]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - fs/btrfs/file.c
btrfs: cleanup extent locking sequence
[mirror_ubuntu-bionic-kernel.git] / fs / btrfs / file.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
39279cc3
CM
19#include <linux/fs.h>
20#include <linux/pagemap.h>
21#include <linux/highmem.h>
22#include <linux/time.h>
23#include <linux/init.h>
24#include <linux/string.h>
39279cc3
CM
25#include <linux/backing-dev.h>
26#include <linux/mpage.h>
2fe17c10 27#include <linux/falloc.h>
39279cc3
CM
28#include <linux/swap.h>
29#include <linux/writeback.h>
39279cc3 30#include <linux/compat.h>
5a0e3ad6 31#include <linux/slab.h>
55e301fd 32#include <linux/btrfs.h>
e2e40f2c 33#include <linux/uio.h>
39279cc3
CM
34#include "ctree.h"
35#include "disk-io.h"
36#include "transaction.h"
37#include "btrfs_inode.h"
39279cc3 38#include "print-tree.h"
e02119d5
CM
39#include "tree-log.h"
40#include "locking.h"
2aaa6655 41#include "volumes.h"
fcebe456 42#include "qgroup.h"
ebb8765b 43#include "compression.h"
39279cc3 44
9247f317 45static struct kmem_cache *btrfs_inode_defrag_cachep;
4cb5300b
CM
46/*
47 * when auto defrag is enabled we
48 * queue up these defrag structs to remember which
49 * inodes need defragging passes
50 */
51struct inode_defrag {
52 struct rb_node rb_node;
53 /* objectid */
54 u64 ino;
55 /*
56 * transid where the defrag was added, we search for
57 * extents newer than this
58 */
59 u64 transid;
60
61 /* root objectid */
62 u64 root;
63
64 /* last offset we were able to defrag */
65 u64 last_offset;
66
67 /* if we've wrapped around back to zero once already */
68 int cycled;
69};
70
762f2263
MX
71static int __compare_inode_defrag(struct inode_defrag *defrag1,
72 struct inode_defrag *defrag2)
73{
74 if (defrag1->root > defrag2->root)
75 return 1;
76 else if (defrag1->root < defrag2->root)
77 return -1;
78 else if (defrag1->ino > defrag2->ino)
79 return 1;
80 else if (defrag1->ino < defrag2->ino)
81 return -1;
82 else
83 return 0;
84}
85
4cb5300b
CM
86/* pop a record for an inode into the defrag tree. The lock
87 * must be held already
88 *
89 * If you're inserting a record for an older transid than an
90 * existing record, the transid already in the tree is lowered
91 *
92 * If an existing record is found the defrag item you
93 * pass in is freed
94 */
6158e1ce 95static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
4cb5300b
CM
96 struct inode_defrag *defrag)
97{
6158e1ce 98 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4cb5300b
CM
99 struct inode_defrag *entry;
100 struct rb_node **p;
101 struct rb_node *parent = NULL;
762f2263 102 int ret;
4cb5300b 103
0b246afa 104 p = &fs_info->defrag_inodes.rb_node;
4cb5300b
CM
105 while (*p) {
106 parent = *p;
107 entry = rb_entry(parent, struct inode_defrag, rb_node);
108
762f2263
MX
109 ret = __compare_inode_defrag(defrag, entry);
110 if (ret < 0)
4cb5300b 111 p = &parent->rb_left;
762f2263 112 else if (ret > 0)
4cb5300b
CM
113 p = &parent->rb_right;
114 else {
115 /* if we're reinserting an entry for
116 * an old defrag run, make sure to
117 * lower the transid of our existing record
118 */
119 if (defrag->transid < entry->transid)
120 entry->transid = defrag->transid;
121 if (defrag->last_offset > entry->last_offset)
122 entry->last_offset = defrag->last_offset;
8ddc4734 123 return -EEXIST;
4cb5300b
CM
124 }
125 }
6158e1ce 126 set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
4cb5300b 127 rb_link_node(&defrag->rb_node, parent, p);
0b246afa 128 rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
8ddc4734
MX
129 return 0;
130}
4cb5300b 131
2ff7e61e 132static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
8ddc4734 133{
0b246afa 134 if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
8ddc4734
MX
135 return 0;
136
0b246afa 137 if (btrfs_fs_closing(fs_info))
8ddc4734 138 return 0;
4cb5300b 139
8ddc4734 140 return 1;
4cb5300b
CM
141}
142
143/*
144 * insert a defrag record for this inode if auto defrag is
145 * enabled
146 */
147int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
6158e1ce 148 struct btrfs_inode *inode)
4cb5300b 149{
6158e1ce
NB
150 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
151 struct btrfs_root *root = inode->root;
4cb5300b 152 struct inode_defrag *defrag;
4cb5300b 153 u64 transid;
8ddc4734 154 int ret;
4cb5300b 155
2ff7e61e 156 if (!__need_auto_defrag(fs_info))
4cb5300b
CM
157 return 0;
158
6158e1ce 159 if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
4cb5300b
CM
160 return 0;
161
162 if (trans)
163 transid = trans->transid;
164 else
6158e1ce 165 transid = inode->root->last_trans;
4cb5300b 166
9247f317 167 defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
4cb5300b
CM
168 if (!defrag)
169 return -ENOMEM;
170
6158e1ce 171 defrag->ino = btrfs_ino(inode);
4cb5300b
CM
172 defrag->transid = transid;
173 defrag->root = root->root_key.objectid;
174
0b246afa 175 spin_lock(&fs_info->defrag_inodes_lock);
6158e1ce 176 if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
8ddc4734
MX
177 /*
178 * If we set IN_DEFRAG flag and evict the inode from memory,
179 * and then re-read this inode, this new inode doesn't have
180 * IN_DEFRAG flag. At the case, we may find the existed defrag.
181 */
182 ret = __btrfs_add_inode_defrag(inode, defrag);
183 if (ret)
184 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
185 } else {
9247f317 186 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
8ddc4734 187 }
0b246afa 188 spin_unlock(&fs_info->defrag_inodes_lock);
a0f98dde 189 return 0;
4cb5300b
CM
190}
191
192/*
8ddc4734
MX
193 * Requeue the defrag object. If there is a defrag object that points to
194 * the same inode in the tree, we will merge them together (by
195 * __btrfs_add_inode_defrag()) and free the one that we want to requeue.
4cb5300b 196 */
46e59791 197static void btrfs_requeue_inode_defrag(struct btrfs_inode *inode,
48a3b636 198 struct inode_defrag *defrag)
8ddc4734 199{
46e59791 200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
8ddc4734
MX
201 int ret;
202
2ff7e61e 203 if (!__need_auto_defrag(fs_info))
8ddc4734
MX
204 goto out;
205
206 /*
207 * Here we don't check the IN_DEFRAG flag, because we need merge
208 * them together.
209 */
0b246afa 210 spin_lock(&fs_info->defrag_inodes_lock);
8ddc4734 211 ret = __btrfs_add_inode_defrag(inode, defrag);
0b246afa 212 spin_unlock(&fs_info->defrag_inodes_lock);
8ddc4734
MX
213 if (ret)
214 goto out;
215 return;
216out:
217 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
218}
219
4cb5300b 220/*
26176e7c
MX
221 * pick the defragable inode that we want, if it doesn't exist, we will get
222 * the next one.
4cb5300b 223 */
26176e7c
MX
224static struct inode_defrag *
225btrfs_pick_defrag_inode(struct btrfs_fs_info *fs_info, u64 root, u64 ino)
4cb5300b
CM
226{
227 struct inode_defrag *entry = NULL;
762f2263 228 struct inode_defrag tmp;
4cb5300b
CM
229 struct rb_node *p;
230 struct rb_node *parent = NULL;
762f2263
MX
231 int ret;
232
233 tmp.ino = ino;
234 tmp.root = root;
4cb5300b 235
26176e7c
MX
236 spin_lock(&fs_info->defrag_inodes_lock);
237 p = fs_info->defrag_inodes.rb_node;
4cb5300b
CM
238 while (p) {
239 parent = p;
240 entry = rb_entry(parent, struct inode_defrag, rb_node);
241
762f2263
MX
242 ret = __compare_inode_defrag(&tmp, entry);
243 if (ret < 0)
4cb5300b 244 p = parent->rb_left;
762f2263 245 else if (ret > 0)
4cb5300b
CM
246 p = parent->rb_right;
247 else
26176e7c 248 goto out;
4cb5300b
CM
249 }
250
26176e7c
MX
251 if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
252 parent = rb_next(parent);
253 if (parent)
4cb5300b 254 entry = rb_entry(parent, struct inode_defrag, rb_node);
26176e7c
MX
255 else
256 entry = NULL;
4cb5300b 257 }
26176e7c
MX
258out:
259 if (entry)
260 rb_erase(parent, &fs_info->defrag_inodes);
261 spin_unlock(&fs_info->defrag_inodes_lock);
262 return entry;
4cb5300b
CM
263}
264
26176e7c 265void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
4cb5300b
CM
266{
267 struct inode_defrag *defrag;
26176e7c
MX
268 struct rb_node *node;
269
270 spin_lock(&fs_info->defrag_inodes_lock);
271 node = rb_first(&fs_info->defrag_inodes);
272 while (node) {
273 rb_erase(node, &fs_info->defrag_inodes);
274 defrag = rb_entry(node, struct inode_defrag, rb_node);
275 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
276
351810c1 277 cond_resched_lock(&fs_info->defrag_inodes_lock);
26176e7c
MX
278
279 node = rb_first(&fs_info->defrag_inodes);
280 }
281 spin_unlock(&fs_info->defrag_inodes_lock);
282}
283
284#define BTRFS_DEFRAG_BATCH 1024
285
286static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
287 struct inode_defrag *defrag)
288{
4cb5300b
CM
289 struct btrfs_root *inode_root;
290 struct inode *inode;
4cb5300b
CM
291 struct btrfs_key key;
292 struct btrfs_ioctl_defrag_range_args range;
4cb5300b 293 int num_defrag;
6f1c3605
LB
294 int index;
295 int ret;
4cb5300b 296
26176e7c
MX
297 /* get the inode */
298 key.objectid = defrag->root;
962a298f 299 key.type = BTRFS_ROOT_ITEM_KEY;
26176e7c 300 key.offset = (u64)-1;
6f1c3605
LB
301
302 index = srcu_read_lock(&fs_info->subvol_srcu);
303
26176e7c
MX
304 inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
305 if (IS_ERR(inode_root)) {
6f1c3605
LB
306 ret = PTR_ERR(inode_root);
307 goto cleanup;
308 }
26176e7c
MX
309
310 key.objectid = defrag->ino;
962a298f 311 key.type = BTRFS_INODE_ITEM_KEY;
26176e7c
MX
312 key.offset = 0;
313 inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
314 if (IS_ERR(inode)) {
6f1c3605
LB
315 ret = PTR_ERR(inode);
316 goto cleanup;
26176e7c 317 }
6f1c3605 318 srcu_read_unlock(&fs_info->subvol_srcu, index);
26176e7c
MX
319
320 /* do a chunk of defrag */
321 clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
4cb5300b
CM
322 memset(&range, 0, sizeof(range));
323 range.len = (u64)-1;
26176e7c 324 range.start = defrag->last_offset;
b66f00da
MX
325
326 sb_start_write(fs_info->sb);
26176e7c
MX
327 num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
328 BTRFS_DEFRAG_BATCH);
b66f00da 329 sb_end_write(fs_info->sb);
26176e7c
MX
330 /*
331 * if we filled the whole defrag batch, there
332 * must be more work to do. Queue this defrag
333 * again
334 */
335 if (num_defrag == BTRFS_DEFRAG_BATCH) {
336 defrag->last_offset = range.start;
46e59791 337 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
338 } else if (defrag->last_offset && !defrag->cycled) {
339 /*
340 * we didn't fill our defrag batch, but
341 * we didn't start at zero. Make sure we loop
342 * around to the start of the file.
343 */
344 defrag->last_offset = 0;
345 defrag->cycled = 1;
46e59791 346 btrfs_requeue_inode_defrag(BTRFS_I(inode), defrag);
26176e7c
MX
347 } else {
348 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
349 }
350
351 iput(inode);
352 return 0;
6f1c3605
LB
353cleanup:
354 srcu_read_unlock(&fs_info->subvol_srcu, index);
355 kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
356 return ret;
26176e7c
MX
357}
358
359/*
360 * run through the list of inodes in the FS that need
361 * defragging
362 */
363int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
364{
365 struct inode_defrag *defrag;
366 u64 first_ino = 0;
367 u64 root_objectid = 0;
4cb5300b
CM
368
369 atomic_inc(&fs_info->defrag_running);
67871254 370 while (1) {
dc81cdc5
MX
371 /* Pause the auto defragger. */
372 if (test_bit(BTRFS_FS_STATE_REMOUNTING,
373 &fs_info->fs_state))
374 break;
375
2ff7e61e 376 if (!__need_auto_defrag(fs_info))
26176e7c 377 break;
4cb5300b
CM
378
379 /* find an inode to defrag */
26176e7c
MX
380 defrag = btrfs_pick_defrag_inode(fs_info, root_objectid,
381 first_ino);
4cb5300b 382 if (!defrag) {
26176e7c 383 if (root_objectid || first_ino) {
762f2263 384 root_objectid = 0;
4cb5300b
CM
385 first_ino = 0;
386 continue;
387 } else {
388 break;
389 }
390 }
391
4cb5300b 392 first_ino = defrag->ino + 1;
762f2263 393 root_objectid = defrag->root;
4cb5300b 394
26176e7c 395 __btrfs_run_defrag_inode(fs_info, defrag);
4cb5300b 396 }
4cb5300b
CM
397 atomic_dec(&fs_info->defrag_running);
398
399 /*
400 * during unmount, we use the transaction_wait queue to
401 * wait for the defragger to stop
402 */
403 wake_up(&fs_info->transaction_wait);
404 return 0;
405}
39279cc3 406
d352ac68
CM
407/* simple helper to fault in pages and copy. This should go away
408 * and be replaced with calls into generic code.
409 */
ee22f0c4 410static noinline int btrfs_copy_from_user(loff_t pos, size_t write_bytes,
a1b32a59 411 struct page **prepared_pages,
11c65dcc 412 struct iov_iter *i)
39279cc3 413{
914ee295 414 size_t copied = 0;
d0215f3e 415 size_t total_copied = 0;
11c65dcc 416 int pg = 0;
09cbfeaf 417 int offset = pos & (PAGE_SIZE - 1);
39279cc3 418
11c65dcc 419 while (write_bytes > 0) {
39279cc3 420 size_t count = min_t(size_t,
09cbfeaf 421 PAGE_SIZE - offset, write_bytes);
11c65dcc 422 struct page *page = prepared_pages[pg];
914ee295
XZ
423 /*
424 * Copy data from userspace to the current page
914ee295 425 */
914ee295 426 copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
11c65dcc 427
39279cc3
CM
428 /* Flush processor's dcache for this page */
429 flush_dcache_page(page);
31339acd
CM
430
431 /*
432 * if we get a partial write, we can end up with
433 * partially up to date pages. These add
434 * a lot of complexity, so make sure they don't
435 * happen by forcing this copy to be retried.
436 *
437 * The rest of the btrfs_file_write code will fall
438 * back to page at a time copies after we return 0.
