]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/btrfs/file.c
btrfs: pull node/sector/stripe sizes out of root and into fs_info
[mirror_ubuntu-artful-kernel.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
39279cc3 30#include <linux/compat.h>
5a0e3ad6 31#include <linux/slab.h>
55e301fd 32#include <linux/btrfs.h>
e2e40f2c 33#include <linux/uio.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
2aaa6655 41#include "volumes.h"
fcebe456 42#include "qgroup.h"
ebb8765b 43#include "compression.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
8ddc4734 95static int __btrfs_add_inode_defrag(struct inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
98 struct btrfs_root *root = BTRFS_I(inode)->root;
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b
CM
103
104 p = &root->fs_info->defrag_inodes.rb_node;
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
72ac3c0d 126 set_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
127 rb_link_node(&defrag->rb_node, parent, p);
128 rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
8ddc4734
MX
132static inline int __need_auto_defrag(struct btrfs_root *root)
133{
3cdde224 134 if (!btrfs_test_opt(root->fs_info, AUTO_DEFRAG))
8ddc4734
MX
135 return 0;
136
137 if (btrfs_fs_closing(root->fs_info))
138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
148 struct inode *inode)
149{
150 struct btrfs_root *root = BTRFS_I(inode)->root;
151 struct inode_defrag *defrag;
4cb5300b 152 u64 transid;
8ddc4734 153 int ret;
4cb5300b 154
8ddc4734 155 if (!__need_auto_defrag(root))
4cb5300b
CM
156 return 0;
157
72ac3c0d 158 if (test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags))
4cb5300b
CM
159 return 0;
160
161 if (trans)
162 transid = trans->transid;
163 else
164 transid = BTRFS_I(inode)->root->last_trans;
165
9247f317 166 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
167 if (!defrag)
168 return -ENOMEM;
169
a4689d2b 170 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
171 defrag->transid = transid;
172 defrag->root = root->root_key.objectid;
173
174 spin_lock(&root->fs_info->defrag_inodes_lock);
8ddc4734
MX
175 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags)) {
176 /*
177 * If we set IN_DEFRAG flag and evict the inode from memory,
178 * and then re-read this inode, this new inode doesn't have
179 * IN_DEFRAG flag. At the case, we may find the existed defrag.
180 */
181 ret = __btrfs_add_inode_defrag(inode, defrag);
182 if (ret)
183 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
184 } else {
9247f317 185 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 186 }
4cb5300b 187 spin_unlock(&root->fs_info->defrag_inodes_lock);
a0f98dde 188 return 0;
4cb5300b
CM
189}
190
191/*
8ddc4734
MX
192 * Requeue the defrag object. If there is a defrag object that points to
193 * the same inode in the tree, we will merge them together (by
194 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 195 */
48a3b636
ES
196static void btrfs_requeue_inode_defrag(struct inode *inode,
197 struct inode_defrag *defrag)
8ddc4734
MX
198{
199 struct btrfs_root *root = BTRFS_I(inode)->root;
200 int ret;
201
202 if (!__need_auto_defrag(root))
203 goto out;
204
205 /*
206 * Here we don't check the IN_DEFRAG flag, because we need merge
207 * them together.
208 */
209 spin_lock(&root->fs_info->defrag_inodes_lock);
210 ret = __btrfs_add_inode_defrag(inode, defrag);
211 spin_unlock(&root->fs_info->defrag_inodes_lock);
212 if (ret)
213 goto out;
214 return;
215out:
216 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
217}
218
4cb5300b 219/*
26176e7c
MX
220 * pick the defragable inode that we want, if it doesn't exist, we will get
221 * the next one.
4cb5300b 222 */
26176e7c
MX
223static struct inode_defrag *
224btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
225{
226 struct inode_defrag *entry = NULL;
762f2263 227 struct inode_defrag tmp;
4cb5300b
CM
228 struct rb_node *p;
229 struct rb_node *parent = NULL;
762f2263
MX
230 int ret;
231
232 tmp.ino = ino;
233 tmp.root = root;
4cb5300b 234
26176e7c
MX
235 spin_lock(&fs_info->defrag_inodes_lock);
236 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
237 while (p) {
238 parent = p;
239 entry = rb_entry(parent, struct inode_defrag, rb_node);
240
762f2263
MX
241 ret = __compare_inode_defrag(&tmp, entry);
242 if (ret < 0)
4cb5300b 243 p = parent->rb_left;
762f2263 244 else if (ret > 0)
4cb5300b
CM
245 p = parent->rb_right;
246 else
26176e7c 247 goto out;
4cb5300b
CM
248 }
249
26176e7c
MX
250 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
251 parent = rb_next(parent);
252 if (parent)
4cb5300b 253 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
254 else
255 entry = NULL;
4cb5300b 256 }
26176e7c
MX
257out:
258 if (entry)
259 rb_erase(parent, &fs_info->defrag_inodes);
260 spin_unlock(&fs_info->defrag_inodes_lock);
261 return entry;
4cb5300b
CM
262}
263
26176e7c 264void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
265{
266 struct inode_defrag *defrag;
26176e7c
MX
267 struct rb_node *node;
268
269 spin_lock(&fs_info->defrag_inodes_lock);
270 node = rb_first(&fs_info->defrag_inodes);
271 while (node) {
272 rb_erase(node, &fs_info->defrag_inodes);
273 defrag = rb_entry(node, struct inode_defrag, rb_node);
274 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
275
351810c1 276 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
277
278 node = rb_first(&fs_info->defrag_inodes);
279 }
280 spin_unlock(&fs_info->defrag_inodes_lock);
281}
282
283#define BTRFS_DEFRAG_BATCH 1024
284
285static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
286 struct inode_defrag *defrag)
287{
4cb5300b
CM
288 struct btrfs_root *inode_root;
289 struct inode *inode;
4cb5300b
CM
290 struct btrfs_key key;
291 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 292 int num_defrag;
6f1c3605
LB
293 int index;
294 int ret;
4cb5300b 295
26176e7c
MX
296 /* get the inode */
297 key.objectid = defrag->root;
962a298f 298 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 299 key.offset = (u64)-1;
6f1c3605
LB
300
301 index = srcu_read_lock(&fs_info->subvol_srcu);
302
26176e7c
MX
303 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
304 if (IS_ERR(inode_root)) {
6f1c3605
LB
305 ret = PTR_ERR(inode_root);
306 goto cleanup;
307 }
26176e7c
MX
308
309 key.objectid = defrag->ino;
962a298f 310 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
311 key.offset = 0;
312 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
313 if (IS_ERR(inode)) {
6f1c3605
LB
314 ret = PTR_ERR(inode);
315 goto cleanup;
26176e7c 316 }
6f1c3605 317 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
318
319 /* do a chunk of defrag */
320 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
321 memset(&range, 0, sizeof(range));
322 range.len = (u64)-1;
26176e7c 323 range.start = defrag->last_offset;
b66f00da
MX
324
325 sb_start_write(fs_info->sb);
26176e7c
MX
326 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
327 BTRFS_DEFRAG_BATCH);
b66f00da 328 sb_end_write(fs_info->sb);
26176e7c
MX
329 /*
330 * if we filled the whole defrag batch, there
331 * must be more work to do. Queue this defrag
332 * again
333 */
334 if (num_defrag == BTRFS_DEFRAG_BATCH) {
335 defrag->last_offset = range.start;
336 btrfs_requeue_inode_defrag(inode, defrag);
337 } else if (defrag->last_offset && !defrag->cycled) {
338 /*
339 * we didn't fill our defrag batch, but
340 * we didn't start at zero. Make sure we loop
341 * around to the start of the file.
342 */
343 defrag->last_offset = 0;
344 defrag->cycled = 1;
345 btrfs_requeue_inode_defrag(inode, defrag);
346 } else {
347 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
348 }
349
350 iput(inode);
351 return 0;
6f1c3605
LB
352cleanup:
353 srcu_read_unlock(&fs_info->subvol_srcu, index);
354 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
355 return ret;
26176e7c
MX
356}
357
358/*
359 * run through the list of inodes in the FS that need
360 * defragging
361 */
362int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
363{
364 struct inode_defrag *defrag;
365 u64 first_ino = 0;
366 u64 root_objectid = 0;
4cb5300b
CM
367
368 atomic_inc(&fs_info->defrag_running);
67871254 369 while (1) {
dc81cdc5
MX
370 /* Pause the auto defragger. */
371 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
372 &fs_info->fs_state))
373 break;
374
26176e7c
MX
375 if (!__need_auto_defrag(fs_info->tree_root))
376 break;
4cb5300b
CM
377
378 /* find an inode to defrag */
26176e7c
MX
379 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
380 first_ino);
4cb5300b 381 if (!defrag) {
26176e7c 382 if (root_objectid || first_ino) {
762f2263 383 root_objectid = 0;
4cb5300b
CM
384 first_ino = 0;
385 continue;
386 } else {
387 break;
388 }
389 }
390
4cb5300b 391 first_ino = defrag->ino + 1;
762f2263 392 root_objectid = defrag->root;
4cb5300b 393
26176e7c 394 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 395 }
4cb5300b
CM
396 atomic_dec(&fs_info->defrag_running);
397
398 /*
399 * during unmount, we use the transaction_wait queue to
400 * wait for the defragger to stop
401 */
402 wake_up(&fs_info->transaction_wait);
403 return 0;
404}
39279cc3 405
d352ac68
CM
406/* simple helper to fault in pages and copy. This should go away
407 * and be replaced with calls into generic code.
408 */
ee22f0c4 409static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 410 struct page **prepared_pages,
11c65dcc 411 struct iov_iter *i)
39279cc3 412{
914ee295 413 size_t copied = 0;
d0215f3e 414 size_t total_copied = 0;
11c65dcc 415 int pg = 0;
09cbfeaf 416 int offset = pos & (PAGE_SIZE - 1);
39279cc3 417
11c65dcc 418 while (write_bytes > 0) {
39279cc3 419 size_t count = min_t(size_t,
09cbfeaf 420 PAGE_SIZE - offset, write_bytes);
11c65dcc 421 struct page *page = prepared_pages[pg];
914ee295
XZ
422 /*
423 * Copy data from userspace to the current page
914ee295 424 */
914ee295 425 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 426
39279cc3
CM
427 /* Flush processor's dcache for this page */
428 flush_dcache_page(page);
31339acd
CM
429
430 /*
431 * if we get a partial write, we can end up with
432 * partially up to date pages. These add
433 * a lot of complexity, so make sure they don't
434 * happen by forcing this copy to be retried.
435 *
436 * The rest of the btrfs_file_write code will fall
437 * back to page at a time copies after we return 0.
438 */
439 if (!PageUptodate(page) && copied < count)
440 copied = 0;
441
11c65dcc
JB
442 iov_iter_advance(i, copied);
443 write_bytes -= copied;
914ee295 444 total_copied += copied;
39279cc3 445
b30ac0fc 446 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 447 if (unlikely(copied == 0))
914ee295 448 break;
11c65dcc 449
09cbfeaf 450 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
451 offset += copied;
452 } else {
453 pg++;
454 offset = 0;
455 }
39279cc3 456 }
914ee295 457 return total_copied;
39279cc3
CM
458}
459
d352ac68
CM
460/*
461 * unlocks pages after btrfs_file_write is done with them
462 */
48a3b636 463static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
464{
465 size_t i;
466 for (i = 0; i < num_pages; i++) {
d352ac68
CM
467 /* page checked is some magic around finding pages that
468 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
469 * clear it here. There should be no need to mark the pages
470 * accessed as prepare_pages should have marked them accessed
471 * in prepare_pages via find_or_create_page()
d352ac68 472 */
4a096752 473 ClearPageChecked(pages[i]);
39279cc3 474 unlock_page(pages[i]);
09cbfeaf 475 put_page(pages[i]);
39279cc3
CM
476 }
477}
478
d352ac68
CM
479/*
480 * after copy_from_user, pages need to be dirtied and we need to make
481 * sure holes are created between the current EOF and the start of
482 * any next extents (if required).
483 *
484 * this also makes the decision about creating an inline extent vs
485 * doing real data extents, marking pages dirty and delalloc as required.
486 */
be1a12a0 487int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
48a3b636
ES
488 struct page **pages, size_t num_pages,
489 loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
39279cc3 491{
39279cc3 492 int err = 0;
a52d9a80 493 int i;
db94535d 494 u64 num_bytes;
a52d9a80
CM
495 u64 start_pos;
496 u64 end_of_last_block;
497 u64 end_pos = pos + write_bytes;
498 loff_t isize = i_size_read(inode);
39279cc3 499
da17066c
JM
500 start_pos = pos & ~((u64) root->fs_info->sectorsize - 1);
501 num_bytes = round_up(write_bytes + pos - start_pos,
502 root->fs_info->sectorsize);
39279cc3 503
db94535d 504 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 505 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
ba8b04c1 506 cached, 0);
d0215f3e
JB
507 if (err)
508 return err;
9ed74f2d 509
c8b97818
CM
510 for (i = 0; i < num_pages; i++) {
511 struct page *p = pages[i];
512 SetPageUptodate(p);
513 ClearPageChecked(p);
514 set_page_dirty(p);
a52d9a80 515 }
9f570b8d
JB
516
517 /*
518 * we've only changed i_size in ram, and we haven't updated
519 * the disk i_size. There is no need to log the inode
520 * at this time.
