]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: add separate helper for unlock_extent_cached with GFP_ATOMIC
[mirror_ubuntu-hirsute-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
d1310b2e
CM
2#include <linux/bitops.h>
3#include <linux/slab.h>
4#include <linux/bio.h>
5#include <linux/mm.h>
d1310b2e
CM
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
d1310b2e
CM
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
fe09e16c 23#include "backref.h"
6af49dbd 24#include "disk-io.h"
d1310b2e 25
d1310b2e
CM
26static struct kmem_cache *extent_state_cache;
27static struct kmem_cache *extent_buffer_cache;
9be3395b 28static struct bio_set *btrfs_bioset;
d1310b2e 29
27a3507d
FM
30static inline bool extent_state_in_tree(const struct extent_state *state)
31{
32 return !RB_EMPTY_NODE(&state->rb_node);
33}
34
6d49ba1b 35#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
36static LIST_HEAD(buffers);
37static LIST_HEAD(states);
4bef0848 38
d397712b 39static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
40
41static inline
42void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
43{
44 unsigned long flags;
45
46 spin_lock_irqsave(&leak_lock, flags);
47 list_add(new, head);
48 spin_unlock_irqrestore(&leak_lock, flags);
49}
50
51static inline
52void btrfs_leak_debug_del(struct list_head *entry)
53{
54 unsigned long flags;
55
56 spin_lock_irqsave(&leak_lock, flags);
57 list_del(entry);
58 spin_unlock_irqrestore(&leak_lock, flags);
59}
60
61static inline
62void btrfs_leak_debug_check(void)
63{
64 struct extent_state *state;
65 struct extent_buffer *eb;
66
67 while (!list_empty(&states)) {
68 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 69 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
70 state->start, state->end, state->state,
71 extent_state_in_tree(state),
b7ac31b7 72 refcount_read(&state->refs));
6d49ba1b
ES
73 list_del(&state->leak_list);
74 kmem_cache_free(extent_state_cache, state);
75 }
76
77 while (!list_empty(&buffers)) {
78 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 79 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 80 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
81 list_del(&eb->leak_list);
82 kmem_cache_free(extent_buffer_cache, eb);
83 }
84}
8d599ae1 85
a5dee37d
JB
86#define btrfs_debug_check_extent_io_range(tree, start, end) \
87 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 88static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 89 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 90{
c6100a4b
JB
91 if (tree->ops && tree->ops->check_extent_io_range)
92 tree->ops->check_extent_io_range(tree->private_data, caller,
93 start, end);
8d599ae1 94}
6d49ba1b
ES
95#else
96#define btrfs_leak_debug_add(new, head) do {} while (0)
97#define btrfs_leak_debug_del(entry) do {} while (0)
98#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 99#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 100#endif
d1310b2e 101
d1310b2e
CM
102#define BUFFER_LRU_MAX 64
103
104struct tree_entry {
105 u64 start;
106 u64 end;
d1310b2e
CM
107 struct rb_node rb_node;
108};
109
110struct extent_page_data {
111 struct bio *bio;
112 struct extent_io_tree *tree;
771ed689
CM
113 /* tells writepage not to lock the state bits for this range
114 * it still does the unlocking
115 */
ffbd517d
CM
116 unsigned int extent_locked:1;
117
70fd7614 118 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 119 unsigned int sync_io:1;
d1310b2e
CM
120};
121
d38ed27f
QW
122static void add_extent_changeset(struct extent_state *state, unsigned bits,
123 struct extent_changeset *changeset,
124 int set)
125{
126 int ret;
127
128 if (!changeset)
129 return;
130 if (set && (state->state & bits) == bits)
131 return;
fefdc557
QW
132 if (!set && (state->state & bits) == 0)
133 return;
d38ed27f 134 changeset->bytes_changed += state->end - state->start + 1;
53d32359 135 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
136 GFP_ATOMIC);
137 /* ENOMEM */
138 BUG_ON(ret < 0);
139}
140
aab6e9ed 141static void flush_write_bio(struct extent_page_data *epd);
e2932ee0 142
c2d904e0
JM
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
c6100a4b
JB
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
c2d904e0 149}
0b32f4bb 150
d1310b2e
CM
151int __init extent_io_init(void)
152{
837e1972 153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 154 sizeof(struct extent_state), 0,
fba4b697 155 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
156 if (!extent_state_cache)
157 return -ENOMEM;
158
837e1972 159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 160 sizeof(struct extent_buffer), 0,
fba4b697 161 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
162 if (!extent_buffer_cache)
163 goto free_state_cache;
9be3395b
CM
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
011067b0
N
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
9be3395b
CM
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
66b0c887 584int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
fefdc557
QW
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
ae0f1625 1298 struct extent_state **cached)
fefdc557
QW
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
ae0f1625 1301 cached, GFP_NOFS, NULL);
fefdc557
QW
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
ae0f1625 1351 EXTENT_LOCKED, 1, 0, NULL);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
ae0f1625 1747 NULL);
873695b3
LB
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
7870d082
JB
1942int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
4a54c8c1
JS
1945{
1946 int ret;
1947 int err = 0;
4a54c8c1 1948
47dc196a 1949 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
91166212 1952 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1953 if (ret)
1954 err = ret;
1955
7870d082 1956 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1957 rec->start + rec->len - 1,
91166212 1958 EXTENT_DAMAGED);
53b381b3
DW
1959 if (ret && !err)
1960 err = ret;
4a54c8c1
JS
1961
1962 kfree(rec);
1963 return err;
1964}
1965
4a54c8c1
JS
1966/*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
3ec706c8 1971 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
6ec656bc
JB
1976int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1979{
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
1751e8a6 1987 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
c5e4c3d7 1990 bio = btrfs_io_bio_alloc(1);
4f024f37 1991 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1992 map_length = length;
1993
b5de8d0d
FM
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
e4ff5fb5 2000 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
c725328c
LB
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2024 }
c725328c
LB
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2027 bio->bi_iter.bi_sector = sector;
c725328c 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2029 btrfs_put_bbio(bbio);
ebbede42
AJ
2030 if (!dev || !dev->bdev ||
2031 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
b5de8d0d 2032 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2033 bio_put(bio);
2034 return -EIO;
2035 }
74d46992 2036 bio_set_dev(bio, dev->bdev);
70fd7614 2037 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2038 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2039
4e49ea4a 2040 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2041 /* try to remap that extent elsewhere? */
b5de8d0d 2042 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2043 bio_put(bio);
442a4f63 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2045 return -EIO;
2046 }
2047
b14af3b4
DS
2048 btrfs_info_rl_in_rcu(fs_info,
2049 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2050 ino, start,
1203b681 2051 rcu_str_deref(dev->name), sector);
b5de8d0d 2052 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2053 bio_put(bio);
2054 return 0;
2055}
2056
2ff7e61e
JM
2057int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2058 struct extent_buffer *eb, int mirror_num)
ea466794 2059{
ea466794
JB
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2062 int ret = 0;
ea466794 2063
bc98a42c 2064 if (sb_rdonly(fs_info->sb))
908960c6
ID
2065 return -EROFS;
2066
ea466794 2067 for (i = 0; i < num_pages; i++) {
fb85fc9a 2068 struct page *p = eb->pages[i];
1203b681 2069
6ec656bc 2070 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2071 start - page_offset(p), mirror_num);
ea466794
JB
2072 if (ret)
2073 break;
09cbfeaf 2074 start += PAGE_SIZE;
ea466794
JB
2075 }
2076
2077 return ret;
2078}
2079
4a54c8c1
JS
2080/*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
7870d082
JB
2084int clean_io_failure(struct btrfs_fs_info *fs_info,
2085 struct extent_io_tree *failure_tree,
2086 struct extent_io_tree *io_tree, u64 start,
2087 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2088{
2089 u64 private;
4a54c8c1 2090 struct io_failure_record *failrec;
4a54c8c1
JS
2091 struct extent_state *state;
2092 int num_copies;
4a54c8c1 2093 int ret;
4a54c8c1
JS
2094
2095 private = 0;
7870d082
JB
2096 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2097 EXTENT_DIRTY, 0);
4a54c8c1
JS
2098 if (!ret)
2099 return 0;
2100
7870d082 2101 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2102 if (ret)
2103 return 0;
2104
4a54c8c1
JS
2105 BUG_ON(!failrec->this_mirror);
2106
2107 if (failrec->in_validation) {
2108 /* there was no real error, just free the record */
ab8d0fc4
JM
2109 btrfs_debug(fs_info,
2110 "clean_io_failure: freeing dummy error at %llu",
2111 failrec->start);
4a54c8c1
JS
2112 goto out;
2113 }
bc98a42c 2114 if (sb_rdonly(fs_info->sb))
908960c6 2115 goto out;
4a54c8c1 2116
7870d082
JB
2117 spin_lock(&io_tree->lock);
2118 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2119 failrec->start,
2120 EXTENT_LOCKED);
7870d082 2121 spin_unlock(&io_tree->lock);
4a54c8c1 2122
883d0de4
MX
2123 if (state && state->start <= failrec->start &&
2124 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2125 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2126 failrec->len);
4a54c8c1 2127 if (num_copies > 1) {
7870d082
JB
2128 repair_io_failure(fs_info, ino, start, failrec->len,
2129 failrec->logical, page, pg_offset,
2130 failrec->failed_mirror);
4a54c8c1
JS
2131 }
2132 }
2133
2134out:
7870d082 2135 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2136
454ff3de 2137 return 0;
4a54c8c1
JS
2138}
2139
f612496b
MX
2140/*
2141 * Can be called when
2142 * - hold extent lock
2143 * - under ordered extent
2144 * - the inode is freeing
2145 */
7ab7956e 2146void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2147{
7ab7956e 2148 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2149 struct io_failure_record *failrec;
2150 struct extent_state *state, *next;
2151
2152 if (RB_EMPTY_ROOT(&failure_tree->state))
2153 return;
2154
2155 spin_lock(&failure_tree->lock);
2156 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2157 while (state) {
2158 if (state->start > end)
2159 break;
2160
2161 ASSERT(state->end <= end);
2162
2163 next = next_state(state);
2164
47dc196a 2165 failrec = state->failrec;
f612496b
MX
2166 free_extent_state(state);
2167 kfree(failrec);
2168
2169 state = next;
2170 }
2171 spin_unlock(&failure_tree->lock);
2172}
2173
2fe6303e 2174int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2175 struct io_failure_record **failrec_ret)
4a54c8c1 2176{
ab8d0fc4 2177 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2178 struct io_failure_record *failrec;
4a54c8c1 2179 struct extent_map *em;
4a54c8c1
JS
2180 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2181 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2182 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2183 int ret;
4a54c8c1
JS
2184 u64 logical;
2185
47dc196a 2186 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2fe6303e 2191
4a54c8c1
JS
2192 failrec->start = start;
2193 failrec->len = end - start + 1;
2194 failrec->this_mirror = 0;
2195 failrec->bio_flags = 0;
2196 failrec->in_validation = 0;
2197
2198 read_lock(&em_tree->lock);
2199 em = lookup_extent_mapping(em_tree, start, failrec->len);
2200 if (!em) {
2201 read_unlock(&em_tree->lock);
2202 kfree(failrec);
2203 return -EIO;
2204 }
2205
68ba990f 2206 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2207 free_extent_map(em);
2208 em = NULL;
2209 }
2210 read_unlock(&em_tree->lock);
7a2d6a64 2211 if (!em) {
4a54c8c1
JS
2212 kfree(failrec);
2213 return -EIO;
2214 }
2fe6303e 2215
4a54c8c1
JS
2216 logical = start - em->start;
2217 logical = em->block_start + logical;
2218 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2219 logical = em->block_start;
2220 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2221 extent_set_compress_type(&failrec->bio_flags,
2222 em->compress_type);
2223 }
2fe6303e 2224
ab8d0fc4
JM
2225 btrfs_debug(fs_info,
2226 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2227 logical, start, failrec->len);
2fe6303e 2228
4a54c8c1
JS
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2234 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2235 if (ret >= 0)
47dc196a 2236 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2237 /* set the bits in the inode's tree */
2238 if (ret >= 0)
ceeb0ae7 2239 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
ab8d0fc4
JM
2245 btrfs_debug(fs_info,
2246 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2247 failrec->logical, failrec->start, failrec->len,
2248 failrec->in_validation);
4a54c8c1
JS
2249 /*
2250 * when data can be on disk more than twice, add to failrec here
2251 * (e.g. with a list for failed_mirror) to make
2252 * clean_io_failure() clean all those errors at once.
2253 */
2254 }
2fe6303e
MX
2255
2256 *failrec_ret = failrec;
2257
2258 return 0;
2259}
2260
c3cfb656 2261bool btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2fe6303e
MX
2262 struct io_failure_record *failrec, int failed_mirror)
2263{
ab8d0fc4 2264 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2265 int num_copies;
2266
ab8d0fc4 2267 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2268 if (num_copies == 1) {
2269 /*
2270 * we only have a single copy of the data, so don't bother with
2271 * all the retry and error correction code that follows. no
2272 * matter what the error is, it is very likely to persist.
2273 */
ab8d0fc4
JM
2274 btrfs_debug(fs_info,
2275 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2276 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2277 return false;
4a54c8c1
JS
2278 }
2279
4a54c8c1
JS
2280 /*
2281 * there are two premises:
2282 * a) deliver good data to the caller
2283 * b) correct the bad sectors on disk
2284 */
2285 if (failed_bio->bi_vcnt > 1) {
2286 /*
2287 * to fulfill b), we need to know the exact failing sectors, as
2288 * we don't want to rewrite any more than the failed ones. thus,
2289 * we need separate read requests for the failed bio
2290 *
2291 * if the following BUG_ON triggers, our validation request got
2292 * merged. we need separate requests for our algorithm to work.
2293 */
2294 BUG_ON(failrec->in_validation);
2295 failrec->in_validation = 1;
2296 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2297 } else {
2298 /*
2299 * we're ready to fulfill a) and b) alongside. get a good copy
2300 * of the failed sector and if we succeed, we have setup
2301 * everything for repair_io_failure to do the rest for us.
2302 */
2303 if (failrec->in_validation) {
2304 BUG_ON(failrec->this_mirror != failed_mirror);
2305 failrec->in_validation = 0;
2306 failrec->this_mirror = 0;
2307 }
2308 failrec->failed_mirror = failed_mirror;
2309 failrec->this_mirror++;
2310 if (failrec->this_mirror == failed_mirror)
2311 failrec->this_mirror++;
4a54c8c1
JS
2312 }
2313
facc8a22 2314 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2315 btrfs_debug(fs_info,
2316 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2317 num_copies, failrec->this_mirror, failed_mirror);
c3cfb656 2318 return false;
4a54c8c1
JS
2319 }
2320
c3cfb656 2321 return true;
2fe6303e
MX
2322}
2323
2324
2325struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2326 struct io_failure_record *failrec,
2327 struct page *page, int pg_offset, int icsum,
8b110e39 2328 bio_end_io_t *endio_func, void *data)
2fe6303e 2329{
0b246afa 2330 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2331 struct bio *bio;
2332 struct btrfs_io_bio *btrfs_failed_bio;
2333 struct btrfs_io_bio *btrfs_bio;
2334
c5e4c3d7 2335 bio = btrfs_io_bio_alloc(1);
2fe6303e 2336 bio->bi_end_io = endio_func;
4f024f37 2337 bio->bi_iter.bi_sector = failrec->logical >> 9;
74d46992 2338 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
4f024f37 2339 bio->bi_iter.bi_size = 0;
8b110e39 2340 bio->bi_private = data;
4a54c8c1 2341
facc8a22
MX
2342 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2343 if (btrfs_failed_bio->csum) {
facc8a22
MX
2344 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2345
2346 btrfs_bio = btrfs_io_bio(bio);
2347 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2348 icsum *= csum_size;
2349 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2350 csum_size);
2351 }
2352
2fe6303e
MX
2353 bio_add_page(bio, page, failrec->len, pg_offset);
2354
2355 return bio;
2356}
2357
2358/*
2359 * this is a generic handler for readpage errors (default
2360 * readpage_io_failed_hook). if other copies exist, read those and write back
2361 * good data to the failed position. does not investigate in remapping the
2362 * failed extent elsewhere, hoping the device will be smart enough to do this as
2363 * needed
2364 */
2365
2366static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2367 struct page *page, u64 start, u64 end,
2368 int failed_mirror)
2369{
2370 struct io_failure_record *failrec;
2371 struct inode *inode = page->mapping->host;
2372 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2373 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2374 struct bio *bio;
70fd7614 2375 int read_mode = 0;
4e4cbee9 2376 blk_status_t status;
2fe6303e
MX
2377 int ret;
2378
1f7ad75b 2379 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2380
2381 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2382 if (ret)
2383 return ret;
2384
c3cfb656
LB
2385 if (!btrfs_check_repairable(inode, failed_bio, failrec,
2386 failed_mirror)) {
7870d082 2387 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2388 return -EIO;
2389 }
2390
2391 if (failed_bio->bi_vcnt > 1)
70fd7614 2392 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2393
2394 phy_offset >>= inode->i_sb->s_blocksize_bits;
2395 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2396 start - page_offset(page),
8b110e39
MX
2397 (int)phy_offset, failed_bio->bi_end_io,
2398 NULL);
1f7ad75b 2399 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2400
ab8d0fc4
JM
2401 btrfs_debug(btrfs_sb(inode->i_sb),
2402 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2403 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2404
8c27cb35 2405 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2406 failrec->bio_flags, 0);
4e4cbee9 2407 if (status) {
7870d082 2408 free_io_failure(failure_tree, tree, failrec);
6c387ab2 2409 bio_put(bio);
4e4cbee9 2410 ret = blk_status_to_errno(status);
6c387ab2
MX
2411 }
2412
013bd4c3 2413 return ret;
4a54c8c1
JS
2414}
2415
d1310b2e
CM
2416/* lots and lots of room for performance fixes in the end_bio funcs */
2417
b5227c07 2418void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2419{
2420 int uptodate = (err == 0);
2421 struct extent_io_tree *tree;
3e2426bd 2422 int ret = 0;
87826df0
JM
2423
2424 tree = &BTRFS_I(page->mapping->host)->io_tree;
2425
c3988d63
DS
2426 if (tree->ops && tree->ops->writepage_end_io_hook)
2427 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2428 uptodate);
87826df0 2429
87826df0 2430 if (!uptodate) {
87826df0
JM
2431 ClearPageUptodate(page);
2432 SetPageError(page);
bff5baf8 2433 ret = err < 0 ? err : -EIO;
5dca6eea 2434 mapping_set_error(page->mapping, ret);
87826df0 2435 }
87826df0
JM
2436}
2437
d1310b2e
CM
2438/*
2439 * after a writepage IO is done, we need to:
2440 * clear the uptodate bits on error
2441 * clear the writeback bits in the extent tree for this IO
2442 * end_page_writeback if the page has no more pending IO
2443 *
2444 * Scheduling is not allowed, so the extent state tree is expected
2445 * to have one and only one object corresponding to this IO.
