]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blame - fs/btrfs/file.c
vfs: combine the clone and dedupe into a single remap_file_range
[mirror_ubuntu-eoan-kernel.git] / fs / btrfs / file.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
39279cc3
CM
6#include <linux/fs.h>
7#include <linux/pagemap.h>
39279cc3
CM
8#include <linux/time.h>
9#include <linux/init.h>
10#include <linux/string.h>
39279cc3 11#include <linux/backing-dev.h>
2fe17c10 12#include <linux/falloc.h>
39279cc3 13#include <linux/writeback.h>
39279cc3 14#include <linux/compat.h>
5a0e3ad6 15#include <linux/slab.h>
55e301fd 16#include <linux/btrfs.h>
e2e40f2c 17#include <linux/uio.h>
ae5e165d 18#include <linux/iversion.h>
39279cc3
CM
19#include "ctree.h"
20#include "disk-io.h"
21#include "transaction.h"
22#include "btrfs_inode.h"
39279cc3 23#include "print-tree.h"
e02119d5
CM
24#include "tree-log.h"
25#include "locking.h"
2aaa6655 26#include "volumes.h"
fcebe456 27#include "qgroup.h"
ebb8765b 28#include "compression.h"
39279cc3 29
9247f317 30static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
31/*
32 * when auto defrag is enabled we
33 * queue up these defrag structs to remember which
34 * inodes need defragging passes
35 */
36struct inode_defrag {
37 struct rb_node rb_node;
38 /* objectid */
39 u64 ino;
40 /*
41 * transid where the defrag was added, we search for
42 * extents newer than this
43 */
44 u64 transid;
45
46 /* root objectid */
47 u64 root;
48
49 /* last offset we were able to defrag */
50 u64 last_offset;
51
52 /* if we've wrapped around back to zero once already */
53 int cycled;
54};
55
762f2263
MX
56static int __compare_inode_defrag(struct inode_defrag *defrag1,
57 struct inode_defrag *defrag2)
58{
59 if (defrag1->root > defrag2->root)
60 return 1;
61 else if (defrag1->root < defrag2->root)
62 return -1;
63 else if (defrag1->ino > defrag2->ino)
64 return 1;
65 else if (defrag1->ino < defrag2->ino)
66 return -1;
67 else
68 return 0;
69}
70
4cb5300b
CM
71/* pop a record for an inode into the defrag tree. The lock
72 * must be held already
73 *
74 * If you're inserting a record for an older transid than an
75 * existing record, the transid already in the tree is lowered
76 *
77 * If an existing record is found the defrag item you
78 * pass in is freed
79 */
6158e1ce 80static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
81 struct inode_defrag *defrag)
82{
3ffbd68c 83 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4cb5300b
CM
84 struct inode_defrag *entry;
85 struct rb_node **p;
86 struct rb_node *parent = NULL;
762f2263 87 int ret;
4cb5300b 88
0b246afa 89 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
90 while (*p) {
91 parent = *p;
92 entry = rb_entry(parent, struct inode_defrag, rb_node);
93
762f2263
MX
94 ret = __compare_inode_defrag(defrag, entry);
95 if (ret < 0)
4cb5300b 96 p = &parent->rb_left;
762f2263 97 else if (ret > 0)
4cb5300b
CM
98 p = &parent->rb_right;
99 else {
100 /* if we're reinserting an entry for
101 * an old defrag run, make sure to
102 * lower the transid of our existing record
103 */
104 if (defrag->transid < entry->transid)
105 entry->transid = defrag->transid;
106 if (defrag->last_offset > entry->last_offset)
107 entry->last_offset = defrag->last_offset;
8ddc4734 108 return -EEXIST;
4cb5300b
CM
109 }
110 }
6158e1ce 111 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 112 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 113 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
114 return 0;
115}
4cb5300b 116
2ff7e61e 117static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 118{
0b246afa 119 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
120 return 0;
121
0b246afa 122 if (btrfs_fs_closing(fs_info))
8ddc4734 123 return 0;
4cb5300b 124
8ddc4734 125 return 1;
4cb5300b
CM
126}
127
128/*
129 * insert a defrag record for this inode if auto defrag is
130 * enabled
131 */
132int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 133 struct btrfs_inode *inode)
4cb5300b 134{
6158e1ce 135 struct btrfs_root *root = inode->root;
3ffbd68c 136 struct btrfs_fs_info *fs_info = root->fs_info;
4cb5300b 137 struct inode_defrag *defrag;
4cb5300b 138 u64 transid;
8ddc4734 139 int ret;
4cb5300b 140
2ff7e61e 141 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
142 return 0;
143
6158e1ce 144 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
145 return 0;
146
147 if (trans)
148 transid = trans->transid;
149 else
6158e1ce 150 transid = inode->root->last_trans;
4cb5300b 151
9247f317 152 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
153 if (!defrag)
154 return -ENOMEM;
155
6158e1ce 156 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
157 defrag->transid = transid;
158 defrag->root = root->root_key.objectid;
159
0b246afa 160 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 161 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
162 /*
163 * If we set IN_DEFRAG flag and evict the inode from memory,
164 * and then re-read this inode, this new inode doesn't have
165 * IN_DEFRAG flag. At the case, we may find the existed defrag.
166 */
167 ret = __btrfs_add_inode_defrag(inode, defrag);
168 if (ret)
169 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
170 } else {
9247f317 171 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 172 }
0b246afa 173 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 174 return 0;
4cb5300b
CM
175}
176
177/*
8ddc4734
MX
178 * Requeue the defrag object. If there is a defrag object that points to
179 * the same inode in the tree, we will merge them together (by
180 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 181 */
46e59791 182static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 183 struct inode_defrag *defrag)
8ddc4734 184{
3ffbd68c 185 struct btrfs_fs_info *fs_info = inode->root->fs_info;
8ddc4734
MX
186 int ret;
187
2ff7e61e 188 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
189 goto out;
190
191 /*
192 * Here we don't check the IN_DEFRAG flag, because we need merge
193 * them together.
194 */
0b246afa 195 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 196 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 197 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
198 if (ret)
199 goto out;
200 return;
201out:
202 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
203}
204
4cb5300b 205/*
26176e7c
MX
206 * pick the defragable inode that we want, if it doesn't exist, we will get
207 * the next one.
4cb5300b 208 */
26176e7c
MX
209static struct inode_defrag *
210btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
211{
212 struct inode_defrag *entry = NULL;
762f2263 213 struct inode_defrag tmp;
4cb5300b
CM
214 struct rb_node *p;
215 struct rb_node *parent = NULL;
762f2263
MX
216 int ret;
217
218 tmp.ino = ino;
219 tmp.root = root;
4cb5300b 220
26176e7c
MX
221 spin_lock(&fs_info->defrag_inodes_lock);
222 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
223 while (p) {
224 parent = p;
225 entry = rb_entry(parent, struct inode_defrag, rb_node);
226
762f2263
MX
227 ret = __compare_inode_defrag(&tmp, entry);
228 if (ret < 0)
4cb5300b 229 p = parent->rb_left;
762f2263 230 else if (ret > 0)
4cb5300b
CM
231 p = parent->rb_right;
232 else
26176e7c 233 goto out;
4cb5300b
CM
234 }
235
26176e7c
MX
236 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
237 parent = rb_next(parent);
238 if (parent)
4cb5300b 239 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
240 else
241 entry = NULL;
4cb5300b 242 }
26176e7c
MX
243out:
244 if (entry)
245 rb_erase(parent, &fs_info->defrag_inodes);
246 spin_unlock(&fs_info->defrag_inodes_lock);
247 return entry;
4cb5300b
CM
248}
249
26176e7c 250void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
251{
252 struct inode_defrag *defrag;
26176e7c
MX
253 struct rb_node *node;
254
255 spin_lock(&fs_info->defrag_inodes_lock);
256 node = rb_first(&fs_info->defrag_inodes);
257 while (node) {
258 rb_erase(node, &fs_info->defrag_inodes);
259 defrag = rb_entry(node, struct inode_defrag, rb_node);
260 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
261
351810c1 262 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
263
264 node = rb_first(&fs_info->defrag_inodes);
265 }
266 spin_unlock(&fs_info->defrag_inodes_lock);
267}
268
269#define BTRFS_DEFRAG_BATCH 1024
270
271static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
272 struct inode_defrag *defrag)
273{
4cb5300b
CM
274 struct btrfs_root *inode_root;
275 struct inode *inode;
4cb5300b
CM
276 struct btrfs_key key;
277 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 278 int num_defrag;
6f1c3605
LB
279 int index;
280 int ret;
4cb5300b 281
26176e7c
MX
282 /* get the inode */
283 key.objectid = defrag->root;
962a298f 284 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 285 key.offset = (u64)-1;
6f1c3605
LB
286
287 index = srcu_read_lock(&fs_info->subvol_srcu);
288
26176e7c
MX
289 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
290 if (IS_ERR(inode_root)) {
6f1c3605
LB
291 ret = PTR_ERR(inode_root);
292 goto cleanup;
293 }
26176e7c
MX
294
295 key.objectid = defrag->ino;
962a298f 296 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
297 key.offset = 0;
298 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
299 if (IS_ERR(inode)) {
6f1c3605
LB
300 ret = PTR_ERR(inode);
301 goto cleanup;
26176e7c 302 }
6f1c3605 303 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
304
305 /* do a chunk of defrag */
306 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
307 memset(&range, 0, sizeof(range));
308 range.len = (u64)-1;
26176e7c 309 range.start = defrag->last_offset;
b66f00da
MX
310
311 sb_start_write(fs_info->sb);
26176e7c
MX
312 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
313 BTRFS_DEFRAG_BATCH);
b66f00da 314 sb_end_write(fs_info->sb);
26176e7c
MX
315 /*
316 * if we filled the whole defrag batch, there
317 * must be more work to do. Queue this defrag
318 * again
319 */
320 if (num_defrag == BTRFS_DEFRAG_BATCH) {
321 defrag->last_offset = range.start;
46e59791 322 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
323 } else if (defrag->last_offset && !defrag->cycled) {
324 /*
325 * we didn't fill our defrag batch, but
326 * we didn't start at zero. Make sure we loop
327 * around to the start of the file.
328 */
329 defrag->last_offset = 0;
330 defrag->cycled = 1;
46e59791 331 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
332 } else {
333 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
334 }
335
336 iput(inode);
337 return 0;
6f1c3605
LB
338cleanup:
339 srcu_read_unlock(&fs_info->subvol_srcu, index);
340 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
341 return ret;
26176e7c
MX
342}
343
344/*
345 * run through the list of inodes in the FS that need
346 * defragging
347 */
348int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
349{
350 struct inode_defrag *defrag;
351 u64 first_ino = 0;
352 u64 root_objectid = 0;
4cb5300b
CM
353
354 atomic_inc(&fs_info->defrag_running);
67871254 355 while (1) {
dc81cdc5
MX
356 /* Pause the auto defragger. */
357 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
358 &fs_info->fs_state))
359 break;
360
2ff7e61e 361 if (!__need_auto_defrag(fs_info))
26176e7c 362 break;
4cb5300b
CM
363
364 /* find an inode to defrag */
26176e7c
MX
365 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
366 first_ino);
4cb5300b 367 if (!defrag) {
26176e7c 368 if (root_objectid || first_ino) {
762f2263 369 root_objectid = 0;
4cb5300b
CM
370 first_ino = 0;
371 continue;
372 } else {
373 break;
374 }
375 }
376
4cb5300b 377 first_ino = defrag->ino + 1;
762f2263 378 root_objectid = defrag->root;
4cb5300b 379
26176e7c 380 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 381 }
4cb5300b
CM
382 atomic_dec(&fs_info->defrag_running);
383
384 /*
385 * during unmount, we use the transaction_wait queue to
386 * wait for the defragger to stop
387 */
388 wake_up(&fs_info->transaction_wait);
389 return 0;
390}
39279cc3 391
d352ac68
CM
392/* simple helper to fault in pages and copy. This should go away
393 * and be replaced with calls into generic code.
394 */
ee22f0c4 395static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 396 struct page **prepared_pages,
11c65dcc 397 struct iov_iter *i)
39279cc3 398{
914ee295 399 size_t copied = 0;
d0215f3e 400 size_t total_copied = 0;
11c65dcc 401 int pg = 0;
09cbfeaf 402 int offset = pos & (PAGE_SIZE - 1);
39279cc3 403
11c65dcc 404 while (write_bytes > 0) {
39279cc3 405 size_t count = min_t(size_t,
09cbfeaf 406 PAGE_SIZE - offset, write_bytes);
11c65dcc 407 struct page *page = prepared_pages[pg];
914ee295
XZ
408 /*
409 * Copy data from userspace to the current page
914ee295 410 */
914ee295 411 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 412
39279cc3
CM
413 /* Flush processor's dcache for this page */
414 flush_dcache_page(page);
31339acd
CM
415
416 /*
417 * if we get a partial write, we can end up with
418 * partially up to date pages. These add
419 * a lot of complexity, so make sure they don't
420 * happen by forcing this copy to be retried.
421 *
422 * The rest of the btrfs_file_write code will fall
423 * back to page at a time copies after we return 0.
