]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/extent_io.c
btrfs: btrfs_io_bio_alloc never fails, skip error handling
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
afce772e 23#include "transaction.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
27a3507d
FM
29static inline bool extent_state_in_tree(const struct extent_state *state)
30{
31 return !RB_EMPTY_NODE(&state->rb_node);
32}
33
6d49ba1b 34#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
35static LIST_HEAD(buffers);
36static LIST_HEAD(states);
4bef0848 37
d397712b 38static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
39
40static inline
41void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
42{
43 unsigned long flags;
44
45 spin_lock_irqsave(&leak_lock, flags);
46 list_add(new, head);
47 spin_unlock_irqrestore(&leak_lock, flags);
48}
49
50static inline
51void btrfs_leak_debug_del(struct list_head *entry)
52{
53 unsigned long flags;
54
55 spin_lock_irqsave(&leak_lock, flags);
56 list_del(entry);
57 spin_unlock_irqrestore(&leak_lock, flags);
58}
59
60static inline
61void btrfs_leak_debug_check(void)
62{
63 struct extent_state *state;
64 struct extent_buffer *eb;
65
66 while (!list_empty(&states)) {
67 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 68 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
69 state->start, state->end, state->state,
70 extent_state_in_tree(state),
b7ac31b7 71 refcount_read(&state->refs));
6d49ba1b
ES
72 list_del(&state->leak_list);
73 kmem_cache_free(extent_state_cache, state);
74 }
75
76 while (!list_empty(&buffers)) {
77 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
62e85577 78 pr_err("BTRFS: buffer leak start %llu len %lu refs %d\n",
c1c9ff7c 79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
c6100a4b
JB
90 if (tree->ops && tree->ops->check_extent_io_range)
91 tree->ops->check_extent_io_range(tree->private_data, caller,
92 start, end);
8d599ae1 93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
de0022b9 113 unsigned long bio_flags;
771ed689
CM
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
ffbd517d
CM
118 unsigned int extent_locked:1;
119
70fd7614 120 /* tells the submit_bio code to use REQ_SYNC */
ffbd517d 121 unsigned int sync_io:1;
d1310b2e
CM
122};
123
d38ed27f
QW
124static void add_extent_changeset(struct extent_state *state, unsigned bits,
125 struct extent_changeset *changeset,
126 int set)
127{
128 int ret;
129
130 if (!changeset)
131 return;
132 if (set && (state->state & bits) == bits)
133 return;
fefdc557
QW
134 if (!set && (state->state & bits) == 0)
135 return;
d38ed27f 136 changeset->bytes_changed += state->end - state->start + 1;
53d32359 137 ret = ulist_add(&changeset->range_changed, state->start, state->end,
d38ed27f
QW
138 GFP_ATOMIC);
139 /* ENOMEM */
140 BUG_ON(ret < 0);
141}
142
0b32f4bb 143static noinline void flush_write_bio(void *data);
c2d904e0
JM
144static inline struct btrfs_fs_info *
145tree_fs_info(struct extent_io_tree *tree)
146{
c6100a4b
JB
147 if (tree->ops)
148 return tree->ops->tree_fs_info(tree->private_data);
149 return NULL;
c2d904e0 150}
0b32f4bb 151
d1310b2e
CM
152int __init extent_io_init(void)
153{
837e1972 154 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6 155 sizeof(struct extent_state), 0,
fba4b697 156 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
157 if (!extent_state_cache)
158 return -ENOMEM;
159
837e1972 160 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6 161 sizeof(struct extent_buffer), 0,
fba4b697 162 SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
163 if (!extent_buffer_cache)
164 goto free_state_cache;
9be3395b
CM
165
166 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
167 offsetof(struct btrfs_io_bio, bio));
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
b208c2f7
DW
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
d1310b2e
CM
174 return 0;
175
b208c2f7
DW
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
9be3395b
CM
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
d1310b2e
CM
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
9be3395b 186 extent_state_cache = NULL;
d1310b2e
CM
187 return -ENOMEM;
188}
189
190void extent_io_exit(void)
191{
6d49ba1b 192 btrfs_leak_debug_check();
8c0a8537
KS
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
5598e900
KM
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
d1310b2e
CM
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
c6100a4b 206 void *private_data)
d1310b2e 207{
6bef4d31 208 tree->state = RB_ROOT;
d1310b2e
CM
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
70dec807 211 spin_lock_init(&tree->lock);
c6100a4b 212 tree->private_data = private_data;
d1310b2e 213}
d1310b2e 214
b2950863 215static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
216{
217 struct extent_state *state;
d1310b2e 218
3ba7ab22
MH
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
d1310b2e 224 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 225 if (!state)
d1310b2e
CM
226 return state;
227 state->state = 0;
47dc196a 228 state->failrec = NULL;
27a3507d 229 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 230 btrfs_leak_debug_add(&state->leak_list, &states);
b7ac31b7 231 refcount_set(&state->refs, 1);
d1310b2e 232 init_waitqueue_head(&state->wq);
143bede5 233 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
234 return state;
235}
d1310b2e 236
4845e44f 237void free_extent_state(struct extent_state *state)
d1310b2e 238{
d1310b2e
CM
239 if (!state)
240 return;
b7ac31b7 241 if (refcount_dec_and_test(&state->refs)) {
27a3507d 242 WARN_ON(extent_state_in_tree(state));
6d49ba1b 243 btrfs_leak_debug_del(&state->leak_list);
143bede5 244 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
d1310b2e 248
f2071b21
FM
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
12cfbad9
FDBM
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
d1310b2e 255{
f2071b21 256 struct rb_node **p;
d397712b 257 struct rb_node *parent = NULL;
d1310b2e
CM
258 struct tree_entry *entry;
259
12cfbad9
FDBM
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
f2071b21 266 p = search_start ? &search_start : &root->rb_node;
d397712b 267 while (*p) {
d1310b2e
CM
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
12cfbad9 279do_insert:
d1310b2e
CM
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
80ea96b1 285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
d1310b2e 290{
80ea96b1 291 struct rb_root *root = &tree->state;
12cfbad9 292 struct rb_node **n = &root->rb_node;
d1310b2e
CM
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
12cfbad9
FDBM
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
301 prev_entry = entry;
302
303 if (offset < entry->start)
12cfbad9 304 n = &(*n)->rb_left;
d1310b2e 305 else if (offset > entry->end)
12cfbad9 306 n = &(*n)->rb_right;
d397712b 307 else
12cfbad9 308 return *n;
d1310b2e
CM
309 }
310
12cfbad9
FDBM
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
d1310b2e
CM
316 if (prev_ret) {
317 orig_prev = prev;
d397712b 318 while (prev && offset > prev_entry->end) {
d1310b2e
CM
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 328 while (prev && offset < prev_entry->start) {
d1310b2e
CM
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
12cfbad9
FDBM
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
d1310b2e 342{
70dec807 343 struct rb_node *prev = NULL;
d1310b2e 344 struct rb_node *ret;
70dec807 345
12cfbad9 346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 347 if (!ret)
d1310b2e
CM
348 return prev;
349 return ret;
350}
351
12cfbad9
FDBM
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
9ed74f2d
JB
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
c6100a4b 362 tree->ops->merge_extent_hook(tree->private_data, new, other);
9ed74f2d
JB
363}
364
d1310b2e
CM
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
1bf85046
JM
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
d1310b2e
CM
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
5b21f2ed 380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 381 return;
d1310b2e
CM
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
9ed74f2d 388 merge_cb(tree, state, other);
d1310b2e 389 state->start = other->start;
d1310b2e 390 rb_erase(&other->rb_node, &tree->state);
27a3507d 391 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
9ed74f2d 400 merge_cb(tree, state, other);
df98b6e2 401 state->end = other->end;
df98b6e2 402 rb_erase(&other->rb_node, &tree->state);
27a3507d 403 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 404 free_extent_state(other);
d1310b2e
CM
405 }
406 }
d1310b2e
CM
407}
408
1bf85046 409static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 410 struct extent_state *state, unsigned *bits)
291d673e 411{
1bf85046 412 if (tree->ops && tree->ops->set_bit_hook)
c6100a4b 413 tree->ops->set_bit_hook(tree->private_data, state, bits);
291d673e
CM
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 417 struct extent_state *state, unsigned *bits)
291d673e 418{
9ed74f2d 419 if (tree->ops && tree->ops->clear_bit_hook)
c6100a4b 420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
291d673e
CM
421}
422
3150b699 423static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
3150b699 426
d1310b2e
CM
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
439 struct rb_node ***p,
440 struct rb_node **parent,
d38ed27f 441 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
442{
443 struct rb_node *node;
444
31b1a2bd 445 if (end < start)
efe120a0 446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 447 end, start);
d1310b2e
CM
448 state->start = start;
449 state->end = end;
9ed74f2d 450
d38ed27f 451 set_state_bits(tree, state, bits, changeset);
3150b699 452
f2071b21 453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
62e85577 457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
c1c9ff7c 458 found->start, found->end, start, end);
d1310b2e
CM
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
1bf85046 465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
c6100a4b 469 tree->ops->split_extent_hook(tree->private_data, orig, split);
9ed74f2d
JB
470}
471
d1310b2e
CM
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
9ed74f2d
JB
490
491 split_cb(tree, orig, split);
492
d1310b2e
CM
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
f2071b21
FM
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
d1310b2e 500 if (node) {
d1310b2e
CM
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
cdc6a395
LZ
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
d1310b2e
CM
516/*
517 * utility function to clear some bits in an extent state struct.
1b303fc0 518 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
cdc6a395
LZ
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
fefdc557
QW
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
d1310b2e 527{
cdc6a395 528 struct extent_state *next;
9ee49a04 529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 530
0ca1f7ce 531 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
532 u64 range = state->end - state->start + 1;
533 WARN_ON(range > tree->dirty_bytes);
534 tree->dirty_bytes -= range;
535 }
291d673e 536 clear_state_cb(tree, state, bits);
fefdc557 537 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 538 state->state &= ~bits_to_clear;
d1310b2e
CM
539 if (wake)
540 wake_up(&state->wq);
0ca1f7ce 541 if (state->state == 0) {
cdc6a395 542 next = next_state(state);
27a3507d 543 if (extent_state_in_tree(state)) {
d1310b2e 544 rb_erase(&state->rb_node, &tree->state);
27a3507d 545 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
546 free_extent_state(state);
547 } else {
548 WARN_ON(1);
549 }
550 } else {
551 merge_state(tree, state);
cdc6a395 552 next = next_state(state);
d1310b2e 553 }
cdc6a395 554 return next;
d1310b2e
CM
555}
556
8233767a
XG
557static struct extent_state *
558alloc_extent_state_atomic(struct extent_state *prealloc)
559{
560 if (!prealloc)
561 prealloc = alloc_extent_state(GFP_ATOMIC);
562
563 return prealloc;
564}
565
48a3b636 566static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0 567{
5d163e0e
JM
568 btrfs_panic(tree_fs_info(tree), err,
569 "Locking error: Extent tree was modified by another thread while locked.");
c2d904e0
JM
570}
571
d1310b2e
CM
572/*
573 * clear some bits on a range in the tree. This may require splitting
574 * or inserting elements in the tree, so the gfp mask is used to
575 * indicate which allocations or sleeping are allowed.
576 *
577 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
578 * the given range from the tree regardless of state (ie for truncate).
579 *
580 * the range [start, end] is inclusive.
581 *
6763af84 582 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 583 */
fefdc557
QW
584static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
585 unsigned bits, int wake, int delete,
586 struct extent_state **cached_state,
587 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
588{
589 struct extent_state *state;
2c64c53d 590 struct extent_state *cached;
d1310b2e
CM
591 struct extent_state *prealloc = NULL;
592 struct rb_node *node;
5c939df5 593 u64 last_end;
d1310b2e 594 int err;
2ac55d41 595 int clear = 0;
d1310b2e 596
a5dee37d 597 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 598
7ee9e440
JB
599 if (bits & EXTENT_DELALLOC)
600 bits |= EXTENT_NORESERVE;
601
0ca1f7ce
YZ
602 if (delete)
603 bits |= ~EXTENT_CTLBITS;
604 bits |= EXTENT_FIRST_DELALLOC;
605
2ac55d41
JB
606 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
607 clear = 1;
d1310b2e 608again:
d0164adc 609 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
610 /*
611 * Don't care for allocation failure here because we might end
612 * up not needing the pre-allocated extent state at all, which
613 * is the case if we only have in the tree extent states that
614 * cover our input range and don't cover too any other range.
615 * If we end up needing a new extent state we allocate it later.
616 */
d1310b2e 617 prealloc = alloc_extent_state(mask);
d1310b2e
CM
618 }
619
cad321ad 620 spin_lock(&tree->lock);
2c64c53d
CM
621 if (cached_state) {
622 cached = *cached_state;
2ac55d41
JB
623
624 if (clear) {
625 *cached_state = NULL;
626 cached_state = NULL;
627 }
628
27a3507d
FM
629 if (cached && extent_state_in_tree(cached) &&
630 cached->start <= start && cached->end > start) {
2ac55d41 631 if (clear)
b7ac31b7 632 refcount_dec(&cached->refs);
2c64c53d 633 state = cached;
42daec29 634 goto hit_next;
2c64c53d 635 }
2ac55d41
JB
636 if (clear)
637 free_extent_state(cached);
2c64c53d 638 }
d1310b2e
CM
639 /*
640 * this search will find the extents that end after
641 * our range starts
642 */
80ea96b1 643 node = tree_search(tree, start);
d1310b2e
CM
644 if (!node)
645 goto out;
646 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 647hit_next:
d1310b2e
CM
648 if (state->start > end)
649 goto out;
650 WARN_ON(state->end < start);
5c939df5 651 last_end = state->end;
d1310b2e 652
0449314a 653 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
654 if (!(state->state & bits)) {
655 state = next_state(state);
0449314a 656 goto next;
cdc6a395 657 }
0449314a 658
d1310b2e
CM
659 /*
660 * | ---- desired range ---- |
661 * | state | or
662 * | ------------- state -------------- |
663 *
664 * We need to split the extent we found, and may flip
665 * bits on second half.
666 *
667 * If the extent we found extends past our range, we
668 * just split and search again. It'll get split again
669 * the next time though.
670 *
671 * If the extent we found is inside our range, we clear
672 * the desired bit on it.
673 */
674
675 if (state->start < start) {
8233767a
XG
676 prealloc = alloc_extent_state_atomic(prealloc);
677 BUG_ON(!prealloc);
d1310b2e 678 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
679 if (err)
680 extent_io_tree_panic(tree, err);
681
d1310b2e
CM
682 prealloc = NULL;
683 if (err)
684 goto out;
685 if (state->end <= end) {
fefdc557
QW
686 state = clear_state_bit(tree, state, &bits, wake,
687 changeset);
d1ac6e41 688 goto next;
d1310b2e
CM
689 }
690 goto search_again;
691 }
692 /*
693 * | ---- desired range ---- |
694 * | state |
695 * We need to split the extent, and clear the bit
696 * on the first half
697 */
698 if (state->start <= end && state->end > end) {
8233767a
XG
699 prealloc = alloc_extent_state_atomic(prealloc);
700 BUG_ON(!prealloc);
d1310b2e 701 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
702 if (err)
703 extent_io_tree_panic(tree, err);
704
d1310b2e
CM
705 if (wake)
706 wake_up(&state->wq);
42daec29 707
fefdc557 708 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 709
d1310b2e
CM
710 prealloc = NULL;
711 goto out;
712 }
42daec29 713
fefdc557 714 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 715next:
5c939df5
YZ
716 if (last_end == (u64)-1)
717 goto out;
718 start = last_end + 1;
cdc6a395 719 if (start <= end && state && !need_resched())
692e5759 720 goto hit_next;
d1310b2e
CM
721
722search_again:
723 if (start > end)
724 goto out;
cad321ad 725 spin_unlock(&tree->lock);
d0164adc 726 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
727 cond_resched();
728 goto again;
7ab5cb2a
DS
729
730out:
731 spin_unlock(&tree->lock);
732 if (prealloc)
733 free_extent_state(prealloc);
734
735 return 0;
736
d1310b2e 737}
d1310b2e 738
143bede5
JM
739static void wait_on_state(struct extent_io_tree *tree,
740 struct extent_state *state)
641f5219
CH
741 __releases(tree->lock)
742 __acquires(tree->lock)
d1310b2e
CM
743{
744 DEFINE_WAIT(wait);
745 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 746 spin_unlock(&tree->lock);
d1310b2e 747 schedule();
cad321ad 748 spin_lock(&tree->lock);
d1310b2e 749 finish_wait(&state->wq, &wait);
d1310b2e
CM
750}
751
752/*
753 * waits for one or more bits to clear on a range in the state tree.
754 * The range [start, end] is inclusive.
755 * The tree lock is taken by this function
756 */
41074888
DS
757static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
758 unsigned long bits)
d1310b2e
CM
759{
760 struct extent_state *state;
761 struct rb_node *node;
762
a5dee37d 763 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 764
cad321ad 765 spin_lock(&tree->lock);
d1310b2e
CM
766again:
767 while (1) {
768 /*
769 * this search will find all the extents that end after
770 * our range starts
771 */
80ea96b1 772 node = tree_search(tree, start);
c50d3e71 773process_node:
d1310b2e
CM
774 if (!node)
775 break;
776
777 state = rb_entry(node, struct extent_state, rb_node);
778
779 if (state->start > end)
780 goto out;
781
782 if (state->state & bits) {
783 start = state->start;
b7ac31b7 784 refcount_inc(&state->refs);
d1310b2e
CM
785 wait_on_state(tree, state);
786 free_extent_state(state);
787 goto again;
788 }
789 start = state->end + 1;
790
791 if (start > end)
792 break;
793
c50d3e71
FM
794 if (!cond_resched_lock(&tree->lock)) {
795 node = rb_next(node);
796 goto process_node;
797 }
d1310b2e
CM
798 }
799out:
cad321ad 800 spin_unlock(&tree->lock);
d1310b2e 801}
d1310b2e 802
1bf85046 803static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 804 struct extent_state *state,
d38ed27f 805 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 806{
9ee49a04 807 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 808
1bf85046 809 set_state_cb(tree, state, bits);
0ca1f7ce 810 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
811 u64 range = state->end - state->start + 1;
812 tree->dirty_bytes += range;
813 }
d38ed27f 814 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 815 state->state |= bits_to_set;
d1310b2e
CM
816}
817
e38e2ed7
FM
818static void cache_state_if_flags(struct extent_state *state,
819 struct extent_state **cached_ptr,
9ee49a04 820 unsigned flags)
2c64c53d
CM
821{
822 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 823 if (!flags || (state->state & flags)) {
2c64c53d 824 *cached_ptr = state;
b7ac31b7 825 refcount_inc(&state->refs);
2c64c53d
CM
826 }
827 }
828}
829
e38e2ed7
FM
830static void cache_state(struct extent_state *state,
831 struct extent_state **cached_ptr)
832{
833 return cache_state_if_flags(state, cached_ptr,
834 EXTENT_IOBITS | EXTENT_BOUNDARY);
835}
836
d1310b2e 837/*
1edbb734
CM
838 * set some bits on a range in the tree. This may require allocations or
839 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 840 *
1edbb734
CM
841 * If any of the exclusive bits are set, this will fail with -EEXIST if some
842 * part of the range already has the desired bits set. The start of the
843 * existing range is returned in failed_start in this case.
d1310b2e 844 *
1edbb734 845 * [start, end] is inclusive This takes the tree lock.
d1310b2e 846 */
1edbb734 847
3fbe5c02
JM
848static int __must_check
849__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 850 unsigned bits, unsigned exclusive_bits,
41074888 851 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 852 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
853{
854 struct extent_state *state;
855 struct extent_state *prealloc = NULL;
856 struct rb_node *node;
12cfbad9
FDBM
857 struct rb_node **p;
858 struct rb_node *parent;
d1310b2e 859 int err = 0;
d1310b2e
CM
860 u64 last_start;
861 u64 last_end;
42daec29 862
a5dee37d 863 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 864
0ca1f7ce 865 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 866again:
d0164adc 867 if (!prealloc && gfpflags_allow_blocking(mask)) {
059f791c
DS
868 /*
869 * Don't care for allocation failure here because we might end
870 * up not needing the pre-allocated extent state at all, which
871 * is the case if we only have in the tree extent states that
872 * cover our input range and don't cover too any other range.
873 * If we end up needing a new extent state we allocate it later.
874 */
d1310b2e 875 prealloc = alloc_extent_state(mask);
d1310b2e
CM
876 }
877
cad321ad 878 spin_lock(&tree->lock);
9655d298
CM
879 if (cached_state && *cached_state) {
880 state = *cached_state;
df98b6e2 881 if (state->start <= start && state->end > start &&
27a3507d 882 extent_state_in_tree(state)) {
9655d298
CM
883 node = &state->rb_node;
884 goto hit_next;
885 }
886 }
d1310b2e
CM
887 /*
888 * this search will find all the extents that end after
889 * our range starts.
890 */
12cfbad9 891 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 892 if (!node) {
8233767a
XG
893 prealloc = alloc_extent_state_atomic(prealloc);
894 BUG_ON(!prealloc);
12cfbad9 895 err = insert_state(tree, prealloc, start, end,
d38ed27f 896 &p, &parent, &bits, changeset);
c2d904e0
JM
897 if (err)
898 extent_io_tree_panic(tree, err);
899
c42ac0bc 900 cache_state(prealloc, cached_state);
d1310b2e 901 prealloc = NULL;
d1310b2e
CM
902 goto out;
903 }
d1310b2e 904 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 905hit_next:
d1310b2e
CM
906 last_start = state->start;
907 last_end = state->end;
908
909 /*
910 * | ---- desired range ---- |
911 * | state |
912 *
913 * Just lock what we found and keep going
914 */
915 if (state->start == start && state->end <= end) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = state->start;
918 err = -EEXIST;
919 goto out;
920 }
42daec29 921
d38ed27f 922 set_state_bits(tree, state, &bits, changeset);
2c64c53d 923 cache_state(state, cached_state);
d1310b2e 924 merge_state(tree, state);
5c939df5
YZ
925 if (last_end == (u64)-1)
926 goto out;
927 start = last_end + 1;
d1ac6e41
LB
928 state = next_state(state);
929 if (start < end && state && state->start == start &&
930 !need_resched())
931 goto hit_next;
d1310b2e
CM
932 goto search_again;
933 }
934
935 /*
936 * | ---- desired range ---- |
937 * | state |
938 * or
939 * | ------------- state -------------- |
940 *
941 * We need to split the extent we found, and may flip bits on
942 * second half.
943 *
944 * If the extent we found extends past our
945 * range, we just split and search again. It'll get split
946 * again the next time though.
947 *
948 * If the extent we found is inside our range, we set the
949 * desired bit on it.
950 */
951 if (state->start < start) {
1edbb734 952 if (state->state & exclusive_bits) {
d1310b2e
CM
953 *failed_start = start;
954 err = -EEXIST;
955 goto out;
956 }
8233767a
XG
957
958 prealloc = alloc_extent_state_atomic(prealloc);
959 BUG_ON(!prealloc);
d1310b2e 960 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
d1310b2e
CM
964 prealloc = NULL;
965 if (err)
966 goto out;
967 if (state->end <= end) {
d38ed27f 968 set_state_bits(tree, state, &bits, changeset);
2c64c53d 969 cache_state(state, cached_state);
d1310b2e 970 merge_state(tree, state);
5c939df5
YZ
971 if (last_end == (u64)-1)
972 goto out;
973 start = last_end + 1;
d1ac6e41
LB
974 state = next_state(state);
975 if (start < end && state && state->start == start &&
976 !need_resched())
977 goto hit_next;
d1310b2e
CM
978 }
979 goto search_again;
980 }
981 /*
982 * | ---- desired range ---- |
983 * | state | or | state |
984 *
985 * There's a hole, we need to insert something in it and
986 * ignore the extent we found.
987 */
988 if (state->start > start) {
989 u64 this_end;
990 if (end < last_start)
991 this_end = end;
992 else
d397712b 993 this_end = last_start - 1;
8233767a
XG
994
995 prealloc = alloc_extent_state_atomic(prealloc);
996 BUG_ON(!prealloc);
c7f895a2
XG
997
998 /*
999 * Avoid to free 'prealloc' if it can be merged with
1000 * the later extent.
