]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: add missing memset while reading compressed inline extents
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
c1c9ff7c 71 atomic_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
f85b7379 101 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
70fd7614 130 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f 146 changeset->bytes_changed += state->end - state->start + 1;
53d32359 147 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 165 sizeof(struct extent_state), 0,
fba4b697 166 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 171 sizeof(struct extent_buffer), 0,
fba4b697 172 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
5598e900
KM
209 kmem_cache_destroy(extent_state_cache);
210 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
211 if (btrfs_bioset)
212 bioset_free(btrfs_bioset);
d1310b2e
CM
213}
214
215void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 216 struct address_space *mapping)
d1310b2e 217{
6bef4d31 218 tree->state = RB_ROOT;
d1310b2e
CM
219 tree->ops = NULL;
220 tree->dirty_bytes = 0;
70dec807 221 spin_lock_init(&tree->lock);
d1310b2e 222 tree->mapping = mapping;
d1310b2e 223}
d1310b2e 224
b2950863 225static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
226{
227 struct extent_state *state;
d1310b2e 228
3ba7ab22
MH
229 /*
230 * The given mask might be not appropriate for the slab allocator,
231 * drop the unsupported bits
232 */
233 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 234 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 235 if (!state)
d1310b2e
CM
236 return state;
237 state->state = 0;
47dc196a 238 state->failrec = NULL;
27a3507d 239 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 240 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
241 atomic_set(&state->refs, 1);
242 init_waitqueue_head(&state->wq);
143bede5 243 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
244 return state;
245}
d1310b2e 246
4845e44f 247void free_extent_state(struct extent_state *state)
d1310b2e 248{
d1310b2e
CM
249 if (!state)
250 return;
251 if (atomic_dec_and_test(&state->refs)) {
27a3507d 252 WARN_ON(extent_state_in_tree(state));
6d49ba1b 253 btrfs_leak_debug_del(&state->leak_list);
143bede5 254 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
255 kmem_cache_free(extent_state_cache, state);
256 }
257}
d1310b2e 258
f2071b21
FM
259static struct rb_node *tree_insert(struct rb_root *root,
260 struct rb_node *search_start,
261 u64 offset,
12cfbad9
FDBM
262 struct rb_node *node,
263 struct rb_node ***p_in,
264 struct rb_node **parent_in)
d1310b2e 265{
f2071b21 266 struct rb_node **p;
d397712b 267 struct rb_node *parent = NULL;
d1310b2e
CM
268 struct tree_entry *entry;
269
12cfbad9
FDBM
270 if (p_in && parent_in) {
271 p = *p_in;
272 parent = *parent_in;
273 goto do_insert;
274 }
275
f2071b21 276 p = search_start ? &search_start : &root->rb_node;
d397712b 277 while (*p) {
d1310b2e
CM
278 parent = *p;
279 entry = rb_entry(parent, struct tree_entry, rb_node);
280
281 if (offset < entry->start)
282 p = &(*p)->rb_left;
283 else if (offset > entry->end)
284 p = &(*p)->rb_right;
285 else
286 return parent;
287 }
288
12cfbad9 289do_insert:
d1310b2e
CM
290 rb_link_node(node, parent, p);
291 rb_insert_color(node, root);
292 return NULL;
293}
294
80ea96b1 295static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
296 struct rb_node **prev_ret,
297 struct rb_node **next_ret,
298 struct rb_node ***p_ret,
299 struct rb_node **parent_ret)
d1310b2e 300{
80ea96b1 301 struct rb_root *root = &tree->state;
12cfbad9 302 struct rb_node **n = &root->rb_node;
d1310b2e
CM
303 struct rb_node *prev = NULL;
304 struct rb_node *orig_prev = NULL;
305 struct tree_entry *entry;
306 struct tree_entry *prev_entry = NULL;
307
12cfbad9
FDBM
308 while (*n) {
309 prev = *n;
310 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
311 prev_entry = entry;
312
313 if (offset < entry->start)
12cfbad9 314 n = &(*n)->rb_left;
d1310b2e 315 else if (offset > entry->end)
12cfbad9 316 n = &(*n)->rb_right;
d397712b 317 else
12cfbad9 318 return *n;
d1310b2e
CM
319 }
320
12cfbad9
FDBM
321 if (p_ret)
322 *p_ret = n;
323 if (parent_ret)
324 *parent_ret = prev;
325
d1310b2e
CM
326 if (prev_ret) {
327 orig_prev = prev;
d397712b 328 while (prev && offset > prev_entry->end) {
d1310b2e
CM
329 prev = rb_next(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *prev_ret = prev;
333 prev = orig_prev;
334 }
335
336 if (next_ret) {
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 338 while (prev && offset < prev_entry->start) {
d1310b2e
CM
339 prev = rb_prev(prev);
340 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
341 }
342 *next_ret = prev;
343 }
344 return NULL;
345}
346
12cfbad9
FDBM
347static inline struct rb_node *
348tree_search_for_insert(struct extent_io_tree *tree,
349 u64 offset,
350 struct rb_node ***p_ret,
351 struct rb_node **parent_ret)
d1310b2e 352{
70dec807 353 struct rb_node *prev = NULL;
d1310b2e 354 struct rb_node *ret;
70dec807 355
12cfbad9 356 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 357 if (!ret)
d1310b2e
CM
358 return prev;
359 return ret;
360}
361
12cfbad9
FDBM
362static inline struct rb_node *tree_search(struct extent_io_tree *tree,
363 u64 offset)
364{
365 return tree_search_for_insert(tree, offset, NULL, NULL);
366}
367
9ed74f2d
JB
368static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
369 struct extent_state *other)
370{
371 if (tree->ops && tree->ops->merge_extent_hook)
372 tree->ops->merge_extent_hook(tree->mapping->host, new,
373 other);
374}
375
d1310b2e
CM
376/*
377 * utility function to look for merge candidates inside a given range.
378 * Any extents with matching state are merged together into a single
379 * extent in the tree. Extents with EXTENT_IO in their state field
380 * are not merged because the end_io handlers need to be able to do
381 * operations on them without sleeping (or doing allocations/splits).
382 *
383 * This should be called with the tree lock held.
384 */
1bf85046
JM
385static void merge_state(struct extent_io_tree *tree,
386 struct extent_state *state)
d1310b2e
CM
387{
388 struct extent_state *other;
389 struct rb_node *other_node;
390
5b21f2ed 391 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 392 return;
d1310b2e
CM
393
394 other_node = rb_prev(&state->rb_node);
395 if (other_node) {
396 other = rb_entry(other_node, struct extent_state, rb_node);
397 if (other->end == state->start - 1 &&
398 other->state == state->state) {
9ed74f2d 399 merge_cb(tree, state, other);
d1310b2e 400 state->start = other->start;
d1310b2e 401 rb_erase(&other->rb_node, &tree->state);
27a3507d 402 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
403 free_extent_state(other);
404 }
405 }
406 other_node = rb_next(&state->rb_node);
407 if (other_node) {
408 other = rb_entry(other_node, struct extent_state, rb_node);
409 if (other->start == state->end + 1 &&
410 other->state == state->state) {
9ed74f2d 411 merge_cb(tree, state, other);
df98b6e2 412 state->end = other->end;
df98b6e2 413 rb_erase(&other->rb_node, &tree->state);
27a3507d 414 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 415 free_extent_state(other);
d1310b2e
CM
416 }
417 }
d1310b2e
CM
418}
419
1bf85046 420static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 421 struct extent_state *state, unsigned *bits)
291d673e 422{
1bf85046
JM
423 if (tree->ops && tree->ops->set_bit_hook)
424 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
425}
426
427static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 428 struct extent_state *state, unsigned *bits)
291d673e 429{
9ed74f2d 430 if (tree->ops && tree->ops->clear_bit_hook)
6fc0ef68
NB
431 tree->ops->clear_bit_hook(BTRFS_I(tree->mapping->host),
432 state, bits);
291d673e
CM
433}
434
3150b699 435static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
436 struct extent_state *state, unsigned *bits,
437 struct extent_changeset *changeset);
3150b699 438
d1310b2e
CM
439/*
440 * insert an extent_state struct into the tree. 'bits' are set on the
441 * struct before it is inserted.
442 *
443 * This may return -EEXIST if the extent is already there, in which case the
444 * state struct is freed.
445 *
446 * The tree lock is not taken internally. This is a utility function and
447 * probably isn't what you want to call (see set/clear_extent_bit).
448 */
449static int insert_state(struct extent_io_tree *tree,
450 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
451 struct rb_node ***p,
452 struct rb_node **parent,
d38ed27f 453 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
454{
455 struct rb_node *node;
456
31b1a2bd 457 if (end < start)
efe120a0 458 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 459 end, start);
d1310b2e
CM
460 state->start = start;
461 state->end = end;
9ed74f2d 462
d38ed27f 463 set_state_bits(tree, state, bits, changeset);
3150b699 464
f2071b21 465 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
466 if (node) {
467 struct extent_state *found;
468 found = rb_entry(node, struct extent_state, rb_node);
62e85577 469 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 470 found->start, found->end, start, end);
d1310b2e
CM
471 return -EEXIST;
472 }
473 merge_state(tree, state);
474 return 0;
475}
476
1bf85046 477static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
478 u64 split)
479{
480 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 481 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
482}
483
d1310b2e
CM
484/*
485 * split a given extent state struct in two, inserting the preallocated
486 * struct 'prealloc' as the newly created second half. 'split' indicates an
487 * offset inside 'orig' where it should be split.
488 *
489 * Before calling,
490 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
491 * are two extent state structs in the tree:
492 * prealloc: [orig->start, split - 1]
493 * orig: [ split, orig->end ]
494 *
495 * The tree locks are not taken by this function. They need to be held
496 * by the caller.
497 */
498static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
499 struct extent_state *prealloc, u64 split)
500{
501 struct rb_node *node;
9ed74f2d
JB
502
503 split_cb(tree, orig, split);
504
d1310b2e
CM
505 prealloc->start = orig->start;
506 prealloc->end = split - 1;
507 prealloc->state = orig->state;
508 orig->start = split;
509
f2071b21
FM
510 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
511 &prealloc->rb_node, NULL, NULL);
d1310b2e 512 if (node) {
d1310b2e
CM
513 free_extent_state(prealloc);
514 return -EEXIST;
515 }
516 return 0;
517}
518
cdc6a395
LZ
519static struct extent_state *next_state(struct extent_state *state)
520{
521 struct rb_node *next = rb_next(&state->rb_node);
522 if (next)
523 return rb_entry(next, struct extent_state, rb_node);
524 else
525 return NULL;
526}
527
d1310b2e
CM
528/*
529 * utility function to clear some bits in an extent state struct.
1b303fc0 530 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
531 *
532 * If no bits are set on the state struct after clearing things, the
533 * struct is freed and removed from the tree
534 */
cdc6a395
LZ
535static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
536 struct extent_state *state,
fefdc557
QW
537 unsigned *bits, int wake,
538 struct extent_changeset *changeset)
d1310b2e 539{
cdc6a395 540 struct extent_state *next;
9ee49a04 541 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 542
0ca1f7ce 543 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
544 u64 range = state->end - state->start + 1;
545 WARN_ON(range > tree->dirty_bytes);
546 tree->dirty_bytes -= range;
547 }
291d673e 548 clear_state_cb(tree, state, bits);
fefdc557 549 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 550 state->state &= ~bits_to_clear;
d1310b2e
CM
551 if (wake)
552 wake_up(&state->wq);
0ca1f7ce 553 if (state->state == 0) {
cdc6a395 554 next = next_state(state);
27a3507d 555 if (extent_state_in_tree(state)) {
d1310b2e 556 rb_erase(&state->rb_node, &tree->state);
27a3507d 557 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
558 free_extent_state(state);
559 } else {
560 WARN_ON(1);
561 }
562 } else {
563 merge_state(tree, state);
cdc6a395 564 next = next_state(state);
d1310b2e 565 }
cdc6a395 566 return next;
d1310b2e
CM
567}
568
8233767a
XG
569static struct extent_state *
570alloc_extent_state_atomic(struct extent_state *prealloc)
571{
572 if (!prealloc)
573 prealloc = alloc_extent_state(GFP_ATOMIC);
574
575 return prealloc;
576}
577
48a3b636 578static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 579{
5d163e0e
JM
580 btrfs_panic(tree_fs_info(tree), err,
581 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
582}
583
d1310b2e
CM
584/*
585 * clear some bits on a range in the tree. This may require splitting
586 * or inserting elements in the tree, so the gfp mask is used to
587 * indicate which allocations or sleeping are allowed.
588 *
589 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
590 * the given range from the tree regardless of state (ie for truncate).
591 *
592 * the range [start, end] is inclusive.
593 *
6763af84 594 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 595 */
fefdc557
QW
596static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
597 unsigned bits, int wake, int delete,
598 struct extent_state **cached_state,
599 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
600{
601 struct extent_state *state;
2c64c53d 602 struct extent_state *cached;
d1310b2e
CM
603 struct extent_state *prealloc = NULL;
604 struct rb_node *node;
5c939df5 605 u64 last_end;
d1310b2e 606 int err;
2ac55d41 607 int clear = 0;
d1310b2e 608
a5dee37d 609 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 610
7ee9e440
JB
611 if (bits & EXTENT_DELALLOC)
612 bits |= EXTENT_NORESERVE;
613
0ca1f7ce
YZ
614 if (delete)
615 bits |= ~EXTENT_CTLBITS;
616 bits |= EXTENT_FIRST_DELALLOC;
617
2ac55d41
JB
618 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
619 clear = 1;
d1310b2e 620again:
d0164adc 621 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
622 /*
623 * Don't care for allocation failure here because we might end
624 * up not needing the pre-allocated extent state at all, which
625 * is the case if we only have in the tree extent states that
626 * cover our input range and don't cover too any other range.
627 * If we end up needing a new extent state we allocate it later.
628 */
d1310b2e 629 prealloc = alloc_extent_state(mask);
d1310b2e
CM
630 }
631
cad321ad 632 spin_lock(&tree->lock);
2c64c53d
CM
633 if (cached_state) {
634 cached = *cached_state;
2ac55d41
JB
635
636 if (clear) {
637 *cached_state = NULL;
638 cached_state = NULL;
639 }
640
27a3507d
FM
641 if (cached && extent_state_in_tree(cached) &&
642 cached->start <= start && cached->end > start) {
2ac55d41
JB
643 if (clear)
644 atomic_dec(&cached->refs);
2c64c53d 645 state = cached;
42daec29 646 goto hit_next;
2c64c53d 647 }
2ac55d41
JB
648 if (clear)
649 free_extent_state(cached);
2c64c53d 650 }
d1310b2e
CM
651 /*
652 * this search will find the extents that end after
653 * our range starts
654 */
80ea96b1 655 node = tree_search(tree, start);
d1310b2e
CM
656 if (!node)
657 goto out;
658 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 659hit_next:
d1310b2e
CM
660 if (state->start > end)
661 goto out;
662 WARN_ON(state->end < start);
5c939df5 663 last_end = state->end;
d1310b2e 664
0449314a 665 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
666 if (!(state->state & bits)) {
667 state = next_state(state);
0449314a 668 goto next;
cdc6a395 669 }
0449314a 670
d1310b2e
CM
671 /*
672 * | ---- desired range ---- |
673 * | state | or
674 * | ------------- state -------------- |
675 *
676 * We need to split the extent we found, and may flip
677 * bits on second half.
678 *
679 * If the extent we found extends past our range, we
680 * just split and search again. It'll get split again
681 * the next time though.
682 *
683 * If the extent we found is inside our range, we clear
684 * the desired bit on it.
685 */
686
687 if (state->start < start) {
8233767a
XG
688 prealloc = alloc_extent_state_atomic(prealloc);
689 BUG_ON(!prealloc);
d1310b2e 690 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
691 if (err)
692 extent_io_tree_panic(tree, err);
693
d1310b2e
CM
694 prealloc = NULL;
695 if (err)
696 goto out;
697 if (state->end <= end) {
fefdc557
QW
698 state = clear_state_bit(tree, state, &bits, wake,
699 changeset);
d1ac6e41 700 goto next;
d1310b2e
CM
701 }
702 goto search_again;
703 }
704 /*
705 * | ---- desired range ---- |
706 * | state |
707 * We need to split the extent, and clear the bit
708 * on the first half
709 */
710 if (state->start <= end && state->end > end) {
8233767a
XG
711 prealloc = alloc_extent_state_atomic(prealloc);
712 BUG_ON(!prealloc);
d1310b2e 713 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
714 if (err)
715 extent_io_tree_panic(tree, err);
716
d1310b2e
CM
717 if (wake)
718 wake_up(&state->wq);
42daec29 719
fefdc557 720 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 721
d1310b2e
CM
722 prealloc = NULL;
723 goto out;
724 }
42daec29 725
fefdc557 726 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 727next:
5c939df5
YZ
728 if (last_end == (u64)-1)
729 goto out;
730 start = last_end + 1;
cdc6a395 731 if (start <= end && state && !need_resched())
692e5759 732 goto hit_next;
d1310b2e
CM
733
734search_again:
735 if (start > end)
736 goto out;
cad321ad 737 spin_unlock(&tree->lock);
d0164adc 738 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
739 cond_resched();
740 goto again;
7ab5cb2a
DS
741
742out:
743 spin_unlock(&tree->lock);
744 if (prealloc)
745 free_extent_state(prealloc);
746
747 return 0;
748
d1310b2e 749}
d1310b2e 750
143bede5
JM
751static void wait_on_state(struct extent_io_tree *tree,
752 struct extent_state *state)
641f5219
CH
753 __releases(tree->lock)
754 __acquires(tree->lock)
d1310b2e
CM
755{
756 DEFINE_WAIT(wait);
757 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 758 spin_unlock(&tree->lock);
d1310b2e 759 schedule();
cad321ad 760 spin_lock(&tree->lock);
d1310b2e 761 finish_wait(&state->wq, &wait);
d1310b2e
CM
762}
763
764/*
765 * waits for one or more bits to clear on a range in the state tree.
766 * The range [start, end] is inclusive.
767 * The tree lock is taken by this function
768 */
41074888
DS
769static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
770 unsigned long bits)
d1310b2e
CM
771{
772 struct extent_state *state;
773 struct rb_node *node;
774
a5dee37d 775 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 776
cad321ad 777 spin_lock(&tree->lock);
d1310b2e
CM
778again:
779 while (1) {
780 /*
781 * this search will find all the extents that end after
782 * our range starts
783 */
80ea96b1 784 node = tree_search(tree, start);
c50d3e71 785process_node:
d1310b2e
CM
786 if (!node)
787 break;
788
789 state = rb_entry(node, struct extent_state, rb_node);
790
791 if (state->start > end)
792 goto out;
793
794 if (state->state & bits) {
795 start = state->start;
796 atomic_inc(&state->refs);
797 wait_on_state(tree, state);
798 free_extent_state(state);
799 goto again;
800 }
801 start = state->end + 1;
802
803 if (start > end)
804 break;
805
c50d3e71
FM
806 if (!cond_resched_lock(&tree->lock)) {
807 node = rb_next(node);
808 goto process_node;
809 }
d1310b2e
CM
810 }
811out:
cad321ad 812 spin_unlock(&tree->lock);
d1310b2e 813}
d1310b2e 814
1bf85046 815static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 816 struct extent_state *state,
d38ed27f 817 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 818{
9ee49a04 819 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 820
1bf85046 821 set_state_cb(tree, state, bits);
0ca1f7ce 822 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
823 u64 range = state->end - state->start + 1;
824 tree->dirty_bytes += range;
825 }
d38ed27f 826 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 827 state->state |= bits_to_set;
d1310b2e
CM
828}
829
e38e2ed7
FM
830static void cache_state_if_flags(struct extent_state *state,
831 struct extent_state **cached_ptr,
9ee49a04 832 unsigned flags)
2c64c53d
CM
833{
834 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 835 if (!flags || (state->state & flags)) {
2c64c53d
CM
836 *cached_ptr = state;
837 atomic_inc(&state->refs);
838 }
839 }
840}
841
e38e2ed7
FM
842static void cache_state(struct extent_state *state,
843 struct extent_state **cached_ptr)
844{
845 return cache_state_if_flags(state, cached_ptr,
846 EXTENT_IOBITS | EXTENT_BOUNDARY);
847}
848
d1310b2e 849/*
1edbb734
CM
850 * set some bits on a range in the tree. This may require allocations or
851 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 852 *
1edbb734
CM
853 * If any of the exclusive bits are set, this will fail with -EEXIST if some
854 * part of the range already has the desired bits set. The start of the
855 * existing range is returned in failed_start in this case.
d1310b2e 856 *
1edbb734 857 * [start, end] is inclusive This takes the tree lock.
d1310b2e 858 */
1edbb734 859
3fbe5c02
JM
860static int __must_check
861__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 862 unsigned bits, unsigned exclusive_bits,
41074888 863 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 864 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
865{
866 struct extent_state *state;
867 struct extent_state *prealloc = NULL;
868 struct rb_node *node;
12cfbad9
FDBM
869 struct rb_node **p;
870 struct rb_node *parent;
d1310b2e 871 int err = 0;
d1310b2e
CM
872 u64 last_start;
873 u64 last_end;
42daec29 874
a5dee37d 875 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 876
0ca1f7ce 877 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 878again:
d0164adc 879 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
880 /*
881 * Don't care for allocation failure here because we might end
882 * up not needing the pre-allocated extent state at all, which
883 * is the case if we only have in the tree extent states that
884 * cover our input range and don't cover too any other range.
885 * If we end up needing a new extent state we allocate it later.
886 */
d1310b2e 887 prealloc = alloc_extent_state(mask);
d1310b2e
CM
888 }
889
cad321ad 890 spin_lock(&tree->lock);
9655d298
CM
891 if (cached_state && *cached_state) {
892 state = *cached_state;
df98b6e2 893 if (state->start <= start && state->end > start &&
27a3507d 894 extent_state_in_tree(state)) {
9655d298
CM
895 node = &state->rb_node;
896 goto hit_next;
897 }
898 }
d1310b2e
CM
899 /*
900 * this search will find all the extents that end after
901 * our range starts.
