]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: reduce arguments for decompress_bio ops
[mirror_ubuntu-jammy-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
c6100a4b
JB
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
8d599ae1 93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
de0022b9 113 unsigned long bio_flags;
771ed689
CM
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
ffbd517d
CM
118 unsigned int extent_locked:1;
119
70fd7614 120 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 121 unsigned int sync_io:1;
d1310b2e
CM
122};
123
d38ed27f
QW
124static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127{
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
fefdc557
QW
134 if (!set && (state->state & bits) == 0)
135 return;
d38ed27f 136 changeset->bytes_changed += state->end - state->start + 1;
53d32359 137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141}
142
0b32f4bb 143static noinline void flush_write_bio(void *data);
c2d904e0
JM
144static inline struct btrfs_fs_info *
145tree_fs_info(struct extent_io_tree *tree)
146{
c6100a4b
JB
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
c2d904e0 150}
0b32f4bb 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b
CM
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio));
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
fefdc557
QW
584static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
7870d082
JB
1942int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
4a54c8c1
JS
1945{
1946 int ret;
1947 int err = 0;
4a54c8c1 1948
47dc196a 1949 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
91166212 1952 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1953 if (ret)
1954 err = ret;
1955
7870d082 1956 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1957 rec->start + rec->len - 1,
91166212 1958 EXTENT_DAMAGED);
53b381b3
DW
1959 if (ret && !err)
1960 err = ret;
4a54c8c1
JS
1961
1962 kfree(rec);
1963 return err;
1964}
1965
4a54c8c1
JS
1966/*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
3ec706c8 1971 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
6ec656bc
JB
1976int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1979{
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
908960c6 1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
9be3395b 1990 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1991 if (!bio)
1992 return -EIO;
4f024f37 1993 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1994 map_length = length;
1995
b5de8d0d
FM
1996 /*
1997 * Avoid races with device replace and make sure our bbio has devices
1998 * associated to its stripes that don't go away while we are doing the
1999 * read repair operation.
2000 */
2001 btrfs_bio_counter_inc_blocked(fs_info);
c725328c
LB
2002 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2003 /*
2004 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2005 * to update all raid stripes, but here we just want to correct
2006 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2007 * stripe's dev and sector.
2008 */
2009 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2010 &map_length, &bbio, 0);
2011 if (ret) {
2012 btrfs_bio_counter_dec(fs_info);
2013 bio_put(bio);
2014 return -EIO;
2015 }
2016 ASSERT(bbio->mirror_num == 1);
2017 } else {
2018 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2019 &map_length, &bbio, mirror_num);
2020 if (ret) {
2021 btrfs_bio_counter_dec(fs_info);
2022 bio_put(bio);
2023 return -EIO;
2024 }
2025 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2026 }
c725328c
LB
2027
2028 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2029 bio->bi_iter.bi_sector = sector;
c725328c 2030 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2031 btrfs_put_bbio(bbio);
4a54c8c1 2032 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2033 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2034 bio_put(bio);
2035 return -EIO;
2036 }
2037 bio->bi_bdev = dev->bdev;
70fd7614 2038 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2039 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2040
4e49ea4a 2041 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2042 /* try to remap that extent elsewhere? */
b5de8d0d 2043 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2044 bio_put(bio);
442a4f63 2045 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2046 return -EIO;
2047 }
2048
b14af3b4
DS
2049 btrfs_info_rl_in_rcu(fs_info,
2050 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2051 ino, start,
1203b681 2052 rcu_str_deref(dev->name), sector);
b5de8d0d 2053 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2054 bio_put(bio);
2055 return 0;
2056}
2057
2ff7e61e
JM
2058int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2059 struct extent_buffer *eb, int mirror_num)
ea466794 2060{
ea466794
JB
2061 u64 start = eb->start;
2062 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2063 int ret = 0;
ea466794 2064
0b246afa 2065 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2066 return -EROFS;
2067
ea466794 2068 for (i = 0; i < num_pages; i++) {
fb85fc9a 2069 struct page *p = eb->pages[i];
1203b681 2070
6ec656bc 2071 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2072 start - page_offset(p), mirror_num);
ea466794
JB
2073 if (ret)
2074 break;
09cbfeaf 2075 start += PAGE_SIZE;
ea466794
JB
2076 }
2077
2078 return ret;
2079}
2080
4a54c8c1
JS
2081/*
2082 * each time an IO finishes, we do a fast check in the IO failure tree
2083 * to see if we need to process or clean up an io_failure_record
2084 */
7870d082
JB
2085int clean_io_failure(struct btrfs_fs_info *fs_info,
2086 struct extent_io_tree *failure_tree,
2087 struct extent_io_tree *io_tree, u64 start,
2088 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2089{
2090 u64 private;
4a54c8c1 2091 struct io_failure_record *failrec;
4a54c8c1
JS
2092 struct extent_state *state;
2093 int num_copies;
4a54c8c1 2094 int ret;
4a54c8c1
JS
2095
2096 private = 0;
7870d082
JB
2097 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2098 EXTENT_DIRTY, 0);
4a54c8c1
JS
2099 if (!ret)
2100 return 0;
2101
7870d082 2102 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2103 if (ret)
2104 return 0;
2105
4a54c8c1
JS
2106 BUG_ON(!failrec->this_mirror);
2107
2108 if (failrec->in_validation) {
2109 /* there was no real error, just free the record */
ab8d0fc4
JM
2110 btrfs_debug(fs_info,
2111 "clean_io_failure: freeing dummy error at %llu",
2112 failrec->start);
4a54c8c1
JS
2113 goto out;
2114 }
908960c6
ID
2115 if (fs_info->sb->s_flags & MS_RDONLY)
2116 goto out;
4a54c8c1 2117
7870d082
JB
2118 spin_lock(&io_tree->lock);
2119 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2120 failrec->start,
2121 EXTENT_LOCKED);
7870d082 2122 spin_unlock(&io_tree->lock);
4a54c8c1 2123
883d0de4
MX
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
4a54c8c1 2128 if (num_copies > 1) {
7870d082
JB
2129 repair_io_failure(fs_info, ino, start, failrec->len,
2130 failrec->logical, page, pg_offset,
2131 failrec->failed_mirror);
4a54c8c1
JS
2132 }
2133 }
2134
2135out:
7870d082 2136 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2137
454ff3de 2138 return 0;
4a54c8c1
JS
2139}
2140
f612496b
MX
2141/*
2142 * Can be called when
2143 * - hold extent lock
2144 * - under ordered extent
2145 * - the inode is freeing
2146 */
7ab7956e 2147void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2148{
7ab7956e 2149 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2150 struct io_failure_record *failrec;
2151 struct extent_state *state, *next;
2152
2153 if (RB_EMPTY_ROOT(&failure_tree->state))
2154 return;
2155
2156 spin_lock(&failure_tree->lock);
2157 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2158 while (state) {
2159 if (state->start > end)
2160 break;
2161
2162 ASSERT(state->end <= end);
2163
2164 next = next_state(state);
2165
47dc196a 2166 failrec = state->failrec;
f612496b
MX
2167 free_extent_state(state);
2168 kfree(failrec);
2169
2170 state = next;
2171 }
2172 spin_unlock(&failure_tree->lock);
2173}
2174
2fe6303e 2175int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2176 struct io_failure_record **failrec_ret)
4a54c8c1 2177{
ab8d0fc4 2178 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2179 struct io_failure_record *failrec;
4a54c8c1 2180 struct extent_map *em;
4a54c8c1
JS
2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2184 int ret;
4a54c8c1
JS
2185 u64 logical;
2186
47dc196a 2187 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2188 if (ret) {
2189 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2190 if (!failrec)
2191 return -ENOMEM;
2fe6303e 2192
4a54c8c1
JS
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
68ba990f 2207 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
7a2d6a64 2212 if (!em) {
4a54c8c1
JS
2213 kfree(failrec);
2214 return -EIO;
2215 }
2fe6303e 2216
4a54c8c1
JS
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2fe6303e 2225
ab8d0fc4
JM
2226 btrfs_debug(fs_info,
2227 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2228 logical, start, failrec->len);
2fe6303e 2229
4a54c8c1
JS
2230 failrec->logical = logical;
2231 free_extent_map(em);
2232
2233 /* set the bits in the private failure tree */
2234 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2235 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2236 if (ret >= 0)
47dc196a 2237 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
ceeb0ae7 2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2241 if (ret < 0) {
2242 kfree(failrec);
2243 return ret;
2244 }
2245 } else {
ab8d0fc4
JM
2246 btrfs_debug(fs_info,
2247 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
4a54c8c1
JS
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
2fe6303e
MX
2256
2257 *failrec_ret = failrec;
2258
2259 return 0;
2260}
2261
2262int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2263 struct io_failure_record *failrec, int failed_mirror)
2264{
ab8d0fc4 2265 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2266 int num_copies;
2267
ab8d0fc4 2268 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2269 if (num_copies == 1) {
2270 /*
2271 * we only have a single copy of the data, so don't bother with
2272 * all the retry and error correction code that follows. no
2273 * matter what the error is, it is very likely to persist.
2274 */
ab8d0fc4
JM
2275 btrfs_debug(fs_info,
2276 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2277 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2278 return 0;
4a54c8c1
JS
2279 }
2280
4a54c8c1
JS
2281 /*
2282 * there are two premises:
2283 * a) deliver good data to the caller
2284 * b) correct the bad sectors on disk
2285 */
2286 if (failed_bio->bi_vcnt > 1) {
2287 /*
2288 * to fulfill b), we need to know the exact failing sectors, as
2289 * we don't want to rewrite any more than the failed ones. thus,
2290 * we need separate read requests for the failed bio
2291 *
2292 * if the following BUG_ON triggers, our validation request got
2293 * merged. we need separate requests for our algorithm to work.
2294 */
2295 BUG_ON(failrec->in_validation);
2296 failrec->in_validation = 1;
2297 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2298 } else {
2299 /*
2300 * we're ready to fulfill a) and b) alongside. get a good copy
2301 * of the failed sector and if we succeed, we have setup
2302 * everything for repair_io_failure to do the rest for us.
2303 */
2304 if (failrec->in_validation) {
2305 BUG_ON(failrec->this_mirror != failed_mirror);
2306 failrec->in_validation = 0;
2307 failrec->this_mirror = 0;
2308 }
2309 failrec->failed_mirror = failed_mirror;
2310 failrec->this_mirror++;
2311 if (failrec->this_mirror == failed_mirror)
2312 failrec->this_mirror++;
4a54c8c1
JS
2313 }
2314
facc8a22 2315 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2316 btrfs_debug(fs_info,
2317 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2318 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2319 return 0;
4a54c8c1
JS
2320 }
2321
2fe6303e
MX
2322 return 1;
2323}
2324
2325
2326struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2327 struct io_failure_record *failrec,
2328 struct page *page, int pg_offset, int icsum,
8b110e39 2329 bio_end_io_t *endio_func, void *data)
2fe6303e 2330{
0b246afa 2331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2332 struct bio *bio;
2333 struct btrfs_io_bio *btrfs_failed_bio;
2334 struct btrfs_io_bio *btrfs_bio;
2335
9be3395b 2336 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2337 if (!bio)
2338 return NULL;
2339
2340 bio->bi_end_io = endio_func;
4f024f37 2341 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2342 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2343 bio->bi_iter.bi_size = 0;
8b110e39 2344 bio->bi_private = data;
4a54c8c1 2345
facc8a22
MX
2346 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347 if (btrfs_failed_bio->csum) {
facc8a22
MX
2348 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350 btrfs_bio = btrfs_io_bio(bio);
2351 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2352 icsum *= csum_size;
2353 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2354 csum_size);
2355 }
2356
2fe6303e
MX
2357 bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359 return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 struct page *page, u64 start, u64 end,
2372 int failed_mirror)
2373{
2374 struct io_failure_record *failrec;
2375 struct inode *inode = page->mapping->host;
2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2378 struct bio *bio;
70fd7614 2379 int read_mode = 0;
2fe6303e
MX
2380 int ret;
2381
1f7ad75b 2382 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2383
2384 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2385 if (ret)
2386 return ret;
2387
2388 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2389 if (!ret) {
7870d082 2390 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2391 return -EIO;
2392 }
2393
2394 if (failed_bio->bi_vcnt > 1)
70fd7614 2395 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2396
2397 phy_offset >>= inode->i_sb->s_blocksize_bits;
2398 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2399 start - page_offset(page),
8b110e39
MX
2400 (int)phy_offset, failed_bio->bi_end_io,
2401 NULL);
2fe6303e 2402 if (!bio) {
7870d082 2403 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2404 return -EIO;
2405 }
1f7ad75b 2406 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2407
ab8d0fc4
JM
2408 btrfs_debug(btrfs_sb(inode->i_sb),
2409 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2410 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2411
c6100a4b 2412 ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2413 failrec->bio_flags, 0);
6c387ab2 2414 if (ret) {
7870d082 2415 free_io_failure(failure_tree, tree, failrec);
6c387ab2
MX
2416 bio_put(bio);
2417 }
2418
013bd4c3 2419 return ret;
4a54c8c1
JS
2420}
2421
d1310b2e
CM
2422/* lots and lots of room for performance fixes in the end_bio funcs */
2423
b5227c07 2424void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2425{
2426 int uptodate = (err == 0);
2427 struct extent_io_tree *tree;
3e2426bd 2428 int ret = 0;
87826df0
JM
2429
2430 tree = &BTRFS_I(page->mapping->host)->io_tree;
2431
c3988d63
DS
2432 if (tree->ops && tree->ops->writepage_end_io_hook)
2433 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2434 uptodate);
87826df0 2435
87826df0 2436 if (!uptodate) {
87826df0
JM
2437 ClearPageUptodate(page);
2438 SetPageError(page);
bff5baf8 2439 ret = err < 0 ? err : -EIO;
5dca6eea 2440 mapping_set_error(page->mapping, ret);
87826df0 2441 }
87826df0
JM
2442}
2443
d1310b2e
CM
2444/*
2445 * after a writepage IO is done, we need to:
2446 * clear the uptodate bits on error
2447 * clear the writeback bits in the extent tree for this IO
2448 * end_page_writeback if the page has no more pending IO
2449 *
2450 * Scheduling is not allowed, so the extent state tree is expected
2451 * to have one and only one object corresponding to this IO.
2452 */
4246a0b6 2453static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2454{
2c30c71b 2455 struct bio_vec *bvec;
d1310b2e
CM
2456 u64 start;
2457 u64 end;
2c30c71b 2458 int i;
d1310b2e 2459
2c30c71b 2460 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2461 struct page *page = bvec->bv_page;
0b246afa
JM
2462 struct inode *inode = page->mapping->host;
2463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2464
17a5adcc
AO
2465 /* We always issue full-page reads, but if some block
2466 * in a page fails to read, blk_update_request() will
2467 * advance bv_offset and adjust bv_len to compensate.
2468 * Print a warning for nonzero offsets, and an error
2469 * if they don't add up to a full page. */
09cbfeaf
KS
2470 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2471 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2472 btrfs_err(fs_info,
efe120a0
FH
2473 "partial page write in btrfs with offset %u and length %u",
2474 bvec->bv_offset, bvec->bv_len);
2475 else
0b246afa 2476 btrfs_info(fs_info,
5d163e0e 2477 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2478 bvec->bv_offset, bvec->bv_len);
2479 }
d1310b2e 2480
17a5adcc
AO
2481 start = page_offset(page);
2482 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2483
b5227c07 2484 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2485 end_page_writeback(page);
2c30c71b 2486 }
2b1f55b0 2487
d1310b2e 2488 bio_put(bio);
d1310b2e
CM
2489}
2490
883d0de4
MX
2491static void
2492endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2493 int uptodate)
2494{
2495 struct extent_state *cached = NULL;
2496 u64 end = start + len - 1;
2497
2498 if (uptodate && tree->track_uptodate)
2499 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2500 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2501}
2502
d1310b2e
CM
2503/*
2504 * after a readpage IO is done, we need to:
2505 * clear the uptodate bits on error
2506 * set the uptodate bits if things worked
2507 * set the page up to date if all extents in the tree are uptodate
2508 * clear the lock bit in the extent tree
2509 * unlock the page if there are no other extents locked for it
2510 *
2511 * Scheduling is not allowed, so the extent state tree is expected
2512 * to have one and only one object corresponding to this IO.