439 */
440 if (!PageUptodate(page) && copied < count)
441 copied = 0;
442
11c65dcc
JB
443 iov_iter_advance(i, copied);
444 write_bytes -= copied;
914ee295 445 total_copied += copied;
39279cc3 446
b30ac0fc 447 /* Return to btrfs_file_write_iter to fault page */
9f570b8d 448 if (unlikely(copied == 0))
914ee295 449 break;
11c65dcc 450
09cbfeaf 451 if (copied < PAGE_SIZE - offset) {
11c65dcc
JB
452 offset += copied;
453 } else {
454 pg++;
455 offset = 0;
456 }
39279cc3 457 }
914ee295 458 return total_copied;
39279cc3
CM
459}
460
d352ac68
CM
461/*
462 * unlocks pages after btrfs_file_write is done with them
463 */
48a3b636 464static void btrfs_drop_pages(struct page **pages, size_t num_pages)
39279cc3
CM
465{
466 size_t i;
467 for (i = 0; i < num_pages; i++) {
d352ac68
CM
468 /* page checked is some magic around finding pages that
469 * have been modified without going through btrfs_set_page_dirty
2457aec6
MG
470 * clear it here. There should be no need to mark the pages
471 * accessed as prepare_pages should have marked them accessed
472 * in prepare_pages via find_or_create_page()
d352ac68 473 */
4a096752 474 ClearPageChecked(pages[i]);
39279cc3 475 unlock_page(pages[i]);
09cbfeaf 476 put_page(pages[i]);
39279cc3
CM
477 }
478}
479
d352ac68
CM
480/*
481 * after copy_from_user, pages need to be dirtied and we need to make
482 * sure holes are created between the current EOF and the start of
483 * any next extents (if required).
484 *
485 * this also makes the decision about creating an inline extent vs
486 * doing real data extents, marking pages dirty and delalloc as required.
487 */
2ff7e61e
JM
488int btrfs_dirty_pages(struct inode *inode, struct page **pages,
489 size_t num_pages, loff_t pos, size_t write_bytes,
490 struct extent_state **cached)
39279cc3 491{
0b246afa 492 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 493 int err = 0;
a52d9a80 494 int i;
db94535d 495 u64 num_bytes;
a52d9a80
CM
496 u64 start_pos;
497 u64 end_of_last_block;
498 u64 end_pos = pos + write_bytes;
499 loff_t isize = i_size_read(inode);
39279cc3 500
0b246afa 501 start_pos = pos & ~((u64) fs_info->sectorsize - 1);
da17066c 502 num_bytes = round_up(write_bytes + pos - start_pos,
0b246afa 503 fs_info->sectorsize);
39279cc3 504
db94535d 505 end_of_last_block = start_pos + num_bytes - 1;
2ac55d41 506 err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
ba8b04c1 507 cached, 0);
d0215f3e
JB
508 if (err)
509 return err;
9ed74f2d 510
c8b97818
CM
511 for (i = 0; i < num_pages; i++) {
512 struct page *p = pages[i];
513 SetPageUptodate(p);
514 ClearPageChecked(p);
515 set_page_dirty(p);
a52d9a80 516 }
9f570b8d
JB
517
518 /*
519 * we've only changed i_size in ram, and we haven't updated
520 * the disk i_size. There is no need to log the inode
521 * at this time.
522 */
523 if (end_pos > isize)
a52d9a80 524 i_size_write(inode, end_pos);
a22285a6 525 return 0;
39279cc3
CM
526}
527
d352ac68
CM
528/*
529 * this drops all the extents in the cache that intersect the range
530 * [start, end]. Existing extents are split as required.
531 */
dcdbc059 532void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
7014cdb4 533 int skip_pinned)
a52d9a80
CM
534{
535 struct extent_map *em;
3b951516
CM
536 struct extent_map *split = NULL;
537 struct extent_map *split2 = NULL;
dcdbc059 538 struct extent_map_tree *em_tree = &inode->extent_tree;
39b5637f 539 u64 len = end - start + 1;
5dc562c5 540 u64 gen;
3b951516
CM
541 int ret;
542 int testend = 1;
5b21f2ed 543 unsigned long flags;
c8b97818 544 int compressed = 0;
09a2a8f9 545 bool modified;
a52d9a80 546
e6dcd2dc 547 WARN_ON(end < start);
3b951516 548 if (end == (u64)-1) {
39b5637f 549 len = (u64)-1;
3b951516
CM
550 testend = 0;
551 }
d397712b 552 while (1) {
7014cdb4
JB
553 int no_splits = 0;
554
09a2a8f9 555 modified = false;
3b951516 556 if (!split)
172ddd60 557 split = alloc_extent_map();
3b951516 558 if (!split2)
172ddd60 559 split2 = alloc_extent_map();
7014cdb4
JB
560 if (!split || !split2)
561 no_splits = 1;
3b951516 562
890871be 563 write_lock(&em_tree->lock);
39b5637f 564 em = lookup_extent_mapping(em_tree, start, len);
d1310b2e 565 if (!em) {
890871be 566 write_unlock(&em_tree->lock);
a52d9a80 567 break;
d1310b2e 568 }
5b21f2ed 569 flags = em->flags;
5dc562c5 570 gen = em->generation;
5b21f2ed 571 if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
55ef6899 572 if (testend && em->start + em->len >= start + len) {
5b21f2ed 573 free_extent_map(em);
a1ed835e 574 write_unlock(&em_tree->lock);
5b21f2ed
ZY
575 break;
576 }
55ef6899
YZ
577 start = em->start + em->len;
578 if (testend)
5b21f2ed 579 len = start + len - (em->start + em->len);
5b21f2ed 580 free_extent_map(em);
a1ed835e 581 write_unlock(&em_tree->lock);
5b21f2ed
ZY
582 continue;
583 }
c8b97818 584 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3ce7e67a 585 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
3b277594 586 clear_bit(EXTENT_FLAG_LOGGING, &flags);
09a2a8f9 587 modified = !list_empty(&em->list);
7014cdb4
JB
588 if (no_splits)
589 goto next;
3b951516 590
ee20a983 591 if (em->start < start) {
3b951516
CM
592 split->start = em->start;
593 split->len = start - em->start;
ee20a983
JB
594
595 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
596 split->orig_start = em->orig_start;
597 split->block_start = em->block_start;
598
599 if (compressed)
600 split->block_len = em->block_len;
601 else
602 split->block_len = split->len;
603 split->orig_block_len = max(split->block_len,
604 em->orig_block_len);
605 split->ram_bytes = em->ram_bytes;
606 } else {
607 split->orig_start = split->start;
608 split->block_len = 0;
609 split->block_start = em->block_start;
610 split->orig_block_len = 0;
611 split->ram_bytes = split->len;
612 }
613
5dc562c5 614 split->generation = gen;
3b951516 615 split->bdev = em->bdev;
5b21f2ed 616 split->flags = flags;
261507a0 617 split->compress_type = em->compress_type;
176840b3 618 replace_extent_mapping(em_tree, em, split, modified);
3b951516
CM
619 free_extent_map(split);
620 split = split2;
621 split2 = NULL;
622 }
ee20a983 623 if (testend && em->start + em->len > start + len) {
3b951516
CM
624 u64 diff = start + len - em->start;
625
626 split->start = start + len;
627 split->len = em->start + em->len - (start + len);
628 split->bdev = em->bdev;
5b21f2ed 629 split->flags = flags;
261507a0 630 split->compress_type = em->compress_type;
5dc562c5 631 split->generation = gen;
ee20a983
JB
632
633 if (em->block_start < EXTENT_MAP_LAST_BYTE) {
634 split->orig_block_len = max(em->block_len,
b4939680 635 em->orig_block_len);
3b951516 636
ee20a983
JB
637 split->ram_bytes = em->ram_bytes;
638 if (compressed) {
639 split->block_len = em->block_len;
640 split->block_start = em->block_start;
641 split->orig_start = em->orig_start;
642 } else {
643 split->block_len = split->len;
644 split->block_start = em->block_start
645 + diff;
646 split->orig_start = em->orig_start;
647 }
c8b97818 648 } else {
ee20a983
JB
649 split->ram_bytes = split->len;
650 split->orig_start = split->start;
651 split->block_len = 0;
652 split->block_start = em->block_start;
653 split->orig_block_len = 0;
c8b97818 654 }
3b951516 655
176840b3
FM
656 if (extent_map_in_tree(em)) {
657 replace_extent_mapping(em_tree, em, split,
658 modified);
659 } else {
660 ret = add_extent_mapping(em_tree, split,
661 modified);
662 ASSERT(ret == 0); /* Logic error */
663 }
3b951516
CM
664 free_extent_map(split);
665 split = NULL;
666 }
7014cdb4 667next:
176840b3
FM
668 if (extent_map_in_tree(em))
669 remove_extent_mapping(em_tree, em);
890871be 670 write_unlock(&em_tree->lock);
d1310b2e 671
a52d9a80
CM
672 /* once for us */
673 free_extent_map(em);
674 /* once for the tree*/
675 free_extent_map(em);
676 }
3b951516
CM
677 if (split)
678 free_extent_map(split);
679 if (split2)
680 free_extent_map(split2);
a52d9a80
CM
681}
682
39279cc3
CM
683/*
684 * this is very complex, but the basic idea is to drop all extents
685 * in the range start - end. hint_block is filled in with a block number
686 * that would be a good hint to the block allocator for this file.
687 *
688 * If an extent intersects the range but is not entirely inside the range
689 * it is either truncated or split. Anything entirely inside the range
690 * is deleted from the tree.
691 */
5dc562c5
JB
692int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
693 struct btrfs_root *root, struct inode *inode,
694 struct btrfs_path *path, u64 start, u64 end,
1acae57b
FDBM
695 u64 *drop_end, int drop_cache,
696 int replace_extent,
697 u32 extent_item_size,
698 int *key_inserted)
39279cc3 699{
0b246afa 700 struct btrfs_fs_info *fs_info = root->fs_info;
5f39d397 701 struct extent_buffer *leaf;
920bbbfb 702 struct btrfs_file_extent_item *fi;
00f5c795 703 struct btrfs_key key;
920bbbfb 704 struct btrfs_key new_key;
4a0cc7ca 705 u64 ino = btrfs_ino(BTRFS_I(inode));
920bbbfb
YZ
706 u64 search_start = start;
707 u64 disk_bytenr = 0;
708 u64 num_bytes = 0;
709 u64 extent_offset = 0;
710 u64 extent_end = 0;
62fe51c1 711 u64 last_end = start;
920bbbfb
YZ
712 int del_nr = 0;
713 int del_slot = 0;
714 int extent_type;
ccd467d6 715 int recow;
00f5c795 716 int ret;
dc7fdde3 717 int modify_tree = -1;
27cdeb70 718 int update_refs;
c3308f84 719 int found = 0;
1acae57b 720 int leafs_visited = 0;
39279cc3 721
a1ed835e 722 if (drop_cache)
dcdbc059 723 btrfs_drop_extent_cache(BTRFS_I(inode), start, end - 1, 0);
a52d9a80 724
d5f37527 725 if (start >= BTRFS_I(inode)->disk_i_size && !replace_extent)
dc7fdde3
CM
726 modify_tree = 0;
727
27cdeb70 728 update_refs = (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 729 root == fs_info->tree_root);
d397712b 730 while (1) {
ccd467d6 731 recow = 0;
33345d01 732 ret = btrfs_lookup_file_extent(trans, root, path, ino,
dc7fdde3 733 search_start, modify_tree);
39279cc3 734 if (ret < 0)
920bbbfb
YZ
735 break;
736 if (ret > 0 && path->slots[0] > 0 && search_start == start) {
737 leaf = path->nodes[0];
738 btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
33345d01 739 if (key.objectid == ino &&
920bbbfb
YZ
740 key.type == BTRFS_EXTENT_DATA_KEY)
741 path->slots[0]--;
39279cc3 742 }
920bbbfb 743 ret = 0;
1acae57b 744 leafs_visited++;
8c2383c3 745next_slot:
5f39d397 746 leaf = path->nodes[0];
920bbbfb
YZ
747 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
748 BUG_ON(del_nr > 0);
749 ret = btrfs_next_leaf(root, path);
750 if (ret < 0)
751 break;
752 if (ret > 0) {
753 ret = 0;
754 break;
8c2383c3 755 }
1acae57b 756 leafs_visited++;
920bbbfb
YZ
757 leaf = path->nodes[0];
758 recow = 1;
759 }
760
761 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
aeafbf84
FM
762
763 if (key.objectid > ino)
764 break;
765 if (WARN_ON_ONCE(key.objectid < ino) ||
766 key.type < BTRFS_EXTENT_DATA_KEY) {
767 ASSERT(del_nr == 0);
768 path->slots[0]++;
769 goto next_slot;
770 }
771 if (key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
920bbbfb
YZ
772 break;
773
774 fi = btrfs_item_ptr(leaf, path->slots[0],
775 struct btrfs_file_extent_item);
776 extent_type = btrfs_file_extent_type(leaf, fi);
777
778 if (extent_type == BTRFS_FILE_EXTENT_REG ||
779 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
780 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
781 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
782 extent_offset = btrfs_file_extent_offset(leaf, fi);
783 extent_end = key.offset +
784 btrfs_file_extent_num_bytes(leaf, fi);
785 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
786 extent_end = key.offset +
514ac8ad
CM
787 btrfs_file_extent_inline_len(leaf,
788 path->slots[0], fi);
8c2383c3 789 } else {
aeafbf84
FM
790 /* can't happen */
791 BUG();
39279cc3
CM
792 }
793
fc19c5e7
FM
794 /*
795 * Don't skip extent items representing 0 byte lengths. They
796 * used to be created (bug) if while punching holes we hit
797 * -ENOSPC condition. So if we find one here, just ensure we
798 * delete it, otherwise we would insert a new file extent item
799 * with the same key (offset) as that 0 bytes length file
800 * extent item in the call to setup_items_for_insert() later
801 * in this function.
802 */
62fe51c1
JB
803 if (extent_end == key.offset && extent_end >= search_start) {
804 last_end = extent_end;
fc19c5e7 805 goto delete_extent_item;
62fe51c1 806 }
fc19c5e7 807
920bbbfb
YZ
808 if (extent_end <= search_start) {
809 path->slots[0]++;
8c2383c3 810 goto next_slot;
39279cc3
CM
811 }
812
c3308f84 813 found = 1;
920bbbfb 814 search_start = max(key.offset, start);
dc7fdde3
CM
815 if (recow || !modify_tree) {
816 modify_tree = -1;
b3b4aa74 817 btrfs_release_path(path);
920bbbfb 818 continue;
39279cc3 819 }
6643558d 820
920bbbfb
YZ
821 /*
822 * | - range to drop - |
823 * | -------- extent -------- |
824 */
825 if (start > key.offset && end < extent_end) {
826 BUG_ON(del_nr > 0);
00fdf13a 827 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 828 ret = -EOPNOTSUPP;
00fdf13a
LB
829 break;
830 }
920bbbfb
YZ
831
832 memcpy(&new_key, &key, sizeof(new_key));
833 new_key.offset = start;
834 ret = btrfs_duplicate_item(trans, root, path,
835 &new_key);
836 if (ret == -EAGAIN) {
b3b4aa74 837 btrfs_release_path(path);
920bbbfb 838 continue;
6643558d 839 }
920bbbfb
YZ
840 if (ret < 0)
841 break;
842
843 leaf = path->nodes[0];
844 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
845 struct btrfs_file_extent_item);
846 btrfs_set_file_extent_num_bytes(leaf, fi,
847 start - key.offset);
848
849 fi = btrfs_item_ptr(leaf, path->slots[0],
850 struct btrfs_file_extent_item);
851
852 extent_offset += start - key.offset;
853 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
854 btrfs_set_file_extent_num_bytes(leaf, fi,
855 extent_end - start);
856 btrfs_mark_buffer_dirty(leaf);
857
5dc562c5 858 if (update_refs && disk_bytenr > 0) {
84f7d8e6 859 ret = btrfs_inc_extent_ref(trans, root,
920bbbfb
YZ
860 disk_bytenr, num_bytes, 0,
861 root->root_key.objectid,
862 new_key.objectid,
b06c4bf5 863 start - extent_offset);
79787eaa 864 BUG_ON(ret); /* -ENOMEM */
771ed689 865 }
920bbbfb 866 key.offset = start;
6643558d 867 }
62fe51c1
JB
868 /*
869 * From here on out we will have actually dropped something, so
870 * last_end can be updated.