902 */
12cfbad9 903 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 904 if (!node) {
8233767a
XG
905 prealloc = alloc_extent_state_atomic(prealloc);
906 BUG_ON(!prealloc);
12cfbad9 907 err = insert_state(tree, prealloc, start, end,
d38ed27f 908 &p, &parent, &bits, changeset);
c2d904e0
JM
909 if (err)
910 extent_io_tree_panic(tree, err);
911
c42ac0bc 912 cache_state(prealloc, cached_state);
d1310b2e 913 prealloc = NULL;
d1310b2e
CM
914 goto out;
915 }
d1310b2e 916 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 917hit_next:
d1310b2e
CM
918 last_start = state->start;
919 last_end = state->end;
920
921 /*
922 * | ---- desired range ---- |
923 * | state |
924 *
925 * Just lock what we found and keep going
926 */
927 if (state->start == start && state->end <= end) {
1edbb734 928 if (state->state & exclusive_bits) {
d1310b2e
CM
929 *failed_start = state->start;
930 err = -EEXIST;
931 goto out;
932 }
42daec29 933
d38ed27f 934 set_state_bits(tree, state, &bits, changeset);
2c64c53d 935 cache_state(state, cached_state);
d1310b2e 936 merge_state(tree, state);
5c939df5
YZ
937 if (last_end == (u64)-1)
938 goto out;
939 start = last_end + 1;
d1ac6e41
LB
940 state = next_state(state);
941 if (start < end && state && state->start == start &&
942 !need_resched())
943 goto hit_next;
d1310b2e
CM
944 goto search_again;
945 }
946
947 /*
948 * | ---- desired range ---- |
949 * | state |
950 * or
951 * | ------------- state -------------- |
952 *
953 * We need to split the extent we found, and may flip bits on
954 * second half.
955 *
956 * If the extent we found extends past our
957 * range, we just split and search again. It'll get split
958 * again the next time though.
959 *
960 * If the extent we found is inside our range, we set the
961 * desired bit on it.
962 */
963 if (state->start < start) {
1edbb734 964 if (state->state & exclusive_bits) {
d1310b2e
CM
965 *failed_start = start;
966 err = -EEXIST;
967 goto out;
968 }
8233767a
XG
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
d1310b2e 972 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
973 if (err)
974 extent_io_tree_panic(tree, err);
975
d1310b2e
CM
976 prealloc = NULL;
977 if (err)
978 goto out;
979 if (state->end <= end) {
d38ed27f 980 set_state_bits(tree, state, &bits, changeset);
2c64c53d 981 cache_state(state, cached_state);
d1310b2e 982 merge_state(tree, state);
5c939df5
YZ
983 if (last_end == (u64)-1)
984 goto out;
985 start = last_end + 1;
d1ac6e41
LB
986 state = next_state(state);
987 if (start < end && state && state->start == start &&
988 !need_resched())
989 goto hit_next;
d1310b2e
CM
990 }
991 goto search_again;
992 }
993 /*
994 * | ---- desired range ---- |
995 * | state | or | state |
996 *
997 * There's a hole, we need to insert something in it and
998 * ignore the extent we found.
999 */
1000 if (state->start > start) {
1001 u64 this_end;
1002 if (end < last_start)
1003 this_end = end;
1004 else
d397712b 1005 this_end = last_start - 1;
8233767a
XG
1006
1007 prealloc = alloc_extent_state_atomic(prealloc);
1008 BUG_ON(!prealloc);
c7f895a2
XG
1009
1010 /*
1011 * Avoid to free 'prealloc' if it can be merged with
1012 * the later extent.
1013 */
d1310b2e 1014 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1015 NULL, NULL, &bits, changeset);
c2d904e0
JM
1016 if (err)
1017 extent_io_tree_panic(tree, err);
1018
9ed74f2d
JB
1019 cache_state(prealloc, cached_state);
1020 prealloc = NULL;
d1310b2e
CM
1021 start = this_end + 1;
1022 goto search_again;
1023 }
1024 /*
1025 * | ---- desired range ---- |
1026 * | state |
1027 * We need to split the extent, and set the bit
1028 * on the first half
1029 */
1030 if (state->start <= end && state->end > end) {
1edbb734 1031 if (state->state & exclusive_bits) {
d1310b2e
CM
1032 *failed_start = start;
1033 err = -EEXIST;
1034 goto out;
1035 }
8233767a
XG
1036
1037 prealloc = alloc_extent_state_atomic(prealloc);
1038 BUG_ON(!prealloc);
d1310b2e 1039 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1040 if (err)
1041 extent_io_tree_panic(tree, err);
d1310b2e 1042
d38ed27f 1043 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1044 cache_state(prealloc, cached_state);
d1310b2e
CM
1045 merge_state(tree, prealloc);
1046 prealloc = NULL;
1047 goto out;
1048 }
1049
b5a4ba14
DS
1050search_again:
1051 if (start > end)
1052 goto out;
1053 spin_unlock(&tree->lock);
1054 if (gfpflags_allow_blocking(mask))
1055 cond_resched();
1056 goto again;
d1310b2e
CM
1057
1058out:
cad321ad 1059 spin_unlock(&tree->lock);
d1310b2e
CM
1060 if (prealloc)
1061 free_extent_state(prealloc);
1062
1063 return err;
1064
d1310b2e 1065}
d1310b2e 1066
41074888 1067int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1068 unsigned bits, u64 * failed_start,
41074888 1069 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1070{
1071 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1072 cached_state, mask, NULL);
3fbe5c02
JM
1073}
1074
1075
462d6fac 1076/**
10983f2e
LB
1077 * convert_extent_bit - convert all bits in a given range from one bit to
1078 * another
462d6fac
JB
1079 * @tree: the io tree to search
1080 * @start: the start offset in bytes
1081 * @end: the end offset in bytes (inclusive)
1082 * @bits: the bits to set in this range
1083 * @clear_bits: the bits to clear in this range
e6138876 1084 * @cached_state: state that we're going to cache
462d6fac
JB
1085 *
1086 * This will go through and set bits for the given range. If any states exist
1087 * already in this range they are set with the given bit and cleared of the
1088 * clear_bits. This is only meant to be used by things that are mergeable, ie
1089 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1090 * boundary bits like LOCK.
210aa277
DS
1091 *
1092 * All allocations are done with GFP_NOFS.
462d6fac
JB
1093 */
1094int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1095 unsigned bits, unsigned clear_bits,
210aa277 1096 struct extent_state **cached_state)
462d6fac
JB
1097{
1098 struct extent_state *state;
1099 struct extent_state *prealloc = NULL;
1100 struct rb_node *node;
12cfbad9
FDBM
1101 struct rb_node **p;
1102 struct rb_node *parent;
462d6fac
JB
1103 int err = 0;
1104 u64 last_start;
1105 u64 last_end;
c8fd3de7 1106 bool first_iteration = true;
462d6fac 1107
a5dee37d 1108 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1109
462d6fac 1110again:
210aa277 1111 if (!prealloc) {
c8fd3de7
FM
1112 /*
1113 * Best effort, don't worry if extent state allocation fails
1114 * here for the first iteration. We might have a cached state
1115 * that matches exactly the target range, in which case no
1116 * extent state allocations are needed. We'll only know this
1117 * after locking the tree.
1118 */
210aa277 1119 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1120 if (!prealloc && !first_iteration)
462d6fac
JB
1121 return -ENOMEM;
1122 }
1123
1124 spin_lock(&tree->lock);
e6138876
JB
1125 if (cached_state && *cached_state) {
1126 state = *cached_state;
1127 if (state->start <= start && state->end > start &&
27a3507d 1128 extent_state_in_tree(state)) {
e6138876
JB
1129 node = &state->rb_node;
1130 goto hit_next;
1131 }
1132 }
1133
462d6fac
JB
1134 /*
1135 * this search will find all the extents that end after
1136 * our range starts.
1137 */
12cfbad9 1138 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1139 if (!node) {
1140 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1141 if (!prealloc) {
1142 err = -ENOMEM;
1143 goto out;
1144 }
12cfbad9 1145 err = insert_state(tree, prealloc, start, end,
d38ed27f 1146 &p, &parent, &bits, NULL);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1149 cache_state(prealloc, cached_state);
1150 prealloc = NULL;
462d6fac
JB
1151 goto out;
1152 }
1153 state = rb_entry(node, struct extent_state, rb_node);
1154hit_next:
1155 last_start = state->start;
1156 last_end = state->end;
1157
1158 /*
1159 * | ---- desired range ---- |
1160 * | state |
1161 *
1162 * Just lock what we found and keep going
1163 */
1164 if (state->start == start && state->end <= end) {
d38ed27f 1165 set_state_bits(tree, state, &bits, NULL);
e6138876 1166 cache_state(state, cached_state);
fefdc557 1167 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1168 if (last_end == (u64)-1)
1169 goto out;
462d6fac 1170 start = last_end + 1;
d1ac6e41
LB
1171 if (start < end && state && state->start == start &&
1172 !need_resched())
1173 goto hit_next;
462d6fac
JB
1174 goto search_again;
1175 }
1176
1177 /*
1178 * | ---- desired range ---- |
1179 * | state |
1180 * or
1181 * | ------------- state -------------- |
1182 *
1183 * We need to split the extent we found, and may flip bits on
1184 * second half.
1185 *
1186 * If the extent we found extends past our
1187 * range, we just split and search again. It'll get split
1188 * again the next time though.
1189 *
1190 * If the extent we found is inside our range, we set the
1191 * desired bit on it.
1192 */
1193 if (state->start < start) {
1194 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1195 if (!prealloc) {
1196 err = -ENOMEM;
1197 goto out;
1198 }
462d6fac 1199 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1200 if (err)
1201 extent_io_tree_panic(tree, err);
462d6fac
JB
1202 prealloc = NULL;
1203 if (err)
1204 goto out;
1205 if (state->end <= end) {
d38ed27f 1206 set_state_bits(tree, state, &bits, NULL);
e6138876 1207 cache_state(state, cached_state);
fefdc557
QW
1208 state = clear_state_bit(tree, state, &clear_bits, 0,
1209 NULL);
462d6fac
JB
1210 if (last_end == (u64)-1)
1211 goto out;
1212 start = last_end + 1;
d1ac6e41
LB
1213 if (start < end && state && state->start == start &&
1214 !need_resched())
1215 goto hit_next;
462d6fac
JB
1216 }
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state | or | state |
1222 *
1223 * There's a hole, we need to insert something in it and
1224 * ignore the extent we found.
1225 */
1226 if (state->start > start) {
1227 u64 this_end;
1228 if (end < last_start)
1229 this_end = end;
1230 else
1231 this_end = last_start - 1;
1232
1233 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1234 if (!prealloc) {
1235 err = -ENOMEM;
1236 goto out;
1237 }
462d6fac
JB
1238
1239 /*
1240 * Avoid to free 'prealloc' if it can be merged with
1241 * the later extent.
1242 */
1243 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1244 NULL, NULL, &bits, NULL);
c2d904e0
JM
1245 if (err)
1246 extent_io_tree_panic(tree, err);
e6138876 1247 cache_state(prealloc, cached_state);
462d6fac
JB
1248 prealloc = NULL;
1249 start = this_end + 1;
1250 goto search_again;
1251 }
1252 /*
1253 * | ---- desired range ---- |
1254 * | state |
1255 * We need to split the extent, and set the bit
1256 * on the first half
1257 */
1258 if (state->start <= end && state->end > end) {
1259 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1260 if (!prealloc) {
1261 err = -ENOMEM;
1262 goto out;
1263 }
462d6fac
JB
1264
1265 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1266 if (err)
1267 extent_io_tree_panic(tree, err);
462d6fac 1268
d38ed27f 1269 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1270 cache_state(prealloc, cached_state);
fefdc557 1271 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1272 prealloc = NULL;
1273 goto out;
1274 }
1275
462d6fac
JB
1276search_again:
1277 if (start > end)
1278 goto out;
1279 spin_unlock(&tree->lock);
210aa277 1280 cond_resched();
c8fd3de7 1281 first_iteration = false;
462d6fac 1282 goto again;
462d6fac
JB
1283
1284out:
1285 spin_unlock(&tree->lock);
1286 if (prealloc)
1287 free_extent_state(prealloc);
1288
1289 return err;
462d6fac
JB
1290}
1291
d1310b2e 1292/* wrappers around set/clear extent bit */
d38ed27f 1293int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1294 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1295{
1296 /*
1297 * We don't support EXTENT_LOCKED yet, as current changeset will
1298 * record any bits changed, so for EXTENT_LOCKED case, it will
1299 * either fail with -EEXIST or changeset will record the whole
1300 * range.
1301 */
1302 BUG_ON(bits & EXTENT_LOCKED);
1303
2c53b912 1304 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1305 changeset);
1306}
1307
fefdc557
QW
1308int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, int wake, int delete,
1310 struct extent_state **cached, gfp_t mask)
1311{
1312 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1313 cached, mask, NULL);
1314}
1315
fefdc557 1316int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1317 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1318{
1319 /*
1320 * Don't support EXTENT_LOCKED case, same reason as
1321 * set_record_extent_bits().
1322 */
1323 BUG_ON(bits & EXTENT_LOCKED);
1324
f734c44a 1325 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1326 changeset);
1327}
1328
d352ac68
CM
1329/*
1330 * either insert or lock state struct between start and end use mask to tell
1331 * us if waiting is desired.
1332 */
1edbb734 1333int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1334 struct extent_state **cached_state)
d1310b2e
CM
1335{
1336 int err;
1337 u64 failed_start;
9ee49a04 1338
d1310b2e 1339 while (1) {
ff13db41 1340 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1341 EXTENT_LOCKED, &failed_start,
d38ed27f 1342 cached_state, GFP_NOFS, NULL);
d0082371 1343 if (err == -EEXIST) {
d1310b2e
CM
1344 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1345 start = failed_start;
d0082371 1346 } else
d1310b2e 1347 break;
d1310b2e
CM
1348 WARN_ON(start > end);
1349 }
1350 return err;
1351}
d1310b2e 1352
d0082371 1353int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1354{
1355 int err;
1356 u64 failed_start;
1357
3fbe5c02 1358 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1359 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1360 if (err == -EEXIST) {
1361 if (failed_start > start)
1362 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1363 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1364 return 0;
6643558d 1365 }
25179201
JB
1366 return 1;
1367}
25179201 1368
bd1fa4f0 1369void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1370{
09cbfeaf
KS
1371 unsigned long index = start >> PAGE_SHIFT;
1372 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 clear_page_dirty_for_io(page);
09cbfeaf 1379 put_page(page);
4adaa611
CM
1380 index++;
1381 }
4adaa611
CM
1382}
1383
f6311572 1384void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1385{
09cbfeaf
KS
1386 unsigned long index = start >> PAGE_SHIFT;
1387 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1388 struct page *page;
1389
1390 while (index <= end_index) {
1391 page = find_get_page(inode->i_mapping, index);
1392 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1393 __set_page_dirty_nobuffers(page);
8d38633c 1394 account_page_redirty(page);
09cbfeaf 1395 put_page(page);
4adaa611
CM
1396 index++;
1397 }
4adaa611
CM
1398}
1399
d1310b2e
CM
1400/*
1401 * helper function to set both pages and extents in the tree writeback
1402 */
35de6db2 1403static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1404{
09cbfeaf
KS
1405 unsigned long index = start >> PAGE_SHIFT;
1406 unsigned long end_index = end >> PAGE_SHIFT;
d1310b2e
CM
1407 struct page *page;
1408
1409 while (index <= end_index) {
1410 page = find_get_page(tree->mapping, index);
79787eaa 1411 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e 1412 set_page_writeback(page);
09cbfeaf 1413 put_page(page);
d1310b2e
CM
1414 index++;
1415 }
d1310b2e 1416}
d1310b2e 1417
d352ac68
CM
1418/* find the first state struct with 'bits' set after 'start', and
1419 * return it. tree->lock must be held. NULL will returned if
1420 * nothing was found after 'start'
1421 */
48a3b636
ES
1422static struct extent_state *
1423find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1424 u64 start, unsigned bits)
d7fc640e
CM
1425{
1426 struct rb_node *node;
1427 struct extent_state *state;
1428
1429 /*
1430 * this search will find all the extents that end after
1431 * our range starts.
1432 */
1433 node = tree_search(tree, start);
d397712b 1434 if (!node)
d7fc640e 1435 goto out;
d7fc640e 1436
d397712b 1437 while (1) {
d7fc640e 1438 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1439 if (state->end >= start && (state->state & bits))
d7fc640e 1440 return state;
d397712b 1441
d7fc640e
CM
1442 node = rb_next(node);
1443 if (!node)
1444 break;
1445 }
1446out:
1447 return NULL;
1448}
d7fc640e 1449
69261c4b
XG
1450/*
1451 * find the first offset in the io tree with 'bits' set. zero is
1452 * returned if we find something, and *start_ret and *end_ret are
1453 * set to reflect the state struct that was found.
1454 *
477d7eaf 1455 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1456 */
1457int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1458 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1459 struct extent_state **cached_state)
69261c4b
XG
1460{
1461 struct extent_state *state;
e6138876 1462 struct rb_node *n;
69261c4b
XG
1463 int ret = 1;
1464
1465 spin_lock(&tree->lock);
e6138876
JB
1466 if (cached_state && *cached_state) {
1467 state = *cached_state;
27a3507d 1468 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1469 n = rb_next(&state->rb_node);
1470 while (n) {
1471 state = rb_entry(n, struct extent_state,
1472 rb_node);
1473 if (state->state & bits)
1474 goto got_it;
1475 n = rb_next(n);
1476 }
1477 free_extent_state(*cached_state);
1478 *cached_state = NULL;
1479 goto out;
1480 }
1481 free_extent_state(*cached_state);
1482 *cached_state = NULL;
1483 }
1484
69261c4b 1485 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1486got_it:
69261c4b 1487 if (state) {
e38e2ed7 1488 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1489 *start_ret = state->start;
1490 *end_ret = state->end;
1491 ret = 0;
1492 }
e6138876 1493out:
69261c4b
XG
1494 spin_unlock(&tree->lock);
1495 return ret;
1496}
1497
d352ac68
CM
1498/*
1499 * find a contiguous range of bytes in the file marked as delalloc, not
1500 * more than 'max_bytes'. start and end are used to return the range,
1501 *
1502 * 1 is returned if we find something, 0 if nothing was in the tree
1503 */
c8b97818 1504static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1505 u64 *start, u64 *end, u64 max_bytes,
1506 struct extent_state **cached_state)
d1310b2e
CM
1507{
1508 struct rb_node *node;
1509 struct extent_state *state;
1510 u64 cur_start = *start;
1511 u64 found = 0;
1512 u64 total_bytes = 0;
1513
cad321ad 1514 spin_lock(&tree->lock);
c8b97818 1515
d1310b2e
CM
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
80ea96b1 1520 node = tree_search(tree, cur_start);
2b114d1d 1521 if (!node) {
3b951516
CM
1522 if (!found)
1523 *end = (u64)-1;
d1310b2e
CM
1524 goto out;
1525 }
1526
d397712b 1527 while (1) {
d1310b2e 1528 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1529 if (found && (state->start != cur_start ||
1530 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1531 goto out;
1532 }
1533 if (!(state->state & EXTENT_DELALLOC)) {
1534 if (!found)
1535 *end = state->end;
1536 goto out;
1537 }
c2a128d2 1538 if (!found) {
d1310b2e 1539 *start = state->start;
c2a128d2
JB
1540 *cached_state = state;
1541 atomic_inc(&state->refs);
1542 }
d1310b2e
CM
1543 found++;
1544 *end = state->end;
1545 cur_start = state->end + 1;
1546 node = rb_next(node);
d1310b2e 1547 total_bytes += state->end - state->start + 1;
7bf811a5 1548 if (total_bytes >= max_bytes)
573aecaf 1549 break;
573aecaf 1550 if (!node)
d1310b2e
CM
1551 break;
1552 }
1553out:
cad321ad 1554 spin_unlock(&tree->lock);
d1310b2e
CM
1555 return found;
1556}
1557
da2c7009
LB
1558static int __process_pages_contig(struct address_space *mapping,
1559 struct page *locked_page,
1560 pgoff_t start_index, pgoff_t end_index,
1561 unsigned long page_ops, pgoff_t *index_ret);
1562
143bede5
JM
1563static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
c8b97818 1566{
09cbfeaf
KS
1567 unsigned long index = start >> PAGE_SHIFT;
1568 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1569
76c0021d 1570 ASSERT(locked_page);
c8b97818 1571 if (index == locked_page->index && end_index == index)
143bede5 1572 return;
c8b97818 1573
76c0021d
LB
1574 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1575 PAGE_UNLOCK, NULL);
c8b97818
CM
1576}
1577
1578static noinline int lock_delalloc_pages(struct inode *inode,
1579 struct page *locked_page,
1580 u64 delalloc_start,
1581 u64 delalloc_end)
1582{
09cbfeaf 1583 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1584 unsigned long index_ret = index;
09cbfeaf 1585 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1586 int ret;
c8b97818 1587
76c0021d 1588 ASSERT(locked_page);
c8b97818
CM
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
76c0021d
LB
1592 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1593 end_index, PAGE_LOCK, &index_ret);
1594 if (ret == -EAGAIN)
1595 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1596 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1597 return ret;
1598}
1599
1600/*
1601 * find a contiguous range of bytes in the file marked as delalloc, not
1602 * more than 'max_bytes'. start and end are used to return the range,
1603 *
1604 * 1 is returned if we find something, 0 if nothing was in the tree
1605 */
294e30fe
JB
1606STATIC u64 find_lock_delalloc_range(struct inode *inode,
1607 struct extent_io_tree *tree,
1608 struct page *locked_page, u64 *start,
1609 u64 *end, u64 max_bytes)
c8b97818
CM
1610{
1611 u64 delalloc_start;
1612 u64 delalloc_end;
1613 u64 found;
9655d298 1614 struct extent_state *cached_state = NULL;
c8b97818
CM
1615 int ret;
1616 int loops = 0;
1617
1618again:
1619 /* step one, find a bunch of delalloc bytes starting at start */
1620 delalloc_start = *start;
1621 delalloc_end = 0;
1622 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1623 max_bytes, &cached_state);
70b99e69 1624 if (!found || delalloc_end <= *start) {
c8b97818
CM
1625 *start = delalloc_start;
1626 *end = delalloc_end;
c2a128d2 1627 free_extent_state(cached_state);
385fe0be 1628 return 0;
c8b97818
CM
1629 }
1630
70b99e69
CM
1631 /*
1632 * start comes from the offset of locked_page. We have to lock
1633 * pages in order, so we can't process delalloc bytes before
1634 * locked_page
1635 */
d397712b 1636 if (delalloc_start < *start)
70b99e69 1637 delalloc_start = *start;
70b99e69 1638
c8b97818
CM
1639 /*
1640 * make sure to limit the number of pages we try to lock down
c8b97818 1641 */
7bf811a5
JB
1642 if (delalloc_end + 1 - delalloc_start > max_bytes)
1643 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1644
c8b97818
CM
1645 /* step two, lock all the pages after the page that has start */
1646 ret = lock_delalloc_pages(inode, locked_page,
1647 delalloc_start, delalloc_end);
1648 if (ret == -EAGAIN) {
1649 /* some of the pages are gone, lets avoid looping by
1650 * shortening the size of the delalloc range we're searching
1651 */
9655d298 1652 free_extent_state(cached_state);
7d788742 1653 cached_state = NULL;
c8b97818 1654 if (!loops) {
09cbfeaf 1655 max_bytes = PAGE_SIZE;
c8b97818
CM
1656 loops = 1;
1657 goto again;
1658 } else {
1659 found = 0;
1660 goto out_failed;
1661 }
1662 }
79787eaa 1663 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1664
1665 /* step three, lock the state bits for the whole range */
ff13db41 1666 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1667
1668 /* then test to make sure it is all still delalloc */
1669 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1670 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1671 if (!ret) {
9655d298
CM
1672 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1673 &cached_state, GFP_NOFS);
c8b97818
CM
1674 __unlock_for_delalloc(inode, locked_page,
1675 delalloc_start, delalloc_end);
1676 cond_resched();
1677 goto again;
1678 }
9655d298 1679 free_extent_state(cached_state);
c8b97818
CM
1680 *start = delalloc_start;
1681 *end = delalloc_end;
1682out_failed:
1683 return found;
1684}
1685
da2c7009
LB
1686static int __process_pages_contig(struct address_space *mapping,
1687 struct page *locked_page,
1688 pgoff_t start_index, pgoff_t end_index,
1689 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1690{
873695b3 1691 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1692 unsigned long pages_locked = 0;
873695b3 1693 pgoff_t index = start_index;
c8b97818 1694 struct page *pages[16];
873695b3 1695 unsigned ret;
da2c7009 1696 int err = 0;
c8b97818 1697 int i;
771ed689 1698
da2c7009
LB
1699 if (page_ops & PAGE_LOCK) {
1700 ASSERT(page_ops == PAGE_LOCK);
1701 ASSERT(index_ret && *index_ret == start_index);
1702 }
1703
704de49d 1704 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1705 mapping_set_error(mapping, -EIO);
704de49d 1706
d397712b 1707 while (nr_pages > 0) {
873695b3 1708 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1709 min_t(unsigned long,
1710 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1711 if (ret == 0) {
1712 /*
1713 * Only if we're going to lock these pages,
1714 * can we find nothing at @index.