2446 */
4246a0b6 2447static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2448{
4e4cbee9 2449 int error = blk_status_to_errno(bio->bi_status);
2c30c71b 2450 struct bio_vec *bvec;
d1310b2e
CM
2451 u64 start;
2452 u64 end;
2c30c71b 2453 int i;
d1310b2e 2454
c09abff8 2455 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2456 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2457 struct page *page = bvec->bv_page;
0b246afa
JM
2458 struct inode *inode = page->mapping->host;
2459 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2460
17a5adcc
AO
2461 /* We always issue full-page reads, but if some block
2462 * in a page fails to read, blk_update_request() will
2463 * advance bv_offset and adjust bv_len to compensate.
2464 * Print a warning for nonzero offsets, and an error
2465 * if they don't add up to a full page. */
09cbfeaf
KS
2466 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2467 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2468 btrfs_err(fs_info,
efe120a0
FH
2469 "partial page write in btrfs with offset %u and length %u",
2470 bvec->bv_offset, bvec->bv_len);
2471 else
0b246afa 2472 btrfs_info(fs_info,
5d163e0e 2473 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2474 bvec->bv_offset, bvec->bv_len);
2475 }
d1310b2e 2476
17a5adcc
AO
2477 start = page_offset(page);
2478 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2479
4e4cbee9 2480 end_extent_writepage(page, error, start, end);
17a5adcc 2481 end_page_writeback(page);
2c30c71b 2482 }
2b1f55b0 2483
d1310b2e 2484 bio_put(bio);
d1310b2e
CM
2485}
2486
883d0de4
MX
2487static void
2488endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2489 int uptodate)
2490{
2491 struct extent_state *cached = NULL;
2492 u64 end = start + len - 1;
2493
2494 if (uptodate && tree->track_uptodate)
2495 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
d810a4be 2496 unlock_extent_cached_atomic(tree, start, end, &cached);
883d0de4
MX
2497}
2498
d1310b2e
CM
2499/*
2500 * after a readpage IO is done, we need to:
2501 * clear the uptodate bits on error
2502 * set the uptodate bits if things worked
2503 * set the page up to date if all extents in the tree are uptodate
2504 * clear the lock bit in the extent tree
2505 * unlock the page if there are no other extents locked for it
2506 *
2507 * Scheduling is not allowed, so the extent state tree is expected
2508 * to have one and only one object corresponding to this IO.
2509 */
4246a0b6 2510static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2511{
2c30c71b 2512 struct bio_vec *bvec;
4e4cbee9 2513 int uptodate = !bio->bi_status;
facc8a22 2514 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2515 struct extent_io_tree *tree, *failure_tree;
facc8a22 2516 u64 offset = 0;
d1310b2e
CM
2517 u64 start;
2518 u64 end;
facc8a22 2519 u64 len;
883d0de4
MX
2520 u64 extent_start = 0;
2521 u64 extent_len = 0;
5cf1ab56 2522 int mirror;
d1310b2e 2523 int ret;
2c30c71b 2524 int i;
d1310b2e 2525
c09abff8 2526 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 2527 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2528 struct page *page = bvec->bv_page;
a71754fc 2529 struct inode *inode = page->mapping->host;
ab8d0fc4 2530 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2531
ab8d0fc4
JM
2532 btrfs_debug(fs_info,
2533 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
4e4cbee9 2534 (u64)bio->bi_iter.bi_sector, bio->bi_status,
ab8d0fc4 2535 io_bio->mirror_num);
a71754fc 2536 tree = &BTRFS_I(inode)->io_tree;
7870d082 2537 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2538
17a5adcc
AO
2539 /* We always issue full-page reads, but if some block
2540 * in a page fails to read, blk_update_request() will
2541 * advance bv_offset and adjust bv_len to compensate.
2542 * Print a warning for nonzero offsets, and an error
2543 * if they don't add up to a full page. */
09cbfeaf
KS
2544 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2545 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2546 btrfs_err(fs_info,
2547 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2548 bvec->bv_offset, bvec->bv_len);
2549 else
ab8d0fc4
JM
2550 btrfs_info(fs_info,
2551 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2552 bvec->bv_offset, bvec->bv_len);
2553 }
d1310b2e 2554
17a5adcc
AO
2555 start = page_offset(page);
2556 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2557 len = bvec->bv_len;
d1310b2e 2558
9be3395b 2559 mirror = io_bio->mirror_num;
20c9801d 2560 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2561 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2562 page, start, end,
2563 mirror);
5ee0844d 2564 if (ret)
d1310b2e 2565 uptodate = 0;
5ee0844d 2566 else
7870d082
JB
2567 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2568 failure_tree, tree, start,
2569 page,
2570 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2571 }
ea466794 2572
f2a09da9
MX
2573 if (likely(uptodate))
2574 goto readpage_ok;
2575
20a7db8a 2576 if (tree->ops) {
5cf1ab56 2577 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2578 if (ret == -EAGAIN) {
2579 /*
2580 * Data inode's readpage_io_failed_hook() always
2581 * returns -EAGAIN.
2582 *
2583 * The generic bio_readpage_error handles errors
2584 * the following way: If possible, new read
2585 * requests are created and submitted and will
2586 * end up in end_bio_extent_readpage as well (if
2587 * we're lucky, not in the !uptodate case). In
2588 * that case it returns 0 and we just go on with
2589 * the next page in our bio. If it can't handle
2590 * the error it will return -EIO and we remain
2591 * responsible for that page.
2592 */
2593 ret = bio_readpage_error(bio, offset, page,
2594 start, end, mirror);
2595 if (ret == 0) {
4e4cbee9 2596 uptodate = !bio->bi_status;
9d0d1c8b
LB
2597 offset += len;
2598 continue;
2599 }
2600 }
2601
f4a8e656 2602 /*
9d0d1c8b
LB
2603 * metadata's readpage_io_failed_hook() always returns
2604 * -EIO and fixes nothing. -EIO is also returned if
2605 * data inode error could not be fixed.
f4a8e656 2606 */
9d0d1c8b 2607 ASSERT(ret == -EIO);
7e38326f 2608 }
f2a09da9 2609readpage_ok:
883d0de4 2610 if (likely(uptodate)) {
a71754fc 2611 loff_t i_size = i_size_read(inode);
09cbfeaf 2612 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2613 unsigned off;
a71754fc
JB
2614
2615 /* Zero out the end if this page straddles i_size */
09cbfeaf 2616 off = i_size & (PAGE_SIZE-1);
a583c026 2617 if (page->index == end_index && off)
09cbfeaf 2618 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2619 SetPageUptodate(page);
70dec807 2620 } else {
17a5adcc
AO
2621 ClearPageUptodate(page);
2622 SetPageError(page);
70dec807 2623 }
17a5adcc 2624 unlock_page(page);
facc8a22 2625 offset += len;
883d0de4
MX
2626
2627 if (unlikely(!uptodate)) {
2628 if (extent_len) {
2629 endio_readpage_release_extent(tree,
2630 extent_start,
2631 extent_len, 1);
2632 extent_start = 0;
2633 extent_len = 0;
2634 }
2635 endio_readpage_release_extent(tree, start,
2636 end - start + 1, 0);
2637 } else if (!extent_len) {
2638 extent_start = start;
2639 extent_len = end + 1 - start;
2640 } else if (extent_start + extent_len == start) {
2641 extent_len += end + 1 - start;
2642 } else {
2643 endio_readpage_release_extent(tree, extent_start,
2644 extent_len, uptodate);
2645 extent_start = start;
2646 extent_len = end + 1 - start;
2647 }
2c30c71b 2648 }
d1310b2e 2649
883d0de4
MX
2650 if (extent_len)
2651 endio_readpage_release_extent(tree, extent_start, extent_len,
2652 uptodate);
facc8a22 2653 if (io_bio->end_io)
4e4cbee9 2654 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
d1310b2e 2655 bio_put(bio);
d1310b2e
CM
2656}
2657
9be3395b 2658/*
184f999e
DS
2659 * Initialize the members up to but not including 'bio'. Use after allocating a
2660 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2661 * 'bio' because use of __GFP_ZERO is not supported.
9be3395b 2662 */
184f999e 2663static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
d1310b2e 2664{
184f999e
DS
2665 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2666}
d1310b2e 2667
9be3395b 2668/*
6e707bcd
DS
2669 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2670 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2671 * for the appropriate container_of magic
9be3395b 2672 */
c821e7f3 2673struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
d1310b2e
CM
2674{
2675 struct bio *bio;
d1310b2e 2676
9f2179a5 2677 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
74d46992 2678 bio_set_dev(bio, bdev);
c821e7f3 2679 bio->bi_iter.bi_sector = first_byte >> 9;
184f999e 2680 btrfs_io_bio_init(btrfs_io_bio(bio));
d1310b2e
CM
2681 return bio;
2682}
2683
8b6c1d56 2684struct bio *btrfs_bio_clone(struct bio *bio)
9be3395b 2685{
23ea8e5a
MX
2686 struct btrfs_io_bio *btrfs_bio;
2687 struct bio *new;
9be3395b 2688
6e707bcd 2689 /* Bio allocation backed by a bioset does not fail */
8b6c1d56 2690 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
6e707bcd 2691 btrfs_bio = btrfs_io_bio(new);
184f999e 2692 btrfs_io_bio_init(btrfs_bio);
6e707bcd 2693 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2694 return new;
2695}
9be3395b 2696
c5e4c3d7 2697struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
9be3395b 2698{
facc8a22
MX
2699 struct bio *bio;
2700
6e707bcd 2701 /* Bio allocation backed by a bioset does not fail */
c5e4c3d7 2702 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
184f999e 2703 btrfs_io_bio_init(btrfs_io_bio(bio));
facc8a22 2704 return bio;
9be3395b
CM
2705}
2706
e477094f 2707struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2708{
2709 struct bio *bio;
2710 struct btrfs_io_bio *btrfs_bio;
2711
2712 /* this will never fail when it's backed by a bioset */
e477094f 2713 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2714 ASSERT(bio);
2715
2716 btrfs_bio = btrfs_io_bio(bio);
184f999e 2717 btrfs_io_bio_init(btrfs_bio);
2f8e9140
LB
2718
2719 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2720 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2721 return bio;
2722}
9be3395b 2723
1f7ad75b
MC
2724static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2725 unsigned long bio_flags)
d1310b2e 2726{
4e4cbee9 2727 blk_status_t ret = 0;
70dec807
CM
2728 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2729 struct page *page = bvec->bv_page;
2730 struct extent_io_tree *tree = bio->bi_private;
70dec807 2731 u64 start;
70dec807 2732
4eee4fa4 2733 start = page_offset(page) + bvec->bv_offset;
70dec807 2734
902b22f3 2735 bio->bi_private = NULL;
d1310b2e 2736
20c9801d 2737 if (tree->ops)
c6100a4b 2738 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2739 mirror_num, bio_flags, start);
0b86a832 2740 else
4e49ea4a 2741 btrfsic_submit_bio(bio);
4a54c8c1 2742
4e4cbee9 2743 return blk_status_to_errno(ret);
d1310b2e
CM
2744}
2745
1f7ad75b 2746static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2747 unsigned long offset, size_t size, struct bio *bio,
2748 unsigned long bio_flags)
2749{
2750 int ret = 0;
20c9801d 2751 if (tree->ops)
81a75f67 2752 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2753 bio_flags);
3444a972
JM
2754 return ret;
2755
2756}
2757
4b81ba48
DS
2758/*
2759 * @opf: bio REQ_OP_* and REQ_* flags as one value
2760 */
2761static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
da2f0f74 2762 struct writeback_control *wbc,
6273b7f8 2763 struct page *page, u64 offset,
6c5a4e2c 2764 size_t size, unsigned long pg_offset,
d1310b2e
CM
2765 struct block_device *bdev,
2766 struct bio **bio_ret,
f188591e 2767 bio_end_io_t end_io_func,
c8b97818
CM
2768 int mirror_num,
2769 unsigned long prev_bio_flags,
005efedf
FM
2770 unsigned long bio_flags,
2771 bool force_bio_submit)
d1310b2e
CM
2772{
2773 int ret = 0;
2774 struct bio *bio;
c8b97818 2775 int contig = 0;
c8b97818 2776 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2777 size_t page_size = min_t(size_t, size, PAGE_SIZE);
6273b7f8 2778 sector_t sector = offset >> 9;
d1310b2e
CM
2779
2780 if (bio_ret && *bio_ret) {
2781 bio = *bio_ret;
c8b97818 2782 if (old_compressed)
4f024f37 2783 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2784 else
f73a1c7d 2785 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2786
2787 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2788 force_bio_submit ||
6c5a4e2c
DS
2789 merge_bio(tree, page, pg_offset, page_size, bio, bio_flags) ||
2790 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
1f7ad75b 2791 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2792 if (ret < 0) {
2793 *bio_ret = NULL;
79787eaa 2794 return ret;
289454ad 2795 }
d1310b2e
CM
2796 bio = NULL;
2797 } else {
da2f0f74
CM
2798 if (wbc)
2799 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2800 return 0;
2801 }
2802 }
c8b97818 2803
6273b7f8 2804 bio = btrfs_bio_alloc(bdev, offset);
6c5a4e2c 2805 bio_add_page(bio, page, page_size, pg_offset);
d1310b2e
CM
2806 bio->bi_end_io = end_io_func;
2807 bio->bi_private = tree;
e6959b93 2808 bio->bi_write_hint = page->mapping->host->i_write_hint;
4b81ba48 2809 bio->bi_opf = opf;
da2f0f74
CM
2810 if (wbc) {
2811 wbc_init_bio(wbc, bio);
2812 wbc_account_io(wbc, page, page_size);
2813 }
70dec807 2814
d397712b 2815 if (bio_ret)
d1310b2e 2816 *bio_ret = bio;
d397712b 2817 else
1f7ad75b 2818 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2819
2820 return ret;
2821}
2822
48a3b636
ES
2823static void attach_extent_buffer_page(struct extent_buffer *eb,
2824 struct page *page)