871 */
872 last_end = extent_end;
873
920bbbfb
YZ
874 /*
875 * | ---- range to drop ----- |
876 * | -------- extent -------- |
877 */
878 if (start <= key.offset && end < extent_end) {
00fdf13a 879 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 880 ret = -EOPNOTSUPP;
00fdf13a
LB
881 break;
882 }
6643558d 883
920bbbfb
YZ
884 memcpy(&new_key, &key, sizeof(new_key));
885 new_key.offset = end;
0b246afa 886 btrfs_set_item_key_safe(fs_info, path, &new_key);
6643558d 887
920bbbfb
YZ
888 extent_offset += end - key.offset;
889 btrfs_set_file_extent_offset(leaf, fi, extent_offset);
890 btrfs_set_file_extent_num_bytes(leaf, fi,
891 extent_end - end);
892 btrfs_mark_buffer_dirty(leaf);
2671485d 893 if (update_refs && disk_bytenr > 0)
920bbbfb 894 inode_sub_bytes(inode, end - key.offset);
920bbbfb 895 break;
39279cc3 896 }
771ed689 897
920bbbfb
YZ
898 search_start = extent_end;
899 /*
900 * | ---- range to drop ----- |
901 * | -------- extent -------- |
902 */
903 if (start > key.offset && end >= extent_end) {
904 BUG_ON(del_nr > 0);
00fdf13a 905 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3f9e3df8 906 ret = -EOPNOTSUPP;
00fdf13a
LB
907 break;
908 }
8c2383c3 909
920bbbfb
YZ
910 btrfs_set_file_extent_num_bytes(leaf, fi,
911 start - key.offset);
912 btrfs_mark_buffer_dirty(leaf);
2671485d 913 if (update_refs && disk_bytenr > 0)
920bbbfb 914 inode_sub_bytes(inode, extent_end - start);
920bbbfb
YZ
915 if (end == extent_end)
916 break;
c8b97818 917
920bbbfb
YZ
918 path->slots[0]++;
919 goto next_slot;
31840ae1
ZY
920 }
921
920bbbfb
YZ
922 /*
923 * | ---- range to drop ----- |
924 * | ------ extent ------ |
925 */
926 if (start <= key.offset && end >= extent_end) {
fc19c5e7 927delete_extent_item:
920bbbfb
YZ
928 if (del_nr == 0) {
929 del_slot = path->slots[0];
930 del_nr = 1;
931 } else {
932 BUG_ON(del_slot + del_nr != path->slots[0]);
933 del_nr++;
934 }
31840ae1 935
5dc562c5
JB
936 if (update_refs &&
937 extent_type == BTRFS_FILE_EXTENT_INLINE) {
a76a3cd4 938 inode_sub_bytes(inode,
920bbbfb
YZ
939 extent_end - key.offset);
940 extent_end = ALIGN(extent_end,
0b246afa 941 fs_info->sectorsize);
5dc562c5 942 } else if (update_refs && disk_bytenr > 0) {
84f7d8e6 943 ret = btrfs_free_extent(trans, root,
920bbbfb
YZ
944 disk_bytenr, num_bytes, 0,
945 root->root_key.objectid,
5d4f98a2 946 key.objectid, key.offset -
b06c4bf5 947 extent_offset);
79787eaa 948 BUG_ON(ret); /* -ENOMEM */
920bbbfb
YZ
949 inode_sub_bytes(inode,
950 extent_end - key.offset);
31840ae1 951 }
31840ae1 952
920bbbfb
YZ
953 if (end == extent_end)
954 break;
955
956 if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
957 path->slots[0]++;
958 goto next_slot;
959 }
960
961 ret = btrfs_del_items(trans, root, path, del_slot,
962 del_nr);
79787eaa 963 if (ret) {
66642832 964 btrfs_abort_transaction(trans, ret);
5dc562c5 965 break;
79787eaa 966 }
920bbbfb
YZ
967
968 del_nr = 0;
969 del_slot = 0;
970
b3b4aa74 971 btrfs_release_path(path);
920bbbfb 972 continue;
39279cc3 973 }
920bbbfb
YZ
974
975 BUG_ON(1);
39279cc3 976 }
920bbbfb 977
79787eaa 978 if (!ret && del_nr > 0) {
1acae57b
FDBM
979 /*
980 * Set path->slots[0] to first slot, so that after the delete
981 * if items are move off from our leaf to its immediate left or
982 * right neighbor leafs, we end up with a correct and adjusted
d5f37527 983 * path->slots[0] for our insertion (if replace_extent != 0).
1acae57b
FDBM
984 */
985 path->slots[0] = del_slot;
920bbbfb 986 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 987 if (ret)
66642832 988 btrfs_abort_transaction(trans, ret);
d5f37527 989 }
1acae57b 990
d5f37527
FDBM
991 leaf = path->nodes[0];
992 /*
993 * If btrfs_del_items() was called, it might have deleted a leaf, in
994 * which case it unlocked our path, so check path->locks[0] matches a
995 * write lock.
996 */
997 if (!ret && replace_extent && leafs_visited == 1 &&
998 (path->locks[0] == BTRFS_WRITE_LOCK_BLOCKING ||
999 path->locks[0] == BTRFS_WRITE_LOCK) &&
2ff7e61e 1000 btrfs_leaf_free_space(fs_info, leaf) >=
d5f37527
FDBM
1001 sizeof(struct btrfs_item) + extent_item_size) {
1002
1003 key.objectid = ino;
1004 key.type = BTRFS_EXTENT_DATA_KEY;
1005 key.offset = start;
1006 if (!del_nr && path->slots[0] < btrfs_header_nritems(leaf)) {
1007 struct btrfs_key slot_key;
1008
1009 btrfs_item_key_to_cpu(leaf, &slot_key, path->slots[0]);
1010 if (btrfs_comp_cpu_keys(&key, &slot_key) > 0)
1011 path->slots[0]++;
1acae57b 1012 }
d5f37527
FDBM
1013 setup_items_for_insert(root, path, &key,
1014 &extent_item_size,
1015 extent_item_size,
1016 sizeof(struct btrfs_item) +
1017 extent_item_size, 1);
1018 *key_inserted = 1;
6643558d 1019 }
920bbbfb 1020
1acae57b
FDBM
1021 if (!replace_extent || !(*key_inserted))
1022 btrfs_release_path(path);
2aaa6655 1023 if (drop_end)
62fe51c1 1024 *drop_end = found ? min(end, last_end) : end;
5dc562c5
JB
1025 return ret;
1026}
1027
1028int btrfs_drop_extents(struct btrfs_trans_handle *trans,
1029 struct btrfs_root *root, struct inode *inode, u64 start,
2671485d 1030 u64 end, int drop_cache)
5dc562c5
JB
1031{
1032 struct btrfs_path *path;
1033 int ret;
1034
1035 path = btrfs_alloc_path();
1036 if (!path)
1037 return -ENOMEM;
2aaa6655 1038 ret = __btrfs_drop_extents(trans, root, inode, path, start, end, NULL,
1acae57b 1039 drop_cache, 0, 0, NULL);
920bbbfb 1040 btrfs_free_path(path);
39279cc3
CM
1041 return ret;
1042}
1043
d899e052 1044static int extent_mergeable(struct extent_buffer *leaf, int slot,
6c7d54ac
YZ
1045 u64 objectid, u64 bytenr, u64 orig_offset,
1046 u64 *start, u64 *end)
d899e052
YZ
1047{
1048 struct btrfs_file_extent_item *fi;
1049 struct btrfs_key key;
1050 u64 extent_end;
1051
1052 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
1053 return 0;
1054
1055 btrfs_item_key_to_cpu(leaf, &key, slot);
1056 if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
1057 return 0;
1058
1059 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
1060 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
1061 btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
6c7d54ac 1062 btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
d899e052
YZ
1063 btrfs_file_extent_compression(leaf, fi) ||
1064 btrfs_file_extent_encryption(leaf, fi) ||
1065 btrfs_file_extent_other_encoding(leaf, fi))
1066 return 0;
1067
1068 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
1069 if ((*start && *start != key.offset) || (*end && *end != extent_end))
1070 return 0;
1071
1072 *start = key.offset;
1073 *end = extent_end;
1074 return 1;
1075}
1076
1077/*
1078 * Mark extent in the range start - end as written.
1079 *
1080 * This changes extent type from 'pre-allocated' to 'regular'. If only
1081 * part of extent is marked as written, the extent will be split into
1082 * two or three.
1083 */
1084int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
7a6d7067 1085 struct btrfs_inode *inode, u64 start, u64 end)
d899e052 1086{
7a6d7067
NB
1087 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1088 struct btrfs_root *root = inode->root;
d899e052
YZ
1089 struct extent_buffer *leaf;
1090 struct btrfs_path *path;
1091 struct btrfs_file_extent_item *fi;
1092 struct btrfs_key key;
920bbbfb 1093 struct btrfs_key new_key;
d899e052
YZ
1094 u64 bytenr;
1095 u64 num_bytes;
1096 u64 extent_end;
5d4f98a2 1097 u64 orig_offset;
d899e052
YZ
1098 u64 other_start;
1099 u64 other_end;
920bbbfb
YZ
1100 u64 split;
1101 int del_nr = 0;
1102 int del_slot = 0;
6c7d54ac 1103 int recow;
d899e052 1104 int ret;
7a6d7067 1105 u64 ino = btrfs_ino(inode);
d899e052 1106
d899e052 1107 path = btrfs_alloc_path();
d8926bb3
MF
1108 if (!path)
1109 return -ENOMEM;
d899e052 1110again:
6c7d54ac 1111 recow = 0;
920bbbfb 1112 split = start;
33345d01 1113 key.objectid = ino;
d899e052 1114 key.type = BTRFS_EXTENT_DATA_KEY;
920bbbfb 1115 key.offset = split;
d899e052
YZ
1116
1117 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
41415730
JB
1118 if (ret < 0)
1119 goto out;
d899e052
YZ
1120 if (ret > 0 && path->slots[0] > 0)
1121 path->slots[0]--;
1122
1123 leaf = path->nodes[0];
1124 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
9c8e63db
JB
1125 if (key.objectid != ino ||
1126 key.type != BTRFS_EXTENT_DATA_KEY) {
1127 ret = -EINVAL;
1128 btrfs_abort_transaction(trans, ret);
1129 goto out;
1130 }
d899e052
YZ
1131 fi = btrfs_item_ptr(leaf, path->slots[0],
1132 struct btrfs_file_extent_item);
9c8e63db
JB
1133 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_PREALLOC) {
1134 ret = -EINVAL;
1135 btrfs_abort_transaction(trans, ret);
1136 goto out;
1137 }
d899e052 1138 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
9c8e63db
JB
1139 if (key.offset > start || extent_end < end) {
1140 ret = -EINVAL;
1141 btrfs_abort_transaction(trans, ret);
1142 goto out;
1143 }
d899e052
YZ
1144
1145 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1146 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
5d4f98a2 1147 orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
6c7d54ac
YZ
1148 memcpy(&new_key, &key, sizeof(new_key));
1149
1150 if (start == key.offset && end < extent_end) {
1151 other_start = 0;
1152 other_end = start;
1153 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1154 ino, bytenr, orig_offset,
6c7d54ac
YZ
1155 &other_start, &other_end)) {
1156 new_key.offset = end;
0b246afa 1157 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1158 fi = btrfs_item_ptr(leaf, path->slots[0],
1159 struct btrfs_file_extent_item);
224ecce5
JB
1160 btrfs_set_file_extent_generation(leaf, fi,
1161 trans->transid);
6c7d54ac
YZ
1162 btrfs_set_file_extent_num_bytes(leaf, fi,
1163 extent_end - end);
1164 btrfs_set_file_extent_offset(leaf, fi,
1165 end - orig_offset);
1166 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
1167 struct btrfs_file_extent_item);
224ecce5
JB
1168 btrfs_set_file_extent_generation(leaf, fi,
1169 trans->transid);
6c7d54ac
YZ
1170 btrfs_set_file_extent_num_bytes(leaf, fi,
1171 end - other_start);
1172 btrfs_mark_buffer_dirty(leaf);
1173 goto out;
1174 }
1175 }
1176
1177 if (start > key.offset && end == extent_end) {
1178 other_start = end;
1179 other_end = 0;
1180 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1181 ino, bytenr, orig_offset,
6c7d54ac
YZ
1182 &other_start, &other_end)) {
1183 fi = btrfs_item_ptr(leaf, path->slots[0],
1184 struct btrfs_file_extent_item);
1185 btrfs_set_file_extent_num_bytes(leaf, fi,
1186 start - key.offset);
224ecce5
JB
1187 btrfs_set_file_extent_generation(leaf, fi,
1188 trans->transid);
6c7d54ac
YZ
1189 path->slots[0]++;
1190 new_key.offset = start;
0b246afa 1191 btrfs_set_item_key_safe(fs_info, path, &new_key);
6c7d54ac
YZ
1192
1193 fi = btrfs_item_ptr(leaf, path->slots[0],
1194 struct btrfs_file_extent_item);
224ecce5
JB
1195 btrfs_set_file_extent_generation(leaf, fi,
1196 trans->transid);
6c7d54ac
YZ
1197 btrfs_set_file_extent_num_bytes(leaf, fi,
1198 other_end - start);
1199 btrfs_set_file_extent_offset(leaf, fi,
1200 start - orig_offset);
1201 btrfs_mark_buffer_dirty(leaf);
1202 goto out;
1203 }
1204 }
d899e052 1205
920bbbfb
YZ
1206 while (start > key.offset || end < extent_end) {
1207 if (key.offset == start)
1208 split = end;
1209
920bbbfb
YZ
1210 new_key.offset = split;
1211 ret = btrfs_duplicate_item(trans, root, path, &new_key);
1212 if (ret == -EAGAIN) {
b3b4aa74 1213 btrfs_release_path(path);
920bbbfb 1214 goto again;
d899e052 1215 }
79787eaa 1216 if (ret < 0) {
66642832 1217 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1218 goto out;
1219 }
d899e052 1220
920bbbfb
YZ
1221 leaf = path->nodes[0];
1222 fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
d899e052 1223 struct btrfs_file_extent_item);
224ecce5 1224 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
d899e052 1225 btrfs_set_file_extent_num_bytes(leaf, fi,
920bbbfb
YZ
1226 split - key.offset);
1227
1228 fi = btrfs_item_ptr(leaf, path->slots[0],
1229 struct btrfs_file_extent_item);
1230
224ecce5 1231 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb
YZ
1232 btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
1233 btrfs_set_file_extent_num_bytes(leaf, fi,
1234 extent_end - split);
d899e052
YZ
1235 btrfs_mark_buffer_dirty(leaf);
1236
84f7d8e6 1237 ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes,
2ff7e61e 1238 0, root->root_key.objectid,
b06c4bf5 1239 ino, orig_offset);
9c8e63db
JB
1240 if (ret) {
1241 btrfs_abort_transaction(trans, ret);
1242 goto out;
1243 }
d899e052 1244
920bbbfb
YZ
1245 if (split == start) {
1246 key.offset = start;
1247 } else {
9c8e63db
JB
1248 if (start != key.offset) {
1249 ret = -EINVAL;
1250 btrfs_abort_transaction(trans, ret);
1251 goto out;
1252 }
d899e052 1253 path->slots[0]--;
920bbbfb 1254 extent_end = end;
d899e052 1255 }
6c7d54ac 1256 recow = 1;
d899e052
YZ
1257 }
1258
920bbbfb
YZ
1259 other_start = end;
1260 other_end = 0;
6c7d54ac 1261 if (extent_mergeable(leaf, path->slots[0] + 1,
33345d01 1262 ino, bytenr, orig_offset,
6c7d54ac
YZ
1263 &other_start, &other_end)) {
1264 if (recow) {
b3b4aa74 1265 btrfs_release_path(path);
6c7d54ac
YZ
1266 goto again;
1267 }
920bbbfb
YZ
1268 extent_end = other_end;
1269 del_slot = path->slots[0] + 1;
1270 del_nr++;
84f7d8e6 1271 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1272 0, root->root_key.objectid,
b06c4bf5 1273 ino, orig_offset);
9c8e63db
JB
1274 if (ret) {
1275 btrfs_abort_transaction(trans, ret);
1276 goto out;
1277 }
d899e052 1278 }
920bbbfb
YZ
1279 other_start = 0;
1280 other_end = start;
6c7d54ac 1281 if (extent_mergeable(leaf, path->slots[0] - 1,
33345d01 1282 ino, bytenr, orig_offset,
6c7d54ac
YZ
1283 &other_start, &other_end)) {
1284 if (recow) {
b3b4aa74 1285 btrfs_release_path(path);
6c7d54ac
YZ
1286 goto again;
1287 }
920bbbfb
YZ
1288 key.offset = other_start;
1289 del_slot = path->slots[0];
1290 del_nr++;
84f7d8e6 1291 ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
920bbbfb 1292 0, root->root_key.objectid,
b06c4bf5 1293 ino, orig_offset);
9c8e63db
JB
1294 if (ret) {
1295 btrfs_abort_transaction(trans, ret);
1296 goto out;
1297 }
920bbbfb
YZ
1298 }
1299 if (del_nr == 0) {
3f6fae95
SL
1300 fi = btrfs_item_ptr(leaf, path->slots[0],
1301 struct btrfs_file_extent_item);
920bbbfb
YZ
1302 btrfs_set_file_extent_type(leaf, fi,
1303 BTRFS_FILE_EXTENT_REG);
224ecce5 1304 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
920bbbfb 1305 btrfs_mark_buffer_dirty(leaf);
6c7d54ac 1306 } else {
3f6fae95
SL
1307 fi = btrfs_item_ptr(leaf, del_slot - 1,
1308 struct btrfs_file_extent_item);
6c7d54ac
YZ
1309 btrfs_set_file_extent_type(leaf, fi,
1310 BTRFS_FILE_EXTENT_REG);
224ecce5 1311 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
6c7d54ac
YZ
1312 btrfs_set_file_extent_num_bytes(leaf, fi,
1313 extent_end - key.offset);
1314 btrfs_mark_buffer_dirty(leaf);
920bbbfb 1315
6c7d54ac 1316 ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
79787eaa 1317 if (ret < 0) {
66642832 1318 btrfs_abort_transaction(trans, ret);
79787eaa
JM
1319 goto out;
1320 }
6c7d54ac 1321 }
920bbbfb 1322out:
d899e052
YZ
1323 btrfs_free_path(path);
1324 return 0;
1325}
1326
b1bf862e
CM
1327/*
1328 * on error we return an unlocked page and the error value
1329 * on success we return a locked page and 0
1330 */
bb1591b4
CM
1331static int prepare_uptodate_page(struct inode *inode,
1332 struct page *page, u64 pos,
b6316429 1333 bool force_uptodate)
b1bf862e
CM
1334{
1335 int ret = 0;
1336
09cbfeaf 1337 if (((pos & (PAGE_SIZE - 1)) || force_uptodate) &&
b6316429 1338 !PageUptodate(page)) {
b1bf862e
CM
1339 ret = btrfs_readpage(NULL, page);
1340 if (ret)
1341 return ret;
1342 lock_page(page);
1343 if (!PageUptodate(page)) {
1344 unlock_page(page);
1345 return -EIO;
1346 }
bb1591b4
CM
1347 if (page->mapping != inode->i_mapping) {
1348 unlock_page(page);
1349 return -EAGAIN;
1350 }
b1bf862e
CM
1351 }
1352 return 0;
1353}
1354
39279cc3 1355/*
376cc685 1356 * this just gets pages into the page cache and locks them down.