521 */
522 if (end_pos > isize)
a52d9a80 523 i_size_write(inode, end_pos);
a22285a6 524 return 0;
39279cc3
CM
525}
526
d352ac68
CM
527/*
528 * this drops all the extents in the cache that intersect the range
529 * [start, end]. Existing extents are split as required.
530 */
7014cdb4
JB
531void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
532 int skip_pinned)
a52d9a80
CM
533{
534 struct extent_map *em;
3b951516
CM
535 struct extent_map *split = NULL;
536 struct extent_map *split2 = NULL;
a52d9a80 537 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
39b5637f 538 u64 len = end - start + 1;
5dc562c5 539 u64 gen;
3b951516
CM
540 int ret;
541 int testend = 1;
5b21f2ed 542 unsigned long flags;
c8b97818 543 int compressed = 0;
09a2a8f9 544 bool modified;
a52d9a80 545
e6dcd2dc 546 WARN_ON(end < start);
3b951516 547 if (end == (u64)-1) {
39b5637f 548 len = (u64)-1;
3b951516
CM
549 testend = 0;
550 }
d397712b 551 while (1) {
7014cdb4
JB
552 int no_splits = 0;
553
09a2a8f9 554 modified = false;
3b951516 555 if (!split)
172ddd60 556 split = alloc_extent_map();
3b951516 557 if (!split2)
172ddd60 558 split2 = alloc_extent_map();
7014cdb4
JB
559 if (!split || !split2)
560 no_splits = 1;
3b951516 561
890871be 562 write_lock(&em_tree->lock);
39b5637f 563 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 564 if (!em) {
890871be 565 write_unlock(&em_tree->lock);
a52d9a80 566 break;
d1310b2e 567 }
5b21f2ed 568 flags = em->flags;
5dc562c5 569 gen = em->generation;
5b21f2ed 570 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 571 if (testend && em->start + em->len >= start + len) {
5b21f2ed 572 free_extent_map(em);
a1ed835e 573 write_unlock(&em_tree->lock);
5b21f2ed
ZY
574 break;
575 }
55ef6899
YZ
576 start = em->start + em->len;
577 if (testend)
5b21f2ed 578 len = start + len - (em->start + em->len);
5b21f2ed 579 free_extent_map(em);
a1ed835e 580 write_unlock(&em_tree->lock);
5b21f2ed
ZY
581 continue;
582 }
c8b97818 583 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 584 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 585 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 586 modified = !list_empty(&em->list);
7014cdb4
JB
587 if (no_splits)
588 goto next;
3b951516 589
ee20a983 590 if (em->start < start) {
3b951516
CM
591 split->start = em->start;
592 split->len = start - em->start;
ee20a983
JB
593
594 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
595 split->orig_start = em->orig_start;
596 split->block_start = em->block_start;
597
598 if (compressed)
599 split->block_len = em->block_len;
600 else
601 split->block_len = split->len;
602 split->orig_block_len = max(split->block_len,
603 em->orig_block_len);
604 split->ram_bytes = em->ram_bytes;
605 } else {
606 split->orig_start = split->start;
607 split->block_len = 0;
608 split->block_start = em->block_start;
609 split->orig_block_len = 0;
610 split->ram_bytes = split->len;
611 }
612
5dc562c5 613 split->generation = gen;
3b951516 614 split->bdev = em->bdev;
5b21f2ed 615 split->flags = flags;
261507a0 616 split->compress_type = em->compress_type;
176840b3 617 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
618 free_extent_map(split);
619 split = split2;
620 split2 = NULL;
621 }
ee20a983 622 if (testend && em->start + em->len > start + len) {
3b951516
CM
623 u64 diff = start + len - em->start;
624
625 split->start = start + len;
626 split->len = em->start + em->len - (start + len);
627 split->bdev = em->bdev;
5b21f2ed 628 split->flags = flags;
261507a0 629 split->compress_type = em->compress_type;
5dc562c5 630 split->generation = gen;
ee20a983
JB
631
632 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
633 split->orig_block_len = max(em->block_len,
b4939680 634 em->orig_block_len);
3b951516 635
ee20a983
JB
636 split->ram_bytes = em->ram_bytes;
637 if (compressed) {
638 split->block_len = em->block_len;
639 split->block_start = em->block_start;
640 split->orig_start = em->orig_start;
641 } else {
642 split->block_len = split->len;
643 split->block_start = em->block_start
644 + diff;
645 split->orig_start = em->orig_start;
646 }
c8b97818 647 } else {
ee20a983
JB
648 split->ram_bytes = split->len;
649 split->orig_start = split->start;
650 split->block_len = 0;
651 split->block_start = em->block_start;
652 split->orig_block_len = 0;
c8b97818 653 }
3b951516 654
176840b3
FM
655 if (extent_map_in_tree(em)) {
656 replace_extent_mapping(em_tree, em, split,
657 modified);
658 } else {
659 ret = add_extent_mapping(em_tree, split,
660 modified);
661 ASSERT(ret == 0); /* Logic error */
662 }
3b951516
CM
663 free_extent_map(split);
664 split = NULL;
665 }
7014cdb4 666next:
176840b3
FM
667 if (extent_map_in_tree(em))
668 remove_extent_mapping(em_tree, em);
890871be 669 write_unlock(&em_tree->lock);
d1310b2e 670
a52d9a80
CM
671 /* once for us */
672 free_extent_map(em);
673 /* once for the tree*/
674 free_extent_map(em);
675 }
3b951516
CM
676 if (split)
677 free_extent_map(split);
678 if (split2)
679 free_extent_map(split2);
a52d9a80
CM
680}
681
39279cc3
CM
682/*
683 * this is very complex, but the basic idea is to drop all extents
684 * in the range start - end. hint_block is filled in with a block number
685 * that would be a good hint to the block allocator for this file.
686 *
687 * If an extent intersects the range but is not entirely inside the range
688 * it is either truncated or split. Anything entirely inside the range
689 * is deleted from the tree.
690 */
5dc562c5
JB
691int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
692 struct btrfs_root *root, struct inode *inode,
693 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
694 u64 *drop_end, int drop_cache,
695 int replace_extent,
696 u32 extent_item_size,
697 int *key_inserted)
39279cc3 698{
5f39d397 699 struct extent_buffer *leaf;
920bbbfb 700 struct btrfs_file_extent_item *fi;
00f5c795 701 struct btrfs_key key;
920bbbfb 702 struct btrfs_key new_key;
33345d01 703 u64 ino = btrfs_ino(inode);
920bbbfb
YZ
704 u64 search_start = start;
705 u64 disk_bytenr = 0;
706 u64 num_bytes = 0;
707 u64 extent_offset = 0;
708 u64 extent_end = 0;
62fe51c1 709 u64 last_end = start;
920bbbfb
YZ
710 int del_nr = 0;
711 int del_slot = 0;
712 int extent_type;
ccd467d6 713 int recow;
00f5c795 714 int ret;
dc7fdde3 715 int modify_tree = -1;
27cdeb70 716 int update_refs;
c3308f84 717 int found = 0;
1acae57b 718 int leafs_visited = 0;
39279cc3 719
a1ed835e
CM
720 if (drop_cache)
721 btrfs_drop_extent_cache(inode, start, end - 1, 0);
a52d9a80 722
d5f37527 723 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
724 modify_tree = 0;
725
27cdeb70
MX
726 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
727 root == root->fs_info->tree_root);
d397712b 728 while (1) {
ccd467d6 729 recow = 0;
33345d01 730 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 731 search_start, modify_tree);
39279cc3 732 if (ret < 0)
920bbbfb
YZ
733 break;
734 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
735 leaf = path->nodes[0];
736 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 737 if (key.objectid == ino &&
920bbbfb
YZ
738 key.type == BTRFS_EXTENT_DATA_KEY)
739 path->slots[0]--;
39279cc3 740 }
920bbbfb 741 ret = 0;
1acae57b 742 leafs_visited++;
8c2383c3 743next_slot:
5f39d397 744 leaf = path->nodes[0];
920bbbfb
YZ
745 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
746 BUG_ON(del_nr > 0);
747 ret = btrfs_next_leaf(root, path);
748 if (ret < 0)
749 break;
750 if (ret > 0) {
751 ret = 0;
752 break;
8c2383c3 753 }
1acae57b 754 leafs_visited++;
920bbbfb
YZ
755 leaf = path->nodes[0];
756 recow = 1;
757 }
758
759 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
760
761 if (key.objectid > ino)
762 break;
763 if (WARN_ON_ONCE(key.objectid < ino) ||
764 key.type < BTRFS_EXTENT_DATA_KEY) {
765 ASSERT(del_nr == 0);
766 path->slots[0]++;
767 goto next_slot;
768 }
769 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
770 break;
771
772 fi = btrfs_item_ptr(leaf, path->slots[0],
773 struct btrfs_file_extent_item);
774 extent_type = btrfs_file_extent_type(leaf, fi);
775
776 if (extent_type == BTRFS_FILE_EXTENT_REG ||
777 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
778 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
779 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
780 extent_offset = btrfs_file_extent_offset(leaf, fi);
781 extent_end = key.offset +
782 btrfs_file_extent_num_bytes(leaf, fi);
783 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
784 extent_end = key.offset +
514ac8ad
CM
785 btrfs_file_extent_inline_len(leaf,
786 path->slots[0], fi);
8c2383c3 787 } else {
aeafbf84
FM
788 /* can't happen */
789 BUG();
39279cc3
CM
790 }
791
fc19c5e7
FM
792 /*
793 * Don't skip extent items representing 0 byte lengths. They
794 * used to be created (bug) if while punching holes we hit
795 * -ENOSPC condition. So if we find one here, just ensure we
796 * delete it, otherwise we would insert a new file extent item
797 * with the same key (offset) as that 0 bytes length file
798 * extent item in the call to setup_items_for_insert() later
799 * in this function.
800 */
62fe51c1
JB
801 if (extent_end == key.offset && extent_end >= search_start) {
802 last_end = extent_end;
fc19c5e7 803 goto delete_extent_item;
62fe51c1 804 }
fc19c5e7 805
920bbbfb
YZ
806 if (extent_end <= search_start) {
807 path->slots[0]++;
8c2383c3 808 goto next_slot;
39279cc3
CM
809 }
810
c3308f84 811 found = 1;
920bbbfb 812 search_start = max(key.offset, start);
dc7fdde3
CM
813 if (recow || !modify_tree) {
814 modify_tree = -1;
b3b4aa74 815 btrfs_release_path(path);
920bbbfb 816 continue;
39279cc3 817 }
6643558d 818
920bbbfb
YZ
819 /*
820 * | - range to drop - |
821 * | -------- extent -------- |
822 */
823 if (start > key.offset && end < extent_end) {
824 BUG_ON(del_nr > 0);
00fdf13a 825 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 826 ret = -EOPNOTSUPP;
00fdf13a
LB
827 break;
828 }
920bbbfb
YZ
829
830 memcpy(&new_key, &key, sizeof(new_key));
831 new_key.offset = start;
832 ret = btrfs_duplicate_item(trans, root, path,
833 &new_key);
834 if (ret == -EAGAIN) {
b3b4aa74 835 btrfs_release_path(path);
920bbbfb 836 continue;
6643558d 837 }
920bbbfb
YZ
838 if (ret < 0)
839 break;
840
841 leaf = path->nodes[0];
842 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
843 struct btrfs_file_extent_item);
844 btrfs_set_file_extent_num_bytes(leaf, fi,
845 start - key.offset);
846
847 fi = btrfs_item_ptr(leaf, path->slots[0],
848 struct btrfs_file_extent_item);
849
850 extent_offset += start - key.offset;
851 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
852 btrfs_set_file_extent_num_bytes(leaf, fi,
853 extent_end - start);
854 btrfs_mark_buffer_dirty(leaf);
855
5dc562c5 856 if (update_refs && disk_bytenr > 0) {
771ed689 857 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
858 disk_bytenr, num_bytes, 0,
859 root->root_key.objectid,
860 new_key.objectid,
b06c4bf5 861 start - extent_offset);
79787eaa 862 BUG_ON(ret); /* -ENOMEM */
771ed689 863 }
920bbbfb 864 key.offset = start;
6643558d 865 }
62fe51c1
JB
866 /*
867 * From here on out we will have actually dropped something, so
868 * last_end can be updated.