d1310b2e
CM
2825{
2826 if (!PagePrivate(page)) {
2827 SetPagePrivate(page);
09cbfeaf 2828 get_page(page);
4f2de97a
JB
2829 set_page_private(page, (unsigned long)eb);
2830 } else {
2831 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2832 }
2833}
2834
4f2de97a 2835void set_page_extent_mapped(struct page *page)
d1310b2e 2836{
4f2de97a
JB
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
09cbfeaf 2839 get_page(page);
4f2de97a
JB
2840 set_page_private(page, EXTENT_PAGE_PRIVATE);
2841 }
d1310b2e
CM
2842}
2843
125bac01
MX
2844static struct extent_map *
2845__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2846 u64 start, u64 len, get_extent_t *get_extent,
2847 struct extent_map **em_cached)
2848{
2849 struct extent_map *em;
2850
2851 if (em_cached && *em_cached) {
2852 em = *em_cached;
cbc0e928 2853 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2854 start < extent_map_end(em)) {
490b54d6 2855 refcount_inc(&em->refs);
125bac01
MX
2856 return em;
2857 }
2858
2859 free_extent_map(em);
2860 *em_cached = NULL;
2861 }
2862
fc4f21b1 2863 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2864 if (em_cached && !IS_ERR_OR_NULL(em)) {
2865 BUG_ON(*em_cached);
490b54d6 2866 refcount_inc(&em->refs);
125bac01
MX
2867 *em_cached = em;
2868 }
2869 return em;
2870}
d1310b2e
CM
2871/*
2872 * basic readpage implementation. Locked extent state structs are inserted
2873 * into the tree that are removed when the IO is done (by the end_io
2874 * handlers)
79787eaa 2875 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2876 * return 0 on success, otherwise return error
d1310b2e 2877 */
9974090b
MX
2878static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
125bac01 2881 struct extent_map **em_cached,
9974090b 2882 struct bio **bio, int mirror_num,
f1c77c55 2883 unsigned long *bio_flags, unsigned int read_flags,
005efedf 2884 u64 *prev_em_start)
d1310b2e
CM
2885{
2886 struct inode *inode = page->mapping->host;
4eee4fa4 2887 u64 start = page_offset(page);
09cbfeaf 2888 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
d1310b2e
CM
2895 struct extent_map *em;
2896 struct block_device *bdev;
baf863b9 2897 int ret = 0;
d1310b2e 2898 int nr = 0;
306e16ce 2899 size_t pg_offset = 0;
d1310b2e 2900 size_t iosize;
c8b97818 2901 size_t disk_io_size;
d1310b2e 2902 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2903 unsigned long this_bio_flag = 0;
d1310b2e
CM
2904
2905 set_page_extent_mapped(page);
2906
9974090b 2907 end = page_end;
90a887c9
DM
2908 if (!PageUptodate(page)) {
2909 if (cleancache_get_page(page) == 0) {
2910 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2911 unlock_extent(tree, start, end);
90a887c9
DM
2912 goto out;
2913 }
2914 }
2915
09cbfeaf 2916 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2917 char *userpage;
09cbfeaf 2918 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2919
2920 if (zero_offset) {
09cbfeaf 2921 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2922 userpage = kmap_atomic(page);
c8b97818
CM
2923 memset(userpage + zero_offset, 0, iosize);
2924 flush_dcache_page(page);
7ac687d9 2925 kunmap_atomic(userpage);
c8b97818
CM
2926 }
2927 }
d1310b2e 2928 while (cur <= end) {
005efedf 2929 bool force_bio_submit = false;
6273b7f8 2930 u64 offset;
c8f2f24b 2931
d1310b2e
CM
2932 if (cur >= last_byte) {
2933 char *userpage;
507903b8
AJ
2934 struct extent_state *cached = NULL;
2935
09cbfeaf 2936 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2937 userpage = kmap_atomic(page);
306e16ce 2938 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2939 flush_dcache_page(page);
7ac687d9 2940 kunmap_atomic(userpage);
d1310b2e 2941 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2942 &cached, GFP_NOFS);
7f042a83
FM
2943 unlock_extent_cached(tree, cur,
2944 cur + iosize - 1,
2945 &cached, GFP_NOFS);
d1310b2e
CM
2946 break;
2947 }
125bac01
MX
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
c704005d 2950 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2951 SetPageError(page);
7f042a83 2952 unlock_extent(tree, cur, end);
d1310b2e
CM
2953 break;
2954 }
d1310b2e
CM
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
261507a0 2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
c8b97818 2964
d1310b2e
CM
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2967 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
6273b7f8 2970 offset = em->block_start;
c8b97818 2971 } else {
6273b7f8 2972 offset = em->block_start + extent_offset;
c8b97818
CM
2973 disk_io_size = iosize;
2974 }
d1310b2e
CM
2975 bdev = em->bdev;
2976 block_start = em->block_start;
d899e052
YZ
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->orig_start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->orig_start;
3021
d1310b2e
CM
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
507903b8
AJ
3028 struct extent_state *cached = NULL;
3029
7ac687d9 3030 userpage = kmap_atomic(page);
306e16ce 3031 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3032 flush_dcache_page(page);
7ac687d9 3033 kunmap_atomic(userpage);
d1310b2e
CM
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3036 &cached, GFP_NOFS);
7f042a83
FM
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
d1310b2e 3040 cur = cur + iosize;
306e16ce 3041 pg_offset += iosize;
d1310b2e
CM
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
9655d298
CM
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3047 check_page_uptodate(tree, page);
7f042a83 3048 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3049 cur = cur + iosize;
306e16ce 3050 pg_offset += iosize;
d1310b2e
CM
3051 continue;
3052 }
70dec807
CM
3053 /* we have an inline extent but it didn't get marked up
3054 * to date. Error out
3055 */
3056 if (block_start == EXTENT_MAP_INLINE) {
3057 SetPageError(page);
7f042a83 3058 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3059 cur = cur + iosize;
306e16ce 3060 pg_offset += iosize;
70dec807
CM
3061 continue;
3062 }
d1310b2e 3063
4b81ba48 3064 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
6273b7f8
DS
3065 page, offset, disk_io_size,
3066 pg_offset, bdev, bio,
c8b97818
CM
3067 end_bio_extent_readpage, mirror_num,
3068 *bio_flags,
005efedf
FM
3069 this_bio_flag,
3070 force_bio_submit);
c8f2f24b
JB
3071 if (!ret) {
3072 nr++;
3073 *bio_flags = this_bio_flag;
3074 } else {
d1310b2e 3075 SetPageError(page);
7f042a83 3076 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3077 goto out;
edd33c99 3078 }
d1310b2e 3079 cur = cur + iosize;
306e16ce 3080 pg_offset += iosize;
d1310b2e 3081 }
90a887c9 3082out:
d1310b2e
CM
3083 if (!nr) {
3084 if (!PageError(page))
3085 SetPageUptodate(page);
3086 unlock_page(page);
3087 }
baf863b9 3088 return ret;
d1310b2e
CM
3089}
3090
9974090b
MX
3091static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3092 struct page *pages[], int nr_pages,
3093 u64 start, u64 end,
125bac01 3094 struct extent_map **em_cached,
d3fac6ba 3095 struct bio **bio,
1f7ad75b 3096 unsigned long *bio_flags,
808f80b4 3097 u64 *prev_em_start)
9974090b
MX
3098{
3099 struct inode *inode;
3100 struct btrfs_ordered_extent *ordered;
3101 int index;
3102
3103 inode = pages[0]->mapping->host;
3104 while (1) {
3105 lock_extent(tree, start, end);
a776c6fa 3106 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3107 end - start + 1);
3108 if (!ordered)
3109 break;
3110 unlock_extent(tree, start, end);
3111 btrfs_start_ordered_extent(inode, ordered, 1);
3112 btrfs_put_ordered_extent(ordered);
3113 }
3114
3115 for (index = 0; index < nr_pages; index++) {
4ef77695
DS
3116 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3117 bio, 0, bio_flags, 0, prev_em_start);
09cbfeaf 3118 put_page(pages[index]);
9974090b
MX
3119 }
3120}
3121
3122static void __extent_readpages(struct extent_io_tree *tree,
3123 struct page *pages[],
e4d17ef5 3124 int nr_pages,
125bac01 3125 struct extent_map **em_cached,
d3fac6ba 3126 struct bio **bio, unsigned long *bio_flags,
808f80b4 3127 u64 *prev_em_start)
9974090b 3128{
35a3621b 3129 u64 start = 0;
9974090b
MX
3130 u64 end = 0;
3131 u64 page_start;
3132 int index;
35a3621b 3133 int first_index = 0;
9974090b
MX
3134
3135 for (index = 0; index < nr_pages; index++) {
3136 page_start = page_offset(pages[index]);
3137 if (!end) {
3138 start = page_start;
09cbfeaf 3139 end = start + PAGE_SIZE - 1;
9974090b
MX
3140 first_index = index;
3141 } else if (end + 1 == page_start) {
09cbfeaf 3142 end += PAGE_SIZE;
9974090b
MX
3143 } else {
3144 __do_contiguous_readpages(tree, &pages[first_index],
3145 index - first_index, start,
4ef77695 3146 end, em_cached,
d3fac6ba 3147 bio, bio_flags,
1f7ad75b 3148 prev_em_start);
9974090b 3149 start = page_start;
09cbfeaf 3150 end = start + PAGE_SIZE - 1;
9974090b
MX
3151 first_index = index;
3152 }
3153 }
3154
3155 if (end)
3156 __do_contiguous_readpages(tree, &pages[first_index],
3157 index - first_index, start,
4ef77695 3158 end, em_cached, bio,
d3fac6ba 3159 bio_flags, prev_em_start);
9974090b
MX
3160}
3161
3162static int __extent_read_full_page(struct extent_io_tree *tree,
3163 struct page *page,
3164 get_extent_t *get_extent,
3165 struct bio **bio, int mirror_num,
f1c77c55
DS
3166 unsigned long *bio_flags,
3167 unsigned int read_flags)
9974090b
MX
3168{
3169 struct inode *inode = page->mapping->host;
3170 struct btrfs_ordered_extent *ordered;
3171 u64 start = page_offset(page);
09cbfeaf 3172 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3173 int ret;
3174
3175 while (1) {
3176 lock_extent(tree, start, end);
a776c6fa 3177 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3178 PAGE_SIZE);
9974090b
MX
3179 if (!ordered)
3180 break;
3181 unlock_extent(tree, start, end);
3182 btrfs_start_ordered_extent(inode, ordered, 1);
3183 btrfs_put_ordered_extent(ordered);
3184 }
3185
125bac01 3186 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3187 bio_flags, read_flags, NULL);
9974090b
MX
3188 return ret;
3189}
3190
d1310b2e 3191int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3192 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3193{
3194 struct bio *bio = NULL;
c8b97818 3195 unsigned long bio_flags = 0;
d1310b2e
CM
3196 int ret;
3197
8ddc7d9c 3198 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3199 &bio_flags, 0);
d1310b2e 3200 if (bio)
1f7ad75b 3201 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3202 return ret;
3203}
d1310b2e 3204
3d4b9496 3205static void update_nr_written(struct writeback_control *wbc,
a9132667 3206 unsigned long nr_written)
11c8349b
CM
3207{
3208 wbc->nr_to_write -= nr_written;
11c8349b
CM
3209}
3210
d1310b2e 3211/*
40f76580
CM
3212 * helper for __extent_writepage, doing all of the delayed allocation setup.
3213 *
3214 * This returns 1 if our fill_delalloc function did all the work required
3215 * to write the page (copy into inline extent). In this case the IO has
3216 * been started and the page is already unlocked.
3217 *
3218 * This returns 0 if all went well (page still locked)
3219 * This returns < 0 if there were errors (page still locked)
d1310b2e 3220 */
40f76580
CM
3221static noinline_for_stack int writepage_delalloc(struct inode *inode,
3222 struct page *page, struct writeback_control *wbc,
3223 struct extent_page_data *epd,
3224 u64 delalloc_start,
3225 unsigned long *nr_written)
3226{
3227 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3228 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3229 u64 nr_delalloc;
3230 u64 delalloc_to_write = 0;
3231 u64 delalloc_end = 0;
3232 int ret;
3233 int page_started = 0;
3234
3235 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3236 return 0;
3237
3238 while (delalloc_end < page_end) {
3239 nr_delalloc = find_lock_delalloc_range(inode, tree,
3240 page,
3241 &delalloc_start,
3242 &delalloc_end,
dcab6a3b 3243 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3244 if (nr_delalloc == 0) {
3245 delalloc_start = delalloc_end + 1;
3246 continue;
3247 }
3248 ret = tree->ops->fill_delalloc(inode, page,
3249 delalloc_start,
3250 delalloc_end,
3251 &page_started,
f82b7359 3252 nr_written, wbc);
40f76580
CM
3253 /* File system has been set read-only */
3254 if (ret) {
3255 SetPageError(page);
3256 /* fill_delalloc should be return < 0 for error
3257 * but just in case, we use > 0 here meaning the
3258 * IO is started, so we don't want to return > 0
3259 * unless things are going well.
3260 */
3261 ret = ret < 0 ? ret : -EIO;
3262 goto done;
3263 }
3264 /*
ea1754a0
KS
3265 * delalloc_end is already one less than the total length, so
3266 * we don't subtract one from PAGE_SIZE
40f76580
CM
3267 */
3268 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3269 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3270 delalloc_start = delalloc_end + 1;
3271 }
3272 if (wbc->nr_to_write < delalloc_to_write) {
3273 int thresh = 8192;
3274
3275 if (delalloc_to_write < thresh * 2)
3276 thresh = delalloc_to_write;
3277 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3278 thresh);
3279 }
3280
3281 /* did the fill delalloc function already unlock and start
3282 * the IO?
3283 */
3284 if (page_started) {
3285 /*
3286 * we've unlocked the page, so we can't update
3287 * the mapping's writeback index, just update
3288 * nr_to_write.
3289 */
3290 wbc->nr_to_write -= *nr_written;
3291 return 1;
3292 }
3293
3294 ret = 0;
3295
3296done:
3297 return ret;
3298}
3299
3300/*
3301 * helper for __extent_writepage. This calls the writepage start hooks,
3302 * and does the loop to map the page into extents and bios.