1715 */
1716 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1717 err = -EAGAIN;
1718 goto out;
da2c7009 1719 }
8b62b72b 1720
da2c7009 1721 for (i = 0; i < ret; i++) {
c2790a2e 1722 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1723 SetPagePrivate2(pages[i]);
1724
c8b97818 1725 if (pages[i] == locked_page) {
09cbfeaf 1726 put_page(pages[i]);
da2c7009 1727 pages_locked++;
c8b97818
CM
1728 continue;
1729 }
c2790a2e 1730 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1731 clear_page_dirty_for_io(pages[i]);
c2790a2e 1732 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1733 set_page_writeback(pages[i]);
704de49d
FM
1734 if (page_ops & PAGE_SET_ERROR)
1735 SetPageError(pages[i]);
c2790a2e 1736 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1737 end_page_writeback(pages[i]);
c2790a2e 1738 if (page_ops & PAGE_UNLOCK)
771ed689 1739 unlock_page(pages[i]);
da2c7009
LB
1740 if (page_ops & PAGE_LOCK) {
1741 lock_page(pages[i]);
1742 if (!PageDirty(pages[i]) ||
1743 pages[i]->mapping != mapping) {
1744 unlock_page(pages[i]);
1745 put_page(pages[i]);
1746 err = -EAGAIN;
1747 goto out;
1748 }
1749 }
09cbfeaf 1750 put_page(pages[i]);
da2c7009 1751 pages_locked++;
c8b97818
CM
1752 }
1753 nr_pages -= ret;
1754 index += ret;
1755 cond_resched();
1756 }
da2c7009
LB
1757out:
1758 if (err && index_ret)
1759 *index_ret = start_index + pages_locked - 1;
1760 return err;
c8b97818 1761}
c8b97818 1762
873695b3
LB
1763void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1764 u64 delalloc_end, struct page *locked_page,
1765 unsigned clear_bits,
1766 unsigned long page_ops)
1767{
1768 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1769 NULL, GFP_NOFS);
1770
1771 __process_pages_contig(inode->i_mapping, locked_page,
1772 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1773 page_ops, NULL);
873695b3
LB
1774}
1775
d352ac68
CM
1776/*
1777 * count the number of bytes in the tree that have a given bit(s)
1778 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1779 * cached. The total number found is returned.
1780 */
d1310b2e
CM
1781u64 count_range_bits(struct extent_io_tree *tree,
1782 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1783 unsigned bits, int contig)
d1310b2e
CM
1784{
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 u64 cur_start = *start;
1788 u64 total_bytes = 0;
ec29ed5b 1789 u64 last = 0;
d1310b2e
CM
1790 int found = 0;
1791
fae7f21c 1792 if (WARN_ON(search_end <= cur_start))
d1310b2e 1793 return 0;
d1310b2e 1794
cad321ad 1795 spin_lock(&tree->lock);
d1310b2e
CM
1796 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1797 total_bytes = tree->dirty_bytes;
1798 goto out;
1799 }
1800 /*
1801 * this search will find all the extents that end after
1802 * our range starts.
1803 */
80ea96b1 1804 node = tree_search(tree, cur_start);
d397712b 1805 if (!node)
d1310b2e 1806 goto out;
d1310b2e 1807
d397712b 1808 while (1) {
d1310b2e
CM
1809 state = rb_entry(node, struct extent_state, rb_node);
1810 if (state->start > search_end)
1811 break;
ec29ed5b
CM
1812 if (contig && found && state->start > last + 1)
1813 break;
1814 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1815 total_bytes += min(search_end, state->end) + 1 -
1816 max(cur_start, state->start);
1817 if (total_bytes >= max_bytes)
1818 break;
1819 if (!found) {
af60bed2 1820 *start = max(cur_start, state->start);
d1310b2e
CM
1821 found = 1;
1822 }
ec29ed5b
CM
1823 last = state->end;
1824 } else if (contig && found) {
1825 break;
d1310b2e
CM
1826 }
1827 node = rb_next(node);
1828 if (!node)
1829 break;
1830 }
1831out:
cad321ad 1832 spin_unlock(&tree->lock);
d1310b2e
CM
1833 return total_bytes;
1834}
b2950863 1835
d352ac68
CM
1836/*
1837 * set the private field for a given byte offset in the tree. If there isn't
1838 * an extent_state there already, this does nothing.
1839 */
f827ba9a 1840static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1841 struct io_failure_record *failrec)
d1310b2e
CM
1842{
1843 struct rb_node *node;
1844 struct extent_state *state;
1845 int ret = 0;
1846
cad321ad 1847 spin_lock(&tree->lock);
d1310b2e
CM
1848 /*
1849 * this search will find all the extents that end after
1850 * our range starts.
1851 */
80ea96b1 1852 node = tree_search(tree, start);
2b114d1d 1853 if (!node) {
d1310b2e
CM
1854 ret = -ENOENT;
1855 goto out;
1856 }
1857 state = rb_entry(node, struct extent_state, rb_node);
1858 if (state->start != start) {
1859 ret = -ENOENT;
1860 goto out;
1861 }
47dc196a 1862 state->failrec = failrec;
d1310b2e 1863out:
cad321ad 1864 spin_unlock(&tree->lock);
d1310b2e
CM
1865 return ret;
1866}
1867
f827ba9a 1868static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1869 struct io_failure_record **failrec)
d1310b2e
CM
1870{
1871 struct rb_node *node;
1872 struct extent_state *state;
1873 int ret = 0;
1874
cad321ad 1875 spin_lock(&tree->lock);
d1310b2e
CM
1876 /*
1877 * this search will find all the extents that end after
1878 * our range starts.
1879 */
80ea96b1 1880 node = tree_search(tree, start);
2b114d1d 1881 if (!node) {
d1310b2e
CM
1882 ret = -ENOENT;
1883 goto out;
1884 }
1885 state = rb_entry(node, struct extent_state, rb_node);
1886 if (state->start != start) {
1887 ret = -ENOENT;
1888 goto out;
1889 }
47dc196a 1890 *failrec = state->failrec;
d1310b2e 1891out:
cad321ad 1892 spin_unlock(&tree->lock);
d1310b2e
CM
1893 return ret;
1894}
1895
1896/*
1897 * searches a range in the state tree for a given mask.
70dec807 1898 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1899 * has the bits set. Otherwise, 1 is returned if any bit in the
1900 * range is found set.
1901 */
1902int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1903 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1904{
1905 struct extent_state *state = NULL;
1906 struct rb_node *node;
1907 int bitset = 0;
d1310b2e 1908
cad321ad 1909 spin_lock(&tree->lock);
27a3507d 1910 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1911 cached->end > start)
9655d298
CM
1912 node = &cached->rb_node;
1913 else
1914 node = tree_search(tree, start);
d1310b2e
CM
1915 while (node && start <= end) {
1916 state = rb_entry(node, struct extent_state, rb_node);
1917
1918 if (filled && state->start > start) {
1919 bitset = 0;
1920 break;
1921 }
1922
1923 if (state->start > end)
1924 break;
1925
1926 if (state->state & bits) {
1927 bitset = 1;
1928 if (!filled)
1929 break;
1930 } else if (filled) {
1931 bitset = 0;
1932 break;
1933 }
46562cec
CM
1934
1935 if (state->end == (u64)-1)
1936 break;
1937
d1310b2e
CM
1938 start = state->end + 1;
1939 if (start > end)
1940 break;
1941 node = rb_next(node);
1942 if (!node) {
1943 if (filled)
1944 bitset = 0;
1945 break;
1946 }
1947 }
cad321ad 1948 spin_unlock(&tree->lock);
d1310b2e
CM
1949 return bitset;
1950}
d1310b2e
CM
1951
1952/*
1953 * helper function to set a given page up to date if all the
1954 * extents in the tree for that page are up to date
1955 */
143bede5 1956static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1957{
4eee4fa4 1958 u64 start = page_offset(page);
09cbfeaf 1959 u64 end = start + PAGE_SIZE - 1;
9655d298 1960 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1961 SetPageUptodate(page);
d1310b2e
CM
1962}
1963
4ac1f4ac 1964int free_io_failure(struct btrfs_inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1965{
1966 int ret;
1967 int err = 0;
4ac1f4ac 1968 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
4a54c8c1 1969
47dc196a 1970 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1971 ret = clear_extent_bits(failure_tree, rec->start,
1972 rec->start + rec->len - 1,
91166212 1973 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1974 if (ret)
1975 err = ret;
1976
4ac1f4ac 1977 ret = clear_extent_bits(&inode->io_tree, rec->start,
53b381b3 1978 rec->start + rec->len - 1,
91166212 1979 EXTENT_DAMAGED);
53b381b3
DW
1980 if (ret && !err)
1981 err = ret;
4a54c8c1
JS
1982
1983 kfree(rec);
1984 return err;
1985}
1986
4a54c8c1
JS
1987/*
1988 * this bypasses the standard btrfs submit functions deliberately, as
1989 * the standard behavior is to write all copies in a raid setup. here we only
1990 * want to write the one bad copy. so we do the mapping for ourselves and issue
1991 * submit_bio directly.
3ec706c8 1992 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1993 * actually prevents the read that triggered the error from finishing.
1994 * currently, there can be no more than two copies of every data bit. thus,
1995 * exactly one rewrite is required.
1996 */
9d4f7f8a
NB
1997int repair_io_failure(struct btrfs_inode *inode, u64 start, u64 length,
1998 u64 logical, struct page *page,
1999 unsigned int pg_offset, int mirror_num)
4a54c8c1 2000{
9d4f7f8a 2001 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2002 struct bio *bio;
2003 struct btrfs_device *dev;
4a54c8c1
JS
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
53b381b3 2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2008 int ret;
2009
908960c6 2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2011 BUG_ON(!mirror_num);
2012
53b381b3
DW
2013 /* we can't repair anything in raid56 yet */
2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 return 0;
2016
9be3395b 2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2018 if (!bio)
2019 return -EIO;
4f024f37 2020 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2021 map_length = length;
2022
b5de8d0d
FM
2023 /*
2024 * Avoid races with device replace and make sure our bbio has devices
2025 * associated to its stripes that don't go away while we are doing the
2026 * read repair operation.
2027 */
2028 btrfs_bio_counter_inc_blocked(fs_info);
cf8cddd3 2029 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
4a54c8c1
JS
2030 &map_length, &bbio, mirror_num);
2031 if (ret) {
b5de8d0d 2032 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2033 bio_put(bio);
2034 return -EIO;
2035 }
2036 BUG_ON(mirror_num != bbio->mirror_num);
2037 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2038 bio->bi_iter.bi_sector = sector;
4a54c8c1 2039 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2040 btrfs_put_bbio(bbio);
4a54c8c1 2041 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2042 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2043 bio_put(bio);
2044 return -EIO;
2045 }
2046 bio->bi_bdev = dev->bdev;
70fd7614 2047 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2048 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2049
4e49ea4a 2050 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2051 /* try to remap that extent elsewhere? */
b5de8d0d 2052 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2053 bio_put(bio);
442a4f63 2054 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2055 return -EIO;
2056 }
2057
b14af3b4
DS
2058 btrfs_info_rl_in_rcu(fs_info,
2059 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
9d4f7f8a 2060 btrfs_ino(inode), start,
1203b681 2061 rcu_str_deref(dev->name), sector);
b5de8d0d 2062 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2063 bio_put(bio);
2064 return 0;
2065}
2066
2ff7e61e
JM
2067int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2068 struct extent_buffer *eb, int mirror_num)
ea466794 2069{
ea466794
JB
2070 u64 start = eb->start;
2071 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2072 int ret = 0;
ea466794 2073
0b246afa 2074 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2075 return -EROFS;
2076
ea466794 2077 for (i = 0; i < num_pages; i++) {
fb85fc9a 2078 struct page *p = eb->pages[i];
1203b681 2079
9d4f7f8a 2080 ret = repair_io_failure(BTRFS_I(fs_info->btree_inode), start,
09cbfeaf 2081 PAGE_SIZE, start, p,
1203b681 2082 start - page_offset(p), mirror_num);
ea466794
JB
2083 if (ret)
2084 break;
09cbfeaf 2085 start += PAGE_SIZE;
ea466794
JB
2086 }
2087
2088 return ret;
2089}
2090
4a54c8c1
JS
2091/*
2092 * each time an IO finishes, we do a fast check in the IO failure tree
2093 * to see if we need to process or clean up an io_failure_record
2094 */
b30cb441 2095int clean_io_failure(struct btrfs_inode *inode, u64 start, struct page *page,
8b110e39 2096 unsigned int pg_offset)
4a54c8c1
JS
2097{
2098 u64 private;
4a54c8c1 2099 struct io_failure_record *failrec;
b30cb441 2100 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4a54c8c1
JS
2101 struct extent_state *state;
2102 int num_copies;
4a54c8c1 2103 int ret;
4a54c8c1
JS
2104
2105 private = 0;
b30cb441 2106 ret = count_range_bits(&inode->io_failure_tree, &private,
4a54c8c1
JS
2107 (u64)-1, 1, EXTENT_DIRTY, 0);
2108 if (!ret)
2109 return 0;
2110
b30cb441 2111 ret = get_state_failrec(&inode->io_failure_tree, start,
47dc196a 2112 &failrec);
4a54c8c1
JS
2113 if (ret)
2114 return 0;
2115
4a54c8c1
JS
2116 BUG_ON(!failrec->this_mirror);
2117
2118 if (failrec->in_validation) {
2119 /* there was no real error, just free the record */
ab8d0fc4
JM
2120 btrfs_debug(fs_info,
2121 "clean_io_failure: freeing dummy error at %llu",
2122 failrec->start);
4a54c8c1
JS
2123 goto out;
2124 }
908960c6
ID
2125 if (fs_info->sb->s_flags & MS_RDONLY)
2126 goto out;
4a54c8c1 2127
b30cb441
NB
2128 spin_lock(&inode->io_tree.lock);
2129 state = find_first_extent_bit_state(&inode->io_tree,
4a54c8c1
JS
2130 failrec->start,
2131 EXTENT_LOCKED);
b30cb441 2132 spin_unlock(&inode->io_tree.lock);
4a54c8c1 2133
883d0de4
MX
2134 if (state && state->start <= failrec->start &&
2135 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2136 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2137 failrec->len);
4a54c8c1 2138 if (num_copies > 1) {
b30cb441 2139 repair_io_failure(inode, start, failrec->len,
454ff3de 2140 failrec->logical, page,
1203b681 2141 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2142 }
2143 }
2144
2145out:
b30cb441 2146 free_io_failure(inode, failrec);
4a54c8c1 2147
454ff3de 2148 return 0;
4a54c8c1
JS
2149}
2150
f612496b
MX
2151/*
2152 * Can be called when
2153 * - hold extent lock
2154 * - under ordered extent
2155 * - the inode is freeing
2156 */
7ab7956e 2157void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2158{
7ab7956e 2159 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2160 struct io_failure_record *failrec;
2161 struct extent_state *state, *next;
2162
2163 if (RB_EMPTY_ROOT(&failure_tree->state))
2164 return;
2165
2166 spin_lock(&failure_tree->lock);
2167 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2168 while (state) {
2169 if (state->start > end)
2170 break;
2171
2172 ASSERT(state->end <= end);
2173
2174 next = next_state(state);
2175
47dc196a 2176 failrec = state->failrec;
f612496b
MX
2177 free_extent_state(state);
2178 kfree(failrec);
2179
2180 state = next;
2181 }
2182 spin_unlock(&failure_tree->lock);
2183}
2184
2fe6303e 2185int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2186 struct io_failure_record **failrec_ret)
4a54c8c1 2187{
ab8d0fc4 2188 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2189 struct io_failure_record *failrec;
4a54c8c1 2190 struct extent_map *em;
4a54c8c1
JS
2191 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2192 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2193 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2194 int ret;
4a54c8c1
JS
2195 u64 logical;
2196
47dc196a 2197 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2198 if (ret) {
2199 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2200 if (!failrec)
2201 return -ENOMEM;
2fe6303e 2202
4a54c8c1
JS
2203 failrec->start = start;
2204 failrec->len = end - start + 1;
2205 failrec->this_mirror = 0;
2206 failrec->bio_flags = 0;
2207 failrec->in_validation = 0;
2208
2209 read_lock(&em_tree->lock);
2210 em = lookup_extent_mapping(em_tree, start, failrec->len);
2211 if (!em) {
2212 read_unlock(&em_tree->lock);
2213 kfree(failrec);
2214 return -EIO;
2215 }
2216
68ba990f 2217 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2218 free_extent_map(em);
2219 em = NULL;
2220 }
2221 read_unlock(&em_tree->lock);
7a2d6a64 2222 if (!em) {
4a54c8c1
JS
2223 kfree(failrec);
2224 return -EIO;
2225 }
2fe6303e 2226
4a54c8c1
JS
2227 logical = start - em->start;
2228 logical = em->block_start + logical;
2229 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2230 logical = em->block_start;
2231 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2232 extent_set_compress_type(&failrec->bio_flags,
2233 em->compress_type);
2234 }
2fe6303e 2235
ab8d0fc4
JM
2236 btrfs_debug(fs_info,
2237 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2238 logical, start, failrec->len);
2fe6303e 2239
4a54c8c1
JS
2240 failrec->logical = logical;
2241 free_extent_map(em);
2242
2243 /* set the bits in the private failure tree */
2244 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2245 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2246 if (ret >= 0)
47dc196a 2247 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2248 /* set the bits in the inode's tree */
2249 if (ret >= 0)
ceeb0ae7 2250 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2251 if (ret < 0) {
2252 kfree(failrec);
2253 return ret;
2254 }
2255 } else {
ab8d0fc4
JM
2256 btrfs_debug(fs_info,
2257 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2258 failrec->logical, failrec->start, failrec->len,
2259 failrec->in_validation);
4a54c8c1
JS
2260 /*
2261 * when data can be on disk more than twice, add to failrec here
2262 * (e.g. with a list for failed_mirror) to make
2263 * clean_io_failure() clean all those errors at once.
2264 */
2265 }
2fe6303e
MX
2266
2267 *failrec_ret = failrec;
2268
2269 return 0;
2270}
2271
2272int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2273 struct io_failure_record *failrec, int failed_mirror)
2274{
ab8d0fc4 2275 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2276 int num_copies;
2277
ab8d0fc4 2278 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2279 if (num_copies == 1) {
2280 /*
2281 * we only have a single copy of the data, so don't bother with
2282 * all the retry and error correction code that follows. no
2283 * matter what the error is, it is very likely to persist.
2284 */
ab8d0fc4
JM
2285 btrfs_debug(fs_info,
2286 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2287 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2288 return 0;
4a54c8c1
JS
2289 }
2290
4a54c8c1
JS
2291 /*
2292 * there are two premises:
2293 * a) deliver good data to the caller
2294 * b) correct the bad sectors on disk
2295 */
2296 if (failed_bio->bi_vcnt > 1) {
2297 /*
2298 * to fulfill b), we need to know the exact failing sectors, as
2299 * we don't want to rewrite any more than the failed ones. thus,
2300 * we need separate read requests for the failed bio
2301 *
2302 * if the following BUG_ON triggers, our validation request got
2303 * merged. we need separate requests for our algorithm to work.
2304 */
2305 BUG_ON(failrec->in_validation);
2306 failrec->in_validation = 1;
2307 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2308 } else {
2309 /*
2310 * we're ready to fulfill a) and b) alongside. get a good copy
2311 * of the failed sector and if we succeed, we have setup
2312 * everything for repair_io_failure to do the rest for us.