869 */
870 last_end = extent_end;
871
920bbbfb
YZ
872 /*
873 * | ---- range to drop ----- |
874 * | -------- extent -------- |
875 */
876 if (start <= key.offset && end < extent_end) {
00fdf13a 877 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 878 ret = -EOPNOTSUPP;
00fdf13a
LB
879 break;
880 }
6643558d 881
920bbbfb
YZ
882 memcpy(&new_key, &key, sizeof(new_key));
883 new_key.offset = end;
b7a0365e 884 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
6643558d 885
920bbbfb
YZ
886 extent_offset += end - key.offset;
887 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
888 btrfs_set_file_extent_num_bytes(leaf, fi,
889 extent_end - end);
890 btrfs_mark_buffer_dirty(leaf);
2671485d 891 if (update_refs && disk_bytenr > 0)
920bbbfb 892 inode_sub_bytes(inode, end - key.offset);
920bbbfb 893 break;
39279cc3 894 }
771ed689 895
920bbbfb
YZ
896 search_start = extent_end;
897 /*
898 * | ---- range to drop ----- |
899 * | -------- extent -------- |
900 */
901 if (start > key.offset && end >= extent_end) {
902 BUG_ON(del_nr > 0);
00fdf13a 903 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 904 ret = -EOPNOTSUPP;
00fdf13a
LB
905 break;
906 }
8c2383c3 907
920bbbfb
YZ
908 btrfs_set_file_extent_num_bytes(leaf, fi,
909 start - key.offset);
910 btrfs_mark_buffer_dirty(leaf);
2671485d 911 if (update_refs && disk_bytenr > 0)
920bbbfb 912 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
913 if (end == extent_end)
914 break;
c8b97818 915
920bbbfb
YZ
916 path->slots[0]++;
917 goto next_slot;
31840ae1
ZY
918 }
919
920bbbfb
YZ
920 /*
921 * | ---- range to drop ----- |
922 * | ------ extent ------ |
923 */
924 if (start <= key.offset && end >= extent_end) {
fc19c5e7 925delete_extent_item:
920bbbfb
YZ
926 if (del_nr == 0) {
927 del_slot = path->slots[0];
928 del_nr = 1;
929 } else {
930 BUG_ON(del_slot + del_nr != path->slots[0]);
931 del_nr++;
932 }
31840ae1 933
5dc562c5
JB
934 if (update_refs &&
935 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 936 inode_sub_bytes(inode,
920bbbfb
YZ
937 extent_end - key.offset);
938 extent_end = ALIGN(extent_end,
da17066c 939 root->fs_info->sectorsize);
5dc562c5 940 } else if (update_refs && disk_bytenr > 0) {
31840ae1 941 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
942 disk_bytenr, num_bytes, 0,
943 root->root_key.objectid,
5d4f98a2 944 key.objectid, key.offset -
b06c4bf5 945 extent_offset);
79787eaa 946 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
947 inode_sub_bytes(inode,
948 extent_end - key.offset);
31840ae1 949 }
31840ae1 950
920bbbfb
YZ
951 if (end == extent_end)
952 break;
953
954 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
955 path->slots[0]++;
956 goto next_slot;
957 }
958
959 ret = btrfs_del_items(trans, root, path, del_slot,
960 del_nr);
79787eaa 961 if (ret) {
66642832 962 btrfs_abort_transaction(trans, ret);
5dc562c5 963 break;
79787eaa 964 }
920bbbfb
YZ
965
966 del_nr = 0;
967 del_slot = 0;
968
b3b4aa74 969 btrfs_release_path(path);
920bbbfb 970 continue;
39279cc3 971 }
920bbbfb
YZ
972
973 BUG_ON(1);
39279cc3 974 }
920bbbfb 975
79787eaa 976 if (!ret && del_nr > 0) {
1acae57b
FDBM
977 /*
978 * Set path->slots[0] to first slot, so that after the delete
979 * if items are move off from our leaf to its immediate left or
980 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 981 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
982 */
983 path->slots[0] = del_slot;
920bbbfb 984 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 985 if (ret)
66642832 986 btrfs_abort_transaction(trans, ret);
d5f37527 987 }
1acae57b 988
d5f37527
FDBM
989 leaf = path->nodes[0];
990 /*
991 * If btrfs_del_items() was called, it might have deleted a leaf, in
992 * which case it unlocked our path, so check path->locks[0] matches a
993 * write lock.
994 */
995 if (!ret && replace_extent && leafs_visited == 1 &&
996 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
997 path->locks[0] == BTRFS_WRITE_LOCK) &&
998 btrfs_leaf_free_space(root, leaf) >=
999 sizeof(struct btrfs_item) + extent_item_size) {
1000
1001 key.objectid = ino;
1002 key.type = BTRFS_EXTENT_DATA_KEY;
1003 key.offset = start;
1004 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1005 struct btrfs_key slot_key;
1006
1007 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1008 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1009 path->slots[0]++;
1acae57b 1010 }
d5f37527
FDBM
1011 setup_items_for_insert(root, path, &key,
1012 &extent_item_size,
1013 extent_item_size,
1014 sizeof(struct btrfs_item) +
1015 extent_item_size, 1);
1016 *key_inserted = 1;
6643558d 1017 }
920bbbfb 1018
1acae57b
FDBM
1019 if (!replace_extent || !(*key_inserted))
1020 btrfs_release_path(path);
2aaa6655 1021 if (drop_end)
62fe51c1 1022 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1023 return ret;
1024}
1025
1026int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1027 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1028 u64 end, int drop_cache)
5dc562c5
JB
1029{
1030 struct btrfs_path *path;
1031 int ret;
1032
1033 path = btrfs_alloc_path();
1034 if (!path)
1035 return -ENOMEM;
2aaa6655 1036 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1037 drop_cache, 0, 0, NULL);
920bbbfb 1038 btrfs_free_path(path);
39279cc3
CM
1039 return ret;
1040}
1041
d899e052 1042static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1043 u64 objectid, u64 bytenr, u64 orig_offset,
1044 u64 *start, u64 *end)
d899e052
YZ
1045{
1046 struct btrfs_file_extent_item *fi;
1047 struct btrfs_key key;
1048 u64 extent_end;
1049
1050 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1051 return 0;
1052
1053 btrfs_item_key_to_cpu(leaf, &key, slot);
1054 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1055 return 0;
1056
1057 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1058 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1059 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1060 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1061 btrfs_file_extent_compression(leaf, fi) ||
1062 btrfs_file_extent_encryption(leaf, fi) ||
1063 btrfs_file_extent_other_encoding(leaf, fi))
1064 return 0;
1065
1066 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1067 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1068 return 0;
1069
1070 *start = key.offset;
1071 *end = extent_end;
1072 return 1;
1073}
1074
1075/*
1076 * Mark extent in the range start - end as written.
1077 *
1078 * This changes extent type from 'pre-allocated' to 'regular'. If only
1079 * part of extent is marked as written, the extent will be split into
1080 * two or three.
1081 */
1082int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
d899e052
YZ
1083 struct inode *inode, u64 start, u64 end)
1084{
920bbbfb 1085 struct btrfs_root *root = BTRFS_I(inode)->root;
d899e052
YZ
1086 struct extent_buffer *leaf;
1087 struct btrfs_path *path;
1088 struct btrfs_file_extent_item *fi;
1089 struct btrfs_key key;
920bbbfb 1090 struct btrfs_key new_key;
d899e052
YZ
1091 u64 bytenr;
1092 u64 num_bytes;
1093 u64 extent_end;
5d4f98a2 1094 u64 orig_offset;
d899e052
YZ
1095 u64 other_start;
1096 u64 other_end;
920bbbfb
YZ
1097 u64 split;
1098 int del_nr = 0;
1099 int del_slot = 0;
6c7d54ac 1100 int recow;
d899e052 1101 int ret;
33345d01 1102 u64 ino = btrfs_ino(inode);
d899e052 1103
d899e052 1104 path = btrfs_alloc_path();
d8926bb3
MF
1105 if (!path)
1106 return -ENOMEM;
d899e052 1107again:
6c7d54ac 1108 recow = 0;
920bbbfb 1109 split = start;
33345d01 1110 key.objectid = ino;
d899e052 1111 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1112 key.offset = split;
d899e052
YZ
1113
1114 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1115 if (ret < 0)
1116 goto out;
d899e052
YZ
1117 if (ret > 0 && path->slots[0] > 0)
1118 path->slots[0]--;
1119
1120 leaf = path->nodes[0];
1121 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1122 if (key.objectid != ino ||
1123 key.type != BTRFS_EXTENT_DATA_KEY) {
1124 ret = -EINVAL;
1125 btrfs_abort_transaction(trans, ret);
1126 goto out;
1127 }
d899e052
YZ
1128 fi = btrfs_item_ptr(leaf, path->slots[0],
1129 struct btrfs_file_extent_item);
9c8e63db
JB
1130 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1131 ret = -EINVAL;
1132 btrfs_abort_transaction(trans, ret);
1133 goto out;
1134 }
d899e052 1135 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1136 if (key.offset > start || extent_end < end) {
1137 ret = -EINVAL;
1138 btrfs_abort_transaction(trans, ret);
1139 goto out;
1140 }
d899e052
YZ
1141
1142 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1143 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1144 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1145 memcpy(&new_key, &key, sizeof(new_key));
1146
1147 if (start == key.offset && end < extent_end) {
1148 other_start = 0;
1149 other_end = start;
1150 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1151 ino, bytenr, orig_offset,
6c7d54ac
YZ
1152 &other_start, &other_end)) {
1153 new_key.offset = end;
b7a0365e 1154 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
6c7d54ac
YZ
1155 fi = btrfs_item_ptr(leaf, path->slots[0],
1156 struct btrfs_file_extent_item);
224ecce5
JB
1157 btrfs_set_file_extent_generation(leaf, fi,
1158 trans->transid);
6c7d54ac
YZ
1159 btrfs_set_file_extent_num_bytes(leaf, fi,
1160 extent_end - end);
1161 btrfs_set_file_extent_offset(leaf, fi,
1162 end - orig_offset);
1163 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1164 struct btrfs_file_extent_item);
224ecce5
JB
1165 btrfs_set_file_extent_generation(leaf, fi,
1166 trans->transid);
6c7d54ac
YZ
1167 btrfs_set_file_extent_num_bytes(leaf, fi,
1168 end - other_start);
1169 btrfs_mark_buffer_dirty(leaf);
1170 goto out;
1171 }
1172 }
1173
1174 if (start > key.offset && end == extent_end) {
1175 other_start = end;
1176 other_end = 0;
1177 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1178 ino, bytenr, orig_offset,
6c7d54ac
YZ
1179 &other_start, &other_end)) {
1180 fi = btrfs_item_ptr(leaf, path->slots[0],
1181 struct btrfs_file_extent_item);
1182 btrfs_set_file_extent_num_bytes(leaf, fi,
1183 start - key.offset);
224ecce5
JB
1184 btrfs_set_file_extent_generation(leaf, fi,
1185 trans->transid);
6c7d54ac
YZ
1186 path->slots[0]++;
1187 new_key.offset = start;
b7a0365e 1188 btrfs_set_item_key_safe(root->fs_info, path, &new_key);
6c7d54ac
YZ
1189
1190 fi = btrfs_item_ptr(leaf, path->slots[0],
1191 struct btrfs_file_extent_item);
224ecce5
JB
1192 btrfs_set_file_extent_generation(leaf, fi,
1193 trans->transid);
6c7d54ac
YZ
1194 btrfs_set_file_extent_num_bytes(leaf, fi,
1195 other_end - start);
1196 btrfs_set_file_extent_offset(leaf, fi,
1197 start - orig_offset);
1198 btrfs_mark_buffer_dirty(leaf);
1199 goto out;
1200 }
1201 }
d899e052 1202
920bbbfb
YZ
1203 while (start > key.offset || end < extent_end) {
1204 if (key.offset == start)
1205 split = end;
1206
920bbbfb
YZ
1207 new_key.offset = split;
1208 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1209 if (ret == -EAGAIN) {
b3b4aa74 1210 btrfs_release_path(path);
920bbbfb 1211 goto again;
d899e052 1212 }
79787eaa 1213 if (ret < 0) {
66642832 1214 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1215 goto out;
1216 }
d899e052 1217
920bbbfb
YZ
1218 leaf = path->nodes[0];
1219 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1220 struct btrfs_file_extent_item);
224ecce5 1221 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1222 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1223 split - key.offset);
1224
1225 fi = btrfs_item_ptr(leaf, path->slots[0],
1226 struct btrfs_file_extent_item);
1227
224ecce5 1228 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1229 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1230 btrfs_set_file_extent_num_bytes(leaf, fi,
1231 extent_end - split);
d899e052
YZ
1232 btrfs_mark_buffer_dirty(leaf);
1233
920bbbfb
YZ
1234 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
1235 root->root_key.objectid,
b06c4bf5 1236 ino, orig_offset);
9c8e63db
JB
1237 if (ret) {
1238 btrfs_abort_transaction(trans, ret);
1239 goto out;
1240 }
d899e052 1241
920bbbfb
YZ
1242 if (split == start) {
1243 key.offset = start;
1244 } else {
9c8e63db
JB
1245 if (start != key.offset) {
1246 ret = -EINVAL;
1247 btrfs_abort_transaction(trans, ret);
1248 goto out;
1249 }
d899e052 1250 path->slots[0]--;
920bbbfb 1251 extent_end = end;
d899e052 1252 }
6c7d54ac 1253 recow = 1;
d899e052
YZ
1254 }
1255
920bbbfb
YZ
1256 other_start = end;
1257 other_end = 0;
6c7d54ac 1258 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1259 ino, bytenr, orig_offset,
6c7d54ac
YZ
1260 &other_start, &other_end)) {
1261 if (recow) {
b3b4aa74 1262 btrfs_release_path(path);
6c7d54ac
YZ
1263 goto again;
1264 }
920bbbfb
YZ
1265 extent_end = other_end;
1266 del_slot = path->slots[0] + 1;
1267 del_nr++;
1268 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1269 0, root->root_key.objectid,
b06c4bf5 1270 ino, orig_offset);
9c8e63db
JB
1271 if (ret) {
1272 btrfs_abort_transaction(trans, ret);
1273 goto out;
1274 }
d899e052 1275 }
920bbbfb
YZ
1276 other_start = 0;
1277 other_end = start;
6c7d54ac 1278 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1279 ino, bytenr, orig_offset,
6c7d54ac
YZ
1280 &other_start, &other_end)) {
1281 if (recow) {
b3b4aa74 1282 btrfs_release_path(path);
6c7d54ac
YZ
1283 goto again;
1284 }
920bbbfb
YZ
1285 key.offset = other_start;
1286 del_slot = path->slots[0];
1287 del_nr++;
1288 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1289 0, root->root_key.objectid,
b06c4bf5 1290 ino, orig_offset);
9c8e63db
JB
1291 if (ret) {
1292 btrfs_abort_transaction(trans, ret);
1293 goto out;
1294 }
920bbbfb
YZ
1295 }
1296 if (del_nr == 0) {
3f6fae95
SL
1297 fi = btrfs_item_ptr(leaf, path->slots[0],
1298 struct btrfs_file_extent_item);
920bbbfb
YZ
1299 btrfs_set_file_extent_type(leaf, fi,
1300 BTRFS_FILE_EXTENT_REG);
224ecce5 1301 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1302 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1303 } else {
3f6fae95
SL
1304 fi = btrfs_item_ptr(leaf, del_slot - 1,
1305 struct btrfs_file_extent_item);
6c7d54ac
YZ
1306 btrfs_set_file_extent_type(leaf, fi,
1307 BTRFS_FILE_EXTENT_REG);
224ecce5 1308 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1309 btrfs_set_file_extent_num_bytes(leaf, fi,
1310 extent_end - key.offset);
1311 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1312
6c7d54ac 1313 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1314 if (ret < 0) {
66642832 1315 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1316 goto out;
1317 }
6c7d54ac 1318 }
920bbbfb 1319out:
d899e052
YZ
1320 btrfs_free_path(path);
1321 return 0;
1322}
1323
b1bf862e
CM
1324/*
1325 * on error we return an unlocked page and the error value
1326 * on success we return a locked page and 0
1327 */
bb1591b4
CM
1328static int prepare_uptodate_page(struct inode *inode,
1329 struct page *page, u64 pos,
b6316429 1330 bool force_uptodate)
b1bf862e
CM
1331{
1332 int ret = 0;
1333
09cbfeaf 1334 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1335 !PageUptodate(page)) {
b1bf862e
CM
1336 ret = btrfs_readpage(NULL, page);
1337 if (ret)
1338 return ret;
1339 lock_page(page);
1340 if (!PageUptodate(page)) {
1341 unlock_page(page);
1342 return -EIO;
1343 }
bb1591b4
CM
1344 if (page->mapping != inode->i_mapping) {
1345 unlock_page(page);
1346 return -EAGAIN;
1347 }
b1bf862e
CM
1348 }
1349 return 0;
1350}
1351
39279cc3 1352/*
376cc685 1353 * this just gets pages into the page cache and locks them down.