3303 *
3304 * We return 1 if the IO is started and the page is unlocked,
3305 * 0 if all went well (page still locked)
3306 * < 0 if there were errors (page still locked)
3307 */
3308static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3309 struct page *page,
3310 struct writeback_control *wbc,
3311 struct extent_page_data *epd,
3312 loff_t i_size,
3313 unsigned long nr_written,
f1c77c55 3314 unsigned int write_flags, int *nr_ret)
d1310b2e 3315{
d1310b2e 3316 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3317 u64 start = page_offset(page);
09cbfeaf 3318 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3319 u64 end;
3320 u64 cur = start;
3321 u64 extent_offset;
d1310b2e
CM
3322 u64 block_start;
3323 u64 iosize;
d1310b2e
CM
3324 struct extent_map *em;
3325 struct block_device *bdev;
7f3c74fb 3326 size_t pg_offset = 0;
d1310b2e 3327 size_t blocksize;
40f76580
CM
3328 int ret = 0;
3329 int nr = 0;
3330 bool compressed;
c8b97818 3331
247e743c 3332 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3333 ret = tree->ops->writepage_start_hook(page, start,
3334 page_end);
87826df0
JM
3335 if (ret) {
3336 /* Fixup worker will requeue */
3337 if (ret == -EBUSY)
3338 wbc->pages_skipped++;
3339 else
3340 redirty_page_for_writepage(wbc, page);
40f76580 3341
3d4b9496 3342 update_nr_written(wbc, nr_written);
247e743c 3343 unlock_page(page);
bcf93489 3344 return 1;
247e743c
CM
3345 }
3346 }
3347
11c8349b
CM
3348 /*
3349 * we don't want to touch the inode after unlocking the page,
3350 * so we update the mapping writeback index now
3351 */
3d4b9496 3352 update_nr_written(wbc, nr_written + 1);
771ed689 3353
d1310b2e 3354 end = page_end;
40f76580 3355 if (i_size <= start) {
e6dcd2dc
CM
3356 if (tree->ops && tree->ops->writepage_end_io_hook)
3357 tree->ops->writepage_end_io_hook(page, start,
3358 page_end, NULL, 1);
d1310b2e
CM
3359 goto done;
3360 }
3361
d1310b2e
CM
3362 blocksize = inode->i_sb->s_blocksize;
3363
3364 while (cur <= end) {
40f76580 3365 u64 em_end;
6273b7f8 3366 u64 offset;
58409edd 3367
40f76580 3368 if (cur >= i_size) {
e6dcd2dc
CM
3369 if (tree->ops && tree->ops->writepage_end_io_hook)
3370 tree->ops->writepage_end_io_hook(page, cur,
3371 page_end, NULL, 1);
d1310b2e
CM
3372 break;
3373 }
3c98c62f 3374 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3375 end - cur + 1, 1);
c704005d 3376 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3377 SetPageError(page);
61391d56 3378 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3379 break;
3380 }
3381
3382 extent_offset = cur - em->start;
40f76580
CM
3383 em_end = extent_map_end(em);
3384 BUG_ON(em_end <= cur);
d1310b2e 3385 BUG_ON(end < cur);
40f76580 3386 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3387 iosize = ALIGN(iosize, blocksize);
6273b7f8 3388 offset = em->block_start + extent_offset;
d1310b2e
CM
3389 bdev = em->bdev;
3390 block_start = em->block_start;
c8b97818 3391 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3392 free_extent_map(em);
3393 em = NULL;
3394
c8b97818
CM
3395 /*
3396 * compressed and inline extents are written through other
3397 * paths in the FS
3398 */
3399 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3400 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3401 /*
3402 * end_io notification does not happen here for
3403 * compressed extents
3404 */
3405 if (!compressed && tree->ops &&
3406 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3407 tree->ops->writepage_end_io_hook(page, cur,
3408 cur + iosize - 1,
3409 NULL, 1);
c8b97818
CM
3410 else if (compressed) {
3411 /* we don't want to end_page_writeback on
3412 * a compressed extent. this happens
3413 * elsewhere
3414 */
3415 nr++;
3416 }
3417
3418 cur += iosize;
7f3c74fb 3419 pg_offset += iosize;
d1310b2e
CM
3420 continue;
3421 }
c8b97818 3422
58409edd
DS
3423 set_range_writeback(tree, cur, cur + iosize - 1);
3424 if (!PageWriteback(page)) {
3425 btrfs_err(BTRFS_I(inode)->root->fs_info,
3426 "page %lu not writeback, cur %llu end %llu",
3427 page->index, cur, end);
d1310b2e 3428 }
7f3c74fb 3429
4b81ba48 3430 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3431 page, offset, iosize, pg_offset,
c2df8bb4 3432 bdev, &epd->bio,
58409edd
DS
3433 end_bio_extent_writepage,
3434 0, 0, 0, false);
fe01aa65 3435 if (ret) {
58409edd 3436 SetPageError(page);
fe01aa65
TK
3437 if (PageWriteback(page))
3438 end_page_writeback(page);
3439 }
d1310b2e 3440
d1310b2e 3441 cur = cur + iosize;
7f3c74fb 3442 pg_offset += iosize;
d1310b2e
CM
3443 nr++;
3444 }
40f76580
CM
3445done:
3446 *nr_ret = nr;
40f76580
CM
3447 return ret;
3448}
3449
3450/*
3451 * the writepage semantics are similar to regular writepage. extent
3452 * records are inserted to lock ranges in the tree, and as dirty areas
3453 * are found, they are marked writeback. Then the lock bits are removed
3454 * and the end_io handler clears the writeback ranges
3455 */
3456static int __extent_writepage(struct page *page, struct writeback_control *wbc,
aab6e9ed 3457 struct extent_page_data *epd)
40f76580
CM
3458{
3459 struct inode *inode = page->mapping->host;
40f76580 3460 u64 start = page_offset(page);
09cbfeaf 3461 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3462 int ret;
3463 int nr = 0;
3464 size_t pg_offset = 0;
3465 loff_t i_size = i_size_read(inode);
09cbfeaf 3466 unsigned long end_index = i_size >> PAGE_SHIFT;
f1c77c55 3467 unsigned int write_flags = 0;
40f76580
CM
3468 unsigned long nr_written = 0;
3469
ff40adf7 3470 write_flags = wbc_to_write_flags(wbc);
40f76580
CM
3471
3472 trace___extent_writepage(page, inode, wbc);
3473
3474 WARN_ON(!PageLocked(page));
3475
3476 ClearPageError(page);
3477
09cbfeaf 3478 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3479 if (page->index > end_index ||
3480 (page->index == end_index && !pg_offset)) {
09cbfeaf 3481 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3482 unlock_page(page);
3483 return 0;
3484 }
3485
3486 if (page->index == end_index) {
3487 char *userpage;
3488
3489 userpage = kmap_atomic(page);
3490 memset(userpage + pg_offset, 0,
09cbfeaf 3491 PAGE_SIZE - pg_offset);
40f76580
CM
3492 kunmap_atomic(userpage);
3493 flush_dcache_page(page);
3494 }
3495
3496 pg_offset = 0;
3497
3498 set_page_extent_mapped(page);
3499
3500 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3501 if (ret == 1)
3502 goto done_unlocked;
3503 if (ret)
3504 goto done;
3505
3506 ret = __extent_writepage_io(inode, page, wbc, epd,
3507 i_size, nr_written, write_flags, &nr);
3508 if (ret == 1)
3509 goto done_unlocked;
3510
d1310b2e
CM
3511done:
3512 if (nr == 0) {
3513 /* make sure the mapping tag for page dirty gets cleared */
3514 set_page_writeback(page);
3515 end_page_writeback(page);
3516 }
61391d56
FM
3517 if (PageError(page)) {
3518 ret = ret < 0 ? ret : -EIO;
3519 end_extent_writepage(page, ret, start, page_end);
3520 }
d1310b2e 3521 unlock_page(page);
40f76580 3522 return ret;
771ed689 3523
11c8349b 3524done_unlocked:
d1310b2e
CM
3525 return 0;
3526}
3527
fd8b2b61 3528void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3529{
74316201
N
3530 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3531 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3532}
3533
0e378df1
CM
3534static noinline_for_stack int
3535lock_extent_buffer_for_io(struct extent_buffer *eb,
3536 struct btrfs_fs_info *fs_info,
3537 struct extent_page_data *epd)
0b32f4bb
JB
3538{
3539 unsigned long i, num_pages;
3540 int flush = 0;
3541 int ret = 0;
3542
3543 if (!btrfs_try_tree_write_lock(eb)) {
3544 flush = 1;
3545 flush_write_bio(epd);
3546 btrfs_tree_lock(eb);
3547 }
3548
3549 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3550 btrfs_tree_unlock(eb);
3551 if (!epd->sync_io)
3552 return 0;
3553 if (!flush) {
3554 flush_write_bio(epd);
3555 flush = 1;
3556 }
a098d8e8
CM
3557 while (1) {
3558 wait_on_extent_buffer_writeback(eb);
3559 btrfs_tree_lock(eb);
3560 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3561 break;
0b32f4bb 3562 btrfs_tree_unlock(eb);
0b32f4bb
JB
3563 }
3564 }
3565
51561ffe
JB
3566 /*
3567 * We need to do this to prevent races in people who check if the eb is
3568 * under IO since we can end up having no IO bits set for a short period
3569 * of time.
3570 */
3571 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3572 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3573 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3574 spin_unlock(&eb->refs_lock);
0b32f4bb 3575 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
104b4e51
NB
3576 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3577 -eb->len,
3578 fs_info->dirty_metadata_batch);
0b32f4bb 3579 ret = 1;
51561ffe
JB
3580 } else {
3581 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3582 }
3583
3584 btrfs_tree_unlock(eb);
3585
3586 if (!ret)
3587 return ret;
3588
3589 num_pages = num_extent_pages(eb->start, eb->len);
3590 for (i = 0; i < num_pages; i++) {
fb85fc9a 3591 struct page *p = eb->pages[i];
0b32f4bb
JB
3592
3593 if (!trylock_page(p)) {
3594 if (!flush) {
3595 flush_write_bio(epd);
3596 flush = 1;
3597 }
3598 lock_page(p);
3599 }
3600 }
3601
3602 return ret;
3603}
3604
3605static void end_extent_buffer_writeback(struct extent_buffer *eb)
3606{
3607 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3608 smp_mb__after_atomic();
0b32f4bb
JB
3609 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3610}
3611
656f30db
FM
3612static void set_btree_ioerr(struct page *page)
3613{
3614 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3615
3616 SetPageError(page);
3617 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3618 return;
3619
3620 /*
3621 * If writeback for a btree extent that doesn't belong to a log tree
3622 * failed, increment the counter transaction->eb_write_errors.
3623 * We do this because while the transaction is running and before it's
3624 * committing (when we call filemap_fdata[write|wait]_range against
3625 * the btree inode), we might have
3626 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3627 * returns an error or an error happens during writeback, when we're
3628 * committing the transaction we wouldn't know about it, since the pages
3629 * can be no longer dirty nor marked anymore for writeback (if a
3630 * subsequent modification to the extent buffer didn't happen before the
3631 * transaction commit), which makes filemap_fdata[write|wait]_range not
3632 * able to find the pages tagged with SetPageError at transaction
3633 * commit time. So if this happens we must abort the transaction,
3634 * otherwise we commit a super block with btree roots that point to
3635 * btree nodes/leafs whose content on disk is invalid - either garbage
3636 * or the content of some node/leaf from a past generation that got
3637 * cowed or deleted and is no longer valid.
3638 *
3639 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3640 * not be enough - we need to distinguish between log tree extents vs
3641 * non-log tree extents, and the next filemap_fdatawait_range() call
3642 * will catch and clear such errors in the mapping - and that call might
3643 * be from a log sync and not from a transaction commit. Also, checking
3644 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3645 * not done and would not be reliable - the eb might have been released
3646 * from memory and reading it back again means that flag would not be
3647 * set (since it's a runtime flag, not persisted on disk).
3648 *
3649 * Using the flags below in the btree inode also makes us achieve the
3650 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3651 * writeback for all dirty pages and before filemap_fdatawait_range()
3652 * is called, the writeback for all dirty pages had already finished
3653 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3654 * filemap_fdatawait_range() would return success, as it could not know
3655 * that writeback errors happened (the pages were no longer tagged for
3656 * writeback).
3657 */
3658 switch (eb->log_index) {
3659 case -1:
afcdd129 3660 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3661 break;
3662 case 0:
afcdd129 3663 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3664 break;
3665 case 1:
afcdd129 3666 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3667 break;
3668 default:
3669 BUG(); /* unexpected, logic error */
3670 }
3671}
3672
4246a0b6 3673static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3674{
2c30c71b 3675 struct bio_vec *bvec;
0b32f4bb 3676 struct extent_buffer *eb;
2c30c71b 3677 int i, done;
0b32f4bb 3678
c09abff8 3679 ASSERT(!bio_flagged(bio, BIO_CLONED));
2c30c71b 3680 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3681 struct page *page = bvec->bv_page;
3682
0b32f4bb
JB
3683 eb = (struct extent_buffer *)page->private;
3684 BUG_ON(!eb);
3685 done = atomic_dec_and_test(&eb->io_pages);
3686
4e4cbee9 3687 if (bio->bi_status ||
4246a0b6 3688 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3689 ClearPageUptodate(page);
656f30db 3690 set_btree_ioerr(page);
0b32f4bb
JB
3691 }
3692
3693 end_page_writeback(page);
3694
3695 if (!done)
3696 continue;
3697
3698 end_extent_buffer_writeback(eb);
2c30c71b 3699 }
0b32f4bb
JB
3700
3701 bio_put(bio);
0b32f4bb
JB
3702}
3703
0e378df1 3704static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3705 struct btrfs_fs_info *fs_info,
3706 struct writeback_control *wbc,
3707 struct extent_page_data *epd)
3708{
3709 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3710 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3711 u64 offset = eb->start;
851cd173 3712 u32 nritems;
0b32f4bb 3713 unsigned long i, num_pages;
851cd173 3714 unsigned long start, end;
ff40adf7 3715 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
d7dbe9e7 3716 int ret = 0;
0b32f4bb 3717
656f30db 3718 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3719 num_pages = num_extent_pages(eb->start, eb->len);
3720 atomic_set(&eb->io_pages, num_pages);
de0022b9 3721
851cd173
LB
3722 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3723 nritems = btrfs_header_nritems(eb);
3eb548ee 3724 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3725 end = btrfs_node_key_ptr_offset(nritems);
3726
b159fa28 3727 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3728 } else {
3729 /*
3730 * leaf:
3731 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3732 */
3733 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3734 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3735 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3736 }
3737
0b32f4bb 3738 for (i = 0; i < num_pages; i++) {
fb85fc9a 3739 struct page *p = eb->pages[i];
0b32f4bb
JB
3740
3741 clear_page_dirty_for_io(p);
3742 set_page_writeback(p);
4b81ba48 3743 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
6273b7f8 3744 p, offset, PAGE_SIZE, 0, bdev,
c2df8bb4 3745 &epd->bio,
1f7ad75b 3746 end_bio_extent_buffer_writepage,
18fdc679 3747 0, 0, 0, false);
0b32f4bb 3748 if (ret) {
656f30db 3749 set_btree_ioerr(p);
fe01aa65
TK
3750 if (PageWriteback(p))
3751 end_page_writeback(p);
0b32f4bb
JB
3752 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3753 end_extent_buffer_writeback(eb);
3754 ret = -EIO;
3755 break;
3756 }
09cbfeaf 3757 offset += PAGE_SIZE;
3d4b9496 3758 update_nr_written(wbc, 1);
0b32f4bb
JB
3759 unlock_page(p);
3760 }
3761
3762 if (unlikely(ret)) {
3763 for (; i < num_pages; i++) {
bbf65cf0 3764 struct page *p = eb->pages[i];
81465028 3765 clear_page_dirty_for_io(p);
0b32f4bb
JB
3766 unlock_page(p);
3767 }
3768 }
3769
3770 return ret;
3771}
3772
3773int btree_write_cache_pages(struct address_space *mapping,
3774 struct writeback_control *wbc)
3775{
3776 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3777 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3778 struct extent_buffer *eb, *prev_eb = NULL;
3779 struct extent_page_data epd = {
3780 .bio = NULL,
3781 .tree = tree,
3782 .extent_locked = 0,
3783 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3784 };
3785 int ret = 0;
3786 int done = 0;
3787 int nr_to_write_done = 0;
3788 struct pagevec pvec;
3789 int nr_pages;
3790 pgoff_t index;
3791 pgoff_t end; /* Inclusive */
3792 int scanned = 0;
3793 int tag;
3794
86679820 3795 pagevec_init(&pvec);
0b32f4bb
JB
3796 if (wbc->range_cyclic) {
3797 index = mapping->writeback_index; /* Start from prev offset */
3798 end = -1;
3799 } else {
09cbfeaf
KS
3800 index = wbc->range_start >> PAGE_SHIFT;
3801 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3802 scanned = 1;
3803 }
3804 if (wbc->sync_mode == WB_SYNC_ALL)
3805 tag = PAGECACHE_TAG_TOWRITE;
3806 else
3807 tag = PAGECACHE_TAG_DIRTY;
3808retry:
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag_pages_for_writeback(mapping, index, end);
3811 while (!done && !nr_to_write_done && (index <= end) &&
4006f437 3812 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 3813 tag))) {
0b32f4bb
JB
3814 unsigned i;
3815
3816 scanned = 1;
3817 for (i = 0; i < nr_pages; i++) {
3818 struct page *page = pvec.pages[i];
3819
3820 if (!PagePrivate(page))
3821 continue;
3822
b5bae261
JB
3823 spin_lock(&mapping->private_lock);
3824 if (!PagePrivate(page)) {
3825 spin_unlock(&mapping->private_lock);
3826 continue;
3827 }
3828
0b32f4bb 3829 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3830
3831 /*
3832 * Shouldn't happen and normally this would be a BUG_ON
3833 * but no sense in crashing the users box for something
3834 * we can survive anyway.
3835 */
fae7f21c 3836 if (WARN_ON(!eb)) {
b5bae261 3837 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3838 continue;
3839 }
3840
b5bae261
JB
3841 if (eb == prev_eb) {
3842 spin_unlock(&mapping->private_lock);
0b32f4bb 3843 continue;
b5bae261 3844 }
0b32f4bb 3845
b5bae261
JB
3846 ret = atomic_inc_not_zero(&eb->refs);
3847 spin_unlock(&mapping->private_lock);
3848 if (!ret)
0b32f4bb 3849 continue;
0b32f4bb
JB
3850
3851 prev_eb = eb;
3852 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3853 if (!ret) {
3854 free_extent_buffer(eb);
3855 continue;
3856 }
3857
3858 ret = write_one_eb(eb, fs_info, wbc, &epd);
3859 if (ret) {
3860 done = 1;
3861 free_extent_buffer(eb);
3862 break;
3863 }
3864 free_extent_buffer(eb);
3865
3866 /*
3867 * the filesystem may choose to bump up nr_to_write.