2313 */
2314 if (failrec->in_validation) {
2315 BUG_ON(failrec->this_mirror != failed_mirror);
2316 failrec->in_validation = 0;
2317 failrec->this_mirror = 0;
2318 }
2319 failrec->failed_mirror = failed_mirror;
2320 failrec->this_mirror++;
2321 if (failrec->this_mirror == failed_mirror)
2322 failrec->this_mirror++;
4a54c8c1
JS
2323 }
2324
facc8a22 2325 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2326 btrfs_debug(fs_info,
2327 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2328 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2329 return 0;
4a54c8c1
JS
2330 }
2331
2fe6303e
MX
2332 return 1;
2333}
2334
2335
2336struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2337 struct io_failure_record *failrec,
2338 struct page *page, int pg_offset, int icsum,
8b110e39 2339 bio_end_io_t *endio_func, void *data)
2fe6303e 2340{
0b246afa 2341 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2342 struct bio *bio;
2343 struct btrfs_io_bio *btrfs_failed_bio;
2344 struct btrfs_io_bio *btrfs_bio;
2345
9be3395b 2346 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2347 if (!bio)
2348 return NULL;
2349
2350 bio->bi_end_io = endio_func;
4f024f37 2351 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2352 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2353 bio->bi_iter.bi_size = 0;
8b110e39 2354 bio->bi_private = data;
4a54c8c1 2355
facc8a22
MX
2356 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2357 if (btrfs_failed_bio->csum) {
facc8a22
MX
2358 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2359
2360 btrfs_bio = btrfs_io_bio(bio);
2361 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2362 icsum *= csum_size;
2363 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2364 csum_size);
2365 }
2366
2fe6303e
MX
2367 bio_add_page(bio, page, failrec->len, pg_offset);
2368
2369 return bio;
2370}
2371
2372/*
2373 * this is a generic handler for readpage errors (default
2374 * readpage_io_failed_hook). if other copies exist, read those and write back
2375 * good data to the failed position. does not investigate in remapping the
2376 * failed extent elsewhere, hoping the device will be smart enough to do this as
2377 * needed
2378 */
2379
2380static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2381 struct page *page, u64 start, u64 end,
2382 int failed_mirror)
2383{
2384 struct io_failure_record *failrec;
2385 struct inode *inode = page->mapping->host;
2386 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2387 struct bio *bio;
70fd7614 2388 int read_mode = 0;
2fe6303e
MX
2389 int ret;
2390
1f7ad75b 2391 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2392
2393 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2394 if (ret)
2395 return ret;
2396
2397 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2398 if (!ret) {
4ac1f4ac 2399 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2400 return -EIO;
2401 }
2402
2403 if (failed_bio->bi_vcnt > 1)
70fd7614 2404 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2405
2406 phy_offset >>= inode->i_sb->s_blocksize_bits;
2407 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2408 start - page_offset(page),
8b110e39
MX
2409 (int)phy_offset, failed_bio->bi_end_io,
2410 NULL);
2fe6303e 2411 if (!bio) {
4ac1f4ac 2412 free_io_failure(BTRFS_I(inode), failrec);
2fe6303e
MX
2413 return -EIO;
2414 }
1f7ad75b 2415 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2416
ab8d0fc4
JM
2417 btrfs_debug(btrfs_sb(inode->i_sb),
2418 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2419 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2420
81a75f67 2421 ret = tree->ops->submit_bio_hook(inode, bio, failrec->this_mirror,
013bd4c3 2422 failrec->bio_flags, 0);
6c387ab2 2423 if (ret) {
4ac1f4ac 2424 free_io_failure(BTRFS_I(inode), failrec);
6c387ab2
MX
2425 bio_put(bio);
2426 }
2427
013bd4c3 2428 return ret;
4a54c8c1
JS
2429}
2430
d1310b2e
CM
2431/* lots and lots of room for performance fixes in the end_bio funcs */
2432
b5227c07 2433void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2434{
2435 int uptodate = (err == 0);
2436 struct extent_io_tree *tree;
3e2426bd 2437 int ret = 0;
87826df0
JM
2438
2439 tree = &BTRFS_I(page->mapping->host)->io_tree;
2440
c3988d63
DS
2441 if (tree->ops && tree->ops->writepage_end_io_hook)
2442 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2443 uptodate);
87826df0 2444
87826df0 2445 if (!uptodate) {
87826df0
JM
2446 ClearPageUptodate(page);
2447 SetPageError(page);
5dca6eea
LB
2448 ret = ret < 0 ? ret : -EIO;
2449 mapping_set_error(page->mapping, ret);
87826df0 2450 }
87826df0
JM
2451}
2452
d1310b2e
CM
2453/*
2454 * after a writepage IO is done, we need to:
2455 * clear the uptodate bits on error
2456 * clear the writeback bits in the extent tree for this IO
2457 * end_page_writeback if the page has no more pending IO
2458 *
2459 * Scheduling is not allowed, so the extent state tree is expected
2460 * to have one and only one object corresponding to this IO.
2461 */
4246a0b6 2462static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2463{
2c30c71b 2464 struct bio_vec *bvec;
d1310b2e
CM
2465 u64 start;
2466 u64 end;
2c30c71b 2467 int i;
d1310b2e 2468
2c30c71b 2469 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2470 struct page *page = bvec->bv_page;
0b246afa
JM
2471 struct inode *inode = page->mapping->host;
2472 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2473
17a5adcc
AO
2474 /* We always issue full-page reads, but if some block
2475 * in a page fails to read, blk_update_request() will
2476 * advance bv_offset and adjust bv_len to compensate.
2477 * Print a warning for nonzero offsets, and an error
2478 * if they don't add up to a full page. */
09cbfeaf
KS
2479 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2480 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2481 btrfs_err(fs_info,
efe120a0
FH
2482 "partial page write in btrfs with offset %u and length %u",
2483 bvec->bv_offset, bvec->bv_len);
2484 else
0b246afa 2485 btrfs_info(fs_info,
5d163e0e 2486 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2487 bvec->bv_offset, bvec->bv_len);
2488 }
d1310b2e 2489
17a5adcc
AO
2490 start = page_offset(page);
2491 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2492
b5227c07 2493 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2494 end_page_writeback(page);
2c30c71b 2495 }
2b1f55b0 2496
d1310b2e 2497 bio_put(bio);
d1310b2e
CM
2498}
2499
883d0de4
MX
2500static void
2501endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2502 int uptodate)
2503{
2504 struct extent_state *cached = NULL;
2505 u64 end = start + len - 1;
2506
2507 if (uptodate && tree->track_uptodate)
2508 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2509 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2510}
2511
d1310b2e
CM
2512/*
2513 * after a readpage IO is done, we need to:
2514 * clear the uptodate bits on error
2515 * set the uptodate bits if things worked
2516 * set the page up to date if all extents in the tree are uptodate
2517 * clear the lock bit in the extent tree
2518 * unlock the page if there are no other extents locked for it
2519 *
2520 * Scheduling is not allowed, so the extent state tree is expected
2521 * to have one and only one object corresponding to this IO.
2522 */
4246a0b6 2523static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2524{
2c30c71b 2525 struct bio_vec *bvec;
4246a0b6 2526 int uptodate = !bio->bi_error;
facc8a22 2527 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2528 struct extent_io_tree *tree;
facc8a22 2529 u64 offset = 0;
d1310b2e
CM
2530 u64 start;
2531 u64 end;
facc8a22 2532 u64 len;
883d0de4
MX
2533 u64 extent_start = 0;
2534 u64 extent_len = 0;
5cf1ab56 2535 int mirror;
d1310b2e 2536 int ret;
2c30c71b 2537 int i;
d1310b2e 2538
2c30c71b 2539 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2540 struct page *page = bvec->bv_page;
a71754fc 2541 struct inode *inode = page->mapping->host;
ab8d0fc4 2542 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2543
ab8d0fc4
JM
2544 btrfs_debug(fs_info,
2545 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2546 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2547 io_bio->mirror_num);
a71754fc 2548 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2549
17a5adcc
AO
2550 /* We always issue full-page reads, but if some block
2551 * in a page fails to read, blk_update_request() will
2552 * advance bv_offset and adjust bv_len to compensate.
2553 * Print a warning for nonzero offsets, and an error
2554 * if they don't add up to a full page. */
09cbfeaf
KS
2555 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2556 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2557 btrfs_err(fs_info,
2558 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2559 bvec->bv_offset, bvec->bv_len);
2560 else
ab8d0fc4
JM
2561 btrfs_info(fs_info,
2562 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2563 bvec->bv_offset, bvec->bv_len);
2564 }
d1310b2e 2565
17a5adcc
AO
2566 start = page_offset(page);
2567 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2568 len = bvec->bv_len;
d1310b2e 2569
9be3395b 2570 mirror = io_bio->mirror_num;
20c9801d 2571 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2572 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2573 page, start, end,
2574 mirror);
5ee0844d 2575 if (ret)
d1310b2e 2576 uptodate = 0;
5ee0844d 2577 else
b30cb441
NB
2578 clean_io_failure(BTRFS_I(inode), start,
2579 page, 0);
d1310b2e 2580 }
ea466794 2581
f2a09da9
MX
2582 if (likely(uptodate))
2583 goto readpage_ok;
2584
20a7db8a 2585 if (tree->ops) {
5cf1ab56 2586 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2587 if (!ret && !bio->bi_error)
ea466794 2588 uptodate = 1;
f2a09da9 2589 } else {
f4a8e656
JS
2590 /*
2591 * The generic bio_readpage_error handles errors the
2592 * following way: If possible, new read requests are
2593 * created and submitted and will end up in
2594 * end_bio_extent_readpage as well (if we're lucky, not
2595 * in the !uptodate case). In that case it returns 0 and
2596 * we just go on with the next page in our bio. If it
2597 * can't handle the error it will return -EIO and we
2598 * remain responsible for that page.
2599 */
facc8a22
MX
2600 ret = bio_readpage_error(bio, offset, page, start, end,
2601 mirror);
7e38326f 2602 if (ret == 0) {
4246a0b6 2603 uptodate = !bio->bi_error;
38c1c2e4 2604 offset += len;
7e38326f
CM
2605 continue;
2606 }
2607 }
f2a09da9 2608readpage_ok:
883d0de4 2609 if (likely(uptodate)) {
a71754fc 2610 loff_t i_size = i_size_read(inode);
09cbfeaf 2611 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2612 unsigned off;
a71754fc
JB
2613
2614 /* Zero out the end if this page straddles i_size */
09cbfeaf 2615 off = i_size & (PAGE_SIZE-1);
a583c026 2616 if (page->index == end_index && off)
09cbfeaf 2617 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2618 SetPageUptodate(page);
70dec807 2619 } else {
17a5adcc
AO
2620 ClearPageUptodate(page);
2621 SetPageError(page);
70dec807 2622 }
17a5adcc 2623 unlock_page(page);
facc8a22 2624 offset += len;
883d0de4
MX
2625
2626 if (unlikely(!uptodate)) {
2627 if (extent_len) {
2628 endio_readpage_release_extent(tree,
2629 extent_start,
2630 extent_len, 1);
2631 extent_start = 0;
2632 extent_len = 0;
2633 }
2634 endio_readpage_release_extent(tree, start,
2635 end - start + 1, 0);
2636 } else if (!extent_len) {
2637 extent_start = start;
2638 extent_len = end + 1 - start;
2639 } else if (extent_start + extent_len == start) {
2640 extent_len += end + 1 - start;
2641 } else {
2642 endio_readpage_release_extent(tree, extent_start,
2643 extent_len, uptodate);
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 }
2c30c71b 2647 }
d1310b2e 2648
883d0de4
MX
2649 if (extent_len)
2650 endio_readpage_release_extent(tree, extent_start, extent_len,
2651 uptodate);
facc8a22 2652 if (io_bio->end_io)
4246a0b6 2653 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2654 bio_put(bio);
d1310b2e
CM
2655}
2656
9be3395b
CM
2657/*
2658 * this allocates from the btrfs_bioset. We're returning a bio right now
2659 * but you can call btrfs_io_bio for the appropriate container_of magic
2660 */
88f794ed
MX
2661struct bio *
2662btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2663 gfp_t gfp_flags)
d1310b2e 2664{
facc8a22 2665 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2666 struct bio *bio;
2667
9be3395b 2668 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2669
2670 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2671 while (!bio && (nr_vecs /= 2)) {
2672 bio = bio_alloc_bioset(gfp_flags,
2673 nr_vecs, btrfs_bioset);
2674 }
d1310b2e
CM
2675 }
2676
2677 if (bio) {
2678 bio->bi_bdev = bdev;
4f024f37 2679 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2680 btrfs_bio = btrfs_io_bio(bio);
2681 btrfs_bio->csum = NULL;
2682 btrfs_bio->csum_allocated = NULL;
2683 btrfs_bio->end_io = NULL;
d1310b2e
CM
2684 }
2685 return bio;
2686}
2687
9be3395b
CM
2688struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2689{
23ea8e5a
MX
2690 struct btrfs_io_bio *btrfs_bio;
2691 struct bio *new;
9be3395b 2692
23ea8e5a
MX
2693 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2694 if (new) {
2695 btrfs_bio = btrfs_io_bio(new);
2696 btrfs_bio->csum = NULL;
2697 btrfs_bio->csum_allocated = NULL;
2698 btrfs_bio->end_io = NULL;
2699 }
2700 return new;
2701}
9be3395b
CM
2702
2703/* this also allocates from the btrfs_bioset */
2704struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2705{
facc8a22
MX
2706 struct btrfs_io_bio *btrfs_bio;
2707 struct bio *bio;
2708
2709 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2710 if (bio) {
2711 btrfs_bio = btrfs_io_bio(bio);
2712 btrfs_bio->csum = NULL;
2713 btrfs_bio->csum_allocated = NULL;
2714 btrfs_bio->end_io = NULL;
2715 }
2716 return bio;
9be3395b
CM
2717}
2718
2719
1f7ad75b
MC
2720static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2721 unsigned long bio_flags)
d1310b2e 2722{
d1310b2e 2723 int ret = 0;
70dec807
CM
2724 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2725 struct page *page = bvec->bv_page;
2726 struct extent_io_tree *tree = bio->bi_private;
70dec807 2727 u64 start;
70dec807 2728
4eee4fa4 2729 start = page_offset(page) + bvec->bv_offset;
70dec807 2730
902b22f3 2731 bio->bi_private = NULL;
d1310b2e
CM
2732 bio_get(bio);
2733
20c9801d 2734 if (tree->ops)
81a75f67 2735 ret = tree->ops->submit_bio_hook(page->mapping->host, bio,
eaf25d93 2736 mirror_num, bio_flags, start);
0b86a832 2737 else
4e49ea4a 2738 btrfsic_submit_bio(bio);
4a54c8c1 2739
d1310b2e
CM
2740 bio_put(bio);
2741 return ret;
2742}
2743
1f7ad75b 2744static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2745 unsigned long offset, size_t size, struct bio *bio,
2746 unsigned long bio_flags)
2747{
2748 int ret = 0;
20c9801d 2749 if (tree->ops)
81a75f67 2750 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2751 bio_flags);
3444a972
JM
2752 return ret;
2753
2754}
2755
1f7ad75b 2756static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2757 struct writeback_control *wbc,
d1310b2e
CM
2758 struct page *page, sector_t sector,
2759 size_t size, unsigned long offset,
2760 struct block_device *bdev,
2761 struct bio **bio_ret,
f188591e 2762 bio_end_io_t end_io_func,
c8b97818
CM
2763 int mirror_num,
2764 unsigned long prev_bio_flags,
005efedf
FM
2765 unsigned long bio_flags,
2766 bool force_bio_submit)
d1310b2e
CM
2767{
2768 int ret = 0;
2769 struct bio *bio;
c8b97818 2770 int contig = 0;
c8b97818 2771 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2772 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2773
2774 if (bio_ret && *bio_ret) {
2775 bio = *bio_ret;
c8b97818 2776 if (old_compressed)
4f024f37 2777 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2778 else
f73a1c7d 2779 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2780
2781 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2782 force_bio_submit ||
1f7ad75b 2783 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2784 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2785 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2786 if (ret < 0) {
2787 *bio_ret = NULL;
79787eaa 2788 return ret;
289454ad 2789 }
d1310b2e
CM
2790 bio = NULL;
2791 } else {
da2f0f74
CM
2792 if (wbc)
2793 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2794 return 0;
2795 }
2796 }
c8b97818 2797
b54ffb73
KO
2798 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2799 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2800 if (!bio)
2801 return -ENOMEM;
70dec807 2802
c8b97818 2803 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2804 bio->bi_end_io = end_io_func;
2805 bio->bi_private = tree;
1f7ad75b 2806 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2807 if (wbc) {
2808 wbc_init_bio(wbc, bio);
2809 wbc_account_io(wbc, page, page_size);
2810 }
70dec807 2811
d397712b 2812 if (bio_ret)
d1310b2e 2813 *bio_ret = bio;
d397712b 2814 else
1f7ad75b 2815 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2816
2817 return ret;
2818}
2819
48a3b636
ES
2820static void attach_extent_buffer_page(struct extent_buffer *eb,
2821 struct page *page)
d1310b2e
CM
2822{
2823 if (!PagePrivate(page)) {
2824 SetPagePrivate(page);
09cbfeaf 2825 get_page(page);
4f2de97a
JB
2826 set_page_private(page, (unsigned long)eb);
2827 } else {
2828 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2829 }
2830}
2831
4f2de97a 2832void set_page_extent_mapped(struct page *page)
d1310b2e 2833{
4f2de97a
JB
2834 if (!PagePrivate(page)) {
2835 SetPagePrivate(page);
09cbfeaf 2836 get_page(page);
4f2de97a
JB
2837 set_page_private(page, EXTENT_PAGE_PRIVATE);
2838 }
d1310b2e
CM
2839}
2840
125bac01
MX
2841static struct extent_map *
2842__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2843 u64 start, u64 len, get_extent_t *get_extent,
2844 struct extent_map **em_cached)
2845{
2846 struct extent_map *em;
2847
2848 if (em_cached && *em_cached) {
2849 em = *em_cached;
cbc0e928 2850 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2851 start < extent_map_end(em)) {
2852 atomic_inc(&em->refs);
2853 return em;
2854 }
2855
2856 free_extent_map(em);
2857 *em_cached = NULL;
2858 }
2859
fc4f21b1 2860 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2861 if (em_cached && !IS_ERR_OR_NULL(em)) {
2862 BUG_ON(*em_cached);
2863 atomic_inc(&em->refs);
2864 *em_cached = em;
2865 }
2866 return em;
2867}
d1310b2e
CM
2868/*
2869 * basic readpage implementation. Locked extent state structs are inserted
2870 * into the tree that are removed when the IO is done (by the end_io
2871 * handlers)
79787eaa 2872 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2873 * return 0 on success, otherwise return error
d1310b2e 2874 */
9974090b
MX
2875static int __do_readpage(struct extent_io_tree *tree,
2876 struct page *page,
2877 get_extent_t *get_extent,
125bac01 2878 struct extent_map **em_cached,
9974090b 2879 struct bio **bio, int mirror_num,
1f7ad75b 2880 unsigned long *bio_flags, int read_flags,
005efedf 2881 u64 *prev_em_start)
d1310b2e
CM
2882{
2883 struct inode *inode = page->mapping->host;
4eee4fa4 2884 u64 start = page_offset(page);
09cbfeaf 2885 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2886 u64 end;
2887 u64 cur = start;
2888 u64 extent_offset;
2889 u64 last_byte = i_size_read(inode);
2890 u64 block_start;
2891 u64 cur_end;
2892 sector_t sector;
2893 struct extent_map *em;
2894 struct block_device *bdev;
baf863b9 2895 int ret = 0;
d1310b2e 2896 int nr = 0;
306e16ce 2897 size_t pg_offset = 0;
d1310b2e 2898 size_t iosize;
c8b97818 2899 size_t disk_io_size;
d1310b2e 2900 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2901 unsigned long this_bio_flag = 0;
d1310b2e
CM
2902
2903 set_page_extent_mapped(page);
2904
9974090b 2905 end = page_end;
90a887c9
DM
2906 if (!PageUptodate(page)) {
2907 if (cleancache_get_page(page) == 0) {
2908 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2909 unlock_extent(tree, start, end);
90a887c9
DM
2910 goto out;
2911 }
2912 }
2913
09cbfeaf 2914 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2915 char *userpage;
09cbfeaf 2916 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2917
2918 if (zero_offset) {
09cbfeaf 2919 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2920 userpage = kmap_atomic(page);
c8b97818
CM
2921 memset(userpage + zero_offset, 0, iosize);
2922 flush_dcache_page(page);
7ac687d9 2923 kunmap_atomic(userpage);
c8b97818
CM
2924 }
2925 }
d1310b2e 2926 while (cur <= end) {
005efedf 2927 bool force_bio_submit = false;
c8f2f24b 2928
d1310b2e
CM
2929 if (cur >= last_byte) {
2930 char *userpage;
507903b8
AJ
2931 struct extent_state *cached = NULL;
2932
09cbfeaf 2933 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2934 userpage = kmap_atomic(page);
306e16ce 2935 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2936 flush_dcache_page(page);
7ac687d9 2937 kunmap_atomic(userpage);
d1310b2e 2938 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2939 &cached, GFP_NOFS);
7f042a83
FM
2940 unlock_extent_cached(tree, cur,
2941 cur + iosize - 1,
2942 &cached, GFP_NOFS);
d1310b2e
CM
2943 break;
2944 }
125bac01
MX
2945 em = __get_extent_map(inode, page, pg_offset, cur,
2946 end - cur + 1, get_extent, em_cached);
c704005d 2947 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2948 SetPageError(page);
7f042a83 2949 unlock_extent(tree, cur, end);
d1310b2e
CM
2950 break;
2951 }
d1310b2e
CM
2952 extent_offset = cur - em->start;
2953 BUG_ON(extent_map_end(em) <= cur);
2954 BUG_ON(end < cur);
2955
261507a0 2956 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2957 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2958 extent_set_compress_type(&this_bio_flag,
2959 em->compress_type);
2960 }
c8b97818 2961
d1310b2e
CM
2962 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2963 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2964 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2965 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2966 disk_io_size = em->block_len;
2967 sector = em->block_start >> 9;
2968 } else {
2969 sector = (em->block_start + extent_offset) >> 9;
2970 disk_io_size = iosize;
2971 }
d1310b2e
CM
2972 bdev = em->bdev;
2973 block_start = em->block_start;
d899e052
YZ
2974 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2975 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2976
2977 /*
2978 * If we have a file range that points to a compressed extent
2979 * and it's followed by a consecutive file range that points to
2980 * to the same compressed extent (possibly with a different
2981 * offset and/or length, so it either points to the whole extent
2982 * or only part of it), we must make sure we do not submit a
2983 * single bio to populate the pages for the 2 ranges because
2984 * this makes the compressed extent read zero out the pages
2985 * belonging to the 2nd range. Imagine the following scenario:
2986 *
2987 * File layout
2988 * [0 - 8K] [8K - 24K]
2989 * | |
2990 * | |
2991 * points to extent X, points to extent X,
2992 * offset 4K, length of 8K offset 0, length 16K
2993 *
2994 * [extent X, compressed length = 4K uncompressed length = 16K]
2995 *
2996 * If the bio to read the compressed extent covers both ranges,
2997 * it will decompress extent X into the pages belonging to the
2998 * first range and then it will stop, zeroing out the remaining
2999 * pages that belong to the other range that points to extent X.
3000 * So here we make sure we submit 2 bios, one for the first
3001 * range and another one for the third range. Both will target
3002 * the same physical extent from disk, but we can't currently
3003 * make the compressed bio endio callback populate the pages
3004 * for both ranges because each compressed bio is tightly
3005 * coupled with a single extent map, and each range can have
3006 * an extent map with a different offset value relative to the
3007 * uncompressed data of our extent and different lengths. This
3008 * is a corner case so we prioritize correctness over
3009 * non-optimal behavior (submitting 2 bios for the same extent).