39279cc3 1354 */
b37392ea
MX
1355static noinline int prepare_pages(struct inode *inode, struct page **pages,
1356 size_t num_pages, loff_t pos,
1357 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1358{
1359 int i;
09cbfeaf 1360 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1361 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1362 int err = 0;
376cc685 1363 int faili;
8c2383c3 1364
39279cc3 1365 for (i = 0; i < num_pages; i++) {
bb1591b4 1366again:
a94733d0 1367 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1368 mask | __GFP_WRITE);
39279cc3 1369 if (!pages[i]) {
b1bf862e
CM
1370 faili = i - 1;
1371 err = -ENOMEM;
1372 goto fail;
1373 }
1374
1375 if (i == 0)
bb1591b4 1376 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1377 force_uptodate);
bb1591b4
CM
1378 if (!err && i == num_pages - 1)
1379 err = prepare_uptodate_page(inode, pages[i],
b6316429 1380 pos + write_bytes, false);
b1bf862e 1381 if (err) {
09cbfeaf 1382 put_page(pages[i]);
bb1591b4
CM
1383 if (err == -EAGAIN) {
1384 err = 0;
1385 goto again;
1386 }
b1bf862e
CM
1387 faili = i - 1;
1388 goto fail;
39279cc3 1389 }
ccd467d6 1390 wait_on_page_writeback(pages[i]);
39279cc3 1391 }
376cc685
MX
1392
1393 return 0;
1394fail:
1395 while (faili >= 0) {
1396 unlock_page(pages[faili]);
09cbfeaf 1397 put_page(pages[faili]);
376cc685
MX
1398 faili--;
1399 }
1400 return err;
1401
1402}
1403
1404/*
1405 * This function locks the extent and properly waits for data=ordered extents
1406 * to finish before allowing the pages to be modified if need.
1407 *
1408 * The return value:
1409 * 1 - the extent is locked
1410 * 0 - the extent is not locked, and everything is OK
1411 * -EAGAIN - need re-prepare the pages
1412 * the other < 0 number - Something wrong happens
1413 */
1414static noinline int
1415lock_and_cleanup_extent_if_need(struct inode *inode, struct page **pages,
1416 size_t num_pages, loff_t pos,
2e78c927 1417 size_t write_bytes,
376cc685
MX
1418 u64 *lockstart, u64 *lockend,
1419 struct extent_state **cached_state)
1420{
2e78c927 1421 struct btrfs_root *root = BTRFS_I(inode)->root;
376cc685
MX
1422 u64 start_pos;
1423 u64 last_pos;
1424 int i;
1425 int ret = 0;
1426
da17066c 1427 start_pos = round_down(pos, root->fs_info->sectorsize);
2e78c927 1428 last_pos = start_pos
da17066c
JM
1429 + round_up(pos + write_bytes - start_pos,
1430 root->fs_info->sectorsize) - 1;
376cc685 1431
0762704b 1432 if (start_pos < inode->i_size) {
e6dcd2dc 1433 struct btrfs_ordered_extent *ordered;
2ac55d41 1434 lock_extent_bits(&BTRFS_I(inode)->io_tree,
ff13db41 1435 start_pos, last_pos, cached_state);
b88935bf
MX
1436 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1437 last_pos - start_pos + 1);
e6dcd2dc
CM
1438 if (ordered &&
1439 ordered->file_offset + ordered->len > start_pos &&
376cc685 1440 ordered->file_offset <= last_pos) {
2ac55d41 1441 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
376cc685
MX
1442 start_pos, last_pos,
1443 cached_state, GFP_NOFS);
e6dcd2dc
CM
1444 for (i = 0; i < num_pages; i++) {
1445 unlock_page(pages[i]);
09cbfeaf 1446 put_page(pages[i]);
e6dcd2dc 1447 }
b88935bf
MX
1448 btrfs_start_ordered_extent(inode, ordered, 1);
1449 btrfs_put_ordered_extent(ordered);
1450 return -EAGAIN;
e6dcd2dc
CM
1451 }
1452 if (ordered)
1453 btrfs_put_ordered_extent(ordered);
1454
2ac55d41 1455 clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
376cc685 1456 last_pos, EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b 1457 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
376cc685
MX
1458 0, 0, cached_state, GFP_NOFS);
1459 *lockstart = start_pos;
1460 *lockend = last_pos;
1461 ret = 1;
0762704b 1462 }
376cc685 1463
e6dcd2dc 1464 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1465 if (clear_page_dirty_for_io(pages[i]))
1466 account_page_redirty(pages[i]);
e6dcd2dc
CM
1467 set_page_extent_mapped(pages[i]);
1468 WARN_ON(!PageLocked(pages[i]));
1469 }
b1bf862e 1470
376cc685 1471 return ret;
39279cc3
CM
1472}
1473
7ee9e440
JB
1474static noinline int check_can_nocow(struct inode *inode, loff_t pos,
1475 size_t *write_bytes)
1476{
7ee9e440
JB
1477 struct btrfs_root *root = BTRFS_I(inode)->root;
1478 struct btrfs_ordered_extent *ordered;
1479 u64 lockstart, lockend;
1480 u64 num_bytes;
1481 int ret;
1482
9ea24bbe 1483 ret = btrfs_start_write_no_snapshoting(root);
8257b2dc
MX
1484 if (!ret)
1485 return -ENOSPC;
1486
da17066c
JM
1487 lockstart = round_down(pos, root->fs_info->sectorsize);
1488 lockend = round_up(pos + *write_bytes,
1489 root->fs_info->sectorsize) - 1;
7ee9e440
JB
1490
1491 while (1) {
1492 lock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1493 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1494 lockend - lockstart + 1);
1495 if (!ordered) {
1496 break;
1497 }
1498 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1499 btrfs_start_ordered_extent(inode, ordered, 1);
1500 btrfs_put_ordered_extent(ordered);
1501 }
1502
7ee9e440 1503 num_bytes = lockend - lockstart + 1;
00361589 1504 ret = can_nocow_extent(inode, lockstart, &num_bytes, NULL, NULL, NULL);
7ee9e440
JB
1505 if (ret <= 0) {
1506 ret = 0;
9ea24bbe 1507 btrfs_end_write_no_snapshoting(root);
7ee9e440 1508 } else {
c933956d
MX
1509 *write_bytes = min_t(size_t, *write_bytes ,
1510 num_bytes - pos + lockstart);
7ee9e440
JB
1511 }
1512
1513 unlock_extent(&BTRFS_I(inode)->io_tree, lockstart, lockend);
1514
1515 return ret;
1516}
1517
d0215f3e
JB
1518static noinline ssize_t __btrfs_buffered_write(struct file *file,
1519 struct iov_iter *i,
1520 loff_t pos)
4b46fce2 1521{
496ad9aa 1522 struct inode *inode = file_inode(file);
11c65dcc 1523 struct btrfs_root *root = BTRFS_I(inode)->root;
da17066c 1524 struct btrfs_fs_info *fs_info = root->fs_info;
11c65dcc 1525 struct page **pages = NULL;
376cc685 1526 struct extent_state *cached_state = NULL;
7ee9e440 1527 u64 release_bytes = 0;
376cc685
MX
1528 u64 lockstart;
1529 u64 lockend;
d0215f3e
JB
1530 size_t num_written = 0;
1531 int nrptrs;
c9149235 1532 int ret = 0;
7ee9e440 1533 bool only_release_metadata = false;
b6316429 1534 bool force_page_uptodate = false;
376cc685 1535 bool need_unlock;
4b46fce2 1536
09cbfeaf
KS
1537 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1538 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1539 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1540 nrptrs = max(nrptrs, 8);
31e818fe 1541 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1542 if (!pages)
1543 return -ENOMEM;
ab93dbec 1544
d0215f3e 1545 while (iov_iter_count(i) > 0) {
09cbfeaf 1546 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1547 size_t sector_offset;
d0215f3e 1548 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1549 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1550 offset);
ed6078f7 1551 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1552 PAGE_SIZE);
7ee9e440 1553 size_t reserve_bytes;
d0215f3e
JB
1554 size_t dirty_pages;
1555 size_t copied;
2e78c927
CR
1556 size_t dirty_sectors;
1557 size_t num_sectors;
39279cc3 1558
8c2383c3 1559 WARN_ON(num_pages > nrptrs);
1832a6d5 1560
914ee295
XZ
1561 /*
1562 * Fault pages before locking them in prepare_pages
1563 * to avoid recursive lock
1564 */
d0215f3e 1565 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1566 ret = -EFAULT;
d0215f3e 1567 break;
914ee295
XZ
1568 }
1569
da17066c 1570 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1571 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1572 fs_info->sectorsize);
d9d8b2a5 1573
7cf5b976 1574 ret = btrfs_check_data_free_space(inode, pos, write_bytes);
c6887cd1
JB
1575 if (ret < 0) {
1576 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1577 BTRFS_INODE_PREALLOC)) &&
1578 check_can_nocow(inode, pos, &write_bytes) > 0) {
1579 /*
1580 * For nodata cow case, no need to reserve
1581 * data space.
1582 */
1583 only_release_metadata = true;
1584 /*
1585 * our prealloc extent may be smaller than
1586 * write_bytes, so scale down.