3868 * We have to make sure to honor the new nr_to_write
3869 * at any time
3870 */
3871 nr_to_write_done = wbc->nr_to_write <= 0;
3872 }
3873 pagevec_release(&pvec);
3874 cond_resched();
3875 }
3876 if (!scanned && !done) {
3877 /*
3878 * We hit the last page and there is more work to be done: wrap
3879 * back to the start of the file
3880 */
3881 scanned = 1;
3882 index = 0;
3883 goto retry;
3884 }
3885 flush_write_bio(&epd);
3886 return ret;
3887}
3888
d1310b2e 3889/**
4bef0848 3890 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3891 * @mapping: address space structure to write
3892 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
935db853 3893 * @data: data passed to __extent_writepage function
d1310b2e
CM
3894 *
3895 * If a page is already under I/O, write_cache_pages() skips it, even
3896 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3897 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3898 * and msync() need to guarantee that all the data which was dirty at the time
3899 * the call was made get new I/O started against them. If wbc->sync_mode is
3900 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3901 * existing IO to complete.
3902 */
4242b64a 3903static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3904 struct writeback_control *wbc,
aab6e9ed 3905 struct extent_page_data *epd)
d1310b2e 3906{
7fd1a3f7 3907 struct inode *inode = mapping->host;
d1310b2e
CM
3908 int ret = 0;
3909 int done = 0;
f85d7d6c 3910 int nr_to_write_done = 0;
d1310b2e
CM
3911 struct pagevec pvec;
3912 int nr_pages;
3913 pgoff_t index;
3914 pgoff_t end; /* Inclusive */
a9132667
LB
3915 pgoff_t done_index;
3916 int range_whole = 0;
d1310b2e 3917 int scanned = 0;
f7aaa06b 3918 int tag;
d1310b2e 3919
7fd1a3f7
JB
3920 /*
3921 * We have to hold onto the inode so that ordered extents can do their
3922 * work when the IO finishes. The alternative to this is failing to add
3923 * an ordered extent if the igrab() fails there and that is a huge pain
3924 * to deal with, so instead just hold onto the inode throughout the
3925 * writepages operation. If it fails here we are freeing up the inode
3926 * anyway and we'd rather not waste our time writing out stuff that is
3927 * going to be truncated anyway.
3928 */
3929 if (!igrab(inode))
3930 return 0;
3931
86679820 3932 pagevec_init(&pvec);
d1310b2e
CM
3933 if (wbc->range_cyclic) {
3934 index = mapping->writeback_index; /* Start from prev offset */
3935 end = -1;
3936 } else {
09cbfeaf
KS
3937 index = wbc->range_start >> PAGE_SHIFT;
3938 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3939 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3940 range_whole = 1;
d1310b2e
CM
3941 scanned = 1;
3942 }
f7aaa06b
JB
3943 if (wbc->sync_mode == WB_SYNC_ALL)
3944 tag = PAGECACHE_TAG_TOWRITE;
3945 else
3946 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3947retry:
f7aaa06b
JB
3948 if (wbc->sync_mode == WB_SYNC_ALL)
3949 tag_pages_for_writeback(mapping, index, end);
a9132667 3950 done_index = index;
f85d7d6c 3951 while (!done && !nr_to_write_done && (index <= end) &&
67fd707f
JK
3952 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3953 &index, end, tag))) {
d1310b2e
CM
3954 unsigned i;
3955
3956 scanned = 1;
3957 for (i = 0; i < nr_pages; i++) {
3958 struct page *page = pvec.pages[i];
3959
a9132667 3960 done_index = page->index;
d1310b2e
CM
3961 /*
3962 * At this point we hold neither mapping->tree_lock nor
3963 * lock on the page itself: the page may be truncated or
3964 * invalidated (changing page->mapping to NULL), or even
3965 * swizzled back from swapper_space to tmpfs file
3966 * mapping
3967 */
c8f2f24b 3968 if (!trylock_page(page)) {
aab6e9ed 3969 flush_write_bio(epd);
c8f2f24b 3970 lock_page(page);
01d658f2 3971 }
d1310b2e
CM
3972
3973 if (unlikely(page->mapping != mapping)) {
3974 unlock_page(page);
3975 continue;
3976 }
3977
d2c3f4f6 3978 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956 3979 if (PageWriteback(page))
aab6e9ed 3980 flush_write_bio(epd);
d1310b2e 3981 wait_on_page_writeback(page);
d2c3f4f6 3982 }
d1310b2e
CM
3983
3984 if (PageWriteback(page) ||
3985 !clear_page_dirty_for_io(page)) {
3986 unlock_page(page);
3987 continue;
3988 }
3989
aab6e9ed 3990 ret = __extent_writepage(page, wbc, epd);
d1310b2e
CM
3991
3992 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3993 unlock_page(page);
3994 ret = 0;
3995 }
a9132667
LB
3996 if (ret < 0) {
3997 /*
3998 * done_index is set past this page,
3999 * so media errors will not choke
4000 * background writeout for the entire
4001 * file. This has consequences for
4002 * range_cyclic semantics (ie. it may
4003 * not be suitable for data integrity
4004 * writeout).
4005 */
4006 done_index = page->index + 1;
4007 done = 1;
4008 break;
4009 }
f85d7d6c
CM
4010
4011 /*
4012 * the filesystem may choose to bump up nr_to_write.
4013 * We have to make sure to honor the new nr_to_write
4014 * at any time
4015 */
4016 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4017 }
4018 pagevec_release(&pvec);
4019 cond_resched();
4020 }
894b36e3 4021 if (!scanned && !done) {
d1310b2e
CM
4022 /*
4023 * We hit the last page and there is more work to be done: wrap
4024 * back to the start of the file
4025 */
4026 scanned = 1;
4027 index = 0;
4028 goto retry;
4029 }
a9132667
LB
4030
4031 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4032 mapping->writeback_index = done_index;
4033
7fd1a3f7 4034 btrfs_add_delayed_iput(inode);
894b36e3 4035 return ret;
d1310b2e 4036}
d1310b2e 4037
aab6e9ed 4038static void flush_write_bio(struct extent_page_data *epd)
d2c3f4f6 4039{
d2c3f4f6 4040 if (epd->bio) {
355808c2
JM
4041 int ret;
4042
18fdc679 4043 ret = submit_one_bio(epd->bio, 0, 0);
79787eaa 4044 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4045 epd->bio = NULL;
4046 }
4047}
4048
0a9b0e53 4049int extent_write_full_page(struct page *page, struct writeback_control *wbc)
d1310b2e
CM
4050{
4051 int ret;
d1310b2e
CM
4052 struct extent_page_data epd = {
4053 .bio = NULL,
0a9b0e53 4054 .tree = &BTRFS_I(page->mapping->host)->io_tree,
771ed689 4055 .extent_locked = 0,
ffbd517d 4056 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 4057 };
d1310b2e 4058
d1310b2e
CM
4059 ret = __extent_writepage(page, wbc, &epd);
4060
e2932ee0 4061 flush_write_bio(&epd);
d1310b2e
CM
4062 return ret;
4063}
d1310b2e 4064
5e3ee236
NB
4065int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4066 int mode)
771ed689
CM
4067{
4068 int ret = 0;
4069 struct address_space *mapping = inode->i_mapping;
5e3ee236 4070 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
771ed689 4071 struct page *page;
09cbfeaf
KS
4072 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4073 PAGE_SHIFT;
771ed689
CM
4074
4075 struct extent_page_data epd = {
4076 .bio = NULL,
4077 .tree = tree,
771ed689 4078 .extent_locked = 1,
ffbd517d 4079 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
4080 };
4081 struct writeback_control wbc_writepages = {
771ed689 4082 .sync_mode = mode,
771ed689
CM
4083 .nr_to_write = nr_pages * 2,
4084 .range_start = start,
4085 .range_end = end + 1,
4086 };
4087
d397712b 4088 while (start <= end) {
09cbfeaf 4089 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4090 if (clear_page_dirty_for_io(page))
4091 ret = __extent_writepage(page, &wbc_writepages, &epd);
4092 else {
4093 if (tree->ops && tree->ops->writepage_end_io_hook)
4094 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4095 start + PAGE_SIZE - 1,
771ed689
CM
4096 NULL, 1);
4097 unlock_page(page);
4098 }
09cbfeaf
KS
4099 put_page(page);
4100 start += PAGE_SIZE;
771ed689
CM
4101 }
4102
e2932ee0 4103 flush_write_bio(&epd);
771ed689
CM
4104 return ret;
4105}
d1310b2e
CM
4106
4107int extent_writepages(struct extent_io_tree *tree,
4108 struct address_space *mapping,
d1310b2e
CM
4109 struct writeback_control *wbc)
4110{
4111 int ret = 0;
4112 struct extent_page_data epd = {
4113 .bio = NULL,
4114 .tree = tree,
771ed689 4115 .extent_locked = 0,
ffbd517d 4116 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
4117 };
4118
935db853 4119 ret = extent_write_cache_pages(mapping, wbc, &epd);
e2932ee0 4120 flush_write_bio(&epd);
d1310b2e
CM
4121 return ret;
4122}
d1310b2e
CM
4123
4124int extent_readpages(struct extent_io_tree *tree,
4125 struct address_space *mapping,
0932584b 4126 struct list_head *pages, unsigned nr_pages)
d1310b2e
CM
4127{
4128 struct bio *bio = NULL;
4129 unsigned page_idx;
c8b97818 4130 unsigned long bio_flags = 0;
67c9684f
LB
4131 struct page *pagepool[16];
4132 struct page *page;
125bac01 4133 struct extent_map *em_cached = NULL;
67c9684f 4134 int nr = 0;
808f80b4 4135 u64 prev_em_start = (u64)-1;
d1310b2e 4136
d1310b2e 4137 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4138 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4139
4140 prefetchw(&page->flags);
4141 list_del(&page->lru);
67c9684f 4142 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4143 page->index,
4144 readahead_gfp_mask(mapping))) {
09cbfeaf 4145 put_page(page);
67c9684f 4146 continue;
d1310b2e 4147 }
67c9684f
LB
4148
4149 pagepool[nr++] = page;
4150 if (nr < ARRAY_SIZE(pagepool))
4151 continue;
e4d17ef5
DS
4152 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4153 &bio_flags, &prev_em_start);
67c9684f 4154 nr = 0;
d1310b2e 4155 }
9974090b 4156 if (nr)
e4d17ef5
DS
4157 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158 &bio_flags, &prev_em_start);
67c9684f 4159
125bac01
MX
4160 if (em_cached)
4161 free_extent_map(em_cached);
4162
d1310b2e
CM
4163 BUG_ON(!list_empty(pages));
4164 if (bio)
1f7ad75b 4165 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4166 return 0;
4167}
d1310b2e
CM
4168
4169/*
4170 * basic invalidatepage code, this waits on any locked or writeback
4171 * ranges corresponding to the page, and then deletes any extent state
4172 * records from the tree
4173 */
4174int extent_invalidatepage(struct extent_io_tree *tree,
4175 struct page *page, unsigned long offset)
4176{
2ac55d41 4177 struct extent_state *cached_state = NULL;
4eee4fa4 4178 u64 start = page_offset(page);
09cbfeaf 4179 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4180 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4181
fda2832f 4182 start += ALIGN(offset, blocksize);
d1310b2e
CM
4183 if (start > end)
4184 return 0;
4185
ff13db41 4186 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4187 wait_on_page_writeback(page);
d1310b2e 4188 clear_extent_bit(tree, start, end,
32c00aff
JB
4189 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4190 EXTENT_DO_ACCOUNTING,
ae0f1625 4191 1, 1, &cached_state);
d1310b2e
CM
4192 return 0;
4193}
d1310b2e 4194
7b13b7b1
CM
4195/*
4196 * a helper for releasepage, this tests for areas of the page that
4197 * are locked or under IO and drops the related state bits if it is safe
4198 * to drop the page.
4199 */
48a3b636
ES
4200static int try_release_extent_state(struct extent_map_tree *map,
4201 struct extent_io_tree *tree,
4202 struct page *page, gfp_t mask)
7b13b7b1 4203{
4eee4fa4 4204 u64 start = page_offset(page);
09cbfeaf 4205 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4206 int ret = 1;
4207
211f90e6 4208 if (test_range_bit(tree, start, end,
8b62b72b 4209 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4210 ret = 0;
4211 else {
11ef160f
CM
4212 /*
4213 * at this point we can safely clear everything except the
4214 * locked bit and the nodatasum bit
4215 */
66b0c887 4216 ret = __clear_extent_bit(tree, start, end,
11ef160f 4217 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
66b0c887 4218 0, 0, NULL, mask, NULL);
e3f24cc5
CM
4219
4220 /* if clear_extent_bit failed for enomem reasons,
4221 * we can't allow the release to continue.
4222 */
4223 if (ret < 0)
4224 ret = 0;
4225 else
4226 ret = 1;
7b13b7b1
CM
4227 }
4228 return ret;
4229}
7b13b7b1 4230
d1310b2e
CM
4231/*
4232 * a helper for releasepage. As long as there are no locked extents
4233 * in the range corresponding to the page, both state records and extent
4234 * map records are removed
4235 */
4236int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4237 struct extent_io_tree *tree, struct page *page,
4238 gfp_t mask)
d1310b2e
CM
4239{
4240 struct extent_map *em;
4eee4fa4 4241 u64 start = page_offset(page);
09cbfeaf 4242 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4243
d0164adc 4244 if (gfpflags_allow_blocking(mask) &&
ee22184b 4245 page->mapping->host->i_size > SZ_16M) {
39b5637f 4246 u64 len;
70dec807 4247 while (start <= end) {
39b5637f 4248 len = end - start + 1;
890871be 4249 write_lock(&map->lock);
39b5637f 4250 em = lookup_extent_mapping(map, start, len);
285190d9 4251 if (!em) {
890871be 4252 write_unlock(&map->lock);
70dec807
CM
4253 break;
4254 }
7f3c74fb
CM
4255 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4256 em->start != start) {
890871be 4257 write_unlock(&map->lock);
70dec807
CM
4258 free_extent_map(em);
4259 break;
4260 }
4261 if (!test_range_bit(tree, em->start,
4262 extent_map_end(em) - 1,
8b62b72b 4263 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4264 0, NULL)) {
70dec807
CM
4265 remove_extent_mapping(map, em);
4266 /* once for the rb tree */
4267 free_extent_map(em);
4268 }
4269 start = extent_map_end(em);
890871be 4270 write_unlock(&map->lock);
70dec807
CM
4271
4272 /* once for us */
d1310b2e
CM
4273 free_extent_map(em);
4274 }
d1310b2e 4275 }
7b13b7b1 4276 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4277}
d1310b2e 4278
ec29ed5b
CM
4279/*
4280 * helper function for fiemap, which doesn't want to see any holes.
4281 * This maps until we find something past 'last'
4282 */
4283static struct extent_map *get_extent_skip_holes(struct inode *inode,
e3350e16 4284 u64 offset, u64 last)
ec29ed5b 4285{
da17066c 4286 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4287 struct extent_map *em;
4288 u64 len;
4289
4290 if (offset >= last)
4291 return NULL;
4292
67871254 4293 while (1) {
ec29ed5b
CM
4294 len = last - offset;
4295 if (len == 0)
4296 break;
fda2832f 4297 len = ALIGN(len, sectorsize);
e3350e16
DS
4298 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4299 len, 0);
c704005d 4300 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4301 return em;
4302
4303 /* if this isn't a hole return it */
4a2d25cd 4304 if (em->block_start != EXTENT_MAP_HOLE)
ec29ed5b 4305 return em;
ec29ed5b
CM
4306
4307 /* this is a hole, advance to the next extent */
4308 offset = extent_map_end(em);
4309 free_extent_map(em);
4310 if (offset >= last)
4311 break;
4312 }
4313 return NULL;
4314}
4315
4751832d
QW
4316/*
4317 * To cache previous fiemap extent
4318 *
4319 * Will be used for merging fiemap extent
4320 */
4321struct fiemap_cache {
4322 u64 offset;
4323 u64 phys;
4324 u64 len;
4325 u32 flags;
4326 bool cached;
4327};
4328
4329/*
4330 * Helper to submit fiemap extent.
4331 *
4332 * Will try to merge current fiemap extent specified by @offset, @phys,
4333 * @len and @flags with cached one.
4334 * And only when we fails to merge, cached one will be submitted as
4335 * fiemap extent.
4336 *
4337 * Return value is the same as fiemap_fill_next_extent().