3010 */
3011 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3012 prev_em_start && *prev_em_start != (u64)-1 &&
3013 *prev_em_start != em->orig_start)
3014 force_bio_submit = true;
3015
3016 if (prev_em_start)
3017 *prev_em_start = em->orig_start;
3018
d1310b2e
CM
3019 free_extent_map(em);
3020 em = NULL;
3021
3022 /* we've found a hole, just zero and go on */
3023 if (block_start == EXTENT_MAP_HOLE) {
3024 char *userpage;
507903b8
AJ
3025 struct extent_state *cached = NULL;
3026
7ac687d9 3027 userpage = kmap_atomic(page);
306e16ce 3028 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3029 flush_dcache_page(page);
7ac687d9 3030 kunmap_atomic(userpage);
d1310b2e
CM
3031
3032 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3033 &cached, GFP_NOFS);
7f042a83
FM
3034 unlock_extent_cached(tree, cur,
3035 cur + iosize - 1,
3036 &cached, GFP_NOFS);
d1310b2e 3037 cur = cur + iosize;
306e16ce 3038 pg_offset += iosize;
d1310b2e
CM
3039 continue;
3040 }
3041 /* the get_extent function already copied into the page */
9655d298
CM
3042 if (test_range_bit(tree, cur, cur_end,
3043 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3044 check_page_uptodate(tree, page);
7f042a83 3045 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3046 cur = cur + iosize;
306e16ce 3047 pg_offset += iosize;
d1310b2e
CM
3048 continue;
3049 }
70dec807
CM
3050 /* we have an inline extent but it didn't get marked up
3051 * to date. Error out
3052 */
3053 if (block_start == EXTENT_MAP_INLINE) {
3054 SetPageError(page);
7f042a83 3055 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3056 cur = cur + iosize;
306e16ce 3057 pg_offset += iosize;
70dec807
CM
3058 continue;
3059 }
d1310b2e 3060
1f7ad75b
MC
3061 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3062 page, sector, disk_io_size, pg_offset,
c2df8bb4 3063 bdev, bio,
c8b97818
CM
3064 end_bio_extent_readpage, mirror_num,
3065 *bio_flags,
005efedf
FM
3066 this_bio_flag,
3067 force_bio_submit);
c8f2f24b
JB
3068 if (!ret) {
3069 nr++;
3070 *bio_flags = this_bio_flag;
3071 } else {
d1310b2e 3072 SetPageError(page);
7f042a83 3073 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3074 goto out;
edd33c99 3075 }
d1310b2e 3076 cur = cur + iosize;
306e16ce 3077 pg_offset += iosize;
d1310b2e 3078 }
90a887c9 3079out:
d1310b2e
CM
3080 if (!nr) {
3081 if (!PageError(page))
3082 SetPageUptodate(page);
3083 unlock_page(page);
3084 }
baf863b9 3085 return ret;
d1310b2e
CM
3086}
3087
9974090b
MX
3088static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3089 struct page *pages[], int nr_pages,
3090 u64 start, u64 end,
3091 get_extent_t *get_extent,
125bac01 3092 struct extent_map **em_cached,
9974090b 3093 struct bio **bio, int mirror_num,
1f7ad75b 3094 unsigned long *bio_flags,
808f80b4 3095 u64 *prev_em_start)
9974090b
MX
3096{
3097 struct inode *inode;
3098 struct btrfs_ordered_extent *ordered;
3099 int index;
3100
3101 inode = pages[0]->mapping->host;
3102 while (1) {
3103 lock_extent(tree, start, end);
a776c6fa 3104 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3105 end - start + 1);
3106 if (!ordered)
3107 break;
3108 unlock_extent(tree, start, end);
3109 btrfs_start_ordered_extent(inode, ordered, 1);
3110 btrfs_put_ordered_extent(ordered);
3111 }
3112
3113 for (index = 0; index < nr_pages; index++) {
125bac01 3114 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3115 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3116 put_page(pages[index]);
9974090b
MX
3117 }
3118}
3119
3120static void __extent_readpages(struct extent_io_tree *tree,
3121 struct page *pages[],
3122 int nr_pages, get_extent_t *get_extent,
125bac01 3123 struct extent_map **em_cached,
9974090b 3124 struct bio **bio, int mirror_num,
1f7ad75b 3125 unsigned long *bio_flags,
808f80b4 3126 u64 *prev_em_start)
9974090b 3127{
35a3621b 3128 u64 start = 0;
9974090b
MX
3129 u64 end = 0;
3130 u64 page_start;
3131 int index;
35a3621b 3132 int first_index = 0;
9974090b
MX
3133
3134 for (index = 0; index < nr_pages; index++) {
3135 page_start = page_offset(pages[index]);
3136 if (!end) {
3137 start = page_start;
09cbfeaf 3138 end = start + PAGE_SIZE - 1;
9974090b
MX
3139 first_index = index;
3140 } else if (end + 1 == page_start) {
09cbfeaf 3141 end += PAGE_SIZE;
9974090b
MX
3142 } else {
3143 __do_contiguous_readpages(tree, &pages[first_index],
3144 index - first_index, start,
125bac01
MX
3145 end, get_extent, em_cached,
3146 bio, mirror_num, bio_flags,
1f7ad75b 3147 prev_em_start);
9974090b 3148 start = page_start;
09cbfeaf 3149 end = start + PAGE_SIZE - 1;
9974090b
MX
3150 first_index = index;
3151 }
3152 }
3153
3154 if (end)
3155 __do_contiguous_readpages(tree, &pages[first_index],
3156 index - first_index, start,
125bac01 3157 end, get_extent, em_cached, bio,
1f7ad75b 3158 mirror_num, bio_flags,
808f80b4 3159 prev_em_start);
9974090b
MX
3160}
3161
3162static int __extent_read_full_page(struct extent_io_tree *tree,
3163 struct page *page,
3164 get_extent_t *get_extent,
3165 struct bio **bio, int mirror_num,
1f7ad75b 3166 unsigned long *bio_flags, int read_flags)
9974090b
MX
3167{
3168 struct inode *inode = page->mapping->host;
3169 struct btrfs_ordered_extent *ordered;
3170 u64 start = page_offset(page);
09cbfeaf 3171 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3172 int ret;
3173
3174 while (1) {
3175 lock_extent(tree, start, end);
a776c6fa 3176 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3177 PAGE_SIZE);
9974090b
MX
3178 if (!ordered)
3179 break;
3180 unlock_extent(tree, start, end);
3181 btrfs_start_ordered_extent(inode, ordered, 1);
3182 btrfs_put_ordered_extent(ordered);
3183 }
3184
125bac01 3185 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3186 bio_flags, read_flags, NULL);
9974090b
MX
3187 return ret;
3188}
3189
d1310b2e 3190int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3191 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3192{
3193 struct bio *bio = NULL;
c8b97818 3194 unsigned long bio_flags = 0;
d1310b2e
CM
3195 int ret;
3196
8ddc7d9c 3197 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3198 &bio_flags, 0);
d1310b2e 3199 if (bio)
1f7ad75b 3200 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3201 return ret;
3202}
d1310b2e 3203
3d4b9496 3204static void update_nr_written(struct writeback_control *wbc,
a9132667 3205 unsigned long nr_written)
11c8349b
CM
3206{
3207 wbc->nr_to_write -= nr_written;
11c8349b
CM
3208}
3209
d1310b2e 3210/*
40f76580
CM
3211 * helper for __extent_writepage, doing all of the delayed allocation setup.
3212 *
3213 * This returns 1 if our fill_delalloc function did all the work required
3214 * to write the page (copy into inline extent). In this case the IO has
3215 * been started and the page is already unlocked.
3216 *
3217 * This returns 0 if all went well (page still locked)
3218 * This returns < 0 if there were errors (page still locked)
d1310b2e 3219 */
40f76580
CM
3220static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 struct page *page, struct writeback_control *wbc,
3222 struct extent_page_data *epd,
3223 u64 delalloc_start,
3224 unsigned long *nr_written)
3225{
3226 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3227 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3228 u64 nr_delalloc;
3229 u64 delalloc_to_write = 0;
3230 u64 delalloc_end = 0;
3231 int ret;
3232 int page_started = 0;
3233
3234 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3235 return 0;
3236
3237 while (delalloc_end < page_end) {
3238 nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 page,
3240 &delalloc_start,
3241 &delalloc_end,
dcab6a3b 3242 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3243 if (nr_delalloc == 0) {
3244 delalloc_start = delalloc_end + 1;
3245 continue;
3246 }
3247 ret = tree->ops->fill_delalloc(inode, page,
3248 delalloc_start,
3249 delalloc_end,
3250 &page_started,
3251 nr_written);
3252 /* File system has been set read-only */
3253 if (ret) {
3254 SetPageError(page);
3255 /* fill_delalloc should be return < 0 for error
3256 * but just in case, we use > 0 here meaning the
3257 * IO is started, so we don't want to return > 0
3258 * unless things are going well.
3259 */
3260 ret = ret < 0 ? ret : -EIO;
3261 goto done;
3262 }
3263 /*
ea1754a0
KS
3264 * delalloc_end is already one less than the total length, so
3265 * we don't subtract one from PAGE_SIZE
40f76580
CM
3266 */
3267 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3268 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3269 delalloc_start = delalloc_end + 1;
3270 }
3271 if (wbc->nr_to_write < delalloc_to_write) {
3272 int thresh = 8192;
3273
3274 if (delalloc_to_write < thresh * 2)
3275 thresh = delalloc_to_write;
3276 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3277 thresh);
3278 }
3279
3280 /* did the fill delalloc function already unlock and start
3281 * the IO?
3282 */
3283 if (page_started) {
3284 /*
3285 * we've unlocked the page, so we can't update
3286 * the mapping's writeback index, just update
3287 * nr_to_write.
3288 */
3289 wbc->nr_to_write -= *nr_written;
3290 return 1;
3291 }
3292
3293 ret = 0;
3294
3295done:
3296 return ret;
3297}
3298
3299/*
3300 * helper for __extent_writepage. This calls the writepage start hooks,
3301 * and does the loop to map the page into extents and bios.
3302 *
3303 * We return 1 if the IO is started and the page is unlocked,
3304 * 0 if all went well (page still locked)
3305 * < 0 if there were errors (page still locked)
3306 */
3307static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3308 struct page *page,
3309 struct writeback_control *wbc,
3310 struct extent_page_data *epd,
3311 loff_t i_size,
3312 unsigned long nr_written,
3313 int write_flags, int *nr_ret)
d1310b2e 3314{
d1310b2e 3315 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3316 u64 start = page_offset(page);
09cbfeaf 3317 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3318 u64 end;
3319 u64 cur = start;
3320 u64 extent_offset;
d1310b2e
CM
3321 u64 block_start;
3322 u64 iosize;
3323 sector_t sector;
3324 struct extent_map *em;
3325 struct block_device *bdev;
7f3c74fb 3326 size_t pg_offset = 0;
d1310b2e 3327 size_t blocksize;
40f76580
CM
3328 int ret = 0;
3329 int nr = 0;
3330 bool compressed;
c8b97818 3331
247e743c 3332 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3333 ret = tree->ops->writepage_start_hook(page, start,
3334 page_end);
87826df0
JM
3335 if (ret) {
3336 /* Fixup worker will requeue */
3337 if (ret == -EBUSY)
3338 wbc->pages_skipped++;
3339 else
3340 redirty_page_for_writepage(wbc, page);
40f76580 3341
3d4b9496 3342 update_nr_written(wbc, nr_written);
247e743c 3343 unlock_page(page);
bcf93489 3344 return 1;
247e743c
CM
3345 }
3346 }
3347
11c8349b
CM
3348 /*
3349 * we don't want to touch the inode after unlocking the page,
3350 * so we update the mapping writeback index now
3351 */
3d4b9496 3352 update_nr_written(wbc, nr_written + 1);
771ed689 3353
d1310b2e 3354 end = page_end;
40f76580 3355 if (i_size <= start) {
e6dcd2dc
CM
3356 if (tree->ops && tree->ops->writepage_end_io_hook)
3357 tree->ops->writepage_end_io_hook(page, start,
3358 page_end, NULL, 1);
d1310b2e
CM
3359 goto done;
3360 }
3361
d1310b2e
CM
3362 blocksize = inode->i_sb->s_blocksize;
3363
3364 while (cur <= end) {
40f76580 3365 u64 em_end;
58409edd 3366
40f76580 3367 if (cur >= i_size) {
e6dcd2dc
CM
3368 if (tree->ops && tree->ops->writepage_end_io_hook)
3369 tree->ops->writepage_end_io_hook(page, cur,
3370 page_end, NULL, 1);
d1310b2e
CM
3371 break;
3372 }
fc4f21b1 3373 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3374 end - cur + 1, 1);
c704005d 3375 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3376 SetPageError(page);
61391d56 3377 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3378 break;
3379 }
3380
3381 extent_offset = cur - em->start;
40f76580
CM
3382 em_end = extent_map_end(em);
3383 BUG_ON(em_end <= cur);
d1310b2e 3384 BUG_ON(end < cur);
40f76580 3385 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3386 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3387 sector = (em->block_start + extent_offset) >> 9;
3388 bdev = em->bdev;
3389 block_start = em->block_start;
c8b97818 3390 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3391 free_extent_map(em);
3392 em = NULL;
3393
c8b97818
CM
3394 /*
3395 * compressed and inline extents are written through other
3396 * paths in the FS
3397 */
3398 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3399 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3400 /*
3401 * end_io notification does not happen here for
3402 * compressed extents
3403 */
3404 if (!compressed && tree->ops &&
3405 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3406 tree->ops->writepage_end_io_hook(page, cur,
3407 cur + iosize - 1,
3408 NULL, 1);
c8b97818
CM
3409 else if (compressed) {
3410 /* we don't want to end_page_writeback on
3411 * a compressed extent. this happens
3412 * elsewhere
3413 */
3414 nr++;
3415 }
3416
3417 cur += iosize;
7f3c74fb 3418 pg_offset += iosize;
d1310b2e
CM
3419 continue;
3420 }
c8b97818 3421
58409edd
DS
3422 set_range_writeback(tree, cur, cur + iosize - 1);
3423 if (!PageWriteback(page)) {
3424 btrfs_err(BTRFS_I(inode)->root->fs_info,
3425 "page %lu not writeback, cur %llu end %llu",
3426 page->index, cur, end);
d1310b2e 3427 }
7f3c74fb 3428
1f7ad75b
MC
3429 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3430 page, sector, iosize, pg_offset,
c2df8bb4 3431 bdev, &epd->bio,
58409edd
DS
3432 end_bio_extent_writepage,
3433 0, 0, 0, false);
fe01aa65 3434 if (ret) {
58409edd 3435 SetPageError(page);
fe01aa65
TK
3436 if (PageWriteback(page))
3437 end_page_writeback(page);
3438 }
d1310b2e 3439
d1310b2e 3440 cur = cur + iosize;
7f3c74fb 3441 pg_offset += iosize;
d1310b2e
CM
3442 nr++;
3443 }
40f76580
CM
3444done:
3445 *nr_ret = nr;
40f76580
CM
3446 return ret;
3447}
3448
3449/*
3450 * the writepage semantics are similar to regular writepage. extent
3451 * records are inserted to lock ranges in the tree, and as dirty areas
3452 * are found, they are marked writeback. Then the lock bits are removed
3453 * and the end_io handler clears the writeback ranges
3454 */
3455static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3456 void *data)
3457{
3458 struct inode *inode = page->mapping->host;
3459 struct extent_page_data *epd = data;
3460 u64 start = page_offset(page);
09cbfeaf 3461 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3462 int ret;
3463 int nr = 0;
3464 size_t pg_offset = 0;
3465 loff_t i_size = i_size_read(inode);
09cbfeaf 3466 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3467 int write_flags = 0;
40f76580
CM
3468 unsigned long nr_written = 0;
3469
3470 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3471 write_flags = REQ_SYNC;
40f76580
CM
3472
3473 trace___extent_writepage(page, inode, wbc);
3474
3475 WARN_ON(!PageLocked(page));
3476
3477 ClearPageError(page);
3478
09cbfeaf 3479 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3480 if (page->index > end_index ||
3481 (page->index == end_index && !pg_offset)) {
09cbfeaf 3482 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3483 unlock_page(page);
3484 return 0;
3485 }
3486
3487 if (page->index == end_index) {
3488 char *userpage;
3489
3490 userpage = kmap_atomic(page);
3491 memset(userpage + pg_offset, 0,
09cbfeaf 3492 PAGE_SIZE - pg_offset);
40f76580
CM
3493 kunmap_atomic(userpage);
3494 flush_dcache_page(page);
3495 }
3496
3497 pg_offset = 0;
3498
3499 set_page_extent_mapped(page);
3500
3501 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3502 if (ret == 1)
3503 goto done_unlocked;
3504 if (ret)
3505 goto done;
3506
3507 ret = __extent_writepage_io(inode, page, wbc, epd,
3508 i_size, nr_written, write_flags, &nr);
3509 if (ret == 1)
3510 goto done_unlocked;
3511
d1310b2e
CM
3512done:
3513 if (nr == 0) {
3514 /* make sure the mapping tag for page dirty gets cleared */
3515 set_page_writeback(page);
3516 end_page_writeback(page);
3517 }
61391d56
FM
3518 if (PageError(page)) {
3519 ret = ret < 0 ? ret : -EIO;
3520 end_extent_writepage(page, ret, start, page_end);
3521 }
d1310b2e 3522 unlock_page(page);
40f76580 3523 return ret;
771ed689 3524
11c8349b 3525done_unlocked:
d1310b2e
CM
3526 return 0;
3527}
3528
fd8b2b61 3529void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3530{
74316201
N
3531 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3532 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3533}
3534
0e378df1
CM
3535static noinline_for_stack int
3536lock_extent_buffer_for_io(struct extent_buffer *eb,
3537 struct btrfs_fs_info *fs_info,
3538 struct extent_page_data *epd)
0b32f4bb
JB
3539{
3540 unsigned long i, num_pages;
3541 int flush = 0;
3542 int ret = 0;
3543
3544 if (!btrfs_try_tree_write_lock(eb)) {
3545 flush = 1;
3546 flush_write_bio(epd);
3547 btrfs_tree_lock(eb);
3548 }
3549
3550 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3551 btrfs_tree_unlock(eb);
3552 if (!epd->sync_io)
3553 return 0;
3554 if (!flush) {
3555 flush_write_bio(epd);
3556 flush = 1;
3557 }
a098d8e8
CM
3558 while (1) {
3559 wait_on_extent_buffer_writeback(eb);
3560 btrfs_tree_lock(eb);
3561 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3562 break;
0b32f4bb 3563 btrfs_tree_unlock(eb);
0b32f4bb
JB
3564 }
3565 }
3566
51561ffe
JB
3567 /*
3568 * We need to do this to prevent races in people who check if the eb is
3569 * under IO since we can end up having no IO bits set for a short period
3570 * of time.
3571 */
3572 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3573 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3574 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3575 spin_unlock(&eb->refs_lock);
0b32f4bb 3576 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3577 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3578 -eb->len,
3579 fs_info->dirty_metadata_batch);
0b32f4bb 3580 ret = 1;
51561ffe
JB
3581 } else {
3582 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3583 }
3584
3585 btrfs_tree_unlock(eb);
3586
3587 if (!ret)
3588 return ret;
3589
3590 num_pages = num_extent_pages(eb->start, eb->len);
3591 for (i = 0; i < num_pages; i++) {
fb85fc9a 3592 struct page *p = eb->pages[i];
0b32f4bb
JB
3593
3594 if (!trylock_page(p)) {
3595 if (!flush) {
3596 flush_write_bio(epd);
3597 flush = 1;
3598 }
3599 lock_page(p);
3600 }
3601 }
3602
3603 return ret;
3604}
3605
3606static void end_extent_buffer_writeback(struct extent_buffer *eb)
3607{
3608 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3609 smp_mb__after_atomic();
0b32f4bb
JB
3610 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3611}
3612
656f30db
FM
3613static void set_btree_ioerr(struct page *page)
3614{
3615 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3616
3617 SetPageError(page);
3618 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3619 return;
3620
3621 /*
3622 * If writeback for a btree extent that doesn't belong to a log tree
3623 * failed, increment the counter transaction->eb_write_errors.
3624 * We do this because while the transaction is running and before it's
3625 * committing (when we call filemap_fdata[write|wait]_range against
3626 * the btree inode), we might have
3627 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3628 * returns an error or an error happens during writeback, when we're
3629 * committing the transaction we wouldn't know about it, since the pages
3630 * can be no longer dirty nor marked anymore for writeback (if a
3631 * subsequent modification to the extent buffer didn't happen before the
3632 * transaction commit), which makes filemap_fdata[write|wait]_range not
3633 * able to find the pages tagged with SetPageError at transaction
3634 * commit time. So if this happens we must abort the transaction,
3635 * otherwise we commit a super block with btree roots that point to
3636 * btree nodes/leafs whose content on disk is invalid - either garbage
3637 * or the content of some node/leaf from a past generation that got
3638 * cowed or deleted and is no longer valid.
3639 *
3640 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3641 * not be enough - we need to distinguish between log tree extents vs
3642 * non-log tree extents, and the next filemap_fdatawait_range() call
3643 * will catch and clear such errors in the mapping - and that call might
3644 * be from a log sync and not from a transaction commit. Also, checking
3645 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3646 * not done and would not be reliable - the eb might have been released
3647 * from memory and reading it back again means that flag would not be
3648 * set (since it's a runtime flag, not persisted on disk).
3649 *
3650 * Using the flags below in the btree inode also makes us achieve the
3651 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3652 * writeback for all dirty pages and before filemap_fdatawait_range()
3653 * is called, the writeback for all dirty pages had already finished
3654 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3655 * filemap_fdatawait_range() would return success, as it could not know
3656 * that writeback errors happened (the pages were no longer tagged for
3657 * writeback).