1587 */
1588 num_pages = DIV_ROUND_UP(write_bytes + offset,
1589 PAGE_SIZE);
1590 reserve_bytes = round_up(write_bytes +
1591 sector_offset,
da17066c 1592 fs_info->sectorsize);
c6887cd1
JB
1593 } else {
1594 break;
1595 }
1596 }
1832a6d5 1597
7ee9e440
JB
1598 ret = btrfs_delalloc_reserve_metadata(inode, reserve_bytes);
1599 if (ret) {
1600 if (!only_release_metadata)
7cf5b976
QW
1601 btrfs_free_reserved_data_space(inode, pos,
1602 write_bytes);
8257b2dc 1603 else
9ea24bbe 1604 btrfs_end_write_no_snapshoting(root);
7ee9e440
JB
1605 break;
1606 }
1607
1608 release_bytes = reserve_bytes;
376cc685
MX
1609 need_unlock = false;
1610again:
4a64001f
JB
1611 /*
1612 * This is going to setup the pages array with the number of
1613 * pages we want, so we don't really need to worry about the
1614 * contents of pages from loop to loop
1615 */
b37392ea
MX
1616 ret = prepare_pages(inode, pages, num_pages,
1617 pos, write_bytes,
b6316429 1618 force_page_uptodate);
7ee9e440 1619 if (ret)
d0215f3e 1620 break;
39279cc3 1621
376cc685 1622 ret = lock_and_cleanup_extent_if_need(inode, pages, num_pages,
2e78c927
CR
1623 pos, write_bytes, &lockstart,
1624 &lockend, &cached_state);
376cc685
MX
1625 if (ret < 0) {
1626 if (ret == -EAGAIN)
1627 goto again;
1628 break;
1629 } else if (ret > 0) {
1630 need_unlock = true;
1631 ret = 0;
1632 }
1633
ee22f0c4 1634 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1635
56244ef1
CM
1636 num_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1637 reserve_bytes);
1638 dirty_sectors = round_up(copied + sector_offset,
da17066c 1639 root->fs_info->sectorsize);
56244ef1
CM
1640 dirty_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info,
1641 dirty_sectors);
1642
b1bf862e
CM
1643 /*
1644 * if we have trouble faulting in the pages, fall
1645 * back to one page at a time
1646 */
1647 if (copied < write_bytes)
1648 nrptrs = 1;
1649
b6316429
JB
1650 if (copied == 0) {
1651 force_page_uptodate = true;
56244ef1 1652 dirty_sectors = 0;
b1bf862e 1653 dirty_pages = 0;
b6316429
JB
1654 } else {
1655 force_page_uptodate = false;
ed6078f7 1656 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1657 PAGE_SIZE);
b6316429 1658 }
914ee295 1659
d0215f3e
JB
1660 /*
1661 * If we had a short copy we need to release the excess delaloc
1662 * bytes we reserved. We need to increment outstanding_extents
56244ef1
CM
1663 * because btrfs_delalloc_release_space and
1664 * btrfs_delalloc_release_metadata will decrement it, but
d0215f3e
JB
1665 * we still have an outstanding extent for the chunk we actually
1666 * managed to copy.
1667 */
2e78c927 1668 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1669
1670 /* release everything except the sectors we dirtied */
1671 release_bytes -= dirty_sectors <<
1672 root->fs_info->sb->s_blocksize_bits;
1673
9e0baf60
JB
1674 if (copied > 0) {
1675 spin_lock(&BTRFS_I(inode)->lock);
1676 BTRFS_I(inode)->outstanding_extents++;
1677 spin_unlock(&BTRFS_I(inode)->lock);
1678 }
485290a7 1679 if (only_release_metadata) {
7ee9e440
JB
1680 btrfs_delalloc_release_metadata(inode,
1681 release_bytes);
485290a7
QW
1682 } else {
1683 u64 __pos;
1684
da17066c
JM
1685 __pos = round_down(pos,
1686 root->fs_info->sectorsize) +
09cbfeaf 1687 (dirty_pages << PAGE_SHIFT);
485290a7 1688 btrfs_delalloc_release_space(inode, __pos,
7ee9e440 1689 release_bytes);
485290a7 1690 }
914ee295
XZ
1691 }
1692
2e78c927 1693 release_bytes = round_up(copied + sector_offset,
da17066c 1694 root->fs_info->sectorsize);
376cc685
MX
1695
1696 if (copied > 0)
be1a12a0
JB
1697 ret = btrfs_dirty_pages(root, inode, pages,
1698 dirty_pages, pos, copied,
1699 NULL);
376cc685
MX
1700 if (need_unlock)
1701 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1702 lockstart, lockend, &cached_state,
1703 GFP_NOFS);
f1de9683
MX
1704 if (ret) {
1705 btrfs_drop_pages(pages, num_pages);
376cc685 1706 break;
f1de9683 1707 }
39279cc3 1708
376cc685 1709 release_bytes = 0;
8257b2dc 1710 if (only_release_metadata)
9ea24bbe 1711 btrfs_end_write_no_snapshoting(root);
8257b2dc 1712
7ee9e440 1713 if (only_release_metadata && copied > 0) {
da17066c
JM
1714 lockstart = round_down(pos,
1715 root->fs_info->sectorsize);
1716 lockend = round_up(pos + copied,
1717 root->fs_info->sectorsize) - 1;
7ee9e440
JB
1718
1719 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1720 lockend, EXTENT_NORESERVE, NULL,
1721 NULL, GFP_NOFS);
1722 only_release_metadata = false;
1723 }
1724
f1de9683
MX
1725 btrfs_drop_pages(pages, num_pages);
1726
d0215f3e
JB
1727 cond_resched();
1728
d0e1d66b 1729 balance_dirty_pages_ratelimited(inode->i_mapping);
da17066c 1730 if (dirty_pages < (root->fs_info->nodesize >> PAGE_SHIFT) + 1)
b53d3f5d 1731 btrfs_btree_balance_dirty(root);
cb843a6f 1732
914ee295
XZ
1733 pos += copied;
1734 num_written += copied;
d0215f3e 1735 }
39279cc3 1736
d0215f3e
JB
1737 kfree(pages);
1738
7ee9e440 1739 if (release_bytes) {
8257b2dc 1740 if (only_release_metadata) {
9ea24bbe 1741 btrfs_end_write_no_snapshoting(root);
7ee9e440 1742 btrfs_delalloc_release_metadata(inode, release_bytes);
8257b2dc 1743 } else {
a2af23b7 1744 btrfs_delalloc_release_space(inode,
da17066c 1745 round_down(pos, root->fs_info->sectorsize),
a2af23b7 1746 release_bytes);
8257b2dc 1747 }
7ee9e440
JB
1748 }
1749
d0215f3e
JB
1750 return num_written ? num_written : ret;
1751}
1752
1af5bb49 1753static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1754{
1755 struct file *file = iocb->ki_filp;
728404da 1756 struct inode *inode = file_inode(file);
1af5bb49 1757 loff_t pos = iocb->ki_pos;
d0215f3e
JB
1758 ssize_t written;
1759 ssize_t written_buffered;
1760 loff_t endbyte;
1761 int err;
1762
1af5bb49 1763 written = generic_file_direct_write(iocb, from);
d0215f3e 1764
0c949334 1765 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1766 return written;
1767
1768 pos += written;
0ae5e4d3 1769 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1770 if (written_buffered < 0) {
1771 err = written_buffered;
1772 goto out;
39279cc3 1773 }
075bdbdb
FM
1774 /*
1775 * Ensure all data is persisted. We want the next direct IO read to be
1776 * able to read what was just written.
1777 */
d0215f3e 1778 endbyte = pos + written_buffered - 1;
728404da 1779 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1780 if (err)
1781 goto out;
728404da 1782 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1783 if (err)
1784 goto out;
1785 written += written_buffered;
867c4f93 1786 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1787 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1788 endbyte >> PAGE_SHIFT);
39279cc3 1789out:
d0215f3e
JB
1790 return written ? written : err;
1791}
5b92ee72 1792
6c760c07
JB
1793static void update_time_for_write(struct inode *inode)
1794{
1795 struct timespec now;
1796
1797 if (IS_NOCMTIME(inode))
1798 return;
1799
c2050a45 1800 now = current_time(inode);
6c760c07
JB
1801 if (!timespec_equal(&inode->i_mtime, &now))
1802 inode->i_mtime = now;
1803
1804 if (!timespec_equal(&inode->i_ctime, &now))
1805 inode->i_ctime = now;
1806
1807 if (IS_I_VERSION(inode))
1808 inode_inc_iversion(inode);
1809}
1810
b30ac0fc
AV
1811static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1812 struct iov_iter *from)
d0215f3e
JB
1813{
1814 struct file *file = iocb->ki_filp;
496ad9aa 1815 struct inode *inode = file_inode(file);
d0215f3e 1816 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1817 u64 start_pos;
3ac0d7b9 1818 u64 end_pos;
d0215f3e 1819 ssize_t num_written = 0;
b812ce28 1820 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04
AV
1821 ssize_t err;
1822 loff_t pos;
1823 size_t count;
27772b68
CR
1824 loff_t oldsize;
1825 int clean_page = 0;
d0215f3e 1826
5955102c 1827 inode_lock(inode);
3309dd04
AV
1828 err = generic_write_checks(iocb, from);
1829 if (err <= 0) {
5955102c 1830 inode_unlock(inode);
3309dd04 1831 return err;
d0215f3e
JB
1832 }
1833
3309dd04 1834 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1835 err = file_remove_privs(file);
d0215f3e 1836 if (err) {
5955102c 1837 inode_unlock(inode);
d0215f3e
JB
1838 goto out;
1839 }
1840
1841 /*
1842 * If BTRFS flips readonly due to some impossible error
1843 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1844 * although we have opened a file as writable, we have
1845 * to stop this write operation to ensure FS consistency.
1846 */
87533c47 1847 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
5955102c 1848 inode_unlock(inode);
d0215f3e
JB
1849 err = -EROFS;
1850 goto out;
1851 }
1852
6c760c07
JB
1853 /*
1854 * We reserve space for updating the inode when we reserve space for the
1855 * extent we are going to write, so we will enospc out there. We don't
1856 * need to start yet another transaction to update the inode as we will
1857 * update the inode when we finish writing whatever data we write.
1858 */
1859 update_time_for_write(inode);
d0215f3e 1860
3309dd04
AV
1861 pos = iocb->ki_pos;
1862 count = iov_iter_count(from);
da17066c 1863 start_pos = round_down(pos, root->fs_info->sectorsize);
27772b68
CR
1864 oldsize = i_size_read(inode);
1865 if (start_pos > oldsize) {
3ac0d7b9 1866 /* Expand hole size to cover write data, preventing empty gap */
da17066c
JM
1867 end_pos = round_up(pos + count,
1868 root->fs_info->sectorsize);
27772b68 1869 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1870 if (err) {
5955102c 1871 inode_unlock(inode);
0c1a98c8
MX
1872 goto out;
1873 }
da17066c 1874 if (start_pos > round_up(oldsize, root->fs_info->sectorsize))
27772b68 1875 clean_page = 1;
0c1a98c8
MX
1876 }
1877
b812ce28
JB
1878 if (sync)
1879 atomic_inc(&BTRFS_I(inode)->sync_writers);
1880
2ba48ce5 1881 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1882 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1883 } else {
b30ac0fc 1884 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1885 if (num_written > 0)
867c4f93 1886 iocb->ki_pos = pos + num_written;
27772b68
CR
1887 if (clean_page)
1888 pagecache_isize_extended(inode, oldsize,
1889 i_size_read(inode));
d0215f3e
JB
1890 }
1891
5955102c 1892 inode_unlock(inode);
2ff3e9b6 1893
5a3f23d5 1894 /*
6c760c07
JB
1895 * We also have to set last_sub_trans to the current log transid,
1896 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1897 * transaction will appear to have already occurred.
5a3f23d5 1898 */
2f2ff0ee 1899 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1900 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1901 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1902 if (num_written > 0)
1903 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1904
b812ce28
JB
1905 if (sync)
1906 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1907out:
39279cc3 1908 current->backing_dev_info = NULL;
39279cc3
CM
1909 return num_written ? num_written : err;
1910}
1911
d397712b 1912int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1913{
6bf13c0c
SW
1914 if (filp->private_data)
1915 btrfs_ioctl_trans_end(filp);
f6dc45c7
CM
1916 /*
1917 * ordered_data_close is set by settattr when we are about to truncate
1918 * a file from a non-zero size to a zero size. This tries to
1919 * flush down new bytes that may have been written if the
1920 * application were using truncate to replace a file in place.
1921 */
1922 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1923 &BTRFS_I(inode)->runtime_flags))
1924 filemap_flush(inode->i_mapping);
e1b81e67
M
1925 return 0;
1926}
1927
669249ee
FM
1928static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
1929{
1930 int ret;
1931
1932 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 1933 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee
FM
1934 atomic_dec(&BTRFS_I(inode)->sync_writers);
1935
1936 return ret;
1937}
1938
d352ac68
CM
1939/*
1940 * fsync call for both files and directories. This logs the inode into
1941 * the tree log instead of forcing full commits whenever possible.
1942 *
1943 * It needs to call filemap_fdatawait so that all ordered extent updates are
1944 * in the metadata btree are up to date for copying to the log.
1945 *
1946 * It drops the inode mutex before doing the tree log commit. This is an
1947 * important optimization for directories because holding the mutex prevents
1948 * new operations on the dir while we write to disk.
1949 */
02c24a82 1950int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 1951{
de17e793 1952 struct dentry *dentry = file_dentry(file);
2b0143b5 1953 struct inode *inode = d_inode(dentry);
39279cc3 1954 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 1955 struct btrfs_trans_handle *trans;
8b050d35
MX
1956 struct btrfs_log_ctx ctx;
1957 int ret = 0;
2ab28f32 1958 bool full_sync = 0;
9dcbeed4 1959 u64 len;
39279cc3 1960
9dcbeed4
DS
1961 /*
1962 * The range length can be represented by u64, we have to do the typecasts
1963 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
1964 */
1965 len = (u64)end - (u64)start + 1;
1abe9b8a 1966 trace_btrfs_sync_file(file, datasync);
257c62e1 1967
90abccf2
MX
1968 /*
1969 * We write the dirty pages in the range and wait until they complete
1970 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
1971 * multi-task, and make the performance up. See
1972 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 1973 */
669249ee 1974 ret = start_ordered_ops(inode, start, end);
90abccf2
MX
1975 if (ret)
1976 return ret;
1977
5955102c 1978 inode_lock(inode);
2ecb7923 1979 atomic_inc(&root->log_batch);
2ab28f32
JB
1980 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
1981 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
1982 /*
1983 * We might have have had more pages made dirty after calling
1984 * start_ordered_ops and before acquiring the inode's i_mutex.