1001 */
d1310b2e 1002 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1003 NULL, NULL, &bits, changeset);
c2d904e0
JM
1004 if (err)
1005 extent_io_tree_panic(tree, err);
1006
9ed74f2d
JB
1007 cache_state(prealloc, cached_state);
1008 prealloc = NULL;
d1310b2e
CM
1009 start = this_end + 1;
1010 goto search_again;
1011 }
1012 /*
1013 * | ---- desired range ---- |
1014 * | state |
1015 * We need to split the extent, and set the bit
1016 * on the first half
1017 */
1018 if (state->start <= end && state->end > end) {
1edbb734 1019 if (state->state & exclusive_bits) {
d1310b2e
CM
1020 *failed_start = start;
1021 err = -EEXIST;
1022 goto out;
1023 }
8233767a
XG
1024
1025 prealloc = alloc_extent_state_atomic(prealloc);
1026 BUG_ON(!prealloc);
d1310b2e 1027 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
d1310b2e 1030
d38ed27f 1031 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1032 cache_state(prealloc, cached_state);
d1310b2e
CM
1033 merge_state(tree, prealloc);
1034 prealloc = NULL;
1035 goto out;
1036 }
1037
b5a4ba14
DS
1038search_again:
1039 if (start > end)
1040 goto out;
1041 spin_unlock(&tree->lock);
1042 if (gfpflags_allow_blocking(mask))
1043 cond_resched();
1044 goto again;
d1310b2e
CM
1045
1046out:
cad321ad 1047 spin_unlock(&tree->lock);
d1310b2e
CM
1048 if (prealloc)
1049 free_extent_state(prealloc);
1050
1051 return err;
1052
d1310b2e 1053}
d1310b2e 1054
41074888 1055int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1056 unsigned bits, u64 * failed_start,
41074888 1057 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1058{
1059 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1060 cached_state, mask, NULL);
3fbe5c02
JM
1061}
1062
1063
462d6fac 1064/**
10983f2e
LB
1065 * convert_extent_bit - convert all bits in a given range from one bit to
1066 * another
462d6fac
JB
1067 * @tree: the io tree to search
1068 * @start: the start offset in bytes
1069 * @end: the end offset in bytes (inclusive)
1070 * @bits: the bits to set in this range
1071 * @clear_bits: the bits to clear in this range
e6138876 1072 * @cached_state: state that we're going to cache
462d6fac
JB
1073 *
1074 * This will go through and set bits for the given range. If any states exist
1075 * already in this range they are set with the given bit and cleared of the
1076 * clear_bits. This is only meant to be used by things that are mergeable, ie
1077 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1078 * boundary bits like LOCK.
210aa277
DS
1079 *
1080 * All allocations are done with GFP_NOFS.
462d6fac
JB
1081 */
1082int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1083 unsigned bits, unsigned clear_bits,
210aa277 1084 struct extent_state **cached_state)
462d6fac
JB
1085{
1086 struct extent_state *state;
1087 struct extent_state *prealloc = NULL;
1088 struct rb_node *node;
12cfbad9
FDBM
1089 struct rb_node **p;
1090 struct rb_node *parent;
462d6fac
JB
1091 int err = 0;
1092 u64 last_start;
1093 u64 last_end;
c8fd3de7 1094 bool first_iteration = true;
462d6fac 1095
a5dee37d 1096 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1097
462d6fac 1098again:
210aa277 1099 if (!prealloc) {
c8fd3de7
FM
1100 /*
1101 * Best effort, don't worry if extent state allocation fails
1102 * here for the first iteration. We might have a cached state
1103 * that matches exactly the target range, in which case no
1104 * extent state allocations are needed. We'll only know this
1105 * after locking the tree.
1106 */
210aa277 1107 prealloc = alloc_extent_state(GFP_NOFS);
c8fd3de7 1108 if (!prealloc && !first_iteration)
462d6fac
JB
1109 return -ENOMEM;
1110 }
1111
1112 spin_lock(&tree->lock);
e6138876
JB
1113 if (cached_state && *cached_state) {
1114 state = *cached_state;
1115 if (state->start <= start && state->end > start &&
27a3507d 1116 extent_state_in_tree(state)) {
e6138876
JB
1117 node = &state->rb_node;
1118 goto hit_next;
1119 }
1120 }
1121
462d6fac
JB
1122 /*
1123 * this search will find all the extents that end after
1124 * our range starts.
1125 */
12cfbad9 1126 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1127 if (!node) {
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
12cfbad9 1133 err = insert_state(tree, prealloc, start, end,
d38ed27f 1134 &p, &parent, &bits, NULL);
c2d904e0
JM
1135 if (err)
1136 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1137 cache_state(prealloc, cached_state);
1138 prealloc = NULL;
462d6fac
JB
1139 goto out;
1140 }
1141 state = rb_entry(node, struct extent_state, rb_node);
1142hit_next:
1143 last_start = state->start;
1144 last_end = state->end;
1145
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 *
1150 * Just lock what we found and keep going
1151 */
1152 if (state->start == start && state->end <= end) {
d38ed27f 1153 set_state_bits(tree, state, &bits, NULL);
e6138876 1154 cache_state(state, cached_state);
fefdc557 1155 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
462d6fac 1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 goto search_again;
1163 }
1164
1165 /*
1166 * | ---- desired range ---- |
1167 * | state |
1168 * or
1169 * | ------------- state -------------- |
1170 *
1171 * We need to split the extent we found, and may flip bits on
1172 * second half.
1173 *
1174 * If the extent we found extends past our
1175 * range, we just split and search again. It'll get split
1176 * again the next time though.
1177 *
1178 * If the extent we found is inside our range, we set the
1179 * desired bit on it.
1180 */
1181 if (state->start < start) {
1182 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1183 if (!prealloc) {
1184 err = -ENOMEM;
1185 goto out;
1186 }
462d6fac 1187 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
462d6fac
JB
1190 prealloc = NULL;
1191 if (err)
1192 goto out;
1193 if (state->end <= end) {
d38ed27f 1194 set_state_bits(tree, state, &bits, NULL);
e6138876 1195 cache_state(state, cached_state);
fefdc557
QW
1196 state = clear_state_bit(tree, state, &clear_bits, 0,
1197 NULL);
462d6fac
JB
1198 if (last_end == (u64)-1)
1199 goto out;
1200 start = last_end + 1;
d1ac6e41
LB
1201 if (start < end && state && state->start == start &&
1202 !need_resched())
1203 goto hit_next;
462d6fac
JB
1204 }
1205 goto search_again;
1206 }
1207 /*
1208 * | ---- desired range ---- |
1209 * | state | or | state |
1210 *
1211 * There's a hole, we need to insert something in it and
1212 * ignore the extent we found.
1213 */
1214 if (state->start > start) {
1215 u64 this_end;
1216 if (end < last_start)
1217 this_end = end;
1218 else
1219 this_end = last_start - 1;
1220
1221 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1222 if (!prealloc) {
1223 err = -ENOMEM;
1224 goto out;
1225 }
462d6fac
JB
1226
1227 /*
1228 * Avoid to free 'prealloc' if it can be merged with
1229 * the later extent.
1230 */
1231 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1232 NULL, NULL, &bits, NULL);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
e6138876 1235 cache_state(prealloc, cached_state);
462d6fac
JB
1236 prealloc = NULL;
1237 start = this_end + 1;
1238 goto search_again;
1239 }
1240 /*
1241 * | ---- desired range ---- |
1242 * | state |
1243 * We need to split the extent, and set the bit
1244 * on the first half
1245 */
1246 if (state->start <= end && state->end > end) {
1247 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1248 if (!prealloc) {
1249 err = -ENOMEM;
1250 goto out;
1251 }
462d6fac
JB
1252
1253 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1254 if (err)
1255 extent_io_tree_panic(tree, err);
462d6fac 1256
d38ed27f 1257 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1258 cache_state(prealloc, cached_state);
fefdc557 1259 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1260 prealloc = NULL;
1261 goto out;
1262 }
1263
462d6fac
JB
1264search_again:
1265 if (start > end)
1266 goto out;
1267 spin_unlock(&tree->lock);
210aa277 1268 cond_resched();
c8fd3de7 1269 first_iteration = false;
462d6fac 1270 goto again;
462d6fac
JB
1271
1272out:
1273 spin_unlock(&tree->lock);
1274 if (prealloc)
1275 free_extent_state(prealloc);
1276
1277 return err;
462d6fac
JB
1278}
1279
d1310b2e 1280/* wrappers around set/clear extent bit */
d38ed27f 1281int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
2c53b912 1282 unsigned bits, struct extent_changeset *changeset)
d38ed27f
QW
1283{
1284 /*
1285 * We don't support EXTENT_LOCKED yet, as current changeset will
1286 * record any bits changed, so for EXTENT_LOCKED case, it will
1287 * either fail with -EEXIST or changeset will record the whole
1288 * range.
1289 */
1290 BUG_ON(bits & EXTENT_LOCKED);
1291
2c53b912 1292 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
d38ed27f
QW
1293 changeset);
1294}
1295
fefdc557
QW
1296int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1297 unsigned bits, int wake, int delete,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1301 cached, mask, NULL);
1302}
1303
fefdc557 1304int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
f734c44a 1305 unsigned bits, struct extent_changeset *changeset)
fefdc557
QW
1306{
1307 /*
1308 * Don't support EXTENT_LOCKED case, same reason as
1309 * set_record_extent_bits().
1310 */
1311 BUG_ON(bits & EXTENT_LOCKED);
1312
f734c44a 1313 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
fefdc557
QW
1314 changeset);
1315}
1316
d352ac68
CM
1317/*
1318 * either insert or lock state struct between start and end use mask to tell
1319 * us if waiting is desired.
1320 */
1edbb734 1321int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1322 struct extent_state **cached_state)
d1310b2e
CM
1323{
1324 int err;
1325 u64 failed_start;
9ee49a04 1326
d1310b2e 1327 while (1) {
ff13db41 1328 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1329 EXTENT_LOCKED, &failed_start,
d38ed27f 1330 cached_state, GFP_NOFS, NULL);
d0082371 1331 if (err == -EEXIST) {
d1310b2e
CM
1332 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1333 start = failed_start;
d0082371 1334 } else
d1310b2e 1335 break;
d1310b2e
CM
1336 WARN_ON(start > end);
1337 }
1338 return err;
1339}
d1310b2e 1340
d0082371 1341int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1342{
1343 int err;
1344 u64 failed_start;
1345
3fbe5c02 1346 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1347 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1348 if (err == -EEXIST) {
1349 if (failed_start > start)
1350 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1351 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1352 return 0;
6643558d 1353 }
25179201
JB
1354 return 1;
1355}
25179201 1356
bd1fa4f0 1357void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1358{
09cbfeaf
KS
1359 unsigned long index = start >> PAGE_SHIFT;
1360 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1361 struct page *page;
1362
1363 while (index <= end_index) {
1364 page = find_get_page(inode->i_mapping, index);
1365 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1366 clear_page_dirty_for_io(page);
09cbfeaf 1367 put_page(page);
4adaa611
CM
1368 index++;
1369 }
4adaa611
CM
1370}
1371
f6311572 1372void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611 1373{
09cbfeaf
KS
1374 unsigned long index = start >> PAGE_SHIFT;
1375 unsigned long end_index = end >> PAGE_SHIFT;
4adaa611
CM
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1381 __set_page_dirty_nobuffers(page);
8d38633c 1382 account_page_redirty(page);
09cbfeaf 1383 put_page(page);
4adaa611
CM
1384 index++;
1385 }
4adaa611
CM
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
35de6db2 1391static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1392{
c6100a4b 1393 tree->ops->set_range_writeback(tree->private_data, start, end);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/* find the first state struct with 'bits' set after 'start', and
1397 * return it. tree->lock must be held. NULL will returned if
1398 * nothing was found after 'start'
1399 */
48a3b636
ES
1400static struct extent_state *
1401find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1402 u64 start, unsigned bits)
d7fc640e
CM
1403{
1404 struct rb_node *node;
1405 struct extent_state *state;
1406
1407 /*
1408 * this search will find all the extents that end after
1409 * our range starts.
1410 */
1411 node = tree_search(tree, start);
d397712b 1412 if (!node)
d7fc640e 1413 goto out;
d7fc640e 1414
d397712b 1415 while (1) {
d7fc640e 1416 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1417 if (state->end >= start && (state->state & bits))
d7fc640e 1418 return state;
d397712b 1419
d7fc640e
CM
1420 node = rb_next(node);
1421 if (!node)
1422 break;
1423 }
1424out:
1425 return NULL;
1426}
d7fc640e 1427
69261c4b
XG
1428/*
1429 * find the first offset in the io tree with 'bits' set. zero is
1430 * returned if we find something, and *start_ret and *end_ret are
1431 * set to reflect the state struct that was found.
1432 *
477d7eaf 1433 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1434 */
1435int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1436 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1437 struct extent_state **cached_state)
69261c4b
XG
1438{
1439 struct extent_state *state;
e6138876 1440 struct rb_node *n;
69261c4b
XG
1441 int ret = 1;
1442
1443 spin_lock(&tree->lock);
e6138876
JB
1444 if (cached_state && *cached_state) {
1445 state = *cached_state;
27a3507d 1446 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1447 n = rb_next(&state->rb_node);
1448 while (n) {
1449 state = rb_entry(n, struct extent_state,
1450 rb_node);
1451 if (state->state & bits)
1452 goto got_it;
1453 n = rb_next(n);
1454 }
1455 free_extent_state(*cached_state);
1456 *cached_state = NULL;
1457 goto out;
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 }
1462
69261c4b 1463 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1464got_it:
69261c4b 1465 if (state) {
e38e2ed7 1466 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1467 *start_ret = state->start;
1468 *end_ret = state->end;
1469 ret = 0;
1470 }
e6138876 1471out:
69261c4b
XG
1472 spin_unlock(&tree->lock);
1473 return ret;
1474}
1475
d352ac68
CM
1476/*
1477 * find a contiguous range of bytes in the file marked as delalloc, not
1478 * more than 'max_bytes'. start and end are used to return the range,
1479 *
1480 * 1 is returned if we find something, 0 if nothing was in the tree
1481 */
c8b97818 1482static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1483 u64 *start, u64 *end, u64 max_bytes,
1484 struct extent_state **cached_state)
d1310b2e
CM
1485{
1486 struct rb_node *node;
1487 struct extent_state *state;
1488 u64 cur_start = *start;
1489 u64 found = 0;
1490 u64 total_bytes = 0;
1491
cad321ad 1492 spin_lock(&tree->lock);
c8b97818 1493
d1310b2e
CM
1494 /*
1495 * this search will find all the extents that end after
1496 * our range starts.
1497 */
80ea96b1 1498 node = tree_search(tree, cur_start);
2b114d1d 1499 if (!node) {
3b951516
CM
1500 if (!found)
1501 *end = (u64)-1;
d1310b2e
CM
1502 goto out;
1503 }
1504
d397712b 1505 while (1) {
d1310b2e 1506 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1507 if (found && (state->start != cur_start ||
1508 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1509 goto out;
1510 }
1511 if (!(state->state & EXTENT_DELALLOC)) {
1512 if (!found)
1513 *end = state->end;
1514 goto out;
1515 }
c2a128d2 1516 if (!found) {
d1310b2e 1517 *start = state->start;
c2a128d2 1518 *cached_state = state;
b7ac31b7 1519 refcount_inc(&state->refs);
c2a128d2 1520 }
d1310b2e
CM
1521 found++;
1522 *end = state->end;
1523 cur_start = state->end + 1;
1524 node = rb_next(node);
d1310b2e 1525 total_bytes += state->end - state->start + 1;
7bf811a5 1526 if (total_bytes >= max_bytes)
573aecaf 1527 break;
573aecaf 1528 if (!node)
d1310b2e
CM
1529 break;
1530 }
1531out:
cad321ad 1532 spin_unlock(&tree->lock);
d1310b2e
CM
1533 return found;
1534}
1535
da2c7009
LB
1536static int __process_pages_contig(struct address_space *mapping,
1537 struct page *locked_page,
1538 pgoff_t start_index, pgoff_t end_index,
1539 unsigned long page_ops, pgoff_t *index_ret);
1540
143bede5
JM
1541static noinline void __unlock_for_delalloc(struct inode *inode,
1542 struct page *locked_page,
1543 u64 start, u64 end)
c8b97818 1544{
09cbfeaf
KS
1545 unsigned long index = start >> PAGE_SHIFT;
1546 unsigned long end_index = end >> PAGE_SHIFT;
c8b97818 1547
76c0021d 1548 ASSERT(locked_page);
c8b97818 1549 if (index == locked_page->index && end_index == index)
143bede5 1550 return;
c8b97818 1551
76c0021d
LB
1552 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1553 PAGE_UNLOCK, NULL);
c8b97818
CM
1554}
1555
1556static noinline int lock_delalloc_pages(struct inode *inode,
1557 struct page *locked_page,
1558 u64 delalloc_start,
1559 u64 delalloc_end)
1560{
09cbfeaf 1561 unsigned long index = delalloc_start >> PAGE_SHIFT;
76c0021d 1562 unsigned long index_ret = index;
09cbfeaf 1563 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
c8b97818 1564 int ret;
c8b97818 1565
76c0021d 1566 ASSERT(locked_page);
c8b97818
CM
1567 if (index == locked_page->index && index == end_index)
1568 return 0;
1569
76c0021d
LB
1570 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1571 end_index, PAGE_LOCK, &index_ret);
1572 if (ret == -EAGAIN)
1573 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1574 (u64)index_ret << PAGE_SHIFT);
c8b97818
CM
1575 return ret;
1576}
1577
1578/*
1579 * find a contiguous range of bytes in the file marked as delalloc, not
1580 * more than 'max_bytes'. start and end are used to return the range,
1581 *
1582 * 1 is returned if we find something, 0 if nothing was in the tree
1583 */
294e30fe
JB
1584STATIC u64 find_lock_delalloc_range(struct inode *inode,
1585 struct extent_io_tree *tree,
1586 struct page *locked_page, u64 *start,
1587 u64 *end, u64 max_bytes)
c8b97818
CM
1588{
1589 u64 delalloc_start;
1590 u64 delalloc_end;
1591 u64 found;
9655d298 1592 struct extent_state *cached_state = NULL;
c8b97818
CM
1593 int ret;
1594 int loops = 0;
1595
1596again:
1597 /* step one, find a bunch of delalloc bytes starting at start */
1598 delalloc_start = *start;
1599 delalloc_end = 0;
1600 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1601 max_bytes, &cached_state);
70b99e69 1602 if (!found || delalloc_end <= *start) {
c8b97818
CM
1603 *start = delalloc_start;
1604 *end = delalloc_end;
c2a128d2 1605 free_extent_state(cached_state);
385fe0be 1606 return 0;
c8b97818
CM
1607 }
1608
70b99e69
CM
1609 /*
1610 * start comes from the offset of locked_page. We have to lock
1611 * pages in order, so we can't process delalloc bytes before
1612 * locked_page
1613 */
d397712b 1614 if (delalloc_start < *start)
70b99e69 1615 delalloc_start = *start;
70b99e69 1616
c8b97818
CM
1617 /*
1618 * make sure to limit the number of pages we try to lock down
c8b97818 1619 */
7bf811a5
JB
1620 if (delalloc_end + 1 - delalloc_start > max_bytes)
1621 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1622
c8b97818
CM
1623 /* step two, lock all the pages after the page that has start */
1624 ret = lock_delalloc_pages(inode, locked_page,
1625 delalloc_start, delalloc_end);
1626 if (ret == -EAGAIN) {
1627 /* some of the pages are gone, lets avoid looping by
1628 * shortening the size of the delalloc range we're searching
1629 */
9655d298 1630 free_extent_state(cached_state);
7d788742 1631 cached_state = NULL;
c8b97818 1632 if (!loops) {
09cbfeaf 1633 max_bytes = PAGE_SIZE;
c8b97818
CM
1634 loops = 1;
1635 goto again;
1636 } else {
1637 found = 0;
1638 goto out_failed;
1639 }
1640 }
79787eaa 1641 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1642
1643 /* step three, lock the state bits for the whole range */
ff13db41 1644 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1645
1646 /* then test to make sure it is all still delalloc */
1647 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1648 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1649 if (!ret) {
9655d298
CM
1650 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1651 &cached_state, GFP_NOFS);
c8b97818
CM
1652 __unlock_for_delalloc(inode, locked_page,
1653 delalloc_start, delalloc_end);
1654 cond_resched();
1655 goto again;
1656 }
9655d298 1657 free_extent_state(cached_state);
c8b97818
CM
1658 *start = delalloc_start;
1659 *end = delalloc_end;
1660out_failed:
1661 return found;
1662}
1663
da2c7009
LB
1664static int __process_pages_contig(struct address_space *mapping,
1665 struct page *locked_page,
1666 pgoff_t start_index, pgoff_t end_index,
1667 unsigned long page_ops, pgoff_t *index_ret)
c8b97818 1668{
873695b3 1669 unsigned long nr_pages = end_index - start_index + 1;
da2c7009 1670 unsigned long pages_locked = 0;
873695b3 1671 pgoff_t index = start_index;
c8b97818 1672 struct page *pages[16];
873695b3 1673 unsigned ret;
da2c7009 1674 int err = 0;
c8b97818 1675 int i;
771ed689 1676
da2c7009
LB
1677 if (page_ops & PAGE_LOCK) {
1678 ASSERT(page_ops == PAGE_LOCK);
1679 ASSERT(index_ret && *index_ret == start_index);
1680 }
1681
704de49d 1682 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
873695b3 1683 mapping_set_error(mapping, -EIO);
704de49d 1684
d397712b 1685 while (nr_pages > 0) {
873695b3 1686 ret = find_get_pages_contig(mapping, index,
5b050f04
CM
1687 min_t(unsigned long,
1688 nr_pages, ARRAY_SIZE(pages)), pages);
da2c7009
LB
1689 if (ret == 0) {
1690 /*
1691 * Only if we're going to lock these pages,
1692 * can we find nothing at @index.
1693 */
1694 ASSERT(page_ops & PAGE_LOCK);
49d4a334
LB
1695 err = -EAGAIN;
1696 goto out;
da2c7009 1697 }
8b62b72b 1698
da2c7009 1699 for (i = 0; i < ret; i++) {
c2790a2e 1700 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1701 SetPagePrivate2(pages[i]);
1702
c8b97818 1703 if (pages[i] == locked_page) {
09cbfeaf 1704 put_page(pages[i]);
da2c7009 1705 pages_locked++;
c8b97818
CM
1706 continue;
1707 }
c2790a2e 1708 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1709 clear_page_dirty_for_io(pages[i]);
c2790a2e 1710 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1711 set_page_writeback(pages[i]);
704de49d
FM
1712 if (page_ops & PAGE_SET_ERROR)
1713 SetPageError(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
da2c7009
LB
1718 if (page_ops & PAGE_LOCK) {
1719 lock_page(pages[i]);
1720 if (!PageDirty(pages[i]) ||
1721 pages[i]->mapping != mapping) {
1722 unlock_page(pages[i]);
1723 put_page(pages[i]);
1724 err = -EAGAIN;
1725 goto out;
1726 }
1727 }
09cbfeaf 1728 put_page(pages[i]);
da2c7009 1729 pages_locked++;
c8b97818
CM
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
da2c7009
LB
1735out:
1736 if (err && index_ret)
1737 *index_ret = start_index + pages_locked - 1;
1738 return err;
c8b97818 1739}
c8b97818 1740
873695b3
LB
1741void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1742 u64 delalloc_end, struct page *locked_page,
1743 unsigned clear_bits,
1744 unsigned long page_ops)
1745{
1746 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1747 NULL, GFP_NOFS);
1748
1749 __process_pages_contig(inode->i_mapping, locked_page,
1750 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
da2c7009 1751 page_ops, NULL);
873695b3
LB
1752}
1753
d352ac68
CM
1754/*
1755 * count the number of bytes in the tree that have a given bit(s)
1756 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1757 * cached. The total number found is returned.