3658 */
3659 switch (eb->log_index) {
3660 case -1:
afcdd129 3661 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3662 break;
3663 case 0:
afcdd129 3664 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3665 break;
3666 case 1:
afcdd129 3667 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 default:
3670 BUG(); /* unexpected, logic error */
3671 }
3672}
3673
4246a0b6 3674static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3675{
2c30c71b 3676 struct bio_vec *bvec;
0b32f4bb 3677 struct extent_buffer *eb;
2c30c71b 3678 int i, done;
0b32f4bb 3679
2c30c71b 3680 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3681 struct page *page = bvec->bv_page;
3682
0b32f4bb
JB
3683 eb = (struct extent_buffer *)page->private;
3684 BUG_ON(!eb);
3685 done = atomic_dec_and_test(&eb->io_pages);
3686
4246a0b6
CH
3687 if (bio->bi_error ||
3688 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3689 ClearPageUptodate(page);
656f30db 3690 set_btree_ioerr(page);
0b32f4bb
JB
3691 }
3692
3693 end_page_writeback(page);
3694
3695 if (!done)
3696 continue;
3697
3698 end_extent_buffer_writeback(eb);
2c30c71b 3699 }
0b32f4bb
JB
3700
3701 bio_put(bio);
0b32f4bb
JB
3702}
3703
0e378df1 3704static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3705 struct btrfs_fs_info *fs_info,
3706 struct writeback_control *wbc,
3707 struct extent_page_data *epd)
3708{
3709 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3710 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3711 u64 offset = eb->start;
851cd173 3712 u32 nritems;
0b32f4bb 3713 unsigned long i, num_pages;
de0022b9 3714 unsigned long bio_flags = 0;
851cd173 3715 unsigned long start, end;
70fd7614 3716 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3717 int ret = 0;
0b32f4bb 3718
656f30db 3719 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3720 num_pages = num_extent_pages(eb->start, eb->len);
3721 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3722 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3723 bio_flags = EXTENT_BIO_TREE_LOG;
3724
851cd173
LB
3725 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3726 nritems = btrfs_header_nritems(eb);
3eb548ee 3727 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3728 end = btrfs_node_key_ptr_offset(nritems);
3729
b159fa28 3730 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3731 } else {
3732 /*
3733 * leaf:
3734 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3735 */
3736 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3737 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3738 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3739 }
3740
0b32f4bb 3741 for (i = 0; i < num_pages; i++) {
fb85fc9a 3742 struct page *p = eb->pages[i];
0b32f4bb
JB
3743
3744 clear_page_dirty_for_io(p);
3745 set_page_writeback(p);
1f7ad75b
MC
3746 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3747 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3748 &epd->bio,
1f7ad75b 3749 end_bio_extent_buffer_writepage,
005efedf 3750 0, epd->bio_flags, bio_flags, false);
de0022b9 3751 epd->bio_flags = bio_flags;
0b32f4bb 3752 if (ret) {
656f30db 3753 set_btree_ioerr(p);
fe01aa65
TK
3754 if (PageWriteback(p))
3755 end_page_writeback(p);
0b32f4bb
JB
3756 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3757 end_extent_buffer_writeback(eb);
3758 ret = -EIO;
3759 break;
3760 }
09cbfeaf 3761 offset += PAGE_SIZE;
3d4b9496 3762 update_nr_written(wbc, 1);
0b32f4bb
JB
3763 unlock_page(p);
3764 }
3765
3766 if (unlikely(ret)) {
3767 for (; i < num_pages; i++) {
bbf65cf0 3768 struct page *p = eb->pages[i];
81465028 3769 clear_page_dirty_for_io(p);
0b32f4bb
JB
3770 unlock_page(p);
3771 }
3772 }
3773
3774 return ret;
3775}
3776
3777int btree_write_cache_pages(struct address_space *mapping,
3778 struct writeback_control *wbc)
3779{
3780 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3781 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3782 struct extent_buffer *eb, *prev_eb = NULL;
3783 struct extent_page_data epd = {
3784 .bio = NULL,
3785 .tree = tree,
3786 .extent_locked = 0,
3787 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3788 .bio_flags = 0,
0b32f4bb
JB
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec, 0);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
09cbfeaf
KS
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3818 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 if (!wbc->range_cyclic && page->index > end) {
3829 done = 1;
3830 break;
3831 }
3832
b5bae261
JB
3833 spin_lock(&mapping->private_lock);
3834 if (!PagePrivate(page)) {
3835 spin_unlock(&mapping->private_lock);
3836 continue;
3837 }
3838
0b32f4bb 3839 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3840
3841 /*
3842 * Shouldn't happen and normally this would be a BUG_ON
3843 * but no sense in crashing the users box for something
3844 * we can survive anyway.
3845 */
fae7f21c 3846 if (WARN_ON(!eb)) {
b5bae261 3847 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3848 continue;
3849 }
3850
b5bae261
JB
3851 if (eb == prev_eb) {
3852 spin_unlock(&mapping->private_lock);
0b32f4bb 3853 continue;
b5bae261 3854 }
0b32f4bb 3855
b5bae261
JB
3856 ret = atomic_inc_not_zero(&eb->refs);
3857 spin_unlock(&mapping->private_lock);
3858 if (!ret)
0b32f4bb 3859 continue;
0b32f4bb
JB
3860
3861 prev_eb = eb;
3862 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3863 if (!ret) {
3864 free_extent_buffer(eb);
3865 continue;
3866 }
3867
3868 ret = write_one_eb(eb, fs_info, wbc, &epd);
3869 if (ret) {
3870 done = 1;
3871 free_extent_buffer(eb);
3872 break;
3873 }
3874 free_extent_buffer(eb);
3875
3876 /*
3877 * the filesystem may choose to bump up nr_to_write.
3878 * We have to make sure to honor the new nr_to_write
3879 * at any time
3880 */
3881 nr_to_write_done = wbc->nr_to_write <= 0;
3882 }
3883 pagevec_release(&pvec);
3884 cond_resched();
3885 }
3886 if (!scanned && !done) {
3887 /*
3888 * We hit the last page and there is more work to be done: wrap
3889 * back to the start of the file
3890 */
3891 scanned = 1;
3892 index = 0;
3893 goto retry;
3894 }
3895 flush_write_bio(&epd);
3896 return ret;
3897}
3898
d1310b2e 3899/**
4bef0848 3900 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3901 * @mapping: address space structure to write
3902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3903 * @writepage: function called for each page
3904 * @data: data passed to writepage function
3905 *
3906 * If a page is already under I/O, write_cache_pages() skips it, even
3907 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3908 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3909 * and msync() need to guarantee that all the data which was dirty at the time
3910 * the call was made get new I/O started against them. If wbc->sync_mode is
3911 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3912 * existing IO to complete.
3913 */
4242b64a 3914static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3915 struct writeback_control *wbc,
d2c3f4f6
CM
3916 writepage_t writepage, void *data,
3917 void (*flush_fn)(void *))
d1310b2e 3918{
7fd1a3f7 3919 struct inode *inode = mapping->host;
d1310b2e
CM
3920 int ret = 0;
3921 int done = 0;
f85d7d6c 3922 int nr_to_write_done = 0;
d1310b2e
CM
3923 struct pagevec pvec;
3924 int nr_pages;
3925 pgoff_t index;
3926 pgoff_t end; /* Inclusive */
a9132667
LB
3927 pgoff_t done_index;
3928 int range_whole = 0;
d1310b2e 3929 int scanned = 0;
f7aaa06b 3930 int tag;
d1310b2e 3931
7fd1a3f7
JB
3932 /*
3933 * We have to hold onto the inode so that ordered extents can do their
3934 * work when the IO finishes. The alternative to this is failing to add
3935 * an ordered extent if the igrab() fails there and that is a huge pain
3936 * to deal with, so instead just hold onto the inode throughout the
3937 * writepages operation. If it fails here we are freeing up the inode
3938 * anyway and we'd rather not waste our time writing out stuff that is
3939 * going to be truncated anyway.
3940 */
3941 if (!igrab(inode))
3942 return 0;
3943
d1310b2e
CM
3944 pagevec_init(&pvec, 0);
3945 if (wbc->range_cyclic) {
3946 index = mapping->writeback_index; /* Start from prev offset */
3947 end = -1;
3948 } else {
09cbfeaf
KS
3949 index = wbc->range_start >> PAGE_SHIFT;
3950 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3951 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3952 range_whole = 1;
d1310b2e
CM
3953 scanned = 1;
3954 }
f7aaa06b
JB
3955 if (wbc->sync_mode == WB_SYNC_ALL)
3956 tag = PAGECACHE_TAG_TOWRITE;
3957 else
3958 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3959retry:
f7aaa06b
JB
3960 if (wbc->sync_mode == WB_SYNC_ALL)
3961 tag_pages_for_writeback(mapping, index, end);
a9132667 3962 done_index = index;
f85d7d6c 3963 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3964 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3965 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3966 unsigned i;
3967
3968 scanned = 1;
3969 for (i = 0; i < nr_pages; i++) {
3970 struct page *page = pvec.pages[i];
3971
a9132667 3972 done_index = page->index;
d1310b2e
CM
3973 /*
3974 * At this point we hold neither mapping->tree_lock nor
3975 * lock on the page itself: the page may be truncated or
3976 * invalidated (changing page->mapping to NULL), or even
3977 * swizzled back from swapper_space to tmpfs file
3978 * mapping
3979 */
c8f2f24b
JB
3980 if (!trylock_page(page)) {
3981 flush_fn(data);
3982 lock_page(page);
01d658f2 3983 }
d1310b2e
CM
3984
3985 if (unlikely(page->mapping != mapping)) {
3986 unlock_page(page);
3987 continue;
3988 }
3989
3990 if (!wbc->range_cyclic && page->index > end) {
3991 done = 1;
3992 unlock_page(page);
3993 continue;
3994 }
3995
d2c3f4f6 3996 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3997 if (PageWriteback(page))
3998 flush_fn(data);
d1310b2e 3999 wait_on_page_writeback(page);
d2c3f4f6 4000 }
d1310b2e
CM
4001
4002 if (PageWriteback(page) ||
4003 !clear_page_dirty_for_io(page)) {
4004 unlock_page(page);
4005 continue;
4006 }
4007
4008 ret = (*writepage)(page, wbc, data);
4009
4010 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4011 unlock_page(page);
4012 ret = 0;
4013 }
a9132667
LB
4014 if (ret < 0) {
4015 /*
4016 * done_index is set past this page,
4017 * so media errors will not choke
4018 * background writeout for the entire
4019 * file. This has consequences for
4020 * range_cyclic semantics (ie. it may
4021 * not be suitable for data integrity
4022 * writeout).
4023 */
4024 done_index = page->index + 1;
4025 done = 1;
4026 break;
4027 }
f85d7d6c
CM
4028
4029 /*
4030 * the filesystem may choose to bump up nr_to_write.
4031 * We have to make sure to honor the new nr_to_write
4032 * at any time
4033 */
4034 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4035 }
4036 pagevec_release(&pvec);
4037 cond_resched();
4038 }
894b36e3 4039 if (!scanned && !done) {
d1310b2e
CM
4040 /*
4041 * We hit the last page and there is more work to be done: wrap
4042 * back to the start of the file
4043 */
4044 scanned = 1;
4045 index = 0;
4046 goto retry;
4047 }
a9132667
LB
4048
4049 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4050 mapping->writeback_index = done_index;
4051
7fd1a3f7 4052 btrfs_add_delayed_iput(inode);
894b36e3 4053 return ret;
d1310b2e 4054}
d1310b2e 4055
ffbd517d 4056static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4057{
d2c3f4f6 4058 if (epd->bio) {
355808c2
JM
4059 int ret;
4060
1f7ad75b 4061 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4062 epd->sync_io ? REQ_SYNC : 0);
355808c2 4063
1f7ad75b 4064 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4065 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4066 epd->bio = NULL;
4067 }
4068}
4069
ffbd517d
CM
4070static noinline void flush_write_bio(void *data)
4071{
4072 struct extent_page_data *epd = data;
4073 flush_epd_write_bio(epd);
4074}
4075
d1310b2e
CM
4076int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4077 get_extent_t *get_extent,
4078 struct writeback_control *wbc)
4079{
4080 int ret;
d1310b2e
CM
4081 struct extent_page_data epd = {
4082 .bio = NULL,
4083 .tree = tree,
4084 .get_extent = get_extent,
771ed689 4085 .extent_locked = 0,
ffbd517d 4086 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4087 .bio_flags = 0,
d1310b2e 4088 };
d1310b2e 4089
d1310b2e
CM
4090 ret = __extent_writepage(page, wbc, &epd);
4091
ffbd517d 4092 flush_epd_write_bio(&epd);
d1310b2e
CM
4093 return ret;
4094}
d1310b2e 4095
771ed689
CM
4096int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4097 u64 start, u64 end, get_extent_t *get_extent,
4098 int mode)
4099{
4100 int ret = 0;
4101 struct address_space *mapping = inode->i_mapping;
4102 struct page *page;
09cbfeaf
KS
4103 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4104 PAGE_SHIFT;
771ed689
CM
4105
4106 struct extent_page_data epd = {
4107 .bio = NULL,
4108 .tree = tree,
4109 .get_extent = get_extent,
4110 .extent_locked = 1,
ffbd517d 4111 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4112 .bio_flags = 0,
771ed689
CM
4113 };
4114 struct writeback_control wbc_writepages = {
771ed689 4115 .sync_mode = mode,
771ed689
CM
4116 .nr_to_write = nr_pages * 2,
4117 .range_start = start,
4118 .range_end = end + 1,
4119 };
4120
d397712b 4121 while (start <= end) {
09cbfeaf 4122 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4123 if (clear_page_dirty_for_io(page))
4124 ret = __extent_writepage(page, &wbc_writepages, &epd);
4125 else {
4126 if (tree->ops && tree->ops->writepage_end_io_hook)
4127 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4128 start + PAGE_SIZE - 1,
771ed689
CM
4129 NULL, 1);
4130 unlock_page(page);
4131 }
09cbfeaf
KS
4132 put_page(page);
4133 start += PAGE_SIZE;
771ed689
CM
4134 }
4135
ffbd517d 4136 flush_epd_write_bio(&epd);
771ed689
CM
4137 return ret;
4138}
d1310b2e
CM
4139
4140int extent_writepages(struct extent_io_tree *tree,
4141 struct address_space *mapping,
4142 get_extent_t *get_extent,
4143 struct writeback_control *wbc)
4144{
4145 int ret = 0;
4146 struct extent_page_data epd = {
4147 .bio = NULL,
4148 .tree = tree,
4149 .get_extent = get_extent,
771ed689 4150 .extent_locked = 0,
ffbd517d 4151 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4152 .bio_flags = 0,
d1310b2e
CM
4153 };
4154
4242b64a 4155 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4156 flush_write_bio);
ffbd517d 4157 flush_epd_write_bio(&epd);
d1310b2e
CM
4158 return ret;
4159}
d1310b2e
CM
4160
4161int extent_readpages(struct extent_io_tree *tree,
4162 struct address_space *mapping,
4163 struct list_head *pages, unsigned nr_pages,
4164 get_extent_t get_extent)
4165{
4166 struct bio *bio = NULL;
4167 unsigned page_idx;
c8b97818 4168 unsigned long bio_flags = 0;
67c9684f
LB
4169 struct page *pagepool[16];
4170 struct page *page;
125bac01 4171 struct extent_map *em_cached = NULL;
67c9684f 4172 int nr = 0;
808f80b4 4173 u64 prev_em_start = (u64)-1;
d1310b2e 4174
d1310b2e 4175 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4176 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4177
4178 prefetchw(&page->flags);
4179 list_del(&page->lru);
67c9684f 4180 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4181 page->index,
4182 readahead_gfp_mask(mapping))) {
09cbfeaf 4183 put_page(page);
67c9684f 4184 continue;
d1310b2e 4185 }
67c9684f
LB
4186
4187 pagepool[nr++] = page;
4188 if (nr < ARRAY_SIZE(pagepool))
4189 continue;
125bac01 4190 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4191 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4192 nr = 0;
d1310b2e 4193 }
9974090b 4194 if (nr)
125bac01 4195 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4196 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4197
125bac01
MX
4198 if (em_cached)
4199 free_extent_map(em_cached);
4200
d1310b2e
CM
4201 BUG_ON(!list_empty(pages));
4202 if (bio)
1f7ad75b 4203 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4204 return 0;
4205}
d1310b2e
CM
4206
4207/*
4208 * basic invalidatepage code, this waits on any locked or writeback
4209 * ranges corresponding to the page, and then deletes any extent state
4210 * records from the tree
4211 */
4212int extent_invalidatepage(struct extent_io_tree *tree,
4213 struct page *page, unsigned long offset)
4214{
2ac55d41 4215 struct extent_state *cached_state = NULL;
4eee4fa4 4216 u64 start = page_offset(page);
09cbfeaf 4217 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4218 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4219
fda2832f 4220 start += ALIGN(offset, blocksize);
d1310b2e
CM
4221 if (start > end)
4222 return 0;
4223
ff13db41 4224 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4225 wait_on_page_writeback(page);
d1310b2e 4226 clear_extent_bit(tree, start, end,
32c00aff
JB
4227 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4228 EXTENT_DO_ACCOUNTING,
2ac55d41 4229 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4230 return 0;
4231}
d1310b2e 4232
7b13b7b1
CM
4233/*
4234 * a helper for releasepage, this tests for areas of the page that
4235 * are locked or under IO and drops the related state bits if it is safe
4236 * to drop the page.
4237 */
48a3b636
ES
4238static int try_release_extent_state(struct extent_map_tree *map,
4239 struct extent_io_tree *tree,
4240 struct page *page, gfp_t mask)
7b13b7b1 4241{
4eee4fa4 4242 u64 start = page_offset(page);
09cbfeaf 4243 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4244 int ret = 1;
4245
211f90e6 4246 if (test_range_bit(tree, start, end,
8b62b72b 4247 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4248 ret = 0;
4249 else {
11ef160f
CM
4250 /*
4251 * at this point we can safely clear everything except the
4252 * locked bit and the nodatasum bit
4253 */
e3f24cc5 4254 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4255 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4256 0, 0, NULL, mask);
e3f24cc5
CM
4257
4258 /* if clear_extent_bit failed for enomem reasons,
4259 * we can't allow the release to continue.
4260 */
4261 if (ret < 0)
4262 ret = 0;
4263 else
4264 ret = 1;
7b13b7b1
CM
4265 }
4266 return ret;
4267}
7b13b7b1 4268
d1310b2e
CM
4269/*
4270 * a helper for releasepage. As long as there are no locked extents
4271 * in the range corresponding to the page, both state records and extent
4272 * map records are removed
4273 */
4274int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4275 struct extent_io_tree *tree, struct page *page,
4276 gfp_t mask)
d1310b2e
CM
4277{
4278 struct extent_map *em;
4eee4fa4 4279 u64 start = page_offset(page);
09cbfeaf 4280 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4281
d0164adc 4282 if (gfpflags_allow_blocking(mask) &&
ee22184b 4283 page->mapping->host->i_size > SZ_16M) {
39b5637f 4284 u64 len;
70dec807 4285 while (start <= end) {
39b5637f 4286 len = end - start + 1;
890871be 4287 write_lock(&map->lock);
39b5637f 4288 em = lookup_extent_mapping(map, start, len);
285190d9 4289 if (!em) {
890871be 4290 write_unlock(&map->lock);
70dec807
CM
4291 break;
4292 }
7f3c74fb
CM
4293 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4294 em->start != start) {
890871be 4295 write_unlock(&map->lock);
70dec807
CM
4296 free_extent_map(em);
4297 break;
4298 }
4299 if (!test_range_bit(tree, em->start,
4300 extent_map_end(em) - 1,
8b62b72b 4301 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4302 0, NULL)) {
70dec807
CM
4303 remove_extent_mapping(map, em);
4304 /* once for the rb tree */
4305 free_extent_map(em);
4306 }
4307 start = extent_map_end(em);
890871be 4308 write_unlock(&map->lock);
70dec807
CM
4309
4310 /* once for us */
d1310b2e
CM
4311 free_extent_map(em);
4312 }
d1310b2e 4313 }
7b13b7b1 4314 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4315}
d1310b2e 4316
ec29ed5b
CM
4317/*
4318 * helper function for fiemap, which doesn't want to see any holes.
4319 * This maps until we find something past 'last'
4320 */
4321static struct extent_map *get_extent_skip_holes(struct inode *inode,
4322 u64 offset,
4323 u64 last,
4324 get_extent_t *get_extent)
4325{
da17066c 4326 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4327 struct extent_map *em;
4328 u64 len;
4329
4330 if (offset >= last)
4331 return NULL;
4332
67871254 4333 while (1) {
ec29ed5b
CM
4334 len = last - offset;
4335 if (len == 0)
4336 break;
fda2832f 4337 len = ALIGN(len, sectorsize);
fc4f21b1 4338 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4339 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4340 return em;
4341
4342 /* if this isn't a hole return it */
4343 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4344 em->block_start != EXTENT_MAP_HOLE) {
4345 return em;
4346 }
4347
4348 /* this is a hole, advance to the next extent */
4349 offset = extent_map_end(em);
4350 free_extent_map(em);
4351 if (offset >= last)
4352 break;
4353 }
4354 return NULL;
4355}
4356
1506fcc8
YS
4357int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4358 __u64 start, __u64 len, get_extent_t *get_extent)
4359{
975f84fe 4360 int ret = 0;
1506fcc8
YS
4361 u64 off = start;
4362 u64 max = start + len;
4363 u32 flags = 0;
975f84fe
JB
4364 u32 found_type;
4365 u64 last;
ec29ed5b 4366 u64 last_for_get_extent = 0;
1506fcc8 4367 u64 disko = 0;
ec29ed5b 4368 u64 isize = i_size_read(inode);
975f84fe 4369 struct btrfs_key found_key;
1506fcc8 4370 struct extent_map *em = NULL;
2ac55d41 4371 struct extent_state *cached_state = NULL;
975f84fe 4372 struct btrfs_path *path;
dc046b10 4373 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4374 int end = 0;
ec29ed5b
CM
4375 u64 em_start = 0;
4376 u64 em_len = 0;
4377 u64 em_end = 0;
1506fcc8
YS
4378
4379 if (len == 0)
4380 return -EINVAL;
4381
975f84fe
JB
4382 path = btrfs_alloc_path();
4383 if (!path)
4384 return -ENOMEM;
4385 path->leave_spinning = 1;
4386
da17066c
JM
4387 start = round_down(start, btrfs_inode_sectorsize(inode));
4388 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4389
ec29ed5b
CM
4390 /*
4391 * lookup the last file extent. We're not using i_size here
4392 * because there might be preallocation past i_size
4393 */
f85b7379
DS
4394 ret = btrfs_lookup_file_extent(NULL, root, path,
4395 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4396 if (ret < 0) {
4397 btrfs_free_path(path);
4398 return ret;
2d324f59
LB
4399 } else {
4400 WARN_ON(!ret);
4401 if (ret == 1)
4402 ret = 0;
975f84fe 4403 }
2d324f59 4404
975f84fe 4405 path->slots[0]--;
975f84fe 4406 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4407 found_type = found_key.type;
975f84fe 4408
ec29ed5b 4409 /* No extents, but there might be delalloc bits */
4a0cc7ca 4410 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4411 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4412 /* have to trust i_size as the end */
4413 last = (u64)-1;
4414 last_for_get_extent = isize;
4415 } else {
4416 /*
4417 * remember the start of the last extent. There are a
4418 * bunch of different factors that go into the length of the
4419 * extent, so its much less complex to remember where it started
4420 */
4421 last = found_key.offset;
4422 last_for_get_extent = last + 1;
975f84fe 4423 }
fe09e16c 4424 btrfs_release_path(path);
975f84fe 4425
ec29ed5b
CM
4426 /*
4427 * we might have some extents allocated but more delalloc past those
4428 * extents. so, we trust isize unless the start of the last extent is
4429 * beyond isize
4430 */
4431 if (last < isize) {
4432 last = (u64)-1;
4433 last_for_get_extent = isize;
4434 }
4435
ff13db41 4436 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4437 &cached_state);
ec29ed5b 4438
4d479cf0 4439 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4440 get_extent);
1506fcc8
YS
4441 if (!em)
4442 goto out;
4443 if (IS_ERR(em)) {
4444 ret = PTR_ERR(em);
4445 goto out;
4446 }
975f84fe 4447
1506fcc8 4448 while (!end) {
b76bb701 4449 u64 offset_in_extent = 0;
ea8efc74
CM
4450
4451 /* break if the extent we found is outside the range */
4452 if (em->start >= max || extent_map_end(em) < off)
4453 break;
4454
4455 /*
4456 * get_extent may return an extent that starts before our
4457 * requested range. We have to make sure the ranges
4458 * we return to fiemap always move forward and don't
4459 * overlap, so adjust the offsets here
4460 */
4461 em_start = max(em->start, off);
1506fcc8 4462
ea8efc74
CM
4463 /*
4464 * record the offset from the start of the extent
b76bb701
JB
4465 * for adjusting the disk offset below. Only do this if the
4466 * extent isn't compressed since our in ram offset may be past
4467 * what we have actually allocated on disk.