1985 */
0ef8b726 1986 if (full_sync) {
669249ee
FM
1987 /*
1988 * For a full sync, we need to make sure any ordered operations
1989 * start and finish before we start logging the inode, so that
1990 * all extents are persisted and the respective file extent
1991 * items are in the fs/subvol btree.
1992 */
b659ef02 1993 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee
FM
1994 } else {
1995 /*
1996 * Start any new ordered operations before starting to log the
1997 * inode. We will wait for them to finish in btrfs_sync_log().
1998 *
1999 * Right before acquiring the inode's mutex, we might have new
2000 * writes dirtying pages, which won't immediately start the
2001 * respective ordered operations - that is done through the
2002 * fill_delalloc callbacks invoked from the writepage and
2003 * writepages address space operations. So make sure we start
2004 * all ordered operations before starting to log our inode. Not
2005 * doing this means that while logging the inode, writeback
2006 * could start and invoke writepage/writepages, which would call
2007 * the fill_delalloc callbacks (cow_file_range,
2008 * submit_compressed_extents). These callbacks add first an
2009 * extent map to the modified list of extents and then create
2010 * the respective ordered operation, which means in
2011 * tree-log.c:btrfs_log_inode() we might capture all existing
2012 * ordered operations (with btrfs_get_logged_extents()) before
2013 * the fill_delalloc callback adds its ordered operation, and by
2014 * the time we visit the modified list of extent maps (with
2015 * btrfs_log_changed_extents()), we see and process the extent
2016 * map they created. We then use the extent map to construct a
2017 * file extent item for logging without waiting for the
2018 * respective ordered operation to finish - this file extent
2019 * item points to a disk location that might not have yet been
2020 * written to, containing random data - so after a crash a log
2021 * replay will make our inode have file extent items that point
2022 * to disk locations containing invalid data, as we returned
2023 * success to userspace without waiting for the respective
2024 * ordered operation to finish, because it wasn't captured by
2025 * btrfs_get_logged_extents().
2026 */
2027 ret = start_ordered_ops(inode, start, end);
2028 }
2029 if (ret) {
5955102c 2030 inode_unlock(inode);
669249ee 2031 goto out;
0ef8b726 2032 }
2ecb7923 2033 atomic_inc(&root->log_batch);
257c62e1 2034
39279cc3 2035 /*
3a8b36f3
FM
2036 * If the last transaction that changed this file was before the current
2037 * transaction and we have the full sync flag set in our inode, we can
2038 * bail out now without any syncing.
2039 *
2040 * Note that we can't bail out if the full sync flag isn't set. This is
2041 * because when the full sync flag is set we start all ordered extents
2042 * and wait for them to fully complete - when they complete they update
2043 * the inode's last_trans field through:
2044 *
2045 * btrfs_finish_ordered_io() ->
2046 * btrfs_update_inode_fallback() ->
2047 * btrfs_update_inode() ->
2048 * btrfs_set_inode_last_trans()
2049 *
2050 * So we are sure that last_trans is up to date and can do this check to
2051 * bail out safely. For the fast path, when the full sync flag is not
2052 * set in our inode, we can not do it because we start only our ordered
2053 * extents and don't wait for them to complete (that is when
2054 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2055 * value might be less than or equals to fs_info->last_trans_committed,
2056 * and setting a speculative last_trans for an inode when a buffered
2057 * write is made (such as fs_info->generation + 1 for example) would not
2058 * be reliable since after setting the value and before fsync is called
2059 * any number of transactions can start and commit (transaction kthread
2060 * commits the current transaction periodically), and a transaction
2061 * commit does not start nor waits for ordered extents to complete.
257c62e1 2062 */
a4abeea4 2063 smp_mb();
22ee6985 2064 if (btrfs_inode_in_log(inode, root->fs_info->generation) ||
affc0ff9
FM
2065 (full_sync && BTRFS_I(inode)->last_trans <=
2066 root->fs_info->last_trans_committed) ||
2067 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2068 BTRFS_I(inode)->last_trans
2069 <= root->fs_info->last_trans_committed)) {
5dc562c5 2070 /*
01327610 2071 * We've had everything committed since the last time we were
5dc562c5
JB
2072 * modified so clear this flag in case it was set for whatever
2073 * reason, it's no longer relevant.
2074 */
2075 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2076 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2077 /*
2078 * An ordered extent might have started before and completed
2079 * already with io errors, in which case the inode was not
2080 * updated and we end up here. So check the inode's mapping
2081 * flags for any errors that might have happened while doing
2082 * writeback of file data.
2083 */
f0312210 2084 ret = filemap_check_errors(inode->i_mapping);
5955102c 2085 inode_unlock(inode);
15ee9bc7
JB
2086 goto out;
2087 }
15ee9bc7
JB
2088
2089 /*
a52d9a80
CM
2090 * ok we haven't committed the transaction yet, lets do a commit
2091 */
6f902af4 2092 if (file->private_data)
6bf13c0c
SW
2093 btrfs_ioctl_trans_end(file);
2094
5039eddc
JB
2095 /*
2096 * We use start here because we will need to wait on the IO to complete
2097 * in btrfs_sync_log, which could require joining a transaction (for
2098 * example checking cross references in the nocow path). If we use join
2099 * here we could get into a situation where we're waiting on IO to
2100 * happen that is blocked on a transaction trying to commit. With start
2101 * we inc the extwriter counter, so we wait for all extwriters to exit
2102 * before we start blocking join'ers. This comment is to keep somebody
2103 * from thinking they are super smart and changing this to
2104 * btrfs_join_transaction *cough*Josef*cough*.
2105 */
a22285a6
YZ
2106 trans = btrfs_start_transaction(root, 0);
2107 if (IS_ERR(trans)) {
2108 ret = PTR_ERR(trans);
5955102c 2109 inode_unlock(inode);
39279cc3
CM
2110 goto out;
2111 }
5039eddc 2112 trans->sync = true;
e02119d5 2113
28a23593 2114 btrfs_init_log_ctx(&ctx, inode);
8b050d35 2115
49dae1bc 2116 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2117 if (ret < 0) {
a0634be5
FDBM
2118 /* Fallthrough and commit/free transaction. */
2119 ret = 1;
02c24a82 2120 }
49eb7e46
CM
2121
2122 /* we've logged all the items and now have a consistent
2123 * version of the file in the log. It is possible that
2124 * someone will come in and modify the file, but that's
2125 * fine because the log is consistent on disk, and we
2126 * have references to all of the file's extents
2127 *
2128 * It is possible that someone will come in and log the
2129 * file again, but that will end up using the synchronization
2130 * inside btrfs_sync_log to keep things safe.
2131 */
5955102c 2132 inode_unlock(inode);
49eb7e46 2133
8407f553
FM
2134 /*
2135 * If any of the ordered extents had an error, just return it to user
2136 * space, so that the application knows some writes didn't succeed and
2137 * can take proper action (retry for e.g.). Blindly committing the
2138 * transaction in this case, would fool userspace that everything was
2139 * successful. And we also want to make sure our log doesn't contain
2140 * file extent items pointing to extents that weren't fully written to -
2141 * just like in the non fast fsync path, where we check for the ordered
2142 * operation's error flag before writing to the log tree and return -EIO
2143 * if any of them had this flag set (btrfs_wait_ordered_range) -
2144 * therefore we need to check for errors in the ordered operations,
2145 * which are indicated by ctx.io_err.
2146 */
2147 if (ctx.io_err) {
2148 btrfs_end_transaction(trans, root);
2149 ret = ctx.io_err;
2150 goto out;
2151 }
2152
257c62e1 2153 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2154 if (!ret) {
8b050d35 2155 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2156 if (!ret) {
257c62e1 2157 ret = btrfs_end_transaction(trans, root);
0ef8b726 2158 goto out;
2ab28f32 2159 }
257c62e1 2160 }
0ef8b726 2161 if (!full_sync) {
9dcbeed4 2162 ret = btrfs_wait_ordered_range(inode, start, len);
b05fd874
FM
2163 if (ret) {
2164 btrfs_end_transaction(trans, root);
0ef8b726 2165 goto out;
b05fd874 2166 }
0ef8b726
JB
2167 }
2168 ret = btrfs_commit_transaction(trans, root);
257c62e1
CM
2169 } else {
2170 ret = btrfs_end_transaction(trans, root);
e02119d5 2171 }
39279cc3 2172out:
014e4ac4 2173 return ret > 0 ? -EIO : ret;
39279cc3
CM
2174}
2175
f0f37e2f 2176static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2177 .fault = filemap_fault,
f1820361 2178 .map_pages = filemap_map_pages,
9ebefb18
CM
2179 .page_mkwrite = btrfs_page_mkwrite,
2180};
2181
2182static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2183{
058a457e
MX
2184 struct address_space *mapping = filp->f_mapping;
2185
2186 if (!mapping->a_ops->readpage)
2187 return -ENOEXEC;
2188
9ebefb18 2189 file_accessed(filp);
058a457e 2190 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2191
9ebefb18
CM
2192 return 0;
2193}
2194
2aaa6655
JB
2195static int hole_mergeable(struct inode *inode, struct extent_buffer *leaf,
2196 int slot, u64 start, u64 end)
2197{
2198 struct btrfs_file_extent_item *fi;
2199 struct btrfs_key key;
2200
2201 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2202 return 0;
2203
2204 btrfs_item_key_to_cpu(leaf, &key, slot);
2205 if (key.objectid != btrfs_ino(inode) ||
2206 key.type != BTRFS_EXTENT_DATA_KEY)
2207 return 0;
2208
2209 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2210
2211 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2212 return 0;
2213
2214 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2215 return 0;
2216
2217 if (key.offset == end)
2218 return 1;
2219 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2220 return 1;
2221 return 0;
2222}
2223
2224static int fill_holes(struct btrfs_trans_handle *trans, struct inode *inode,
2225 struct btrfs_path *path, u64 offset, u64 end)
2226{
2227 struct btrfs_root *root = BTRFS_I(inode)->root;
2228 struct extent_buffer *leaf;
2229 struct btrfs_file_extent_item *fi;
2230 struct extent_map *hole_em;
2231 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2232 struct btrfs_key key;
2233 int ret;
2234
16e7549f
JB
2235 if (btrfs_fs_incompat(root->fs_info, NO_HOLES))
2236 goto out;
2237
2aaa6655
JB
2238 key.objectid = btrfs_ino(inode);
2239 key.type = BTRFS_EXTENT_DATA_KEY;
2240 key.offset = offset;
2241
2aaa6655 2242 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2243 if (ret <= 0) {
2244 /*
2245 * We should have dropped this offset, so if we find it then
2246 * something has gone horribly wrong.
2247 */
2248 if (ret == 0)
2249 ret = -EINVAL;
2aaa6655 2250 return ret;
f94480bd 2251 }
2aaa6655
JB
2252
2253 leaf = path->nodes[0];
2254 if (hole_mergeable(inode, leaf, path->slots[0]-1, offset, end)) {
2255 u64 num_bytes;
2256
2257 path->slots[0]--;
2258 fi = btrfs_item_ptr(leaf, path->slots[0],
2259 struct btrfs_file_extent_item);
2260 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2261 end - offset;
2262 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2263 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2264 btrfs_set_file_extent_offset(leaf, fi, 0);
2265 btrfs_mark_buffer_dirty(leaf);
2266 goto out;
2267 }
2268
1707e26d 2269 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2270 u64 num_bytes;
2271
2aaa6655 2272 key.offset = offset;
b7a0365e 2273 btrfs_set_item_key_safe(root->fs_info, path, &key);
2aaa6655
JB
2274 fi = btrfs_item_ptr(leaf, path->slots[0],
2275 struct btrfs_file_extent_item);
2276 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2277 offset;
2278 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2279 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2280 btrfs_set_file_extent_offset(leaf, fi, 0);
2281 btrfs_mark_buffer_dirty(leaf);
2282 goto out;
2283 }
2284 btrfs_release_path(path);
2285
2286 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
2287 0, 0, end - offset, 0, end - offset,
2288 0, 0, 0);
2289 if (ret)
2290 return ret;
2291
2292out:
2293 btrfs_release_path(path);
2294
2295 hole_em = alloc_extent_map();
2296 if (!hole_em) {
2297 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2299 &BTRFS_I(inode)->runtime_flags);
2300 } else {
2301 hole_em->start = offset;
2302 hole_em->len = end - offset;
cc95bef6 2303 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2304 hole_em->orig_start = offset;
2305
2306 hole_em->block_start = EXTENT_MAP_HOLE;
2307 hole_em->block_len = 0;
b4939680 2308 hole_em->orig_block_len = 0;
2aaa6655
JB
2309 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
2310 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2311 hole_em->generation = trans->transid;
2312
2313 do {
2314 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2315 write_lock(&em_tree->lock);
09a2a8f9 2316 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2317 write_unlock(&em_tree->lock);
2318 } while (ret == -EEXIST);
2319 free_extent_map(hole_em);
2320 if (ret)
2321 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2322 &BTRFS_I(inode)->runtime_flags);
2323 }
2324
2325 return 0;
2326}
2327
d7781546
QW
2328/*
2329 * Find a hole extent on given inode and change start/len to the end of hole
2330 * extent.(hole/vacuum extent whose em->start <= start &&
2331 * em->start + em->len > start)
2332 * When a hole extent is found, return 1 and modify start/len.