1758 */
d1310b2e
CM
1759u64 count_range_bits(struct extent_io_tree *tree,
1760 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1761 unsigned bits, int contig)
d1310b2e
CM
1762{
1763 struct rb_node *node;
1764 struct extent_state *state;
1765 u64 cur_start = *start;
1766 u64 total_bytes = 0;
ec29ed5b 1767 u64 last = 0;
d1310b2e
CM
1768 int found = 0;
1769
fae7f21c 1770 if (WARN_ON(search_end <= cur_start))
d1310b2e 1771 return 0;
d1310b2e 1772
cad321ad 1773 spin_lock(&tree->lock);
d1310b2e
CM
1774 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1775 total_bytes = tree->dirty_bytes;
1776 goto out;
1777 }
1778 /*
1779 * this search will find all the extents that end after
1780 * our range starts.
1781 */
80ea96b1 1782 node = tree_search(tree, cur_start);
d397712b 1783 if (!node)
d1310b2e 1784 goto out;
d1310b2e 1785
d397712b 1786 while (1) {
d1310b2e
CM
1787 state = rb_entry(node, struct extent_state, rb_node);
1788 if (state->start > search_end)
1789 break;
ec29ed5b
CM
1790 if (contig && found && state->start > last + 1)
1791 break;
1792 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1793 total_bytes += min(search_end, state->end) + 1 -
1794 max(cur_start, state->start);
1795 if (total_bytes >= max_bytes)
1796 break;
1797 if (!found) {
af60bed2 1798 *start = max(cur_start, state->start);
d1310b2e
CM
1799 found = 1;
1800 }
ec29ed5b
CM
1801 last = state->end;
1802 } else if (contig && found) {
1803 break;
d1310b2e
CM
1804 }
1805 node = rb_next(node);
1806 if (!node)
1807 break;
1808 }
1809out:
cad321ad 1810 spin_unlock(&tree->lock);
d1310b2e
CM
1811 return total_bytes;
1812}
b2950863 1813
d352ac68
CM
1814/*
1815 * set the private field for a given byte offset in the tree. If there isn't
1816 * an extent_state there already, this does nothing.
1817 */
f827ba9a 1818static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1819 struct io_failure_record *failrec)
d1310b2e
CM
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
47dc196a 1840 state->failrec = failrec;
d1310b2e 1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
f827ba9a 1846static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
47dc196a 1847 struct io_failure_record **failrec)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
47dc196a 1868 *failrec = state->failrec;
d1310b2e 1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874/*
1875 * searches a range in the state tree for a given mask.
70dec807 1876 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1877 * has the bits set. Otherwise, 1 is returned if any bit in the
1878 * range is found set.
1879 */
1880int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1881 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1882{
1883 struct extent_state *state = NULL;
1884 struct rb_node *node;
1885 int bitset = 0;
d1310b2e 1886
cad321ad 1887 spin_lock(&tree->lock);
27a3507d 1888 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1889 cached->end > start)
9655d298
CM
1890 node = &cached->rb_node;
1891 else
1892 node = tree_search(tree, start);
d1310b2e
CM
1893 while (node && start <= end) {
1894 state = rb_entry(node, struct extent_state, rb_node);
1895
1896 if (filled && state->start > start) {
1897 bitset = 0;
1898 break;
1899 }
1900
1901 if (state->start > end)
1902 break;
1903
1904 if (state->state & bits) {
1905 bitset = 1;
1906 if (!filled)
1907 break;
1908 } else if (filled) {
1909 bitset = 0;
1910 break;
1911 }
46562cec
CM
1912
1913 if (state->end == (u64)-1)
1914 break;
1915
d1310b2e
CM
1916 start = state->end + 1;
1917 if (start > end)
1918 break;
1919 node = rb_next(node);
1920 if (!node) {
1921 if (filled)
1922 bitset = 0;
1923 break;
1924 }
1925 }
cad321ad 1926 spin_unlock(&tree->lock);
d1310b2e
CM
1927 return bitset;
1928}
d1310b2e
CM
1929
1930/*
1931 * helper function to set a given page up to date if all the
1932 * extents in the tree for that page are up to date
1933 */
143bede5 1934static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1935{
4eee4fa4 1936 u64 start = page_offset(page);
09cbfeaf 1937 u64 end = start + PAGE_SIZE - 1;
9655d298 1938 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1939 SetPageUptodate(page);
d1310b2e
CM
1940}
1941
7870d082
JB
1942int free_io_failure(struct extent_io_tree *failure_tree,
1943 struct extent_io_tree *io_tree,
1944 struct io_failure_record *rec)
4a54c8c1
JS
1945{
1946 int ret;
1947 int err = 0;
4a54c8c1 1948
47dc196a 1949 set_state_failrec(failure_tree, rec->start, NULL);
4a54c8c1
JS
1950 ret = clear_extent_bits(failure_tree, rec->start,
1951 rec->start + rec->len - 1,
91166212 1952 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1
JS
1953 if (ret)
1954 err = ret;
1955
7870d082 1956 ret = clear_extent_bits(io_tree, rec->start,
53b381b3 1957 rec->start + rec->len - 1,
91166212 1958 EXTENT_DAMAGED);
53b381b3
DW
1959 if (ret && !err)
1960 err = ret;
4a54c8c1
JS
1961
1962 kfree(rec);
1963 return err;
1964}
1965
4a54c8c1
JS
1966/*
1967 * this bypasses the standard btrfs submit functions deliberately, as
1968 * the standard behavior is to write all copies in a raid setup. here we only
1969 * want to write the one bad copy. so we do the mapping for ourselves and issue
1970 * submit_bio directly.
3ec706c8 1971 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1972 * actually prevents the read that triggered the error from finishing.
1973 * currently, there can be no more than two copies of every data bit. thus,
1974 * exactly one rewrite is required.
1975 */
6ec656bc
JB
1976int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1977 u64 length, u64 logical, struct page *page,
1978 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
1979{
1980 struct bio *bio;
1981 struct btrfs_device *dev;
4a54c8c1
JS
1982 u64 map_length = 0;
1983 u64 sector;
1984 struct btrfs_bio *bbio = NULL;
1985 int ret;
1986
908960c6 1987 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1988 BUG_ON(!mirror_num);
1989
9be3395b 1990 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4f024f37 1991 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
1992 map_length = length;
1993
b5de8d0d
FM
1994 /*
1995 * Avoid races with device replace and make sure our bbio has devices
1996 * associated to its stripes that don't go away while we are doing the
1997 * read repair operation.
1998 */
1999 btrfs_bio_counter_inc_blocked(fs_info);
c725328c
LB
2000 if (btrfs_is_parity_mirror(fs_info, logical, length, mirror_num)) {
2001 /*
2002 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2003 * to update all raid stripes, but here we just want to correct
2004 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2005 * stripe's dev and sector.
2006 */
2007 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2008 &map_length, &bbio, 0);
2009 if (ret) {
2010 btrfs_bio_counter_dec(fs_info);
2011 bio_put(bio);
2012 return -EIO;
2013 }
2014 ASSERT(bbio->mirror_num == 1);
2015 } else {
2016 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2017 &map_length, &bbio, mirror_num);
2018 if (ret) {
2019 btrfs_bio_counter_dec(fs_info);
2020 bio_put(bio);
2021 return -EIO;
2022 }
2023 BUG_ON(mirror_num != bbio->mirror_num);
4a54c8c1 2024 }
c725328c
LB
2025
2026 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
4f024f37 2027 bio->bi_iter.bi_sector = sector;
c725328c 2028 dev = bbio->stripes[bbio->mirror_num - 1].dev;
6e9606d2 2029 btrfs_put_bbio(bbio);
4a54c8c1 2030 if (!dev || !dev->bdev || !dev->writeable) {
b5de8d0d 2031 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2032 bio_put(bio);
2033 return -EIO;
2034 }
2035 bio->bi_bdev = dev->bdev;
70fd7614 2036 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
ffdd2018 2037 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2038
4e49ea4a 2039 if (btrfsic_submit_bio_wait(bio)) {
4a54c8c1 2040 /* try to remap that extent elsewhere? */
b5de8d0d 2041 btrfs_bio_counter_dec(fs_info);
4a54c8c1 2042 bio_put(bio);
442a4f63 2043 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2044 return -EIO;
2045 }
2046
b14af3b4
DS
2047 btrfs_info_rl_in_rcu(fs_info,
2048 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
6ec656bc 2049 ino, start,
1203b681 2050 rcu_str_deref(dev->name), sector);
b5de8d0d 2051 btrfs_bio_counter_dec(fs_info);
4a54c8c1
JS
2052 bio_put(bio);
2053 return 0;
2054}
2055
2ff7e61e
JM
2056int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2057 struct extent_buffer *eb, int mirror_num)
ea466794 2058{
ea466794
JB
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2061 int ret = 0;
ea466794 2062
0b246afa 2063 if (fs_info->sb->s_flags & MS_RDONLY)
908960c6
ID
2064 return -EROFS;
2065
ea466794 2066 for (i = 0; i < num_pages; i++) {
fb85fc9a 2067 struct page *p = eb->pages[i];
1203b681 2068
6ec656bc 2069 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
1203b681 2070 start - page_offset(p), mirror_num);
ea466794
JB
2071 if (ret)
2072 break;
09cbfeaf 2073 start += PAGE_SIZE;
ea466794
JB
2074 }
2075
2076 return ret;
2077}
2078
4a54c8c1
JS
2079/*
2080 * each time an IO finishes, we do a fast check in the IO failure tree
2081 * to see if we need to process or clean up an io_failure_record
2082 */
7870d082
JB
2083int clean_io_failure(struct btrfs_fs_info *fs_info,
2084 struct extent_io_tree *failure_tree,
2085 struct extent_io_tree *io_tree, u64 start,
2086 struct page *page, u64 ino, unsigned int pg_offset)
4a54c8c1
JS
2087{
2088 u64 private;
4a54c8c1 2089 struct io_failure_record *failrec;
4a54c8c1
JS
2090 struct extent_state *state;
2091 int num_copies;
4a54c8c1 2092 int ret;
4a54c8c1
JS
2093
2094 private = 0;
7870d082
JB
2095 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2096 EXTENT_DIRTY, 0);
4a54c8c1
JS
2097 if (!ret)
2098 return 0;
2099
7870d082 2100 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2101 if (ret)
2102 return 0;
2103
4a54c8c1
JS
2104 BUG_ON(!failrec->this_mirror);
2105
2106 if (failrec->in_validation) {
2107 /* there was no real error, just free the record */
ab8d0fc4
JM
2108 btrfs_debug(fs_info,
2109 "clean_io_failure: freeing dummy error at %llu",
2110 failrec->start);
4a54c8c1
JS
2111 goto out;
2112 }
908960c6
ID
2113 if (fs_info->sb->s_flags & MS_RDONLY)
2114 goto out;
4a54c8c1 2115
7870d082
JB
2116 spin_lock(&io_tree->lock);
2117 state = find_first_extent_bit_state(io_tree,
4a54c8c1
JS
2118 failrec->start,
2119 EXTENT_LOCKED);
7870d082 2120 spin_unlock(&io_tree->lock);
4a54c8c1 2121
883d0de4
MX
2122 if (state && state->start <= failrec->start &&
2123 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2124 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2125 failrec->len);
4a54c8c1 2126 if (num_copies > 1) {
7870d082
JB
2127 repair_io_failure(fs_info, ino, start, failrec->len,
2128 failrec->logical, page, pg_offset,
2129 failrec->failed_mirror);
4a54c8c1
JS
2130 }
2131 }
2132
2133out:
7870d082 2134 free_io_failure(failure_tree, io_tree, failrec);
4a54c8c1 2135
454ff3de 2136 return 0;
4a54c8c1
JS
2137}
2138
f612496b
MX
2139/*
2140 * Can be called when
2141 * - hold extent lock
2142 * - under ordered extent
2143 * - the inode is freeing
2144 */
7ab7956e 2145void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
f612496b 2146{
7ab7956e 2147 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
f612496b
MX
2148 struct io_failure_record *failrec;
2149 struct extent_state *state, *next;
2150
2151 if (RB_EMPTY_ROOT(&failure_tree->state))
2152 return;
2153
2154 spin_lock(&failure_tree->lock);
2155 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2156 while (state) {
2157 if (state->start > end)
2158 break;
2159
2160 ASSERT(state->end <= end);
2161
2162 next = next_state(state);
2163
47dc196a 2164 failrec = state->failrec;
f612496b
MX
2165 free_extent_state(state);
2166 kfree(failrec);
2167
2168 state = next;
2169 }
2170 spin_unlock(&failure_tree->lock);
2171}
2172
2fe6303e 2173int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
47dc196a 2174 struct io_failure_record **failrec_ret)
4a54c8c1 2175{
ab8d0fc4 2176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e 2177 struct io_failure_record *failrec;
4a54c8c1 2178 struct extent_map *em;
4a54c8c1
JS
2179 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2180 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2181 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2182 int ret;
4a54c8c1
JS
2183 u64 logical;
2184
47dc196a 2185 ret = get_state_failrec(failure_tree, start, &failrec);
4a54c8c1
JS
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2fe6303e 2190
4a54c8c1
JS
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
68ba990f 2205 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
7a2d6a64 2210 if (!em) {
4a54c8c1
JS
2211 kfree(failrec);
2212 return -EIO;
2213 }
2fe6303e 2214
4a54c8c1
JS
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2fe6303e 2223
ab8d0fc4
JM
2224 btrfs_debug(fs_info,
2225 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2226 logical, start, failrec->len);
2fe6303e 2227
4a54c8c1
JS
2228 failrec->logical = logical;
2229 free_extent_map(em);
2230
2231 /* set the bits in the private failure tree */
2232 ret = set_extent_bits(failure_tree, start, end,
ceeb0ae7 2233 EXTENT_LOCKED | EXTENT_DIRTY);
4a54c8c1 2234 if (ret >= 0)
47dc196a 2235 ret = set_state_failrec(failure_tree, start, failrec);
4a54c8c1
JS
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
ceeb0ae7 2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
4a54c8c1
JS
2239 if (ret < 0) {
2240 kfree(failrec);
2241 return ret;
2242 }
2243 } else {
ab8d0fc4
JM
2244 btrfs_debug(fs_info,
2245 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
4a54c8c1
JS
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
2fe6303e
MX
2254
2255 *failrec_ret = failrec;
2256
2257 return 0;
2258}
2259
2260int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2261 struct io_failure_record *failrec, int failed_mirror)
2262{
ab8d0fc4 2263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2264 int num_copies;
2265
ab8d0fc4 2266 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
4a54c8c1
JS
2267 if (num_copies == 1) {
2268 /*
2269 * we only have a single copy of the data, so don't bother with
2270 * all the retry and error correction code that follows. no
2271 * matter what the error is, it is very likely to persist.
2272 */
ab8d0fc4
JM
2273 btrfs_debug(fs_info,
2274 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2275 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2276 return 0;
4a54c8c1
JS
2277 }
2278
4a54c8c1
JS
2279 /*
2280 * there are two premises:
2281 * a) deliver good data to the caller
2282 * b) correct the bad sectors on disk
2283 */
2284 if (failed_bio->bi_vcnt > 1) {
2285 /*
2286 * to fulfill b), we need to know the exact failing sectors, as
2287 * we don't want to rewrite any more than the failed ones. thus,
2288 * we need separate read requests for the failed bio
2289 *
2290 * if the following BUG_ON triggers, our validation request got
2291 * merged. we need separate requests for our algorithm to work.
2292 */
2293 BUG_ON(failrec->in_validation);
2294 failrec->in_validation = 1;
2295 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
4a54c8c1
JS
2311 }
2312
facc8a22 2313 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
2314 btrfs_debug(fs_info,
2315 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2316 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2317 return 0;
4a54c8c1
JS
2318 }
2319
2fe6303e
MX
2320 return 1;
2321}
2322
2323
2324struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2325 struct io_failure_record *failrec,
2326 struct page *page, int pg_offset, int icsum,
8b110e39 2327 bio_end_io_t *endio_func, void *data)
2fe6303e 2328{
0b246afa 2329 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2fe6303e
MX
2330 struct bio *bio;
2331 struct btrfs_io_bio *btrfs_failed_bio;
2332 struct btrfs_io_bio *btrfs_bio;
2333
9be3395b 2334 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e 2335 bio->bi_end_io = endio_func;
4f024f37 2336 bio->bi_iter.bi_sector = failrec->logical >> 9;
0b246afa 2337 bio->bi_bdev = fs_info->fs_devices->latest_bdev;
4f024f37 2338 bio->bi_iter.bi_size = 0;
8b110e39 2339 bio->bi_private = data;
4a54c8c1 2340
facc8a22
MX
2341 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2342 if (btrfs_failed_bio->csum) {
facc8a22
MX
2343 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2344
2345 btrfs_bio = btrfs_io_bio(bio);
2346 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2347 icsum *= csum_size;
2348 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2349 csum_size);
2350 }
2351
2fe6303e
MX
2352 bio_add_page(bio, page, failrec->len, pg_offset);
2353
2354 return bio;
2355}
2356
2357/*
2358 * this is a generic handler for readpage errors (default
2359 * readpage_io_failed_hook). if other copies exist, read those and write back
2360 * good data to the failed position. does not investigate in remapping the
2361 * failed extent elsewhere, hoping the device will be smart enough to do this as
2362 * needed
2363 */
2364
2365static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2366 struct page *page, u64 start, u64 end,
2367 int failed_mirror)
2368{
2369 struct io_failure_record *failrec;
2370 struct inode *inode = page->mapping->host;
2371 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
7870d082 2372 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2fe6303e 2373 struct bio *bio;
70fd7614 2374 int read_mode = 0;
2fe6303e
MX
2375 int ret;
2376
1f7ad75b 2377 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2fe6303e
MX
2378
2379 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2380 if (ret)
2381 return ret;
2382
2383 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2384 if (!ret) {
7870d082 2385 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2386 return -EIO;
2387 }
2388
2389 if (failed_bio->bi_vcnt > 1)
70fd7614 2390 read_mode |= REQ_FAILFAST_DEV;
2fe6303e
MX
2391
2392 phy_offset >>= inode->i_sb->s_blocksize_bits;
2393 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2394 start - page_offset(page),
8b110e39
MX
2395 (int)phy_offset, failed_bio->bi_end_io,
2396 NULL);
2fe6303e 2397 if (!bio) {
7870d082 2398 free_io_failure(failure_tree, tree, failrec);
2fe6303e
MX
2399 return -EIO;
2400 }
1f7ad75b 2401 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
4a54c8c1 2402
ab8d0fc4
JM
2403 btrfs_debug(btrfs_sb(inode->i_sb),
2404 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2405 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2406
c6100a4b 2407 ret = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
013bd4c3 2408 failrec->bio_flags, 0);
6c387ab2 2409 if (ret) {
7870d082 2410 free_io_failure(failure_tree, tree, failrec);
6c387ab2
MX
2411 bio_put(bio);
2412 }
2413
013bd4c3 2414 return ret;
4a54c8c1
JS
2415}
2416
d1310b2e
CM
2417/* lots and lots of room for performance fixes in the end_bio funcs */
2418
b5227c07 2419void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2420{
2421 int uptodate = (err == 0);
2422 struct extent_io_tree *tree;
3e2426bd 2423 int ret = 0;
87826df0
JM
2424
2425 tree = &BTRFS_I(page->mapping->host)->io_tree;
2426
c3988d63
DS
2427 if (tree->ops && tree->ops->writepage_end_io_hook)
2428 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2429 uptodate);
87826df0 2430
87826df0 2431 if (!uptodate) {
87826df0
JM
2432 ClearPageUptodate(page);
2433 SetPageError(page);
bff5baf8 2434 ret = err < 0 ? err : -EIO;
5dca6eea 2435 mapping_set_error(page->mapping, ret);
87826df0 2436 }
87826df0
JM
2437}
2438
d1310b2e
CM
2439/*
2440 * after a writepage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * clear the writeback bits in the extent tree for this IO
2443 * end_page_writeback if the page has no more pending IO
2444 *
2445 * Scheduling is not allowed, so the extent state tree is expected
2446 * to have one and only one object corresponding to this IO.
2447 */
4246a0b6 2448static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2449{
2c30c71b 2450 struct bio_vec *bvec;
d1310b2e
CM
2451 u64 start;
2452 u64 end;
2c30c71b 2453 int i;
d1310b2e 2454
2c30c71b 2455 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2456 struct page *page = bvec->bv_page;
0b246afa
JM
2457 struct inode *inode = page->mapping->host;
2458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
902b22f3 2459
17a5adcc
AO
2460 /* We always issue full-page reads, but if some block
2461 * in a page fails to read, blk_update_request() will
2462 * advance bv_offset and adjust bv_len to compensate.
2463 * Print a warning for nonzero offsets, and an error
2464 * if they don't add up to a full page. */
09cbfeaf
KS
2465 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2466 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
0b246afa 2467 btrfs_err(fs_info,
efe120a0
FH
2468 "partial page write in btrfs with offset %u and length %u",
2469 bvec->bv_offset, bvec->bv_len);
2470 else
0b246afa 2471 btrfs_info(fs_info,
5d163e0e 2472 "incomplete page write in btrfs with offset %u and length %u",
efe120a0
FH
2473 bvec->bv_offset, bvec->bv_len);
2474 }
d1310b2e 2475
17a5adcc
AO
2476 start = page_offset(page);
2477 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2478
b5227c07 2479 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2480 end_page_writeback(page);
2c30c71b 2481 }
2b1f55b0 2482
d1310b2e 2483 bio_put(bio);
d1310b2e
CM
2484}
2485
883d0de4
MX
2486static void
2487endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2488 int uptodate)
2489{
2490 struct extent_state *cached = NULL;
2491 u64 end = start + len - 1;
2492
2493 if (uptodate && tree->track_uptodate)
2494 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2495 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2496}
2497
d1310b2e
CM
2498/*
2499 * after a readpage IO is done, we need to:
2500 * clear the uptodate bits on error
2501 * set the uptodate bits if things worked
2502 * set the page up to date if all extents in the tree are uptodate
2503 * clear the lock bit in the extent tree
2504 * unlock the page if there are no other extents locked for it
2505 *
2506 * Scheduling is not allowed, so the extent state tree is expected
2507 * to have one and only one object corresponding to this IO.
2508 */
4246a0b6 2509static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2510{
2c30c71b 2511 struct bio_vec *bvec;
4246a0b6 2512 int uptodate = !bio->bi_error;
facc8a22 2513 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082 2514 struct extent_io_tree *tree, *failure_tree;
facc8a22 2515 u64 offset = 0;
d1310b2e
CM
2516 u64 start;
2517 u64 end;
facc8a22 2518 u64 len;
883d0de4
MX
2519 u64 extent_start = 0;
2520 u64 extent_len = 0;
5cf1ab56 2521 int mirror;
d1310b2e 2522 int ret;
2c30c71b 2523 int i;
d1310b2e 2524
2c30c71b 2525 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2526 struct page *page = bvec->bv_page;
a71754fc 2527 struct inode *inode = page->mapping->host;
ab8d0fc4 2528 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
507903b8 2529
ab8d0fc4
JM
2530 btrfs_debug(fs_info,
2531 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2532 (u64)bio->bi_iter.bi_sector, bio->bi_error,
2533 io_bio->mirror_num);
a71754fc 2534 tree = &BTRFS_I(inode)->io_tree;
7870d082 2535 failure_tree = &BTRFS_I(inode)->io_failure_tree;
902b22f3 2536
17a5adcc
AO
2537 /* We always issue full-page reads, but if some block
2538 * in a page fails to read, blk_update_request() will
2539 * advance bv_offset and adjust bv_len to compensate.
2540 * Print a warning for nonzero offsets, and an error
2541 * if they don't add up to a full page. */
09cbfeaf
KS
2542 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2543 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
ab8d0fc4
JM
2544 btrfs_err(fs_info,
2545 "partial page read in btrfs with offset %u and length %u",
efe120a0
FH
2546 bvec->bv_offset, bvec->bv_len);
2547 else
ab8d0fc4
JM
2548 btrfs_info(fs_info,
2549 "incomplete page read in btrfs with offset %u and length %u",
efe120a0
FH
2550 bvec->bv_offset, bvec->bv_len);
2551 }
d1310b2e 2552
17a5adcc
AO
2553 start = page_offset(page);
2554 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2555 len = bvec->bv_len;
d1310b2e 2556
9be3395b 2557 mirror = io_bio->mirror_num;
20c9801d 2558 if (likely(uptodate && tree->ops)) {
facc8a22
MX
2559 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2560 page, start, end,
2561 mirror);
5ee0844d 2562 if (ret)
d1310b2e 2563 uptodate = 0;
5ee0844d 2564 else
7870d082
JB
2565 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2566 failure_tree, tree, start,
2567 page,
2568 btrfs_ino(BTRFS_I(inode)), 0);
d1310b2e 2569 }
ea466794 2570
f2a09da9
MX
2571 if (likely(uptodate))
2572 goto readpage_ok;
2573
20a7db8a 2574 if (tree->ops) {
5cf1ab56 2575 ret = tree->ops->readpage_io_failed_hook(page, mirror);
9d0d1c8b
LB
2576 if (ret == -EAGAIN) {
2577 /*
2578 * Data inode's readpage_io_failed_hook() always
2579 * returns -EAGAIN.