ea8efc74 4468 */
b76bb701
JB
4469 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4470 offset_in_extent = em_start - em->start;
ec29ed5b 4471 em_end = extent_map_end(em);
ea8efc74 4472 em_len = em_end - em_start;
1506fcc8
YS
4473 disko = 0;
4474 flags = 0;
4475
ea8efc74
CM
4476 /*
4477 * bump off for our next call to get_extent
4478 */
4479 off = extent_map_end(em);
4480 if (off >= max)
4481 end = 1;
4482
93dbfad7 4483 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4484 end = 1;
4485 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4486 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4487 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4488 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4489 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4490 flags |= (FIEMAP_EXTENT_DELALLOC |
4491 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4492 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4493 struct btrfs_trans_handle *trans;
4494
dc046b10
JB
4495 u64 bytenr = em->block_start -
4496 (em->start - em->orig_start);
fe09e16c 4497
ea8efc74 4498 disko = em->block_start + offset_in_extent;
fe09e16c 4499
afce772e
LF
4500 /*
4501 * We need a trans handle to get delayed refs
4502 */
4503 trans = btrfs_join_transaction(root);
4504 /*
4505 * It's OK if we can't start a trans we can still check
4506 * from commit_root
4507 */
4508 if (IS_ERR(trans))
4509 trans = NULL;
4510
fe09e16c
LB
4511 /*
4512 * As btrfs supports shared space, this information
4513 * can be exported to userspace tools via
dc046b10
JB
4514 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4515 * then we're just getting a count and we can skip the
4516 * lookup stuff.
fe09e16c 4517 */
afce772e 4518 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4519 root->objectid,
4520 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4521 if (trans)
3a45bb20 4522 btrfs_end_transaction(trans);
dc046b10 4523 if (ret < 0)
fe09e16c 4524 goto out_free;
dc046b10 4525 if (ret)
fe09e16c 4526 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4527 ret = 0;
1506fcc8
YS
4528 }
4529 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4530 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4531 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4532 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4533
1506fcc8
YS
4534 free_extent_map(em);
4535 em = NULL;
ec29ed5b
CM
4536 if ((em_start >= last) || em_len == (u64)-1 ||
4537 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4538 flags |= FIEMAP_EXTENT_LAST;
4539 end = 1;
4540 }
4541
ec29ed5b
CM
4542 /* now scan forward to see if this is really the last extent. */
4543 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4544 get_extent);
4545 if (IS_ERR(em)) {
4546 ret = PTR_ERR(em);
4547 goto out;
4548 }
4549 if (!em) {
975f84fe
JB
4550 flags |= FIEMAP_EXTENT_LAST;
4551 end = 1;
4552 }
ec29ed5b
CM
4553 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4554 em_len, flags);
26e726af
CS
4555 if (ret) {
4556 if (ret == 1)
4557 ret = 0;
ec29ed5b 4558 goto out_free;
26e726af 4559 }
1506fcc8
YS
4560 }
4561out_free:
4562 free_extent_map(em);
4563out:
fe09e16c 4564 btrfs_free_path(path);
a52f4cd2 4565 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4566 &cached_state, GFP_NOFS);
1506fcc8
YS
4567 return ret;
4568}
4569
727011e0
CM
4570static void __free_extent_buffer(struct extent_buffer *eb)
4571{
6d49ba1b 4572 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4573 kmem_cache_free(extent_buffer_cache, eb);
4574}
4575
a26e8c9f 4576int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4577{
4578 return (atomic_read(&eb->io_pages) ||
4579 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4580 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4581}
4582
4583/*
4584 * Helper for releasing extent buffer page.
4585 */
a50924e3 4586static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4587{
4588 unsigned long index;
db7f3436
JB
4589 struct page *page;
4590 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4591
4592 BUG_ON(extent_buffer_under_io(eb));
4593
a50924e3
DS
4594 index = num_extent_pages(eb->start, eb->len);
4595 if (index == 0)
db7f3436
JB
4596 return;
4597
4598 do {
4599 index--;
fb85fc9a 4600 page = eb->pages[index];
5d2361db
FL
4601 if (!page)
4602 continue;
4603 if (mapped)
db7f3436 4604 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4605 /*
4606 * We do this since we'll remove the pages after we've
4607 * removed the eb from the radix tree, so we could race
4608 * and have this page now attached to the new eb. So
4609 * only clear page_private if it's still connected to
4610 * this eb.
4611 */
4612 if (PagePrivate(page) &&
4613 page->private == (unsigned long)eb) {
4614 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4615 BUG_ON(PageDirty(page));
4616 BUG_ON(PageWriteback(page));
db7f3436 4617 /*
5d2361db
FL
4618 * We need to make sure we haven't be attached
4619 * to a new eb.
db7f3436 4620 */
5d2361db
FL
4621 ClearPagePrivate(page);
4622 set_page_private(page, 0);
4623 /* One for the page private */
09cbfeaf 4624 put_page(page);
db7f3436 4625 }
5d2361db
FL
4626
4627 if (mapped)
4628 spin_unlock(&page->mapping->private_lock);
4629
01327610 4630 /* One for when we allocated the page */
09cbfeaf 4631 put_page(page);
a50924e3 4632 } while (index != 0);
db7f3436
JB
4633}
4634
4635/*
4636 * Helper for releasing the extent buffer.
4637 */
4638static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4639{
a50924e3 4640 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4641 __free_extent_buffer(eb);
4642}
4643
f28491e0
JB
4644static struct extent_buffer *
4645__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4646 unsigned long len)
d1310b2e
CM
4647{
4648 struct extent_buffer *eb = NULL;
4649
d1b5c567 4650 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4651 eb->start = start;
4652 eb->len = len;
f28491e0 4653 eb->fs_info = fs_info;
815a51c7 4654 eb->bflags = 0;
bd681513
CM
4655 rwlock_init(&eb->lock);
4656 atomic_set(&eb->write_locks, 0);
4657 atomic_set(&eb->read_locks, 0);
4658 atomic_set(&eb->blocking_readers, 0);
4659 atomic_set(&eb->blocking_writers, 0);
4660 atomic_set(&eb->spinning_readers, 0);
4661 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4662 eb->lock_nested = 0;
bd681513
CM
4663 init_waitqueue_head(&eb->write_lock_wq);
4664 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4665
6d49ba1b
ES
4666 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4667
3083ee2e 4668 spin_lock_init(&eb->refs_lock);
d1310b2e 4669 atomic_set(&eb->refs, 1);
0b32f4bb 4670 atomic_set(&eb->io_pages, 0);
727011e0 4671
b8dae313
DS
4672 /*
4673 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4674 */
4675 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4676 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4677 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4678
4679 return eb;
4680}
4681
815a51c7
JS
4682struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4683{
4684 unsigned long i;
4685 struct page *p;
4686 struct extent_buffer *new;
4687 unsigned long num_pages = num_extent_pages(src->start, src->len);
4688
3f556f78 4689 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4690 if (new == NULL)
4691 return NULL;
4692
4693 for (i = 0; i < num_pages; i++) {
9ec72677 4694 p = alloc_page(GFP_NOFS);
db7f3436
JB
4695 if (!p) {
4696 btrfs_release_extent_buffer(new);
4697 return NULL;
4698 }
815a51c7
JS
4699 attach_extent_buffer_page(new, p);
4700 WARN_ON(PageDirty(p));
4701 SetPageUptodate(p);
4702 new->pages[i] = p;
fba1acf9 4703 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4704 }
4705
815a51c7
JS
4706 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4707 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4708
4709 return new;
4710}
4711
0f331229
OS
4712struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4713 u64 start, unsigned long len)
815a51c7
JS
4714{
4715 struct extent_buffer *eb;
3f556f78 4716 unsigned long num_pages;
815a51c7
JS
4717 unsigned long i;
4718
0f331229 4719 num_pages = num_extent_pages(start, len);
3f556f78
DS
4720
4721 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4722 if (!eb)
4723 return NULL;
4724
4725 for (i = 0; i < num_pages; i++) {
9ec72677 4726 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4727 if (!eb->pages[i])
4728 goto err;
4729 }
4730 set_extent_buffer_uptodate(eb);
4731 btrfs_set_header_nritems(eb, 0);
4732 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4733
4734 return eb;
4735err:
84167d19
SB
4736 for (; i > 0; i--)
4737 __free_page(eb->pages[i - 1]);
815a51c7
JS
4738 __free_extent_buffer(eb);
4739 return NULL;
4740}
4741
0f331229 4742struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4743 u64 start)
0f331229 4744{
da17066c 4745 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4746}
4747
0b32f4bb
JB
4748static void check_buffer_tree_ref(struct extent_buffer *eb)
4749{
242e18c7 4750 int refs;
0b32f4bb
JB
4751 /* the ref bit is tricky. We have to make sure it is set
4752 * if we have the buffer dirty. Otherwise the
4753 * code to free a buffer can end up dropping a dirty
4754 * page
4755 *
4756 * Once the ref bit is set, it won't go away while the
4757 * buffer is dirty or in writeback, and it also won't
4758 * go away while we have the reference count on the
4759 * eb bumped.
4760 *
4761 * We can't just set the ref bit without bumping the
4762 * ref on the eb because free_extent_buffer might
4763 * see the ref bit and try to clear it. If this happens
4764 * free_extent_buffer might end up dropping our original
4765 * ref by mistake and freeing the page before we are able
4766 * to add one more ref.
4767 *
4768 * So bump the ref count first, then set the bit. If someone
4769 * beat us to it, drop the ref we added.
4770 */
242e18c7
CM
4771 refs = atomic_read(&eb->refs);
4772 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4773 return;
4774
594831c4
JB
4775 spin_lock(&eb->refs_lock);
4776 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4777 atomic_inc(&eb->refs);
594831c4 4778 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4779}
4780
2457aec6
MG
4781static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4782 struct page *accessed)
5df4235e
JB
4783{
4784 unsigned long num_pages, i;
4785
0b32f4bb
JB
4786 check_buffer_tree_ref(eb);
4787
5df4235e
JB
4788 num_pages = num_extent_pages(eb->start, eb->len);
4789 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4790 struct page *p = eb->pages[i];
4791
2457aec6
MG
4792 if (p != accessed)
4793 mark_page_accessed(p);
5df4235e
JB
4794 }
4795}
4796
f28491e0
JB
4797struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4798 u64 start)
452c75c3
CS
4799{
4800 struct extent_buffer *eb;
4801
4802 rcu_read_lock();
f28491e0 4803 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4804 start >> PAGE_SHIFT);
452c75c3
CS
4805 if (eb && atomic_inc_not_zero(&eb->refs)) {
4806 rcu_read_unlock();
062c19e9
FM
4807 /*
4808 * Lock our eb's refs_lock to avoid races with
4809 * free_extent_buffer. When we get our eb it might be flagged
4810 * with EXTENT_BUFFER_STALE and another task running
4811 * free_extent_buffer might have seen that flag set,
4812 * eb->refs == 2, that the buffer isn't under IO (dirty and
4813 * writeback flags not set) and it's still in the tree (flag
4814 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4815 * of decrementing the extent buffer's reference count twice.
4816 * So here we could race and increment the eb's reference count,
4817 * clear its stale flag, mark it as dirty and drop our reference
4818 * before the other task finishes executing free_extent_buffer,
4819 * which would later result in an attempt to free an extent
4820 * buffer that is dirty.
4821 */
4822 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4823 spin_lock(&eb->refs_lock);
4824 spin_unlock(&eb->refs_lock);
4825 }
2457aec6 4826 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4827 return eb;
4828 }
4829 rcu_read_unlock();
4830
4831 return NULL;
4832}
4833
faa2dbf0
JB
4834#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4835struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4836 u64 start)
faa2dbf0
JB
4837{
4838 struct extent_buffer *eb, *exists = NULL;
4839 int ret;
4840
4841 eb = find_extent_buffer(fs_info, start);
4842 if (eb)
4843 return eb;
da17066c 4844 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4845 if (!eb)
4846 return NULL;
4847 eb->fs_info = fs_info;
4848again:
e1860a77 4849 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4850 if (ret)
4851 goto free_eb;
4852 spin_lock(&fs_info->buffer_lock);
4853 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4854 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4855 spin_unlock(&fs_info->buffer_lock);
4856 radix_tree_preload_end();
4857 if (ret == -EEXIST) {
4858 exists = find_extent_buffer(fs_info, start);
4859 if (exists)
4860 goto free_eb;
4861 else
4862 goto again;
4863 }
4864 check_buffer_tree_ref(eb);
4865 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4866
4867 /*
4868 * We will free dummy extent buffer's if they come into
4869 * free_extent_buffer with a ref count of 2, but if we are using this we
4870 * want the buffers to stay in memory until we're done with them, so
4871 * bump the ref count again.
4872 */
4873 atomic_inc(&eb->refs);
4874 return eb;
4875free_eb:
4876 btrfs_release_extent_buffer(eb);
4877 return exists;
4878}
4879#endif
4880
f28491e0 4881struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4882 u64 start)
d1310b2e 4883{
da17066c 4884 unsigned long len = fs_info->nodesize;
d1310b2e
CM
4885 unsigned long num_pages = num_extent_pages(start, len);
4886 unsigned long i;
09cbfeaf 4887 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 4888 struct extent_buffer *eb;
6af118ce 4889 struct extent_buffer *exists = NULL;
d1310b2e 4890 struct page *p;
f28491e0 4891 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4892 int uptodate = 1;
19fe0a8b 4893 int ret;
d1310b2e 4894
da17066c 4895 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
4896 btrfs_err(fs_info, "bad tree block start %llu", start);
4897 return ERR_PTR(-EINVAL);
4898 }
4899
f28491e0 4900 eb = find_extent_buffer(fs_info, start);
452c75c3 4901 if (eb)
6af118ce 4902 return eb;
6af118ce 4903
23d79d81 4904 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4905 if (!eb)
c871b0f2 4906 return ERR_PTR(-ENOMEM);
d1310b2e 4907
727011e0 4908 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4909 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
4910 if (!p) {
4911 exists = ERR_PTR(-ENOMEM);
6af118ce 4912 goto free_eb;
c871b0f2 4913 }
4f2de97a
JB
4914
4915 spin_lock(&mapping->private_lock);
4916 if (PagePrivate(p)) {
4917 /*
4918 * We could have already allocated an eb for this page
4919 * and attached one so lets see if we can get a ref on
4920 * the existing eb, and if we can we know it's good and
4921 * we can just return that one, else we know we can just
4922 * overwrite page->private.
4923 */
4924 exists = (struct extent_buffer *)p->private;
4925 if (atomic_inc_not_zero(&exists->refs)) {
4926 spin_unlock(&mapping->private_lock);
4927 unlock_page(p);
09cbfeaf 4928 put_page(p);
2457aec6 4929 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4930 goto free_eb;
4931 }
5ca64f45 4932 exists = NULL;
4f2de97a 4933
0b32f4bb 4934 /*
4f2de97a
JB
4935 * Do this so attach doesn't complain and we need to
4936 * drop the ref the old guy had.
4937 */
4938 ClearPagePrivate(p);
0b32f4bb 4939 WARN_ON(PageDirty(p));
09cbfeaf 4940 put_page(p);
d1310b2e 4941 }
4f2de97a
JB
4942 attach_extent_buffer_page(eb, p);
4943 spin_unlock(&mapping->private_lock);
0b32f4bb 4944 WARN_ON(PageDirty(p));
727011e0 4945 eb->pages[i] = p;
d1310b2e
CM
4946 if (!PageUptodate(p))
4947 uptodate = 0;
eb14ab8e
CM
4948
4949 /*
4950 * see below about how we avoid a nasty race with release page
4951 * and why we unlock later
4952 */
d1310b2e
CM
4953 }
4954 if (uptodate)
b4ce94de 4955 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4956again:
e1860a77 4957 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
4958 if (ret) {
4959 exists = ERR_PTR(ret);
19fe0a8b 4960 goto free_eb;
c871b0f2 4961 }
19fe0a8b 4962
f28491e0
JB
4963 spin_lock(&fs_info->buffer_lock);
4964 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4965 start >> PAGE_SHIFT, eb);
f28491e0 4966 spin_unlock(&fs_info->buffer_lock);
452c75c3 4967 radix_tree_preload_end();
19fe0a8b 4968 if (ret == -EEXIST) {
f28491e0 4969 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4970 if (exists)
4971 goto free_eb;
4972 else
115391d2 4973 goto again;
6af118ce 4974 }
6af118ce 4975 /* add one reference for the tree */
0b32f4bb 4976 check_buffer_tree_ref(eb);
34b41ace 4977 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4978
4979 /*
4980 * there is a race where release page may have
4981 * tried to find this extent buffer in the radix
4982 * but failed. It will tell the VM it is safe to
4983 * reclaim the, and it will clear the page private bit.
4984 * We must make sure to set the page private bit properly
4985 * after the extent buffer is in the radix tree so
4986 * it doesn't get lost
4987 */
727011e0
CM
4988 SetPageChecked(eb->pages[0]);
4989 for (i = 1; i < num_pages; i++) {
fb85fc9a 4990 p = eb->pages[i];
727011e0
CM
4991 ClearPageChecked(p);
4992 unlock_page(p);
4993 }
4994 unlock_page(eb->pages[0]);
d1310b2e
CM
4995 return eb;
4996
6af118ce 4997free_eb:
5ca64f45 4998 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4999 for (i = 0; i < num_pages; i++) {
5000 if (eb->pages[i])
5001 unlock_page(eb->pages[i]);
5002 }
eb14ab8e 5003
897ca6e9 5004 btrfs_release_extent_buffer(eb);
6af118ce 5005 return exists;
d1310b2e 5006}
d1310b2e 5007
3083ee2e
JB
5008static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009{
5010 struct extent_buffer *eb =
5011 container_of(head, struct extent_buffer, rcu_head);
5012
5013 __free_extent_buffer(eb);
5014}
5015
3083ee2e 5016/* Expects to have eb->eb_lock already held */
f7a52a40 5017static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5018{
5019 WARN_ON(atomic_read(&eb->refs) == 0);
5020 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5021 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5022 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5023
815a51c7 5024 spin_unlock(&eb->refs_lock);
3083ee2e 5025
f28491e0
JB
5026 spin_lock(&fs_info->buffer_lock);
5027 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5028 eb->start >> PAGE_SHIFT);
f28491e0 5029 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5030 } else {
5031 spin_unlock(&eb->refs_lock);
815a51c7 5032 }
3083ee2e
JB
5033
5034 /* Should be safe to release our pages at this point */
a50924e3 5035 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5036#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5037 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5038 __free_extent_buffer(eb);
5039 return 1;
5040 }
5041#endif
3083ee2e 5042 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5043 return 1;
3083ee2e
JB
5044 }
5045 spin_unlock(&eb->refs_lock);
e64860aa
JB
5046
5047 return 0;
3083ee2e
JB
5048}
5049
d1310b2e
CM
5050void free_extent_buffer(struct extent_buffer *eb)
5051{
242e18c7
CM
5052 int refs;
5053 int old;
d1310b2e
CM
5054 if (!eb)
5055 return;
5056
242e18c7
CM
5057 while (1) {
5058 refs = atomic_read(&eb->refs);
5059 if (refs <= 3)
5060 break;
5061 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5062 if (old == refs)
5063 return;
5064 }
5065
3083ee2e 5066 spin_lock(&eb->refs_lock);
815a51c7
JS
5067 if (atomic_read(&eb->refs) == 2 &&
5068 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5069 atomic_dec(&eb->refs);
5070
3083ee2e
JB
5071 if (atomic_read(&eb->refs) == 2 &&
5072 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5073 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 atomic_dec(&eb->refs);
5076
5077 /*
5078 * I know this is terrible, but it's temporary until we stop tracking
5079 * the uptodate bits and such for the extent buffers.
5080 */
f7a52a40 5081 release_extent_buffer(eb);
3083ee2e
JB
5082}
5083
5084void free_extent_buffer_stale(struct extent_buffer *eb)
5085{
5086 if (!eb)
d1310b2e
CM
5087 return;
5088
3083ee2e
JB
5089 spin_lock(&eb->refs_lock);
5090 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091
0b32f4bb 5092 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
f7a52a40 5095 release_extent_buffer(eb);
d1310b2e 5096}
d1310b2e 5097
1d4284bd 5098void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5099{
d1310b2e
CM
5100 unsigned long i;
5101 unsigned long num_pages;
5102 struct page *page;
5103
d1310b2e
CM
5104 num_pages = num_extent_pages(eb->start, eb->len);
5105
5106 for (i = 0; i < num_pages; i++) {
fb85fc9a 5107 page = eb->pages[i];
b9473439 5108 if (!PageDirty(page))
d2c3f4f6
CM
5109 continue;
5110
a61e6f29 5111 lock_page(page);
eb14ab8e
CM
5112 WARN_ON(!PagePrivate(page));
5113
d1310b2e 5114 clear_page_dirty_for_io(page);
0ee0fda0 5115 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5116 if (!PageDirty(page)) {
5117 radix_tree_tag_clear(&page->mapping->page_tree,
5118 page_index(page),
5119 PAGECACHE_TAG_DIRTY);
5120 }
0ee0fda0 5121 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5122 ClearPageError(page);
a61e6f29 5123 unlock_page(page);
d1310b2e 5124 }
0b32f4bb 5125 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5126}
d1310b2e 5127
0b32f4bb 5128int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5129{
5130 unsigned long i;
5131 unsigned long num_pages;
b9473439 5132 int was_dirty = 0;
d1310b2e 5133
0b32f4bb
JB
5134 check_buffer_tree_ref(eb);
5135
b9473439 5136 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5137
d1310b2e 5138 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5139 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5140 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141
b9473439 5142 for (i = 0; i < num_pages; i++)
fb85fc9a 5143 set_page_dirty(eb->pages[i]);
b9473439 5144 return was_dirty;
d1310b2e 5145}
d1310b2e 5146
69ba3927 5147void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5148{
5149 unsigned long i;
5150 struct page *page;
5151 unsigned long num_pages;
5152
b4ce94de 5153 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5154 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5155 for (i = 0; i < num_pages; i++) {
fb85fc9a 5156 page = eb->pages[i];
33958dc6
CM
5157 if (page)
5158 ClearPageUptodate(page);
1259ab75 5159 }
1259ab75
CM
5160}
5161
09c25a8c 5162void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5163{
5164 unsigned long i;
5165 struct page *page;
5166 unsigned long num_pages;
5167
0b32f4bb 5168 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5169 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5170 for (i = 0; i < num_pages; i++) {
fb85fc9a 5171 page = eb->pages[i];
d1310b2e
CM
5172 SetPageUptodate(page);
5173 }
d1310b2e 5174}
d1310b2e 5175
0b32f4bb 5176int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5177{
0b32f4bb 5178 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5179}
d1310b2e
CM
5180
5181int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5182 struct extent_buffer *eb, int wait,
f188591e 5183 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5184{
5185 unsigned long i;
d1310b2e
CM
5186 struct page *page;
5187 int err;
5188 int ret = 0;
ce9adaa5
CM
5189 int locked_pages = 0;
5190 int all_uptodate = 1;
d1310b2e 5191 unsigned long num_pages;
727011e0 5192 unsigned long num_reads = 0;
a86c12c7 5193 struct bio *bio = NULL;
c8b97818 5194 unsigned long bio_flags = 0;
a86c12c7 5195
b4ce94de 5196 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5197 return 0;
5198
d1310b2e 5199 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5200 for (i = 0; i < num_pages; i++) {
fb85fc9a 5201 page = eb->pages[i];
bb82ab88 5202 if (wait == WAIT_NONE) {
2db04966 5203 if (!trylock_page(page))
ce9adaa5 5204 goto unlock_exit;
d1310b2e
CM
5205 } else {
5206 lock_page(page);
5207 }
ce9adaa5 5208 locked_pages++;
2571e739
LB
5209 }
5210 /*
5211 * We need to firstly lock all pages to make sure that
5212 * the uptodate bit of our pages won't be affected by
5213 * clear_extent_buffer_uptodate().