2513 */
4246a0b6 2514static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2515{
2c30c71b 2516 struct bio_vec *bvec;
4246a0b6 2517 int uptodate = !bio->bi_error;
facc8a22 2518 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2519 struct extent_io_tree *tree, *failure_tree;
facc8a22 2520 u64 offset = 0;
d1310b2e
CM
2521 u64 start;
2522 u64 end;
facc8a22 2523 u64 len;
883d0de4
MX
2524 u64 extent_start = 0;
2525 u64 extent_len = 0;
5cf1ab56 2526 int mirror;
d1310b2e 2527 int ret;
2c30c71b 2528 int i;
d1310b2e 2529
2c30c71b 2530 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2531 struct page *page = bvec->bv_page;
a71754fc 2532 struct inode *inode = page->mapping->host;
ab8d0fc4 2533 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2534
ab8d0fc4
JM
2535 btrfs_debug(fs_info,
2536 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2537 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2538 io_bio->mirror_num);
a71754fc 2539 tree = &BTRFS_I(inode)->io_tree;
7870d082 2540 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2541
17a5adcc
AO
2542 /* We always issue full-page reads, but if some block
2543 * in a page fails to read, blk_update_request() will
2544 * advance bv_offset and adjust bv_len to compensate.
2545 * Print a warning for nonzero offsets, and an error
2546 * if they don't add up to a full page. */
09cbfeaf
KS
2547 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2548 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2549 btrfs_err(fs_info,
2550 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2551 bvec->bv_offset, bvec->bv_len);
2552 else
ab8d0fc4
JM
2553 btrfs_info(fs_info,
2554 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2555 bvec->bv_offset, bvec->bv_len);
2556 }
d1310b2e 2557
17a5adcc
AO
2558 start = page_offset(page);
2559 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2560 len = bvec->bv_len;
d1310b2e 2561
9be3395b 2562 mirror = io_bio->mirror_num;
20c9801d 2563 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2564 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2565 page, start, end,
2566 mirror);
5ee0844d 2567 if (ret)
d1310b2e 2568 uptodate = 0;
5ee0844d 2569 else
7870d082
JB
2570 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2571 failure_tree, tree, start,
2572 page,
2573 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2574 }
ea466794 2575
f2a09da9
MX
2576 if (likely(uptodate))
2577 goto readpage_ok;
2578
20a7db8a 2579 if (tree->ops) {
5cf1ab56 2580 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2581 if (ret == -EAGAIN) {
2582 /*
2583 * Data inode's readpage_io_failed_hook() always
2584 * returns -EAGAIN.
2585 *
2586 * The generic bio_readpage_error handles errors
2587 * the following way: If possible, new read
2588 * requests are created and submitted and will
2589 * end up in end_bio_extent_readpage as well (if
2590 * we're lucky, not in the !uptodate case). In
2591 * that case it returns 0 and we just go on with
2592 * the next page in our bio. If it can't handle
2593 * the error it will return -EIO and we remain
2594 * responsible for that page.
2595 */
2596 ret = bio_readpage_error(bio, offset, page,
2597 start, end, mirror);
2598 if (ret == 0) {
2599 uptodate = !bio->bi_error;
2600 offset += len;
2601 continue;
2602 }
2603 }
2604
f4a8e656 2605 /*
9d0d1c8b
LB
2606 * metadata's readpage_io_failed_hook() always returns
2607 * -EIO and fixes nothing. -EIO is also returned if
2608 * data inode error could not be fixed.
f4a8e656 2609 */
9d0d1c8b 2610 ASSERT(ret == -EIO);
7e38326f 2611 }
f2a09da9 2612readpage_ok:
883d0de4 2613 if (likely(uptodate)) {
a71754fc 2614 loff_t i_size = i_size_read(inode);
09cbfeaf 2615 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2616 unsigned off;
a71754fc
JB
2617
2618 /* Zero out the end if this page straddles i_size */
09cbfeaf 2619 off = i_size & (PAGE_SIZE-1);
a583c026 2620 if (page->index == end_index && off)
09cbfeaf 2621 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2622 SetPageUptodate(page);
70dec807 2623 } else {
17a5adcc
AO
2624 ClearPageUptodate(page);
2625 SetPageError(page);
70dec807 2626 }
17a5adcc 2627 unlock_page(page);
facc8a22 2628 offset += len;
883d0de4
MX
2629
2630 if (unlikely(!uptodate)) {
2631 if (extent_len) {
2632 endio_readpage_release_extent(tree,
2633 extent_start,
2634 extent_len, 1);
2635 extent_start = 0;
2636 extent_len = 0;
2637 }
2638 endio_readpage_release_extent(tree, start,
2639 end - start + 1, 0);
2640 } else if (!extent_len) {
2641 extent_start = start;
2642 extent_len = end + 1 - start;
2643 } else if (extent_start + extent_len == start) {
2644 extent_len += end + 1 - start;
2645 } else {
2646 endio_readpage_release_extent(tree, extent_start,
2647 extent_len, uptodate);
2648 extent_start = start;
2649 extent_len = end + 1 - start;
2650 }
2c30c71b 2651 }
d1310b2e 2652
883d0de4
MX
2653 if (extent_len)
2654 endio_readpage_release_extent(tree, extent_start, extent_len,
2655 uptodate);
facc8a22 2656 if (io_bio->end_io)
4246a0b6 2657 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2658 bio_put(bio);
d1310b2e
CM
2659}
2660
9be3395b
CM
2661/*
2662 * this allocates from the btrfs_bioset. We're returning a bio right now
2663 * but you can call btrfs_io_bio for the appropriate container_of magic
2664 */
88f794ed
MX
2665struct bio *
2666btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2667 gfp_t gfp_flags)
d1310b2e 2668{
facc8a22 2669 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2670 struct bio *bio;
2671
9be3395b 2672 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2673
2674 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2675 while (!bio && (nr_vecs /= 2)) {
2676 bio = bio_alloc_bioset(gfp_flags,
2677 nr_vecs, btrfs_bioset);
2678 }
d1310b2e
CM
2679 }
2680
2681 if (bio) {
2682 bio->bi_bdev = bdev;
4f024f37 2683 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2684 btrfs_bio = btrfs_io_bio(bio);
2685 btrfs_bio->csum = NULL;
2686 btrfs_bio->csum_allocated = NULL;
2687 btrfs_bio->end_io = NULL;
d1310b2e
CM
2688 }
2689 return bio;
2690}
2691
9be3395b
CM
2692struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2693{
23ea8e5a
MX
2694 struct btrfs_io_bio *btrfs_bio;
2695 struct bio *new;
9be3395b 2696
015c1bd9 2697 new = bio_clone_fast(bio, gfp_mask, btrfs_bioset);
23ea8e5a
MX
2698 if (new) {
2699 btrfs_bio = btrfs_io_bio(new);
2700 btrfs_bio->csum = NULL;
2701 btrfs_bio->csum_allocated = NULL;
2702 btrfs_bio->end_io = NULL;
17347cec 2703 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2704 }
2705 return new;
2706}
9be3395b
CM
2707
2708/* this also allocates from the btrfs_bioset */
2709struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2710{
facc8a22
MX
2711 struct btrfs_io_bio *btrfs_bio;
2712 struct bio *bio;
2713
2714 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2715 if (bio) {
2716 btrfs_bio = btrfs_io_bio(bio);
2717 btrfs_bio->csum = NULL;
2718 btrfs_bio->csum_allocated = NULL;
2719 btrfs_bio->end_io = NULL;
2720 }
2721 return bio;
9be3395b
CM
2722}
2723
e477094f 2724struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2725{
2726 struct bio *bio;
2727 struct btrfs_io_bio *btrfs_bio;
2728
2729 /* this will never fail when it's backed by a bioset */
e477094f 2730 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2731 ASSERT(bio);
2732
2733 btrfs_bio = btrfs_io_bio(bio);
2734 btrfs_bio->csum = NULL;
2735 btrfs_bio->csum_allocated = NULL;
2736 btrfs_bio->end_io = NULL;
2737
2738 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2739 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2740 return bio;
2741}
9be3395b 2742
1f7ad75b
MC
2743static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2744 unsigned long bio_flags)
d1310b2e 2745{
d1310b2e 2746 int ret = 0;
70dec807
CM
2747 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2748 struct page *page = bvec->bv_page;
2749 struct extent_io_tree *tree = bio->bi_private;
70dec807 2750 u64 start;
70dec807 2751
4eee4fa4 2752 start = page_offset(page) + bvec->bv_offset;
70dec807 2753
902b22f3 2754 bio->bi_private = NULL;
d1310b2e
CM
2755 bio_get(bio);
2756
20c9801d 2757 if (tree->ops)
c6100a4b 2758 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2759 mirror_num, bio_flags, start);
0b86a832 2760 else
4e49ea4a 2761 btrfsic_submit_bio(bio);
4a54c8c1 2762
d1310b2e
CM
2763 bio_put(bio);
2764 return ret;
2765}
2766
1f7ad75b 2767static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2768 unsigned long offset, size_t size, struct bio *bio,
2769 unsigned long bio_flags)
2770{
2771 int ret = 0;
20c9801d 2772 if (tree->ops)
81a75f67 2773 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2774 bio_flags);
3444a972
JM
2775 return ret;
2776
2777}
2778
1f7ad75b 2779static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2780 struct writeback_control *wbc,
d1310b2e
CM
2781 struct page *page, sector_t sector,
2782 size_t size, unsigned long offset,
2783 struct block_device *bdev,
2784 struct bio **bio_ret,
f188591e 2785 bio_end_io_t end_io_func,
c8b97818
CM
2786 int mirror_num,
2787 unsigned long prev_bio_flags,
005efedf
FM
2788 unsigned long bio_flags,
2789 bool force_bio_submit)
d1310b2e
CM
2790{
2791 int ret = 0;
2792 struct bio *bio;
c8b97818 2793 int contig = 0;
c8b97818 2794 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2795 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2796
2797 if (bio_ret && *bio_ret) {
2798 bio = *bio_ret;
c8b97818 2799 if (old_compressed)
4f024f37 2800 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2801 else
f73a1c7d 2802 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2803
2804 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2805 force_bio_submit ||
1f7ad75b 2806 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2807 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2808 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2809 if (ret < 0) {
2810 *bio_ret = NULL;
79787eaa 2811 return ret;
289454ad 2812 }
d1310b2e
CM
2813 bio = NULL;
2814 } else {
da2f0f74
CM
2815 if (wbc)
2816 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2817 return 0;
2818 }
2819 }
c8b97818 2820
b54ffb73
KO
2821 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2822 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2823 if (!bio)
2824 return -ENOMEM;
70dec807 2825
c8b97818 2826 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2827 bio->bi_end_io = end_io_func;
2828 bio->bi_private = tree;
1f7ad75b 2829 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2830 if (wbc) {
2831 wbc_init_bio(wbc, bio);
2832 wbc_account_io(wbc, page, page_size);
2833 }
70dec807 2834
d397712b 2835 if (bio_ret)
d1310b2e 2836 *bio_ret = bio;
d397712b 2837 else
1f7ad75b 2838 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2839
2840 return ret;
2841}
2842
48a3b636
ES
2843static void attach_extent_buffer_page(struct extent_buffer *eb,
2844 struct page *page)
d1310b2e
CM
2845{
2846 if (!PagePrivate(page)) {
2847 SetPagePrivate(page);
09cbfeaf 2848 get_page(page);
4f2de97a
JB
2849 set_page_private(page, (unsigned long)eb);
2850 } else {
2851 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2852 }
2853}
2854
4f2de97a 2855void set_page_extent_mapped(struct page *page)
d1310b2e 2856{
4f2de97a
JB
2857 if (!PagePrivate(page)) {
2858 SetPagePrivate(page);
09cbfeaf 2859 get_page(page);
4f2de97a
JB
2860 set_page_private(page, EXTENT_PAGE_PRIVATE);
2861 }
d1310b2e
CM
2862}
2863
125bac01
MX
2864static struct extent_map *
2865__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2866 u64 start, u64 len, get_extent_t *get_extent,
2867 struct extent_map **em_cached)
2868{
2869 struct extent_map *em;
2870
2871 if (em_cached && *em_cached) {
2872 em = *em_cached;
cbc0e928 2873 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2874 start < extent_map_end(em)) {
490b54d6 2875 refcount_inc(&em->refs);
125bac01
MX
2876 return em;
2877 }
2878
2879 free_extent_map(em);
2880 *em_cached = NULL;
2881 }
2882
fc4f21b1 2883 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2884 if (em_cached && !IS_ERR_OR_NULL(em)) {
2885 BUG_ON(*em_cached);
490b54d6 2886 refcount_inc(&em->refs);
125bac01
MX
2887 *em_cached = em;
2888 }
2889 return em;
2890}
d1310b2e
CM
2891/*
2892 * basic readpage implementation. Locked extent state structs are inserted
2893 * into the tree that are removed when the IO is done (by the end_io
2894 * handlers)
79787eaa 2895 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2896 * return 0 on success, otherwise return error
d1310b2e 2897 */
9974090b
MX
2898static int __do_readpage(struct extent_io_tree *tree,
2899 struct page *page,
2900 get_extent_t *get_extent,
125bac01 2901 struct extent_map **em_cached,
9974090b 2902 struct bio **bio, int mirror_num,
1f7ad75b 2903 unsigned long *bio_flags, int read_flags,
005efedf 2904 u64 *prev_em_start)
d1310b2e
CM
2905{
2906 struct inode *inode = page->mapping->host;
4eee4fa4 2907 u64 start = page_offset(page);
09cbfeaf 2908 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2909 u64 end;
2910 u64 cur = start;
2911 u64 extent_offset;
2912 u64 last_byte = i_size_read(inode);
2913 u64 block_start;
2914 u64 cur_end;
2915 sector_t sector;
2916 struct extent_map *em;
2917 struct block_device *bdev;
baf863b9 2918 int ret = 0;
d1310b2e 2919 int nr = 0;
306e16ce 2920 size_t pg_offset = 0;
d1310b2e 2921 size_t iosize;
c8b97818 2922 size_t disk_io_size;
d1310b2e 2923 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2924 unsigned long this_bio_flag = 0;
d1310b2e
CM
2925
2926 set_page_extent_mapped(page);
2927
9974090b 2928 end = page_end;
90a887c9
DM
2929 if (!PageUptodate(page)) {
2930 if (cleancache_get_page(page) == 0) {
2931 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2932 unlock_extent(tree, start, end);
90a887c9
DM
2933 goto out;
2934 }
2935 }
2936
09cbfeaf 2937 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2938 char *userpage;
09cbfeaf 2939 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2940
2941 if (zero_offset) {
09cbfeaf 2942 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2943 userpage = kmap_atomic(page);
c8b97818
CM
2944 memset(userpage + zero_offset, 0, iosize);
2945 flush_dcache_page(page);
7ac687d9 2946 kunmap_atomic(userpage);
c8b97818
CM
2947 }
2948 }
d1310b2e 2949 while (cur <= end) {
005efedf 2950 bool force_bio_submit = false;
c8f2f24b 2951
d1310b2e
CM
2952 if (cur >= last_byte) {
2953 char *userpage;
507903b8
AJ
2954 struct extent_state *cached = NULL;
2955
09cbfeaf 2956 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2957 userpage = kmap_atomic(page);
306e16ce 2958 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2959 flush_dcache_page(page);
7ac687d9 2960 kunmap_atomic(userpage);
d1310b2e 2961 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2962 &cached, GFP_NOFS);
7f042a83
FM
2963 unlock_extent_cached(tree, cur,
2964 cur + iosize - 1,
2965 &cached, GFP_NOFS);
d1310b2e
CM
2966 break;
2967 }
125bac01
MX
2968 em = __get_extent_map(inode, page, pg_offset, cur,
2969 end - cur + 1, get_extent, em_cached);
c704005d 2970 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2971 SetPageError(page);
7f042a83 2972 unlock_extent(tree, cur, end);
d1310b2e
CM
2973 break;
2974 }
d1310b2e
CM
2975 extent_offset = cur - em->start;
2976 BUG_ON(extent_map_end(em) <= cur);
2977 BUG_ON(end < cur);
2978
261507a0 2979 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2980 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2981 extent_set_compress_type(&this_bio_flag,
2982 em->compress_type);
2983 }
c8b97818 2984
d1310b2e
CM
2985 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2986 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2987 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2988 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2989 disk_io_size = em->block_len;
2990 sector = em->block_start >> 9;
2991 } else {
2992 sector = (em->block_start + extent_offset) >> 9;
2993 disk_io_size = iosize;
2994 }
d1310b2e
CM
2995 bdev = em->bdev;
2996 block_start = em->block_start;
d899e052
YZ
2997 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2998 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2999
3000 /*
3001 * If we have a file range that points to a compressed extent
3002 * and it's followed by a consecutive file range that points to
3003 * to the same compressed extent (possibly with a different
3004 * offset and/or length, so it either points to the whole extent
3005 * or only part of it), we must make sure we do not submit a
3006 * single bio to populate the pages for the 2 ranges because
3007 * this makes the compressed extent read zero out the pages
3008 * belonging to the 2nd range. Imagine the following scenario:
3009 *
3010 * File layout
3011 * [0 - 8K] [8K - 24K]
3012 * | |
3013 * | |
3014 * points to extent X, points to extent X,
3015 * offset 4K, length of 8K offset 0, length 16K
3016 *
3017 * [extent X, compressed length = 4K uncompressed length = 16K]
3018 *
3019 * If the bio to read the compressed extent covers both ranges,
3020 * it will decompress extent X into the pages belonging to the
3021 * first range and then it will stop, zeroing out the remaining
3022 * pages that belong to the other range that points to extent X.