2580 *
2581 * The generic bio_readpage_error handles errors
2582 * the following way: If possible, new read
2583 * requests are created and submitted and will
2584 * end up in end_bio_extent_readpage as well (if
2585 * we're lucky, not in the !uptodate case). In
2586 * that case it returns 0 and we just go on with
2587 * the next page in our bio. If it can't handle
2588 * the error it will return -EIO and we remain
2589 * responsible for that page.
2590 */
2591 ret = bio_readpage_error(bio, offset, page,
2592 start, end, mirror);
2593 if (ret == 0) {
2594 uptodate = !bio->bi_error;
2595 offset += len;
2596 continue;
2597 }
2598 }
2599
f4a8e656 2600 /*
9d0d1c8b
LB
2601 * metadata's readpage_io_failed_hook() always returns
2602 * -EIO and fixes nothing. -EIO is also returned if
2603 * data inode error could not be fixed.
f4a8e656 2604 */
9d0d1c8b 2605 ASSERT(ret == -EIO);
7e38326f 2606 }
f2a09da9 2607readpage_ok:
883d0de4 2608 if (likely(uptodate)) {
a71754fc 2609 loff_t i_size = i_size_read(inode);
09cbfeaf 2610 pgoff_t end_index = i_size >> PAGE_SHIFT;
a583c026 2611 unsigned off;
a71754fc
JB
2612
2613 /* Zero out the end if this page straddles i_size */
09cbfeaf 2614 off = i_size & (PAGE_SIZE-1);
a583c026 2615 if (page->index == end_index && off)
09cbfeaf 2616 zero_user_segment(page, off, PAGE_SIZE);
17a5adcc 2617 SetPageUptodate(page);
70dec807 2618 } else {
17a5adcc
AO
2619 ClearPageUptodate(page);
2620 SetPageError(page);
70dec807 2621 }
17a5adcc 2622 unlock_page(page);
facc8a22 2623 offset += len;
883d0de4
MX
2624
2625 if (unlikely(!uptodate)) {
2626 if (extent_len) {
2627 endio_readpage_release_extent(tree,
2628 extent_start,
2629 extent_len, 1);
2630 extent_start = 0;
2631 extent_len = 0;
2632 }
2633 endio_readpage_release_extent(tree, start,
2634 end - start + 1, 0);
2635 } else if (!extent_len) {
2636 extent_start = start;
2637 extent_len = end + 1 - start;
2638 } else if (extent_start + extent_len == start) {
2639 extent_len += end + 1 - start;
2640 } else {
2641 endio_readpage_release_extent(tree, extent_start,
2642 extent_len, uptodate);
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 }
2c30c71b 2646 }
d1310b2e 2647
883d0de4
MX
2648 if (extent_len)
2649 endio_readpage_release_extent(tree, extent_start, extent_len,
2650 uptodate);
facc8a22 2651 if (io_bio->end_io)
4246a0b6 2652 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2653 bio_put(bio);
d1310b2e
CM
2654}
2655
9be3395b 2656/*
6e707bcd
DS
2657 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2658 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2659 * for the appropriate container_of magic
9be3395b 2660 */
88f794ed
MX
2661struct bio *
2662btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2663 gfp_t gfp_flags)
d1310b2e 2664{
facc8a22 2665 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2666 struct bio *bio;
2667
9be3395b 2668 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
6e707bcd
DS
2669 bio->bi_bdev = bdev;
2670 bio->bi_iter.bi_sector = first_sector;
2671 btrfs_bio = btrfs_io_bio(bio);
2672 btrfs_bio->csum = NULL;
2673 btrfs_bio->csum_allocated = NULL;
2674 btrfs_bio->end_io = NULL;
d1310b2e
CM
2675 return bio;
2676}
2677
9be3395b
CM
2678struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2679{
23ea8e5a
MX
2680 struct btrfs_io_bio *btrfs_bio;
2681 struct bio *new;
9be3395b 2682
6e707bcd 2683 /* Bio allocation backed by a bioset does not fail */
015c1bd9 2684 new = bio_clone_fast(bio, gfp_mask, btrfs_bioset);
6e707bcd
DS
2685 btrfs_bio = btrfs_io_bio(new);
2686 btrfs_bio->csum = NULL;
2687 btrfs_bio->csum_allocated = NULL;
2688 btrfs_bio->end_io = NULL;
2689 btrfs_bio->iter = bio->bi_iter;
23ea8e5a
MX
2690 return new;
2691}
9be3395b 2692
9be3395b
CM
2693struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2694{
facc8a22
MX
2695 struct btrfs_io_bio *btrfs_bio;
2696 struct bio *bio;
2697
6e707bcd 2698 /* Bio allocation backed by a bioset does not fail */
facc8a22 2699 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
6e707bcd
DS
2700 btrfs_bio = btrfs_io_bio(bio);
2701 btrfs_bio->csum = NULL;
2702 btrfs_bio->csum_allocated = NULL;
2703 btrfs_bio->end_io = NULL;
facc8a22 2704 return bio;
9be3395b
CM
2705}
2706
e477094f 2707struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2f8e9140
LB
2708{
2709 struct bio *bio;
2710 struct btrfs_io_bio *btrfs_bio;
2711
2712 /* this will never fail when it's backed by a bioset */
e477094f 2713 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2f8e9140
LB
2714 ASSERT(bio);
2715
2716 btrfs_bio = btrfs_io_bio(bio);
2717 btrfs_bio->csum = NULL;
2718 btrfs_bio->csum_allocated = NULL;
2719 btrfs_bio->end_io = NULL;
2720
2721 bio_trim(bio, offset >> 9, size >> 9);
17347cec 2722 btrfs_bio->iter = bio->bi_iter;
2f8e9140
LB
2723 return bio;
2724}
9be3395b 2725
1f7ad75b
MC
2726static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2727 unsigned long bio_flags)
d1310b2e 2728{
d1310b2e 2729 int ret = 0;
70dec807
CM
2730 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2731 struct page *page = bvec->bv_page;
2732 struct extent_io_tree *tree = bio->bi_private;
70dec807 2733 u64 start;
70dec807 2734
4eee4fa4 2735 start = page_offset(page) + bvec->bv_offset;
70dec807 2736
902b22f3 2737 bio->bi_private = NULL;
d1310b2e
CM
2738 bio_get(bio);
2739
20c9801d 2740 if (tree->ops)
c6100a4b 2741 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
eaf25d93 2742 mirror_num, bio_flags, start);
0b86a832 2743 else
4e49ea4a 2744 btrfsic_submit_bio(bio);
4a54c8c1 2745
d1310b2e
CM
2746 bio_put(bio);
2747 return ret;
2748}
2749
1f7ad75b 2750static int merge_bio(struct extent_io_tree *tree, struct page *page,
3444a972
JM
2751 unsigned long offset, size_t size, struct bio *bio,
2752 unsigned long bio_flags)
2753{
2754 int ret = 0;
20c9801d 2755 if (tree->ops)
81a75f67 2756 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
3444a972 2757 bio_flags);
3444a972
JM
2758 return ret;
2759
2760}
2761
1f7ad75b 2762static int submit_extent_page(int op, int op_flags, struct extent_io_tree *tree,
da2f0f74 2763 struct writeback_control *wbc,
d1310b2e
CM
2764 struct page *page, sector_t sector,
2765 size_t size, unsigned long offset,
2766 struct block_device *bdev,
2767 struct bio **bio_ret,
f188591e 2768 bio_end_io_t end_io_func,
c8b97818
CM
2769 int mirror_num,
2770 unsigned long prev_bio_flags,
005efedf
FM
2771 unsigned long bio_flags,
2772 bool force_bio_submit)
d1310b2e
CM
2773{
2774 int ret = 0;
2775 struct bio *bio;
c8b97818 2776 int contig = 0;
c8b97818 2777 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
09cbfeaf 2778 size_t page_size = min_t(size_t, size, PAGE_SIZE);
d1310b2e
CM
2779
2780 if (bio_ret && *bio_ret) {
2781 bio = *bio_ret;
c8b97818 2782 if (old_compressed)
4f024f37 2783 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2784 else
f73a1c7d 2785 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2786
2787 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2788 force_bio_submit ||
1f7ad75b 2789 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818 2790 bio_add_page(bio, page, page_size, offset) < page_size) {
1f7ad75b 2791 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
289454ad
NA
2792 if (ret < 0) {
2793 *bio_ret = NULL;
79787eaa 2794 return ret;
289454ad 2795 }
d1310b2e
CM
2796 bio = NULL;
2797 } else {
da2f0f74
CM
2798 if (wbc)
2799 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2800 return 0;
2801 }
2802 }
c8b97818 2803
b54ffb73
KO
2804 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2805 GFP_NOFS | __GFP_HIGH);
c8b97818 2806 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2807 bio->bi_end_io = end_io_func;
2808 bio->bi_private = tree;
1f7ad75b 2809 bio_set_op_attrs(bio, op, op_flags);
da2f0f74
CM
2810 if (wbc) {
2811 wbc_init_bio(wbc, bio);
2812 wbc_account_io(wbc, page, page_size);
2813 }
70dec807 2814
d397712b 2815 if (bio_ret)
d1310b2e 2816 *bio_ret = bio;
d397712b 2817 else
1f7ad75b 2818 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
2819
2820 return ret;
2821}
2822
48a3b636
ES
2823static void attach_extent_buffer_page(struct extent_buffer *eb,
2824 struct page *page)
d1310b2e
CM
2825{
2826 if (!PagePrivate(page)) {
2827 SetPagePrivate(page);
09cbfeaf 2828 get_page(page);
4f2de97a
JB
2829 set_page_private(page, (unsigned long)eb);
2830 } else {
2831 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2832 }
2833}
2834
4f2de97a 2835void set_page_extent_mapped(struct page *page)
d1310b2e 2836{
4f2de97a
JB
2837 if (!PagePrivate(page)) {
2838 SetPagePrivate(page);
09cbfeaf 2839 get_page(page);
4f2de97a
JB
2840 set_page_private(page, EXTENT_PAGE_PRIVATE);
2841 }
d1310b2e
CM
2842}
2843
125bac01
MX
2844static struct extent_map *
2845__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2846 u64 start, u64 len, get_extent_t *get_extent,
2847 struct extent_map **em_cached)
2848{
2849 struct extent_map *em;
2850
2851 if (em_cached && *em_cached) {
2852 em = *em_cached;
cbc0e928 2853 if (extent_map_in_tree(em) && start >= em->start &&
125bac01 2854 start < extent_map_end(em)) {
490b54d6 2855 refcount_inc(&em->refs);
125bac01
MX
2856 return em;
2857 }
2858
2859 free_extent_map(em);
2860 *em_cached = NULL;
2861 }
2862
fc4f21b1 2863 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
125bac01
MX
2864 if (em_cached && !IS_ERR_OR_NULL(em)) {
2865 BUG_ON(*em_cached);
490b54d6 2866 refcount_inc(&em->refs);
125bac01
MX
2867 *em_cached = em;
2868 }
2869 return em;
2870}
d1310b2e
CM
2871/*
2872 * basic readpage implementation. Locked extent state structs are inserted
2873 * into the tree that are removed when the IO is done (by the end_io
2874 * handlers)
79787eaa 2875 * XXX JDM: This needs looking at to ensure proper page locking
baf863b9 2876 * return 0 on success, otherwise return error
d1310b2e 2877 */
9974090b
MX
2878static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
125bac01 2881 struct extent_map **em_cached,
9974090b 2882 struct bio **bio, int mirror_num,
1f7ad75b 2883 unsigned long *bio_flags, int read_flags,
005efedf 2884 u64 *prev_em_start)
d1310b2e
CM
2885{
2886 struct inode *inode = page->mapping->host;
4eee4fa4 2887 u64 start = page_offset(page);
09cbfeaf 2888 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
baf863b9 2898 int ret = 0;
d1310b2e 2899 int nr = 0;
306e16ce 2900 size_t pg_offset = 0;
d1310b2e 2901 size_t iosize;
c8b97818 2902 size_t disk_io_size;
d1310b2e 2903 size_t blocksize = inode->i_sb->s_blocksize;
7f042a83 2904 unsigned long this_bio_flag = 0;
d1310b2e
CM
2905
2906 set_page_extent_mapped(page);
2907
9974090b 2908 end = page_end;
90a887c9
DM
2909 if (!PageUptodate(page)) {
2910 if (cleancache_get_page(page) == 0) {
2911 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2912 unlock_extent(tree, start, end);
90a887c9
DM
2913 goto out;
2914 }
2915 }
2916
09cbfeaf 2917 if (page->index == last_byte >> PAGE_SHIFT) {
c8b97818 2918 char *userpage;
09cbfeaf 2919 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
c8b97818
CM
2920
2921 if (zero_offset) {
09cbfeaf 2922 iosize = PAGE_SIZE - zero_offset;
7ac687d9 2923 userpage = kmap_atomic(page);
c8b97818
CM
2924 memset(userpage + zero_offset, 0, iosize);
2925 flush_dcache_page(page);
7ac687d9 2926 kunmap_atomic(userpage);
c8b97818
CM
2927 }
2928 }
d1310b2e 2929 while (cur <= end) {
005efedf 2930 bool force_bio_submit = false;
c8f2f24b 2931
d1310b2e
CM
2932 if (cur >= last_byte) {
2933 char *userpage;
507903b8
AJ
2934 struct extent_state *cached = NULL;
2935
09cbfeaf 2936 iosize = PAGE_SIZE - pg_offset;
7ac687d9 2937 userpage = kmap_atomic(page);
306e16ce 2938 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2939 flush_dcache_page(page);
7ac687d9 2940 kunmap_atomic(userpage);
d1310b2e 2941 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2942 &cached, GFP_NOFS);
7f042a83
FM
2943 unlock_extent_cached(tree, cur,
2944 cur + iosize - 1,
2945 &cached, GFP_NOFS);
d1310b2e
CM
2946 break;
2947 }
125bac01
MX
2948 em = __get_extent_map(inode, page, pg_offset, cur,
2949 end - cur + 1, get_extent, em_cached);
c704005d 2950 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2951 SetPageError(page);
7f042a83 2952 unlock_extent(tree, cur, end);
d1310b2e
CM
2953 break;
2954 }
d1310b2e
CM
2955 extent_offset = cur - em->start;
2956 BUG_ON(extent_map_end(em) <= cur);
2957 BUG_ON(end < cur);
2958
261507a0 2959 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2960 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2961 extent_set_compress_type(&this_bio_flag,
2962 em->compress_type);
2963 }
c8b97818 2964
d1310b2e
CM
2965 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2966 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2967 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2968 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2969 disk_io_size = em->block_len;
2970 sector = em->block_start >> 9;
2971 } else {
2972 sector = (em->block_start + extent_offset) >> 9;
2973 disk_io_size = iosize;
2974 }
d1310b2e
CM
2975 bdev = em->bdev;
2976 block_start = em->block_start;
d899e052
YZ
2977 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2978 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2979
2980 /*
2981 * If we have a file range that points to a compressed extent
2982 * and it's followed by a consecutive file range that points to
2983 * to the same compressed extent (possibly with a different
2984 * offset and/or length, so it either points to the whole extent
2985 * or only part of it), we must make sure we do not submit a
2986 * single bio to populate the pages for the 2 ranges because
2987 * this makes the compressed extent read zero out the pages
2988 * belonging to the 2nd range. Imagine the following scenario:
2989 *
2990 * File layout
2991 * [0 - 8K] [8K - 24K]
2992 * | |
2993 * | |
2994 * points to extent X, points to extent X,
2995 * offset 4K, length of 8K offset 0, length 16K
2996 *
2997 * [extent X, compressed length = 4K uncompressed length = 16K]
2998 *
2999 * If the bio to read the compressed extent covers both ranges,
3000 * it will decompress extent X into the pages belonging to the
3001 * first range and then it will stop, zeroing out the remaining
3002 * pages that belong to the other range that points to extent X.
3003 * So here we make sure we submit 2 bios, one for the first
3004 * range and another one for the third range. Both will target
3005 * the same physical extent from disk, but we can't currently
3006 * make the compressed bio endio callback populate the pages
3007 * for both ranges because each compressed bio is tightly
3008 * coupled with a single extent map, and each range can have
3009 * an extent map with a different offset value relative to the
3010 * uncompressed data of our extent and different lengths. This
3011 * is a corner case so we prioritize correctness over
3012 * non-optimal behavior (submitting 2 bios for the same extent).
3013 */
3014 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3015 prev_em_start && *prev_em_start != (u64)-1 &&
3016 *prev_em_start != em->orig_start)
3017 force_bio_submit = true;
3018
3019 if (prev_em_start)
3020 *prev_em_start = em->orig_start;
3021
d1310b2e
CM
3022 free_extent_map(em);
3023 em = NULL;
3024
3025 /* we've found a hole, just zero and go on */
3026 if (block_start == EXTENT_MAP_HOLE) {
3027 char *userpage;
507903b8
AJ
3028 struct extent_state *cached = NULL;
3029
7ac687d9 3030 userpage = kmap_atomic(page);
306e16ce 3031 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3032 flush_dcache_page(page);
7ac687d9 3033 kunmap_atomic(userpage);
d1310b2e
CM
3034
3035 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3036 &cached, GFP_NOFS);
7f042a83
FM
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
d1310b2e 3040 cur = cur + iosize;
306e16ce 3041 pg_offset += iosize;
d1310b2e
CM
3042 continue;
3043 }
3044 /* the get_extent function already copied into the page */
9655d298
CM
3045 if (test_range_bit(tree, cur, cur_end,
3046 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3047 check_page_uptodate(tree, page);
7f042a83 3048 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3049 cur = cur + iosize;
306e16ce 3050 pg_offset += iosize;
d1310b2e
CM
3051 continue;
3052 }
70dec807
CM
3053 /* we have an inline extent but it didn't get marked up
3054 * to date. Error out
3055 */
3056 if (block_start == EXTENT_MAP_INLINE) {
3057 SetPageError(page);
7f042a83 3058 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3059 cur = cur + iosize;
306e16ce 3060 pg_offset += iosize;
70dec807
CM
3061 continue;
3062 }
d1310b2e 3063
1f7ad75b
MC
3064 ret = submit_extent_page(REQ_OP_READ, read_flags, tree, NULL,
3065 page, sector, disk_io_size, pg_offset,
c2df8bb4 3066 bdev, bio,
c8b97818
CM
3067 end_bio_extent_readpage, mirror_num,
3068 *bio_flags,
005efedf
FM
3069 this_bio_flag,
3070 force_bio_submit);
c8f2f24b
JB
3071 if (!ret) {
3072 nr++;
3073 *bio_flags = this_bio_flag;
3074 } else {
d1310b2e 3075 SetPageError(page);
7f042a83 3076 unlock_extent(tree, cur, cur + iosize - 1);
baf863b9 3077 goto out;
edd33c99 3078 }
d1310b2e 3079 cur = cur + iosize;
306e16ce 3080 pg_offset += iosize;
d1310b2e 3081 }
90a887c9 3082out:
d1310b2e
CM
3083 if (!nr) {
3084 if (!PageError(page))
3085 SetPageUptodate(page);
3086 unlock_page(page);
3087 }
baf863b9 3088 return ret;
d1310b2e
CM
3089}
3090
9974090b
MX
3091static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3092 struct page *pages[], int nr_pages,
3093 u64 start, u64 end,
3094 get_extent_t *get_extent,
125bac01 3095 struct extent_map **em_cached,
9974090b 3096 struct bio **bio, int mirror_num,
1f7ad75b 3097 unsigned long *bio_flags,
808f80b4 3098 u64 *prev_em_start)
9974090b
MX
3099{
3100 struct inode *inode;
3101 struct btrfs_ordered_extent *ordered;
3102 int index;
3103
3104 inode = pages[0]->mapping->host;
3105 while (1) {
3106 lock_extent(tree, start, end);
a776c6fa 3107 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
9974090b
MX
3108 end - start + 1);
3109 if (!ordered)
3110 break;
3111 unlock_extent(tree, start, end);
3112 btrfs_start_ordered_extent(inode, ordered, 1);
3113 btrfs_put_ordered_extent(ordered);
3114 }
3115
3116 for (index = 0; index < nr_pages; index++) {
125bac01 3117 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
1f7ad75b 3118 mirror_num, bio_flags, 0, prev_em_start);
09cbfeaf 3119 put_page(pages[index]);
9974090b
MX
3120 }
3121}
3122
3123static void __extent_readpages(struct extent_io_tree *tree,
3124 struct page *pages[],
3125 int nr_pages, get_extent_t *get_extent,
125bac01 3126 struct extent_map **em_cached,
9974090b 3127 struct bio **bio, int mirror_num,
1f7ad75b 3128 unsigned long *bio_flags,
808f80b4 3129 u64 *prev_em_start)
9974090b 3130{
35a3621b 3131 u64 start = 0;
9974090b
MX
3132 u64 end = 0;
3133 u64 page_start;
3134 int index;
35a3621b 3135 int first_index = 0;
9974090b
MX
3136
3137 for (index = 0; index < nr_pages; index++) {
3138 page_start = page_offset(pages[index]);
3139 if (!end) {
3140 start = page_start;
09cbfeaf 3141 end = start + PAGE_SIZE - 1;
9974090b
MX
3142 first_index = index;
3143 } else if (end + 1 == page_start) {
09cbfeaf 3144 end += PAGE_SIZE;
9974090b
MX
3145 } else {
3146 __do_contiguous_readpages(tree, &pages[first_index],
3147 index - first_index, start,
125bac01
MX
3148 end, get_extent, em_cached,
3149 bio, mirror_num, bio_flags,
1f7ad75b 3150 prev_em_start);
9974090b 3151 start = page_start;
09cbfeaf 3152 end = start + PAGE_SIZE - 1;
9974090b
MX
3153 first_index = index;
3154 }
3155 }
3156
3157 if (end)
3158 __do_contiguous_readpages(tree, &pages[first_index],
3159 index - first_index, start,
125bac01 3160 end, get_extent, em_cached, bio,
1f7ad75b 3161 mirror_num, bio_flags,
808f80b4 3162 prev_em_start);
9974090b
MX
3163}
3164
3165static int __extent_read_full_page(struct extent_io_tree *tree,
3166 struct page *page,
3167 get_extent_t *get_extent,
3168 struct bio **bio, int mirror_num,
1f7ad75b 3169 unsigned long *bio_flags, int read_flags)
9974090b
MX
3170{
3171 struct inode *inode = page->mapping->host;
3172 struct btrfs_ordered_extent *ordered;
3173 u64 start = page_offset(page);
09cbfeaf 3174 u64 end = start + PAGE_SIZE - 1;
9974090b
MX
3175 int ret;
3176
3177 while (1) {
3178 lock_extent(tree, start, end);
a776c6fa 3179 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
09cbfeaf 3180 PAGE_SIZE);
9974090b
MX
3181 if (!ordered)
3182 break;
3183 unlock_extent(tree, start, end);
3184 btrfs_start_ordered_extent(inode, ordered, 1);
3185 btrfs_put_ordered_extent(ordered);
3186 }
3187
125bac01 3188 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
1f7ad75b 3189 bio_flags, read_flags, NULL);
9974090b
MX
3190 return ret;
3191}
3192
d1310b2e 3193int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3194 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3195{
3196 struct bio *bio = NULL;
c8b97818 3197 unsigned long bio_flags = 0;
d1310b2e
CM
3198 int ret;
3199
8ddc7d9c 3200 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
1f7ad75b 3201 &bio_flags, 0);
d1310b2e 3202 if (bio)
1f7ad75b 3203 ret = submit_one_bio(bio, mirror_num, bio_flags);
d1310b2e
CM
3204 return ret;
3205}
d1310b2e 3206
3d4b9496 3207static void update_nr_written(struct writeback_control *wbc,
a9132667 3208 unsigned long nr_written)
11c8349b
CM
3209{
3210 wbc->nr_to_write -= nr_written;
11c8349b
CM
3211}
3212
d1310b2e 3213/*
40f76580
CM
3214 * helper for __extent_writepage, doing all of the delayed allocation setup.