424 */
425 if (!PageUptodate(page) && copied < count)
426 copied = 0;
427
11c65dcc
JB
428 iov_iter_advance(i, copied);
429 write_bytes -= copied;
914ee295 430 total_copied += copied;
39279cc3 431
b30ac0fc 432 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 433 if (unlikely(copied == 0))
914ee295 434 break;
11c65dcc 435
09cbfeaf 436 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
437 offset += copied;
438 } else {
439 pg++;
440 offset = 0;
441 }
39279cc3 442 }
914ee295 443 return total_copied;
39279cc3
CM
444}
445
d352ac68
CM
446/*
447 * unlocks pages after btrfs_file_write is done with them
448 */
48a3b636 449static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
450{
451 size_t i;
452 for (i = 0; i < num_pages; i++) {
d352ac68
CM
453 /* page checked is some magic around finding pages that
454 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
455 * clear it here. There should be no need to mark the pages
456 * accessed as prepare_pages should have marked them accessed
457 * in prepare_pages via find_or_create_page()
d352ac68 458 */
4a096752 459 ClearPageChecked(pages[i]);
39279cc3 460 unlock_page(pages[i]);
09cbfeaf 461 put_page(pages[i]);
39279cc3
CM
462 }
463}
464
f48bf66b
FM
465static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
466 const u64 start,
467 const u64 len,
468 struct extent_state **cached_state)
469{
470 u64 search_start = start;
471 const u64 end = start + len - 1;
472
473 while (search_start < end) {
474 const u64 search_len = end - search_start + 1;
475 struct extent_map *em;
476 u64 em_len;
477 int ret = 0;
478
479 em = btrfs_get_extent(inode, NULL, 0, search_start,
480 search_len, 0);
481 if (IS_ERR(em))
482 return PTR_ERR(em);
483
484 if (em->block_start != EXTENT_MAP_HOLE)
485 goto next;
486
487 em_len = em->len;
488 if (em->start < search_start)
489 em_len -= search_start - em->start;
490 if (em_len > search_len)
491 em_len = search_len;
492
493 ret = set_extent_bit(&inode->io_tree, search_start,
494 search_start + em_len - 1,
495 EXTENT_DELALLOC_NEW,
496 NULL, cached_state, GFP_NOFS);
497next:
498 search_start = extent_map_end(em);
499 free_extent_map(em);
500 if (ret)
501 return ret;
502 }
503 return 0;
504}
505
d352ac68
CM
506/*
507 * after copy_from_user, pages need to be dirtied and we need to make
508 * sure holes are created between the current EOF and the start of
509 * any next extents (if required).
510 *
511 * this also makes the decision about creating an inline extent vs
512 * doing real data extents, marking pages dirty and delalloc as required.
513 */
2ff7e61e
JM
514int btrfs_dirty_pages(struct inode *inode, struct page **pages,
515 size_t num_pages, loff_t pos, size_t write_bytes,
516 struct extent_state **cached)
39279cc3 517{
0b246afa 518 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 519 int err = 0;
a52d9a80 520 int i;
db94535d 521 u64 num_bytes;
a52d9a80
CM
522 u64 start_pos;
523 u64 end_of_last_block;
524 u64 end_pos = pos + write_bytes;
525 loff_t isize = i_size_read(inode);
e3b8a485 526 unsigned int extra_bits = 0;
39279cc3 527
0b246afa 528 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 529 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 530 fs_info->sectorsize);
39279cc3 531
db94535d 532 end_of_last_block = start_pos + num_bytes - 1;
e3b8a485
FM
533
534 if (!btrfs_is_free_space_inode(BTRFS_I(inode))) {
535 if (start_pos >= isize &&
536 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)) {
537 /*
538 * There can't be any extents following eof in this case
539 * so just set the delalloc new bit for the range
540 * directly.
541 */
542 extra_bits |= EXTENT_DELALLOC_NEW;
543 } else {
544 err = btrfs_find_new_delalloc_bytes(BTRFS_I(inode),
545 start_pos,
546 num_bytes, cached);
547 if (err)
548 return err;
549 }
550 }
551
2ac55d41 552 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
e3b8a485 553 extra_bits, cached, 0);
d0215f3e
JB
554 if (err)
555 return err;
9ed74f2d 556
c8b97818
CM
557 for (i = 0; i < num_pages; i++) {
558 struct page *p = pages[i];
559 SetPageUptodate(p);
560 ClearPageChecked(p);
561 set_page_dirty(p);
a52d9a80 562 }
9f570b8d
JB
563
564 /*
565 * we've only changed i_size in ram, and we haven't updated
566 * the disk i_size. There is no need to log the inode
567 * at this time.
568 */
569 if (end_pos > isize)
a52d9a80 570 i_size_write(inode, end_pos);
a22285a6 571 return 0;
39279cc3
CM
572}
573
d352ac68
CM
574/*
575 * this drops all the extents in the cache that intersect the range
576 * [start, end]. Existing extents are split as required.
577 */
dcdbc059 578void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 579 int skip_pinned)
a52d9a80
CM
580{
581 struct extent_map *em;
3b951516
CM
582 struct extent_map *split = NULL;
583 struct extent_map *split2 = NULL;
dcdbc059 584 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 585 u64 len = end - start + 1;
5dc562c5 586 u64 gen;
3b951516
CM
587 int ret;
588 int testend = 1;
5b21f2ed 589 unsigned long flags;
c8b97818 590 int compressed = 0;
09a2a8f9 591 bool modified;
a52d9a80 592
e6dcd2dc 593 WARN_ON(end < start);
3b951516 594 if (end == (u64)-1) {
39b5637f 595 len = (u64)-1;
3b951516
CM
596 testend = 0;
597 }
d397712b 598 while (1) {
7014cdb4
JB
599 int no_splits = 0;
600
09a2a8f9 601 modified = false;
3b951516 602 if (!split)
172ddd60 603 split = alloc_extent_map();
3b951516 604 if (!split2)
172ddd60 605 split2 = alloc_extent_map();
7014cdb4
JB
606 if (!split || !split2)
607 no_splits = 1;
3b951516 608
890871be 609 write_lock(&em_tree->lock);
39b5637f 610 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 611 if (!em) {
890871be 612 write_unlock(&em_tree->lock);
a52d9a80 613 break;
d1310b2e 614 }
5b21f2ed 615 flags = em->flags;
5dc562c5 616 gen = em->generation;
5b21f2ed 617 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 618 if (testend && em->start + em->len >= start + len) {
5b21f2ed 619 free_extent_map(em);
a1ed835e 620 write_unlock(&em_tree->lock);
5b21f2ed
ZY
621 break;
622 }
55ef6899
YZ
623 start = em->start + em->len;
624 if (testend)
5b21f2ed 625 len = start + len - (em->start + em->len);
5b21f2ed 626 free_extent_map(em);
a1ed835e 627 write_unlock(&em_tree->lock);
5b21f2ed
ZY
628 continue;
629 }
c8b97818 630 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 631 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 632 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 633 modified = !list_empty(&em->list);
7014cdb4
JB
634 if (no_splits)
635 goto next;
3b951516 636
ee20a983 637 if (em->start < start) {
3b951516
CM
638 split->start = em->start;
639 split->len = start - em->start;
ee20a983
JB
640
641 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
642 split->orig_start = em->orig_start;
643 split->block_start = em->block_start;
644
645 if (compressed)
646 split->block_len = em->block_len;
647 else
648 split->block_len = split->len;
649 split->orig_block_len = max(split->block_len,
650 em->orig_block_len);
651 split->ram_bytes = em->ram_bytes;
652 } else {
653 split->orig_start = split->start;
654 split->block_len = 0;
655 split->block_start = em->block_start;
656 split->orig_block_len = 0;
657 split->ram_bytes = split->len;
658 }
659
5dc562c5 660 split->generation = gen;
3b951516 661 split->bdev = em->bdev;
5b21f2ed 662 split->flags = flags;
261507a0 663 split->compress_type = em->compress_type;
176840b3 664 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
665 free_extent_map(split);
666 split = split2;
667 split2 = NULL;
668 }
ee20a983 669 if (testend && em->start + em->len > start + len) {
3b951516
CM
670 u64 diff = start + len - em->start;
671
672 split->start = start + len;
673 split->len = em->start + em->len - (start + len);
674 split->bdev = em->bdev;
5b21f2ed 675 split->flags = flags;
261507a0 676 split->compress_type = em->compress_type;
5dc562c5 677 split->generation = gen;
ee20a983
JB
678
679 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
680 split->orig_block_len = max(em->block_len,
b4939680 681 em->orig_block_len);
3b951516 682
ee20a983
JB
683 split->ram_bytes = em->ram_bytes;
684 if (compressed) {
685 split->block_len = em->block_len;
686 split->block_start = em->block_start;
687 split->orig_start = em->orig_start;
688 } else {
689 split->block_len = split->len;
690 split->block_start = em->block_start
691 + diff;
692 split->orig_start = em->orig_start;
693 }
c8b97818 694 } else {
ee20a983
JB
695 split->ram_bytes = split->len;
696 split->orig_start = split->start;
697 split->block_len = 0;
698 split->block_start = em->block_start;
699 split->orig_block_len = 0;
c8b97818 700 }
3b951516 701
176840b3
FM
702 if (extent_map_in_tree(em)) {
703 replace_extent_mapping(em_tree, em, split,
704 modified);
705 } else {
706 ret = add_extent_mapping(em_tree, split,
707 modified);
708 ASSERT(ret == 0); /* Logic error */
709 }
3b951516
CM
710 free_extent_map(split);
711 split = NULL;
712 }
7014cdb4 713next:
176840b3
FM
714 if (extent_map_in_tree(em))
715 remove_extent_mapping(em_tree, em);
890871be 716 write_unlock(&em_tree->lock);
d1310b2e 717
a52d9a80
CM
718 /* once for us */
719 free_extent_map(em);
720 /* once for the tree*/
721 free_extent_map(em);
722 }
3b951516
CM
723 if (split)
724 free_extent_map(split);
725 if (split2)
726 free_extent_map(split2);
a52d9a80
CM
727}
728
39279cc3
CM
729/*
730 * this is very complex, but the basic idea is to drop all extents
731 * in the range start - end. hint_block is filled in with a block number
732 * that would be a good hint to the block allocator for this file.
733 *
734 * If an extent intersects the range but is not entirely inside the range
735 * it is either truncated or split. Anything entirely inside the range
736 * is deleted from the tree.
737 */
5dc562c5
JB
738int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
739 struct btrfs_root *root, struct inode *inode,
740 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
741 u64 *drop_end, int drop_cache,
742 int replace_extent,
743 u32 extent_item_size,
744 int *key_inserted)
39279cc3 745{
0b246afa 746 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 747 struct extent_buffer *leaf;
920bbbfb 748 struct btrfs_file_extent_item *fi;
00f5c795 749 struct btrfs_key key;
920bbbfb 750 struct btrfs_key new_key;
4a0cc7ca 751 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
752 u64 search_start = start;
753 u64 disk_bytenr = 0;
754 u64 num_bytes = 0;
755 u64 extent_offset = 0;
756 u64 extent_end = 0;
62fe51c1 757 u64 last_end = start;
920bbbfb
YZ
758 int del_nr = 0;
759 int del_slot = 0;
760 int extent_type;
ccd467d6 761 int recow;
00f5c795 762 int ret;
dc7fdde3 763 int modify_tree = -1;
27cdeb70 764 int update_refs;
c3308f84 765 int found = 0;
1acae57b 766 int leafs_visited = 0;
39279cc3 767
a1ed835e 768 if (drop_cache)
dcdbc059 769 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 770
d5f37527 771 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
772 modify_tree = 0;
773
27cdeb70 774 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 775 root == fs_info->tree_root);
d397712b 776 while (1) {
ccd467d6 777 recow = 0;
33345d01 778 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 779 search_start, modify_tree);
39279cc3 780 if (ret < 0)
920bbbfb
YZ
781 break;
782 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
783 leaf = path->nodes[0];
784 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 785 if (key.objectid == ino &&
920bbbfb
YZ
786 key.type == BTRFS_EXTENT_DATA_KEY)
787 path->slots[0]--;
39279cc3 788 }
920bbbfb 789 ret = 0;
1acae57b 790 leafs_visited++;
8c2383c3 791next_slot:
5f39d397 792 leaf = path->nodes[0];
920bbbfb
YZ
793 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
794 BUG_ON(del_nr > 0);
795 ret = btrfs_next_leaf(root, path);
796 if (ret < 0)
797 break;
798 if (ret > 0) {
799 ret = 0;
800 break;
8c2383c3 801 }
1acae57b 802 leafs_visited++;
920bbbfb
YZ
803 leaf = path->nodes[0];
804 recow = 1;
805 }
806
807 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
808
809 if (key.objectid > ino)
810 break;
811 if (WARN_ON_ONCE(key.objectid < ino) ||
812 key.type < BTRFS_EXTENT_DATA_KEY) {
813 ASSERT(del_nr == 0);
814 path->slots[0]++;
815 goto next_slot;
816 }
817 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
818 break;
819
820 fi = btrfs_item_ptr(leaf, path->slots[0],
821 struct btrfs_file_extent_item);
822 extent_type = btrfs_file_extent_type(leaf, fi);
823
824 if (extent_type == BTRFS_FILE_EXTENT_REG ||
825 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
826 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
827 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
828 extent_offset = btrfs_file_extent_offset(leaf, fi);
829 extent_end = key.offset +
830 btrfs_file_extent_num_bytes(leaf, fi);
831 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
832 extent_end = key.offset +
e41ca589 833 btrfs_file_extent_ram_bytes(leaf, fi);
8c2383c3 834 } else {
aeafbf84
FM
835 /* can't happen */
836 BUG();
39279cc3
CM
837 }
838
fc19c5e7
FM
839 /*
840 * Don't skip extent items representing 0 byte lengths. They
841 * used to be created (bug) if while punching holes we hit
842 * -ENOSPC condition. So if we find one here, just ensure we
843 * delete it, otherwise we would insert a new file extent item
844 * with the same key (offset) as that 0 bytes length file
845 * extent item in the call to setup_items_for_insert() later
846 * in this function.
847 */
62fe51c1
JB
848 if (extent_end == key.offset && extent_end >= search_start) {
849 last_end = extent_end;
fc19c5e7 850 goto delete_extent_item;
62fe51c1 851 }
fc19c5e7 852
920bbbfb
YZ
853 if (extent_end <= search_start) {
854 path->slots[0]++;
8c2383c3 855 goto next_slot;
39279cc3
CM
856 }
857
c3308f84 858 found = 1;
920bbbfb 859 search_start = max(key.offset, start);
dc7fdde3
CM
860 if (recow || !modify_tree) {
861 modify_tree = -1;
b3b4aa74 862 btrfs_release_path(path);
920bbbfb 863 continue;
39279cc3 864 }
6643558d 865
920bbbfb
YZ
866 /*
867 * | - range to drop - |
868 * | -------- extent -------- |
869 */
870 if (start > key.offset && end < extent_end) {
871 BUG_ON(del_nr > 0);
00fdf13a 872 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 873 ret = -EOPNOTSUPP;
00fdf13a
LB
874 break;
875 }
920bbbfb
YZ
876
877 memcpy(&new_key, &key, sizeof(new_key));
878 new_key.offset = start;
879 ret = btrfs_duplicate_item(trans, root, path,
880 &new_key);
881 if (ret == -EAGAIN) {
b3b4aa74 882 btrfs_release_path(path);
920bbbfb 883 continue;
6643558d 884 }
920bbbfb
YZ
885 if (ret < 0)
886 break;
887
888 leaf = path->nodes[0];
889 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
890 struct btrfs_file_extent_item);
891 btrfs_set_file_extent_num_bytes(leaf, fi,
892 start - key.offset);
893
894 fi = btrfs_item_ptr(leaf, path->slots[0],
895 struct btrfs_file_extent_item);
896
897 extent_offset += start - key.offset;
898 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
899 btrfs_set_file_extent_num_bytes(leaf, fi,
900 extent_end - start);
901 btrfs_mark_buffer_dirty(leaf);
902
5dc562c5 903 if (update_refs && disk_bytenr > 0) {
84f7d8e6 904 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
905 disk_bytenr, num_bytes, 0,
906 root->root_key.objectid,
907 new_key.objectid,
b06c4bf5 908 start - extent_offset);
79787eaa 909 BUG_ON(ret); /* -ENOMEM */
771ed689 910 }
920bbbfb 911 key.offset = start;
6643558d 912 }
62fe51c1
JB
913 /*
914 * From here on out we will have actually dropped something, so
915 * last_end can be updated.
