd5
LB
5683 if (start + min_len > eb->len) {
5684 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5685 eb->start, eb->len, start, min_len);
5686 return -EINVAL;
5687 }
5688
d1310b2e 5689 if (i != end_i)
415b35a5 5690 return 1;
d1310b2e
CM
5691
5692 if (i == 0) {
5693 offset = start_offset;
5694 *map_start = 0;
5695 } else {
5696 offset = 0;
09cbfeaf 5697 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5698 }
d397712b 5699
fb85fc9a 5700 p = eb->pages[i];
a6591715 5701 kaddr = page_address(p);
d1310b2e 5702 *map = kaddr + offset;
09cbfeaf 5703 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5704 return 0;
5705}
d1310b2e 5706
1cbb1f45
JM
5707int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5708 unsigned long start, unsigned long len)
d1310b2e
CM
5709{
5710 size_t cur;
5711 size_t offset;
5712 struct page *page;
5713 char *kaddr;
5714 char *ptr = (char *)ptrv;
7073017a 5715 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5716 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5717 int ret = 0;
5718
5719 WARN_ON(start > eb->len);
5720 WARN_ON(start + len > eb->start + eb->len);
5721
7073017a 5722 offset = offset_in_page(start_offset + start);
d1310b2e 5723
d397712b 5724 while (len > 0) {
fb85fc9a 5725 page = eb->pages[i];
d1310b2e 5726
09cbfeaf 5727 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5728
a6591715 5729 kaddr = page_address(page);
d1310b2e 5730 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5731 if (ret)
5732 break;
5733
5734 ptr += cur;
5735 len -= cur;
5736 offset = 0;
5737 i++;
5738 }
5739 return ret;
5740}
d1310b2e 5741
f157bf76
DS
5742void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5743 const void *srcv)
5744{
5745 char *kaddr;
5746
5747 WARN_ON(!PageUptodate(eb->pages[0]));
5748 kaddr = page_address(eb->pages[0]);
5749 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5750 BTRFS_FSID_SIZE);
5751}
5752
5753void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5754{
5755 char *kaddr;
5756
5757 WARN_ON(!PageUptodate(eb->pages[0]));
5758 kaddr = page_address(eb->pages[0]);
5759 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5760 BTRFS_FSID_SIZE);
5761}
5762
d1310b2e
CM
5763void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5764 unsigned long start, unsigned long len)
5765{
5766 size_t cur;
5767 size_t offset;
5768 struct page *page;
5769 char *kaddr;
5770 char *src = (char *)srcv;
7073017a 5771 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5772 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5773
5774 WARN_ON(start > eb->len);
5775 WARN_ON(start + len > eb->start + eb->len);
5776
7073017a 5777 offset = offset_in_page(start_offset + start);
d1310b2e 5778
d397712b 5779 while (len > 0) {
fb85fc9a 5780 page = eb->pages[i];
d1310b2e
CM
5781 WARN_ON(!PageUptodate(page));
5782
09cbfeaf 5783 cur = min(len, PAGE_SIZE - offset);
a6591715 5784 kaddr = page_address(page);
d1310b2e 5785 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5786
5787 src += cur;
5788 len -= cur;
5789 offset = 0;
5790 i++;
5791 }
5792}
d1310b2e 5793
b159fa28
DS
5794void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5795 unsigned long len)
d1310b2e
CM
5796{
5797 size_t cur;
5798 size_t offset;
5799 struct page *page;
5800 char *kaddr;
7073017a 5801 size_t start_offset = offset_in_page(eb->start);
09cbfeaf 5802 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5803
5804 WARN_ON(start > eb->len);
5805 WARN_ON(start + len > eb->start + eb->len);
5806
7073017a 5807 offset = offset_in_page(start_offset + start);
d1310b2e 5808
d397712b 5809 while (len > 0) {
fb85fc9a 5810 page = eb->pages[i];
d1310b2e
CM
5811 WARN_ON(!PageUptodate(page));
5812
09cbfeaf 5813 cur = min(len, PAGE_SIZE - offset);
a6591715 5814 kaddr = page_address(page);