3023 * So here we make sure we submit 2 bios, one for the first
3024 * range and another one for the third range. Both will target
3025 * the same physical extent from disk, but we can't currently
3026 * make the compressed bio endio callback populate the pages
3027 * for both ranges because each compressed bio is tightly
3028 * coupled with a single extent map, and each range can have
3029 * an extent map with a different offset value relative to the
3030 * uncompressed data of our extent and different lengths. This
3031 * is a corner case so we prioritize correctness over
3032 * non-optimal behavior (submitting 2 bios for the same extent).
3033 */
3034 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3035 prev_em_start && *prev_em_start != (u64)-1 &&
3036 *prev_em_start != em->orig_start)
3037 force_bio_submit = true;
3038
3039 if (prev_em_start)
3040 *prev_em_start = em->orig_start;
3041
d1310b2e
CM
3042 free_extent_map(em);
3043 em = NULL;
3044
3045 /* we've found a hole, just zero and go on */
3046 if (block_start == EXTENT_MAP_HOLE) {
3047 char *userpage;
507903b8
AJ
3048 struct extent_state *cached = NULL;
3049
7ac687d9 3050 userpage = kmap_atomic(page);
306e16ce 3051 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3052 flush_dcache_page(page);
7ac687d9 3053 kunmap_atomic(userpage);
d1310b2e
CM
3054
3055 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3056 &cached, GFP_NOFS);
7f042a83
FM
3057 unlock_extent_cached(tree, cur,
3058 cur + iosize - 1,
3059 &cached, GFP_NOFS);
d1310b2e 3060 cur = cur + iosize;
306e16ce 3061 pg_offset += iosize;
d1310b2e
CM
3062 continue;
3063 }
3064 /* the get_extent function already copied into the page */
9655d298
CM
3065 if (test_range_bit(tree, cur, cur_end,
3066 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3067 check_page_uptodate(tree, page);
7f042a83 3068 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3069 cur = cur + iosize;
306e16ce 3070 pg_offset += iosize;
d1310b2e
CM
3071 continue;
3072 }
70dec807
CM
3073 /* we have an inline extent but it didn't get marked up
3074 * to date. Error out
3075 */
3076 if (block_start == EXTENT_MAP_INLINE) {
3077 SetPageError(page);
7f042a83 3078 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3079 cur = cur + iosize;
306e16ce 3080 pg_offset += iosize;
70dec807
CM
3081 continue;
3082 }
d1310b2e 3083
1f7ad75b
MC
3084 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3085 page, sector, disk_io_size, pg_offset,
c2df8bb4 3086 bdev, bio,
c8b97818
CM
3087 end_bio_extent_readpage, mirror_num,
3088 *bio_flags,
005efedf
FM
3089 this_bio_flag,
3090 force_bio_submit);
c8f2f24b
JB
3091 if (!ret) {
3092 nr++;
3093 *bio_flags = this_bio_flag;
3094 } else {
d1310b2e 3095 SetPageError(page);
7f042a83 3096 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3097 goto out;
edd33c99 3098 }
d1310b2e 3099 cur = cur + iosize;
306e16ce 3100 pg_offset += iosize;
d1310b2e 3101 }
90a887c9 3102out:
d1310b2e
CM
3103 if (!nr) {
3104 if (!PageError(page))
3105 SetPageUptodate(page);
3106 unlock_page(page);
3107 }
baf863b9 3108 return ret;
d1310b2e
CM
3109}
3110
9974090b
MX
3111static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3112 struct page *pages[], int nr_pages,
3113 u64 start, u64 end,
3114 get_extent_t *get_extent,
125bac01 3115 struct extent_map **em_cached,
9974090b 3116 struct bio **bio, int mirror_num,
1f7ad75b 3117 unsigned long *bio_flags,
808f80b4 3118 u64 *prev_em_start)
9974090b
MX
3119{
3120 struct inode *inode;
3121 struct btrfs_ordered_extent *ordered;
3122 int index;
3123
3124 inode = pages[0]->mapping->host;
3125 while (1) {
3126 lock_extent(tree, start, end);
a776c6fa 3127 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3128 end - start + 1);
3129 if (!ordered)
3130 break;
3131 unlock_extent(tree, start, end);
3132 btrfs_start_ordered_extent(inode, ordered, 1);
3133 btrfs_put_ordered_extent(ordered);
3134 }
3135
3136 for (index = 0; index < nr_pages; index++) {
125bac01 3137 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3138 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3139 put_page(pages[index]);
9974090b
MX
3140 }
3141}
3142
3143static void __extent_readpages(struct extent_io_tree *tree,
3144 struct page *pages[],
3145 int nr_pages, get_extent_t *get_extent,
125bac01 3146 struct extent_map **em_cached,
9974090b 3147 struct bio **bio, int mirror_num,
1f7ad75b 3148 unsigned long *bio_flags,
808f80b4 3149 u64 *prev_em_start)
9974090b 3150{
35a3621b 3151 u64 start = 0;
9974090b
MX
3152 u64 end = 0;
3153 u64 page_start;
3154 int index;
35a3621b 3155 int first_index = 0;
9974090b
MX
3156
3157 for (index = 0; index < nr_pages; index++) {
3158 page_start = page_offset(pages[index]);
3159 if (!end) {
3160 start = page_start;
09cbfeaf 3161 end = start + PAGE_SIZE - 1;
9974090b
MX
3162 first_index = index;
3163 } else if (end + 1 == page_start) {
09cbfeaf 3164 end += PAGE_SIZE;
9974090b
MX
3165 } else {
3166 __do_contiguous_readpages(tree, &pages[first_index],
3167 index - first_index, start,
125bac01
MX
3168 end, get_extent, em_cached,
3169 bio, mirror_num, bio_flags,
1f7ad75b 3170 prev_em_start);
9974090b 3171 start = page_start;
09cbfeaf 3172 end = start + PAGE_SIZE - 1;
9974090b
MX
3173 first_index = index;
3174 }
3175 }
3176
3177 if (end)
3178 __do_contiguous_readpages(tree, &pages[first_index],
3179 index - first_index, start,
125bac01 3180 end, get_extent, em_cached, bio,
1f7ad75b 3181 mirror_num, bio_flags,
808f80b4 3182 prev_em_start);
9974090b
MX
3183}
3184
3185static int __extent_read_full_page(struct extent_io_tree *tree,
3186 struct page *page,
3187 get_extent_t *get_extent,
3188 struct bio **bio, int mirror_num,
1f7ad75b 3189 unsigned long *bio_flags, int read_flags)
9974090b
MX
3190{
3191 struct inode *inode = page->mapping->host;
3192 struct btrfs_ordered_extent *ordered;
3193 u64 start = page_offset(page);
09cbfeaf 3194 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3195 int ret;
3196
3197 while (1) {
3198 lock_extent(tree, start, end);
a776c6fa 3199 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3200 PAGE_SIZE);
9974090b
MX
3201 if (!ordered)
3202 break;
3203 unlock_extent(tree, start, end);
3204 btrfs_start_ordered_extent(inode, ordered, 1);
3205 btrfs_put_ordered_extent(ordered);
3206 }
3207
125bac01 3208 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3209 bio_flags, read_flags, NULL);
9974090b
MX
3210 return ret;
3211}
3212
d1310b2e 3213int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3214 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3215{
3216 struct bio *bio = NULL;
c8b97818 3217 unsigned long bio_flags = 0;
d1310b2e
CM
3218 int ret;
3219
8ddc7d9c 3220 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3221 &bio_flags, 0);
d1310b2e 3222 if (bio)
1f7ad75b 3223 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3224 return ret;
3225}
d1310b2e 3226
3d4b9496 3227static void update_nr_written(struct writeback_control *wbc,
a9132667 3228 unsigned long nr_written)
11c8349b
CM
3229{
3230 wbc->nr_to_write -= nr_written;
11c8349b
CM
3231}
3232
d1310b2e 3233/*
40f76580
CM
3234 * helper for __extent_writepage, doing all of the delayed allocation setup.
3235 *
3236 * This returns 1 if our fill_delalloc function did all the work required
3237 * to write the page (copy into inline extent). In this case the IO has
3238 * been started and the page is already unlocked.
3239 *
3240 * This returns 0 if all went well (page still locked)
3241 * This returns < 0 if there were errors (page still locked)
d1310b2e 3242 */
40f76580
CM
3243static noinline_for_stack int writepage_delalloc(struct inode *inode,
3244 struct page *page, struct writeback_control *wbc,
3245 struct extent_page_data *epd,
3246 u64 delalloc_start,
3247 unsigned long *nr_written)
3248{
3249 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3250 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3251 u64 nr_delalloc;
3252 u64 delalloc_to_write = 0;
3253 u64 delalloc_end = 0;
3254 int ret;
3255 int page_started = 0;
3256
3257 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3258 return 0;
3259
3260 while (delalloc_end < page_end) {
3261 nr_delalloc = find_lock_delalloc_range(inode, tree,
3262 page,
3263 &delalloc_start,
3264 &delalloc_end,
dcab6a3b 3265 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3266 if (nr_delalloc == 0) {
3267 delalloc_start = delalloc_end + 1;
3268 continue;
3269 }
3270 ret = tree->ops->fill_delalloc(inode, page,
3271 delalloc_start,
3272 delalloc_end,
3273 &page_started,
3274 nr_written);
3275 /* File system has been set read-only */
3276 if (ret) {
3277 SetPageError(page);
3278 /* fill_delalloc should be return < 0 for error
3279 * but just in case, we use > 0 here meaning the
3280 * IO is started, so we don't want to return > 0
3281 * unless things are going well.
3282 */
3283 ret = ret < 0 ? ret : -EIO;
3284 goto done;
3285 }
3286 /*
ea1754a0
KS
3287 * delalloc_end is already one less than the total length, so
3288 * we don't subtract one from PAGE_SIZE
40f76580
CM
3289 */
3290 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3291 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3292 delalloc_start = delalloc_end + 1;
3293 }
3294 if (wbc->nr_to_write < delalloc_to_write) {
3295 int thresh = 8192;
3296
3297 if (delalloc_to_write < thresh * 2)
3298 thresh = delalloc_to_write;
3299 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3300 thresh);
3301 }
3302
3303 /* did the fill delalloc function already unlock and start
3304 * the IO?
3305 */
3306 if (page_started) {
3307 /*
3308 * we've unlocked the page, so we can't update
3309 * the mapping's writeback index, just update
3310 * nr_to_write.
3311 */
3312 wbc->nr_to_write -= *nr_written;
3313 return 1;
3314 }
3315
3316 ret = 0;
3317
3318done:
3319 return ret;
3320}
3321
3322/*
3323 * helper for __extent_writepage. This calls the writepage start hooks,
3324 * and does the loop to map the page into extents and bios.
3325 *
3326 * We return 1 if the IO is started and the page is unlocked,
3327 * 0 if all went well (page still locked)
3328 * < 0 if there were errors (page still locked)
3329 */
3330static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3331 struct page *page,
3332 struct writeback_control *wbc,
3333 struct extent_page_data *epd,
3334 loff_t i_size,
3335 unsigned long nr_written,
3336 int write_flags, int *nr_ret)
d1310b2e 3337{
d1310b2e 3338 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3339 u64 start = page_offset(page);
09cbfeaf 3340 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3341 u64 end;
3342 u64 cur = start;
3343 u64 extent_offset;
d1310b2e
CM
3344 u64 block_start;
3345 u64 iosize;
3346 sector_t sector;
3347 struct extent_map *em;
3348 struct block_device *bdev;
7f3c74fb 3349 size_t pg_offset = 0;
d1310b2e 3350 size_t blocksize;
40f76580
CM
3351 int ret = 0;
3352 int nr = 0;
3353 bool compressed;
c8b97818 3354
247e743c 3355 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3356 ret = tree->ops->writepage_start_hook(page, start,
3357 page_end);
87826df0
JM
3358 if (ret) {
3359 /* Fixup worker will requeue */
3360 if (ret == -EBUSY)
3361 wbc->pages_skipped++;
3362 else
3363 redirty_page_for_writepage(wbc, page);
40f76580 3364
3d4b9496 3365 update_nr_written(wbc, nr_written);
247e743c 3366 unlock_page(page);
bcf93489 3367 return 1;
247e743c
CM
3368 }
3369 }
3370
11c8349b
CM
3371 /*
3372 * we don't want to touch the inode after unlocking the page,
3373 * so we update the mapping writeback index now
3374 */
3d4b9496 3375 update_nr_written(wbc, nr_written + 1);
771ed689 3376
d1310b2e 3377 end = page_end;
40f76580 3378 if (i_size <= start) {
e6dcd2dc
CM
3379 if (tree->ops && tree->ops->writepage_end_io_hook)
3380 tree->ops->writepage_end_io_hook(page, start,
3381 page_end, NULL, 1);
d1310b2e
CM
3382 goto done;
3383 }
3384
d1310b2e
CM
3385 blocksize = inode->i_sb->s_blocksize;
3386
3387 while (cur <= end) {
40f76580 3388 u64 em_end;
58409edd 3389
40f76580 3390 if (cur >= i_size) {
e6dcd2dc
CM
3391 if (tree->ops && tree->ops->writepage_end_io_hook)
3392 tree->ops->writepage_end_io_hook(page, cur,
3393 page_end, NULL, 1);
d1310b2e
CM
3394 break;
3395 }
fc4f21b1 3396 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3397 end - cur + 1, 1);
c704005d 3398 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3399 SetPageError(page);
61391d56 3400 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3401 break;
3402 }
3403
3404 extent_offset = cur - em->start;
40f76580
CM
3405 em_end = extent_map_end(em);
3406 BUG_ON(em_end <= cur);
d1310b2e 3407 BUG_ON(end < cur);
40f76580 3408 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3409 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3410 sector = (em->block_start + extent_offset) >> 9;
3411 bdev = em->bdev;
3412 block_start = em->block_start;
c8b97818 3413 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3414 free_extent_map(em);
3415 em = NULL;
3416
c8b97818
CM
3417 /*
3418 * compressed and inline extents are written through other
3419 * paths in the FS
3420 */
3421 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3422 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3423 /*
3424 * end_io notification does not happen here for
3425 * compressed extents
3426 */
3427 if (!compressed && tree->ops &&
3428 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3429 tree->ops->writepage_end_io_hook(page, cur,
3430 cur + iosize - 1,
3431 NULL, 1);
c8b97818
CM
3432 else if (compressed) {
3433 /* we don't want to end_page_writeback on
3434 * a compressed extent. this happens
3435 * elsewhere
3436 */
3437 nr++;
3438 }
3439
3440 cur += iosize;
7f3c74fb 3441 pg_offset += iosize;
d1310b2e
CM
3442 continue;
3443 }
c8b97818 3444
58409edd
DS
3445 set_range_writeback(tree, cur, cur + iosize - 1);
3446 if (!PageWriteback(page)) {
3447 btrfs_err(BTRFS_I(inode)->root->fs_info,
3448 "page %lu not writeback, cur %llu end %llu",
3449 page->index, cur, end);
d1310b2e 3450 }
7f3c74fb 3451
1f7ad75b
MC
3452 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3453 page, sector, iosize, pg_offset,
c2df8bb4 3454 bdev, &epd->bio,
58409edd
DS
3455 end_bio_extent_writepage,
3456 0, 0, 0, false);
fe01aa65 3457 if (ret) {
58409edd 3458 SetPageError(page);
fe01aa65
TK
3459 if (PageWriteback(page))
3460 end_page_writeback(page);
3461 }
d1310b2e 3462
d1310b2e 3463 cur = cur + iosize;
7f3c74fb 3464 pg_offset += iosize;
d1310b2e
CM
3465 nr++;
3466 }
40f76580
CM
3467done:
3468 *nr_ret = nr;
40f76580
CM
3469 return ret;
3470}
3471
3472/*
3473 * the writepage semantics are similar to regular writepage. extent
3474 * records are inserted to lock ranges in the tree, and as dirty areas
3475 * are found, they are marked writeback. Then the lock bits are removed
3476 * and the end_io handler clears the writeback ranges
3477 */
3478static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3479 void *data)
3480{
3481 struct inode *inode = page->mapping->host;
3482 struct extent_page_data *epd = data;
3483 u64 start = page_offset(page);
09cbfeaf 3484 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3485 int ret;
3486 int nr = 0;
3487 size_t pg_offset = 0;
3488 loff_t i_size = i_size_read(inode);
09cbfeaf 3489 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3490 int write_flags = 0;
40f76580
CM
3491 unsigned long nr_written = 0;
3492
3493 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3494 write_flags = REQ_SYNC;
40f76580
CM
3495
3496 trace___extent_writepage(page, inode, wbc);
3497
3498 WARN_ON(!PageLocked(page));
3499
3500 ClearPageError(page);
3501
09cbfeaf 3502 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3503 if (page->index > end_index ||
3504 (page->index == end_index && !pg_offset)) {
09cbfeaf 3505 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3506 unlock_page(page);
3507 return 0;
3508 }
3509
3510 if (page->index == end_index) {
3511 char *userpage;
3512
3513 userpage = kmap_atomic(page);
3514 memset(userpage + pg_offset, 0,
09cbfeaf 3515 PAGE_SIZE - pg_offset);
40f76580
CM
3516 kunmap_atomic(userpage);
3517 flush_dcache_page(page);
3518 }
3519
3520 pg_offset = 0;
3521
3522 set_page_extent_mapped(page);
3523
3524 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3525 if (ret == 1)
3526 goto done_unlocked;
3527 if (ret)
3528 goto done;
3529
3530 ret = __extent_writepage_io(inode, page, wbc, epd,
3531 i_size, nr_written, write_flags, &nr);
3532 if (ret == 1)
3533 goto done_unlocked;
3534
d1310b2e
CM
3535done:
3536 if (nr == 0) {
3537 /* make sure the mapping tag for page dirty gets cleared */
3538 set_page_writeback(page);
3539 end_page_writeback(page);
3540 }
61391d56
FM
3541 if (PageError(page)) {
3542 ret = ret < 0 ? ret : -EIO;
3543 end_extent_writepage(page, ret, start, page_end);
3544 }
d1310b2e 3545 unlock_page(page);
40f76580 3546 return ret;
771ed689 3547
11c8349b 3548done_unlocked:
d1310b2e
CM
3549 return 0;
3550}
3551
fd8b2b61 3552void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3553{
74316201
N
3554 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3555 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3556}
3557
0e378df1
CM
3558static noinline_for_stack int
3559lock_extent_buffer_for_io(struct extent_buffer *eb,
3560 struct btrfs_fs_info *fs_info,
3561 struct extent_page_data *epd)
0b32f4bb
JB
3562{
3563 unsigned long i, num_pages;
3564 int flush = 0;
3565 int ret = 0;
3566
3567 if (!btrfs_try_tree_write_lock(eb)) {
3568 flush = 1;
3569 flush_write_bio(epd);
3570 btrfs_tree_lock(eb);
3571 }
3572
3573 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3574 btrfs_tree_unlock(eb);
3575 if (!epd->sync_io)
3576 return 0;
3577 if (!flush) {
3578 flush_write_bio(epd);
3579 flush = 1;
3580 }
a098d8e8
CM
3581 while (1) {
3582 wait_on_extent_buffer_writeback(eb);
3583 btrfs_tree_lock(eb);
3584 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3585 break;
0b32f4bb 3586 btrfs_tree_unlock(eb);
0b32f4bb
JB
3587 }
3588 }
3589
51561ffe
JB
3590 /*
3591 * We need to do this to prevent races in people who check if the eb is
3592 * under IO since we can end up having no IO bits set for a short period
3593 * of time.