916 */
917 last_end = extent_end;
918
920bbbfb
YZ
919 /*
920 * | ---- range to drop ----- |
921 * | -------- extent -------- |
922 */
923 if (start <= key.offset && end < extent_end) {
00fdf13a 924 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 925 ret = -EOPNOTSUPP;
00fdf13a
LB
926 break;
927 }
6643558d 928
920bbbfb
YZ
929 memcpy(&new_key, &key, sizeof(new_key));
930 new_key.offset = end;
0b246afa 931 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 932
920bbbfb
YZ
933 extent_offset += end - key.offset;
934 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
935 btrfs_set_file_extent_num_bytes(leaf, fi,
936 extent_end - end);
937 btrfs_mark_buffer_dirty(leaf);
2671485d 938 if (update_refs && disk_bytenr > 0)
920bbbfb 939 inode_sub_bytes(inode, end - key.offset);
920bbbfb 940 break;
39279cc3 941 }
771ed689 942
920bbbfb
YZ
943 search_start = extent_end;
944 /*
945 * | ---- range to drop ----- |
946 * | -------- extent -------- |
947 */
948 if (start > key.offset && end >= extent_end) {
949 BUG_ON(del_nr > 0);
00fdf13a 950 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 951 ret = -EOPNOTSUPP;
00fdf13a
LB
952 break;
953 }
8c2383c3 954
920bbbfb
YZ
955 btrfs_set_file_extent_num_bytes(leaf, fi,
956 start - key.offset);
957 btrfs_mark_buffer_dirty(leaf);
2671485d 958 if (update_refs && disk_bytenr > 0)
920bbbfb 959 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
960 if (end == extent_end)
961 break;
c8b97818 962
920bbbfb
YZ
963 path->slots[0]++;
964 goto next_slot;
31840ae1
ZY
965 }
966
920bbbfb
YZ
967 /*
968 * | ---- range to drop ----- |
969 * | ------ extent ------ |
970 */
971 if (start <= key.offset && end >= extent_end) {
fc19c5e7 972delete_extent_item:
920bbbfb
YZ
973 if (del_nr == 0) {
974 del_slot = path->slots[0];
975 del_nr = 1;
976 } else {
977 BUG_ON(del_slot + del_nr != path->slots[0]);
978 del_nr++;
979 }
31840ae1 980
5dc562c5
JB
981 if (update_refs &&
982 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 983 inode_sub_bytes(inode,
920bbbfb
YZ
984 extent_end - key.offset);
985 extent_end = ALIGN(extent_end,
0b246afa 986 fs_info->sectorsize);
5dc562c5 987 } else if (update_refs && disk_bytenr > 0) {
84f7d8e6 988 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
989 disk_bytenr, num_bytes, 0,
990 root->root_key.objectid,
5d4f98a2 991 key.objectid, key.offset -
b06c4bf5 992 extent_offset);
79787eaa 993 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
994 inode_sub_bytes(inode,
995 extent_end - key.offset);
31840ae1 996 }
31840ae1 997
920bbbfb
YZ
998 if (end == extent_end)
999 break;
1000
1001 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
1002 path->slots[0]++;
1003 goto next_slot;
1004 }
1005
1006 ret = btrfs_del_items(trans, root, path, del_slot,
1007 del_nr);
79787eaa 1008 if (ret) {
66642832 1009 btrfs_abort_transaction(trans, ret);
5dc562c5 1010 break;
79787eaa 1011 }
920bbbfb
YZ
1012
1013 del_nr = 0;
1014 del_slot = 0;
1015
b3b4aa74 1016 btrfs_release_path(path);
920bbbfb 1017 continue;
39279cc3 1018 }
920bbbfb
YZ
1019
1020 BUG_ON(1);
39279cc3 1021 }
920bbbfb 1022
79787eaa 1023 if (!ret && del_nr > 0) {
1acae57b
FDBM
1024 /*
1025 * Set path->slots[0] to first slot, so that after the delete
1026 * if items are move off from our leaf to its immediate left or
1027 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 1028 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
1029 */
1030 path->slots[0] = del_slot;
920bbbfb 1031 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1032 if (ret)
66642832 1033 btrfs_abort_transaction(trans, ret);
d5f37527 1034 }
1acae57b 1035
d5f37527
FDBM
1036 leaf = path->nodes[0];
1037 /*
1038 * If btrfs_del_items() was called, it might have deleted a leaf, in
1039 * which case it unlocked our path, so check path->locks[0] matches a
1040 * write lock.
1041 */
1042 if (!ret && replace_extent && leafs_visited == 1 &&
1043 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
1044 path->locks[0] == BTRFS_WRITE_LOCK) &&
2ff7e61e 1045 btrfs_leaf_free_space(fs_info, leaf) >=
d5f37527
FDBM
1046 sizeof(struct btrfs_item) + extent_item_size) {
1047
1048 key.objectid = ino;
1049 key.type = BTRFS_EXTENT_DATA_KEY;
1050 key.offset = start;
1051 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1052 struct btrfs_key slot_key;
1053
1054 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1055 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1056 path->slots[0]++;
1acae57b 1057 }
d5f37527
FDBM
1058 setup_items_for_insert(root, path, &key,
1059 &extent_item_size,
1060 extent_item_size,
1061 sizeof(struct btrfs_item) +
1062 extent_item_size, 1);
1063 *key_inserted = 1;
6643558d 1064 }
920bbbfb 1065
1acae57b
FDBM
1066 if (!replace_extent || !(*key_inserted))
1067 btrfs_release_path(path);
2aaa6655 1068 if (drop_end)
62fe51c1 1069 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1070 return ret;
1071}
1072
1073int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1074 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1075 u64 end, int drop_cache)
5dc562c5
JB
1076{
1077 struct btrfs_path *path;
1078 int ret;
1079
1080 path = btrfs_alloc_path();
1081 if (!path)
1082 return -ENOMEM;
2aaa6655 1083 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1084 drop_cache, 0, 0, NULL);
920bbbfb 1085 btrfs_free_path(path);
39279cc3
CM
1086 return ret;
1087}
1088
d899e052 1089static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1090 u64 objectid, u64 bytenr, u64 orig_offset,
1091 u64 *start, u64 *end)
d899e052
YZ
1092{
1093 struct btrfs_file_extent_item *fi;
1094 struct btrfs_key key;
1095 u64 extent_end;
1096
1097 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1098 return 0;
1099
1100 btrfs_item_key_to_cpu(leaf, &key, slot);
1101 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1102 return 0;
1103
1104 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1105 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1106 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1107 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1108 btrfs_file_extent_compression(leaf, fi) ||
1109 btrfs_file_extent_encryption(leaf, fi) ||
1110 btrfs_file_extent_other_encoding(leaf, fi))
1111 return 0;
1112
1113 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1114 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1115 return 0;
1116
1117 *start = key.offset;
1118 *end = extent_end;
1119 return 1;
1120}
1121
1122/*
1123 * Mark extent in the range start - end as written.
1124 *
1125 * This changes extent type from 'pre-allocated' to 'regular'. If only
1126 * part of extent is marked as written, the extent will be split into
1127 * two or three.
1128 */
1129int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1130 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1131{
3ffbd68c 1132 struct btrfs_fs_info *fs_info = trans->fs_info;
7a6d7067 1133 struct btrfs_root *root = inode->root;
d899e052
YZ
1134 struct extent_buffer *leaf;
1135 struct btrfs_path *path;
1136 struct btrfs_file_extent_item *fi;
1137 struct btrfs_key key;
920bbbfb 1138 struct btrfs_key new_key;
d899e052
YZ
1139 u64 bytenr;
1140 u64 num_bytes;
1141 u64 extent_end;
5d4f98a2 1142 u64 orig_offset;
d899e052
YZ
1143 u64 other_start;
1144 u64 other_end;
920bbbfb
YZ
1145 u64 split;
1146 int del_nr = 0;
1147 int del_slot = 0;
6c7d54ac 1148 int recow;
d899e052 1149 int ret;
7a6d7067 1150 u64 ino = btrfs_ino(inode);
d899e052 1151
d899e052 1152 path = btrfs_alloc_path();
d8926bb3
MF
1153 if (!path)
1154 return -ENOMEM;
d899e052 1155again:
6c7d54ac 1156 recow = 0;
920bbbfb 1157 split = start;
33345d01 1158 key.objectid = ino;
d899e052 1159 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1160 key.offset = split;
d899e052
YZ
1161
1162 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1163 if (ret < 0)
1164 goto out;
d899e052
YZ
1165 if (ret > 0 && path->slots[0] > 0)
1166 path->slots[0]--;
1167
1168 leaf = path->nodes[0];
1169 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1170 if (key.objectid != ino ||
1171 key.type != BTRFS_EXTENT_DATA_KEY) {
1172 ret = -EINVAL;
1173 btrfs_abort_transaction(trans, ret);
1174 goto out;
1175 }
d899e052
YZ
1176 fi = btrfs_item_ptr(leaf, path->slots[0],
1177 struct btrfs_file_extent_item);
9c8e63db
JB
1178 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1179 ret = -EINVAL;
1180 btrfs_abort_transaction(trans, ret);
1181 goto out;
1182 }
d899e052 1183 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1184 if (key.offset > start || extent_end < end) {
1185 ret = -EINVAL;
1186 btrfs_abort_transaction(trans, ret);
1187 goto out;
1188 }
d899e052
YZ
1189
1190 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1191 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1192 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1193 memcpy(&new_key, &key, sizeof(new_key));
1194
1195 if (start == key.offset && end < extent_end) {
1196 other_start = 0;
1197 other_end = start;
1198 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1199 ino, bytenr, orig_offset,
6c7d54ac
YZ
1200 &other_start, &other_end)) {
1201 new_key.offset = end;
0b246afa 1202 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1203 fi = btrfs_item_ptr(leaf, path->slots[0],
1204 struct btrfs_file_extent_item);
224ecce5
JB
1205 btrfs_set_file_extent_generation(leaf, fi,
1206 trans->transid);
6c7d54ac
YZ
1207 btrfs_set_file_extent_num_bytes(leaf, fi,
1208 extent_end - end);
1209 btrfs_set_file_extent_offset(leaf, fi,
1210 end - orig_offset);
1211 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1212 struct btrfs_file_extent_item);
224ecce5
JB
1213 btrfs_set_file_extent_generation(leaf, fi,
1214 trans->transid);
6c7d54ac
YZ
1215 btrfs_set_file_extent_num_bytes(leaf, fi,
1216 end - other_start);
1217 btrfs_mark_buffer_dirty(leaf);
1218 goto out;
1219 }
1220 }
1221
1222 if (start > key.offset && end == extent_end) {
1223 other_start = end;
1224 other_end = 0;
1225 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1226 ino, bytenr, orig_offset,
6c7d54ac
YZ
1227 &other_start, &other_end)) {
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1230 btrfs_set_file_extent_num_bytes(leaf, fi,
1231 start - key.offset);
224ecce5
JB
1232 btrfs_set_file_extent_generation(leaf, fi,
1233 trans->transid);
6c7d54ac
YZ
1234 path->slots[0]++;
1235 new_key.offset = start;
0b246afa 1236 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1237
1238 fi = btrfs_item_ptr(leaf, path->slots[0],
1239 struct btrfs_file_extent_item);
224ecce5
JB
1240 btrfs_set_file_extent_generation(leaf, fi,
1241 trans->transid);
6c7d54ac
YZ
1242 btrfs_set_file_extent_num_bytes(leaf, fi,
1243 other_end - start);
1244 btrfs_set_file_extent_offset(leaf, fi,
1245 start - orig_offset);
1246 btrfs_mark_buffer_dirty(leaf);
1247 goto out;
1248 }
1249 }
d899e052 1250
920bbbfb
YZ
1251 while (start > key.offset || end < extent_end) {
1252 if (key.offset == start)
1253 split = end;
1254
920bbbfb
YZ
1255 new_key.offset = split;
1256 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1257 if (ret == -EAGAIN) {
b3b4aa74 1258 btrfs_release_path(path);
920bbbfb 1259 goto again;
d899e052 1260 }
79787eaa 1261 if (ret < 0) {
66642832 1262 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1263 goto out;
1264 }
d899e052 1265
920bbbfb
YZ
1266 leaf = path->nodes[0];
1267 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1268 struct btrfs_file_extent_item);
224ecce5 1269 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1270 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1271 split - key.offset);
1272
1273 fi = btrfs_item_ptr(leaf, path->slots[0],
1274 struct btrfs_file_extent_item);
1275
224ecce5 1276 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1277 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1278 btrfs_set_file_extent_num_bytes(leaf, fi,
1279 extent_end - split);
d899e052
YZ
1280 btrfs_mark_buffer_dirty(leaf);
1281
84f7d8e6 1282 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
2ff7e61e 1283 0, root->root_key.objectid,
b06c4bf5 1284 ino, orig_offset);
9c8e63db
JB
1285 if (ret) {
1286 btrfs_abort_transaction(trans, ret);
1287 goto out;
1288 }
d899e052 1289
920bbbfb
YZ
1290 if (split == start) {
1291 key.offset = start;
1292 } else {
9c8e63db
JB
1293 if (start != key.offset) {
1294 ret = -EINVAL;
1295 btrfs_abort_transaction(trans, ret);
1296 goto out;
1297 }
d899e052 1298 path->slots[0]--;
920bbbfb 1299 extent_end = end;
d899e052 1300 }
6c7d54ac 1301 recow = 1;
d899e052
YZ
1302 }
1303
920bbbfb
YZ
1304 other_start = end;
1305 other_end = 0;
6c7d54ac 1306 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1307 ino, bytenr, orig_offset,
6c7d54ac
YZ
1308 &other_start, &other_end)) {
1309 if (recow) {
b3b4aa74 1310 btrfs_release_path(path);
6c7d54ac
YZ
1311 goto again;
1312 }
920bbbfb
YZ
1313 extent_end = other_end;
1314 del_slot = path->slots[0] + 1;
1315 del_nr++;
84f7d8e6 1316 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1317 0, root->root_key.objectid,
b06c4bf5 1318 ino, orig_offset);
9c8e63db
JB
1319 if (ret) {
1320 btrfs_abort_transaction(trans, ret);
1321 goto out;
1322 }
d899e052 1323 }
920bbbfb
YZ
1324 other_start = 0;
1325 other_end = start;
6c7d54ac 1326 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1327 ino, bytenr, orig_offset,
6c7d54ac
YZ
1328 &other_start, &other_end)) {
1329 if (recow) {
b3b4aa74 1330 btrfs_release_path(path);
6c7d54ac
YZ
1331 goto again;
1332 }
920bbbfb
YZ
1333 key.offset = other_start;
1334 del_slot = path->slots[0];
1335 del_nr++;
84f7d8e6 1336 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1337 0, root->root_key.objectid,
b06c4bf5 1338 ino, orig_offset);
9c8e63db
JB
1339 if (ret) {
1340 btrfs_abort_transaction(trans, ret);
1341 goto out;
1342 }
920bbbfb
YZ
1343 }
1344 if (del_nr == 0) {
3f6fae95
SL
1345 fi = btrfs_item_ptr(leaf, path->slots[0],
1346 struct btrfs_file_extent_item);
920bbbfb
YZ
1347 btrfs_set_file_extent_type(leaf, fi,
1348 BTRFS_FILE_EXTENT_REG);
224ecce5 1349 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1350 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1351 } else {
3f6fae95
SL
1352 fi = btrfs_item_ptr(leaf, del_slot - 1,
1353 struct btrfs_file_extent_item);
6c7d54ac
YZ
1354 btrfs_set_file_extent_type(leaf, fi,
1355 BTRFS_FILE_EXTENT_REG);
224ecce5 1356 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1357 btrfs_set_file_extent_num_bytes(leaf, fi,
1358 extent_end - key.offset);
1359 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1360
6c7d54ac 1361 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1362 if (ret < 0) {
66642832 1363 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1364 goto out;
1365 }
6c7d54ac 1366 }
920bbbfb 1367out:
d899e052
YZ
1368 btrfs_free_path(path);
1369 return 0;
1370}
1371
b1bf862e
CM
1372/*
1373 * on error we return an unlocked page and the error value
1374 * on success we return a locked page and 0
1375 */
bb1591b4
CM
1376static int prepare_uptodate_page(struct inode *inode,
1377 struct page *page, u64 pos,
b6316429 1378 bool force_uptodate)
b1bf862e
CM
1379{
1380 int ret = 0;
1381
09cbfeaf 1382 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1383 !PageUptodate(page)) {
b1bf862e
CM
1384 ret = btrfs_readpage(NULL, page);
1385 if (ret)
1386 return ret;
1387 lock_page(page);
1388 if (!PageUptodate(page)) {
1389 unlock_page(page);
1390 return -EIO;
1391 }
bb1591b4
CM
1392 if (page->mapping != inode->i_mapping) {
1393 unlock_page(page);
1394 return -EAGAIN;
1395 }
b1bf862e
CM
1396 }
1397 return 0;
1398}
1399
39279cc3 1400/*
376cc685 1401 * this just gets pages into the page cache and locks them down.