2333 */
2334static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2335{
2336 struct extent_map *em;
2337 int ret = 0;
2338
2339 em = btrfs_get_extent(inode, NULL, 0, *start, *len, 0);
2340 if (IS_ERR_OR_NULL(em)) {
2341 if (!em)
2342 ret = -ENOMEM;
2343 else
2344 ret = PTR_ERR(em);
2345 return ret;
2346 }
2347
2348 /* Hole or vacuum extent(only exists in no-hole mode) */
2349 if (em->block_start == EXTENT_MAP_HOLE) {
2350 ret = 1;
2351 *len = em->start + em->len > *start + *len ?
2352 0 : *start + *len - em->start - em->len;
2353 *start = em->start + em->len;
2354 }
2355 free_extent_map(em);
2356 return ret;
2357}
2358
2aaa6655
JB
2359static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2360{
2361 struct btrfs_root *root = BTRFS_I(inode)->root;
2362 struct extent_state *cached_state = NULL;
2363 struct btrfs_path *path;
2364 struct btrfs_block_rsv *rsv;
2365 struct btrfs_trans_handle *trans;
d7781546
QW
2366 u64 lockstart;
2367 u64 lockend;
2368 u64 tail_start;
2369 u64 tail_len;
2370 u64 orig_start = offset;
2371 u64 cur_offset;
2aaa6655
JB
2372 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
2373 u64 drop_end;
2aaa6655
JB
2374 int ret = 0;
2375 int err = 0;
6e4d6fa1 2376 unsigned int rsv_count;
9703fefe 2377 bool same_block;
16e7549f 2378 bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES);
a1a50f60 2379 u64 ino_size;
9703fefe 2380 bool truncated_block = false;
e8c1c76e 2381 bool updated_inode = false;
2aaa6655 2382
0ef8b726
JB
2383 ret = btrfs_wait_ordered_range(inode, offset, len);
2384 if (ret)
2385 return ret;
2aaa6655 2386
5955102c 2387 inode_lock(inode);
da17066c 2388 ino_size = round_up(inode->i_size, root->fs_info->sectorsize);
d7781546
QW
2389 ret = find_first_non_hole(inode, &offset, &len);
2390 if (ret < 0)
2391 goto out_only_mutex;
2392 if (ret && !len) {
2393 /* Already in a large hole */
2394 ret = 0;
2395 goto out_only_mutex;
2396 }
2397
da17066c 2398 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2399 lockend = round_down(offset + len,
da17066c 2400 btrfs_inode_sectorsize(inode)) - 1;
9703fefe
CR
2401 same_block = (BTRFS_BYTES_TO_BLKS(root->fs_info, offset))
2402 == (BTRFS_BYTES_TO_BLKS(root->fs_info, offset + len - 1));
7426cc04 2403 /*
9703fefe 2404 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2405 * because we are sure there is no data there.
2406 */
2aaa6655 2407 /*
9703fefe
CR
2408 * Only do this if we are in the same block and we aren't doing the
2409 * entire block.
2aaa6655 2410 */
da17066c 2411 if (same_block && len < root->fs_info->sectorsize) {
e8c1c76e 2412 if (offset < ino_size) {
9703fefe
CR
2413 truncated_block = true;
2414 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2415 } else {
2416 ret = 0;
2417 }
d7781546 2418 goto out_only_mutex;
2aaa6655
JB
2419 }
2420
9703fefe 2421 /* zero back part of the first block */
12870f1c 2422 if (offset < ino_size) {
9703fefe
CR
2423 truncated_block = true;
2424 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2425 if (ret) {
5955102c 2426 inode_unlock(inode);
7426cc04
MX
2427 return ret;
2428 }
2aaa6655
JB
2429 }
2430
d7781546
QW
2431 /* Check the aligned pages after the first unaligned page,
2432 * if offset != orig_start, which means the first unaligned page
01327610 2433 * including several following pages are already in holes,
d7781546
QW
2434 * the extra check can be skipped */
2435 if (offset == orig_start) {
2436 /* after truncate page, check hole again */
2437 len = offset + len - lockstart;
2438 offset = lockstart;
2439 ret = find_first_non_hole(inode, &offset, &len);
2440 if (ret < 0)
2441 goto out_only_mutex;
2442 if (ret && !len) {
2443 ret = 0;
2444 goto out_only_mutex;
2445 }
2446 lockstart = offset;
2447 }
2448
2449 /* Check the tail unaligned part is in a hole */
2450 tail_start = lockend + 1;
2451 tail_len = offset + len - tail_start;
2452 if (tail_len) {
2453 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2454 if (unlikely(ret < 0))
2455 goto out_only_mutex;
2456 if (!ret) {
2457 /* zero the front end of the last page */
2458 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2459 truncated_block = true;
2460 ret = btrfs_truncate_block(inode,
2461 tail_start + tail_len,
2462 0, 1);
d7781546
QW
2463 if (ret)
2464 goto out_only_mutex;
51f395ad 2465 }
0061280d 2466 }
2aaa6655
JB
2467 }
2468
2469 if (lockend < lockstart) {
e8c1c76e
FM
2470 ret = 0;
2471 goto out_only_mutex;
2aaa6655
JB
2472 }
2473
2474 while (1) {
2475 struct btrfs_ordered_extent *ordered;
2476
2477 truncate_pagecache_range(inode, lockstart, lockend);
2478
2479 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 2480 &cached_state);
2aaa6655
JB
2481 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2482
2483 /*
2484 * We need to make sure we have no ordered extents in this range
2485 * and nobody raced in and read a page in this range, if we did
2486 * we need to try again.
2487 */
2488 if ((!ordered ||
6126e3ca 2489 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2490 ordered->file_offset > lockend)) &&
fc4adbff 2491 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2492 if (ordered)
2493 btrfs_put_ordered_extent(ordered);
2494 break;
2495 }
2496 if (ordered)
2497 btrfs_put_ordered_extent(ordered);
2498 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2499 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2500 ret = btrfs_wait_ordered_range(inode, lockstart,
2501 lockend - lockstart + 1);
2502 if (ret) {
5955102c 2503 inode_unlock(inode);
0ef8b726
JB
2504 return ret;
2505 }
2aaa6655
JB
2506 }
2507
2508 path = btrfs_alloc_path();
2509 if (!path) {
2510 ret = -ENOMEM;
2511 goto out;
2512 }
2513
66d8f3dd 2514 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2515 if (!rsv) {
2516 ret = -ENOMEM;
2517 goto out_free;
2518 }
2519 rsv->size = btrfs_calc_trunc_metadata_size(root, 1);
2520 rsv->failfast = 1;
2521
2522 /*
2523 * 1 - update the inode
2524 * 1 - removing the extents in the range
16e7549f 2525 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2526 */
16e7549f
JB
2527 rsv_count = no_holes ? 2 : 3;
2528 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2529 if (IS_ERR(trans)) {
2530 err = PTR_ERR(trans);
2531 goto out_free;
2532 }
2533
2534 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
25d609f8 2535 min_size, 0);
2aaa6655
JB
2536 BUG_ON(ret);
2537 trans->block_rsv = rsv;
2538
d7781546
QW
2539 cur_offset = lockstart;
2540 len = lockend - cur_offset;
2aaa6655
JB
2541 while (cur_offset < lockend) {
2542 ret = __btrfs_drop_extents(trans, root, inode, path,
2543 cur_offset, lockend + 1,
1acae57b 2544 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2545 if (ret != -ENOSPC)
2546 break;
2547
2548 trans->block_rsv = &root->fs_info->trans_block_rsv;
2549
62fe51c1 2550 if (cur_offset < drop_end && cur_offset < ino_size) {
12870f1c
FM
2551 ret = fill_holes(trans, inode, path, cur_offset,
2552 drop_end);
2553 if (ret) {
f94480bd
JB
2554 /*
2555 * If we failed then we didn't insert our hole
2556 * entries for the area we dropped, so now the
2557 * fs is corrupted, so we must abort the
2558 * transaction.
2559 */
2560 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2561 err = ret;
2562 break;
2563 }
2aaa6655
JB
2564 }
2565
2566 cur_offset = drop_end;
2567
2568 ret = btrfs_update_inode(trans, root, inode);
2569 if (ret) {
2570 err = ret;
2571 break;
2572 }
2573
2aaa6655 2574 btrfs_end_transaction(trans, root);
b53d3f5d 2575 btrfs_btree_balance_dirty(root);
2aaa6655 2576
16e7549f 2577 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2578 if (IS_ERR(trans)) {
2579 ret = PTR_ERR(trans);
2580 trans = NULL;
2581 break;
2582 }
2583
2584 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
25d609f8 2585 rsv, min_size, 0);
2aaa6655
JB
2586 BUG_ON(ret); /* shouldn't happen */
2587 trans->block_rsv = rsv;
d7781546
QW
2588
2589 ret = find_first_non_hole(inode, &cur_offset, &len);
2590 if (unlikely(ret < 0))
2591 break;
2592 if (ret && !len) {
2593 ret = 0;
2594 break;
2595 }
2aaa6655
JB
2596 }
2597
2598 if (ret) {
2599 err = ret;
2600 goto out_trans;
2601 }
2602
2603 trans->block_rsv = &root->fs_info->trans_block_rsv;
2959a32a
FM
2604 /*
2605 * If we are using the NO_HOLES feature we might have had already an
2606 * hole that overlaps a part of the region [lockstart, lockend] and
2607 * ends at (or beyond) lockend. Since we have no file extent items to
2608 * represent holes, drop_end can be less than lockend and so we must
2609 * make sure we have an extent map representing the existing hole (the
2610 * call to __btrfs_drop_extents() might have dropped the existing extent
2611 * map representing the existing hole), otherwise the fast fsync path
2612 * will not record the existence of the hole region
2613 * [existing_hole_start, lockend].
2614 */
2615 if (drop_end <= lockend)
2616 drop_end = lockend + 1;
fc19c5e7
FM
2617 /*
2618 * Don't insert file hole extent item if it's for a range beyond eof
2619 * (because it's useless) or if it represents a 0 bytes range (when
2620 * cur_offset == drop_end).
2621 */
2622 if (cur_offset < ino_size && cur_offset < drop_end) {
12870f1c
FM
2623 ret = fill_holes(trans, inode, path, cur_offset, drop_end);
2624 if (ret) {
f94480bd
JB
2625 /* Same comment as above. */
2626 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2627 err = ret;
2628 goto out_trans;
2629 }
2aaa6655
JB
2630 }
2631
2632out_trans:
2633 if (!trans)
2634 goto out_free;
2635
e1f5790e 2636 inode_inc_iversion(inode);
c2050a45 2637 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2638
2aaa6655
JB
2639 trans->block_rsv = &root->fs_info->trans_block_rsv;
2640 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2641 updated_inode = true;
2aaa6655 2642 btrfs_end_transaction(trans, root);
b53d3f5d 2643 btrfs_btree_balance_dirty(root);
2aaa6655
JB
2644out_free:
2645 btrfs_free_path(path);
2646 btrfs_free_block_rsv(root, rsv);
2647out:
2648 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2649 &cached_state, GFP_NOFS);
d7781546 2650out_only_mutex:
9703fefe 2651 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2652 /*
2653 * If we only end up zeroing part of a page, we still need to
2654 * update the inode item, so that all the time fields are
2655 * updated as well as the necessary btrfs inode in memory fields
2656 * for detecting, at fsync time, if the inode isn't yet in the
2657 * log tree or it's there but not up to date.
2658 */
2659 trans = btrfs_start_transaction(root, 1);
2660 if (IS_ERR(trans)) {
2661 err = PTR_ERR(trans);
2662 } else {
2663 err = btrfs_update_inode(trans, root, inode);
2664 ret = btrfs_end_transaction(trans, root);
2665 }
2666 }
5955102c 2667 inode_unlock(inode);
2aaa6655
JB
2668 if (ret && !err)
2669 err = ret;
2670 return err;
2671}
2672
14524a84
QW
2673/* Helper structure to record which range is already reserved */
2674struct falloc_range {
2675 struct list_head list;
2676 u64 start;
2677 u64 len;
2678};
2679
2680/*
2681 * Helper function to add falloc range
2682 *
2683 * Caller should have locked the larger range of extent containing
2684 * [start, len)
2685 */
2686static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2687{
2688 struct falloc_range *prev = NULL;
2689 struct falloc_range *range = NULL;
2690
2691 if (list_empty(head))
2692 goto insert;
2693
2694 /*
2695 * As fallocate iterate by bytenr order, we only need to check
2696 * the last range.