3594 */
3595 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3596 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3597 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3598 spin_unlock(&eb->refs_lock);
0b32f4bb 3599 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3600 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3601 -eb->len,
3602 fs_info->dirty_metadata_batch);
0b32f4bb 3603 ret = 1;
51561ffe
JB
3604 } else {
3605 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3606 }
3607
3608 btrfs_tree_unlock(eb);
3609
3610 if (!ret)
3611 return ret;
3612
3613 num_pages = num_extent_pages(eb->start, eb->len);
3614 for (i = 0; i < num_pages; i++) {
fb85fc9a 3615 struct page *p = eb->pages[i];
0b32f4bb
JB
3616
3617 if (!trylock_page(p)) {
3618 if (!flush) {
3619 flush_write_bio(epd);
3620 flush = 1;
3621 }
3622 lock_page(p);
3623 }
3624 }
3625
3626 return ret;
3627}
3628
3629static void end_extent_buffer_writeback(struct extent_buffer *eb)
3630{
3631 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3632 smp_mb__after_atomic();
0b32f4bb
JB
3633 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3634}
3635
656f30db
FM
3636static void set_btree_ioerr(struct page *page)
3637{
3638 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3639
3640 SetPageError(page);
3641 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3642 return;
3643
3644 /*
3645 * If writeback for a btree extent that doesn't belong to a log tree
3646 * failed, increment the counter transaction->eb_write_errors.
3647 * We do this because while the transaction is running and before it's
3648 * committing (when we call filemap_fdata[write|wait]_range against
3649 * the btree inode), we might have
3650 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3651 * returns an error or an error happens during writeback, when we're
3652 * committing the transaction we wouldn't know about it, since the pages
3653 * can be no longer dirty nor marked anymore for writeback (if a
3654 * subsequent modification to the extent buffer didn't happen before the
3655 * transaction commit), which makes filemap_fdata[write|wait]_range not
3656 * able to find the pages tagged with SetPageError at transaction
3657 * commit time. So if this happens we must abort the transaction,
3658 * otherwise we commit a super block with btree roots that point to
3659 * btree nodes/leafs whose content on disk is invalid - either garbage
3660 * or the content of some node/leaf from a past generation that got
3661 * cowed or deleted and is no longer valid.
3662 *
3663 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3664 * not be enough - we need to distinguish between log tree extents vs
3665 * non-log tree extents, and the next filemap_fdatawait_range() call
3666 * will catch and clear such errors in the mapping - and that call might
3667 * be from a log sync and not from a transaction commit. Also, checking
3668 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3669 * not done and would not be reliable - the eb might have been released
3670 * from memory and reading it back again means that flag would not be
3671 * set (since it's a runtime flag, not persisted on disk).
3672 *
3673 * Using the flags below in the btree inode also makes us achieve the
3674 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3675 * writeback for all dirty pages and before filemap_fdatawait_range()
3676 * is called, the writeback for all dirty pages had already finished
3677 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3678 * filemap_fdatawait_range() would return success, as it could not know
3679 * that writeback errors happened (the pages were no longer tagged for
3680 * writeback).
3681 */
3682 switch (eb->log_index) {
3683 case -1:
afcdd129 3684 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3685 break;
3686 case 0:
afcdd129 3687 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3688 break;
3689 case 1:
afcdd129 3690 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3691 break;
3692 default:
3693 BUG(); /* unexpected, logic error */
3694 }
3695}
3696
4246a0b6 3697static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3698{
2c30c71b 3699 struct bio_vec *bvec;
0b32f4bb 3700 struct extent_buffer *eb;
2c30c71b 3701 int i, done;
0b32f4bb 3702
2c30c71b 3703 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3704 struct page *page = bvec->bv_page;
3705
0b32f4bb
JB
3706 eb = (struct extent_buffer *)page->private;
3707 BUG_ON(!eb);
3708 done = atomic_dec_and_test(&eb->io_pages);
3709
4246a0b6
CH
3710 if (bio->bi_error ||
3711 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3712 ClearPageUptodate(page);
656f30db 3713 set_btree_ioerr(page);
0b32f4bb
JB
3714 }
3715
3716 end_page_writeback(page);
3717
3718 if (!done)
3719 continue;
3720
3721 end_extent_buffer_writeback(eb);
2c30c71b 3722 }
0b32f4bb
JB
3723
3724 bio_put(bio);
0b32f4bb
JB
3725}
3726
0e378df1 3727static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3728 struct btrfs_fs_info *fs_info,
3729 struct writeback_control *wbc,
3730 struct extent_page_data *epd)
3731{
3732 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3733 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3734 u64 offset = eb->start;
851cd173 3735 u32 nritems;
0b32f4bb 3736 unsigned long i, num_pages;
de0022b9 3737 unsigned long bio_flags = 0;
851cd173 3738 unsigned long start, end;
70fd7614 3739 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3740 int ret = 0;
0b32f4bb 3741
656f30db 3742 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3743 num_pages = num_extent_pages(eb->start, eb->len);
3744 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3745 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3746 bio_flags = EXTENT_BIO_TREE_LOG;
3747
851cd173
LB
3748 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3749 nritems = btrfs_header_nritems(eb);
3eb548ee 3750 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3751 end = btrfs_node_key_ptr_offset(nritems);
3752
b159fa28 3753 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3754 } else {
3755 /*
3756 * leaf:
3757 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3758 */
3759 start = btrfs_item_nr_offset(nritems);
2ff7e61e 3760 end = btrfs_leaf_data(eb) + leaf_data_end(fs_info, eb);
b159fa28 3761 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3762 }
3763
0b32f4bb 3764 for (i = 0; i < num_pages; i++) {
fb85fc9a 3765 struct page *p = eb->pages[i];
0b32f4bb
JB
3766
3767 clear_page_dirty_for_io(p);
3768 set_page_writeback(p);
1f7ad75b
MC
3769 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3770 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3771 &epd->bio,
1f7ad75b 3772 end_bio_extent_buffer_writepage,
005efedf 3773 0, epd->bio_flags, bio_flags, false);
de0022b9 3774 epd->bio_flags = bio_flags;
0b32f4bb 3775 if (ret) {
656f30db 3776 set_btree_ioerr(p);
fe01aa65
TK
3777 if (PageWriteback(p))
3778 end_page_writeback(p);
0b32f4bb
JB
3779 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3780 end_extent_buffer_writeback(eb);
3781 ret = -EIO;
3782 break;
3783 }
09cbfeaf 3784 offset += PAGE_SIZE;
3d4b9496 3785 update_nr_written(wbc, 1);
0b32f4bb
JB
3786 unlock_page(p);
3787 }
3788
3789 if (unlikely(ret)) {
3790 for (; i < num_pages; i++) {
bbf65cf0 3791 struct page *p = eb->pages[i];
81465028 3792 clear_page_dirty_for_io(p);
0b32f4bb
JB
3793 unlock_page(p);
3794 }
3795 }
3796
3797 return ret;
3798}
3799
3800int btree_write_cache_pages(struct address_space *mapping,
3801 struct writeback_control *wbc)
3802{
3803 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3804 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3805 struct extent_buffer *eb, *prev_eb = NULL;
3806 struct extent_page_data epd = {
3807 .bio = NULL,
3808 .tree = tree,
3809 .extent_locked = 0,
3810 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3811 .bio_flags = 0,
0b32f4bb
JB
3812 };
3813 int ret = 0;
3814 int done = 0;
3815 int nr_to_write_done = 0;
3816 struct pagevec pvec;
3817 int nr_pages;
3818 pgoff_t index;
3819 pgoff_t end; /* Inclusive */
3820 int scanned = 0;
3821 int tag;
3822
3823 pagevec_init(&pvec, 0);
3824 if (wbc->range_cyclic) {
3825 index = mapping->writeback_index; /* Start from prev offset */
3826 end = -1;
3827 } else {
09cbfeaf
KS
3828 index = wbc->range_start >> PAGE_SHIFT;
3829 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3830 scanned = 1;
3831 }
3832 if (wbc->sync_mode == WB_SYNC_ALL)
3833 tag = PAGECACHE_TAG_TOWRITE;
3834 else
3835 tag = PAGECACHE_TAG_DIRTY;
3836retry:
3837 if (wbc->sync_mode == WB_SYNC_ALL)
3838 tag_pages_for_writeback(mapping, index, end);
3839 while (!done && !nr_to_write_done && (index <= end) &&
3840 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3841 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3842 unsigned i;
3843
3844 scanned = 1;
3845 for (i = 0; i < nr_pages; i++) {
3846 struct page *page = pvec.pages[i];
3847
3848 if (!PagePrivate(page))
3849 continue;
3850
3851 if (!wbc->range_cyclic && page->index > end) {
3852 done = 1;
3853 break;
3854 }
3855
b5bae261
JB
3856 spin_lock(&mapping->private_lock);
3857 if (!PagePrivate(page)) {
3858 spin_unlock(&mapping->private_lock);
3859 continue;
3860 }
3861
0b32f4bb 3862 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3863
3864 /*
3865 * Shouldn't happen and normally this would be a BUG_ON
3866 * but no sense in crashing the users box for something
3867 * we can survive anyway.
3868 */
fae7f21c 3869 if (WARN_ON(!eb)) {
b5bae261 3870 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3871 continue;
3872 }
3873
b5bae261
JB
3874 if (eb == prev_eb) {
3875 spin_unlock(&mapping->private_lock);
0b32f4bb 3876 continue;
b5bae261 3877 }
0b32f4bb 3878
b5bae261
JB
3879 ret = atomic_inc_not_zero(&eb->refs);
3880 spin_unlock(&mapping->private_lock);
3881 if (!ret)
0b32f4bb 3882 continue;
0b32f4bb
JB
3883
3884 prev_eb = eb;
3885 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3886 if (!ret) {
3887 free_extent_buffer(eb);
3888 continue;
3889 }
3890
3891 ret = write_one_eb(eb, fs_info, wbc, &epd);
3892 if (ret) {
3893 done = 1;
3894 free_extent_buffer(eb);
3895 break;
3896 }
3897 free_extent_buffer(eb);
3898
3899 /*
3900 * the filesystem may choose to bump up nr_to_write.
3901 * We have to make sure to honor the new nr_to_write
3902 * at any time
3903 */
3904 nr_to_write_done = wbc->nr_to_write <= 0;
3905 }
3906 pagevec_release(&pvec);
3907 cond_resched();
3908 }
3909 if (!scanned && !done) {
3910 /*
3911 * We hit the last page and there is more work to be done: wrap
3912 * back to the start of the file
3913 */
3914 scanned = 1;
3915 index = 0;
3916 goto retry;
3917 }
3918 flush_write_bio(&epd);
3919 return ret;
3920}
3921
d1310b2e 3922/**
4bef0848 3923 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3924 * @mapping: address space structure to write
3925 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3926 * @writepage: function called for each page
3927 * @data: data passed to writepage function
3928 *
3929 * If a page is already under I/O, write_cache_pages() skips it, even
3930 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3931 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3932 * and msync() need to guarantee that all the data which was dirty at the time
3933 * the call was made get new I/O started against them. If wbc->sync_mode is
3934 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3935 * existing IO to complete.
3936 */
4242b64a 3937static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3938 struct writeback_control *wbc,
d2c3f4f6
CM
3939 writepage_t writepage, void *data,
3940 void (*flush_fn)(void *))
d1310b2e 3941{
7fd1a3f7 3942 struct inode *inode = mapping->host;
d1310b2e
CM
3943 int ret = 0;
3944 int done = 0;
f85d7d6c 3945 int nr_to_write_done = 0;
d1310b2e
CM
3946 struct pagevec pvec;
3947 int nr_pages;
3948 pgoff_t index;
3949 pgoff_t end; /* Inclusive */
a9132667
LB
3950 pgoff_t done_index;
3951 int range_whole = 0;
d1310b2e 3952 int scanned = 0;
f7aaa06b 3953 int tag;
d1310b2e 3954
7fd1a3f7
JB
3955 /*
3956 * We have to hold onto the inode so that ordered extents can do their
3957 * work when the IO finishes. The alternative to this is failing to add
3958 * an ordered extent if the igrab() fails there and that is a huge pain
3959 * to deal with, so instead just hold onto the inode throughout the
3960 * writepages operation. If it fails here we are freeing up the inode
3961 * anyway and we'd rather not waste our time writing out stuff that is
3962 * going to be truncated anyway.