b159fa28 5815 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5816
5817 len -= cur;
5818 offset = 0;
5819 i++;
5820 }
5821}
d1310b2e 5822
58e8012c
DS
5823void copy_extent_buffer_full(struct extent_buffer *dst,
5824 struct extent_buffer *src)
5825{
5826 int i;
cc5e31a4 5827 int num_pages;
58e8012c
DS
5828
5829 ASSERT(dst->len == src->len);
5830
65ad0104 5831 num_pages = num_extent_pages(dst);
58e8012c
DS
5832 for (i = 0; i < num_pages; i++)
5833 copy_page(page_address(dst->pages[i]),
5834 page_address(src->pages[i]));
5835}
5836
d1310b2e
CM
5837void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5838 unsigned long dst_offset, unsigned long src_offset,
5839 unsigned long len)
5840{
5841 u64 dst_len = dst->len;
5842 size_t cur;
5843 size_t offset;
5844 struct page *page;
5845 char *kaddr;
7073017a 5846 size_t start_offset = offset_in_page(dst->start);
09cbfeaf 5847 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5848
5849 WARN_ON(src->len != dst_len);
5850
7073017a 5851 offset = offset_in_page(start_offset + dst_offset);
d1310b2e 5852
d397712b 5853 while (len > 0) {
fb85fc9a 5854 page = dst->pages[i];
d1310b2e
CM
5855 WARN_ON(!PageUptodate(page));
5856
09cbfeaf 5857 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5858
a6591715 5859 kaddr = page_address(page);
d1310b2e 5860 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5861
5862 src_offset += cur;
5863 len -= cur;
5864 offset = 0;
5865 i++;
5866 }
5867}
d1310b2e 5868
3e1e8bb7
OS
5869/*
5870 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5871 * given bit number
5872 * @eb: the extent buffer
5873 * @start: offset of the bitmap item in the extent buffer
5874 * @nr: bit number
5875 * @page_index: return index of the page in the extent buffer that contains the
5876 * given bit number
5877 * @page_offset: return offset into the page given by page_index
5878 *
5879 * This helper hides the ugliness of finding the byte in an extent buffer which
5880 * contains a given bit.
5881 */
5882static inline void eb_bitmap_offset(struct extent_buffer *eb,
5883 unsigned long start, unsigned long nr,
5884 unsigned long *page_index,
5885 size_t *page_offset)
5886{
7073017a 5887 size_t start_offset = offset_in_page(eb->start);
3e1e8bb7
OS
5888 size_t byte_offset = BIT_BYTE(nr);
5889 size_t offset;
5890
5891 /*
5892 * The byte we want is the offset of the extent buffer + the offset of
5893 * the bitmap item in the extent buffer + the offset of the byte in the
5894 * bitmap item.
5895 */
5896 offset = start_offset + start + byte_offset;
5897
09cbfeaf 5898 *page_index = offset >> PAGE_SHIFT;
7073017a 5899 *page_offset = offset_in_page(offset);
3e1e8bb7
OS
5900}
5901
5902/**
5903 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5904 * @eb: the extent buffer
5905 * @start: offset of the bitmap item in the extent buffer
5906 * @nr: bit number to test
5907 */
5908int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5909 unsigned long nr)
5910{
2fe1d551 5911 u8 *kaddr;
3e1e8bb7
OS
5912 struct page *page;
5913 unsigned long i;
5914 size_t offset;
5915
5916 eb_bitmap_offset(eb, start, nr, &i, &offset);
5917 page = eb->pages[i];
5918 WARN_ON(!PageUptodate(page));
5919 kaddr = page_address(page);
5920 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5921}
5922
5923/**
5924 * extent_buffer_bitmap_set - set an area of a bitmap
5925 * @eb: the extent buffer
5926 * @start: offset of the bitmap item in the extent buffer
5927 * @pos: bit number of the first bit
5928 * @len: number of bits to set
5929 */
5930void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5931 unsigned long pos, unsigned long len)
5932{
2fe1d551 5933 u8 *kaddr;
3e1e8bb7
OS
5934 struct page *page;
5935 unsigned long i;
5936 size_t offset;
5937 const unsigned int size = pos + len;