39279cc3 1402 */
b37392ea
MX
1403static noinline int prepare_pages(struct inode *inode, struct page **pages,
1404 size_t num_pages, loff_t pos,
1405 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1406{
1407 int i;
09cbfeaf 1408 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1409 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1410 int err = 0;
376cc685 1411 int faili;
8c2383c3 1412
39279cc3 1413 for (i = 0; i < num_pages; i++) {
bb1591b4 1414again:
a94733d0 1415 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1416 mask | __GFP_WRITE);
39279cc3 1417 if (!pages[i]) {
b1bf862e
CM
1418 faili = i - 1;
1419 err = -ENOMEM;
1420 goto fail;
1421 }
1422
1423 if (i == 0)
bb1591b4 1424 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1425 force_uptodate);
bb1591b4
CM
1426 if (!err && i == num_pages - 1)
1427 err = prepare_uptodate_page(inode, pages[i],
b6316429 1428 pos + write_bytes, false);
b1bf862e 1429 if (err) {
09cbfeaf 1430 put_page(pages[i]);
bb1591b4
CM
1431 if (err == -EAGAIN) {
1432 err = 0;
1433 goto again;
1434 }
b1bf862e
CM
1435 faili = i - 1;
1436 goto fail;
39279cc3 1437 }
ccd467d6 1438 wait_on_page_writeback(pages[i]);
39279cc3 1439 }
376cc685
MX
1440
1441 return 0;
1442fail:
1443 while (faili >= 0) {
1444 unlock_page(pages[faili]);
09cbfeaf 1445 put_page(pages[faili]);
376cc685
MX
1446 faili--;
1447 }
1448 return err;
1449
1450}
1451
1452/*
1453 * This function locks the extent and properly waits for data=ordered extents
1454 * to finish before allowing the pages to be modified if need.
1455 *
1456 * The return value:
1457 * 1 - the extent is locked
1458 * 0 - the extent is not locked, and everything is OK
1459 * -EAGAIN - need re-prepare the pages
1460 * the other < 0 number - Something wrong happens
1461 */
1462static noinline int
2cff578c 1463lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1464 size_t num_pages, loff_t pos,
2e78c927 1465 size_t write_bytes,
376cc685
MX
1466 u64 *lockstart, u64 *lockend,
1467 struct extent_state **cached_state)
1468{
3ffbd68c 1469 struct btrfs_fs_info *fs_info = inode->root->fs_info;
376cc685
MX
1470 u64 start_pos;
1471 u64 last_pos;
1472 int i;
1473 int ret = 0;
1474
0b246afa 1475 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1476 last_pos = start_pos
da17066c 1477 + round_up(pos + write_bytes - start_pos,
0b246afa 1478 fs_info->sectorsize) - 1;
376cc685 1479
e3b8a485 1480 if (start_pos < inode->vfs_inode.i_size) {
e6dcd2dc 1481 struct btrfs_ordered_extent *ordered;
a7e3b975 1482
2cff578c
NB
1483 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1484 cached_state);
b88935bf
MX
1485 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1486 last_pos - start_pos + 1);
e6dcd2dc
CM
1487 if (ordered &&
1488 ordered->file_offset + ordered->len > start_pos &&
376cc685 1489 ordered->file_offset <= last_pos) {
2cff578c 1490 unlock_extent_cached(&inode->io_tree, start_pos,
e43bbe5e 1491 last_pos, cached_state);
e6dcd2dc
CM
1492 for (i = 0; i < num_pages; i++) {
1493 unlock_page(pages[i]);
09cbfeaf 1494 put_page(pages[i]);
e6dcd2dc 1495 }
2cff578c
NB
1496 btrfs_start_ordered_extent(&inode->vfs_inode,
1497 ordered, 1);
b88935bf
MX
1498 btrfs_put_ordered_extent(ordered);
1499 return -EAGAIN;
e6dcd2dc
CM
1500 }
1501 if (ordered)
1502 btrfs_put_ordered_extent(ordered);
e3b8a485
FM
1503 clear_extent_bit(&inode->io_tree, start_pos, last_pos,
1504 EXTENT_DIRTY | EXTENT_DELALLOC |
1505 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
ae0f1625 1506 0, 0, cached_state);
376cc685
MX
1507 *lockstart = start_pos;
1508 *lockend = last_pos;
1509 ret = 1;
0762704b 1510 }
376cc685 1511
e6dcd2dc 1512 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1513 if (clear_page_dirty_for_io(pages[i]))
1514 account_page_redirty(pages[i]);
e6dcd2dc
CM
1515 set_page_extent_mapped(pages[i]);
1516 WARN_ON(!PageLocked(pages[i]));
1517 }
b1bf862e 1518
376cc685 1519 return ret;
39279cc3
CM
1520}
1521
85b7ab67 1522static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1523 size_t *write_bytes)
1524{
3ffbd68c 1525 struct btrfs_fs_info *fs_info = inode->root->fs_info;
85b7ab67 1526 struct btrfs_root *root = inode->root;
7ee9e440
JB
1527 struct btrfs_ordered_extent *ordered;
1528 u64 lockstart, lockend;
1529 u64 num_bytes;
1530 int ret;
1531
ea14b57f 1532 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc
MX
1533 if (!ret)
1534 return -ENOSPC;
1535
0b246afa 1536 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1537 lockend = round_up(pos + *write_bytes,
0b246afa 1538 fs_info->sectorsize) - 1;
7ee9e440
JB
1539
1540 while (1) {
85b7ab67 1541 lock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1542 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1543 lockend - lockstart + 1);
1544 if (!ordered) {
1545 break;
1546 }
85b7ab67
NB
1547 unlock_extent(&inode->io_tree, lockstart, lockend);
1548 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
7ee9e440
JB
1549 btrfs_put_ordered_extent(ordered);
1550 }
1551
7ee9e440 1552 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1553 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1554 NULL, NULL, NULL);
7ee9e440
JB
1555 if (ret <= 0) {
1556 ret = 0;
ea14b57f 1557 btrfs_end_write_no_snapshotting(root);
7ee9e440 1558 } else {
c933956d
MX
1559 *write_bytes = min_t(size_t, *write_bytes ,
1560 num_bytes - pos + lockstart);
7ee9e440
JB
1561 }
1562
85b7ab67 1563 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1564
1565 return ret;
1566}
1567
e4af400a
GR
1568static noinline ssize_t btrfs_buffered_write(struct kiocb *iocb,
1569 struct iov_iter *i)
4b46fce2 1570{
e4af400a
GR
1571 struct file *file = iocb->ki_filp;
1572 loff_t pos = iocb->ki_pos;
496ad9aa 1573 struct inode *inode = file_inode(file);
0b246afa 1574 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1575 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1576 struct page **pages = NULL;
376cc685 1577 struct extent_state *cached_state = NULL;
364ecf36 1578 struct extent_changeset *data_reserved = NULL;
7ee9e440 1579 u64 release_bytes = 0;
376cc685
MX
1580 u64 lockstart;
1581 u64 lockend;
d0215f3e
JB
1582 size_t num_written = 0;
1583 int nrptrs;
c9149235 1584 int ret = 0;
7ee9e440 1585 bool only_release_metadata = false;
b6316429 1586 bool force_page_uptodate = false;
4b46fce2 1587
09cbfeaf
KS
1588 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1589 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1590 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1591 nrptrs = max(nrptrs, 8);
31e818fe 1592 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1593 if (!pages)
1594 return -ENOMEM;
ab93dbec 1595
d0215f3e 1596 while (iov_iter_count(i) > 0) {
09cbfeaf 1597 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1598 size_t sector_offset;
d0215f3e 1599 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1600 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1601 offset);
ed6078f7 1602 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1603 PAGE_SIZE);
7ee9e440 1604 size_t reserve_bytes;
d0215f3e
JB
1605 size_t dirty_pages;
1606 size_t copied;
2e78c927
CR
1607 size_t dirty_sectors;
1608 size_t num_sectors;
79f015f2 1609 int extents_locked;
39279cc3 1610
8c2383c3 1611 WARN_ON(num_pages > nrptrs);
1832a6d5 1612
914ee295
XZ
1613 /*
1614 * Fault pages before locking them in prepare_pages
1615 * to avoid recursive lock
1616 */
d0215f3e 1617 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1618 ret = -EFAULT;
d0215f3e 1619 break;
914ee295
XZ
1620 }
1621
da17066c 1622 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1623 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1624 fs_info->sectorsize);
d9d8b2a5 1625
364ecf36
QW
1626 extent_changeset_release(data_reserved);
1627 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1628 write_bytes);
c6887cd1
JB
1629 if (ret < 0) {
1630 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1631 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1632 check_can_nocow(BTRFS_I(inode), pos,
1633 &write_bytes) > 0) {
c6887cd1
JB
1634 /*
1635 * For nodata cow case, no need to reserve
1636 * data space.
1637 */
1638 only_release_metadata = true;
1639 /*
1640 * our prealloc extent may be smaller than
1641 * write_bytes, so scale down.