3963 */
3964 if (!igrab(inode))
3965 return 0;
3966
d1310b2e
CM
3967 pagevec_init(&pvec, 0);
3968 if (wbc->range_cyclic) {
3969 index = mapping->writeback_index; /* Start from prev offset */
3970 end = -1;
3971 } else {
09cbfeaf
KS
3972 index = wbc->range_start >> PAGE_SHIFT;
3973 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3974 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3975 range_whole = 1;
d1310b2e
CM
3976 scanned = 1;
3977 }
f7aaa06b
JB
3978 if (wbc->sync_mode == WB_SYNC_ALL)
3979 tag = PAGECACHE_TAG_TOWRITE;
3980 else
3981 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3982retry:
f7aaa06b
JB
3983 if (wbc->sync_mode == WB_SYNC_ALL)
3984 tag_pages_for_writeback(mapping, index, end);
a9132667 3985 done_index = index;
f85d7d6c 3986 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3987 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3988 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3989 unsigned i;
3990
3991 scanned = 1;
3992 for (i = 0; i < nr_pages; i++) {
3993 struct page *page = pvec.pages[i];
3994
a9132667 3995 done_index = page->index;
d1310b2e
CM
3996 /*
3997 * At this point we hold neither mapping->tree_lock nor
3998 * lock on the page itself: the page may be truncated or
3999 * invalidated (changing page->mapping to NULL), or even
4000 * swizzled back from swapper_space to tmpfs file
4001 * mapping
4002 */
c8f2f24b
JB
4003 if (!trylock_page(page)) {
4004 flush_fn(data);
4005 lock_page(page);
01d658f2 4006 }
d1310b2e
CM
4007
4008 if (unlikely(page->mapping != mapping)) {
4009 unlock_page(page);
4010 continue;
4011 }
4012
4013 if (!wbc->range_cyclic && page->index > end) {
4014 done = 1;
4015 unlock_page(page);
4016 continue;
4017 }
4018
d2c3f4f6 4019 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4020 if (PageWriteback(page))
4021 flush_fn(data);
d1310b2e 4022 wait_on_page_writeback(page);
d2c3f4f6 4023 }
d1310b2e
CM
4024
4025 if (PageWriteback(page) ||
4026 !clear_page_dirty_for_io(page)) {
4027 unlock_page(page);
4028 continue;
4029 }
4030
4031 ret = (*writepage)(page, wbc, data);
4032
4033 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4034 unlock_page(page);
4035 ret = 0;
4036 }
a9132667
LB
4037 if (ret < 0) {
4038 /*
4039 * done_index is set past this page,
4040 * so media errors will not choke
4041 * background writeout for the entire
4042 * file. This has consequences for
4043 * range_cyclic semantics (ie. it may
4044 * not be suitable for data integrity
4045 * writeout).
4046 */
4047 done_index = page->index + 1;
4048 done = 1;
4049 break;
4050 }
f85d7d6c
CM
4051
4052 /*
4053 * the filesystem may choose to bump up nr_to_write.
4054 * We have to make sure to honor the new nr_to_write
4055 * at any time
4056 */
4057 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4058 }
4059 pagevec_release(&pvec);
4060 cond_resched();
4061 }
894b36e3 4062 if (!scanned && !done) {
d1310b2e
CM
4063 /*
4064 * We hit the last page and there is more work to be done: wrap
4065 * back to the start of the file
4066 */
4067 scanned = 1;
4068 index = 0;
4069 goto retry;
4070 }
a9132667
LB
4071
4072 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4073 mapping->writeback_index = done_index;
4074
7fd1a3f7 4075 btrfs_add_delayed_iput(inode);
894b36e3 4076 return ret;
d1310b2e 4077}
d1310b2e 4078
ffbd517d 4079static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4080{
d2c3f4f6 4081 if (epd->bio) {
355808c2
JM
4082 int ret;
4083
1f7ad75b 4084 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4085 epd->sync_io ? REQ_SYNC : 0);
355808c2 4086
1f7ad75b 4087 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4088 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4089 epd->bio = NULL;
4090 }
4091}
4092
ffbd517d
CM
4093static noinline void flush_write_bio(void *data)
4094{
4095 struct extent_page_data *epd = data;
4096 flush_epd_write_bio(epd);
4097}
4098
d1310b2e
CM
4099int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4100 get_extent_t *get_extent,
4101 struct writeback_control *wbc)
4102{
4103 int ret;
d1310b2e
CM
4104 struct extent_page_data epd = {
4105 .bio = NULL,
4106 .tree = tree,
4107 .get_extent = get_extent,
771ed689 4108 .extent_locked = 0,
ffbd517d 4109 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4110 .bio_flags = 0,
d1310b2e 4111 };
d1310b2e 4112
d1310b2e
CM
4113 ret = __extent_writepage(page, wbc, &epd);
4114
ffbd517d 4115 flush_epd_write_bio(&epd);
d1310b2e
CM
4116 return ret;
4117}
d1310b2e 4118
771ed689
CM
4119int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4120 u64 start, u64 end, get_extent_t *get_extent,
4121 int mode)
4122{
4123 int ret = 0;
4124 struct address_space *mapping = inode->i_mapping;
4125 struct page *page;
09cbfeaf
KS
4126 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4127 PAGE_SHIFT;
771ed689
CM
4128
4129 struct extent_page_data epd = {
4130 .bio = NULL,
4131 .tree = tree,
4132 .get_extent = get_extent,
4133 .extent_locked = 1,
ffbd517d 4134 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4135 .bio_flags = 0,
771ed689
CM
4136 };
4137 struct writeback_control wbc_writepages = {
771ed689 4138 .sync_mode = mode,
771ed689
CM
4139 .nr_to_write = nr_pages * 2,
4140 .range_start = start,
4141 .range_end = end + 1,
4142 };
4143
d397712b 4144 while (start <= end) {
09cbfeaf 4145 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4146 if (clear_page_dirty_for_io(page))
4147 ret = __extent_writepage(page, &wbc_writepages, &epd);
4148 else {
4149 if (tree->ops && tree->ops->writepage_end_io_hook)
4150 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4151 start + PAGE_SIZE - 1,
771ed689
CM
4152 NULL, 1);
4153 unlock_page(page);
4154 }
09cbfeaf
KS
4155 put_page(page);
4156 start += PAGE_SIZE;
771ed689
CM
4157 }
4158
ffbd517d 4159 flush_epd_write_bio(&epd);
771ed689
CM
4160 return ret;
4161}
d1310b2e
CM
4162
4163int extent_writepages(struct extent_io_tree *tree,
4164 struct address_space *mapping,
4165 get_extent_t *get_extent,
4166 struct writeback_control *wbc)
4167{
4168 int ret = 0;
4169 struct extent_page_data epd = {
4170 .bio = NULL,
4171 .tree = tree,
4172 .get_extent = get_extent,
771ed689 4173 .extent_locked = 0,
ffbd517d 4174 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4175 .bio_flags = 0,
d1310b2e
CM
4176 };
4177
4242b64a 4178 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4179 flush_write_bio);
ffbd517d 4180 flush_epd_write_bio(&epd);
d1310b2e
CM
4181 return ret;
4182}
d1310b2e
CM
4183
4184int extent_readpages(struct extent_io_tree *tree,
4185 struct address_space *mapping,
4186 struct list_head *pages, unsigned nr_pages,
4187 get_extent_t get_extent)
4188{
4189 struct bio *bio = NULL;
4190 unsigned page_idx;
c8b97818 4191 unsigned long bio_flags = 0;
67c9684f
LB
4192 struct page *pagepool[16];
4193 struct page *page;
125bac01 4194 struct extent_map *em_cached = NULL;
67c9684f 4195 int nr = 0;
808f80b4 4196 u64 prev_em_start = (u64)-1;
d1310b2e 4197
d1310b2e 4198 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4199 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4200
4201 prefetchw(&page->flags);
4202 list_del(&page->lru);
67c9684f 4203 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4204 page->index,
4205 readahead_gfp_mask(mapping))) {
09cbfeaf 4206 put_page(page);
67c9684f 4207 continue;
d1310b2e 4208 }
67c9684f
LB
4209
4210 pagepool[nr++] = page;
4211 if (nr < ARRAY_SIZE(pagepool))
4212 continue;
125bac01 4213 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4214 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4215 nr = 0;
d1310b2e 4216 }
9974090b 4217 if (nr)
125bac01 4218 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4219 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4220
125bac01
MX
4221 if (em_cached)
4222 free_extent_map(em_cached);
4223
d1310b2e
CM
4224 BUG_ON(!list_empty(pages));
4225 if (bio)
1f7ad75b 4226 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4227 return 0;
4228}
d1310b2e
CM
4229
4230/*
4231 * basic invalidatepage code, this waits on any locked or writeback
4232 * ranges corresponding to the page, and then deletes any extent state
4233 * records from the tree
4234 */
4235int extent_invalidatepage(struct extent_io_tree *tree,
4236 struct page *page, unsigned long offset)
4237{
2ac55d41 4238 struct extent_state *cached_state = NULL;
4eee4fa4 4239 u64 start = page_offset(page);
09cbfeaf 4240 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4241 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4242
fda2832f 4243 start += ALIGN(offset, blocksize);
d1310b2e
CM
4244 if (start > end)
4245 return 0;
4246
ff13db41 4247 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4248 wait_on_page_writeback(page);
d1310b2e 4249 clear_extent_bit(tree, start, end,
32c00aff
JB
4250 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4251 EXTENT_DO_ACCOUNTING,
2ac55d41 4252 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4253 return 0;
4254}
d1310b2e 4255
7b13b7b1
CM
4256/*
4257 * a helper for releasepage, this tests for areas of the page that
4258 * are locked or under IO and drops the related state bits if it is safe
4259 * to drop the page.
4260 */
48a3b636
ES
4261static int try_release_extent_state(struct extent_map_tree *map,
4262 struct extent_io_tree *tree,
4263 struct page *page, gfp_t mask)
7b13b7b1 4264{
4eee4fa4 4265 u64 start = page_offset(page);
09cbfeaf 4266 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4267 int ret = 1;
4268
211f90e6 4269 if (test_range_bit(tree, start, end,
8b62b72b 4270 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4271 ret = 0;
4272 else {
11ef160f
CM
4273 /*
4274 * at this point we can safely clear everything except the
4275 * locked bit and the nodatasum bit
4276 */
e3f24cc5 4277 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4278 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4279 0, 0, NULL, mask);
e3f24cc5
CM
4280
4281 /* if clear_extent_bit failed for enomem reasons,
4282 * we can't allow the release to continue.
4283 */
4284 if (ret < 0)
4285 ret = 0;
4286 else
4287 ret = 1;
7b13b7b1
CM
4288 }
4289 return ret;
4290}
7b13b7b1 4291
d1310b2e
CM
4292/*
4293 * a helper for releasepage. As long as there are no locked extents
4294 * in the range corresponding to the page, both state records and extent
4295 * map records are removed
4296 */
4297int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4298 struct extent_io_tree *tree, struct page *page,
4299 gfp_t mask)
d1310b2e
CM
4300{
4301 struct extent_map *em;
4eee4fa4 4302 u64 start = page_offset(page);
09cbfeaf 4303 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4304
d0164adc 4305 if (gfpflags_allow_blocking(mask) &&
ee22184b 4306 page->mapping->host->i_size > SZ_16M) {
39b5637f 4307 u64 len;
70dec807 4308 while (start <= end) {
39b5637f 4309 len = end - start + 1;
890871be 4310 write_lock(&map->lock);
39b5637f 4311 em = lookup_extent_mapping(map, start, len);
285190d9 4312 if (!em) {
890871be 4313 write_unlock(&map->lock);
70dec807
CM
4314 break;
4315 }
7f3c74fb
CM
4316 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4317 em->start != start) {
890871be 4318 write_unlock(&map->lock);
70dec807
CM
4319 free_extent_map(em);
4320 break;
4321 }
4322 if (!test_range_bit(tree, em->start,
4323 extent_map_end(em) - 1,
8b62b72b 4324 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4325 0, NULL)) {
70dec807
CM
4326 remove_extent_mapping(map, em);
4327 /* once for the rb tree */
4328 free_extent_map(em);
4329 }
4330 start = extent_map_end(em);
890871be 4331 write_unlock(&map->lock);
70dec807
CM
4332
4333 /* once for us */
d1310b2e
CM
4334 free_extent_map(em);
4335 }
d1310b2e 4336 }
7b13b7b1 4337 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4338}
d1310b2e 4339
ec29ed5b
CM
4340/*
4341 * helper function for fiemap, which doesn't want to see any holes.
4342 * This maps until we find something past 'last'
4343 */
4344static struct extent_map *get_extent_skip_holes(struct inode *inode,
4345 u64 offset,
4346 u64 last,
4347 get_extent_t *get_extent)
4348{
da17066c 4349 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4350 struct extent_map *em;
4351 u64 len;
4352
4353 if (offset >= last)
4354 return NULL;
4355
67871254 4356 while (1) {
ec29ed5b
CM
4357 len = last - offset;
4358 if (len == 0)
4359 break;
fda2832f 4360 len = ALIGN(len, sectorsize);
fc4f21b1 4361 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4362 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4363 return em;
4364
4365 /* if this isn't a hole return it */
4366 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4367 em->block_start != EXTENT_MAP_HOLE) {
4368 return em;
4369 }
4370
4371 /* this is a hole, advance to the next extent */
4372 offset = extent_map_end(em);
4373 free_extent_map(em);
4374 if (offset >= last)
4375 break;
4376 }
4377 return NULL;
4378}
4379
4751832d
QW
4380/*
4381 * To cache previous fiemap extent
4382 *
4383 * Will be used for merging fiemap extent
4384 */
4385struct fiemap_cache {
4386 u64 offset;
4387 u64 phys;
4388 u64 len;
4389 u32 flags;
4390 bool cached;
4391};
4392
4393/*
4394 * Helper to submit fiemap extent.
4395 *
4396 * Will try to merge current fiemap extent specified by @offset, @phys,
4397 * @len and @flags with cached one.
4398 * And only when we fails to merge, cached one will be submitted as
4399 * fiemap extent.
4400 *
4401 * Return value is the same as fiemap_fill_next_extent().
4402 */
4403static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4404 struct fiemap_cache *cache,
4405 u64 offset, u64 phys, u64 len, u32 flags)
4406{
4407 int ret = 0;
4408
4409 if (!cache->cached)
4410 goto assign;
4411
4412 /*
4413 * Sanity check, extent_fiemap() should have ensured that new
4414 * fiemap extent won't overlap with cahced one.
4415 * Not recoverable.
4416 *
4417 * NOTE: Physical address can overlap, due to compression
4418 */
4419 if (cache->offset + cache->len > offset) {
4420 WARN_ON(1);
4421 return -EINVAL;
4422 }
4423
4424 /*
4425 * Only merges fiemap extents if
4426 * 1) Their logical addresses are continuous
4427 *
4428 * 2) Their physical addresses are continuous
4429 * So truly compressed (physical size smaller than logical size)
4430 * extents won't get merged with each other
4431 *
4432 * 3) Share same flags except FIEMAP_EXTENT_LAST
4433 * So regular extent won't get merged with prealloc extent
4434 */
4435 if (cache->offset + cache->len == offset &&
4436 cache->phys + cache->len == phys &&
4437 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4438 (flags & ~FIEMAP_EXTENT_LAST)) {
4439 cache->len += len;
4440 cache->flags |= flags;
4441 goto try_submit_last;
4442 }
4443
4444 /* Not mergeable, need to submit cached one */
4445 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4446 cache->len, cache->flags);
4447 cache->cached = false;
4448 if (ret)
4449 return ret;
4450assign:
4451 cache->cached = true;
4452 cache->offset = offset;
4453 cache->phys = phys;
4454 cache->len = len;
4455 cache->flags = flags;
4456try_submit_last:
4457 if (cache->flags & FIEMAP_EXTENT_LAST) {
4458 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4459 cache->phys, cache->len, cache->flags);
4460 cache->cached = false;
4461 }
4462 return ret;
4463}
4464
4465/*
4466 * Sanity check for fiemap cache
4467 *
4468 * All fiemap cache should be submitted by emit_fiemap_extent()
4469 * Iteration should be terminated either by last fiemap extent or
4470 * fieinfo->fi_extents_max.
4471 * So no cached fiemap should exist.