3215 *
3216 * This returns 1 if our fill_delalloc function did all the work required
3217 * to write the page (copy into inline extent). In this case the IO has
3218 * been started and the page is already unlocked.
3219 *
3220 * This returns 0 if all went well (page still locked)
3221 * This returns < 0 if there were errors (page still locked)
d1310b2e 3222 */
40f76580
CM
3223static noinline_for_stack int writepage_delalloc(struct inode *inode,
3224 struct page *page, struct writeback_control *wbc,
3225 struct extent_page_data *epd,
3226 u64 delalloc_start,
3227 unsigned long *nr_written)
3228{
3229 struct extent_io_tree *tree = epd->tree;
09cbfeaf 3230 u64 page_end = delalloc_start + PAGE_SIZE - 1;
40f76580
CM
3231 u64 nr_delalloc;
3232 u64 delalloc_to_write = 0;
3233 u64 delalloc_end = 0;
3234 int ret;
3235 int page_started = 0;
3236
3237 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3238 return 0;
3239
3240 while (delalloc_end < page_end) {
3241 nr_delalloc = find_lock_delalloc_range(inode, tree,
3242 page,
3243 &delalloc_start,
3244 &delalloc_end,
dcab6a3b 3245 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3246 if (nr_delalloc == 0) {
3247 delalloc_start = delalloc_end + 1;
3248 continue;
3249 }
3250 ret = tree->ops->fill_delalloc(inode, page,
3251 delalloc_start,
3252 delalloc_end,
3253 &page_started,
3254 nr_written);
3255 /* File system has been set read-only */
3256 if (ret) {
3257 SetPageError(page);
3258 /* fill_delalloc should be return < 0 for error
3259 * but just in case, we use > 0 here meaning the
3260 * IO is started, so we don't want to return > 0
3261 * unless things are going well.
3262 */
3263 ret = ret < 0 ? ret : -EIO;
3264 goto done;
3265 }
3266 /*
ea1754a0
KS
3267 * delalloc_end is already one less than the total length, so
3268 * we don't subtract one from PAGE_SIZE
40f76580
CM
3269 */
3270 delalloc_to_write += (delalloc_end - delalloc_start +
ea1754a0 3271 PAGE_SIZE) >> PAGE_SHIFT;
40f76580
CM
3272 delalloc_start = delalloc_end + 1;
3273 }
3274 if (wbc->nr_to_write < delalloc_to_write) {
3275 int thresh = 8192;
3276
3277 if (delalloc_to_write < thresh * 2)
3278 thresh = delalloc_to_write;
3279 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3280 thresh);
3281 }
3282
3283 /* did the fill delalloc function already unlock and start
3284 * the IO?
3285 */
3286 if (page_started) {
3287 /*
3288 * we've unlocked the page, so we can't update
3289 * the mapping's writeback index, just update
3290 * nr_to_write.
3291 */
3292 wbc->nr_to_write -= *nr_written;
3293 return 1;
3294 }
3295
3296 ret = 0;
3297
3298done:
3299 return ret;
3300}
3301
3302/*
3303 * helper for __extent_writepage. This calls the writepage start hooks,
3304 * and does the loop to map the page into extents and bios.
3305 *
3306 * We return 1 if the IO is started and the page is unlocked,
3307 * 0 if all went well (page still locked)
3308 * < 0 if there were errors (page still locked)
3309 */
3310static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3311 struct page *page,
3312 struct writeback_control *wbc,
3313 struct extent_page_data *epd,
3314 loff_t i_size,
3315 unsigned long nr_written,
3316 int write_flags, int *nr_ret)
d1310b2e 3317{
d1310b2e 3318 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3319 u64 start = page_offset(page);
09cbfeaf 3320 u64 page_end = start + PAGE_SIZE - 1;
d1310b2e
CM
3321 u64 end;
3322 u64 cur = start;
3323 u64 extent_offset;
d1310b2e
CM
3324 u64 block_start;
3325 u64 iosize;
3326 sector_t sector;
3327 struct extent_map *em;
3328 struct block_device *bdev;
7f3c74fb 3329 size_t pg_offset = 0;
d1310b2e 3330 size_t blocksize;
40f76580
CM
3331 int ret = 0;
3332 int nr = 0;
3333 bool compressed;
c8b97818 3334
247e743c 3335 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3336 ret = tree->ops->writepage_start_hook(page, start,
3337 page_end);
87826df0
JM
3338 if (ret) {
3339 /* Fixup worker will requeue */
3340 if (ret == -EBUSY)
3341 wbc->pages_skipped++;
3342 else
3343 redirty_page_for_writepage(wbc, page);
40f76580 3344
3d4b9496 3345 update_nr_written(wbc, nr_written);
247e743c 3346 unlock_page(page);
bcf93489 3347 return 1;
247e743c
CM
3348 }
3349 }
3350
11c8349b
CM
3351 /*
3352 * we don't want to touch the inode after unlocking the page,
3353 * so we update the mapping writeback index now
3354 */
3d4b9496 3355 update_nr_written(wbc, nr_written + 1);
771ed689 3356
d1310b2e 3357 end = page_end;
40f76580 3358 if (i_size <= start) {
e6dcd2dc
CM
3359 if (tree->ops && tree->ops->writepage_end_io_hook)
3360 tree->ops->writepage_end_io_hook(page, start,
3361 page_end, NULL, 1);
d1310b2e
CM
3362 goto done;
3363 }
3364
d1310b2e
CM
3365 blocksize = inode->i_sb->s_blocksize;
3366
3367 while (cur <= end) {
40f76580 3368 u64 em_end;
58409edd 3369
40f76580 3370 if (cur >= i_size) {
e6dcd2dc
CM
3371 if (tree->ops && tree->ops->writepage_end_io_hook)
3372 tree->ops->writepage_end_io_hook(page, cur,
3373 page_end, NULL, 1);
d1310b2e
CM
3374 break;
3375 }
fc4f21b1 3376 em = epd->get_extent(BTRFS_I(inode), page, pg_offset, cur,
d1310b2e 3377 end - cur + 1, 1);
c704005d 3378 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3379 SetPageError(page);
61391d56 3380 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3381 break;
3382 }
3383
3384 extent_offset = cur - em->start;
40f76580
CM
3385 em_end = extent_map_end(em);
3386 BUG_ON(em_end <= cur);
d1310b2e 3387 BUG_ON(end < cur);
40f76580 3388 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3389 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3390 sector = (em->block_start + extent_offset) >> 9;
3391 bdev = em->bdev;
3392 block_start = em->block_start;
c8b97818 3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3394 free_extent_map(em);
3395 em = NULL;
3396
c8b97818
CM
3397 /*
3398 * compressed and inline extents are written through other
3399 * paths in the FS
3400 */
3401 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3402 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3403 /*
3404 * end_io notification does not happen here for
3405 * compressed extents
3406 */
3407 if (!compressed && tree->ops &&
3408 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3409 tree->ops->writepage_end_io_hook(page, cur,
3410 cur + iosize - 1,
3411 NULL, 1);
c8b97818
CM
3412 else if (compressed) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3415 * elsewhere
3416 */
3417 nr++;
3418 }
3419
3420 cur += iosize;
7f3c74fb 3421 pg_offset += iosize;
d1310b2e
CM
3422 continue;
3423 }
c8b97818 3424
58409edd
DS
3425 set_range_writeback(tree, cur, cur + iosize - 1);
3426 if (!PageWriteback(page)) {
3427 btrfs_err(BTRFS_I(inode)->root->fs_info,
3428 "page %lu not writeback, cur %llu end %llu",
3429 page->index, cur, end);
d1310b2e 3430 }
7f3c74fb 3431
1f7ad75b
MC
3432 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3433 page, sector, iosize, pg_offset,
c2df8bb4 3434 bdev, &epd->bio,
58409edd
DS
3435 end_bio_extent_writepage,
3436 0, 0, 0, false);
fe01aa65 3437 if (ret) {
58409edd 3438 SetPageError(page);
fe01aa65
TK
3439 if (PageWriteback(page))
3440 end_page_writeback(page);
3441 }
d1310b2e 3442
d1310b2e 3443 cur = cur + iosize;
7f3c74fb 3444 pg_offset += iosize;
d1310b2e
CM
3445 nr++;
3446 }
40f76580
CM
3447done:
3448 *nr_ret = nr;
40f76580
CM
3449 return ret;
3450}
3451
3452/*
3453 * the writepage semantics are similar to regular writepage. extent
3454 * records are inserted to lock ranges in the tree, and as dirty areas
3455 * are found, they are marked writeback. Then the lock bits are removed
3456 * and the end_io handler clears the writeback ranges
3457 */
3458static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3459 void *data)
3460{
3461 struct inode *inode = page->mapping->host;
3462 struct extent_page_data *epd = data;
3463 u64 start = page_offset(page);
09cbfeaf 3464 u64 page_end = start + PAGE_SIZE - 1;
40f76580
CM
3465 int ret;
3466 int nr = 0;
3467 size_t pg_offset = 0;
3468 loff_t i_size = i_size_read(inode);
09cbfeaf 3469 unsigned long end_index = i_size >> PAGE_SHIFT;
1f7ad75b 3470 int write_flags = 0;
40f76580
CM
3471 unsigned long nr_written = 0;
3472
3473 if (wbc->sync_mode == WB_SYNC_ALL)
70fd7614 3474 write_flags = REQ_SYNC;
40f76580
CM
3475
3476 trace___extent_writepage(page, inode, wbc);
3477
3478 WARN_ON(!PageLocked(page));
3479
3480 ClearPageError(page);
3481
09cbfeaf 3482 pg_offset = i_size & (PAGE_SIZE - 1);
40f76580
CM
3483 if (page->index > end_index ||
3484 (page->index == end_index && !pg_offset)) {
09cbfeaf 3485 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
40f76580
CM
3486 unlock_page(page);
3487 return 0;
3488 }
3489
3490 if (page->index == end_index) {
3491 char *userpage;
3492
3493 userpage = kmap_atomic(page);
3494 memset(userpage + pg_offset, 0,
09cbfeaf 3495 PAGE_SIZE - pg_offset);
40f76580
CM
3496 kunmap_atomic(userpage);
3497 flush_dcache_page(page);
3498 }
3499
3500 pg_offset = 0;
3501
3502 set_page_extent_mapped(page);
3503
3504 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3505 if (ret == 1)
3506 goto done_unlocked;
3507 if (ret)
3508 goto done;
3509
3510 ret = __extent_writepage_io(inode, page, wbc, epd,
3511 i_size, nr_written, write_flags, &nr);
3512 if (ret == 1)
3513 goto done_unlocked;
3514
d1310b2e
CM
3515done:
3516 if (nr == 0) {
3517 /* make sure the mapping tag for page dirty gets cleared */
3518 set_page_writeback(page);
3519 end_page_writeback(page);
3520 }
61391d56
FM
3521 if (PageError(page)) {
3522 ret = ret < 0 ? ret : -EIO;
3523 end_extent_writepage(page, ret, start, page_end);
3524 }
d1310b2e 3525 unlock_page(page);
40f76580 3526 return ret;
771ed689 3527
11c8349b 3528done_unlocked:
d1310b2e
CM
3529 return 0;
3530}
3531
fd8b2b61 3532void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3533{
74316201
N
3534 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3535 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3536}
3537
0e378df1
CM
3538static noinline_for_stack int
3539lock_extent_buffer_for_io(struct extent_buffer *eb,
3540 struct btrfs_fs_info *fs_info,
3541 struct extent_page_data *epd)
0b32f4bb
JB
3542{
3543 unsigned long i, num_pages;
3544 int flush = 0;
3545 int ret = 0;
3546
3547 if (!btrfs_try_tree_write_lock(eb)) {
3548 flush = 1;
3549 flush_write_bio(epd);
3550 btrfs_tree_lock(eb);
3551 }
3552
3553 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3554 btrfs_tree_unlock(eb);
3555 if (!epd->sync_io)
3556 return 0;
3557 if (!flush) {
3558 flush_write_bio(epd);
3559 flush = 1;
3560 }
a098d8e8
CM
3561 while (1) {
3562 wait_on_extent_buffer_writeback(eb);
3563 btrfs_tree_lock(eb);
3564 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3565 break;
0b32f4bb 3566 btrfs_tree_unlock(eb);
0b32f4bb
JB
3567 }
3568 }
3569
51561ffe
JB
3570 /*
3571 * We need to do this to prevent races in people who check if the eb is
3572 * under IO since we can end up having no IO bits set for a short period
3573 * of time.
3574 */
3575 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3576 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3577 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3578 spin_unlock(&eb->refs_lock);
0b32f4bb 3579 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3580 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3581 -eb->len,
3582 fs_info->dirty_metadata_batch);
0b32f4bb 3583 ret = 1;
51561ffe
JB
3584 } else {
3585 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3586 }
3587
3588 btrfs_tree_unlock(eb);
3589
3590 if (!ret)
3591 return ret;
3592
3593 num_pages = num_extent_pages(eb->start, eb->len);
3594 for (i = 0; i < num_pages; i++) {
fb85fc9a 3595 struct page *p = eb->pages[i];
0b32f4bb
JB
3596
3597 if (!trylock_page(p)) {
3598 if (!flush) {
3599 flush_write_bio(epd);
3600 flush = 1;
3601 }
3602 lock_page(p);
3603 }
3604 }
3605
3606 return ret;
3607}
3608
3609static void end_extent_buffer_writeback(struct extent_buffer *eb)
3610{
3611 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3612 smp_mb__after_atomic();
0b32f4bb
JB
3613 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3614}
3615
656f30db
FM
3616static void set_btree_ioerr(struct page *page)
3617{
3618 struct extent_buffer *eb = (struct extent_buffer *)page->private;
656f30db
FM
3619
3620 SetPageError(page);
3621 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3622 return;
3623
3624 /*
3625 * If writeback for a btree extent that doesn't belong to a log tree
3626 * failed, increment the counter transaction->eb_write_errors.
3627 * We do this because while the transaction is running and before it's
3628 * committing (when we call filemap_fdata[write|wait]_range against
3629 * the btree inode), we might have
3630 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3631 * returns an error or an error happens during writeback, when we're
3632 * committing the transaction we wouldn't know about it, since the pages
3633 * can be no longer dirty nor marked anymore for writeback (if a
3634 * subsequent modification to the extent buffer didn't happen before the
3635 * transaction commit), which makes filemap_fdata[write|wait]_range not
3636 * able to find the pages tagged with SetPageError at transaction
3637 * commit time. So if this happens we must abort the transaction,
3638 * otherwise we commit a super block with btree roots that point to
3639 * btree nodes/leafs whose content on disk is invalid - either garbage
3640 * or the content of some node/leaf from a past generation that got
3641 * cowed or deleted and is no longer valid.
3642 *
3643 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3644 * not be enough - we need to distinguish between log tree extents vs
3645 * non-log tree extents, and the next filemap_fdatawait_range() call
3646 * will catch and clear such errors in the mapping - and that call might
3647 * be from a log sync and not from a transaction commit. Also, checking
3648 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3649 * not done and would not be reliable - the eb might have been released
3650 * from memory and reading it back again means that flag would not be
3651 * set (since it's a runtime flag, not persisted on disk).
3652 *
3653 * Using the flags below in the btree inode also makes us achieve the
3654 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3655 * writeback for all dirty pages and before filemap_fdatawait_range()
3656 * is called, the writeback for all dirty pages had already finished
3657 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3658 * filemap_fdatawait_range() would return success, as it could not know
3659 * that writeback errors happened (the pages were no longer tagged for
3660 * writeback).
3661 */
3662 switch (eb->log_index) {
3663 case -1:
afcdd129 3664 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
656f30db
FM
3665 break;
3666 case 0:
afcdd129 3667 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
656f30db
FM
3668 break;
3669 case 1:
afcdd129 3670 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
656f30db
FM
3671 break;
3672 default:
3673 BUG(); /* unexpected, logic error */
3674 }
3675}
3676
4246a0b6 3677static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3678{
2c30c71b 3679 struct bio_vec *bvec;
0b32f4bb 3680 struct extent_buffer *eb;
2c30c71b 3681 int i, done;
0b32f4bb 3682
2c30c71b 3683 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3684 struct page *page = bvec->bv_page;
3685
0b32f4bb
JB
3686 eb = (struct extent_buffer *)page->private;
3687 BUG_ON(!eb);
3688 done = atomic_dec_and_test(&eb->io_pages);
3689
4246a0b6
CH
3690 if (bio->bi_error ||
3691 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3692 ClearPageUptodate(page);
656f30db 3693 set_btree_ioerr(page);
0b32f4bb
JB
3694 }
3695
3696 end_page_writeback(page);
3697
3698 if (!done)
3699 continue;
3700
3701 end_extent_buffer_writeback(eb);
2c30c71b 3702 }
0b32f4bb
JB
3703
3704 bio_put(bio);
0b32f4bb
JB
3705}
3706
0e378df1 3707static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3708 struct btrfs_fs_info *fs_info,
3709 struct writeback_control *wbc,
3710 struct extent_page_data *epd)
3711{
3712 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3713 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb 3714 u64 offset = eb->start;
851cd173 3715 u32 nritems;
0b32f4bb 3716 unsigned long i, num_pages;
de0022b9 3717 unsigned long bio_flags = 0;
851cd173 3718 unsigned long start, end;
70fd7614 3719 int write_flags = (epd->sync_io ? REQ_SYNC : 0) | REQ_META;
d7dbe9e7 3720 int ret = 0;
0b32f4bb 3721
656f30db 3722 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3723 num_pages = num_extent_pages(eb->start, eb->len);
3724 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3725 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3726 bio_flags = EXTENT_BIO_TREE_LOG;
3727
851cd173
LB
3728 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3729 nritems = btrfs_header_nritems(eb);
3eb548ee 3730 if (btrfs_header_level(eb) > 0) {
3eb548ee
LB
3731 end = btrfs_node_key_ptr_offset(nritems);
3732
b159fa28 3733 memzero_extent_buffer(eb, end, eb->len - end);
851cd173
LB
3734 } else {
3735 /*
3736 * leaf:
3737 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3738 */
3739 start = btrfs_item_nr_offset(nritems);
3d9ec8c4 3740 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
b159fa28 3741 memzero_extent_buffer(eb, start, end - start);
3eb548ee
LB
3742 }
3743
0b32f4bb 3744 for (i = 0; i < num_pages; i++) {
fb85fc9a 3745 struct page *p = eb->pages[i];
0b32f4bb
JB
3746
3747 clear_page_dirty_for_io(p);
3748 set_page_writeback(p);
1f7ad75b
MC
3749 ret = submit_extent_page(REQ_OP_WRITE, write_flags, tree, wbc,
3750 p, offset >> 9, PAGE_SIZE, 0, bdev,
c2df8bb4 3751 &epd->bio,
1f7ad75b 3752 end_bio_extent_buffer_writepage,
005efedf 3753 0, epd->bio_flags, bio_flags, false);
de0022b9 3754 epd->bio_flags = bio_flags;
0b32f4bb 3755 if (ret) {
656f30db 3756 set_btree_ioerr(p);
fe01aa65
TK
3757 if (PageWriteback(p))
3758 end_page_writeback(p);
0b32f4bb
JB
3759 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3760 end_extent_buffer_writeback(eb);
3761 ret = -EIO;
3762 break;
3763 }
09cbfeaf 3764 offset += PAGE_SIZE;
3d4b9496 3765 update_nr_written(wbc, 1);
0b32f4bb
JB
3766 unlock_page(p);
3767 }
3768
3769 if (unlikely(ret)) {
3770 for (; i < num_pages; i++) {
bbf65cf0 3771 struct page *p = eb->pages[i];
81465028 3772 clear_page_dirty_for_io(p);
0b32f4bb
JB
3773 unlock_page(p);
3774 }
3775 }
3776
3777 return ret;
3778}
3779
3780int btree_write_cache_pages(struct address_space *mapping,
3781 struct writeback_control *wbc)
3782{
3783 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3784 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3785 struct extent_buffer *eb, *prev_eb = NULL;
3786 struct extent_page_data epd = {
3787 .bio = NULL,
3788 .tree = tree,
3789 .extent_locked = 0,
3790 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3791 .bio_flags = 0,
0b32f4bb
JB
3792 };
3793 int ret = 0;
3794 int done = 0;
3795 int nr_to_write_done = 0;
3796 struct pagevec pvec;
3797 int nr_pages;
3798 pgoff_t index;
3799 pgoff_t end; /* Inclusive */
3800 int scanned = 0;
3801 int tag;
3802
3803 pagevec_init(&pvec, 0);
3804 if (wbc->range_cyclic) {
3805 index = mapping->writeback_index; /* Start from prev offset */
3806 end = -1;
3807 } else {
09cbfeaf
KS
3808 index = wbc->range_start >> PAGE_SHIFT;
3809 end = wbc->range_end >> PAGE_SHIFT;
0b32f4bb
JB
3810 scanned = 1;
3811 }
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag = PAGECACHE_TAG_TOWRITE;
3814 else
3815 tag = PAGECACHE_TAG_DIRTY;
3816retry:
3817 if (wbc->sync_mode == WB_SYNC_ALL)
3818 tag_pages_for_writeback(mapping, index, end);
3819 while (!done && !nr_to_write_done && (index <= end) &&
3820 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3821 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3822 unsigned i;
3823
3824 scanned = 1;
3825 for (i = 0; i < nr_pages; i++) {
3826 struct page *page = pvec.pages[i];
3827
3828 if (!PagePrivate(page))
3829 continue;
3830
3831 if (!wbc->range_cyclic && page->index > end) {
3832 done = 1;
3833 break;
3834 }
3835
b5bae261
JB
3836 spin_lock(&mapping->private_lock);
3837 if (!PagePrivate(page)) {
3838 spin_unlock(&mapping->private_lock);
3839 continue;
3840 }
3841
0b32f4bb 3842 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3843
3844 /*
3845 * Shouldn't happen and normally this would be a BUG_ON
3846 * but no sense in crashing the users box for something
3847 * we can survive anyway.
3848 */
fae7f21c 3849 if (WARN_ON(!eb)) {
b5bae261 3850 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3851 continue;
3852 }
3853
b5bae261
JB
3854 if (eb == prev_eb) {
3855 spin_unlock(&mapping->private_lock);
0b32f4bb 3856 continue;
b5bae261 3857 }
0b32f4bb 3858
b5bae261
JB
3859 ret = atomic_inc_not_zero(&eb->refs);
3860 spin_unlock(&mapping->private_lock);
3861 if (!ret)
0b32f4bb 3862 continue;
0b32f4bb
JB
3863
3864 prev_eb = eb;
3865 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3866 if (!ret) {
3867 free_extent_buffer(eb);
3868 continue;
3869 }
3870
3871 ret = write_one_eb(eb, fs_info, wbc, &epd);
3872 if (ret) {
3873 done = 1;
3874 free_extent_buffer(eb);
3875 break;
3876 }
3877 free_extent_buffer(eb);
3878
3879 /*
3880 * the filesystem may choose to bump up nr_to_write.
3881 * We have to make sure to honor the new nr_to_write
3882 * at any time
3883 */
3884 nr_to_write_done = wbc->nr_to_write <= 0;
3885 }
3886 pagevec_release(&pvec);
3887 cond_resched();
3888 }
3889 if (!scanned && !done) {
3890 /*
3891 * We hit the last page and there is more work to be done: wrap
3892 * back to the start of the file
3893 */
3894 scanned = 1;
3895 index = 0;
3896 goto retry;
3897 }
3898 flush_write_bio(&epd);
3899 return ret;
3900}
3901
d1310b2e 3902/**
4bef0848 3903 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3904 * @mapping: address space structure to write
3905 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3906 * @writepage: function called for each page
3907 * @data: data passed to writepage function
3908 *
3909 * If a page is already under I/O, write_cache_pages() skips it, even
3910 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3911 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3912 * and msync() need to guarantee that all the data which was dirty at the time
3913 * the call was made get new I/O started against them. If wbc->sync_mode is
3914 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3915 * existing IO to complete.