5938 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5939 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5940
5941 eb_bitmap_offset(eb, start, pos, &i, &offset);
5942 page = eb->pages[i];
5943 WARN_ON(!PageUptodate(page));
5944 kaddr = page_address(page);
5945
5946 while (len >= bits_to_set) {
5947 kaddr[offset] |= mask_to_set;
5948 len -= bits_to_set;
5949 bits_to_set = BITS_PER_BYTE;
9c894696 5950 mask_to_set = ~0;
09cbfeaf 5951 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5952 offset = 0;
5953 page = eb->pages[++i];
5954 WARN_ON(!PageUptodate(page));
5955 kaddr = page_address(page);
5956 }
5957 }
5958 if (len) {
5959 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5960 kaddr[offset] |= mask_to_set;
5961 }
5962}
5963
5964
5965/**
5966 * extent_buffer_bitmap_clear - clear an area of a bitmap
5967 * @eb: the extent buffer
5968 * @start: offset of the bitmap item in the extent buffer
5969 * @pos: bit number of the first bit
5970 * @len: number of bits to clear
5971 */
5972void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5973 unsigned long pos, unsigned long len)
5974{
2fe1d551 5975 u8 *kaddr;
3e1e8bb7
OS
5976 struct page *page;
5977 unsigned long i;
5978 size_t offset;
5979 const unsigned int size = pos + len;
5980 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5981 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5982
5983 eb_bitmap_offset(eb, start, pos, &i, &offset);
5984 page = eb->pages[i];
5985 WARN_ON(!PageUptodate(page));
5986 kaddr = page_address(page);
5987
5988 while (len >= bits_to_clear) {
5989 kaddr[offset] &= ~mask_to_clear;
5990 len -= bits_to_clear;
5991 bits_to_clear = BITS_PER_BYTE;
9c894696 5992 mask_to_clear = ~0;
09cbfeaf 5993 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5994 offset = 0;
5995 page = eb->pages[++i];
5996 WARN_ON(!PageUptodate(page));
5997 kaddr = page_address(page);
5998 }
5999 }
6000 if (len) {
6001 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6002 kaddr[offset] &= ~mask_to_clear;
6003 }
6004}
6005
3387206f
ST
6006static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6007{
6008 unsigned long distance = (src > dst) ? src - dst : dst - src;
6009 return distance < len;
6010}
6011
d1310b2e
CM
6012static void copy_pages(struct page *dst_page, struct page *src_page,
6013 unsigned long dst_off, unsigned long src_off,
6014 unsigned long len)
6015{
a6591715 6016 char *dst_kaddr = page_address(dst_page);
d1310b2e 6017 char *src_kaddr;
727011e0 6018 int must_memmove = 0;
d1310b2e 6019
3387206f 6020 if (dst_page != src_page) {
a6591715 6021 src_kaddr = page_address(src_page);
3387206f 6022 } else {
d1310b2e 6023 src_kaddr = dst_kaddr;
727011e0
CM
6024 if (areas_overlap(src_off, dst_off, len))
6025 must_memmove = 1;
3387206f 6026 }
d1310b2e 6027
727011e0
CM
6028 if (must_memmove)
6029 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6030 else
6031 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
6032}
6033
6034void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6035 unsigned long src_offset, unsigned long len)
6036{
0b246afa 6037 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6038 size_t cur;
6039 size_t dst_off_in_page;
6040 size_t src_off_in_page;
7073017a 6041 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
6042 unsigned long dst_i;
6043 unsigned long src_i;
6044
6045 if (src_offset + len > dst->len) {
0b246afa 6046 btrfs_err(fs_info,
5d163e0e
JM
6047 "memmove bogus src_offset %lu move len %lu dst len %lu",
6048 src_offset, len, dst->len);
290342f6 6049 BUG();
d1310b2e
CM
6050 }
6051 if (dst_offset + len > dst->len) {
0b246afa 6052 btrfs_err(fs_info,
5d163e0e
JM
6053 "memmove bogus dst_offset %lu move len %lu dst len %lu",
6054 dst_offset, len, dst->len);
290342f6 6055 BUG();
d1310b2e
CM
6056 }
6057
d397712b 6058 while (len > 0) {
7073017a
JT