4472 */
4473static int check_fiemap_cache(struct btrfs_fs_info *fs_info,
4474 struct fiemap_extent_info *fieinfo,
4475 struct fiemap_cache *cache)
4476{
4477 int ret;
4478
4479 if (!cache->cached)
4480 return 0;
4481
4482 /* Small and recoverbale problem, only to info developer */
4483#ifdef CONFIG_BTRFS_DEBUG
4484 WARN_ON(1);
4485#endif
4486 btrfs_warn(fs_info,
4487 "unhandled fiemap cache detected: offset=%llu phys=%llu len=%llu flags=0x%x",
4488 cache->offset, cache->phys, cache->len, cache->flags);
4489 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4490 cache->len, cache->flags);
4491 cache->cached = false;
4492 if (ret > 0)
4493 ret = 0;
4494 return ret;
4495}
4496
1506fcc8
YS
4497int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4498 __u64 start, __u64 len, get_extent_t *get_extent)
4499{
975f84fe 4500 int ret = 0;
1506fcc8
YS
4501 u64 off = start;
4502 u64 max = start + len;
4503 u32 flags = 0;
975f84fe
JB
4504 u32 found_type;
4505 u64 last;
ec29ed5b 4506 u64 last_for_get_extent = 0;
1506fcc8 4507 u64 disko = 0;
ec29ed5b 4508 u64 isize = i_size_read(inode);
975f84fe 4509 struct btrfs_key found_key;
1506fcc8 4510 struct extent_map *em = NULL;
2ac55d41 4511 struct extent_state *cached_state = NULL;
975f84fe 4512 struct btrfs_path *path;
dc046b10 4513 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4514 struct fiemap_cache cache = { 0 };
1506fcc8 4515 int end = 0;
ec29ed5b
CM
4516 u64 em_start = 0;
4517 u64 em_len = 0;
4518 u64 em_end = 0;
1506fcc8
YS
4519
4520 if (len == 0)
4521 return -EINVAL;
4522
975f84fe
JB
4523 path = btrfs_alloc_path();
4524 if (!path)
4525 return -ENOMEM;
4526 path->leave_spinning = 1;
4527
da17066c
JM
4528 start = round_down(start, btrfs_inode_sectorsize(inode));
4529 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4530
ec29ed5b
CM
4531 /*
4532 * lookup the last file extent. We're not using i_size here
4533 * because there might be preallocation past i_size
4534 */
f85b7379
DS
4535 ret = btrfs_lookup_file_extent(NULL, root, path,
4536 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4537 if (ret < 0) {
4538 btrfs_free_path(path);
4539 return ret;
2d324f59
LB
4540 } else {
4541 WARN_ON(!ret);
4542 if (ret == 1)
4543 ret = 0;
975f84fe 4544 }
2d324f59 4545
975f84fe 4546 path->slots[0]--;
975f84fe 4547 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4548 found_type = found_key.type;
975f84fe 4549
ec29ed5b 4550 /* No extents, but there might be delalloc bits */
4a0cc7ca 4551 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4552 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4553 /* have to trust i_size as the end */
4554 last = (u64)-1;
4555 last_for_get_extent = isize;
4556 } else {
4557 /*
4558 * remember the start of the last extent. There are a
4559 * bunch of different factors that go into the length of the
4560 * extent, so its much less complex to remember where it started
4561 */
4562 last = found_key.offset;
4563 last_for_get_extent = last + 1;
975f84fe 4564 }
fe09e16c 4565 btrfs_release_path(path);
975f84fe 4566
ec29ed5b
CM
4567 /*
4568 * we might have some extents allocated but more delalloc past those
4569 * extents. so, we trust isize unless the start of the last extent is
4570 * beyond isize
4571 */
4572 if (last < isize) {
4573 last = (u64)-1;
4574 last_for_get_extent = isize;
4575 }
4576
ff13db41 4577 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4578 &cached_state);
ec29ed5b 4579
4d479cf0 4580 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4581 get_extent);
1506fcc8
YS
4582 if (!em)
4583 goto out;
4584 if (IS_ERR(em)) {
4585 ret = PTR_ERR(em);
4586 goto out;
4587 }
975f84fe 4588
1506fcc8 4589 while (!end) {
b76bb701 4590 u64 offset_in_extent = 0;
ea8efc74
CM
4591
4592 /* break if the extent we found is outside the range */
4593 if (em->start >= max || extent_map_end(em) < off)
4594 break;
4595
4596 /*
4597 * get_extent may return an extent that starts before our
4598 * requested range. We have to make sure the ranges
4599 * we return to fiemap always move forward and don't
4600 * overlap, so adjust the offsets here
4601 */
4602 em_start = max(em->start, off);
1506fcc8 4603
ea8efc74
CM
4604 /*
4605 * record the offset from the start of the extent
b76bb701
JB
4606 * for adjusting the disk offset below. Only do this if the
4607 * extent isn't compressed since our in ram offset may be past
4608 * what we have actually allocated on disk.
ea8efc74 4609 */
b76bb701
JB
4610 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4611 offset_in_extent = em_start - em->start;
ec29ed5b 4612 em_end = extent_map_end(em);
ea8efc74 4613 em_len = em_end - em_start;
1506fcc8
YS
4614 disko = 0;
4615 flags = 0;
4616
ea8efc74
CM
4617 /*
4618 * bump off for our next call to get_extent
4619 */
4620 off = extent_map_end(em);
4621 if (off >= max)
4622 end = 1;
4623
93dbfad7 4624 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4625 end = 1;
4626 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4627 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4628 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4629 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4630 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4631 flags |= (FIEMAP_EXTENT_DELALLOC |
4632 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4633 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4634 struct btrfs_trans_handle *trans;
4635
dc046b10
JB
4636 u64 bytenr = em->block_start -
4637 (em->start - em->orig_start);
fe09e16c 4638
ea8efc74 4639 disko = em->block_start + offset_in_extent;
fe09e16c 4640
afce772e
LF
4641 /*
4642 * We need a trans handle to get delayed refs
4643 */
4644 trans = btrfs_join_transaction(root);
4645 /*
4646 * It's OK if we can't start a trans we can still check
4647 * from commit_root
4648 */
4649 if (IS_ERR(trans))
4650 trans = NULL;
4651
fe09e16c
LB
4652 /*
4653 * As btrfs supports shared space, this information
4654 * can be exported to userspace tools via
dc046b10
JB
4655 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4656 * then we're just getting a count and we can skip the
4657 * lookup stuff.
fe09e16c 4658 */
afce772e 4659 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4660 root->objectid,
4661 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4662 if (trans)
3a45bb20 4663 btrfs_end_transaction(trans);
dc046b10 4664 if (ret < 0)
fe09e16c 4665 goto out_free;
dc046b10 4666 if (ret)
fe09e16c 4667 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4668 ret = 0;
1506fcc8
YS
4669 }
4670 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4671 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4672 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4673 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4674
1506fcc8
YS
4675 free_extent_map(em);
4676 em = NULL;
ec29ed5b
CM
4677 if ((em_start >= last) || em_len == (u64)-1 ||
4678 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4679 flags |= FIEMAP_EXTENT_LAST;
4680 end = 1;
4681 }
4682
ec29ed5b
CM
4683 /* now scan forward to see if this is really the last extent. */
4684 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4685 get_extent);
4686 if (IS_ERR(em)) {
4687 ret = PTR_ERR(em);
4688 goto out;
4689 }
4690 if (!em) {
975f84fe
JB
4691 flags |= FIEMAP_EXTENT_LAST;
4692 end = 1;
4693 }
4751832d
QW
4694 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4695 em_len, flags);
26e726af
CS
4696 if (ret) {
4697 if (ret == 1)
4698 ret = 0;
ec29ed5b 4699 goto out_free;
26e726af 4700 }
1506fcc8
YS
4701 }
4702out_free:
4751832d
QW
4703 if (!ret)
4704 ret = check_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4705 free_extent_map(em);
4706out:
fe09e16c 4707 btrfs_free_path(path);
a52f4cd2 4708 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4709 &cached_state, GFP_NOFS);
1506fcc8
YS
4710 return ret;
4711}
4712
727011e0
CM
4713static void __free_extent_buffer(struct extent_buffer *eb)
4714{
6d49ba1b 4715 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4716 kmem_cache_free(extent_buffer_cache, eb);
4717}
4718
a26e8c9f 4719int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4720{
4721 return (atomic_read(&eb->io_pages) ||
4722 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4723 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4724}
4725
4726/*
4727 * Helper for releasing extent buffer page.
4728 */
a50924e3 4729static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4730{
4731 unsigned long index;
db7f3436
JB
4732 struct page *page;
4733 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4734
4735 BUG_ON(extent_buffer_under_io(eb));
4736
a50924e3
DS
4737 index = num_extent_pages(eb->start, eb->len);
4738 if (index == 0)
db7f3436
JB
4739 return;
4740
4741 do {
4742 index--;
fb85fc9a 4743 page = eb->pages[index];
5d2361db
FL
4744 if (!page)
4745 continue;
4746 if (mapped)
db7f3436 4747 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4748 /*
4749 * We do this since we'll remove the pages after we've
4750 * removed the eb from the radix tree, so we could race
4751 * and have this page now attached to the new eb. So
4752 * only clear page_private if it's still connected to
4753 * this eb.
4754 */
4755 if (PagePrivate(page) &&
4756 page->private == (unsigned long)eb) {
4757 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4758 BUG_ON(PageDirty(page));
4759 BUG_ON(PageWriteback(page));
db7f3436 4760 /*
5d2361db
FL
4761 * We need to make sure we haven't be attached
4762 * to a new eb.
db7f3436 4763 */
5d2361db
FL
4764 ClearPagePrivate(page);
4765 set_page_private(page, 0);
4766 /* One for the page private */
09cbfeaf 4767 put_page(page);
db7f3436 4768 }
5d2361db
FL
4769
4770 if (mapped)
4771 spin_unlock(&page->mapping->private_lock);
4772
01327610 4773 /* One for when we allocated the page */
09cbfeaf 4774 put_page(page);
a50924e3 4775 } while (index != 0);
db7f3436
JB
4776}
4777
4778/*
4779 * Helper for releasing the extent buffer.
4780 */
4781static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4782{
a50924e3 4783 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4784 __free_extent_buffer(eb);
4785}
4786
f28491e0
JB
4787static struct extent_buffer *
4788__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4789 unsigned long len)
d1310b2e
CM
4790{
4791 struct extent_buffer *eb = NULL;
4792
d1b5c567 4793 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4794 eb->start = start;
4795 eb->len = len;
f28491e0 4796 eb->fs_info = fs_info;
815a51c7 4797 eb->bflags = 0;
bd681513
CM
4798 rwlock_init(&eb->lock);
4799 atomic_set(&eb->write_locks, 0);
4800 atomic_set(&eb->read_locks, 0);
4801 atomic_set(&eb->blocking_readers, 0);
4802 atomic_set(&eb->blocking_writers, 0);
4803 atomic_set(&eb->spinning_readers, 0);
4804 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4805 eb->lock_nested = 0;
bd681513
CM
4806 init_waitqueue_head(&eb->write_lock_wq);
4807 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4808
6d49ba1b
ES
4809 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4810
3083ee2e 4811 spin_lock_init(&eb->refs_lock);
d1310b2e 4812 atomic_set(&eb->refs, 1);
0b32f4bb 4813 atomic_set(&eb->io_pages, 0);
727011e0 4814
b8dae313
DS
4815 /*
4816 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4817 */
4818 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4819 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4820 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4821
4822 return eb;
4823}
4824
815a51c7
JS
4825struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4826{
4827 unsigned long i;
4828 struct page *p;
4829 struct extent_buffer *new;
4830 unsigned long num_pages = num_extent_pages(src->start, src->len);
4831
3f556f78 4832 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4833 if (new == NULL)
4834 return NULL;
4835
4836 for (i = 0; i < num_pages; i++) {
9ec72677 4837 p = alloc_page(GFP_NOFS);
db7f3436
JB
4838 if (!p) {
4839 btrfs_release_extent_buffer(new);
4840 return NULL;
4841 }
815a51c7
JS
4842 attach_extent_buffer_page(new, p);
4843 WARN_ON(PageDirty(p));
4844 SetPageUptodate(p);
4845 new->pages[i] = p;
fba1acf9 4846 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4847 }
4848
815a51c7
JS
4849 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4850 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4851
4852 return new;
4853}
4854
0f331229
OS
4855struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4856 u64 start, unsigned long len)
815a51c7
JS
4857{
4858 struct extent_buffer *eb;
3f556f78 4859 unsigned long num_pages;
815a51c7
JS
4860 unsigned long i;
4861
0f331229 4862 num_pages = num_extent_pages(start, len);
3f556f78
DS
4863
4864 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4865 if (!eb)
4866 return NULL;
4867
4868 for (i = 0; i < num_pages; i++) {
9ec72677 4869 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4870 if (!eb->pages[i])
4871 goto err;
4872 }
4873 set_extent_buffer_uptodate(eb);
4874 btrfs_set_header_nritems(eb, 0);
4875 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4876
4877 return eb;
4878err:
84167d19
SB
4879 for (; i > 0; i--)
4880 __free_page(eb->pages[i - 1]);
815a51c7
JS
4881 __free_extent_buffer(eb);
4882 return NULL;
4883}
4884
0f331229 4885struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4886 u64 start)
0f331229 4887{
da17066c 4888 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4889}
4890
0b32f4bb
JB
4891static void check_buffer_tree_ref(struct extent_buffer *eb)
4892{
242e18c7 4893 int refs;
0b32f4bb
JB
4894 /* the ref bit is tricky. We have to make sure it is set
4895 * if we have the buffer dirty. Otherwise the
4896 * code to free a buffer can end up dropping a dirty
4897 * page
4898 *
4899 * Once the ref bit is set, it won't go away while the
4900 * buffer is dirty or in writeback, and it also won't
4901 * go away while we have the reference count on the
4902 * eb bumped.
4903 *
4904 * We can't just set the ref bit without bumping the
4905 * ref on the eb because free_extent_buffer might
4906 * see the ref bit and try to clear it. If this happens
4907 * free_extent_buffer might end up dropping our original
4908 * ref by mistake and freeing the page before we are able
4909 * to add one more ref.
4910 *
4911 * So bump the ref count first, then set the bit. If someone
4912 * beat us to it, drop the ref we added.
4913 */
242e18c7
CM
4914 refs = atomic_read(&eb->refs);
4915 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4916 return;
4917
594831c4
JB
4918 spin_lock(&eb->refs_lock);
4919 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4920 atomic_inc(&eb->refs);
594831c4 4921 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4922}
4923
2457aec6
MG
4924static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4925 struct page *accessed)
5df4235e
JB
4926{
4927 unsigned long num_pages, i;
4928
0b32f4bb
JB
4929 check_buffer_tree_ref(eb);
4930
5df4235e
JB
4931 num_pages = num_extent_pages(eb->start, eb->len);
4932 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4933 struct page *p = eb->pages[i];
4934
2457aec6
MG
4935 if (p != accessed)
4936 mark_page_accessed(p);
5df4235e
JB
4937 }
4938}
4939
f28491e0
JB
4940struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4941 u64 start)
452c75c3
CS
4942{
4943 struct extent_buffer *eb;
4944
4945 rcu_read_lock();
f28491e0 4946 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4947 start >> PAGE_SHIFT);
452c75c3
CS
4948 if (eb && atomic_inc_not_zero(&eb->refs)) {
4949 rcu_read_unlock();
062c19e9
FM
4950 /*
4951 * Lock our eb's refs_lock to avoid races with
4952 * free_extent_buffer. When we get our eb it might be flagged
4953 * with EXTENT_BUFFER_STALE and another task running
4954 * free_extent_buffer might have seen that flag set,
4955 * eb->refs == 2, that the buffer isn't under IO (dirty and
4956 * writeback flags not set) and it's still in the tree (flag
4957 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4958 * of decrementing the extent buffer's reference count twice.
4959 * So here we could race and increment the eb's reference count,
4960 * clear its stale flag, mark it as dirty and drop our reference
4961 * before the other task finishes executing free_extent_buffer,
4962 * which would later result in an attempt to free an extent
4963 * buffer that is dirty.
4964 */
4965 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4966 spin_lock(&eb->refs_lock);
4967 spin_unlock(&eb->refs_lock);
4968 }
2457aec6 4969 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4970 return eb;
4971 }
4972 rcu_read_unlock();
4973
4974 return NULL;
4975}
4976
faa2dbf0
JB
4977#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4978struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4979 u64 start)
faa2dbf0
JB
4980{
4981 struct extent_buffer *eb, *exists = NULL;
4982 int ret;
4983
4984 eb = find_extent_buffer(fs_info, start);
4985 if (eb)
4986 return eb;
da17066c 4987 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4988 if (!eb)
4989 return NULL;
4990 eb->fs_info = fs_info;
4991again:
e1860a77 4992 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4993 if (ret)
4994 goto free_eb;
4995 spin_lock(&fs_info->buffer_lock);
4996 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4997 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4998 spin_unlock(&fs_info->buffer_lock);
4999 radix_tree_preload_end();
5000 if (ret == -EEXIST) {
5001 exists = find_extent_buffer(fs_info, start);
5002 if (exists)
5003 goto free_eb;
5004 else
5005 goto again;
5006 }
5007 check_buffer_tree_ref(eb);
5008 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5009
5010 /*
5011 * We will free dummy extent buffer's if they come into
5012 * free_extent_buffer with a ref count of 2, but if we are using this we
5013 * want the buffers to stay in memory until we're done with them, so
5014 * bump the ref count again.