4338 */
4339static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4340 struct fiemap_cache *cache,
4341 u64 offset, u64 phys, u64 len, u32 flags)
4342{
4343 int ret = 0;
4344
4345 if (!cache->cached)
4346 goto assign;
4347
4348 /*
4349 * Sanity check, extent_fiemap() should have ensured that new
4350 * fiemap extent won't overlap with cahced one.
4351 * Not recoverable.
4352 *
4353 * NOTE: Physical address can overlap, due to compression
4354 */
4355 if (cache->offset + cache->len > offset) {
4356 WARN_ON(1);
4357 return -EINVAL;
4358 }
4359
4360 /*
4361 * Only merges fiemap extents if
4362 * 1) Their logical addresses are continuous
4363 *
4364 * 2) Their physical addresses are continuous
4365 * So truly compressed (physical size smaller than logical size)
4366 * extents won't get merged with each other
4367 *
4368 * 3) Share same flags except FIEMAP_EXTENT_LAST
4369 * So regular extent won't get merged with prealloc extent
4370 */
4371 if (cache->offset + cache->len == offset &&
4372 cache->phys + cache->len == phys &&
4373 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4374 (flags & ~FIEMAP_EXTENT_LAST)) {
4375 cache->len += len;
4376 cache->flags |= flags;
4377 goto try_submit_last;
4378 }
4379
4380 /* Not mergeable, need to submit cached one */
4381 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4382 cache->len, cache->flags);
4383 cache->cached = false;
4384 if (ret)
4385 return ret;
4386assign:
4387 cache->cached = true;
4388 cache->offset = offset;
4389 cache->phys = phys;
4390 cache->len = len;
4391 cache->flags = flags;
4392try_submit_last:
4393 if (cache->flags & FIEMAP_EXTENT_LAST) {
4394 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4395 cache->phys, cache->len, cache->flags);
4396 cache->cached = false;
4397 }
4398 return ret;
4399}
4400
4401/*
848c23b7 4402 * Emit last fiemap cache
4751832d 4403 *
848c23b7
QW
4404 * The last fiemap cache may still be cached in the following case:
4405 * 0 4k 8k
4406 * |<- Fiemap range ->|
4407 * |<------------ First extent ----------->|
4408 *
4409 * In this case, the first extent range will be cached but not emitted.
4410 * So we must emit it before ending extent_fiemap().
4751832d 4411 */
848c23b7
QW
4412static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4413 struct fiemap_extent_info *fieinfo,
4414 struct fiemap_cache *cache)
4751832d
QW
4415{
4416 int ret;
4417
4418 if (!cache->cached)
4419 return 0;
4420
4751832d
QW
4421 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4422 cache->len, cache->flags);
4423 cache->cached = false;
4424 if (ret > 0)
4425 ret = 0;
4426 return ret;
4427}
4428
1506fcc8 4429int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2135fb9b 4430 __u64 start, __u64 len)
1506fcc8 4431{
975f84fe 4432 int ret = 0;
1506fcc8
YS
4433 u64 off = start;
4434 u64 max = start + len;
4435 u32 flags = 0;
975f84fe
JB
4436 u32 found_type;
4437 u64 last;
ec29ed5b 4438 u64 last_for_get_extent = 0;
1506fcc8 4439 u64 disko = 0;
ec29ed5b 4440 u64 isize = i_size_read(inode);
975f84fe 4441 struct btrfs_key found_key;
1506fcc8 4442 struct extent_map *em = NULL;
2ac55d41 4443 struct extent_state *cached_state = NULL;
975f84fe 4444 struct btrfs_path *path;
dc046b10 4445 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4446 struct fiemap_cache cache = { 0 };
1506fcc8 4447 int end = 0;
ec29ed5b
CM
4448 u64 em_start = 0;
4449 u64 em_len = 0;
4450 u64 em_end = 0;
1506fcc8
YS
4451
4452 if (len == 0)
4453 return -EINVAL;
4454
975f84fe
JB
4455 path = btrfs_alloc_path();
4456 if (!path)
4457 return -ENOMEM;
4458 path->leave_spinning = 1;
4459
da17066c
JM
4460 start = round_down(start, btrfs_inode_sectorsize(inode));
4461 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4462
ec29ed5b
CM
4463 /*
4464 * lookup the last file extent. We're not using i_size here
4465 * because there might be preallocation past i_size
4466 */
f85b7379
DS
4467 ret = btrfs_lookup_file_extent(NULL, root, path,
4468 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4469 if (ret < 0) {
4470 btrfs_free_path(path);
4471 return ret;
2d324f59
LB
4472 } else {
4473 WARN_ON(!ret);
4474 if (ret == 1)
4475 ret = 0;
975f84fe 4476 }
2d324f59 4477
975f84fe 4478 path->slots[0]--;
975f84fe 4479 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4480 found_type = found_key.type;
975f84fe 4481
ec29ed5b 4482 /* No extents, but there might be delalloc bits */
4a0cc7ca 4483 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4484 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4485 /* have to trust i_size as the end */
4486 last = (u64)-1;
4487 last_for_get_extent = isize;
4488 } else {
4489 /*
4490 * remember the start of the last extent. There are a
4491 * bunch of different factors that go into the length of the
4492 * extent, so its much less complex to remember where it started
4493 */
4494 last = found_key.offset;
4495 last_for_get_extent = last + 1;
975f84fe 4496 }
fe09e16c 4497 btrfs_release_path(path);
975f84fe 4498
ec29ed5b
CM
4499 /*
4500 * we might have some extents allocated but more delalloc past those
4501 * extents. so, we trust isize unless the start of the last extent is
4502 * beyond isize
4503 */
4504 if (last < isize) {
4505 last = (u64)-1;
4506 last_for_get_extent = isize;
4507 }
4508
ff13db41 4509 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4510 &cached_state);
ec29ed5b 4511
e3350e16 4512 em = get_extent_skip_holes(inode, start, last_for_get_extent);
1506fcc8
YS
4513 if (!em)
4514 goto out;
4515 if (IS_ERR(em)) {
4516 ret = PTR_ERR(em);
4517 goto out;
4518 }
975f84fe 4519
1506fcc8 4520 while (!end) {
b76bb701 4521 u64 offset_in_extent = 0;
ea8efc74
CM
4522
4523 /* break if the extent we found is outside the range */
4524 if (em->start >= max || extent_map_end(em) < off)
4525 break;
4526
4527 /*
4528 * get_extent may return an extent that starts before our
4529 * requested range. We have to make sure the ranges
4530 * we return to fiemap always move forward and don't
4531 * overlap, so adjust the offsets here
4532 */
4533 em_start = max(em->start, off);
1506fcc8 4534
ea8efc74
CM
4535 /*
4536 * record the offset from the start of the extent
b76bb701
JB
4537 * for adjusting the disk offset below. Only do this if the
4538 * extent isn't compressed since our in ram offset may be past
4539 * what we have actually allocated on disk.
ea8efc74 4540 */
b76bb701
JB
4541 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4542 offset_in_extent = em_start - em->start;
ec29ed5b 4543 em_end = extent_map_end(em);
ea8efc74 4544 em_len = em_end - em_start;
1506fcc8
YS
4545 disko = 0;
4546 flags = 0;
4547
ea8efc74
CM
4548 /*
4549 * bump off for our next call to get_extent
4550 */
4551 off = extent_map_end(em);
4552 if (off >= max)
4553 end = 1;
4554
93dbfad7 4555 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4556 end = 1;
4557 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4558 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4559 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4560 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4561 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4562 flags |= (FIEMAP_EXTENT_DELALLOC |
4563 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4564 } else if (fieinfo->fi_extents_max) {
4565 u64 bytenr = em->block_start -
4566 (em->start - em->orig_start);
fe09e16c 4567
ea8efc74 4568 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4569
4570 /*
4571 * As btrfs supports shared space, this information
4572 * can be exported to userspace tools via
dc046b10
JB
4573 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4574 * then we're just getting a count and we can skip the
4575 * lookup stuff.
fe09e16c 4576 */
bb739cf0
EN
4577 ret = btrfs_check_shared(root,
4578 btrfs_ino(BTRFS_I(inode)),
4579 bytenr);
dc046b10 4580 if (ret < 0)
fe09e16c 4581 goto out_free;
dc046b10 4582 if (ret)
fe09e16c 4583 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4584 ret = 0;
1506fcc8
YS
4585 }
4586 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4587 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4588 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4589 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4590
1506fcc8
YS
4591 free_extent_map(em);
4592 em = NULL;
ec29ed5b
CM
4593 if ((em_start >= last) || em_len == (u64)-1 ||
4594 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4595 flags |= FIEMAP_EXTENT_LAST;
4596 end = 1;
4597 }
4598
ec29ed5b 4599 /* now scan forward to see if this is really the last extent. */
e3350e16 4600 em = get_extent_skip_holes(inode, off, last_for_get_extent);
ec29ed5b
CM
4601 if (IS_ERR(em)) {
4602 ret = PTR_ERR(em);
4603 goto out;
4604 }
4605 if (!em) {
975f84fe
JB
4606 flags |= FIEMAP_EXTENT_LAST;
4607 end = 1;
4608 }
4751832d
QW
4609 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4610 em_len, flags);
26e726af
CS
4611 if (ret) {
4612 if (ret == 1)
4613 ret = 0;
ec29ed5b 4614 goto out_free;
26e726af 4615 }
1506fcc8
YS
4616 }
4617out_free:
4751832d 4618 if (!ret)
848c23b7 4619 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4620 free_extent_map(em);
4621out:
fe09e16c 4622 btrfs_free_path(path);
a52f4cd2 4623 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4624 &cached_state, GFP_NOFS);
1506fcc8
YS
4625 return ret;
4626}
4627
727011e0
CM
4628static void __free_extent_buffer(struct extent_buffer *eb)
4629{
6d49ba1b 4630 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4631 kmem_cache_free(extent_buffer_cache, eb);
4632}
4633
a26e8c9f 4634int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4635{
4636 return (atomic_read(&eb->io_pages) ||
4637 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4638 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4639}
4640
4641/*
4642 * Helper for releasing extent buffer page.
4643 */
a50924e3 4644static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4645{
4646 unsigned long index;
db7f3436
JB
4647 struct page *page;
4648 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4649
4650 BUG_ON(extent_buffer_under_io(eb));
4651
a50924e3
DS
4652 index = num_extent_pages(eb->start, eb->len);
4653 if (index == 0)
db7f3436
JB
4654 return;
4655
4656 do {
4657 index--;
fb85fc9a 4658 page = eb->pages[index];
5d2361db
FL
4659 if (!page)
4660 continue;
4661 if (mapped)
db7f3436 4662 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4663 /*
4664 * We do this since we'll remove the pages after we've
4665 * removed the eb from the radix tree, so we could race
4666 * and have this page now attached to the new eb. So
4667 * only clear page_private if it's still connected to
4668 * this eb.
4669 */
4670 if (PagePrivate(page) &&
4671 page->private == (unsigned long)eb) {
4672 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4673 BUG_ON(PageDirty(page));
4674 BUG_ON(PageWriteback(page));
db7f3436 4675 /*
5d2361db
FL
4676 * We need to make sure we haven't be attached
4677 * to a new eb.
db7f3436 4678 */
5d2361db
FL
4679 ClearPagePrivate(page);
4680 set_page_private(page, 0);
4681 /* One for the page private */
09cbfeaf 4682 put_page(page);
db7f3436 4683 }
5d2361db
FL
4684
4685 if (mapped)
4686 spin_unlock(&page->mapping->private_lock);
4687
01327610 4688 /* One for when we allocated the page */
09cbfeaf 4689 put_page(page);
a50924e3 4690 } while (index != 0);
db7f3436
JB
4691}
4692
4693/*
4694 * Helper for releasing the extent buffer.
4695 */
4696static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4697{
a50924e3 4698 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4699 __free_extent_buffer(eb);
4700}
4701
f28491e0
JB
4702static struct extent_buffer *
4703__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4704 unsigned long len)
d1310b2e
CM
4705{
4706 struct extent_buffer *eb = NULL;
4707
d1b5c567 4708 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4709 eb->start = start;
4710 eb->len = len;
f28491e0 4711 eb->fs_info = fs_info;
815a51c7 4712 eb->bflags = 0;
bd681513
CM
4713 rwlock_init(&eb->lock);
4714 atomic_set(&eb->write_locks, 0);
4715 atomic_set(&eb->read_locks, 0);
4716 atomic_set(&eb->blocking_readers, 0);
4717 atomic_set(&eb->blocking_writers, 0);
4718 atomic_set(&eb->spinning_readers, 0);
4719 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4720 eb->lock_nested = 0;
bd681513
CM
4721 init_waitqueue_head(&eb->write_lock_wq);
4722 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4723
6d49ba1b
ES
4724 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4725
3083ee2e 4726 spin_lock_init(&eb->refs_lock);
d1310b2e 4727 atomic_set(&eb->refs, 1);
0b32f4bb 4728 atomic_set(&eb->io_pages, 0);
727011e0 4729
b8dae313
DS
4730 /*
4731 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4732 */
4733 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4734 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4735 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4736
4737 return eb;
4738}
4739
815a51c7
JS
4740struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4741{
4742 unsigned long i;
4743 struct page *p;
4744 struct extent_buffer *new;
4745 unsigned long num_pages = num_extent_pages(src->start, src->len);
4746
3f556f78 4747 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4748 if (new == NULL)
4749 return NULL;
4750
4751 for (i = 0; i < num_pages; i++) {
9ec72677 4752 p = alloc_page(GFP_NOFS);
db7f3436
JB
4753 if (!p) {
4754 btrfs_release_extent_buffer(new);
4755 return NULL;
4756 }
815a51c7
JS
4757 attach_extent_buffer_page(new, p);
4758 WARN_ON(PageDirty(p));
4759 SetPageUptodate(p);
4760 new->pages[i] = p;
fba1acf9 4761 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4762 }
4763
815a51c7
JS
4764 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4765 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4766
4767 return new;
4768}
4769
0f331229
OS
4770struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4771 u64 start, unsigned long len)
815a51c7
JS
4772{
4773 struct extent_buffer *eb;
3f556f78 4774 unsigned long num_pages;
815a51c7
JS
4775 unsigned long i;
4776
0f331229 4777 num_pages = num_extent_pages(start, len);
3f556f78
DS
4778
4779 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4780 if (!eb)
4781 return NULL;
4782
4783 for (i = 0; i < num_pages; i++) {
9ec72677 4784 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4785 if (!eb->pages[i])
4786 goto err;
4787 }
4788 set_extent_buffer_uptodate(eb);
4789 btrfs_set_header_nritems(eb, 0);
4790 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4791
4792 return eb;
4793err:
84167d19
SB
4794 for (; i > 0; i--)
4795 __free_page(eb->pages[i - 1]);
815a51c7
JS
4796 __free_extent_buffer(eb);
4797 return NULL;
4798}
4799
0f331229 4800struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4801 u64 start)
0f331229 4802{
da17066c 4803 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4804}
4805
0b32f4bb
JB
4806static void check_buffer_tree_ref(struct extent_buffer *eb)
4807{
242e18c7 4808 int refs;
0b32f4bb
JB
4809 /* the ref bit is tricky. We have to make sure it is set
4810 * if we have the buffer dirty. Otherwise the
4811 * code to free a buffer can end up dropping a dirty
4812 * page
4813 *
4814 * Once the ref bit is set, it won't go away while the
4815 * buffer is dirty or in writeback, and it also won't
4816 * go away while we have the reference count on the
4817 * eb bumped.
4818 *
4819 * We can't just set the ref bit without bumping the
4820 * ref on the eb because free_extent_buffer might
4821 * see the ref bit and try to clear it. If this happens
4822 * free_extent_buffer might end up dropping our original
4823 * ref by mistake and freeing the page before we are able
4824 * to add one more ref.
4825 *
4826 * So bump the ref count first, then set the bit. If someone
4827 * beat us to it, drop the ref we added.