1642 */
1643 num_pages = DIV_ROUND_UP(write_bytes + offset,
1644 PAGE_SIZE);
1645 reserve_bytes = round_up(write_bytes +
1646 sector_offset,
da17066c 1647 fs_info->sectorsize);
c6887cd1
JB
1648 } else {
1649 break;
1650 }
1651 }
1832a6d5 1652
8b62f87b 1653 WARN_ON(reserve_bytes == 0);
9f3db423
NB
1654 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1655 reserve_bytes);
7ee9e440
JB
1656 if (ret) {
1657 if (!only_release_metadata)
bc42bda2
QW
1658 btrfs_free_reserved_data_space(inode,
1659 data_reserved, pos,
1660 write_bytes);
8257b2dc 1661 else
ea14b57f 1662 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1663 break;
1664 }
1665
1666 release_bytes = reserve_bytes;
376cc685 1667again:
4a64001f
JB
1668 /*
1669 * This is going to setup the pages array with the number of
1670 * pages we want, so we don't really need to worry about the
1671 * contents of pages from loop to loop
1672 */
b37392ea
MX
1673 ret = prepare_pages(inode, pages, num_pages,
1674 pos, write_bytes,
b6316429 1675 force_page_uptodate);
8b62f87b
JB
1676 if (ret) {
1677 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1678 reserve_bytes, true);
d0215f3e 1679 break;
8b62f87b 1680 }
39279cc3 1681
79f015f2
GR
1682 extents_locked = lock_and_cleanup_extent_if_need(
1683 BTRFS_I(inode), pages,
2cff578c
NB
1684 num_pages, pos, write_bytes, &lockstart,
1685 &lockend, &cached_state);
79f015f2
GR
1686 if (extents_locked < 0) {
1687 if (extents_locked == -EAGAIN)
376cc685 1688 goto again;
8b62f87b 1689 btrfs_delalloc_release_extents(BTRFS_I(inode),
43b18595 1690 reserve_bytes, true);
79f015f2 1691 ret = extents_locked;
376cc685 1692 break;
376cc685
MX
1693 }
1694
ee22f0c4 1695 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1696
0b246afa 1697 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1698 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1699 fs_info->sectorsize);
1700 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1701
b1bf862e
CM
1702 /*
1703 * if we have trouble faulting in the pages, fall
1704 * back to one page at a time
1705 */
1706 if (copied < write_bytes)
1707 nrptrs = 1;
1708
b6316429
JB
1709 if (copied == 0) {
1710 force_page_uptodate = true;
56244ef1 1711 dirty_sectors = 0;
b1bf862e 1712 dirty_pages = 0;
b6316429
JB
1713 } else {
1714 force_page_uptodate = false;
ed6078f7 1715 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1716 PAGE_SIZE);
b6316429 1717 }
914ee295 1718
2e78c927 1719 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1720 /* release everything except the sectors we dirtied */
1721 release_bytes -= dirty_sectors <<
0b246afa 1722 fs_info->sb->s_blocksize_bits;
485290a7 1723 if (only_release_metadata) {
691fa059 1724 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1725 release_bytes, true);
485290a7
QW
1726 } else {
1727 u64 __pos;
1728
da17066c 1729 __pos = round_down(pos,
0b246afa 1730 fs_info->sectorsize) +
09cbfeaf 1731 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1732 btrfs_delalloc_release_space(inode,
1733 data_reserved, __pos,
43b18595 1734 release_bytes, true);
485290a7 1735 }
914ee295
XZ
1736 }
1737
2e78c927 1738 release_bytes = round_up(copied + sector_offset,
0b246afa 1739 fs_info->sectorsize);
376cc685
MX
1740
1741 if (copied > 0)
2ff7e61e 1742 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
94f45071 1743 pos, copied, &cached_state);
79f015f2 1744 if (extents_locked)
376cc685 1745 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
e43bbe5e 1746 lockstart, lockend, &cached_state);
43b18595 1747 btrfs_delalloc_release_extents(BTRFS_I(inode), reserve_bytes,
336a8bb8 1748 true);
f1de9683
MX
1749 if (ret) {
1750 btrfs_drop_pages(pages, num_pages);
376cc685 1751 break;
f1de9683 1752 }
39279cc3 1753
376cc685 1754 release_bytes = 0;
8257b2dc 1755 if (only_release_metadata)
ea14b57f 1756 btrfs_end_write_no_snapshotting(root);
8257b2dc 1757
7ee9e440 1758 if (only_release_metadata && copied > 0) {
da17066c 1759 lockstart = round_down(pos,
0b246afa 1760 fs_info->sectorsize);
da17066c 1761 lockend = round_up(pos + copied,
0b246afa 1762 fs_info->sectorsize) - 1;
7ee9e440
JB
1763
1764 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1765 lockend, EXTENT_NORESERVE, NULL,
1766 NULL, GFP_NOFS);
1767 only_release_metadata = false;
1768 }
1769
f1de9683
MX
1770 btrfs_drop_pages(pages, num_pages);
1771
d0215f3e
JB
1772 cond_resched();
1773
d0e1d66b 1774 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1775 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1776 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1777
914ee295
XZ
1778 pos += copied;
1779 num_written += copied;
d0215f3e 1780 }
39279cc3 1781
d0215f3e
JB
1782 kfree(pages);
1783
7ee9e440 1784 if (release_bytes) {
8257b2dc 1785 if (only_release_metadata) {
ea14b57f 1786 btrfs_end_write_no_snapshotting(root);
691fa059 1787 btrfs_delalloc_release_metadata(BTRFS_I(inode),
43b18595 1788 release_bytes, true);
8257b2dc 1789 } else {
bc42bda2
QW
1790 btrfs_delalloc_release_space(inode, data_reserved,
1791 round_down(pos, fs_info->sectorsize),
43b18595 1792 release_bytes, true);
8257b2dc 1793 }
7ee9e440
JB
1794 }
1795
364ecf36 1796 extent_changeset_free(data_reserved);
d0215f3e
JB
1797 return num_written ? num_written : ret;
1798}
1799
1af5bb49 1800static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1801{
1802 struct file *file = iocb->ki_filp;
728404da 1803 struct inode *inode = file_inode(file);
e4af400a 1804 loff_t pos;
d0215f3e
JB
1805 ssize_t written;
1806 ssize_t written_buffered;
1807 loff_t endbyte;
1808 int err;
1809
1af5bb49 1810 written = generic_file_direct_write(iocb, from);
d0215f3e 1811
0c949334 1812 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1813 return written;
1814
e4af400a
GR
1815 pos = iocb->ki_pos;
1816 written_buffered = btrfs_buffered_write(iocb, from);
d0215f3e
JB
1817 if (written_buffered < 0) {
1818 err = written_buffered;
1819 goto out;
39279cc3 1820 }
075bdbdb
FM
1821 /*
1822 * Ensure all data is persisted. We want the next direct IO read to be
1823 * able to read what was just written.
1824 */
d0215f3e 1825 endbyte = pos + written_buffered - 1;
728404da 1826 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1827 if (err)
1828 goto out;
728404da 1829 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1830 if (err)
1831 goto out;
1832 written += written_buffered;
867c4f93 1833 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1834 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1835 endbyte >> PAGE_SHIFT);
39279cc3 1836out:
d0215f3e
JB
1837 return written ? written : err;
1838}
5b92ee72 1839
6c760c07
JB
1840static void update_time_for_write(struct inode *inode)
1841{
95582b00 1842 struct timespec64 now;
6c760c07
JB
1843
1844 if (IS_NOCMTIME(inode))
1845 return;
1846
c2050a45 1847 now = current_time(inode);
95582b00 1848 if (!timespec64_equal(&inode->i_mtime, &now))
6c760c07
JB
1849 inode->i_mtime = now;
1850
95582b00 1851 if (!timespec64_equal(&inode->i_ctime, &now))
6c760c07
JB
1852 inode->i_ctime = now;
1853
1854 if (IS_I_VERSION(inode))
1855 inode_inc_iversion(inode);
1856}
1857
b30ac0fc
AV
1858static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1859 struct iov_iter *from)
d0215f3e
JB
1860{
1861 struct file *file = iocb->ki_filp;
496ad9aa 1862 struct inode *inode = file_inode(file);
0b246afa 1863 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1864 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1865 u64 start_pos;
3ac0d7b9 1866 u64 end_pos;
d0215f3e 1867 ssize_t num_written = 0;
b812ce28 1868 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1869 ssize_t err;
ff0fa732 1870 loff_t pos;
edf064e7 1871 size_t count = iov_iter_count(from);
27772b68
CR
1872 loff_t oldsize;
1873 int clean_page = 0;
d0215f3e 1874
91f9943e
CH
1875 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1876 (iocb->ki_flags & IOCB_NOWAIT))
1877 return -EOPNOTSUPP;
1878
ff0fa732
GR
1879 if (!inode_trylock(inode)) {
1880 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1881 return -EAGAIN;
ff0fa732
GR
1882 inode_lock(inode);
1883 }
1884
1885 err = generic_write_checks(iocb, from);
1886 if (err <= 0) {
1887 inode_unlock(inode);
1888 return err;
1889 }
1890
1891 pos = iocb->ki_pos;
1892 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1893 /*
1894 * We will allocate space in case nodatacow is not set,
1895 * so bail
1896 */
1897 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1898 BTRFS_INODE_PREALLOC)) ||
1899 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1900 inode_unlock(inode);
1901 return -EAGAIN;
1902 }
d0215f3e
JB
1903 }
1904
3309dd04 1905 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1906 err = file_remove_privs(file);
d0215f3e 1907 if (err) {
5955102c 1908 inode_unlock(inode);
d0215f3e
JB
1909 goto out;
1910 }
1911
1912 /*
1913 * If BTRFS flips readonly due to some impossible error
1914 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1915 * although we have opened a file as writable, we have
1916 * to stop this write operation to ensure FS consistency.
1917 */
0b246afa 1918 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1919 inode_unlock(inode);
d0215f3e
JB
1920 err = -EROFS;
1921 goto out;
1922 }
1923
6c760c07
JB
1924 /*
1925 * We reserve space for updating the inode when we reserve space for the
1926 * extent we are going to write, so we will enospc out there. We don't
1927 * need to start yet another transaction to update the inode as we will
1928 * update the inode when we finish writing whatever data we write.
1929 */
1930 update_time_for_write(inode);
d0215f3e 1931
0b246afa 1932 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1933 oldsize = i_size_read(inode);
1934 if (start_pos > oldsize) {
3ac0d7b9 1935 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1936 end_pos = round_up(pos + count,
0b246afa 1937 fs_info->sectorsize);
27772b68 1938 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1939 if (err) {
5955102c 1940 inode_unlock(inode);
0c1a98c8
MX
1941 goto out;
1942 }
0b246afa 1943 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1944 clean_page = 1;
0c1a98c8
MX
1945 }
1946
b812ce28
JB
1947 if (sync)
1948 atomic_inc(&BTRFS_I(inode)->sync_writers);
1949
2ba48ce5 1950 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1951 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1952 } else {
e4af400a 1953 num_written = btrfs_buffered_write(iocb, from);
d0215f3e 1954 if (num_written > 0)
867c4f93 1955 iocb->ki_pos = pos + num_written;
27772b68
CR
1956 if (clean_page)
1957 pagecache_isize_extended(inode, oldsize,
1958 i_size_read(inode));
d0215f3e
JB
1959 }
1960
5955102c 1961 inode_unlock(inode);
2ff3e9b6 1962
5a3f23d5 1963 /*
6c760c07
JB
1964 * We also have to set last_sub_trans to the current log transid,
1965 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1966 * transaction will appear to have already occurred.
5a3f23d5 1967 */
2f2ff0ee 1968 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1969 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1970 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1971 if (num_written > 0)
1972 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1973
b812ce28
JB
1974 if (sync)
1975 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1976out:
39279cc3 1977 current->backing_dev_info = NULL;
39279cc3
CM
1978 return num_written ? num_written : err;
1979}
1980
d397712b 1981int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1982{
23b5ec74
JB
1983 struct btrfs_file_private *private = filp->private_data;
1984
23b5ec74
JB
1985 if (private && private->filldir_buf)
1986 kfree(private->filldir_buf);
1987 kfree(private);
1988 filp->private_data = NULL;
1989
f6dc45c7
CM
1990 /*
1991 * ordered_data_close is set by settattr when we are about to truncate
1992 * a file from a non-zero size to a zero size. This tries to
1993 * flush down new bytes that may have been written if the
1994 * application were using truncate to replace a file in place.
1995 */
1996 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
1997 &BTRFS_I(inode)->runtime_flags))
1998 filemap_flush(inode->i_mapping);
e1b81e67
M
1999 return 0;
2000}
2001
669249ee
FM
2002static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2003{
2004 int ret;
343e4fc1 2005 struct blk_plug plug;
669249ee 2006
343e4fc1
LB
2007 /*
2008 * This is only called in fsync, which would do synchronous writes, so
2009 * a plug can merge adjacent IOs as much as possible. Esp. in case of
2010 * multiple disks using raid profile, a large IO can be split to
2011 * several segments of stripe length (currently 64K).
2012 */
2013 blk_start_plug(&plug);
669249ee 2014 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2015 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee 2016 atomic_dec(&BTRFS_I(inode)->sync_writers);
343e4fc1 2017 blk_finish_plug(&plug);
669249ee
FM
2018
2019 return ret;
2020}
2021
d352ac68
CM
2022/*
2023 * fsync call for both files and directories. This logs the inode into
2024 * the tree log instead of forcing full commits whenever possible.
2025 *
2026 * It needs to call filemap_fdatawait so that all ordered extent updates are
2027 * in the metadata btree are up to date for copying to the log.
2028 *
2029 * It drops the inode mutex before doing the tree log commit. This is an
2030 * important optimization for directories because holding the mutex prevents
2031 * new operations on the dir while we write to disk.
2032 */
02c24a82 2033int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2034{
de17e793 2035 struct dentry *dentry = file_dentry(file);
2b0143b5 2036 struct inode *inode = d_inode(dentry);
0b246afa 2037 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2038 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2039 struct btrfs_trans_handle *trans;
8b050d35 2040 struct btrfs_log_ctx ctx;
333427a5 2041 int ret = 0, err;
9dcbeed4 2042 u64 len;
39279cc3 2043
9dcbeed4
DS
2044 /*
2045 * The range length can be represented by u64, we have to do the typecasts
2046 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2047 */
2048 len = (u64)end - (u64)start + 1;
1abe9b8a 2049 trace_btrfs_sync_file(file, datasync);
257c62e1 2050
ebb70442
LB
2051 btrfs_init_log_ctx(&ctx, inode);
2052
90abccf2
MX
2053 /*
2054 * We write the dirty pages in the range and wait until they complete
2055 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2056 * multi-task, and make the performance up. See
2057 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2058 */
669249ee 2059 ret = start_ordered_ops(inode, start, end);
90abccf2 2060 if (ret)
333427a5 2061 goto out;
90abccf2 2062
5955102c 2063 inode_lock(inode);
2ecb7923 2064 atomic_inc(&root->log_batch);
b5e6c3e1 2065
669249ee 2066 /*
b5e6c3e1
JB
2067 * We have to do this here to avoid the priority inversion of waiting on
2068 * IO of a lower priority task while holding a transaciton open.