5015 */
5016 atomic_inc(&eb->refs);
5017 return eb;
5018free_eb:
5019 btrfs_release_extent_buffer(eb);
5020 return exists;
5021}
5022#endif
5023
f28491e0 5024struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5025 u64 start)
d1310b2e 5026{
da17066c 5027 unsigned long len = fs_info->nodesize;
d1310b2e
CM
5028 unsigned long num_pages = num_extent_pages(start, len);
5029 unsigned long i;
09cbfeaf 5030 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5031 struct extent_buffer *eb;
6af118ce 5032 struct extent_buffer *exists = NULL;
d1310b2e 5033 struct page *p;
f28491e0 5034 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5035 int uptodate = 1;
19fe0a8b 5036 int ret;
d1310b2e 5037
da17066c 5038 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5039 btrfs_err(fs_info, "bad tree block start %llu", start);
5040 return ERR_PTR(-EINVAL);
5041 }
5042
f28491e0 5043 eb = find_extent_buffer(fs_info, start);
452c75c3 5044 if (eb)
6af118ce 5045 return eb;
6af118ce 5046
23d79d81 5047 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5048 if (!eb)
c871b0f2 5049 return ERR_PTR(-ENOMEM);
d1310b2e 5050
727011e0 5051 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5052 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5053 if (!p) {
5054 exists = ERR_PTR(-ENOMEM);
6af118ce 5055 goto free_eb;
c871b0f2 5056 }
4f2de97a
JB
5057
5058 spin_lock(&mapping->private_lock);
5059 if (PagePrivate(p)) {
5060 /*
5061 * We could have already allocated an eb for this page
5062 * and attached one so lets see if we can get a ref on
5063 * the existing eb, and if we can we know it's good and
5064 * we can just return that one, else we know we can just
5065 * overwrite page->private.
5066 */
5067 exists = (struct extent_buffer *)p->private;
5068 if (atomic_inc_not_zero(&exists->refs)) {
5069 spin_unlock(&mapping->private_lock);
5070 unlock_page(p);
09cbfeaf 5071 put_page(p);
2457aec6 5072 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5073 goto free_eb;
5074 }
5ca64f45 5075 exists = NULL;
4f2de97a 5076
0b32f4bb 5077 /*
4f2de97a
JB
5078 * Do this so attach doesn't complain and we need to
5079 * drop the ref the old guy had.
5080 */
5081 ClearPagePrivate(p);
0b32f4bb 5082 WARN_ON(PageDirty(p));
09cbfeaf 5083 put_page(p);
d1310b2e 5084 }
4f2de97a
JB
5085 attach_extent_buffer_page(eb, p);
5086 spin_unlock(&mapping->private_lock);
0b32f4bb 5087 WARN_ON(PageDirty(p));
727011e0 5088 eb->pages[i] = p;
d1310b2e
CM
5089 if (!PageUptodate(p))
5090 uptodate = 0;
eb14ab8e
CM
5091
5092 /*
5093 * see below about how we avoid a nasty race with release page
5094 * and why we unlock later
5095 */
d1310b2e
CM
5096 }
5097 if (uptodate)
b4ce94de 5098 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5099again:
e1860a77 5100 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5101 if (ret) {
5102 exists = ERR_PTR(ret);
19fe0a8b 5103 goto free_eb;
c871b0f2 5104 }
19fe0a8b 5105
f28491e0
JB
5106 spin_lock(&fs_info->buffer_lock);
5107 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5108 start >> PAGE_SHIFT, eb);
f28491e0 5109 spin_unlock(&fs_info->buffer_lock);
452c75c3 5110 radix_tree_preload_end();
19fe0a8b 5111 if (ret == -EEXIST) {
f28491e0 5112 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5113 if (exists)
5114 goto free_eb;
5115 else
115391d2 5116 goto again;
6af118ce 5117 }
6af118ce 5118 /* add one reference for the tree */
0b32f4bb 5119 check_buffer_tree_ref(eb);
34b41ace 5120 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5121
5122 /*
5123 * there is a race where release page may have
5124 * tried to find this extent buffer in the radix
5125 * but failed. It will tell the VM it is safe to
5126 * reclaim the, and it will clear the page private bit.
5127 * We must make sure to set the page private bit properly
5128 * after the extent buffer is in the radix tree so
5129 * it doesn't get lost
5130 */
727011e0
CM
5131 SetPageChecked(eb->pages[0]);
5132 for (i = 1; i < num_pages; i++) {
fb85fc9a 5133 p = eb->pages[i];
727011e0
CM
5134 ClearPageChecked(p);
5135 unlock_page(p);
5136 }
5137 unlock_page(eb->pages[0]);
d1310b2e
CM
5138 return eb;
5139
6af118ce 5140free_eb:
5ca64f45 5141 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5142 for (i = 0; i < num_pages; i++) {
5143 if (eb->pages[i])
5144 unlock_page(eb->pages[i]);
5145 }
eb14ab8e 5146
897ca6e9 5147 btrfs_release_extent_buffer(eb);
6af118ce 5148 return exists;
d1310b2e 5149}
d1310b2e 5150
3083ee2e
JB
5151static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5152{
5153 struct extent_buffer *eb =
5154 container_of(head, struct extent_buffer, rcu_head);
5155
5156 __free_extent_buffer(eb);
5157}
5158
3083ee2e 5159/* Expects to have eb->eb_lock already held */
f7a52a40 5160static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5161{
5162 WARN_ON(atomic_read(&eb->refs) == 0);
5163 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5164 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5165 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5166
815a51c7 5167 spin_unlock(&eb->refs_lock);
3083ee2e 5168
f28491e0
JB
5169 spin_lock(&fs_info->buffer_lock);
5170 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5171 eb->start >> PAGE_SHIFT);
f28491e0 5172 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5173 } else {
5174 spin_unlock(&eb->refs_lock);
815a51c7 5175 }
3083ee2e
JB
5176
5177 /* Should be safe to release our pages at this point */
a50924e3 5178 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5179#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5180 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5181 __free_extent_buffer(eb);
5182 return 1;
5183 }
5184#endif
3083ee2e 5185 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5186 return 1;
3083ee2e
JB
5187 }
5188 spin_unlock(&eb->refs_lock);
e64860aa
JB
5189
5190 return 0;
3083ee2e
JB
5191}
5192
d1310b2e
CM
5193void free_extent_buffer(struct extent_buffer *eb)
5194{
242e18c7
CM
5195 int refs;
5196 int old;
d1310b2e
CM
5197 if (!eb)
5198 return;
5199
242e18c7
CM
5200 while (1) {
5201 refs = atomic_read(&eb->refs);
5202 if (refs <= 3)
5203 break;
5204 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5205 if (old == refs)
5206 return;
5207 }
5208
3083ee2e 5209 spin_lock(&eb->refs_lock);
815a51c7
JS
5210 if (atomic_read(&eb->refs) == 2 &&
5211 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5212 atomic_dec(&eb->refs);
5213
3083ee2e
JB
5214 if (atomic_read(&eb->refs) == 2 &&
5215 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5216 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5217 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5218 atomic_dec(&eb->refs);
5219
5220 /*
5221 * I know this is terrible, but it's temporary until we stop tracking
5222 * the uptodate bits and such for the extent buffers.
5223 */
f7a52a40 5224 release_extent_buffer(eb);
3083ee2e
JB
5225}
5226
5227void free_extent_buffer_stale(struct extent_buffer *eb)
5228{
5229 if (!eb)
d1310b2e
CM
5230 return;
5231
3083ee2e
JB
5232 spin_lock(&eb->refs_lock);
5233 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5234
0b32f4bb 5235 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5236 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5237 atomic_dec(&eb->refs);
f7a52a40 5238 release_extent_buffer(eb);
d1310b2e 5239}
d1310b2e 5240
1d4284bd 5241void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5242{
d1310b2e
CM
5243 unsigned long i;
5244 unsigned long num_pages;
5245 struct page *page;
5246
d1310b2e
CM
5247 num_pages = num_extent_pages(eb->start, eb->len);
5248
5249 for (i = 0; i < num_pages; i++) {
fb85fc9a 5250 page = eb->pages[i];
b9473439 5251 if (!PageDirty(page))
d2c3f4f6
CM
5252 continue;
5253
a61e6f29 5254 lock_page(page);
eb14ab8e
CM
5255 WARN_ON(!PagePrivate(page));
5256
d1310b2e 5257 clear_page_dirty_for_io(page);
0ee0fda0 5258 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5259 if (!PageDirty(page)) {
5260 radix_tree_tag_clear(&page->mapping->page_tree,
5261 page_index(page),
5262 PAGECACHE_TAG_DIRTY);
5263 }
0ee0fda0 5264 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5265 ClearPageError(page);
a61e6f29 5266 unlock_page(page);
d1310b2e 5267 }
0b32f4bb 5268 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5269}
d1310b2e 5270
0b32f4bb 5271int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5272{
5273 unsigned long i;
5274 unsigned long num_pages;
b9473439 5275 int was_dirty = 0;
d1310b2e 5276
0b32f4bb
JB
5277 check_buffer_tree_ref(eb);
5278
b9473439 5279 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5280
d1310b2e 5281 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5282 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5283 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5284
b9473439 5285 for (i = 0; i < num_pages; i++)
fb85fc9a 5286 set_page_dirty(eb->pages[i]);
b9473439 5287 return was_dirty;
d1310b2e 5288}
d1310b2e 5289
69ba3927 5290void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5291{
5292 unsigned long i;
5293 struct page *page;
5294 unsigned long num_pages;
5295
b4ce94de 5296 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5297 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5298 for (i = 0; i < num_pages; i++) {
fb85fc9a 5299 page = eb->pages[i];
33958dc6
CM
5300 if (page)
5301 ClearPageUptodate(page);
1259ab75 5302 }
1259ab75
CM
5303}
5304
09c25a8c 5305void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5306{
5307 unsigned long i;
5308 struct page *page;
5309 unsigned long num_pages;
5310
0b32f4bb 5311 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5312 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5313 for (i = 0; i < num_pages; i++) {
fb85fc9a 5314 page = eb->pages[i];
d1310b2e
CM
5315 SetPageUptodate(page);
5316 }
d1310b2e 5317}
d1310b2e 5318
0b32f4bb 5319int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5320{
0b32f4bb 5321 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5322}
d1310b2e
CM
5323
5324int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5325 struct extent_buffer *eb, int wait,
f188591e 5326 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5327{
5328 unsigned long i;
d1310b2e
CM
5329 struct page *page;
5330 int err;
5331 int ret = 0;
ce9adaa5
CM
5332 int locked_pages = 0;
5333 int all_uptodate = 1;
d1310b2e 5334 unsigned long num_pages;
727011e0 5335 unsigned long num_reads = 0;
a86c12c7 5336 struct bio *bio = NULL;
c8b97818 5337 unsigned long bio_flags = 0;
a86c12c7 5338
b4ce94de 5339 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5340 return 0;
5341
d1310b2e 5342 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5343 for (i = 0; i < num_pages; i++) {
fb85fc9a 5344 page = eb->pages[i];
bb82ab88 5345 if (wait == WAIT_NONE) {
2db04966 5346 if (!trylock_page(page))
ce9adaa5 5347 goto unlock_exit;
d1310b2e
CM
5348 } else {
5349 lock_page(page);
5350 }
ce9adaa5 5351 locked_pages++;
2571e739
LB
5352 }
5353 /*
5354 * We need to firstly lock all pages to make sure that
5355 * the uptodate bit of our pages won't be affected by
5356 * clear_extent_buffer_uptodate().
5357 */
8436ea91 5358 for (i = 0; i < num_pages; i++) {
2571e739 5359 page = eb->pages[i];
727011e0
CM
5360 if (!PageUptodate(page)) {
5361 num_reads++;
ce9adaa5 5362 all_uptodate = 0;
727011e0 5363 }
ce9adaa5 5364 }
2571e739 5365
ce9adaa5 5366 if (all_uptodate) {
8436ea91 5367 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5368 goto unlock_exit;
5369 }
5370
656f30db 5371 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5372 eb->read_mirror = 0;
0b32f4bb 5373 atomic_set(&eb->io_pages, num_reads);
8436ea91 5374 for (i = 0; i < num_pages; i++) {
fb85fc9a 5375 page = eb->pages[i];
baf863b9 5376
ce9adaa5 5377 if (!PageUptodate(page)) {
baf863b9
LB
5378 if (ret) {
5379 atomic_dec(&eb->io_pages);
5380 unlock_page(page);
5381 continue;
5382 }
5383
f188591e 5384 ClearPageError(page);
a86c12c7 5385 err = __extent_read_full_page(tree, page,
f188591e 5386 get_extent, &bio,
d4c7ca86 5387 mirror_num, &bio_flags,
1f7ad75b 5388 REQ_META);
baf863b9 5389 if (err) {
d1310b2e 5390 ret = err;
baf863b9
LB
5391 /*
5392 * We use &bio in above __extent_read_full_page,
5393 * so we ensure that if it returns error, the
5394 * current page fails to add itself to bio and
5395 * it's been unlocked.
5396 *
5397 * We must dec io_pages by ourselves.
5398 */
5399 atomic_dec(&eb->io_pages);
5400 }
d1310b2e
CM
5401 } else {
5402 unlock_page(page);
5403 }
5404 }
5405
355808c2 5406 if (bio) {
1f7ad75b 5407 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5408 if (err)
5409 return err;
355808c2 5410 }
a86c12c7 5411
bb82ab88 5412 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5413 return ret;
d397712b 5414
8436ea91 5415 for (i = 0; i < num_pages; i++) {
fb85fc9a 5416 page = eb->pages[i];
d1310b2e 5417 wait_on_page_locked(page);
d397712b 5418 if (!PageUptodate(page))
d1310b2e 5419 ret = -EIO;
d1310b2e 5420 }
d397712b 5421
d1310b2e 5422 return ret;
ce9adaa5
CM
5423
5424unlock_exit:
d397712b 5425 while (locked_pages > 0) {
ce9adaa5 5426 locked_pages--;
8436ea91
JB
5427 page = eb->pages[locked_pages];
5428 unlock_page(page);
ce9adaa5
CM
5429 }
5430 return ret;
d1310b2e 5431}
d1310b2e
CM
5432
5433void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5434 unsigned long start,
5435 unsigned long len)
5436{
5437 size_t cur;
5438 size_t offset;
5439 struct page *page;
5440 char *kaddr;
5441 char *dst = (char *)dstv;
09cbfeaf
KS
5442 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5443 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5444
5445 WARN_ON(start > eb->len);
5446 WARN_ON(start + len > eb->start + eb->len);
5447
09cbfeaf 5448 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5449
d397712b 5450 while (len > 0) {
fb85fc9a 5451 page = eb->pages[i];
d1310b2e 5452
09cbfeaf 5453 cur = min(len, (PAGE_SIZE - offset));
a6591715 5454 kaddr = page_address(page);
d1310b2e 5455 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5456
5457 dst += cur;
5458 len -= cur;
5459 offset = 0;
5460 i++;
5461 }
5462}
d1310b2e 5463
550ac1d8
GH
5464int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5465 unsigned long start,
5466 unsigned long len)
5467{
5468 size_t cur;
5469 size_t offset;
5470 struct page *page;
5471 char *kaddr;
5472 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5473 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5474 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5475 int ret = 0;
5476
5477 WARN_ON(start > eb->len);
5478 WARN_ON(start + len > eb->start + eb->len);
5479
09cbfeaf 5480 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5481
5482 while (len > 0) {
fb85fc9a 5483 page = eb->pages[i];
550ac1d8 5484
09cbfeaf 5485 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5486 kaddr = page_address(page);
5487 if (copy_to_user(dst, kaddr + offset, cur)) {
5488 ret = -EFAULT;
5489 break;
5490 }
5491
5492 dst += cur;
5493 len -= cur;
5494 offset = 0;
5495 i++;
5496 }
5497
5498 return ret;
5499}
5500
415b35a5
LB
5501/*
5502 * return 0 if the item is found within a page.
5503 * return 1 if the item spans two pages.
5504 * return -EINVAL otherwise.