39279cc3 1357 */
b37392ea
MX
1358static noinline int prepare_pages(struct inode *inode, struct page **pages,
1359 size_t num_pages, loff_t pos,
1360 size_t write_bytes, bool force_uptodate)
39279cc3
CM
1361{
1362 int i;
09cbfeaf 1363 unsigned long index = pos >> PAGE_SHIFT;
3b16a4e3 1364 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
fc28b62d 1365 int err = 0;
376cc685 1366 int faili;
8c2383c3 1367
39279cc3 1368 for (i = 0; i < num_pages; i++) {
bb1591b4 1369again:
a94733d0 1370 pages[i] = find_or_create_page(inode->i_mapping, index + i,
e3a41a5b 1371 mask | __GFP_WRITE);
39279cc3 1372 if (!pages[i]) {
b1bf862e
CM
1373 faili = i - 1;
1374 err = -ENOMEM;
1375 goto fail;
1376 }
1377
1378 if (i == 0)
bb1591b4 1379 err = prepare_uptodate_page(inode, pages[i], pos,
b6316429 1380 force_uptodate);
bb1591b4
CM
1381 if (!err && i == num_pages - 1)
1382 err = prepare_uptodate_page(inode, pages[i],
b6316429 1383 pos + write_bytes, false);
b1bf862e 1384 if (err) {
09cbfeaf 1385 put_page(pages[i]);
bb1591b4
CM
1386 if (err == -EAGAIN) {
1387 err = 0;
1388 goto again;
1389 }
b1bf862e
CM
1390 faili = i - 1;
1391 goto fail;
39279cc3 1392 }
ccd467d6 1393 wait_on_page_writeback(pages[i]);
39279cc3 1394 }
376cc685
MX
1395
1396 return 0;
1397fail:
1398 while (faili >= 0) {
1399 unlock_page(pages[faili]);
09cbfeaf 1400 put_page(pages[faili]);
376cc685
MX
1401 faili--;
1402 }
1403 return err;
1404
1405}
1406
a7e3b975
FM
1407static int btrfs_find_new_delalloc_bytes(struct btrfs_inode *inode,
1408 const u64 start,
1409 const u64 len,
1410 struct extent_state **cached_state)
1411{
1412 u64 search_start = start;
1413 const u64 end = start + len - 1;
1414
1415 while (search_start < end) {
1416 const u64 search_len = end - search_start + 1;
1417 struct extent_map *em;
1418 u64 em_len;
1419 int ret = 0;
1420
1421 em = btrfs_get_extent(inode, NULL, 0, search_start,
1422 search_len, 0);
1423 if (IS_ERR(em))
1424 return PTR_ERR(em);
1425
1426 if (em->block_start != EXTENT_MAP_HOLE)
1427 goto next;
1428
1429 em_len = em->len;
1430 if (em->start < search_start)
1431 em_len -= search_start - em->start;
1432 if (em_len > search_len)
1433 em_len = search_len;
1434
1435 ret = set_extent_bit(&inode->io_tree, search_start,
1436 search_start + em_len - 1,
1437 EXTENT_DELALLOC_NEW,
1438 NULL, cached_state, GFP_NOFS);
1439next:
1440 search_start = extent_map_end(em);
1441 free_extent_map(em);
1442 if (ret)
1443 return ret;
1444 }
1445 return 0;
1446}
1447
376cc685
MX
1448/*
1449 * This function locks the extent and properly waits for data=ordered extents
1450 * to finish before allowing the pages to be modified if need.
1451 *
1452 * The return value:
1453 * 1 - the extent is locked
1454 * 0 - the extent is not locked, and everything is OK
1455 * -EAGAIN - need re-prepare the pages
1456 * the other < 0 number - Something wrong happens
1457 */
1458static noinline int
2cff578c 1459lock_and_cleanup_extent_if_need(struct btrfs_inode *inode, struct page **pages,
376cc685 1460 size_t num_pages, loff_t pos,
2e78c927 1461 size_t write_bytes,
376cc685
MX
1462 u64 *lockstart, u64 *lockend,
1463 struct extent_state **cached_state)
1464{
2cff578c 1465 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
376cc685
MX
1466 u64 start_pos;
1467 u64 last_pos;
1468 int i;
1469 int ret = 0;
1470
0b246afa 1471 start_pos = round_down(pos, fs_info->sectorsize);
2e78c927 1472 last_pos = start_pos
da17066c 1473 + round_up(pos + write_bytes - start_pos,
0b246afa 1474 fs_info->sectorsize) - 1;
376cc685 1475
a7e3b975
FM
1476 if (start_pos < inode->vfs_inode.i_size ||
1477 (inode->flags & BTRFS_INODE_PREALLOC)) {
e6dcd2dc 1478 struct btrfs_ordered_extent *ordered;
a7e3b975
FM
1479 unsigned int clear_bits;
1480
2cff578c
NB
1481 lock_extent_bits(&inode->io_tree, start_pos, last_pos,
1482 cached_state);
b88935bf
MX
1483 ordered = btrfs_lookup_ordered_range(inode, start_pos,
1484 last_pos - start_pos + 1);
e6dcd2dc
CM
1485 if (ordered &&
1486 ordered->file_offset + ordered->len > start_pos &&
376cc685 1487 ordered->file_offset <= last_pos) {
2cff578c
NB
1488 unlock_extent_cached(&inode->io_tree, start_pos,
1489 last_pos, cached_state, GFP_NOFS);
e6dcd2dc
CM
1490 for (i = 0; i < num_pages; i++) {
1491 unlock_page(pages[i]);
09cbfeaf 1492 put_page(pages[i]);
e6dcd2dc 1493 }
2cff578c
NB
1494 btrfs_start_ordered_extent(&inode->vfs_inode,
1495 ordered, 1);
b88935bf
MX
1496 btrfs_put_ordered_extent(ordered);
1497 return -EAGAIN;
e6dcd2dc
CM
1498 }
1499 if (ordered)
1500 btrfs_put_ordered_extent(ordered);
a7e3b975
FM
1501 ret = btrfs_find_new_delalloc_bytes(inode, start_pos,
1502 last_pos - start_pos + 1,
1503 cached_state);
1504 clear_bits = EXTENT_DIRTY | EXTENT_DELALLOC |
1505 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG;
1506 if (ret)
1507 clear_bits |= EXTENT_DELALLOC_NEW | EXTENT_LOCKED;
2cff578c 1508 clear_extent_bit(&inode->io_tree, start_pos,
a7e3b975
FM
1509 last_pos, clear_bits,
1510 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
1511 0, cached_state, GFP_NOFS);
1512 if (ret)
1513 return ret;
376cc685
MX
1514 *lockstart = start_pos;
1515 *lockend = last_pos;
1516 ret = 1;
0762704b 1517 }
376cc685 1518
e6dcd2dc 1519 for (i = 0; i < num_pages; i++) {
32c7f202
WF
1520 if (clear_page_dirty_for_io(pages[i]))
1521 account_page_redirty(pages[i]);
e6dcd2dc
CM
1522 set_page_extent_mapped(pages[i]);
1523 WARN_ON(!PageLocked(pages[i]));
1524 }
b1bf862e 1525
376cc685 1526 return ret;
39279cc3
CM
1527}
1528
85b7ab67 1529static noinline int check_can_nocow(struct btrfs_inode *inode, loff_t pos,
7ee9e440
JB
1530 size_t *write_bytes)
1531{
85b7ab67
NB
1532 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
1533 struct btrfs_root *root = inode->root;
7ee9e440
JB
1534 struct btrfs_ordered_extent *ordered;
1535 u64 lockstart, lockend;
1536 u64 num_bytes;
1537 int ret;
1538
ea14b57f 1539 ret = btrfs_start_write_no_snapshotting(root);
8257b2dc
MX
1540 if (!ret)
1541 return -ENOSPC;
1542
0b246afa 1543 lockstart = round_down(pos, fs_info->sectorsize);
da17066c 1544 lockend = round_up(pos + *write_bytes,
0b246afa 1545 fs_info->sectorsize) - 1;
7ee9e440
JB
1546
1547 while (1) {
85b7ab67 1548 lock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1549 ordered = btrfs_lookup_ordered_range(inode, lockstart,
1550 lockend - lockstart + 1);
1551 if (!ordered) {
1552 break;
1553 }
85b7ab67
NB
1554 unlock_extent(&inode->io_tree, lockstart, lockend);
1555 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
7ee9e440
JB
1556 btrfs_put_ordered_extent(ordered);
1557 }
1558
7ee9e440 1559 num_bytes = lockend - lockstart + 1;
85b7ab67
NB
1560 ret = can_nocow_extent(&inode->vfs_inode, lockstart, &num_bytes,
1561 NULL, NULL, NULL);
7ee9e440
JB
1562 if (ret <= 0) {
1563 ret = 0;
ea14b57f 1564 btrfs_end_write_no_snapshotting(root);
7ee9e440 1565 } else {
c933956d
MX
1566 *write_bytes = min_t(size_t, *write_bytes ,
1567 num_bytes - pos + lockstart);
7ee9e440
JB
1568 }
1569
85b7ab67 1570 unlock_extent(&inode->io_tree, lockstart, lockend);
7ee9e440
JB
1571
1572 return ret;
1573}
1574
d0215f3e
JB
1575static noinline ssize_t __btrfs_buffered_write(struct file *file,
1576 struct iov_iter *i,
1577 loff_t pos)
4b46fce2 1578{
496ad9aa 1579 struct inode *inode = file_inode(file);
0b246afa 1580 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
11c65dcc 1581 struct btrfs_root *root = BTRFS_I(inode)->root;
11c65dcc 1582 struct page **pages = NULL;
376cc685 1583 struct extent_state *cached_state = NULL;
364ecf36 1584 struct extent_changeset *data_reserved = NULL;
7ee9e440 1585 u64 release_bytes = 0;
376cc685
MX
1586 u64 lockstart;
1587 u64 lockend;
d0215f3e
JB
1588 size_t num_written = 0;
1589 int nrptrs;
c9149235 1590 int ret = 0;
7ee9e440 1591 bool only_release_metadata = false;
b6316429 1592 bool force_page_uptodate = false;
4b46fce2 1593
09cbfeaf
KS
1594 nrptrs = min(DIV_ROUND_UP(iov_iter_count(i), PAGE_SIZE),
1595 PAGE_SIZE / (sizeof(struct page *)));
142349f5
WF
1596 nrptrs = min(nrptrs, current->nr_dirtied_pause - current->nr_dirtied);
1597 nrptrs = max(nrptrs, 8);
31e818fe 1598 pages = kmalloc_array(nrptrs, sizeof(struct page *), GFP_KERNEL);
d0215f3e
JB
1599 if (!pages)
1600 return -ENOMEM;
ab93dbec 1601
d0215f3e 1602 while (iov_iter_count(i) > 0) {
09cbfeaf 1603 size_t offset = pos & (PAGE_SIZE - 1);
2e78c927 1604 size_t sector_offset;
d0215f3e 1605 size_t write_bytes = min(iov_iter_count(i),
09cbfeaf 1606 nrptrs * (size_t)PAGE_SIZE -
8c2383c3 1607 offset);
ed6078f7 1608 size_t num_pages = DIV_ROUND_UP(write_bytes + offset,
09cbfeaf 1609 PAGE_SIZE);
7ee9e440 1610 size_t reserve_bytes;
d0215f3e
JB
1611 size_t dirty_pages;
1612 size_t copied;
2e78c927
CR
1613 size_t dirty_sectors;
1614 size_t num_sectors;
79f015f2 1615 int extents_locked;
39279cc3 1616
8c2383c3 1617 WARN_ON(num_pages > nrptrs);
1832a6d5 1618
914ee295
XZ
1619 /*
1620 * Fault pages before locking them in prepare_pages
1621 * to avoid recursive lock
1622 */
d0215f3e 1623 if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
914ee295 1624 ret = -EFAULT;
d0215f3e 1625 break;
914ee295
XZ
1626 }
1627
da17066c 1628 sector_offset = pos & (fs_info->sectorsize - 1);
2e78c927 1629 reserve_bytes = round_up(write_bytes + sector_offset,
da17066c 1630 fs_info->sectorsize);
d9d8b2a5 1631
364ecf36
QW
1632 extent_changeset_release(data_reserved);
1633 ret = btrfs_check_data_free_space(inode, &data_reserved, pos,
1634 write_bytes);
c6887cd1
JB
1635 if (ret < 0) {
1636 if ((BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1637 BTRFS_INODE_PREALLOC)) &&
85b7ab67
NB
1638 check_can_nocow(BTRFS_I(inode), pos,
1639 &write_bytes) > 0) {
c6887cd1
JB
1640 /*
1641 * For nodata cow case, no need to reserve
1642 * data space.
1643 */
1644 only_release_metadata = true;
1645 /*
1646 * our prealloc extent may be smaller than
1647 * write_bytes, so scale down.