4828 */
242e18c7
CM
4829 refs = atomic_read(&eb->refs);
4830 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4831 return;
4832
594831c4
JB
4833 spin_lock(&eb->refs_lock);
4834 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4835 atomic_inc(&eb->refs);
594831c4 4836 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4837}
4838
2457aec6
MG
4839static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4840 struct page *accessed)
5df4235e
JB
4841{
4842 unsigned long num_pages, i;
4843
0b32f4bb
JB
4844 check_buffer_tree_ref(eb);
4845
5df4235e
JB
4846 num_pages = num_extent_pages(eb->start, eb->len);
4847 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4848 struct page *p = eb->pages[i];
4849
2457aec6
MG
4850 if (p != accessed)
4851 mark_page_accessed(p);
5df4235e
JB
4852 }
4853}
4854
f28491e0
JB
4855struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4856 u64 start)
452c75c3
CS
4857{
4858 struct extent_buffer *eb;
4859
4860 rcu_read_lock();
f28491e0 4861 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4862 start >> PAGE_SHIFT);
452c75c3
CS
4863 if (eb && atomic_inc_not_zero(&eb->refs)) {
4864 rcu_read_unlock();
062c19e9
FM
4865 /*
4866 * Lock our eb's refs_lock to avoid races with
4867 * free_extent_buffer. When we get our eb it might be flagged
4868 * with EXTENT_BUFFER_STALE and another task running
4869 * free_extent_buffer might have seen that flag set,
4870 * eb->refs == 2, that the buffer isn't under IO (dirty and
4871 * writeback flags not set) and it's still in the tree (flag
4872 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4873 * of decrementing the extent buffer's reference count twice.
4874 * So here we could race and increment the eb's reference count,
4875 * clear its stale flag, mark it as dirty and drop our reference
4876 * before the other task finishes executing free_extent_buffer,
4877 * which would later result in an attempt to free an extent
4878 * buffer that is dirty.
4879 */
4880 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4881 spin_lock(&eb->refs_lock);
4882 spin_unlock(&eb->refs_lock);
4883 }
2457aec6 4884 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4885 return eb;
4886 }
4887 rcu_read_unlock();
4888
4889 return NULL;
4890}
4891
faa2dbf0
JB
4892#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4893struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4894 u64 start)
faa2dbf0
JB
4895{
4896 struct extent_buffer *eb, *exists = NULL;
4897 int ret;
4898
4899 eb = find_extent_buffer(fs_info, start);
4900 if (eb)
4901 return eb;
da17066c 4902 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4903 if (!eb)
4904 return NULL;
4905 eb->fs_info = fs_info;
4906again:
e1860a77 4907 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4908 if (ret)
4909 goto free_eb;
4910 spin_lock(&fs_info->buffer_lock);
4911 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4912 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4913 spin_unlock(&fs_info->buffer_lock);
4914 radix_tree_preload_end();
4915 if (ret == -EEXIST) {
4916 exists = find_extent_buffer(fs_info, start);
4917 if (exists)
4918 goto free_eb;
4919 else
4920 goto again;
4921 }
4922 check_buffer_tree_ref(eb);
4923 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4924
4925 /*
4926 * We will free dummy extent buffer's if they come into
4927 * free_extent_buffer with a ref count of 2, but if we are using this we
4928 * want the buffers to stay in memory until we're done with them, so
4929 * bump the ref count again.
4930 */
4931 atomic_inc(&eb->refs);
4932 return eb;
4933free_eb:
4934 btrfs_release_extent_buffer(eb);
4935 return exists;
4936}
4937#endif
4938
f28491e0 4939struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4940 u64 start)
d1310b2e 4941{
da17066c 4942 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4943 unsigned long num_pages = num_extent_pages(start, len);
4944 unsigned long i;
09cbfeaf 4945 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4946 struct extent_buffer *eb;
6af118ce 4947 struct extent_buffer *exists = NULL;
d1310b2e 4948 struct page *p;
f28491e0 4949 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4950 int uptodate = 1;
19fe0a8b 4951 int ret;
d1310b2e 4952
da17066c 4953 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4954 btrfs_err(fs_info, "bad tree block start %llu", start);
4955 return ERR_PTR(-EINVAL);
4956 }
4957
f28491e0 4958 eb = find_extent_buffer(fs_info, start);
452c75c3 4959 if (eb)
6af118ce 4960 return eb;
6af118ce 4961
23d79d81 4962 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4963 if (!eb)
c871b0f2 4964 return ERR_PTR(-ENOMEM);
d1310b2e 4965
727011e0 4966 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4967 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4968 if (!p) {
4969 exists = ERR_PTR(-ENOMEM);
6af118ce 4970 goto free_eb;
c871b0f2 4971 }
4f2de97a
JB
4972
4973 spin_lock(&mapping->private_lock);
4974 if (PagePrivate(p)) {
4975 /*
4976 * We could have already allocated an eb for this page
4977 * and attached one so lets see if we can get a ref on
4978 * the existing eb, and if we can we know it's good and
4979 * we can just return that one, else we know we can just
4980 * overwrite page->private.
4981 */
4982 exists = (struct extent_buffer *)p->private;
4983 if (atomic_inc_not_zero(&exists->refs)) {
4984 spin_unlock(&mapping->private_lock);
4985 unlock_page(p);
09cbfeaf 4986 put_page(p);
2457aec6 4987 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4988 goto free_eb;
4989 }
5ca64f45 4990 exists = NULL;
4f2de97a 4991
0b32f4bb 4992 /*
4f2de97a
JB
4993 * Do this so attach doesn't complain and we need to
4994 * drop the ref the old guy had.
4995 */
4996 ClearPagePrivate(p);
0b32f4bb 4997 WARN_ON(PageDirty(p));
09cbfeaf 4998 put_page(p);
d1310b2e 4999 }
4f2de97a
JB
5000 attach_extent_buffer_page(eb, p);
5001 spin_unlock(&mapping->private_lock);
0b32f4bb 5002 WARN_ON(PageDirty(p));
727011e0 5003 eb->pages[i] = p;
d1310b2e
CM
5004 if (!PageUptodate(p))
5005 uptodate = 0;
eb14ab8e
CM
5006
5007 /*
5008 * see below about how we avoid a nasty race with release page
5009 * and why we unlock later
5010 */
d1310b2e
CM
5011 }
5012 if (uptodate)
b4ce94de 5013 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5014again:
e1860a77 5015 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5016 if (ret) {
5017 exists = ERR_PTR(ret);
19fe0a8b 5018 goto free_eb;
c871b0f2 5019 }
19fe0a8b 5020
f28491e0
JB
5021 spin_lock(&fs_info->buffer_lock);
5022 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5023 start >> PAGE_SHIFT, eb);
f28491e0 5024 spin_unlock(&fs_info->buffer_lock);
452c75c3 5025 radix_tree_preload_end();
19fe0a8b 5026 if (ret == -EEXIST) {
f28491e0 5027 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5028 if (exists)
5029 goto free_eb;
5030 else
115391d2 5031 goto again;
6af118ce 5032 }
6af118ce 5033 /* add one reference for the tree */
0b32f4bb 5034 check_buffer_tree_ref(eb);
34b41ace 5035 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5036
5037 /*
5038 * there is a race where release page may have
5039 * tried to find this extent buffer in the radix
5040 * but failed. It will tell the VM it is safe to
5041 * reclaim the, and it will clear the page private bit.
5042 * We must make sure to set the page private bit properly
5043 * after the extent buffer is in the radix tree so
5044 * it doesn't get lost
5045 */
727011e0
CM
5046 SetPageChecked(eb->pages[0]);
5047 for (i = 1; i < num_pages; i++) {
fb85fc9a 5048 p = eb->pages[i];
727011e0
CM
5049 ClearPageChecked(p);
5050 unlock_page(p);
5051 }
5052 unlock_page(eb->pages[0]);
d1310b2e
CM
5053 return eb;
5054
6af118ce 5055free_eb:
5ca64f45 5056 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5057 for (i = 0; i < num_pages; i++) {
5058 if (eb->pages[i])
5059 unlock_page(eb->pages[i]);
5060 }
eb14ab8e 5061
897ca6e9 5062 btrfs_release_extent_buffer(eb);
6af118ce 5063 return exists;
d1310b2e 5064}
d1310b2e 5065
3083ee2e
JB
5066static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5067{
5068 struct extent_buffer *eb =
5069 container_of(head, struct extent_buffer, rcu_head);
5070
5071 __free_extent_buffer(eb);
5072}
5073
3083ee2e 5074/* Expects to have eb->eb_lock already held */
f7a52a40 5075static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5076{
5077 WARN_ON(atomic_read(&eb->refs) == 0);
5078 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5079 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5080 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5081
815a51c7 5082 spin_unlock(&eb->refs_lock);
3083ee2e 5083
f28491e0
JB
5084 spin_lock(&fs_info->buffer_lock);
5085 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5086 eb->start >> PAGE_SHIFT);
f28491e0 5087 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5088 } else {
5089 spin_unlock(&eb->refs_lock);
815a51c7 5090 }
3083ee2e
JB
5091
5092 /* Should be safe to release our pages at this point */
a50924e3 5093 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5094#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5095 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5096 __free_extent_buffer(eb);
5097 return 1;
5098 }
5099#endif
3083ee2e 5100 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5101 return 1;
3083ee2e
JB
5102 }
5103 spin_unlock(&eb->refs_lock);
e64860aa
JB
5104
5105 return 0;
3083ee2e
JB
5106}
5107
d1310b2e
CM
5108void free_extent_buffer(struct extent_buffer *eb)
5109{
242e18c7
CM
5110 int refs;
5111 int old;
d1310b2e
CM
5112 if (!eb)
5113 return;
5114
242e18c7
CM
5115 while (1) {
5116 refs = atomic_read(&eb->refs);
5117 if (refs <= 3)
5118 break;
5119 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5120 if (old == refs)
5121 return;
5122 }
5123
3083ee2e 5124 spin_lock(&eb->refs_lock);
815a51c7
JS
5125 if (atomic_read(&eb->refs) == 2 &&
5126 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5127 atomic_dec(&eb->refs);
5128
3083ee2e
JB
5129 if (atomic_read(&eb->refs) == 2 &&
5130 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5131 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5132 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5133 atomic_dec(&eb->refs);
5134
5135 /*
5136 * I know this is terrible, but it's temporary until we stop tracking
5137 * the uptodate bits and such for the extent buffers.
5138 */
f7a52a40 5139 release_extent_buffer(eb);
3083ee2e
JB
5140}
5141
5142void free_extent_buffer_stale(struct extent_buffer *eb)
5143{
5144 if (!eb)
d1310b2e
CM
5145 return;
5146
3083ee2e
JB
5147 spin_lock(&eb->refs_lock);
5148 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5149
0b32f4bb 5150 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5151 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5152 atomic_dec(&eb->refs);
f7a52a40 5153 release_extent_buffer(eb);
d1310b2e 5154}
d1310b2e 5155
1d4284bd 5156void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5157{
d1310b2e
CM
5158 unsigned long i;
5159 unsigned long num_pages;
5160 struct page *page;
5161
d1310b2e
CM
5162 num_pages = num_extent_pages(eb->start, eb->len);
5163
5164 for (i = 0; i < num_pages; i++) {
fb85fc9a 5165 page = eb->pages[i];
b9473439 5166 if (!PageDirty(page))
d2c3f4f6
CM
5167 continue;
5168
a61e6f29 5169 lock_page(page);
eb14ab8e
CM
5170 WARN_ON(!PagePrivate(page));
5171
d1310b2e 5172 clear_page_dirty_for_io(page);
0ee0fda0 5173 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5174 if (!PageDirty(page)) {
5175 radix_tree_tag_clear(&page->mapping->page_tree,
5176 page_index(page),
5177 PAGECACHE_TAG_DIRTY);
5178 }
0ee0fda0 5179 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5180 ClearPageError(page);
a61e6f29 5181 unlock_page(page);
d1310b2e 5182 }
0b32f4bb 5183 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5184}
d1310b2e 5185
0b32f4bb 5186int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5187{
5188 unsigned long i;
5189 unsigned long num_pages;
b9473439 5190 int was_dirty = 0;
d1310b2e 5191
0b32f4bb
JB
5192 check_buffer_tree_ref(eb);
5193
b9473439 5194 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5195
d1310b2e 5196 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5197 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5198 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5199
b9473439 5200 for (i = 0; i < num_pages; i++)
fb85fc9a 5201 set_page_dirty(eb->pages[i]);
b9473439 5202 return was_dirty;
d1310b2e 5203}
d1310b2e 5204
69ba3927 5205void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5206{
5207 unsigned long i;
5208 struct page *page;
5209 unsigned long num_pages;
5210
b4ce94de 5211 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5212 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5213 for (i = 0; i < num_pages; i++) {
fb85fc9a 5214 page = eb->pages[i];
33958dc6
CM
5215 if (page)
5216 ClearPageUptodate(page);
1259ab75 5217 }
1259ab75
CM
5218}
5219
09c25a8c 5220void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5221{
5222 unsigned long i;
5223 struct page *page;
5224 unsigned long num_pages;
5225
0b32f4bb 5226 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5227 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5228 for (i = 0; i < num_pages; i++) {
fb85fc9a 5229 page = eb->pages[i];
d1310b2e
CM
5230 SetPageUptodate(page);
5231 }
d1310b2e 5232}
d1310b2e 5233
0b32f4bb 5234int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5235{
0b32f4bb 5236 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5237}
d1310b2e
CM
5238
5239int read_extent_buffer_pages(struct extent_io_tree *tree,
6af49dbd 5240 struct extent_buffer *eb, int wait, int mirror_num)
d1310b2e
CM
5241{
5242 unsigned long i;
d1310b2e
CM
5243 struct page *page;
5244 int err;
5245 int ret = 0;
ce9adaa5
CM
5246 int locked_pages = 0;
5247 int all_uptodate = 1;
d1310b2e 5248 unsigned long num_pages;
727011e0 5249 unsigned long num_reads = 0;
a86c12c7 5250 struct bio *bio = NULL;
c8b97818 5251 unsigned long bio_flags = 0;
a86c12c7 5252
b4ce94de 5253 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5254 return 0;
5255
d1310b2e 5256 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5257 for (i = 0; i < num_pages; i++) {
fb85fc9a 5258 page = eb->pages[i];
bb82ab88 5259 if (wait == WAIT_NONE) {
2db04966 5260 if (!trylock_page(page))
ce9adaa5 5261 goto unlock_exit;
d1310b2e
CM
5262 } else {
5263 lock_page(page);
5264 }
ce9adaa5 5265 locked_pages++;
2571e739
LB
5266 }
5267 /*
5268 * We need to firstly lock all pages to make sure that
5269 * the uptodate bit of our pages won't be affected by
5270 * clear_extent_buffer_uptodate().
5271 */
8436ea91 5272 for (i = 0; i < num_pages; i++) {
2571e739 5273 page = eb->pages[i];
727011e0
CM
5274 if (!PageUptodate(page)) {
5275 num_reads++;
ce9adaa5 5276 all_uptodate = 0;
727011e0 5277 }
ce9adaa5 5278 }
2571e739 5279
ce9adaa5 5280 if (all_uptodate) {
8436ea91 5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5282 goto unlock_exit;
5283 }
5284
656f30db 5285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5286 eb->read_mirror = 0;
0b32f4bb 5287 atomic_set(&eb->io_pages, num_reads);
8436ea91 5288 for (i = 0; i < num_pages; i++) {
fb85fc9a 5289 page = eb->pages[i];
baf863b9 5290
ce9adaa5 5291 if (!PageUptodate(page)) {
baf863b9
LB
5292 if (ret) {
5293 atomic_dec(&eb->io_pages);
5294 unlock_page(page);
5295 continue;
5296 }
5297
f188591e 5298 ClearPageError(page);
a86c12c7 5299 err = __extent_read_full_page(tree, page,
6af49dbd 5300 btree_get_extent, &bio,
d4c7ca86 5301 mirror_num, &bio_flags,
1f7ad75b 5302 REQ_META);
baf863b9 5303 if (err) {
d1310b2e 5304 ret = err;
baf863b9
LB
5305 /*
5306 * We use &bio in above __extent_read_full_page,
5307 * so we ensure that if it returns error, the
5308 * current page fails to add itself to bio and
5309 * it's been unlocked.
5310 *
5311 * We must dec io_pages by ourselves.