3916 */
4242b64a 3917static int extent_write_cache_pages(struct address_space *mapping,
4bef0848 3918 struct writeback_control *wbc,
d2c3f4f6
CM
3919 writepage_t writepage, void *data,
3920 void (*flush_fn)(void *))
d1310b2e 3921{
7fd1a3f7 3922 struct inode *inode = mapping->host;
d1310b2e
CM
3923 int ret = 0;
3924 int done = 0;
f85d7d6c 3925 int nr_to_write_done = 0;
d1310b2e
CM
3926 struct pagevec pvec;
3927 int nr_pages;
3928 pgoff_t index;
3929 pgoff_t end; /* Inclusive */
a9132667
LB
3930 pgoff_t done_index;
3931 int range_whole = 0;
d1310b2e 3932 int scanned = 0;
f7aaa06b 3933 int tag;
d1310b2e 3934
7fd1a3f7
JB
3935 /*
3936 * We have to hold onto the inode so that ordered extents can do their
3937 * work when the IO finishes. The alternative to this is failing to add
3938 * an ordered extent if the igrab() fails there and that is a huge pain
3939 * to deal with, so instead just hold onto the inode throughout the
3940 * writepages operation. If it fails here we are freeing up the inode
3941 * anyway and we'd rather not waste our time writing out stuff that is
3942 * going to be truncated anyway.
3943 */
3944 if (!igrab(inode))
3945 return 0;
3946
d1310b2e
CM
3947 pagevec_init(&pvec, 0);
3948 if (wbc->range_cyclic) {
3949 index = mapping->writeback_index; /* Start from prev offset */
3950 end = -1;
3951 } else {
09cbfeaf
KS
3952 index = wbc->range_start >> PAGE_SHIFT;
3953 end = wbc->range_end >> PAGE_SHIFT;
a9132667
LB
3954 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3955 range_whole = 1;
d1310b2e
CM
3956 scanned = 1;
3957 }
f7aaa06b
JB
3958 if (wbc->sync_mode == WB_SYNC_ALL)
3959 tag = PAGECACHE_TAG_TOWRITE;
3960 else
3961 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3962retry:
f7aaa06b
JB
3963 if (wbc->sync_mode == WB_SYNC_ALL)
3964 tag_pages_for_writeback(mapping, index, end);
a9132667 3965 done_index = index;
f85d7d6c 3966 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3967 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3968 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3969 unsigned i;
3970
3971 scanned = 1;
3972 for (i = 0; i < nr_pages; i++) {
3973 struct page *page = pvec.pages[i];
3974
a9132667 3975 done_index = page->index;
d1310b2e
CM
3976 /*
3977 * At this point we hold neither mapping->tree_lock nor
3978 * lock on the page itself: the page may be truncated or
3979 * invalidated (changing page->mapping to NULL), or even
3980 * swizzled back from swapper_space to tmpfs file
3981 * mapping
3982 */
c8f2f24b
JB
3983 if (!trylock_page(page)) {
3984 flush_fn(data);
3985 lock_page(page);
01d658f2 3986 }
d1310b2e
CM
3987
3988 if (unlikely(page->mapping != mapping)) {
3989 unlock_page(page);
3990 continue;
3991 }
3992
3993 if (!wbc->range_cyclic && page->index > end) {
3994 done = 1;
3995 unlock_page(page);
3996 continue;
3997 }
3998
d2c3f4f6 3999 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4000 if (PageWriteback(page))
4001 flush_fn(data);
d1310b2e 4002 wait_on_page_writeback(page);
d2c3f4f6 4003 }
d1310b2e
CM
4004
4005 if (PageWriteback(page) ||
4006 !clear_page_dirty_for_io(page)) {
4007 unlock_page(page);
4008 continue;
4009 }
4010
4011 ret = (*writepage)(page, wbc, data);
4012
4013 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4014 unlock_page(page);
4015 ret = 0;
4016 }
a9132667
LB
4017 if (ret < 0) {
4018 /*
4019 * done_index is set past this page,
4020 * so media errors will not choke
4021 * background writeout for the entire
4022 * file. This has consequences for
4023 * range_cyclic semantics (ie. it may
4024 * not be suitable for data integrity
4025 * writeout).
4026 */
4027 done_index = page->index + 1;
4028 done = 1;
4029 break;
4030 }
f85d7d6c
CM
4031
4032 /*
4033 * the filesystem may choose to bump up nr_to_write.
4034 * We have to make sure to honor the new nr_to_write
4035 * at any time
4036 */
4037 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4038 }
4039 pagevec_release(&pvec);
4040 cond_resched();
4041 }
894b36e3 4042 if (!scanned && !done) {
d1310b2e
CM
4043 /*
4044 * We hit the last page and there is more work to be done: wrap
4045 * back to the start of the file
4046 */
4047 scanned = 1;
4048 index = 0;
4049 goto retry;
4050 }
a9132667
LB
4051
4052 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4053 mapping->writeback_index = done_index;
4054
7fd1a3f7 4055 btrfs_add_delayed_iput(inode);
894b36e3 4056 return ret;
d1310b2e 4057}
d1310b2e 4058
ffbd517d 4059static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4060{
d2c3f4f6 4061 if (epd->bio) {
355808c2
JM
4062 int ret;
4063
1f7ad75b 4064 bio_set_op_attrs(epd->bio, REQ_OP_WRITE,
70fd7614 4065 epd->sync_io ? REQ_SYNC : 0);
355808c2 4066
1f7ad75b 4067 ret = submit_one_bio(epd->bio, 0, epd->bio_flags);
79787eaa 4068 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4069 epd->bio = NULL;
4070 }
4071}
4072
ffbd517d
CM
4073static noinline void flush_write_bio(void *data)
4074{
4075 struct extent_page_data *epd = data;
4076 flush_epd_write_bio(epd);
4077}
4078
d1310b2e
CM
4079int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4080 get_extent_t *get_extent,
4081 struct writeback_control *wbc)
4082{
4083 int ret;
d1310b2e
CM
4084 struct extent_page_data epd = {
4085 .bio = NULL,
4086 .tree = tree,
4087 .get_extent = get_extent,
771ed689 4088 .extent_locked = 0,
ffbd517d 4089 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4090 .bio_flags = 0,
d1310b2e 4091 };
d1310b2e 4092
d1310b2e
CM
4093 ret = __extent_writepage(page, wbc, &epd);
4094
ffbd517d 4095 flush_epd_write_bio(&epd);
d1310b2e
CM
4096 return ret;
4097}
d1310b2e 4098
771ed689
CM
4099int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4100 u64 start, u64 end, get_extent_t *get_extent,
4101 int mode)
4102{
4103 int ret = 0;
4104 struct address_space *mapping = inode->i_mapping;
4105 struct page *page;
09cbfeaf
KS
4106 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4107 PAGE_SHIFT;
771ed689
CM
4108
4109 struct extent_page_data epd = {
4110 .bio = NULL,
4111 .tree = tree,
4112 .get_extent = get_extent,
4113 .extent_locked = 1,
ffbd517d 4114 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4115 .bio_flags = 0,
771ed689
CM
4116 };
4117 struct writeback_control wbc_writepages = {
771ed689 4118 .sync_mode = mode,
771ed689
CM
4119 .nr_to_write = nr_pages * 2,
4120 .range_start = start,
4121 .range_end = end + 1,
4122 };
4123
d397712b 4124 while (start <= end) {
09cbfeaf 4125 page = find_get_page(mapping, start >> PAGE_SHIFT);
771ed689
CM
4126 if (clear_page_dirty_for_io(page))
4127 ret = __extent_writepage(page, &wbc_writepages, &epd);
4128 else {
4129 if (tree->ops && tree->ops->writepage_end_io_hook)
4130 tree->ops->writepage_end_io_hook(page, start,
09cbfeaf 4131 start + PAGE_SIZE - 1,
771ed689
CM
4132 NULL, 1);
4133 unlock_page(page);
4134 }
09cbfeaf
KS
4135 put_page(page);
4136 start += PAGE_SIZE;
771ed689
CM
4137 }
4138
ffbd517d 4139 flush_epd_write_bio(&epd);
771ed689
CM
4140 return ret;
4141}
d1310b2e
CM
4142
4143int extent_writepages(struct extent_io_tree *tree,
4144 struct address_space *mapping,
4145 get_extent_t *get_extent,
4146 struct writeback_control *wbc)
4147{
4148 int ret = 0;
4149 struct extent_page_data epd = {
4150 .bio = NULL,
4151 .tree = tree,
4152 .get_extent = get_extent,
771ed689 4153 .extent_locked = 0,
ffbd517d 4154 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4155 .bio_flags = 0,
d1310b2e
CM
4156 };
4157
4242b64a 4158 ret = extent_write_cache_pages(mapping, wbc, __extent_writepage, &epd,
d2c3f4f6 4159 flush_write_bio);
ffbd517d 4160 flush_epd_write_bio(&epd);
d1310b2e
CM
4161 return ret;
4162}
d1310b2e
CM
4163
4164int extent_readpages(struct extent_io_tree *tree,
4165 struct address_space *mapping,
4166 struct list_head *pages, unsigned nr_pages,
4167 get_extent_t get_extent)
4168{
4169 struct bio *bio = NULL;
4170 unsigned page_idx;
c8b97818 4171 unsigned long bio_flags = 0;
67c9684f
LB
4172 struct page *pagepool[16];
4173 struct page *page;
125bac01 4174 struct extent_map *em_cached = NULL;
67c9684f 4175 int nr = 0;
808f80b4 4176 u64 prev_em_start = (u64)-1;
d1310b2e 4177
d1310b2e 4178 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4179 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4180
4181 prefetchw(&page->flags);
4182 list_del(&page->lru);
67c9684f 4183 if (add_to_page_cache_lru(page, mapping,
8a5c743e
MH
4184 page->index,
4185 readahead_gfp_mask(mapping))) {
09cbfeaf 4186 put_page(page);
67c9684f 4187 continue;
d1310b2e 4188 }
67c9684f
LB
4189
4190 pagepool[nr++] = page;
4191 if (nr < ARRAY_SIZE(pagepool))
4192 continue;
125bac01 4193 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4194 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4195 nr = 0;
d1310b2e 4196 }
9974090b 4197 if (nr)
125bac01 4198 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
1f7ad75b 4199 &bio, 0, &bio_flags, &prev_em_start);
67c9684f 4200
125bac01
MX
4201 if (em_cached)
4202 free_extent_map(em_cached);
4203
d1310b2e
CM
4204 BUG_ON(!list_empty(pages));
4205 if (bio)
1f7ad75b 4206 return submit_one_bio(bio, 0, bio_flags);
d1310b2e
CM
4207 return 0;
4208}
d1310b2e
CM
4209
4210/*
4211 * basic invalidatepage code, this waits on any locked or writeback
4212 * ranges corresponding to the page, and then deletes any extent state
4213 * records from the tree
4214 */
4215int extent_invalidatepage(struct extent_io_tree *tree,
4216 struct page *page, unsigned long offset)
4217{
2ac55d41 4218 struct extent_state *cached_state = NULL;
4eee4fa4 4219 u64 start = page_offset(page);
09cbfeaf 4220 u64 end = start + PAGE_SIZE - 1;
d1310b2e
CM
4221 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4222
fda2832f 4223 start += ALIGN(offset, blocksize);
d1310b2e
CM
4224 if (start > end)
4225 return 0;
4226
ff13db41 4227 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4228 wait_on_page_writeback(page);
d1310b2e 4229 clear_extent_bit(tree, start, end,
32c00aff
JB
4230 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4231 EXTENT_DO_ACCOUNTING,
2ac55d41 4232 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4233 return 0;
4234}
d1310b2e 4235
7b13b7b1
CM
4236/*
4237 * a helper for releasepage, this tests for areas of the page that
4238 * are locked or under IO and drops the related state bits if it is safe
4239 * to drop the page.
4240 */
48a3b636
ES
4241static int try_release_extent_state(struct extent_map_tree *map,
4242 struct extent_io_tree *tree,
4243 struct page *page, gfp_t mask)
7b13b7b1 4244{
4eee4fa4 4245 u64 start = page_offset(page);
09cbfeaf 4246 u64 end = start + PAGE_SIZE - 1;
7b13b7b1
CM
4247 int ret = 1;
4248
211f90e6 4249 if (test_range_bit(tree, start, end,
8b62b72b 4250 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4251 ret = 0;
4252 else {
11ef160f
CM
4253 /*
4254 * at this point we can safely clear everything except the
4255 * locked bit and the nodatasum bit
4256 */
e3f24cc5 4257 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4258 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4259 0, 0, NULL, mask);
e3f24cc5
CM
4260
4261 /* if clear_extent_bit failed for enomem reasons,
4262 * we can't allow the release to continue.
4263 */
4264 if (ret < 0)
4265 ret = 0;
4266 else
4267 ret = 1;
7b13b7b1
CM
4268 }
4269 return ret;
4270}
7b13b7b1 4271
d1310b2e
CM
4272/*
4273 * a helper for releasepage. As long as there are no locked extents
4274 * in the range corresponding to the page, both state records and extent
4275 * map records are removed
4276 */
4277int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4278 struct extent_io_tree *tree, struct page *page,
4279 gfp_t mask)
d1310b2e
CM
4280{
4281 struct extent_map *em;
4eee4fa4 4282 u64 start = page_offset(page);
09cbfeaf 4283 u64 end = start + PAGE_SIZE - 1;
7b13b7b1 4284
d0164adc 4285 if (gfpflags_allow_blocking(mask) &&
ee22184b 4286 page->mapping->host->i_size > SZ_16M) {
39b5637f 4287 u64 len;
70dec807 4288 while (start <= end) {
39b5637f 4289 len = end - start + 1;
890871be 4290 write_lock(&map->lock);
39b5637f 4291 em = lookup_extent_mapping(map, start, len);
285190d9 4292 if (!em) {
890871be 4293 write_unlock(&map->lock);
70dec807
CM
4294 break;
4295 }
7f3c74fb
CM
4296 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4297 em->start != start) {
890871be 4298 write_unlock(&map->lock);
70dec807
CM
4299 free_extent_map(em);
4300 break;
4301 }
4302 if (!test_range_bit(tree, em->start,
4303 extent_map_end(em) - 1,
8b62b72b 4304 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4305 0, NULL)) {
70dec807
CM
4306 remove_extent_mapping(map, em);
4307 /* once for the rb tree */
4308 free_extent_map(em);
4309 }
4310 start = extent_map_end(em);
890871be 4311 write_unlock(&map->lock);
70dec807
CM
4312
4313 /* once for us */
d1310b2e
CM
4314 free_extent_map(em);
4315 }
d1310b2e 4316 }
7b13b7b1 4317 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4318}
d1310b2e 4319
ec29ed5b
CM
4320/*
4321 * helper function for fiemap, which doesn't want to see any holes.
4322 * This maps until we find something past 'last'
4323 */
4324static struct extent_map *get_extent_skip_holes(struct inode *inode,
4325 u64 offset,
4326 u64 last,
4327 get_extent_t *get_extent)
4328{
da17066c 4329 u64 sectorsize = btrfs_inode_sectorsize(inode);
ec29ed5b
CM
4330 struct extent_map *em;
4331 u64 len;
4332
4333 if (offset >= last)
4334 return NULL;
4335
67871254 4336 while (1) {
ec29ed5b
CM
4337 len = last - offset;
4338 if (len == 0)
4339 break;
fda2832f 4340 len = ALIGN(len, sectorsize);
fc4f21b1 4341 em = get_extent(BTRFS_I(inode), NULL, 0, offset, len, 0);
c704005d 4342 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4343 return em;
4344
4345 /* if this isn't a hole return it */
4346 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4347 em->block_start != EXTENT_MAP_HOLE) {
4348 return em;
4349 }
4350
4351 /* this is a hole, advance to the next extent */
4352 offset = extent_map_end(em);
4353 free_extent_map(em);
4354 if (offset >= last)
4355 break;
4356 }
4357 return NULL;
4358}
4359
4751832d
QW
4360/*
4361 * To cache previous fiemap extent
4362 *
4363 * Will be used for merging fiemap extent
4364 */
4365struct fiemap_cache {
4366 u64 offset;
4367 u64 phys;
4368 u64 len;
4369 u32 flags;
4370 bool cached;
4371};
4372
4373/*
4374 * Helper to submit fiemap extent.
4375 *
4376 * Will try to merge current fiemap extent specified by @offset, @phys,
4377 * @len and @flags with cached one.
4378 * And only when we fails to merge, cached one will be submitted as
4379 * fiemap extent.
4380 *
4381 * Return value is the same as fiemap_fill_next_extent().
4382 */
4383static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4384 struct fiemap_cache *cache,
4385 u64 offset, u64 phys, u64 len, u32 flags)
4386{
4387 int ret = 0;
4388
4389 if (!cache->cached)
4390 goto assign;
4391
4392 /*
4393 * Sanity check, extent_fiemap() should have ensured that new
4394 * fiemap extent won't overlap with cahced one.
4395 * Not recoverable.
4396 *
4397 * NOTE: Physical address can overlap, due to compression
4398 */
4399 if (cache->offset + cache->len > offset) {
4400 WARN_ON(1);
4401 return -EINVAL;
4402 }
4403
4404 /*
4405 * Only merges fiemap extents if
4406 * 1) Their logical addresses are continuous
4407 *
4408 * 2) Their physical addresses are continuous
4409 * So truly compressed (physical size smaller than logical size)
4410 * extents won't get merged with each other
4411 *
4412 * 3) Share same flags except FIEMAP_EXTENT_LAST
4413 * So regular extent won't get merged with prealloc extent
4414 */
4415 if (cache->offset + cache->len == offset &&
4416 cache->phys + cache->len == phys &&
4417 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4418 (flags & ~FIEMAP_EXTENT_LAST)) {
4419 cache->len += len;
4420 cache->flags |= flags;
4421 goto try_submit_last;
4422 }
4423
4424 /* Not mergeable, need to submit cached one */
4425 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4426 cache->len, cache->flags);
4427 cache->cached = false;
4428 if (ret)
4429 return ret;
4430assign:
4431 cache->cached = true;
4432 cache->offset = offset;
4433 cache->phys = phys;
4434 cache->len = len;
4435 cache->flags = flags;
4436try_submit_last:
4437 if (cache->flags & FIEMAP_EXTENT_LAST) {
4438 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4439 cache->phys, cache->len, cache->flags);
4440 cache->cached = false;
4441 }
4442 return ret;
4443}
4444
4445/*
4446 * Sanity check for fiemap cache
4447 *
4448 * All fiemap cache should be submitted by emit_fiemap_extent()
4449 * Iteration should be terminated either by last fiemap extent or
4450 * fieinfo->fi_extents_max.
4451 * So no cached fiemap should exist.
4452 */
4453static int check_fiemap_cache(struct btrfs_fs_info *fs_info,
4454 struct fiemap_extent_info *fieinfo,
4455 struct fiemap_cache *cache)
4456{
4457 int ret;
4458
4459 if (!cache->cached)
4460 return 0;
4461
4462 /* Small and recoverbale problem, only to info developer */
4463#ifdef CONFIG_BTRFS_DEBUG
4464 WARN_ON(1);
4465#endif
4466 btrfs_warn(fs_info,
4467 "unhandled fiemap cache detected: offset=%llu phys=%llu len=%llu flags=0x%x",
4468 cache->offset, cache->phys, cache->len, cache->flags);
4469 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4470 cache->len, cache->flags);
4471 cache->cached = false;
4472 if (ret > 0)
4473 ret = 0;
4474 return ret;
4475}
4476
1506fcc8
YS
4477int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4478 __u64 start, __u64 len, get_extent_t *get_extent)
4479{
975f84fe 4480 int ret = 0;
1506fcc8
YS
4481 u64 off = start;
4482 u64 max = start + len;
4483 u32 flags = 0;
975f84fe
JB
4484 u32 found_type;
4485 u64 last;
ec29ed5b 4486 u64 last_for_get_extent = 0;
1506fcc8 4487 u64 disko = 0;
ec29ed5b 4488 u64 isize = i_size_read(inode);
975f84fe 4489 struct btrfs_key found_key;
1506fcc8 4490 struct extent_map *em = NULL;
2ac55d41 4491 struct extent_state *cached_state = NULL;
975f84fe 4492 struct btrfs_path *path;
dc046b10 4493 struct btrfs_root *root = BTRFS_I(inode)->root;
4751832d 4494 struct fiemap_cache cache = { 0 };
1506fcc8 4495 int end = 0;
ec29ed5b
CM
4496 u64 em_start = 0;
4497 u64 em_len = 0;
4498 u64 em_end = 0;
1506fcc8
YS
4499
4500 if (len == 0)
4501 return -EINVAL;
4502
975f84fe
JB
4503 path = btrfs_alloc_path();
4504 if (!path)
4505 return -ENOMEM;
4506 path->leave_spinning = 1;
4507
da17066c
JM
4508 start = round_down(start, btrfs_inode_sectorsize(inode));
4509 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4d479cf0 4510
ec29ed5b
CM
4511 /*
4512 * lookup the last file extent. We're not using i_size here
4513 * because there might be preallocation past i_size
4514 */
f85b7379
DS
4515 ret = btrfs_lookup_file_extent(NULL, root, path,
4516 btrfs_ino(BTRFS_I(inode)), -1, 0);
975f84fe
JB
4517 if (ret < 0) {
4518 btrfs_free_path(path);
4519 return ret;
2d324f59
LB
4520 } else {
4521 WARN_ON(!ret);
4522 if (ret == 1)
4523 ret = 0;
975f84fe 4524 }
2d324f59 4525
975f84fe 4526 path->slots[0]--;
975f84fe 4527 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4528 found_type = found_key.type;
975f84fe 4529
ec29ed5b 4530 /* No extents, but there might be delalloc bits */
4a0cc7ca 4531 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
975f84fe 4532 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4533 /* have to trust i_size as the end */
4534 last = (u64)-1;
4535 last_for_get_extent = isize;
4536 } else {
4537 /*
4538 * remember the start of the last extent. There are a
4539 * bunch of different factors that go into the length of the
4540 * extent, so its much less complex to remember where it started
4541 */
4542 last = found_key.offset;
4543 last_for_get_extent = last + 1;
975f84fe 4544 }
fe09e16c 4545 btrfs_release_path(path);
975f84fe 4546
ec29ed5b
CM
4547 /*
4548 * we might have some extents allocated but more delalloc past those
4549 * extents. so, we trust isize unless the start of the last extent is
4550 * beyond isize
4551 */
4552 if (last < isize) {
4553 last = (u64)-1;
4554 last_for_get_extent = isize;
4555 }
4556
ff13db41 4557 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4558 &cached_state);
ec29ed5b 4559
4d479cf0 4560 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4561 get_extent);
1506fcc8
YS
4562 if (!em)
4563 goto out;
4564 if (IS_ERR(em)) {
4565 ret = PTR_ERR(em);
4566 goto out;
4567 }
975f84fe 4568
1506fcc8 4569 while (!end) {
b76bb701 4570 u64 offset_in_extent = 0;
ea8efc74
CM
4571
4572 /* break if the extent we found is outside the range */
4573 if (em->start >= max || extent_map_end(em) < off)
4574 break;
4575
4576 /*
4577 * get_extent may return an extent that starts before our
4578 * requested range. We have to make sure the ranges
4579 * we return to fiemap always move forward and don't
4580 * overlap, so adjust the offsets here
4581 */
4582 em_start = max(em->start, off);
1506fcc8 4583
ea8efc74
CM
4584 /*
4585 * record the offset from the start of the extent
b76bb701
JB
4586 * for adjusting the disk offset below. Only do this if the
4587 * extent isn't compressed since our in ram offset may be past
4588 * what we have actually allocated on disk.
ea8efc74 4589 */
b76bb701
JB
4590 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4591 offset_in_extent = em_start - em->start;
ec29ed5b 4592 em_end = extent_map_end(em);
ea8efc74 4593 em_len = em_end - em_start;
1506fcc8
YS
4594 disko = 0;
4595 flags = 0;
4596
ea8efc74
CM
4597 /*
4598 * bump off for our next call to get_extent
4599 */
4600 off = extent_map_end(em);
4601 if (off >= max)
4602 end = 1;
4603
93dbfad7 4604 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4605 end = 1;
4606 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4607 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4608 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4609 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4610 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4611 flags |= (FIEMAP_EXTENT_DELALLOC |
4612 FIEMAP_EXTENT_UNKNOWN);
dc046b10 4613 } else if (fieinfo->fi_extents_max) {
afce772e
LF
4614 struct btrfs_trans_handle *trans;
4615
dc046b10
JB
4616 u64 bytenr = em->block_start -
4617 (em->start - em->orig_start);
fe09e16c 4618
ea8efc74 4619 disko = em->block_start + offset_in_extent;
fe09e16c 4620
afce772e
LF
4621 /*
4622 * We need a trans handle to get delayed refs
4623 */
4624 trans = btrfs_join_transaction(root);
4625 /*
4626 * It's OK if we can't start a trans we can still check
4627 * from commit_root
4628 */
4629 if (IS_ERR(trans))
4630 trans = NULL;
4631
fe09e16c
LB
4632 /*
4633 * As btrfs supports shared space, this information
4634 * can be exported to userspace tools via
dc046b10
JB
4635 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4636 * then we're just getting a count and we can skip the
4637 * lookup stuff.
fe09e16c 4638 */
afce772e 4639 ret = btrfs_check_shared(trans, root->fs_info,
f85b7379
DS
4640 root->objectid,
4641 btrfs_ino(BTRFS_I(inode)), bytenr);
afce772e 4642 if (trans)
3a45bb20 4643 btrfs_end_transaction(trans);
dc046b10 4644 if (ret < 0)
fe09e16c 4645 goto out_free;
dc046b10 4646 if (ret)
fe09e16c 4647 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4648 ret = 0;
1506fcc8
YS
4649 }
4650 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4651 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4652 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4653 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4654
1506fcc8
YS
4655 free_extent_map(em);
4656 em = NULL;
ec29ed5b
CM
4657 if ((em_start >= last) || em_len == (u64)-1 ||
4658 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4659 flags |= FIEMAP_EXTENT_LAST;
4660 end = 1;
4661 }
4662
ec29ed5b
CM
4663 /* now scan forward to see if this is really the last extent. */
4664 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4665 get_extent);
4666 if (IS_ERR(em)) {
4667 ret = PTR_ERR(em);
4668 goto out;
4669 }
4670 if (!em) {
975f84fe
JB
4671 flags |= FIEMAP_EXTENT_LAST;
4672 end = 1;
4673 }
4751832d
QW
4674 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4675 em_len, flags);
26e726af
CS
4676 if (ret) {
4677 if (ret == 1)
4678 ret = 0;
ec29ed5b 4679 goto out_free;
26e726af 4680 }
1506fcc8
YS
4681 }
4682out_free:
4751832d
QW
4683 if (!ret)
4684 ret = check_fiemap_cache(root->fs_info, fieinfo, &cache);
1506fcc8
YS
4685 free_extent_map(em);
4686out:
fe09e16c 4687 btrfs_free_path(path);
a52f4cd2 4688 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4689 &cached_state, GFP_NOFS);
1506fcc8
YS
4690 return ret;
4691}
4692
727011e0
CM
4693static void __free_extent_buffer(struct extent_buffer *eb)
4694{
6d49ba1b 4695 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4696 kmem_cache_free(extent_buffer_cache, eb);
4697}
4698
a26e8c9f 4699int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4700{
4701 return (atomic_read(&eb->io_pages) ||
4702 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4703 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4704}
4705
4706/*
4707 * Helper for releasing extent buffer page.