1648 */
1649 num_pages = DIV_ROUND_UP(write_bytes + offset,
1650 PAGE_SIZE);
1651 reserve_bytes = round_up(write_bytes +
1652 sector_offset,
da17066c 1653 fs_info->sectorsize);
c6887cd1
JB
1654 } else {
1655 break;
1656 }
1657 }
1832a6d5 1658
9f3db423
NB
1659 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
1660 reserve_bytes);
7ee9e440
JB
1661 if (ret) {
1662 if (!only_release_metadata)
bc42bda2
QW
1663 btrfs_free_reserved_data_space(inode,
1664 data_reserved, pos,
1665 write_bytes);
8257b2dc 1666 else
ea14b57f 1667 btrfs_end_write_no_snapshotting(root);
7ee9e440
JB
1668 break;
1669 }
1670
1671 release_bytes = reserve_bytes;
376cc685 1672again:
4a64001f
JB
1673 /*
1674 * This is going to setup the pages array with the number of
1675 * pages we want, so we don't really need to worry about the
1676 * contents of pages from loop to loop
1677 */
b37392ea
MX
1678 ret = prepare_pages(inode, pages, num_pages,
1679 pos, write_bytes,
b6316429 1680 force_page_uptodate);
7ee9e440 1681 if (ret)
d0215f3e 1682 break;
39279cc3 1683
79f015f2
GR
1684 extents_locked = lock_and_cleanup_extent_if_need(
1685 BTRFS_I(inode), pages,
2cff578c
NB
1686 num_pages, pos, write_bytes, &lockstart,
1687 &lockend, &cached_state);
79f015f2
GR
1688 if (extents_locked < 0) {
1689 if (extents_locked == -EAGAIN)
376cc685 1690 goto again;
79f015f2 1691 ret = extents_locked;
376cc685 1692 break;
376cc685
MX
1693 }
1694
ee22f0c4 1695 copied = btrfs_copy_from_user(pos, write_bytes, pages, i);
b1bf862e 1696
0b246afa 1697 num_sectors = BTRFS_BYTES_TO_BLKS(fs_info, reserve_bytes);
56244ef1 1698 dirty_sectors = round_up(copied + sector_offset,
0b246afa
JM
1699 fs_info->sectorsize);
1700 dirty_sectors = BTRFS_BYTES_TO_BLKS(fs_info, dirty_sectors);
56244ef1 1701
b1bf862e
CM
1702 /*
1703 * if we have trouble faulting in the pages, fall
1704 * back to one page at a time
1705 */
1706 if (copied < write_bytes)
1707 nrptrs = 1;
1708
b6316429
JB
1709 if (copied == 0) {
1710 force_page_uptodate = true;
56244ef1 1711 dirty_sectors = 0;
b1bf862e 1712 dirty_pages = 0;
b6316429
JB
1713 } else {
1714 force_page_uptodate = false;
ed6078f7 1715 dirty_pages = DIV_ROUND_UP(copied + offset,
09cbfeaf 1716 PAGE_SIZE);
b6316429 1717 }
914ee295 1718
d0215f3e
JB
1719 /*
1720 * If we had a short copy we need to release the excess delaloc
1721 * bytes we reserved. We need to increment outstanding_extents
56244ef1
CM
1722 * because btrfs_delalloc_release_space and
1723 * btrfs_delalloc_release_metadata will decrement it, but
d0215f3e
JB
1724 * we still have an outstanding extent for the chunk we actually
1725 * managed to copy.
1726 */
2e78c927 1727 if (num_sectors > dirty_sectors) {
8b8b08cb
CM
1728 /* release everything except the sectors we dirtied */
1729 release_bytes -= dirty_sectors <<
0b246afa 1730 fs_info->sb->s_blocksize_bits;
9e0baf60
JB
1731 if (copied > 0) {
1732 spin_lock(&BTRFS_I(inode)->lock);
1733 BTRFS_I(inode)->outstanding_extents++;
1734 spin_unlock(&BTRFS_I(inode)->lock);
1735 }
485290a7 1736 if (only_release_metadata) {
691fa059 1737 btrfs_delalloc_release_metadata(BTRFS_I(inode),
7ee9e440 1738 release_bytes);
485290a7
QW
1739 } else {
1740 u64 __pos;
1741
da17066c 1742 __pos = round_down(pos,
0b246afa 1743 fs_info->sectorsize) +
09cbfeaf 1744 (dirty_pages << PAGE_SHIFT);
bc42bda2
QW
1745 btrfs_delalloc_release_space(inode,
1746 data_reserved, __pos,
1747 release_bytes);
485290a7 1748 }
914ee295
XZ
1749 }
1750
2e78c927 1751 release_bytes = round_up(copied + sector_offset,
0b246afa 1752 fs_info->sectorsize);
376cc685
MX
1753
1754 if (copied > 0)
2ff7e61e
JM
1755 ret = btrfs_dirty_pages(inode, pages, dirty_pages,
1756 pos, copied, NULL);
79f015f2 1757 if (extents_locked)
376cc685
MX
1758 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1759 lockstart, lockend, &cached_state,
1760 GFP_NOFS);
f1de9683
MX
1761 if (ret) {
1762 btrfs_drop_pages(pages, num_pages);
376cc685 1763 break;
f1de9683 1764 }
39279cc3 1765
376cc685 1766 release_bytes = 0;
8257b2dc 1767 if (only_release_metadata)
ea14b57f 1768 btrfs_end_write_no_snapshotting(root);
8257b2dc 1769
7ee9e440 1770 if (only_release_metadata && copied > 0) {
da17066c 1771 lockstart = round_down(pos,
0b246afa 1772 fs_info->sectorsize);
da17066c 1773 lockend = round_up(pos + copied,
0b246afa 1774 fs_info->sectorsize) - 1;
7ee9e440
JB
1775
1776 set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
1777 lockend, EXTENT_NORESERVE, NULL,
1778 NULL, GFP_NOFS);
1779 only_release_metadata = false;
1780 }
1781
f1de9683
MX
1782 btrfs_drop_pages(pages, num_pages);
1783
d0215f3e
JB
1784 cond_resched();
1785
d0e1d66b 1786 balance_dirty_pages_ratelimited(inode->i_mapping);
0b246afa 1787 if (dirty_pages < (fs_info->nodesize >> PAGE_SHIFT) + 1)
2ff7e61e 1788 btrfs_btree_balance_dirty(fs_info);
cb843a6f 1789
914ee295
XZ
1790 pos += copied;
1791 num_written += copied;
d0215f3e 1792 }
39279cc3 1793
d0215f3e
JB
1794 kfree(pages);
1795
7ee9e440 1796 if (release_bytes) {
8257b2dc 1797 if (only_release_metadata) {
ea14b57f 1798 btrfs_end_write_no_snapshotting(root);
691fa059
NB
1799 btrfs_delalloc_release_metadata(BTRFS_I(inode),
1800 release_bytes);
8257b2dc 1801 } else {
bc42bda2
QW
1802 btrfs_delalloc_release_space(inode, data_reserved,
1803 round_down(pos, fs_info->sectorsize),
1804 release_bytes);
8257b2dc 1805 }
7ee9e440
JB
1806 }
1807
364ecf36 1808 extent_changeset_free(data_reserved);
d0215f3e
JB
1809 return num_written ? num_written : ret;
1810}
1811
1af5bb49 1812static ssize_t __btrfs_direct_write(struct kiocb *iocb, struct iov_iter *from)
d0215f3e
JB
1813{
1814 struct file *file = iocb->ki_filp;
728404da 1815 struct inode *inode = file_inode(file);
1af5bb49 1816 loff_t pos = iocb->ki_pos;
d0215f3e
JB
1817 ssize_t written;
1818 ssize_t written_buffered;
1819 loff_t endbyte;
1820 int err;
1821
1af5bb49 1822 written = generic_file_direct_write(iocb, from);
d0215f3e 1823
0c949334 1824 if (written < 0 || !iov_iter_count(from))
d0215f3e
JB
1825 return written;
1826
1827 pos += written;
0ae5e4d3 1828 written_buffered = __btrfs_buffered_write(file, from, pos);
d0215f3e
JB
1829 if (written_buffered < 0) {
1830 err = written_buffered;
1831 goto out;
39279cc3 1832 }
075bdbdb
FM
1833 /*
1834 * Ensure all data is persisted. We want the next direct IO read to be
1835 * able to read what was just written.
1836 */
d0215f3e 1837 endbyte = pos + written_buffered - 1;
728404da 1838 err = btrfs_fdatawrite_range(inode, pos, endbyte);
075bdbdb
FM
1839 if (err)
1840 goto out;
728404da 1841 err = filemap_fdatawait_range(inode->i_mapping, pos, endbyte);
d0215f3e
JB
1842 if (err)
1843 goto out;
1844 written += written_buffered;
867c4f93 1845 iocb->ki_pos = pos + written_buffered;
09cbfeaf
KS
1846 invalidate_mapping_pages(file->f_mapping, pos >> PAGE_SHIFT,
1847 endbyte >> PAGE_SHIFT);
39279cc3 1848out:
d0215f3e
JB
1849 return written ? written : err;
1850}
5b92ee72 1851
6c760c07
JB
1852static void update_time_for_write(struct inode *inode)
1853{
1854 struct timespec now;
1855
1856 if (IS_NOCMTIME(inode))
1857 return;
1858
c2050a45 1859 now = current_time(inode);
6c760c07
JB
1860 if (!timespec_equal(&inode->i_mtime, &now))
1861 inode->i_mtime = now;
1862
1863 if (!timespec_equal(&inode->i_ctime, &now))
1864 inode->i_ctime = now;
1865
1866 if (IS_I_VERSION(inode))
1867 inode_inc_iversion(inode);
1868}
1869
b30ac0fc
AV
1870static ssize_t btrfs_file_write_iter(struct kiocb *iocb,
1871 struct iov_iter *from)
d0215f3e
JB
1872{
1873 struct file *file = iocb->ki_filp;
496ad9aa 1874 struct inode *inode = file_inode(file);
0b246afa 1875 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d0215f3e 1876 struct btrfs_root *root = BTRFS_I(inode)->root;
0c1a98c8 1877 u64 start_pos;
3ac0d7b9 1878 u64 end_pos;
d0215f3e 1879 ssize_t num_written = 0;
b812ce28 1880 bool sync = (file->f_flags & O_DSYNC) || IS_SYNC(file->f_mapping->host);
3309dd04 1881 ssize_t err;
ff0fa732 1882 loff_t pos;
edf064e7 1883 size_t count = iov_iter_count(from);
27772b68
CR
1884 loff_t oldsize;
1885 int clean_page = 0;
d0215f3e 1886
91f9943e
CH
1887 if (!(iocb->ki_flags & IOCB_DIRECT) &&
1888 (iocb->ki_flags & IOCB_NOWAIT))
1889 return -EOPNOTSUPP;
1890
ff0fa732
GR
1891 if (!inode_trylock(inode)) {
1892 if (iocb->ki_flags & IOCB_NOWAIT)
edf064e7 1893 return -EAGAIN;
ff0fa732
GR
1894 inode_lock(inode);
1895 }
1896
1897 err = generic_write_checks(iocb, from);
1898 if (err <= 0) {
1899 inode_unlock(inode);
1900 return err;
1901 }
1902
1903 pos = iocb->ki_pos;
1904 if (iocb->ki_flags & IOCB_NOWAIT) {
edf064e7
GR
1905 /*
1906 * We will allocate space in case nodatacow is not set,
1907 * so bail
1908 */
1909 if (!(BTRFS_I(inode)->flags & (BTRFS_INODE_NODATACOW |
1910 BTRFS_INODE_PREALLOC)) ||
1911 check_can_nocow(BTRFS_I(inode), pos, &count) <= 0) {
1912 inode_unlock(inode);
1913 return -EAGAIN;
1914 }
d0215f3e
JB
1915 }
1916
3309dd04 1917 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 1918 err = file_remove_privs(file);
d0215f3e 1919 if (err) {
5955102c 1920 inode_unlock(inode);
d0215f3e
JB
1921 goto out;
1922 }
1923
1924 /*
1925 * If BTRFS flips readonly due to some impossible error
1926 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1927 * although we have opened a file as writable, we have
1928 * to stop this write operation to ensure FS consistency.
1929 */
0b246afa 1930 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
5955102c 1931 inode_unlock(inode);
d0215f3e
JB
1932 err = -EROFS;
1933 goto out;
1934 }
1935
6c760c07
JB
1936 /*
1937 * We reserve space for updating the inode when we reserve space for the
1938 * extent we are going to write, so we will enospc out there. We don't
1939 * need to start yet another transaction to update the inode as we will
1940 * update the inode when we finish writing whatever data we write.
1941 */
1942 update_time_for_write(inode);
d0215f3e 1943
0b246afa 1944 start_pos = round_down(pos, fs_info->sectorsize);
27772b68
CR
1945 oldsize = i_size_read(inode);
1946 if (start_pos > oldsize) {
3ac0d7b9 1947 /* Expand hole size to cover write data, preventing empty gap */
da17066c 1948 end_pos = round_up(pos + count,
0b246afa 1949 fs_info->sectorsize);
27772b68 1950 err = btrfs_cont_expand(inode, oldsize, end_pos);
0c1a98c8 1951 if (err) {
5955102c 1952 inode_unlock(inode);
0c1a98c8
MX
1953 goto out;
1954 }
0b246afa 1955 if (start_pos > round_up(oldsize, fs_info->sectorsize))
27772b68 1956 clean_page = 1;
0c1a98c8
MX
1957 }
1958
b812ce28
JB
1959 if (sync)
1960 atomic_inc(&BTRFS_I(inode)->sync_writers);
1961
2ba48ce5 1962 if (iocb->ki_flags & IOCB_DIRECT) {
1af5bb49 1963 num_written = __btrfs_direct_write(iocb, from);
d0215f3e 1964 } else {
b30ac0fc 1965 num_written = __btrfs_buffered_write(file, from, pos);
d0215f3e 1966 if (num_written > 0)
867c4f93 1967 iocb->ki_pos = pos + num_written;
27772b68
CR
1968 if (clean_page)
1969 pagecache_isize_extended(inode, oldsize,
1970 i_size_read(inode));
d0215f3e
JB
1971 }
1972
5955102c 1973 inode_unlock(inode);
2ff3e9b6 1974
5a3f23d5 1975 /*
6c760c07
JB
1976 * We also have to set last_sub_trans to the current log transid,
1977 * otherwise subsequent syncs to a file that's been synced in this
bb7ab3b9 1978 * transaction will appear to have already occurred.
5a3f23d5 1979 */
2f2ff0ee 1980 spin_lock(&BTRFS_I(inode)->lock);
6c760c07 1981 BTRFS_I(inode)->last_sub_trans = root->log_transid;
2f2ff0ee 1982 spin_unlock(&BTRFS_I(inode)->lock);
e2592217
CH
1983 if (num_written > 0)
1984 num_written = generic_write_sync(iocb, num_written);
0a3404dc 1985
b812ce28
JB
1986 if (sync)
1987 atomic_dec(&BTRFS_I(inode)->sync_writers);
0a3404dc 1988out:
39279cc3 1989 current->backing_dev_info = NULL;
39279cc3
CM
1990 return num_written ? num_written : err;
1991}
1992
d397712b 1993int btrfs_release_file(struct inode *inode, struct file *filp)
e1b81e67 1994{
23b5ec74
JB
1995 struct btrfs_file_private *private = filp->private_data;
1996
1997 if (private && private->trans)
6bf13c0c 1998 btrfs_ioctl_trans_end(filp);
23b5ec74
JB
1999 if (private && private->filldir_buf)
2000 kfree(private->filldir_buf);
2001 kfree(private);
2002 filp->private_data = NULL;
2003
f6dc45c7
CM
2004 /*
2005 * ordered_data_close is set by settattr when we are about to truncate
2006 * a file from a non-zero size to a zero size. This tries to
2007 * flush down new bytes that may have been written if the
2008 * application were using truncate to replace a file in place.