6059 dst_off_in_page = offset_in_page(start_offset + dst_offset);
6060 src_off_in_page = offset_in_page(start_offset + src_offset);
d1310b2e 6061
09cbfeaf
KS
6062 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
6063 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 6064
09cbfeaf 6065 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
6066 src_off_in_page));
6067 cur = min_t(unsigned long, cur,
09cbfeaf 6068 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 6069
fb85fc9a 6070 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6071 dst_off_in_page, src_off_in_page, cur);
6072
6073 src_offset += cur;
6074 dst_offset += cur;
6075 len -= cur;
6076 }
6077}
d1310b2e
CM
6078
6079void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
6080 unsigned long src_offset, unsigned long len)
6081{
0b246afa 6082 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
6083 size_t cur;
6084 size_t dst_off_in_page;
6085 size_t src_off_in_page;
6086 unsigned long dst_end = dst_offset + len - 1;
6087 unsigned long src_end = src_offset + len - 1;
7073017a 6088 size_t start_offset = offset_in_page(dst->start);
d1310b2e
CM
6089 unsigned long dst_i;
6090 unsigned long src_i;
6091
6092 if (src_offset + len > dst->len) {
0b246afa 6093 btrfs_err(fs_info,
5d163e0e
JM
6094 "memmove bogus src_offset %lu move len %lu len %lu",
6095 src_offset, len, dst->len);
290342f6 6096 BUG();
d1310b2e
CM
6097 }
6098 if (dst_offset + len > dst->len) {
0b246afa 6099 btrfs_err(fs_info,
5d163e0e
JM
6100 "memmove bogus dst_offset %lu move len %lu len %lu",
6101 dst_offset, len, dst->len);
290342f6 6102 BUG();
d1310b2e 6103 }
727011e0 6104 if (dst_offset < src_offset) {
d1310b2e
CM
6105 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
6106 return;
6107 }
d397712b 6108 while (len > 0) {
09cbfeaf
KS
6109 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
6110 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e 6111
7073017a
JT
6112 dst_off_in_page = offset_in_page(start_offset + dst_end);
6113 src_off_in_page = offset_in_page(start_offset + src_end);
d1310b2e
CM
6114
6115 cur = min_t(unsigned long, len, src_off_in_page + 1);
6116 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 6117 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6118 dst_off_in_page - cur + 1,
6119 src_off_in_page - cur + 1, cur);
6120
6121 dst_end -= cur;
6122 src_end -= cur;
6123 len -= cur;
6124 }
6125}
6af118ce 6126
f7a52a40 6127int try_release_extent_buffer(struct page *page)
19fe0a8b 6128{
6af118ce 6129 struct extent_buffer *eb;
6af118ce 6130
3083ee2e 6131 /*
01327610 6132 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6133 * now.
6134 */
6135 spin_lock(&page->mapping->private_lock);
6136 if (!PagePrivate(page)) {
6137 spin_unlock(&page->mapping->private_lock);
4f2de97a 6138 return 1;
45f49bce 6139 }
6af118ce 6140
3083ee2e
JB
6141 eb = (struct extent_buffer *)page->private;
6142 BUG_ON(!eb);
19fe0a8b
MX
6143
6144 /*
3083ee2e
JB
6145 * This is a little awful but should be ok, we need to make sure that
6146 * the eb doesn't disappear out from under us while we're looking at
6147 * this page.
19fe0a8b 6148 */
3083ee2e 6149 spin_lock(&eb->refs_lock);
0b32f4bb 6150 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6151 spin_unlock(&eb->refs_lock);
6152 spin_unlock(&page->mapping->private_lock);
6153 return 0;
b9473439 6154 }
3083ee2e 6155 spin_unlock(&page->mapping->private_lock);
897ca6e9 6156
19fe0a8b 6157 /*
3083ee2e
JB
6158 * If tree ref isn't set then we know the ref on this eb is a real ref,
6159 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6160 */
3083ee2e
JB
6161 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6162 spin_unlock(&eb->refs_lock);
6163 return 0;
b9473439 6164 }
19fe0a8b 6165
f7a52a40 6166 return release_extent_buffer(eb);
6af118ce 6167}