4708 */
a50924e3 4709static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4710{
4711 unsigned long index;
db7f3436
JB
4712 struct page *page;
4713 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4714
4715 BUG_ON(extent_buffer_under_io(eb));
4716
a50924e3
DS
4717 index = num_extent_pages(eb->start, eb->len);
4718 if (index == 0)
db7f3436
JB
4719 return;
4720
4721 do {
4722 index--;
fb85fc9a 4723 page = eb->pages[index];
5d2361db
FL
4724 if (!page)
4725 continue;
4726 if (mapped)
db7f3436 4727 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4728 /*
4729 * We do this since we'll remove the pages after we've
4730 * removed the eb from the radix tree, so we could race
4731 * and have this page now attached to the new eb. So
4732 * only clear page_private if it's still connected to
4733 * this eb.
4734 */
4735 if (PagePrivate(page) &&
4736 page->private == (unsigned long)eb) {
4737 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4738 BUG_ON(PageDirty(page));
4739 BUG_ON(PageWriteback(page));
db7f3436 4740 /*
5d2361db
FL
4741 * We need to make sure we haven't be attached
4742 * to a new eb.
db7f3436 4743 */
5d2361db
FL
4744 ClearPagePrivate(page);
4745 set_page_private(page, 0);
4746 /* One for the page private */
09cbfeaf 4747 put_page(page);
db7f3436 4748 }
5d2361db
FL
4749
4750 if (mapped)
4751 spin_unlock(&page->mapping->private_lock);
4752
01327610 4753 /* One for when we allocated the page */
09cbfeaf 4754 put_page(page);
a50924e3 4755 } while (index != 0);
db7f3436
JB
4756}
4757
4758/*
4759 * Helper for releasing the extent buffer.
4760 */
4761static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4762{
a50924e3 4763 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4764 __free_extent_buffer(eb);
4765}
4766
f28491e0
JB
4767static struct extent_buffer *
4768__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4769 unsigned long len)
d1310b2e
CM
4770{
4771 struct extent_buffer *eb = NULL;
4772
d1b5c567 4773 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4774 eb->start = start;
4775 eb->len = len;
f28491e0 4776 eb->fs_info = fs_info;
815a51c7 4777 eb->bflags = 0;
bd681513
CM
4778 rwlock_init(&eb->lock);
4779 atomic_set(&eb->write_locks, 0);
4780 atomic_set(&eb->read_locks, 0);
4781 atomic_set(&eb->blocking_readers, 0);
4782 atomic_set(&eb->blocking_writers, 0);
4783 atomic_set(&eb->spinning_readers, 0);
4784 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4785 eb->lock_nested = 0;
bd681513
CM
4786 init_waitqueue_head(&eb->write_lock_wq);
4787 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4788
6d49ba1b
ES
4789 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4790
3083ee2e 4791 spin_lock_init(&eb->refs_lock);
d1310b2e 4792 atomic_set(&eb->refs, 1);
0b32f4bb 4793 atomic_set(&eb->io_pages, 0);
727011e0 4794
b8dae313
DS
4795 /*
4796 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4797 */
4798 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4799 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4800 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4801
4802 return eb;
4803}
4804
815a51c7
JS
4805struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4806{
4807 unsigned long i;
4808 struct page *p;
4809 struct extent_buffer *new;
4810 unsigned long num_pages = num_extent_pages(src->start, src->len);
4811
3f556f78 4812 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4813 if (new == NULL)
4814 return NULL;
4815
4816 for (i = 0; i < num_pages; i++) {
9ec72677 4817 p = alloc_page(GFP_NOFS);
db7f3436
JB
4818 if (!p) {
4819 btrfs_release_extent_buffer(new);
4820 return NULL;
4821 }
815a51c7
JS
4822 attach_extent_buffer_page(new, p);
4823 WARN_ON(PageDirty(p));
4824 SetPageUptodate(p);
4825 new->pages[i] = p;
fba1acf9 4826 copy_page(page_address(p), page_address(src->pages[i]));
815a51c7
JS
4827 }
4828
815a51c7
JS
4829 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4830 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4831
4832 return new;
4833}
4834
0f331229
OS
4835struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4836 u64 start, unsigned long len)
815a51c7
JS
4837{
4838 struct extent_buffer *eb;
3f556f78 4839 unsigned long num_pages;
815a51c7
JS
4840 unsigned long i;
4841
0f331229 4842 num_pages = num_extent_pages(start, len);
3f556f78
DS
4843
4844 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4845 if (!eb)
4846 return NULL;
4847
4848 for (i = 0; i < num_pages; i++) {
9ec72677 4849 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4850 if (!eb->pages[i])
4851 goto err;
4852 }
4853 set_extent_buffer_uptodate(eb);
4854 btrfs_set_header_nritems(eb, 0);
4855 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4856
4857 return eb;
4858err:
84167d19
SB
4859 for (; i > 0; i--)
4860 __free_page(eb->pages[i - 1]);
815a51c7
JS
4861 __free_extent_buffer(eb);
4862 return NULL;
4863}
4864
0f331229 4865struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4866 u64 start)
0f331229 4867{
da17066c 4868 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
0f331229
OS
4869}
4870
0b32f4bb
JB
4871static void check_buffer_tree_ref(struct extent_buffer *eb)
4872{
242e18c7 4873 int refs;
0b32f4bb
JB
4874 /* the ref bit is tricky. We have to make sure it is set
4875 * if we have the buffer dirty. Otherwise the
4876 * code to free a buffer can end up dropping a dirty
4877 * page
4878 *
4879 * Once the ref bit is set, it won't go away while the
4880 * buffer is dirty or in writeback, and it also won't
4881 * go away while we have the reference count on the
4882 * eb bumped.
4883 *
4884 * We can't just set the ref bit without bumping the
4885 * ref on the eb because free_extent_buffer might
4886 * see the ref bit and try to clear it. If this happens
4887 * free_extent_buffer might end up dropping our original
4888 * ref by mistake and freeing the page before we are able
4889 * to add one more ref.
4890 *
4891 * So bump the ref count first, then set the bit. If someone
4892 * beat us to it, drop the ref we added.
4893 */
242e18c7
CM
4894 refs = atomic_read(&eb->refs);
4895 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4896 return;
4897
594831c4
JB
4898 spin_lock(&eb->refs_lock);
4899 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4900 atomic_inc(&eb->refs);
594831c4 4901 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4902}
4903
2457aec6
MG
4904static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4905 struct page *accessed)
5df4235e
JB
4906{
4907 unsigned long num_pages, i;
4908
0b32f4bb
JB
4909 check_buffer_tree_ref(eb);
4910
5df4235e
JB
4911 num_pages = num_extent_pages(eb->start, eb->len);
4912 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4913 struct page *p = eb->pages[i];
4914
2457aec6
MG
4915 if (p != accessed)
4916 mark_page_accessed(p);
5df4235e
JB
4917 }
4918}
4919
f28491e0
JB
4920struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4921 u64 start)
452c75c3
CS
4922{
4923 struct extent_buffer *eb;
4924
4925 rcu_read_lock();
f28491e0 4926 eb = radix_tree_lookup(&fs_info->buffer_radix,
09cbfeaf 4927 start >> PAGE_SHIFT);
452c75c3
CS
4928 if (eb && atomic_inc_not_zero(&eb->refs)) {
4929 rcu_read_unlock();
062c19e9
FM
4930 /*
4931 * Lock our eb's refs_lock to avoid races with
4932 * free_extent_buffer. When we get our eb it might be flagged
4933 * with EXTENT_BUFFER_STALE and another task running
4934 * free_extent_buffer might have seen that flag set,
4935 * eb->refs == 2, that the buffer isn't under IO (dirty and
4936 * writeback flags not set) and it's still in the tree (flag
4937 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4938 * of decrementing the extent buffer's reference count twice.
4939 * So here we could race and increment the eb's reference count,
4940 * clear its stale flag, mark it as dirty and drop our reference
4941 * before the other task finishes executing free_extent_buffer,
4942 * which would later result in an attempt to free an extent
4943 * buffer that is dirty.
4944 */
4945 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4946 spin_lock(&eb->refs_lock);
4947 spin_unlock(&eb->refs_lock);
4948 }
2457aec6 4949 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4950 return eb;
4951 }
4952 rcu_read_unlock();
4953
4954 return NULL;
4955}
4956
faa2dbf0
JB
4957#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4958struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
da17066c 4959 u64 start)
faa2dbf0
JB
4960{
4961 struct extent_buffer *eb, *exists = NULL;
4962 int ret;
4963
4964 eb = find_extent_buffer(fs_info, start);
4965 if (eb)
4966 return eb;
da17066c 4967 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4968 if (!eb)
4969 return NULL;
4970 eb->fs_info = fs_info;
4971again:
e1860a77 4972 ret = radix_tree_preload(GFP_NOFS);
faa2dbf0
JB
4973 if (ret)
4974 goto free_eb;
4975 spin_lock(&fs_info->buffer_lock);
4976 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 4977 start >> PAGE_SHIFT, eb);
faa2dbf0
JB
4978 spin_unlock(&fs_info->buffer_lock);
4979 radix_tree_preload_end();
4980 if (ret == -EEXIST) {
4981 exists = find_extent_buffer(fs_info, start);
4982 if (exists)
4983 goto free_eb;
4984 else
4985 goto again;
4986 }
4987 check_buffer_tree_ref(eb);
4988 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4989
4990 /*
4991 * We will free dummy extent buffer's if they come into
4992 * free_extent_buffer with a ref count of 2, but if we are using this we
4993 * want the buffers to stay in memory until we're done with them, so
4994 * bump the ref count again.
4995 */
4996 atomic_inc(&eb->refs);
4997 return eb;
4998free_eb:
4999 btrfs_release_extent_buffer(eb);
5000 return exists;
5001}
5002#endif
5003
f28491e0 5004struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 5005 u64 start)
d1310b2e 5006{
da17066c 5007 unsigned long len = fs_info->nodesize;
d1310b2e
CM
5008 unsigned long num_pages = num_extent_pages(start, len);
5009 unsigned long i;
09cbfeaf 5010 unsigned long index = start >> PAGE_SHIFT;
d1310b2e 5011 struct extent_buffer *eb;
6af118ce 5012 struct extent_buffer *exists = NULL;
d1310b2e 5013 struct page *p;
f28491e0 5014 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 5015 int uptodate = 1;
19fe0a8b 5016 int ret;
d1310b2e 5017
da17066c 5018 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
c871b0f2
LB
5019 btrfs_err(fs_info, "bad tree block start %llu", start);
5020 return ERR_PTR(-EINVAL);
5021 }
5022
f28491e0 5023 eb = find_extent_buffer(fs_info, start);
452c75c3 5024 if (eb)
6af118ce 5025 return eb;
6af118ce 5026
23d79d81 5027 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 5028 if (!eb)
c871b0f2 5029 return ERR_PTR(-ENOMEM);
d1310b2e 5030
727011e0 5031 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 5032 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
c871b0f2
LB
5033 if (!p) {
5034 exists = ERR_PTR(-ENOMEM);
6af118ce 5035 goto free_eb;
c871b0f2 5036 }
4f2de97a
JB
5037
5038 spin_lock(&mapping->private_lock);
5039 if (PagePrivate(p)) {
5040 /*
5041 * We could have already allocated an eb for this page
5042 * and attached one so lets see if we can get a ref on
5043 * the existing eb, and if we can we know it's good and
5044 * we can just return that one, else we know we can just
5045 * overwrite page->private.
5046 */
5047 exists = (struct extent_buffer *)p->private;
5048 if (atomic_inc_not_zero(&exists->refs)) {
5049 spin_unlock(&mapping->private_lock);
5050 unlock_page(p);
09cbfeaf 5051 put_page(p);
2457aec6 5052 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5053 goto free_eb;
5054 }
5ca64f45 5055 exists = NULL;
4f2de97a 5056
0b32f4bb 5057 /*
4f2de97a
JB
5058 * Do this so attach doesn't complain and we need to
5059 * drop the ref the old guy had.
5060 */
5061 ClearPagePrivate(p);
0b32f4bb 5062 WARN_ON(PageDirty(p));
09cbfeaf 5063 put_page(p);
d1310b2e 5064 }
4f2de97a
JB
5065 attach_extent_buffer_page(eb, p);
5066 spin_unlock(&mapping->private_lock);
0b32f4bb 5067 WARN_ON(PageDirty(p));
727011e0 5068 eb->pages[i] = p;
d1310b2e
CM
5069 if (!PageUptodate(p))
5070 uptodate = 0;
eb14ab8e
CM
5071
5072 /*
5073 * see below about how we avoid a nasty race with release page
5074 * and why we unlock later
5075 */
d1310b2e
CM
5076 }
5077 if (uptodate)
b4ce94de 5078 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5079again:
e1860a77 5080 ret = radix_tree_preload(GFP_NOFS);
c871b0f2
LB
5081 if (ret) {
5082 exists = ERR_PTR(ret);
19fe0a8b 5083 goto free_eb;
c871b0f2 5084 }
19fe0a8b 5085
f28491e0
JB
5086 spin_lock(&fs_info->buffer_lock);
5087 ret = radix_tree_insert(&fs_info->buffer_radix,
09cbfeaf 5088 start >> PAGE_SHIFT, eb);
f28491e0 5089 spin_unlock(&fs_info->buffer_lock);
452c75c3 5090 radix_tree_preload_end();
19fe0a8b 5091 if (ret == -EEXIST) {
f28491e0 5092 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5093 if (exists)
5094 goto free_eb;
5095 else
115391d2 5096 goto again;
6af118ce 5097 }
6af118ce 5098 /* add one reference for the tree */
0b32f4bb 5099 check_buffer_tree_ref(eb);
34b41ace 5100 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5101
5102 /*
5103 * there is a race where release page may have
5104 * tried to find this extent buffer in the radix
5105 * but failed. It will tell the VM it is safe to
5106 * reclaim the, and it will clear the page private bit.
5107 * We must make sure to set the page private bit properly
5108 * after the extent buffer is in the radix tree so
5109 * it doesn't get lost
5110 */
727011e0
CM
5111 SetPageChecked(eb->pages[0]);
5112 for (i = 1; i < num_pages; i++) {
fb85fc9a 5113 p = eb->pages[i];
727011e0
CM
5114 ClearPageChecked(p);
5115 unlock_page(p);
5116 }
5117 unlock_page(eb->pages[0]);
d1310b2e
CM
5118 return eb;
5119
6af118ce 5120free_eb:
5ca64f45 5121 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5122 for (i = 0; i < num_pages; i++) {
5123 if (eb->pages[i])
5124 unlock_page(eb->pages[i]);
5125 }
eb14ab8e 5126
897ca6e9 5127 btrfs_release_extent_buffer(eb);
6af118ce 5128 return exists;
d1310b2e 5129}
d1310b2e 5130
3083ee2e
JB
5131static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5132{
5133 struct extent_buffer *eb =
5134 container_of(head, struct extent_buffer, rcu_head);
5135
5136 __free_extent_buffer(eb);
5137}
5138
3083ee2e 5139/* Expects to have eb->eb_lock already held */
f7a52a40 5140static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5141{
5142 WARN_ON(atomic_read(&eb->refs) == 0);
5143 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5144 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5145 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5146
815a51c7 5147 spin_unlock(&eb->refs_lock);
3083ee2e 5148
f28491e0
JB
5149 spin_lock(&fs_info->buffer_lock);
5150 radix_tree_delete(&fs_info->buffer_radix,
09cbfeaf 5151 eb->start >> PAGE_SHIFT);
f28491e0 5152 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5153 } else {
5154 spin_unlock(&eb->refs_lock);
815a51c7 5155 }
3083ee2e
JB
5156
5157 /* Should be safe to release our pages at this point */
a50924e3 5158 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5159#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5160 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5161 __free_extent_buffer(eb);
5162 return 1;
5163 }
5164#endif
3083ee2e 5165 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5166 return 1;
3083ee2e
JB
5167 }
5168 spin_unlock(&eb->refs_lock);
e64860aa
JB
5169
5170 return 0;
3083ee2e
JB
5171}
5172
d1310b2e
CM
5173void free_extent_buffer(struct extent_buffer *eb)
5174{
242e18c7
CM
5175 int refs;
5176 int old;
d1310b2e
CM
5177 if (!eb)
5178 return;
5179
242e18c7
CM
5180 while (1) {
5181 refs = atomic_read(&eb->refs);
5182 if (refs <= 3)
5183 break;
5184 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5185 if (old == refs)
5186 return;
5187 }
5188
3083ee2e 5189 spin_lock(&eb->refs_lock);
815a51c7
JS
5190 if (atomic_read(&eb->refs) == 2 &&
5191 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5192 atomic_dec(&eb->refs);
5193
3083ee2e
JB
5194 if (atomic_read(&eb->refs) == 2 &&
5195 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5196 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5197 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5198 atomic_dec(&eb->refs);
5199
5200 /*
5201 * I know this is terrible, but it's temporary until we stop tracking
5202 * the uptodate bits and such for the extent buffers.
5203 */
f7a52a40 5204 release_extent_buffer(eb);
3083ee2e
JB
5205}
5206
5207void free_extent_buffer_stale(struct extent_buffer *eb)
5208{
5209 if (!eb)
d1310b2e
CM
5210 return;
5211
3083ee2e
JB
5212 spin_lock(&eb->refs_lock);
5213 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5214
0b32f4bb 5215 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5216 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5217 atomic_dec(&eb->refs);
f7a52a40 5218 release_extent_buffer(eb);
d1310b2e 5219}
d1310b2e 5220
1d4284bd 5221void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5222{
d1310b2e
CM
5223 unsigned long i;
5224 unsigned long num_pages;
5225 struct page *page;
5226
d1310b2e
CM
5227 num_pages = num_extent_pages(eb->start, eb->len);
5228
5229 for (i = 0; i < num_pages; i++) {
fb85fc9a 5230 page = eb->pages[i];
b9473439 5231 if (!PageDirty(page))
d2c3f4f6
CM
5232 continue;
5233
a61e6f29 5234 lock_page(page);
eb14ab8e
CM
5235 WARN_ON(!PagePrivate(page));
5236
d1310b2e 5237 clear_page_dirty_for_io(page);
0ee0fda0 5238 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5239 if (!PageDirty(page)) {
5240 radix_tree_tag_clear(&page->mapping->page_tree,
5241 page_index(page),
5242 PAGECACHE_TAG_DIRTY);
5243 }
0ee0fda0 5244 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5245 ClearPageError(page);
a61e6f29 5246 unlock_page(page);
d1310b2e 5247 }
0b32f4bb 5248 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5249}
d1310b2e 5250
0b32f4bb 5251int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5252{
5253 unsigned long i;
5254 unsigned long num_pages;
b9473439 5255 int was_dirty = 0;
d1310b2e 5256
0b32f4bb
JB
5257 check_buffer_tree_ref(eb);
5258
b9473439 5259 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5260
d1310b2e 5261 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5262 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5263 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5264
b9473439 5265 for (i = 0; i < num_pages; i++)
fb85fc9a 5266 set_page_dirty(eb->pages[i]);
b9473439 5267 return was_dirty;
d1310b2e 5268}
d1310b2e 5269
69ba3927 5270void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5271{
5272 unsigned long i;
5273 struct page *page;
5274 unsigned long num_pages;
5275
b4ce94de 5276 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5277 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5278 for (i = 0; i < num_pages; i++) {
fb85fc9a 5279 page = eb->pages[i];
33958dc6
CM
5280 if (page)
5281 ClearPageUptodate(page);
1259ab75 5282 }
1259ab75
CM
5283}
5284
09c25a8c 5285void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5286{
5287 unsigned long i;
5288 struct page *page;
5289 unsigned long num_pages;
5290
0b32f4bb 5291 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5292 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5293 for (i = 0; i < num_pages; i++) {
fb85fc9a 5294 page = eb->pages[i];
d1310b2e
CM
5295 SetPageUptodate(page);
5296 }
d1310b2e 5297}
d1310b2e 5298
0b32f4bb 5299int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5300{
0b32f4bb 5301 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5302}
d1310b2e
CM
5303
5304int read_extent_buffer_pages(struct extent_io_tree *tree,
8436ea91 5305 struct extent_buffer *eb, int wait,
f188591e 5306 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5307{
5308 unsigned long i;
d1310b2e
CM
5309 struct page *page;
5310 int err;
5311 int ret = 0;
ce9adaa5
CM
5312 int locked_pages = 0;
5313 int all_uptodate = 1;
d1310b2e 5314 unsigned long num_pages;
727011e0 5315 unsigned long num_reads = 0;
a86c12c7 5316 struct bio *bio = NULL;
c8b97818 5317 unsigned long bio_flags = 0;
a86c12c7 5318
b4ce94de 5319 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5320 return 0;
5321
d1310b2e 5322 num_pages = num_extent_pages(eb->start, eb->len);
8436ea91 5323 for (i = 0; i < num_pages; i++) {
fb85fc9a 5324 page = eb->pages[i];
bb82ab88 5325 if (wait == WAIT_NONE) {
2db04966 5326 if (!trylock_page(page))
ce9adaa5 5327 goto unlock_exit;
d1310b2e
CM
5328 } else {
5329 lock_page(page);
5330 }
ce9adaa5 5331 locked_pages++;
2571e739
LB
5332 }
5333 /*
5334 * We need to firstly lock all pages to make sure that
5335 * the uptodate bit of our pages won't be affected by
5336 * clear_extent_buffer_uptodate().