669249ee 2069 */
b5e6c3e1 2070 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee 2071 if (ret) {
5955102c 2072 inode_unlock(inode);
669249ee 2073 goto out;
0ef8b726 2074 }
2ecb7923 2075 atomic_inc(&root->log_batch);
257c62e1 2076
a4abeea4 2077 smp_mb();
0f8939b8 2078 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
ca5788ab 2079 BTRFS_I(inode)->last_trans <= fs_info->last_trans_committed) {
5dc562c5 2080 /*
01327610 2081 * We've had everything committed since the last time we were
5dc562c5
JB
2082 * modified so clear this flag in case it was set for whatever
2083 * reason, it's no longer relevant.
2084 */
2085 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2086 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2087 /*
2088 * An ordered extent might have started before and completed
2089 * already with io errors, in which case the inode was not
2090 * updated and we end up here. So check the inode's mapping
333427a5
JL
2091 * for any errors that might have happened since we last
2092 * checked called fsync.
0596a904 2093 */
333427a5 2094 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
5955102c 2095 inode_unlock(inode);
15ee9bc7
JB
2096 goto out;
2097 }
15ee9bc7 2098
5039eddc
JB
2099 /*
2100 * We use start here because we will need to wait on the IO to complete
2101 * in btrfs_sync_log, which could require joining a transaction (for
2102 * example checking cross references in the nocow path). If we use join
2103 * here we could get into a situation where we're waiting on IO to
2104 * happen that is blocked on a transaction trying to commit. With start
2105 * we inc the extwriter counter, so we wait for all extwriters to exit
2106 * before we start blocking join'ers. This comment is to keep somebody
2107 * from thinking they are super smart and changing this to
2108 * btrfs_join_transaction *cough*Josef*cough*.
2109 */
a22285a6
YZ
2110 trans = btrfs_start_transaction(root, 0);
2111 if (IS_ERR(trans)) {
2112 ret = PTR_ERR(trans);
5955102c 2113 inode_unlock(inode);
39279cc3
CM
2114 goto out;
2115 }
5039eddc 2116 trans->sync = true;
e02119d5 2117
e5b84f7a 2118 ret = btrfs_log_dentry_safe(trans, dentry, start, end, &ctx);
02c24a82 2119 if (ret < 0) {
a0634be5
FDBM
2120 /* Fallthrough and commit/free transaction. */
2121 ret = 1;
02c24a82 2122 }
49eb7e46
CM
2123
2124 /* we've logged all the items and now have a consistent
2125 * version of the file in the log. It is possible that
2126 * someone will come in and modify the file, but that's
2127 * fine because the log is consistent on disk, and we
2128 * have references to all of the file's extents
2129 *
2130 * It is possible that someone will come in and log the
2131 * file again, but that will end up using the synchronization
2132 * inside btrfs_sync_log to keep things safe.
2133 */
5955102c 2134 inode_unlock(inode);
49eb7e46 2135
8407f553
FM
2136 /*
2137 * If any of the ordered extents had an error, just return it to user
2138 * space, so that the application knows some writes didn't succeed and
2139 * can take proper action (retry for e.g.). Blindly committing the
2140 * transaction in this case, would fool userspace that everything was
2141 * successful. And we also want to make sure our log doesn't contain
2142 * file extent items pointing to extents that weren't fully written to -
2143 * just like in the non fast fsync path, where we check for the ordered
2144 * operation's error flag before writing to the log tree and return -EIO
2145 * if any of them had this flag set (btrfs_wait_ordered_range) -
2146 * therefore we need to check for errors in the ordered operations,
2147 * which are indicated by ctx.io_err.
2148 */
2149 if (ctx.io_err) {
3a45bb20 2150 btrfs_end_transaction(trans);
8407f553
FM
2151 ret = ctx.io_err;
2152 goto out;
2153 }
2154
257c62e1 2155 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2156 if (!ret) {
8b050d35 2157 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2158 if (!ret) {
3a45bb20 2159 ret = btrfs_end_transaction(trans);
0ef8b726 2160 goto out;
2ab28f32 2161 }
257c62e1 2162 }
3a45bb20 2163 ret = btrfs_commit_transaction(trans);
257c62e1 2164 } else {
3a45bb20 2165 ret = btrfs_end_transaction(trans);
e02119d5 2166 }
39279cc3 2167out:
ebb70442 2168 ASSERT(list_empty(&ctx.list));
333427a5
JL
2169 err = file_check_and_advance_wb_err(file);
2170 if (!ret)
2171 ret = err;
014e4ac4 2172 return ret > 0 ? -EIO : ret;
39279cc3
CM
2173}
2174
f0f37e2f 2175static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2176 .fault = filemap_fault,
f1820361 2177 .map_pages = filemap_map_pages,
9ebefb18
CM
2178 .page_mkwrite = btrfs_page_mkwrite,
2179};
2180
2181static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2182{
058a457e
MX
2183 struct address_space *mapping = filp->f_mapping;
2184
2185 if (!mapping->a_ops->readpage)
2186 return -ENOEXEC;
2187
9ebefb18 2188 file_accessed(filp);
058a457e 2189 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2190
9ebefb18
CM
2191 return 0;
2192}
2193
35339c24 2194static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2195 int slot, u64 start, u64 end)
2196{
2197 struct btrfs_file_extent_item *fi;
2198 struct btrfs_key key;
2199
2200 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2201 return 0;
2202
2203 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2204 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2205 key.type != BTRFS_EXTENT_DATA_KEY)
2206 return 0;
2207
2208 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2209
2210 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2211 return 0;
2212
2213 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2214 return 0;
2215
2216 if (key.offset == end)
2217 return 1;
2218 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2219 return 1;
2220 return 0;
2221}
2222
a012a74e
NB
2223static int fill_holes(struct btrfs_trans_handle *trans,
2224 struct btrfs_inode *inode,
2225 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2226{
3ffbd68c 2227 struct btrfs_fs_info *fs_info = trans->fs_info;
a012a74e 2228 struct btrfs_root *root = inode->root;
2aaa6655
JB
2229 struct extent_buffer *leaf;
2230 struct btrfs_file_extent_item *fi;
2231 struct extent_map *hole_em;
a012a74e 2232 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2233 struct btrfs_key key;
2234 int ret;
2235
0b246afa 2236 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2237 goto out;
2238
a012a74e 2239 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2240 key.type = BTRFS_EXTENT_DATA_KEY;
2241 key.offset = offset;
2242
2aaa6655 2243 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2244 if (ret <= 0) {
2245 /*
2246 * We should have dropped this offset, so if we find it then
2247 * something has gone horribly wrong.
2248 */
2249 if (ret == 0)
2250 ret = -EINVAL;
2aaa6655 2251 return ret;
f94480bd 2252 }
2aaa6655
JB
2253
2254 leaf = path->nodes[0];
a012a74e 2255 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2256 u64 num_bytes;
2257
2258 path->slots[0]--;
2259 fi = btrfs_item_ptr(leaf, path->slots[0],
2260 struct btrfs_file_extent_item);
2261 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2262 end - offset;
2263 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2264 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2265 btrfs_set_file_extent_offset(leaf, fi, 0);
2266 btrfs_mark_buffer_dirty(leaf);
2267 goto out;
2268 }
2269
1707e26d 2270 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2271 u64 num_bytes;
2272
2aaa6655 2273 key.offset = offset;
0b246afa 2274 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2275 fi = btrfs_item_ptr(leaf, path->slots[0],
2276 struct btrfs_file_extent_item);
2277 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2278 offset;
2279 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2280 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2281 btrfs_set_file_extent_offset(leaf, fi, 0);
2282 btrfs_mark_buffer_dirty(leaf);
2283 goto out;
2284 }
2285 btrfs_release_path(path);
2286
a012a74e 2287 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2288 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2289 if (ret)
2290 return ret;
2291
2292out:
2293 btrfs_release_path(path);
2294
2295 hole_em = alloc_extent_map();
2296 if (!hole_em) {
2297 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2298 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2299 } else {
2300 hole_em->start = offset;
2301 hole_em->len = end - offset;
cc95bef6 2302 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2303 hole_em->orig_start = offset;
2304
2305 hole_em->block_start = EXTENT_MAP_HOLE;
2306 hole_em->block_len = 0;
b4939680 2307 hole_em->orig_block_len = 0;
0b246afa 2308 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2309 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2310 hole_em->generation = trans->transid;
2311
2312 do {
2313 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2314 write_lock(&em_tree->lock);
09a2a8f9 2315 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2316 write_unlock(&em_tree->lock);
2317 } while (ret == -EEXIST);
2318 free_extent_map(hole_em);
2319 if (ret)
2320 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2321 &inode->runtime_flags);
2aaa6655
JB
2322 }
2323
2324 return 0;
2325}
2326
d7781546
QW
2327/*
2328 * Find a hole extent on given inode and change start/len to the end of hole
2329 * extent.(hole/vacuum extent whose em->start <= start &&
2330 * em->start + em->len > start)
2331 * When a hole extent is found, return 1 and modify start/len.
2332 */
2333static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2334{
609805d8 2335 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2336 struct extent_map *em;
2337 int ret = 0;
2338
609805d8
FM
2339 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2340 round_down(*start, fs_info->sectorsize),
2341 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2342 if (IS_ERR(em))
2343 return PTR_ERR(em);
d7781546
QW
2344
2345 /* Hole or vacuum extent(only exists in no-hole mode) */
2346 if (em->block_start == EXTENT_MAP_HOLE) {
2347 ret = 1;
2348 *len = em->start + em->len > *start + *len ?
2349 0 : *start + *len - em->start - em->len;
2350 *start = em->start + em->len;
2351 }
2352 free_extent_map(em);
2353 return ret;
2354}
2355
f27451f2
FM
2356static int btrfs_punch_hole_lock_range(struct inode *inode,
2357 const u64 lockstart,
2358 const u64 lockend,
2359 struct extent_state **cached_state)
2360{
2361 while (1) {
2362 struct btrfs_ordered_extent *ordered;
2363 int ret;
2364
2365 truncate_pagecache_range(inode, lockstart, lockend);
2366
2367 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2368 cached_state);
2369 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2370
2371 /*
2372 * We need to make sure we have no ordered extents in this range
2373 * and nobody raced in and read a page in this range, if we did
2374 * we need to try again.
2375 */
2376 if ((!ordered ||
2377 (ordered->file_offset + ordered->len <= lockstart ||
2378 ordered->file_offset > lockend)) &&
051c98eb
DS
2379 !filemap_range_has_page(inode->i_mapping,
2380 lockstart, lockend)) {
f27451f2
FM
2381 if (ordered)
2382 btrfs_put_ordered_extent(ordered);
2383 break;
2384 }
2385 if (ordered)
2386 btrfs_put_ordered_extent(ordered);
2387 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2388 lockend, cached_state);
2389 ret = btrfs_wait_ordered_range(inode, lockstart,
2390 lockend - lockstart + 1);
2391 if (ret)
2392 return ret;
2393 }
2394 return 0;
2395}
2396
2aaa6655
JB
2397static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2398{
0b246afa 2399 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2400 struct btrfs_root *root = BTRFS_I(inode)->root;
2401 struct extent_state *cached_state = NULL;
2402 struct btrfs_path *path;
2403 struct btrfs_block_rsv *rsv;
2404 struct btrfs_trans_handle *trans;
d7781546
QW
2405 u64 lockstart;
2406 u64 lockend;
2407 u64 tail_start;
2408 u64 tail_len;
2409 u64 orig_start = offset;
2410 u64 cur_offset;
5f52a2c5 2411 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2412 u64 drop_end;
2aaa6655
JB
2413 int ret = 0;
2414 int err = 0;
6e4d6fa1 2415 unsigned int rsv_count;
9703fefe 2416 bool same_block;
0b246afa 2417 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2418 u64 ino_size;
9703fefe 2419 bool truncated_block = false;
e8c1c76e 2420 bool updated_inode = false;
2aaa6655 2421
0ef8b726
JB
2422 ret = btrfs_wait_ordered_range(inode, offset, len);
2423 if (ret)
2424 return ret;
2aaa6655 2425
5955102c 2426 inode_lock(inode);
0b246afa 2427 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2428 ret = find_first_non_hole(inode, &offset, &len);
2429 if (ret < 0)
2430 goto out_only_mutex;
2431 if (ret && !len) {
2432 /* Already in a large hole */
2433 ret = 0;
2434 goto out_only_mutex;
2435 }
2436
da17066c 2437 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2438 lockend = round_down(offset + len,
da17066c 2439 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2440 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2441 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2442 /*
9703fefe 2443 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2444 * because we are sure there is no data there.
2445 */
2aaa6655 2446 /*
9703fefe
CR
2447 * Only do this if we are in the same block and we aren't doing the
2448 * entire block.