5214 */
8436ea91 5215 for (i = 0; i < num_pages; i++) {
2571e739 5216 page = eb->pages[i];
727011e0
CM
5217 if (!PageUptodate(page)) {
5218 num_reads++;
ce9adaa5 5219 all_uptodate = 0;
727011e0 5220 }
ce9adaa5 5221 }
2571e739 5222
ce9adaa5 5223 if (all_uptodate) {
8436ea91 5224 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5225 goto unlock_exit;
5226 }
5227
656f30db 5228 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5229 eb->read_mirror = 0;
0b32f4bb 5230 atomic_set(&eb->io_pages, num_reads);
8436ea91 5231 for (i = 0; i < num_pages; i++) {
fb85fc9a 5232 page = eb->pages[i];
baf863b9 5233
ce9adaa5 5234 if (!PageUptodate(page)) {
baf863b9
LB
5235 if (ret) {
5236 atomic_dec(&eb->io_pages);
5237 unlock_page(page);
5238 continue;
5239 }
5240
f188591e 5241 ClearPageError(page);
a86c12c7 5242 err = __extent_read_full_page(tree, page,
f188591e 5243 get_extent, &bio,
d4c7ca86 5244 mirror_num, &bio_flags,
1f7ad75b 5245 REQ_META);
baf863b9 5246 if (err) {
d1310b2e 5247 ret = err;
baf863b9
LB
5248 /*
5249 * We use &bio in above __extent_read_full_page,
5250 * so we ensure that if it returns error, the
5251 * current page fails to add itself to bio and
5252 * it's been unlocked.
5253 *
5254 * We must dec io_pages by ourselves.
5255 */
5256 atomic_dec(&eb->io_pages);
5257 }
d1310b2e
CM
5258 } else {
5259 unlock_page(page);
5260 }
5261 }
5262
355808c2 5263 if (bio) {
1f7ad75b 5264 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5265 if (err)
5266 return err;
355808c2 5267 }
a86c12c7 5268
bb82ab88 5269 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5270 return ret;
d397712b 5271
8436ea91 5272 for (i = 0; i < num_pages; i++) {
fb85fc9a 5273 page = eb->pages[i];
d1310b2e 5274 wait_on_page_locked(page);
d397712b 5275 if (!PageUptodate(page))
d1310b2e 5276 ret = -EIO;
d1310b2e 5277 }
d397712b 5278
d1310b2e 5279 return ret;
ce9adaa5
CM
5280
5281unlock_exit:
d397712b 5282 while (locked_pages > 0) {
ce9adaa5 5283 locked_pages--;
8436ea91
JB
5284 page = eb->pages[locked_pages];
5285 unlock_page(page);
ce9adaa5
CM
5286 }
5287 return ret;
d1310b2e 5288}
d1310b2e
CM
5289
5290void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5291 unsigned long start,
5292 unsigned long len)
5293{
5294 size_t cur;
5295 size_t offset;
5296 struct page *page;
5297 char *kaddr;
5298 char *dst = (char *)dstv;
09cbfeaf
KS
5299 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5300 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5301
5302 WARN_ON(start > eb->len);
5303 WARN_ON(start + len > eb->start + eb->len);
5304
09cbfeaf 5305 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5306
d397712b 5307 while (len > 0) {
fb85fc9a 5308 page = eb->pages[i];
d1310b2e 5309
09cbfeaf 5310 cur = min(len, (PAGE_SIZE - offset));
a6591715 5311 kaddr = page_address(page);
d1310b2e 5312 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5313
5314 dst += cur;
5315 len -= cur;
5316 offset = 0;
5317 i++;
5318 }
5319}
d1310b2e 5320
550ac1d8
GH
5321int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5322 unsigned long start,
5323 unsigned long len)
5324{
5325 size_t cur;
5326 size_t offset;
5327 struct page *page;
5328 char *kaddr;
5329 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5330 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5331 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5332 int ret = 0;
5333
5334 WARN_ON(start > eb->len);
5335 WARN_ON(start + len > eb->start + eb->len);
5336
09cbfeaf 5337 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5338
5339 while (len > 0) {
fb85fc9a 5340 page = eb->pages[i];
550ac1d8 5341
09cbfeaf 5342 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5343 kaddr = page_address(page);
5344 if (copy_to_user(dst, kaddr + offset, cur)) {
5345 ret = -EFAULT;
5346 break;
5347 }
5348
5349 dst += cur;
5350 len -= cur;
5351 offset = 0;
5352 i++;
5353 }
5354
5355 return ret;
5356}
5357
415b35a5
LB
5358/*
5359 * return 0 if the item is found within a page.
5360 * return 1 if the item spans two pages.
5361 * return -EINVAL otherwise.
5362 */
d1310b2e 5363int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5364 unsigned long min_len, char **map,
d1310b2e 5365 unsigned long *map_start,
a6591715 5366 unsigned long *map_len)
d1310b2e 5367{
09cbfeaf 5368 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5369 char *kaddr;
5370 struct page *p;
09cbfeaf
KS
5371 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5372 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5373 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5374 PAGE_SHIFT;
d1310b2e
CM
5375
5376 if (i != end_i)
415b35a5 5377 return 1;
d1310b2e
CM
5378
5379 if (i == 0) {
5380 offset = start_offset;
5381 *map_start = 0;
5382 } else {
5383 offset = 0;
09cbfeaf 5384 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5385 }
d397712b 5386
d1310b2e 5387 if (start + min_len > eb->len) {
5d163e0e 5388 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5389 eb->start, eb->len, start, min_len);
85026533 5390 return -EINVAL;
d1310b2e
CM
5391 }
5392
fb85fc9a 5393 p = eb->pages[i];
a6591715 5394 kaddr = page_address(p);
d1310b2e 5395 *map = kaddr + offset;
09cbfeaf 5396 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5397 return 0;
5398}
d1310b2e 5399
d1310b2e
CM
5400int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5401 unsigned long start,
5402 unsigned long len)
5403{
5404 size_t cur;
5405 size_t offset;
5406 struct page *page;
5407 char *kaddr;
5408 char *ptr = (char *)ptrv;
09cbfeaf
KS
5409 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5410 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5411 int ret = 0;
5412
5413 WARN_ON(start > eb->len);
5414 WARN_ON(start + len > eb->start + eb->len);
5415
09cbfeaf 5416 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5417
d397712b 5418 while (len > 0) {
fb85fc9a 5419 page = eb->pages[i];
d1310b2e 5420
09cbfeaf 5421 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5422
a6591715 5423 kaddr = page_address(page);
d1310b2e 5424 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5425 if (ret)
5426 break;
5427
5428 ptr += cur;
5429 len -= cur;
5430 offset = 0;
5431 i++;
5432 }
5433 return ret;
5434}
d1310b2e 5435
f157bf76
DS
5436void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5437 const void *srcv)
5438{
5439 char *kaddr;
5440
5441 WARN_ON(!PageUptodate(eb->pages[0]));
5442 kaddr = page_address(eb->pages[0]);
5443 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5444 BTRFS_FSID_SIZE);
5445}
5446
5447void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5448{
5449 char *kaddr;
5450
5451 WARN_ON(!PageUptodate(eb->pages[0]));
5452 kaddr = page_address(eb->pages[0]);
5453 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5454 BTRFS_FSID_SIZE);
5455}
5456
d1310b2e
CM
5457void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5458 unsigned long start, unsigned long len)
5459{
5460 size_t cur;
5461 size_t offset;
5462 struct page *page;
5463 char *kaddr;
5464 char *src = (char *)srcv;
09cbfeaf
KS
5465 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5466 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5467
5468 WARN_ON(start > eb->len);
5469 WARN_ON(start + len > eb->start + eb->len);
5470
09cbfeaf 5471 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5472
d397712b 5473 while (len > 0) {
fb85fc9a 5474 page = eb->pages[i];
d1310b2e
CM
5475 WARN_ON(!PageUptodate(page));
5476
09cbfeaf 5477 cur = min(len, PAGE_SIZE - offset);
a6591715 5478 kaddr = page_address(page);
d1310b2e 5479 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5480
5481 src += cur;
5482 len -= cur;
5483 offset = 0;
5484 i++;
5485 }
5486}
d1310b2e 5487
b159fa28
DS
5488void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5489 unsigned long len)
d1310b2e
CM
5490{
5491 size_t cur;
5492 size_t offset;
5493 struct page *page;
5494 char *kaddr;
09cbfeaf
KS
5495 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5496 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5497
5498 WARN_ON(start > eb->len);
5499 WARN_ON(start + len > eb->start + eb->len);
5500
09cbfeaf 5501 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5502
d397712b 5503 while (len > 0) {
fb85fc9a 5504 page = eb->pages[i];
d1310b2e
CM
5505 WARN_ON(!PageUptodate(page));
5506
09cbfeaf 5507 cur = min(len, PAGE_SIZE - offset);
a6591715 5508 kaddr = page_address(page);
b159fa28 5509 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5510
5511 len -= cur;
5512 offset = 0;
5513 i++;
5514 }
5515}
d1310b2e 5516
58e8012c
DS
5517void copy_extent_buffer_full(struct extent_buffer *dst,
5518 struct extent_buffer *src)
5519{
5520 int i;
5521 unsigned num_pages;
5522
5523 ASSERT(dst->len == src->len);
5524
5525 num_pages = num_extent_pages(dst->start, dst->len);
5526 for (i = 0; i < num_pages; i++)
5527 copy_page(page_address(dst->pages[i]),
5528 page_address(src->pages[i]));
5529}
5530
d1310b2e
CM
5531void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5532 unsigned long dst_offset, unsigned long src_offset,
5533 unsigned long len)
5534{
5535 u64 dst_len = dst->len;
5536 size_t cur;
5537 size_t offset;
5538 struct page *page;
5539 char *kaddr;
09cbfeaf
KS
5540 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5541 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5542
5543 WARN_ON(src->len != dst_len);
5544
5545 offset = (start_offset + dst_offset) &
09cbfeaf 5546 (PAGE_SIZE - 1);
d1310b2e 5547
d397712b 5548 while (len > 0) {
fb85fc9a 5549 page = dst->pages[i];
d1310b2e
CM
5550 WARN_ON(!PageUptodate(page));
5551
09cbfeaf 5552 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5553
a6591715 5554 kaddr = page_address(page);
d1310b2e 5555 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5556
5557 src_offset += cur;
5558 len -= cur;
5559 offset = 0;
5560 i++;
5561 }
5562}
d1310b2e 5563
2fe1d551
OS
5564void le_bitmap_set(u8 *map, unsigned int start, int len)
5565{
5566 u8 *p = map + BIT_BYTE(start);
5567 const unsigned int size = start + len;
5568 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5569 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5570
5571 while (len - bits_to_set >= 0) {
5572 *p |= mask_to_set;
5573 len -= bits_to_set;
5574 bits_to_set = BITS_PER_BYTE;
9c894696 5575 mask_to_set = ~0;
2fe1d551
OS
5576 p++;
5577 }
5578 if (len) {
5579 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5580 *p |= mask_to_set;
5581 }
5582}
5583
5584void le_bitmap_clear(u8 *map, unsigned int start, int len)
5585{
5586 u8 *p = map + BIT_BYTE(start);
5587 const unsigned int size = start + len;
5588 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5589 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5590
5591 while (len - bits_to_clear >= 0) {
5592 *p &= ~mask_to_clear;
5593 len -= bits_to_clear;
5594 bits_to_clear = BITS_PER_BYTE;
9c894696 5595 mask_to_clear = ~0;
2fe1d551
OS
5596 p++;
5597 }
5598 if (len) {
5599 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5600 *p &= ~mask_to_clear;
5601 }
5602}
3e1e8bb7
OS
5603
5604/*
5605 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5606 * given bit number
5607 * @eb: the extent buffer
5608 * @start: offset of the bitmap item in the extent buffer
5609 * @nr: bit number
5610 * @page_index: return index of the page in the extent buffer that contains the
5611 * given bit number
5612 * @page_offset: return offset into the page given by page_index
5613 *
5614 * This helper hides the ugliness of finding the byte in an extent buffer which
5615 * contains a given bit.
5616 */
5617static inline void eb_bitmap_offset(struct extent_buffer *eb,
5618 unsigned long start, unsigned long nr,
5619 unsigned long *page_index,
5620 size_t *page_offset)
5621{
09cbfeaf 5622 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5623 size_t byte_offset = BIT_BYTE(nr);
5624 size_t offset;
5625
5626 /*
5627 * The byte we want is the offset of the extent buffer + the offset of
5628 * the bitmap item in the extent buffer + the offset of the byte in the
5629 * bitmap item.
5630 */
5631 offset = start_offset + start + byte_offset;
5632
09cbfeaf
KS
5633 *page_index = offset >> PAGE_SHIFT;
5634 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5635}
5636
5637/**
5638 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5639 * @eb: the extent buffer
5640 * @start: offset of the bitmap item in the extent buffer
5641 * @nr: bit number to test
5642 */
5643int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5644 unsigned long nr)
5645{
2fe1d551 5646 u8 *kaddr;
3e1e8bb7
OS
5647 struct page *page;
5648 unsigned long i;
5649 size_t offset;
5650
5651 eb_bitmap_offset(eb, start, nr, &i, &offset);
5652 page = eb->pages[i];
5653 WARN_ON(!PageUptodate(page));
5654 kaddr = page_address(page);
5655 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5656}
5657
5658/**
5659 * extent_buffer_bitmap_set - set an area of a bitmap
5660 * @eb: the extent buffer
5661 * @start: offset of the bitmap item in the extent buffer
5662 * @pos: bit number of the first bit
5663 * @len: number of bits to set
5664 */
5665void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5666 unsigned long pos, unsigned long len)
5667{
2fe1d551 5668 u8 *kaddr;
3e1e8bb7
OS
5669 struct page *page;
5670 unsigned long i;
5671 size_t offset;
5672 const unsigned int size = pos + len;
5673 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5674 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5675
5676 eb_bitmap_offset(eb, start, pos, &i, &offset);
5677 page = eb->pages[i];
5678 WARN_ON(!PageUptodate(page));
5679 kaddr = page_address(page);
5680
5681 while (len >= bits_to_set) {
5682 kaddr[offset] |= mask_to_set;
5683 len -= bits_to_set;
5684 bits_to_set = BITS_PER_BYTE;
9c894696 5685 mask_to_set = ~0;
09cbfeaf 5686 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5687 offset = 0;
5688 page = eb->pages[++i];
5689 WARN_ON(!PageUptodate(page));
5690 kaddr = page_address(page);
5691 }
5692 }
5693 if (len) {
5694 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5695 kaddr[offset] |= mask_to_set;
5696 }
5697}
5698
5699
5700/**
5701 * extent_buffer_bitmap_clear - clear an area of a bitmap
5702 * @eb: the extent buffer
5703 * @start: offset of the bitmap item in the extent buffer
5704 * @pos: bit number of the first bit
5705 * @len: number of bits to clear
5706 */
5707void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5708 unsigned long pos, unsigned long len)
5709{
2fe1d551 5710 u8 *kaddr;
3e1e8bb7
OS
5711 struct page *page;
5712 unsigned long i;
5713 size_t offset;
5714 const unsigned int size = pos + len;
5715 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5716 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5717
5718 eb_bitmap_offset(eb, start, pos, &i, &offset);
5719 page = eb->pages[i];
5720 WARN_ON(!PageUptodate(page));
5721 kaddr = page_address(page);
5722
5723 while (len >= bits_to_clear) {
5724 kaddr[offset] &= ~mask_to_clear;
5725 len -= bits_to_clear;
5726 bits_to_clear = BITS_PER_BYTE;
9c894696 5727 mask_to_clear = ~0;
09cbfeaf 5728 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5729 offset = 0;
5730 page = eb->pages[++i];
5731 WARN_ON(!PageUptodate(page));
5732 kaddr = page_address(page);
5733 }
5734 }
5735 if (len) {
5736 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5737 kaddr[offset] &= ~mask_to_clear;
5738 }
5739}
5740
3387206f
ST
5741static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5742{
5743 unsigned long distance = (src > dst) ? src - dst : dst - src;
5744 return distance < len;
5745}
5746
d1310b2e
CM
5747static void copy_pages(struct page *dst_page, struct page *src_page,
5748 unsigned long dst_off, unsigned long src_off,
5749 unsigned long len)
5750{
a6591715 5751 char *dst_kaddr = page_address(dst_page);
d1310b2e 5752 char *src_kaddr;
727011e0 5753 int must_memmove = 0;
d1310b2e 5754
3387206f 5755 if (dst_page != src_page) {
a6591715 5756 src_kaddr = page_address(src_page);
3387206f 5757 } else {
d1310b2e 5758 src_kaddr = dst_kaddr;
727011e0
CM
5759 if (areas_overlap(src_off, dst_off, len))
5760 must_memmove = 1;
3387206f 5761 }
d1310b2e 5762
727011e0
CM
5763 if (must_memmove)
5764 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5765 else
5766 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5767}
5768
5769void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5770 unsigned long src_offset, unsigned long len)
5771{
0b246afa 5772 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5773 size_t cur;
5774 size_t dst_off_in_page;
5775 size_t src_off_in_page;
09cbfeaf 5776 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5777 unsigned long dst_i;
5778 unsigned long src_i;
5779
5780 if (src_offset + len > dst->len) {
0b246afa 5781 btrfs_err(fs_info,
5d163e0e
JM
5782 "memmove bogus src_offset %lu move len %lu dst len %lu",
5783 src_offset, len, dst->len);
d1310b2e
CM
5784 BUG_ON(1);
5785 }
5786 if (dst_offset + len > dst->len) {
0b246afa 5787 btrfs_err(fs_info,
5d163e0e
JM
5788 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5789 dst_offset, len, dst->len);
d1310b2e
CM
5790 BUG_ON(1);
5791 }
5792
d397712b 5793 while (len > 0) {
d1310b2e 5794 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5795 (PAGE_SIZE - 1);
d1310b2e 5796 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5797 (PAGE_SIZE - 1);
d1310b2e 5798
09cbfeaf
KS
5799 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5800 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5801
09cbfeaf 5802 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5803 src_off_in_page));
5804 cur = min_t(unsigned long, cur,
09cbfeaf 5805 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5806
fb85fc9a 5807 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5808 dst_off_in_page, src_off_in_page, cur);
5809
5810 src_offset += cur;
5811 dst_offset += cur;
5812 len -= cur;
5813 }
5814}
d1310b2e
CM
5815
5816void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5817 unsigned long src_offset, unsigned long len)
5818{
0b246afa 5819 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5820 size_t cur;
5821 size_t dst_off_in_page;
5822 size_t src_off_in_page;
5823 unsigned long dst_end = dst_offset + len - 1;
5824 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5825 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5826 unsigned long dst_i;
5827 unsigned long src_i;
5828
5829 if (src_offset + len > dst->len) {
0b246afa 5830 btrfs_err(fs_info,
5d163e0e
JM
5831 "memmove bogus src_offset %lu move len %lu len %lu",
5832 src_offset, len, dst->len);
d1310b2e
CM
5833 BUG_ON(1);
5834 }
5835 if (dst_offset + len > dst->len) {
0b246afa 5836 btrfs_err(fs_info,
5d163e0e
JM
5837 "memmove bogus dst_offset %lu move len %lu len %lu",
5838 dst_offset, len, dst->len);
d1310b2e
CM
5839 BUG_ON(1);
5840 }
727011e0 5841 if (dst_offset < src_offset) {
d1310b2e
CM
5842 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5843 return;
5844 }
d397712b 5845 while (len > 0) {
09cbfeaf
KS
5846 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5847 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5848
5849 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5850 (PAGE_SIZE - 1);
d1310b2e 5851 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5852 (PAGE_SIZE - 1);
d1310b2e
CM
5853
5854 cur = min_t(unsigned long, len, src_off_in_page + 1);
5855 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5856 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5857 dst_off_in_page - cur + 1,
5858 src_off_in_page - cur + 1, cur);
5859
5860 dst_end -= cur;
5861 src_end -= cur;
5862 len -= cur;
5863 }
5864}
6af118ce 5865
f7a52a40 5866int try_release_extent_buffer(struct page *page)
19fe0a8b 5867{
6af118ce 5868 struct extent_buffer *eb;
6af118ce 5869
3083ee2e 5870 /*
01327610 5871 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5872 * now.
5873 */
5874 spin_lock(&page->mapping->private_lock);
5875 if (!PagePrivate(page)) {
5876 spin_unlock(&page->mapping->private_lock);
4f2de97a 5877 return 1;
45f49bce 5878 }
6af118ce 5879
3083ee2e
JB
5880 eb = (struct extent_buffer *)page->private;
5881 BUG_ON(!eb);
19fe0a8b
MX
5882
5883 /*
3083ee2e
JB
5884 * This is a little awful but should be ok, we need to make sure that
5885 * the eb doesn't disappear out from under us while we're looking at
5886 * this page.
19fe0a8b 5887 */
3083ee2e 5888 spin_lock(&eb->refs_lock);
0b32f4bb 5889 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5890 spin_unlock(&eb->refs_lock);
5891 spin_unlock(&page->mapping->private_lock);
5892 return 0;
b9473439 5893 }
3083ee2e 5894 spin_unlock(&page->mapping->private_lock);
897ca6e9 5895
19fe0a8b 5896 /*
3083ee2e
JB
5897 * If tree ref isn't set then we know the ref on this eb is a real ref,
5898 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5899 */
3083ee2e
JB
5900 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5901 spin_unlock(&eb->refs_lock);
5902 return 0;
b9473439 5903 }
19fe0a8b 5904
f7a52a40 5905 return release_extent_buffer(eb);
6af118ce 5906}