5337 */
8436ea91 5338 for (i = 0; i < num_pages; i++) {
2571e739 5339 page = eb->pages[i];
727011e0
CM
5340 if (!PageUptodate(page)) {
5341 num_reads++;
ce9adaa5 5342 all_uptodate = 0;
727011e0 5343 }
ce9adaa5 5344 }
2571e739 5345
ce9adaa5 5346 if (all_uptodate) {
8436ea91 5347 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5348 goto unlock_exit;
5349 }
5350
656f30db 5351 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5352 eb->read_mirror = 0;
0b32f4bb 5353 atomic_set(&eb->io_pages, num_reads);
8436ea91 5354 for (i = 0; i < num_pages; i++) {
fb85fc9a 5355 page = eb->pages[i];
baf863b9 5356
ce9adaa5 5357 if (!PageUptodate(page)) {
baf863b9
LB
5358 if (ret) {
5359 atomic_dec(&eb->io_pages);
5360 unlock_page(page);
5361 continue;
5362 }
5363
f188591e 5364 ClearPageError(page);
a86c12c7 5365 err = __extent_read_full_page(tree, page,
f188591e 5366 get_extent, &bio,
d4c7ca86 5367 mirror_num, &bio_flags,
1f7ad75b 5368 REQ_META);
baf863b9 5369 if (err) {
d1310b2e 5370 ret = err;
baf863b9
LB
5371 /*
5372 * We use &bio in above __extent_read_full_page,
5373 * so we ensure that if it returns error, the
5374 * current page fails to add itself to bio and
5375 * it's been unlocked.
5376 *
5377 * We must dec io_pages by ourselves.
5378 */
5379 atomic_dec(&eb->io_pages);
5380 }
d1310b2e
CM
5381 } else {
5382 unlock_page(page);
5383 }
5384 }
5385
355808c2 5386 if (bio) {
1f7ad75b 5387 err = submit_one_bio(bio, mirror_num, bio_flags);
79787eaa
JM
5388 if (err)
5389 return err;
355808c2 5390 }
a86c12c7 5391
bb82ab88 5392 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5393 return ret;
d397712b 5394
8436ea91 5395 for (i = 0; i < num_pages; i++) {
fb85fc9a 5396 page = eb->pages[i];
d1310b2e 5397 wait_on_page_locked(page);
d397712b 5398 if (!PageUptodate(page))
d1310b2e 5399 ret = -EIO;
d1310b2e 5400 }
d397712b 5401
d1310b2e 5402 return ret;
ce9adaa5
CM
5403
5404unlock_exit:
d397712b 5405 while (locked_pages > 0) {
ce9adaa5 5406 locked_pages--;
8436ea91
JB
5407 page = eb->pages[locked_pages];
5408 unlock_page(page);
ce9adaa5
CM
5409 }
5410 return ret;
d1310b2e 5411}
d1310b2e
CM
5412
5413void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5414 unsigned long start,
5415 unsigned long len)
5416{
5417 size_t cur;
5418 size_t offset;
5419 struct page *page;
5420 char *kaddr;
5421 char *dst = (char *)dstv;
09cbfeaf
KS
5422 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5423 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5424
5425 WARN_ON(start > eb->len);
5426 WARN_ON(start + len > eb->start + eb->len);
5427
09cbfeaf 5428 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5429
d397712b 5430 while (len > 0) {
fb85fc9a 5431 page = eb->pages[i];
d1310b2e 5432
09cbfeaf 5433 cur = min(len, (PAGE_SIZE - offset));
a6591715 5434 kaddr = page_address(page);
d1310b2e 5435 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5436
5437 dst += cur;
5438 len -= cur;
5439 offset = 0;
5440 i++;
5441 }
5442}
d1310b2e 5443
550ac1d8
GH
5444int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5445 unsigned long start,
5446 unsigned long len)
5447{
5448 size_t cur;
5449 size_t offset;
5450 struct page *page;
5451 char *kaddr;
5452 char __user *dst = (char __user *)dstv;
09cbfeaf
KS
5453 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5454 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
550ac1d8
GH
5455 int ret = 0;
5456
5457 WARN_ON(start > eb->len);
5458 WARN_ON(start + len > eb->start + eb->len);
5459
09cbfeaf 5460 offset = (start_offset + start) & (PAGE_SIZE - 1);
550ac1d8
GH
5461
5462 while (len > 0) {
fb85fc9a 5463 page = eb->pages[i];
550ac1d8 5464
09cbfeaf 5465 cur = min(len, (PAGE_SIZE - offset));
550ac1d8
GH
5466 kaddr = page_address(page);
5467 if (copy_to_user(dst, kaddr + offset, cur)) {
5468 ret = -EFAULT;
5469 break;
5470 }
5471
5472 dst += cur;
5473 len -= cur;
5474 offset = 0;
5475 i++;
5476 }
5477
5478 return ret;
5479}
5480
415b35a5
LB
5481/*
5482 * return 0 if the item is found within a page.
5483 * return 1 if the item spans two pages.
5484 * return -EINVAL otherwise.
5485 */
d1310b2e 5486int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5487 unsigned long min_len, char **map,
d1310b2e 5488 unsigned long *map_start,
a6591715 5489 unsigned long *map_len)
d1310b2e 5490{
09cbfeaf 5491 size_t offset = start & (PAGE_SIZE - 1);
d1310b2e
CM
5492 char *kaddr;
5493 struct page *p;
09cbfeaf
KS
5494 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5495 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e 5496 unsigned long end_i = (start_offset + start + min_len - 1) >>
09cbfeaf 5497 PAGE_SHIFT;
d1310b2e
CM
5498
5499 if (i != end_i)
415b35a5 5500 return 1;
d1310b2e
CM
5501
5502 if (i == 0) {
5503 offset = start_offset;
5504 *map_start = 0;
5505 } else {
5506 offset = 0;
09cbfeaf 5507 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
d1310b2e 5508 }
d397712b 5509
d1310b2e 5510 if (start + min_len > eb->len) {
5d163e0e 5511 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
c1c9ff7c 5512 eb->start, eb->len, start, min_len);
85026533 5513 return -EINVAL;
d1310b2e
CM
5514 }
5515
fb85fc9a 5516 p = eb->pages[i];
a6591715 5517 kaddr = page_address(p);
d1310b2e 5518 *map = kaddr + offset;
09cbfeaf 5519 *map_len = PAGE_SIZE - offset;
d1310b2e
CM
5520 return 0;
5521}
d1310b2e 5522
d1310b2e
CM
5523int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5524 unsigned long start,
5525 unsigned long len)
5526{
5527 size_t cur;
5528 size_t offset;
5529 struct page *page;
5530 char *kaddr;
5531 char *ptr = (char *)ptrv;
09cbfeaf
KS
5532 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5533 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5534 int ret = 0;
5535
5536 WARN_ON(start > eb->len);
5537 WARN_ON(start + len > eb->start + eb->len);
5538
09cbfeaf 5539 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5540
d397712b 5541 while (len > 0) {
fb85fc9a 5542 page = eb->pages[i];
d1310b2e 5543
09cbfeaf 5544 cur = min(len, (PAGE_SIZE - offset));
d1310b2e 5545
a6591715 5546 kaddr = page_address(page);
d1310b2e 5547 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5548 if (ret)
5549 break;
5550
5551 ptr += cur;
5552 len -= cur;
5553 offset = 0;
5554 i++;
5555 }
5556 return ret;
5557}
d1310b2e 5558
f157bf76
DS
5559void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5560 const void *srcv)
5561{
5562 char *kaddr;
5563
5564 WARN_ON(!PageUptodate(eb->pages[0]));
5565 kaddr = page_address(eb->pages[0]);
5566 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5567 BTRFS_FSID_SIZE);
5568}
5569
5570void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5571{
5572 char *kaddr;
5573
5574 WARN_ON(!PageUptodate(eb->pages[0]));
5575 kaddr = page_address(eb->pages[0]);
5576 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5577 BTRFS_FSID_SIZE);
5578}
5579
d1310b2e
CM
5580void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5581 unsigned long start, unsigned long len)
5582{
5583 size_t cur;
5584 size_t offset;
5585 struct page *page;
5586 char *kaddr;
5587 char *src = (char *)srcv;
09cbfeaf
KS
5588 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5589 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5590
5591 WARN_ON(start > eb->len);
5592 WARN_ON(start + len > eb->start + eb->len);
5593
09cbfeaf 5594 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5595
d397712b 5596 while (len > 0) {
fb85fc9a 5597 page = eb->pages[i];
d1310b2e
CM
5598 WARN_ON(!PageUptodate(page));
5599
09cbfeaf 5600 cur = min(len, PAGE_SIZE - offset);
a6591715 5601 kaddr = page_address(page);
d1310b2e 5602 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5603
5604 src += cur;
5605 len -= cur;
5606 offset = 0;
5607 i++;
5608 }
5609}
d1310b2e 5610
b159fa28
DS
5611void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5612 unsigned long len)
d1310b2e
CM
5613{
5614 size_t cur;
5615 size_t offset;
5616 struct page *page;
5617 char *kaddr;
09cbfeaf
KS
5618 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5619 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
d1310b2e
CM
5620
5621 WARN_ON(start > eb->len);
5622 WARN_ON(start + len > eb->start + eb->len);
5623
09cbfeaf 5624 offset = (start_offset + start) & (PAGE_SIZE - 1);
d1310b2e 5625
d397712b 5626 while (len > 0) {
fb85fc9a 5627 page = eb->pages[i];
d1310b2e
CM
5628 WARN_ON(!PageUptodate(page));
5629
09cbfeaf 5630 cur = min(len, PAGE_SIZE - offset);
a6591715 5631 kaddr = page_address(page);
b159fa28 5632 memset(kaddr + offset, 0, cur);
d1310b2e
CM
5633
5634 len -= cur;
5635 offset = 0;
5636 i++;
5637 }
5638}
d1310b2e 5639
58e8012c
DS
5640void copy_extent_buffer_full(struct extent_buffer *dst,
5641 struct extent_buffer *src)
5642{
5643 int i;
5644 unsigned num_pages;
5645
5646 ASSERT(dst->len == src->len);
5647
5648 num_pages = num_extent_pages(dst->start, dst->len);
5649 for (i = 0; i < num_pages; i++)
5650 copy_page(page_address(dst->pages[i]),
5651 page_address(src->pages[i]));
5652}
5653
d1310b2e
CM
5654void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5655 unsigned long dst_offset, unsigned long src_offset,
5656 unsigned long len)
5657{
5658 u64 dst_len = dst->len;
5659 size_t cur;
5660 size_t offset;
5661 struct page *page;
5662 char *kaddr;
09cbfeaf
KS
5663 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5664 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
d1310b2e
CM
5665
5666 WARN_ON(src->len != dst_len);
5667
5668 offset = (start_offset + dst_offset) &
09cbfeaf 5669 (PAGE_SIZE - 1);
d1310b2e 5670
d397712b 5671 while (len > 0) {
fb85fc9a 5672 page = dst->pages[i];
d1310b2e
CM
5673 WARN_ON(!PageUptodate(page));
5674
09cbfeaf 5675 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
d1310b2e 5676
a6591715 5677 kaddr = page_address(page);
d1310b2e 5678 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5679
5680 src_offset += cur;
5681 len -= cur;
5682 offset = 0;
5683 i++;
5684 }
5685}
d1310b2e 5686
2fe1d551
OS
5687void le_bitmap_set(u8 *map, unsigned int start, int len)
5688{
5689 u8 *p = map + BIT_BYTE(start);
5690 const unsigned int size = start + len;
5691 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5692 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5693
5694 while (len - bits_to_set >= 0) {
5695 *p |= mask_to_set;
5696 len -= bits_to_set;
5697 bits_to_set = BITS_PER_BYTE;
9c894696 5698 mask_to_set = ~0;
2fe1d551
OS
5699 p++;
5700 }
5701 if (len) {
5702 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5703 *p |= mask_to_set;
5704 }
5705}
5706
5707void le_bitmap_clear(u8 *map, unsigned int start, int len)
5708{
5709 u8 *p = map + BIT_BYTE(start);
5710 const unsigned int size = start + len;
5711 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5712 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5713
5714 while (len - bits_to_clear >= 0) {
5715 *p &= ~mask_to_clear;
5716 len -= bits_to_clear;
5717 bits_to_clear = BITS_PER_BYTE;
9c894696 5718 mask_to_clear = ~0;
2fe1d551
OS
5719 p++;
5720 }
5721 if (len) {
5722 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5723 *p &= ~mask_to_clear;
5724 }
5725}
3e1e8bb7
OS
5726
5727/*
5728 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5729 * given bit number
5730 * @eb: the extent buffer
5731 * @start: offset of the bitmap item in the extent buffer
5732 * @nr: bit number
5733 * @page_index: return index of the page in the extent buffer that contains the
5734 * given bit number
5735 * @page_offset: return offset into the page given by page_index
5736 *
5737 * This helper hides the ugliness of finding the byte in an extent buffer which
5738 * contains a given bit.
5739 */
5740static inline void eb_bitmap_offset(struct extent_buffer *eb,
5741 unsigned long start, unsigned long nr,
5742 unsigned long *page_index,
5743 size_t *page_offset)
5744{
09cbfeaf 5745 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
3e1e8bb7
OS
5746 size_t byte_offset = BIT_BYTE(nr);
5747 size_t offset;
5748
5749 /*
5750 * The byte we want is the offset of the extent buffer + the offset of
5751 * the bitmap item in the extent buffer + the offset of the byte in the
5752 * bitmap item.
5753 */
5754 offset = start_offset + start + byte_offset;
5755
09cbfeaf
KS
5756 *page_index = offset >> PAGE_SHIFT;
5757 *page_offset = offset & (PAGE_SIZE - 1);
3e1e8bb7
OS
5758}
5759
5760/**
5761 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5762 * @eb: the extent buffer
5763 * @start: offset of the bitmap item in the extent buffer
5764 * @nr: bit number to test
5765 */
5766int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5767 unsigned long nr)
5768{
2fe1d551 5769 u8 *kaddr;
3e1e8bb7
OS
5770 struct page *page;
5771 unsigned long i;
5772 size_t offset;
5773
5774 eb_bitmap_offset(eb, start, nr, &i, &offset);
5775 page = eb->pages[i];
5776 WARN_ON(!PageUptodate(page));
5777 kaddr = page_address(page);
5778 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5779}
5780
5781/**
5782 * extent_buffer_bitmap_set - set an area of a bitmap
5783 * @eb: the extent buffer
5784 * @start: offset of the bitmap item in the extent buffer
5785 * @pos: bit number of the first bit
5786 * @len: number of bits to set
5787 */
5788void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5789 unsigned long pos, unsigned long len)
5790{
2fe1d551 5791 u8 *kaddr;
3e1e8bb7
OS
5792 struct page *page;
5793 unsigned long i;
5794 size_t offset;
5795 const unsigned int size = pos + len;
5796 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5797 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5798
5799 eb_bitmap_offset(eb, start, pos, &i, &offset);
5800 page = eb->pages[i];
5801 WARN_ON(!PageUptodate(page));
5802 kaddr = page_address(page);
5803
5804 while (len >= bits_to_set) {
5805 kaddr[offset] |= mask_to_set;
5806 len -= bits_to_set;
5807 bits_to_set = BITS_PER_BYTE;
9c894696 5808 mask_to_set = ~0;
09cbfeaf 5809 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5810 offset = 0;
5811 page = eb->pages[++i];
5812 WARN_ON(!PageUptodate(page));
5813 kaddr = page_address(page);
5814 }
5815 }
5816 if (len) {
5817 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5818 kaddr[offset] |= mask_to_set;
5819 }
5820}
5821
5822
5823/**
5824 * extent_buffer_bitmap_clear - clear an area of a bitmap
5825 * @eb: the extent buffer
5826 * @start: offset of the bitmap item in the extent buffer
5827 * @pos: bit number of the first bit
5828 * @len: number of bits to clear
5829 */
5830void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5831 unsigned long pos, unsigned long len)
5832{
2fe1d551 5833 u8 *kaddr;
3e1e8bb7
OS
5834 struct page *page;
5835 unsigned long i;
5836 size_t offset;
5837 const unsigned int size = pos + len;
5838 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
2fe1d551 5839 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
3e1e8bb7
OS
5840
5841 eb_bitmap_offset(eb, start, pos, &i, &offset);
5842 page = eb->pages[i];
5843 WARN_ON(!PageUptodate(page));
5844 kaddr = page_address(page);
5845
5846 while (len >= bits_to_clear) {
5847 kaddr[offset] &= ~mask_to_clear;
5848 len -= bits_to_clear;
5849 bits_to_clear = BITS_PER_BYTE;
9c894696 5850 mask_to_clear = ~0;
09cbfeaf 5851 if (++offset >= PAGE_SIZE && len > 0) {
3e1e8bb7
OS
5852 offset = 0;
5853 page = eb->pages[++i];
5854 WARN_ON(!PageUptodate(page));
5855 kaddr = page_address(page);
5856 }
5857 }
5858 if (len) {
5859 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5860 kaddr[offset] &= ~mask_to_clear;
5861 }
5862}
5863
3387206f
ST
5864static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5865{
5866 unsigned long distance = (src > dst) ? src - dst : dst - src;
5867 return distance < len;
5868}
5869
d1310b2e
CM
5870static void copy_pages(struct page *dst_page, struct page *src_page,
5871 unsigned long dst_off, unsigned long src_off,
5872 unsigned long len)
5873{
a6591715 5874 char *dst_kaddr = page_address(dst_page);
d1310b2e 5875 char *src_kaddr;
727011e0 5876 int must_memmove = 0;
d1310b2e 5877
3387206f 5878 if (dst_page != src_page) {
a6591715 5879 src_kaddr = page_address(src_page);
3387206f 5880 } else {
d1310b2e 5881 src_kaddr = dst_kaddr;
727011e0
CM
5882 if (areas_overlap(src_off, dst_off, len))
5883 must_memmove = 1;
3387206f 5884 }
d1310b2e 5885
727011e0
CM
5886 if (must_memmove)
5887 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5888 else
5889 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5890}
5891
5892void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5893 unsigned long src_offset, unsigned long len)
5894{
0b246afa 5895 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5896 size_t cur;
5897 size_t dst_off_in_page;
5898 size_t src_off_in_page;
09cbfeaf 5899 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5900 unsigned long dst_i;
5901 unsigned long src_i;
5902
5903 if (src_offset + len > dst->len) {
0b246afa 5904 btrfs_err(fs_info,
5d163e0e
JM
5905 "memmove bogus src_offset %lu move len %lu dst len %lu",
5906 src_offset, len, dst->len);
d1310b2e
CM
5907 BUG_ON(1);
5908 }
5909 if (dst_offset + len > dst->len) {
0b246afa 5910 btrfs_err(fs_info,
5d163e0e
JM
5911 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5912 dst_offset, len, dst->len);
d1310b2e
CM
5913 BUG_ON(1);
5914 }
5915
d397712b 5916 while (len > 0) {
d1310b2e 5917 dst_off_in_page = (start_offset + dst_offset) &
09cbfeaf 5918 (PAGE_SIZE - 1);
d1310b2e 5919 src_off_in_page = (start_offset + src_offset) &
09cbfeaf 5920 (PAGE_SIZE - 1);
d1310b2e 5921
09cbfeaf
KS
5922 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5923 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
d1310b2e 5924
09cbfeaf 5925 cur = min(len, (unsigned long)(PAGE_SIZE -
d1310b2e
CM
5926 src_off_in_page));
5927 cur = min_t(unsigned long, cur,
09cbfeaf 5928 (unsigned long)(PAGE_SIZE - dst_off_in_page));
d1310b2e 5929
fb85fc9a 5930 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5931 dst_off_in_page, src_off_in_page, cur);
5932
5933 src_offset += cur;
5934 dst_offset += cur;
5935 len -= cur;
5936 }
5937}
d1310b2e
CM
5938
5939void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5940 unsigned long src_offset, unsigned long len)
5941{
0b246afa 5942 struct btrfs_fs_info *fs_info = dst->fs_info;
d1310b2e
CM
5943 size_t cur;
5944 size_t dst_off_in_page;
5945 size_t src_off_in_page;
5946 unsigned long dst_end = dst_offset + len - 1;
5947 unsigned long src_end = src_offset + len - 1;
09cbfeaf 5948 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
d1310b2e
CM
5949 unsigned long dst_i;
5950 unsigned long src_i;
5951
5952 if (src_offset + len > dst->len) {
0b246afa 5953 btrfs_err(fs_info,
5d163e0e
JM
5954 "memmove bogus src_offset %lu move len %lu len %lu",
5955 src_offset, len, dst->len);
d1310b2e
CM
5956 BUG_ON(1);
5957 }
5958 if (dst_offset + len > dst->len) {
0b246afa 5959 btrfs_err(fs_info,
5d163e0e
JM
5960 "memmove bogus dst_offset %lu move len %lu len %lu",
5961 dst_offset, len, dst->len);
d1310b2e
CM
5962 BUG_ON(1);
5963 }
727011e0 5964 if (dst_offset < src_offset) {
d1310b2e
CM
5965 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5966 return;
5967 }
d397712b 5968 while (len > 0) {
09cbfeaf
KS
5969 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5970 src_i = (start_offset + src_end) >> PAGE_SHIFT;
d1310b2e
CM
5971
5972 dst_off_in_page = (start_offset + dst_end) &
09cbfeaf 5973 (PAGE_SIZE - 1);
d1310b2e 5974 src_off_in_page = (start_offset + src_end) &
09cbfeaf 5975 (PAGE_SIZE - 1);
d1310b2e
CM
5976
5977 cur = min_t(unsigned long, len, src_off_in_page + 1);
5978 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5979 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5980 dst_off_in_page - cur + 1,
5981 src_off_in_page - cur + 1, cur);
5982
5983 dst_end -= cur;
5984 src_end -= cur;
5985 len -= cur;
5986 }
5987}
6af118ce 5988
f7a52a40 5989int try_release_extent_buffer(struct page *page)
19fe0a8b 5990{
6af118ce 5991 struct extent_buffer *eb;
6af118ce 5992
3083ee2e 5993 /*
01327610 5994 * We need to make sure nobody is attaching this page to an eb right
3083ee2e
JB
5995 * now.
5996 */
5997 spin_lock(&page->mapping->private_lock);
5998 if (!PagePrivate(page)) {
5999 spin_unlock(&page->mapping->private_lock);
4f2de97a 6000 return 1;
45f49bce 6001 }
6af118ce 6002
3083ee2e
JB
6003 eb = (struct extent_buffer *)page->private;
6004 BUG_ON(!eb);
19fe0a8b
MX
6005
6006 /*
3083ee2e
JB
6007 * This is a little awful but should be ok, we need to make sure that
6008 * the eb doesn't disappear out from under us while we're looking at
6009 * this page.
19fe0a8b 6010 */
3083ee2e 6011 spin_lock(&eb->refs_lock);
0b32f4bb 6012 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
6013 spin_unlock(&eb->refs_lock);
6014 spin_unlock(&page->mapping->private_lock);
6015 return 0;
b9473439 6016 }
3083ee2e 6017 spin_unlock(&page->mapping->private_lock);
897ca6e9 6018
19fe0a8b 6019 /*
3083ee2e
JB
6020 * If tree ref isn't set then we know the ref on this eb is a real ref,
6021 * so just return, this page will likely be freed soon anyway.
19fe0a8b 6022 */
3083ee2e
JB
6023 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
6024 spin_unlock(&eb->refs_lock);
6025 return 0;
b9473439 6026 }
19fe0a8b 6027
f7a52a40 6028 return release_extent_buffer(eb);
6af118ce 6029}