2aaa6655 2449 */
0b246afa 2450 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2451 if (offset < ino_size) {
9703fefe
CR
2452 truncated_block = true;
2453 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2454 } else {
2455 ret = 0;
2456 }
d7781546 2457 goto out_only_mutex;
2aaa6655
JB
2458 }
2459
9703fefe 2460 /* zero back part of the first block */
12870f1c 2461 if (offset < ino_size) {
9703fefe
CR
2462 truncated_block = true;
2463 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2464 if (ret) {
5955102c 2465 inode_unlock(inode);
7426cc04
MX
2466 return ret;
2467 }
2aaa6655
JB
2468 }
2469
d7781546
QW
2470 /* Check the aligned pages after the first unaligned page,
2471 * if offset != orig_start, which means the first unaligned page
01327610 2472 * including several following pages are already in holes,
d7781546
QW
2473 * the extra check can be skipped */
2474 if (offset == orig_start) {
2475 /* after truncate page, check hole again */
2476 len = offset + len - lockstart;
2477 offset = lockstart;
2478 ret = find_first_non_hole(inode, &offset, &len);
2479 if (ret < 0)
2480 goto out_only_mutex;
2481 if (ret && !len) {
2482 ret = 0;
2483 goto out_only_mutex;
2484 }
2485 lockstart = offset;
2486 }
2487
2488 /* Check the tail unaligned part is in a hole */
2489 tail_start = lockend + 1;
2490 tail_len = offset + len - tail_start;
2491 if (tail_len) {
2492 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2493 if (unlikely(ret < 0))
2494 goto out_only_mutex;
2495 if (!ret) {
2496 /* zero the front end of the last page */
2497 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2498 truncated_block = true;
2499 ret = btrfs_truncate_block(inode,
2500 tail_start + tail_len,
2501 0, 1);
d7781546
QW
2502 if (ret)
2503 goto out_only_mutex;
51f395ad 2504 }
0061280d 2505 }
2aaa6655
JB
2506 }
2507
2508 if (lockend < lockstart) {
e8c1c76e
FM
2509 ret = 0;
2510 goto out_only_mutex;
2aaa6655
JB
2511 }
2512
f27451f2
FM
2513 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2514 &cached_state);
2515 if (ret) {
2516 inode_unlock(inode);
2517 goto out_only_mutex;
2aaa6655
JB
2518 }
2519
2520 path = btrfs_alloc_path();
2521 if (!path) {
2522 ret = -ENOMEM;
2523 goto out;
2524 }
2525
2ff7e61e 2526 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2527 if (!rsv) {
2528 ret = -ENOMEM;
2529 goto out_free;
2530 }
5f52a2c5 2531 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2532 rsv->failfast = 1;
2533
2534 /*
2535 * 1 - update the inode
2536 * 1 - removing the extents in the range
16e7549f 2537 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2538 */
16e7549f
JB
2539 rsv_count = no_holes ? 2 : 3;
2540 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2541 if (IS_ERR(trans)) {
2542 err = PTR_ERR(trans);
2543 goto out_free;
2544 }
2545
0b246afa 2546 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 2547 min_size, 0);
2aaa6655
JB
2548 BUG_ON(ret);
2549 trans->block_rsv = rsv;
2550
d7781546
QW
2551 cur_offset = lockstart;
2552 len = lockend - cur_offset;
2aaa6655
JB
2553 while (cur_offset < lockend) {
2554 ret = __btrfs_drop_extents(trans, root, inode, path,
2555 cur_offset, lockend + 1,
1acae57b 2556 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2557 if (ret != -ENOSPC)
2558 break;
2559
0b246afa 2560 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2561
62fe51c1 2562 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2563 ret = fill_holes(trans, BTRFS_I(inode), path,
2564 cur_offset, drop_end);
12870f1c 2565 if (ret) {
f94480bd
JB
2566 /*
2567 * If we failed then we didn't insert our hole
2568 * entries for the area we dropped, so now the
2569 * fs is corrupted, so we must abort the
2570 * transaction.
2571 */
2572 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2573 err = ret;
2574 break;
2575 }
2aaa6655
JB
2576 }
2577
2578 cur_offset = drop_end;
2579
2580 ret = btrfs_update_inode(trans, root, inode);
2581 if (ret) {
2582 err = ret;
2583 break;
2584 }
2585
3a45bb20 2586 btrfs_end_transaction(trans);
2ff7e61e 2587 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2588
16e7549f 2589 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2590 if (IS_ERR(trans)) {
2591 ret = PTR_ERR(trans);
2592 trans = NULL;
2593 break;
2594 }
2595
0b246afa 2596 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 2597 rsv, min_size, 0);
2aaa6655
JB
2598 BUG_ON(ret); /* shouldn't happen */
2599 trans->block_rsv = rsv;
d7781546
QW
2600
2601 ret = find_first_non_hole(inode, &cur_offset, &len);
2602 if (unlikely(ret < 0))
2603 break;
2604 if (ret && !len) {
2605 ret = 0;
2606 break;
2607 }
2aaa6655
JB
2608 }
2609
2610 if (ret) {
2611 err = ret;
2612 goto out_trans;
2613 }
2614
0b246afa 2615 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2616 /*
2617 * If we are using the NO_HOLES feature we might have had already an
2618 * hole that overlaps a part of the region [lockstart, lockend] and
2619 * ends at (or beyond) lockend. Since we have no file extent items to
2620 * represent holes, drop_end can be less than lockend and so we must
2621 * make sure we have an extent map representing the existing hole (the
2622 * call to __btrfs_drop_extents() might have dropped the existing extent
2623 * map representing the existing hole), otherwise the fast fsync path
2624 * will not record the existence of the hole region
2625 * [existing_hole_start, lockend].
2626 */
2627 if (drop_end <= lockend)
2628 drop_end = lockend + 1;
fc19c5e7
FM
2629 /*
2630 * Don't insert file hole extent item if it's for a range beyond eof
2631 * (because it's useless) or if it represents a 0 bytes range (when
2632 * cur_offset == drop_end).
2633 */
2634 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2635 ret = fill_holes(trans, BTRFS_I(inode), path,
2636 cur_offset, drop_end);
12870f1c 2637 if (ret) {
f94480bd
JB
2638 /* Same comment as above. */
2639 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2640 err = ret;
2641 goto out_trans;
2642 }
2aaa6655
JB
2643 }
2644
2645out_trans:
2646 if (!trans)
2647 goto out_free;
2648
e1f5790e 2649 inode_inc_iversion(inode);
c2050a45 2650 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2651
0b246afa 2652 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2653 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2654 updated_inode = true;
3a45bb20 2655 btrfs_end_transaction(trans);
2ff7e61e 2656 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2657out_free:
2658 btrfs_free_path(path);
2ff7e61e 2659 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2660out:
2661 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 2662 &cached_state);
d7781546 2663out_only_mutex:
9703fefe 2664 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2665 /*
2666 * If we only end up zeroing part of a page, we still need to
2667 * update the inode item, so that all the time fields are
2668 * updated as well as the necessary btrfs inode in memory fields
2669 * for detecting, at fsync time, if the inode isn't yet in the
2670 * log tree or it's there but not up to date.
2671 */
2672 trans = btrfs_start_transaction(root, 1);
2673 if (IS_ERR(trans)) {
2674 err = PTR_ERR(trans);
2675 } else {
2676 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2677 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2678 }
2679 }
5955102c 2680 inode_unlock(inode);
2aaa6655
JB
2681 if (ret && !err)
2682 err = ret;
2683 return err;
2684}
2685
14524a84
QW
2686/* Helper structure to record which range is already reserved */
2687struct falloc_range {
2688 struct list_head list;
2689 u64 start;
2690 u64 len;
2691};
2692
2693/*
2694 * Helper function to add falloc range
2695 *
2696 * Caller should have locked the larger range of extent containing
2697 * [start, len)
2698 */
2699static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2700{
2701 struct falloc_range *prev = NULL;
2702 struct falloc_range *range = NULL;
2703
2704 if (list_empty(head))
2705 goto insert;
2706
2707 /*
2708 * As fallocate iterate by bytenr order, we only need to check
2709 * the last range.
2710 */
2711 prev = list_entry(head->prev, struct falloc_range, list);
2712 if (prev->start + prev->len == start) {
2713 prev->len += len;
2714 return 0;
2715 }
2716insert:
32fc932e 2717 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2718 if (!range)
2719 return -ENOMEM;
2720 range->start = start;
2721 range->len = len;
2722 list_add_tail(&range->list, head);
2723 return 0;
2724}
2725
f27451f2
FM
2726static int btrfs_fallocate_update_isize(struct inode *inode,
2727 const u64 end,
2728 const int mode)
2729{
2730 struct btrfs_trans_handle *trans;
2731 struct btrfs_root *root = BTRFS_I(inode)->root;
2732 int ret;
2733 int ret2;
2734
2735 if (mode & FALLOC_FL_KEEP_SIZE || end <= i_size_read(inode))
2736 return 0;
2737
2738 trans = btrfs_start_transaction(root, 1);
2739 if (IS_ERR(trans))
2740 return PTR_ERR(trans);
2741
2742 inode->i_ctime = current_time(inode);
2743 i_size_write(inode, end);
2744 btrfs_ordered_update_i_size(inode, end, NULL);
2745 ret = btrfs_update_inode(trans, root, inode);
2746 ret2 = btrfs_end_transaction(trans);
2747
2748 return ret ? ret : ret2;
2749}
2750
81fdf638
FM
2751enum {
2752 RANGE_BOUNDARY_WRITTEN_EXTENT = 0,
2753 RANGE_BOUNDARY_PREALLOC_EXTENT = 1,
2754 RANGE_BOUNDARY_HOLE = 2,
2755};
2756
f27451f2
FM
2757static int btrfs_zero_range_check_range_boundary(struct inode *inode,
2758 u64 offset)
2759{
2760 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2761 struct extent_map *em;
81fdf638 2762 int ret;
f27451f2
FM
2763
2764 offset = round_down(offset, sectorsize);
2765 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, offset, sectorsize, 0);
2766 if (IS_ERR(em))
2767 return PTR_ERR(em);
2768
2769 if (em->block_start == EXTENT_MAP_HOLE)
81fdf638
FM
2770 ret = RANGE_BOUNDARY_HOLE;
2771 else if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2772 ret = RANGE_BOUNDARY_PREALLOC_EXTENT;
2773 else
2774 ret = RANGE_BOUNDARY_WRITTEN_EXTENT;
f27451f2
FM
2775
2776 free_extent_map(em);
2777 return ret;
2778}
2779
2780static int btrfs_zero_range(struct inode *inode,
2781 loff_t offset,
2782 loff_t len,
2783 const int mode)
2784{
2785 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2786 struct extent_map *em;
2787 struct extent_changeset *data_reserved = NULL;
2788 int ret;
2789 u64 alloc_hint = 0;
2790 const u64 sectorsize = btrfs_inode_sectorsize(inode);
2791 u64 alloc_start = round_down(offset, sectorsize);
2792 u64 alloc_end = round_up(offset + len, sectorsize);
2793 u64 bytes_to_reserve = 0;
2794 bool space_reserved = false;
2795
2796 inode_dio_wait(inode);
2797
2798 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2799 alloc_start, alloc_end - alloc_start, 0);
2800 if (IS_ERR(em)) {
2801 ret = PTR_ERR(em);
2802 goto out;
2803 }
2804
2805 /*
2806 * Avoid hole punching and extent allocation for some cases. More cases
2807 * could be considered, but these are unlikely common and we keep things
2808 * as simple as possible for now. Also, intentionally, if the target
2809 * range contains one or more prealloc extents together with regular
2810 * extents and holes, we drop all the existing extents and allocate a
2811 * new prealloc extent, so that we get a larger contiguous disk extent.
2812 */
2813 if (em->start <= alloc_start &&
2814 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2815 const u64 em_end = em->start + em->len;
2816
2817 if (em_end >= offset + len) {
2818 /*
2819 * The whole range is already a prealloc extent,
2820 * do nothing except updating the inode's i_size if
2821 * needed.
2822 */
2823 free_extent_map(em);
2824 ret = btrfs_fallocate_update_isize(inode, offset + len,
2825 mode);
2826 goto out;
2827 }
2828 /*
2829 * Part of the range is already a prealloc extent, so operate
2830 * only on the remaining part of the range.
2831 */
2832 alloc_start = em_end;
2833 ASSERT(IS_ALIGNED(alloc_start, sectorsize));
2834 len = offset + len - alloc_start;
2835 offset = alloc_start;
2836 alloc_hint = em->block_start + em->len;
2837 }
2838 free_extent_map(em);
2839
2840 if (BTRFS_BYTES_TO_BLKS(fs_info, offset) ==
2841 BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1)) {
2842 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2843 alloc_start, sectorsize, 0);
2844 if (IS_ERR(em)) {
2845 ret = PTR_ERR(em);
2846 goto out;
2847 }
2848
2849 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
2850 free_extent_map(em);
2851 ret = btrfs_fallocate_update_isize(inode, offset + len,
2852 mode);
2853 goto out;
2854 }
2855 if (len < sectorsize && em->block_start != EXTENT_MAP_HOLE) {
2856 free_extent_map(em);
2857 ret = btrfs_truncate_block(inode, offset, len, 0);
2858 if (!ret)
2859 ret = btrfs_fallocate_update_isize(inode,
2860 offset + len,
2861 mode);
2862 return ret;
2863 }
2864 free_extent_map(em);
2865 alloc_start = round_down(offset, sectorsize);
2866 alloc_end = alloc_start + sectorsize;
2867 goto reserve_space;
2868 }
2869
2870 alloc_start = round_up(offset, sectorsize);
2871 alloc_end = round_down(offset + len, sectorsize);
2872
2873 /*
2874 * For unaligned ranges, check the pages at the boundaries, they might
2875 * map to an extent, in which case we need to partially zero them, or
2876 * they might map to a hole, in which case we need our allocation range
2877 * to cover them.