2009 */
2010 if (test_and_clear_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
2011 &BTRFS_I(inode)->runtime_flags))
2012 filemap_flush(inode->i_mapping);
e1b81e67
M
2013 return 0;
2014}
2015
669249ee
FM
2016static int start_ordered_ops(struct inode *inode, loff_t start, loff_t end)
2017{
2018 int ret;
2019
2020 atomic_inc(&BTRFS_I(inode)->sync_writers);
728404da 2021 ret = btrfs_fdatawrite_range(inode, start, end);
669249ee
FM
2022 atomic_dec(&BTRFS_I(inode)->sync_writers);
2023
2024 return ret;
2025}
2026
d352ac68
CM
2027/*
2028 * fsync call for both files and directories. This logs the inode into
2029 * the tree log instead of forcing full commits whenever possible.
2030 *
2031 * It needs to call filemap_fdatawait so that all ordered extent updates are
2032 * in the metadata btree are up to date for copying to the log.
2033 *
2034 * It drops the inode mutex before doing the tree log commit. This is an
2035 * important optimization for directories because holding the mutex prevents
2036 * new operations on the dir while we write to disk.
2037 */
02c24a82 2038int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
39279cc3 2039{
de17e793 2040 struct dentry *dentry = file_dentry(file);
2b0143b5 2041 struct inode *inode = d_inode(dentry);
0b246afa 2042 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 2043 struct btrfs_root *root = BTRFS_I(inode)->root;
39279cc3 2044 struct btrfs_trans_handle *trans;
8b050d35 2045 struct btrfs_log_ctx ctx;
333427a5 2046 int ret = 0, err;
897ca819 2047 bool full_sync = false;
9dcbeed4 2048 u64 len;
39279cc3 2049
9dcbeed4
DS
2050 /*
2051 * The range length can be represented by u64, we have to do the typecasts
2052 * to avoid signed overflow if it's [0, LLONG_MAX] eg. from fsync()
2053 */
2054 len = (u64)end - (u64)start + 1;
1abe9b8a 2055 trace_btrfs_sync_file(file, datasync);
257c62e1 2056
90abccf2
MX
2057 /*
2058 * We write the dirty pages in the range and wait until they complete
2059 * out of the ->i_mutex. If so, we can flush the dirty pages by
2ab28f32
JB
2060 * multi-task, and make the performance up. See
2061 * btrfs_wait_ordered_range for an explanation of the ASYNC check.
90abccf2 2062 */
669249ee 2063 ret = start_ordered_ops(inode, start, end);
90abccf2 2064 if (ret)
333427a5 2065 goto out;
90abccf2 2066
5955102c 2067 inode_lock(inode);
2ecb7923 2068 atomic_inc(&root->log_batch);
2ab28f32
JB
2069 full_sync = test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2070 &BTRFS_I(inode)->runtime_flags);
669249ee
FM
2071 /*
2072 * We might have have had more pages made dirty after calling
2073 * start_ordered_ops and before acquiring the inode's i_mutex.
2074 */
0ef8b726 2075 if (full_sync) {
669249ee
FM
2076 /*
2077 * For a full sync, we need to make sure any ordered operations
2078 * start and finish before we start logging the inode, so that
2079 * all extents are persisted and the respective file extent
2080 * items are in the fs/subvol btree.
2081 */
b659ef02 2082 ret = btrfs_wait_ordered_range(inode, start, len);
669249ee
FM
2083 } else {
2084 /*
2085 * Start any new ordered operations before starting to log the
2086 * inode. We will wait for them to finish in btrfs_sync_log().
2087 *
2088 * Right before acquiring the inode's mutex, we might have new
2089 * writes dirtying pages, which won't immediately start the
2090 * respective ordered operations - that is done through the
2091 * fill_delalloc callbacks invoked from the writepage and
2092 * writepages address space operations. So make sure we start
2093 * all ordered operations before starting to log our inode. Not
2094 * doing this means that while logging the inode, writeback
2095 * could start and invoke writepage/writepages, which would call
2096 * the fill_delalloc callbacks (cow_file_range,
2097 * submit_compressed_extents). These callbacks add first an
2098 * extent map to the modified list of extents and then create
2099 * the respective ordered operation, which means in
2100 * tree-log.c:btrfs_log_inode() we might capture all existing
2101 * ordered operations (with btrfs_get_logged_extents()) before
2102 * the fill_delalloc callback adds its ordered operation, and by
2103 * the time we visit the modified list of extent maps (with
2104 * btrfs_log_changed_extents()), we see and process the extent
2105 * map they created. We then use the extent map to construct a
2106 * file extent item for logging without waiting for the
2107 * respective ordered operation to finish - this file extent
2108 * item points to a disk location that might not have yet been
2109 * written to, containing random data - so after a crash a log
2110 * replay will make our inode have file extent items that point
2111 * to disk locations containing invalid data, as we returned
2112 * success to userspace without waiting for the respective
2113 * ordered operation to finish, because it wasn't captured by
2114 * btrfs_get_logged_extents().
2115 */
2116 ret = start_ordered_ops(inode, start, end);
2117 }
2118 if (ret) {
5955102c 2119 inode_unlock(inode);
669249ee 2120 goto out;
0ef8b726 2121 }
2ecb7923 2122 atomic_inc(&root->log_batch);
257c62e1 2123
39279cc3 2124 /*
3a8b36f3
FM
2125 * If the last transaction that changed this file was before the current
2126 * transaction and we have the full sync flag set in our inode, we can
2127 * bail out now without any syncing.
2128 *
2129 * Note that we can't bail out if the full sync flag isn't set. This is
2130 * because when the full sync flag is set we start all ordered extents
2131 * and wait for them to fully complete - when they complete they update
2132 * the inode's last_trans field through:
2133 *
2134 * btrfs_finish_ordered_io() ->
2135 * btrfs_update_inode_fallback() ->
2136 * btrfs_update_inode() ->
2137 * btrfs_set_inode_last_trans()
2138 *
2139 * So we are sure that last_trans is up to date and can do this check to
2140 * bail out safely. For the fast path, when the full sync flag is not
2141 * set in our inode, we can not do it because we start only our ordered
2142 * extents and don't wait for them to complete (that is when
2143 * btrfs_finish_ordered_io runs), so here at this point their last_trans
2144 * value might be less than or equals to fs_info->last_trans_committed,
2145 * and setting a speculative last_trans for an inode when a buffered
2146 * write is made (such as fs_info->generation + 1 for example) would not
2147 * be reliable since after setting the value and before fsync is called
2148 * any number of transactions can start and commit (transaction kthread
2149 * commits the current transaction periodically), and a transaction
2150 * commit does not start nor waits for ordered extents to complete.
257c62e1 2151 */
a4abeea4 2152 smp_mb();
0f8939b8 2153 if (btrfs_inode_in_log(BTRFS_I(inode), fs_info->generation) ||
affc0ff9 2154 (full_sync && BTRFS_I(inode)->last_trans <=
0b246afa 2155 fs_info->last_trans_committed) ||
affc0ff9
FM
2156 (!btrfs_have_ordered_extents_in_range(inode, start, len) &&
2157 BTRFS_I(inode)->last_trans
0b246afa 2158 <= fs_info->last_trans_committed)) {
5dc562c5 2159 /*
01327610 2160 * We've had everything committed since the last time we were
5dc562c5
JB
2161 * modified so clear this flag in case it was set for whatever
2162 * reason, it's no longer relevant.
2163 */
2164 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
2165 &BTRFS_I(inode)->runtime_flags);
0596a904
FM
2166 /*
2167 * An ordered extent might have started before and completed
2168 * already with io errors, in which case the inode was not
2169 * updated and we end up here. So check the inode's mapping
333427a5
JL
2170 * for any errors that might have happened since we last
2171 * checked called fsync.
0596a904 2172 */
333427a5 2173 ret = filemap_check_wb_err(inode->i_mapping, file->f_wb_err);
5955102c 2174 inode_unlock(inode);
15ee9bc7
JB
2175 goto out;
2176 }
15ee9bc7
JB
2177
2178 /*
a52d9a80
CM
2179 * ok we haven't committed the transaction yet, lets do a commit
2180 */
6f902af4 2181 if (file->private_data)
6bf13c0c
SW
2182 btrfs_ioctl_trans_end(file);
2183
5039eddc
JB
2184 /*
2185 * We use start here because we will need to wait on the IO to complete
2186 * in btrfs_sync_log, which could require joining a transaction (for
2187 * example checking cross references in the nocow path). If we use join
2188 * here we could get into a situation where we're waiting on IO to
2189 * happen that is blocked on a transaction trying to commit. With start
2190 * we inc the extwriter counter, so we wait for all extwriters to exit
2191 * before we start blocking join'ers. This comment is to keep somebody
2192 * from thinking they are super smart and changing this to
2193 * btrfs_join_transaction *cough*Josef*cough*.
2194 */
a22285a6
YZ
2195 trans = btrfs_start_transaction(root, 0);
2196 if (IS_ERR(trans)) {
2197 ret = PTR_ERR(trans);
5955102c 2198 inode_unlock(inode);
39279cc3
CM
2199 goto out;
2200 }
5039eddc 2201 trans->sync = true;
e02119d5 2202
28a23593 2203 btrfs_init_log_ctx(&ctx, inode);
8b050d35 2204
49dae1bc 2205 ret = btrfs_log_dentry_safe(trans, root, dentry, start, end, &ctx);
02c24a82 2206 if (ret < 0) {
a0634be5
FDBM
2207 /* Fallthrough and commit/free transaction. */
2208 ret = 1;
02c24a82 2209 }
49eb7e46
CM
2210
2211 /* we've logged all the items and now have a consistent
2212 * version of the file in the log. It is possible that
2213 * someone will come in and modify the file, but that's
2214 * fine because the log is consistent on disk, and we
2215 * have references to all of the file's extents
2216 *
2217 * It is possible that someone will come in and log the
2218 * file again, but that will end up using the synchronization
2219 * inside btrfs_sync_log to keep things safe.
2220 */
5955102c 2221 inode_unlock(inode);
49eb7e46 2222
8407f553
FM
2223 /*
2224 * If any of the ordered extents had an error, just return it to user
2225 * space, so that the application knows some writes didn't succeed and
2226 * can take proper action (retry for e.g.). Blindly committing the
2227 * transaction in this case, would fool userspace that everything was
2228 * successful. And we also want to make sure our log doesn't contain
2229 * file extent items pointing to extents that weren't fully written to -
2230 * just like in the non fast fsync path, where we check for the ordered
2231 * operation's error flag before writing to the log tree and return -EIO
2232 * if any of them had this flag set (btrfs_wait_ordered_range) -
2233 * therefore we need to check for errors in the ordered operations,
2234 * which are indicated by ctx.io_err.
2235 */
2236 if (ctx.io_err) {
3a45bb20 2237 btrfs_end_transaction(trans);
8407f553
FM
2238 ret = ctx.io_err;
2239 goto out;
2240 }
2241
257c62e1 2242 if (ret != BTRFS_NO_LOG_SYNC) {
0ef8b726 2243 if (!ret) {
8b050d35 2244 ret = btrfs_sync_log(trans, root, &ctx);
0ef8b726 2245 if (!ret) {
3a45bb20 2246 ret = btrfs_end_transaction(trans);
0ef8b726 2247 goto out;
2ab28f32 2248 }
257c62e1 2249 }
0ef8b726 2250 if (!full_sync) {
9dcbeed4 2251 ret = btrfs_wait_ordered_range(inode, start, len);
b05fd874 2252 if (ret) {
3a45bb20 2253 btrfs_end_transaction(trans);
0ef8b726 2254 goto out;
b05fd874 2255 }
0ef8b726 2256 }
3a45bb20 2257 ret = btrfs_commit_transaction(trans);
257c62e1 2258 } else {
3a45bb20 2259 ret = btrfs_end_transaction(trans);
e02119d5 2260 }
39279cc3 2261out:
333427a5
JL
2262 err = file_check_and_advance_wb_err(file);
2263 if (!ret)
2264 ret = err;
014e4ac4 2265 return ret > 0 ? -EIO : ret;
39279cc3
CM
2266}
2267
f0f37e2f 2268static const struct vm_operations_struct btrfs_file_vm_ops = {
92fee66d 2269 .fault = filemap_fault,
f1820361 2270 .map_pages = filemap_map_pages,
9ebefb18
CM
2271 .page_mkwrite = btrfs_page_mkwrite,
2272};
2273
2274static int btrfs_file_mmap(struct file *filp, struct vm_area_struct *vma)
2275{
058a457e
MX
2276 struct address_space *mapping = filp->f_mapping;
2277
2278 if (!mapping->a_ops->readpage)
2279 return -ENOEXEC;
2280
9ebefb18 2281 file_accessed(filp);
058a457e 2282 vma->vm_ops = &btrfs_file_vm_ops;
058a457e 2283
9ebefb18
CM
2284 return 0;
2285}
2286
35339c24 2287static int hole_mergeable(struct btrfs_inode *inode, struct extent_buffer *leaf,
2aaa6655
JB
2288 int slot, u64 start, u64 end)
2289{
2290 struct btrfs_file_extent_item *fi;
2291 struct btrfs_key key;
2292
2293 if (slot < 0 || slot >= btrfs_header_nritems(leaf))
2294 return 0;
2295
2296 btrfs_item_key_to_cpu(leaf, &key, slot);
35339c24 2297 if (key.objectid != btrfs_ino(inode) ||
2aaa6655
JB
2298 key.type != BTRFS_EXTENT_DATA_KEY)
2299 return 0;
2300
2301 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
2302
2303 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2304 return 0;
2305
2306 if (btrfs_file_extent_disk_bytenr(leaf, fi))
2307 return 0;
2308
2309 if (key.offset == end)
2310 return 1;
2311 if (key.offset + btrfs_file_extent_num_bytes(leaf, fi) == start)
2312 return 1;
2313 return 0;
2314}
2315
a012a74e
NB
2316static int fill_holes(struct btrfs_trans_handle *trans,
2317 struct btrfs_inode *inode,
2318 struct btrfs_path *path, u64 offset, u64 end)
2aaa6655 2319{
a012a74e
NB
2320 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
2321 struct btrfs_root *root = inode->root;
2aaa6655
JB
2322 struct extent_buffer *leaf;
2323 struct btrfs_file_extent_item *fi;
2324 struct extent_map *hole_em;
a012a74e 2325 struct extent_map_tree *em_tree = &inode->extent_tree;
2aaa6655
JB
2326 struct btrfs_key key;
2327 int ret;
2328
0b246afa 2329 if (btrfs_fs_incompat(fs_info, NO_HOLES))
16e7549f
JB
2330 goto out;
2331
a012a74e 2332 key.objectid = btrfs_ino(inode);
2aaa6655
JB
2333 key.type = BTRFS_EXTENT_DATA_KEY;
2334 key.offset = offset;
2335
2aaa6655 2336 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
f94480bd
JB
2337 if (ret <= 0) {
2338 /*
2339 * We should have dropped this offset, so if we find it then
2340 * something has gone horribly wrong.