2697 */
2698 prev = list_entry(head->prev, struct falloc_range, list);
2699 if (prev->start + prev->len == start) {
2700 prev->len += len;
2701 return 0;
2702 }
2703insert:
32fc932e 2704 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2705 if (!range)
2706 return -ENOMEM;
2707 range->start = start;
2708 range->len = len;
2709 list_add_tail(&range->list, head);
2710 return 0;
2711}
2712
2fe17c10
CH
2713static long btrfs_fallocate(struct file *file, int mode,
2714 loff_t offset, loff_t len)
2715{
496ad9aa 2716 struct inode *inode = file_inode(file);
2fe17c10 2717 struct extent_state *cached_state = NULL;
14524a84
QW
2718 struct falloc_range *range;
2719 struct falloc_range *tmp;
2720 struct list_head reserve_list;
2fe17c10
CH
2721 u64 cur_offset;
2722 u64 last_byte;
2723 u64 alloc_start;
2724 u64 alloc_end;
2725 u64 alloc_hint = 0;
2726 u64 locked_end;
14524a84 2727 u64 actual_end = 0;
2fe17c10 2728 struct extent_map *em;
da17066c 2729 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
2730 int ret;
2731
797f4277
MX
2732 alloc_start = round_down(offset, blocksize);
2733 alloc_end = round_up(offset + len, blocksize);
18513091 2734 cur_offset = alloc_start;
2fe17c10 2735
2aaa6655
JB
2736 /* Make sure we aren't being give some crap mode */
2737 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2738 return -EOPNOTSUPP;
2739
2aaa6655
JB
2740 if (mode & FALLOC_FL_PUNCH_HOLE)
2741 return btrfs_punch_hole(inode, offset, len);
2742
d98456fc 2743 /*
14524a84
QW
2744 * Only trigger disk allocation, don't trigger qgroup reserve
2745 *
2746 * For qgroup space, it will be checked later.
d98456fc 2747 */
14524a84
QW
2748 ret = btrfs_alloc_data_chunk_ondemand(inode, alloc_end - alloc_start);
2749 if (ret < 0)
d98456fc
CM
2750 return ret;
2751
5955102c 2752 inode_lock(inode);
2a162ce9
DI
2753
2754 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2755 ret = inode_newsize_ok(inode, offset + len);
2756 if (ret)
2757 goto out;
2758 }
2fe17c10 2759
14524a84
QW
2760 /*
2761 * TODO: Move these two operations after we have checked
2762 * accurate reserved space, or fallocate can still fail but
2763 * with page truncated or size expanded.
2764 *
2765 * But that's a minor problem and won't do much harm BTW.
2766 */
2fe17c10 2767 if (alloc_start > inode->i_size) {
a41ad394
JB
2768 ret = btrfs_cont_expand(inode, i_size_read(inode),
2769 alloc_start);
2fe17c10
CH
2770 if (ret)
2771 goto out;
0f6925fa 2772 } else if (offset + len > inode->i_size) {
a71754fc
JB
2773 /*
2774 * If we are fallocating from the end of the file onward we
9703fefe
CR
2775 * need to zero out the end of the block if i_size lands in the
2776 * middle of a block.
a71754fc 2777 */
9703fefe 2778 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
2779 if (ret)
2780 goto out;
2fe17c10
CH
2781 }
2782
a71754fc
JB
2783 /*
2784 * wait for ordered IO before we have any locks. We'll loop again
2785 * below with the locks held.
2786 */
0ef8b726
JB
2787 ret = btrfs_wait_ordered_range(inode, alloc_start,
2788 alloc_end - alloc_start);
2789 if (ret)
2790 goto out;
a71754fc 2791
2fe17c10
CH
2792 locked_end = alloc_end - 1;
2793 while (1) {
2794 struct btrfs_ordered_extent *ordered;
2795
2796 /* the extent lock is ordered inside the running
2797 * transaction
2798 */
2799 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 2800 locked_end, &cached_state);
2fe17c10
CH
2801 ordered = btrfs_lookup_first_ordered_extent(inode,
2802 alloc_end - 1);
2803 if (ordered &&
2804 ordered->file_offset + ordered->len > alloc_start &&
2805 ordered->file_offset < alloc_end) {
2806 btrfs_put_ordered_extent(ordered);
2807 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2808 alloc_start, locked_end,
32fc932e 2809 &cached_state, GFP_KERNEL);
2fe17c10
CH
2810 /*
2811 * we can't wait on the range with the transaction
2812 * running or with the extent lock held
2813 */
0ef8b726
JB
2814 ret = btrfs_wait_ordered_range(inode, alloc_start,
2815 alloc_end - alloc_start);
2816 if (ret)
2817 goto out;
2fe17c10
CH
2818 } else {
2819 if (ordered)
2820 btrfs_put_ordered_extent(ordered);
2821 break;
2822 }
2823 }
2824
14524a84
QW
2825 /* First, check if we exceed the qgroup limit */
2826 INIT_LIST_HEAD(&reserve_list);
2fe17c10
CH
2827 while (1) {
2828 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
2829 alloc_end - cur_offset, 0);
79787eaa
JM
2830 if (IS_ERR_OR_NULL(em)) {
2831 if (!em)
2832 ret = -ENOMEM;
2833 else
2834 ret = PTR_ERR(em);
2835 break;
2836 }
2fe17c10 2837 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2838 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2839 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
2840 if (em->block_start == EXTENT_MAP_HOLE ||
2841 (cur_offset >= inode->i_size &&
2842 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
2843 ret = add_falloc_range(&reserve_list, cur_offset,
2844 last_byte - cur_offset);
2845 if (ret < 0) {
2846 free_extent_map(em);
2847 break;
3d850dd4 2848 }
14524a84
QW
2849 ret = btrfs_qgroup_reserve_data(inode, cur_offset,
2850 last_byte - cur_offset);
2851 if (ret < 0)
2852 break;
18513091
WX
2853 } else {
2854 /*
2855 * Do not need to reserve unwritten extent for this
2856 * range, free reserved data space first, otherwise
2857 * it'll result in false ENOSPC error.
2858 */
2859 btrfs_free_reserved_data_space(inode, cur_offset,
2860 last_byte - cur_offset);
2fe17c10
CH
2861 }
2862 free_extent_map(em);
2fe17c10 2863 cur_offset = last_byte;
14524a84 2864 if (cur_offset >= alloc_end)
2fe17c10 2865 break;
14524a84
QW
2866 }
2867
2868 /*
2869 * If ret is still 0, means we're OK to fallocate.
2870 * Or just cleanup the list and exit.
2871 */
2872 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2873 if (!ret)
2874 ret = btrfs_prealloc_file_range(inode, mode,
2875 range->start,
2876 range->len, 1 << inode->i_blkbits,
2877 offset + len, &alloc_hint);
18513091
WX
2878 else
2879 btrfs_free_reserved_data_space(inode, range->start,
2880 range->len);
14524a84
QW
2881 list_del(&range->list);
2882 kfree(range);
2883 }
2884 if (ret < 0)
2885 goto out_unlock;
2886
2887 if (actual_end > inode->i_size &&
2888 !(mode & FALLOC_FL_KEEP_SIZE)) {
2889 struct btrfs_trans_handle *trans;
2890 struct btrfs_root *root = BTRFS_I(inode)->root;
2891
2892 /*
2893 * We didn't need to allocate any more space, but we
2894 * still extended the size of the file so we need to
2895 * update i_size and the inode item.
2896 */
2897 trans = btrfs_start_transaction(root, 1);
2898 if (IS_ERR(trans)) {
2899 ret = PTR_ERR(trans);
2900 } else {
c2050a45 2901 inode->i_ctime = current_time(inode);
14524a84
QW
2902 i_size_write(inode, actual_end);
2903 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2904 ret = btrfs_update_inode(trans, root, inode);
2905 if (ret)
2906 btrfs_end_transaction(trans, root);
2907 else
2908 ret = btrfs_end_transaction(trans, root);
2fe17c10
CH
2909 }
2910 }
14524a84 2911out_unlock:
2fe17c10 2912 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
32fc932e 2913 &cached_state, GFP_KERNEL);
2fe17c10 2914out:
5955102c 2915 inode_unlock(inode);
d98456fc 2916 /* Let go of our reservation. */
18513091
WX
2917 if (ret != 0)
2918 btrfs_free_reserved_data_space(inode, alloc_start,
2919 alloc_end - cur_offset);
2fe17c10
CH
2920 return ret;
2921}
2922
965c8e59 2923static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157
JB
2924{
2925 struct btrfs_root *root = BTRFS_I(inode)->root;
7f4ca37c 2926 struct extent_map *em = NULL;
b2675157 2927 struct extent_state *cached_state = NULL;
4d1a40c6
LB
2928 u64 lockstart;
2929 u64 lockend;
2930 u64 start;
2931 u64 len;
b2675157
JB
2932 int ret = 0;
2933
4d1a40c6
LB
2934 if (inode->i_size == 0)
2935 return -ENXIO;
2936
2937 /*
2938 * *offset can be negative, in this case we start finding DATA/HOLE from
2939 * the very start of the file.
2940 */
2941 start = max_t(loff_t, 0, *offset);
2942
da17066c
JM
2943 lockstart = round_down(start, root->fs_info->sectorsize);
2944 lockend = round_up(i_size_read(inode),
2945 root->fs_info->sectorsize);
b2675157 2946 if (lockend <= lockstart)
da17066c 2947 lockend = lockstart + root->fs_info->sectorsize;
1214b53f 2948 lockend--;
b2675157
JB
2949 len = lockend - lockstart + 1;
2950
ff13db41 2951 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 2952 &cached_state);
b2675157 2953
7f4ca37c 2954 while (start < inode->i_size) {
b2675157
JB
2955 em = btrfs_get_extent_fiemap(inode, NULL, 0, start, len, 0);
2956 if (IS_ERR(em)) {
6af021d8 2957 ret = PTR_ERR(em);
7f4ca37c 2958 em = NULL;
b2675157
JB
2959 break;
2960 }
2961
7f4ca37c
JB
2962 if (whence == SEEK_HOLE &&
2963 (em->block_start == EXTENT_MAP_HOLE ||
2964 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2965 break;
2966 else if (whence == SEEK_DATA &&
2967 (em->block_start != EXTENT_MAP_HOLE &&
2968 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
2969 break;
b2675157
JB
2970
2971 start = em->start + em->len;
b2675157 2972 free_extent_map(em);
7f4ca37c 2973 em = NULL;
b2675157
JB
2974 cond_resched();
2975 }
7f4ca37c
JB
2976 free_extent_map(em);
2977 if (!ret) {
2978 if (whence == SEEK_DATA && start >= inode->i_size)
2979 ret = -ENXIO;
2980 else
2981 *offset = min_t(loff_t, start, inode->i_size);
2982 }
b2675157
JB
2983 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2984 &cached_state, GFP_NOFS);
2985 return ret;
2986}
2987
965c8e59 2988static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
2989{
2990 struct inode *inode = file->f_mapping->host;
2991 int ret;
2992
5955102c 2993 inode_lock(inode);
965c8e59 2994 switch (whence) {
b2675157
JB
2995 case SEEK_END:
2996 case SEEK_CUR:
965c8e59 2997 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
2998 goto out;
2999 case SEEK_DATA:
3000 case SEEK_HOLE:
48802c8a 3001 if (offset >= i_size_read(inode)) {
5955102c 3002 inode_unlock(inode);
48802c8a
JL
3003 return -ENXIO;
3004 }
3005
965c8e59 3006 ret = find_desired_extent(inode, &offset, whence);
b2675157 3007 if (ret) {
5955102c 3008 inode_unlock(inode);
b2675157
JB
3009 return ret;
3010 }
3011 }
3012
46a1c2c7 3013 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3014out:
5955102c 3015 inode_unlock(inode);
b2675157
JB
3016 return offset;
3017}
3018
828c0950 3019const struct file_operations btrfs_file_operations = {
b2675157 3020 .llseek = btrfs_file_llseek,
aad4f8bb 3021 .read_iter = generic_file_read_iter,
e9906a98 3022 .splice_read = generic_file_splice_read,
b30ac0fc 3023 .write_iter = btrfs_file_write_iter,
9ebefb18 3024 .mmap = btrfs_file_mmap,
39279cc3 3025 .open = generic_file_open,
e1b81e67 3026 .release = btrfs_release_file,
39279cc3 3027 .fsync = btrfs_sync_file,
2fe17c10 3028 .fallocate = btrfs_fallocate,
34287aa3 3029 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3030#ifdef CONFIG_COMPAT
4c63c245 3031 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3032#endif
3db11b2e 3033 .copy_file_range = btrfs_copy_file_range,
04b38d60 3034 .clone_file_range = btrfs_clone_file_range,
2b3909f8 3035 .dedupe_file_range = btrfs_dedupe_file_range,
39279cc3 3036};
9247f317
MX
3037
3038void btrfs_auto_defrag_exit(void)
3039{
5598e900 3040 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3041}
3042
3043int btrfs_auto_defrag_init(void)
3044{
3045 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3046 sizeof(struct inode_defrag), 0,
fba4b697 3047 SLAB_MEM_SPREAD,
9247f317
MX
3048 NULL);
3049 if (!btrfs_inode_defrag_cachep)
3050 return -ENOMEM;
3051
3052 return 0;
3053}
728404da
FM
3054
3055int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3056{
3057 int ret;
3058
3059 /*
3060 * So with compression we will find and lock a dirty page and clear the
3061 * first one as dirty, setup an async extent, and immediately return
3062 * with the entire range locked but with nobody actually marked with
3063 * writeback. So we can't just filemap_write_and_wait_range() and
3064 * expect it to work since it will just kick off a thread to do the
3065 * actual work. So we need to call filemap_fdatawrite_range _again_
3066 * since it will wait on the page lock, which won't be unlocked until
3067 * after the pages have been marked as writeback and so we're good to go
3068 * from there. We have to do this otherwise we'll miss the ordered
3069 * extents and that results in badness. Please Josef, do not think you
3070 * know better and pull this out at some point in the future, it is
3071 * right and you are wrong.
3072 */
3073 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3074 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3075 &BTRFS_I(inode)->runtime_flags))
3076 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3077
3078 return ret;
3079}