2878 */
2879 if (!IS_ALIGNED(offset, sectorsize)) {
2880 ret = btrfs_zero_range_check_range_boundary(inode, offset);
2881 if (ret < 0)
2882 goto out;
81fdf638 2883 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2884 alloc_start = round_down(offset, sectorsize);
2885 ret = 0;
81fdf638 2886 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2887 ret = btrfs_truncate_block(inode, offset, 0, 0);
2888 if (ret)
2889 goto out;
81fdf638
FM
2890 } else {
2891 ret = 0;
f27451f2
FM
2892 }
2893 }
2894
2895 if (!IS_ALIGNED(offset + len, sectorsize)) {
2896 ret = btrfs_zero_range_check_range_boundary(inode,
2897 offset + len);
2898 if (ret < 0)
2899 goto out;
81fdf638 2900 if (ret == RANGE_BOUNDARY_HOLE) {
f27451f2
FM
2901 alloc_end = round_up(offset + len, sectorsize);
2902 ret = 0;
81fdf638 2903 } else if (ret == RANGE_BOUNDARY_WRITTEN_EXTENT) {
f27451f2
FM
2904 ret = btrfs_truncate_block(inode, offset + len, 0, 1);
2905 if (ret)
2906 goto out;
81fdf638
FM
2907 } else {
2908 ret = 0;
f27451f2
FM
2909 }
2910 }
2911
2912reserve_space:
2913 if (alloc_start < alloc_end) {
2914 struct extent_state *cached_state = NULL;
2915 const u64 lockstart = alloc_start;
2916 const u64 lockend = alloc_end - 1;
2917
2918 bytes_to_reserve = alloc_end - alloc_start;
2919 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2920 bytes_to_reserve);
2921 if (ret < 0)
2922 goto out;
2923 space_reserved = true;
2924 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2925 alloc_start, bytes_to_reserve);
2926 if (ret)
2927 goto out;
2928 ret = btrfs_punch_hole_lock_range(inode, lockstart, lockend,
2929 &cached_state);
2930 if (ret)
2931 goto out;
2932 ret = btrfs_prealloc_file_range(inode, mode, alloc_start,
2933 alloc_end - alloc_start,
2934 i_blocksize(inode),
2935 offset + len, &alloc_hint);
2936 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2937 lockend, &cached_state);
2938 /* btrfs_prealloc_file_range releases reserved space on error */
9f13ce74 2939 if (ret) {
f27451f2 2940 space_reserved = false;
9f13ce74
FM
2941 goto out;
2942 }
f27451f2 2943 }
9f13ce74 2944 ret = btrfs_fallocate_update_isize(inode, offset + len, mode);
f27451f2
FM
2945 out:
2946 if (ret && space_reserved)
2947 btrfs_free_reserved_data_space(inode, data_reserved,
2948 alloc_start, bytes_to_reserve);
2949 extent_changeset_free(data_reserved);
2950
2951 return ret;
2952}
2953
2fe17c10
CH
2954static long btrfs_fallocate(struct file *file, int mode,
2955 loff_t offset, loff_t len)
2956{
496ad9aa 2957 struct inode *inode = file_inode(file);
2fe17c10 2958 struct extent_state *cached_state = NULL;
364ecf36 2959 struct extent_changeset *data_reserved = NULL;
14524a84
QW
2960 struct falloc_range *range;
2961 struct falloc_range *tmp;
2962 struct list_head reserve_list;
2fe17c10
CH
2963 u64 cur_offset;
2964 u64 last_byte;
2965 u64 alloc_start;
2966 u64 alloc_end;
2967 u64 alloc_hint = 0;
2968 u64 locked_end;
14524a84 2969 u64 actual_end = 0;
2fe17c10 2970 struct extent_map *em;
da17066c 2971 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
2972 int ret;
2973
797f4277
MX
2974 alloc_start = round_down(offset, blocksize);
2975 alloc_end = round_up(offset + len, blocksize);
18513091 2976 cur_offset = alloc_start;
2fe17c10 2977
2aaa6655 2978 /* Make sure we aren't being give some crap mode */
f27451f2
FM
2979 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
2980 FALLOC_FL_ZERO_RANGE))
2fe17c10
CH
2981 return -EOPNOTSUPP;
2982
2aaa6655
JB
2983 if (mode & FALLOC_FL_PUNCH_HOLE)
2984 return btrfs_punch_hole(inode, offset, len);
2985
d98456fc 2986 /*
14524a84
QW
2987 * Only trigger disk allocation, don't trigger qgroup reserve
2988 *
2989 * For qgroup space, it will be checked later.
d98456fc 2990 */
f27451f2
FM
2991 if (!(mode & FALLOC_FL_ZERO_RANGE)) {
2992 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2993 alloc_end - alloc_start);
2994 if (ret < 0)
2995 return ret;
2996 }
d98456fc 2997
5955102c 2998 inode_lock(inode);
2a162ce9
DI
2999
3000 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
3001 ret = inode_newsize_ok(inode, offset + len);
3002 if (ret)
3003 goto out;
3004 }
2fe17c10 3005
14524a84
QW
3006 /*
3007 * TODO: Move these two operations after we have checked
3008 * accurate reserved space, or fallocate can still fail but
3009 * with page truncated or size expanded.
3010 *
3011 * But that's a minor problem and won't do much harm BTW.
3012 */
2fe17c10 3013 if (alloc_start > inode->i_size) {
a41ad394
JB
3014 ret = btrfs_cont_expand(inode, i_size_read(inode),
3015 alloc_start);
2fe17c10
CH
3016 if (ret)
3017 goto out;
0f6925fa 3018 } else if (offset + len > inode->i_size) {
a71754fc
JB
3019 /*
3020 * If we are fallocating from the end of the file onward we
9703fefe
CR
3021 * need to zero out the end of the block if i_size lands in the
3022 * middle of a block.
a71754fc 3023 */
9703fefe 3024 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
3025 if (ret)
3026 goto out;
2fe17c10
CH
3027 }
3028
a71754fc
JB
3029 /*
3030 * wait for ordered IO before we have any locks. We'll loop again
3031 * below with the locks held.
3032 */
0ef8b726
JB
3033 ret = btrfs_wait_ordered_range(inode, alloc_start,
3034 alloc_end - alloc_start);
3035 if (ret)
3036 goto out;
a71754fc 3037
f27451f2
FM
3038 if (mode & FALLOC_FL_ZERO_RANGE) {
3039 ret = btrfs_zero_range(inode, offset, len, mode);
3040 inode_unlock(inode);
3041 return ret;
3042 }
3043
2fe17c10
CH
3044 locked_end = alloc_end - 1;
3045 while (1) {
3046 struct btrfs_ordered_extent *ordered;
3047
3048 /* the extent lock is ordered inside the running
3049 * transaction
3050 */
3051 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 3052 locked_end, &cached_state);
96b09dde
NB
3053 ordered = btrfs_lookup_first_ordered_extent(inode, locked_end);
3054
2fe17c10
CH
3055 if (ordered &&
3056 ordered->file_offset + ordered->len > alloc_start &&
3057 ordered->file_offset < alloc_end) {
3058 btrfs_put_ordered_extent(ordered);
3059 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
3060 alloc_start, locked_end,
e43bbe5e 3061 &cached_state);
2fe17c10
CH
3062 /*
3063 * we can't wait on the range with the transaction
3064 * running or with the extent lock held
3065 */
0ef8b726
JB
3066 ret = btrfs_wait_ordered_range(inode, alloc_start,
3067 alloc_end - alloc_start);
3068 if (ret)
3069 goto out;
2fe17c10
CH
3070 } else {
3071 if (ordered)
3072 btrfs_put_ordered_extent(ordered);
3073 break;
3074 }
3075 }
3076
14524a84
QW
3077 /* First, check if we exceed the qgroup limit */
3078 INIT_LIST_HEAD(&reserve_list);
6b7d6e93 3079 while (cur_offset < alloc_end) {
fc4f21b1 3080 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 3081 alloc_end - cur_offset, 0);
9986277e
DC
3082 if (IS_ERR(em)) {
3083 ret = PTR_ERR(em);
79787eaa
JM
3084 break;
3085 }
2fe17c10 3086 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 3087 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 3088 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
3089 if (em->block_start == EXTENT_MAP_HOLE ||
3090 (cur_offset >= inode->i_size &&
3091 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
3092 ret = add_falloc_range(&reserve_list, cur_offset,
3093 last_byte - cur_offset);
3094 if (ret < 0) {
3095 free_extent_map(em);
3096 break;
3d850dd4 3097 }
364ecf36
QW
3098 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
3099 cur_offset, last_byte - cur_offset);
be2d253c
FM
3100 if (ret < 0) {
3101 free_extent_map(em);
14524a84 3102 break;
be2d253c 3103 }
18513091
WX
3104 } else {
3105 /*
3106 * Do not need to reserve unwritten extent for this
3107 * range, free reserved data space first, otherwise
3108 * it'll result in false ENOSPC error.
3109 */
bc42bda2
QW
3110 btrfs_free_reserved_data_space(inode, data_reserved,
3111 cur_offset, last_byte - cur_offset);
2fe17c10
CH
3112 }
3113 free_extent_map(em);
2fe17c10 3114 cur_offset = last_byte;
14524a84
QW
3115 }
3116
3117 /*
3118 * If ret is still 0, means we're OK to fallocate.
3119 * Or just cleanup the list and exit.
3120 */
3121 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
3122 if (!ret)
3123 ret = btrfs_prealloc_file_range(inode, mode,
3124 range->start,
93407472 3125 range->len, i_blocksize(inode),
14524a84 3126 offset + len, &alloc_hint);
18513091 3127 else
bc42bda2
QW
3128 btrfs_free_reserved_data_space(inode,
3129 data_reserved, range->start,
3130 range->len);
14524a84
QW
3131 list_del(&range->list);
3132 kfree(range);
3133 }
3134 if (ret < 0)
3135 goto out_unlock;
3136
f27451f2
FM
3137 /*
3138 * We didn't need to allocate any more space, but we still extended the
3139 * size of the file so we need to update i_size and the inode item.
3140 */
3141 ret = btrfs_fallocate_update_isize(inode, actual_end, mode);
14524a84 3142out_unlock:
2fe17c10 3143 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
e43bbe5e 3144 &cached_state);
2fe17c10 3145out:
5955102c 3146 inode_unlock(inode);
d98456fc 3147 /* Let go of our reservation. */
f27451f2 3148 if (ret != 0 && !(mode & FALLOC_FL_ZERO_RANGE))
bc42bda2
QW
3149 btrfs_free_reserved_data_space(inode, data_reserved,
3150 alloc_start, alloc_end - cur_offset);
364ecf36 3151 extent_changeset_free(data_reserved);
2fe17c10
CH
3152 return ret;
3153}
3154
965c8e59 3155static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3156{
0b246afa 3157 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3158 struct extent_map *em = NULL;
b2675157 3159 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3160 u64 lockstart;
3161 u64 lockend;
3162 u64 start;
3163 u64 len;
b2675157
JB
3164 int ret = 0;
3165
4d1a40c6
LB
3166 if (inode->i_size == 0)
3167 return -ENXIO;
3168
3169 /*
3170 * *offset can be negative, in this case we start finding DATA/HOLE from
3171 * the very start of the file.
3172 */
3173 start = max_t(loff_t, 0, *offset);
3174
0b246afa 3175 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3176 lockend = round_up(i_size_read(inode),
0b246afa 3177 fs_info->sectorsize);
b2675157 3178 if (lockend <= lockstart)
0b246afa 3179 lockend = lockstart + fs_info->sectorsize;
1214b53f 3180 lockend--;
b2675157
JB
3181 len = lockend - lockstart + 1;
3182
ff13db41 3183 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3184 &cached_state);
b2675157 3185
7f4ca37c 3186 while (start < inode->i_size) {
fc4f21b1
NB
3187 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3188 start, len, 0);
b2675157 3189 if (IS_ERR(em)) {
6af021d8 3190 ret = PTR_ERR(em);
7f4ca37c 3191 em = NULL;
b2675157
JB
3192 break;
3193 }
3194
7f4ca37c
JB
3195 if (whence == SEEK_HOLE &&
3196 (em->block_start == EXTENT_MAP_HOLE ||
3197 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3198 break;
3199 else if (whence == SEEK_DATA &&
3200 (em->block_start != EXTENT_MAP_HOLE &&
3201 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3202 break;
b2675157
JB
3203
3204 start = em->start + em->len;
b2675157 3205 free_extent_map(em);
7f4ca37c 3206 em = NULL;
b2675157
JB
3207 cond_resched();
3208 }
7f4ca37c
JB
3209 free_extent_map(em);
3210 if (!ret) {
3211 if (whence == SEEK_DATA && start >= inode->i_size)
3212 ret = -ENXIO;
3213 else
3214 *offset = min_t(loff_t, start, inode->i_size);
3215 }
b2675157 3216 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
e43bbe5e 3217 &cached_state);
b2675157
JB
3218 return ret;
3219}
3220
965c8e59 3221static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3222{
3223 struct inode *inode = file->f_mapping->host;
3224 int ret;
3225
5955102c 3226 inode_lock(inode);
965c8e59 3227 switch (whence) {
b2675157
JB
3228 case SEEK_END:
3229 case SEEK_CUR:
965c8e59 3230 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3231 goto out;
3232 case SEEK_DATA:
3233 case SEEK_HOLE:
48802c8a 3234 if (offset >= i_size_read(inode)) {
5955102c 3235 inode_unlock(inode);
48802c8a
JL
3236 return -ENXIO;
3237 }
3238
965c8e59 3239 ret = find_desired_extent(inode, &offset, whence);
b2675157 3240 if (ret) {
5955102c 3241 inode_unlock(inode);
b2675157
JB
3242 return ret;
3243 }
3244 }
3245
46a1c2c7 3246 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3247out:
5955102c 3248 inode_unlock(inode);
b2675157
JB
3249 return offset;
3250}
3251
edf064e7
GR
3252static int btrfs_file_open(struct inode *inode, struct file *filp)
3253{
91f9943e 3254 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3255 return generic_file_open(inode, filp);
3256}
3257
828c0950 3258const struct file_operations btrfs_file_operations = {
b2675157 3259 .llseek = btrfs_file_llseek,
aad4f8bb 3260 .read_iter = generic_file_read_iter,
e9906a98 3261 .splice_read = generic_file_splice_read,
b30ac0fc 3262 .write_iter = btrfs_file_write_iter,
9ebefb18 3263 .mmap = btrfs_file_mmap,
edf064e7 3264 .open = btrfs_file_open,
e1b81e67 3265 .release = btrfs_release_file,
39279cc3 3266 .fsync = btrfs_sync_file,
2fe17c10 3267 .fallocate = btrfs_fallocate,
34287aa3 3268 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3269#ifdef CONFIG_COMPAT
4c63c245 3270 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3271#endif
2e5dfc99 3272 .remap_file_range = btrfs_remap_file_range,
39279cc3 3273};
9247f317 3274
e67c718b 3275void __cold btrfs_auto_defrag_exit(void)
9247f317 3276{
5598e900 3277 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3278}
3279
f5c29bd9 3280int __init btrfs_auto_defrag_init(void)
9247f317
MX
3281{
3282 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3283 sizeof(struct inode_defrag), 0,
fba4b697 3284 SLAB_MEM_SPREAD,
9247f317
MX
3285 NULL);
3286 if (!btrfs_inode_defrag_cachep)
3287 return -ENOMEM;
3288
3289 return 0;
3290}
728404da
FM
3291
3292int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3293{
3294 int ret;
3295
3296 /*
3297 * So with compression we will find and lock a dirty page and clear the
3298 * first one as dirty, setup an async extent, and immediately return
3299 * with the entire range locked but with nobody actually marked with
3300 * writeback. So we can't just filemap_write_and_wait_range() and
3301 * expect it to work since it will just kick off a thread to do the
3302 * actual work. So we need to call filemap_fdatawrite_range _again_
3303 * since it will wait on the page lock, which won't be unlocked until
3304 * after the pages have been marked as writeback and so we're good to go
3305 * from there. We have to do this otherwise we'll miss the ordered
3306 * extents and that results in badness. Please Josef, do not think you
3307 * know better and pull this out at some point in the future, it is
3308 * right and you are wrong.
3309 */
3310 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3311 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3312 &BTRFS_I(inode)->runtime_flags))
3313 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3314
3315 return ret;
3316}