2341 */
2342 if (ret == 0)
2343 ret = -EINVAL;
2aaa6655 2344 return ret;
f94480bd 2345 }
2aaa6655
JB
2346
2347 leaf = path->nodes[0];
a012a74e 2348 if (hole_mergeable(inode, leaf, path->slots[0] - 1, offset, end)) {
2aaa6655
JB
2349 u64 num_bytes;
2350
2351 path->slots[0]--;
2352 fi = btrfs_item_ptr(leaf, path->slots[0],
2353 struct btrfs_file_extent_item);
2354 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) +
2355 end - offset;
2356 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2357 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2358 btrfs_set_file_extent_offset(leaf, fi, 0);
2359 btrfs_mark_buffer_dirty(leaf);
2360 goto out;
2361 }
2362
1707e26d 2363 if (hole_mergeable(inode, leaf, path->slots[0], offset, end)) {
2aaa6655
JB
2364 u64 num_bytes;
2365
2aaa6655 2366 key.offset = offset;
0b246afa 2367 btrfs_set_item_key_safe(fs_info, path, &key);
2aaa6655
JB
2368 fi = btrfs_item_ptr(leaf, path->slots[0],
2369 struct btrfs_file_extent_item);
2370 num_bytes = btrfs_file_extent_num_bytes(leaf, fi) + end -
2371 offset;
2372 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2373 btrfs_set_file_extent_ram_bytes(leaf, fi, num_bytes);
2374 btrfs_set_file_extent_offset(leaf, fi, 0);
2375 btrfs_mark_buffer_dirty(leaf);
2376 goto out;
2377 }
2378 btrfs_release_path(path);
2379
a012a74e 2380 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode),
f85b7379 2381 offset, 0, 0, end - offset, 0, end - offset, 0, 0, 0);
2aaa6655
JB
2382 if (ret)
2383 return ret;
2384
2385out:
2386 btrfs_release_path(path);
2387
2388 hole_em = alloc_extent_map();
2389 if (!hole_em) {
2390 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
a012a74e 2391 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
2aaa6655
JB
2392 } else {
2393 hole_em->start = offset;
2394 hole_em->len = end - offset;
cc95bef6 2395 hole_em->ram_bytes = hole_em->len;
2aaa6655
JB
2396 hole_em->orig_start = offset;
2397
2398 hole_em->block_start = EXTENT_MAP_HOLE;
2399 hole_em->block_len = 0;
b4939680 2400 hole_em->orig_block_len = 0;
0b246afa 2401 hole_em->bdev = fs_info->fs_devices->latest_bdev;
2aaa6655
JB
2402 hole_em->compress_type = BTRFS_COMPRESS_NONE;
2403 hole_em->generation = trans->transid;
2404
2405 do {
2406 btrfs_drop_extent_cache(inode, offset, end - 1, 0);
2407 write_lock(&em_tree->lock);
09a2a8f9 2408 ret = add_extent_mapping(em_tree, hole_em, 1);
2aaa6655
JB
2409 write_unlock(&em_tree->lock);
2410 } while (ret == -EEXIST);
2411 free_extent_map(hole_em);
2412 if (ret)
2413 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
a012a74e 2414 &inode->runtime_flags);
2aaa6655
JB
2415 }
2416
2417 return 0;
2418}
2419
d7781546
QW
2420/*
2421 * Find a hole extent on given inode and change start/len to the end of hole
2422 * extent.(hole/vacuum extent whose em->start <= start &&
2423 * em->start + em->len > start)
2424 * When a hole extent is found, return 1 and modify start/len.
2425 */
2426static int find_first_non_hole(struct inode *inode, u64 *start, u64 *len)
2427{
609805d8 2428 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
d7781546
QW
2429 struct extent_map *em;
2430 int ret = 0;
2431
609805d8
FM
2432 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0,
2433 round_down(*start, fs_info->sectorsize),
2434 round_up(*len, fs_info->sectorsize), 0);
9986277e
DC
2435 if (IS_ERR(em))
2436 return PTR_ERR(em);
d7781546
QW
2437
2438 /* Hole or vacuum extent(only exists in no-hole mode) */
2439 if (em->block_start == EXTENT_MAP_HOLE) {
2440 ret = 1;
2441 *len = em->start + em->len > *start + *len ?
2442 0 : *start + *len - em->start - em->len;
2443 *start = em->start + em->len;
2444 }
2445 free_extent_map(em);
2446 return ret;
2447}
2448
2aaa6655
JB
2449static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
2450{
0b246afa 2451 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655
JB
2452 struct btrfs_root *root = BTRFS_I(inode)->root;
2453 struct extent_state *cached_state = NULL;
2454 struct btrfs_path *path;
2455 struct btrfs_block_rsv *rsv;
2456 struct btrfs_trans_handle *trans;
d7781546
QW
2457 u64 lockstart;
2458 u64 lockend;
2459 u64 tail_start;
2460 u64 tail_len;
2461 u64 orig_start = offset;
2462 u64 cur_offset;
5f52a2c5 2463 u64 min_size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655 2464 u64 drop_end;
2aaa6655
JB
2465 int ret = 0;
2466 int err = 0;
6e4d6fa1 2467 unsigned int rsv_count;
9703fefe 2468 bool same_block;
0b246afa 2469 bool no_holes = btrfs_fs_incompat(fs_info, NO_HOLES);
a1a50f60 2470 u64 ino_size;
9703fefe 2471 bool truncated_block = false;
e8c1c76e 2472 bool updated_inode = false;
2aaa6655 2473
0ef8b726
JB
2474 ret = btrfs_wait_ordered_range(inode, offset, len);
2475 if (ret)
2476 return ret;
2aaa6655 2477
5955102c 2478 inode_lock(inode);
0b246afa 2479 ino_size = round_up(inode->i_size, fs_info->sectorsize);
d7781546
QW
2480 ret = find_first_non_hole(inode, &offset, &len);
2481 if (ret < 0)
2482 goto out_only_mutex;
2483 if (ret && !len) {
2484 /* Already in a large hole */
2485 ret = 0;
2486 goto out_only_mutex;
2487 }
2488
da17066c 2489 lockstart = round_up(offset, btrfs_inode_sectorsize(inode));
d7781546 2490 lockend = round_down(offset + len,
da17066c 2491 btrfs_inode_sectorsize(inode)) - 1;
0b246afa
JM
2492 same_block = (BTRFS_BYTES_TO_BLKS(fs_info, offset))
2493 == (BTRFS_BYTES_TO_BLKS(fs_info, offset + len - 1));
7426cc04 2494 /*
9703fefe 2495 * We needn't truncate any block which is beyond the end of the file
7426cc04
MX
2496 * because we are sure there is no data there.
2497 */
2aaa6655 2498 /*
9703fefe
CR
2499 * Only do this if we are in the same block and we aren't doing the
2500 * entire block.
2aaa6655 2501 */
0b246afa 2502 if (same_block && len < fs_info->sectorsize) {
e8c1c76e 2503 if (offset < ino_size) {
9703fefe
CR
2504 truncated_block = true;
2505 ret = btrfs_truncate_block(inode, offset, len, 0);
e8c1c76e
FM
2506 } else {
2507 ret = 0;
2508 }
d7781546 2509 goto out_only_mutex;
2aaa6655
JB
2510 }
2511
9703fefe 2512 /* zero back part of the first block */
12870f1c 2513 if (offset < ino_size) {
9703fefe
CR
2514 truncated_block = true;
2515 ret = btrfs_truncate_block(inode, offset, 0, 0);
7426cc04 2516 if (ret) {
5955102c 2517 inode_unlock(inode);
7426cc04
MX
2518 return ret;
2519 }
2aaa6655
JB
2520 }
2521
d7781546
QW
2522 /* Check the aligned pages after the first unaligned page,
2523 * if offset != orig_start, which means the first unaligned page
01327610 2524 * including several following pages are already in holes,
d7781546
QW
2525 * the extra check can be skipped */
2526 if (offset == orig_start) {
2527 /* after truncate page, check hole again */
2528 len = offset + len - lockstart;
2529 offset = lockstart;
2530 ret = find_first_non_hole(inode, &offset, &len);
2531 if (ret < 0)
2532 goto out_only_mutex;
2533 if (ret && !len) {
2534 ret = 0;
2535 goto out_only_mutex;
2536 }
2537 lockstart = offset;
2538 }
2539
2540 /* Check the tail unaligned part is in a hole */
2541 tail_start = lockend + 1;
2542 tail_len = offset + len - tail_start;
2543 if (tail_len) {
2544 ret = find_first_non_hole(inode, &tail_start, &tail_len);
2545 if (unlikely(ret < 0))
2546 goto out_only_mutex;
2547 if (!ret) {
2548 /* zero the front end of the last page */
2549 if (tail_start + tail_len < ino_size) {
9703fefe
CR
2550 truncated_block = true;
2551 ret = btrfs_truncate_block(inode,
2552 tail_start + tail_len,
2553 0, 1);
d7781546
QW
2554 if (ret)
2555 goto out_only_mutex;
51f395ad 2556 }
0061280d 2557 }
2aaa6655
JB
2558 }
2559
2560 if (lockend < lockstart) {
e8c1c76e
FM
2561 ret = 0;
2562 goto out_only_mutex;
2aaa6655
JB
2563 }
2564
2565 while (1) {
2566 struct btrfs_ordered_extent *ordered;
2567
2568 truncate_pagecache_range(inode, lockstart, lockend);
2569
2570 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 2571 &cached_state);
2aaa6655
JB
2572 ordered = btrfs_lookup_first_ordered_extent(inode, lockend);
2573
2574 /*
2575 * We need to make sure we have no ordered extents in this range
2576 * and nobody raced in and read a page in this range, if we did
2577 * we need to try again.
2578 */
2579 if ((!ordered ||
6126e3ca 2580 (ordered->file_offset + ordered->len <= lockstart ||
2aaa6655 2581 ordered->file_offset > lockend)) &&
fc4adbff 2582 !btrfs_page_exists_in_range(inode, lockstart, lockend)) {
2aaa6655
JB
2583 if (ordered)
2584 btrfs_put_ordered_extent(ordered);
2585 break;
2586 }
2587 if (ordered)
2588 btrfs_put_ordered_extent(ordered);
2589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart,
2590 lockend, &cached_state, GFP_NOFS);
0ef8b726
JB
2591 ret = btrfs_wait_ordered_range(inode, lockstart,
2592 lockend - lockstart + 1);
2593 if (ret) {
5955102c 2594 inode_unlock(inode);
0ef8b726
JB
2595 return ret;
2596 }
2aaa6655
JB
2597 }
2598
2599 path = btrfs_alloc_path();
2600 if (!path) {
2601 ret = -ENOMEM;
2602 goto out;
2603 }
2604
2ff7e61e 2605 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
2aaa6655
JB
2606 if (!rsv) {
2607 ret = -ENOMEM;
2608 goto out_free;
2609 }
5f52a2c5 2610 rsv->size = btrfs_calc_trans_metadata_size(fs_info, 1);
2aaa6655
JB
2611 rsv->failfast = 1;
2612
2613 /*
2614 * 1 - update the inode
2615 * 1 - removing the extents in the range
16e7549f 2616 * 1 - adding the hole extent if no_holes isn't set
2aaa6655 2617 */
16e7549f
JB
2618 rsv_count = no_holes ? 2 : 3;
2619 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2620 if (IS_ERR(trans)) {
2621 err = PTR_ERR(trans);
2622 goto out_free;
2623 }
2624
0b246afa 2625 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 2626 min_size, 0);
2aaa6655
JB
2627 BUG_ON(ret);
2628 trans->block_rsv = rsv;
2629
d7781546
QW
2630 cur_offset = lockstart;
2631 len = lockend - cur_offset;
2aaa6655
JB
2632 while (cur_offset < lockend) {
2633 ret = __btrfs_drop_extents(trans, root, inode, path,
2634 cur_offset, lockend + 1,
1acae57b 2635 &drop_end, 1, 0, 0, NULL);
2aaa6655
JB
2636 if (ret != -ENOSPC)
2637 break;
2638
0b246afa 2639 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2640
62fe51c1 2641 if (cur_offset < drop_end && cur_offset < ino_size) {
a012a74e
NB
2642 ret = fill_holes(trans, BTRFS_I(inode), path,
2643 cur_offset, drop_end);
12870f1c 2644 if (ret) {
f94480bd
JB
2645 /*
2646 * If we failed then we didn't insert our hole
2647 * entries for the area we dropped, so now the
2648 * fs is corrupted, so we must abort the
2649 * transaction.
2650 */
2651 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2652 err = ret;
2653 break;
2654 }
2aaa6655
JB
2655 }
2656
2657 cur_offset = drop_end;
2658
2659 ret = btrfs_update_inode(trans, root, inode);
2660 if (ret) {
2661 err = ret;
2662 break;
2663 }
2664
3a45bb20 2665 btrfs_end_transaction(trans);
2ff7e61e 2666 btrfs_btree_balance_dirty(fs_info);
2aaa6655 2667
16e7549f 2668 trans = btrfs_start_transaction(root, rsv_count);
2aaa6655
JB
2669 if (IS_ERR(trans)) {
2670 ret = PTR_ERR(trans);
2671 trans = NULL;
2672 break;
2673 }
2674
0b246afa 2675 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 2676 rsv, min_size, 0);
2aaa6655
JB
2677 BUG_ON(ret); /* shouldn't happen */
2678 trans->block_rsv = rsv;
d7781546
QW
2679
2680 ret = find_first_non_hole(inode, &cur_offset, &len);
2681 if (unlikely(ret < 0))
2682 break;
2683 if (ret && !len) {
2684 ret = 0;
2685 break;
2686 }
2aaa6655
JB
2687 }
2688
2689 if (ret) {
2690 err = ret;
2691 goto out_trans;
2692 }
2693
0b246afa 2694 trans->block_rsv = &fs_info->trans_block_rsv;
2959a32a
FM
2695 /*
2696 * If we are using the NO_HOLES feature we might have had already an
2697 * hole that overlaps a part of the region [lockstart, lockend] and
2698 * ends at (or beyond) lockend. Since we have no file extent items to
2699 * represent holes, drop_end can be less than lockend and so we must
2700 * make sure we have an extent map representing the existing hole (the
2701 * call to __btrfs_drop_extents() might have dropped the existing extent
2702 * map representing the existing hole), otherwise the fast fsync path
2703 * will not record the existence of the hole region
2704 * [existing_hole_start, lockend].
2705 */
2706 if (drop_end <= lockend)
2707 drop_end = lockend + 1;
fc19c5e7
FM
2708 /*
2709 * Don't insert file hole extent item if it's for a range beyond eof
2710 * (because it's useless) or if it represents a 0 bytes range (when
2711 * cur_offset == drop_end).
2712 */
2713 if (cur_offset < ino_size && cur_offset < drop_end) {
a012a74e
NB
2714 ret = fill_holes(trans, BTRFS_I(inode), path,
2715 cur_offset, drop_end);
12870f1c 2716 if (ret) {
f94480bd
JB
2717 /* Same comment as above. */
2718 btrfs_abort_transaction(trans, ret);
12870f1c
FM
2719 err = ret;
2720 goto out_trans;
2721 }
2aaa6655
JB
2722 }
2723
2724out_trans:
2725 if (!trans)
2726 goto out_free;
2727
e1f5790e 2728 inode_inc_iversion(inode);
c2050a45 2729 inode->i_mtime = inode->i_ctime = current_time(inode);
e1f5790e 2730
0b246afa 2731 trans->block_rsv = &fs_info->trans_block_rsv;
2aaa6655 2732 ret = btrfs_update_inode(trans, root, inode);
e8c1c76e 2733 updated_inode = true;
3a45bb20 2734 btrfs_end_transaction(trans);
2ff7e61e 2735 btrfs_btree_balance_dirty(fs_info);
2aaa6655
JB
2736out_free:
2737 btrfs_free_path(path);
2ff7e61e 2738 btrfs_free_block_rsv(fs_info, rsv);
2aaa6655
JB
2739out:
2740 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
2741 &cached_state, GFP_NOFS);
d7781546 2742out_only_mutex:
9703fefe 2743 if (!updated_inode && truncated_block && !ret && !err) {
e8c1c76e
FM
2744 /*
2745 * If we only end up zeroing part of a page, we still need to
2746 * update the inode item, so that all the time fields are
2747 * updated as well as the necessary btrfs inode in memory fields
2748 * for detecting, at fsync time, if the inode isn't yet in the
2749 * log tree or it's there but not up to date.
2750 */
2751 trans = btrfs_start_transaction(root, 1);
2752 if (IS_ERR(trans)) {
2753 err = PTR_ERR(trans);
2754 } else {
2755 err = btrfs_update_inode(trans, root, inode);
3a45bb20 2756 ret = btrfs_end_transaction(trans);
e8c1c76e
FM
2757 }
2758 }
5955102c 2759 inode_unlock(inode);
2aaa6655
JB
2760 if (ret && !err)
2761 err = ret;
2762 return err;
2763}
2764
14524a84
QW
2765/* Helper structure to record which range is already reserved */
2766struct falloc_range {
2767 struct list_head list;
2768 u64 start;
2769 u64 len;
2770};
2771
2772/*
2773 * Helper function to add falloc range
2774 *
2775 * Caller should have locked the larger range of extent containing
2776 * [start, len)
2777 */
2778static int add_falloc_range(struct list_head *head, u64 start, u64 len)
2779{
2780 struct falloc_range *prev = NULL;
2781 struct falloc_range *range = NULL;
2782
2783 if (list_empty(head))
2784 goto insert;
2785
2786 /*
2787 * As fallocate iterate by bytenr order, we only need to check
2788 * the last range.