5505 */
d1310b2e 5506int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5507 unsigned long min_len, char **map,
d1310b2e 5508 unsigned long *map_start,
a6591715 5509 unsigned long *map_len)
d1310b2e 5510{
09cbfeaf 5511 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5512 char *kaddr;
5513 struct page *p;
09cbfeaf
KS
5514 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5515 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5516 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5517 PAGE_SHIFT;
d1310b2e
CM
5518
5519 if (i != end_i)
415b35a5 5520 return 1;
d1310b2e
CM
5521
5522 if (i == 0) {
5523 offset = start_offset;
5524 *map_start = 0;
5525 } else {
5526 offset = 0;
09cbfeaf 5527 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5528 }
d397712b 5529
d1310b2e 5530 if (start + min_len > eb->len) {
5d163e0e 5531 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5532 eb->start, eb->len, start, min_len);
85026533 5533 return -EINVAL;
d1310b2e
CM
5534 }
5535
fb85fc9a 5536 p = eb->pages[i];
a6591715 5537 kaddr = page_address(p);
d1310b2e 5538 *map = kaddr + offset;
09cbfeaf 5539 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5540 return 0;
5541}
d1310b2e 5542
d1310b2e
CM
5543int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5544 unsigned long start,
5545 unsigned long len)
5546{
5547 size_t cur;
5548 size_t offset;
5549 struct page *page;
5550 char *kaddr;
5551 char *ptr = (char *)ptrv;
09cbfeaf
KS
5552 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5553 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5554 int ret = 0;
5555
5556 WARN_ON(start > eb->len);
5557 WARN_ON(start + len > eb->start + eb->len);
5558
09cbfeaf 5559 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5560
d397712b 5561 while (len > 0) {
fb85fc9a 5562 page = eb->pages[i];
d1310b2e 5563
09cbfeaf 5564 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5565
a6591715 5566 kaddr = page_address(page);
d1310b2e 5567 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5568 if (ret)
5569 break;
5570
5571 ptr += cur;
5572 len -= cur;
5573 offset = 0;
5574 i++;
5575 }
5576 return ret;
5577}
d1310b2e 5578
f157bf76
DS
5579void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5580 const void *srcv)
5581{
5582 char *kaddr;
5583
5584 WARN_ON(!PageUptodate(eb->pages[0]));
5585 kaddr = page_address(eb->pages[0]);
5586 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5587 BTRFS_FSID_SIZE);
5588}
5589
5590void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5591{
5592 char *kaddr;
5593
5594 WARN_ON(!PageUptodate(eb->pages[0]));
5595 kaddr = page_address(eb->pages[0]);
5596 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5597 BTRFS_FSID_SIZE);
5598}
5599
d1310b2e
CM
5600void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5601 unsigned long start, unsigned long len)
5602{
5603 size_t cur;
5604 size_t offset;
5605 struct page *page;
5606 char *kaddr;
5607 char *src = (char *)srcv;
09cbfeaf
KS
5608 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5609 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5610
5611 WARN_ON(start > eb->len);
5612 WARN_ON(start + len > eb->start + eb->len);
5613
09cbfeaf 5614 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5615
d397712b 5616 while (len > 0) {
fb85fc9a 5617 page = eb->pages[i];
d1310b2e
CM
5618 WARN_ON(!PageUptodate(page));
5619
09cbfeaf 5620 cur = min(len, PAGE_SIZE - offset);
a6591715 5621 kaddr = page_address(page);
d1310b2e 5622 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5623
5624 src += cur;
5625 len -= cur;
5626 offset = 0;
5627 i++;
5628 }
5629}
d1310b2e 5630
b159fa28
DS
5631void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5632 unsigned long len)
d1310b2e
CM
5633{
5634 size_t cur;
5635 size_t offset;
5636 struct page *page;
5637 char *kaddr;
09cbfeaf
KS
5638 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5639 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5640
5641 WARN_ON(start > eb->len);
5642 WARN_ON(start + len > eb->start + eb->len);
5643
09cbfeaf 5644 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5645
d397712b 5646 while (len > 0) {
fb85fc9a 5647 page = eb->pages[i];
d1310b2e
CM
5648 WARN_ON(!PageUptodate(page));
5649
09cbfeaf 5650 cur = min(len, PAGE_SIZE - offset);
a6591715 5651 kaddr = page_address(page);
b159fa28 5652 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5653
5654 len -= cur;
5655 offset = 0;
5656 i++;
5657 }
5658}
d1310b2e 5659
58e8012c
DS
5660void copy_extent_buffer_full(struct extent_buffer *dst,
5661 struct extent_buffer *src)
5662{
5663 int i;
5664 unsigned num_pages;
5665
5666 ASSERT(dst->len == src->len);
5667
5668 num_pages = num_extent_pages(dst->start, dst->len);
5669 for (i = 0; i < num_pages; i++)
5670 copy_page(page_address(dst->pages[i]),
5671 page_address(src->pages[i]));
5672}
5673
d1310b2e
CM
5674void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5675 unsigned long dst_offset, unsigned long src_offset,
5676 unsigned long len)
5677{
5678 u64 dst_len = dst->len;
5679 size_t cur;
5680 size_t offset;
5681 struct page *page;
5682 char *kaddr;
09cbfeaf
KS
5683 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5684 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5685
5686 WARN_ON(src->len != dst_len);
5687
5688 offset = (start_offset + dst_offset) &
09cbfeaf 5689 (PAGE_SIZE - 1);
d1310b2e 5690
d397712b 5691 while (len > 0) {
fb85fc9a 5692 page = dst->pages[i];
d1310b2e
CM
5693 WARN_ON(!PageUptodate(page));
5694
09cbfeaf 5695 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5696
a6591715 5697 kaddr = page_address(page);
d1310b2e 5698 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5699
5700 src_offset += cur;
5701 len -= cur;
5702 offset = 0;
5703 i++;
5704 }
5705}
d1310b2e 5706
2fe1d551
OS
5707void le_bitmap_set(u8 *map, unsigned int start, int len)
5708{
5709 u8 *p = map + BIT_BYTE(start);
5710 const unsigned int size = start + len;
5711 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5712 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5713
5714 while (len - bits_to_set >= 0) {
5715 *p |= mask_to_set;
5716 len -= bits_to_set;
5717 bits_to_set = BITS_PER_BYTE;
9c894696 5718 mask_to_set = ~0;
2fe1d551
OS
5719 p++;
5720 }
5721 if (len) {
5722 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5723 *p |= mask_to_set;
5724 }
5725}
5726
5727void le_bitmap_clear(u8 *map, unsigned int start, int len)
5728{
5729 u8 *p = map + BIT_BYTE(start);
5730 const unsigned int size = start + len;
5731 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5732 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5733
5734 while (len - bits_to_clear >= 0) {
5735 *p &= ~mask_to_clear;
5736 len -= bits_to_clear;
5737 bits_to_clear = BITS_PER_BYTE;
9c894696 5738 mask_to_clear = ~0;
2fe1d551
OS
5739 p++;
5740 }
5741 if (len) {
5742 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5743 *p &= ~mask_to_clear;
5744 }
5745}
3e1e8bb7
OS
5746
5747/*
5748 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5749 * given bit number
5750 * @eb: the extent buffer
5751 * @start: offset of the bitmap item in the extent buffer
5752 * @nr: bit number
5753 * @page_index: return index of the page in the extent buffer that contains the
5754 * given bit number
5755 * @page_offset: return offset into the page given by page_index
5756 *
5757 * This helper hides the ugliness of finding the byte in an extent buffer which
5758 * contains a given bit.
5759 */
5760static inline void eb_bitmap_offset(struct extent_buffer *eb,
5761 unsigned long start, unsigned long nr,
5762 unsigned long *page_index,
5763 size_t *page_offset)
5764{
09cbfeaf 5765 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5766 size_t byte_offset = BIT_BYTE(nr);
5767 size_t offset;
5768
5769 /*
5770 * The byte we want is the offset of the extent buffer + the offset of
5771 * the bitmap item in the extent buffer + the offset of the byte in the
5772 * bitmap item.
5773 */
5774 offset = start_offset + start + byte_offset;
5775
09cbfeaf
KS
5776 *page_index = offset >> PAGE_SHIFT;
5777 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5778}
5779
5780/**
5781 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5782 * @eb: the extent buffer
5783 * @start: offset of the bitmap item in the extent buffer
5784 * @nr: bit number to test
5785 */
5786int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5787 unsigned long nr)
5788{
2fe1d551 5789 u8 *kaddr;
3e1e8bb7
OS
5790 struct page *page;
5791 unsigned long i;
5792 size_t offset;
5793
5794 eb_bitmap_offset(eb, start, nr, &i, &offset);
5795 page = eb->pages[i];
5796 WARN_ON(!PageUptodate(page));
5797 kaddr = page_address(page);
5798 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5799}
5800
5801/**
5802 * extent_buffer_bitmap_set - set an area of a bitmap
5803 * @eb: the extent buffer
5804 * @start: offset of the bitmap item in the extent buffer
5805 * @pos: bit number of the first bit
5806 * @len: number of bits to set
5807 */
5808void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5809 unsigned long pos, unsigned long len)
5810{
2fe1d551 5811 u8 *kaddr;
3e1e8bb7
OS
5812 struct page *page;
5813 unsigned long i;
5814 size_t offset;
5815 const unsigned int size = pos + len;
5816 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5817 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5818
5819 eb_bitmap_offset(eb, start, pos, &i, &offset);
5820 page = eb->pages[i];
5821 WARN_ON(!PageUptodate(page));
5822 kaddr = page_address(page);
5823
5824 while (len >= bits_to_set) {
5825 kaddr[offset] |= mask_to_set;
5826 len -= bits_to_set;
5827 bits_to_set = BITS_PER_BYTE;
9c894696 5828 mask_to_set = ~0;
09cbfeaf 5829 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5830 offset = 0;
5831 page = eb->pages[++i];
5832 WARN_ON(!PageUptodate(page));
5833 kaddr = page_address(page);
5834 }
5835 }
5836 if (len) {
5837 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5838 kaddr[offset] |= mask_to_set;
5839 }
5840}
5841
5842
5843/**
5844 * extent_buffer_bitmap_clear - clear an area of a bitmap
5845 * @eb: the extent buffer
5846 * @start: offset of the bitmap item in the extent buffer
5847 * @pos: bit number of the first bit
5848 * @len: number of bits to clear
5849 */
5850void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5851 unsigned long pos, unsigned long len)
5852{
2fe1d551 5853 u8 *kaddr;
3e1e8bb7
OS
5854 struct page *page;
5855 unsigned long i;
5856 size_t offset;
5857 const unsigned int size = pos + len;
5858 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5859 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5860
5861 eb_bitmap_offset(eb, start, pos, &i, &offset);
5862 page = eb->pages[i];
5863 WARN_ON(!PageUptodate(page));
5864 kaddr = page_address(page);
5865
5866 while (len >= bits_to_clear) {
5867 kaddr[offset] &= ~mask_to_clear;
5868 len -= bits_to_clear;
5869 bits_to_clear = BITS_PER_BYTE;
9c894696 5870 mask_to_clear = ~0;
09cbfeaf 5871 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5872 offset = 0;
5873 page = eb->pages[++i];
5874 WARN_ON(!PageUptodate(page));
5875 kaddr = page_address(page);
5876 }
5877 }
5878 if (len) {
5879 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5880 kaddr[offset] &= ~mask_to_clear;
5881 }
5882}
5883
3387206f
ST
5884static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5885{
5886 unsigned long distance = (src > dst) ? src - dst : dst - src;
5887 return distance < len;
5888}
5889
d1310b2e
CM
5890static void copy_pages(struct page *dst_page, struct page *src_page,
5891 unsigned long dst_off, unsigned long src_off,
5892 unsigned long len)
5893{
a6591715 5894 char *dst_kaddr = page_address(dst_page);
d1310b2e 5895 char *src_kaddr;
727011e0 5896 int must_memmove = 0;
d1310b2e 5897
3387206f 5898 if (dst_page != src_page) {
a6591715 5899 src_kaddr = page_address(src_page);
3387206f 5900 } else {
d1310b2e 5901 src_kaddr = dst_kaddr;
727011e0
CM
5902 if (areas_overlap(src_off, dst_off, len))
5903 must_memmove = 1;
3387206f 5904 }
d1310b2e 5905
727011e0
CM
5906 if (must_memmove)
5907 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5908 else
5909 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5910}
5911
5912void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5913 unsigned long src_offset, unsigned long len)
5914{
0b246afa 5915 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5916 size_t cur;
5917 size_t dst_off_in_page;
5918 size_t src_off_in_page;
09cbfeaf 5919 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5920 unsigned long dst_i;
5921 unsigned long src_i;
5922
5923 if (src_offset + len > dst->len) {
0b246afa 5924 btrfs_err(fs_info,
5d163e0e
JM
5925 "memmove bogus src_offset %lu move len %lu dst len %lu",
5926 src_offset, len, dst->len);
d1310b2e
CM
5927 BUG_ON(1);
5928 }
5929 if (dst_offset + len > dst->len) {
0b246afa 5930 btrfs_err(fs_info,
5d163e0e
JM
5931 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5932 dst_offset, len, dst->len);
d1310b2e
CM
5933 BUG_ON(1);
5934 }
5935
d397712b 5936 while (len > 0) {
d1310b2e 5937 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5938 (PAGE_SIZE - 1);
d1310b2e 5939 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5940 (PAGE_SIZE - 1);
d1310b2e 5941
09cbfeaf
KS
5942 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5943 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5944
09cbfeaf 5945 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5946 src_off_in_page));
5947 cur = min_t(unsigned long, cur,
09cbfeaf 5948 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5949
fb85fc9a 5950 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5951 dst_off_in_page, src_off_in_page, cur);
5952
5953 src_offset += cur;
5954 dst_offset += cur;
5955 len -= cur;
5956 }
5957}
d1310b2e
CM
5958
5959void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5960 unsigned long src_offset, unsigned long len)
5961{
0b246afa 5962 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5963 size_t cur;
5964 size_t dst_off_in_page;
5965 size_t src_off_in_page;
5966 unsigned long dst_end = dst_offset + len - 1;
5967 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5968 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5969 unsigned long dst_i;
5970 unsigned long src_i;
5971
5972 if (src_offset + len > dst->len) {
0b246afa 5973 btrfs_err(fs_info,
5d163e0e
JM
5974 "memmove bogus src_offset %lu move len %lu len %lu",
5975 src_offset, len, dst->len);
d1310b2e
CM
5976 BUG_ON(1);
5977 }
5978 if (dst_offset + len > dst->len) {
0b246afa 5979 btrfs_err(fs_info,
5d163e0e
JM
5980 "memmove bogus dst_offset %lu move len %lu len %lu",
5981 dst_offset, len, dst->len);
d1310b2e
CM
5982 BUG_ON(1);
5983 }
727011e0 5984 if (dst_offset < src_offset) {
d1310b2e
CM
5985 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5986 return;
5987 }
d397712b 5988 while (len > 0) {
09cbfeaf
KS
5989 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5990 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5991
5992 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5993 (PAGE_SIZE - 1);
d1310b2e 5994 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5995 (PAGE_SIZE - 1);
d1310b2e
CM
5996
5997 cur = min_t(unsigned long, len, src_off_in_page + 1);
5998 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5999 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
6000 dst_off_in_page - cur + 1,
6001 src_off_in_page - cur + 1, cur);
6002
6003 dst_end -= cur;
6004 src_end -= cur;
6005 len -= cur;
6006 }
6007}
6af118ce 6008
f7a52a40 6009int try_release_extent_buffer(struct page *page)
19fe0a8b 6010{
6af118ce 6011 struct extent_buffer *eb;
6af118ce 6012
3083ee2e 6013 /*
01327610 6014 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
6015 * now.
6016 */
6017 spin_lock(&page->mapping->private_lock);
6018 if (!PagePrivate(page)) {
6019 spin_unlock(&page->mapping->private_lock);
4f2de97a 6020 return 1;
45f49bce 6021 }
6af118ce 6022
3083ee2e
JB
6023 eb = (struct extent_buffer *)page->private;
6024 BUG_ON(!eb);
19fe0a8b
MX
6025
6026 /*
3083ee2e
JB
6027 * This is a little awful but should be ok, we need to make sure that
6028 * the eb doesn't disappear out from under us while we're looking at
6029 * this page.
19fe0a8b 6030 */
3083ee2e 6031 spin_lock(&eb->refs_lock);
0b32f4bb 6032 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6033 spin_unlock(&eb->refs_lock);
6034 spin_unlock(&page->mapping->private_lock);
6035 return 0;
b9473439 6036 }
3083ee2e 6037 spin_unlock(&page->mapping->private_lock);
897ca6e9 6038
19fe0a8b 6039 /*
3083ee2e
JB
6040 * If tree ref isn't set then we know the ref on this eb is a real ref,
6041 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6042 */
3083ee2e
JB
6043 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6044 spin_unlock(&eb->refs_lock);
6045 return 0;
b9473439 6046 }
19fe0a8b 6047
f7a52a40 6048 return release_extent_buffer(eb);
6af118ce 6049}