5312 */
5313 atomic_dec(&eb->io_pages);
5314 }
d1310b2e
CM
5315 } else {
5316 unlock_page(page);
5317 }
5318 }
5319
355808c2 5320 if (bio) {
1f7ad75b 5321 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5322 if (err)
5323 return err;
355808c2 5324 }
a86c12c7 5325
bb82ab88 5326 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5327 return ret;
d397712b 5328
8436ea91 5329 for (i = 0; i < num_pages; i++) {
fb85fc9a 5330 page = eb->pages[i];
d1310b2e 5331 wait_on_page_locked(page);
d397712b 5332 if (!PageUptodate(page))
d1310b2e 5333 ret = -EIO;
d1310b2e 5334 }
d397712b 5335
d1310b2e 5336 return ret;
ce9adaa5
CM
5337
5338unlock_exit:
d397712b 5339 while (locked_pages > 0) {
ce9adaa5 5340 locked_pages--;
8436ea91
JB
5341 page = eb->pages[locked_pages];
5342 unlock_page(page);
ce9adaa5
CM
5343 }
5344 return ret;
d1310b2e 5345}
d1310b2e 5346
1cbb1f45
JM
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348 unsigned long start, unsigned long len)
d1310b2e
CM
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *dst = (char *)dstv;
09cbfeaf
KS
5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5357
f716abd5
LB
5358 if (start + len > eb->len) {
5359 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360 eb->start, eb->len, start, len);
5361 memset(dst, 0, len);
5362 return;
5363 }
d1310b2e 5364
09cbfeaf 5365 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5366
d397712b 5367 while (len > 0) {
fb85fc9a 5368 page = eb->pages[i];
d1310b2e 5369
09cbfeaf 5370 cur = min(len, (PAGE_SIZE - offset));
a6591715 5371 kaddr = page_address(page);
d1310b2e 5372 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5373
5374 dst += cur;
5375 len -= cur;
5376 offset = 0;
5377 i++;
5378 }
5379}
d1310b2e 5380
1cbb1f45
JM
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382 void __user *dstv,
5383 unsigned long start, unsigned long len)
550ac1d8
GH
5384{
5385 size_t cur;
5386 size_t offset;
5387 struct page *page;
5388 char *kaddr;
5389 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5392 int ret = 0;
5393
5394 WARN_ON(start > eb->len);
5395 WARN_ON(start + len > eb->start + eb->len);
5396
09cbfeaf 5397 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5398
5399 while (len > 0) {
fb85fc9a 5400 page = eb->pages[i];
550ac1d8 5401
09cbfeaf 5402 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5403 kaddr = page_address(page);
5404 if (copy_to_user(dst, kaddr + offset, cur)) {
5405 ret = -EFAULT;
5406 break;
5407 }
5408
5409 dst += cur;
5410 len -= cur;
5411 offset = 0;
5412 i++;
5413 }
5414
5415 return ret;
5416}
5417
415b35a5
LB
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
1cbb1f45
JM
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424 unsigned long start, unsigned long min_len,
5425 char **map, unsigned long *map_start,
5426 unsigned long *map_len)
d1310b2e 5427{
09cbfeaf 5428 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5429 char *kaddr;
5430 struct page *p;
09cbfeaf
KS
5431 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5433 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5434 PAGE_SHIFT;
d1310b2e 5435
f716abd5
LB
5436 if (start + min_len > eb->len) {
5437 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438 eb->start, eb->len, start, min_len);
5439 return -EINVAL;
5440 }
5441
d1310b2e 5442 if (i != end_i)
415b35a5 5443 return 1;
d1310b2e
CM
5444
5445 if (i == 0) {
5446 offset = start_offset;
5447 *map_start = 0;
5448 } else {
5449 offset = 0;
09cbfeaf 5450 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5451 }
d397712b 5452
fb85fc9a 5453 p = eb->pages[i];
a6591715 5454 kaddr = page_address(p);
d1310b2e 5455 *map = kaddr + offset;
09cbfeaf 5456 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5457 return 0;
5458}
d1310b2e 5459
1cbb1f45
JM
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461 unsigned long start, unsigned long len)
d1310b2e
CM
5462{
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *ptr = (char *)ptrv;
09cbfeaf
KS
5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5470 int ret = 0;
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
09cbfeaf 5475 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5476
d397712b 5477 while (len > 0) {
fb85fc9a 5478 page = eb->pages[i];
d1310b2e 5479
09cbfeaf 5480 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5481
a6591715 5482 kaddr = page_address(page);
d1310b2e 5483 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5484 if (ret)
5485 break;
5486
5487 ptr += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 return ret;
5493}
d1310b2e 5494
f157bf76
DS
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496 const void *srcv)
5497{
5498 char *kaddr;
5499
5500 WARN_ON(!PageUptodate(eb->pages[0]));
5501 kaddr = page_address(eb->pages[0]);
5502 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503 BTRFS_FSID_SIZE);
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508 char *kaddr;
5509
5510 WARN_ON(!PageUptodate(eb->pages[0]));
5511 kaddr = page_address(eb->pages[0]);
5512 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513 BTRFS_FSID_SIZE);
5514}
5515
d1310b2e
CM
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517 unsigned long start, unsigned long len)
5518{
5519 size_t cur;
5520 size_t offset;
5521 struct page *page;
5522 char *kaddr;
5523 char *src = (char *)srcv;
09cbfeaf
KS
5524 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5526
5527 WARN_ON(start > eb->len);
5528 WARN_ON(start + len > eb->start + eb->len);
5529
09cbfeaf 5530 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5531
d397712b 5532 while (len > 0) {
fb85fc9a 5533 page = eb->pages[i];
d1310b2e
CM
5534 WARN_ON(!PageUptodate(page));
5535
09cbfeaf 5536 cur = min(len, PAGE_SIZE - offset);
a6591715 5537 kaddr = page_address(page);
d1310b2e 5538 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5539
5540 src += cur;
5541 len -= cur;
5542 offset = 0;
5543 i++;
5544 }
5545}
d1310b2e 5546
b159fa28
DS
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548 unsigned long len)
d1310b2e
CM
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
09cbfeaf
KS
5554 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5556
5557 WARN_ON(start > eb->len);
5558 WARN_ON(start + len > eb->start + eb->len);
5559
09cbfeaf 5560 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5561
d397712b 5562 while (len > 0) {
fb85fc9a 5563 page = eb->pages[i];
d1310b2e
CM
5564 WARN_ON(!PageUptodate(page));
5565
09cbfeaf 5566 cur = min(len, PAGE_SIZE - offset);
a6591715 5567 kaddr = page_address(page);
b159fa28 5568 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5569
5570 len -= cur;
5571 offset = 0;
5572 i++;
5573 }
5574}
d1310b2e 5575
58e8012c
DS
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577 struct extent_buffer *src)
5578{
5579 int i;
5580 unsigned num_pages;
5581
5582 ASSERT(dst->len == src->len);
5583
5584 num_pages = num_extent_pages(dst->start, dst->len);
5585 for (i = 0; i < num_pages; i++)
5586 copy_page(page_address(dst->pages[i]),
5587 page_address(src->pages[i]));
5588}
5589
d1310b2e
CM
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591 unsigned long dst_offset, unsigned long src_offset,
5592 unsigned long len)
5593{
5594 u64 dst_len = dst->len;
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
09cbfeaf
KS
5599 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5601
5602 WARN_ON(src->len != dst_len);
5603
5604 offset = (start_offset + dst_offset) &
09cbfeaf 5605 (PAGE_SIZE - 1);
d1310b2e 5606
d397712b 5607 while (len > 0) {
fb85fc9a 5608 page = dst->pages[i];
d1310b2e
CM
5609 WARN_ON(!PageUptodate(page));
5610
09cbfeaf 5611 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5612
a6591715 5613 kaddr = page_address(page);
d1310b2e 5614 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5615
5616 src_offset += cur;
5617 len -= cur;
5618 offset = 0;
5619 i++;
5620 }
5621}
d1310b2e 5622
2fe1d551
OS
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625 u8 *p = map + BIT_BYTE(start);
5626 const unsigned int size = start + len;
5627 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630 while (len - bits_to_set >= 0) {
5631 *p |= mask_to_set;
5632 len -= bits_to_set;
5633 bits_to_set = BITS_PER_BYTE;
9c894696 5634 mask_to_set = ~0;
2fe1d551
OS
5635 p++;
5636 }
5637 if (len) {
5638 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639 *p |= mask_to_set;
5640 }
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645 u8 *p = map + BIT_BYTE(start);
5646 const unsigned int size = start + len;
5647 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650 while (len - bits_to_clear >= 0) {
5651 *p &= ~mask_to_clear;
5652 len -= bits_to_clear;
5653 bits_to_clear = BITS_PER_BYTE;
9c894696 5654 mask_to_clear = ~0;
2fe1d551
OS
5655 p++;
5656 }
5657 if (len) {
5658 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659 *p &= ~mask_to_clear;
5660 }
5661}
3e1e8bb7
OS
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677 unsigned long start, unsigned long nr,
5678 unsigned long *page_index,
5679 size_t *page_offset)
5680{
09cbfeaf 5681 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5682 size_t byte_offset = BIT_BYTE(nr);
5683 size_t offset;
5684
5685 /*
5686 * The byte we want is the offset of the extent buffer + the offset of
5687 * the bitmap item in the extent buffer + the offset of the byte in the
5688 * bitmap item.
5689 */
5690 offset = start_offset + start + byte_offset;
5691
09cbfeaf
KS
5692 *page_index = offset >> PAGE_SHIFT;
5693 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703 unsigned long nr)
5704{
2fe1d551 5705 u8 *kaddr;
3e1e8bb7
OS
5706 struct page *page;
5707 unsigned long i;
5708 size_t offset;
5709
5710 eb_bitmap_offset(eb, start, nr, &i, &offset);
5711 page = eb->pages[i];
5712 WARN_ON(!PageUptodate(page));
5713 kaddr = page_address(page);
5714 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725 unsigned long pos, unsigned long len)
5726{
2fe1d551 5727 u8 *kaddr;
3e1e8bb7
OS
5728 struct page *page;
5729 unsigned long i;
5730 size_t offset;
5731 const unsigned int size = pos + len;
5732 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5733 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5734
5735 eb_bitmap_offset(eb, start, pos, &i, &offset);
5736 page = eb->pages[i];
5737 WARN_ON(!PageUptodate(page));
5738 kaddr = page_address(page);
5739
5740 while (len >= bits_to_set) {
5741 kaddr[offset] |= mask_to_set;
5742 len -= bits_to_set;
5743 bits_to_set = BITS_PER_BYTE;
9c894696 5744 mask_to_set = ~0;
09cbfeaf 5745 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5746 offset = 0;
5747 page = eb->pages[++i];
5748 WARN_ON(!PageUptodate(page));
5749 kaddr = page_address(page);
5750 }
5751 }
5752 if (len) {
5753 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754 kaddr[offset] |= mask_to_set;
5755 }
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767 unsigned long pos, unsigned long len)
5768{
2fe1d551 5769 u8 *kaddr;
3e1e8bb7
OS
5770 struct page *page;
5771 unsigned long i;
5772 size_t offset;
5773 const unsigned int size = pos + len;
5774 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5775 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5776
5777 eb_bitmap_offset(eb, start, pos, &i, &offset);
5778 page = eb->pages[i];
5779 WARN_ON(!PageUptodate(page));
5780 kaddr = page_address(page);
5781
5782 while (len >= bits_to_clear) {
5783 kaddr[offset] &= ~mask_to_clear;
5784 len -= bits_to_clear;
5785 bits_to_clear = BITS_PER_BYTE;
9c894696 5786 mask_to_clear = ~0;
09cbfeaf 5787 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5788 offset = 0;
5789 page = eb->pages[++i];
5790 WARN_ON(!PageUptodate(page));
5791 kaddr = page_address(page);
5792 }
5793 }
5794 if (len) {
5795 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796 kaddr[offset] &= ~mask_to_clear;
5797 }
5798}
5799
3387206f
ST
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802 unsigned long distance = (src > dst) ? src - dst : dst - src;
5803 return distance < len;
5804}
5805
d1310b2e
CM
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807 unsigned long dst_off, unsigned long src_off,
5808 unsigned long len)
5809{
a6591715 5810 char *dst_kaddr = page_address(dst_page);
d1310b2e 5811 char *src_kaddr;
727011e0 5812 int must_memmove = 0;
d1310b2e 5813
3387206f 5814 if (dst_page != src_page) {
a6591715 5815 src_kaddr = page_address(src_page);
3387206f 5816 } else {
d1310b2e 5817 src_kaddr = dst_kaddr;
727011e0
CM
5818 if (areas_overlap(src_off, dst_off, len))
5819 must_memmove = 1;
3387206f 5820 }
d1310b2e 5821
727011e0
CM
5822 if (must_memmove)
5823 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824 else
5825 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 unsigned long src_offset, unsigned long len)
5830{
0b246afa 5831 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5832 size_t cur;
5833 size_t dst_off_in_page;
5834 size_t src_off_in_page;
09cbfeaf 5835 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5836 unsigned long dst_i;
5837 unsigned long src_i;
5838
5839 if (src_offset + len > dst->len) {
0b246afa 5840 btrfs_err(fs_info,
5d163e0e
JM
5841 "memmove bogus src_offset %lu move len %lu dst len %lu",
5842 src_offset, len, dst->len);
d1310b2e
CM
5843 BUG_ON(1);
5844 }
5845 if (dst_offset + len > dst->len) {
0b246afa 5846 btrfs_err(fs_info,
5d163e0e
JM
5847 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5848 dst_offset, len, dst->len);
d1310b2e
CM
5849 BUG_ON(1);
5850 }
5851
d397712b 5852 while (len > 0) {
d1310b2e 5853 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5854 (PAGE_SIZE - 1);
d1310b2e 5855 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5856 (PAGE_SIZE - 1);
d1310b2e 5857
09cbfeaf
KS
5858 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5860
09cbfeaf 5861 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5862 src_off_in_page));
5863 cur = min_t(unsigned long, cur,
09cbfeaf 5864 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5865
fb85fc9a 5866 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5867 dst_off_in_page, src_off_in_page, cur);
5868
5869 src_offset += cur;
5870 dst_offset += cur;
5871 len -= cur;
5872 }
5873}
d1310b2e
CM
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 unsigned long src_offset, unsigned long len)
5877{
0b246afa 5878 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5879 size_t cur;
5880 size_t dst_off_in_page;
5881 size_t src_off_in_page;
5882 unsigned long dst_end = dst_offset + len - 1;
5883 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5885 unsigned long dst_i;
5886 unsigned long src_i;
5887
5888 if (src_offset + len > dst->len) {
0b246afa 5889 btrfs_err(fs_info,
5d163e0e
JM
5890 "memmove bogus src_offset %lu move len %lu len %lu",
5891 src_offset, len, dst->len);
d1310b2e
CM
5892 BUG_ON(1);
5893 }
5894 if (dst_offset + len > dst->len) {
0b246afa 5895 btrfs_err(fs_info,
5d163e0e
JM
5896 "memmove bogus dst_offset %lu move len %lu len %lu",
5897 dst_offset, len, dst->len);
d1310b2e
CM
5898 BUG_ON(1);
5899 }
727011e0 5900 if (dst_offset < src_offset) {
d1310b2e
CM
5901 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902 return;
5903 }
d397712b 5904 while (len > 0) {
09cbfeaf
KS
5905 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5907
5908 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5909 (PAGE_SIZE - 1);
d1310b2e 5910 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5911 (PAGE_SIZE - 1);
d1310b2e
CM
5912
5913 cur = min_t(unsigned long, len, src_off_in_page + 1);
5914 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5915 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5916 dst_off_in_page - cur + 1,
5917 src_off_in_page - cur + 1, cur);
5918
5919 dst_end -= cur;
5920 src_end -= cur;
5921 len -= cur;
5922 }
5923}
6af118ce 5924
f7a52a40 5925int try_release_extent_buffer(struct page *page)
19fe0a8b 5926{
6af118ce 5927 struct extent_buffer *eb;
6af118ce 5928
3083ee2e 5929 /*
01327610 5930 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5931 * now.
5932 */
5933 spin_lock(&page->mapping->private_lock);
5934 if (!PagePrivate(page)) {
5935 spin_unlock(&page->mapping->private_lock);
4f2de97a 5936 return 1;
45f49bce 5937 }
6af118ce 5938
3083ee2e
JB
5939 eb = (struct extent_buffer *)page->private;
5940 BUG_ON(!eb);
19fe0a8b
MX
5941
5942 /*
3083ee2e
JB
5943 * This is a little awful but should be ok, we need to make sure that
5944 * the eb doesn't disappear out from under us while we're looking at
5945 * this page.
19fe0a8b 5946 */
3083ee2e 5947 spin_lock(&eb->refs_lock);
0b32f4bb 5948 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5949 spin_unlock(&eb->refs_lock);
5950 spin_unlock(&page->mapping->private_lock);
5951 return 0;
b9473439 5952 }
3083ee2e 5953 spin_unlock(&page->mapping->private_lock);
897ca6e9 5954
19fe0a8b 5955 /*
3083ee2e
JB
5956 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5958 */
3083ee2e
JB
5959 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960 spin_unlock(&eb->refs_lock);
5961 return 0;
b9473439 5962 }
19fe0a8b 5963
f7a52a40 5964 return release_extent_buffer(eb);
6af118ce 5965}