2789 */
2790 prev = list_entry(head->prev, struct falloc_range, list);
2791 if (prev->start + prev->len == start) {
2792 prev->len += len;
2793 return 0;
2794 }
2795insert:
32fc932e 2796 range = kmalloc(sizeof(*range), GFP_KERNEL);
14524a84
QW
2797 if (!range)
2798 return -ENOMEM;
2799 range->start = start;
2800 range->len = len;
2801 list_add_tail(&range->list, head);
2802 return 0;
2803}
2804
2fe17c10
CH
2805static long btrfs_fallocate(struct file *file, int mode,
2806 loff_t offset, loff_t len)
2807{
496ad9aa 2808 struct inode *inode = file_inode(file);
2fe17c10 2809 struct extent_state *cached_state = NULL;
364ecf36 2810 struct extent_changeset *data_reserved = NULL;
14524a84
QW
2811 struct falloc_range *range;
2812 struct falloc_range *tmp;
2813 struct list_head reserve_list;
2fe17c10
CH
2814 u64 cur_offset;
2815 u64 last_byte;
2816 u64 alloc_start;
2817 u64 alloc_end;
2818 u64 alloc_hint = 0;
2819 u64 locked_end;
14524a84 2820 u64 actual_end = 0;
2fe17c10 2821 struct extent_map *em;
da17066c 2822 int blocksize = btrfs_inode_sectorsize(inode);
2fe17c10
CH
2823 int ret;
2824
797f4277
MX
2825 alloc_start = round_down(offset, blocksize);
2826 alloc_end = round_up(offset + len, blocksize);
18513091 2827 cur_offset = alloc_start;
2fe17c10 2828
2aaa6655
JB
2829 /* Make sure we aren't being give some crap mode */
2830 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2fe17c10
CH
2831 return -EOPNOTSUPP;
2832
2aaa6655
JB
2833 if (mode & FALLOC_FL_PUNCH_HOLE)
2834 return btrfs_punch_hole(inode, offset, len);
2835
d98456fc 2836 /*
14524a84
QW
2837 * Only trigger disk allocation, don't trigger qgroup reserve
2838 *
2839 * For qgroup space, it will be checked later.
d98456fc 2840 */
04f4f916
NB
2841 ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode),
2842 alloc_end - alloc_start);
14524a84 2843 if (ret < 0)
d98456fc
CM
2844 return ret;
2845
5955102c 2846 inode_lock(inode);
2a162ce9
DI
2847
2848 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) {
2849 ret = inode_newsize_ok(inode, offset + len);
2850 if (ret)
2851 goto out;
2852 }
2fe17c10 2853
14524a84
QW
2854 /*
2855 * TODO: Move these two operations after we have checked
2856 * accurate reserved space, or fallocate can still fail but
2857 * with page truncated or size expanded.
2858 *
2859 * But that's a minor problem and won't do much harm BTW.
2860 */
2fe17c10 2861 if (alloc_start > inode->i_size) {
a41ad394
JB
2862 ret = btrfs_cont_expand(inode, i_size_read(inode),
2863 alloc_start);
2fe17c10
CH
2864 if (ret)
2865 goto out;
0f6925fa 2866 } else if (offset + len > inode->i_size) {
a71754fc
JB
2867 /*
2868 * If we are fallocating from the end of the file onward we
9703fefe
CR
2869 * need to zero out the end of the block if i_size lands in the
2870 * middle of a block.
a71754fc 2871 */
9703fefe 2872 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
a71754fc
JB
2873 if (ret)
2874 goto out;
2fe17c10
CH
2875 }
2876
a71754fc
JB
2877 /*
2878 * wait for ordered IO before we have any locks. We'll loop again
2879 * below with the locks held.
2880 */
0ef8b726
JB
2881 ret = btrfs_wait_ordered_range(inode, alloc_start,
2882 alloc_end - alloc_start);
2883 if (ret)
2884 goto out;
a71754fc 2885
2fe17c10
CH
2886 locked_end = alloc_end - 1;
2887 while (1) {
2888 struct btrfs_ordered_extent *ordered;
2889
2890 /* the extent lock is ordered inside the running
2891 * transaction
2892 */
2893 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
ff13db41 2894 locked_end, &cached_state);
2fe17c10
CH
2895 ordered = btrfs_lookup_first_ordered_extent(inode,
2896 alloc_end - 1);
2897 if (ordered &&
2898 ordered->file_offset + ordered->len > alloc_start &&
2899 ordered->file_offset < alloc_end) {
2900 btrfs_put_ordered_extent(ordered);
2901 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
2902 alloc_start, locked_end,
32fc932e 2903 &cached_state, GFP_KERNEL);
2fe17c10
CH
2904 /*
2905 * we can't wait on the range with the transaction
2906 * running or with the extent lock held
2907 */
0ef8b726
JB
2908 ret = btrfs_wait_ordered_range(inode, alloc_start,
2909 alloc_end - alloc_start);
2910 if (ret)
2911 goto out;
2fe17c10
CH
2912 } else {
2913 if (ordered)
2914 btrfs_put_ordered_extent(ordered);
2915 break;
2916 }
2917 }
2918
14524a84
QW
2919 /* First, check if we exceed the qgroup limit */
2920 INIT_LIST_HEAD(&reserve_list);
2fe17c10 2921 while (1) {
fc4f21b1 2922 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
2fe17c10 2923 alloc_end - cur_offset, 0);
9986277e
DC
2924 if (IS_ERR(em)) {
2925 ret = PTR_ERR(em);
79787eaa
JM
2926 break;
2927 }
2fe17c10 2928 last_byte = min(extent_map_end(em), alloc_end);
f1e490a7 2929 actual_end = min_t(u64, extent_map_end(em), offset + len);
797f4277 2930 last_byte = ALIGN(last_byte, blocksize);
2fe17c10
CH
2931 if (em->block_start == EXTENT_MAP_HOLE ||
2932 (cur_offset >= inode->i_size &&
2933 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
14524a84
QW
2934 ret = add_falloc_range(&reserve_list, cur_offset,
2935 last_byte - cur_offset);
2936 if (ret < 0) {
2937 free_extent_map(em);
2938 break;
3d850dd4 2939 }
364ecf36
QW
2940 ret = btrfs_qgroup_reserve_data(inode, &data_reserved,
2941 cur_offset, last_byte - cur_offset);
be2d253c
FM
2942 if (ret < 0) {
2943 free_extent_map(em);
14524a84 2944 break;
be2d253c 2945 }
18513091
WX
2946 } else {
2947 /*
2948 * Do not need to reserve unwritten extent for this
2949 * range, free reserved data space first, otherwise
2950 * it'll result in false ENOSPC error.
2951 */
bc42bda2
QW
2952 btrfs_free_reserved_data_space(inode, data_reserved,
2953 cur_offset, last_byte - cur_offset);
2fe17c10
CH
2954 }
2955 free_extent_map(em);
2fe17c10 2956 cur_offset = last_byte;
14524a84 2957 if (cur_offset >= alloc_end)
2fe17c10 2958 break;
14524a84
QW
2959 }
2960
2961 /*
2962 * If ret is still 0, means we're OK to fallocate.
2963 * Or just cleanup the list and exit.
2964 */
2965 list_for_each_entry_safe(range, tmp, &reserve_list, list) {
2966 if (!ret)
2967 ret = btrfs_prealloc_file_range(inode, mode,
2968 range->start,
93407472 2969 range->len, i_blocksize(inode),
14524a84 2970 offset + len, &alloc_hint);
18513091 2971 else
bc42bda2
QW
2972 btrfs_free_reserved_data_space(inode,
2973 data_reserved, range->start,
2974 range->len);
14524a84
QW
2975 list_del(&range->list);
2976 kfree(range);
2977 }
2978 if (ret < 0)
2979 goto out_unlock;
2980
2981 if (actual_end > inode->i_size &&
2982 !(mode & FALLOC_FL_KEEP_SIZE)) {
2983 struct btrfs_trans_handle *trans;
2984 struct btrfs_root *root = BTRFS_I(inode)->root;
2985
2986 /*
2987 * We didn't need to allocate any more space, but we
2988 * still extended the size of the file so we need to
2989 * update i_size and the inode item.
2990 */
2991 trans = btrfs_start_transaction(root, 1);
2992 if (IS_ERR(trans)) {
2993 ret = PTR_ERR(trans);
2994 } else {
c2050a45 2995 inode->i_ctime = current_time(inode);
14524a84
QW
2996 i_size_write(inode, actual_end);
2997 btrfs_ordered_update_i_size(inode, actual_end, NULL);
2998 ret = btrfs_update_inode(trans, root, inode);
2999 if (ret)
3a45bb20 3000 btrfs_end_transaction(trans);
14524a84 3001 else
3a45bb20 3002 ret = btrfs_end_transaction(trans);
2fe17c10
CH
3003 }
3004 }
14524a84 3005out_unlock:
2fe17c10 3006 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
32fc932e 3007 &cached_state, GFP_KERNEL);
2fe17c10 3008out:
5955102c 3009 inode_unlock(inode);
d98456fc 3010 /* Let go of our reservation. */
18513091 3011 if (ret != 0)
bc42bda2
QW
3012 btrfs_free_reserved_data_space(inode, data_reserved,
3013 alloc_start, alloc_end - cur_offset);
364ecf36 3014 extent_changeset_free(data_reserved);
2fe17c10
CH
3015 return ret;
3016}
3017
965c8e59 3018static int find_desired_extent(struct inode *inode, loff_t *offset, int whence)
b2675157 3019{
0b246afa 3020 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7f4ca37c 3021 struct extent_map *em = NULL;
b2675157 3022 struct extent_state *cached_state = NULL;
4d1a40c6
LB
3023 u64 lockstart;
3024 u64 lockend;
3025 u64 start;
3026 u64 len;
b2675157
JB
3027 int ret = 0;
3028
4d1a40c6
LB
3029 if (inode->i_size == 0)
3030 return -ENXIO;
3031
3032 /*
3033 * *offset can be negative, in this case we start finding DATA/HOLE from
3034 * the very start of the file.
3035 */
3036 start = max_t(loff_t, 0, *offset);
3037
0b246afa 3038 lockstart = round_down(start, fs_info->sectorsize);
da17066c 3039 lockend = round_up(i_size_read(inode),
0b246afa 3040 fs_info->sectorsize);
b2675157 3041 if (lockend <= lockstart)
0b246afa 3042 lockend = lockstart + fs_info->sectorsize;
1214b53f 3043 lockend--;
b2675157
JB
3044 len = lockend - lockstart + 1;
3045
ff13db41 3046 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
d0082371 3047 &cached_state);
b2675157 3048
7f4ca37c 3049 while (start < inode->i_size) {
fc4f21b1
NB
3050 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0,
3051 start, len, 0);
b2675157 3052 if (IS_ERR(em)) {
6af021d8 3053 ret = PTR_ERR(em);
7f4ca37c 3054 em = NULL;
b2675157
JB
3055 break;
3056 }
3057
7f4ca37c
JB
3058 if (whence == SEEK_HOLE &&
3059 (em->block_start == EXTENT_MAP_HOLE ||
3060 test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3061 break;
3062 else if (whence == SEEK_DATA &&
3063 (em->block_start != EXTENT_MAP_HOLE &&
3064 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags)))
3065 break;
b2675157
JB
3066
3067 start = em->start + em->len;
b2675157 3068 free_extent_map(em);
7f4ca37c 3069 em = NULL;
b2675157
JB
3070 cond_resched();
3071 }
7f4ca37c
JB
3072 free_extent_map(em);
3073 if (!ret) {
3074 if (whence == SEEK_DATA && start >= inode->i_size)
3075 ret = -ENXIO;
3076 else
3077 *offset = min_t(loff_t, start, inode->i_size);
3078 }
b2675157
JB
3079 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
3080 &cached_state, GFP_NOFS);
3081 return ret;
3082}
3083
965c8e59 3084static loff_t btrfs_file_llseek(struct file *file, loff_t offset, int whence)
b2675157
JB
3085{
3086 struct inode *inode = file->f_mapping->host;
3087 int ret;
3088
5955102c 3089 inode_lock(inode);
965c8e59 3090 switch (whence) {
b2675157
JB
3091 case SEEK_END:
3092 case SEEK_CUR:
965c8e59 3093 offset = generic_file_llseek(file, offset, whence);
b2675157
JB
3094 goto out;
3095 case SEEK_DATA:
3096 case SEEK_HOLE:
48802c8a 3097 if (offset >= i_size_read(inode)) {
5955102c 3098 inode_unlock(inode);
48802c8a
JL
3099 return -ENXIO;
3100 }
3101
965c8e59 3102 ret = find_desired_extent(inode, &offset, whence);
b2675157 3103 if (ret) {
5955102c 3104 inode_unlock(inode);
b2675157
JB
3105 return ret;
3106 }
3107 }
3108
46a1c2c7 3109 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
b2675157 3110out:
5955102c 3111 inode_unlock(inode);
b2675157
JB
3112 return offset;
3113}
3114
edf064e7
GR
3115static int btrfs_file_open(struct inode *inode, struct file *filp)
3116{
91f9943e 3117 filp->f_mode |= FMODE_NOWAIT;
edf064e7
GR
3118 return generic_file_open(inode, filp);
3119}
3120
828c0950 3121const struct file_operations btrfs_file_operations = {
b2675157 3122 .llseek = btrfs_file_llseek,
aad4f8bb 3123 .read_iter = generic_file_read_iter,
e9906a98 3124 .splice_read = generic_file_splice_read,
b30ac0fc 3125 .write_iter = btrfs_file_write_iter,
9ebefb18 3126 .mmap = btrfs_file_mmap,
edf064e7 3127 .open = btrfs_file_open,
e1b81e67 3128 .release = btrfs_release_file,
39279cc3 3129 .fsync = btrfs_sync_file,
2fe17c10 3130 .fallocate = btrfs_fallocate,
34287aa3 3131 .unlocked_ioctl = btrfs_ioctl,
39279cc3 3132#ifdef CONFIG_COMPAT
4c63c245 3133 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 3134#endif
04b38d60 3135 .clone_file_range = btrfs_clone_file_range,
2b3909f8 3136 .dedupe_file_range = btrfs_dedupe_file_range,
39279cc3 3137};
9247f317
MX
3138
3139void btrfs_auto_defrag_exit(void)
3140{
5598e900 3141 kmem_cache_destroy(btrfs_inode_defrag_cachep);
9247f317
MX
3142}
3143
3144int btrfs_auto_defrag_init(void)
3145{
3146 btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
3147 sizeof(struct inode_defrag), 0,
fba4b697 3148 SLAB_MEM_SPREAD,
9247f317
MX
3149 NULL);
3150 if (!btrfs_inode_defrag_cachep)
3151 return -ENOMEM;
3152
3153 return 0;
3154}
728404da
FM
3155
3156int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end)
3157{
3158 int ret;
3159
3160 /*
3161 * So with compression we will find and lock a dirty page and clear the
3162 * first one as dirty, setup an async extent, and immediately return
3163 * with the entire range locked but with nobody actually marked with
3164 * writeback. So we can't just filemap_write_and_wait_range() and
3165 * expect it to work since it will just kick off a thread to do the
3166 * actual work. So we need to call filemap_fdatawrite_range _again_
3167 * since it will wait on the page lock, which won't be unlocked until
3168 * after the pages have been marked as writeback and so we're good to go
3169 * from there. We have to do this otherwise we'll miss the ordered
3170 * extents and that results in badness. Please Josef, do not think you
3171 * know better and pull this out at some point in the future, it is
3172 * right and you are wrong.
3173 */
3174 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3175 if (!ret && test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
3176 &BTRFS_I(inode)->runtime_flags))
3177 ret = filemap_fdatawrite_range(inode->i_mapping, start, end);
3178
3179 return ret;
3180}